
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Early praise for Reactive Programming with RxJS

Every significant shift in software development demands rethinking our approach-
es. Real-time and asynchronous web applications pose a huge challenge in web
development today. This book does an excellent job explaining how RxJS addresses
those challenges and teaches you how to rethink your world in terms of Observ-
ables.

➤ Zef Hemel
VP engineering, STX Next

This book is as hot as reactive programming itself! With great writing, clear expla-
nations, and practical examples, this is a fantastic resource for learning RxJS.

➤ Fred Daoud
Software-development contractor

Be proactive and learn reactive programming with this book before it’s too late.
Rx.Observable.fromBook(book).subscribe(function(value) {...do amazing stuff...});

➤ Javier Collado Cabeza
Senior software developer, NowSecure, Inc.

A very readable book with great content. This book is eminently useful and provides
a clear roadmap for learning reactive programming with RxJS with practical ex-
amples.

➤ Ramaninder Singh Jhajj
Software engineer, Area Services & Development, Know-Center, Austria

www.allitebooks.com

http://www.allitebooks.org

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

www.allitebooks.com

http://www.allitebooks.org

Reactive Programming with RxJS
Untangle Your Asynchronous JavaScript Code

Sergi Mansilla

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Rebecca Gulick (editor)
Potomac Indexing, LLC (index)
Candace Cunningham (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-129-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2015

www.allitebooks.com

https://pragprog.com
rights@pragprog.com
http://www.allitebooks.org

Per a tu, Pipus

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Contents

Acknowledgments ix
Preface xi

1. The Reactive Way 1
What’s Reactive? 1
Of Observers and Iterators 6
The Rx Pattern and the Observable 9
Creating Observables 10
Wrapping Up 15

2. Deep in the Sequence 17
Visualizing Observables 17
Basic Sequence Operators 19
Canceling Sequences 24
Handling Errors 26
Making a Real-Time Earthquake Visualizer 29
Ideas for Improvements 36
Operator Rundown 36
Wrapping Up 38

3. Building Concurrent Programs 39
Purity and the Observable Pipeline 39
RxJS’s Subject Class 45
Spaceship Reactive! 50
Ideas for Improvements 68
Wrapping Up 68

4. Building a Complete Web Application 69
Building a Real-Time Earthquake Dashboard 69
Adding a List of Earthquakes 71
Getting Real-Time Updates from Twitter 82

www.allitebooks.com

http://www.allitebooks.org

Ideas for Improvements 88
Wrapping Up 88

5. Bending Time with Schedulers 89
Using Schedulers 89
Scheduling for Animations 95
Testing with Schedulers 97
Wrapping Up 101

6. Reactive Web Applications with Cycle.js 103
Cycle.js 103
Installing Cycle.js 104
Our Project: Wikipedia Search 105
Model-View-Intent 112
Creating Reusable Widgets 115
Ideas for Improvements 118
Wrapping Up 118

Index 119

Contents • viii

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments
I have so many people to thank. There are those who have helped shape the
book and those who have helped shape me as a person. I couldn’t have done
this without any of them. I would particularly like to thank the following:

The exceptional people who came up with the Reactive Extensions library in
the first place, and the ones who expanded and evangelized it. This book
would obviously not exist without you: Erik Meijer, Matt Podwysocki, Bart
De Smet, Wes Dyer, Jafar Husain, André Staltz, and many more I am probably
forgetting.

The folks at The Pragmatic Bookshelf. It has been a pleasure to work with
you. Special thanks to Susannah Pfalzer, who has believed in the book since
it was nothing but an idea. I was also extremely lucky to get Rebecca Gulick
as my editor: You have been professional, patient, attentive to my questions,
and a joy to work with. I’ve been a fan of Pragmatic’s books for a long time,
and it has been a privilege to write a PragProg book myself. And, yes, both
publishers, Dave Thomas and Andy Hunt, do read and review every book!

The brilliant technical reviewers. David Bock, Javier Collado Cabeza, Fred
Daoud, Irakli Gozalishvili, Zef Hemel, Ramaninder Singh Jhajj, Aaron Kalair,
Daniel Lamb, Brian Schau, and Stephen Wolff, as well as Pragmatic publishers
Dave and Andy: This book is infinitely better thanks to all of you. You each
selflessly put time and energy into reviewing this book, detecting complicated
errors and saving me from more than one embarrassing mistake. Any errors
remaining in the book are my own fault.

To my friends. The ones who are always there, no matter the time and the
distance; you know who you are. Thanks for the laughs, the support, the
love.

My parents, Narcís Mansilla and Joana Molins. You are my guides and role
models. You never ceased to believe in me and always encouraged me to take
on bigger challenges. You bought me my first computer at a time when you
struggled to pay the bills. That started it all, and I owe you everything.

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

My son, Adrià. You were born while I was writing this book, and you have
changed the meaning of life for me. You’ve already taught me so much in
such little time, and I can’t wait to see what’s next.

Finally, Jen, the love of my life. You have had infinite patience and supported
me while I wrote a book in one of the busiest periods of our life so far. You
are an inspiration to me and you make me a better human being in every
way. You are my star.

Sergi Mansilla

Barcelona, December 2015

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Preface
Reactive programming is taking the software world by storm. This book
combines the reactive programming philosophy with the possibilities of
JavaScript, and you’ll learn how to apply reactive techniques to your own
projects. We’ll focus on reactive programming to manage and combine streams
of events. In fact, we’ll cover how to make entire real-world, concurrent
applications just by declaring transformations on our program’s events.

Most software today deals with data that’s available only over time: websites
load remote resources and respond to complex user interactions, servers are
distributed across multiple physical locations, and people have mobile devices
that they expect to work at all times, whether on high-speed Wi-Fi or spotty
cellular networks. Any serious application involves many moving asynchronous
parts that need to be efficiently coordinated, and that’s very hard with today’s
programming techniques. On top of that, we have what’s always been there:
servers crashing, slow networks, and software bugs we have to deal with.

We can’t afford to keep programming applications the way we always have.
It worked for a while, but now it’s time for a new approach.

New World, Old Methods
In recent years JavaScript has become the most ubiquitous language in the
world and now powers the mission-critical infrastructure of businesses such
as Walmart and Netflix,1 mobile operating systems such as Firefox OS, and
complex popular applications such as Google Docs.

And yet we’re still using good ol‘ imperative-style programming to deal with
problems that are essentially asynchronous. This is very hard.

JavaScript developers see the language’s lack of threads as a feature, and we
usually write asynchronous code using callbacks, promises, and events. But

1. http://venturebeat.com/2012/01/24/why-walmart-is-using-node-js/, http://techblog.netflix.com/2014/06/scale-
and-performance-of-large.html

report erratum • discuss

http://venturebeat.com/2012/01/24/why-walmart-is-using-node-js/
http://techblog.netflix.com/2014/06/scale-and-performance-of-large.html
http://techblog.netflix.com/2014/06/scale-and-performance-of-large.html
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

as we keep adding more concurrency to our applications, the code to coordi-
nate asynchronous flows becomes unwieldy. Current mechanisms all have
serious shortcomings that hinder the developer’s productivity and make for
fragile applications.

Here’s a quick rundown of the current mechanisms for handling asynchronous
operations, along with their problems.

Callback Functions
A callback is a function (A) passed as a parameter to another function (B) that
performs an asynchronous operation. When (B) is done, it calls back (A) with
the results of the operation. Callbacks are used to manage asynchronous
flows such as network I/O, database access, or user input.

intro/callback_example.js
function B(callback) {

// Do operation that takes some time
callback('Done!');

}

function A(message) {
console.log(message);

}

// Execute `B` with `A` as a callback
B(A);

Callbacks are easy to grasp and have become the default way of handling
asynchronous data flows in JavaScript. But this simplicity comes at a price.
Callbacks have the following drawbacks:

• Callback hell. It’s easy to end up with lots of nested callbacks when han-
dling highly asynchronous code. When that happens, code stops being
linear and becomes hard to reason about. Whole applications end up
passed around in callbacks, and they become difficult to maintain and
debug.

• Callbacks can run more than once. There’s no guarantee the same callback
will be called only once. Multiple invocations can be hard to detect and
can result in errors and general mayhem in your application.

• Callbacks change error semantics. Callbacks break the traditional try/catch
mechanism and rely on the programmer to check for errors and pass
them around.

Preface • xii

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/intro/callback_example.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

• Concurrency gets increasingly complicated. Combining interdependent
results of multiple asynchronous operations becomes difficult. It requires
us to keep track of the state of each operation in temporal variables, and
then delegate them to the final combination operation in the proper order.

Promises
Promises came to save us from callbacks. A promise represents the result of
an asynchronous operation. In promise-based code, calling an asynchronous
function immediately returns a “promise” that will eventually be either resolved
with the result of the operation or rejected with an error. In the meantime,
the pending promise can be used as a placeholder for the final value.

Promises usually make programs more clear by being closer to synchronous
code, reducing the need for nesting blocks and keeping track of less state.

Unfortunately, promises are not a silver bullet. They’re an improvement over
callbacks, but they have a major shortcoming: they only ever yield a single
value. That makes them useless for handling recurrent events such as mouse
clicks or streams of data coming from the server, because we would have to
create a promise for each separate event instead of creating a promise that
handles the stream of events as it comes.

Event Emitters
When we emit an event, event listeners that are subscribed to it will fire.
Using events is a great way to decouple functionality, and in JavaScript, event
programming is common and generally a good practice.

But, you guessed it, event listeners come with their own set of problems, too:

• Events force side effects. Event listener functions always ignore their
return values, which forces the listener to have side effects if it wants to
have any impact in the world.

• Events are not first-class values. For example, a series of click events can’t
be passed as a parameter or manipulated as the sequence it actually is.
We’re limited to handling each event individually, and only after the event
happens.

• It is easy to miss events if we start listening too late. An infamous example
of that is the first version of the streams interface in Node.js, which would
often emit its data event before listeners had time to listen to it, losing it
forever.

report erratum • discuss

New World, Old Methods • xiii

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Since these mechanisms are what we’ve always used to manage concurrency,
it might be hard to think of a better way. But in this book I’ll show you one:
reactive programming and RxJS try to solve all these problems with some
new concepts and mechanisms to make asynchronous programming a breeze
—and much more fun.

What Is Reactive Programming?
Reactive programming is a programming paradigm that encompasses many
concepts and techniques. In this book I’ll focus particularly on creating,
transforming, and reacting to streams of data. Mouse clicks, network requests,
arrays of strings—all these can be expressed as streams to which we can
“react” as they publish new values, using the same interfaces regardless of
their source.

Reactive programming focuses on propagating changes without our having
to explicitly specify how the propagation happens. This allows us to state
what our code should do, without having to code every step to do it. This
results in a more reliable and maintainable approach to building software.

What Is RxJS?
RxJS is a JavaScript implementation of the Reactive Extensions, or Rx.2 Rx
is a reactive programming model originally created at Microsoft that allows
developers to easily compose asynchronous streams of data. It provides a
common interface to combine and transform data from wildly different sources,
such as filesystem operations, user interaction, and social-network updates.

Rx started with an implementation for .NET, but today it has a well-maintained
open source implementation in every major language (and some minor ones).
It is becoming the standard to program reactive applications, and Rx’s main
data type, the Observable, is being proposed for inclusion in ECMAScript 7
as an integral part of JavaScript.

Who This Book Is For
This book is for developers with some experience with JavaScript. You should
be comfortable with closures and higher-order functions, and you should
understand the scope rules in JavaScript. That being said, I try to explain
the most complex language concepts we go through in this book.

2. https://rx.codeplex.com/

Preface • xiv

report erratum • discuss

https://rx.codeplex.com/
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

What’s in This Book
This book is a practical introduction to reactive programming using RxJS.
The objective is to get you to think reactively by building small real-world
applications, so you can learn how to introduce reactive programming in your
day-to-day programming and make your programs more robust. This is not
a theoretical book about reactive programming, and it is not an exhaustive
reference book for the RxJS API. You can find these kinds of resources online.

We’ll be developing mostly for the browser, but we’ll see some examples in
Node.js, too. We’ll get deep into the subject early on, and we’ll build applica-
tions along the way to keep it real. Here are the chapters:

Unless you have used RxJS before, start with Chapter 1, The Reactive Way,
on page 1. In this chapter we introduce Observables, the main data type of
RxJS, which we’ll use extensively throughout the book.

With the basics of Observables established, we move on to Chapter 2, Deep
in the Sequence, on page 17. There you see that in reactive programming it’s
all about sequences of events. We visit some important sequence operators
and we build our first application, a real-time earthquake visualizer.

In Chapter 3, Building Concurrent Programs, on page 39, we look at how to
write concurrent code with minimal side effects. After covering the Observable
pipeline, we build a cool spaceship video game in about 200 lines of code and
with almost no global state.

In Chapter 4, Building a Complete Web Application, on page 69, we get deeper
into reactive app development and enhance the earthquake application we
made previously in Deep in the Sequence by making a server part in Node.js
that shows tweets related to earthquakes happening right now.

We get into some more advanced concepts of RxJS with Chapter 5, Bending
Time with Schedulers, on page 89, where we talk about the useful concept
RxJS provides to handle concurrency at a more fine-grained level: Schedulers.

With the knowledge of Schedulers under our hats, we explore how they help
us with testing. We’ll see how to simulate time in our tests to accurately test
asynchronous programs.

Finally, in Chapter 6, Reactive Web Applications with Cycle.js, on page 103,
we’ll use Cycle.js, a UI framework built on top of RxJS, to build a simple
application. Cycle.js draws concepts from modern frameworks such as React.js
to create a reactive framework that uses the advantages of Observables to
help us create fast user interfaces in a simple and reliable way.

report erratum • discuss

What’s in This Book • xv

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Running the Code Examples
The code examples in this book are made for either the browser or Node.js.
The context of the code should clarify in what environment to run the code.

Running RxJS Code in the Browser
If the code is meant to run in the browser, we’ll use the file rx.all.js, which you
can find in the RxJS GitHub repository.3 rx.all.js includes all the operators in
RxJS, and it’s the easiest way to be sure all examples will work. Just load
the script in the <head> section of your HTML document:

<html>
<head>

<script src="rx.all.js"></script>
</head>
...

</html>

Keep in mind that it is a relatively big file and you may want to consider a
smaller file, such as rx.js or rx.lite.js, for your projects if you’re not using all the
functionality in RxJS.

Running RxJS Code in Node.js
Running code examples in Node.js is easy. Just make sure you install the
RxJS dependency in your project using npm:

$ npm install rx
rx@4.0.0 node_modules/rx

After that, you can import the RxJS library in your JavaScript files:

var Rx = require('rx');

Rx.Observable.just('Hello World!').subscribe(function(value) {
console.log(value);

});

And you can run it by simply invoking node and the name of the file:

$ node test.js
Hello World!

3. https://github.com/Reactive-Extensions/RxJS/tree/master/dist

Preface • xvi

report erratum • discuss

https://github.com/Reactive-Extensions/RxJS/tree/master/dist
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

RxJS Version
All the examples are made for RxJS 4.x. You can download the latest version
in the RxJS online repository.4

Resources
RxJS is gaining adoption very quickly, and there are more and more resources
about it every day. At times it might be hard to find resources about it online,
though. These are my favorite ones:

• RxJS official source code repository5

• ReactiveX, a collection of resources related to the Reactive Extensions6

• RxMarbles, an interactive tool to visualize Observables7

Download Sample Code
This book’s website has links to an interactive discussion forum as well as a
place to submit errata.8 You’ll also find the source code for all the projects
we build. Readers of the ebook can interact with the box above each code
snippet to view that snippet directly.

4. https://github.com/Reactive-Extensions/RxJS/releases/latest
5. https://github.com/Reactive-Extensions/RxJS
6. http://reactivex.io
7. http://rxmarbles.com/
8. http://pragprog.com/titles/smreactjs

report erratum • discuss

Resources • xvii

https://github.com/Reactive-Extensions/RxJS/releases/latest
https://github.com/Reactive-Extensions/RxJS
http://reactivex.io
http://rxmarbles.com/
http://pragprog.com/titles/smreactjs
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

CHAPTER 1

The Reactive Way
The real world is pretty messy: events happen in random order, applications
crash, and networks fail. Few applications are completely synchronous, and
writing asynchronous code is necessary to keep applications responsive. Most
of the time it’s downright painful, but it really doesn’t have to be.

Modern applications need super-fast responses and the ability to process
data from different sources at the same time without missing a beat. Current
techniques won’t get us there because they don’t scale—code becomes expo-
nentially more complex as we add concurrency and application state. They
get the job done only at the expense of a considerable mental load on the
developer, and that leads to bugs and complexity in our code.

This chapter introduces you to reactive programming, a natural, easier way
to think about asynchronous code. I’ll show you how streams of events—
which we call Observables—are a beautiful way to handle asynchronous code.
Then we’ll create an Observable and see how reactive thinking and RxJS
dramatically improve on existing techniques and make you a happier, more
productive programmer.

What’s Reactive?
Let’s start by looking at a little reactive RxJS program. This program needs
to retrieve data from different sources with the click of a button, and it has
the following requirements:

• It must unify data from two different locations that use different JSON
structures.

• The final result should not contain any duplicates.

• To avoid requesting data too many times, the user should not be able to
click the button more than once per second.

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Using RxJS, we would write something like this:

var button = document.getElementById('retrieveDataBtn');
var source1 = Rx.DOM.getJSON('/resource1').pluck('name');
var source2 = Rx.DOM.getJSON('/resource2').pluck('props', 'name');

function getResults(amount) {
return source1.merge(source2)

.pluck('names')

.flatMap(function(array) { return Rx.Observable.from(array); })

.distinct()

.take(amount);
}

var clicks = Rx.Observable.fromEvent(button, 'click');
clicks.debounce(1000)

.flatMap(getResults(5))

.subscribe(
function(value) { console.log('Received value', value); },
function(err) { console.error(err); },
function() { console.log('All values retrieved!'); }

);

Don’t worry about understanding what’s going on here; let’s focus on the
10,000-foot view for now. The first thing you see is that we express more with
fewer lines of code. We accomplish this by using Observables.

An Observable represents a stream of data. Programs can be expressed
largely as streams of data. In the preceding example, both remote sources
are Observables, and so are the mouse clicks from the user. In fact, our pro-
gram is essentially a single Observable made from a button’s click event that
we transform to get the results we want.

Reactive programming is expressive. Take, for instance, throttling mouse
clicks in our example. Imagine how complex it would be to do that using
callbacks or promises: we’d need to reset a timer every second and keep state
of whether a second has passed since the last time the user clicked the button.
It’s a lot of complexity for so little functionality, and the code for it is not even
related to your program’s actual functionality. In bigger applications, these
little complexities add up very quickly to make for a tangled code base.

With the reactive approach, we use the method debounce to throttle the stream
of clicks. This ensures that there is at least a second between each click, and
discards any clicks in between. We don’t care how this happens internally;
we just express what we want our code to do, not how to do it.

It gets much more interesting. Next you’ll see how reactive programming can
help us make our programs more efficient and expressive.

Chapter 1. The Reactive Way • 2

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Spreadsheets Are Reactive
Let’s start by considering the quintessential example of a reactive system:
the spreadsheet. We all have used them, but we rarely stop and think how
shockingly intuitive they are. Let’s say we have a value in cell A1 of the
spreadsheet. We can then reference it in other cells in the spreadsheet, and
whenever we change A1, every cell depending on A1 will automatically update
its own value.

That behavior feels natural to us. We didn’t have to tell the computer to update
cells that depend on A1 or how to do it; these cells just reacted to the change.
In a spreadsheet, we simply declare our problem, and we don’t worry about
how the computer calculates the results.

This is what reactive programming aims for. We declare relationships between
players, and the program evolves as these entities change or come up with
new values.

The Mouse as a Stream of Values
To understand how to see events as streams of values, let’s think of the pro-
gram from the beginning of this chapter. There we used mouse clicks as an
infinite sequence of events generated in real time as the user clicks. This is
an idea by Erik Meijer—the inventor of RxJS—proposed in his paper “Your
Mouse Is a Database.”1

In reactive programming, we see mouse clicks as a continuous stream of
events that we can query and manipulate. Thinking of streams instead of
isolated values opens up a whole new way to program, one in which we can
manipulate entire sequences of values that haven’t been created yet.

Let that thought sink in for a moment. This is different from what we’re used
to, which is having values stored somewhere such as a database or an array
and waiting for them to be available before we use them. If they are not
available yet (for instance, a network request), we wait for them and use them
only when they become available.

1. http://queue.acm.org/detail.cfm?id=2169076

report erratum • discuss

What’s Reactive? • 3

http://queue.acm.org/detail.cfm?id=2169076
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Click! Click!Click!

time
We can think of our streaming sequence as an array in which elements are
separated by time instead of by memory. With either time or memory, we have
sequences of elements:

Click! Click!Click![], ,
time

Seeing your program as flowing sequences of data is key to understanding
RxJS programming. It takes a bit of practice, but it is not hard. In fact, most
data we use in any application can be expressed as a sequence. We’ll look at
sequences more in depth in Chapter 2, Deep in the Sequence, on page 17.

Querying the Sequence
Let’s implement a simple version of that mouse stream using traditional event
listeners in JavaScript. To log the x- and y-coordinates of mouse clicks, we
could write something like this:

ch1/thinking_sequences1.js
document.body.addEventListener('mousemove', function(e) {
console.log(e.clientX, e.clientY);

});

This code will print the x- and y-coordinates of every mouse click in order.
The output looks like this:

252 183❮

211 232
153 323
...

Looks like a sequence, doesn’t it? The problem, of course, is that manipulating
events is not as easy as manipulating arrays. For example, if we want to
change the preceding code so it logs only the first 10 clicks on the right side
of the screen (quite a random goal, but bear with me here), we would write
something like this:

var clicks = 0;
document.addEventListener('click', function registerClicks(e) {

Chapter 1. The Reactive Way • 4

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/ch1/thinking_sequences1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

if (clicks < 10) {
if (e.clientX > window.innerWidth / 2) {
console.log(e.clientX, e.clientY);
clicks += 1;

}
} else {

document.removeEventListener('click', registerClicks);
}

});

To meet our requirements, we introduced external state through a global
variable clicks that counts clicks made so far. We also need to check for two
different conditions and use nested conditional blocks. And when we’re done,
we have to tidy up and unregister the event to not leak memory.

Side Effects and External State

If an action has impact outside of the scope where it happens, we call this a side
effect. Changing a variable external to our function, printing to the console, or
updating a value in a database are examples of side effects.

For example, changing the value of a variable that exists inside our function is safe.
But if that variable is outside the scope of our function then other functions can
change its value. That means our function is not in control anymore and it can’t
assume that external variable contains the value we expect. We’d need to track it and
add checks to ensure its value is what we expect. At that point we’d be adding code
that is not relevant to our program, making it more complex and error prone.

Although side effects are necessary to build any interesting program, we should strive
for having as few as possible in our code. That’s especially important in reactive
programs, where we have many moving pieces that change over time. Throughout
this book, we’ll pursue an approach that avoids external state and side effects. In
fact, in Chapter 3, Building Concurrent Programs, on page 39, we’ll build an entire
video game with no side effects.

We managed to meet our easy requirements, but ended up with pretty com-
plicated code for such a simple goal. It’s difficult code to maintain and not
obvious for a developer who looks at it for the first time. More importantly,
we made it prone to develop subtle bugs in the future because we need to
keep state.

All we want in that situation is to query the “database” of clicks. If we were
dealing with a relational database, we’d use the declarative language SQL:

SELECT x, y FROM clicks LIMIT 10

report erratum • discuss

What’s Reactive? • 5

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

What if we treated that stream of click events as a data source that can be
queried and transformed? After all, it’s no different from a database, one that
emits values in real time. All we need is a data type that abstracts the concept
for us.

Enter RxJS and its Observable data type:

Rx.Observable.fromEvent(document, 'click')
.filter(function(c) { return c.clientX > window.innerWidth / 2; })
.take(10)
.subscribe(function(c) { console.log(c.clientX, c.clientY) })

This code does the same as the code on page 4, and it reads like this:

Create an Observable of click events and filter out the clicks that happen on the
left side of the screen. Then print the coordinates of only the first 10 clicks to the
console as they happen.

Notice how the code is easy to read even if you’re not familiar with it. Also,
there’s no need to create external variables to keep state, which makes the
code self-contained and makes it harder to introduce bugs. There’s no need
to clean up after yourself either, so no chance of introducing memory leaks
by forgetting about unregistering event handlers.

In the preceding code we created an Observable from a DOM event. An
Observable provides us with a sequence or stream of events that we can
manipulate as a whole instead of a single isolated event each time. Dealing
with sequences gives us enormous power; we can merge, transform, or pass
around Observables easily. We’ve turned events we can’t get a handle on into
a tangible data structure that’s as easy to use as an array, but much more
flexible.

In the next section we’ll see the principles that make Observables such a
great tool.

Of Observers and Iterators
To understand where Observables come from we need to look at their founda-
tions: the Observer and Iterator software patterns. In this section we’ll take
a quick look at them, and then we’ll see how Observables combine concepts
of both in a simple but powerful way.

The Observer Pattern
For a software developer, it’s hard to hear about Observables and not think
of the venerable Observer pattern. In it we have an object called Producer that
keeps an internal list of Listeners subscribed to it. Listeners are notified—by

Chapter 1. The Reactive Way • 6

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

calling their update method—whenever the state of the Producer changes. (In
most explanations of the Observer pattern, this entity is called Subject, but
to avoid confusion with RxJS’s own Subject type, we call it Producer.)

It’s easy to implement a rudimentary version of the pattern in a few lines:

ch1/observer_pattern.js
function Producer() {

this.listeners = [];
}

Producer.prototype.add = function(listener) {
this.listeners.push(listener);

};

Producer.prototype.remove = function(listener) {
var index = this.listeners.indexOf(listener);
this.listeners.splice(index, 1);

};

Producer.prototype.notify = function(message) {
this.listeners.forEach(function(listener) {

listener.update(message);
});

};

The Producer object keeps a dynamic list of Listeners in the instance’s listeners
array that will all be updated whenever the Producer calls its notify method.
In the following code we create two objects that listen to notifier, an instance
of Producer:

ch1/observer_pattern.js
// Any object with an 'update' method would work.
var listener1 = {

update: function(message) {
console.log('Listener 1 received:', message);

}
};

var listener2 = {
update: function(message) {

console.log('Listener 2 received:', message);
}

};

var notifier = new Producer();
notifier.add(listener1);
notifier.add(listener2);
notifier.notify('Hello there!');

report erratum • discuss

Of Observers and Iterators • 7

http://media.pragprog.com/titles/smreactjs/code/ch1/observer_pattern.js
http://media.pragprog.com/titles/smreactjs/code/ch1/observer_pattern.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

When we run the program

Listener 1 received: Hello there!❮

Listener 2 received: Hello there!

listener1 and listener2 are notified whenever the Producer notifier updates its
internal state, without us having to check for it.

Our implementation is simple, but it illustrates how the Observer pattern
allows decoupling between the events and the listener objects that react to
them.

The Iterator Pattern
The other piece in the Observable puzzle comes from the Iterator pattern. An
Iterator is an object that provides a consumer with an easy way to traverse
its contents, hiding the implementation from the consumer.

The Iterator interface is simple. It requires only two methods: next() to get the
next item in the sequence, and hasNext() to check if there are items left in the
sequence.

Here’s how we’d write an iterator that operates on an array of numbers and
yields only elements that are multiples of the divisor parameter:

ch1/iterator.js
function iterateOnMultiples(arr, divisor) {

this.cursor = 0;
this.array = arr;
this.divisor = divisor || 1;

}

iterateOnMultiples.prototype.next = function() {
while (this.cursor < this.array.length) {

var value = this.array[this.cursor++];
if (value % this.divisor === 0) {
return value;

}
}

};

iterateOnMultiples.prototype.hasNext = function() {
var cur = this.cursor;
while (cur < this.array.length) {

if (this.array[cur++] % this.divisor === 0) {
return true;

}
}
return false;

};

Chapter 1. The Reactive Way • 8

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/ch1/iterator.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

We can use this iterator like this:

ch1/iterator.js
var consumer = new iterateOnMultiples([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 3);

console.log(consumer.next(), consumer.hasNext()); // 3 true
console.log(consumer.next(), consumer.hasNext()); // 6 true
console.log(consumer.next(), consumer.hasNext()); // 9 false

Iterators are great to encapsulate traversing logic for any kind of data struc-
ture. As we saw in the preceding example, iterators get interesting when made
generic to handle different types of data, or when they can be configured in
runtime, like we did in our example with the divisor parameter.

The Rx Pattern and the Observable
While the Observer and the Iterator patterns are powerful in their own right,
the combination of both is even better. We call this the Rx pattern, named
after the Reactive Extensions libraries.2 We’ll be using this pattern for the
rest of the book.

The Observable sequence, or simply Observable is central to the Rx pattern.
An Observable emits its values in order—like an iterator—but instead of its
consumers requesting the next value, the Observable “pushes” values to
consumers as they become available. It has a similar role to the Producer’s
in the Observer pattern: emitting values and pushing them to its listeners.

Pulling vs. Pushing

In programming, push-based behavior means that the server component of an appli-
cation sends updates to its clients instead of the clients having to poll the server for
these updates. It’s like the saying, “Don’t call us; we’ll call you."

RxJS is push-based, so the source of events (the Observable) will push new values
to the consumer (the Observer), without the consumer requesting the next value.

Put more simply, an Observable is a sequence whose items become available
over time. The consumers of Observables, Observers, are the equivalent of
listeners in the Observer pattern. When an Observer is subscribed to an
Observable, it will receive the values in the sequence as they become available,
without having to request them.

So far it seems there’s not much of a difference from the traditional Observer
pattern. But actually there are two essential differences:

2. https://rx.codeplex.com/

report erratum • discuss

The Rx Pattern and the Observable • 9

http://media.pragprog.com/titles/smreactjs/code/ch1/iterator.js
https://rx.codeplex.com/
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

• An Observable doesn’t start streaming items until it has at least one
Observer subscribed to it.

• Like iterators, an Observable can signal when the sequence is completed.

Using Observables, we can declare how to react to the sequence of elements
they emit, instead of reacting to individual items. We can efficiently copy,
transform, and query the sequence, and these operations will apply to all the
elements of the sequence.

Creating Observables
There are several ways to create Observables, the create operator being the
most obvious one. The create operator in the Rx.Observable object takes a callback
that accepts an Observer as a parameter. That function defines how the
Observable will emit values. Here’s how we create a simple Observable:

var observable = Rx.Observable.create(function(observer) {
observer.onNext('Simon');
observer.onNext('Jen');
observer.onNext('Sergi');
observer.onCompleted(); // We are done

});

When we subscribe to this Observable, it emits three strings by calling the
onNext method on its listeners. It then calls onCompleted to signal that the
sequence is finished. But how exactly do we subscribe to an Observable? We
use Observers.

First Contact with Observers
Observers listen to Observables. Whenever an event happens in an Observable,
it calls the related method in all of its Observers.

Observers have three methods: onNext, onCompleted, and onError:

onNext The equivalent of Update in the Observer pattern. It is called when the
Observable emits a new value. Notice how the name reflects the fact that
we’re subscribed to sequences, not only to discrete values.

onCompleted Signals that there is no more data available. After onCompleted
is called, further calls to onNext will have no effect.

onError Called when an error occurs in the Observable. After it is called,
further calls to onNext will have no effect.

Here’s how we create a basic Observer:

Chapter 1. The Reactive Way • 10

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

var observer = Rx.Observer.create(
function onNext(x) { console.log('Next: ' + x); },
function onError(err) { console.log('Error: ' + err); },
function onCompleted() { console.log('Completed'); }

);

The create method in the Rx.Observer object takes functions for the onNext,
onCompleted, and onError cases and returns an Observer instance. These three
functions are optional, and you can decide which ones to include. For example,
if we are subscribing to an infinite sequence such as clicks on a button (the
user could keep clicking forever), the onCompleted handler will never be called.
If we’re confident that the sequence can’t error (for example, by making an
Observable from an array of numbers), we don’t need the onError method.

Making Ajax Calls with an Observable
We haven’t done anything really useful with Observables yet. How about
creating an Observable that retrieves remote content? To do this, we’ll wrap
the XMLHttpRequest object using Rx.Observable.create:

function get(url) {
return Rx.Observable.create(function(observer) {

// Make a traditional Ajax request
var req = new XMLHttpRequest();
req.open('GET', url);

req.onload = function() {
if (req.status == 200) {

// If the status is 200, meaning there have been no problems,
// Yield the result to listeners and complete the sequence
observer.onNext(req.response);
observer.onCompleted();

}
else {

// Otherwise, signal to listeners that there has been an error
observer.onError(new Error(req.statusText));

}
};

req.onerror = function() {
observer.onError(new Error("Unknown Error"));

};

req.send();
});

}

// Create an Ajax Observable
var test = get('/api/contents.json');

report erratum • discuss

Creating Observables • 11

www.allitebooks.com

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs
http://www.allitebooks.org

In the preceding code, the get function uses create to wrap XMLHttpRequest. If the
HTTP GET request is successful, we emit its contents and complete the
sequence (our Observable will only ever emit one result). Otherwise, we emit
an error. On the last line we call the function with a particular URL to retrieve.
This will create the Observable, but it won’t make any request yet. This is
important: Observables don’t do anything until at least one Observer sub-
scribes to them. So let’s take care of that:

// Subscribe an Observer to it
test.subscribe(

function onNext(x) { console.log('Result: ' + x); },
function onError(err) { console.log('Error: ' + err); },
function onCompleted() { console.log('Completed'); }

);

The first thing to notice is that we’re not explicitly creating an Observer like
we did in the code on page 11. Most of the time we’ll use this shorter version,
in which we call the subscribe operator in the Observable with the three func-
tions for the Observer cases: onNext, onCompleted, and onError.

subscribe then sets everything in motion. Before the subscription, we had
merely declared how the Observable and Observer duo will interact. It is only
when we call subscribe that the gears start turning.

There Is (Almost) Always an Operator
In RxJS, methods that transform or query sequences are called operators.
Operators are found in the static Rx.Observable object and in Observable
instances. In our example, create is one such operator.

create is a good choice when we have to create a very specific Observable, but
RxJS provides plenty of other operators that make it easy to create Observables
for common sources.

Let’s look again at our previous example. For such a common operation as
an Ajax request there is often an operator ready for us to use. In this case,
the RxJS DOM library provides several ways to create Observables from DOM-
related sources.3 Since we’re doing a GET request, we can use Rx.DOM.Request.get,
and our code then becomes this:

Rx.DOM.get('/api/contents.json').subscribe(
function onNext(data) { console.log(data.response); },
function onError(err) { console.error(err); }

);

3. https://github.com/Reactive-Extensions/RxJS-DOM

Chapter 1. The Reactive Way • 12

report erratum • discuss

https://github.com/Reactive-Extensions/RxJS-DOM
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

This bit of code does exactly the same as our previous one, but we don’t have
to create a wrapper around XMLHttpRequest; it’s already there. Notice also that
this time we omitted the onCompleted callback, because we don’t plan to react
when the Observable is done. We know that it will yield only one result, and
we are already using it in the onNext callback.

We’ll use plenty of convenient operators like this throughout this book. RxJS
comes with “batteries included.” In fact, that is one of its main strengths.

One Data Type to Rule Them All

In an RxJS program, we should strive to have all data in Observables, not just data
that comes from asynchronous sources. Doing that makes it easy to combine data
from different origins, like an existing array with the result of a callback, or the result
of an XMLHttpRequest with some event triggered by the user.

For example, if we have an array whose items need to be used in combination with
data from somewhere else, it’s better to make this array into an Observable. (Obviously,
if the array is just an intermediate variable that doesn’t need to be combined, there
is no need to do that.) Throughout the book, you’ll learn in which situations it’s worth
transforming data types into Observables.

RxJS provides operators to create Observables from most JavaScript data
types. Let’s go over the most common ones, which you’ll be using all the time:
arrays, events, and callbacks.

Creating Observables from Arrays
We can make any array-like or iterable object into an Observable by using
the versatile from operator. from takes an array as a parameter and returns an
Observable that emits each of its elements.

Rx.Observable
.from(['Adrià', 'Jen', 'Sergi'])
.subscribe(

function(x) { console.log('Next: ' + x); },
function(err) { console.log('Error:', err); }
function() { console.log('Completed'); }

);

from is, along with fromEvent, one of the most convenient and frequently used
operators in RxJS code.

report erratum • discuss

Creating Observables • 13

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Creating Observables from JavaScript Events
When we transform an event into an Observable, it becomes a first-class
value that can be combined and passed around. For example, here’s an
Observable that emits the coordinates of the mouse pointer whenever it moves:

var allMoves = Rx.Observable.fromEvent(document, 'mousemove')
allMoves.subscribe(function(e) {

console.log(e.clientX, e.clientY);
});

Transforming an event into an Observable unleashes the event from its natural
constraints. More importantly, we can create new Observables based on the
original Observables. These new ones are independent and can be used for
different tasks:

var movesOnTheRight = allMoves.filter(function(e) {
return e.clientX > window.innerWidth / 2;

});

var movesOnTheLeft = allMoves.filter(function(e) {
return e.clientX < window.innerWidth / 2;

});

movesOnTheRight.subscribe(function(e) {
console.log('Mouse is on the right:', e.clientX);

});

movesOnTheLeft.subscribe(function(e) {
console.log('Mouse is on the left:', e.clientX);

});

In the preceding code, we create two Observables from the original allMoves
one. These specialized Observables contain only filtered items from the original
one: movesOnTheRight contains mouse events that happen on the right side of
the screen, and movesOnTheLeft contains mouse events that happen on the left
side. Neither of them modify the original Observable: allMoves will keep emitting
all mouse moves. Observables are immutable, and every operator applied to
them creates a new Observable.

Creating Observables from Callback Functions
Chances are you will have to interact with callback-based code if you use
third-party JavaScript libraries. We can transform our callbacks into
Observables using two functions, fromCallback and fromNodeCallback. Node.js follows
the convention of always invoking the callback function with an error argument

Chapter 1. The Reactive Way • 14

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

first to signal to the callback function that there was a problem. We then use
fromNodeCallback to create Observables specifically from Node.js-style callbacks:

var Rx = require('rx'); // Load RxJS
var fs = require('fs'); // Load Node.js Filesystem module

// Create an Observable from the readdir method
var readdir = Rx.Observable.fromNodeCallback(fs.readdir);

// Send a delayed message
var source = readdir('/Users/sergi');

var subscription = source.subscribe(
function(res) { console.log('List of directories: ' + res); },
function(err) { console.log('Error: ' + err); },
function() { console.log('Done!'); });

In the preceding code, we make an Observable readdir out of Node.js’s fs.readdir
method. fs.readdir accepts a directory path and a callback function delayedMsg,
which calls once the directory contents are retrieved.

We use readdir with the same arguments we’d pass to the original fs.readdir,
minus the callback function. This returns an Observable that will properly
use onNext, onError, and onCompleted when we subscribe an Observer to it.

Wrapping Up
In this chapter we explored the reactive approach to programming and saw
how RxJS can solve the problems of other methods, such as callbacks or
promises, through Observables. Now you understand why Observables are
powerful, and you know how to create them. Armed with this foundation, we
can now go on to create more interesting reactive programs. The next chapter
shows you how to create and compose sequence-based programs that provide
a more “Observable” approach to some common scenarios in web development.

report erratum • discuss

Wrapping Up • 15

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

CHAPTER 2

Deep in the Sequence
I have childhood memories of playing a puzzle video game in which you had
to guide a falling stream of water across the screen using all kinds of tricks.
You could split the stream, merge them back later, or use a tilted plank of
wood to change their direction. You had to be creative to make the water
reach its final goal.

I find a lot of similarities between that game and working with Observable
sequences. Observables are just streams of events that we can transform,
combine, and query. It doesn’t matter whether we’re dealing with simple Ajax
callbacks or processing gigabytes of data in Node.js. The way we declare our
flows is the same. Once we think in streams, the complexity of our programs
goes down.

In this chapter we focus on how to effectively use sequences in our programs.
So far we’ve covered how to create Observables and do simple operations with
them. To unleash their power, we have to know to translate our program
inputs and outputs into sequences that carry our program flow.

Before we get our hands dirty, we’ll meet some of the basic operators that will
help us start to manipulate sequences. Next we’ll implement a real application
that shows earthquakes happening in (almost) real time. Let’s get to it!

Visualizing Observables
You’re about to learn some of the operators that we’ll use most frequently in
our RxJS programs. Talking about what operators do to a sequence can feel
abstract. To help developers understand operators in an easy way, we’ll use
a standard visual representation for sequences, called marble diagrams. They
visually represent asynchronous data streams, and you will find them in every
resource for RxJS.

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Let’s take the range operator, which returns an Observable that emits integers
within a specified range: Rx.Observable.range(1, 3);

The marble diagram for it looks like this:

1 2 3

onNext() onNext() onCompleted()

x

The long arrow represents the Observable, and the x-axis represents time.
Each circle represents a value the Observable emits by internally calling
onNext(). After generating the third value, range calls onCompleted, represented
in the diagram by a vertical line.

Let’s look at an example that involves several Observables. The merge operator
takes two different Observables and returns a new one with the merged values.
The interval operator returns an Observable that yields incremental numbers
at a given interval of time, expressed in milliseconds.

In the following code we’ll merge two different Observables that use interval to
produce values at different intervals:

var a = Rx.Observable.interval(200).map(function(i) {
return 'A' + i;

});
var b = Rx.Observable.interval(100).map(function(i) {

return 'B' + i;
});

Rx.Observable.merge(a, b).subscribe(function(x) {
console.log(x);

});

B0, A0, B1, B2, A1, B3, B4...❮

The marble diagram for the merge operator looks like this:

0 1

merge

1

0 0 1

A

B

C

320

1 32

100ms

200ms

Chapter 2. Deep in the Sequence • 18

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Here, the dotted arrows along the y-axis point to the final result of the
transformation applied to each element in sequences A and B. The resulting
Observable is represented by C, which contains the merged elements of A
and B. If elements of different Observables are emitted at the same time, the
order of these elements in the merged sequence is random.

Basic Sequence Operators
Among the dozens of operators that transform Observables in RxJS, the most
used are those that any language with decent collection-processing abilities
also have: map, filter, and reduce. In JavaScript, you can find these operators
in Array instances.

RxJS follows JavaScript conventions, so you’ll find that the syntax for the
following operators is almost the same as for array operators. In fact, we’ll
show the implementation using both arrays and Observables to show how
similar the two APIs are.

Map
map is the sequence transformation operator most used. It takes an Observable
and a function and applies that function to each of the values in the source
Observable. It returns a new Observable with the transformed values.

map { }

1 2 3 4 5

1 4 6 8 10

ObservablesJS Arrays

var src = Rx.Observable.range(1, 5);var src = [1, 2, 3, 4, 5];
var upper = src.map(function(name) {var upper = src.map(function(name) {
return name * 2;return name * 2;

});});

upper.subscribe(logValue);upper.forEach(logValue);

In both cases, src doesn’t mutate.

This code, and code that follows, uses this definition of logValue:

var logValue = function(val) { console.log(val) };

report erratum • discuss

Basic Sequence Operators • 19

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

It could be that the function we pass to map does some asynchronous compu-
tation to transform the value. In that case, map would not work as expected.
For these cases, it would be better to use flatMap, on page 22.

Filter
filter takes an Observable and a function and tests each element in the
Observable using that function. It returns an Observable sequence of all the
elements for which the function returned true.

filter { }

ObservablesJS Arrays

var isEven = (function(val) { return val % 2 !== 0; });
var src = Rx.Observable.range(1, 5);var src = [1, 2, 3, 4, 5];
var even = src.filter(isEven);var even = src.filter(isEven);

even.subscribe(logValue);even.forEach(logValue);

Reduce
reduce (also known as fold) takes an Observable and returns a new one that
always contains a single item, which is the result of applying a function over
each element. That function receives the current element and the result of
the function’s previous invocation.

1 52 3 4

reduce { x, y x + y }

1 3 6 10 15

15

Chapter 2. Deep in the Sequence • 20

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

ObservablesJS Arrays

var src = Rx.Observable.range(1, 5);var src = [1, 2, 3, 4, 5];
var sum = src.reduce(function(acc, x) {var sum = src.reduce(function(a, b) {
return acc + x;return a + b;

});});

sum.subscribe(logValue);console.log(sum);

reduce is a powerful operator to manipulate a sequence. It is, in fact, the base
implementation for a whole subset of methods called aggregate operators.

Aggregate Operators

Aggregate operators process a sequence and return a single value. For
example, Rx.Observable.first takes an Observable and an optional predicate
function and returns the first element that satisfies the condition in the
predicate.

Calculating the average value of a sequence is an aggregate operation as well.
RxJS provides the instance operator average, but for the sake of this section,
we want to see how to implement it using reduce. Every aggregate operator
can be implemented by using only reduce:

sequences/marble.js
var avg = Rx.Observable.range(0, 5)

.reduce(function(prev, cur) {
return {

sum: prev.sum + cur,
count: prev.count + 1

};
}, { sum: 0, count: 0 })
.map(function(o) {
return o.sum / o.count;

});

var subscription = avg.subscribe(function(x) {
console.log('Average is: ', x);

});

Average is: 2❮

In this code we use reduce to add each new value to the previous one. Because
reduce doesn’t provide us with the total number of elements in the sequence,
we need to keep count of them. We call reduce with an initial value consisting
of an object with two fields, sum and count, where we’ll store the sum and total
count of elements so far. Every new element will return the same object with
updated values.

report erratum • discuss

Basic Sequence Operators • 21

http://media.pragprog.com/titles/smreactjs/code/sequences/marble.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

When the sequence ends, reduce will call onNext with the object containing the
final sum and the final count. At that point we use map to return the result
of dividing the sum by the count.

Joe asks:

Can We Aggregate Infinite Observables?
Imagine we’re writing a program that gives users their average speed while they walk.
Even if the user hasn’t finished walking, we need to be able to make a calculation
using the speed values we know so far. We want to log the average of an infinite
sequence in real time. The problem is that if the sequence never ends, an aggregate
operator like reduce will never call its Observers’ onNext operator.

Luckily for us, the RxJS team has thought of this kind of scenario and provided us
with the scan operator, which acts like reduce but emits each intermediate result:

var avg = Rx.Observable.interval(1000)
.scan(function (prev, cur) {
return {

sum: prev.sum + cur,
count: prev.count + 1

};
}, { sum: 0, count: 0 })
.map(function(o) {
return o.sum / o.count;

});

var subscription = avg.subscribe(function (x) {
console.log(x);

});

This way, we can aggregate sequences that take a long time to complete or that are
infinite. In the preceding example, we generated an incremental integer every second
and substituted the previous reduce call for scan. We now get the average of the values
generated so far, every second.

flatMap
What can you do if you have an Observable whose results are more Observ-
ables? Most of the time you’d want to unify items in those nested Observables
in a single sequence. That’s exactly what flatMap does.

The flatMap operator takes an Observable A whose elements are also Observ-
ables, and returns an Observable with the flattened values of A’s child
Observables. Let’s visualize it with a graph:

Chapter 2. Deep in the Sequence • 22

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Flat

A

A1

A2

A3

FlatMap

We can see that each of the elements in A (A1, A2, A3) are also Observable
sequences. Once we apply flatMap to A with a transformation function, we get
an Observable with all the elements in the different children of A.

flatMap is a powerful operator, but it can be harder to understand than the
operators we’ve seen so far. Think of it as a concatAll() for Observables.

concatAll is a function that takes an array of arrays and returns a "flattened"
single array containing the values of all the sub-arrays, instead of the sub-
arrays themselves. We can use reduce to make such a function:

function concatAll(source) {
return source.reduce(function(a, b) {

return a.concat(b);
});

}

We would use it like this:

concatAll([[0, 1, 2], [3, 4, 5], [6, 7, 8]]);
// [0, 1, 2, 3, 4, 5, 6, 7, 8]

flatMap does the same thing, but it flattens Observables instead of arrays. It
takes a source Observable and a function that returns a new Observable and
applies that function to each element in the source Observable, like map does.
If the process stopped here, we would end up getting an Observable that emits
Observables. But flatMap emits to the main sequence the values emitted by
each new Observable, “flattening” all Observables into one, the main sequence.
In the end, we obtain a single Observable.

report erratum • discuss

Basic Sequence Operators • 23

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Canceling Sequences
In RxJS we can cancel a running Observable. This is an advantage over other
asynchronous forms of communication, such as callbacks and promises,
which can’t be directly canceled once they’re called (some promise implemen-
tations support cancellation, though).

There are two main ways we can cancel an Observable: implicitly and explicitly.

Explicit Cancellation: The Disposable
Observables themselves don’t have a method to get canceled. Instead, when-
ever we subscribe to an Observable we get a Disposable object that represents
that particular subscription. We can then call the method dispose in that object,
and that subscription will stop receiving notifications from the Observable.

In the following example, we subscribe two Observers to the counter Observable,
which emits an increasing integer every second. After two seconds, we cancel
the second subscription and we can see that its output stops but the first
subscriber’s output keeps going:

sequences/disposable.js
var counter = Rx.Observable.interval(1000);

var subscription1 = counter.subscribe(function(i) {
console.log('Subscription 1:', i);

});

var subscription2 = counter.subscribe(function(i) {
console.log('Subscription 2:', i);

});

setTimeout(function() {
console.log('Canceling subscription2!');
subscription2.dispose();

}, 2000);

Subscription 1: 0❮

Subscription 2: 0
Subscription 1: 1
Subscription 2: 1
Canceling subscription2!
Subscription 1: 2
Subscription 1: 3
Subscription 1: 4
...

Chapter 2. Deep in the Sequence • 24

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/sequences/disposable.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Implicit Cancellation: By Operator
Most of the time, operators will automatically cancel subscriptions for you.
Operators such as range or take will cancel the subscription when the sequence
finishes or when the operator conditions are met. More advanced operators
such as withLatestFrom or flatMapLatest will internally create and destroy subscrip-
tions as needed, since they handle several Observables in motion. In short,
you should not worry about canceling most subscriptions yourself.

Observables That Wrap External APIs
When you’re using Observables that wrap external APIs that don’t provide
cancellation, the Observable will still stop emitting notifications when canceled,
but the underlying API will not necessarily be canceled. For example, if you’re
using an Observable that wraps a promise, the Observable will stop emitting
when canceled, but the underlying promise will not be canceled.

In the following code, we attempt to cancel a subscription to an Observable
that wraps a promise p, and at the same time we set an action in the tradi-
tional way for when the promise is resolved. The promise should resolve in
five seconds, but we cancel the subscription immediately after creating it:

var p = new Promise(function(resolve, reject) {
window.setTimeout(resolve, 5000);

});

p.then(function() {
console.log('Potential side effect!');

});

var subscription = Rx.Observable.fromPromise(p).subscribe(function(msg) {
console.log('Observable resolved!');

});
subscription.dispose();

After 5 seconds, we see:

Potential side effect!❮

If we cancel the subscription to the Observable it effectively stops it from
receiving the notification. But the promise’s then method still runs, showing
that canceling the Observable doesn’t cancel the underlying promise.

It’s important to know the details of external APIs that we use in Observables.
You might think you’ve canceled a sequence, but the underlying API keeps
running and causes some side effects in your program. These errors can be
really hard to catch.

report erratum • discuss

Canceling Sequences • 25

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Handling Errors
We can’t use the conventional try/catch mechanism in callbacks because it
is synchronous. It would run before any asynchronous code, and wouldn’t
be able to catch any errors.

With callbacks, this was solved by passing the error (if any) as a parameter
to the callback function. That works, but it makes the code pretty fragile.

Let’s see how to catch errors inside Observables.

The onError Handler
Remember when we talked about the three methods we can call on an
Observer, in First Contact with Observers, on page 10? We’re familiar with
onNext and onCompleted, but we haven’t yet used onError; it is the key to effectively
handling errors in Observable sequences.

To see how it works, we’ll write a simple function to take an array of JSON
strings and return an Observable that emits the objects parsed from those
strings, using JSON.parse:

function getJSON(arr) {
return Rx.Observable.from(arr).map(function(str) {

var parsedJSON = JSON.parse(str);
return parsedJSON;

});
}

We’ll pass an array with three JSON strings to getJSON, in which the second
string in the array contains a syntax error, so JSON.parse won’t be able to parse
it. Then we’ll subscribe to the result, providing handlers for onNext and onError:

getJSON([
'{"1": 1, "2": 2}',
'{"success: true}', // Invalid JSON string
'{"enabled": true}'

]).subscribe(
function(json) {

console.log('Parsed JSON: ', json);
},
function(err) {

console.log(err.message);
}

);

Parsed JSON: { 1: 1, 2: 2 }❮

JSON.parse: unterminated string at line 1 column 8 of the JSON data

Chapter 2. Deep in the Sequence • 26

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

The Observable emits the parsed JSON for the first result but throws an
exception when trying to parse the second. The onError handler catches this
and prints it out. The default behavior is that whenever an error happens,
the Observable stops emitting items, and onCompleted is not called.

Catching Errors
So far we’ve seen how to detect that an error has happened and do something
with that information, but we haven’t been able to react to it and continue
with whatever we were doing. Observable instances have the catch operator,
which allows us to react to an error in the Observable and continue with
another Observable.

catch takes either an Observable or a function that receives the error as a
parameter and returns another Observable. In our scenario, we want the
Observable to emit a JSON object containing an error property if there were
errors in the original Observable:

function getJSON(arr) {
return Rx.Observable.from(arr).map(function(str) {

var parsedJSON = JSON.parse(str);
return parsedJSON;

});
}

var caught = getJSON(['{"1": 1, "2": 2}', '{"1: 1}']).catch(
Rx.Observable.return({

error: 'There was an error parsing JSON'
})

);

caught.subscribe(
function(json) {

console.log('Parsed JSON: ', json);
},
// Because we catch errors now, `onError` will not be executed
function(e) {

console.log('ERROR', e.message);
}

);

In the preceding code, we create a new Observable, caught, that uses the catch
operator to catch errors in the original Observable. If there’s an error it will
continue the sequence with an Observable that emits only one item, with an
error property describing the error. This is the output:

Parsed JSON: Object { 1: 1, 2: 2 }❮

Parsed JSON: Object { error: "There was an error parsing JSON" }

report erratum • discuss

Handling Errors • 27

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

And here’s the marble diagram for the catch operator:

caught

A

catch ()

B

Notice the X to indicate that the sequence experienced an error. The different
shape of the Observable values—triangles in this case—means that they are
values coming from another Observable. Here, that’s the Observable we return
in case of an error.

catch is useful for reacting to errors in a sequence, and it behaves much like
the traditional try/catch block. In some cases, though, it would be very conve-
nient to ignore an error that happens with an item in the Observable and let
the sequence continue. In those cases, we can use the retry operator.

Retrying Sequences
Sometimes errors just happen and there’s not much we can do about it. For
example, there could be a timeout requesting remote data because the user
has a spotty Internet connection, or a remote server we’re querying could
crash. In these cases it would be great if we could keep requesting the data
we need until we succeed. The retry operator does exactly that:

sequences/error_handling.js
// This will try to retrieve the remote URL up to 5 times.
Rx.DOM.get('/products').retry(5)

.subscribe(
function(xhr) { console.log(xhr); },
function(err) { console.error('ERROR: ', err); }

);

In the preceding code, we create a function that returns an Observable that
retrieves contents from a URL using XMLHttpRequest. Because our connection
might be a bit spotty, we add retry(5) before subscribing to it, ensuring that in
case of an error, it will try up to five times before giving up and showing an
error.

Chapter 2. Deep in the Sequence • 28

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/sequences/error_handling.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

There are two important things to know when using retry. First, if we don’t
pass any parameters, it will retry indefinitely until the sequence is finished
with no errors. This is dangerous for performance if the Observable keeps
producing errors. If we’re using synchronous Observables, it would have the
same effect as an infinite loop.

Second, retry will always retry the whole Observable sequence again, even if
some of the items didn’t error. This is important in case you’re causing any
side effects when processing items, since they will be reapplied with every
retry.

Making a Real-Time Earthquake Visualizer
Using the concepts that we’ve covered so far in this chapter, we’ll build a web
application that uses RxJS to show us where earthquakes are happening in
real time. We’ll start by building a functional but naive reactive implementa-
tion, and we’ll improve it as we go. The final result will look like this:

Preparing Our Environment
We’ll use the USGS (U.S. Geological Survey) earthquake database,1 which
offers a real-time earthquake dataset in several formats. We will get our data
from the weekly dataset in JSONP format.

1. http://earthquake.usgs.gov/earthquakes/feed/v1.0/

report erratum • discuss

Making a Real-Time Earthquake Visualizer • 29

http://earthquake.usgs.gov/earthquakes/feed/v1.0/
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

We’ll also use Leaflet, a JavaScript library, to render interactive maps.2 Let’s
see how our index.html looks, and go over the important points:

examples_earthquake/index.html
<!DOCTYPE html>
<html lang="en-us">

<head>
<meta charset="utf-8">

<link rel="stylesheet"
href="http://cdn.leafletjs.com/leaflet-0.7.3/leaflet.css" />
<script src="http://cdn.leafletjs.com/leaflet-0.7.3/leaflet.js"></script>
<script src="../rx.all-4.0.0.js"></script>

<title>Earthquake map</title>
<style type="text/css">
html, body {

margin: 0;
padding: 0;
height: 100%;

}

#map { height: 100%; }
</style>

</head>

<body>
<div id="map"></div>❶
<script>
var QUAKE_URL = 'http://earthquake.usgs.gov/earthquakes/feed/v1.0/' +

'summary/all_day.geojsonp';

function loadJSONP(url) {❷
var script = document.createElement('script');
script.src = url;

var head = document.getElementsByTagName('head')[0];
head.appendChild(script);

}

var map = L.map('map').setView([33.858631, -118.279602], 7);❸
L.tileLayer('http://{s}.tile.osm.org/{z}/{x}/{y}.png').addTo(map);❹

</script>
<script src="code.js"></script>❺

</body>
</html>

2. http://leafletjs.com

Chapter 2. Deep in the Sequence • 30

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake/index.html
http://leafletjs.com
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

❶ This is the placeholder div element that Leaflet will use to render our map.

❷ That’s a helper function we use to load JSONP content.

❸ We initialize the Leaflet map by setting the coordinates to the center of
Los Angeles (plenty of earthquakes there!) with a reasonable zoom level.

❹ We tell Leaflet to set the default tile set for our map. The tile set is just a
“theme” for our map.

❺ Finally, we load our code after the DOM and the map have been initialized.

Retrieving Earthquake Locations
Now that our HTML is ready, we can write the logic for our application. First
we need to know what kind of data we get and what data we need to represent
earthquakes on a map.

The JSONP data the USGS site gives us back looks like this:

examples_earthquake/jsonp_example.txt
eqfeed_callback({

"type": "FeatureCollection",
"metadata": {

"generated": 1408030886000,
"url": "http://earthquake.usgs.gov/earthquakes/...",
"title": "USGS All Earthquakes, Past Day",
"status": 200, "api": "1.0.13", "count": 134

},
"features": [

{
"type": "Feature",
"properties": {
"mag": 0.82,
"title": "M 0.8 - 3km WSW of Idyllwild-Pine Cove, California",
"place": "3km WSW of Idyllwild-Pine Cove, California",
"time": 1408030368460,
...

},
"geometry": {

"type": "Point",
"coordinates": [-116.7636667, 33.7303333, 17.33]

},
"id": "ci15538377"

},
...

]
})

report erratum • discuss

Making a Real-Time Earthquake Visualizer • 31

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake/jsonp_example.txt
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

The features array contains an object with the data for every earthquake that
happened today. That’s a truckload of data! It’s amazing (and terrifying) how
many earthquakes happen in a single day. For our program we’ll need only
the coordinates, title, and magnitude for each earthquake.

We first want to create an Observable that retrieves the dataset and emits
single earthquakes. Here’s a first version:

examples_earthquake/code.js
var quakes = Rx.Observable.create(function(observer) {

window.eqfeed_callback = function(response) {
var quakes = response.features;
quakes.forEach(function(quake) {
observer.onNext(quake);

});
};

loadJSONP(QUAKE_URL);
});

quakes.subscribe(function(quake) {
var coords = quake.geometry.coordinates;
var size = quake.properties.mag * 10000;

L.circle([coords[1], coords[0]], size).addTo(map);
});

Wait, what is that blatant global function window.eqfeed_callback doing in our
code? Well, it turns out that JSONP URLs often provide a way—by adding a
querystring in the URL—to specify the function name to handle the response,
but the USGS site doesn’t allow that, so we need to create a global function
with the name they decided we must use, which is eqfeed_callback.

Our Observable emits all earthquakes in order. We have an earthquake gen-
erator now! We don’t have to care about asynchronous flows or about having
to put all of our logic in the same function. As long as we subscribe to the
Observable, earthquakes will just come to us.

By having the earthquake retrieval “blackboxed” in the quakes Observable, we
can now subscribe to it and process each earthquake. Then we’ll draw a circle
for each earthquake with a size proportional to its magnitude.

Going Deeper
Can we do better? You bet! In the preceding code, we’re still managing flow
by traversing the array and calling onNext to yield each earthquake, even if we
isolated it inside the Observable. So much for reactiveness!

Chapter 2. Deep in the Sequence • 32

report erratum • discusswww.allitebooks.com

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake/code.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs
http://www.allitebooks.org

Joe asks:

What Is JSONP?
JSONP—or JSON with padding—is a sneaky technique that web developers came up
with to work around the browser restrictions when requesting data from third-party
domains.a

It bypasses these restrictions by loading external content using script tags instead of
the usual XMLHttpRequest. Adding a script tag to the DOM loads and executes its content
directly, and the security restrictions are not applied.

The remote request’s content is then normal JSON wrapped in a function call (the P
in JSONP). It looks like this:

callbackFn({ a: 1, b: 2, c: 3})

JSONP URLs usually accept a query string parameter so that the caller can specify
the name of the callback. The developer then has to define a function in her code
that has the same name as the callback in the server response, and when the script
tag is added to the document, that function will be called with the JSON data as the
first parameter.

Libraries like jQuery automate this process by internally creating the global function
to handle the JSONP call, and tidying up afterward to avoid polluting the global
namespace.

a. http://en.wikipedia.org/wiki/Same-origin_policy

This is a perfect situation for flatMap. We’ll retrieve the data and make an
Observable out of the features array using Rx.Observable.from. Then we’ll merge
that Observable back in the main Observable:

examples_earthquake/code1_1.js
var quakes = Rx.Observable.create(function(observer) {

window.eqfeed_callback = function(response) {
observer.onNext(response);❶
observer.onCompleted();❷

};

loadJSONP(QUAKE_URL);
}).flatMap(function transform(dataset) {❸

return Rx.Observable.from(dataset.response.features);❹
});

quakes.subscribe(function(quake) {❺
var coords = quake.geometry.coordinates;
var size = quake.properties.mag * 10000;
L.circle([coords[1], coords[0]], size).addTo(map);

});

report erratum • discuss

Making a Real-Time Earthquake Visualizer • 33

http://en.wikipedia.org/wiki/Same-origin_policy
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake/code1_1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

We’re not manually managing the flow anymore. There are no loops or condi-
tionals to extract the individual earthquake objects and pass them around.
Here’s what’s happening:

❶ onNext only happens once this time, and it yields the whole JSON response.

❷ Since we’ll yield only one time, we signal completion after onNext.

❸ We’re chaining the flatMap call to the result of create, so flatMap will take each
result from the Observable (in this case only one), use it as a parameter
for the transform function, and merge the Observable resulting from that
function into the source Observable.

❹ Here we take the features array containing all the earthquakes and create
an Observable from it. Because of flatMap, this will become the actual
Observable that the quakes variable will contain.

❺ Subscribe doesn’t change at all; it keeps dealing with a stream of earth-
quakes just like before.

There Is Always a Method
So far we’ve used RxJS operators included in rx.all.js, but it’s usually worth
checking out operators that come with other RxJS-based libraries. In our
case, we’ll look at RxJS-DOM.3 RxJS-DOM is an external library that, among
others, contains an operator to handle JSONP requests: jsonpRequest. That
saves us some code and keeps us from using nasty global functions:

examples_earthquake/code1_2.js
var quakes = Rx.DOM.jsonpRequest({

url: QUAKE_URL,
jsonpCallback: 'eqfeed_callback'

})
.flatMap(function(result) {

return Rx.Observable.from(result.response.features);
})
.map(function(quake) {

return {
lat: quake.geometry.coordinates[1],
lng: quake.geometry.coordinates[0],
size: quake.properties.mag * 10000

};
});

quakes.subscribe(function(quake) {
L.circle([quake.lat, quake.lng], quake.size).addTo(map);

});

3. https://github.com/Reactive-Extensions/RxJS-DOM

Chapter 2. Deep in the Sequence • 34

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake/code1_2.js
https://github.com/Reactive-Extensions/RxJS-DOM
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Keep in mind that for this code to run, you need to include the file rx.dom.js
from RxJS-DOM in the HTML. Notice how we’ve added a map operator that
transforms the earthquake objects into simple objects containing only the
information we need for our visualization: latitude, longitude, and magnitude
of the earthquake. The less functionality we put in the subscribe operator, the
better.

Making It Real Time
Our reactive version of the earthquake application doesn’t update the map
of earthquakes in real time. To implement that, we’ll use the interval operator
—which we saw earlier in this chapter—and the über-useful distinct operator.
Let me show you the code and then we’ll go through the changes:

examples_earthquake/code1_3.js
var quakes = Rx.Observable

.interval(5000)

.flatMap(function() {
return Rx.DOM.jsonpRequest({
url: QUAKE_URL,
jsonpCallback: 'eqfeed_callback'

}).retry(3);
})
.flatMap(function(result) {

return Rx.Observable.from(result.response.features);
})
.distinct(function(quake) { return quake.properties.code; });

quakes.subscribe(function(quake) {
var coords = quake.geometry.coordinates;
var size = quake.properties.mag * 10000;

L.circle([coords[1], coords[0]], size).addTo(map);
});

In the preceding code, we abuse interval to make new requests and process
them at regular intervals of five seconds. interval creates an Observable that
emits an incrementing number every five seconds. We don’t do anything with
those numbers; instead, we use flatMap to retrieve the data of the jsonpRequest.
Notice also how we use retry to try again in case there are problems retrieving
the list at first.

The last operator we apply is distinct, which emits only elements that haven’t
been emitted before. It takes a function that returns the property to check
for equality. This way we never redraw earthquakes that are already drawn.

report erratum • discuss

Making a Real-Time Earthquake Visualizer • 35

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake/code1_3.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

In fewer than 20 lines, we’ve written an application that regularly polls an
external JSONP URL, extracts concrete data from its contents, and then filters
out earthquakes that have already been imported. After that, we represent
the earthquakes on a map, with a size proportional to their magnitude—all
written in a self-contained, clear, and concise way, without relying on external
state. Not bad at all! That shows how expressive Observables can be.

Ideas for Improvements
Here are a couple of ideas to put your newly acquired RxJS skills to use and
make this little application a bit more interesting:

• When the user hovers the mouse over an earthquake, offer a pop-up that
shows more information about that particular earthquake. One way to
do that would be to create a new Observable from the quakes one with just
the properties you want to show, and dynamically filter it upon hovering.

• Implement a counter at the top of the page that shows the number of
earthquakes so far today and resets every day.

Operator Rundown
This chapter presented you with a few new operators, so here’s a recap of
them, along with some scenarios for ways we can use them in our applications.
Remember, you can always find the complete API documentation for operators
on the RxJS GitHub site.4

• Rx.Observable.from

Default behavior: Synchronous

Since many of the data sources you use in your applications will come
from arrays or iterables, it makes sense to have an operator that creates
Observables out of them. from is one of the operators you’ll use the most.

With from we can create Observables from arrays, array-like objects (for
instance, the arguments object or DOM NodeLists), and even types that
implement the iterable protocol, such as String, Map, and Set.5

• Rx.Observable.range

Default behavior: Synchronous

4. https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
5. https://developer.mozilla.org/ca/docs/Web/Java Script/Reference/Iteration_protocols

Chapter 2. Deep in the Sequence • 36

report erratum • discuss

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
https://developer.mozilla.org/ca/docs/Web/Java
 Script/Reference/Iteration_protocols
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

The range operator generates finite Observables that emit integers in a
particular range. It is extremely versatile and can be used in many sce-
narios. For example, you could use range to generate the initial squares
on the board of a game like Minesweeper.

• Rx.Observable.interval

Default behavior: Asynchronous

Each time you need to generate values spaced in time, you’ll probably
start with an interval operator as the generator. Since interval emits
sequential integers every x milliseconds (where x is a parameter we pass),
we just need to transform the values to whatever we want. Our game in
Chapter 3, Building Concurrent Programs, on page 39, is heavily based on
that technique.

• Rx.Observable.distinct

Default behavior: Same as the Observable it filters

distinct is one of these extremely simple operators that saves a ton of
development work. It filters out of the sequence any value that has already
been emitted. That keeps us from writing time and again that error-prone
boilerplate code that uses a dictionary somewhere with the emitted results,
against which we compare incoming results. You know what kind of code
I’m talking about. Yuck. That’s gone with distinct.

distinct()

31

1

2 5

5

2

2

3

3

4

4

distinct lets us use a function that specifies the comparison method. Addi-
tionally, we can pass no arguments and it will use strict comparison to
compare primitives such as numbers or strings, and run deep comparisons
in case of more complex objects.

report erratum • discuss

Operator Rundown • 37

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Wrapping Up
In this chapter we covered how to visually represent and understand
Observable flows using marble diagrams. We’ve covered the most common
operators to transform Observables, and, more importantly, we’ve built a real-
world application using only Observable sequences, avoiding setting any
external state, loops, or conditional branches. We expressed our whole program
in a declarative way, without having to encode every step to accomplish the
task at hand.

In the next chapter we’ll continue to explore Observable sequences, this time
taking a look at more advanced operators that allow you to control and bend
flows and data in your program like you’ve never imagined possible with
procedural code!

Chapter 2. Deep in the Sequence • 38

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

CHAPTER 3

Building Concurrent Programs
Concurrency is the art of doing several things at the same time, correctly and
efficiently. To accomplish this, we structure our programs to take advantage
of time so that tasks run together in the most efficient way. Examples of
everyday concurrency in applications include keeping the user interface
responsive while other activities are happening, and processing hundreds of
customers’ orders efficiently.

In this chapter we’ll explore concurrency and pure functions in RxJS by
making a shoot-’em-up spaceship game for the browser. We’ll first introduce
the Observable pipeline, a technique to chain Observable operators and pass
state between them. Then I’ll show you how to use the pipeline to build pro-
grams without relying on external state or side effects, by encapsulating all
your logic and state inside the Observables themselves.

Video games are computer programs that need to keep a lot of state, but we’ll
write our game with no external state whatsoever, using the power of the
Observable pipeline and some great RxJS operators.

Purity and the Observable Pipeline
An Observable pipeline is a group of operators chained together, where each
one takes an Observable as input and returns an Observable as output. We’ve
been using pipelines in this book; they are ubiquitous when programming
with RxJS. Here’s a simple one:

spaceship_reactive/pipeline.js
Rx.Observable

.from(1, 2, 3, 4, 5, 6, 7, 8)

.filter(function(val) { return val % 2; })

.map(function(val) { return val * 10; });

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/pipeline.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Pipelines are self-contained. All state flows from one operator to the next,
without the need for any external variables. But as we build our reactive
programs, we may be tempted to store state outside the Observable pipeline
(we talked about external state in Side Effects and External State, on page
5). This forces us to keep track of the variables we set outside the pipeline,
and all that bean-counting can easily lead to bugs. To avoid this, the operators
in a pipeline should always use pure functions.

Pure functions always return the same output given the same input. It’s
easier to design programs with high concurrency when we can guarantee that
a function in the program can’t modify state other functions rely on. And
that’s what pure functions give us.

Avoiding External State
In the following example we count the even numbers that interval has yielded
so far. We do that by creating an Observable from interval ticks and increasing
evenTicks when the tick we receive is an even number:

spaceship_reactive/state.js
var evenTicks = 0;

function updateDistance(i) {
if (i % 2 === 0) {

evenTicks += 1;
}
return evenTicks;

}

var ticksObservable = Rx.Observable
.interval(1000)
.map(updateDistance)

ticksObservable.subscribe(function() {
console.log('Subscriber 1 - evenTicks: ' + evenTicks + ' so far');

});

This is the output we get after the program has been running for four seconds:

Subscriber 1 - evenTicks: 1 so far❮

Subscriber 1 - evenTicks: 1 so far
Subscriber 1 - evenTicks: 2 so far
Subscriber 1 - evenTicks: 2 so far

Now, just for kicks, let’s add another subscriber to ticksObservable:

Chapter 3. Building Concurrent Programs • 40

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/state.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

spaceship_reactive/state.js
var evenTicks = 0;

function updateDistance(i) {
if (i % 2 === 0) {

evenTicks += 1;
}
return evenTicks;

}

var ticksObservable = Rx.Observable
.interval(1000)
.map(updateDistance)

ticksObservable.subscribe(function() {
console.log('Subscriber 1 - evenTicks: ' + evenTicks + ' so far');

});

ticksObservable.subscribe(function() {
console.log('Subscriber 2 - evenTicks: ' + evenTicks + ' so far');

});

The output is now the following:

Subscriber 1 - evenTicks: 1 so far❮

Subscriber 2 - evenTicks: 2 so far
Subscriber 1 - evenTicks: 2 so far
Subscriber 2 - evenTicks: 2 so far
Subscriber 1 - evenTicks: 3 so far
Subscriber 2 - evenTicks: 4 so far
Subscriber 1 - evenTicks: 4 so far
Subscriber 2 - evenTicks: 4 so far

Hold on a second—the even ticks count on Subscriber 2 is completely off! It
should always contain the same evenTicks count as Subscriber 1. The reason,
as you might have guessed, is that the Observable pipeline will run once for
each subscriber, increasing evenTicks twice.

Problems caused by sharing external state are often more subtle than this
example. In complex applications, opening the door to changing state outside
of the pipeline leads to code becoming complicated, and bugs soon start to
show up. The solution is to encapsulate as much information as we can inside
the pipeline. Here’s a way we could refactor the preceding code to avoid
external state:

report erratum • discuss

Purity and the Observable Pipeline • 41

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/state.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

spaceship_reactive/state.js
function updateDistance(acc, i) {

if (i % 2 === 0) {
acc += 1;

}
return acc;

}

var ticksObservable = Rx.Observable
.interval(1000)
.scan(updateDistance, 0);

ticksObservable.subscribe(function(evenTicks) {
console.log('Subscriber 1 - evenTicks: ' + evenTicks + ' so far');

});

ticksObservable.subscribe(function(evenTicks) {
console.log('Subscriber 2 - evenTicks: ' + evenTicks + ' so far');

});

And the expected output:

Subscriber 1 - evenTicks: 1 so far❮

Subscriber 2 - evenTicks: 1 so far
Subscriber 1 - evenTicks: 1 so far
Subscriber 2 - evenTicks: 1 so far
Subscriber 1 - evenTicks: 2 so far
Subscriber 2 - evenTicks: 2 so far
Subscriber 1 - evenTicks: 2 so far
Subscriber 2 - evenTicks: 2 so far

Using scan, we avoid external state altogether. We pass the accumulated count
of even ticks to updateDistance instead of relying on an external variable to keep
the accumulated value. This way we don’t increment the count with every
new subscriber.

Most of the time we can avoid relying on external state. Common scenarios
for using it are caching values or keeping track of changing values in the
program. But, as you’ll see in Spaceship Reactive!, on page 50, these scenarios
can be handled in several other ways. For example, when we need to cache
values, RxJS's Subject Class, on page 45, can help a lot, and when we need
to keep track of previous states of the game, we can use methods like
Rx.Observable.scan.

Pipelines Are Efficient
The first time I chained a bunch of operators into a pipeline to transform a
sequence, my gut feeling was that it couldn’t possibly be efficient. I knew

Chapter 3. Building Concurrent Programs • 42

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/state.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

transforming arrays in JavaScript by chaining operators is expensive. Yet in
this book I’m telling you to design your program by transforming sequences
into new ones. Isn’t that terribly inefficient?

Chaining looks similar in Observables and in arrays; there are even methods
like filter and map that are present in both types. But there’s a crucial difference:
array methods create a new array as a result of each operation, which is tra-
versed entirely by the next operation. Observable pipelines, on the other hand,
don’t create intermediate Observables and apply all operations to each element
in one go. The Observable is thus traversed only once, which makes chaining
Observables efficient. Check out the following example:

spaceship_reactive/array_chain.js
stringArray // represents an array of 1,000 strings

.map(function(str) {
return str.toUpperCase();❶

})
.filter(function(str) {❷

return /^[A-Z]+$/.test(str);
})
.forEach(function(str) {❸

console.log(str);
});

Let’s suppose stringArray is an array with 1,000 strings that we want to convert
to uppercase and then filter out the ones that contain anything other than
alphabet characters (or no letters at all). Then we want to print each string
of the resulting array to the console.

This is what happens behind the scenes:

❶ Iterate through the array and create a new array with all items uppercase.

❷ Iterate through the uppercase array, creating another array with 1,000
elements.

❸ Iterate through the filtered array and log each result to the console.

In the process of transforming the array, we’ve iterated arrays three times
and created two completely new big arrays. This is far from efficient! You
shouldn’t program this way if you’re concerned about performance or you’re
dealing with big sequences of items.

This is what the same operation would look like using Observables:

spaceship_reactive/array_chain.js
stringObservable // represents an observable emitting 1,000 strings

.map(function(str) {
return str.toUpperCase();❶

report erratum • discuss

Purity and the Observable Pipeline • 43

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/array_chain.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/array_chain.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

})
.filter(function(str) {❷

return /^[A-Z]+$/.test(str);
})
.subscribe(function(str) {❸

console.log(str);
});

Observable pipelines look extremely similar to array chains, but their similar-
ities end here. In an Observable, nothing ever happens until we subscribe to
it, no matter how many queries and transformations we apply to it. When we
chain a transformation like map, we’re composing a single function that will
operate on every item of the array once. So, in the preceding code, this is
what will happen:

❶ Create an uppercase function that will be applied to each item of the
Observable and return an Observable that will emit these new items,
whenever an Observer subscribes to it.

❷ Compose a filter function with the previous uppercase function, and
return an Observable that will emit the new items, uppercased and filtered,
but only when an Observable is subscribed to it.

❸ Trigger the Observable to emit items, going through all of them only once
and applying the transformations we defined once per item.

With Observables, we’ll go through our list only once, and we’ll apply the
transformations only if absolutely required. For example, let’s say we added
a take operator to our previous example:

spaceship_reactive/array_chain.js
stringObservable

.map(function(str) {
return str.toUpperCase();

})
.filter(function(str) {
return /^[A-Z]+$/.test(str);

})
.take(5)
.subscribe(function(str) {
console.log(str);

});

take makes the Observable emit only the first n items we specify. In our case,
n is five, so out of the thousand strings, we’ll receive only the first five. The
cool part is that our code will never traverse all the items; it will apply our
transformations to only the first five.

Chapter 3. Building Concurrent Programs • 44

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/array_chain.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

This makes the developer’s life much easier. You can rest assured that when
manipulating sequences, RxJS will do only as much work as necessary. This
way of operating is called lazy evaluation, and it is very common in functional
languages such as Haskell and Miranda.

RxJS’s Subject Class
A Subject is a type that implements both Observer and Observable types. As
an Observer, it can subscribe to Observables, and as an Observable it can
produce values and have Observers subscribe to it.

In some scenarios a single Subject can do the work of a combination of
Observers and Observables. For example, for making a proxy object between
a data source and the Subject’s listeners, we could use this:

spaceship_reactive/subjects.js
var subject = new Rx.Subject();
var source = Rx.Observable.interval(300)

.map(function(v) { return 'Interval message #' + v; })

.take(5);

source.subscribe(subject);

var subscription = subject.subscribe(
function onNext(x) { console.log('onNext: ' + x); },
function onError(e) { console.log('onError: ' + e.message); },
function onCompleted() { console.log('onCompleted'); }

);

subject.onNext('Our message #1');
subject.onNext('Our message #2');

setTimeout(function() {
subject.onCompleted();

}, 1000);

Output:

onNext: Our message #1❮

onNext: Our message #2
onNext: Interval message #0
onNext: Interval message #1
onNext: Interval message #2
onCompleted

In the preceding example we create a new Subject and a source Observable
that emits an integer every second. Then we subscribe the Subject to the
Observable. After that, we subscribe an Observer to the Subject itself. The
Subject now behaves as an Observable.

report erratum • discuss

RxJS’s Subject Class • 45

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/subjects.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Next we make the Subject emit values of its own (message1 and message2). In
the final result, we get the Subject’s own messages and then the proxied values
from the source Observable. The values from the Observable come later
because they are asynchronous, whereas we made the Subject’s own values
immediate. Notice that even if we tell the source Observable to take the first
five values, the output shows only the first three. That’s because after one
second we call onCompleted on the Subject. This finishes the notifications to all
subscriptions and overrides the take operator in this case.

The Subject class provides the base for creating more specialized Subjects. In
fact, RxJS comes with some interesting ones: AsyncSubject, ReplaySubject, and
BehaviorSubject.

AsyncSubject
AsyncSubject emits the last value of a sequence only if the sequence completes.
This value is then cached forever, and any Observer that subscribes after the
value has been emitted will receive it right away. AsyncSubject is convenient for
asynchronous operations that return a single value, such as Ajax requests.

Let’s see a simple example of an AsyncSubject subscribing to a range:

spaceship_reactive/subjects.js
var delayedRange = Rx.Observable.range(0, 5).delay(1000);
var subject = new Rx.AsyncSubject();

delayedRange.subscribe(subject);

subject.subscribe(
function onNext(item) { console.log('Value:', item); },
function onError(err) { console.log('Error:', err); },
function onCompleted() { console.log('Completed.'); }

);

In that example, delayedRange emits the values 0 to 4 after a delay of a second.
Then we create a new AsyncSubject subject and subscribe it to delayedRange. The
output is the following:

Value: 4❮

Completed.

As expected, we get only the last value that the Observer emits. Let’s now use
AsyncSubject for a more realistic scenario. We’ll retrieve some remote content:

spaceship_reactive/subjects.js
function getProducts(url) {

var subject;

Chapter 3. Building Concurrent Programs • 46

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/subjects.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/subjects.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

return Rx.Observable.create(function(observer) {❶
if (!subject) {
subject = new Rx.AsyncSubject();
Rx.DOM.get(url).subscribe(subject);❷

}
return subject.subscribe(observer);❸

});
}

var products = getProducts('/products');❹
// Will trigger request and receive the response when read
products.subscribe(❺

function onNext(result) { console.log('Result 1:', result.response); },
function onError(error) { console.log('ERROR', error); }

);

// Will receive the result immediately because it's cached
setTimeout(function() {❻

products.subscribe(
function onNext(result) { console.log('Result 2:', result.response); },
function onError(error) { console.log('ERROR', error); }

);
}, 5000);

In this code, when getProducts is called with a URL, it returns an Observer that
emits the result of the HTTP GET request. Here’s how it breaks down:

❶ getProducts returns an Observable sequence. We create it here.

❷ If we haven’t created an AsyncSubject yet, we create it and subscribe it to
the Observable that Rx.DOM.Request.get(url) returns.

❸ We subscribe the Observer to the AsyncSubject. Every time an Observer
subscribes to the Observable, it will actually be subscribed to the AsyncSub-
ject, which is acting as a proxy between the Observable retrieving the URL
and the Observers.

❹ We create the Observable that retrieves the URL "products" and store it
in the products variable.

❺ This is the first subscription and will kick off the URL retrieval and log
the results when the URL is retrieved.

❻ This is the second subscription, which runs five seconds after the first
one. Since at that time the URL has already been retrieved, there’s no
need for another network request. It will receive the result of the request
immediately because it is already stored in the AsyncSubject subject.

report erratum • discuss

RxJS’s Subject Class • 47

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

The interesting bit is that we’re using an AsyncSubject that subscribes to the
Rx.DOM.Request.get Observable. Because AsyncSubject caches the last result, any
subsequent subscription to products will receive the result right away, without
causing another network request. We can use AsyncSubject whenever we expect
a single result and want to hold onto it.

Joe asks:

Does That Mean AsyncSubject Acts Like a
Promise?

Indeed.

AsyncSubject represents the result of an asynchronous action, and you can use it as a
substitute for a promise. The difference internally is that a promise will only ever
process a single value, whereas AsyncSubject processes all values in a sequence, only
ever emitting (and caching) the last one.

Being able to so easily simulate promises shows the flexibility of the RxJS model.
(Even without AsyncSubject, it would be pretty easy to simulate a promise using
Observables.)

BehaviorSubject
When an Observer subscribes to a BehaviorSubject, it receives the last emitted
value and then all the subsequent values. BehaviorSubject requires that we pro-
vide a starting value, so that all Observers will always receive a value when
they subscribe to a BehaviorSubject.

Imagine we want to retrieve a remote file and print its contents on an HTML
page, but we want placeholder text while we wait for the contents. We can
use a BehaviorSubject for this:

spaceship_reactive/behavior_subject.js
var subject = new Rx.BehaviorSubject('Waiting for content');

subject.subscribe(
function(result) {

document.body.textContent = result.response || result;
},
function(err) {

document.body.textContent = 'There was an error retrieving content';
}

);

Rx.DOM.get('/remote/content').subscribe(subject);

Chapter 3. Building Concurrent Programs • 48

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/behavior_subject.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

In the code, we initialize a new BehaviorSubject with our placeholder content.
Then we subscribe to it and change the HTML body content in both onNext
and onError, depending on the result.

Now the HTML body contains our placeholder text, and it will stay that way
until the Subject emits a new value. Finally, we request the resource we want
and we subscribe our Subject to the resulting Observer.

BehaviorSubject guarantees that there will always be at least one value emitted,
because we provide a default value in its constructor. Once the BehaviorSubject
completes it won’t emit any more values, freeing the memory used by the
cached value.

ReplaySubject
A ReplaySubject caches its values and re-emits them to any Observer that sub-
scribes late to it. Unlike with AsyncSubject, the sequence doesn’t need to be
completed for this to happen.

ReplaySubjectSubject

var subject = new Rx.ReplaySubject();var subject = new Rx.Subject();

subject.onNext(1);subject.onNext(1);

subject.subscribe(function(n) {subject.subscribe(function(n) {
console.log('Received value:', n);console.log('Received value:', n);

});});

subject.onNext(2);subject.onNext(2);
subject.onNext(3);subject.onNext(3);
Received value: 1❮Received value: 2❮

Received value: 2Received value: 3
Received value: 3

ReplaySubject is useful to make sure that Observers get all the values emitted
by an Observable from the start. It spares us from writing messy code that
caches previous values, saving us from nasty concurrency-related bugs.

Of course, to accomplish that behavior ReplaySubject caches all values in
memory. To prevent it from using too much memory, we can limit the amount
of data it stores by buffer size or window of time, or by passing particular
parameters to the constructor.

The first parameter to the constructor of ReplaySubject takes a number that
represents how many values we want to buffer:

report erratum • discuss

RxJS’s Subject Class • 49

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

var subject = new Rx.ReplaySubject(2); // Buffer size of 2

subject.onNext(1);
subject.onNext(2);
subject.onNext(3);

subject.subscribe(function(n) {
console.log('Received value:', n);

});

Received value: 2❮

Received value: 3

The second parameter takes a number that represents the time in milliseconds
during which we want to buffer values:

var subject = new Rx.ReplaySubject(null, 200); // Buffer size of 200ms

setTimeout(function() { subject.onNext(1); }, 100);
setTimeout(function() { subject.onNext(2); }, 200);
setTimeout(function() { subject.onNext(3); }, 300);
setTimeout(function() {
subject.subscribe(function(n) {

console.log('Received value:', n);
});

subject.onNext(4);
}, 350);

In this example we set a buffer based on time, instead of the number of values.
Our ReplaySubject will cache values that were emitted up to 200 milliseconds
ago. We emit three values, each separated by 100 milliseconds, and after 350
milliseconds we subscribe an Observer and we emit yet another value. At the
moment of the subscription the items cached are 2 and 3, because 1 happened
too long ago (around 250 milliseconds ago), so it is no longer cached.

Subjects are a powerful tool that can save you a lot of time. They provide
great solutions to common scenarios like caching and repeating. And since
at their core they are just Observables and Observers, you don’t need to learn
anything new.

Spaceship Reactive!
To show how we can keep an application pure, we’ll build a video game in
which our hero fights endless hordes of enemy spaceships. We’ll make heavy
use of Observable pipelines, and I’ll point out along the way when it might
be tempting to store state outside the pipeline and how to avoid it.

Chapter 3. Building Concurrent Programs • 50

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Video games notoriously keep a lot of external state—scores, screen coordi-
nates for the characters, timers, and so on. Our plan is to build the whole
game without relying on a single external variable that keeps state.

In our game, the player will move the spaceship horizontally using the mouse,
and will shoot by clicking the mouse or tapping the spacebar. Our game will
have four main actors: the moving star field in the background, the player’s
spaceship, the enemies, and the shots from both the player and the enemies.

It will look like this:

In the screenshot, the red triangle is our spaceship and the green ones are
the enemies. The tinier triangles are the fired shots.

Let’s start by setting the stage; this will be our HTML file:

spaceship_reactive/spaceship.html
<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">
<title>Spaceship Reactive!</title>
<script src="../rx.all-4.0.0.js"></script>
<style>
html, body {

report erratum • discuss

Spaceship Reactive! • 51

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/spaceship.html
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

margin: 0;
padding: 0;

}
</style>

</head>
<body>

<script src="spaceship.js"></script>
</body>

</html>

It’s just a simple HTML file that loads the JavaScript file we’ll be working with
for the rest of the chapter. In that JavaScript file, we start by setting up a
canvas element where we’ll render our game:

spaceship_reactive/starfield_1.js
var canvas = document.createElement('canvas');
var ctx = canvas.getContext("2d");
document.body.appendChild(canvas);
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;

With this in place we can start describing our game’s components. First let’s
draw our starry background.

Creating the Star Field
The first things we need for a game set in space are stars. We’ll create a star
field that scrolls down to give the feeling of traveling through space. For this,
we’ll first generate the stars using the range operator:

spaceship_reactive/starfield_1.js
var SPEED = 40;
var STAR_NUMBER = 250;
var StarStream = Rx.Observable.range(1, STAR_NUMBER)

.map(function() {
return {
x: parseInt(Math.random() * canvas.width),
y: parseInt(Math.random() * canvas.height),
size: Math.random() * 3 + 1

};
})

Each star will be represented by an object that contains random coordinates
and a size between 1 and 4. This code will give us a stream that generates
250 of these “stars.”

We want these stars to keep moving. A way to do that is to increase the y-
coordinate every few milliseconds for all stars. We’ll transform the StarStream
Observable into an array using toArray, which will then emit an array containing

Chapter 3. Building Concurrent Programs • 52

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/starfield_1.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/starfield_1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

all the objects generated by range. Then we can pick up that array with a flatMap
operator that will transform the Observable into one that yields a value every
few milliseconds. Using map we can increase the y-coordinate in each item of
the original array:

spaceship_reactive/starfield_1.js
var SPEED = 40;
var STAR_NUMBER = 250;
var StarStream = Rx.Observable.range(1, STAR_NUMBER)

.map(function() {
return {
x: parseInt(Math.random() * canvas.width),
y: parseInt(Math.random() * canvas.height),
size: Math.random() * 3 + 1

};
})
.toArray()
.flatMap(function(starArray) {

return Rx.Observable.interval(SPEED).map(function() {
starArray.forEach(function(star) {

if (star.y >= canvas.height) {
star.y = 0; // Reset star to top of the screen

}
star.y += 3; // Move star

});
return starArray;

});
})

Inside map we check if the star y-coordinate is already outside the screen, and
in this case we reset it to 0. By changing the coordinates in every star object
we can keep using the same array of stars all the time.

Now we need a small helper function that “paints” an array of stars on our
canvas:

spaceship_reactive/starfield_1.js
function paintStars(stars) {

ctx.fillStyle = '#000000';
ctx.fillRect(0, 0, canvas.width, canvas.height);
ctx.fillStyle = '#ffffff';
stars.forEach(function(star) {

ctx.fillRect(star.x, star.y, star.size, star.size);
});

}

paintStars paints a black background and draws the stars on the canvas. The
only thing left to achieve a moving star field is to subscribe to the Observable
and call paintStars with the resulting array. Here’s the final code:

report erratum • discuss

Spaceship Reactive! • 53

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/starfield_1.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/starfield_1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

spaceship_reactive/starfield_1.js
function paintStars(stars) {

ctx.fillStyle = '#000000';
ctx.fillRect(0, 0, canvas.width, canvas.height);
ctx.fillStyle = '#ffffff';
stars.forEach(function(star) {

ctx.fillRect(star.x, star.y, star.size, star.size);
});

}

var SPEED = 40;
var STAR_NUMBER = 250;
var StarStream = Rx.Observable.range(1, STAR_NUMBER)

.map(function() {
return {
x: parseInt(Math.random() * canvas.width),
y: parseInt(Math.random() * canvas.height),
size: Math.random() * 3 + 1

};
})
.toArray()
.flatMap(function(starArray) {

return Rx.Observable.interval(SPEED).map(function() {
starArray.forEach(function(star) {

if (star.y >= canvas.height) {
star.y = 0; // Reset star to top of the screen

}
star.y += 3; // Move star

});
return starArray;

});
})
.subscribe(function(starArray) {
paintStars(starArray);

});

Now that we’ve set the stage, it’s time for our hero to make an appearance.

Adding the Player’s Spaceship
Now that we have our beautiful starry background, we’re ready to program
the hero’s spaceship. Even though it’s the most important object in the game,
our spaceship is deceptively simple. It’s an Observer of mouse moves that
emits the current mouse x-coordinate and a constant y- coordinate (the
player only moves horizontally, so we never change the y-coordinate):

spaceship_reactive/hero_1.js
var HERO_Y = canvas.height - 30;
var mouseMove = Rx.Observable.fromEvent(canvas, 'mousemove');
var SpaceShip = mouseMove

Chapter 3. Building Concurrent Programs • 54

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/starfield_1.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/hero_1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

.map(function(event) {
return {

x: event.clientX,
y: HERO_Y

};
})
.startWith({

x: canvas.width / 2,
y: HERO_Y

});

Notice that I used startWith(). This sets the first value in the Observable, and I
set it to a position in the middle of the screen. Without startWith our Observable
would start emitting only when the player moves the mouse.

Let’s render our hero on the screen. In this game all the characters are trian-
gles (my graphic-design skills are not very impressive), so we’ll define a helper
function to render triangles on the canvas, given the coordinates, size, and
color, and the direction they’re facing:

spaceship_reactive/hero_1.js
function drawTriangle(x, y, width, color, direction) {

ctx.fillStyle = color;
ctx.beginPath();
ctx.moveTo(x - width, y);
ctx.lineTo(x, direction === 'up' ? y - width : y + width);
ctx.lineTo(x + width, y);
ctx.lineTo(x - width,y);
ctx.fill();

}

We’ll also define paintSpaceShip, which uses the helper function:

spaceship_reactive/hero_1.js
function paintSpaceShip(x, y) {

drawTriangle(x, y, 20, '#ff0000', 'up');
}

But we’re facing a problem now. If we subscribe to the SpaceShip Observable
and call drawTriangle in the subscription, our spaceship would be visible only
when we move the mouse, and for just an instant. This is because starStream
is updating the canvas many times per second, erasing our spaceship if we
don’t move the mouse. And because the starStream doesn’t have direct access
to the spaceship, we can’t render the spaceship in the starStream subscription.
We could save the latest spaceship coordinates to a variable that the starStream
can access, but then we would be breaking our rule of not modifying external
state. What to do?

report erratum • discuss

Spaceship Reactive! • 55

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/hero_1.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/hero_1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

As is usually the case, RxJS has a very convenient operator we can use to
solve our problem.

Rx.Observable.combineLatest is a handy operator. It takes two or more Observables
and emits the last result of each Observable whenever any of them emits a
new value. Knowing that starStream emits a new item (the array of stars) so
frequently, we can remove the starStream subscription and use combineLatest to
combine both the starStream and SpaceShip Observables and update them as
soon as any of them emits a new item:

spaceship_reactive/hero_1.js
function renderScene(actors) {

paintStars(actors.stars);
paintSpaceShip(actors.spaceship.x, actors.spaceship.y);

}

var Game = Rx.Observable
.combineLatest(

StarStream, SpaceShip,
function(stars, spaceship) {
return { stars: stars, spaceship: spaceship };

});

Game.subscribe(renderScene);

We’re now using a function renderScene to paint everything on the screen, so
you can remove the following subscription code for StarStream:

.subscribe(function(starArray) {
paintStars(starArray);

});

With this, we’ll paint the starry background and the spaceship every time
any Observable emits a new item. We now have a spaceship flying through
space, and we can move it at will using our mouse. Not bad for so little code!
But our hero’s spaceship is too lonely in the vastness of space. What about
giving it some company?

Generating Enemies
This would be a very boring game if we didn’t have any enemies to take care
of. So let’s create an infinite stream of them! We want to create a new enemy
every second and a half to not overwhelm our hero. Let’s look at the code for
the Enemies Observable and then go through it:

Chapter 3. Building Concurrent Programs • 56

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/hero_1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

spaceship_reactive/enemy_1.js
var ENEMY_FREQ = 1500;
var Enemies = Rx.Observable.interval(ENEMY_FREQ)

.scan(function(enemyArray) {
var enemy = {
x: parseInt(Math.random() * canvas.width),
y: -30,

};

enemyArray.push(enemy);
return enemyArray;

}, []);

var Game = Rx.Observable
.combineLatest(

StarStream, SpaceShip, Enemies,
function(stars, spaceship, enemies) {
return {

stars: stars,
spaceship: spaceship,
enemies: enemies

};
});

Game.subscribe(renderScene);

To create enemies, we use an interval operator to run every 1,500 milliseconds,
and then we use the scan operator to create an array of enemies.

We briefly saw the scan operator in Can We Aggregate Infinite Observables?,
on page 22. scan aggregates results each time an Observable emits a value,
and emits each intermediate result. In the Enemies Observable we start with
an empty array as scan’s first parameter and we push a new object to it in
every iteration. The object contains a random x-coordinate, and a fixed y-
coordinate outside the visible screen. With this, Enemies will emit an array with
all the current enemies every 1,500 milliseconds.

The only thing left to render enemies is a helper function to paint each of
them on the canvas. This function will also be the one updating the coordi-
nates of each item in the enemies array:

spaceship_reactive/enemy_1.js
// Helper function to get a random integer
function getRandomInt(min, max) {

return Math.floor(Math.random() * (max - min + 1)) + min;
}

report erratum • discuss

Spaceship Reactive! • 57

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_1.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

function paintEnemies(enemies) {
enemies.forEach(function(enemy) {

enemy.y += 5;
enemy.x += getRandomInt(-15, 15);

drawTriangle(enemy.x, enemy.y, 20, '#00ff00', 'down');
});

}

You can see in paintEnemies that we are also changing the x-coordinate randomly
so that enemies move a bit unpredictably to the sides. Now we need to update
the function renderScene to include a call to paintEnemies.

You might have noticed a strange effect while playing the game we have so
far: if you move the mouse, the enemies go faster toward you! That could be
a nice feature in the game, but we definitely didn’t intend to do that. Can you
guess what causes this bug?

If you guessed that it was related to the paintEnemies function, you’re right on
the money. combineLatest renders our scene whenever any of the Observables
yields a value. If we don’t move the mouse, the fastest emitter will always be
starStream because it has an interval of 40 milliseconds (the Enemies Observable
emits only every 1,500 milliseconds). When we move the mouse, though,
SpaceShip will emit faster than starStream (your mouse emits coordinates many
times per second), and paintEnemies will then execute that many times,
increasing the enemies’ coordinates much faster.

To avoid this scenario and similar problems in the future, we need to normalize
the game’s speed so that no Observable can emit values faster than our chosen
speed for the game.

And yes, as you may have guessed, RxJS has an operator for that.

Avoid Drinking from the Firehose
There is such a thing as receiving data too fast. Most of the time we want all
the speed we can get, but depending on the frequency at which the Observable
streams values, we might want to drop some of the values we receive. We’re
now in one of these scenarios. The speed at which we render things onscreen
is proportional to the speed of the fastest Observable we have. It turns out
that our fastest Observable is too fast for us, and we need to establish a
constant update speed in the game.

sample is a method in Observable instances that, given a time parameter in
milliseconds, returns an Observable that emits the last value emitted by the
parent Observable in each time interval.

Chapter 3. Building Concurrent Programs • 58

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

sample(300)

1 2 3

2

4 5

5

300ms 300ms

6

6

300ms

Notice how sample drops any values before the last value at the moment of the
interval. It’s important to consider whether you want this behavior. In our
case, we don’t care about dropping values because we just want to render
the current state of each element every 40 milliseconds. If all the values are
important to you, you might want to consider the buffer operator:

spaceship_reactive/enemy_2.js
Rx.Observable.combineLatest(

StarStream, SpaceShip, Enemies,
function(stars, spaceship, enemies) {

return {
stars: stars,
spaceship: spaceship,
enemies: enemies

};
})
.sample(SPEED)➤

.subscribe(renderScene);

By calling sample after combineLatest we make sure that combineLatest will never
yield any value faster than 40 milliseconds after the previous one (our constant
SPEED is set to 40).

Shooting
It’s a bit scary seeing the hordes of enemies coming at us; all we can do about
it is move out of the way and hope they don’t see us. How about we give our
hero the ability to shoot at the evil alien spaceships?

We want our spaceship to shoot whenever we click the mouse or press the
spacebar, so we’ll create an Observable for each event and merge them into
a single Observable called playerShots. Notice that we filter the keydown
Observable by the key code of the spacebar, 32:

report erratum • discuss

Spaceship Reactive! • 59

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_2.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

spaceship_reactive/hero_shots.js
var playerFiring = Rx.Observable

.merge(
Rx.Observable.fromEvent(canvas, 'click'),
Rx.Observable.fromEvent(canvas, 'keydown')
.filter(function(evt) { return evt.keycode === 32; })

)

Now that we know about sample, we can use it to spice up the game and limit
the shooting frequency of our spaceship. Otherwise, the player could shoot
at high speed and destroy all enemies too easily. We’ll make it so that the
player can shoot only every 200 milliseconds at most:

spaceship_reactive/hero_shots.js
var playerFiring = Rx.Observable

.merge(
Rx.Observable.fromEvent(canvas, 'click'),
Rx.Observable.fromEvent(canvas, 'keydown')
.filter(function(evt) { return evt.keycode === 32; })

)
.sample(200)
.timestamp();

We’ve also added a timestamp operator, which sets a property timestamp in
every value our Observable emits, with the exact time it is emitted. We’ll use
it later.

Finally, to fire shots from our spaceship we need to know the x-coordinate of
the spaceship at the firing moment. This is so we can render the shot at the
correct x-coordinate. It may be tempting to set an external variable from the
SpaceShip Observable that always contains the last x-coordinate emitted, but
that would be breaking our unwritten agreement to never mutate external
state!

Instead we’ll accomplish this by using our good friend combineLatest again:

spaceship_reactive/hero_shots.js
var HeroShots = Rx.Observable

.combineLatest(
playerFiring,
SpaceShip,
function(shotEvents, spaceShip) {
return { x: spaceShip.x };

})
.scan(function(shotArray, shot) {
shotArray.push({x: shot.x, y: HERO_Y});
return shotArray;

}, []);

Chapter 3. Building Concurrent Programs • 60

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/hero_shots.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/hero_shots.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/hero_shots.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

We now get the updated values from SpaceShip and playerFiring, so we can get
the x-coordinate we want. We use scan in the same way we used it for our
Enemy Observable, creating an array of current coordinates for each of our
shots. With that we should be ready to draw our shots on the screen. We use
a helper function to draw every shot in the array of shots:

spaceship_reactive/hero_shots.js
var SHOOTING_SPEED = 15;
function paintHeroShots(heroShots) {

heroShots.forEach(function(shot) {
shot.y -= SHOOTING_SPEED;
drawTriangle(shot.x, shot.y, 5, '#ffff00', 'up');

});
}

Then we call paintHeroShots from our main combineLatest operation:

Rx.Observable.combineLatest(
StarStream, SpaceShip, Enemies, HeroShots,
function(stars, spaceship, enemies, heroShots) {
return {

stars: stars,
spaceship: spaceship,
enemies: enemies,
heroShots: heroShots➤

};
})

.sample(SPEED)

.subscribe(renderScene);

And we add a call to paintHeroShots inside renderScene:

function renderScene(actors) {
paintStars(actors.stars);
paintSpaceShip(actors.spaceship.x, actors.spaceship.y);
paintEnemies(actors.enemies);
paintHeroShots(actors.heroShots);➤

}

Now when you run the game you’ll notice that every time you move the mouse,
our spaceship fires an insane number of shots. Not bad for an effect, but
that’s not what we wanted! Let’s look at the HeroShots Observable again. In it,
we’re using combineLatest so that we have values from playerFiring and SpaceShip.
This looks similar to the problem we had before. combineLatest in HeroShots is
emitting values every time the mouse moves, and this translates into shots
being fired. Throttling won’t help in this case, because we want the user to
shoot whenever she wants, and throttling would limit the number of shots
and drop many of them.

report erratum • discuss

Spaceship Reactive! • 61

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/hero_shots.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

combineLatest emits the last value that each Observable emitted, whenever an
Observable emits a new value. We can use this to our advantage. Whenever
the mouse moves, combineLatest emits the new SpaceShip position and the last
emitted value of playerFiring, which will be unchanged unless we fire a new shot.
We can then emit a value only when the emitted shot is different from the
previous one. The distinctUntilChanged operator does the dirty work for us.

The operators distinct and distinctUntilChanged allow us to filter out results that
an Observable has already emitted. distinct filters out any result previously
emitted and distinctUntilChanged filters out identical results unless a different
one is emitted in between. We only need to make sure that the new shot is
different from the previous one, so distinctUntilChanged is enough for us. (It also
saves us from the higher memory usage of distinct; distinct needs to keep all the
previous results in memory.)

We modify heroShots so it only emits new shots, based on their timestamp:

spaceship_reactive/hero_shots2.js
var HeroShots = Rx.Observable

.combineLatest(
playerFiring,
SpaceShip,
function(shotEvents, spaceShip) {
return {

timestamp: shotEvents.timestamp,
x: spaceShip.x

};
})

.distinctUntilChanged(function(shot) { return shot.timestamp; })

.scan(function(shotArray, shot) {
shotArray.push({ x:shot.x, y: HERO_Y });
return shotArray;

}, []);

If everything went well, we’re now able to shoot at enemies from our spaceship!

Enemy Shots
We should allow enemies to shoot as well; otherwise it’s a pretty unfair uni-
verse. And a boring one! For enemy shots, we’ll do the following:

• Each enemy will keep an updated array of its own shots.
• Each enemy will shoot at a given frequency.

For this, we’ll use an interval operator to store new shots in the enemy value.
We’ll also introduce a new helper function, isVisible, that helps filter out ele-
ments whose coordinates are outside the visible screen. This is how the Enemy
Observable looks now:

Chapter 3. Building Concurrent Programs • 62

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/hero_shots2.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

spaceship_reactive/enemy_shots.js
function isVisible(obj) {

return obj.x > -40 && obj.x < canvas.width + 40 &&
obj.y > -40 && obj.y < canvas.height + 40;

}

var ENEMY_FREQ = 1500;
var ENEMY_SHOOTING_FREQ = 750;
var Enemies = Rx.Observable.interval(ENEMY_FREQ)

.scan(function(enemyArray) {
var enemy = {
x: parseInt(Math.random() * canvas.width),
y: -30,
shots: []

};

Rx.Observable.interval(ENEMY_SHOOTING_FREQ).subscribe(function() {
enemy.shots.push({ x: enemy.x, y: enemy.y });
enemy.shots = enemy.shots.filter(isVisible);

});

enemyArray.push(enemy);
return enemyArray.filter(isVisible);

}, []);

In that code we create an interval every time we create a new enemy. This
interval will keep adding shots to the enemy array of shots, and then it will
filter out the ones outside the screen. We can use isVisible to filter out enemies
that are outside the screen, too, as we do in the return statement.

We need to update paintEnemies so that it renders enemy shots and updates
their y-coordinates. Then we use our handy drawTriangle function to draw the
shots:

spaceship_reactive/enemy_shots.js
function paintEnemies(enemies) {

enemies.forEach(function(enemy) {
enemy.y += 5;
enemy.x += getRandomInt(-15, 15);

drawTriangle(enemy.x, enemy.y, 20, '#00ff00', 'down');

enemy.shots.forEach(function(shot) {➤

shot.y += SHOOTING_SPEED;➤

drawTriangle(shot.x, shot.y, 5, '#00ffff', 'down');➤

});➤

});
}

report erratum • discuss

Spaceship Reactive! • 63

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_shots.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_shots.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

With this in place everybody is now shooting everybody else, but nobody is
being destroyed! They simply glide past the enemies and our spaceship
because we haven’t defined what happens when shots collide with spaceships.

Managing Collisions
When a shot hits an enemy, we want both the shot and the enemy to disap-
pear. Let’s define a helper function to detect whether two targets have collided:

spaceship_reactive/enemy_shots2.js
function collision(target1, target2) {

return (target1.x > target2.x - 20 && target1.x < target2.x + 20) &&
(target1.y > target2.y - 20 && target1.y < target2.y + 20);

}

Now let’s modify the helper function paintHeroShots to check whether each shot
hits an enemy. For cases where a hit occurs, we’ll set a property isDead to true
on the enemy that has been hit, and we’ll set the coordinates of the shot to
outside the screen. The shot will eventually be filtered out because it’s outside
the screen.

spaceship_reactive/enemy_shots2.js
function paintEnemies(enemies) {

enemies.forEach(function(enemy) {
enemy.y += 5;
enemy.x += getRandomInt(-15, 15);

if (!enemy.isDead) {➤

drawTriangle(enemy.x, enemy.y, 20, '#00ff00', 'down');➤

}➤

enemy.shots.forEach(function(shot) {
shot.y += SHOOTING_SPEED;
drawTriangle(shot.x, shot.y, 5, '#00ffff', 'down');

});
});

}

var SHOOTING_SPEED = 15;
function paintHeroShots(heroShots, enemies) {

heroShots.forEach(function(shot, i) {
for (var l=0; l<enemies.length; l++) {
var enemy = enemies[l];
if (!enemy.isDead && collision(shot, enemy)) {➤

enemy.isDead = true;➤

shot.x = shot.y = -100;➤

break;➤

}➤

}

Chapter 3. Building Concurrent Programs • 64

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_shots2.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_shots2.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

shot.y -= SHOOTING_SPEED;
drawTriangle(shot.x, shot.y, 5, '#ffff00', 'up');

});
}

Next let’s get rid of any enemies that have the property isDead set to true. The
only caveat is that we need to wait for all the shots from that particular enemy
to disappear; otherwise, when we hit an enemy all its shots disappear along
with it, which would be weird. So we check for the length of its shots and filter
out the enemy object only when it has no shots left:

spaceship_reactive/enemy_shots2.js
var Enemies = Rx.Observable.interval(ENEMY_FREQ)

.scan(function(enemyArray) {
var enemy = {
x: parseInt(Math.random() * canvas.width),
y: -30,
shots: []

};

Rx.Observable.interval(ENEMY_SHOOTING_FREQ).subscribe(function() {
if (!enemy.isDead) {➤

enemy.shots.push({ x: enemy.x, y: enemy.y });➤

}➤

enemy.shots = enemy.shots.filter(isVisible);
});

enemyArray.push(enemy);
return enemyArray
.filter(isVisible)
.filter(function(enemy) {➤

return !(enemy.isDead && enemy.shots.length === 0);➤

});➤

}, []);

To check if the player’s ship has been hit, we create a function gameOver:

spaceship_reactive/enemy_shots2.js
function gameOver(ship, enemies) {

return enemies.some(function(enemy) {
if (collision(ship, enemy)) {

return true;
}

return enemy.shots.some(function(shot) {
return collision(ship, shot);

});
});

}

report erratum • discuss

Spaceship Reactive! • 65

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_shots2.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_shots2.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

This function returns true if an enemy or a shot from an enemy hits the player’s
spaceship.

Before moving on, let’s get to know a useful operator: takeWhile. When we call
takeWhile on an existing Observable, that Observable will keep emitting values
until the function passed as a parameter to takeWhile returns false.

We can use takeWhile to tell our main combineLatest Observable to keep taking
values until gameOver returns true:

spaceship_reactive/enemy_shots2.js
Rx.Observable.combineLatest(

StarStream, SpaceShip, Enemies, HeroShots,
function(stars, spaceship, enemies, heroShots) {
return {

stars: stars,
spaceship: spaceship,
enemies: enemies,
heroShots: heroShots

};
})

.sample(SPEED)

.takeWhile(function(actors) {➤

return gameOver(actors.spaceship, actors.enemies) === false;➤

})➤

.subscribe(renderScene);

When gameOver returns true, combineLatest will stop emitting values, effectively
stopping the game.

One Last Thing: Keeping Score
What kind of game would it be if we couldn’t brag about our results to our
friends? We obviously need a way to keep track of how well we did. We need
a score.

Let’s make a simple helper function to draw the score to the upper left of the
screen:

spaceship_reactive/score.js
function paintScore(score) {

ctx.fillStyle = '#ffffff';
ctx.font = 'bold 26px sans-serif';
ctx.fillText('Score: ' + score, 40, 43);

}

To keep score we’ll use a Subject. We can easily use it in our combineLatest-based
main game loop as if it were just another Observable, and we can push values
to it whenever we want.

Chapter 3. Building Concurrent Programs • 66

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/enemy_shots2.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/score.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

spaceship_reactive/score.js
var ScoreSubject = new Rx.Subject();
var score = ScoreSubject.scan(function (prev, cur) {

return prev + cur;
}, 0).concat(Rx.Observable.return(0));

In that code we use our friend the scan operator to sum each new value to the
total aggregate result. Since we won’t have any score when a game starts, we
concatenate an Observable that returns 0 so we have a starting point.

Now we just have to push score to our Subject whenever we hit an enemy;
that happens in paintHeroShots:

spaceship_reactive/score.js
var SCORE_INCREASE = 10;
function paintHeroShots(heroShots, enemies) {

heroShots.forEach(function(shot, i) {
for (var l=0; l<enemies.length; l++) {
var enemy = enemies[l];
if (!enemy.isDead && collision(shot, enemy)) {

ScoreSubject.onNext(SCORE_INCREASE);➤

enemy.isDead = true;
shot.x = shot.y = -100;
break;

}
}

shot.y -= SHOOTING_SPEED;
drawTriangle(shot.x, shot.y, 5, '#ffff00', 'up');

});
}

And of course, we add paintScore to renderScene so the score appears onscreen:

spaceship_reactive/score.js
function renderScene(actors) {

paintStars(actors.stars);
paintSpaceShip(actors.spaceship.x, actors.spaceship.y);
paintEnemies(actors.enemies);
paintHeroShots(actors.heroShots, actors.enemies);
paintScore(actors.score);➤

}

That completes our Spaceship Reactive game. With about 200 lines we’ve
managed to code an entire game in the browser, avoiding changing any
external state through the power of Observable pipelines.

report erratum • discuss

Spaceship Reactive! • 67

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/score.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/score.js
http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/score.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Ideas for Improvements
I’m sure you already have some ideas for making the game even more exciting,
but let me propose some improvements that will make the game better and
sharpen your RxJS skills at the same time:

• Add a second (or third!) star field that moves at a different speed to create
a parallax effect. This could be done in several different ways. Try to reuse
existing code and to do it as declaratively as you can.

• Make more unpredictable enemies by making them fire at random intervals
instead of the fixed one specified in ENEMY_SHOOTING_FREQ. Extra points if
you can make them fire more quickly as the player’s score gets higher!

• Allow the player to get more points by hitting several enemies in a short
amount of time.

Wrapping Up
We’ve built an entire game for the browser using only Observables, and along
the way we’ve seen several extremely convenient methods to handle concur-
rency and to compose and transform Observables. This is one of the strengths
of RxJS: there is always a method to help with the problem you’re trying to
tackle. Feel free to explore them in the RxJS documentation.1

Reactive programming makes it easy to write concurrent programs. The
Observable abstraction and the powerful RxJS methods make it natural for
different parts of a program to interact efficiently. Programming without
relying on external state might take some getting used to, but it has enormous
benefits. We can encapsulate entire behaviors in a single Observable pipeline,
making our program more solid and reliable.

In the next chapter we’ll pick up our earthquake visualizer application where
we left it and add a Node.js server part that shows tweets related to the
earthquakes. We’ll also improve its user interface to make it look like a real
earthquake dashboard.

1. https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md

Chapter 3. Building Concurrent Programs • 68

report erratum • discuss

https://github.com/Reactive-Extensions/RxJS/blob/master/doc/api/core/observable.md
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

CHAPTER 4

Building a Complete Web Application
In this chapter we’ll build a typical web application, using RxJS in the front
end and back end. We’ll transform the Document Object Model (DOM) and
do client-server communication using WebSockets in a Node.js server.

For the user-interface bits, we’ll use the RxJS-DOM library, a library by the
same team that made RxJS, which provides convenient operators to deal with
DOM and browser-related stuff that will make our lives easier. For the server
part, we’ll use two well-established node libraries and wrap some of their APIs
with Observables to use them in our application.

After this chapter, you’ll be able to use RxJS to build user interfaces in a
declarative way, using the techniques we’ve seen so far and applying them
to the DOM. You’ll also be ready to use RxJS in any Node.js project and able
to use reactive programming and RxJS in any project.

Building a Real-Time Earthquake Dashboard
We’ll be building both server and client parts for an earthquake dashboard
application, picking up where we left the application we started in Making a
Real-Time Earthquake Visualizer, on page 29. We’ll build the server in Node.js,
and improve our application to make it more interactive and informative.

The screenshot on page 70 shows how the dashboard will look when we’re
finished:

Our starting point will be the code from Making a Real-Time Earthquake
Visualizer, on page 29, which we left like this:

examples_earthquake/code1_3.js
var quakes = Rx.Observable

.interval(5000)

.flatMap(function() {
return Rx.DOM.jsonpRequest({

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake/code1_3.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

url: QUAKE_URL,
jsonpCallback: 'eqfeed_callback'

}).retry(3);
})
.flatMap(function(result) {

return Rx.Observable.from(result.response.features);
})
.distinct(function(quake) { return quake.properties.code; });

quakes.subscribe(function(quake) {
var coords = quake.geometry.coordinates;
var size = quake.properties.mag * 10000;

L.circle([coords[1], coords[0]], size).addTo(map);
});

This code already has one potential bug: it could be executed before the DOM
is ready, throwing errors whenever we try to use DOM elements in our code.
What we want is to load our code after the DOMContentLoaded event is fired,
which signals the moment the browser is aware of all the elements on the
page.

RxJS-DOM provides the Rx.DOM.ready() Observable, which emits once, when
DOMContentLoaded is fired. So let’s wrap our code in an initialize function and
execute it when we subscribe to Rx.DOM.ready():

Chapter 4. Building a Complete Web Application • 70

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

examples_earthquake_ui/code1.js
function initialize() {

var quakes = Rx.Observable
.interval(5000)
.flatMap(function() {
return Rx.DOM.jsonpRequest({

url: QUAKE_URL,
jsonpCallback: 'eqfeed_callback'

});
})
.flatMap(function(result) {
return Rx.Observable.from(result.response.features);

})
.distinct(function(quake) { return quake.properties.code; });

quakes.subscribe(function(quake) {
var coords = quake.geometry.coordinates;
var size = quake.properties.mag * 10000;

L.circle([coords[1], coords[0]], size).addTo(map);
});

}

Rx.DOM.ready().subscribe(initialize);

Next, we’ll add an empty table to our HTML, which is where we’ll populate
earthquake data in the next section:

<table>
<thead>

<tr>
<th>Location</th>
<th>Magnitude</th>
<th>Time</th>

</tr>
</thead>
<tbody id="quakes_info">
</tbody>

</table>

With this, we’re ready to start writing the new code for our dashboard.

Adding a List of Earthquakes
The first feature in the new dashboard is to display a real-time list of earth-
quakes, including information about their locations, magnitudes, and dates.
The data for this list is the same as for the map, which comes from the USGS
website. We’ll first create a function that returns a row element given a props
object parameter:

report erratum • discuss

Adding a List of Earthquakes • 71

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

examples_earthquake_ui/code2.js
function makeRow(props) {

var row = document.createElement('tr');
row.id = props.net + props.code;

var date = new Date(props.time);
var time = date.toString();
[props.place, props.mag, time].forEach(function(text) {
var cell = document.createElement('td');
cell.textContent = text;
row.appendChild(cell);

});

return row;
}

The props parameter is the same as the properties property in the JSON that we
retrieve from the USGS site.

To generate the rows, we’ll make another subscription to the quakes Observable.
This subscription creates a row in the table for each new earthquake received.
We add the code at the end of the initialize function:

examples_earthquake_ui/code2.js
var table = document.getElementById('quakes_info');
quakes

.pluck('properties')

.map(makeRow)

.subscribe(function(row) { table.appendChild(row); });

The pluck operator extracts the value of properties from each earthquake object,
because it contains all the info we need for makeRow. Then we map each earth-
quake object to makeRow to transform it into a populated HTML tr element.
Finally, in the subscription we append every emitted row to our table.

This should give us a nicely populated table whenever we receive the earth-
quake data.

Looks good, and it was easy enough! Still, we can make some improvements.
First, though, we need to explore an important concept in RxJS: hot and cold
Observables.

Hot and Cold Observables
“Hot” Observables emit values regardless of Observers being subscribed to
them. On the other hand, “cold” Observables emit the entire sequence of
values from the start to every Observer.

Chapter 4. Building a Complete Web Application • 72

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code2.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code2.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Hot Observables

An Observer subscribed to a hot Observable will receive values emitted from
the exact moment it subscribes to it. Every other Observer subscribed at that
moment will receive the exact same values. This is similar to how JavaScript
events work.

Mouse events and a stock-exchange ticker are examples of hot Observables.
In both cases the Observable emits values regardless of whether it has sub-
scribers, and could already be producing values before any subscriber is lis-
tening. Here’s an example:

hot_cold.js
var onMove = Rx.Observable.fromEvent(document, 'mousemove');
var subscriber1 = onMove.subscribe(function(e) {

console.log('Subscriber1:', e.clientX, e.clientY);
});
var subscriber2 = onMove.subscribe(function(e) {

console.log('Subscriber2:', e.clientX, e.clientY);
});

// Result:
// Subscriber1: 23 24
// Subscriber2: 23 24
// Subscriber1: 34 37
// Subscriber2: 34 37
// Subscriber1: 46 49
// Subscriber2: 46 49
// ...

In the example, both subscribers receive the same values from the Observable
as they are emitted. To JavaScript programmers, that behavior feels natural
because it resembles how JavaScript events work.

Now let’s see how cold Observables work.

Cold Observables

A cold Observable emits values only when Observers subscribe to it.

For example, Rx.Observable.range returns a cold Observable. Every new Observer
that subscribes to it will receive the whole range:

hot_cold.js
function printValue(value) {

console.log(value);
}

var rangeToFive = Rx.Observable.range(1, 5);
var obs1 = rangeToFive.subscribe(printValue); // 1, 2, 3, 4, 5

report erratum • discuss

Adding a List of Earthquakes • 73

http://media.pragprog.com/titles/smreactjs/code/hot_cold.js
http://media.pragprog.com/titles/smreactjs/code/hot_cold.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

var obs2 = Rx.Observable
.delay(2000)
.flatMap(function() {

return rangeToFive.subscribe(printValue); // 1, 2, 3, 4, 5
});

Understanding when we’re dealing with hot or cold Observables is essential
to avoid subtle and sneaky bugs. For example, Rx.Observable.interval returns an
Observable that produces an increasing integer value at regular intervals of
time. Imagine we want to use it to push the same values to several Observers.
We could implement it like this:

hot_cold.js
var source = Rx.Observable.interval(2000);
var observer1 = source.subscribe(function (x) {

console.log('Observer 1, next value: ' + x);
});

var observer2 = source.subscribe(function (x) {
console.log('Observer 2: next value: ' + x);

});

Output:

Observer 1, next value: 0❮

Observer 2: next value: 0
Observer 1, next value: 1
Observer 2: next value: 1
...

That seems to work. But now imagine that we need the second subscriber to
join three seconds after the first one:

hot_cold.js
var source = Rx.Observable.interval(1000);
var observer1 = source.subscribe(function (x) {

console.log('Observer 1: ' + x);
});

setTimeout(function() {
var observer2 = source.subscribe(function (x) {

console.log('Observer 2: ' + x);
});

}, 3000);

Output:

Observer 1: 0❮

Observer 1: 1
Observer 1: 2
Observer 1: 3

Chapter 4. Building a Complete Web Application • 74

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/hot_cold.js
http://media.pragprog.com/titles/smreactjs/code/hot_cold.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Observer 2: 0
Observer 1: 4
Observer 2: 1
...

Now we see that something is really off. When subscribing three seconds later,
observer2 receives all the values that the source already pushed, instead of
starting with the current value and continuing from there, because Rx.Observ-
able.interval is a cold Observable. If the difference between hot and cold
Observables is not clear, scenarios like this can be surprising.

If we have several Observers listening to a cold Observable, they will receive
copies of the same sequence of values. So strictly speaking, although the
Observers are sharing the same Observable, they are not sharing the same
exact sequence of values. If we want the Observers to share the same
sequence, we need a hot Observable.

From Cold to Hot Using publish

We can turn a cold Observable into a hot one using publish. Calling publish cre-
ates a new Observable that acts as a proxy to the original one. It does that
by subscribing itself to the original and pushing the values it receives to its
subscribers.

A published Observable is actually a ConnectableObservable, which has an extra
method called connect that we call to start receiving values. This allows us to
subscribe to it before it starts running:

hot_cold.js
// Create an Observable that yields a value every second
var source = Rx.Observable.interval(1000);
var publisher = source.publish();

// Even if we are subscribing, no values are pushed yet.
var observer1 = publisher.subscribe(function (x) {

console.log('Observer 1: ' + x);
});

// publisher connects and starts publishing values
publisher.connect();

setTimeout(function() {
// 5 seconds later, observer2 subscribes to it and starts receiving
// current values, not the whole sequence.
var observer2 = publisher.subscribe(function (x) {

console.log('Observer 2: ' + x);
});

}, 5000);

report erratum • discuss

Adding a List of Earthquakes • 75

http://media.pragprog.com/titles/smreactjs/code/hot_cold.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Sharing a Cold Observable
Let’s get back to our earthquake example. The code we have so far looks
reasonable; we have an Observable quakes with two subscriptions: one that
paints earthquakes on the map, and one that lists them in the table.

But we can make our code much more efficient. By having two subscribers
to quakes we’re, in fact, requesting the data twice. You can check that by putting
a console.log inside the flatMap operator in quakes.

This happens because quakes is a cold Observable, and it will re-emit all its
values to each new subscriber, so a new subscription means a new JSONP
request. This impacts our application performance by requesting the same
resources twice over the network.

For the next example we’ll use the share operator, which automatically creates
a subscription to the Observable when the number of Observers goes from
zero to one. This spares us from calling connect:

examples_earthquake_ui/code2.js
var quakes = Rx.Observable

.interval(5000)

.flatMap(function() {
return Rx.DOM.jsonpRequest({
url: QUAKE_URL,
jsonpCallback: 'eqfeed_callback'

});
})
.flatMap(function(result) {

return Rx.Observable.from(result.response.features);
})
.distinct(function(quake) { return quake.properties.code; })
.share()➤

Now quakes behaves like a hot Observable, and we don’t have to worry about
how many Observers we connect to it, since they will all receive the exact
same data.

Buffering Values
Our preceding code works well, but notice that we insert a tr node every time
we receive information about an earthquake. That’s inefficient, because with
each insertion we’re modifying the DOM and causing a repaint of the page,
making the browser do unnecessary work to calculate the new layout. This
can cause noticeable performance drop.

Ideally, we would batch several incoming earthquake objects and insert each
batch every few seconds. That would be tricky to implement by hand because

Chapter 4. Building a Complete Web Application • 76

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code2.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

we’d have to keep counters and element buffers, and we would have to
remember to reset them with every batch. But with RxJS we can just use one
of the buffer-based RxJS operators, like bufferWithTime.

With bufferWithTime we can buffer incoming values and release them as an array
every x period of time:

examples_earthquake_ui/code3.bufferWithTime.js
var table = document.getElementById('quakes_info');
quakes

.pluck('properties')

.map(makeRow)

.bufferWithTime(500)❶

.filter(function(rows) { return rows.length > 0; }❷

.map(function(rows) {
var fragment = document.createDocumentFragment();
rows.forEach(function(row) {
fragment.appendChild(row);❸

});
return fragment;

})
.subscribe(function(fragment) {
table.appendChild(fragment);❹

});

This is what’s going on in the new code:

❶ Buffer every incoming value and release the batch of values every 500
milliseconds.

❷ bufferWithTime executes every 500ms no matter what, and if there have been
no incoming values, it will yield an empty array. We’ll filter those.

❸ We insert every row into a document fragment, which is a document
without a parent. This means it’s not in the DOM, and modifying its
contents is very fast and efficient.

❹ Finally, we append the fragment to the DOM. An advantage of appending
a fragment is that it counts as a single operation, causing just one redraw.
It also appends the fragment’s children to the same element to which
we’re appending the fragment itself.

Using buffers and fragments, we manage to keep row insertion performant
while keeping the real-time nature of our application (with a maximum delay
of half a second). Now we’re ready to add the next feature to our dashboard:
interactivity!

report erratum • discuss

Adding a List of Earthquakes • 77

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code3.bufferWithTime.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Adding Interaction
We now have earthquakes on the map and in a list, but no interaction between
both representations yet. It would be nice, for example, to center an earth-
quake on the map whenever we click it on the list, and to highlight an
earthquake with a circle on the map when we move the mouse over its row.
Let’s get to it.

In Leaflet, you can draw on a map and put drawings in their own layers so
you can manipulate them individually. Let’s create a group of layers called
quakeLayer where we’ll store all the earthquake circles. Each circle will be a
layer inside the group. We’ll also create an object codeLayers where we’ll store
the correlation between an earthquake code and the internal layer ID, so that
we can refer to circles by the earthquake ID:

examples_earthquake_ui/code3.js
var codeLayers = {};
var quakeLayer = L.layerGroup([]).addTo(map);

And now in the subscription for the quakes Observable inside initialize, we’ll add
each circle to the layer group and store its ID in codeLayers. If this seems a bit
intricate, it’s because that’s the only way Leaflet allows us to refer to drawings
in a map.

examples_earthquake_ui/code3.js
quakes.subscribe(function(quake) {

var coords = quake.geometry.coordinates;
var size = quake.properties.mag * 10000;

var circle = L.circle([coords[1], coords[0]], size).addTo(map);
quakeLayer.addLayer(circle);➤

codeLayers[quake.id] = quakeLayer.getLayerId(circle);➤

});

Let’s now create the hovering effect. We’ll write a new function, isHovering,
which returns an Observable that emits a Boolean value for whether the
mouse is over a particular earthquake circle at any given moment:

examples_earthquake_ui/code3.js
var identity = Rx.helpers.identity;❶

function isHovering(element) {
var over = Rx.DOM.mouseover(element).map(identity(true));❷
var out = Rx.DOM.mouseout(element).map(identity(false));❸

return over.merge(out);❹

}

Chapter 4. Building a Complete Web Application • 78

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code3.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code3.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code3.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

❶ Rx.helpers.identity is the identity function. Given a parameter x, it returns x.
This way we don’t have to write functions that return the value they
receive.

❷ over is an Observable that emits true when the user hovers the mouse over
the element.

❸ out is an Observable that emits false when the user moves the mouse out-
side of the element.

❹ isHovering merges both over and out, returning an Observable that emits true
when the mouse is over an element, and false when it leaves it.

With isHovering in place we can modify the subscription that creates the rows,
so that we subscribe to events in each row as it is created:

examples_earthquake_ui/code3.js
var table = document.getElementById('quakes_info');
quakes

.pluck('properties')

.map(makeRow)

.bufferWithTime(500)

.filter(function(rows) { return rows.length > 0; })

.map(function(rows) {
var fragment = document.createDocumentFragment();
rows.forEach(function(row) {
fragment.appendChild(row);

});
return fragment;

})
.subscribe(function(fragment) {

var row = fragment.firstChild; // Get row from inside the fragment
var circle = quakeLayer.getLayer(codeLayers[row.id]);❶

isHovering(row).subscribe(function(hovering) {❷
circle.setStyle({ color: hovering ? '#ff0000' : '#0000ff' });

});

Rx.DOM.click(row).subscribe(function() {❸
map.panTo(circle.getLatLng());

});

table.appendChild(fragment);
})

❶ We get the circle element for the earthquake on the map using the ID we
get from the row element. With that, codeLayers gives us the corresponding
internal ID, which gets us the circle element using quakeLayer.getLayer.

report erratum • discuss

Adding a List of Earthquakes • 79

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code3.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

❷ We call isHovering with the current row and we subscribe to the resulting
Observable. If the hovering argument is true, we’ll paint the circle red; oth-
erwise, it will be blue.

❸ We subscribe to the Observable created from the click event in the current
row. When the row in the list is clicked, the map will be centered on the
corresponding circle in the map.

Making It Efficient
Experienced front-end developers know that creating many events on a page
is a recipe for bad performance. In our previous example, we created three
events for each row. If we get 100 earthquakes on the list, we would have 300
events floating around the page just to do some light highlighting work! That
is terrible for performance, and we can do better.

Because events in DOM always bubble up (from children to parent elements),
a well-known technique among front-end developers to avoid attaching mouse
events to many elements individually is to attach them instead to their parent
element. Once the event is fired on the parent, we can use the event’s target
property to find the child element that was the event’s target.

Because we’ll need similar functionality for the events click and mouseover, we’ll
create a function getRowFromEvent:

examples_earthquake_ui/code3.pairwise.js
function getRowFromEvent(event) {

return Rx.Observable
.fromEvent(table, event)
.filter(function(event) {❶
var el = event.target;
return el.tagName === 'TD' && el.parentNode.id.length;

})
.pluck('target', 'parentNode')❷
.distinctUntilChanged();❸

}

getRowFromEvent gives us the table row in which the event has happened. Here
are the details:

❶ We make sure that we get events happening in a table cell, and we check
that the parent of that cell is a row with an ID attribute. These rows are
the ones we tagged with the earthquake ID.

❷ The pluck operator extracts the nested property parentNode inside the ele-
ment’s target property.

Chapter 4. Building a Complete Web Application • 80

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code3.pairwise.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

❸ This prevents getting the same element more than once. That would
happen a lot with the mouseover event, for example.

In the previous section we attached the events mouseover and mouseout on each
row to change the earthquake circle color each time the mouse entered or
exited the row. Now, we’ll use only the mouseover event on the table, combined
with the convenient pairwise operator:

examples_earthquake_ui/code3.pairwise.js
getRowFromEvent('mouseover')

.pairwise()

.subscribe(function(rows) {
var prevCircle = quakeLayer.getLayer(codeLayers[rows[0].id]);
var currCircle = quakeLayer.getLayer(codeLayers[rows[1].id]);

prevCircle.setStyle({ color: '#0000ff' });
currCircle.setStyle({ color: '#ff0000' });

});

pairwise groups each emitted value with the previously emitted value in an
array. Because we’re always getting distinct rows, pairwise will always yield the
row that the mouse just left and the row where the mouse is hovering now.
With this information, it is easy to color each earthquake circle accordingly.

Handling the click event is even simpler:

examples_earthquake_ui/code3.pairwise.js
getRowFromEvent('click')

.subscribe(function(row) {
var circle = quakeLayer.getLayer(codeLayers[row.id]);
map.panTo(circle.getLatLng());

});

And we can go back to just subscribing to quakes to generate the rows:

examples_earthquake_ui/code3.pairwise.js
quakes

.pluck('properties')

.map(makeRow)

.subscribe(function(row) { table.appendChild(row); });

Our code is now much more clean and idiomatic, and it doesn’t depend on
the rows being there. If there are no rows, getRowFromEvent won’t try to yield
any.

What’s more important, our code now is very efficient. Regardless of the
amount of earthquake information we retrieve, we’ll always have just a single
mouseover event and a single click event, instead of hundreds of events.

report erratum • discuss

Adding a List of Earthquakes • 81

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code3.pairwise.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code3.pairwise.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code3.pairwise.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Getting Real-Time Updates from Twitter
The second part of our plan to make a real-time dashboard for earthquakes
is to add reports and information from Twitter related to the different earth-
quakes happening on the planet. For this, we’ll create a small Node.js program
that will fetch the stream of tweets related to the earthquakes.

Setting Up Our Node.js Environment
Let’s configure our Node.js application. Besides RxJS, we will be using two
venerable third-party modules to make our life easier: ws and twit.1 Any similar
modules should work with minimal changes to the code.

First, let’s create a folder for our application and install the modules that we’ll
use. (Note that the output of the npm command may vary depending on the
current versions of the packages.)

~$ mkdir tweet_stream
~$ cd tweet_stream
~/tweet_stream$ npm install ws twit rx
rx@3.1.2 node_modules/rx

twit@1.1.19 node_modules/twit
└── oauth@0.9.9

ws@0.8.0 node_modules/ws
├── options@0.0.6
├── ultron@1.0.2
├── utf-8-validate@1.2.1 (bindings@1.2.1, nan@2.0.9)
└── bufferutil@1.2.1 (bindings@1.2.1, nan@2.0.9)

Client–Server Communication
Now we’re ready to start building our application. Let’s create a new file called
index.js inside the tweet_stream folder to load the modules we’ll use:

examples_earthquake_ui/tweet_stream/index.js
var WebSocketServer = require('ws').Server;
var Twit = require('twit');
var Rx = require('rx');

To use the Twitter API, you need to request a consumer key and an access
token in the Twitter website. Once you have that, create a new Twit object with
a configuration object, like this:

1. https://github.com/websockets/ws and https://github.com/ttezel/twit

Chapter 4. Building a Complete Web Application • 82

report erratum • discusswww.allitebooks.com

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/tweet_stream/index.js
https://github.com/websockets/ws
https://github.com/ttezel/twit
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs
http://www.allitebooks.org

examples_earthquake_ui/tweet_stream/index.js
var T = new Twit({

consumer_key: 'rFhfB5hFlth0BHC7iqQkEtTyw',
consumer_secret: 'zcrXEM1jiOdKyiFFlGYFAOo43Hsz383i0cdHYYWqBXTBoVAr1x',
access_token: '14343133-nlxZbtLuTEwgAlaLsmfrr3D4QAoiV2fa6xXUVEwW9',
access_token_secret: '57Dr99wECljyyQ9tViJWz0H3obNG3V4cr5Lix9sQBXju1'

});

Now we can create a function, onConnect, that will do all the work of searching
tweets and communicating with the client in the future, and we can initiate
a WebSocket server that will call onConnect once the WebSocket is connected
and ready:

examples_earthquake_ui/tweet_stream/index.js
function onConnect(ws) {

console.log('Client connected on localhost:8080');
}

var Server = new WebSocketServer({ port: 8080 });
Rx.Observable.fromEvent(Server, 'connection').subscribe(onConnect);

We can now launch our application, and it should start a WebSocket connec-
tion on port 8080:

~/tweet_stream$ node index.js

The message about a client connection is not printed yet because we haven’t
connected any browser to this server. Let’s now switch to the code for our
dashboard and do that. We’ll use the fromWebSocket operator in RxJS-DOM:

examples_earthquake_ui/code4.js
function initialize() {

var socket = Rx.DOM.fromWebSocket('ws://127.0.0.1:8080');
...

In the preceding code, fromWebSocket creates a Subject that serves as the sender
and receiver of messages to the WebSocket server. By calling socket.onNext we’ll
be able to send messages to the server, and by subscribing to socket we’ll
receive any messages the server sends us.

We can now send the server messages with the earthquake data we receive:

examples_earthquake_ui/code4.js
quakes.bufferWithCount(100)

.subscribe(function(quakes) {
console.log(quakes);
var quakesData = quakes.map(function(quake) {
return {

id: quake.properties.net + quake.properties.code,
lat: quake.geometry.coordinates[1],

report erratum • discuss

Getting Real-Time Updates from Twitter • 83

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/tweet_stream/index.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/tweet_stream/index.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code4.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code4.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

lng: quake.geometry.coordinates[0],
mag: quake.properties.mag

};
});
socket.onNext(JSON.stringify({quakes: quakesData }));➤

});

And we can set up a subscriber for messages coming from the server:

examples_earthquake_ui/code4.js
socket.subscribe(function(message) {
console.log(JSON.parse(message.data));

});

Now when we reload the browser, the client message should appear in the
terminal:

~/tweet_stream$ node index.js
Client connected on localhost:8080

Fantastic! The browser should be sending commands to the server as soon
as it starts receiving earthquakes from the remote JSONP resource. For now,
the server completely ignores those messages, though. Time to go back to our
tweet stream code and do something with them.

First we’ll connect to the message events that arrive to the server from the
browser client. Whenever the client sends a message, the WebSocket server
emits a message event with the contents of the message. In our case, the con-
tents are a stringified object.

We can write the following code in our onConnect function:

examples_earthquake_ui/tweet_stream/index.js
var onMessage = Rx.Observable.fromEvent(ws, 'message')

.subscribe(function(quake) {
quake = JSON.parse(quake);
console.log(quake);

});

If we restart the server (Ctrl-C in the terminal) and reload the browser, we
should see the earthquake details being printed in the terminal as they come
in. That’s perfect. Now we’re ready to start looking for tweets related to our
earthquakes.

Retrieving and Sending Tweets
We’re using the streaming Twitter client for Node.js twit to connect to Twitter
and search tweets. All the code in the server from now on will happen inside

Chapter 4. Building a Complete Web Application • 84

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code4.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/tweet_stream/index.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

the onConnect function because it assumes that a connection to a WebSocket
is already established. Let’s initialize the stream of tweets:

examples_earthquake_ui/tweet_stream/index.js
var stream = T.stream('statuses/filter', {

track: 'earthquake',
locations: []

});

This tells our Twit instance T to start streaming Twitter statuses, filtered by
the keyword earthquake. This is, of course, very generic and not that directly
related to the earthquakes happening right now. But notice the empty locations
array. This is an array of latitude and longitude boundaries that we can use
to filter tweets by their geographic location, along with the word earthquake.
That’s much more specific! Alright, let’s subscribe to this stream and start
sending tweets to the browser:

examples_earthquake_ui/tweet_stream/index.js
Rx.Observable.fromEvent(stream, 'tweet').subscribe(function(tweetObject) {
ws.send(JSON.stringify(tweetObject), function(err) {

if (err) {
console.log('There was an error sending the message');

}
});

});

If we restart the server and reload the browser, we should receive tweets in
the browser, and the console in the development panel should be printing
the tweets.

These tweets are not filtered by earthquake location yet. To do that, we need
to do the following things with each piece of earthquake information we receive:

• Take the longitude and latitude pair of epicenter coordinates of each
earthquake and create a bounding box that delimits the geographical area
of the tweets that we consider related to the earthquake.

• Accumulate all the boundary coordinates so that tweets sent to the client
keep being relevant to the earthquakes on the map.

• Update the twit stream with the new coordinates every time we receive the
message for a new earthquake.

Here’s a way to do it:

examples_earthquake_ui/tweet_stream/index.js
Rx.Observable

.fromEvent(ws, 'message')

.flatMap(function(quakesObj){

report erratum • discuss

Getting Real-Time Updates from Twitter • 85

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/tweet_stream/index.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/tweet_stream/index.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/tweet_stream/index.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

quakesObj = JSON.parse(quakesObj);
return Rx.Observable.from(quakesObj.quakes);

})
.scan([], function(boundsArray, quake) {❶

var bounds = [❷
quake.lng - 0.3, quake.lat - 0.15,
quake.lng + 0.3, quake.lat + 0.15

].map(function(coordinate) {
coordinate = coordinate.toString();
return coordinate.match(/\-?\d+(\.\-?\d{2})?/)[0];

});

boundsArray.concat(bounds);
return boundsArray.slice(Math.max(boundsArray.length - 50, 0));❸

})
.subscribe(function(boundsArray) {❹

stream.stop();
stream.params.locations = boundsArray.toString();
stream.start();

});

And here is the step-by-step of what is happening in the preceding code:

❶ We meet our old friend scan again. Any time we need to accumulate results
and yield each intermediate result, scan is our friend. In this case, we’ll
keep accumulating earthquake coordinates in the boundsArray array.

❷ From the single latitude/longitude pair of coordinates of the epicenter of
the earthquake, we create an array that contains an area determined by
a north-west coordinate and a south-east one. The numbers used to
approximate the bounds create a rectangle the size of a large city.

After that, we use a regular expression to limit the decimal precision of
each coordinate to two decimals, to comply with the Twitter API require-
ments.

❸ We concatenate the generated boundaries to boundsArray, which contains
every previous earthquake’s boundaries. Then we take the last 25 pairs
of boundaries (50 items in the array), since that is the limit of the Twitter
API.

❹ Finally, we subscribe to the Observable, and in the onNext function we
restart the current twit stream to reload the updated locations to filter by
with our new accumulated array of locations, converted to a string.

After restarting the server and reloading the browser, we should be receiving
relevant tweets in our browser application. For now, we can only see the raw

Chapter 4. Building a Complete Web Application • 86

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

objects displayed in the developer console, though. In the next section we
generate the HTML to display the tweets in our dashboard.

Showing Tweets on the Dashboard
Now that we’re receiving tweets from the server, the only thing left to do is
show them nicely on the screen. For this, we’ll create a new HTML element
where we append incoming tweets:

examples_earthquake_ui/index_final.html
<div id="tweet_container"></div>

We’ll also update our socket Observable subscription to process the incoming
tweet objects and append them to the tweet_container element we just created:

examples_earthquake_ui/code5.js
socket

.map(function(message) { return JSON.parse(message.data); })

.subscribe(function(data) {
var container = document.getElementById('tweet_container');
container.insertBefore(makeTweetElement(data), container.firstChild);

});

Any new tweets will appear at the top of the list, and they will be created by
makeTweetElement, a simple function that creates a tweet element and populates
it with the data we pass as a parameter:

examples_earthquake_ui/code5.js
function makeTweetElement(tweetObj) {

var tweetEl = document.createElement('div');
tweetEl.className = 'tweet';

var content = '' +
'<div class="content">$text</div>' +
'<div class="time">$time</div>';

var time = new Date(tweetObj.created_at);
var timeText = time.toLocaleDateString() + ' ' + time.toLocaleTimeString();

content = content.replace('$tweetImg', tweetObj.user.profile_image_url);
content = content.replace('$text', tweetObj.text);
content = content.replace('$time', timeText);

tweetEl.innerHTML = content;

return tweetEl;
}

And with this we finally have a sidebar with relevant, geolocated tweets that
can give us more insight about the areas affected by the earthquakes.

report erratum • discuss

Getting Real-Time Updates from Twitter • 87

http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/index_final.html
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code5.js
http://media.pragprog.com/titles/smreactjs/code/examples_earthquake_ui/code5.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Ideas for Improvements
This dashboard is already functional, but there are many improvements that
could be done. Some ideas to make it better:

• Add more earthquake databases. USGS is a fantastic resource, but it
mainly provides earthquakes happening in the United States. It would be
interesting to merge in earthquake reports from around the world, not
just the United States, and present them all together in the map. To do
this, you could use the help of merge and mergeAll, and use distinct with a
selector function to avoid duplicates.

• Whenever the user clicks on a tweet, center the map on the related
earthquake. This would involve grouping the tweets by earthquake on the
server, and you’d probably want to use the groupBy operator to group tweets
to a particular geographical area.

Wrapping Up
In this chapter we’ve used RxJS to create a reactive user interface that allows
us to see different kinds of data about earthquakes happening on the planet
in real time. We’ve used RxJS both in the browser client and in the Node.js
server, showing how easy it is to use Observables to manage different areas
of an application.

More importantly, we’ve seen that we can use RxJS in the same way on the
client and on the server, bringing the Observable sequence abstraction
everywhere in our application. And not only that. We could actually use RxJS
concepts and operators across other programming languages, since RxJS is
supported in many of them.

Next we’ll look at Schedulers, a more advanced object type in RxJS that allows
us to control time and concurrency with more precision, and provides a great
help with testing our code.

Chapter 4. Building a Complete Web Application • 88

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

CHAPTER 5

Bending Time with Schedulers
As soon as I discovered RxJS, I started using it in my projects. For a while I
thought I knew how to use it effectively, but there was a nagging question:
how do I know whether the operator I’m using is synchronous or asyn-
chronous? In other words, when exactly do operators emit notifications? This
seemed a crucial part of using RxJS correctly, but it felt a bit blurry to me.

The interval operator, I thought, is clearly asynchronous, so it must use
something like setTimeout internally to emit items. But what if I’m using range?
Does it emit asynchronously as well? Does it block the event loop? What about
from? I was using these operators everywhere, but I didn’t know much about
their internal concurrency model.

Then I learned about Schedulers.

Schedulers are a powerful mechanism to precisely manage concurrency in
your applications. They give you fine-grained control over how an Observable
emits notifications by allowing you to change their concurrency model as you
go. In this chapter you’ll learn how to use Schedulers and apply them in
common scenarios. We’ll focus on testing, where Schedulers are especially
useful, and you’ll learn how to make your own Schedulers.

Using Schedulers
A Scheduler is a mechanism to "schedule" an action to happen in the future.
Each operator in RxJS uses one Scheduler internally, selected to provide the
best performance in the most likely scenario.

Let’s see how we can change the Scheduler in operators and the consequences
of doing so. First let’s create an array with 1,000 integers in it:

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

var arr = [];
for (var i=0; i<1000; i++) {

arr.push(i);
}

Then, we create an Observable from arr and force it to emit all the notifications
by subscribing to it. In the code we also measure the amount of time it takes
to emit all the notifications:

var timeStart = Date.now();
Rx.Observable.from(arr).subscribe(

function onNext() {},
function onError() {},
function onCompleted() {

console.log('Total time: ' + (Date.now() - timeStart) + 'ms');
});

"Total time: 6ms”❮

Six milliseconds—not bad! from uses Rx.Scheduler.currentThread internally, which
schedules work to run after any current work is finished. Once it starts, it
processes all the notifications synchronously.

Now let’s change the Scheduler to Rx.Scheduler.default.

var timeStart = Date.now();
Rx.Observable.from(arr, null, null, Rx.Scheduler.default).subscribe(
function onNext() {},
function onError() {},
function onCompleted() {

console.log('Total time: ' + (Date.now() - timeStart) + 'ms');
});

"Total time: 5337ms”❮

Wow, our code runs almost a thousand times slower than with the currentThread
Scheduler. That’s because the default Scheduler runs each notification asyn-
chronously. We can verify this by adding a simple log statement after the
subscription.

Using the currentThread Scheduler:

Rx.Observable.from(arr).subscribe(...);
console.log('Hi there!’);

"Total time: 8ms"❮

"Hi there!"

Using the default Scheduler:

Rx.Observable.from(arr, null, null, Rx.Scheduler.timeout).subscribe(...);
console.log('Hi there!’);

Chapter 5. Bending Time with Schedulers • 90

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

"Hi there!"❮

"Total time: 5423ms"

Because the Observer using the default Scheduler emits its items asynchronous-
ly, our console.log statement (which is synchronous) is executed before the
Observable even starts emitting any notification. Using the currentThread
Scheduler, all notifications happen synchronously, so the console.log statement
gets executed only when the Observable has emitted all its notifications.

So, Schedulers really can change how our Observables work. In our case
here, performance really suffered from asynchronously processing a big,
already-available array. But we can actually use Schedulers to improve per-
formance. For example, we can switch the Scheduler on the fly before doing
expensive operations on an Observable:

arr
.groupBy(function(value) {

return value % 2 === 0;
})
.map(function(value) {

return value.observeOn(Rx.Scheduler.default);➤

})
.map(function(groupedObservable) {

return expensiveOperation(groupedObservable);
});

In the preceding code we group all the values in the array into two groups:
even and uneven values. groupBy returns an Observable that emits an
Observable for each group created. And here’s the cool part: just before run-
ning an expensive operation on the items in each grouped Observable, we
use observeOn to switch the Scheduler to the default one, so that the expensive
operation will be executed asynchronously, not blocking the event loop.

observeOn and subscribeOn
In the previous section, we used the observeOn operator to change the Scheduler
in some Observables. observeOn and subscribeOn are instance operators that
return a copy of the Observable instance, but that use the Scheduler we pass
as a parameter.

observeOn takes a Scheduler and returns a new Observable that uses that
Scheduler. It will make every onNext call run in the new Scheduler.

subscribeOn forces the subscription and un-subscription work (not the notifica-
tions) of an Observable to run on a particular Scheduler. Like observeOn, it
accepts a Scheduler as a parameter. subscribeOn is useful when, for example,

report erratum • discuss

Using Schedulers • 91

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

we’re running in the browser and doing significant work in the subscribe call
but we don’t want to block the UI thread with it.

Basic Rx Schedulers
Let’s look a bit more in depth at the Schedulers we just used. The ones RxJS’s
operators use most are immediate, default, and currentThread.

Immediate Scheduler

The immediate Scheduler emits notifications from the Observable synchronous-
ly, so whenever an action is scheduled on the immediate Scheduler, it will be
executed right away, blocking the thread. Rx.Observable.range is one of the
operators that uses the immediate Scheduler internally:

console.log('Before subscription');

Rx.Observable.range(1, 5)
.do(function(a) {

console.log('Processing value', a);
})
.map(function(value) { return value * value; })
.subscribe(function(value) { console.log('Emitted', value); });

console.log('After subscription');

Before subscription❮

Processing value 1
Emitted 1
Processing value 2
Emitted 4
Processing value 3
Emitted 9
Processing value 4
Emitted 16
Processing value 5
Emitted 25
After subscription

The program output happens in the order we expect. Each console.log statement
runs before the notification of the current item.

When to Use It

The immediate Scheduler is very well suited for Observables that execute pre-
dictable and not-very-expensive operations in each notification. Also, the
Observable has to eventually call onCompleted.

Chapter 5. Bending Time with Schedulers • 92

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Default Scheduler

The default Scheduler runs actions asynchronously. You can think of it as a
rough equivalent of setTimeout with zero milliseconds delay that keeps the order
in the sequence. It uses the most efficient asynchronous implementation
available on the platform it runs (for example, process.nextTick in Node.js or set-
Timeout in the browser).

Let’s take the previous example with range and make it run on the default
Scheduler. For this, we’ll use the observeOn operator:

console.log('Before subscription');
Rx.Observable.range(1, 5)

.do(function(value) {
console.log('Processing value', value);

})
.observeOn(Rx.Scheduler.default)
.map(function(value) { return value * value; })
.subscribe(function(value) { console.log('Emitted', value); });

console.log('After subscription');

Before subscription❮

Processing value 1
Processing value 2
Processing value 3
Processing value 4
Processing value 5
After subscription
Emitted 1
Emitted 4
Emitted 9
Emitted 16
Emitted 25

There are significant differences in this output. Our synchronous console.log
statement runs immediately for every value, but we make the Observable run
on the default Scheduler, which yields each value asynchronously. That means
our log statements in the do operator are processed before the squared values.

When to Use It

The default Scheduler never blocks the event loop, so it’s ideal for operations
that involve time, like asynchronous requests. It can also be used in Observ-
ables that never complete, because it doesn’t block the program while waiting
for new notifications (which may never happen).

Current Thread Scheduler

The currentThread Scheduler is synchronous like the immediate Scheduler, but
in case we use recursive operators, it enqueues the actions to execute instead

report erratum • discuss

Using Schedulers • 93

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

of executing them right away. A recursive operator is an operator that itself
schedules another operator. A good example is repeat. The repeat operator—if
given no parameters—keeps repeating the previous Observable sequence in
the chain indefinitely.

You’ll get in trouble if you call repeat on an operator that uses the immediate
Scheduler (such as return). Let’s try this by repeating the value 10 and then
use take to take only the first value of the repetition. Ideally, the code would
print 10 once and then exit:

// Be careful: the code below will freeze your environment!
Rx.Observable.return(10).repeat().take(1)

.subscribe(function(value) {
console.log(value);

});

Error: Too much recursion❮

This code causes an infinite loop. Upon subscription, return calls onNext(10) and
then onCompleted, which makes repeat subscribe again to return. Since return is
running on the immediate Scheduler, this process repeats itself, causing an
infinite loop and never getting to take.

But if instead we schedule return on the currentThread Scheduler by passing it
as the second parameter, we get this:

var scheduler = Rx.Scheduler.currentThread;
Rx.Observable.return(10, scheduler).repeat().take(1)

.subscribe(function(value) {
console.log(value);

});

10❮

Now, when repeat resubscribes to return, the new onNext call will be queued
because the previous onCompleted is still happening. repeat then returns a dis-
posable object to take, which calls onCompleted and cancels the repetition by
disposing repeat, and ultimately the call from subscribe returns.

As a rule of thumb, currentThread should be used to iterate on large sequences
and when using recursive operators such as repeat.

When to Use It

The currentThread Scheduler is useful for operations that involve recursive
operators like repeat, and in general for iterations that contain nested operators.

Chapter 5. Bending Time with Schedulers • 94

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Scheduling for Animations
For fast visual updates such as canvas or DOM animations, we can either
use the interval operator with a very low millisecond value or we can make a
Scheduler that uses a function like setTimeout internally to schedule notifica-
tions.

But neither approach is ideal. In both of them we’re throwing all these updates
at the browser, which may not be able to process them quickly enough. That
happens because the browser is trying to render a frame and then it receives
instructions to render the next one, so it drops the current frame to keep up
the speed. The results are choppy animations. And we have enough of those
on the web.

Browsers have a native way to handle animations, and they provide an API
to use it called requestAnimationFrame. requestAnimationFrame allows the browser to
optimize performance by lining up animations at the most appropriate time
and helping us achieve smoother animations.

There’s a Scheduler for That
The RxDOM library comes with some extra Schedulers, one of which is the
requestAnimationFrame Scheduler.

Yes, you guessed it. We can use this Scheduler to improve our spaceship
video game. In it, we established a refresh speed of 40ms—roughly 25 frames
per second—by creating an interval Observable at that speed and then using
combineLatest to update the whole game scene at the speed set by interval (because
it is the fastest-updating Observable) … but who knows how many frames
the browser is dropping by using this technique! We would get much better
performance by using requestAnimationFrame.

Let’s create an Observable that uses Rx.Scheduler.requestAnimationFrame as its
Scheduler. Notice that it works similarly to how the interval operator works:

ch_schedulers/starfield_raf.js
function animationLoop(scheduler) {

return Rx.Observable.generate(
0,
function() { return true; }, // Keep generating forever
function(x) { return x + 1; }, // Increment internal value
function(x) { return x; }, // Value to return on each notification
Rx.Scheduler.requestAnimationFrame); // Schedule to requestAnimationFrame

}

report erratum • discuss

Scheduling for Animations • 95

http://media.pragprog.com/titles/smreactjs/code/ch_schedulers/starfield_raf.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Now, wherever we were using interval to animate graphics at 25 FPS, we can
just use our animationLoop function. So our Observable to paint stars, which
looked like this before:

spaceship_reactive/spaceship.js
var StarStream = Rx.Observable.range(1, 250)

.map(function() {
return {
x: parseInt(Math.random() * canvas.width),
y: parseInt(Math.random() * canvas.height),
size: Math.random() * 3 + 1

};
})
.toArray()
.flatMap(function(arr) {

return Rx.Observable.interval(SPEED).map(function() {
return arr.map(function(star) {

if (star.y >= canvas.height) {
star.y = 0;

}
star.y += 3;
return star;

});
});

});

Becomes this:

ch_schedulers/starfield_raf.js
var StarStream = Rx.Observable.range(1, 250)

.map(function() {
return {
x: parseInt(Math.random() * canvas.width),
y: parseInt(Math.random() * canvas.height),
size: Math.random() * 3 + 1

};
})
.toArray()
.flatMap(function(arr) {

return animationLoop().map(function() {➤

return arr.map(function(star) {
if (star.y >= canvas.height) {

star.y = 0;
}
star.y += 3;
return star;

});
});

});

Chapter 5. Bending Time with Schedulers • 96

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/spaceship_reactive/spaceship.js
http://media.pragprog.com/titles/smreactjs/code/ch_schedulers/starfield_raf.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Which gives us a much smoother animation. As a bonus, the code is also
cleaner!

Testing with Schedulers
Testing is perhaps one of the most compelling scenarios where we can use
Schedulers. So far in this book we’ve been coding our hearts out without
thinking much about the consequences. But in a real-world software project,
we would be writing tests to make sure our code works as we intend.

Testing asynchronous code is hard. We usually run into one of these problems:

• Simulating asynchronous events is complicated and error prone. The
whole point of having tests is to avoid bugs and errors, but if your tests
themselves have errors, they’re not helping.

• If we want to accurately test time-based functionality, automated testing
becomes really slow. For example, if we need to accurately test that an
error is called after four seconds of trying to retrieve a remote file, each
test will take at least that much time to run. If we run our test suite
continuously, that impacts our development time.

The TestScheduler
RxJS gives us the TestScheduler, a Scheduler designed to help with testing.
TestScheduler allows us to emulate time at our convenience and create determin-
istic tests, where they are guaranteed to be 100% repeatable. Besides that,
it allows us to execute operations that would take a considerable amount of
time and compress them into an instant, while maintaining the test’s accuracy.

A TestScheduler is a specialization of a VirtualTimeScheduler. VirtualTimeSchedulers exe-
cute actions in "virtual" time instead of in real time. Scheduled actions go in
a queue and are assigned a moment in virtual time. The Scheduler then runs
the actions in order when its clock advances. Because it is virtual time,
everything runs immediately, without having to wait for the time specified.
Let’s see an example:

var onNext = Rx.ReactiveTest.onNext;
QUnit.test("Test value order", function(assert) {

var scheduler = new Rx.TestScheduler();
var subject = scheduler.createColdObservable(

onNext(100, 'first'),
onNext(200, 'second'),
onNext(300, 'third')

);

report erratum • discuss

Testing with Schedulers • 97

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

var result = '';
subject.subscribe(function(value) { result = value });

scheduler.advanceBy(100);
assert.equal(result, 'first');

scheduler.advanceBy(100);
assert.equal(result, 'second');

scheduler.advanceBy(100);
assert.equal(result, 'third');

});

In the preceding code we test that some values from a cold Observable arrive
in the correct order. For this, we use the helper method createColdObservable in
TestScheduler to create an Observable that plays back the onNext notifications
we pass as parameters. In each notification we specify the time at which the
value of the notification should be emitted. After this, we subscribe to this
Observable, advance the virtual time in the Scheduler manually, and check
that it indeed emitted the expected value. If the example ran in normal time,
it would take 300 milliseconds, but because we’re using a TestScheduler to run
the Observable, it will run immediately, but respecting the order.

Writing a Real-World Test
There’s no better way to understand how to bend time using virtual time than
to write a test for a time-sensitive task in the real world. Let’s recover an
Observable from the earthquake viewer we made in Buffering Values, on page
76:

quakes
.pluck('properties')
.map(makeRow)
.bufferWithTime(500)
.filter(function(rows) { return rows.length > 0; })
.map(function(rows) {

var fragment = document.createDocumentFragment();
rows.forEach(function(row) {
fragment.appendChild(row);

});
return fragment;

})
.subscribe(function(fragment) {
table.appendChild(fragment);

});

Chapter 5. Bending Time with Schedulers • 98

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

To make the code more testable, let’s encapsulate the Observable in a function
that takes a Scheduler we use in the bufferWithTime operator. It’s always a good
idea to parameterize Schedulers in Observables that will be tested.

ch_schedulers/testscheduler.js
function quakeBatches(scheduler) {

return quakes.pluck('properties')
.bufferWithTime(500, null, scheduler || null)
.filter(function(rows) {
return rows.length > 0;

});
}

Let’s also simplify the code by taking some steps out but keeping the essence.
This code takes an Observable of JSON objects that contain a properties prop-
erty, buffers them into batches released every 500 milliseconds, and filters
the batches that come empty.

We want to verify that this code works, but we definitely don’t want to wait
several seconds every time we run tests to make sure that our buffering works
as expected. This is where virtual time and the TestScheduler will help us:

ch_schedulers/testscheduler.js
var onNext = Rx.ReactiveTest.onNext;❶
var onCompleted = Rx.ReactiveTest.onCompleted;
var subscribe = Rx.ReactiveTest.subscribe;

var scheduler = new Rx.TestScheduler();❷

var quakes = scheduler.createHotObservable(❸
onNext(100, { properties: 1 }),
onNext(300, { properties: 2 }),
onNext(550, { properties: 3 }),
onNext(750, { properties: 4 }),
onNext(1000, { properties: 5 }),
onCompleted(1100)

);

QUnit.test("Test quake buffering", function(assert) {❹
var results = scheduler.startScheduler(function() {❺

return quakeBatches(scheduler)
}, {
created: 0,
subscribed: 0,
disposed: 1200

});

var messages = results.messages;❻
console.log(results.scheduler === scheduler);

report erratum • discuss

Testing with Schedulers • 99

http://media.pragprog.com/titles/smreactjs/code/ch_schedulers/testscheduler.js
http://media.pragprog.com/titles/smreactjs/code/ch_schedulers/testscheduler.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

assert.equal(❼
messages[0].toString(),
onNext(501, [1, 2]).toString()

);

assert.equal(
messages[1].toString(),
onNext(1001, [3, 4, 5]).toString()

);

assert.equal(
messages[2].toString(),
onCompleted(1100).toString()

);
});

Let’s go step by step through the code:

❶ We start by loading some helper functions from ReactiveTest. These register
onNext, onCompleted, and subscribe events in virtual time.

❷ We create a new TestScheduler that will drive the whole test.

❸ We use the method createHotObservable from the TestScheduler to create a fake
hot Observable that will simulate notifications at particular points in vir-
tual time. In particular, it emits five notifications in the first second, and
completes at 1100 milliseconds. Every time it emits an object with a par-
ticular properties property.

❹ We can use any test framework to run the tests. For our examples, I’ve
chosen QUnit.

❺ We use the startScheduler method to create an Observable that uses a test
Scheduler. The first parameter is a function that creates the Observable
to run with our Scheduler. In our case, we simply return our quakeBatches
function, to which we pass the TestScheduler. The second parameter is an
object containing the different virtual times at which we want to create
the Observable, subscribe to it, and dispose of it. For our example, we
start and subscribe at virtual time 0 and we dispose of the Observable at
1200 (virtual) milliseconds.

❻ The startScheduler method returns an object with a scheduler and a messages
property. In messages we can find all the notifications emitted by the
Observable in virtual time.

❼ Our first assertion tests that after 501 milliseconds (just after the first
buffer time limit) our Observable yields the values 1 and 2.

Chapter 5. Bending Time with Schedulers • 100

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Our second assertion tests that after 1001 milliseconds our Observable
yields the remaining values 3, 4, and 5. And finally, our third assertion
checks that the sequence is completed exactly at 1100 milliseconds, as
we specified in our hot Observable quakes.

That code effectively tests our highly asynchronous Observables in a very
reliable way, and without having to jump through hoops to simulate asyn-
chronous conditions. We simply specify the times at which we want our code
to react in virtual time, and we use a test Scheduler to run the whole opera-
tion.

Wrapping Up
Schedulers are an essential part of RxJS. Even if you can go a long way
without explicitly using them, they are the advanced concept that will give
you the edge to fine-tune concurrency in your programs. The concept of vir-
tual time is unique to RxJS and is incredibly useful for tasks such as testing
asynchronous code.

In the next chapter we’ll use Cycle.js, a reactive way to create amazing web
apps, based on a concept called unidirectional dataflow. With it, we’ll create
a fast web application using modern techniques that improve dramatically
on the traditional way of making web apps.

report erratum • discuss

Wrapping Up • 101

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

CHAPTER 6

Reactive Web Applications with Cycle.js
With the advent of single-page apps, websites are suddenly expected to do
much more, even compete against (gasp!) “native” apps. While trying to make
web applications faster, developers realized that particular areas were bottle-
necks keeping web applications from being as fast and robust as their native
counterparts.

Spearheaded by Facebook React,1 several web frameworks are coming up
with new techniques to make faster web applications while keeping the code
simple and declarative.

In this chapter we’ll cover some new techniques to develop web applications
that are here to stay, like the Virtual DOM. We’ll be using Cycle.js, a modern,
simple, and beautiful framework that uses RxJS internally and applies reactive
programming concepts to front-end programming.

Cycle.js
Cycle.js is a small framework on top of RxJS for creating responsive user
interfaces. It offers the features present in modern frameworks like React,
such as virtual DOM and unidirectional dataflow.

Cycle.js is designed in a reactive way, and all the building blocks in Cycle.js
are Observables, which gives us enormous advantages. It is also simpler to
grasp than other frameworks because there are far fewer concepts to under-
stand and memorize. For example, all operations related to state are out of
the way, encapsulated in functions called drivers, and we rarely need to create
new ones.

1. https://facebook.github.io/react/

report erratum • discuss

https://facebook.github.io/react/
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Joe asks:

What’s the Virtual DOM?
The Document Object Model (DOM) defines the tree structure of elements in an HTML
document. Every HTML element is a node in the DOM, and each node can be
manipulated using methods on the node.

The DOM was originally created to represent static documents, not the super-
dynamic websites that we have today. As a consequence, it was not designed to have
good performance when the elements in a DOM tree were updated frequently. That’s
why when we make changes to the DOM there’s a performance hit.

The virtual DOM is a representation of the DOM made in JavaScript. Every time we
change state in a component, we recompute a new virtual DOM tree for the component
and compare it with the previous tree. If there are differences, we render only those
differences. This approach is extremely fast, because comparing JavaScript objects
is fast and we make only the absolutely necessary changes to the "real" DOM.

That approach means we can write code as if we generated the whole app UI for every
change. We don’t have to keep track of state in the DOM. Behind the scenes, Cycle.js
will check if there is anything different for every update and take care of rendering
our app efficiently.

Installing Cycle.js
We could use Cycle.js by including it in an HTML page using <script></script>
tags, but that would not be the best way to use it because Cycle.js is designed
in an extremely modular way. Every module tries to be as self-sufficient as
possible, and including several modules as scripts could easily load tons of
duplicated code, causing unnecessary downloads and longer start-up times
for our applications.

Instead, we’ll use the Node Package Manager, npm, and Browserify to generate
the code for our final scripts. First we’ll create a new folder where the project
will live, and install our project dependencies:

mkdir wikipedia-search && cd wikipedia-search❮

npm install browserify
npm install @cycle/core
npm install @cycle/dom

The first npm command installs Browserify, which allows us to write code for
the browser as if it were a Node.js application.2 With Browserify, we can use
Node.js’s module loader, and it will be smart about what dependencies to

2. http://browserify.org/

Chapter 6. Reactive Web Applications with Cycle.js • 104

report erratum • discuss

http://browserify.org/
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

include, making the code to download as small as possible. Next, we install
cycle-core and cycle-dom, which are the two base modules of Cycle.js.

With this in place, we can create a file called index.js where we’ll edit our
application, and we’ll compile it into a file called bundle.js using the local
Browserify binary:

touch index.js❮

`npm bin`/browserify index.js --outfile bundle.js

The preceding command will go through our dependency tree and create a
bundle.js file that contains everything necessary to run our application,
including any dependency we require in our code. We can directly include
bundle.js in our index.html:

cycle/index.html
<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">
<title>Wikipedia search</title>

</head>
<body>

<div id="container"></div>
<script src="bundle.js"></script>

</body>
</html>

Our Project: Wikipedia Search
In this section we’ll build an application that searches Wikipedia as the user
types.

report erratum • discuss

Our Project: Wikipedia Search • 105

http://media.pragprog.com/titles/smreactjs/code/cycle/index.html
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

RxJS already makes retrieving and processing the remote data easy, but, as
you saw in Chapter 4, Building a Complete Web Application, on page 69, we
still need to jump through some hoops to make our DOM operations efficient.

One of the objectives of Cycle.js is to completely eliminate DOM manipulation
from our code. Let’s start with some basic scaffolding:

cycle/step1.js
var Cycle = require('@cycle/core');
var CycleDOM = require('@cycle/dom')❶
var Rx = Cycle.Rx;

function main(responses) {❷
return {

DOM: Rx.Observable.just(CycleDOM.h('span', 'Hi there!'))
};

}

var drivers = {
DOM: CycleDOM.makeDOMDriver('#container')❸

};

Cycle.run(main, drivers);❹

This code shows the text Hi there! onscreen, but there’s already quite a lot
going on. The important parts are the main function and the drivers object. Let’s
go through the steps:

❶ We require Cycle Core and the Cycle DOM driver. I’ll explain what a
Cycle.js driver is in the next section.

❷ The main function is always the entry point for our application. It returns
a collection of Observables, one for each driver in the application. So far
we’re only using one driver: the DOM driver.

The Observable for the DOM driver emits a virtual tree, which we create
using the h method in the Cycle DOM library. In this case, we create only
a single span element with the text 'Hi there!'. The DOM driver consumes
that virtual tree and renders the actual DOM on the page from it.

❸ We create a DOM driver that will build the DOM tree from the items
emitted by the main function. The DOM tree will be built in the element
or selector that we pass as a parameter. In this case, #container.

❹ The Cycle.run connects the main function with the drivers object, creating a
circular flow between the two.

Chapter 6. Reactive Web Applications with Cycle.js • 106

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/cycle/step1.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Cycle.js Drivers
Cycle.js drivers are functions we use to cause side effects. Nowhere else in
our programs should we be modifying state in any way. Drivers take an
Observable that emits data from our application, and they return another
Observable that causes the side effects.

We won’t be creating drivers very often—only when we need side effects like
modifying the DOM, reading and writing from other interfaces (for example,
Local Storage), or making requests. In most applications we’ll need only the
DOM driver (which renders web pages) and the HTTP driver (which we can
use to make HTTP requests). In this example, we’ll use yet another one, the
JSONP driver.

The User Interface
We need actual content for our page, not just a span. Let’s make a function
that creates the virtual tree that represents our page:

cycle/index.js
function vtreeElements(results) {

var h = CycleDOM.h;
return h('div', [

h('h1', 'Wikipedia Search '),
h('input', {className: 'search-field', attributes: {type: 'text'}}),
h('hr'),
h('div', results.map(function(result) {
return h('div', [

h('a', { href: WIKI_URL + result.title }, result.title)
]);

}))
]);

}

This function might look a bit strange, but don’t panic. It is using Virtual
Hyperscript, a domain-specific language for creating virtual DOM trees. Virtual
Hyperscript contains a single method, called h. h declares nodes in a way
similar to how HTML does, but using JavaScript. We can add attributes to
elements or append children to them by passing extra objects or arrays as
parameters to h. The resulting virtual tree will eventually be rendered into
real browser DOM.

vtreeElements takes an array of objects, results, and returns a virtual tree that
represents the simple UI for our app. It renders an input field and a listing
of links made from the objects in results, which eventually will contain
Wikipedia’s search results. We’ll use vtreeElements to render our application.

report erratum • discuss

Our Project: Wikipedia Search • 107

http://media.pragprog.com/titles/smreactjs/code/cycle/index.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Using JSX

Instead of using the h function, we could write our UI using JSX, an XML-like
syntax extension invented by Facebook that makes writing virtual DOM
structures easier and more readable. Our vtreeElements function would look
like this:

cycle/index.js
function vtreeElementsJSX(results) {

results = results.map(function(result) {
var link = WIKI_URL + result.title;
return <div>{result.title}</div>

});

return <div>
<h1>Wikipedia Search</h1>
<input className="search-field" type="text" />
<hr/>
<div>{results}</div>

</div>;
}

Doesn’t it look nicer? JSX looks more familiar to developers because it
resembles HTML, but we can write it alongside JavaScript code, with the
added advantage that we can treat it as a JavaScript type. For example, notice
how we iterate the results array and we return a <div> element directly, using
the value of link and result.title in the element itself. (JavaScript values can be
inlined by putting them inside curly brackets.)

Since JSX is a syntax extension, we need a compiler that transforms it into
the final JavaScript code (which looks very much like our h-based code from
the previous section). We’ll use Babel for that. Babel is a compiler that
transforms modern JavaScript into JavaScript that runs everywhere.3 It also
transforms some JavaScript extensions, such as JSX, which is our particular
use case.

If you want to use JSX, you need to install Babel and use it when compiling
the project. Fortunately, Babel has an adapter for Browserify called Babelify:

npm install babelify❮

In every file that uses JSX, we need to add the following lines at the top of
the file:

/** @jsx hJSX */
var hJSX = CycleDOM.hJSX;

3. https://babeljs.io

Chapter 6. Reactive Web Applications with Cycle.js • 108

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/cycle/index.js
https://babeljs.io
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

This tells Babel to use Cycle.js’s hJSX adapter to process JSX, instead of using
the default React one.

Now when we want to compile our project, we can use the following command:

browserify index.js -t babelify --outfile bundle.js❮

Getting the Search Term from the User
We need a function that returns an Observable of URLs that query Wikipedia’s
API using search terms entered by the user:

cycle/index.js
var MAIN_URL = 'https://en.wikipedia.org';
var WIKI_URL = MAIN_URL + '/wiki/';
var API_URL = MAIN_URL + '/w/api.php?' +

'action=query&list=search&format=json&srsearch=';

function searchRequest(responses) {
return responses.DOM.select('.search-field').events('input')

.debounce(300)❶

.map(function(e) { return e.target.value })❷

.filter(function(value) { return value.length > 2 })❸

.map(function(search) { return API_URL + search });❹
}

First we declare some URLs our application will use to query Wikipedia. In
the function searchRequest we take a responses object that contains all the
drivers in our application, and we use the get method in the DOM driver.
select(element).event(type) behaves similarly to fromEvent: it takes a selector for a
DOM element and the type of event to listen to and returns an Observable
that emits events.

From that moment on, the rest of the code should look pretty familiar to you,
since it consists of transforming an Observable’s values through our usual
operators:

❶ Throttle results to receive one every 300 milliseconds at most.

❷ Extract the value of the input box.

❸ Take only text longer than two characters.

❹ Append the final value to Wikipedia’s API URL.

Great! So far we have the function to generate our UI and the function to
retrieve user input from that UI. We now need to add the functionality that
will get the information from Wikipedia.

report erratum • discuss

Our Project: Wikipedia Search • 109

http://media.pragprog.com/titles/smreactjs/code/cycle/index.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Revising Our main Function
You may have noticed in the code on page 106 that the main function takes a
parameter, responses, that we’re not using. These are the responses that come
from drivers in the run function. The drivers and the main function form a cycle
(hence the name of the framework): the output of main is the input of the
drivers, and the output of the drivers is the input for main. And remember,
input and outputs are always Observables.

We use JSONP to query Wikipedia, as we did in Chapter 2. We using JSONP
instead of HTTP to make it easier to run this example on our local computers,
since retrieving data from a different domain using HTTP causes some
browsers to block those requests for security reasons. In almost any other
situation, especially in production code, use HTTP to retrieve remote data.

In any case, using JSONP doesn’t affect the point of this chapter. Cycle has
an experimental module for JSONP, and we can install it using npm:

npm install @cycle/jsonp❮

Then we use it in our application like this:

cycle/step2.js
var Cycle = require('@cycle/core');
var CycleDOM = require('@cycle/dom');
var CycleJSONP = require('@cycle/jsonp');➤

var Rx = Cycle.Rx;
var h = CycleDOM.h;

function searchRequest(responses) {
return responses.DOM.select('.search-field').events('input')

.debounce(300)

.map(function(e) { return e.target.value })

.filter(function(value) { return value.length > 2 })

.map(function(search) { return API_URL + search });
}

function vtreeElements(results) {
return h('div', [

h('h1', 'Wikipedia Search '),
h('input', {className: 'search-field', attributes: {type: 'text'}}),
h('hr'),
h('div', results.map(function(result) {
return h('div', [

h('a', { href: WIKI_URL + result.title }, result.title)
]);

}))
]);

}

Chapter 6. Reactive Web Applications with Cycle.js • 110

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/cycle/step2.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

function main(responses) {
return {

DOM: Rx.Observable.just(CycleDOM.h('span', 'Hey there!')),
JSONP: searchRequest(responses)➤

};
}

var drivers = {
DOM: CycleDOM.makeDOMDriver('#container'),
JSONP: CycleJSONP.makeJSONPDriver()➤

};

Cycle.run(main, drivers);

We want to plug the result of searchRequest into the JSONP driver, so that as
soon as the user types a search term, we query Wikipedia with the term.

To do that, we create a new JSONP driver using CycleJSONP.makeJSONPDriver, which
will receive whatever we put in the property JSONP in the return object from
main. After doing that, we should already be querying Wikipedia when we
introduce a search term in the input box, but since we’re not connecting the
JSONP output to anything, we don’t see any changes on the page. Let’s change
that:

cycle/step3.js
function main(responses) {

var vtree$ = responses.JSONP
.filter(function(res$) {
return res$.request.indexOf(API_URL) === 0;❶

})
.mergeAll()❷
.pluck('query', 'search')❸
.startWith([])❹
.map(vtreeElements);❺

return {
DOM: vtree$,
JSONP: searchRequest(responses)

};
}

main receives the output of all drivers through its responses parameter. We can
get the result of the JSON calls in responses.JSONP, an Observable of all the
JSONP responses in our application. Once we have that, we can transform
the Observable to get the search results in the form we want:

report erratum • discuss

Our Project: Wikipedia Search • 111

http://media.pragprog.com/titles/smreactjs/code/cycle/step3.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

❶ responses.JSONP emits all JSONP responses in the application. We start by
filtering by the ones that contain the API URL of Wikipedia in its request,
to make sure that we’re processing the relevant responses.

❷ responses.JSONP is an Observable of Observables. For each response there
is an Observable. In this line we flatten them all out, so we deal with the
responses themselves from now on, instead of their Observables.

The responses are JSON objects, and the information we’re interested in
is in the query.search property. We use the pluck operator to extract it.

❸ We don’t know if we’ll have any results, so at the very least we ensure
we’ll have an empty array.

❹ Finally, we apply our vtreeElements function to every result from Wikipedia.
This will update our UI.

❺ Notice the $ sign at the end of the variable’s name. In this chapter I’m
adopting a naming convention used in Cycle.js code that adds $ to the
name of a variable to mean that it is an Observable. I found that it makes
it much easier to understand Observable-based code!

The most important takeaway from the preceding code is that in the last step
we seem to be repainting the whole UI for every single result that we receive.
But here’s where the virtual DOM shines. No matter how many times we re-
render the page, the virtual DOM will always ensure that only the differences
are rendered, making it very efficient. If there are no changes to the virtual
DOM, no changes will be rendered in the page.

This way we don’t have to worry about adding or removing elements. We just
render the whole application every time, and we let the Virtual DOM figure
out what to actually update under the hood.

Model-View-Intent
The architectural approach we used to build the Wikipedia real-time search
is not just another framework’s random approach to programming UI. There’s
a design pattern behind structuring code like we did: Model-View-Intent (MVI).

Model-View-Intent is a term coined by the creator of Cycle.js, André Staltz,
for an architecture inspired by the Model-View-Controller (MVC) architecture.4

In MVC we separate the functionality of an application into three components:
the model, the view, and the controller. In MVI, the three components are the

4. https://en.wikipedia.org/wiki/Model–view–controller

Chapter 6. Reactive Web Applications with Cycle.js • 112

report erratum • discuss

https://en.wikipedia.org/wiki/Model�view�controller
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

model, the view, and the intent. MVI is designed to fit the Reactive model of
programming like a glove.

MVI being reactive means that each component observes its dependencies
and reacts to the dependencies’ changes. This is different from MVC, in which
a component knows its dependents and modifies them directly. A component
(C) declares which other components influence it, instead of other components
updating (C) explicitly.

Model

View Intent

Re
ac

ts
 to

Reacts to

Reacts to

The three components in MVI are represented by Observables, the output of
each being the input of another component.

The model represents the current application state. It takes processed user
input from the intent and it outputs events about data changes that are con-
sumed by the view.

The view is a visual representation of our model. It takes an Observable with
the model state, and it outputs all the potential DOM events and the virtual
tree of the page.

The intent is the new component in MVI. An intent takes input from the user
and translates it to actions in our model.

We can make the three kinds of components more clear in our application if
we reshuffle and rename our code a bit:

cycle/index-mvi.js
function intent(JSONP) {

return JSONP.filter(function(res$) {
return res$.request.indexOf(API_URL) === 0;

})
.concatAll()
.pluck('query', 'search');

}

report erratum • discuss

Model-View-Intent • 113

http://media.pragprog.com/titles/smreactjs/code/cycle/index-mvi.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

function model(actions) {
return actions.startWith([]);

}

function view(state) {
return state.map(function(linkArray) {

return h('div', [
h('h1', 'Wikipedia Search '),
h('input', {className: 'search-field', attributes: {type: 'text'}}),
h('hr'),
h('div', linkArray.map(function(link) {

return h('div', [
h('a', { href: WIKI_URL + link.title }, link.title)

]);
}))

]);
});

}

function userIntent(DOM) {
return DOM.select('.search-field').events('input')

.debounce(300)

.map(function(e) { return e.target.value })

.filter(function(value) { return value.length > 2 })

.map(function(search) { return API_URL + search });
}

function main(responses) {
return {

DOM: view(model(intent(responses.JSONP))),
JSONP: userIntent(responses.DOM)

};
}

Cycle.run(main, {
DOM: CycleDOM.makeDOMDriver('#container'),
JSONP: CycleJSONP.makeJSONPDriver()

});

By splitting the model, view, and intent into separate functions, we make the
code much clearer. (The other intent, userIntent, is the input for the JSONP
driver.) Most of theappplication logic is expressed as a composition of these
three functions in the property we pass to the DOM driver in the main function:

function main(responses) {
return {

DOM: view(model(intent(responses.JSONP))),➤

JSONP: userIntent(responses.DOM)
};

}

Chapter 6. Reactive Web Applications with Cycle.js • 114

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

It doesn’t get much more functional than that!

Creating Reusable Widgets
As we make more complex applications, we’ll want to reuse some of their UI
components. Our Wikipedia Search application is tiny for the sake of example,
but it already has a couple of components that could be reused in other
applications. Take the search input box, for example. We can definitely make
this into its own widget.

The objective is to encapsulate our widget in its own component so that we
use it as any other DOM element. We should also be able to parameterize the
component with any properties we want. Then we’ll use it in our applications
like this:

var wpSearchBox = searchBox({
props$: Rx.Observable.just({

apiUrl: API_URL
})

});

We’ll build our widget using a concept also introduced by Cycle.js, called
nested dialogues. A nested dialogue, or dialogue, is a function (like everything
in Cycle.js) that takes an Observable of events as input, and outputs an
Observable—with the result of applying these inputs to its internal logic.

Let’s start building the search-box component. We first create a function that
takes a responses parameter where we’ll pass it any properties we want from
the main application:

cycle/searchbox.js
var Cycle = require('@cycle/core');
var CycleDOM = require('@cycle/dom');
var Rx = Cycle.Rx;
var h = CycleDOM.h;
var a;

function searchBox(responses) {
var props$ = responses.props$;
var apiUrl$ = props$.map(function (props) {

return props['apiUrl'];
}).first();

Every parameter searchBox receives is an Observable. In this case props$ is an
Observable that emits a single JavaScript object containing the configuration
parameters for our Wikipedia search box.

report erratum • discuss

Creating Reusable Widgets • 115

http://media.pragprog.com/titles/smreactjs/code/cycle/searchbox.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

After retrieving the properties, we define the virtual tree for our widget. In our
case, it is a very simple one that contains just an input field:

cycle/searchbox.js
var vtree$ = Rx.Observable.just(

h('div', { className: 'search-field' }, [
h('input', { type: 'text' })

]));

We want everything to be an Observable, so we wrapped the virtual tree in a
just Observable, which just returns an Observable that emits the value we
pass it.

Now we need the search box to query the Wikipedia API whenever the user
types a search term in the input field. We reuse the code in the function
userIntent from our previous section:

cycle/searchbox.js
var searchQuery$ = apiUrl$.flatMap(function (apiUrl) {

return responses.DOM.select('.search-field').events('input')
.debounce(300)
.map(function (e) { return e.target.value; })
.filter(function (value) { return value.length > 3; })
.map(function (searchTerm) { return apiUrl + searchTerm; });

});

We still need to connect the output of searchQuery to the input of the JSON
driver. We do that just like we do it in the normal Cycle application:

cycle/searchbox.js
return {

DOMTree: vtree$,
JSONPQuery: searchQuery$

};

And finally, we shouldn’t forget to export the searchBox widget:

cycle/searchbox.js
module.exports = searchBox; // Export it as a module

Now we’re ready to use the searchBox widget in our application. The main method
will now look like this:

cycle/index-mvi2.js
var h = CycleDOM.h;
var SearchBox = require('./searchbox');❶

function main(responses) {
var wpSearchBox = SearchBox({❷

DOM: responses.DOM,
props$: Rx.Observable.just({

Chapter 6. Reactive Web Applications with Cycle.js • 116

report erratum • discuss

http://media.pragprog.com/titles/smreactjs/code/cycle/searchbox.js
http://media.pragprog.com/titles/smreactjs/code/cycle/searchbox.js
http://media.pragprog.com/titles/smreactjs/code/cycle/searchbox.js
http://media.pragprog.com/titles/smreactjs/code/cycle/searchbox.js
http://media.pragprog.com/titles/smreactjs/code/cycle/index-mvi2.js
http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

apiUrl: API_URL
})

});

var searchDOM$ = wpSearchBox.DOMTree;❸
var searchResults$ = responses.JSONP

.filter(function(res$) {
return res$.request.indexOf(API_URL) === 0;

})
.concatAll()
.pluck('query', 'search')
.startWith([]);

return {
JSONP: wpSearchBox.JSONPQuery,❹
DOM: Rx.Observable.combineLatest(❺
searchDOM$, searchResults$, function(tree, links) {

return h('div', [
h('h1', 'Wikipedia Search '),
tree,
h('hr'),
h('div', links.map(function(link) {
return h('div', [

h('a', { href: WIKI_URL + link.title }, link.title)
]);

}))
]);

})
};

}

Cycle.run(main, {
DOM: CycleDOM.makeDOMDriver('#container'),
JSONP: CycleJSONP.makeJSONPDriver()

});

Now we delegate the responsibility of handling user input and rendering the
search box to the wpSearchBox widget, which we could easily reuse in another
application that requires a search box that queries URL APIs. These are the
main changes:

❶ Import the searchBox widget we just created.

❷ Create an instance of SearchBox, passing the DOM driver and the properties
we want for our search widget.

❸ Our wpSearchBox will eventually emit items from its DOMTree Observable. We
assign it here to use them later when we render the actual DOM.

report erratum • discuss

Creating Reusable Widgets • 117

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

❹ We send the Wikipedia query URLs to the JSONP driver so that it retrieves
its results. When those are available, it will emit them in response.JSONP,
which we refine in searchResults.

❺ To render the final DOM tree, we use combineLatest with searchDOM and
searchResults. Each of them causes the layout to change, so we’ll re-render
the DOM tree whenever one of these two Observables emits an item.

With the final code in hand, we can see the greatest point of Cycle.js. There
are no different classes, special types, or "magic" happening in the framework.
It’s all side effect–free functions that accept Observables and output more
Observables. With only that, we have a concise web application framework
that is clear, reactive, and fun to use. And it avoids side effects at all costs,
making our web applications more robust.

Ideas for Improvements
Besides being in urgent need of a better graphical design, our application
could use some features to be more than a quick redirect to Wikipedia results:

• Let the user bookmark particular results. You could add a little star next
to every result in the list so that when the user clicks, it saves that result
as a favorite. You could make the star into its own widget. Extra points
if you use some persistent API (reactively!), such as Local Storage or
IndexedDB.

• Show a “preview” of a result on the right side of the screen if the user
clicks the link, with a synopsis and some meta information about it. If
the user wants to go to the actual Wikipedia result, you can have a Read
More link in it. Implement it as a widget.

Wrapping Up
Now you know how to develop web applications that use modern techniques
without abandoning the reactive philosophy. This chapter provided an idea
of how to use Observables and RxJS as the internal engine of other frameworks
or applications. By standing on the shoulders of Observables and the reactive
way of life, we can enormously simplify web applications and reduce state to
its minimum expression, making our web applications less fragile and more
maintainable.

Thank you for reading this book. I hope it helped you rethink the way you
develop JavaScript applications, and challenged some of your existing concepts
about programming. Here’s to fast, robust, and reactive software!

Chapter 6. Reactive Web Applications with Cycle.js • 118

report erratum • discuss

http://pragprog.com/titles/smreactjs/errata/add
http://forums.pragprog.com/forums/smreactjs

Index

A
aggregate operators, 21–22

Ajax requests, 11–12

animation, 95–97

arrays
chaining operators, 42–

43
transforming to Observ-

ables, 13

AsyncSubject, 46–48

B
Babel compiler, 108

Babelify, 108

BehaviorSubject, 48

Browserify, 104

buffering input values
buffer operator, 59
bufferWithTime operator, 76–

77, 99

C
callbacks

drawbacks, xii
transforming to Observ-

ables, 14

catch operator, 27–28

chaining operators, 42–45

combineLatest operator, 56, 60,
62, 118

concurrency, 39–42
and schedulers, 89

connect method, 75

ConnectableObservable, 75

create (Observable) operator,
11

create (Observer) operator, 11

createColdObservable method, 98

createHotObservable method, 100

currentThread scheduler, 90, 93–
94

Cycle.js
$ name suffix, 112
DOM driver, 106
drivers, 107
h method, 106
hJSX adapter, 109
installing, 104–105
JSONP driver, 111
nested dialogues, 115
reusable widgets, 115–

118

D
debounce method, 2

default scheduler, 90, 93

design patterns, 6–10

dispose method, 24

distinct operator, 35, 37, 62

distinctUntilChanged operator, 62

document fragments, 77

DOM (Document Object Mod-
el), 12, 118, see also RxJS-
DOM library

appending document
fragments, 77

performance, 80–81, 104

DOM driver (Cycle.js), 106

E
earthquake application

reactive user interface,
69–87

real-time visualizer, 29–
36

ECMAScript 7, xiv

error handling, in Observ-
ables, 26–28

event emitters, xiii

event listeners, 4–5

external state
and global variables, 5
and Observable pipelines,

40–42

F
Facebook React framework,

103

filter operator, 20

first operator, 21

flatMap operator, 22–23, 33–
35, 53

flatMapLatest operator, 25

fold operator, 20

from operator, 13, 36

fromCallback operator, 14

fromEvent operator, 13

fromWebSocket operator, 83

I
immediate scheduler, 92

interval operator, 18, 35–37,
57, 62, 74, 95

Iterator design pattern, 8–9

J
JavaScript events, transform-

ing to Observables, 14–15

jQuery library, 33

JSON.parse method, 26

JSONP, 33, 110

JSONP driver (Cycle.js), 111

JSX, 108–109

L
lazy evaluation, 45

Leaflet library, 30–31, 78

M
map operator, 19, 53, 72

marble diagrams, 17–19

Meijer, Eric, 3

merge operator, 18–19

Model-View-Controller (MVC)
design pattern, 112

Model-View-Intent (MVI) de-
sign pattern, 112–115

mouse events
clicks, 81
mouseover, 79, 81
as Observable data type,

6
and performance, 80–81
as sequence, 3
throttling, 2, 58–59
using event listeners, 4–

5

N
nested dialogues, 115

Node.js
configuring, 82
running RxJS examples,

xvi
transforming callbacks to

Observables, 15
Twit client, 84–87
twit module, 82
ws module, 82

npm (Node Package Manager),
82, 104

O
Observable pipelines,

see pipelines

Observables, see also se-
quences

cold, 72–76, 98
creating, 10–15
defined, 9–10

error handling, 26–28
explicit cancellation, 24–

25
hot, 73, 75, 100
implicit cancellation, 25
nested, 22–23
sharing, 76
subscribing to, 12, 76,

91–92
throttling value streams,

2, 58–59
transforming data into,

13

observeOn operator, 91–92

Observer design pattern, 6–8
vs. Observables, 9

Observers, creating, 11

onCompleted method, 10

onError method, 10, 26–27

onNext method, 10, 22

operators, 18–23
aggregate, 21–22
chaining, 42–45
recursive, 94

P
pairwise operator, 81

pipelines
defined, 39
efficiency, 42–45
and external state, 40–42

pluck operator, 72, 80, 112

promises
defined, xiii
simulating with Async-

Subject, 48

publish method, 75

pure functions, 40

push-based behavior, 9

Q
QUnit, 100

R
range operator, 18, 25, 37, 52,

73, 92–93

React framework, 103

reactive programming
and asynchronous opera-

tions, xi
defined, xiv
MVI design pattern, 112–

115
Reactive Extensions (Rx),

xiv, 9–10
spreadsheet analogy, 3

ReactiveTest, 100

ReactiveX, xvii

recursive operators, 94

reduce operator, 20–22

repeat operator, 94

ReplaySubject, 49–50

requestAnimationFrame scheduler,
95–97

retry operator, 28–29, 35

reusability, 115–118

Rx (Reactive Extensions)
defined, xiv
design pattern, 9–10

rx.all.js, xvi

rx.dom.js, 35

RxJS
defined, xiv
GitHub repositories, xvi–

xvii
lazy evaluation, 45
Observable data type, 6,

13
operators, 18–23
operators, chaining, 42–

45
operators, recursive, 94
Subject class, 45–46
version, xvii

RxJS-DOM library, 34–35, 69
Rx.DOM.fromWebSocket(), 83–

84
Rx.DOM.jsonpRequest(), 34
Rx.DOM.ready(), 70
Rx.DOM.Request.get(), 12, 47

RxMarbles, xvii

S
same-origin policy, 33

sample method, 58–60

scan operator, 22, 57, 61, 67,
86

Schedulers, 89–91
currentThread, 90, 93–94
default, 90, 93
immediate, 92
requestAnimationFrame, 95–97
TestScheduler, 97–101

searchDOM operator, 118

searchResults operator, 118

sequences
canceling, 24–25
error handling, 26–28
infinite, 22
operators, 18–23

Index • 120

operators, chaining, 42–
45

operators, recursive, 94
retrying, 28–29
visual diagrams, 17–19

share operator, 76

side effects, 5

spaceship game, 50–67
improving animation, 95–

97

Staltz, André, 112

startScheduler method, 100

startWith method, 55

state
and global variables, 5
and Observable pipelines,

40–42

Subject class, 45–46

subscriptions
avoiding multiple, 76

disposable objects, 24
subscribe operator, 12
subscribeOn operator, 91–92

T
take operator, 25, 44

takeWhile operator, 66

testing, 97–101
QUnit, 100

TestScheduler, 97–101

timestamp operator, 60

toArray operator, 52

Twit client, 84–87

Twitter API, 82, 84–87

U
U.S. Geological Survey earth-

quake database, 29, 71

unidirectional dataflow, 103,
113

V
video game, 50–67

improving animation, 95–
97

Virtual DOM, 104, 112
and JSX, 108

Virtual Hyperscript, 107

VirtualTimeScheduler, 97

W
Wikipedia search application,

105–115
search-box widget, 115–

118

withLatestFrom operator, 25

Index • 121

The Modern Web
Get up to speed on the latest HTML, CSS, and JavaScript techniques.

HTML5 and CSS3 (2nd edition)
HTML5 and CSS3 are more than just buzzwords—
they’re the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements
and CSS3 features you can use right now in your cur-
rent projects, with backwards compatible solutions
that ensure that you don’t leave users of older browsers
behind. This new edition covers even more new fea-
tures, including CSS animations, IndexedDB, and
client-side validations.

Brian P. Hogan
(314 pages) ISBN: 9781937785598. $38
https://pragprog.com/book/bhh52e

Async JavaScript
With the advent of HTML5, front-end MVC, and
Node.js, JavaScript is ubiquitous—and still messy.
This book will give you a solid foundation for managing
async tasks without losing your sanity in a tangle of
callbacks. It’s a fast-paced guide to the most essential
techniques for dealing with async behavior, including
PubSub, evented models, and Promises. With these
tricks up your sleeve, you’ll be better prepared to
manage the complexity of large web apps and deliver
responsive code.

Trevor Burnham
(104 pages) ISBN: 9781937785277. $17
https://pragprog.com/book/tbajs

https://pragprog.com/book/bhh52e
https://pragprog.com/book/tbajs

Long Live the Command Line!
Use tmux and Vim for incredible mouse-free productivity.

tmux
Your mouse is slowing you down. The time you spend
context switching between your editor and your con-
soles eats away at your productivity. Take control of
your environment with tmux, a terminal multiplexer
that you can tailor to your workflow. Learn how to
customize, script, and leverage tmux’s unique abilities
and keep your fingers on your keyboard’s home row.

Brian P. Hogan
(88 pages) ISBN: 9781934356968. $16.25
https://pragprog.com/book/bhtmux

Practical Vim, Second Edition
Vim is a fast and efficient text editor that will make
you a faster and more efficient developer. It’s available
on almost every OS, and if you master the techniques
in this book, you’ll never need another text editor. In
more than 120 Vim tips, you’ll quickly learn the editor’s
core functionality and tackle your trickiest editing and
writing tasks. This beloved bestseller has been revised
and updated to Vim 7.4 and includes three brand-new
tips and five fully revised tips.

Drew Neil
(354 pages) ISBN: 9781680501278. $29
https://pragprog.com/book/dnvim2

https://pragprog.com/book/bhtmux
https://pragprog.com/book/dnvim2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/smreactjs
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/smreactjs

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/smreactjs
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/smreactjs
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	New World, Old Methods
	What Is Reactive Programming?
	What Is RxJS?
	Who This Book Is For
	What's in This Book
	Running the Code Examples
	Resources
	Download Sample Code

	1. The Reactive Way
	What's Reactive?
	Of Observers and Iterators
	The Rx Pattern and the Observable
	Creating Observables
	Wrapping Up

	2. Deep in the Sequence
	Visualizing Observables
	Basic Sequence Operators
	Canceling Sequences
	Handling Errors
	Making a Real-Time Earthquake Visualizer
	Ideas for Improvements
	Operator Rundown
	Wrapping Up

	3. Building Concurrent Programs
	Purity and the Observable Pipeline
	RxJS's Subject Class
	Spaceship Reactive!
	Ideas for Improvements
	Wrapping Up

	4. Building a Complete Web Application
	Building a Real-Time Earthquake Dashboard
	Adding a List of Earthquakes
	Getting Real-Time Updates from Twitter
	Ideas for Improvements
	Wrapping Up

	5. Bending Time with Schedulers
	Using Schedulers
	Scheduling for Animations
	Testing with Schedulers
	Wrapping Up

	6. Reactive Web Applications with Cycle.js
	Cycle.js
	Installing Cycle.js
	Our Project: Wikipedia Search
	Model-View-Intent
	Creating Reusable Widgets
	Ideas for Improvements
	Wrapping Up

	Index
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –

