
www.allitebooks.com

http://www.allitebooks.org

Real-time Analytics with
Storm and Cassandra

Solve real-time analytics problems effectively
using Storm and Cassandra

Shilpi Saxena

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Real-time Analytics with Storm and Cassandra

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2015

Production reference: 1240315

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-549-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Shilpi Saxena

Reviewers
Sourav Gulati

Saurabh Gupta

Ranjeet Kumar Jha

Mark Kerzner

Sonal Raj

Commissioning Editor
Akram Hussain

Acquisition Editor
Larissa Pinto

Content Development Editor
Shweta Pant

Technical Editor
Saurabh Malhotra

Copy Editors
Pranjali Chury

Merilyn Pereira

Project Coordinator
Shipra Chawhan

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Valentina D'silva

Abhinash Sahu

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Shilpi Saxena is a seasoned professional, who is leading in management with
an edge of being a technology evangelist. She is an engineer who has exposure to
a variety of domains (machine to machine space, health care, telecom, hiring, and
manufacturing). She has experience in all aspects of conception and execution of
enterprise solutions. She has been architecting, managing and delivering solutions
in the big data space for the last 3 years, handling high performance geographically
distributed teams of elite engineers.

Shilpi has more than 12 years (3 years in the big data space) of experience in
development and execution of various facets of enterprise solutions both in product/
services dimensions of the software industry. An engineer by degree and profession,
she has worn varied hats—developer, technical leader, product owner, tech manager,
and so on, and she has seen all flavors the industry has to offer.

She has architected and worked through some of the pioneers' production
implementation in big data on Storm and Impala with auto scaling in AWS.

To know more about her, visit her LinkedIn profile at http://in.linkedin.com/
pub/shilpi-saxena/4/552/a30.

I would like to thank my husband, Sachin Saxena, and my mother,
Manju Saxena, for their constant support and encouragement while
writing this book. A sincere word of thanks to Impetus and all my
mentors, who gave me a chance to innovate and learn as part of the
big data group.

www.allitebooks.com

http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://in.linkedin.com/pub/shilpi-saxena/4/552/a30
http://www.allitebooks.org

About the Reviewers

Sourav Gulati is an MCA and has been working in the IT industry for about 5
years. He has worked on technologies such as Java and Unix shell scripting and has
also worked on big data technologies such as Hadoop, Cassandra, Storm, and so on.
Initially, he started working for Tech Mahindra in 2010 and then moved to Impetus
in 2012. Currently, he is working as a senior software engineer at Impetus.

I would really like to thank Shilpi Saxena and Packt Publishing for
giving me the chance to be a part of this book. This book is packed
with practical knowledge and experience. I would also like to wish
Shilpi a lot of success with this book.

Saurabh Gupta is the lead software engineer at Impetus Technologies and has
around 8 years of experience in IT. He started his career with Java/J2EE and headed
toward NoSQL and big data technologies. He loves to read about new technologies
or tools on the market. He believes that there are no secrets to success, but rather that
it is the result of preparation, hard work, and learning from failure.

I want to thank my wife, Nalini, and the rest of my family, who
supported and encouraged me in spite of all the time it kept me
away from them.

www.allitebooks.com

http://www.allitebooks.org

Ranjeet Kumar Jha has over 12 years of experience in various phases of project
life cycles, including the development and design phases, and has also been part
of production support for Java/J2EE and big data-based applications. He has more
than 6 years of experience as a technical architect in Java technologies and more
than 3 years in big data stacks. He has worked in various domains such as finance,
insurance, e-commerce, digital media, and online advertisements.

Ranjeet has worked as a programmer, designer, and mentor and now works as an
architect in all types of projects related to Java, especially J2EE and big data.

His LinkedIn profile is available at https://www.linkedin.com/in/jharanjeet.

His certifications include:

•	 OCM-JEA 5 (Oracle Certified Master, Java Enterprise Architect) with a
94 percent score in 2011

•	 OCE-WSD (Oracle Certified Expert, JAVA EE 6 Web Services Developer)
in 2013

•	 SCJP (Sun Certified Java Programmer) in 2004
•	 SCWCD (Sun Certified Web Component Developer) in 2004
•	 Java Development with Apache Cassandra from DataStax in 2014
•	 MongoDB for Java Developers from MongoDB University in 2014

The companies he has worked for include the following:

•	 EtechAces Consulting and Marketing Pvt Ltd. Gurgaon (Delhi NCR)
•	 Times Internet Ltd (TimesGroup), Noida (Delhi NCR)
•	 Ebusinessware Inc (now Xoriant Corporation), Gurgaon (Delhi NCR)
•	 WIPRO, Gurgaon (Delhi NCR)
•	 AgreeYa Solution Pvt Ltd, Noida (Delhi NCR)
•	 INCA Informatics, Noida (Delhi NCR)

I would like to thank my family—my wife, Anila Jha, and two
kids, Anushka Jha and Tanisha Jha, for their constant support,
encouragement, and patience. Without you, I wouldn't have
achieved so much! Love you all immensely.

www.allitebooks.com

https://www.linkedin.com/in/jharanjeet
http://www.allitebooks.org

Mark Kerzner holds degrees in law, math, and computer science. He is a software
architect who has been working on Hadoop-based systems since 2008. Mark is a
cofounder of Elephant Scale, a big data training and consulting company. He is a
coauthor of the open source books Hadoop Illuminated and Hbase Design Patterns,
both by Packt Publishing. He has also authored and coauthored other books and
patents, which can be found at http://www.amazon.com.

I would like to acknowledge the help of my colleagues, in particular,
Sujee Maniyam, and last but not least, my multitalented family.

Sonal Raj is a hacker, Pythonista, big data believer, and a technology dreamer.
He has a passion for design and is an artist at heart. He blogs about technology,
design, and gadgets at http://www.sonalraj.com/. When not working on
projects, he can be found traveling, stargazing, or reading.

He has pursued engineering in computer science and loves to work on community
projects. He has been a research fellow at SERC, IISc, Bangalore, and has taken up
projects on graph computations using Neo4j and Storm. Sonal has been a speaker at
PyCon India and local meets on Neo4j and has also published articles and research
papers in leading magazines and international journals. He has contributed to
several open source projects.

Sonal has been actively involved in the development of machine learning frameworks
and has worked on technologies such as NoSQL databases including MongoDB and
streaming using Apache Spark. He is currently working at Goldman Sachs.

I am grateful to the author for patiently listening to my critiques
and I'd like to thank the open source community for keeping their
passion alive and contributing to such remarkable projects. A special
thank you to my parents, without whom I would never have grown
to love learning as much as I do.

www.allitebooks.com

http://www.amazon.com
http://www.sonalraj.com/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface	 vii
Chapter 1: Let's Understand Storm	 1

Distributed computing problems	 1
Real-time business solution for credit or debit card fraud detection	 2
Aircraft Communications Addressing and Reporting system	 2
Healthcare	 3
Other applications	 4

Solutions for complex distributed use cases	 4
The Hadoop solution	 4
A custom solution	 6
Licensed proprietary solutions	 7
Other real-time processing tools	 8

A high-level view of various components of Storm	 8
Delving into the internals of Storm	 9
Quiz time	 11
Summary	 12

Chapter 2: Getting Started with Your First Topology	 13
Prerequisites for setting up Storm	 14
Components of a Storm topology	 14

Spouts	 15
Bolts	 17
Streams	 19
Tuples – the data model in Storm	 19

Executing a sample Storm topology – local mode	 19
WordCount topology from the Storm-starter project	 20

Executing the topology in the distributed mode	 22
Set up Zookeeper (V 3.3.5) for Storm	 22
Setting up Storm in the distributed mode	 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Launching Storm daemons	 28
Executing the topology from Command Prompt	 28

Tweaking the WordCount topology to customize it	 29
Quiz time	 31
Summary	 32

Chapter 3: Understanding Storm Internals by Examples	 33
Customizing Storm spouts	 33

Creating FileSpout	 34
Tweaking WordCount topology to use FileSpout	 36
The SocketSpout class	 37

Anchoring and acking	 38
The unreliable topology	 39

Stream groupings	 39
Local or shuffle grouping	 40
Fields grouping	 41
All grouping	 41
Global grouping	 42
Custom grouping	 43
Direct grouping	 43

Quiz time	 44
Summary	 44

Chapter 4: Storm in a Clustered Mode	 45
The Storm cluster setup	 45
Zookeeper configurations	 46

Cleaning up Zookeeper	 47
Storm configurations	 48

Storm logging configurations	 50
The Storm UI	 52

Section 1	 53
Section 2	 54
Section 3	 55
Section 4	 55
The visualization section	 56

Storm monitoring tools	 57
Quiz time	 60
Summary	 61

Chapter 5: Storm High Availability and Failover	 63
An overview of RabbitMQ	 64
Installing the RabbitMQ cluster	 64

Prerequisites for the setup of RabbitMQ	 65
Setting up a RabbitMQ server	 65

Table of Contents

[iii]

Testing the RabbitMQ server	 66
Creating a RabbitMQ cluster	 67
Enabling the RabbitMQ UI	 68
Creating mirror queues for high availability	 69

Integrating Storm with RabbitMQ	 70
Creating a RabbitMQ feeder component	 75
Wiring the topology for the AMQP spout	 77

Building high availability of components	 77
High availability of the Storm cluster	 78
Guaranteed processing of the Storm cluster	 79

The Storm isolation scheduler	 80
Quiz time	 82
Summary	 82

Chapter 6: Adding NoSQL Persistence to Storm	 83
The advantages of Cassandra	 83
Columnar database fundamentals	 84

Types of column families	 85
Types of columns	 86

Setting up the Cassandra cluster	 87
Installing Cassandra	 88

Multiple data centers	 89
Prerequisites for setting up multiple data centers	 90
Installing Cassandra data centers	 90

Introduction to CQLSH	 92
Introduction to CLI	 93
Using different client APIs to access Cassandra	 95
Storm topology wired to the Cassandra store	 97
The best practices for Storm/Cassandra applications	 103
Quiz time	 103
Summary	 104

Chapter 7: Cassandra Partitioning, High Availability,
and Consistency 	 105

Consistent hashing	 105
One or more node goes down	 107
One or more node comes back up	 108

Replication in Cassandra and strategies	 109
Cassandra consistency	 110

Write consistency	 111
Read consistency	 112
Consistency maintenance features	 113

Table of Contents

[iv]

Quiz time	 114
Summary	 115

Chapter 8: Cassandra Management and Maintenance	 117
Cassandra – gossip protocol	 118

Bootstrapping	 118
Failure scenario handling – detection and recovery	 118

Cassandra cluster scaling – adding a new node 	 119
Cassandra cluster – replacing a dead node	 121
The replication factor	 122
The nodetool commands	 123
Cassandra fault tolerance	 126
Cassandra monitoring systems	 126

JMX monitoring	 126
Datastax OpsCenter	 129

Quiz time	 130
Summary	 131

Chapter 9: Storm Management and Maintenance	 133
Scaling the Storm cluster – adding new supervisor nodes	 133
Scaling the Storm cluster and rebalancing the topology	 136

Rebalancing using the GUI	 136
Rebalancing using the CLI	 136

Setting up workers and parallelism to enhance processing	 137
Scenario 1	 138
Scenario 2	 139
Scenario 3	 140

Storm troubleshooting	 140
The Storm UI	 141
Storm logs	 145

Quiz time	 148
Summary	 148

Chapter 10: Advance Concepts in Storm	 149
Building a Trident topology	 149
Understanding the Trident API	 154

Local partition manipulation operation	 154
Functions	 155
Filters	 156
partitionAggregate	 156

Operations related to stream repartitioning	 160
Data aggregations over the streams	 161

Table of Contents

[v]

Grouping over a field in a stream	 161
Merge and join	 162

Examples and illustrations	 163
Quiz time	 164
Summary	 165

Chapter 11: Distributed Cache and CEP with Storm	 167
The need for distributed caching in Storm	 167
Introduction to memcached	 169

Setting up memcache	 171
Building a topology with a cache	 173

Introduction to the complex event processing engine	 175
Esper	 176
Getting started with Esper	 177
Integrating Esper with Storm	 180

Quiz time	 184
Summary	 184

Appendix: Quiz Answers	 185
Index	 189

[vii]

Preface
Storm, initially a project from the house of Twitter, has graduated to the league of
Apache and thus rechristened from Twitter Storm. It is the brainchild of Nathan
Marz that's now adopted by leagues of Cloudera's Distribution Including Apache
Hadoop (CDH) and the Hortonworks Data Platform (HDP), and so on.

Apache Storm is a highly scalable, distributed, fast, and reliable real-time computing
system designed to process very high velocity data. Cassandra complements the
computing capability by providing lightning-fast read and writes, and this is the
best combination currently available for data storage with Storm.

The combination of the Storm computing and Cassandra storage is helping
technology evangelists to solve various business problems involving complex
and high data volume situations such as real-time customer service, dashboards,
security, sensor data analysis, data monetization, and so on.

This book will equip users with the capability to harness the processing power
of Storm in combination with the speed and reliability of Cassandra to develop
production-grade enterprise solutions on real-time use cases.

What this book covers
Chapter 1, Let's Understand Storm, gets you acquainted with the problems that need
distributed computing solutions. It will take you through the journey of Storm and
its advent.

Chapter 2, Getting Started with Your First Topology, teaches you to set up the developer's
environment—sandbox and execute some of the code samples.

Chapter 3, Understanding Storm Internals by Examples, teaches you how to prepare
Storm spouts and custom spouts. You will understand various kinds of groupings
provided by Storm and their application to practical problems.

Preface

[viii]

Chapter 4, Storm in a Clustered Mode, teaches you how to set up a multi-node Storm
cluster to get the user acquainted with the distributed Storm setup and its components.
This chapter will also get your acquainted with the Storm UI and various monitoring
tools for Storm.

Chapter 5, Storm High Availability and Failover, conjugates the Storm topology with the
RabbitMQ broker service and explores the high availability and failover scenarios of
Storm with the help of various practical examples.

Chapter 6, Adding NoSQL Persistence to Storm, introduces you to Cassandra and
explores various wrapper API's available to work with Cassandra. We will use
the Hector API to connect Storm and Cassandra.

Chapter 7, Cassandra Partitioning, High Availability, and Consistency, walks you
through the Cassandra internals. You will understand and apply the concepts of
high availability, hinted handoff, and eventual consistency in context to Cassandra.

Chapter 8, Cassandra Management and Maintenance, gets you acquainted with the
management aspects of Cassandra, such as scaling the cluster, node replacement,
and so on, thus equipping you with all the experience required to handle real-life
situations with Cassandra.

Chapter 9, Storm Management and Maintenance, gets you acquainted with the
management aspects of Storm, such as scaling the cluster, setting up parallelism,
and troubleshooting Storm.

Chapter 10, Advance Concepts in Storm, gives you an understanding of the Trident
API. You will be building the Trident API with certain examples and illustrations
around Trident.

Chapter 11, Distributed Cache and CEP with Storm, gets you acquainted with distributed
cache, its need, and applicability to solve real-life use cases with Storm. It will also
educate you about Esper as a CEP in combination with Storm.

Appendix, Quiz Answers, contains all the answers to the questions of the true or false
statements and the fill in the blanks section.

Bonus Chapter, Using Storm and Cassandra for Real Life Use Cases, explains a few
real-life use cases and blueprints to solve these cases using the technologies such as
Storm and Cassandra. This chapter can be found online at https://www.packtpub.
com/sites/default/files/downloads/Bonus_Chapter.pdf.

https://www.packtpub.com/sites/default/files/downloads/Bonus_Chapter.pdf
https://www.packtpub.com/sites/default/files/downloads/Bonus_Chapter.pdf

Preface

[ix]

What you need for this book
For this book, you will require a Linux/Ubuntu OS, Eclipse, and 8 GB of RAM. The
steps to set up other components such as Storm, RabbitMQ, Cassandra, memcache,
Esper, and so on are covered in chapters corresponding to the said topics.

Who this book is for
This book is intended for Java developers who wish to get started on near real-
time analytics track using Storm. This will serve as an expert's guide to developing
highly available and scalable solutions to complex real-time problems. Apart from
development, this book also covers the management and maintenance aspects of Storm
and Cassandra, which is a mandatory requirement for productionizing any solution.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"The NumWorker configuration or TOPOLOGY_WORKERS configuration defined in Storm."

A block of code is set as follows:

// instantiates the new builder object
TopologyBuilder builder = new TopologyBuilder();
// Adds a new spout of type "RandomSentenceSpout" with a
 parallelism hint of 5
builder.setSpout("spout", new RandomSentenceSpout(), 5);

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are highlighted:

 public void execute(Tuple tuple) {
 String sentence = tuple.getString(0);
 for(String word: sentence.split(" ")) {
 _collector.emit(tuple, new Values(word)); //1
 }
 _collector.ack(tuple); //2
 }

Preface

[x]

 public void declareOutputFields(OutputFieldsDeclarer
 declarer) {
 declarer.declare(new Fields("word")); //3
 }
}

Any command-line input or output is written as follows:

sudo apt-get -qy install rabbitmq-server

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
" Go to the Admin tab and select Policies and click on Add policy".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[xi]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

[1]

Let's Understand Storm
In this chapter, you will be acquainted with the problems requiring distributed
computed solutions and get to know how complex it could get to create and manage
such solutions. We will look at the options available to solve distributed computation.

The topics that will be covered in the chapter are as follows:

•	 Getting acquainted with a few problems that require distributed
computing solutions

•	 The complexity of existing solutions
•	 Technologies offering real-time distributed computing
•	 A high-level view of the various components of Storm
•	 A quick peek into the internals of Storm

By the end of the chapter, you will be able to understand the real-time scenarios
and applications of Apache Storm. You should be aware of solutions available in
the market and reasons as to why Storm is still the best open source choice.

Distributed computing problems
Let's dive deep and identify some of the problems that require distributed solutions.
In the world we live in today, we are so attuned to the power of now and that's the
paradigm that generated the need for distributed real-time computing. Sectors
such as banking, healthcare, automotive manufacturing, and so on are hubs where
real-time computing can either optimize or enhance the solutions.

Let's Understand Storm

[2]

Real-time business solution for credit or debit
card fraud detection
Let's get acquainted with the problem depicted in the following figure; when we
make any transaction using plastic money and swipe our debit or credit card for
payment, the duration within which the bank has to validate or reject the transaction
is less than five seconds. In less than five seconds, data or transaction details have
to be encrypted, travel over secure network from servicing back bank to the issuing
bank, then at the issuing back bank the entire fuzzy logic for acceptance or decline
of the transaction has to be computed, and the result has to travel back over the
secure network:

Real-time credit card fraud detection

The challenges such as network latency and delay can be optimized to some extent,
but to achieve the preceding featuring transaction in less than 5 seconds, one has
to design an application that is able to churn a considerable amount of data and
generate results within 1 to 2 seconds.

Aircraft Communications Addressing and
Reporting system
The Aircraft Communications Addressing and Reporting system (ACAR)
demonstrates another typical use case that cannot be implemented without having a
reliable real-time processing system in place. These Aircraft communication systems
use satellite communication (SATCOM), and as per the following figure, they gather
voice and packet data from all phases of flight in real time and are able to generate
analytics and alerts on the data in real time.

Chapter 1

[3]

Let's take the example from the figure in the preceding case. A flight encounters
some real hazardous weather, say, electric Storms on a route, then that information
is sent through satellite links and voice or data gateways to the air controller, which
in real time detects and raises the alerts to deviate routes for all other flights passing
through that area.

Healthcare
Here, let's introduce you to another problem on healthcare.

This is another very important domain where real-time analytics over high volume
and velocity data has equipped the healthcare professionals with accurate and exact
information in real time to take informed life-saving actions.

Let's Understand Storm

[4]

The preceding figure depicts the use case where doctors can take informed action
to handle the medical situation of the patients. Data is collated from historic patient
databases, drug databases, and patient records. Once the data is collected, it is
processed, and live statistics and key parameters of the patient are plotted against the
same collated data. This data can be used to further generate reports and alerts to aid
the health care professionals.

Other applications
There are varieties of other applications where the power of real-time computing can
either optimize or help people make informed decisions. It has become a great utility
and aid in the following industries:

•	 Manufacturing: A real-time defect detection mechanism can help
optimize production costs. Generally, in the manufacturing segment
QC is performed postproduction and there, due to one similar defect
in goods, entire lot is rejected.

•	 Transportation industry: Based on real-time traffic and weather data,
transport companies can optimize their trade routes and save time and
money.

•	 Network optimization: Based on real-time network usage alerts,
companies can design auto scale up and auto scale down systems
for peak and off-peak hours.

Solutions for complex distributed
use cases
Now that we understand the power that real-time solutions can get into various
industry verticals, let's explore and find out what options we have to process vast
amount of data being generated at a very fast pace.

The Hadoop solution
The Hadoop solution is one of the solutions to solve the problems that require
dealing with humongous volumes of data. It works by executing jobs in a
clustered setup.

Chapter 1

[5]

MapReduce is a programming paradigm where we process large data sets by using a
mapper function that processes a key and value pair and thus generates intermediate
output again in the form of a key-value pair. Then a reduce function operates on the
mapper output and merges the values associated with the same intermediate key
and generates a result.

“Th
ere

 w
as

..”

“John was..”

“Hi, John!”

“Crazy”

“Hi, John!”

(“John”,1)

(“Jo
hn”,1

)

(“J
oh

n”
,1

)

(“John”,3)

Result

MAP REDUCE

Big Data

In the preceding figure, we demonstrate the simple word count MapReduce job where
the simple word count job is being demonstrated using the MapReduce where:

•	 There is a huge Big Data store, which can go up to zettabytes or petabytes.
•	 Input datasets or files are split into blocks of configured size and each block

is replicated onto multiple nodes in the Hadoop cluster depending upon the
replication factor.

•	 Each mapper job counts the number of words on the data blocks allocated
to it.

•	 Once the mapper is done, the words (which are actually the keys) and their
counts are stored in a local file on the mapper node. The reducer then starts
the reduce function and thus generates the result.

•	 Reducers combine the mapper output and the final results are generated.

Let's Understand Storm

[6]

Big data, as we know, did provide a solution to processing and generating results out
of humongous volumes of data, but that's predominantly a batch processing system
and has almost no utility on a real-time use case.

A custom solution
Here we talk about a solution that was used in the social media world before we
had a scalable framework such as Storm. A simplistic version of the problem could
be that you need a real-time count of the tweets by each user; Twitter solved the
problem by following the mechanism shown in the figure:

Data
Storage

Queue /
Broker

Here is the detailed information of how the preceding mechanism works:

•	 A custom solution created a fire hose or queue onto which all the tweets
are pushed.

•	 A set of workers' nodes read data from the queue, parse the messages, and
maintain counts of tweets by each user. The solution is scalable, as we can
increase the number of workers to handle more load in the system. But the
sharding algorithm for random distribution of the data among these workers
nodes' should ensure equal distribution of data to all workers.

Chapter 1

[7]

•	 These workers assimilate this first level count into the next set of queues.
•	 From these queues (the ones mentioned at level 1) second level of workers

pick from these queues. Here, the data distribution among these workers is
neither equal, nor random. The load balancing or the sharding logic has to
ensure that tweets from the same user should always go to the same worker,
to get the correct counts. For example, lets assume we have different users—
"A, K, M, P, R, and L" and we have two workers "worker A" and "worker B".
The tweets from user "A, K, and M" always goes to "worker A", and those of
"P, R, and L users" goes to "worker B"; so the tweet counts for "A, K, and M"
are always maintained by "worker A". Finally, these counts are dumped into
the data store.

The queue-worker solution described in the preceding points works fine for our
specific use case, but it has the following serious limitations:

•	 It's very complex and specific to the use case
•	 Redeployment and reconfiguration is a huge task
•	 Scaling is very tedious
•	 The system is not fault tolerant

Licensed proprietary solutions
After an open source Hadoop and custom Queue-worker solution, let's discuss
the licensed options' proprietary solutions in the market to cater to the distributed
real-time processing needs.

The Alabama Occupational Therapy Association (ALOTA) of big companies has
invested in such products, because they clearly see where the future of computing is
moving to. They can foresee demands of such solutions and support them in almost
every vertical and domain. They have developed such solutions and products that let
us do complex batch and real-time computing but that comes at a heavy license cost.
A few solutions to name are from companies such as:

•	 IBM: IBM has developed InfoSphere Streams for real-time ingestion,
analysis, and correlation of data.

•	 Oracle: Oracle has a product called Real Time Decisions (RTD) that
provides analysis, machine learning, and predictions in real-time context

•	 GigaSpaces: GigaSpaces has come up with a product called XAP that
provides in-memory computation to deliver real-time results

Let's Understand Storm

[8]

Other real-time processing tools
There are few other technologies that have some similar traits and features such
as Apache Storm and S4 from Yahoo, but it lacks guaranteed processing. Spark is
essentially a batch processing system with some features on micro-batching, which
could be utilized as real time.

A high-level view of various components
of Storm
In this section, we will get you acquainted with various components of Storm, their
role, and their distribution in a Storm cluster.

A Storm cluster has three sets of nodes (which could be co-located, but are generally
distributed in clusters), which are as follows:

•	 Nimbus
•	 Zookeeper
•	 Supervisor

The following figure shows the integration hierarchy of these nodes:

Nimbus

Zookeeper

Zookeeper

Zookeeper

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Chapter 1

[9]

The detailed explanation of the integration hierarchy is as follows:

•	 Nimbus node (master node, similar to Hadoop-JobTracker): This is the heart
of the Storm cluster. You can say that this is the master daemon process that
is responsible for the following:

°° Uploading and distributing various tasks across the cluster
°° Uploading and distributing the topology jars jobs across

various supervisors
°° Launching workers as per ports allocated on the supervisor nodes
°° Monitoring the topology execution and reallocating workers

whenever necessary
°° Storm UI is also executed on the same node

•	 Zookeeper nodes: Zookeepers can be designated as the bookkeepers in
the Storm cluster. Once the topology job is submitted and distributed from
the Nimbus nodes, then even if Nimbus dies the topology would continue
to execute because as long as Zookeepers are alive, the workable state is
maintained and logged by them. The main responsibility of this component
is to maintain the operational state of the cluster and restore the operational
state if recovery is required from some failure. It's the coordinator for the
Storm cluster.

•	 Supervisor nodes: These are the main processing chambers in the Storm
topology; all the action happens in here. These are daemon processes that
listen and manage the work assigned. These communicates with Nimbus
through Zookeeper and starts and stops workers according to signals
from Nimbus.

Delving into the internals of Storm
Now that we know which physical components are present in a Storm cluster,
let's understand what happens inside various Storm components when a topology
is submitted. When we say topology submission, it means that we have submitted
a distributed job to Storm Nimbus for execution over the cluster of supervisors. In
this section, we will explain the various steps that are executed in various Storm
components when a Storm topology is executed:

•	 Topology is submitted on the Nimbus node.
•	 Nimbus uploads the code jars on all the supervisors and instructs the

supervisors to launch workers as per the NumWorker configuration or
the TOPOLOGY_WORKERS configuration defined in Storm.

www.allitebooks.com

http://www.allitebooks.org

Let's Understand Storm

[10]

•	 During the same duration all the Storm nodes (Nimbus and Supervisors)
constantly co-ordinate with the Zookeeper clusters to maintain a log of
workers and their activities.

As per the following figure, we have depicted the topology and distribution of the
topology components, which are the same across clusters:

In our case, let's assume that our cluster constitutes of one Nimbus node, three
Zookeepers in a Zookeeper cluster, and one supervisor node.

By default, we have four slots allocated to each supervisor, so four workers would
be launched per Storm supervisor node unless the configuration is tweaked.

Let's assume that the depicted topology is allocated four workers, and it has two
bolts each with a parallelism of two and one spout with a parallelism of four.
So in total, we have eight tasks to be distributed across four workers.

So this is how the topology would be executed: two workers on each supervisor
and two executors within each worker, as shown in the following figure:

Chapter 1

[11]

Quiz time
Q.1. Try to phrase a problem statement around real-time analytics in the
following domains:

•	 Network optimization
•	 Traffic management
•	 Remote sensing

Let's Understand Storm

[12]

Summary
In this chapter, you have understood the need for distributed computing by exploring
various use cases in different verticals and domains. We have also walked you through
various solutions to handle these problems and why Storm is the best choice in the
open source world. You have also been introduced to Storm components and the
action behind the scenes when these components are at work.

In the next chapter, we will walk through the setup aspects and you will get
familiarized with programming structures in Storm by simple topologies.

[13]

Getting Started with
Your First Topology

This chapter is dedicated to guiding you through the steps to set up the environment
for the execution of a Storm topology. The intent is to prepare the user sandbox
and get you steered toward executing some of the sample code and understanding
the working of various components. All the concepts will be accompanied by code
snippets and a "try it yourself" section so that you are equipped to understand the
components in a practical manner and are ready to explore and harness the power
of this wonderful technology.

The topics that will be covered in this chapter are as follows:

•	 Storm topology and components
•	 Executing the sample Storm topology
•	 Executing the topology in distributed mode

By the end of the chapter, you will be able to understand the components and data
flow in a topology, understand the simple word count topology, and execute it in
the local and distributed modes. You will also be able to tweak the starter project
topologies to add your own flavor to them.

Getting Started with Your First Topology

[14]

Prerequisites for setting up Storm
The prerequisites for executing the setup and execution steps are enlisted here:

•	 For a local mode setup, you need Maven, Git, Eclipse, and Java
•	 For a distributed setup, you need the following:

°° A Linux or Ubuntu setup or a distributed setup can leverage
PowerShell or Cygwin over their Windows systems

°° Having more than one system or virtual machines using the
VMware player would help

You can refer to the following links and follow the process laid out to set up
the various open source components required to set up Storm and deploy the
components explained in this segment of the book:

•	 For Java, https://java.com/en/download/index.jsp
•	 For Eclipse, https://www.eclipse.org/downloads/
•	 For Cygwin, http://cygwin.com/install.html
•	 For Git, https://help.github.com/articles/set-up-git

Components of a Storm topology
A Storm topology consists of two basic components: a spout and one or more bolts.
These building blocks are tied together using streams; it is over these streams that
endless arrays of tuples flow.

Let's discuss the topology with a simple analogy, as depicted in the diagram and
explained thereafter:

Load Raw Potato

Spout
potato
Tuple

Peeler
unit

Bolt
Peeled potato

Tuple
sliced potato

roasted potato

Roasted Chips

unit

Bolt

Slicer unit
unit

Bolt

Roaster

Tuple

Tuple

https://java.com/en/download/index.jsp
https://www.eclipse.org/downloads/
http://cygwin.com/install.html
https://help.github.com/articles/set-up-git

Chapter 2

[15]

In our example topology, we have a big processing unit for roasted chips where
the input, raw potato, is consumed by the spout, and there are various bolts such
as a peeler bolt, slicer bolt, and roasting bolt that perform the tasks as their name
suggests. There are various assembly lines or workers that move the chips from the
peeler unit to the shredder and beyond; in our case, we have streams to link and wire
in the spout and bolts with each other. Now the basic unit of exchange between the
peeler and shredder is a peeled potato, and between the shredder units and roasting
units is a sliced potato. This is analogous to a tuple, the datum of information
exchange between spouts and bolts.

Let's take a closer look at the building blocks of the Storm topology.

The basic unit of data interchange within Storm is called a tuple;
this is sometimes also referred to as an event.

Spouts
A spout is the collection funnel of a topology; it feeds events or tuples into the
topology. It can be considered as the input source to the Storm processing unit—
the topology.

The spout reads messages from external sources such as a queue, file, port, and
so on. Also, the spout emits them into the stream, which in turn passes them to
the bolts. It's the task of the Storm spout to track each event or tuple throughout
its processing through the Directed Acyclic Graph (DAG). The Storm framework
then sends and generates either acknowledgement or failure notifications based
on the outcome of the execution of tuples in the topology. This mechanism gives
the guaranteed processing feature to Storm. Based on the required functionality,
spouts can be programmed or configured to be reliable or unreliable. A reliable
spout plays back the failed events into the topology.

Getting Started with Your First Topology

[16]

The following diagram depicts the same flow, graphically:

All Storm spouts are implemented to be able to emit tuples on one or more stream
bolts. As in the preceding diagram, a spout can emit tuples to both bolt A and C.

Each spout should implement the IRichSpout interface. The following are important
methods to know in context with spout:

•	 nextTuple(): This is the method that keeps on polling the external source
for new events; for instance, the queue in the preceding example. On every
poll, if the method finds an event, it is emitted to the topology through a
stream, and if there is no new event, the method simply returns.

•	 ack(): This method is called when the tuple emitted by the spout has been
successfully processed by the topology.

•	 fail(): This method is called when a tuple emitted by the spout is not
successfully processed within the specified timeout. In this case, for reliable
spouts, the spout traces and tracks each tuple with the messageIds event,
which are then re-emitted to the topology to be reprocessed. For instance,
in the preceding figure, the failed tuple is emitted again.

For unreliable spouts, the tuples are not tracked using messageIds and the methods
such as ack() and fail() don't hold any value as the spout doesn't track the tuples
for successful processing. These topologies are identified as unreliable.

Chapter 2

[17]

IRichSpout is an interface provided by Storm that provides the details
of the contracts or methods to be implemented by topology spouts.

Bolts
Bolts are the processing units of a topology. They are the components of the topology
that perform one or more of the following tasks:

•	 Parsing
•	 Transformation
•	 Aggregation
•	 Joins
•	 Database interaction

The entire process being performed by the topology is generally divided into smaller
tasks and subtasks, each preferably performed by a different bolt to exploit the power
of the parallel distributed processing of Storm.

Let's look at the following figure that captures a real-time use case where the location
coordinates from various airplanes are tracked and processed to ascertain whether
they are moving on the correct trajectory:

Plane withTracking device

Log
Collection

Server

Broker/Queue

Air controller

Base station
Log

Collection
Server

Log
Collection

Server

spout

parse event bolt

location bolt (extract location co-ordinate bolt)

verify Bolt (verify trajectory as per itenary of flight)

Alert Bolt

Plane withTracking device

Plane withTracking device

Getting Started with Your First Topology

[18]

Here, the flight location coordinates are sent by sensors in the plane, which
are collated at log servers and fed into a Storm topology. The Storm topology is
broken into the following bolts that can act on the tuples emitted by the spout:

•	 The parse event bolt: This bolt filters and transforms the event emitted by
the spout. It converts the information into a decipherable format.

•	 The location bolt: This is the bolt that extracts the location coordinates from
the tuples it receives from the parse bolt and then sends them across to the
next bolt.

•	 The verify bolt: This is the bolt that verifies the location coordinates sent
by the location bolt against the predefined trajectory of the plane, and if it
detects deviation, it sends a tuple to the alert bolt.

•	 The alert bolt: This bolt is the actor that informs the external systems,
such as the air controller in our case, about the anomaly or deviation
detected in the flight path.

Owing to the nature of real-time use cases, such as the one depicted in the preceding
figure, speed and accuracy of computation is of utmost importance, and that's the
reason that makes Storm a strong technological choice for the implementation of
such solutions.

The total processing logic gets broken down into smaller tasks that are executed in
bolts; configuring tasks and parallelism in bolts lets the engineers attain the right
kind of performance for the solution.

One bolt can listen to multiple streams and it can emit to multiple other bolts on
different streams. As depicted in the figure in the Sprouts section:

•	 Bolt-A emits to Bolt-B and Bolt-C
•	 Bolt-D subscribes to streams from Bolt-C and Bolt-B

The common interfaces provided by Storm to be implemented by user-defined bolts
are as follows:

•	 IRichBolt
•	 IBasicBolt

The difference in these two interfaces depends upon whether reliable messaging and
transactional support are required or not.

Chapter 2

[19]

The main methods used by the bolts are as follows:

•	 prepare(): This is the method that is called when the bolt is initialized.
Fundamentally, the Storm topology runs forever and the bolt once initialized
will not terminate till the topology is killed. This method is generally used
to initialize connections and read other static information, which is required
during the entire life cycle of the bolt.

•	 execute(): This is the method that performs the functioning and processing
logic defined on the bolt. It is executed for every tuple.

Streams
Stream can be defined as a sequence of tuples or events that are unbounded by
nature. These streams are generally created in a parallel and distributed manner
across the topology. Streams can be called the wiring or information flow channels
between the spout and bolts. These are carriers of unprocessed, semiprocessed,
and processed information to and from various task-performing components such
as bolts and spouts. Streams are configured while encoding the topology using a
schema that gives names to the fields in the stream's tuple.

Tuples – the data model in Storm
A tuple is the basic and constituent data structure in Storm. It's a named list of
values that starts its journey from the spout. It's then emitted from streams to bolts,
then from bolts to other bolts, where various stages of processing are executed. On
successful completion of all intended processing, as per the topology definition, the
tuples are acked back to the spout.

Executing a sample Storm topology –
local mode
Before we start this section, the assumption is that you have gone through the
prerequisites and installed the expected components.

Getting Started with Your First Topology

[20]

WordCount topology from the Storm-starter
project
To understand the components described in the previous section, let's download the
Storm-starter project and execute a sample topology:

1.	 The Storm-starter project can be downloaded using the following Git
command:
Linux-command-Prompt $ sudo git clone git://github.com/apache/
incubator-storm.git && cd incubator-storm/examples/storm-starter

2.	 Next, you need to import the project into your Eclipse workspace:
1.	 Start Eclipse.
2.	 Click on the File menu and select the Import wizard.
3.	 From the Import wizard, select Existing Maven Projects.

4.	 Select pom.xml in the Storm-starter project and specify it as
<download-folder>/starter/incubator-storm/examples/
storm-starter.

5.	 Once the project has been successfully imported, the Eclipse folder
structure will look like the following screenshot:

Chapter 2

[21]

6.	 Execute the topology using the run command and you should be able
to see the output as shown in the following screenshot:

To understand the functioning of the topology, let's take a look at the code and
understand the flow and functioning of each component in the topology:

// instantiates the new builder object
TopologyBuilder builder = new TopologyBuilder();
// Adds a new spout of type "RandomSentenceSpout" with a
 parallelism hint of 5
builder.setSpout("spout", new RandomSentenceSpout(), 5);

Getting Started with Your First Topology

[22]

Starting with the main function, in the WordCountTopology.java class, we find
the TopologyBuilder object called builder; this is important to understand as
this is the class that provides us with a template to define the topology. This class
exposes the API to configure and wire in various spouts and bolts into a topology
—a topology that is essentially a thrift structure at the end.

In the preceding code snippet, we created a TopologyBuilder object and used the
template to perform the following:

•	 setSpout –RandomSentenceSpout: This generates random sentences.
Please note that we are using a property called parallelism hint, which
is set to 5 here. This is the property that identifies how many instances
of this component will be spawned at the time of submitting the topology.
In our example, we will have five instances of the spout.

•	 setBolt: We use this method to add two bolts to the topology:
SplitSentenceBolt, which splits the sentence into words, and
WordCountBolt, which counts the words.

•	 Other noteworthy items in the preceding code snippet are suffleGrouping
and fieldsGrouping; we shall discuss these in detail in the next chapter; for
now, understand that these are the components that control routing of tuples
to various bolts in the topology.

Executing the topology in the distributed
mode
To set up Storm in distributed mode, we will need to perform the following steps.

Set up Zookeeper (V 3.3.5) for Storm
The coordination of a Storm topology is maintained by a Zookeeper cluster. The
utilization of Zookeeper is not very high, as it just maintains the runnable state of the
Storm cluster. In most cases, a single Zookeeper node should suffice, but in production
scenarios, at least a three-node Zookeeper cluster is recommended so that a single
node doesn't become a single point of failure.

For reliable Zookeeper service, deploy Zookeeper in a cluster known as an ensemble.
As long as the majority of the ensemble is up, the service will be available. One of the
nodes in the ensemble is automatically selected as a leader and others as followers.
If the leader goes down, one of the follower nodes becomes the leader.

Chapter 2

[23]

Perform the following steps on all the machines that will be part of the Zookeeper
ensemble to set up the Zookeeper cluster:

1.	 Download the most recent stable release (version 3.3.5) from the Apache
Zookeeper site.

2.	 Create a zookeeper directory under /usr/local:
sudo mkdir /usr/local/zookeeper

3.	 Extract the downloaded TAR file to the /usr/local location. Use the
following command:
sudo tar -xvf zookeeper-3.3.5.tar.gz -C /usr/local/zookeeper

4.	 Zookeeper needs a directory to store its data. Create /usr/local/
zookeeper/tmp to store this data:
sudo mkdir –p /usr/local/zookeeper/tmp

5.	 Create a configuration file, zoo.cfg, under /usr/local/zookeeper/
zookeeper-3.3.5/conf. The following properties will go in it:

°° tickTime: This is the number of milliseconds of each tick
(for example, 2000).

°° initLimit: This is the number of ticks that the initial synchronization
phase can take (for example, 5).

°° syncLimit: This is the number of ticks that can pass between sending
a request and getting an acknowledgement (for example, 2).

°° dataDir: This is the directory where the snapshot is stored
(for example, /usr/local/zookeeper/tmp).

°° clientPort: This is the port at which the Zookeeper clients will
connect to the port (for example, 2182).

°° server.id=host:port:port: Every machine that is part of the
Zookeeper ensemble should know about every other machine in the
ensemble. This is accomplished with the series of lines of the server.
id=host:port:port form (for example, server.1:<IP_ADDRESS_
OF_ZOOKEEPER_NODE_1>:2888:3888).

6.	 Repeat the preceding steps or copy the distribution to other machines that
will be part of the Zookeeper cluster.

Getting Started with Your First Topology

[24]

7.	 Create a file with the name myid in the directory specified by the datadir
property. The myid file consists of a single line containing only the text of
that machine's ID (1 in the server and 1 in zoo.cfg). So, myid of server 1
will contain the text 1 and nothing else. The ID must be unique within the
ensemble and should have a value between 1 and 255. The path of the myid
file in this case is vi /usr/local/zookeeper/tmp/myid.

8.	 Edit the ~/.bashrc file and add an environment variable for the Zookeeper
home and add its bin directory to the PATH environment variable:

9.	 Source the ~/.bashrc file after making changes. This step is required
to make sure that the changes that are made to bashrc are applied to
the current terminal session:
source ~/.bashrc

10.	 Start the Zookeeper daemon on each node by executing the following
command from $ZOOKEEPER_HOME:
sudo –E bin/zkServer.sh start

11.	 Stop the Zookeeper daemon on each node by executing the following
command from $ZOOKEEPER_HOME:
sudo –E bin/zkServer.sh stop

12.	 The Zookeeper status can be checked by running the following command
from $ZOOKEEPER_HOME:
sudo –E bin/zkServer.sh status

Chapter 2

[25]

The output for the different modes is as follows:

•	 If running in the standalone mode (only a single machine is part of the
Zookeeper ensemble cluster), the following output will be seen on the console:

•	 If running in the clustered mode, the following output is seen on the
leader node:

•	 If running in the clustered mode, the following output is seen on the
follower node:

By default, the Zookeeper log (zookeeper.out) is created at the same location from
where its instance is started. This completes the Zookeeper cluster setup.

Setting up Storm in the distributed mode
Perform the following steps to set up Storm in distributed mode:

1.	 Download the Storm-0.9.2-incubating.zip package from the GitHub
Storm site.

2.	 Create the directories storm and storm/tmp under /usr/local:
sudo mkdir –p /usr/local/storm/tmp

3.	 Create the following directories for logs:
sudo mkdir –p /mnt/abc_logs/storm/storm_logs

Getting Started with Your First Topology

[26]

4.	 Extract the ZIP file on Nimbus and the worker machines from the directory
at /usr/local:
sudo unzip -d /usr/local/storm/ storm-0.9.2 -incubating.zip

5.	 Make the following changes at /usr/local/storm/storm-0.9.2-
incubating/conf/storm.yaml:

°° storm.zookeeper.servers: This is a list of the hosts in the
Zookeeper cluster for the Storm cluster:
storm.zookeeper.servers:
 "<IP_ADDRESS_OF_ZOOKEEPER_ENSEMBLE_NODE_1>"
 "<IP_ADDRESS_OF_ZOOKEEPER_ENSEMBLE_NODE_2>"

°° storm.zookeeper.port: This is the port on which the Zookeeper
cluster is running:
storm.zookeeper.port: 2182

°° storm.local.dir: The Nimbus and the supervisor require a
location on the local disk to store a small amount of data related to
configurations and execution details of the topology. Please make
sure to create the directory and assign read/write permissions on
all Storm nodes. For our installation, we are going to create this
directory in the /usr/local/storm/tmp location:
storm.local.dir: "/usr/local/storm/tmp"

°° nimbus.host: The nodes need to know which machine is the master
in order to download topology jars and confs. This property is used
for this purpose:
nimbus.host: "<IP_ADDRESS_OF_NIMBUS_HOST>"

°° java.library.path: This is the load path for the native libraries that
Storm uses (ZeroMQ and JZMQ). The default of /usr/local/lib:/
opt/local/lib:/usr/lib should be fine for most installations, so
validate the libraries in the previously mentioned locations before
moving forward.

°° storm.messaging.netty: Storm's Netty-based transport has been
overhauled to significantly improve performance through better
utilization of thread, CPU, and network resources, particularly
in cases where message sizes are small. In order to provide Netty
support, the following configurations need to be added:
storm.messaging.transport:"backtype.storm.messaging.netty.
Context"

 storm.messaging.netty.server_worker_threads:1

Chapter 2

[27]

 storm.messaging.netty.client_worker_threads:1
 storm.messaging.netty.buffer_size:5242880
 storm.messaging.netty.max_retries:100
 storm.messaging.netty.max_wait_ms:1000
 storm.messaging.netty.min_wait_ms:100

°° The storm.yaml snippet from our Storm cluster installation is
as follows:
#To be filled in for a storm configuration
storm.zookeeper.servers:
 - "nim-zkp-flm-3.abc.net"
storm.zookeeper.port: 2182
storm.local.dir: "/usr/local/storm/tmp"
nimbus.host: "nim-zkp-flm-3.abc.net"
topology.message.timeout.secs: 60
topology.debug: false
topology.optimize: true
topology.ackers: 4

storm.messaging.transport: "backtype.storm.messaging.netty.
Context"
storm.messaging.netty.server_worker_threads: 1
storm.messaging.netty.client_worker_threads: 1
storm.messaging.netty.buffer_size: 5242880
storm.messaging.netty.max_retries: 100
storm.messaging.netty.max_wait_ms: 1000
storm.messaging.netty.min_wait_ms: 100

6.	 Set the STORM_HOME environment in the ~/.bashrc file and add Storm's bin
directory in the PATH environment variable. This is added to execute Storm
binaries from any location.

7.	 Copy the Storm.yaml file to the bin folder of the Storm installation on the
Nimbus machine using the following command:
sudo cp /usr/local/storm/storm-0.9.2-
 incubating/conf/storm.yaml /usr/local/storm/storm-0.8.2/bin/

Getting Started with Your First Topology

[28]

Launching Storm daemons
Now that the Storm cluster is set, we will be required to start three processes on
respective Storm nodes. They are as follows:

•	 Nimbus: Start Nimbus as the background process on the machine identified
as the master node by running the following command from $STORM_HOME:
sudo –bE bin/storm nimbus

•	 Supervisor: Supervisors can be started in a similar way Nimbus is started.
Run the following command from $STORM_HOME:
sudo –bE bin/storm supervisor

•	 UI: The Storm UI is a web application to check the Storm cluster, which
contains the Nimbus/Supervisor status. It also lists all the running topologies
and their details. The UI can be enabled by using the following command
from $STORM_HOME:
sudo –bE bin/storm ui

The UI can be accessed through http://<IP_ADDRESS_OF_NIMBUS>:8080.

Executing the topology from
Command Prompt
Once the UI is visible and all the daemons are started, the topology can be submitted
on Nimbus using the following command:

storm jar storm-starter-0.0.1-SNAPSHOT-jar-with-dependencies.jar
 storm.starter.WordCountTopology WordCount -c nimbus.host=localhost

The Storm UI with the WordCount topology running in distributed mode is shown
here. It depicts the topology state, uptime, and other details (we shall discuss the
features of the UI in detail in a later chapter). We can kill the topology from the UI.

Chapter 2

[29]

Tweaking the WordCount topology to
customize it
Now that we have deployed the WordCount topology in distributed mode, let's
tweak the code in the bolts a bit to write WordCount onto a file. To achieve this, we
will proceed with the following steps:

1.	 We intend to create a new bolt, FileWriterBolt, to achieve this.
Open WordCountTopology.java and add the following snippet to
WordCountTopology.java:
public static class FileWriterBolt extends BaseBasicBolt {
 Map<String, Integer> counts = new HashMap<String,
 Integer>();

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Your First Topology

[30]

 @Override
 public void execute(Tuple tuple, BasicOutputCollector
 collector) {
 String word = tuple.getString(0);
 Integer count = counts.get(word);
 if(count==null) {count = 0;
 count = 0;
 }
 count++;
 counts.put(word, count);
 OutputStream ostream;
 try {
 ostream = new
 FileOutputStream("~/wordCount.txt", true);
 ostream.write(word.getBytes());
 ostream.close();
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 collector.emit(new Values(word, count));
 }

 @Override
 public void declareOutputFields(OutputFieldsDeclarer
 declarer) {
 declarer.declare(new Fields("word", "count"));
 }

2.	 Next we have to make changes to the main() method to use this new bolt
instead of WordCount Bolt(); here is the snippet:
// instantiates the new builder object
TopologyBuilder builder = new TopologyBuilder();
// Adds a new spout of type "RandomSentenceSpout" with a
 parallelism hint of 5
builder.setSpout("spout", new RandomSentenceSpout(), 5);
//Adds a new bolt to the topology of type "SplitSentence"
 with parallelism of 8
builder.setBolt("split", new SplitSentence(),
 8).shuffleGrouping("spout");
//Adds a new bolt to the topology of type "SplitSentence"
 with parallelism of 8
//builder.setBolt("count", new FileWriterBolt()(),
 12).fieldsGrouping("split", new Fields("word"));

Chapter 2

[31]

3.	 Next, you can execute the topology using Eclipse, run it as Java, and
the output will be saved into a file called wordCount.txt in your home
directory.

4.	 To run in distributed mode, use the following steps:
1.	 Compile the topology changes to generate a new Storm-starter

project using the following command line:
mvn clean install

2.	 Copy storm-starter-0.0.1-SNAPSHOT-jar-with-dependencies.
jar from the target folder under the starter project to Nimbus, let's
say, at /home/admin/topology/.

3.	 Submit the topology using the following command:

storm jar /home/admin/topology/storm-starter-0.0.1-SNAPSHOT-
 jar-with-dependencies.jar storm.starter.WordCountTopology
 WordCount -c nimbus.host=localhost

5.	 The output will be the same as the WordCount topology executed in the
figure in the preceding section.

Quiz time
Q.1. State whether the following statements are true or false:

1.	 All Storm topologies are reliable.
2.	 A topology generally has multiple spouts.
3.	 A topology generally has multiple bolts.
4.	 One bolt can emit on only one stream.

Q.2. Fill in the blanks:

1.	 _______________ is the template to create the topology.
2.	 _______________ specifies how many instances of a particular bolt or spout

are spawned.
3.	 The ___________ daemon of Storm is analogous to the job tracker of Hadoop.

Q.3. Perform the following task:

1.	 Make changes to the WordCount topology of the Storm-starter project to
RandomSentenceSpout so that it's able to read sentences from a file at a
specified location.

Getting Started with Your First Topology

[32]

Summary
In this chapter, we have set up the Storm ensemble. You were introduced to the
various building blocks of a Storm topology such as bolts, spouts, and the wiring
template—topology builder. We executed and understood the WordCount topology
and also made some amendments to it.

In the next chapter, you will read and understand about stream groupings, anchoring,
and acking. That will also lead us to reliable and non-reliable mechanisms in the
topologies under the Storm framework.

[33]

Understanding Storm
Internals by Examples

This chapter of the book is dedicated to making you understand the internals
of Storm and how it works using practical examples. The intent is to get you
accustomed to writing you own spouts, go through reliable and non-reliable
topologies, and acquaint you with various groupings provided by the Storm.

The topics that will be covered in the chapter are as follows:

•	 Storm spouts and custom spouts
•	 Anchoring and acking
•	 Different stream groupings

By the end of this chapter, you should be able to understand the various groupings
and the concept of reliability by using of anchoring, and you will be able to create
your own spouts.

Customizing Storm spouts
You have explored and understood WordCount topology provided by the
Storm-starter project in previous chapters. Now it's time we move on to the
next step, the do it yourself journey with Storm; so let's take up the next leap
and do some exciting stuff with our own spouts that read from various sources.

Understanding Storm Internals by Examples

[34]

Creating FileSpout
Here we will create our own spout to read the events or tuples from a file
source and emit them into the topology; we would substitute spout in place of
RandomSentenceSpout we used in the WordCount topology in the previous chapter.

To start, copy the project we created in Chapter 2, Getting Started with Your First
Topology, into a new project and make the following changes in RandomSentenceSpout
to make a new class called FileSpout within the Storm-starter project.

Now we will make changes in FileSpout so that it reads sentences from a file as
shown in the following code:

public class FileSpout extends BaseRichSpout {
 //declaration section
 SpoutOutputCollector _collector;
 DataInputStream in ;
 BufferedReader br;
 Queue qe;

 //constructor
 public FileSpout() {
 qe = new LinkedList();
 }

 // the messageId builder method
 private String getMsgId(int i) {
 return (new StringBuilder("#@#MsgId")).append(i).toString();
 }

 //The function that is called at every line being read by
 readFile
 //method and adds messageId at the end of each line and then add
 // the line to the linked list
 private void queueIt() {
 int msgId = 0;
 String strLine;
 try {
 while ((strLine = br.readLine()) != null) {
 qe.add((new
 StringBuilder(String.valueOf(strLine))).append("#@#"
 + getMsgId(msgId)).toString());
 msgId++;
 }
 } catch (IOException e) {

Chapter 3

[35]

 e.printStackTrace();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 //function to read line from file at specified location
 private void readFile() {
 try {
 FileInputStream fstream = new
 FileInputStream("/home/mylog"); in =
 new DataInputStream(fstream);
 br = new BufferedReader(new InputStreamReader(in));
 queueIt();
 System.out.println("FileSpout file reading done");
 } catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 }

 //open function that is called at the time of spout
 initialization
 // it calls the readFile method that reads the file , adds
 events
 // to the linked list to be fed to the spout as tuples
 @
 Override
 public void open(Map conf, TopologyContext context,
 SpoutOutputCollector
 collector) {
 _collector = collector;
 readFile();
 }

 //this method is called every 100 ms and it polls the list
 //for message which is read off as next tuple and emit the spout
 to
 //the topology. When queue doesn't have any events, it reads the
 //file again calling the readFile method
 @
 Override
 public void nextTuple() {
 Utils.sleep(100);
 String fullMsg = (String) qe.poll();

Understanding Storm Internals by Examples

[36]

 String msg[] = (String[]) null;
 if (fullMsg != null) {
 msg = (new String(fullMsg)).split("#@#");
 _collector.emit(new Values(msg[0]));
 System.out.println((new StringBuilder("nextTuple done
 ")).append(msg[1]).toString());
 } else {
 readFile();
 }
 }

 @
 Override
 public void ack(Object id) {}

 @
 Override
 public void fail(Object id) {}

 @
 Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));
 }
}

Downloading the example code
You can download the example code files for all the Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Tweaking WordCount topology to use FileSpout
Now we need to fit FileSpout into our WordCount topology and execute it. To do
this, you need to change one line of code in WordCount topology and instantiate
FileSpout instead of RandomSentenceSpout in TopologyBuilder, as shown here:

public static void main(String[] args) throws Exception {
 TopologyBuilder builder = new TopologyBuilder();
//builder.setSpout("spout", new RandomSentenceSpout(), 5);
 builder.setSpout("spout", new FileSpout(), 1);

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 3

[37]

This one line change will take care of instantiation of the new spout that will read
from the specified file /home/mylog (please create this file before you execute the
program). Here is a screenshot of the output for your reference:

The SocketSpout class
As a next step to understand the spouts better, let's create a SocketSpout class.
Assuming that you are proficient in writing Socket Server or Producer, I will walk
you through the process of creating a custom SocketSpout class to consume a
socket output in the Storm topology:

public class SocketSpout extends BaseRichSpout{
 static SpoutOutputCollector collector;
 //The socket
 static Socket myclientSocket;
 static ServerSocket myserverSocket;
 static int myport;

 public SocketSpout(int port){
 myport=port;
 }

 public void open(Map conf,TopologyContext context,
 SpoutOutputCollector collector){
 _collector=collector;
 myserverSocket=new ServerSocket(myport);
 }

Understanding Storm Internals by Examples

[38]

 public void nextTuple(){
 myclientSocket=myserverSocket.accept();
 InputStream incomingIS=myclientSocket.getInputStream();
 byte[] b=new byte[8196];
 int len=b.incomingIS.read(b);
 _collector.emit(new Values(b));
 }
}

Anchoring and acking
We have talked about DAG that is created for the execution of a Storm topology.
Now when you are designing your topologies to cater to reliability, there are two
items that needs to be added to Storm:

•	 Whenever a new link, that is, a new stream is being added to the DAG,
it is called anchoring

•	 When the tuple is processed in entirety, it is called acking

When Storm knows these preceding facts, then during the processing of tuples it
can gauge them and accordingly fail or acknowledge the tuples depending upon
whether they are completely processed or not.

Let's take a look at the following WordCount topology bolts to understand the
Storm API anchoring and acking better:

•	 SplitSentenceBolt: The purpose of this bolt was to split the sentence into
different words and emit it. Now let's examine the output declarer and the
execute methods of this bolt in detail (specially the highlighted sections)
as shown in the following code:
 public void execute(Tuple tuple) {
 String sentence = tuple.getString(0);
 for(String word: sentence.split(" ")) {
 _collector.emit(tuple, new Values(word)); //1
 }
 _collector.ack(tuple); //2
 }
 public void declareOutputFields(OutputFieldsDeclarer
 declarer) {
 declarer.declare(new Fields("word")); //3
 }
}

Chapter 3

[39]

The output declarer functionality of the preceding code is elaborated as follows:

•	 _collector.emit: Here each tuple being emitted by the bolt on the stream
called word (the second argument) is anchored using the first argument
of the method (the tuple). In this arrangement, if a failure occurs the tuple
being anchored at the root of the tree would be replayed by the spout.

•	 collector.ack: Here we are informing Storm that tuple has been processed
successfully by this bolt. In the event of a failure, the programmer can
explicitly call a fail method, or Storm internally calls it, as in the case of
timeout events so that it can be replayed.

•	 declarer.declare: This is the method called to specify the stream on which
successfully processed tuples would be emitted. Notice that we have used
the same word stream in the _collector.emit method. Similarly, if you look
into the WordCount topology's Builder method, you'd find another piece in
overall integration of word stream, which is as follows:
 builder.setBolt("count", new WordCount(),
 12).fieldsGrouping("split", new Fields("word"));

The unreliable topology
Now let's look at the unreliable version of the same topology. Here, if the tuple fails
to be processed by Storm in entirety, it is not replayed by the framework. The code
which we used previously, in this topology, would look like this:

java _collector.emit(new Values(word));

Thus, an un-anchored tuple is emitted by the bolt. Sometimes, due to programming
needs to handle various problems, developers deliberately create unreliable topologies.

Stream groupings
Next we need to get acquainted with various stream groupings (a stream grouping
is basically the mechanism that defines how Storm partitions and distributes the
streams of tuples amongst tasks of bolts) provided by Storm. Streams are the basic
wiring component of a Storm topology, and understanding them provides a lot of
flexibility to the developer to handle various problems in programs efficiently.

Understanding Storm Internals by Examples

[40]

Local or shuffle grouping
Local or shuffle grouping is the most common grouping that randomly distributes
the tuples emitted by the source ensuring equal distribution, that is, each instance of
the bolt gets to process the same number of events. Load balancing is automatically
taken care of by this grouping.

Due to the random nature of distribution of this grouping, it's useful only for atomic
operations by specifying a single parameter—source of stream. The following snippet
is from WordCount topology (which we reated earlier), which demonstrates the usage
of shuffle grouping:

TopologyBuilder myBuilder = new TopologyBuilder();
builder.setSpout("spout", new RandomSentenceSpout(), 5);
builder.setBolt("split", new SplitSentence(),
 8).shuffleGrouping("spout");
builder.setBolt("count", new WordCount(),
 12).fieldsGrouping("split", new Fields("word"));

In the following figure, shuffle grouping is depicted:

Here Bolt A and Bolt B both have a parallelism of two, each; so two instances of each
of these bolts is spawned by the Storm framework. These bolts are wired together by
shuffle grouping. We will now discuss the distribution of events.

Chapter 3

[41]

The 50 percent events from Instance 1 of Bolt A would go to Instance 1 of Bolt B,
and the remaining 50 percent would go to Instance 2 of Bolt B. Similarly, 50 percent
of events emitted by Instance 2 of Bolt B would go to Instance 1 of Bolt B, and the
remaining 50 percent would go to Instance 2 of Bolt B.

Fields grouping
In this grouping, we specify two parameters—the source of the stream and the
fields. The values of the fields are actually used to control the routing of the tuples
to various bolts. This grouping guarantees that for the same field's value, the tuple
will always be routed to the same instance of the bolt.

In the following figure, field grouping is depicted between Bolt A and Bolt B, and
each of these bolts have two instances each. Notice the flow of events based on the
value of the field grouping parameter.

All the events from Instance 1 and Instance 2 of Bolt A, where the value of Field is
P are sent to Instance 1 of Bolt B.

All the events from Instance 1 and Instance 2 of Bolt A, where the value of Field is
Q are sent to Instance 2 of Bolt B.

All grouping
All grouping is a kind of broadcaster grouping that can be used in situations where
the same message needs to be sent to all instances of the destination bolt. Here, each
tuple is sent to all the instances of the bolt.

Understanding Storm Internals by Examples

[42]

This grouping should be used in very specific cases, for specific streams, where
we want the same information to be replicated to all bolt instances downstream.
Let's take a use case that has some information related to a country and its currency
value and the bolts following the bolt, which does need this information for some
currency conversion. Now whenever currency bolt has any changes, it uses all
grouping to publish it to all the instances of the following bolts:

Here we have a diagrammatic representation of all grouping, where all the tuples
from Bolt A are sent to all the instances of Bolt B.

Global grouping
Global grouping makes sure that the entire stream from the source component
(spout or bolt) goes to a single instance of target bolt, to be more precise and specific
to the instance of the target bolt with the lowest ID. Well let's understand the concept
with an example, let's say my topology is as follows:

mySpout myboltA myboltB

I will assign the following parallelism to the components:

mySpout (2) myboltA (3) myboltB (2)

Also, I will use the following stream groupings:

mySpout (2) (shuffle grouping) myboltA (3) (global grouping) myboltB (2)

Chapter 3

[43]

Then, the framework will direct all data from the myboltA stream instances, that
are emitting onto one instance of myboltB stream, which would be the one to which
Storm has assigned a lower ID while instantiation:

As in the preceding figure, in the case of global grouping, all tuples from both
instances of Bolt A would go to Instance 1 of Bolt B, assuming it has a lower ID
than Instance 2 of Bolt B.

Storm basically assigns IDs to each instance of a bolt or
spout that it creates in the topology. In global grouping,
the allocations are directed to the instance that has a
lower value on the ID allocated from Storm.

Custom grouping
Storm, being an extendible framework, provides the facility to developers to create
their own stream grouping. This can be done by providing an implementation to the
backtype.storm.grouping.CustomStreamGroupinginterface class.

Direct grouping
In this kind of grouping, the Storm framework provides the ability to the sender

component (spout or bolt) to decide which task of the consumer bolt would receive
the tuple while the sender component is emitting a tuple to the stream.

The tuple must be emitted to the stream using a special emitDirect method to the
stream, and the task of consuming a component has to be specified (note that the
tasked can be fetched using the TopologyContext method).

Understanding Storm Internals by Examples

[44]

Quiz time
Q.1 State whether the following statements are true or false:

1.	 All components of reliable topologies use anchoring.
2.	 In the event of a failure, all the tuples are played back again.
3.	 Shuffle grouping does load balancing.
4.	 Global grouping is like a broadcaster.

Q.2 Fill in the blanks:

1.	 _______________ is the method to tell the framework that the tuple has been
successfully processed.

2.	 The _______________ method specifies the name of the stream.
3.	 The ___________ method is used to push the tuple downstream in the DAG.

Make changes to WordCount topology of the Storm-starter project to create a custom
grouping so that all words starting from a particular letter always go to same instance
of the WordCount bolt.

Summary
In this chapter, we have understood the intricacies of the Storm spout. We also created
a custom file spout and integrated it with WordCount topology. We also introduced
you to the concepts of reliability, acking, and anchoring. The knowledge of various
groupings provided by the current version of Storm further enhance the capabilities
of a user to explore and experiment.

In the next chapter, we shall get you acquainted with the clustered setup of Storm as
well as give you an insight on various monitoring tools of clustered mode.

[45]

Storm in a Clustered Mode
We have now arrived at the next step in our journey with Storm, that is, to understand
the clustered mode setup of Storm and its associated components. We will go through
the various configurations in Storm and Zookeeper, and understand the concepts
behind them.

The topics that will be covered in this chapter are as follows:

•	 Setting up the Storm cluster
•	 Understanding the configuration of the cluster and its impact on the

functioning of the system
•	 The Storm UI and understanding the UI parameters
•	 Provisioning and monitoring applications for production setups

By the end of the chapter, you should be able to understand configurations of Storm
and Zookeeper nodes. Also, you should be able to understand the Storm UI and set
up Storm clusters and monitor them using various tools.

The Storm cluster setup
Depicted in the following figure is the Storm and Zookeeper reference cluster that
we set up in Chapter 2, Getting Started with Your First Topology.

We have three-node Zookeeper clusters for a three-node Storm cluster (which has
one Nimbus and two supervisors).

We are using the recommended three-node Zookeeper clusters to avoid a single
point of failure in the Storm set up.

Storm in a Clustered Mode

[46]

The Zookeeper cluster should have an odd number of nodes. The reason for this
requirement is that the Zookeeper election logic requires the leader to have an odd
number of votes, and that combination is possible only when odd nodes are in the
quorum, as shown in the following figure:

Zookeeper configurations
Let's assume you have installed Zookeeper on all three Zookeeper nodes; now we
will walk you through the configurations so that you have a better understanding
of them.

An excerpt from zoo.cfg, in our case, is located at <zookeeper_installation_
dir>/ zookeeper-3.4.5/conf/. The Zookeeper configurations are as follows:

•	 dataDir=/usr/local/zookeeper/tmp: This is the path where Zookeeper
stores its snapshots; these snapshots are actually the state log where the
current cluster state is maintained for the purpose of coordination. In the
event of a failure, these snapshots are used to restore the cluster to the last
stable state. This directory also contains a file containing a single entry called
myID. This value starts from 1 and is different for each Zookeeper node, so
we will keep it as follows:
zkp-1.mydomain.net – value of myId =1
zkp-2.mydomain.net – value of myId =2
zkp-3.mydomain.net – value of myId =3

Chapter 4

[47]

Whenever you want to start from scratch, or when you upscale or downscale
Storm or Zookeeper clusters, it is recommended that you clean up this
local.dir file so that stale data is cleared.

•	 clientPort=2182: This configuration specifies the port on which the clients
build connections with Zookeeper:
server.1=zkp-1.mydomain.net:2888:3888
server.2=zkp-2. mydomain.net:2888:3888
server.3=zkp-3. mydomain.net:2888:3888

These three rows in the preceding code actually specify the IP or the names
of the servers that form a part of the Zookeeper cluster. In this configuration,
we have created the three-node Zookeeper cluster.

•	 maxClientCnxns=30l: This number specifies the maximum number of
connections a single client can make with this Zookeeper node. Here is
how the calculation will go in our case:
The max number of connections one supervisor can make is 30 with one
Zookeeper node. So, the maximum number of connections one supervisor
can create with three Zookeeper nodes is 90 (that is, 30*3).

The following screenshot shows a capture from the Storm UI depicting the used,
available, and free slots:

The number of workers in the Storm cluster is related to the number of
connections available in the Zookeeper cluster. If you don't have sufficient
Zookeeper cluster connections, Storm supervisors will not be able to start.

Cleaning up Zookeeper
We have seen how Zookeeper stores all its coordination data in the form of
snapshots in the path specified in the dataDir configuration. This requires periodic
clean up or archival to remove old snapshots so that we don't end up consuming the
entire disk space. Here is a small cleanup script that needs to be configured on all
Zookeeper nodes:

numBackUps=3
dataDir=/usr/local/zookeeper/tmp

Storm in a Clustered Mode

[48]

logDir=/mnt/my_logs/
echo `date`' Time to clean up StormZkTxn logs' >>
 $logDir/cleanStormZk.out
java -cp /usr/local/zookeeper/zookeeper-3.4.5/zookeeper-
 3.4.5.jar:/usr/local/zookeeper/zookeeper-3.4.5/lib/log4j-
 1.2.15.jar:/usr/local/zookeeper/zookeeper-3.4.5/lib/slf4j-api-
 1.6.1.jar org.apache.zookeeper.server.PurgeTxnLog $dataDir -n
 $numBackUps >> $logDir/cleanStormZk.out

Here we have the cleanup script as follows:

•	 numBackUps: Here we specify how many snapshots we want to retain
after cleanup; the minimum is three and the maximum can vary as per
requirements.

•	 dataDir: Here we specify the path of the data directory where snapshots
need to be cleaned up.

•	 logDir: This is the path where the clean up script will store its logs.
•	 org.apache.zookeeper.server.PurgeTxnLog: This is the utility class that

purges all snapshots except the last three, as mentioned in numBackups.

Storm configurations
We will look at the Storm daemons and configurations around the daemons.
For the Nimbus node, we have the following configuration settings in storm.yaml.
Let's understand these configurations as given in the following code:

storm.zookeeper.servers:
- "zkp-1.mydomain.net "
- "zkp-2.mydomain.net "
- "zkp-3.mydomain.net "

storm.zookeeper.port: 2182
storm.local.dir: "/usr/local/storm/tmp"
nimbus.host: "nim-zkp-flm-3.mydomain.net"
topology.message.timeout.secs: 60
topology.debug: false

supervisor.slots.ports:
 - 6700
 - 6701
 - 6702
 - 6703

Chapter 4

[49]

The functions of the configurations used in the preceding code are as follows:

•	 storm.zookeeper.servers: Here we specify the names or IPs of the
Zookeeper servers from the Zookeeper cluster; note that we are using
the same host names as mentioned in the zoo.cfg configuration in the
previous section.

•	 storm.zookeeper.port: Here we specify the port on the Zookeeper node
to which the Storm nodes connect. Again, we specified the same port that
we had specified on zoo.cfg in the previous section.

•	 storm.local.dir: Storm has its own temporary data that is stored in a
local directory. This data is automatically cleaned up, but whenever you
want to start from scratch, or when you upscale or downscale the Storm or
Zookeeper clusters, it is recommended that you clean up this local.dir
configuration so that stale data is cleared.

•	 nimbus.host: This specifies the hostname or IP of the hostname that is
being set as Nimbus.

•	 topology.message.timeout.secs: This value specifies the duration in
seconds after which a tuple being processed by the topology is declared
as timed out and discarded. Thereafter, depending upon whether it's a
reliable or unreliable topology, it's replayed or not. This value should be
set cautiously; if set too low, all messages will end up being timed out. If it
is set too high, one may never get to know the performance bottlenecks in
the topology.

•	 topology.debug: This parameter denotes whether you want to run the
topology in the debug mode or node. The debug mode is when all the
debug logs are printed, and it is recommended in the development and
staging mode, but not in the production mode because I/O is very high
in this mode and thus hits the overall performance.

•	 supervisor.slots.ports: This parameter specifies the ports for the
supervisor workers. This number directly ties to the number of workers that
can be spawned on the supervisor. When topologies are spawned, one has to
specify the number of workers that are to be allocated, which in turn ties to
actual resources allocated to the topology. The number of workers is really
important because they actually identify how many topologies can run on
the cluster and in turn how much parallelism can be achieved. For example,
by default, we have four slots per supervisor, so in our cluster, we will have
Total number of slots/workers = 4*2 = 8. Each worker takes a certain number of
resources from the system in terms of CPU and RAM, so how many workers
are spawned on the supervisor depends on the system configuration.

Storm in a Clustered Mode

[50]

Storm logging configurations
Now we will have a look at the logging configurations of Storm. They use the
logback implementation of Log4J and its configurations can be found and tweaked
from cluster.xml located at <storm-installation-dir>/apache-storm-0.9.2-
incubating/logback using the following code:

<appender name="A1"
 class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${storm.log.dir}/${logfile.name}</file>
 <rollingPolicy
 class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
 <fileNamePattern>${storm.log.dir}/${logfile.name}.%i</
fileNamePattern
 >
 <minIndex>1</minIndex>
 <maxIndex>9</maxIndex>
 </rollingPolicy>

 <triggeringPolicy
 class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
 <maxFileSize>100MB</maxFileSize>
 </triggeringPolicy>

 <encoder>
 <pattern>%d{yyyy-MM-dd HH:mm:ss} %c{1} [%p] %m%n</pattern>
 </encoder>
 </appender>

 <root level="INFO">
 <appender-ref ref="A1"/>
 </root>

Chapter 4

[51]

In the preceding snippet, a few sections are highlighted, which we will walk through
for a closer look. They are as follows:

•	 <file>: This tag holds the log directory path and the filename on which the
logs are generated by the Storm framework.

•	 <filenamepattern>: This is the pattern in which files are formed and rolled
over; for example, with the preceding code pattern, we have worker log files
as worker-6700.log and worker-6700.1.log.

•	 <minIndex> and <maxIndex>: These are very important in order to specify
how many files we want to retain with this rolling appender; in this case, we
will have nine backup files, which are numbered from one to nine, and one
running log file.

•	 maxFileSize: This parameter specifies at what size the file should rollover,
for instance, in our case, it's 100 MB; this means the worker log file will roll
over to the next index when it reaches this size.

•	 root level: This specifies the logging level; in our case, we have specified it
as Info, which means Info and the above logs will be printed in the log files,
but logs from levels below the Info level will not be written to the logs. The
following is the logging level hierarchy for reference:

°° OFF

°° FATAL

°° ERROR

°° WARN

°° INFO

°° DEBUG

°° TRACE

°° ALL

Storm in a Clustered Mode

[52]

The Storm UI
Storm provides a UI that can be accessed to check various parameters in the Storm
configuration and topology metrics. In this section, we will understand the various
components of the Storm UI.

The following screenshot depicts the landing page of the Storm UI. The details of
various sections are captured in the figure itself:

The following screenshot is a deeper look at the Storm UI; here we are looking at the
UI projection for a particular topology:

Chapter 4

[53]

I have demarcated sections on the preceding screenshot; let's discuss them in detail
so that you understand each of them completely.

Section 1
This section holds the summary of the topologies running in the Storm cluster.
Here are details of various attributes captured in this section:

•	 Topology Name: This is specified when submitting the topology. You can
refer to the WordCountTopology.java file, which we created earlier. The
following snippet, word-count, is the name of that topology:
cluster.submitTopology("word-count", conf,
 builder.createTopology());

In our preceding sample screenshot, AAA-topology-1407803669812 is the
name of the topology.

•	 ID: This is the Storm-generated unique ID that is a combination of the
topology name, timestamp, and ID, which is used by Storm to identify
and differentiate the topology.

•	 Status: This denotes the state of the topology, which could be active for a live
topology, killed when a topology is killed using the UI or CLI, inactive for a
deactivated topology, and rebalancing for a topology where the rebalance
command is executed wherein the number of workers allocated to the
topology is increased or decreased.

Storm in a Clustered Mode

[54]

•	 Uptime: As the name suggests, this mentions the duration for which the
topology has been running. For example, our sample topology has been
running for 8 days 15 hours 6 months 16 seconds.

•	 Num workers: This specifies how many workers are allocated to the
topology. Again, if we refer to WordCountTopology.java, we will see
this snippet where it is declared as 3:
conf.setNumWorkers(3);

•	 Num executors: This specifies the sum total of the number of executors in
the topology. This is connected to the parallelism hint that is specified during
the overall integration of the topology in the topology builder as follows:
builder.setSpout("spout", new RandomSentenceSpout(), 5);

Here, in our WordCount topology, we have specified the parallelism of the
spout as 5, so five instances of the spout will be spawned in the topology.

•	 Num tasks: This gains the sum total of another parameter that is specified
at the time of overall integration in the topology, as shown:
builder.setSpout("spout", new RandomSentenceSpout(),
 5).setNumTasks(10);

Here, we are specifying that for 5 executors dedicated to the spout,
the total value of numtasks is 10, so two tasks each will be spawned
on each of the executors.
What we see on the UI is a total of all numtasks values across all
topology components.

Section 2
This section holds the various actions that can be performed on the topology:

•	 Activate: The UI provides a facility to revive or reactivate a topology that
has been suspended earlier. Once activated, it can again start consuming
the messages from the spout and process them.

•	 Deactivate: When this action is executed, the topology immediately turns
off the spout, that is, no new messages are read from the spout and pushed
downstream to the DAG. Existing messages that are already being processed
in various bolts are processed completely.

•	 Rebalance: This action is executed when the worker allocation to a live
topology is altered.

Chapter 4

[55]

•	 Kill: As the name suggests, this is used to send a termination signal for
the topology to the Storm framework. It's always advisable to provide a
reasonable kill time so that the topology drains completely and is able to
clean the pipelined events before it terminates.

Section 3
This section displays a capture of the number of messages processed on the timeline.
It has the following key sections:

•	 Window: This field specifies the time duration in the following segments:
last for 10 minutes, last 3 hours, the past day, or all the time. The topology's
progress is captured against these time sections.

•	 Emitted: This captures the number of tuples emitted by the spout at various
time segments.

•	 Transferred: This specifies the number of tuples sent to other components
in the topology. Please note that the number of emitted tuples may or may
not be equal to the number of transferred tuples as the former is the exact
number of times the emit method of the spout is executed, while the latter
is the number transferred based on the grouping used; for example, if we
have bound a spout to a bolt that has the parallelism of two tuples using
all grouping, then for every x tuples emitted by the spout, 2x tuples will
be transferred.

•	 Complete latency(ms): This is the average total time taken by a tuple to
execute throughout the topology.

•	 Acked: This holds the number of events acked that are successfully processed.
•	 Failed: This is the number of events that failed to process successfully.

Section 4
This section is the same as Section 3, the only difference being that here, the terms
are displayed at a component level, that is spouts and bolts, while in Section 3, it
was at the topology level. There are a few more terms on the UI that you should be
introduced to. They are as follows:

•	 Capacity: This is one of the most important metrics to look at when fine-
tuning the topology. It indicates the percentage of time the bolt spent in the
last ten minutes to execute the tuple. Any value close to one or above is an
indication to increase the parallelism of this bolt. It's calculated using the
following formula:
Capacity = (Number of tuples Executed*Average execute
 latency)/Window_Size*1000)

Storm in a Clustered Mode

[56]

•	 Execute latency: This is the average time a tuple spends in the execute
method of the bolt during processing.

•	 Process latency: Process latency is the average time it takes from when the
tuple is received by the bolt to the time when it's acked (acknowledged to
denote successful processing).

The visualization section
One of the improvements in Storm 0.9.2 is visual depiction of the topology.
The following figure is the depiction of a sample topology in the Storm UI:

my_cass_bolt

my_summary_bolt

DB_bolt

write_cassandra_bolt

my_alert

calculate_bolt

my_parser_bolt

filter_bolt

my_segregator_boltAMQP_Spout

270.00ms

VOICE: 0: 0%

TAP: 0: 0%

default: 0: 0%

default: 0: 0%

default: 0: 0%

default: 0: 0%

email_alert: 0: 0%

aerCloud_alert: 0: 0%

In the preceding screenshot, you can see all the streams visually labeled by various
bolts and spouts on the topology along with latency and other key attributes.

The Storm UI provides a very rich interface where the user can start from a very high
level and drill down deeper in specific areas, as you can see in the screenshot in The
Storm cluster setup section where we discussed the Storm cluster level attributes; in the
second level, we moved to a specific topology. Next, within a topology, you can click
on any bolt or worker and the component level details will be presented to you. One
item as highlighted in the following screenshot is of high importance for debugging
and log deciphering in cluster setup—the worker ID. If some component spout or bolt
is giving us issues and we want to understand the working, the first place to look is
the logs. To be able to look at logs, one needs to know where the troublesome bolt is
executing which supervisor and which worker; this can be inferred by drilling on that
component and looking into the executor section as follows:

Chapter 4

[57]

The Storm UI capturing the supervisor port

Here, the host tells you which supervisor this component is running on and the
port tells you about the worker, so if I want to look for logs of this component,
I will look into logdir for sup-flm-dev-1.mydomain.net in the log directory
under worker-6711.log.

Storm monitoring tools
The clustered setup of the likes of Storm need constant monitoring, because they
are generally developed to support real-time systems wherein downtime could
be of concern for Service Level Agreement (SLA). A lot of tools are available on
the market that could be used to monitor the Storm cluster and to raise an alert.
Some of the Storm monitoring tools are as follows:

•	 Nagios: This is a very powerful monitoring system that can be extended
to generate e-mail alerts. It can monitor various processes and system KPIs
and can be tweaked by writing custom scripts and plugins to restart certain
components in the event of a failure.

Nagios service console

Storm in a Clustered Mode

[58]

In the preceding screenshot of a Storm cluster with Nagios monitoring, you
can see various processes and other system level KPIs that can be monitored
such as CPU, memory, latency, HDD usage, and so on.

•	 Ganglia: This is another widely used open source tool that lets you set up a
monitoring framework for Storm clusters.

As seen in the preceding screenshot, we have a lot of drill-down options; we
can see load and CPU level details as well as other system and cluster level
KPIs to capture and plot out the cluster health.

•	 SupervisorD: This is another open source monitoring system that is widely
used in conjunction with Storm to capture and retain the health of the cluster.
SupervisorD also helps in provisioning and starting the Storm services and it
can be configured to restart them in case of any failures.

Chapter 4

[59]

•	 Ankush: This is another provisioning and monitoring system that could
be used for Storm and other big data cluster setup and management. It
has both paid and open source versions (https://github.com/impetus-
opensource/ankush). It has the following salient features:

Pr
ov

is
io

ni
ng

Environment supported by this application

Physical nodes

Virtual nodes on Cloud (AWS or On-Premise)
Single technology clusters
Multi-technology clusters
Template-based cluster creation
Redeploy an erred cluster
Rack support
 Enhanced node validation before deployment

M
on

ito
ri

ng

Heat maps
Service monitoring
Technology-based monitoring
Rich graphs
Alerts and notifications for key events
Centralized log view
Audit trail
Alerts on dashboard and e-mails

https://github.com/impetus-opensource/ankush
https://github.com/impetus-opensource/ankush

Storm in a Clustered Mode

[60]

The following screenshot is a dashboard screenshot of Ankush. All the system level
KPIs such as CPU, load, network, memory, and so on are very well captured.

Quiz time
Q.1. State whether the following statements are true or false:

1.	 The Storm configurations are stored in cluster.xml.
2.	 We can have only four workers allocated per supervisor.
3.	 The Zookeeper cluster always has an odd number of nodes.

Chapter 4

[61]

4.	 Zookeeper needs a minimum of three snapshots to recover its state
from failure.

5.	 A topology can continue to execute if Nimbus and the supervisor dies.

Q.2. Fill in the blanks:

1.	 _______________ is the average time a tuple takes to get processed and acked.
2.	 _______________ is the average time a tuple spends in the execute method.
3.	 The ____________ component is responsible for the recovery of the Storm

cluster in the event of a failure.

Q.3. Execute the WordCount topology on a three-node Storm cluster (one Nimbus
and two supervisors) and then perform the following tasks:

•	 Kill the Nimbus node while the topology is running—observe that the
topology will not fail; it will continue unaffected.

•	 Kill the supervisor while the topology is running—observe that the
topology does not fail, it will continue unaffected. The workers will
continue to execute with Zookeeper co-ordination.

•	 Try various operations such as rebalance and deactivate from the Storm UI.

Summary
In this chapter, you got a detailed understanding of the Storm and Zookeeper
configurations. We explored and walked you through the Storm UI and its
attributes. Having done the cluster setup, we briefly touched upon various
monitoring tools available for operational production support in Storm.

In the next chapter, we will get you introduced to RabbitMQ and its integration
with Storm.

[63]

Storm High Availability
and Failover

This chapter takes you to the next level in your journey through Storm, where we get
you acquainted with the integration of Storm with other necessary components in the
ecosystem. We will cover the concepts of high availability and reliability, practically.

This chapter is the next step in understanding the clustered mode setup of Storm and
its associated components. We will understand the various configurations in Storm
and Zookeeper and the concept behind them.

The topics that will be covered in this chapter are as follows:

•	 Setting up RabbitMQ (single instance and clustered mode)
•	 Developing the AMQP spout to integrate Storm and RabbitMQ
•	 Creating a RabbitMQ feeder component
•	 Building high availability for RabbitMQ and the Storm cluster
•	 The Storm schedulers

By the end of this chapter, you will be able to set up and understand RabbitMQ and
integrate Storm with RabbitMQ. Also, you will be able to test high availability and
guaranteed processing of the Storm cluster.

Storm High Availability and Failover

[64]

An overview of RabbitMQ
The punch line that goes for RabbitMQ is Messaging that just works.

RabbitMQ is one of the most widely used implementations of the AMQP messaging
protocol that provides a platform for message receipt and delivery. This in-memory
queue also has the capacity to hold and retain messages till they are consumed by a
consumer. This flexible brokering system is very easy to use and works on most of
the operating systems such as windows, UNIX, and so on.

RabbitMQ is an implementation of the Advanced Message Queuing Protocol
(AMQP). As depicted in the following figure, the vital components of RabbitMQ
are exchange and Queue:

Publisher

RabbitMQ

exchange Queue
Consumer

The publisher and the consumer are two essential actors; the former generates the
messages and publishes them to the exchange, which in turn (depending upon its
type) publishes the message from the publisher to the queue and from the queue to
the consumer, who picks up the message.

The point to note is that here the publisher interacts with the exchange and not the
queue. There are various kinds of exchanges that RabbitMQ supports such as direct,
fanout, topic, and so on. The task of the exchange is to route the message to one or
more queues depending upon the type of exchange and the routing key associated
with the message. So if it's a direct exchange, the message will be delivered to one
queue bound to the exchange with the routing key matching the one in the message.
If it's a fanout exchange, then the message is delivered to all the queues bound to the
exchange, and the routing is totally ignored.

Installing the RabbitMQ cluster
RabbitMQ is a messaging broker—an intermediary for messaging. It gives your
applications a common platform to send and receive messages, and your messages
a safe place to live until they are received.

Chapter 5

[65]

Prerequisites for the setup of RabbitMQ
Make sure you have taken care of the fact that short names are also included in the
/etc/hosts file as shown in the following code:

<ip address1> <hostname1> <shortname1>
<ip address2> <hostname2> <shortname2>

Short names in /etc/hosts are mandatory because in a
RabbitMQ cluster, the internode communication happens
using these short names.

For example, we have two machines in our cluster with the following mentioned IPs
and hostnames; this information is used by the RabbitMQ daemons while starting
the cluster:

10.191.206.83 rmq-flc-1.mydomain.net rmq-flc-1
10.73.10.63 rmq-flc-2.mydomain.net rmq-flc-2

If the short names are not set, you will see this error: System NOT running to use
fully qualified hostnames.

Setting up a RabbitMQ server
Ubuntu ships with RabbitMQ but it's often not the latest version. The latest version
can be retrieved from RabbitMQ's Debian repository. The following shell script
should be run for the RabbitMQ installation on Ubuntu:

#!/bin/sh
sudo cat <<EOF > /etc/apt/sources.list.d/rabbitmq.list
sudo deb http://www.rabbitmq.com/debian/ testing main
EOF

sudo curl http://www.rabbitmq.com/rabbitmq-signing-key-public.asc -o
 /tmp/rabbitmq-signing-key-public.asc
sudo apt-key add /tmp/rabbitmq-signing-key-public.asc
sudo rm /tmp/rabbitmq-signing-key-public.asc

sudo apt-get -qy update
sudo apt-get -qy install rabbitmq-server

Storm High Availability and Failover

[66]

Testing the RabbitMQ server
The following steps will get you the commands that are to be executed on the
Ubuntu terminal to start the RabbitMQ server and test it. They are as follows:

1.	 Start the RabbitMQ server by running the following command on the shell:
sudo service rabbitmq-server start

2.	 Check the server status by running the following command:
sudo service rabbitmq-server status

Chapter 5

[67]

3.	 On each RabbitMQ instance, to enable the RabbitMQ management console,
execute the following command and restart the RabbitMQ server running on
that instance, by using the following command:
sudo rabbitmq-plugins enable rabbitmq_management

4.	 To enable the RabbitMQ plugins, navigate to /usr/lib/rabbitmq/bin and
execute the following command on both nodes and restart them:
sudo rabbitmq-plugins enable rabbitmq_management

5.	 Startup, shutdown, and error logs are created under the /var/log/rabbitmq
directory.

Creating a RabbitMQ cluster
Here are the steps that you need to execute to set up a two (or more) node
RabbitMQ cluster:

1.	 Considering rmq-flc-1 and rmq-flc-2 are the short hostnames of the two
instances, we will start standalone RabbitMQ servers on both instances using
the command:
sudo service rabbitmq-server start

2.	 On rmq-flc-2, we will stop the RabbitMQ application, reset the node,
join the cluster, and restart the RabbitMQ application using the following
commands (all this is being done while the RabbitMQ server is up and
running on rmq-flc-1):
sudo rabbitmqctl stop_app
sudo rabbitmqctl join_cluster rabbit@rmq-flc-1
sudo rabbitmqctl start_app

3.	 Check the cluster status by running the following command on any of
the machines:
sudo service rabbitmq-server status

Storm High Availability and Failover

[68]

4.	 The following output should be seen:

5.	 The cluster is set up successfully.

The cluster can be accessed at http://<hostip>:15672 (username: guest, password:
guest), if the UI is enabled.

Enabling the RabbitMQ UI
Perform the following steps to enable the RabbitMQ UI:

1.	 Execute the following command:
sudo /usr/lib/rabbitmq/bin/rabbitmq-plugins enable
 rabbitmq_management

2.	 The preceding command will result in the following output:
The following plugins have been enabled:
mochiweb

webmachine
rabbitmq_mochiweb
amqp_client
rabbitmq_management_agent
rabbitmq_management
Plugin configuration has changed. Restart RabbitMQ for changes to
take effect.

Chapter 5

[69]

3.	 Repeat the preceding steps on all nodes of the cluster.
4.	 Restart each node using the following command:

sudo service rabbitmq-server restart

5.	 Access the UI using the http://<hostip>:15672 link. The default username
and password is guest.

Creating mirror queues for high availability
In this section, we talk about a special kind of queues that guarantee high availability
over the RabbitMQ default queues. By default, the queues that we create are
located on a single node based on the order in which they are declared, and this can
become the single point of failure. Let's look at an example. I have a cluster of two
RabbitMQ nodes, rabbit1 and rabbit2, and I declare one exchange over my cluster,
say, myrabbitxchange. Let's say by the order of execution, the queue is created in
rabbit1. Now if rabbit1 goes down, then the queue is gone and the clients will not
be able to publish to it.

Thus to avoid situations, we need highly available queues; they are called mirrored
queues, which are replicated on all the nodes in the cluster. Mirrored queues have
one master and multiple slaves, the oldest one is the master and if it's not available,
the oldest amongst the available nodes becomes the master. Messages are published
to all slaves. This enhances the availability but doesn't distribute the load. To create
the mirror queues, use the following steps:

1.	 Mirroring can be enabled by adding a policy using the web UI. Go to the
Admin tab and select Policies and click on Add policy.

Storm High Availability and Failover

[70]

2.	 Specify policy Name, Pattern, Definition, and click on Add Policy, as shown
in the following screenshot:

Integrating Storm with RabbitMQ
Now that we have installed Storm, the next step will be to integrate RabbitMQ with
Storm, for which we will have to create a custom spout called the RabbitMQ spout.
This spout will read the messages from the specified queue; thus, it will furnish the
role of a consumer, and then push these messages to a downstream topology.

Here is how the spout code will look:

public class AMQPRecvSpout implements IRichSpout{

//The constructor where we set initialize all properties
 public AMQPRecvSpout(String host, int port, String username,
 String password, String vhost, boolean requeueOnFail, boolean
 autoAck) {
 this.amqpHost = host;
 this.amqpPort = port;
 this.amqpUsername = username;
 this.amqpPasswd = password;
 this.amqpVhost = vhost;
 this.requeueOnFail = requeueOnFail;
 this.autoAck = autoAck;
 }

Chapter 5

[71]

/*
Open method of the spout , here we initialize the prefetch count ,
 this parameter specified how many messages would be prefetched
 from the queue by the spout – to increase the efficiency of the
 solution */
 public void open(@SuppressWarnings("rawtypes") Map conf,
 TopologyContext context, SpoutOutputCollector collector) {
 Long prefetchCount = (Long) conf.get(CONFIG_PREFETCH_COUNT);
 if (prefetchCount == null) {
 log.info("Using default prefetch-count");
 prefetchCount = DEFAULT_PREFETCH_COUNT;
 } else if (prefetchCount < 1) {
 throw new IllegalArgumentException(CONFIG_PREFETCH_COUNT + "
 must be at least 1");
 }
 this.prefetchCount = prefetchCount.intValue();

 try {
 this.collector = collector;
 setupAMQP();
 } catch (IOException e) {
 log.error("AMQP setup failed", e);
 log.warn("AMQP setup failed, will attempt to reconnect...");
 Utils.sleep(WAIT_AFTER_SHUTDOWN_SIGNAL);
 reconnect();
 }
 }

 /**
 * Reconnect to an AMQP broker.in case the connection breaks at
 some point
 */
 private void reconnect() {
 log.info("Reconnecting to AMQP broker...");
 try {
 setupAMQP();
 } catch (IOException e) {
 log.warn("Failed to reconnect to AMQP broker", e);
 }
 }
 /**
 * Set up a connection with an AMQP broker.
 * @throws IOException
 *This is the method where we actually connect to the queue
 using AMQP client APIs

Storm High Availability and Failover

[72]

 */
 private void setupAMQP() throws IOException{
 final int prefetchCount = this.prefetchCount;
 final ConnectionFactory connectionFactory = new
 ConnectionFactory() {
 public void configureSocket(Socket socket)
 throws IOException {
 socket.setTcpNoDelay(false);
 socket.setReceiveBufferSize(20*1024);
 socket.setSendBufferSize(20*1024);
 }
 };

 connectionFactory.setHost(amqpHost);
 connectionFactory.setPort(amqpPort);
 connectionFactory.setUsername(amqpUsername);
 connectionFactory.setPassword(amqpPasswd);
 connectionFactory.setVirtualHost(amqpVhost);

 this.amqpConnection = connectionFactory.newConnection();
 this.amqpChannel = amqpConnection.createChannel();
 log.info("Setting basic.qos prefetch-count to " +
 prefetchCount);
 amqpChannel.basicQos(prefetchCount);
 amqpChannel.exchangeDeclare(Constants.EXCHANGE_NAME,
 "direct");
 amqpChannel.queueDeclare(Constants.QUEUE_NAME, true, false,
 false, null);
 amqpChannel.queueBind(Constants.QUEUE_NAME,
 Constants.EXCHANGE_NAME, "");
 this.amqpConsumer = new QueueingConsumer(amqpChannel);
 assert this.amqpConsumer != null;
 this.amqpConsumerTag =
 amqpChannel.basicConsume(Constants.QUEUE_NAME, this.autoAck,
 amqpConsumer);
 }

 /*
 * Cancels the queue subscription, and disconnects from the AMQP
 broker.
 */
 public void close() {
 try {
 if (amqpChannel != null) {
 if (amqpConsumerTag != null) {

Chapter 5

[73]

 amqpChannel.basicCancel(amqpConsumerTag);
 }
 amqpChannel.close();
 }
 } catch (IOException e) {
 log.warn("Error closing AMQP channel", e);
 }

 try {
 if (amqpConnection != null) {
 amqpConnection.close();
 }
 } catch (IOException e) {
 log.warn("Error closing AMQP connection", e);
 }
 }
 /*
 * Emit message received from queue into collector
 */
 public void nextTuple() {
 if (spoutActive && amqpConsumer != null) {
 try {
 final QueueingConsumer.Delivery delivery =
 amqpConsumer.nextDelivery(WAIT_FOR_NEXT_MESSAGE);
 if (delivery == null) return;
 final long deliveryTag =
 delivery.getEnvelope().getDeliveryTag();
 String message = new String(delivery.getBody());

 if (message != null && message.length() > 0) {
 collector.emit(new Values(message), deliveryTag);
 } else {
 log.debug("Malformed deserialized message, null or zero-
 length. " + deliveryTag);
 if (!this.autoAck) {
 ack(deliveryTag);
 }
 }
 } catch (ShutdownSignalException e) {
 log.warn("AMQP connection dropped, will attempt to
 reconnect...");
 Utils.sleep(WAIT_AFTER_SHUTDOWN_SIGNAL);
 reconnect();
 } catch (ConsumerCancelledException e) {

Storm High Availability and Failover

[74]

 log.warn("AMQP consumer cancelled, will attempt to
 reconnect...");
 Utils.sleep(WAIT_AFTER_SHUTDOWN_SIGNAL);
 reconnect();
 } catch (InterruptedException e) {
 log.error("Interrupted while reading a message, with
 Exception : " +e);
 }
 }
 }
 /*
 * ack method to acknowledge the message that is successfully
 processed
*/

 public void ack(Object msgId) {
 if (msgId instanceof Long) {
 final long deliveryTag = (Long) msgId;
 if (amqpChannel != null) {
 try {
 amqpChannel.basicAck(deliveryTag, false);
 } catch (IOException e) {
 log.warn("Failed to ack delivery-tag " + deliveryTag,
 e);
 } catch (ShutdownSignalException e) {
 log.warn("AMQP connection failed. Failed to ack
 delivery-tag " + deliveryTag, e);
 }
 }
 } else {
 log.warn(String.format("don't know how to ack(%s: %s)",
 msgId.getClass().getName(), msgId));
 }
 }

 public void fail(Object msgId) {
 if (msgId instanceof Long) {
 final long deliveryTag = (Long) msgId;
 if (amqpChannel != null) {
 try {
 if (amqpChannel.isOpen()) {
 if (!this.autoAck) {
 amqpChannel.basicReject(deliveryTag, requeueOnFail);
 }

Chapter 5

[75]

 } else {
 reconnect();
 }
 } catch (IOException e) {
 log.warn("Failed to reject delivery-tag " + deliveryTag,
 e);
 }
 }
 } else {
 log.warn(String.format("don't know how to reject(%s: %s)",
 msgId.getClass().getName(), msgId));
 }
 }

public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("messages"));
 }
}

AMQP Maven dependency that will be required to be introduced in the project
pom.xml, as shown in the following code:

 <dependency>
 <groupId>com.rabbitmq</groupId>
 <artifactId>amqp-client</artifactId>
 <version>3.2.1</version>
 </dependency>

Creating a RabbitMQ feeder component
Now that we have installed the RabbitMQ cluster, all we need is to develop a
publisher component that will publish the messages to RabbitMQ. This will be
a simple Java component that will mimic the live feed to RabbitMQ. The basic
code snippet for this is as follows:

public class FixedEmitter {
 private static final String EXCHANGE_NAME = "MYExchange";
 public static void main(String[] argv) throws Exception {
 /*we are creating a new connection factory for builing
 connections with exchange*/
 ConnectionFactory factory = new ConnectionFactory();
 /* we are specifying the RabbitMQ host address and port here
 in */

Storm High Availability and Failover

[76]

 Address[] addressArr = {
 new Address("localhost", 5672)
 }; //specify the IP if the queue is not on local node where
 this program would execute
 Connection connection = factory.newConnection(addressArr);
 //creating a channel for rabbitMQ
 Channel channel = connection.createChannel();
 //Declaring the queue and routing key
 String queueName = "MYQueue";
 String routingKey = "MYQueue";
 //Declaring the Exchange
 channel.exchangeDeclare(EXCHANGE_NAME, "direct", false);
 Map < String, Object > args = new HashMap < String, Object >
 ();
 //defining the queue policy
 args.put("x-ha-policy", "all");
 //declaring and binding the queue to the exchange
 channel.queueDeclare(queueName, true, false, false, args);
 channel.queueBind(queueName, EXCHANGE_NAME, routingKey);
 String stoppedRecord;
 int i = 0;
 //emitting sample records
 while (i < 1) {
 try {
 myRecord = "MY Sample record";
 channel.basicPublish(EXCHANGE_NAME, routingKey,
 MessageProperties.PERSISTENT_TEXT_PLAIN,
 myRecord.getBytes());
 System.out.println(" [x] Sent '" + myRecord + "' sent at "
 + new Date());
 i++;
 Thread.sleep(2);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 channel.close();
 connection.close();
 }
}

Chapter 5

[77]

Wiring the topology for the AMQP spout
Now we have the clustered queue setup ready, the AMQP spout in place, and the
feeder component in place; let's put the last and final piece in place, that's the overall
integration of the Storm topology.

Let's use our WordCount topology again and instead of RandomSentenceSpout
we will use AMQPRecvSpout, which we designed in the previous section, Integrating
Storm with RabbitMQ.

The following code chunk needs to be modified:

builder.setSpout("spout", new RandomSentenceSpout(), 5);
builder.setBolt("split", new SplitSentence(),
 8).shuffleGrouping("spout");
We will use the new spout instead, as follows:

builder.setSpout("queue_reader", new
 AMQPRecvSpout(Constants.RMQ_ADDRESS, 5672, "guest", "guest",
 "/"));

Building high availability of components
Now we are at an opportune juncture to look for high availability of various
components in the cluster. We will do this as a series of exercises wherein we
assume that each component is installed in the clustered mode and more than
one instance of it exists in the ecosystem.

The high availability of RabbitMQ can be checked only after you have a mirrored
queue in place. Let's assume:

•	 We have two nodes in the RabbitMQ cluster: node1 and node2
•	 MyExchange is the name of the exchange that is created for the purpose of

this exercise
•	 MyQueue is a mirrored queue that is created for this exercise

Next, we will just run the fixedEmitter code we created in the Creating a RabbitMQ
feeder component section. Now perform the Litmus test:

•	 Let's assume the queue MyQueue has 100 messages
•	 Now bring down node2 (this means, one node on the cluster is down)
•	 All the 100 messages will be retained and will be visible on the console;

node1 fills in when there is an absence of node2

Storm High Availability and Failover

[78]

This behavior ensures that services are not disrupted even if a node in the cluster
goes down.

High availability of the Storm cluster
Now let's see the demonstration of a failover or high availability in Storm. The Storm
framework is built in such a way that it can continue to execute as long as:

•	 It has the required number of Zookeeper connections
•	 It has the required number of workers on one or more supervisors

So what do the preceding statements actually mean? Well, let's understand this with
an example. Let's say I am executing the WordCount topology on a Storm cluster.
This cluster has the following configuration:

•	 There are two Storm supervisors with four workers on each Storm
supervisor, so a total eight workers in the cluster

•	 There are three Zookeeper nodes (max connections 30), so in total
30*2*3=180 connections

•	 A topology is allocated with three workers

Let's assume when we submit this topology onto the cluster, the tasks and processes
are spawned as shown in the following screenshot:

Worker1 Worker2

Worker4Worker3

Supervisor 1

Worker1 Worker2

Worker4Worker3

Supervisor 2

Zookeeper cluster

Chapter 5

[79]

The preceding figure depicts the cluster diagrammatically and the gray workers
are the ones that are allocated to the topology. Now we are all set to try out the
high availability test for Storm and Zookeeper. The tests for Storm and Zookeeper
are as follows:

•	 Test 1 (all components are up and the topology is running): Kill the
Nimbus node after the topology is submitted; you will notice that the
topology will continue to execute normally.

•	 Test 2 (all components are up and the topology is running): Kill one
Zookeeper node and you will notice that the topology will continue to
execute normally, because two of the other available Zookeepers have
sufficient resources in terms of connections that can keep the Storm
cluster up and running.

•	 Test 3 (all components are up and the topology is running): Kill two
Zookeeper nodes and you will notice that the topology will continue to
execute normally, because one of the other two available Zookeepers have
sufficient resources in terms of connections that they can keep the Storm
cluster up and running.

•	 Test 4 (all components are up and the topology is running): Kill supervisor
2; now we have one of the gray workers on this node. So when this node
goes down, the gray worker dies, and then because the second supervisor
is not available it's spawned again, this time on supervisor 1. So all workers
of the topology will be executing on one single supervisor now, but the
system will continue to perform with limited resources but will not fail.

Guaranteed processing of the Storm cluster
The next topic to discuss in this section is to see Storm's guaranteed message processing in
action. We discussed this concept in previous chapters, but to understand it practically,
I didn't go into depth because I wanted to introduce you all to the AMQP spout first.
Now let's go back to the example we discussed in Chapter 2, Getting Started with Your
First Topology.

www.allitebooks.com

http://www.allitebooks.org

Storm High Availability and Failover

[80]

Now as depicted in the following figure, the dash arrow flow shows that the events
that fail to process are re-queued to the queue:

Storage

Successful storage

Requeued

A

C

B

D

E

Events

ack

ackack

Fail
Fail

Fail

Fail

Acknowledgement ack

Failure Fail

Failure of black
event

Queue Spout

Black arrows-> depict the definition of DAG for processing in events
in topology

-> These are the processing bolts in the topologyA,B,C,D,E
-> These depict the acknowledgment flow for successfullyDotted lines

processed tuples
-> They depict the failure notification sent back to the spoutDashed Lines

for events that failed at some bolt

Now let's tweak our wordCount topology a bit where we had added AMQPRecvSpout
to fail the events, and see where they actually show up. Let's assume I used
FixedEmitter to emit 10 events into the queue. Now I tweak my wordCount bolt
and induce artificial sleep for five minutes in the execute method, so that every
event is held there for 300 seconds (using Thread.sleep(300)). This will lead to its
timeout as the default event timeout is 60 seconds.

Now when you run the topology, you will be able to see the events being re-queued
back to RabbitMQ using the UI.

The Storm isolation scheduler
The Storm isolation scheduler was released in Storm Version 0.8.2. This was a very
handy feature that is very actively being used ever since its release, in the case of
the shared Storm cluster. Let's understand its working and capability through an
example; say, we have a four supervisor node Storm cluster with four slots each,
so in total I have 16 slots. Now I want to employ three Storm topologies here, say,
Topo1, Topo2, and Topo3; each has four workers allocated to it.

Chapter 5

[81]

So by probable default, the scheduling behavior of the Storm distribution will be
as follows:

Supervisor 1 Supervisor 2 Supervisor 3 Supervisor 4
Topo1 Worker 1 Worker 2 Worker 3 Worker 4
Topo2 Worker 2 Worker 1 Worker 1 Worker 1
Topo3 Worker 3 Worker 3 Worker 2 Worker 2

Storm will respect load distribution and will spawn one worker of each topology on
each node.

Now let's tweak the scenario a bit and introduce a requirement that Topo1 is a very
resource-intensive topology. (I want to dedicate one supervisor entirely to this one
so that I save on network hops.) This could be attained by the use of the isolation
scheduler.

We will have to make the following entry in the storm.yaml file of each Storm node
in the cluster (Nimbus and supervisor):

isolation.scheduler.machines:
 "Topol": 2

The cluster is required to be restarted for this setting to take effect. This setting
means that we have dedicated two supervisor nodes to Topo1 and it will be no
longer be shared with other topologies being submitted to the cluster. This will
also ensure a viable solution to multitenancy problems encountered in production.

The other two supervisors will be shared amongst Topo2 and Topo3. The probable
distribution will be as follows:

Supervisor 1 Supervisor 2 Supervisor 3 Supervisor 4

Topo1
Worker 1
Worker 2

Worker 1
Worker 2

Topo2
Worker 1
Worker 2

Worker 1
Worker 2

Topo3
Worker 3
Worker 4

Worker 3
Worker 4

So, as evident from the preceding table, Topo1 will be isolated to Supervisor1 and 2
while Top2 and Topo3 will share the remaining eight slots on the Supervisor3 and 4.

Storm High Availability and Failover

[82]

Quiz time
Q.1 State whether the following sentences are true or false:

1.	 AMQP is a STOMP protocol.
2.	 RabbitMQ is not fail-safe.
3.	 An AMQP client is required to publish to RabbitMQ.
4.	 A mirrored queue can recover from the failure of nodes in a cluster.

Q.2 Fill in the blanks:

1.	 _______________ is the exchange where messages are delivered based on the
routing key.

2.	 _______________ is the exchange where messages are broadcasted.
3.	 The ___________ is an implementation of the Storm spout on the AMQP

consumer protocol.

Q.3 Execute the WordCount topology on a three node Storm cluster (one nimbus and
two supervisor nodes) clubbed with a two node RabbitMQ cluster:

•	 Try out various failure scenarios mentioned in the Building high availability of
components section

•	 Induce an artificial delay in message processing to calibrate the guaranteed
processing of the Storm topology

Summary
In this chapter, you have understood the RabbitMQ implementation of the AMQP
protocol. We completed the cluster setup and integrated the output of the Storm
topology with the queues. We also explored and practically tested the scenarios of
high availability and reliability for both RabbitMQ and Storm. We closed the chapter
by touching upon the Storm schedulers. In the next chapter, we will get acquainted
with Storm persistence using Cassandra.

[83]

Adding NoSQL Persistence
to Storm

In this chapter, we will graduate to the next step in understanding Storm—we
will add persistence to our topology. We have chosen Cassandra for very obvious
reasons, which will be elaborated during this chapter. The intent is to make you
understand how the Cassandra data store can be integrated with the Storm topology.

The following topics will be covered in this chapter:

•	 The advantages of Cassandra
•	 Introduction to columnar databases and column family design fundamentals
•	 Setting up a Cassandra cluster
•	 Introducing the CQLSH, CLI, and Connector APIs
•	 Storm topology wired to the Cassandra store
•	 Understanding the mechanism of persistence
•	 The best practices for Storm Cassandra applications

The advantages of Cassandra
This is the first and most obvious question anyone would ask, "Why are we using
NoSQL?" Well, the very quick answer for looking at NoSQL instead of traditional
data stores is the same as why the world is moving to big data—low cost, highly
scalable, and reliable solutions that can store endless amounts of data.

Adding NoSQL Persistence to Storm

[84]

Now, the next question is why Cassandra, and why not anything else out of the
NoSQL stack. Here the answer lies in the kind of problem and solution approach we
are trying to implement. Well, we are handling real-time analytics, and everything
we need should be accurate, fail-safe, and lightning fast. Therefore, Cassandra is the
best choice because:

•	 It has the fastest writes amongst its peers such as HBase and so on
•	 It is linearly scalable with peer-to-peer design
•	 No single point of failure
•	 Read and write requests can be handled without impacting each other's

performance
•	 Handles search queries comprising millions of transactions and

lightning-fast speeds
•	 Fail-safe and highly available with replication factors in place
•	 Guarantees eventual consistency with the CAP theorem on NoSQL DBs
•	 Column family design to handle a variety of formats
•	 No or low licensing cost
•	 Less development-ops or operational cost
•	 It can be extended for integration on a variety of other big data components

Columnar database fundamentals
One of the most important aspects of getting started with NoSQL data stores
is getting to understand the fundamentals of columnar databases; or rather,
let's use the actual term—column families.

This is a concept that has a variety of implementations in different NoSQL databases,
for instance:

•	 Cassandra: This is a key-value-pair-based NoSQL DB
•	 Mongo DB: This is a document-based NoSQL DB
•	 Neo4J: This is a graph DB

They differ from conventional RDBMS systems that are row-oriented in terms of
the following:

•	 Performance
•	 Storage extendibility
•	 Fault tolerance
•	 Low or no licensing cost

Chapter 6

[85]

But having iterated all the differences and benefits of NoSQL DBs, you must clearly
understand that the shift to NoSQL is a shift of the entire paradigm of data storage,
availability, and access—they are not a replacement for RDBMS.

In the RDBMS world, we are all used to creating tables, but here in Cassandra,
we create column families where we define the metadata of the columns, but the
columns are actually stored as rows. Each row can have different sets of columns,
thus making the whole column family relatively unstructured and extendible.

Types of column families
There are two types of column families:

•	 Static column family: As the name suggests, this has a static set of columns
and is a very close surrogate of all well-known RDBMS tables, barring a few
differences that are a result of its NoSQL heritage. Here is an example of a
static column family:

Rowkey Columns
Raman Name E-mail Cell no. Age

Raman Subramanian aa@yahoo.com 9999999999 20
Edison Name E-mail Cell no. Age

Edison Weasley
bb@yahoo.
com 88888888888 30

Amey Name E-mail Cell no. Age
Amey Marriot cc@yahoo.com 7777777777 40

Sriman Name E-mail

Sriman Mishra
dd@yahoo.
com

•	 Dynamic column family: This one gets the true essence of being unstructured
and schema-less. Here, we don't use predefined columns associated with the
column family, but the same can be dynamically generated and supplied by
the client application at the time of inserting data into the column family.
During the creation or definition of a dynamic column family, we get to
define the information about the column names and values by defining the
comparators and validators. Here is an example of a dynamic column family:

Adding NoSQL Persistence to Storm

[86]

Rowkey Columns

Raman
Name E-mail Cell no. Age

Edison
Address State Territory

Amey
Country Sex Cell no. Age

Sriman
Nationality

Types of columns
There are a variety of columns that Cassandra supports:

•	 Standard columns: These columns contain a name; this is either static or
dynamic and set by the writing application. A value (this is actually the
attribute that stores the data) and timestamp are shown here:

Column_name
value
timestamp

Cassandra makes use of the timestamp associated with the column to find
out the last update to the column. When data is queried from Cassandra,
it orders by this timestamp and always returns the most recent value.

•	 Composite columns: Cassandra makes use of this storage mechanism to
handle clustered rows. This is a unique way of handling all the logical rows
together that share the same partition key into a single physical wide row.
This enables Cassandra to accomplish the legendary feat of storing 2 billion
columns per row. For example, let's say I want to create a table where I
capture live status updates from some social networking sites:
CREATE TABLE statusUpdates(
 update_id uuid PRIMARY KEY,
 username varchar,
 mesage varchar
);

CREATE TABLE timeseriesTable (
 user_id varchar,

Chapter 6

[87]

 udate_id uuid,
 username varchar,
 mesage varchar,
 PRIMARY KEY user_id , update_id)
);

The live updates are being recorded under the StatusUpdates table that has
the username, message, and update_id (which is actually a UUID) property.
While designing a Cassandra column family, you should make extensive
use of the functionality provided by UUIDs, which can be employed for
sequencing data.
The combination of the user_id and update_id properties from
timeseriesTable can uniquely identify a row in chronology.
Cassandra makes use of the first column defined in the primary key as the
partition key; this is also known as the row key.

•	 Expiring columns: These are special types of Cassandra columns that have
a time to live (TTL) associated with them; the values stored in these columns
are automatically deleted or erased after the TTL has elapsed. These columns
are used for use cases where we don't want to retain data older than a stated
interval; for instance, if we don't need data older than 24 hours. In our column
family, I would associate a TTL of 24 hours with every column that is being
inserted, and this data will be automatically deleted by Cassandra after 24
hours of its insertion.

•	 Counter columns: These are again specialized function columns that store a
number incrementally. They have a special implementation and a specialized
usage for situations where we use counters; for instance, if I need to count
the number of occurrences of an event.

Setting up the Cassandra cluster
Cassandra is a very scalable key-value store. It promises eventual consistency and
its distributed ring-based architecture eliminates any single point of failure in the
cluster, thus making it highly available. It's designed and developed to support very
fast reads and writes over excessively large volumes of data .This fast write and
read ability makes it a very strong contender to be used in an online transaction
processing (OLTP) application to support large business intelligence systems.

Cassandra provides a column-family-based data model that is more flexible than
typical key-value systems.

Adding NoSQL Persistence to Storm

[88]

Installing Cassandra
Cassandra requires the most stable version of Java 1.6 that you can deploy, preferably
the Oracle or Sun JVM. Perform the following steps to install Cassandra:

1.	 Download the most recent stable release (version 1.1.6 at the time of writing)
from the Apache Cassandra site.

2.	 Create a Cassandra directory under /usr/local as follows:
sudo mkdir /usr/local/cassandra

3.	 Extract the downloaded TAR file to the /usr/local location. Use the
following command:
sudo tar –xvf apache-cassandra-1.1.6-bin.tar.gz -C
 /usr/local/cassandra

4.	 Cassandra needs a directory to store its data, log files, and cache files.
Create /usr/local/cassandra/tmp to store this data:
sudo mkdir –p /usr/local/cassandra/tmp

5.	 Update the Cassandra.yaml configuration file under /usr/local/
Cassandra/apache-cassandra-1.1.6/conf.
The following properties will go into it:
cluster_name: 'MyClusterName'
seeds: <IP of Node-1><IP of Node-2>(IP address of each node
 go into it)
listen_address: <IP of Current Node>

6.	 Calculate a token for each node using the following script and update the
initial_token property to each node by adding a unique token value in
Cassandra.yaml:
#! /usr/bin/python
import sys
if (len(sys.argv) > 1):
 num=int(sys.argv[1])
else:
 num=int(raw_input("How many nodes are in your cluster?
 "))
for i in range(0, num):
 print 'node %d: %d' % (i, (i*(2**127)/num))

Chapter 6

[89]

7.	 Update the following property in the conf/log4j-server.properties file.
Create the temp directory under cassandra:
Log4j.appender.R.File=/usr/local/cassandra/temp/system.log

8.	 Increase the rpc_timeout property in Cassandra.yaml (if this timeout is
very small and the network latency is high, Cassandra might assume the
nodes are dead without waiting long enough for a response to propagate).

9.	 Run the Cassandra server at /usr/local/Cassandra/apache-
cassandra-1.1.6 using bin/Cassandra –f.

10.	 Run the Cassandra client at /usr/local/Cassandra/apache-
cassandra-1.1.6 using bin/Cassandra-cli with a host and port.

11.	 Use the bin/nodetool ring utility at /usr/local/Cassandra/apache-
cassandra-1.1.6 to verify a properly connected cluster:
bin/nodetool –host <ip-adress> -p <port number> ring
192.168.1.30 datacenter1 rack1 Up Normal 755.25 MB
 25.00% 0
192.168.1.31 datacenter1 rack1 Up Normal 400.62 MB
 25.00% 42535295865117307932921825928970
192.168.1.51 datacenter1 rack1 Up Normal 400.62 MB
 25.00% 42535295865117307932921825928971
192.168.1.32 datacenter1 rack1 Up Normal 793.06 MB
 25.00% 85070591730234615865843651857941

The preceding output displays a connected cluster. This configuration shows that it's
correctly configured and connected.

Here is a screenshot of the output:

Multiple data centers
In practical scenarios, we would want to have Cassandra clusters distributed across
different data centers so that the system is more reliable and resilient overall to
localized network snags and physical disasters.

Adding NoSQL Persistence to Storm

[90]

Prerequisites for setting up multiple
data centers
The following are a set of prerequisites that should be used for setting up multiple
data centers:

•	 Have Cassandra installed on each node
•	 Have the IP address of each node in the cluster
•	 Identify the cluster names
•	 Identify the seed nodes
•	 Identify the snitch that is to be used

Installing Cassandra data centers
The following are a set of steps to set up Cassandra data centers:

1.	 Let's start with an assumption that we have already installed Cassandra on
the following nodes:
10.188.66.41 (seed1)
10.196.43.66
10.188.247.41
10.196.170.59 (seed2)
10.189.61.170
10.189.30.138

2.	 Assign tokens using the token generation Python script defined in the
previous section to each of the preceding nodes.

3.	 Let's say we align to the following distribution of nodes and their tokens
across the data centers:

Node IP Address Token Data Center
node0 10.188.66.41 0 Dc1
node1 10.196.43.66 56713727820156410577229101238628035245 Dc1
node2 10.188.247.41 113427455640312821154458202477256070488 Dc1
node3 10.196.170.59 10 Dc2
node4 10.189.61.170 56713727820156410577229101238628035255 Dc2
node5 10.189.30.138 113427455640312821154458202477256070498 Dc2

Chapter 6

[91]

4.	 Stop Cassandra on the nodes and clear the data from data_dir of Cassandra:
$ ps auwx | grep cassandra

This command finds the Cassandra Java process ID (PID):
$ sudo kill <pid>

This is the command to kill the process with the specified PID:
$ sudo rm -rf /var/lib/cassandra/*

The preceding command clears the data from the default directories
of Cassandra.

5.	 Modify the following property settings in the cassandra.yaml file for
each node:
endpoint_snitch <provide the name of snitch>
 initial_token: <provide the value of token from previous
 step>
 seeds: <provide internal IP_address of each seed node>
 listen_address: <provide localhost IP address>

Here is what the updated configuration will look like:
node0:
end_point_snitch:
 org.apache.cassandra.locator.PropertyFileSnitch
initial_token: 0
seed_provider:
 - class_name:
 org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 - seeds: "10.188.66.41,10.196.170.59"
 listen_address: 10.196.43.66
 node1 to node5

All the properties for these nodes are the same as those defined for the
preceding node0 except for the initial_token and listen_address
properties.

6.	 Next, we will have to assign names to each data center and their racks;
for example, Dc1, Dc2 and Rc1, Rc2.

Adding NoSQL Persistence to Storm

[92]

7.	 Go to the cassandra-topology.properties file and add an assignment
for data center and rack names against the IP addresses of each node.
For example:
Cassandra Node IP=Data Center:Rack
10.188.66.41=Dc1:Rc1
10.196.43.66=Dc2:Rc1
10.188.247.41=Dc1:Rc1
10.196.170.59=Dc2:Rc1
10.189.61.170=Dc1:Rc1
10.199.30.138=Dc2:Rc1

8.	 The next step is to start seed nodes one by one, followed by all the rest of
the nodes.

9.	 Check that your ring is up and running.

Introduction to CQLSH
Now that we are through with the Cassandra setup, let's get acquainted with the
shell and a few basic commands:

1.	 Run CQL at /usr/local/Cassandra/apache-cassandra-1.1.6 using bin/
cqlsh with a host and port:
bin/cqlsh –host <ip-adress> -p <port number>

2.	 Create a keyspace either at the Cassandra client or at CQL, as follows:
create keyspace <keyspace_name>;

3.	 Create a column family at the Cassandra client or at CQL as follows:
use <keyspace_name>;
create column family <columnfamily name>;

For example, create the following table:

CREATE TABLE appUSers (
 user_name varchar,
 Dept varchar,
 email varchar,
 PRIMARY KEY (user_name));

4.	 Insert a few records into the column family from the command line:
INSERT INTO appUSers (user_name, Dept, email)
 VALUES ('shilpi', 'bigdata, 'shilpisaxena@yahoo.com');

Chapter 6

[93]

5.	 Retrieve the data from the column family:
SELECT * FROM appUSers LIMIT 10;

Introduction to CLI
This section gets you acquainted with another tool that is used for interaction with
Cassandra processes—the CLI shell.

The following steps are used for interacting with Cassandra using the CLI shell:

1.	 The following is the command to connect to the Cassandra CLI:
Cd Cassandra-installation-dir/bin
cassandra-cli -host localhost -port 9160

2.	 Create a keyspace:
[default@unknown] CREATE KEYSPACE myKeySpace
with placement_strategy = 'SimpleStrategy'
and strategy_options = {replication_factor:1};

3.	 Verify the creation of the keyspace using the following command:
[default@unknown] SHOW KEYSPACES;
 Durable Writes: true
 Options: [replication_factor:3]
 Column Families:
 ColumnFamily: MyEntries
 Key Validation Class:
 org.apache.cassandra.db.marshal.UTF8Type
 Default column value validator:
 org.apache.cassandra.db.marshal.UTF8Type
 Columns sorted by:
 org.apache.cassandra.db.marshal.ReversedType
 (org.apache.cassandra.db.marshal.TimeUUIDType)
 GC grace seconds: 0
 Compaction min/max thresholds: 4/32
 Read repair chance: 0.1
 DC Local Read repair chance: 0.0
 Replicate on write: true
 Caching: KEYS_ONLY
 Bloom Filter FP chance: default
 Built indexes: []
 Compaction Strategy:
 org.apache.cassandra.db.compaction.
 SizeTieredCompactionStrategy

Adding NoSQL Persistence to Storm

[94]

 Compression Options:
 sstable_compression:
 org.apache.cassandra.io.compress.SnappyCompressor
 ColumnFamily: MYDevicesEntries
 Key Validation Class:
 org.apache.cassandra.db.marshal.UUIDType
 Default column value validator:
 org.apache.cassandra.db.marshal.UTF8Type
 Columns sorted by:
 org.apache.cassandra.db.marshal.UTF8Type
 GC grace seconds: 0
 Compaction min/max thresholds: 4/32
 Read repair chance: 0.1
 DC Local Read repair chance: 0.0
 Replicate on write: true
 Caching: KEYS_ONLY
 Bloom Filter FP chance: default
 Built indexes:
 [sidelinedDevicesEntries.
 sidelinedDevicesEntries_date_created_idx,
 sidelinedDevicesEntries.
 sidelinedDevicesEntries_event_type_idx]
 Column Metadata:
 Column Name: event_type
 Validation Class:
 org.apache.cassandra.db.marshal.UTF8Type
 Index Name: sidelinedDevicesEntries_event_type_idx
 Index Type: KEYS
 Index Options: {}
 Column Name: date_created
 Validation Class:
 org.apache.cassandra.db.marshal.DateType
 Index Name: sidelinedDevicesEntries_date_created_idx
 Index Type: KEYS
 Index Options: {}
 Column Name: event
 Validation Class:
 org.apache.cassandra.db.marshal.UTF8Type
 Compaction Strategy:
 org.apache.cassandra.db.compaction.
 SizeTieredCompactionStrategy
 Compression Options:
 sstable_compression:
 org.apache.cassandra.io.compress.SnappyCompressor

Chapter 6

[95]

4.	 Create a column family:
[default@unknown] USE myKeySpace;
 [default@demo] CREATE COLUMN FAMILY appUsers
 WITH comparator = UTF8Type
 AND key_validation_class=UTF8Type
 AND column_metadata = [
 {column_name:user_name, validation_class: UTF8Type}
 {column_name: Dept, validation_class: UTF8Type}
 {column_name: email, validation_class: UTF8Type}
];

5.	 Insert data into the column family:
[default@demo] SET appUsers['SS'][user_name']='shilpi';

 [default@demo] SET appUsers['ss'][Dept]='BigData';

 [default@demo] SET
 appUsers['ss']['email']=shilpisaxena@yahoo.com';

In this example, the code ss is my row key.

6.	 Retrieve data from the Cassandra column family:
GET appUsers[utf8('ss')][utf8('user_name')];
List appUsers;

Using different client APIs to access
Cassandra
Now that we are acquainted with Cassandra, let's move on to the next step
where we will access (insert or update) data into the cluster programmatically.
In general, the APIs we are talking about are wrappers written over the core
Thrift API, which offers various CRUD operations over the Cassandra cluster
using programmer-friendly packages.

Adding NoSQL Persistence to Storm

[96]

The client APIs that are used to access Cassandra are as follows:

•	 Thrift protocol: The most basic of all APIs to access Cassandra is the Remote
Procedure Call (RPC) protocol, which provides a language-neutral interface
and thus exposes flexibility to communicate using Python, Java, and so on.
Please note that almost all other APIs we'll discuss use Thrift under the
hood. It is simple to use and it provides basic functionality out of the box like
ring discovery and native access. Complex features such as retry, connection
pooling, and so on are not supported out of the box. However, there are a
variety of libraries that have extended Thrift and added these much required
features, and we will touch upon a few widely used ones in this chapter.

•	 Hector: This has the privilege of being one of the most stable and extensively
used APIs for Java-based client applications to access Cassandra. As
mentioned earlier, it uses Thrift under the hood, so it essentially can't offer
any feature or functionality not supported by the Thrift protocol. The reason
for its widespread use is that it has a number of essential features ready to
use and available out of the box:

°° It has implementation for connection pooling
°° It has a ring discovery feature with an add-on of automatic

failover support
°° It has a retry option for downed hosts in the Cassandra ring

•	 Datastax Java driver: This is, again, a recent addition to the stack of client
access options to Cassandra, and hence goes well with the newer version
of Cassandra. Here are its salient features:

°° Connection pooling
°° Reconnection policies
°° Load balancing
°° Cursor support

•	 Astyanax: This is a very recent addition to the bouquet of Cassandra client
APIs and has been developed by Netflix, which definitely makes it more
fabled than others. Let's have a look at its credentials to see where it qualifies:

°° It supports all of the functions of Hector and is much easier to use
°° It promises better connection pooling than Hector
°° It is better at handling failovers than Hector
°° It provides some out-of-the-box, database-like features (now that's

big news). At the API level, it provides functionality called Recipes
in its terms, which provides:

Chapter 6

[97]

Parallel row query execution
Messaging queue functionality
Object storage
Pagination

°° It has numerous frequently required utilities like JSON Writer and
CSV Importer

Storm topology wired to the Cassandra
store
Now you have been educated and informed about why you should use Cassandra.
You have been walked through setting up Cassandra and column family creation,
and have even covered the various client/protocol options available to access the
Cassandra data store programmatically. As mentioned earlier, Hector has so far
been the most widely used API for accessing Cassandra, though the Datastax and
Astyanax drivers are fast catching up. For our exercise, we'll use the Hector API.

The use case we want to implement here is to use Cassandra to support real-time,
adhoc reporting for telecom data that is being collated, parsed, and enriched using
a Storm topology.

Adding NoSQL Persistence to Storm

[98]

As depicted in the preceding figure, the use case requires live telecom Call Detail
Record (CDR) capture using the data collection components (for practice, we can
use sample records and a simulator shell script to mimic the live CDR feeds). The
collated live feed is pushed into the RabbitMQ broker and then consumed by the
Storm topology.

For the topology, we have an AMQP spout as the consumer, which reads the data
of the queue and pushes it downstream to the topology bolts; here, we have wired
in bolts to parse the message and convert it to Plain Old Java Objects (POJO's).
Then, we have a new entry in our topology, the Cassandra bolt, which actually
stores the data in the Cassandra cluster.

From the Cassandra cluster, a UI-based consumer retrieves the data based on a
search query defined by the user, thus providing the adhoc, real-time reporting
over live data.

For the sake of our implementation, we will query the data from CLI/CQLSH as
shown here:

1.	 Create a keyspace:
create keyspace my_keyspace
 with placement_strategy = 'SimpleStrategy'
 and strategy_options = {replication_factor : 3}
 and durable_writes = true;

 use my_keyspace;

2.	 Create the column family:
create column family my_columnfamily
 with column_type = 'Standard'
 and comparator = 'UTF8Type'
 and default_validation_class = 'BytesType'
 and key_validation_class = 'TimeUUIDType'
 and read_repair_chance = 0.1
 and dclocal_read_repair_chance = 0.0
 and gc_grace = 0
 and min_compaction_threshold = 4
 and max_compaction_threshold = 32
 and replicate_on_write = true
 and compaction_strategy =
 'org.apache.cassandra.db.compaction.
 SizeTieredCompactionStrategy'
 and caching = 'KEYS_ONLY'
 and bloom_filter_fp_chance = 0.5
 and column_metadata = [

Chapter 6

[99]

{column_name : 'cellnumber',
 validation_class : Int32Type },
 {column_name : 'tollchrg',
 validation_class : UTF8Type},
{column_name : 'msgres',
 validation_class : UTF8Type},

{column_name : 'servicetype',
 validation_class : UTF8Type}]
 and compression_options = {'sstable_compression' :
 'org.apache.cassandra.io.compress.SnappyCompressor'
};

3.	 The following changes need to be made to pom.xml in the project.
The Hector dependency should be added to the pom.xml file so that it is
fetched at the time of build and added to the m2 repository, as shown:
 <dependency>
 <groupId>me.prettyprint</groupId>
 <artifactId>hector-core</artifactId>
 <version>0.8.0-2</version>
 </dependency>

If you are working with a non-Maven project, follow the usual protocol—
download the Hector core JAR file and add it to the project build path so
that all the required dependencies are satisfied.

4.	 Next, we'll need to get the components in place in our Storm topology.
We will start by creating a CassandraController Java component that
will hold all Cassandra-related functionality, and it will be called from the
CassandraBolt class in the topology to persist the data into Cassandra:
public class CassandraController {

 private static final Logger logger =
 LogUtils.getLogger(CassandraManager.class);
 //various serializers are declared in here
 UUIDSerializer timeUUIDSerializer = UUIDSerializer.get();
 StringSerializer stringSerializer =
 StringSerializer.get();
 DateSerializer dateSerializer = DateSerializer.get();
 LongSerializer longSerializer = LongSerializer.get();

 public CassandraController() {
 //list of IPs of Cassandra node in ring

Adding NoSQL Persistence to Storm

[100]

 String nodes =
 "10.3.1.41,10.3.1.42,10.3.1.44,10.3.1.45";
 String clusterName = "mycluster";
 //creating a new configurator
 CassandraHostConfigurator hostConfigurator = new
 CassandraHostConfigurator(nodes);
 hostConfigurator.setCassandraThriftSocketTimeout(0);
 cluster = HFactory.getOrCreateCluster(clusterName,
 hostConfigurator);

 String[] nodeList = nodes.split(",");
 if (nodeList != null && nodeList.length ==
 cluster.getConnectionManager().
 getDownedHosts().size()) {
 logger.error("All cassandra nodes are down. " +
 nodes);
 }

 //setting up read and write consistencies
 ConfigurableConsistencyLevel consistency = new
 ConfigurableConsistencyLevel();
 consistency.setDefaultWriteConsistencyLevel
 (HConsistencyLevel.ONE);
 consistency.setDefaultReadConsistencyLevel
 (HConsistencyLevel.ONE);
 keySpaceObj = HFactory.createKeyspace
 ("my_keyspace", cluster, consistency);
 stringMutator = HFactory.createMutator
 (keySpaceObj, stringSerializer);
 uuidMutator = HFactory.createMutator
 (keySpaceObj, timeUUIDSerializer);

 logger.info("Cassandra data store initialized,
 Nodes=" + nodes + ", " + "cluster name=" +
 clusterName + ", " + "keyspace=" + keyspace + ", " +
 "consistency=" + writeConsistency);
 }
 //defining the mutator
 public Mutator < Composite > getCompositeMutator() {
 return compositeMutator;
 }

 public void setCompositeMutator(Mutator < Composite >
 compositeMutator) {
 this.compositeMutator = compositeMutator;

Chapter 6

[101]

 }
 //getter and setters for all mutators and serializers

 public StringSerializer getStringSerializer() {
 return stringSerializer;
 }

 public Keyspace getKeyspace() {
 return keySpaceObj;
 }
}

5.	 Last but not least in our topology is actually the component that will write
into Cassandra, the Storm bolt that will make use of CassandraController
created earlier to write the real-time data into Cassandra:
public class CassandraBolt extends BaseBasicBolt {
 private static final Logger logger =
 LogUtils.getLogger(CassandraBolt.class);

 public void prepare(Map stormConf, TopologyContext
 context) {

 logger.debug("Cassandra bolt, prepare()");
 try {
 cassandraMngr = new CassandraController();
 myCf = "my_columnfamily";
);

 } catch (Exception e) {
 logger.error("Error while instantiating
 CassandraBolt", e);
 throw new RuntimeException(e);
 }
 }

 @Override
 public void execute(Tuple input, BasicOutputCollector
 collector) {
 logger.debug("execute method :: Start ");
 Calendar tCalendar = null;
 long eventts = eventObj.getEventTimestampMillis();
 com.eaio.uuid.UUID uuid = new
 com.eaio.uuid.UUID(getTimeForUUID(eventts),
 clockSeqAndNode);

Adding NoSQL Persistence to Storm

[102]

 java.util.UUID keyUUID =
 java.util.UUID.fromString(uuid.toString());

 /*
 * Persisting to my CF
 */

 try {
 if (keyUUID != null) {
 cassandraMngrTDR.getUUIDMutator().addInsertion(
 keyUUID,
 myCf,
 HFactory.createColumn("eventts",
 new Timestamp(tCalendar.getTimeInMillis()),
 -1, cassandraMngr.getStringSerializer(),
 cassandraMngr.getDateSerializer()));
 }

 cassandraMngrTDR.getUUIDMutator().addInsertion(
 keyUUID,
 myCf,
 HFactory.createColumn("cellnumber",
 eventObj.getCellnumber(), -1,
 cassandraMngr.getStringSerializer(),
 cassandraMngr.getLongSerializer()));
 cassandraMngr.getUUIDMutator().execute();
 logger.debug("CDR event with key = " + keyUUID + "
 inserted into Cassandra cf " + myCf);

 } else {
 logger.error("Record not saved. Error while parsing date
 to generate KEY for cassandra data store, column family -
 " + myCf);
 }
 }

 catch (Exception excep) {
 logger.error("Record not saved. Error while saving data
 to cassandra data store, column family - " + myCf,
 excep);
 }

 logger.debug("execute method :: End ");
 }
}

Chapter 6

[103]

So here we complete the last piece of the puzzle; we can now stream data into
Cassandra using Storm in real time. Once you execute the topology end to end,
you can verify the data in Cassandra by using the select or list commands on
CLI/CQLSH.

The best practices for Storm/Cassandra
applications
When working with distributed applications that have SLAs operating 24/7 with a
very high velocity and a miniscule average processing time, certain aspects become
extremely crucial to be taken care of:

•	 Network latency plays a big role in real-time applications and can make
or break products, so make a very informed and conscious decision on the
placement of various nodes in a data center or across data centers. In such
situations, it's generally advisable to keep ping latency at a minimum.

•	 The replication factor should be around three for Cassandra.
•	 Compaction should be part of routine Cassandra maintenance.

Quiz time
Q.1. State whether the following statements are true or false:

1.	 Cassandra is a document-based NoSQL.
2.	 Cassandra has a single point of failure.
3.	 Cassandra uses consistent hashing for key distribution.
4.	 Cassandra works on master-slave architecture.

Q.2. Fill in the blanks:

1.	 _______________attributes of the CAP theorem are adhered to by Cassandra.
2.	 _______________ is the salient feature that makes Cassandra a contender to

be used in conjunction with Storm.
3.	 The ____________ is an API to access Cassandra using a Java client, and is a

Greek mythological character—brother of Cassandra.

Q.3. Complete the use case mentioned in the chapter and demonstrate end-to-end
execution to populate data into Cassandra.

Adding NoSQL Persistence to Storm

[104]

Summary
In this chapter, you have covered the fundamentals of NoSQL in general and
specifically Cassandra. You got hands-on experience in setting up the Cassandra
cluster as well as got to know about varied APIs, drivers, and protocols that provide
programmatic access to Cassandra. We also integrated Cassandra as a data store to
our Storm topology for data insertion.

In the next chapter, we will touch upon some integral aspects of Cassandra, specifically
consistency and availability.

[105]

Cassandra Partitioning, High
Availability, and Consistency

In this chapter, you will understand the internals of Cassandra to learn how data
partitioning is implemented and you'll learn about the hashing technique employed
on Cassandra's keyset distribution. We will also get an insight into replication and
how it works, and the feature of hinted handoff. We will cover the following topics:

•	 Data partitioning and consistent hashing; we'll look at practical examples
•	 Replication, consistency, and high availability

Consistent hashing
Before you understand its implication and application in Cassandra, let's understand
consistent hashing as a concept.

Consistent hashing works on the concept in its name—that is hashing and as we know,
for a said hashing algorithm, the same key will always return the same hash code—
thus, making the approach pretty deterministic by nature and implementation. When
we use this approach for sharding or dividing the keys across the nodes in the cluster,
consistent hashing is the technique that determines which node is stored in which
node in the cluster.

Cassandra Partitioning, High Availability, and Consistency

[106]

Have a look at the following diagram to understand the concept of consistent
hashing; imagine that the ring depicted in the following diagram represents the
Cassandra ring and the nodes are marked here in letters along with the numerals
that actually mark the objects (inverted triangles) to be mapped to the ring.

Consistent hashing for the Cassandra cluster

To compute the ownership of the object to the node it belongs to, all that's required
is traversal in clockwise to encounter the next node. The node that follows the data
item, which is an inverted triangle, is the node that owns the object, for example:

•	 1 belongs to node A
•	 2 belongs to node B
•	 3 belongs to node C
•	 4 belongs to node C
•	 5 belongs to node D
•	 6 belongs to node E
•	 7 belongs to node F
•	 8 belongs to node H
•	 9 belongs to node H

So as you see, this uses simple hashing to compute the ownership of the key in a
ring, based on owned token range.

Chapter 7

[107]

Let's look at a practical example of consistent hashing; to explain this let's take a
sample column family where the partition key value is the name.

Let's say the following is the column value data:

Name Gender
Jammy M
Carry F
Jesse M
Sammy F

Here is what the hash-mapping would look like:

Partition key Hash value
Jim 2245462676723220000.00
Carol 7723358927203680000.00
Johnny 6723372854036780000.00
Suzy 1168604627387940000.00

Let's say I have four nodes with the following range; here is how the data would
be distributed:

Node Start range End range
Partition
key Hash value

A 9223372036854770000.00 4611686018427380000.00 Jammy 6723372854036780000.00

B 4611686018427380000.00 1.00 Jesse 2245462676723220000.00

C 0.00 4611686018427380000.00 suzy 1168604627387940000.00

D 4611686018427380000.00 9223372036854770000.00 Carry 7723358927203680000.00

Now that you understand the concept of consistent hashing, let's look at the
scenarios where the one or more node goes down and comes back up.

One or more node goes down
We are currently looking at a very common scenario where we envision that one
node goes down; for instance, here we have captured two of them going down: B
and E. What will happen now? Well nothing much, we'd follow the same pattern
as before, which moves clockwise to find the next live node and allocate the values
to that node.

Cassandra Partitioning, High Availability, and Consistency

[108]

So in our case, the allocations would change to the following:

The allocation in the preceding figure is as follows:

•	 1 belongs to A
•	 2, 3, and 4 belong to C
•	 5 belongs to D
•	 6, and 7 belong to F
•	 8, and 9 belong to H

One or more node comes back up
Now let's assume a scenario where node 2 comes back up; well, what happens then is
again the same as on prior explanation, and the ownership is reestablished as follows:

•	 1 belongs to A
•	 2 belongs to B
•	 3, and 4 belong to C
•	 5 belongs to D
•	 6, and 7 belong to F
•	 8, and 9 belong to H

So, we have demonstrated that this techniques works for all situations and that's
why it is used.

Chapter 7

[109]

Replication in Cassandra and strategies
Replicating means to create a copy. This copy makes the data redundant and thus
available even when one node fails or goes down. In Cassandra, you have the option
to specify the replication factor as part of the creation of the keyspace or to later
modify it. Attributes that need to be specified in this context are as follows:

•	 Replication factor: This is a numeric value specifying the number of replicas
•	 Strategy: This could be simple strategy or topology strategy; this decides the

placement of replicas across the cluster

Internally, Cassandra uses the row key to store replicas or copies of data across
various nodes on the cluster. A replication factor of n means there are n copies of
data stored on n different nodes. There are certain rules of thumb with replication,
and they are as follows:

•	 A replication factor should never be more than the number of nodes in
a cluster, or you will run into exceptions due to not enough replicas and
Cassandra will start rejecting the writes and reads, though replication
factor would continue uninterrupted

•	 A replication factor should not be so small that data is lost forever if one
odd node goes down

Snitch is used to determine the physical location of nodes, attributes such as closeness
to each other, and so on, which are of value when a vast amount of data is to be
replicated and moved to and fro. In all such situations, network latency plays a very
important part. The two strategies currently supported by Cassandra are as follows:

•	 Simple: This is the default strategy provided by Cassandra for all keyspaces.
It employs around a single data center. It's pretty straightforward and simple
in its operation; as the name suggests, the partitioner checks the key-value
against the node range to determine the placement of the first replica. Thereon,
the subsequent replicas are placed on the next nodes in a clockwise order. So
if data item "A" has a replication of "3", and the partitioner decides the first
node based on the key and ownership, on this node the subsequent replicas
are created in a clockwise order.

Cassandra Partitioning, High Availability, and Consistency

[110]

•	 Network: This is the topology that is used when we have the Cassandra cluster
distributed across data centers. Here, we can plan our replica placement and
define how many replicas we want to place in each data center. This approach
makes the data geo-redundant and thus more fail-safe in cases where the entire
data center crashes. The following are two things you should consider when
making a choice on replica placement across data centers:

°° Each data center should be self-sufficient to satisfy the requests
°° Failover or crash situations

If we have 2 replicas of datum in a data center, then we have four copies of data and
each data center has a tolerance for one node failure for the consistency ONE. If we get
into the node of 3 replicas of datum in a data center, then we have six copies of data and
each data center has a tolerance for multiple node failures for the consistency of ONE.
This strategy also permits asymmetrical replication.

Cassandra consistency
As we said in an earlier chapter, Cassandra eventually becomes consistent and
follows the AP principal of the CAP theorem. Consistency refers to how up to date
the information across all data replicas in a Cassandra cluster is. Cassandra does
eventually guarantee consistency. Now let's have a closer look; well, let's say I have
five node Cassandra clusters and a replication factor of 3. This means if I have a data
item1, it would be replicated to three nodes, let's say node1, node2, and node3; let's
assume the key of this datum is key1. Now if the value of this key is to be rewritten
and the write operation is performed on node1, then Cassandra internally replicates
the values to other replicas, which are node2 and node3. But this update happens in
the background and is not immediate; this is the mechanism of eventual consistency.

Cassandra provides the concept of offering the (read and write) client applications
the decision of what consistency level they want to use to read and write to the
data store.

Chapter 7

[111]

Write consistency
Let's inspect the write operation a little closely in Cassandra. Well, when a write
operation is done in Cassandra, the client can specify the consistency at which the
operation should be performed.

This means that if the replication factor is x and a write operation is performed with
a consistency of y (where y is less than x), then Cassandra will wait for successful
write to complete on y nodes before returning a successful acknowledgement to the
client, marking the operation as complete. For the remaining x-y replicas, the data is
propagated and replicated internally by the Cassandra processes.

The following table shows the various consistency levels and their implication
where we have ANY that has the benefit of the highest availability with the lowest
consistency, and ALL that offers the highest consistency but the lowest availability.
So, being a client, one has to review the use case before deciding upon which
consistency to choose. The following is a table with a few popular options and
their implications:

Consistency
level Implication

ANY
The write operation is returned as successful when the datum is written
onto at least one node, where the node could either be a replica node or a
non-replica node

ONE The write operation is returned as successful when the datum is written
onto at least one replica node

TWO The write operation is returned as successful when the datum is written
onto at least two replica nodes

QUORUM
The write operation is returned as successful when the datum is written
to the quorum of the replica node (where the quorum is n/2+1, and n is
the replication factor)

ALL The write operation is returned as successful when the datum is written
onto all replica nodes

Cassandra Partitioning, High Availability, and Consistency

[112]

The following figure depicting the write operation on a four-node cluster, which has
a replication factor of 3 and consistency of 2:

So as you see, the write operation is completed in three steps:

•	 A write is issued from the client
•	 The write is executed and completed on replica1
•	 The write is executed and completed on replica2
•	 An acknowledgement is issued to the client when a write is

successfully completed

Read consistency
The read consistency is analogues to write consistency, it denotes how many
replicas should respond or confirm their alignment to the data being returned to
read operation before the results are returned to the client querying the Cassandra
data store. This means if on an N node cluster with a replication factor of x, a read
query is issued with a read consistency of y (y is less than x), then Cassandra would
check the y replicas and then return the results. The results are validated on the basis
that the most recent data is used to satisfy the request, and this is verified by the
timestamp associated with each column.

Chapter 7

[113]

The following Cassandra Query Language (CQL), fetch the data from the column
family with quorum consistency as follows:

SELECT * FROM mytable USING CONSISTENCY QUORUM WHERE name='shilpi';

The functions of the CQL are as follows:

Consistency
level Implication

ONE A read request is serviced by the response from the closest replica

TWO A read request is serviced by the most recent response from one of the
two closest replicas

THREE This level returns the most recent data from three of the closest replicas

QUORUM A read request is serviced by the most recent responses from the
quorum of replicas

ALL A read request is serviced by the most recent response from all the
replicas

Consistency maintenance features
In the previous section, we discussed read and write consistency in depth, and
one thing that came clear is that Cassandra doesn't provide or work towards total
consistency at the time the read or write operation is performed; it executes and
completes the request as per client's consistency specifications. Another feature is
eventual consistency, which highlights that there is some magic behind the veil that
guarantees that eventually all data will be consistent. Now this magic is performed
by certain components within Cassandra, and some are mentioned as follows:

•	 Read repair: This service ensures that data across all the replicas is and up
to date. This way, the row is consistent and has been updated with recent
values across all replicas. This operation is executed by a job. Cassandra is
running to execute repair read operation issued by the coordinator.

•	 Anti-entropy repair service: This service ensures that the data that's not read
very frequently, or when a downed host joins back, is in consistent a state.
This is a regular cluster maintenance operation.

Cassandra Partitioning, High Availability, and Consistency

[114]

•	 Hinted handoff: This is another unique and wonderful operation on
Cassandra. When the write operation is executed, the coordinator issues a
write operation to all replicas, irrespective of the consistency specified and
waits for an acknowledgement. As soon as the acknowledgement count
reaches the value mentioned on consistency of the operation, the thread
is completed and the client is notified about its success. On the remaining
replicas, the values are written using hinted handoffs. The hinted handoff
approach is a savior when a few nodes are down. Let's say one of the replicas
is down and a write operation is executed with a consistency of ANY; in that
case, one replica takes the write operation and hints to the neighboring
replicas, which are currently down. When the downed replicas are revived,
then the values are written back to them by taking hints from live replicas.

Quiz time
Q.1. State whether the following statements are true or false:

1.	 Cassandra has a default consistency of ALL.
2.	 QUORUM is the consistency level that provides the highest availability.
3.	 Cassandra uses a snitch to identify the closeness of the nodes.
4.	 Cassandra reads and writes features have consistency level 1 by default.

Q.2. Fill in the blanks:

1.	 _______________ is used to determine the physical closeness of the nodes.
2.	 _______________ is the consistency that provides the highest availability and

lowest availability.
3.	 The ___________ is the service that ensures that a node, which has been

down for a while, is correctly updated with the latest changes.

Q.3. Execute the following use case to see Cassandra high availability and replications:

1.	 Create a four-node Cassandra cluster.
2.	 Create a keyspace with a replication factor of 3.
3.	 Add some data into a column family under this keyspace.
4.	 Attempt to retrieve data using read consistency with using ALL in select query.
5.	 Shut down the Cassandra daemon on one node and repeat step 4 from the

other three live nodes.
6.	 Shut down the Cassandra daemon on one node and repeat step 4 from the

other three live nodes using the consistency ANY.

Chapter 7

[115]

7.	 Shut down two nodes and update an existing value using a write consistency
of ANY.

8.	 Attempt a read using ANY.
9.	 Bring back the nodes that are down and execute read using the consistency

ALL from all four nodes.

Summary
In this chapter, you have understood the concepts of replication and data
partitioning in Cassandra. We also understood the replication strategy and the
concept of eventual consistency. The exercise at the end of the chapter is a good
hands-on exercise to help you understand the concepts covered in the chapter
in a practical way.

In the next chapter, we will discuss the gossip protocols, Cassandra cluster
maintenance, and management features.

[117]

Cassandra Management
and Maintenance

In this chapter, we will learn about the gossip protocol of Cassandra.
Thereafter, we will delve into Cassandra administration and management in
terms of understanding scaling and reliability in action. This will equip you
with the ability to handle situations that you would not like to come across
but do happen in production, such as handling recoverable nodes, rolling
restarts, and so on.

The topics that will be covered in the chapter are as follows:

•	 Cassandra—gossip protocol
•	 Cassandra scaling—adding a new node to a cluster
•	 Replacing a node
•	 Replication factor changes
•	 Node tool commands
•	 Rolling restarts and fault tolerance
•	 Cassandra monitoring tools

So, this chapter will help you understand the basics of Cassandra, as well as the
various options required for the maintenance and management of Cassandra activities.

Cassandra Management and Maintenance

[118]

Cassandra – gossip protocol
Gossip is a protocol wherein periodically the nodes exchange information with other
nodes about the nodes they know; this way, all the nodes obtain information about
each other via this peer-to-peer communication mechanism. It's very similar to
real-world and social media world gossip.

Cassandra executes this mechanism every second, and one node is capable of
exchanging gossip information with up to three nodes in the cluster. All these gossip
messages have a version associated with them to track the chronology, and the older
gossip interaction updates are overwritten chronologically by newer ones.

Now that we know what Cassandra's gossip is like at a very high level, let's have a
closer look at it and understand the purpose of this chatty protocol. Here are the two
broad purposes served by having this in place:

•	 Bootstrapping
•	 Failure scenario handling—detection and recovery

Let's understand what they mean in action and what their contribution is towards
the well-being and stability of a Cassandra cluster.

Bootstrapping
Bootstrapping is a process that is triggered in a cluster when a node joins the ring
for the first time. It's the seed nodes that we define under the Cassandra.yaml
configuration file that help the new nodes obtain the information about the cluster,
ring, keyset, and partition ranges. It's recommended that you keep the setting similar
throughout the cluster; otherwise, you could run into partitions within the cluster.
A node remembers which nodes it has gossiped with even after it restarts. One more
point to remember about seed nodes is that their purpose is to serve the nodes at the
time of bootstrap; beyond this, its neither a single point of failure, nor does it serve
any other purpose.

Failure scenario handling – detection and
recovery
Well, the gossip protocol is Cassandra's own efficient way of knowing when a
failure has occurred; that is, the entire ring gets to know about a downed host
through gossip. On a contrary, situation when a node joins the cluster, the same
mechanism is employed to inform the all nodes in the ring.

Chapter 8

[119]

Once Cassandra detects a failure of a nodes on the ring, it stops routing the client
requests to it—failure definitely has some impact on the overall performance of the
cluster. However, it's never a blocker until we have enough replicas for consistency
to be served to the client.

Another interesting fact about gossip is that it happens at various levels—Cassandra
gossip, like real-world gossip, could be secondhand or thirdhand and so on; this is the
manifestation of indirect gossip.

Failure of a node could be actual or virtual. This means that either a node can
actually fail due to system hardware giving away, or the failure could be virtual,
wherein, for a while, network latency is so high that it would seem that the node
is not responding. The latter scenarios, most of the time, are self-recoverable; that
is, after a while, networks return to normalcy, and the nodes are detected in the
ring once again. The live nodes keep trying to ping and gossip with the failed node
periodically to see if they are up. If a node is to be declared as permanently departed
from the cluster, we require some admin intervention to explicitly remove the node
from the ring.

When a node is joined back to the cluster after quite a while, it's possible that it might
have missed a couple of writes (inserts/updates/deletes), and thus, the data on the
node is far from being accurate as per the latest state of data. It's advisable to run a
repair using the nodetool repair command.

Cassandra cluster scaling – adding a
new node
Cassandra scales very easily, and with zero downtime. This is one of the reasons
why it is chosen over many other contenders. The steps are pretty straightforward
and simple:

1.	 You need to set up Cassandra on the nodes to be added. Don't start the
Cassandra process yet; first, follow these steps:

1.	 Update the seed nodes in Cassandra.yaml under seed_provider.
2.	 Make sure the tmp folders are clean.
3.	 Add auto_bootstrap to Cassandra.yaml and set it to true.
4.	 Update cluster_name in Cassandra.yaml.
5.	 Update listen_address/broadcast_address in Cassandra.yaml.

Cassandra Management and Maintenance

[120]

2.	 Start all the new nodes one by one, pausing for at least 5 minutes between
two consecutive starts.

3.	 Once the node is started, it will proclaim its share of data based on the token
range it owns and start streaming that in. This could be verified using the
nodetoolnetstat command, as shown in the following code:
mydomain@my-cass1:/home/ubuntu$ /usr/local/cassandra/apache-
 cassandra-1.1.6/bin/nodetool -h 10.3.12.29 netstats | grep -
 v 0%
Mode: JOINING
Not sending any streams.
Streaming from: /10.3.12.179
my_keyspace:
 /var/lib/cassandra/data/my_keyspace/mycf/my_keyspace-my-hf-
 461279-Data.db sections=1
 progress=2382265999194/3079619547748 - 77%
Pool Name Active Pending Completed
Commands n/a 0 33
Responses n/a 0 13575829
mydomain@my-cass1:/home/ubuntu$

4.	 After all the nodes are joined to the cluster, it's strictly recommended
that you run a nodetool cleanup command on all the nodes. This is
recommended so that they relinquish the control of the keys that were
formerly owned by them but now belong to the new nodes that have
joined the cluster. Here is the command and the execution output:
mydomain@my-cass3:/usr/local/cassandra/apache-cassandra-
 1.1.6/bin$ sudo -bE ./nodetool -h 10.3.12.178 cleanup
 my_keyspacemycf_index
mydomain@my-cass3:/usr/local/cassandra/apache-cassandra-
 1.1.6/bin$ du -h
 /var/lib/cassandra/data/my_keyspace/mycf_index/
53G /var/lib/cassandra/data/my_keyspace/mycf_index/
mydomain@my-cass3:/usr/local/cassandra/apache-cassandra-
 1.1.6/bin$ jps
27389 Jps
26893 NodeCmd
17925 CassandraDaemon

5.	 Note that the NodeCmd process is actually the cleanup process for the
Cassandra daemon. The disk space reclaimed after the cleanup on the
preceding node is shown here:
Size before cleanup – 57G
Size after cleanup – 30G

Chapter 8

[121]

Cassandra cluster – replacing a
dead node
This section captures the various situations and scenarios that can occur and cause
failures in a Cassandra cluster. We will also equip you with the knowledge and talk
about the steps to handle these situations. These situations are specific to version
1.1.6 but can be applied to others as well.

Say, this is the problem: you're running an n node, for example let's say there are three
node clusters and from that one node goes down; this will result in unrecoverable
hardware failure. The solution is this: replace the dead nodes with new nodes.

The following are the steps to achieve the solution:

1.	 Confirm the node failure using the nodetool ring command:
bin/nodetool ring -h hostname

2.	 The dead node will be shown as DOWN; let's assume node3 is down:
192.168.1.54 datacenter1rack1 Up Normal 755.25 MB 50.00% 0

192.168.1.55 datacenter1rack1 Down Normal 400.62 MB 25.00%
 42535295865117307932921825928971026432

192.168.1.56 datacenter1rack1 Up Normal 793.06 MB 25.00%
 85070591730234615865843651857942052864

3.	 Install and configure Cassandra on the replacement node. Make sure we
remove the old installation, if any, from the replaced Cassandra node using
the following command:
sudorm -rf /var/lib/cassandra/*

Here, /var/lib/cassandra is the path of the Cassandra data directory
for Cassandra.

4.	 Configure Cassandra.yaml so that it holds the same non-default settings as
that of the pre-existing Cassandra cluster.

5.	 Set the initial_token range in the cassandra.yaml file of the replacement
node to the value of the dead node's token 1, that is, 42535295865117307932
921825928971026431.

6.	 Starting the new node will join the cluster at one place prior to the dead node
in the ring:
192.168.1.54 datacenter1rack1 Up Normal 755.25 MB 50.00% 0
192.168.1.51 datacenter1rack1 Up Normal 400.62 MB 0.00%
 42535295865117307932921825928971026431

Cassandra Management and Maintenance

[122]

192.168.1.55 datacenter1rack1 Down Normal 793.06 MB 25.00%
 42535295865117307932921825928971026432

192.168.1.56 datacenter1rack1 Up Normal 793.06 MB 25.00%
 85070591730234615865843651857942052864

7.	 We are almost done. Just run nodetool repair on each node on
each keyspace:
nodetool repair -h 192.168.1.54 keyspace_name -pr
nodetool repair -h 192.168.1.51 keyspace_name -pr
nodetool repair -h 192.168.1.56 keyspace_name–pr

8.	 Remove the token of the dead node from the ring using the
following command:
nodetoolremovetoken 85070591730234615865843651857942052864

This command needs to be executed on all the remaining nodes to make sure
all the live nodes know that the dead node is no longer available.

9.	 This removes the dead node from the cluster; now we are done.

The replication factor
Occasionally, there are instances when we come across situations where we make
changes to the replication factor. For example, I started with a smaller cluster so
I kept my replication factor as 2. Later, I scaled out from 4 nodes to 8 nodes, and
thus to make my entire setup more fail-safe, I increased my replication factor to 4.
In such situations, the following steps are to be followed:

1.	 The following is the command to update the replication factor and/or change
the strategy. Execute these commands on the Cassandra CLI:
ALTER KEYSPACEmy_keyspace WITH REPLICATION = { 'class' :
 'SimpleStrategy', 'replication_factor' : 4 };

2.	 Once the command has been updated, you have to execute the nodetool
repair on each of the nodes one by one (in succession) so that all the keys are
correctly replicated as per the new replication values:
sudo -bE ./nodetool -h 10.3.12.29 repair my_keyspacemycf -pr
6
mydomain@my-cass3:/home/ubuntu$ sudo -E
 /usr/local/cassandra/apache-cassandra-1.1.6/bin/nodetool -h
 10.3.21.29 compactionstats
pending tasks: 1
compaction type keyspace column family bytes
 compacted bytes total progress

Chapter 8

[123]

Validation my_keyspacemycf 1826902206
 761009279707 0.24%
Active compaction remaining time : n/a
mydomain@my-cass3:/home/ubuntu$

The following compactionstats command is used to track the progress of the
nodetool repair command.

The nodetool commands
The nodetool command in Cassandra is the most handy tool in the hands of a
Cassandra administrator. It has all the tools and commands that are required for
all types of situational handling of various nodes. Let's look at a few widely used
ones closely:

•	 Ring: This command depicts the state of nodes (normal, down, leaving,
joining, and so on). The ownership of the token range and percentage
ownership of the keys along with the data centre and rack details is as
follows:
bin/nodetool -host 192.168.1.54 ring

The output will be something like this:
192.168.1.54 datacenter1rack1 Up Normal 755.25 MB 50.00% 0
192.168.1.51 datacenter1rack1 Up Normal 400.62 MB 0.00%
 42535295865117307932921825928971026431
192.168.1.55 datacenter1rack1 Down Normal 793.06 MB 25.00%
 42535295865117307932921825928971026432
192.168.1.56 datacenter1rack1 Up Normal 793.06 MB 25.00%
 85070591730234615865843651857942052864

•	 Join: This is the option you can use with nodetool, which needs to be
executed to add the new node to the cluster. When a new node joins the
cluster, it starts streaming the data from other nodes until it receives all
the keys as per its designated ownership based on the token in the ring.
The status for this can be checked using the netsat commands:
mydomain@my-cass3:/home/ubuntu$ /usr/local/cassandra/apache-
 cassandra-1.1.6/bin/nodetool -h 10.3.12.29 netstats | grep -
 v 0%
Mode: JOINING
Not sending any streams.
Streaming from: /10.3.12.179

Cassandra Management and Maintenance

[124]

my_keyspace:
 /var/lib/cassandra/data/my_keyspace/mycf/my_keyspace-mycf-
 hf-46129-Data.db sections=1
 progress=238226599194/307961954748 - 77%
Pool Name Active Pending Completed
Commands n/a 0 33
Responses n/a 0 13575829

•	 Info: This nodetool option gets all the required information about the node
specified in the following command:
bin/nodetool -host 10.176.0.146 info
Token(137462771597874153173150284137310597304)
Load Info : 0 bytes.
Generation No : 1
Uptime (seconds) : 697595
Heap Memory (MB) : 28.18 / 759.81

•	 Cleanup: This is the option that is generally used when we scale the cluster.
New nodes are added and thus the existing nodes need to relinquish the
control of the keys that now belong to the new entrants in the cluster:
mydomain@my-cass3:/usr/local/cassandra/apache-cassandra-
 1.1.6/bin$ sudo -bE ./nodetool -h 10.3.12.178 cleanup
 my_keyspacemycf_index
mydomain@my-cass3:/usr/local/cassandra/apache-cassandra-
 1.1.6/bin$ du -h
 /var/lib/cassandra/data/my_keyspace/mycf_index/
53G /var/lib/cassandra/data/my_keyspace/mycf_index/
aeris@nrt-prod-cass3-C2:/usr/local/cassandra/apache-cassandra-
 1.1.6/bin$ sudo `which jps
27389 Jps
26893 NodeCmd
17925 CassandraDaemon
mydomain@my-cass3:/usr/local/cassandra/apache-cassandra-
 1.1.6/bin$ du -h
 /var/lib/cassandra/data/my_keyspace/mycf_index/
53G /var/lib/cassandra/data/my_keyspace/mycf_index/

•	 Compaction: This is one of the most useful tools. It's used to explicitly issue
the compact command to Cassandra. This can be done on the entire node,
key space, or at the column family level:
sudo -bE /usr/local/cassandra/apache-cassandra-
 1.1.6/bin/nodetool -h 10.3.1.24 compact

Chapter 8

[125]

mydomain@my-cass3:/home/ubuntu$ sudo -E
 /usr/local/cassandra/apache-cassandra-1.1.6/bin/nodetool -h
 10.3.1.24 compactionstats
pending tasks: 1
compaction type keyspace column family bytes compacted bytes
 total progress
Compaction my_keyspacemycf 1236772 1810648499806 0.00%
Active compaction remaining time:29h58m42s
mydomain@my-cass3:/home/ubuntu$

Cassandra has two types of compactions: minor compaction and major
compaction. The minor cycle of compaction gets executed whenever a
new sstable data is created to remove all the tombstones (that is, the
deleted entries).
The major compaction is something that's triggered manually, using the
preceding nodetool command. This can be applied to the node, keyspace,
and a column family level.

•	 Decommission: This is, in a way, the opposite of bootstrap and is triggered
when we want a node to leave the cluster. The moment a live node receives
the command, it stops accepting new rights, flushes the memtables, and
starts streaming the data from itself to the nodes that would be a new
owner of the key range it currently owns:
bin/nodetool -h 192.168.1.54 decommission

•	 Removenode: This command is executed when a node is dead, that is,
physically unavailable. This informs the other nodes about the node being
unavailable. Cassandra replication kicks into action to restore the correct
replication by creating copies of data as per the new ring ownership:
bin/nodetoolremovenode<UUID>
bin/nodetoolremovenode force

•	 Repair: This nodetool repair command is executed to fix the data on any
node. This is a very important tool to ensure that there is data consistency
and the nodes that join the cluster back after a period of time exist. Let's
assume a cluster with four nodes that are catering to continuous writes
through a storm topology. Here, one of the nodes goes down and joins the
ring again after an hour or two. Now, during this duration, the node might
have missed some writes; to fix this data, we should execute a repair
command on the node:
bin/nodetool repair

Cassandra Management and Maintenance

[126]

Cassandra fault tolerance
Well, one of the prime reasons for using Cassandra as a data store is its fault-tolerant
capabilities. It's not driven by a typical master-slave architecture, where failure of the
master becomes a single point of system breakdown. Instead, it harbors a concept
of operating in a ring mode so that there is no single point of failure. Whenever
required, we can restart the nodes without the dread of bringing the whole cluster
down; there are various situations where this capability comes in handy.

There are situations where we need to restart Cassandra, but Cassandra's ring
architecture equips the administrator to do this seamlessly with zero downtime
for the cluster. This means that in situations such as the following that requires a
Cassandra cluster to be restarted, a Cassandra administrator can restart the nodes
one by one instead of bringing down the entire cluster and then starting it:

•	 Starting the Cassandra daemon with changes in the memory configuration
•	 Enabling JMX on an already running Cassandra cluster
•	 Sometimes machines have routine maintenance and need restarts

Cassandra monitoring systems
Now that we have discussed the various management aspects of Cassandra, let's
explore the various dashboarding and monitoring options for the Cassandra cluster.
There are various free and licensed tools available that we'll discuss now.

JMX monitoring
You can use a type of monitoring for Cassandra that is based on jconsole. Here are
the steps to connect to Cassandra using jconsole:

1.	 In the Command Prompt, execute the jconsole command:

Chapter 8

[127]

2.	 In the next step, you have to specify the Cassandra node IP and port
for connectivity:

Cassandra Management and Maintenance

[128]

3.	 Once you are connected, JMX provides a variety of graphs and
monitoring utilities:

The developers can monitor heap memory usage using the jconsole Memory tab.
This will help you understand the utilization of node resources.

The limitation with jconsole is that it performs node-specific monitoring and not
Cassandra-ring-based monitoring and dashboarding. Let's explore the other tools
in the context.

Chapter 8

[129]

Datastax OpsCenter
This is a datastax-provided utility with a graphical interface that lets the user
monitor and execute administrative activities from one central dashboard.
Note that a free version is available only for nonproduction usage.

Datastax Ops center provides a lot of graphical representations for various
important system Key Performance Indicators (KPIs), such as performance
trends, summary, and so on. Its UI also provides a historic data analysis and
drill down capability on single data points. OpsCenter stores all its metrics in
Cassandra itself. The key features of the OpsCenter utility are as follows:

•	 KPI-based monitoring for the entire cluster
•	 Alerts and alarms
•	 Configuration management
•	 Easy to set up

You can install and set up OpsCenter using the following simple steps:

1.	 Run the following command to get started:
$ sudo service opscenterd start

2.	 Connect to OpsCenter in a web browser at http://localhost:8888.
3.	 You will get a welcome screen where you will have options to spawn a new

cluster or connect to an existing one.
4.	 Next, configure the agent; once this is done, OpsCenter is ready for use.

Here is a screenshot from the application:

Cassandra Management and Maintenance

[130]

Here we choose the metric to be executed and whether the operation is to be
performed on a specific node or all the nodes. The following screenshot captures
OpsCenter starting up and recognizing the various nodes in the cluster:

The following screenshot captures various KPIs in the aspects of read and writes to
the cluster, the overall cluster latency, disk I/O, and so on:

Quiz time
Q.1. State whether the following statements are true or false.

1.	 Cassandra has a single point of failure.
2.	 A dead node is immediately detected in a Cassandra ring.
3.	 Gossip is a data exchange protocol.
4.	 The decommission and removenode commands are same.

Q.2. Fill in the blanks.

1.	 _______________ is the command used to run compactions.
2.	 _______________ is the command to get the information about a live node.
3.	 ___________ is the command that displays the entire cluster information.

Chapter 8

[131]

Q.3. Execute the following use case to see Cassandra high availability
and replications:

1.	 Creating a 4-node Cassandra cluster.
2.	 Creating a keyspace with a replication factor of 3.
3.	 Bringing down a Cassandra daemon on one the nodes.
4.	 Executing nestat on each node to see the data streaming.

Summary
In this chapter, you learned about the concepts of the gossip protocol and adapted
tools used for various scenarios such as scaling the cluster, replacing a dead node,
compaction, and repair operations on Cassandra.

In the next chapter, we will discuss storm cluster maintenance and operational aspects.

[133]

Storm Management
and Maintenance

In this chapter, you will understand scaling of the Storm cluster. You will also see
how to adapt the Storm topology worker and parallelism.

We will cover the following topics:

•	 Adding new supervisor nodes
•	 Setting up workers and parallelism to enhance processing
•	 Troubleshooting

Scaling the Storm cluster – adding new
supervisor nodes
In production, one of the most common scenarios one can run into is when the
processing need outgrows the size of the cluster. Scaling then becomes necessary;
there are two options: we can perform vertical scaling wherein we can add more
compute capability, or we can use horizontal scaling where we add more nodes.
The latter is more cost-effective and also makes the cluster more robust.

Here are the steps to be executed to add a new node to the Storm cluster:

1.	 Download and install the 0.9.2 version of Storm as it is used in the rest of
the cluster by extracting the downloaded ZIP file.

2.	 Create the required directories:
sudo mkdir –p /usr/local/storm/tmp

Storm Management and Maintenance

[134]

3.	 All Storm nodes, the Nimbus nodes, and the supervisor require a location
on to store a small amount of data related to configurations on the local disk.
Please ensure you create the directory and assign read/write permissions on
all Storm nodes.

4.	 Create the required directories for the logs, as follows:
sudo mkdir –p /mnt/app_logs/storm/storm_logs

5.	 Update the storm.yaml file with necessary changes for Nimbus and
Zookeeper:
#storm.zookeeper.servers: This is a list of the hosts in the
 Zookeeper cluster for Storm cluster
storm.zookeeper.servers:
 - "<IP_ADDRESS_OF_ZOOKEEPER_ENSEMBLE_NODE_1>"
 - "<IP_ADDRESS_OF_ZOOKEEPER_ENSEMBLE_NODE_2>"
#storm.zookeeper.port: Port on which zookeeper cluster is running.
 storm.zookeeper.port: 2182
#For our installation, we are going to create this directory in
 /usr/local/storm/tmp location.
storm.local.dir: "/usr/local/storm/tmp"
#nimbus.host: The nodes need to know which machine is the #master
 in order to download topology jars and confs. This #property is
 used for the same purpose.
nimbus.host: "<IP_ADDRESS_OF_NIMBUS_HOST>"
#storm.messaging.netty configurations: Storm's Netty-based
 #transport has been overhauled to significantly improve
 #performance through better utilization of thread, CPU, and
 #network resources, particularly in cases where message sizes
 #are small. In order to provide netty support, following
 #configurations need to be added :
storm.messaging.transport:"backtype.storm.messaging.netty.Context"
storm.messaging.netty.server_worker_threads:1
storm.messaging.netty.client_worker_threads:1
storm.messaging.netty.buffer_size:5242880
storm.messaging.netty.max_retries:100
storm.messaging.netty.max_wait_ms:1000
storm.messaging.netty.min_wait_ms:100

The values of the slots of the supervisor ports are as follows:

supervisor.slots.ports

- 6700
- 6701
- 6702
- 6703

Chapter 9

[135]

6.	 Set the STORM_HOME environment in the ~/.bashrc file and add Storm's bin
directory in the PATH environment variable. This is added to execute Storm
binaries from any location. The entry to be added is as follows:
STORM_HOME=/usr/local/storm

PATH=$PATH:$STORM_HOME/bin

7.	 Update /etc/hosts on each of the following machines and the node:

°° The nimbus machine: This is done to add an entry for the new
supervisor that's being added

°° All existing supervisor machines: This is done to add an entry for
the new supervisor that's being added

°° The new supervisor node: This is done to add the nimbus entry,
to add the entry for all other supervisors, and to add an entry for
the Zookeeper node

Here is a sample snippet for the IP 10.46.205.248 and the sup-flm-1.mydomain.com
host:

10.192.206.160 sup-flm-2. mydomain.net
10.4.27.405 nim-zkp-flm-3. mydomain.net

Once the supervisor has been added, start the process and it should be visible on the
UI, as shown in the following screenshot:

Note that the first row in the preceding screenshot points to the newly added
supervisor; it has 16 slots in total and 0 slots are being used as it has been just
added to the cluster.

Storm Management and Maintenance

[136]

Scaling the Storm cluster and
rebalancing the topology
Once a new supervisor is added, the next obvious step would be to rebalance
the topologies, which are executed on the cluster so that the load could be shared
across to the newly added supervisor.

Rebalancing using the GUI
Rebalance option is available on the Nimbus UI where you can choose the topology
that is to be rebalanced, and then use the option from the GUI. The topology
drains as per the specified time-out. During that duration, it stops accepting any
messages from the spout and the ones in the internal queues are processed and once
completely clear, the workers and tasks are redistributed. The user also has option to
increase or decrease the parallelism for various bolts and spouts using the rebalance
options. The following screenshot describes how to rebalance a topology using the
Storm UI options:

Rebalancing using the CLI
The second option for rebalancing is using the Storm CLI. The command for this is
as follows:

storm rebalance mystormtopology -n 5 -e my-spout=3 -e my-bolt=10

Chapter 9

[137]

Here, –n specifies the number of workers allocated to the topology post-rebalance,
-e my-spout refers to parallelism assigned to the spout, and similarly –e my-
bolt refers to parallelism to be assigned to the bolt. In the preceding command, we
executed the Storm shell from the bin directory under the Storm installation JAR,
and while rebalancing the Storm topology by changing the parallelism of the spout
and bolts as well.

The changes to the execution of the preceding commands can be verified from the
Storm UI.

Setting up workers and parallelism to
enhance processing
Storm is a highly scalable, distributed, and fault tolerant real-time parallel processing
compute framework. Note that the emphasis is on scalability, distributed, and parallel
processing—well, we already know that Storm operates in clustered mode and is
therefore distributed in its basic nature. Scalability was covered in the previous section;
now, let's have a closer look at parallelism. We introduced you to this concept in an
earlier chapter, but now we'll get you acquainted with how to tweak it to achieve the
desired performance. The following points are the key criteria for this:

•	 A topology is allocated a certain number of workers at the time it's started.
•	 Each component in the topology (bolts and spouts) has a specified number

of executors associated with it. These executors specify the number or degree
of parallelism for each running component of the topology.

•	 The whole efficiency and speed factor of Storm are driven by the parallelism
feature of Storm, but we need to understand one thing: all the executors
that attribute to parallelism are running within the limited set of workers
allocated to the topology. So, one needs to understand that increasing the
parallelism would help achieve efficiency only to a point, but beyond that
the executors will struggle for resource is the intention. Going beyond this
increasing parallelism would not fetch efficiency, but increasing the workers
allocated to the topology would would make computation efficient.

Another point to understand in terms of efficiency is network latency; we'll explore
this in the following sections.

Storm Management and Maintenance

[138]

Scenario 1
This following figure illustrates a simple topology with three moving components:
one spout and two bolts. Here, all the components are executing on separate nodes
in the cluster, thus every tuple has to do two network hops to complete its execution.

Spout Bolt A Bolt B

Machine 1 Machine 2 Machine 3

Let's say we are not satisfied with the throughput and decide to increase the
parallelism. The moment we try to move into this technique, the question that
arises is where to increase it and by how much. That could be computed based on
the capacity of the bolt, which should be visible from the Storm UI. The following
screenshot illustrates this:

Here, the circled value is the capacity of the second bolt, which is around 0.9 and
it's already in red, which means this bolt is over-worked and increasing parallelism
here should help. Any topology would actually break and stop acking when the bolt
capacity crosses 1. To fix this, let's see the next scenario, which provides a solution
for this issue.

Chapter 9

[139]

Scenario 2
Here, we have acted on the realization that Bolt B is overloaded and has increased
the parallelism, as shown in the following figure:

Bolt A

Bolt B

Machine 1

Machine 2

Machine 3

Bolt A

Spout Bolt A

Bolt A

The preceding figure describes one scenario capturing the distribution of various
instances of the bolts and spouts across different nodes in the cluster. Here, we have
acted on the realization that a bolt is overloaded and we observed the capacity, and
by brute force, increased the parallelism of only that bolt.

Now, having done this, we have achieved the required parallelism; let's now have a
look at the network latency, in terms of how many tuples are moving between nodes
(internode communication is a mandatory element in a distributed computing setup):

•	 50 percent of the traffic is hopping between spouts on Machine 1 and
Machine 2

•	 50 percent of the traffic is hopping between Machine 1 and Machine 3
•	 100 percent of the traffic is hopping between Machine 2 and Machine 3

Now let's see another illustration with a slight variation in the parallelism.

Storm Management and Maintenance

[140]

Scenario 3
The scenario 3 is the most optimal scenario that is possible in the setup in the
example where we use network and parallelism very efficiently, as shown in
the following figure:

Bolt A

Machine 1

Machine 2

Spout

Bolt A Bolt B

Spout Bolt B

Now, the preceding figure is an illustration of where we get the maximum benefit of
parallelism usage. If you look at the preceding figure, you'll see that we have achieved
efficiency and no network hop; the best of both the worlds.

What I am trying to illustrate is that parallelism should be changed judicially
keeping the impact of network latency, hops, and the speed of localized processing
in mind.

Storm troubleshooting
As developers, we need to accept the reality that things do go wrong and
debugging is required. This section is going to equip you to handle such
situations effectively and efficiently. The first thing is to understand two
root mantras of the programming world:

•	 Work as if everything that could break will break
•	 Anything that could break can be fixed

Chapter 9

[141]

Having accepted the reality, let's address the situation first by understanding what
could fail and then have a clear understanding of where we should start the analysis to
help us handle any situation with the Storm cluster. Let's get to grips with the various
pointers that show us the problems and thus guide us to prospective solutions.

The Storm UI
First of all, let's understand which statistics and indicators are present on the
UI itself. The latest UI has scores of indicators that give us an insight into what
is going on in the cluster and what could go wrong (just in case things break).

Let's look at Storm UI where the Cluster Summary entails, for example,
http:// ip of nimbus:8080 in my case is http://10.4.2.122:8080 and
my UI process executes on the nimbus machine that has this IP: 10.4.2.122.

In the preceding screenshot, we can see the following parameters:

•	 The version of Storm being used is in the first column.
•	 The uptime of Nimbus (second column) tells us how long the Nimbus node

has been running since the last restart. Nimbus, as we know, is required only
at the time when the topology is submitted or when a supervisor or worker
has gone down and the tasks are being delegated again. Nimbus is also
required to be up during the rebalancing of the topology.

•	 The third column gives us the number of supervisors on the cluster.
•	 Columns four, five, and six show the number of used worker slots, number

of free worker slots, and total number of worker slots across the Storm
supervisors. This is a very important statistic. In any production grade cluster,
one should always have a provision for some of the workers going down or
one or two supervisors being killed. So, I recommend that you always have
enough free slots on your cluster to accommodate such sudden failures.

•	 Column seven and column eight specify the moving tasks in the topology,
that is, in terms of the number of tasks and executors running in the system.

Storm Management and Maintenance

[142]

Let's have a look at the second section on the Storm UI opening page; this one
captures the topology summary:

This section depicts various parameters Storm captures and displays at the
topology level:

•	 Column one and column two display the Name field of the topology and
the Id field of topology, respectively.

•	 Column three reads the status of the topology, which is ACTIVE for a
topology that's executing and processing.

•	 Column four displays the uptime since the topology has been started.
•	 The next three columns display Numworkers, Num tasks, and Num

executors; these are very important aspects for the performance of the
topology. While tuning the performance, one has to realize that just
increasing the Num tasks and Num executors field value may not result
in greater efficiency. If the number of workers is low, and we just increase
the number of executors and tasks, then the starvation of resource high
because of the limited number of workers, so the topology performance
will deteriorate.

Similarly, if we assign too many workers to a topology with not enough executors
and tasks to utilize all of them, we'd waste the precious resources by keeping them
blocked and idle.

On the other hand, if we have a high number of workers and a high number
of executors and tasks, the chances are that performance may degrade due to
network latency.

Chapter 9

[143]

Having stated these facts, I want to emphasize the fact that the performance tuning
should be done cautiously and judiciously to arrive at what number works for the
use case we are trying to implement.

The following screenshot captures the details about the supervisors, in terms of the
statistics, with the corresponding information:

•	 Column one has the Id field for the supervisors, and column two has
the names of the hosts field that have supervisor processes running.

•	 Column three captures the amount of time the supervisor has been
running for.

•	 Columns five and six capture the number of slots available on the supervisor
and the number of slots used respectively. These two numbers provide a very
important metric in terms of how many slots are available and how many are
used. They help us judge and understand what capacity the supervisors are
operating at and how much bandwidth they have to handle the scenarios of
failures; for instance, all my supervisors are operating at 100 percent capacity,
so in that case, my cluster can't handle any failures.

The following screenshot is captured from the Storm UI depicting supervisors and
their attributes:

Storm Management and Maintenance

[144]

The preceding section gives us details about the supervisor slots, timeouts, and so
on. These values are specified on storm.yaml, but can be verified from the UI. For
example, http:// ip of nimbus:8080 in my case is http://10.4.2.122:8080,
and my UI process executes on the Nimbus machine that has this IP: 10.4.2.122, as
shown in the following screenshot:

Now in the section depicted in the following screenshot one can get into by drilling
deeper into the topology details. This can be achieved on the Storm UI by clicking on
any of the topology names. This section holds the details about the components of
the topology including the level of bolts, spouts, and details about them, as shown
in the following screenshot:

Chapter 9

[145]

The preceding screenshot has details ranging from the number of executors or tasks
allocated to each component, to the number of tuples emitted by the bolts or spouts
and the number of tuples transferred to the next component in the Directed Acyclic
Graph (DAG).

Other notable details one should observe on the topology detail page are as follows:

•	 Capacity of bolts in the last 10 minutes: This should be well below 1.
•	 Execute latency is time in milliseconds: This determines how long it would

take to execute a tuple through this component. If this value is too high, then
we would probably want to break the execution into two or more bolts to
utilize parallelism and have better efficiency.

•	 Executed: This stores the number of tuples executed successfully by this
component.

•	 Process latency: This value displays the average total time taken to execute
a tuple by the component. This value should be analyzed with the execute
latency. These are practical cases that may happen:

°° Execute latency and Process latency are both low (that's the best
possible case)

°° Execute latency is low but process latency is very high (that means
actual execution time is lower in comparison to the total execution
time and increasing parallelism might help achieve efficiency)

°° Both Execute latency and Process latency are high (again, increasing
parallelism might help)

Storm logs
The next place to debug if things don't go as expected is the Storm log. First of
all, one needs to know the location for Storm logs, which also update the path
on cluster.xml at storm-0.9.2-incubating.zip\apache-storm-0.9.2-
incubating\logback\cluster.xml:

<appender class="ch.qos.logback.core.rolling.RollingFileAppender"
 name="A1">
 <!—update this as below
 <file>${storm.home}/logs/${logfile.name}</file> -->
 <file>/mnt/app_logs/storm/storm_logs/${logfile.name}</file>
 <rollingPolicy
 class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
 <fileNamePattern>${storm.home}/logs/${logfile.name}.%i
 </fileNamePattern>
 <minIndex>1</minIndex>
 <maxIndex>9</maxIndex>
</rollingPolicy>

Storm Management and Maintenance

[146]

<triggeringPolicy
 class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
 <maxFileSize>100MB</maxFileSize>
</triggeringPolicy>
 <encoder>
 <pattern>%d{yyyy-MM-dd HH:mm:ss} %c{1} [%p] %m%n</pattern>
 </encoder>
</appender>

Now the line in bold gets you the path/location where the Storm logs will be
created. Let's take a closer look to find out what kinds of logs are created by different
Storm daemons.

The Nimbus node logs can be obtained by using the following commands on shell:

Cd /mnt/my_logs/strom/storm_logs
ls-lart

The listing of the Nimbus log directory is shown in the following screenshot:

Notice that we have nimbus.log, which has details about Nimbus' startup, error,
and info logs; ui.log is created on the node where we start the Storm UI application.

The logs on the supervisor nodes can be obtained by using the following commands
on shell:

Cd /mnt/my_logs/strom/storm_logs
ls-lart

The listing of the supervisor log directory is shown in the following screenshot:

Chapter 9

[147]

One can see supervisor logs and worker logs. The supervisor logs capture the details
about the supervisor starting up, any errors, and so on. The worker logs are the ones
where the developer's topology logs appear along with Storm logs for various bolts
and spouts.

So if we want to troubleshoot the Storm daemon processes, we would look at
nimbus.log and supervisor.log. If you're having issues, then you need to debug
using the corresponding worker log. The scenario of nimbus and worker node
failures has been covered in Chapter 4, Storm in a Clustered Mode.

Now let's imagine a scenario. I am a developer whose topology is not behaving as
expected, and I doubt that one of the bolts is not functioning as expected. So we need
to debug the worker logs and find the root cause. Now we need to find out which
worker log to look at out of multiple supervisors and numerous worker logs; we'll
get this information from the Storm UI. Perform the following steps:

1.	 Open Storm UI and click on the troublesome topology.
2.	 Click on the suspected bolt or spout of the topology. A screen analogous to

what is shown in this screenshot should appear:

Here is the clue to debug what's happening in this bolt; I will look into Supervisor5
and Supervisor6, of worker-6705.log on supervisor5 and supervisor6.

Storm Management and Maintenance

[148]

Quiz time
Q.1. State whether the following statements are true or false:

1.	 Storm nodes can't be added to the cluster with topologies being executed.
2.	 A topology can't survive the Storm node failure.
3.	 Storm logs are created on each node in the cluster.
4.	 The location of the Storm log creation is configurable.

Q.2. Fill in the blanks:

1.	 _______________ is the heartbeat tracker of the cluster.
2.	 _______________ is the daemon that's mandatory for topology submission

and rebalancing.
3.	 The ___________ file holds the worker configuration for the topology.

Q.3. Execute the following use cases to see the internals of Storm:

1.	 Start nimbus and check nimbus.log to see what a successful startup should
look like.

2.	 Start the supervisor and check Supervisor.log to see what a successful
startup should look like.

3.	 Submit the topology, say a simple WordCount topology, and figure out the
worker.log file creation.

4.	 Update log4j.properties to change the logging level and verify its impact.

Summary
In this chapter, we have covered the maintenance concepts of Storm in terms
of adding new nodes, rebalancing, and killing topologies. We have understood
and tweaked internals such as numtasks and parallelism in combination with
to numworkers and network latency. You learned to locate and decipher logs of
Storm components. You also understood the metrics of the Storm UI and their
implications on topology performance.

In the next chapter, we will discuss advanced concepts of Storm, including
micro-batching and Trident APIs.

[149]

Advance Concepts in Storm
In this chapter, we will cover the following topics:

•	 Building a Trident topology
•	 Understanding the Trident API
•	 Examples and illustrations

In this chapter, we will learn about transactional topologies and the Trident API.
We will also explore the aspects of micro-batching and its implementation in
Storm topology.

Building a Trident topology
Trident gives a batching edge to the Storm computation. It lets developers use the
abstracted layer for computations over the Storm framework, giving the advantage
of stateful processing with high throughput for distributed queries.

Well the architecture of Trident is the same as Storm; it's built on top of Storm
to abstract a layer that adds the functionality of micro-batching and execution
of SQL-like functions on top of Storm.

For the sake of analogy, one can say that Trident is a lot like Pig for batch processing
in terms of concept. It has support for joins, aggregates, grouping, filters, functions,
and so on.

Trident has basic batch processing features such as consistent processing and
execution of process logic over the tuples exactly once.

Now to understand Trident and its working; let's look at a simple example.

Advance Concepts in Storm

[150]

The example we have picked up would achieve the following:

•	 Word count over the stream of sentences (a standard Storm word count kind
of topology)

•	 A query implementation to get the sum of counts for a set of listed words

Here is the code for dissection:

FixedBatchSpout myFixedspout = new FixedBatchSpout(new
 Fields("sentence"), 3,
new Values("the basic storm topology do a great job"),
new Values("they get tremendous speed and guaranteed processing"),
new Values("that too in a reliable manner "),
new Values("the new trident api over storm gets user more features
 "),
new Values("it gets micro batching over storm "));
myFixedspout.setCycle(true);

This preceding code snippet ensures that the spout myFixedspout cycles over the
set of sentences added as values. This snippet ensures that we have an endless flow
of data streams into the topology and enough points to perform all micro-batching
functions that we intend to.

Now we have made sure about continuous input stream let's look at the
following snippet:

//creating a new trident topology
TridentTopology myTridentTopology = new TridentTopology();
//Adding a spout and configuring the fields and query
TridentState myWordCounts = topology.newStream("myFixedspout",
 spout)
 .each(new Fields("sentence"), new Split(), new Fields("word"))
 .groupBy(new Fields("word"))
 .persistentAggregate(new MemoryMapState.Factory(), new Count(),
 new Fields("count"))
 .parallelismHint(6);

Now let's look at the code line by line to interpret how it works.

Here we start with creating a Trident topology object, which in turn gets the
developer access to the Trident interfaces.

This topology, myTridentTopology, has access to a method called newStream that
enables it to create a new stream to read the data from the source.

Chapter 10

[151]

Here we use myFixedSpout from the preceding snippet that would cycle through a
predefined set of sentences. In a production scenario or a real-life scenario, we will
use a spout to read the streams off a queue (such as RabbitMQ, Kafka, and so on).

Now the micro-batching; who does it and how? Well the Trident framework stores
the state for each source (it kind of remembers what input data it has consumed
so far). This state saving is done in the Zookeeper cluster. The tagging spout in the
preceding code is actually a znode, which is created in the Zookeeper cluster to
save the state metadata information.

This metadata information is stored for small batches wherein the batch size is a
variant based on the speed of incoming tuples; it could be few hundred to millions
of tuples based on the event transactions per second (tps).

Now my spout reads and emits the stream into the field labeled as sentence. In the
next line, we will split the sentence into words; that's the very same functionality that
we deployed in our earlier reference to the wordCount topology.

The following is the code context capturing the working of the split functionality:

public class Split extends BaseFunction {
 public void execute(TridentTuple tuple, TridentCollector
 collector) {
 String sentence = tuple.getString(0);
 for(String word: sentence.split(" ")) {
 collector.emit(new Values(word));
 }
 }
}

A very simple context splits the sentence on white space to emit each word as a tuple.

Now the topology beyond this point computes the count and stores the results in a
persistent manner. The topology can be computed by using the following steps:

1.	 We group the stream by the word field.
2.	 We aggregate and persist each group using the count aggregator.

The persistent function should be written in a fashion to store the results of
aggregation in a store that's actually persisting the state. The illustration in the
preceding code keeps all the aggregates in memory, this snippet can be very
conveniently rewritten to persist the values to IMDB in memory database systems
such as memcached or Hazelcast, or stable storage such as Cassandra and so on.

Advance Concepts in Storm

[152]

Trident with Storm is so popular because it guarantees the processing of all tuples
in a fail-safe manner in exactly one semantic. In situations where retry is necessary
because of failures, it does that exactly once and once only, so as a developer I don't
end up updating the table storage multiple times on occurrence of a failure.

Trident works on micro-batching by creating very small batches on incoming streams,
as shown in the following figure:

In the preceding figure, we have given a clear demonstration for micro-batching, how
small batches are created over the streaming data by the Trident framework in Storm.
Please remember, the preceding figure is just an illustration of micro-batching; the
actual number of tuples in a batch is dependent on the tps of the incoming data on
the source and is decided by the framework.

Now having achieved the micro-batching part of the problem, let's move on to the
next part of the problem that is executing distributed queries on these micro batches.
Trident Storm guarantees these queries to be low latency and lightning fast. In
processing and semantics, these queries are very much like Remote Procedure Call
(RPC), but the distinction of Storm is that it gets you a high degree of parallelism,
thus making them high performance and lightning fast in their execution.

Chapter 10

[153]

Let's have a look at integration of such DRPC-based queries with our
Trident components.

The following is a code snippet for DRPC followed by an explanation:

myTridentTopology.newDRPCStream("words")
 .each(new Fields("args"), new Split(), new Fields("word"))
 .groupBy(new Fields("word"))
 .stateQuery(wordCounts, new Fields("word"), new MapGet(), new
 Fields("count"))
 .each(new Fields("count"), new FilterNull())
 .aggregate(new Fields("count"), new Sum(), new Fields("sum"));

In the preceding code snippet, we created a DRPC stream using myTridentTopology
and over and above it, we have a function named word.

Each of the DRPC query requests are treated as its own mini batch processing job,
the two arguments that do this mini job is a single tuple representing the request.
For instance, in our case, the argument is a list of words separated using a space.

Here are the steps that are being executed in the previous code snippet:

•	 We split the argument stream into its constituent words; for example,
my argument, storm trident topology, is split into individual words
such as storm, trident, and topology

•	 Then the incoming stream is grouped by word
•	 Next, the state-query-operator is used to query the Trident-state-object that

was generated by the first part of the topology:
°° State query takes in the word counts computed by an earlier section

of the topology.
°° It then executes the function as specified as part of the DRPC request

to query the data.
°° In this case, my topology is executing the MapGet function on the

query to get the count of each word; the DRPC stream, in our case,
is grouped in exactly the same manner as the TridentState in the
preceding section of the topology. This arrangement guarantees
that all my word count queries for each word are directed to the
same Trident state partition of the TridentState object that would
manage the updates for the word.

•	 FilterNull ensures that the words that don't have a count are filtered out
•	 The sum aggregator then sums all the counts to get the results, which are

automatically returned back to the awaiting client

Advance Concepts in Storm

[154]

Having understood the execution as per the developer-written code, let's take a look
at what's boilerplate to Trident and what happens automatically behind the scenes
when this framework executes.

•	 We have two operations in our Trident word count topology that read from
or write to state—persistentAggregate and stateQuery. Trident employs
the capability to batch these operations automatically to that state. So for
instance, the current processing requires 10 reads and writes to the database;
Trident would automatically batch them together as one read and one write.
This gets you performance and ease of computation where the optimization
is handled by the framework.

•	 Trident aggregators are other highly efficient and optimized components
of the framework. They don't work by the rule to transfer all the tuples to
one machine and then aggregate, instead they optimize the computation
by executing partial aggregations wherever possible and then transfer the
results over the network, thus saving on network latency. The approach
employed here is similar to combiners of the MapReduce world.

Understanding the Trident API
Trident API supports five broad categories of operations:

•	 Operations for manipulations of partitioning local data without network
transfer

•	 Operations related to the repartitioning of the stream (involves the transfer
of stream data over the network)

•	 Data aggregation over the stream (this operation do the network transfer as
a part of operation)

•	 Grouping over a field in the stream
•	 Merge and join

Local partition manipulation operation
As the name suggests, these operations are locally operative over the batch on
each node and no network traffic is involved for it. The following functions fall
under this category.

Chapter 10

[155]

Functions
•	 This operation takes single input value and emits zero or more tuples

as the output
•	 The output of these function operations is appended to the end of the

original tuple and emitted to the stream
•	 In cases where the function is such that no output tuple is emitted,

the framework filters the input tuple too, while in other cases the
input tuple is duplicated for each of the output tuples

Let's illustrate how this works with an example:

public class MyLocalFunction extends BaseFunction {
 public void execute(TridentTuple myTuple, TridentCollector
 myCollector) {
 for(int i=0; i < myTuple.getInteger(0); i++) {
 myCollector.emit(new Values(i));
 }
 }
}

Now the next assumption, the input stream in the variable called myTridentStream
has the following fields ["a", "b", "c"] and the tuples on the stream are
depicted as follows:

[10, 2, 30]
[40, 1, 60]
[30, 0, 80]

Now, let's execute the sample function created in the preceding code, as shown in the
following code snippet:

mystream.each(new Fields("b"), new MyLocalFunction(), new
 Fields("d")))

The output expected here is as per the function it should return ["a", "b", "c",
"d"], so for the preceding tuples in the stream I would get the following output:

//for input tuple [10, 2, 30] loop in the function executes twice
 //value of b=2
[10, 2, 30, 0]
[10, 2, 30, 1]
//for input tuple [4, 1, 6] loop in the function executes once
 value //of b =1
[4, 1, 6, 0]
//for input tuple [3, 0, 8]
//no output because the value of field b is zero and the for loop
 //would exit in first iteration itself value of b=0

Advance Concepts in Storm

[156]

Filters
Filters are no misnomers; their execution is exactly the same as their name suggests:
they help us decide whether or not we have to keep a tuple or not—they do exactly
what filters do, that is, remove what is not required as per a given criteria.

Let's have a look at the following snippet to see a working illustration of filter functions:

public class MyLocalFilterFunction extends BaseFunction {
 public boolean isKeep(TridentTuple tuple) {
 return tuple.getInteger(0) == 1 && tuple.getInteger(1) == 2;
 }
}

Let's look at the sample tuples on the input stream with the fields as ["a" , "b" ,
"c"]:

[1,2,3]
[2,1,1]
[2,3,4]

We execute or call the function as follows:

mystream.each(new Fields("b", "a"), new MyLocalFilterFunction())

The output would be as follows:

//for tuple 1 [1,2,3]
// no output because valueof("field b") ==1 && valueof("field a")
 ==2 //is not satisfied
//for tuple 1 [2,1,1]
// no output because valueof("field b") ==1 && valueof("field a")
 ==2 [2,1,1]
//for tuple 1 [2,3,4]
// no output because valueof("field b") ==1 && valueof("field a")
 ==2 //is not satisfied

partitionAggregate
The partitionAggregate function on each of the partitions over a set of tuples
clubbed together as a batch. There is a behavioral difference between this function;
compared to local functions that we have executed so far, this one emits a single
output tuple for the stream on input tuples.

The following are other functions that can be used for various aggregates that can
be executed over this framework.

Chapter 10

[157]

Sum aggregate
Here is how the call is made to the sum aggregator function:

mystream.partitionAggregate(new Fields("b"), new Sum(), new
Fields("sum"))

Let's assume the input stream has the ["a", "b"] fields, and the following are
the tuples:

Partition 0:
["a", 1]
["b", 2]
Partition 1:
["a", 3]
["c", 8]
Partition 2:
["e", 1]
["d", 9]
["d", 10]

The output will be as follows:

Partition 0:
[3]
Partition 1:
[11]
Partition 2:
[20]

CombinerAggregator
The implementation of this interface provided by the Trident API returns a single
tuple with a single field as an output; internally, it executes an init function on each
input tuple and then after that it combines the values until only one value is left,
which is returned as an output. If the combiner functions encounter a partition that
doesn't have any value, "0" is emitted.

Here is the interface definition and its contracts:

public interface CombinerAggregator<T> extends Serializable {
 T init(TridentTuple tuple);
 T combine(T val1, T val2);
 T zero();
}

Advance Concepts in Storm

[158]

The following is the implementation for the count functionality:

public class myCount implements CombinerAggregator<Long> {
 public Long init(TridentTuple mytuple) {
 return 1L;
 }
public Long combine(Long val1, Long val2) {
 return val1 + val2;
 }

 public Long zero() {
 return 0L;
 }
}

The biggest advantage these CombinerAggregators functions have over
the partitionAggregate function is that it's a more efficient and optimized
approach as it proceeds by performing partial aggregations before the transfer
of results over the network.

ReducerAggregator
As the name suggests, this function produces an init value and then iterates over
every tuple in the input stream to produce an output comprising of a single field
and a single tuple.

The following is the interface contract for the ReducerAggregate interface:

public interface ReducerAggregator<T> extends Serializable {
 T init();
 T reduce(T curr, TridentTuple tuple);
}

Here is the implementation of this interface for count functionality:

public class myReducerCount implements ReducerAggregator<Long> {
 public Long init() {
 return 0L;
 }

 public Long reduce(Long curr, TridentTuple tuple) {
 return curr + 1;
 }
}

Chapter 10

[159]

Aggregator
An Aggregator function is the most commonly used and versatile aggregator
function. It has the ability to emit one or more tuples, and each can have any
number of fields. They have the following interface signature:

public interface Aggregator<T> extends Operation {
 T init(Object batchId, TridentCollector collector);
 void aggregate(T state, TridentTuple tuple, TridentCollector
 collector);
 void complete(T state, TridentCollector collector);
}

The execution pattern is as follows:

•	 The init method is a predecessor to processing of every batch. It's called
before the processing of each batch. On completion, it returns an object
holding the state representation of the batch, and this is passed on to the
subsequent aggregate and complete methods.

•	 Unlike the init method, the aggregate method is called once for every
tuple in the batch partition. This method can store the state, and can emit
the results depending upon functionality requirements.

•	 The complete method is like a postprocessor; it's executed at the end,
when the batch partition has been completely processed by the aggregate.

The following is the implementation of the count as an aggregator function:

public class CountAggregate extends BaseAggregator<CountState> {
 static class CountState {
 long count = 0;
 }
 public CountState init(Object batchId, TridentCollector
 collector) {
 return new CountState();
 }
 public void aggregate(CountState state, TridentTuple tuple,
 TridentCollector collector) {
 state.count+=1;
 }
 public void complete(CountState state, TridentCollector
 collector) {
 collector.emit(new Values(state.count));
 }
}

Advance Concepts in Storm

[160]

Numerous times we run into implementations requiring multiple aggregators to
be executing simultaneously. In such cases, the concept of chaining comes in handy.
Thanks to this functionality in the Trident API, we can build an execution chain
of aggregators to be executed over batches of incoming stream tuples. Here is an
example of these kinds of chains:

myInputstream.chainedAgg()
 .partitionAggregate(new Count(), new Fields("count"))
 .partitionAggregate(new Fields("b"), new Sum(), new
 Fields("sum"))
 .chainEnd()

The execution of this chain would run the specified sum and count aggregator
functions on each partition. The output would be a single tuple, with two fields
holding the values of sum and count.

Operations related to stream repartitioning
As the name suggests, these stream repartitioning operations are related to the
execution of functions to change the tuple partitions across the tasks. These operations
involve network traffic and the results redistribute the stream, and can result in
changes to an overall partitioning strategy thus impacting a number of partitions.

Here are the repartitioning functions provided by the Trident API:

•	 Shuffle: This executes a rebalance kind of functionality and it employs a
random round robin algorithm for an even redistribution of tuples across
the partitions.

•	 Broadcast: This does what the name suggests; it broadcasts and transmits
each tuple to every target partition.

•	 partitionBy: This function works on hashing and mod on a set of specified
fields so that the same fields are always moved to the same partitions. As an
analogy, one can assume that the functioning of this is similar to the fields
grouping that we learned about initially in Storm groupings.

•	 global: This is identical to the global grouping of streams in a Storm, and in
this case, the same partition is chosen for all the batches.

•	 batchGlobal: All tuples in a batch are sent to the same partition (so they kind
of stick together), but different batches can be delivered to different partitions.

Chapter 10

[161]

Data aggregations over the streams
Storm's Trident framework provides two kinds of operations for
performing aggregations:

•	 aggregate: We have covered this in an earlier section, and it works
in isolated partitions without involving network traffic

•	 persistentAggregate: This performs aggregate across partitions,
but the difference is that it stores the results in a source of state

Grouping over a field in a stream
Grouping operations work in analogy to group by the operations in a relational
model with the only differential being that the ones in the Storm framework
execute over a stream of tuples from the input source.

Let's understand this more closely with the help of the following figure:

Advance Concepts in Storm

[162]

These operations in the Storm Trident run over a stream of tuples of several
different partitions.

Merge and join
The merges and joins APIs provide interfaces for merging and joining various
streams together. This is possible using a variety of ways provided as follows:

•	 Merge: As the name suggests, merge merges two or more streams together
and emits the merged stream as the output field of the first stream:
myTridentTopology.merge(stream1,stream2,stream3);

•	 Join: This operation works as the traditional SQL join function,
but with the difference that it applies to small batches instead of
entire infinite streams coming out of the spout

For example, consider a join function where Stream 1 has fields such as ["key",
"val1", "val2"] and Stream 2 has ["x", "val1"], and from these functions
we execute the following code:

myTridentTopology.join(stream1, new Fields("key"), stream2, new
 Fields("x"), new Fields("key", "a", "b", "c"));

As a result, Stream 1 and Stream 2 would be joined using key and x, wherein key
would join the field for Stream 1 and x would join the field for Stream 2.

The output tuples emitted from the join would have the following:

•	 The list of all the join fields; in our case, it would be key from Stream 1 and x
from Stream 2.

•	 A list of all the fields that are not join fields from all the streams involved in
the join operation in the same order as they are passed to the join operation.
In our case, it's a and b respectively for val1 and val2 of Stream 1, and c for
val1 from Stream 2 (note that this step also removes the ambiguity of field
names if any ambiguity is present within the stream, in our case val1 field
was ambiguous between both the streams).

When operations like join happen on streams that are being fed in the topology
from different spouts, the framework ensures that the spouts are synchronized with
respect to batch emission, so that every join computation can include tuples from a
batch of each spout.

Chapter 10

[163]

Examples and illustrations
One of the other out-of-the-box and popular implementations of Trident is reach
topology, which is a pure DRPC topology that finds the reach of a URL on demand.
Let's first understand some of the jargon before we delve deeper.

Reach is basically a sum total of the count of Twitter users exposed to a URL.

Reach computation is a multistep process that can be attained by the
following examples:

•	 Get all the users who have ever tweeted a URL
•	 Fetch the follower tree of each of these users
•	 Assemble the huge follower sets fetched previously
•	 Count the set

Well, looking at the skeletal algorithm entailed previously, you can make out that it is
beyond the capability of a single machine and we'd need a distributed compute engine
to achieve it. It's an ideal candidate of the Storm Trident framework, as you have the
capability to execute highly parallel computations at each step across the cluster.

•	 Our Trident reach topology would be sucking data from two large data banks
•	 Bank A is the URL to the originator bank, wherein all the URLs would be

stored along with the name of the user who had tweeted them
•	 Bank B is the user follower bank; this data bank will have a user to follow

the mapping for all Twitter users

The topology would be defined as follows:

TridentState urlToTweeterState =
 topology.newStaticState(getUrlToTweetersState());
TridentState tweetersToFollowerState =
 topology.newStaticState(getTweeterToFollowersState());

topology.newDRPCStream("reach")
 .stateQuery(urlToTweeterState, new Fields("args"), new
 MapGet(), new Fields("tweeters"))
 .each(new Fields("tweeters"), new ExpandList(), new
 Fields("tweeter"))
 .shuffle()
 .stateQuery(tweetersToFollowerState, new Fields("tweeter"),
 new MapGet(), new Fields("followers"))
 .parallelismHint(200)

Advance Concepts in Storm

[164]

 .each(new Fields("followers"), new ExpandList(), new
 Fields("follower"))
 .groupBy(new Fields("follower"))
 .aggregate(new One(), new Fields("one"))
 .parallelismHint(20)
 .aggregate(new Count(), new Fields("reach"));

In the preceding topology, we perform the following steps:

1.	 Create a TridentState object for both data banks (URL to the originator
Bank A and users to follow Bank B).

2.	 The newStaticState method is used for the instantiation of state objects
for data banks; we have the capability to run the DRPC queries over the
source states created earlier.

3.	 In execution, when the reach of a URL is to be computed, we perform a
query using the Trident state for data bank A to fetch the list of all the
users who have ever tweeted with this URL.

4.	 The ExpandList function creates and emits one tuple for each of the
tweeters of the URL in query.

5.	 Next, we fetch the follower of each tweeter fetched previously. This step
needs the highest degree of parallelism, thus we use shuffle grouping
here for even load distribution across all instances of the bolt. In our
reach topology, this is the most intense compute step.

6.	 Once we have the list of followers of the tweeter of the URL, we execute an
operation analog to filter unique followers only.

7.	 We arrive at unique followers by grouping them together and then using the
one aggregator. The latter simply emits 1 for each group and in the next step
all these are counted together to arrive at the reach.

8.	 Then we count the followers (unique) thus arriving at the reach of the URL.

Quiz time
Q.1. State whether the following statements are true or false:

1.	 DRPC is a stateless, Storm processing mechanism.
2.	 If a tuple fails to execute in a Trident topology, the entire batch is replayed.
3.	 Trident lets the user implement windowing functions over streaming data.
4.	 Aggregators are more efficient then partitioned Aggregators.

Chapter 10

[165]

Q.2. Fill in the blanks:

1.	 _______________ is the distributed version of RPC.
2.	 _______________ is the basic micro-batching framework over Storm.
3.	 The ___________________functions are used to remove tuples based on

certain criteria or conditions from the stream batches.

Q.3. Create a Trident topology to find the tweeters who have the maximum number
of tweets in the last 5 minutes.

Summary
In this chapter, we have pretty much covered everything about Storm and its
advanced concepts with giving you the change to get hands-on with the Trident
and DRPC topologies. You learned about Trident and its need and application,
the DRPC topologies, and the various functions available in the Trident API.

In the next chapter, we will explore other technology components that go hand in
hand with Storm and are necessary for building end-to-end solutions with Storm.
We will touch upon areas of distributed caches and Complex Event Processing
(CEP) with memcache and Esper in conjunction with Storm.

[167]

Distributed Cache and
CEP with Storm

In this chapter, we will learn about the need for distributed caching in conjunction
with Storm and the integration of widely used options with Storm. We will also touch
upon the Complex Event Processing (CEP) engines in collaboration with Storm.

In this chapter, we will cover the following topics:

•	 The need for distributed caches in the Storm framework
•	 Introduction to memcache
•	 Building a topology with caches
•	 Introduction to CEP and Esper

At the end of this chapter, you should be able to apply CEP and cache in conjunction
with Storm to solve real-time use cases.

The need for distributed caching in Storm
Now that we have explored Storm enough to understand all its strengths, let's
touch on one of its biggest weaknesses: the lack of a shared cache, a common store
in memory that all tasks running across the workers on various nodes in the Storm
cluster can access and write to.

Distributed Cache and CEP with Storm

[168]

The following figure illustrates a three node Storm cluster where we have two
workers running on each of the supervisor nodes:

As depicted in the preceding figure, each worker has its own JVM where the data
can be stored and cached. However, what we are missing here is a layer of cache
that shares components within the workers on a supervisor as well as across the
supervisors. The following figure depicts the need for what we are referring to:

Chapter 11

[169]

The preceding figure depicts the need for a shared caching layer where common
data can be placed, which is referable from all nodes. These are very valid use cases
because in production, we encounter scenarios such as the following:

•	 We have a lot of read-only reference dimensional data, which we would
want in one place instead of having it replicated and updated at each
supervisor level

•	 Sometimes, we have transactional data in certain use cases, which are to be
read and updated by all the workers; for example, when counting certain
events, the count has to be kept in a common location

This is where the layer of common shared cache that is accessible across all supervisor
nodes comes in.

Introduction to memcached
Memcached is a very simple in-memory key value store; we can assume it to be
an in-memory store for a hash map. This can be used in conjunction with Storm
supervisors to serve as a common memory storage, which can be accessed for read/
write operations by all the Storm workers on various nodes in the Storm cluster.

Memcached has the following components:

•	 The memcached server
•	 The memcache client
•	 The hashing algorithm (client-based implementation)
•	 The server algorithm for data retention

Memcached uses Least Recently Used (LRU) to discard the elements from the cache.
This means that the items that have not been referred since the longest time are the
first ones to be removed from the cache. These items are said to be expired from the
cache, and if they are referred after expiry, they are reloaded from a stable storage.

Distributed Cache and CEP with Storm

[170]

The following is the flow of how entries are loaded and retrieved from or through
a cache:

Cache Client 1

Cache Client 2

Cache Client 3

Cache Client 4

Value found
in Cache

Value found
in Cache

Value found
in Cache

Value found
in Cache

Query

Query

Query

Query

Response

Response

Response

Response

DB

Cache
Miss

The preceding figure depicts the scenarios of cache hit and cache miss, where
certain items expire as per the LRU algorithm. The scenarios in the preceding
figure are as follows:

•	 When the cache app location starts, it's loaded with the data from the stable
storage, in our case, from the database

•	 There are two scenarios that can happen in a situation where we request the
data from the cache:

°° Cache hit: This is where the data we request exists on the cache
server and in this case, the request is served from the cache

°° Cache miss: This is where the data requested doesn't exist in the
cache server, and in this case, the data is fetched from the database
into the cache and then the request is serviced from the cache

Now we understand how the cache functions and what the need for it in the context
of solutions for Storm is.

Chapter 11

[171]

Setting up memcache
The following are the steps that need to be executed and will be required for the
installation of memcache:

wget http://memcached.org/latest
tar -zxvfmemcached-1.x.x.tar.gz
cdmemcached-1.x.x
./configure && make && make test &&sudo make install

The following is the code snippet to connect to the memcache client and functions.
It retrieves the data from the cache:

public class MemCacheClient {
 private static MemcachedClient client = null;
 private static final Logger logger =
 LogUtils.getLogger(MemCacheClient.class);

 /**
 * Constructor that accepts the cache properties as parameter
 and initialises the client object accordingly.
 * @param properties
 * @throws Exception
 */

 publicMemCacheClient(Properties properties) throws Exception {
 super();
 try {
 if (null == client) {
 client = new MemcachedClient(new InetSocketAddress(
 102.23.34.22,
 5454)));
 }
 } catch (IOException e) {
 if (null != client)
 shutdown();
 throw new Exception("Error while initiating MemCacheClient",
 e);
 }
}

/**
 * Shutdown the client and nullify it
 */

Distributed Cache and CEP with Storm

[172]

public void shutdown() {
 logger.info("Shutting down memcache client ");
 client.shutdown();
 client = null;
 }

 /**
 * This method sets a value in cache with a specific key and
 timeout
 * @param key the unique key to identify the value
 * @paramtimeOut the time interval in ms after which the value
 would be refreshed
 * @paramval
 * @return
 */

 public Future < Boolean > addToMemCache(String key, inttimeOut,
 Object val) {
 if (null != client) {
 Future < Boolean > future = client.set(key, timeOut, val);
 return future;
 } else {
 return null;
 }
 }

 /**
 * retrives and returns the value object against the key passed
 in as parameter
 * @param key
 * @return
 */

public Object getMemcachedValue(String key) {
 if (null != client) {
 try {
 returnclient.get(key);
 } catch (OperationTimeoutException e) {
 logger.error(
 "Error while fetching value from memcache server for key "
 + key, e);
 return null;
 }
 } else

Chapter 11

[173]

 return null;
 }
}

Once you encode the preceding snippet, you will have built the mechanism to create
the cache client, load data into the cache, and retrieve values from it. So any Storm
bolt that needs access to the cache can use the common layer created by memcache
through interactions with the client.

Building a topology with a cache
Once we have the basic cache framework in place, it's very easy to plug it into
the bolts and reference data from the cache or update it in the cache. Here is
the snippet for the cache:

public class MyCacheReaderBolt extends BaseBasicBolt {
 MyCacheReadercacheReader;
 @Override
 public void prepare(Map stormConf, TopologyContext context) {
 super.prepare(stormConf, context);
 try {
 cacheReader = new MyCacheReader();
 } catch (Exception e) {
 logger.error("Error while initializing Cache", e);
 }
 }

 /**
 * Called whenever a new tuple is received by this bolt.
 Responsible for
 * emitting cache enriched event onto output stream
 */

 public void execute(Tuple tuple, BasicOutputCollector collector)
 {
 logger.info("execute method :: Start ");
 event = tuple.getString(0);
 populateEventFromCache(event);
 collector.emit(outputStream, new Values(event));
 } else {
 logger.warn("Event not parsed :: " + tuple.getString(0));
 }

Distributed Cache and CEP with Storm

[174]

} catch (Exception e) {
 logger.error("Error in execute() ", e);
 }
}
logger.info("execute method :: End ");
}

private void populateEventFromCache(Event event) {
 HashMapfetchMap = (HashMap)
 cacheReader.get(searchObj.hashCode());
 if (null != fetchMap) {
 event.setAccountID(Integer.parseInt((String)
 fetchMap.get("account_id")));
 logger.debug("Populating event" + event + " using cache " +
 fetchMap);
 } else {
 logger.debug("No matching event found in cache.");
 }
 logger.info("Time to fetch from cache=" +
 (System.currentTimeMillis() - t1) + "msec");
 }
}

/**
 * Declares output streams and tuple fields emitted from this bolt
 */
 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer)
 {
 String stormStreamName = logStream.getName() + "_" +
 eventType;
 declarer.declareStream(stormStreamName, new
 Fields(stormStreamName));
 logger.debug("Topology : " + topology.getTopologyName() + ",
 Declared output stream : " + stormStreamName + ", Output field :
 " + stormStreamName);
}

The preceding code snippet demonstrates a bolt, which reads an event from the
stream, gets some dimensional data from memcache, and emits the enriched bolt
to the streams to the following bolts in the DAG topology.

Chapter 11

[175]

Introduction to the complex event
processing engine
There are two terms that are generally used in conjunction; they are Complex Event
Processing (CEP) and Event Stream Processing (ESP).

Well, in theory, these are part of a technical paradigm that allow us to build
applications with dramatic, real-time analytics over streaming data. They let us
process incoming events at a very fast rate and execute SQL-like queries on top of
the stream of events to generate real-time histograms. We can assume that CEP is
an inversion of traditional databases. In the case of traditional DBMS and RDBMS,
we have data stored, and then we run SQL queries over them to arrive at results,
while in the case of CEPs, we have the queries predefined or stored and we run the
data through them. We can envision this with an example; let's say I am running a
department store and I would like to know the highest selling item in the last one
hour. So if you look here, the query we are about to execute is pretty fixed in nature
but the input data isn't constant—it changes at each sale transaction. Similarly, let's
say I run a stock holding company and would like to know the top 10 performers
over the last 2 minutes every 5 seconds.

The preceding figure depicts the stock ticker use case where we have a sliding
window of 2 minutes and the stock ticker is sliding every 5 seconds. We have
many practical use cases for this nowadays, such as:

•	 Fraud detection patterns against Point Of Sales (POS) transactions
•	 Top N in any segment
•	 The application of deep learning patterns to stream data from any source

Distributed Cache and CEP with Storm

[176]

Now, having understood CEP and its need at a high level, let's touch upon its
high-level components:

•	 The operand in every CEP is Data of Event; it's essentially an
event-driven system

•	 Event processing language: This is the tool that facilitates the framing
of queries to be executed on the data

•	 Listeners: These are the components that actually execute the query
and perform the action on the arrival of the event into the system

Esper
Esper is one of the leading CEP engines that are available under open source—
GPL and Enterprise License. The package can be downloaded from http://www.
espertech.com/download/, and if you are attempting to execute a Maven-based
Esper project, the dependency can be built as follows:

<dependency>
<groupId>com.espertech</groupId>
<artifactId>esper</artifactId>
<version> ... </version>
</dependency>
Ref :Espertech.com

The next obvious question could be why we want to use Esper-CEP in conjunction
with Storm. Well, Esper has some unique capabilities that work well with Storm
and let the EQL facility leverage the results drawn over Storm. The following are
complementing features that lead to this choice:

•	 Throughput: Complementing the capability of Storm, Esper also has a very
high throughput and can process from 1K to 100K messages per second.

•	 Latency: Esper has the ability to perform EQLs and actions based on
results of Esper at a very low latency rate; in most cases, this is the
order of milliseconds.

•	 Computations: These refer to the ability to perform functions such as
pattern detection, complex queries based on aggregates, and correlation
over time. These slice windows of streaming data.

http://www.espertech.com/download/
http://www.espertech.com/download/

Chapter 11

[177]

Getting started with Esper
Before we start conjugating Esper and Storm, let's try a small do-it-yourself exercise
on Esper alone to understand the structural components of the Esper as well as
its wiring.

Let's build a case where we are attempting to get the list of scores above 10,000
in Roulette.

We expect you to download the Esper bundle from EsperTech (http://www.
espertech.com/community/) on to your POM before starting the coding.
Or, you can use the Maven dependency mentioned in the preceding section.

The following is the code snippet of the Esper event—in our example, this is
CasinoWinEvent, a value object where we store the name of the game, the prize
amount, and the timestamp:

public static class CasinoWinEvent {
 String game;
 Double prizeAmount;
 Date timeStamp;

 publicCasinoWinEvent(String s, double p, long t) {
 game = s;
 prizeAmount = p;
 timeStamp = new Date(t);
 }
 public double getPrizeAmount() {
 return prizeAmount;
 }
 public String getGame() {
 return game;
 }
 public Date getTimeStamp() {
 return timeStamp;
 }

 @
 Override
 public String toString() {
 return "Price: " + price.toString() + " time: " +
 timeStamp.toString();
 }
}

http://www.espertech.com/community/
http://www.espertech.com/community/

Distributed Cache and CEP with Storm

[178]

Once we have the value object in place, the next step is to instantiate the Esper engine
and listener and wire in all the pieces together:

public class myEsperMain {
 private static Random generator = new Random();
 public static void GenerateRandomCasinoWinEvent(EPRuntimecepRT)
 {
 doubleprizeAmount = (double) generator.nextInt(10);
 longtimeStamp = System.currentTimeMillis();
 String game = "Roulette";
 CasinoWinEventcasinoEvent = new CasinoWinEvent(game,
 prizeAmount, timeStamp);
 System.out.println("Sending Event:" + casinoEvent);
 cepRT.sendEvent(casinoEvent);
 }
 public static class CEPListener implements UpdateListener {
 public void update(EventBean[] newData, EventBean[] oldData) {
 System.out.println("Event received: " +
 newData[0].getUnderlying());
 }
 }
 public static void main(String[] args) {
 //The Configuration is meant only as an initialization-time
 object.
 Configuration cepConfig = new Configuration();
 cepConfig.addEventType("CasinoEvent",
 CasinoWinEvent.class.getName());
 EPServiceProvidercep =
 EPServiceProviderManager.getProvider("myCEPEngine",
 cepConfig);
 EPRuntimecepRT = cep.getEPRuntime();
 EPAdministratorcepAdm = cep.getEPAdministrator();
 EPStatementcepStatement = cepAdm.createEPL("select * from " +
 "CasinoEvent(symbol='Roulette').win:length(2) " + "having
 avg(prizeAmount) > 10000.0");

Chapter 11

[179]

 cepStatement.addListener(new CEPListener());
 // We generate a few ticks...
 for (inti = 0; i < 5; i++) {
 GenerateRandomCasinoWinEvent(cepRT);
 }
 }
}

Here is the snippet of the output:

In the preceding snippet, CEPListener is the implementation of updateListener
(which listens for the arrival of the event), newData has the stream of one or more
new arriving events, and oldData has the previous state of the stream, that is,
before the arrival of the current trigger to the listener.

In the main method, we can load the Esper configuration or, as shown in our
preceding case, create a default configuration. Then, we create an Esper runtime
engine instance and bind the EQL query to it.

If you look at the cepStatement.addListener(new CEPListener()) statement
in the preceding code, you will see that we are also binding the listener to the
statement, thus wiring all the pieces together.

Distributed Cache and CEP with Storm

[180]

Integrating Esper with Storm
The following figure depicts how we plan to use Esper in conjunction with one
of the topologies we created earlier in Chapter 6, Adding NoSQL Persistence to Storm.
The integration of Storm with Esper gives the developer the power to execute
SQL-like queries on top of the stream of events being processed by Storm.

Telecom
CDR data

Real time data collection
component

UI reporting application

Storm
Topology

Cassandra Cluster

RabbitMQ broker

AMQP Spout

record to pojo
conversion

bolt

Cassandra
writer bolt

Bolt to
desipher the

CDR data

Esper Bolt

Esper
Listener

Esper
Executer

Cassandra 1

Cassandra3

Cassandra3

Cassandra2Cassandra4

Here, we made some modifications to one of the earlier topologies that we created,
and we added an Esper bolt to the same topology. This bolt reads the same stream
that is being dumped into Cassandra and performs an EQL execution through
Esperlistener. It executes to filter the set of records where the call duration
is 0 seconds.

Chapter 11

[181]

The following is a snippet from the ZeroDuration filter bolt that filters the CALL_END
events that have a duration of 0 seconds to be emitted onto the stream feeding the
Esper bolt:

 /*
 * Bolt responsible for forwarding events which satisfy following
 criteria:
 *
 * event should belong to 'End' type
 * duration should be zero
 *
 */

public class ZeroSecondsCDRBolt extends BaseRichBolt {

 /**
 * Called when {@link ZeroSecondsCDRBolt} is initialized
 */
 @Override
 public void prepare(Map conf, TopologyContext context,
 OutputCollector collector) {
 logger.info("prepare method :: Start ");
 this.collector = collector;
 logger.info("prepare() conf {},Collector {}", conf.toString(),
 collector.toString());
 logger.info("prepare method :: End ");
 }

 /**
 * Called whenever a new tuple is received by this bolt. This
 method
 * filters zero duration End records
 */

 @
 Override
 public void execute(Tuple tuple) {
 logger.info("execute method :: Start ");

 if (tuple != null && tuple.getString(0) != null) {
 eventCounter++;
 String event = tuple.getString(0);
 logger.info("execute :event recd :: {}", event);
 if (event != null && event.contains("CALL_END")) {

Distributed Cache and CEP with Storm

[182]

 emitCallEndRecords(tuple);
 }
 collector.ack(tuple);
 }
 logger.info("execute method :: End ");
 }

 private void emitCallEndRecords(Tuple tuple) {
 String event = tuple.getString(0);

 try {
 //splitting the event based on semicolon
 String[] eventTokens = event.split(",");
 duration = Long.parseLong(eventTokens[4]);
 callId = Long.parseLong(eventTokens[0]);
 logger.debug(" Event (callId = {}) is a Zero duration
 Qualifier ", callId);
 collector.emit(....);

 } catch (Exception e) {
 logger.error("Corrupt Stopped record. Error occurred while
 parsing the event : {}", event);
 }
 }

 /**
 * Declares output fields in tuple emitted from this bolt
 */

 @Override
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declareStream(CALL_END, new Fields());
 }

 @
 Override
 public Map < String, Object > getComponentConfiguration() {
 return null;
 }
}

Chapter 11

[183]

The next step is to conjugate the Esper bolt into the topology. This can be easily
downloaded as a bundle from https://github.com/tomdz/storm-esper,
and it can be quickly bundled into the topology using the following code:

EsperBoltesperBolt = newEsperBolt.Builder()
 .inputs()
 .aliasComponent("ZeroSecondCallBolt")
 .withFields("a", "b")
 .ofType(Integer.class)
 .toEventType("CALL_END")
 .outputs()
 .outputs().onDefaultStream().emit("count")
 .statements()
 .add("select callID as CALL_ID,callType as CALL_TYPE, count(*)
 as OCCURRENCE_CNT from CDR.win:time_batch(5 minutes) where
 (eventType = 'CALL_END') and (duration = 0) group by
 callID,eventType having count(*) > 0 order by
 OCCURRENCE_CNTdesc")
 .build();

Here is what the output would be like:

The Esper query in the preceding figure executes on a stream of incoming data; here
is its breakdown and explanation:

selectcallID as CALL_ID,callType as CALL_TYPE, count(*) as
 OCCURRENCE_CNT

We are selecting the following fields from the incoming tuples, such as Call_Id,
Call_type, and count:

fromCDR.win:time_batch(5 minutes) where (eventType = 'CALL_END')
 and (duration = 0) group by callID,eventTypehaving count(*) > 0
order by OCCURRENCE_CNTdesc

The named window out of which we are operating is CDR.WIN. The batch size is 5
minutes, which means that with the arrival of every event or tuple, we are looking back
into time for 5 minutes and executing the query over data that has arrived in the last 5
minutes. The results are grouped by the event type and are sorted in reverse order.

https://github.com/tomdz/storm-esper

Distributed Cache and CEP with Storm

[184]

Quiz time
Q.1. State whether the following statements are true or false:

1.	 Cache is a read-only memory space.
2.	 Data once added in cache remains there forever.
3.	 CEP lets SQL-like queries be implemented over streaming data.
4.	 Esper is based on event-driven architecture.

Q.2. Fill in the blanks:

1.	 _______________ is the algorithm for memcache.
2.	 When data is not present in the cache, it's called ______________.
3.	 _______________ is the component of Esper that triggers the Endeca Query

Language (EQL) execution.
4.	 _______________ is generally used for the time series windowing function data.

Q.3. Create an end-to-end topology using Esper to display the top 10 speeding
devices on a said freeway using Storm and Esper in conjunction.

Summary
In this chapter, we covered the concept of cache in conjunction with Storm and the
utility and application of the solutions developer with cache. We learned about
memcache as a caching system.

In the later part of the chapter, we explored Esper as a complex event processing
system and understood its integration with Storm topologies.

[185]

Quiz Answers

Chapter 1
Q.1. Monitor the ping latency and raise an alert

when it crosses a certain threshold to provide
a real-time sensing of network.
Monitor events from traffic sensors and plot a
graph of choke points at peak hours of day.
Sensing intrusions on borders.

Chapter 2
Q.1. False

False
True
False

Q.2. Topology Builder
Parallelism
Nimbus

Quiz Answers

[186]

Chapter 3
Q.1. True

False
True
True

Q.2. ack()
declare()
emit()

Chapter 4
Q.1. True

Flase
False
True
True

Q.2. Process latency
Execute latency
Zookeeper

Chapter 5
Q.1. False

False
True
True

Q.2. Direct exchange
Fan-out
AMQP spout

Appendix

[187]

Chapter 6
Q.1. False

False
True
False

Q.2. AP
Low write
latency
hector

Chapter 7
Q.1. False

False
True
True

Q.2. Snitch
ANY
repair

Chapter 8
Q.1. False

False
False
False

Q.2. Nodetool compact
Ring
Ring

Quiz Answers

[188]

Chapter 9
Q.1. False

False
True
True

Q.2. Zookeeper
Nimbus
storm-config.xml

Chapter 10
Q.1. False

True
True
False

Q.2. DRPC
Trident
filter

Chapter 11
Q.1. False

False
True
True

Q.2. LRU
cache-miss
EPRuntime
Timebatch
window

[189]

Index
A
acking 38, 39
ack() method 16
Advanced Message Queuing Protocol

(AMQP) 64
Aggregator function 159, 160
Aircraft Communications Addressing and

Reporting (ACAR) system 2, 3
Alabama Occupational Therapy

Association (ALOTA) 7
alert bolt 18
all grouping 41, 42
AMQP spout

topology, writing 77
anchoring

about 38, 39
unreliable topology 39

Ankush
about 59, 60
URL 59

Astyanax 96, 97

B
best practices, Storm/Cassandra

applications 103
bolts

about 17
alert bolt 18
execute() method 19
IBasicBolt 18
IRichBolt 18
location bolt 18
parse event bolt 18
prepare() method 19

verify bolt 18
bootstrapping 118

C
cache

topology, building 173, 174
Call Detail Record (CDR) 98
Cassandra

about 84
advantages 83, 84
best practices 103
client APIs, used for accessing 95-97
data centers, installing 90-92
dead node, replacing 121, 122
fault tolerance 126
gossip protocol 118
installing 88, 89
monitoring systems 126

Cassandra cluster
scaling 119, 120
setting up 87

Cassandra consistency
about 110
maintenance features 113
read consistency 112, 113
write consistency 111, 112

CEP
about 167, 175
Esper 176
use cases 175

cleanup command 124
clean up script, Zookeeper

about 47
dataDir 48
logDir 48

[190]

numBackUps 48
org.apache.zookeeper.server.

PurgeTxnLog 48
CLI

about 93-95
used, for rebalancing topology 136, 137

client APIs
Astyanax 96, 97
Datastax Java driver 96
Hector 96
Thrift protocol 96
used, for accessing Cassandra 95-97

columnar database, fundamentals
about 84
column families, types 85
columns, types 86

column families, types
dynamic column family 85
static column family 85

columns, types
composite column 86, 87
counter columns 87
expiring columns 87

CombinerAggregator function 157, 158
Command Prompt

Storm topology, executing 28
compaction tool 124, 125
Complex Event Processing. See CEP
component level section, Storm UI

Capacity 55
Execute latency 56
Process latency 56

components, Storm topology
bolts 17, 18
spout 15, 16
stream 19
tuple 19

composite column 86, 87
consistency maintenance features

about 113
anti-entropy repair service 113
hinted handoff 114
read repair 113

consistent hashing
about 105, 106
node(s) comes back up scenario 108

node(s) goes down scenario 107
practical example 107

counter columns 87
CQLSH 92
custom grouping 43
custom solution

for complex distributed use cases 6, 7
Cygwin

URL 14

D
data aggregations, operations

aggregate 161
persistentAggregate 161

data centers, Cassandra
installing 90-92

Datastax Java driver 96
Datastax OpsCenter

about 129
features 129
installing 129, 130

dead node, Cassandra
replacing 121, 122

decommission command 125
Directed Acyclic Graph (DAG) 15, 145
direct grouping 43
distributed caching

need for 167-169
distributed computing problems

about 1
Aircraft Communications Addressing and

Reporting (ACAR) system 2, 3
credit or debit card fraud detection 2
healthcare 3, 4
manufacturing 4
network optimization 4
transportation industry 4

dynamic column family 85

E
Eclipse

URL 14
ensemble 22
Esper

about 176

[191]

example 177-179
features 176
integrating, with Storm 180-183
URL 176

event 15
event processing language 176
Event Stream Processing (ESP) 175
execute() method 19
expiring columns 87

F
fail() method 16
failure scenario handling

failure detection 118, 119
failure recovery 118, 119

fault tolerance, Cassandra 126
fields grouping 41
FileSpout

creating 34-36
SocketSpout class, creating 37
WordCountTopology, tweaking 36

filters 156
functions 155
functions, Storm configurations

nimbus.host 49
storm.local.dir 49
storm.zookeeper.port 49
storm.zookeeper.servers 49
supervisor.slots.ports 49
topology.debug 49
topology.message.timeout.secs 49

G
Ganglia 58
GigaSpaces 7
Git

URL 14
global grouping 42, 43
gossip protocol

about 118
bootstrapping 118
failure scenario handling 118, 119

GUI
used, for rebalancing topology 136

H
Hadoop solution

for complex distributed use cases 4-6
high availability

building 77
building, of Storm 78, 79
Storm cluster, guaranteed processing 79, 80
testing 79

I
IBasicBolt 18
IBM 7
info command 124
installation

Datastax OpsCenter 129, 130
RabbitMQ 64

IRichBolt 18
IRichSpout interface 16

J
Java

URL 14
JMX monitoring 126-128
join 162
join command 123

K
Key Performance Indicators (KPIs) 129

L
Least Recently Used (LRU) 169
licensed proprietary solutions

for complex distributed use cases 7
listeners 176
local or shuffle grouping 40
local partition manipulation operation

about 154
filters 156
functions 155
partitionAggregate function 156

location bolt 18
logging configurations, Storm

<file> 51

[192]

<filenamepattern> 51
<maxIndex> 51
<minIndex> 51
about 50
maxFileSize 51
root level 51

M
MapReduce 5
memcached

about 169
components 169
memcache, setting up 171-173
topology, building with cache 173, 174

memcached, scenarios
cache hit 170
cache miss 170

merge 162
messages processed section, Storm UI

Acked 55
Complete latency(ms) 55
Emitted 55
Failed 55
Transferred 55
Window 55

mirror queues
creating 69

Mongo DB 84
monitoring systems, Cassandra

Datastax OpsCenter 129
JMX monitoring 126-128

multiple data centers
about 89
prerequisites, for setting up 90

N
Nagios 57, 58
Neo4J 84
nextTuple() method 16
Nimbus 9, 28
node(s) comes back up scenario,

consistent hashing 108
node(s) goes down scenario, consistent

hashing 107, 108

nodes, Storm
about 8
Nimbus 9, 28
Supervisor 9, 28
UI 28
Zookeeper 9

nodetool commands
about 123
cleanup 124
compaction 124, 125
decommission 125
info 124
join 123
removenode 125
repair 125
ring 123

O
online transaction processing (OLTP) 87
options, read consistency

ONE 113
QUORUM 113
THREE 113
TWO 113

options, write consistency
ALL 111
ANY 111
ONE 111
QUORUM 111
TWO 111

Oracle 7

P
parallel processing

about 137
scenario 1 138
scenario 2 139
scenario 3 140

parse event bolt 18
partitionAggregate function

about 156
Aggregator function 159, 160
CombinerAggregator function 157, 158
ReducerAggregator function 158
sum aggregator function 157

[193]

Plain Old Java Objects (POJO's) 98
Point Of Sales (POS) 175
prepare() method 19

Q
queue-worker solution

limitations 7

R
RabbitMQ

exchange 64
feeder component, creating 75
high availability, building 77
installing 64
integrating, with Storm 70, 75
overview 64
prerequisites, for installation 65
Queue 64
topology, writing for AMQP spout 77

RabbitMQ server
mirror queues, creating 69
RabbitMQ cluster, creating 67, 68
RabbitMQ UI, enabling 68
setting up, on Ubuntu 65
testing 66, 67

read consistency 112, 113
Real Time Decisions (RTD) 7
ReducerAggregator function 158
Remote Procedure Call (RPC) 96, 152
removenode command 125
repair command 125
repartitioning functions

batchGlobal 160
Broadcast 160
global 160
partitionBy 160
Shuffle 160

replication, Cassandra 109
replication factor 122
ring command 123

S
satellite communication (SATCOM) 2
scaling, Cassandra cluster

new node, adding 119, 120

Service Level Agreement (SLA) 57
snitch 109
solutions, for complex distributed use cases

custom solution 6, 7
Hadoop solution 4-6
licensed proprietary solutions 7
real-time processing tools 8

Spark 8
spout

about 15, 16
ack() method 16
customizing 33
fail() method 16
FileSpout, creating 34-36
IRichSpout interface 16
nextTuple() method 16

standard column 86
static column family 85
Storm

best practices 103
configurations 48
Esper, integrating 180-183
high availability, building 78, 79
nodes 8, 9
prerequisites 14
RabbitMQ, integrating 70-75
topology execution 9, 10

Storm cluster
setting up 45

Storm isolation scheduler 80, 81
Storm logs

troubleshooting 145-147
Storm monitoring tools

about 57
Ankush 59, 60
Ganglia 58
Nagios 57, 58
SupervisorD 58

Storm starter project
WordCount topology, executing 20-22

Storm topology
components 14, 15
executing, from Command Prompt 28
executing, in distributed mode 22
integrating, with Cassandra store 97-103
Storm nodes, launching 28

[194]

Storm, setting up in distributed
mode 25-27

WordCount topology, tweaking 29, 31
Zookeeper (v 3.3.5), setting up 22-25

Storm UI
about 28, 52, 53
troubleshooting 141-145

strategies, Cassandra
about 109
network 110
simple 109

stream 19
stream groupings

about 39
all grouping 41, 42
custom grouping 43
direct grouping 43
fields grouping 41
global grouping 42, 43
local or shuffle grouping 40

sum aggregator function 157
Supervisor

about 9, 28
adding 133, 134

SupervisorD 58

T
Thrift protocol 96
time to live (TTL) 87
topologies section, Storm UI

ID 53
Num executors 54
Num tasks 54
Num workers 54
Status 53
Topology Name 53
Uptime 54

topology
building, with cache 173, 174
rebalancing, CLI used 136, 137
rebalancing, GUI used 136

topology actions section, Storm UI
Activate 54
Deactivate 54

Kill 55
Rebalance 54

transactions per second (tps) 151
Trident API

about 154
data aggregations, over streams 161
field, grouping over 161
join 162
local partition manipulation operation 154
merge 162
operations, related to stream

repartitioning 160
Trident topology

building 149-154
examples 163, 164
illustrations 163, 164

troubleshooting
about 140, 141
Storm logs 145-147
Storm UI 141-145

tuple 15, 19

U
Ubuntu

RabbitMQ server, setting up 65

V
verify bolt 18
visualization section, Storm UI 56, 57

W
WordCount topology

executing, from Storm starter
project 20-22

tweaking 29-31
workers

setting up 137
write consistency 111, 112

X
XAP 7

[195]

Z
zoo.cfg configuration file

properties 23
Zookeeper

about 9
clean up script 47, 48
configurations 46, 47

Zookeeper (v 3.3.5)
setting up 22-25

Thank you for buying
Real-time Analytics with Storm and Cassandra

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Storm Blueprints: Patterns
for Distributed Real-time
Computation
ISBN: 978-1-78216-829-4 Paperback: 336 pages

Use Storm design patterns to perform distributed,
real-time big data processing, and analytics for real-
world use cases

1.	 Process high-volume log files in real time while
learning the fundamentals of Storm topologies
and system deployment.

2.	 Deploy Storm on Hadoop (YARN) and
understand how the systems complement
each other for online advertising and
trade processing.

3.	 Follow along as each chapter presents a new
problem and the architectural pattern, design,
and implementation of a solution.

Storm Real-time Processing
Cookbook
ISBN: 978-1-78216-442-5 Paperback: 254 pages

Efficiently process unbounded streams of data in
real time

1.	 Learn the key concepts of processing data in
real time with Storm.

2.	 Concepts ranging from Log stream processing
to mastering data management with Storm.

3.	 Written in a Cookbook style, with plenty
of practical recipes with well-explained
code examples and relevant screenshots
and diagrams.

Please check www.PacktPub.com for information on our titles

Learning Storm
ISBN: 978-1-78398-132-8 Paperback: 252 pages

Create real-time stream processing applications with
Apache Storm

1.	 Integrate Storm with other Big Data
technologies like Hadoop, HBase, and
Apache Kafka.

2.	 Explore log processing and machine learning
using Storm.

3.	 Step-by-step and easy-to-understand guide to
effortlessly create applications with Storm.

Mastering Apache Cassandra
ISBN: 978-1-78216-268-1 Paperback: 340 pages

Get comfortable with the fastest NoSQL database,
its architecture, key programming patterns,
infrastructure management, and more!

1.	 Complete coverage of all aspects of Cassandra.

2.	 Discusses prominent patterns, pros and cons,
and use cases.

3.	 Contains briefs on integration with
other software.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Let's Understand Storm
	Distributed computing problems
	Real-time business solution for credit or debit card fraud detection
	Aircraft Communications Addressing and Reporting system
	Healthcare
	Other applications

	Solutions for complex distributed
use cases
	The Hadoop solution
	A custom solution
	Licensed proprietary solutions
	Other real-time processing tools

	High level view of various components
of Storm
	Delving into the internals of Storm
	Quiz time
	Summary

	Chapter 2: Getting Started with
Your First Topology
	Prerequisites for setting up Storm
	Components of a Storm topology
	Spouts
	Bolts
	Streams
	Tuples – the data model in Storm

	Executing a sample Storm topology – local mode
	WordCount topology from the Storm-starter project

	Executing the topology in distributed mode
	Set up Zookeeper (v 3.3.5) for Storm
	Setting up Storm in distributed mode
	Launching Storm daemons

	Executing the topology from
Command Prompt
	Tweaking the WordCount topology to customize it

	Quiz time
	Summary

	Chapter 3: Understanding Storm
Internals by Examples
	Customizing Storm spouts
	Creating FileSpout
	Tweaking WordCount topology to use FileSpout
	The SocketSpout class

	Anchoring and acking
	The unreliable topology

	Stream groupings
	Local or shuffle grouping
	Fields grouping
	All grouping
	Global grouping
	Custom grouping
	Direct grouping

	Quiz time
	Summary

	Chapter 4: Storm in a Clustered Mode
	The Storm cluster setup
	Zookeeper configurations
	Cleaning up Zookeeper

	Storm configurations
	Storm logging configurations
	The Storm UI
	Section 1
	Section 2
	Section 3
	Section 4
	The visualization section

	Storm monitoring tools
	Quiz time
	Summary

	Chapter 5: Storm High Availability
and Failover
	An overview of RabbitMQ
	Installing the RabbitMQ cluster
	Prerequisites for the setup of RabbitMQ
	Setting up a RabbitMQ server
	Testing the RabbitMQ server
	Creating a RabbitMQ cluster
	Enabling RabbitMQ UI
	Creating mirror queues for high availability

	Integrating Storm with RabbitMQ
	Creating a RabbitMQ feeder component
	Wiring the topology for the AMQP spout

	Building high availability of components
	High availability of the Storm cluster
	Guaranteed processing of the Storm cluster

	The Storm isolation scheduler
	Quiz time
	Summary

	Chapter 6: Adding NoSQL Persistence to Storm
	The advantages of Cassandra
	Columnar database fundamentals
	Types of column families
	Types of columns

	Setting up the Cassandra cluster
	Installing Cassandra

	Multiple data centers
	Prerequisites for setting up multiple
data centers
	Installing Cassandra data centers

	Introduction to CQLSH
	Introduction to CLI
	Using different client APIs to access Cassandra
	Storm topology wired to the Cassandra store
	Best practices for Storm/Cassandra applications
	Quiz time
	Summary

	Chapter 7: Cassandra Partitioning, High Availability, and Consistency
	Consistent hashing
	One or more node goes down
	One or more node comes back up

	Replication in Cassandra and strategies
	Cassandra consistency
	Write consistency
	Read consistency
	Consistency maintenance features

	Quiz time
	Summary

	Chapter 8: Cassandra Management
and Maintenance
	Cassandra – gossip protocol
	Bootstrapping
	Failure scenario handling – detection and recovery

	Cassandra cluster Scaling – adding a new node
	Cassandra cluster – replacing a
dead node
	The replication factor
	The nodetool commands
	Cassandra fault tolerance
	Cassandra monitoring systems
	JMX monitoring
	Datastax OpsCenter

	Quiz time
	Summary

	Chapter 9: Storm Management
and Maintenance
	Scaling the Storm cluster – adding new supervisor nodes
	Scaling the Storm cluster and rebalancing the topology
	Rebalancing using the GUI
	Rebalancing using the CLI

	Setting up workers and parallelism to enhance processing
	Scenario 1
	Scenario 2
	Scenario 3

	Storm troubleshooting
	The Storm UI
	Storm logs

	Quiz time
	Summary

	Chapter 10: Advance Concepts in Storm
	Building a Trident topology
	Understanding the Trident API
	Local partition manipulation operation
	Functions
	Filters
	partitionAggregate

	Operations related to stream repartitioning
	Data aggregations over the streams
	Grouping over a field in a stream
	Merge and join

	Examples and illustrations
	Quiz time
	Summary

	Chapter 11: Distributed Cache and
CEP with Storm
	The need for distributed caching in Storm
	Introduction to memcached
	Setting up memcache
	Building a topology with a cache

	Introduction to the complex event processing engine
	Esper
	Getting started with Esper
	Integrating Esper with Storm

	Quiz time
	Summary

	Appendix: Quiz Answers
	Index

