
www.allitebooks.com

http://www.allitebooks.org

Refactoring with Microsoft
Visual Studio 2010

Evolve your software system to support new and
ever-changing requirements by updating your
C# code base with patterns and principles

Peter Ritchie

professional expert ise dist i l led

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Refactoring with Microsoft Visual Studio 2010

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2010

Production Reference: 1190710

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849680-10-3

www.packtpub.com

Cover Image by Sandeep Babu (sandyjb@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Peter Ritchie

Reviewers
Atul Gupta

Anand Narayanaswamy

Vivek Thangaswamy

Hima Bindu Vejella

Acquisition Editor
Rashmi Phadnis

Development Editors
Neha Patwari

Ved Prakash Jha

Technical Editor
Neha Damle

Indexer
Monica Ajmera Mehta

Editorial Team Leader
Gagandeep Singh

Project Team Leader
Lata Basantani

Project Coordinator
Shubhanjan Chatterjee

Proofreaders
Lesley Harrison

Claire Cresswell-Lane

Aaron Nash

Graphics
Nilesh Mohite

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

www.allitebooks.com

http://www.allitebooks.org

About the Author

Peter Ritchie is a software development consultant. Peter is president of Peter
Ritchie Inc. Software Consulting Co., a software consulting company in Canada's
National Capital Region specializing in Windows-based software development
management, process, and implementation consulting. Peter has worked with
such clients as Mitel, Nortel, Passport Canada, and Innovapost, from mentoring to
architecture to implementation. Peter's range of experience ranges from designing
and implementing simple stand-alone applications to architecting n-tier applications
spanning dozens of computers; from C++ to C#.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

Any sort of body of work is like a child: it takes a village raise a body of work. This
body of work is no different; it could not have existed without a huge village of
software development constituents. Many people from this village have influenced
me directly and many more have influenced me indirectly. There are too many to
faithfully acknowledge in a single place.

Any sort of book on Refactoring is based on the work of Martin Fowler and William
Opedyke. This book could not have existed in the state it has without their work.
Refactoring itself is based on the techniques and methodologies developed or
promoted by Ward Cunningham and Kent Beck.

Some of the refactorings use design techniques right out of Domain Driven
Design. Eric Evens organized and systematicized patterns and practices on good
object-oriented design.

I have to acknowledge the early years of the ALT.NET movement and the people
involved in it. ALT.NET promoted a more scientific view of software development,
promoting generally accepted principles, methodologies, and community over
not-invented-here, cowboy development, and working in a vacuum. I can't possibly
list all the people who have been involved with ALT.NET, but some of those people
that I've had the pleasure of being involved with or influenced by include (in no
particular order): David Laribee, Scott Bellware, Jeremy Miller, Greg Young, Donald
Belcham, James Kovacs, Jean-Paul Boodhoo, Kyle Baley, Karl Seguin, Oren Eini,
Steven List, Adam Dymitruk, Udi Dahan, Glenn Block, Derek Whittaker, Justice
Gray, Roy Osherove, Scott Allen, Scott Koon, Brad Wilson, and many, many others.

Much thanks to the people at Packt and the technical reviewers that provided many
other points of view to what I had written. Thanks to Bill Wagner for his feedback
and advice.

Also, many thanks to Charlie Calvert, Mark Michaelis, and Bill Wagner for our
collaborations on community. It promoted and facilitated my views on being
involved with and giving back to the software development community.

Finally, I have to acknowledge my wife Sherry, who's had the patience and support
that allows me to follow my software development interests that take up so much of
my spare time, like writing this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Atul Gupta is the Principal Technology Architect at the Microsoft Technology
Center, Infosys Technologies. With close to 15 years of experience working on
Microsoft technologies, Atul is currently a Principal Technology Architect at Infosys'
Microsoft Technology Center. His expertise spans User Interface technologies, and
he currently focuses on Windows Presentation Foundation (WPF) and Silverlight
technologies. Other technologies of interest to him are Touch (Windows 7),
Deepzoom, Pivot, Surface, and Windows Phone 7.

His prior interest areas were COM, DCOM, C, VC++, ADO.NET, ASP.NET, and
AJAX. He has authored papers for industry publications and websites, some of
which are available on Infosys' Technology Showcase. Along with colleagues from
Infosys, Atul is also an active blogger. Being actively involved in professional
Microsoft online communities and developer forums, Atul has received Microsoft's
Most Valuable Professional award for multiple years in a row.

Anand Narayanaswamy, Microsoft MVP, is the author of Community Server
Quickly (www.packtpub.com/community-server/book) published by Packt
Publishing. He works as a freelance writer based in Trivandrum, India besides
devoting time for blogging and tweeting. He also works as a technical editor for
ASPAlliance.com. He had worked as a technical editor/reviewer for various
publishers such as Sams, Addison-Wesley, Mc Graw Hill, and Packt. He runs
www.learnxpress.com and www.dotnetalbum.com.

First, I would like to thank the almighty for giving me the
strength and energy to work every day. I specially thank my
father, mother, and brother for providing valuable help, support
and encouragement. I also thank Shubhanjan Chatterjee, Neha
Patwari, and Peter Ritchie for their assistance, co-operation, and
understanding throughout the review process of this book.

www.allitebooks.com

http://www.allitebooks.org

Vivek Thangaswamy has been working as a solution developer in Software
Technologies for more than six years now. He has worked for many top notch
clients across the globe. Vivek started programming in a DOS world, moved
to C, C++, VC++, J2EE, SAP B1, LegaSuite GUI, WinJa, JSP, ColdFusion, VB 6,
eventually to .NET in both VB.NET and C# worlds and also in ASP.NET / MS SQL
Server and more into Windows Mobile platforms. He also worked in Microsoft's
latest trendsetter in Enterprise Collaboration Microsoft Office SharePoint Server
accompanied with VSTO and .NET 3.0 frameworks. He started working in
SharePoint from the version 2003 to up to date version. Now he is more into Mobile
platform Research and Development. Different domains and industries knowledge
and experience eCommerce, ERP, CRM, Transportation, Enterprise Content
Management, Web 2.0 and Portal. Expert in SAP B1, and SugarCRM consulting.
Focusing on Java ME, Windows Mobile, JavaFX Mobile and Android, basically, what
Vivek does is answer more out in the newsgroups over and over, plus adds to its
blogging about Microsoft Technologies, wraps it in a very readable and interesting
format and more in technical writing. For his good technical knowledge, passion
about the Microsoft Technologies, community involvement and contribution, he
has also been awarded the Microsoft Most Valuable Professional award for ASP.
NET (once) and SharePoint (twice). He is the lead technology consulting advisor for
Arimaan Global Consulting (www.arimaan.com).

Vivek completed is Bachelor Degree in Information Technology (B.Tech), from one
of the oldest and finest universities in the world, University of Madras and has an
MBA (Master of Business Administration) in Finance from one of the largest Open
universities in the world, IGNOU.

Writing is a passion for Vivek, and he has written many technical articles and
whitepaper based on different technologies and domains. He also authored a
technical book on Microsoft technology VSTO 3.0 for Office 2007 Programming by
Packt Publishing and has been a reviewer for Microsoft Office Live Small Business:
Beginner's Guide by Packt Publishing.

I dedicate this book to my Arimaan Global Consulting technical
team members, for their excellence and support.

www.allitebooks.com

http://www.allitebooks.org

Hima Bindu Vejella, a B.Tech graduate, Microsoft MVP since 2006, .NET Rock
Star, working as Team Manager at Prokarma Softech Hyderabad, has eight years
of experience in software development using Microsoft Technologies. Hima Bindu
Vejella, Active community leader, all time winner in Community-Credit since
2006, author at aspalliance, dotnetslackers, and simpletalk. She is also speaker
and book-reviewer at DotnetUserGroupHyderabad India Lead and Moderator at
syntaxhelp, Technical Member at dotnetspider. She has spoken at more than 200
sessions at various colleges and events online and offline. She has taken sessions
on MVP awareness, VS 2010, VS2010 at MNCs, UG Meets, Events and at corporate
companies. Visit her blog at http://himabinduvejella.blogspot.com.

She is regular columnist as international author for Mundo.NET, Portugal magazine,
author at ASP Alliance and dotnetslackers. Her recent series of articles for VS2010 are
like a white paper on VS2010 features are published in MSDN blog. She is founder
and moderator of MUGH (Microsoft User Group Hyderabad), and most active
UG community leader in India. She is contributed to syntaxhelp, submitted more
than 500 code snippets on various technologies like ASP.NET, C#, VB, SharePoint,
WP, LINQ, and so on. She is not only active in Indian MVPs but also internationally
doing a lot for the community. She is associated with many online technical
communities and has helped lot of people in finding solutions to their problems. She
can be reached at himabvejella@gmail.com. She believes in "Aim to go where you
have never been before and strive to achieve it".

I would like to thank my beloved husband Mr. Vamshi, parents,
in-laws, and Sai, a wonder kid, for being supportive all the time
while I was spending my personal time working on the laptop
on weekends.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction to Refactoring 7

What is refactoring? 8
Why the term refactoring? 10
Unit testing—the second half of the equation 11
Simple refactoring 12
Technical debt 15
In the software development trenches 15
The option of rewriting 16
Working refactoring into the process 20
What to refactor 21

Refactoring to patterns 22
Refactoring to principles 22
Code smells 23
Complexity 23
Performance 24
Kernel 24
Design methodologies 25
Unused and highly-used code 25

Refactoring in Visual Studio® 2010 26
Static code analysis 26
Code metrics 27

Summary 28
Chapter 2: Improving Code Readability 31

Built-in Visual Studio® refactorings 32
Rename identifier refactoring 33

Rename field 33
Rename property 35

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Rename method 36
Rename local variable 36
Rename class 37

Extract Method refactoring 37
Encapsulate Field refactoring 39

The smell of code 41
Duplicate code smell 41

Duplicate code in a class 42
Duplicate code in multiple classes 47
Duplicate code in construction 53
Advanced duplicate code refactoring 54

Long method smell 56
Code comments smell 56

Dead code 60
Intention-revealing design 60
You ain't gonna need it 61
KISS principle 62
Keeping track of code changes 64
Check-in often 65
Removing unused references 65
Summary 66

Chapter 3: Improving Code Maintainability 67
Code maintainability 67

Automated unit testing 69
Feature Envy code smell 81
Design for the sake of reuse 83
Don't repeat yourself 84
Inappropriate Intimacy code smell 84
Lazy Class code smell 87
Improved object-model usability 88
Contrived Complexity 90
Detecting maintainability issues 95

Summary 98
Chapter 4: Improving Code Navigation 99

Navigating object-oriented code 100
Convention over Configuration 101

Consistency 101
Conventions 102

Naming 102
Scoping types with namespaces 104

IDE navigation 106
Search 106

Table of Contents

[iii]

Class View 108
Solution Explorer 111
Class Diagram 114
Code Editor 116

Navigation with design patterns and principles 118
Summary 120

Chapter 5: Improving Design Correctness 121
Liskov substitution principle 122

Convert to Sibling refactoring 126
Refactoring to single class 128

Composition over inheritance 134
Refactoring virtual methods to events 138
Exceptions to preferring composition 140
Replace inheritance with delegation refactoring 140

Object-oriented design and object behavior 142
Refactoring to improved object-orientation 144

Move initialization to declaration 148
Value types 150
Refactoring to value type 150
Modeling business rules appropriately 152

Summary 153
Chapter 6: Improving Class Quality 155

Cohesion 155
Class cohesion 156

The Single Responsibility Principle 160
Refactoring classes with low-cohesion 160
Detecting classes with low-cohesion 163

Method cohesion 164
Refactoring methods with low-cohesion 165

Namespace cohesion 171
Refactoring namespaces with low-cohesion 171

Assembly cohesion 173
Refactoring assemblies 174

Coupling 174
Refactoring subclass coupling 175
Refactoring content coupling 176

Interface-based design 176
Delegates 179
Events 180

Refactoring external coupling 183

Table of Contents

[iv]

Dependency cycles 186
Proper dependency design 187

Summary 188
Chapter 7: Refactoring to Loosely Coupled 189

What is loosely coupled? 190
What are coupling and dependencies? 190

Tightly-coupled 191
Dependency Inversion principle 191
Inversion of Control 192
Dependency Injection 193
Working with IoC containers 196

Tightly coupled to creation 199
Factory Pattern 200
Abstract Factory 201

Decorator pattern 203
Detecting highly-coupled 206
Types of coupling 207

Afferent coupling 207
Efferent coupling 208

Interface segregation principle 208
Drawbacks of loosely-coupled 214
Other methods of loose-coupling 214

Web services 215
Communication hosts 215

Summary 216
Chapter 8: Refactoring to Layers 217

Layers 217
Business logic and domain layers 219
Data Access Layers 221

Refactoring UI data access to Data Access Layer 221
Refactoring domain data access to Data Access Layer 233

Plain Old CLR Objects 236
User interface layers 237

Model View Presenter (MVP) 238
Additional layers 248
Summary 249

Chapter 9: Improving Architectural Behavior 251
Behavioral patterns 252

Don't Repeat Yourself (DRY) 253
Strategy pattern 253

Table of Contents

[v]

Detecting need for strategy pattern 254
Refactoring to strategy pattern 255
Specification pattern 259
Detecting need for specification pattern 261
Refactoring to specification pattern 261
Publish/Subscribe paradigm 273
Observer pattern 274
Detecting the need for the observer pattern 275
Refactoring to the observer pattern 275

Summary 279
Chapter 10: Improving Architectural Structure 281

Structural patterns 281
Legacy code 282
Adapter pattern 283

Detecting need for the adapter pattern 283
Refactoring to the adapter pattern 284

Façade pattern 291
Detecting the need for façade 291
Refactoring to the façade pattern 292

Proxy pattern 299
Detecting need for proxy 300
Refactoring to proxy 300

Object/Relational Mapping 304
Problems with code generation 305
Detecting need to refactor to ORM 306
Refactoring to ORM 307

ORM sessions 312
Summary 312

Chapter 11: Ensuring Quality with Unit Testing 313
Change is not always good 314
Automated testing 314
Unit tests 314

Other testing 315
Mocking 316
Priorities 320
Code coverage 320

Mocking frameworks 321
Rhino Mocks 321
Moq 324

Unit testing existing legacy code 325
TypeMock isolator 327

Table of Contents

[vi]

Unit testing in Visual Studio® 330
Test driven development 332
Unit testing frameworks 337

NUnit 337
XUnit 338

Automating unit-testing 339
Continuous Integration 340

Third party refactoring tools 341
Resharper 341
Refactor! Pro 341

Summary 342
Index 343

Preface
This book introduces the reader to improving a software system's design
through refactoring.

It begins with simple refactorings and works its way through complex refactorings
by building on the simple refactorings. You will learn how to focus changing the
design of their software system and how to prioritize refactorings—including how to
use various Visual Studio features to focus and prioritize design changes. The book
also covers how to ensure quality in light of seemingly drastic changes to a software
system. You will also be able to apply standard established principles and patterns as
part of the refactoring effort with the help of this book.

What this book covers
Chapter 1, Introducing Refactoring, describes what refactoring is, its importance, and
its priority in the software development effort. Comparison to re-writing and what
"Technical Debt" is and how refactoring can be used to pay down technical debt is
covered in this chapter.

Chapter 2, Improving Code Readability, begins detailing the refactorings built in
to Visual Studio and how they can make code more readable. Code smells are
introduced, and which code smells apply to readability, and how to detect and
refactor them are detailed in this chapter.

Chapter 3, Improving Code Maintainability, continues to detail the refactorings built in
to Visual Studio and how they can make code more maintainable. Code smells that
apply to maintainability, how to detect and refactor them are detailed in this chapter.
The importance of unit testing is covered in this chapter.

Chapter 4, Improving code navigation, continues with simple refactorings and how code
can be refactored to improve its navigability in general and takes into account Visual
Studio code navigation abilities.

Preface

[2]

Chapter 5, Improving design correctness, begins detailing complex refactorings.
Design principles such as Liskov Substitution and Composition over Inheritance
are introduced and how to perform refactorings related to these principles is
covered in this chapter.

Chapter 6, Improving class quality, introduces code quality metrics like cohesion and
coupling. Principles related to cohesion and coupling are introduced and refactorings
that increase cohesion and decrease coupling are covered in this chapter.

Chapter 7, Refactoring to loosely-coupled, expands on coupling from the previous
chapter and drills-down on loosely-coupled design. Principles related to loosely-
coupled are introduced and complex refactorings related to loosening coupling are
covered in this chapter.

Chapter 8, Refactoring to layers, continues with more complex refactorings that involve
layered architectures. Typical layers, Model View Presenter, and Repository patterns
and how and when to refactor to them are also detailed in this chapter.

Chapter 9, Improving architectural behavior, details complex refactorings to improve
architectural behavior. Design behavior patterns, when and how to refactor to them
are detailed in this chapter.

Chapter 10, Improving architectural structure, continues with architectural-related
complex refactorings. Object-Relational Mapping (ORM) and refactoring Repository
implementations are included in this chapter.

Chapter 11, Ensuring Quality with Unit Testing, details the importance of unit testing.
How unit testing applies to refactoring, examples of unit testing to support the
refactoring effort, and legacy code are also detailed in this chapter.

What you need for this book
We will use examples in C# in Visual Studio 2010, but the concepts can be applied to
any version of Visual Studio since version 2005.

Who this book is for
This book is primarily for developers who want to refactor their code in Visual
Studio. However, the book can be used by anyone using Visual Studio. Developers,
designers, and architects who are eager to improve the performance of their craft will
find this book useful because it details refactoring existing code to use recognized
and established patterns and principles to improve code structure and architectural
behavior. The book assumes that the reader knows both Visual Studio and C#. No
previous knowledge of refactoring is required.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through
the use of the include directive."

A block of code is set as follows:

foreach (InvoiceLineItem invoiceLineItem in
 InvoiceLineItems)
 {
 invoiceSubTotal +=
 (float)((decimal)(invoiceLineItem.Price
 - invoiceLineItem.Discount)
 * (decimal)invoiceLineItem.Quantity);
 }

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

foreach (InvoiceLineItem invoiceLineItem in
 InvoiceLineItems)
 {
 invoiceSubTotal +=
 (float)((decimal)(invoiceLineItem.Price
 - invoiceLineItem.Discount)
 * (decimal)invoiceLineItem.Quantity);
 }

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "clicking
the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code for the book
You can download the example code files for all Packt
books you have purchased from your account at http://
www.PacktPub.com. If you purchased this book elsewhere,
you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this book. If you find any errata, please report them by visiting http://www.
packtpub.com/support, selecting your book, clicking on the let us know link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introduction to Refactoring
Refactoring is the process of changing a software system in such a way that it does
not alter the external behavior of the code yet improves its internal structure.

– Martin Fowler

This chapter begins our journey together into refactoring. In this chapter, we'll
provide some introductory information on what refactoring is, its importance,
and why we'd want to do it. We'll also describe some refactorings and some of
the side-effects of not performing regular refactoring.

The following are a list of topics for this chapter:

•	 What is refactoring?
•	 Why the term refactoring?
•	 Simple refactoring
•	 Complex refactoring
•	 Technical debt
•	 The option of rewriting

Introduction to Refactoring

[8]

What is refactoring?
Although the task of refactoring has been around for some time, and the term
refactoring and the systematic approach associated with it have also been around
for a long time; Martin Fowler and all were the first to popularize refactoring and
begin organizing it more systematically.

Refactoring is a very broad area of software development. It could be as simple as
renaming a variable (and updating all the uses of that variable), or it could refer to
breaking a class that has taken on too much responsibility into several classes, like
implementing a pattern. Refactoring applies to all complex software projects that
require change over time.

A pattern is a [description of] a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in such a way that
you can use this solution a million times over, without ever doing it the same way twice.

– Christopher Alexander

Refactoring is changing the design of a software system without changing its
external behavior. Changes to internal structure and interfaces that don't affect
the system's external behavior are considered refactoring.

The term refactoring was coined by William Opdyke in what seems to be an
evolution of factoring. Factoring was a common term used in the Forth programming
language (and mathematics) to mean decomposition into constituent parts. The term
refactoring has been around since at least the early 1990's. Few developers would
argue that refactoring isn't something they do on a day-to-day basis. Although
refactoring is a fairly simple concept, many programmers don't associate changing
code without changing external behavior as being refactoring.

Refactoring has been an integral part of software development in the Extreme
Programming (XP) methodology since Kent Beck introduced it in 1999.

Kent Beck introduced XP in the book Extreme Programming
Explained circa 1999.

XP mandates a Test-Driven-Development (TDD) process, where only enough code
is written to implement a single feature and to pass at least a single test. The code is
then refactored to support implementing another feature and pass all the existing
tests. The new feature is then implemented and passes at least a single new test and
all current unit tests. Extreme Programming also mandates continuous refactoring. We
will discuss the importance of tests when refactoring in Chapter 3.

Chapter 1

[9]

Some of the first tools to support automated refactoring came out of the Smalltalk
community. The "Refactoring Browser" was one of the first user interfaces that
provided abilities to refactor Smalltalk code. Now refactoring tools are commonplace
in almost all programming language communities. Some of these tools are stand-alone;
while some are add-ins to existing tools; while some refactoring abilities are built
into other tools and applications where refactoring isn't their main purpose. Visual
Studio®® 2010 fits in the second two categories. Visual Studio®® 2010 is an integrated
development environment (IDE) designed specifically to allow developers to perform
almost all the tasks required to develop and deliver software. Visual Studio® ®, since
version 2005, has included various refactoring abilities. Visual Studio®® has also
included extensibility points to allow third-party authors to write add-ins for it. Some
of these add-ins have the purpose of giving users of Visual Studio®® 2010 specific
refactoring abilities. Add-ins such as Resharper, Refactor! Pro, and Visual AssistX add
more refactoring abilities for Visual Studio® 2010 users.

Refactoring has become more mainstream with Visual Studio® users in the past
few years because of the built-in automated refactoring abilities of many IDEs,
including Visual Studio® 2010. It's now almost trivial, for example, to rename a
class in a million line software project and update dozens of references to that class
with a few mouse clicks or keystrokes. Before the support for this simple refactoring
came about, this problem would have involved searching for text and manually
changing text or using a brute force search-and-replace to replace all instances of the
class name and then rely on the help of the compiler to tell you where replacements
weren't actually a use of the class name. While it's almost unheard of for IDEs to
not have some sort of (at least rudimentary) simple automated refactoring abilities,
developers will always have to manually perform many complex refactorings
(although they may consist of some simple refactorings that can be automated).

Without automatic refactoring abilities and tools, developers feel friction when
performing simple refactoring. Changing the order of parameters in a complex
million-line software project, for example, is tedious and error prone. Encountering
a spelling mistake in the name of a method that is referenced by dozens of other
methods in dozens of other files is time-consuming. Without automated tools, our
maintenance problems cause even more friction; simple tasks like changing the order
of parameters or fixing spelling mistakes are simply avoided. This prevents a code
base from improving in its maintainability and it becomes even more fragile and
even more likely to be neglected (have you ever tried to find a specific method with
text search only to find out someone misspelled it?)

It's the ease with which simple refactorings can be performed that has elevated
"refactoring" in to the lexicon of almost every programmer. Yet, there is so much
more to the act of refactoring than just simple refactorings that can be accomplished
automatically by software.

Introduction to Refactoring

[10]

The common thread in all refactoring is the goal of the refactoring. The goal can be
as simple as making the code easier to read and maintain, or to make the code more
robust; or the goal may be as complex as improving componentizing code modularity
to make it more decoupled and to make it easier to add new behavior. But, systematic
refactoring is the acceptance that the act of writing software is not atomic; it cannot be
done in a single step and will evolve over time as our understanding of the problem
domain improves and/or our customer's understanding of their needs is discovered
and communicated.

Why the term refactoring?
So, why bother with a specific term for this type of modifying code? Isn't all
modifying code simply modifying code? A systematic approach to the different types
of editing and writing code allows us to focus on the side-effects we're expecting as a
result of changing the code. Making a change that includes fixing a bug, refactoring,
and adding a feature means that if something doesn't work then we're unsure which
of our edits caused the problem. The problem could be that we didn't fix the bug
correctly, that there was a problem with our refactoring, or that we didn't add the
feature properly. Then there's the possibility that one of the edits interacted with
the other. If we do encounter an adverse side-effect (also known as, "a bug") in this
process, we have an overly large combination of possible causes to evaluate.

It's much easier to focus on one type of task at a time. Make a bug fix, validate the
bug fix didn’t cause any expected side-effects. When we're sure that the bug fix
works, we move on to adding new functionality. If there are unexpected side-effects
while we're adding new functionality, we know that the side-effect was caused either
by the code that we have just added to implement the new feature, or the way that
code interacts with the rest of the system. Once we know the new functionality is
working correctly, we can reorganize the code through refactoring. If we encounter
any unexpected side-effects through the refactoring, then we know that the problem
comes from either the code that was refactored or some way that the refactored code
interacts with the rest of the system—further minimizing the domain in which the
unexpected side-effect could exist. This systematic approach reduces the time and
work involved in writing software.

Chapter 1

[11]

It's rare as software designers and programmers that we know at the start of a project
exactly what the end-user requires. Requirements can be unclear, wrong, incomplete,
or written by someone who isn't a subject matter expert. Sometimes this leads us to
make an educated guess at what an end-user requires. We may create a software
system in the hope of someone finding it useful and wanting to purchase it from us.
Sometimes we may not have direct access to end-users and base all our decisions
on second-hand (and sometimes third-hand) information. In situations such as
these, we're essentially betting that what we're designing will fulfill the end-user's
requirements. Even in a perfect environment, concrete requirements change. When we
find out that the behavior does not fulfill the end-user's real requirements, we must
change the system. It's when we have to change the behavior of the system that we
generally realize that the design is not optimal and should be changed.

Writing software involves creating components that have never been written before.
Those components may involve interaction with third-party components. The act
of designing and writing the software almost always provides the programmer
with essential knowledge of the system under development. Try as we might,
we can almost never devise a complete and accurate design before we begin
developing a software system. The term Big Design Up Front (BDUF) describes
the design technique of devising and documenting a complete design before
implementation begins. Unless the design repeats many aspects of an existing
design, the act of implementing the design will make knowledge about the system
illicit, which will clarify or correct the design. Certain design techniques are based
on this truth. Test-Driven Development, for example, is based on realizing the design
as the code is written—where tests validate the code in implementing requirements
of the system.

Regardless of the design technique; when a design needs to change to suit new or
changing requirements, aspects of the existing design may need to change to better
accommodate future changes.

Unit testing—the second half of the
equation
In order to support the refactoring effort—and to be consistent with changing design
and not external behavior—it's important that all changes be validated as soon as
possible. Unit tests validate that code continues to operate within the constraints set
upon it.

Introduction to Refactoring

[12]

Unit tests validate that code does what it is supposed to do; but unit tests also
validate that any particular refactoring hasn't changed the expected behavior and
side-effects of that code. They also validate that no new and unexpected side-effects
have been introduced.

It's important that refactoring be done in conjunction with unit tests. The two go
hand-in-hand. The refactorings described in this book will be focused on the details
of the refactoring and not about how to unit test the code that is being refactored.
Chapter 11 details some strategies for approaching unit-testing in general and in
circumstances particular to refactoring.

Simple refactoring
Simple refactorings are often supported by tools—IDEs, IDE add-ons, or stand-alone
tools. Many simple refactorings have been done by programmers since they started
programming.

A simple refactoring is generally a refactoring that can occur conceptually in
one step—usually a change to a single artefact—and doesn’t involve a change in
program flow. The following are examples of simple refactorings that we'll look at
in more detail:

•	 Renaming a variable
•	 Extracting a method
•	 Renaming a method
•	 Encapsulating a field
•	 Extracting a interface
•	 Reordering parameters

Renaming a variable, is a simple refactoring that has a very narrow scope—
generally limited to a very small piece of code. Renaming a variable is often done
manually because of its simplicity. Prior to having automated refactorings, the
rename variable refactoring could often be done reliably with search and replace.

The Extract method refactoring is a type of composing method refactoring.
Performing an extract method refactoring involves creating a new method, copying
code from an existing method and replacing it with a call to the new method.
Performing this refactoring can involve use of local variables outside the scope of the
original code that would then become new parameters added to the new method.
This refactoring is useful for abstracting blocks of code to reduce repetition or to
make the code more explicit.

Chapter 1

[13]

Another simple refactoring is Rename method. Renaming method is a simplification
refactoring. It has a scope whose change can impact much of a code base. A public
method on a class, when renamed, could impact code throughout much of the
system if the method is highly coupled. Performing the refactoring rename method
involves renaming the method, then renaming all the references to that method
through all the code.

Encapsulating a field is an abstraction refactoring. Encapsulating a field involves
removing a field from the public interface of a class and replacing it with accessors.
Performing an encapsulate field refactoring may involve simply making the field
private and adding a getter and a setter. All references to the original field need
to be replaced with calls to the getter or the setter. Once a field is encapsulated, its
implementation is then abstracted from the public interface of the class and can no
longer be coupled to external code—freeing it to evolve and change independently
of the interface. This abstracting decreases coupling to implementation and increases
the maintainability of code.

Another simple abstraction refactoring is Extract interface. Performing an extract
interface refactoring involves creating a new interface; copying one or more method
signatures from an existing class to the new interfaces, then having that class
implement the interface. This is usually done to decouple use of this class and is
usually followed up by replacing references to the class with references to the new
interface. This refactoring is often used in more complex refactorings, as we'll see in
later chapters.

Reording parameters is a simple refactoring whose process is well described by the
name. Performing reorder parameters, as its name describes, involves reordering
the parameters to a method. This refactoring is useful if you find that the order of
the parameters of a method make it more prone to error (two adjacent parameters
of the same type) or that you need to make the method signature match another
(maybe newly inherited) method. If the method is referenced, the order in which the
arguments are passed to the method would need to be reordered. Although a simple
refactoring, conceptually this refactoring could lead to logic errors in code if not fully
completed. If parameters that were reordered in the method signature had the same
type, all references to the method would be syntactically correct and the code would
recompile without error. This could lead to arguments being passed as parameters to
a method that were not passed to the method before "refactoring". If this refactoring
is not done properly it is no longer a refactoring because the external behavior of the
code has changed! Reording parameters is different from the previously mentioned
simple refactorings, because if not completed properly they would all result in a
compiler error.

Introduction to Refactoring

[14]

Removing parameters is another simplification refactoring. It involves removing
one or more parameters from a method signature. If the method is referenced, these
references would need to be modified to remove the argument that is no longer
used. This refactoring is often in response to code modifications where method
parameters are no longer used. This could be the result of a refactoring or an external
behavior change. With object-oriented languages, removing a parameter could cause
a compiler error as removing the parameter could cause the method signature to be
identical to an existing method overload. If there were an existing overload, it would
be hard to tell which method references actually referenced the overload or the
method with the newly removed parameter. In cases such as these, it's usually best
to revert the change and reevaluate the two methods.

These simple refactorings are conceptually easy and aren't difficult to perform
manually. Performed manually, these refactorings could easily involve many lines
of code with a lot of repetitive code changes. With many repetitive actions and
the possibility of introducing human error, many developers may tend to avoid
performing these manual refactorings despite being simple. These refactorings have
the potential to evolve the code in ways that make it easier to maintain it and add
features to it. This makes for more robust code and enables you to more quickl respond
to new requirements.

These simple refactorings are actually supported by Visual Studio® 2010. Visual
Studio® 2010 automates these refactorings. If you rename a method with the rename
method refactoring in Visual Studio® 2010 and there are hundreds of references
to the method, Visual Studio® 2010 will find all references to them in the current
solution and rename them all—automatically. This drastically reduces the friction of
performing many of the refactoring building blocks.

In Chapter 2, we began performing these simple refactorings with the built-in
refactoring tools in Visual Studio® 2010.

Simple refactorings are refactorings that are easy to understand, easy to describe, and
easy to implement. Simple refactorings apply to software projects in just about every
language—they transcend languages. Refactorings are like recipes or patterns; they
describe (sometimes merely by their name) how to improve or change code. This
simplicity with which they can describe change and the simplicity by which they
are known has led to several taxonomies of refactorings. Most taxonomies catalogue
simple refactorings; but some taxonomies can be found that include complex or
specialized refactorings. Some examples of online taxonomies offer centralized
databases of refactorings:

http://www.refactoring.com/catalog/

http://industriallogic.com/xp/refactoring/catalog.html

Chapter 1

[15]

Technical debt
As we implement the required functionality and behavior to fulfill requirements,
we have the choice of not fully changing the rest of the system to accommodate
the change. We may make design concessions to get the feature done on time. Not
improving the design to accommodate a single change may seem benign; but as more
changes are made to a system in this way, it makes the system fragile and harder
to manage. Making changes like this is called incurring technical debt. The added
fragility and unmaintainability of the system is a debt that we incur. As with any debt,
there are two options: pay off the debt or incur interest on the debt. The interest on the
technical debt is the increased time it takes to correctly make changes with no adverse
side-effects to the software system and/or the increased time tracking down bugs are
as changes made to a more fragile system that cause it to break. As with any debt, it
is not always detrimantal to your project, there can be good reasons to incur debt.
Incurring a technical debt, for example, to reach a high-priority deadline, may be good
use of technical debt. Incurring technical debt for every addition to the code base is not
a good use of technical debt.

In the software development trenches
I've been a consultant in the software development industry for 15 years. I've worked
with many different teams, with many different personalities, and many different
"methodologies". It's more common than not for software development teams to tell
me of nebulous portions of code that no one on the team is willing to modify or even
look at. It performs certain functionality correctly at the moment, but no one knows
why. They don't want to touch it because when someone has made changes in the
past it has stopped working and no matter how many duct tape fixes they make to it,
it never works correctly again.

Every time I hear this type of story, it always has the same foot note: no one has
bothered to maintain this portion of code and no one bothered to try to fully
understand it before or after changing it. I call this the "House-of-Cards Anti-
pattern". Code is propped up by coincidence until it reaches a pre-determined
height, after which everyone is told to not go near it for fear that the slightest
movement may cause it to completely collapse. This is a side-effect of Programming
by Coincidence. Had this nebulous code constantly been refactored to evolve along
with the rest of the system or to improve its design, it's quite likely that these regions
of code would never have become so nebulous.

www.allitebooks.com

http://www.allitebooks.org

Introduction to Refactoring

[16]

Programming by Coincidence is a Pragmatic Programmer term
that describes design or programming where code results in positive
side-effects but the reason the code "works" is not understood. More
information on this can be found here: http://www.pragprog.com/
the-pragmatic-programmer/extracts/coincidence

Unlike the financial debt basis for this metaphor, it's hard to measure technical debt.
There are no concrete metrics we can collect about what we owe: the increased time
it takes to make correct changes to a hard-to-maintain code base without unexpected
consequence. This often leads members of the development community to discount
keeping a code base maintainable in favor of making a change with complete
disregard for overall consequences. "It works" becomes their catch-phrase.

The option of rewriting
I'm not going to try to suggest that—while as developers we "refactor" all the
time—it's the only option for major changes to a system. Rather than systematically
evolve the code base over time, we could simply take the knowledge learned from
writing the original code base and re-write it all on the same platform. Developers
often embrace re-writing because they haven't been maintaining large blocks of the
code, for various reasons. They feel that over time the changed requirements have
caused them to neglect the underlying design and it has become fragile, hard to
maintain, and time-consuming to change. They feel if they could just start anew they
could produce a much better quality code base.

While re-writing may be a viable option and will most likely get you from point
A to point B, it tends to ignore many aspects of releasing software that some
developers tend to not want to think about. Yes, at the end of the re-write we might
end up with a better code base and it might be just as good as having refactored it
over the same amount of time; but there are many consequences to committing the
software to a re-write.

Committing the software to a re-write does just that, commits the team to a re-write.
Writing software means moving from less functionality to more functionality. The
software is "complete" when it has the functionality that the users require. This means
between point A and B the new software is essentially non-functional. At any given
point of time, it can only be expected to perform a subset of the final functionality
(assuming it's functional at all at that given point in time). This means the business has
to accept the last released version of the software during the re-write. If the software
is such a bad state as to be viewed as requiring a re-write then that usually means that
last released version is in a bad state and user is not overly satisfied with it.

Chapter 1

[17]

Re-writes take a long time. Developers can re-use the concepts learned from the
original code and likely avoid some of the analysis that needs to go into developing
software; but it's still a monumental task to write software from scratch. Re-writes
are like all software development, the schedule hinges on how well the developers
can estimate their work and how well they and their process are managed. If
the re-write involves the same business analysts, the same developers, the same
management, and the same requirements that the original—admittedly flawed—
software was based upon, the estimates should be suspect. If all the same inputs
that went into the flawed software go into the re-write, why should we expect better
quality? After all, the existing software started out with a known set of requirements
and still got to its existing state. Why would essentially performing the same tasks
with the same process result in better software?

So, we know we are going to get to point B from point A, but now we know the
business can't have new software until we get to point B and we now realize that
we're not really sure when we're going to get to point B. The time estimates may
not be scrutinized at the beginning of the re-write; but if the developers are unable
to keep to the schedule they will most certainly be scrutinized when they fail to
maintain the schedule. If the business has been without new features or bug fixes for
an extended period of time, telling them that this timeframe is expanding indefinitely
(and that is how they'll view it because they were already given a timeframe, and
now it's changed) will not be welcome news.

I know what you're thinking, we can deal with the fact that the re-write means the
software can't respond to market changes and new requirements for an unknown
and significant amount of time by having two code streams. One code stream is the
original code base and the other is the re-write. One set of developers can work on
the original code base, implementing bug fixes and responding to market changes
by adding features; and another set of developers can work on the rewrite. And this
often happens, especially due to the business's response to the pushed timeframe.
If they can't get their re-write right away, they'll need something with new features
and bug fixes to keep the business afloat to pay for the re-write. If two code streams
aren't created the software developers are right back to where they started, shoe-
horning new features and bug fixes into the "pristine" code base. This is one of the
very reasons why the developers feel the original code base had problems, the fact
that the new features and bug fixes had caused them to neglect the design.

Introduction to Refactoring

[18]

Maintaining two code streams make the developers feel like they're mitigating
the risks involved with having to implement new features and bug fixes into their
new design. It seems like everyone they should be happy. But, how is this really
any different? Why would the business even accept the re-write if they're already
getting what they want? How would these new features not make their way into the
re-write? This is actually the same as having one code stream; but now we have to
maintain two code streams, two teams, and manage change in two code bases and in
two different ways. So, have we made the problem worse?

It's easy for developers to neglect the design of the system over time, especially if
the design process is based on Big Design Up Front. With Big Design Up Front, the
software development lifecycle stages are assumed to progress in a way similar
to a waterfall, one stage can't continue until the previous stage has completed, for
example, development can't begin until "Design" has been completed. This means
that adding new behavior to an existing design means going back to the Design
stage, coming up with a new design: documenting it, reviewing it, and submitting it
for approval.

With a process like this, the management team quickly realizes that they can't
make money if every evolution of the software requires a Big Design Up Front and
they plead with developers to make small changes without Big Design Up Front
to be responsive to customer and market demand—despite mandating Big Design
Up Front at the start of the project. Developers are almost always happy to oblige
because they don't like dealing with processes, and generally like dealing with
documentation even less. Going back to analyzing and writing designs isn't what
they really want to do, so they're happy to be asked to effectively just write code.
But, the problem is that they often fail to make sure the rest of the software can
accommodate the change. They simply duct tape it to the side of the existing code
(like adding a feature, making sure it passes one or two change-specific use cases,
and moving on). It's after months of doing this that the code base becomes so brittle
and so hard to manage that no developer wants to look at it because it means really
understanding the entire code base in order to make a change that doesn't cause
something else to break.

A developer faced with a process like this is almost forced to fall back on a re-write
in order to implement any major additions or changes to the software because that's
essentially how the lifecycle is organized and what it promotes. They're certainly
not presented with a process that guides or even rewards the developer for keeping
on top of the entire code base. The reward system is based almost solely on delivery
of functionality. It's not the developer's fault that the lifecycle is forcing them into a
corner like that. Or is it?

Chapter 1

[19]

Many developers fall back on management's lifecycle. "I'm just doing what I'm
told" or "I didn't define the process". This is avoiding ownership in their work.
The developer is avoiding any ownership of their work because they haven't been
delegated responsibility for part of what goes into their work—the process. This is
partially the fault of the developer, they need to take ownership of their work (the
code) and understand what it is that only they really have control over. Getting
into this situation is also the fault of management (or mismanagement) because it
assumes that management only manages tasks and time estimates and leaves the
details of "software development" to the software developers but ties their hands
behind their backs by imposing a process by which they need to follow. Refactoring
is a tool to help developers take ownership of the code—especially code they didn't
originally author.

Unless we have an almost perfect handle on the code base that we're working
with, we're unlikely to know all the implicit functionality of the system. Implicit
functionality is unintended functionality that users have come to rely upon or can
come to rely upon. This functionality isn't necessarily a bug (but users can come to
rely upon bugs as well); but is concrete behavior of the system that users are using.
This is never documented and it is a side-effect of the way the software was written
(that is, not the way it was designed). I've actually worked with end-users that
complained when a bug was fixed, because they communicated amongst themselves
a process that included a work around for the bug. They were annoyed that they had
to change this process because they were so used to doing it a certain way (the work
around had essentially become a reflex to them).

The reason a re-write may be appealing is because the developers don't have a
complete handle on the code base and therefore cannot have a complete handle on
the implicit behavior. A re-write will neglect these implicit behaviors and almost
always draw complaints from users. While re-writing is a viable technique, the
applicable circumstances are rare. If a re-write is proposed for a project you
are on, be sure it is thoroughly evaluated.

Introduction to Refactoring

[20]

Working refactoring into the process
Writing software doesn't work well if you don't accept that the industry changes
rapidly and that the software needs to respond to these rapid changes and those
that its users require. If the act of writing a piece of software took a couple of days
(or even a couple of weeks) we could get away with not having to evolve existing
source to produce changes to software. If it were just industry and requirements
changes, software development may be able to keep up with these demands. But, our
industry contains many competitors, all vying for the same pool of new and existing
customers. If a competitor releases software with new features that the software
we're writing doesn't have, our software would be obsolete before it even got
released. As software developers, we need to embrace change and be as responsive
to it as possible. Refactoring helps us to achieve this.

It's inevitable; someone will ask for a new feature that the existing design hadn't
accounted for. One way of dealing with this, as we've discussed, is to go back to
the drawing board with the design. This is too costly due to the consequences of
that fall-out. The opposite side of the pendulum swing is to shoe-horn the change in,
ignore the design, and hope there are no consequences. There's a happy medium that
can accommodate both changes to the design and make the customer happy. Simply
account for refactoring work and inform the customer of the slight increase in time
estimates. If this is done consistently, the design is kept up-to-date with what it is
required to support and maintains a fairly constant ability to respond to change. Each
new feature may require design changes, but now we've spread those design changes
over time so that one single new feature doesn't require abandoning the entire design.
Each new feature has a constant and limited design evolution aspect to it.

To clarify with a metaphor: there are two ways of maintaining your car. One is to
be entirely responsive, add gas when the gauge reaches E and go to the mechanic
when the red light comes on. When the red light comes on, this means there's
trouble. The owner of a car can avoid this red light through regular maintenance.
Changing the oil at prescribed intervals, performing routine checks at scheduled
times, and so on, go a long way in maintaining the health of your car so that the
red light never goes on and you avoid costly repair bills. Software development
is much the same; you can neglect regular and preventative maintenance of your
code base by ignoring technical debt. Ignoring technical debt could result in a costly
"repair bill" if you're forced to pay your technical debt when you haven't scheduled
it. "Regular maintenance" comes in the form of constant preventative refactoring.
Time should be scheduled for refactoring code outside of in response to adding a
new feature. Developers should regularly read the code looking for ways to refactor
it and improve its structure. This has two benefits. One is that they're constantly
up-to-speed on the code. Even if there are infrequent changes to portions of the
code, they're still familiar with it because they're reading and understanding it on a
periodic basis.

Chapter 1

[21]

The other benefit is that the code is being kept up-to-date with the rest of the design
and its changes. Keeping the code up-to-date in this way generally means the latest
technologies and patterns are incorporated into the code in a timely fashion, keeping
it that much more robust and reliable. When customers are informed of the amount
of time work entails and this amount of time is consistently met, they're much more
accepting of this than to be informed of the amount of time it takes for a re-write.

What to refactor
With most software development projects, there's a reasonably constant influx of
new requirements or change requests. Depending on the system and the input
from your user community, some or many of these requests may require code that
is significantly outside what the design currently handles. These requests may be
enough to keep your refactoring plate full for a long time.

But, what if your project is already seeing the side-effects of brittle design and
hard-to-maintain code? Implementing requirements often introduces bugs in
seemingly disparate areas of the code that take less than trivial amounts of time to
fix that make estimating the effort to implement requirements less than accurate.
Finding where to make code changes to implement requirements may not be
obvious, or the changes end up requiring far-reaching changes to code across much
of the project. Working on a complex software project often means this can be an
everyday fact of life. But, working on a software team where most changes involve
modifying code across much of the code base can introduce a friction that makes the
time it takes to implement requirements much longer than necessary. Some people
may think this is just a part of the software development process; but, because you're
reading this book, you don't believe that.

New requirements that clearly don't fit in to the current design offer a clear hint at
where to focus our refactoring effort. So, we know that refactoring may produce a
more maintainable and robust code base; but, where do we start?

Introduction to Refactoring

[22]

Refactoring to patterns
Many object-oriented code bases are perfectly functional. But these code bases don't
consistently attempt to reuse concepts or attempt to use formally accepted patterns.
A pattern is a description of communicating objects and classes that are customized
to solve a general design problem in a particular context. One way to clean up code
is to attempt to refactor individual parts of the code to use specific and applicable
patterns. This is an excellent way of better understanding the intention of the code.
Once specific patterns are implemented, the code then becomes that much more
understandable. Industry-standard terms and code is then strewn throughout the
code rather than project-specific buzzwords. The code becomes easier to consume by
newcomers and thus easier to maintain. Chapters 5 through 9 deal specifically with
examples of code that use concepts found in several common patterns and show how
to refactor the code to make the pattern explicit and thus improve the chances of not
repeating code.

Just as refactoring to patterns may make code easier to understand, less likely to
repeat itself, and easier to maintain in general; forcing patterns into code for the
sake of patterns will make code harder to understand and maintain. It's important
to be sure that refactoring to a particular pattern adds value to the readability,
understandability, and maintainability of the code. Shoe-horning a pattern where it
does not belong will have the opposite effect. Make sure your desire to use a pattern
hasn't overshadowed its suitability.

Refactoring to principles
In the race to get products out the door or to meet specific deadlines, programmers
can often lose sight of principles in favor of functionality. While this isn't all
bad, it could leave the code as a procedural ball of mud, or hard to maintain and
understand in many other ways. After deadlines have been met, this is often a good
time to reflect on the code, its design and structure, as it applies to principles. The
code may not be overly object-oriented, for example. The code and the architecture
may benefit from a review for SOLID principles. SOLID is an acronym for Single
Responsibility principle, Open-Closed principle, Liskov Substitution principle,
Interface Segregation principle, and the Dependency Inversion principle. There
are several other object-oriented principles geared towards reducing coupling and
complexity in source code and help keeping software development efforts focused
more on adding value and less on responding to issues. Refactoring to principles is
discussed in detail in Chapters 5 through 7.

Chapter 1

[23]

Refactoring to principles and patterns is a design change. Although changes of
this nature have positive side-effects (the impetus to implement them) they may
also come with negative side-effects. A design change may decrease performance,
for example. Any design change should be evaluated to ensure there are no
unacceptable negative side effects before being accepted.

Code smells
Kent Beck introduced the term "code smells" (and formalized it along with Martin
Fowler) to provide a way of communicating ways to detect potential problems that
can occur in code. These problems are generally adverse side-effects of code that
effectively works in at least one context. As with real-world smells, some smells may
be tolerable by some people and not by others. There are no good smells with code
smells, only varying degrees of bad smells.

Kent Beck and Martin Fowler formalized the term code smells in the book
Refactoring: improving the design of existing code.

Code smells allow us to easily define common anti-patterns that can be prioritized
by opinion or context. Depending on the person or the project in which they work,
a code smell can be distinctly prioritized. Some people and teams may feel certain
smells are unacceptable (maybe they consider them as stenches); while others feel the
removal of a smell is just a nice-to-have; while still others may feel the same smell is
nary an issue.

Code smells are an easily categorized, but personal means of describing the
side-effects that someone discovered (and documented) of a particular type of
code. So, code smell possibilities and the degree to which you may find them
applicable are endless. Chapters 2 and 3 go into more detail about code smells and
specific examples of refactoring code in response to common code smells that are
generally accepted as having a high return on investment when properly removed.

Complexity
Reducing complexity is always a good reason to change code. Complex code is hard
to understand; if code is hard to understand, it's hard for just anyone (or anyone at
all) to fix bugs in the code or to add features to the code. But, how do you focus your
efforts on complex code and how do you find complex code—after all, you want to
fix code and not spend all your time searching for code to fix. Fortunately, there are
many tools out there that will tell you how complex your code is.

Introduction to Refactoring

[24]

You can get a gut feeling about how complex some code is by simply reading it. But,
if you can't read all your code, code metrics can help. Software metrics are numerical
measurements calculated by the structure and content of source code. Many software
metrics focus on putting a numeric value on the complexity of code. Metrics like
Depth of Inheritance, Class Coupling, and Lines of Code can help tell you how
complex regions of code are. More obviously, metrics like Maintainability Index and
Cyclomatic Complexity specifically address code complexity.

Chapter 6 goes into more detail about specific refactorings in response to specific
complexity metrics.

Performance
Focusing on complexity can often indirectly help with the performance of code.
But, you often want to focus specifically on performance of code. Fixing performance
issues is almost refactoring by definition—you want to change the code without
changing the external behavior of the code. Many applications have functionally
with obvious need of performance improvements; and these are obvious areas of
code you should focus upon. But, how do you measure improvement; and if you
don't have obvious non-performance features, how do you find areas of code to
focus your performance-related refactoring efforts? Luckily, there are many tools
out there to gather performance metrics about executed code.

Kernel
Many software systems have a core subsystem that performs the majority of the
work that the system does. If a subsystem was designed this way, it's likely called a
kernel. Depending on the methodology used by the team, a Domain Model may exist
that is very similar to a kernel—the code that clearly defines all the domain-specific
entities and their logic that remain constant regardless of the type of the front-end,
how integration points are implemented, and so on.

Focusing on the core of the system and making sure it's not complex, easy to
understand, easy to change, and easy to add features too goes a long way in
improving the responsiveness of a software team. This core of code often deals with
proprietary information—the reason the business exists. People with experience
with information and logic like this are usually hard to find. You may not be able
to simply publish an ad for "C# developers with experience in Telematics" and
expect to find many people locally to fill the position. Keeping the kernel simple to
understand means you can get people without years of experience in your domain to
change and add to the code.

Chapter 1

[25]

Design methodologies
It's common for source code that has been around for any length of time to have been
worked on by team members that have come and gone. Some of those team members
may have been influential with regard to the design methodology used (or there
may have been some "rogue" developers that deviated from the design methodology
accepted by the rest of the team). With some design methodologies, this may not
have a noticeable effect on the design of the code; but some design methodologies
have fairly distinct effects on the design of the code. Domain-driven design, for
example, suggests that domain entities be explicit in the code—usually an entity-
to-class relationship. These entities often are completely decoupled from the rest of
the system (user-interface, infrastructure, utility methods, and so on.) If the design
of the system is to remain domain-driven, you may find that some classes may need
to move to a different place, be decoupled from other classes, and so on. Depending
on the level to which domain-driven has been implemented (or lacking thereof) the
code may need to be more organized into layers. Chapter 8 details refactoring to
layers. Other techniques attributed specifically to domain-driven design are detailed
in Chapters 8 and 10. Specific patterns have been attributed to domain-driven design
and details of those patterns can be seen in the chapters dealing with refactoring to
patterns: Chapters 5 through 9.

Unused and highly-used code
Identifying how frequently code is used helps to tell you whether the refactoring
effort will result in tangible results. One of the easiest refactorings is to simply delete
unused code. But, without scouring the code, line-by-line, how do you find unused
code or focus on highly-used code?

Luckily there are tools that will tell you how used code is. These tools are called
Code Coverage tools. Much like performance metrics tools, they monitor executing
code and tell you how frequently code, methods, and classes are used. Some static
analysis tools can tell you about code, methods, and classes that are not referenced
by other code—giving you information about unused code. This type of unused
code will help focus your unused-code refactoring efforts, but can't tell you about
all unused code. Code, methods, or classes may still be referenced by other code but
may never be executed. Code Coverage tools will help tell you about this other type
of unused code.

Introduction to Refactoring

[26]

Refactoring in Visual Studio® 2010
The Visual Studio® 2010 IDE is much more than a solution/project management
system with a text editor. It offers much functionality to aid the user in refactoring
their code. Visual Studio® 2010 has had features for common refactorings since
Visual Studio® 2005, such as extract method, rename member, encapsulate field,
extract interface, and so on. (more detail about these refactorings can be seen in
following chapters). Visual Studio® 2010 expands the refactoring palette that Visual
Studio® 2010 has to offer by adding refactorings like Generate from Usage, TODO:
get final list of any new refactorings.

Refactoring with Visual Studio®'s built-in automated refactorings doesn't have to
be the limit of your refactoring efforts with Visual Studio® 2010. Depending on the
edition of Visual Studio® 2010 you're using, you can work with other features of
Visual Studio® 2010 to focus, prioritize, or introduce areas of your code to refactor.

Visual Studio® 2010 Premium offers several features that when coupled with a
tangible refactoring effort, will help improve the quality and maintainability of
your code base.

Static code analysis
Static code analysis is the analysis of software by an automated tool that does not
involve execution of the code. This is most commonly analysis of the source code.
The code is analyzed for common simple anti-patterns, logic errors, structure of
individual statements, and so on. Visual Studio® introduced static code analysis in
version 2005. The static code analysis in Visual Studio® was based on a Microsoft
Internal project started by Brad Abrams and Krzysztof Cwalina called FxCop.
FxCop was originally written as a means to analyze .NET software and enforce the
guidelines detailed in the "Framework Design Guidelines: Conventions, Idioms,
and Patterns for Reusable .NET Libraries" book. FxCop is different from most static
analysis tools available at the time in that it analyzed compiled code. This means it
can't analyze code comments. FxCop was eventually subsumed by Visual Studio®
and renamed to Code Analysis. Although FxCop is still available, it appears that it is
no longer being maintained and any new functionality added to Code Analysis is not
being merged into FxCop.

More information on FxCop can be found at http://
go.microsoft.com/fwlink/?LinkId=180978

Chapter 1

[27]

Visual Studio® 2010 Code Analysis includes 200+ rules for reporting possible
design, localization, globalization, performance, security, naming, interoperability,
maintainability, portability, and reliability improvements. Every software
development team should review the rules available in Visual Studio® and decide
what subset (or subsets, depending on types of applications) of rules should be
applicable. The rules should then be prioritized so that the team is not overwhelmed
with trying to remove many Code Analysis rule violations. The team should decide
which rules can be used to help focus the refactoring effort. For example, the rule
CA1502 Avoid Excessive Complexity might be corrected by one or more Extract
Method refactorings.

Code metrics
Code metrics, although another form of static analysis, is a separate feature of Visual
Studio® 2010. Code metrics is more commonly called 'software metrics' in the
software industry. To a certain extent, some of the rules in Code Analysis are based
on specific software metrics (like CA1502 Avoid Excessive Complexity—which is
based on the Cyclomatic Complexity software metric). Software metrics are specific
definitions about how to measure software in a certain way. These measurements
generally deal with quality. Quality in software is measured in efficiency,
complexity, understandability, reusability, testability, and maintainability.

Most software metrics are not easily actionable. For example, what is specifically
actionable from a Maintainability Index of 55? With the Maintainability Index, the
lower the metric the higher the estimated maintainability—but deciding what course
of action to take based solely on 55 is nearly impossible. Some metrics may be easily
actionable, like 1000 lines of code for ClassX may need ClassX to be refactored into
multiple classes. We'll look more closely at how you can use code metrics to help
focus the refactoring effort in Chapter 3.

Software metrics can be used in conjunction with other observances to focus where
refactoring should be prioritized. Given ModuleX and ModuleY that both contain
code that has known performance issues; if ModuleX has a Maintainability Index of
75 and ModuleY has a Maintainability Index of 50, it may be obvious that ModuleX
needs more work and could benefit from refactoring first. But, it's a double-edged
sword; you could easily decide that because ModuleY is more maintainable (because
it's Maintainability Index is lower) that refactoring efforts should focus on code in
ModuleY because you may be able to get a faster return on investment.

Chapters 6 and 7 include details about making use of software metrics to help
prioritize refactoring.

Introduction to Refactoring

[28]

Summary
Software projects are generally about writing and managing multi-release software
with no fixed end-of-life and that evolves noticeably over time. This chapter has
outlined how systematic refactoring efforts help in the evolution and management
of software to avoid it from becoming brittle and keeping it robust in the face of
change. Refactoring helps software developers be more amenable to accepting new
requirements.

Writing software, although a science, is not always done perfectly. Many priorities
affect how software is written. Sometimes, software isn't designed or written to use
the best technique. Software that doesn't use the best technique (but is otherwise
functional) is considered to have acquired technical debt. An increased debt load can
lead to bankruptcy. By focusing code improvements on refactoring to reduce debt,
software developers can avoid reaching a debt load that requires a re-write.

Refactoring efforts can have a specific impetus, or they may simply be part of a
general effort to improve the maintainability of the software under development.
There are many aspects that can help focus the refactoring efforts whether the
impetus is specific or not.

In some code-bases there may be no specific focus on design—focusing almost solely
on functionality. Code-bases like this have inconsistent design styles and are hard to
read, understand, and modify. By refactoring to specific design principles, code can
be modified to improve its consumability, robustness, and changeability.

Refactoring to patterns help in maintaining software that is easily understandable
and consumable to peers in the software industry. Use of patterns reduces the
concepts consumers of code are required to understand before they can understand
the overall intent of the code.

Refactoring code to remove code smells can help focus and prioritize the
refactoring effort. By prioritizing standard smells and creating proprietary
smells, maintainability of code can be enhanced focusing on improvements
with the highest returns.

There are many aspects to how software is written and designed that is orthogonal
to its functionality but directly related to its usability. Prioritizing refactoring
efforts based on usability metrics like performance will give end users the same
functionality, only faster.

Chapter 1

[29]

There are many formulas for analyzing source code to gather specific metrics
about the static structure of the code. These metrics are generally geared towards
detecting attributes that are side effects of problems. These problems are often
related to complexity. There are many tools that automatically gather metrics
about code. Complex code has proven to be a major aspect contributing to
hard-to-maintain software projects. Complex code reduces the ability of software
to change to implement new features and increases the risk that these changes
cause other problems. By gathering and prioritizing these metrics, code
improvement can focus on refactoring complex code.

Focusing on improving code that when improved will result in the highest return, is
an attractive option. By prioritizing change to areas of the code that are highly used
or highly dependent can realize more noticeable benefits to the refactoring effort.

Refactoring is about preventative maintenance. As with any maintenance, a
systematic approach to it can make the process more tolerable and in many ways
it can make it enjoyable. Put some thought into what and where you want to
improve your source code and you can avoid drudgery and focus on the
value-added parts of your software.

Improving Code Readability
The readability of code is an important aspect of how quickly code can be consumed
and understood. Most of the time this understanding is by someone else, but if you
don't write code so that it's easy to consume and understand, you can be bitten by its
lack of readability when you return to the code sometime after you read it. Although
how easily code can be read can be dependent on the style of the code—the bracing
standard, whitespace: tab versus spaces, and so on—"code readability" here is about
how well the code details its intentions. While code style is an important aspect of
reading and producing code, and working with a team of developers, any developer
with much experience working within a team and with other people's code should
be able to read code with various "styles". Besides, there's a myriad of tools to
"prettify" code so that it abides by specific style guidelines or rules. Prettifying code
is the process of changing the style of the code without changing the flow of the
logic in which the code implements. This is similar to refactoring; but refactoring
specifically changes the logic without changing the external behaviour. Prettifying
code results in the binary executable output with the same executable content,
whereas refactoring usually does not.

The readability of code is an important aspect to the ability of code to be evolved
over time. If someone can't read the code, it's hard for them to change it in
response to the changing environment to which it applies. The code is a view of the
requirements for which it fulfils. The code documents what the system or application
is supposed to do and how it should do it.

Improving Code Readability

[32]

Although code that works provides functionality to users, if that code can't keep up
with changing technologies, changing environments, or the changing atmosphere that
the user requires, it—and its writers—will be replaced by something that can. There are
many aspects to code that makes it inviting to change. If only one person understands
the code, it's a risk, and at some point the code can't be changed if the single person that
understands the code becomes too busy or is no longer available to change the code.
For someone else to read, absorb, and comprehend hard-to-understand code and not
change the code to something more useful is time-consuming. Time that doesn't go into
directly adding value to a product is time and funds that are wasted.

If readability wasn't important for the capacity of code to be understood and its
logic to be comprehended, there wouldn't be various tools and utilities to obfuscate
source code.

In this chapter, we'll detail how to improve code readability with Visual Studio® in
the following ways:

•	 Built-in Visual Studio® refactorings
•	 Rename field
•	 Rename property
•	 Rename method
•	 Rename local variable
•	 Rename class
•	 The smell of code
•	 KISS principles
•	 You ain't gonna need It
•	 Tracking code changes

Built-in Visual Studio® refactorings
The introduction of basic refactorings to Visual Studio® (2005) was a watershed
moment for Visual Studio® users. It reduces many pain points for developers
involving the difficulty of maintaining code and evolving it over time.

Visual Studio® has a few built-in abilities for you to refactor code to make it more
readable. Visual Studio® 2010, regrettably, comes with the loss of one of our tried-
and-true refactorings. The Visual Studio® 2010 refactoring companions drops from
seven to six. The Promote Local Variable to Parameter refactoring is survived by
Rename Identifier (local, method, member, and class), Extract Method, Encapsulate
Field, Extract Interface, Reorder Parameters, and Remove Parameters.

Chapter 2

[33]

Refactoring code is much more than a small set of basic automatic refactorings;
but most complex refactorings are based on basic refactorings. Some complex
refactorings include an ordered aggregation of many basic refactorings.

Rename identifier refactoring
Probably the most common built-in refactoring you might use (whether you use it
with existing code or not) is the Rename Identifier refactoring. The rename identifier
refactoring in Visual Studio® 2010 is context sensitive. It shows up in many places
in Visual Studio® as "Rename..." or sometimes just "Rename". Depending on what
type of identifier you're renaming, you have different options for renaming it; so, I'll
briefly describe each rename refactoring separately.

Rename field
If you're not used to using an automated refactoring tool then you've likely only
ever renamed a field by simply typing a new name right into the source code. When
you do this with Visual Studio® a smart tag is displayed underneath the identifier
you just edited. Clicking on this smart tag (or entering the keystroke Shift+Alt+F10
or Ctrl+.)will allow two items "Rename 'X' to 'Y'" and "Rename with preview...".
"Rename 'X' to 'Y'" will go ahead and rename all current references from 'X' to 'Y'.
"Rename with preview..." presents the "Preview Changes – Review" form that details
all the places that the field is currently referenced and shows how the renamed
reference will look. The preview form looks like this:

Improving Code Readability

[34]

The top tree view details each place where a reference will be changed and the line
of code that changes. By clicking on a particular node in that tree, it will show the
context of the change in the Preview Code Changes region. You can opt to uncheck a
particular node that you don't want to be renamed by un-checking the line in the tree
view. This is useful if you've selected Search in comments or Search and strings and
it has found a word that matches the name of your identifier that you don't really
want changed.

The most common way of renaming a field without editing it manually is the use of
the right-click context menu in the code editor. To rename a field in code, right-click
the field and select Refactor\Rename....

The Rename form will be displayed:

Chapter 2

[35]

When this form is first displayed, New name is populated with the current name
of the field. Renaming an identifier causes all references to that identifier in the
solution to be renamed as well. You can preview the renaming of all those references
by leaving the Preview reference changes checkbox checked. If Preview reference
changes is checked, the Preview Changes–Rename form will be displayed.

You can also position the caret over the field you want to rename (clicking it does
this nicely) and select Refactor\Rename from the main menu. This brings up the
same Rename form described earlier. If you display the Class View, you can also
right-click the field in the lower Members pane and select Rename…, which brings
up the Rename form described earlier.

If you're using an edition of Visual Studio® 2010 that supports class diagrams, you
can also rename a field by right-clicking the field in the diagram or in the Class
Details pane and selecting Refactor\Rename…. This brings up the Rename form
as we saw in the Code Editor. You can also click on the field in the Class Details
pane and simply type a new name for the field. This bypasses the Rename form and
renames all references to the field in the entire solution without preview and ignores
comments and strings.

You can also rename a field from within the Object Browser. Although there is
no Refactor item on the right-click context menu on a field in the Object Browser,
the main Refactor menu contains Rename… when you select a field in the Object
Browser.

If the field you wish to rename is a field added to a Form in the Form Designer, you
can also rename the field from the Properties window. This performs a rename in the
same way as renaming a field from the Class Details pane in the Class Designer—it
does not bring up the Rename form and renames the field and all references and
ignores comments and strings.

If the field you are renaming is an override or is overridden by another class, Visual
Studio® 2010 will inform you of this fact when you attempt to rename the field
(after pressing OK in the Rename form) and prompt you as to whether you'd like to
continue or not.

Rename property
Rename property works the same as Rename field. You can rename from almost all
the same places: right-clicking the property in the Code Editor, the Class Designer,
and the Class View, from the main Refactor menu when selected in the Code Editor,
the Class Designer, the Class View, and the Object Browser. When designing a form
you can't implement a form element as a property, so you can't rename properties
from the Properties window within the Form Designer.

www.allitebooks.com

http://www.allitebooks.org

Improving Code Readability

[36]

If the property you are renaming is an override or is overridden by another class,
Visual Studio® 2010 will inform you of this fact when you attempt to rename the
property (after pressing OK in the Rename form) and prompt you as to whether
you'd like to continue or not.

Rename method
Methods are handled slightly differently than fields and properties. Unlike fields
and properties, methods can have overloads. Although a method can be renamed
in all the same places as a field or property, the Rename form allows you to
specify whether to rename overloads as well, as shown in the addition of "Rename
overloads" in the Rename form:

If the method you are renaming is an override or is overridden by another class,
Visual Studio® 2010 will inform you of this fact when you attempt to rename the
method (after pressing OK in the Rename form) and prompt you as to whether
you'd like to continue or not.

Rename local variable
Since local variables are only visible in the Code Editor, the options for renaming a
local variable are more limited. They may be renamed inline, by right-clicking the
variable in the code and selecting Refactor\Rename... or by positioning the caret
over the variable name in the declaration and selecting Refactor\Rename... from
the main menu. Renaming a local variable performs just like renaming a field or
property.

Chapter 2

[37]

Rename class
The options for renaming a class are more plentiful than renaming other identifiers.
You can rename a class inline in the code editor (and get the same Smart Tag
options), right click the identifier name in the class declaration and select Refactor\
Rename..., select Refactor\Rename... from the main menu after positioning the caret
over the class name in the declaration, from within the Class View, from within the
Class Designer, and from within the Object Browser. Also, you can rename a class
from within the Solution Explorer by renaming the file in which it resides if the name
of the file matches the name of the class.

When renaming the name of a file in the Solution Explorer that contains a class
by the same name, Visual Studio® 2010 will display the following prompt: "You
are renaming a file. Would you also like to perform a rename in this project of all
references to the code element ClassName?". Selecting Yes effectively performs a
rename refactoring on the class name which includes the class definition and all
references to that class name.

Extract Method refactoring
Another important automatic refactoring in your refactoring tool belt is the Extract
Method refactoring. The Extract Method refactoring creates a new method in a class
from a fragment of code from an existing method in the same class and replaces
the existing code with a method call to the new method and includes passing any
necessary parameter should the code not be self contained.

The Extract Method refactoring is context sensitive; it requires a valid code fragment
selection. The Extract Method refactoring can be invoked by right-clicking a valid
code fragment selection and choosing Refactor\Extract Method....

Improving Code Readability

[38]

Extract method may also be invoked by choosing Refactor\Extract Method... from
the main menu after selecting a valid code fragment, or (since the Extract Method
refactoring has a keyboard shortcut in the default Visual Studio® 2010 C# keyboard
layout) pressing Ctrl+R, Ctrl+M.

Upon invoking the Extract Method refactoring, you are presented with the Extract
Method form:

You can enter the name you would like to give your new method in the New
method name field and the Preview method signature section displays an updated
preview of the signature your method will take when created.

When you press OK Visual Studio® will create a new method, move the selected
code to the body of the method, create any appropriate parameters, and return the
appropriate value, if applicable. It will then place a call to the new method where the
selected code fragment used to be, creating any local variables to receive the return
value and passing any appropriate arguments to the new method.

For example, let's say we have a button Click event handler in our form class that
when called outputs the fully-qualified name of the method and the date/time it
was invoked to the debug output. We may do something like this:

 private void button1_Click(object sender, EventArgs e)
 {
 const String methodName = "button1_Click";
 Trace.WriteLine(
 String.Format("Method {0}.{1} invoked",
 this.GetType().Name, methodName));
 Trace.WriteLine(DateTime.Now);
 }

Chapter 2

[39]

When we would like to do something else in this method, we may find that this code
hinders the readability of the method and the generic nature of the code suggests
moving it to its own method would be an improvement. We would then select the
lines that call Trace.WriteLine, right click, and choose Refactor\Extract Method...:

If we entered TraceMethodInvocation for the name of the method, we'd end up
with a new method that looks similar to the following:

 private void TraceMethodInvocation(String methodName)
 {
 Trace.WriteLine(
 String.Format("Method {0}.{1} invoked",
 this.GetType().Name, methodName));
 Trace.WriteLine(DateTime.Now);
 }

And our button1_Click method would look like this:

 private void button1_Click(object sender, EventArgs e)
 {
 const String methodName = "button1_Click";
 TraceMethodInvocation(methodName);
 }

No fuss, no muss; we now have a tidy reusable method TraceMethodInvocation
that we can reuse and avoid repeating ourselves.

Encapsulate Field refactoring
The Encapsulate Field refactoring creates a new property with the same name as the
field being encapsulated capitalized (and a number added, if a member of the same
name exists; for example, if there was a property Quantity and field quantity, and I
performed the Encapsulate Field refactoring on the field quantity it would result in
a property named Quantity1) . It also replaces all references to the field (excluding
references to the field in the containing classes constructors) or only references to the
field outside the containing class with the name of the new property. The resulting
property makes use of the original field and if that field was public, it is made private.

Improving Code Readability

[40]

Much the same as the Rename field refactoring, you have the option of previewing
all the changes Visual Studio® will make, as well as whether or not to look for the
name of the field in comments and in strings. For example, the following code creates
an instance of a MainForm class and initializes the quantity field to 42:

 var form = new MainForm { quantity = 42 };

If we choose to invoke the Encapsulate field refactoring and chose to preview
the reference changes, the Preview Reference Changes – Encapsulate Field form
would look like the following if we selected the node in Program.cs:

This shows that "quantity" will be replaced with "Quantity" in the object initializer
for MainForm. Pressing Apply at this point will apply all the check changes.

The Encapsulate Field refactoring is useful if you're trying to abide by the Framework
Design Guidelines and Design Guidelines for Class Libraries or responding to Code
Analysis warning CA1051: Do not declare visible instance fields.

Chapter 2

[41]

Krzysztof Cwalina and Brad Abrams (2005) Framework Design
Guidelines: Conventions, Idioms, and Patterns for Reusable .NET
Libraries. Addison-Wesley.
More information about field design guidelines in Design Guidelines for
Developing Class Libraries can be found at http://msdn.microsoft.
com/en-us/library/ms229057.aspx.
More information about CA1051 can be found at http://msdn.
microsoft.com/en-us/library/ms182141.aspx.

The smell of code
We first introduced Code Smells in Chapter 1, if you're not familiar with Code
Smells, it may sound strange. The metaphor "something doesn't smell right" is the
gist of code smells. Experienced developers that read code can often notice subtle
problems with the code that they may or may not be able to put their finger on
directly. This is a "Code Smell". Code Smells are based on viewing the code, so it's
arguably one of the major means of improving code readability. Many code smells
are particularly geared towards the ability to read code. "Long Method" and "Large
Class" code smells, for example, have a side effect of being hard to read because the
reader needs to page up and down in the code to follow what it is doing.

Duplicate code smell
Duplicate code is probably the most prevalent code smell. Andy Hunt and Dave
Thomas actualized the principle Do Not Repeat Yourself (or DRY) in the book
Pragmatic Programmer. It states "Every piece of knowledge must have a single,
unambiguous, authoritative representation within a system". Duplicate code
indicates that there is a prevalent concept in your domain that hasn't been made
explicit in the code.

There are many reasons why we would want to avoid duplicate code. The simplest
is that you simply have two of the same thing. When you have two versions of the
same thing they can evolve independently. The evolution of one may need to be
duplicated in the other, which can be easily missed in the duplicate code. You rarely
think of trying to find similar code throughout your code base whenever you change
a particular piece of code.

Improving Code Readability

[42]

Duplication can be at the textual level: two regions of code contained are textually
identical. Or, the duplication may be at a conceptual level: two regions of code do the
same thing. Textually identical code is much easier to find. There are actually tools
that look for duplicate code like this—tools like SolidsDD – Duplicate Code Detector
and Clone Detective. Finding (or noticing) conceptually identical regions of code is
much harder. We won't get into finding the duplicate code since we're focusing on
refactoring code based on known issues.

More information about SolidsDD – Duplicate Code Detector can be
found at http://www.solidsourceit.com/products/SolidSDD-
code-duplication-cloning-analysis.html

More information about Clone Detective can be found at http://
clonedetectivevs.codeplex.com/

Fortunately it's easy to refactor duplicate code.

One form of code duplication is duplication that can be found within one class. Code
has been duplicated in two or more methods within a class. This indicates that a new
method should be added to the class and that method should be called instead of
executing the duplicate code.

Duplicate code in a class
A common form of duplicate code is a logic that appears more than once within
a single class. Part of the refactoring can be automated with the Extract Method
refactoring. To complete the refactoring of duplicate code, the remaining code must
be manually replaced with a call to the newly extracted method.

The following ContactInformation class is a container for contact information. In
this snippet we're dealing with phone number and fax number information. The
SetPhoneNumber and SetFaxNumber methods parse a string and set appropriate
field values. Both of these methods perform very similar logic; they differ only in the
destination fields. To refactor these methods to eliminate the duplicate code, we can
perform the following steps:

1. Select the code within SetPhoneNumber.
2. Right-click the selection.
3. Choose Refactor\Extract Method...

Chapter 2

[43]

4. Enter ParsePhoneNumber.
5. Edit ParsePhoneNumber to accept three ref int parameters: areaCode,

exchange, subscriber.
6. Edit ParsePhoneNumber replacing phoneAreaCode with areaCode,

phoneExchange with exchange, and phoneSubscriber with subscriber.
7. Edit SetPhoneNumber to add ref phoneAreaCode, ref phoneExchange,

ref phoneSubscriber to the arguments passed to ParsePhoneNumber.
8. Edit SetFaxNumber to call ParsePhoneNumber with the faxNumber,

faxAreaCode, faxExchange, and faxSubscriber fields:
/// <summary>

/// ContactInformation class that encapsulates informatino

/// about a contact like phone number and address

/// </summary>

public class ContactInformation

{

 private int phoneAreaCode, phoneExchange, phoneSubscriber;

 private int faxAreaCode, faxExchange, faxSubscriber;

 /// <summary>

 /// Sets the phone number for this contact

 /// </summary>

 /// <param name="phoneNumber"></param>

 public void SetPhoneNumber(String phoneNumber)

 {

Improving Code Readability

[44]

 // parse the phone number

 Match match = Regex.Match(phoneNumber,

 phoneRegularExpression);

 if (!match.Success) return;

 phoneAreaCode =

 int.Parse(match.Groups["areacode"].Value);

 phoneExchange =

 int.Parse(match.Groups["exchange"].Value);

 phoneSubscriber =

 int.Parse(match.Groups["subscriber"].Value);

 }

 /// <summary>

 /// Gets the phone number as formatted text

 /// </summary>

 public String FormattedPhoneNumber

 {

 get

 {

 return String.Format(phoneFormatString,

 phoneAreaCode,

 phoneExchange,

 phoneSubscriber);

 }

 }

 /// <summary>

 /// Sets the fax number for this contact

 /// </summary>

 /// <param name="faxNumber"></param>

 public void SetFaxNumber(String faxNumber)

 {

 // Parse the phone number

 Match match = Regex.Match(faxNumber, phoneRegularExpression);

 if (!match.Success) return;

 faxAreaCode = int.Parse(match.Groups["areacode"].Value);

 faxExchange = int.Parse(match.Groups["exchange"].Value);

 faxSubscriber =

 int.Parse(match.Groups["subscriber"].Value);

 }

 /// <summary>

 /// Gets the fax number formatted as a text

Chapter 2

[45]

 /// </summary>

 public String FormattedFaxNumber

 {

 get

 {

 return String.Format(phoneFormatString, faxAreaCode,
 faxExchange, faxSubscriber);

 }

 }

 private const String phoneFormatString = "({0}) {1}-{2}";

 private const string phoneRegularExpression =

 @"\((?<areacode>[0-9]{3})\) *(?<exchange>[0-9]{3})-
 (?<subscriber>[0-9]{4})";

 //...

}

The refactored class will look something like the following:

/// <summary>
/// ContactInformation class that encapsulates information
/// about a contact like phone number and address
/// </summary>
public class ContactInformation
{
 private int phoneAreaCode, phoneExchange, phoneSubscriber;
 private int faxAreaCode, faxExchange, faxSubscriber;

 /// <summary>
 /// Sets the phone number for this contact
 /// </summary>
 /// <param name="phoneNumber"></param>
 public void SetPhoneNumber(String phoneNumber)
 {
 ParsePhoneNumber(phoneNumber, ref phoneAreaCode,
 ref phoneExchange, ref phoneSubscriber);
 }

 /// <summary>
 /// Gets the phone number as formatted text
 /// </summary>
 public String FormattedPhoneNumber
 {
 get
 {
 return String.Format(phoneFormatString,

Improving Code Readability

[46]

 phoneAreaCode,
 phoneExchange,
 phoneSubscriber);
 }
 }

 /// <summary>
 /// Sets the fax number for this contact
 /// </summary>
 /// <param name="faxNumber"></param>
 public void SetFaxNumber(String faxNumber)
 {
 ParsePhoneNumber(faxNumber, ref faxAreaCode,
 ref faxExchange, ref faxSubscriber);
 }

 /// <summary>
 /// Gets the fax number formatted as a text
 /// </summary>
 public String FormattedFaxNumber
 {
 get
 {
 return String.Format(phoneFormatString, faxAreaCode,
 faxExchange, faxSubscriber);
 }
 }

 private const String phoneFormatString = "({0}) {1}-{2}";
 private const string phoneRegularExpression =
 @"\((?<areacode>[0-9]{3})\) *(?<exchange>[0-9]{3})-
 (?<subscriber>[0-9]{4})";

 private static void ParsePhoneNumber(string number,
 ref int areaCode, ref int exchange, ref int subscriber)
 {
 var match = Regex.Match(number, phoneRegularExpression);
 if (!match.Success) return;
 areaCode = int.Parse(match.Groups["areacode"].Value);
 exchange = int.Parse(match.Groups["exchange"].Value);
 subscriber =
 int.Parse(match.Groups["subscriber"].Value);
 }
 //...
}

Chapter 2

[47]

Duplicate code in multiple classes
Duplicate code can also span multiple classes. Refactoring this is a little bit different
than refactoring code within a single class. When extracting a method from a block of
code, that method needs to be accessible by both classes in order to correctly remove
the duplication. It may seem simple to just leave the extracted method in one of the
classes and reference it from the other. But, if the logic spans two classes then it's likely
that neither of the two classes should really have the responsibility of this logic.

If the two classes share a common base class then the base class could contain the
logic. In which case, we'd perform the same steps as we did with code duplicated
in a single class, then we'd perform Pull Up Method refactoring. We'd then replace
the logic in the other original class with a method call to that new method.

Pull Up Method refactoring is when a method is moved from a subclass
to a super class. This refactoring is not an automated refactoring built into
Visual Studio® 2010.

If the two classes don't share a common base class then it might be worth analysing
whether they should. If they should, we can perform the same refactoring steps.

It has been my experience that classes in this scenario are rarely suited to derive
from the same super class. In this scenario you'll need a third, new, Service
class to contain the method that will be extracted. A Service class is useful when
consolidating duplicate code amongst projects. It may be necessary to create a new
project to contain infrastructure-related types like Service classes.

A Service class is a class that contains no state and performs logic that
normally wouldn't be the responsibility of other classes.

Performing this refactoring is very similar to our single class example, except that a
new Service class is created and when the selected code is extracted to a method, a
Move Method refactoring is manually performed on that method moving it to the
new Service class and the method call resulting from the extract method refactoring
is changed to call the method on the new service class. Since a Service class contains
no state, the extracted method may be made static, in which case no instance of the
Service class need be created.

Move Method refactoring is when a method is moved from one class to
another unrelated class.

Improving Code Readability

[48]

For example; with our original ContactInformation class example, if we had
another class like the following:

/// <summary>
/// Encapsulates cellular device information line phone number
/// </summary>
public class CellularDevice
{
 private int areaCode, exchange, subscriber;
 private const String phoneFormatString = "({0}) {1}-{2}";
 private const string phoneRegularExpression =
 @"\((?<areacode>[0-9]{3})\) *(?<exchange>[0-9]{3})-
 (?<subscriber>[0-9]{4})";

 /// <summary>
 /// Sets the phone number for this contact
 /// </summary>
 /// <param name="phoneNumber"></param>
 public void SetPhoneNumber(String phoneNumber)
 {
 Match match = Regex.Match(phoneNumber,phoneRegularExpression);
 if (!match.Success) return;
 areaCode =
 int.Parse(match.Groups["areacode"].Value);
 exchange =
 int.Parse(match.Groups["exchange"].Value);
 subscriber =
 int.Parse(match.Groups["subscriber"].Value);
 }

 /// <summary>
 /// Gets the phone number as formatted text
 /// </summary>
 public String FormattedPhoneNumber
 {
 get
 {
 return String.Format(phoneFormatString,
 areaCode,
 exchange,
 subscriber);
 }
 }
 //...
}

Chapter 2

[49]

This class contains logic that parses a phone number in the same way as
ContactInformation. In this case, our steps may look like this:

1. Select the code within ContactInformation.SetPhoneNumber.
2. Right-click the selection.
3. Choose Refactor\Extract Method...

4. Enter ParsePhoneNumber.
5. Edit ParsePhoneNumber to accept three ref int parameters: areaCode,

exchange, subscriber.
6. Edit ParsePhoneNumber replacing phoneAreaCode with areaCode,

phoneExchange with exchange, and phoneSubscriber with subscriber.
7. Create a new class named PhoneNumberParser.
8. Manually move phoneRegularExpression to PhoneNumberParser.
9. Manually move ParsePhoneNumber from ContactInformation to

PhoneNumberParser.
10. Edit ContactInformation.SetPhoneNumber to invoke

PhoneNumberParser.ParsePhoneNumber instead of just ParsePhoneNumber.
11. Edit ContactInformation.SetPhoneNumber to add ref phoneAreaCode,

ref phoneExchange, ref phoneSubscriber to the arguments passed to
ParsePhoneNumber.

Improving Code Readability

[50]

12. Edit ContactInformation.SetFaxNumber to call PhoneNumberParser.
ParsePhoneNumber with the faxNumber, faxAreaCode, faxExchange and
faxSubscriber fields.

13. Edit CellularDevice.SetPhoneNumber to call PhoneNumberParser.
ParsePhoneNumber.

The result of this refactoring may look something like the following:

/// <summary>
/// Service class to parse phone numbers
/// </summary>
public static class PhoneNumberParser
{
 private const string phoneRegularExpression =
 @"\((?<areacode>[0-9]{3})\) *(?<exchange>[0-9]{3})-
 (?<subscriber>[0-9]{4})";

 /// <summary>
 /// Parse a phone number <paramref name="number"/> into
 /// <paramref name="areaCode"/>
 /// <paramref name="exchange"/>
 /// <paramref name="subscriber"/>
 /// </summary>
 /// <param name="number"></param>
 /// <param name="areaCode"></param>
 /// <param name="exchange"></param>
 /// <param name="subscriber"></param>
 public static void ParsePhoneNumber(string number,
 ref int areaCode, ref int exchange, ref int subscriber)
 {
 var match = Regex.Match(number, phoneRegularExpression);
 if (!match.Success) return;
 areaCode = int.Parse(match.Groups["areacode"].Value);
 exchange = int.Parse(match.Groups["exchange"].Value);
 subscriber =
 int.Parse(match.Groups["subscriber"].Value);
 }
}

/// <summary>
/// ContactInformation class that encapsulates informatino
/// about a contact like phone number and address
/// </summary>
public class ContactInformation
{
 private int phoneAreaCode, phoneExchange, phoneSubscriber;

Chapter 2

[51]

 private int faxAreaCode, faxExchange, faxSubscriber;

 /// <summary>
 /// Sets the phone number for this contact
 /// </summary>
 /// <param name="phoneNumber"></param>
 public void SetPhoneNumber(String phoneNumber)
 {
 PhoneNumberParser.ParsePhoneNumber(phoneNumber,
 ref phoneAreaCode, ref phoneExchange,
 ref phoneSubscriber);
 }

 /// <summary>
 /// Gets the phone number as formatted text
 /// </summary>
 public String FormattedPhoneNumber
 {
 get
 {
 return String.Format(phoneFormatString,
 phoneAreaCode,
 phoneExchange,
 phoneSubscriber);
 }
 }

 /// <summary>
 /// Sets the fax number for this contact
 /// </summary>
 /// <param name="faxNumber"></param>
 public void SetFaxNumber(String faxNumber)
 {
 PhoneNumberParser.ParsePhoneNumber(faxNumber,
 ref faxAreaCode, ref faxExchange, ref faxSubscriber);
 }

 /// <summary>
 /// Gets the fax number formatted as a text
 /// </summary>
 public String FormattedFaxNumber
 {
 get
 {
 return String.Format(phoneFormatString,faxAreaCode,
 faxExchange, faxSubscriber);
 }

Improving Code Readability

[52]

 }

 private const String phoneFormatString = "({0}) {1}-{2}";
 private const string phoneRegularExpression =
 @"\((?<areacode>[0-9]{3})\) *(?<exchange>[0-9]
{3})-(?<subscriber>[0-9]{4})";

 private static void ParsePhoneNumber(string number,
 ref int areaCode, ref int exchange, ref int subscriber)
 {
 var match = Regex.Match(number, phoneRegularExpression);
 if (!match.Success) return;
 areaCode = int.Parse(match.Groups["areacode"].Value);
 exchange = int.Parse(match.Groups["exchange"].Value);
 subscriber =int.Parse(match.Groups["subscriber"].Value);
 }
 //...
}

/// <summary>
/// Encapsulates cellular device information line phone number
/// </summary>
public class CellularDevice
{
 private int areaCode, exchange, subscriber;
 private const String phoneFormatString = "({0}) {1}-{2}";
 private const string phoneRegularExpression =
 @"\((?<areacode>[0-9]{3})\) *(?<exchange>[0-9]{3})-
 (?<subscriber>[0-9]{4})";

 /// <summary>
 /// Sets the phone number for this contact
 /// </summary>
 /// <param name="phoneNumber"></param>
 public void SetPhoneNumber(String phoneNumber)
 {
 PhoneNumberParser.ParsePhoneNumber(phoneNumber,
 ref areaCode, ref exchange, ref subscriber);
 }

 /// <summary>
 /// Gets the phone number as formatted text
 /// </summary>
 public String FormattedPhoneNumber
 {
 get
 {

Chapter 2

[53]

 return String.Format(phoneFormatString,
 areaCode,
 exchange,
 subscriber);
 }
 }
 //...
}

Duplicate code in construction
It's not entirely uncommon for instance constructors to contain initialization code
that is copied and pasted from one constructor to another. Generally, instance
constructors don't have much logic so this may seem satisfactory—but now we
know why duplicated code is not satisfactory. Effective C# has an item devoted to
this topic titled Utilize Constructor Chaining that details that classes should utilize
constructor chaining by placing appropriate construction logic in each constructor
and chain to another constructor to let it continue with construction logic (and not
use an initialization method).

Bill Wagner, Effective C#: 50 Specific Ways to Improve Your C# 2005,
Addison Wesley.

This eliminates duplicate construction logic. The existence of several constructors
implies that there is more than one field or property that can optionally have default
values. Accumulative Construction is a form of constructor chaining that makes
most efficient use of constructors without having to resort to initialization methods.
Initialization methods are troublesome because only constructors can modify
readonly members. Containing all initialization code within the constructors and
ensuring that no initialization code is duplicated and instead changed to another
constructor, you achieve a structure that results in one constructor being called after
another until the object is fully constructed. I call this Accumulative Construction.
With a properly designed class this doesn't get out of hand. If you find that it's
extremely difficult to achieve this you've most likely got a Large Class smell and
should look at the intended responsibilities of the class, the responsibilities it has
taken on, and break up the class into multiple classes that each take on a coherent
responsibility. See Long Method Smell.

Improving Code Readability

[54]

Advanced duplicate code refactoring
Sometimes multiple regions of code that are conceptually similar are different in
very distinct ways. For example, a class may contain a collection of objects that it
iterates over and performs a different action in several places in your code. This
could be as simple as a foreach loop, or it could be as complex as a for loop.
Despite the simplicity of foreach and for loops, you may find that you need to
iterate that collection in a different way at some point. When there are multiple loops
in your code, it's time-consuming and error-prone to change them all. If the code
that contained the loop was not coupled to how the collection was iterated, you'd
have a much easier time modifying the iteration code. One way of performing this
decoupling is to create a method that iterates the collection and invokes a delegate.

For example, let's say we have the following two methods in a class named
Invoice: CalculateTotalTax and CalculateTotal. CalculateTotalTax;
CalculateTotalTax calculates the total tax for this invoice and CalculateTotal
calculates the total amount of this invoice.

 float CalculateTotalTax()
 {
 Decimal result = 0M;
 foreach (InvoiceLineItem invoiceLineItem in Items)
 {
 result += (Decimal)invoiceLineItem.CalculateTax();
 }
 return (float)result;
 }

 float CalculateTotal()
 {
 Decimal result = 0M;
 foreach (InvoiceLineItem invoiceLineItem in Items)
 {
 result += (Decimal) invoiceLineItem.CalculateSubTotal();
 }
 return (float)result;
 }

These two methods have one thing in common: they both iterate through the
invoice's line items performing some action with each item. We could remove
the responsibility of knowing how to iterate over all invoice line items from these
methods and decouple it from IEnumerable by introducing a method that accepts an
Action<T> delegate and invokes the delegate for each the iteration:

 void PerformActionOnAllLineItems(Action<InvoiceLineItem>action)
 {
 foreach (InvoiceLineItem invoiceLineItem in Items)

Chapter 2

[55]

 {
 action(invoiceLineItem);
 }
 }

And we can then change our two methods as follows:

 float CalculateTotal()
 {
 Decimal result = 0M;
 PerformActionOnAllLineItems(
 ili =>
 result += (Decimal) ili.CalculateSubTotal());
 return (float)result;
 }

 float CalculateTotalTax()
 {
 Decimal result = 0M;
 PerformActionOnAllLineItems(
 ili => result += (Decimal) ili.CalculateTax());
 return (float)result;
 }

Or, if you prefer anonymous methods over lambdas:

float CalculateTotal()
{
 Decimal result = 0M;
 PerformActionOnAllLineItems(delegate(InvoiceLineItem ili)
 {
 result += (Decimal) ili.CalculateSubTotal();
 });
 return (float)result;
}

float CalculateTotalTax()
{
 Decimal result = 0M;
 PerformActionOnAllLineItems(delegate(InvoiceLineItem ili)
 {
 result += (Decimal) ili.CalculateTax();
 });
 return (float)result;
}

Improving Code Readability

[56]

We've now taken two identical foreach loops that implicitly perform some logic on
each line item and consolidated them into a single method whose name explicitly
details its intention.

Unfortunately, we can't take advantage of any built-in automated refactorings
in Visual Studio® 2010 to help us with this refactoring. This particular type of
refactoring is entirely manual.

Long method smell
Doing one thing and one thing only is a vital rule of object oriented design. But, it
doesn't mean that one thing should be constrained to one method. Methods that
perform specific and complex logic can easily become long. The method works
perfectly fine but in order to understand the method much reading is required.

In order to refactor a long method the logic should be analyzed, looking for anything
that can stand on its own—or isn't directly the responsibility of the method under
inspection. Those snippets of generic code can then be extracted into their own
methods via Extract Method. The process of refactoring a large method is essentially
the same as refactoring duplicate code, except you skip the step of replacing the
second instance of the logic with a method call to a newly extracted method.

Once a long method has been refactored you may find that many of the extracted
methods aren't necessarily a responsibility of the class they are in. You should review
whether a new Service class should be created to be responsible for this related logic.

Code comments smell
Programmers are often taught that they must comment their code within methods.
Some development teams mandate code comments. Comments aren't bad, but they
can become a crutch for coders. Coders can rely on the comments to explain what the
code does rather than making code easier to understand and easier to read.

Comments are just that, human-readable comments put into the code by the coder
to make a comment about something. Most of the time the comments explain the
code. Comments don't affect how software behaves. Comments aren't checked
syntactically by the compiler and they are bound to the code by location. Comments
can easily become out of date or dislocated from the code they originally provided
information about, making the code actually harder to understand.

Chapter 2

[57]

The code comment smell is not suggesting that comments should not be added to
code at all. There are many reasons for comments that don't apply to explain how
code works. A comment may be necessary to explain a decision that was made in the
implementation of the code. Or, a comment may be necessary to point out a reference
to external documentation that was used when writing the code. There are many
reasons for comments; the point here is that they shouldn't be the sole mechanism for
explaining code.

Tim Ottinger describes comments as apologies. They are apologies for not writing the
code more clearly. Code that needs comments for it to be better understood should
be refactored so the code is then self-explanatory. Fortunately, code with comments
can be easily refactored with refactorings like Extract Method.

Comments should describe why, not what. The code should self-explain the what and
a comment should be added if it's not clear why it was coded that way.

The first example of code comment smells refactoring that we will see is a
commented block of code. The comment explains what the block of code does. The
block of code can be refactored into a method with the Extract Method refactoring
and the name of the method would be a summary of the comment. For example, the
following code writes circle with the radius radius metrics area and circumference
with an arbitrary BinaryWriter:

static void WriteCircleMetrics(BinaryWriter writer,
 float radius)
{
 // circle area
 writer.Write((float)(Pi * (decimal)Math.Pow(radius, 2)));
 // circle circumference
 writer.Write((float)(Pi * (decimal)(radius * 2)));
}

This would be refactored with the following steps:

1. Select the text (float)(Pi * (decimal)Math.Pow(radius, 2)).
2. Right-click the selection.
3. Choose Refactor\Extract Method.
4. Enter CalculateCircleArea and click OK.
5. Select the text (float)(Pi * (decimal)(radius * 2)).
6. Right-click the selection.

Improving Code Readability

[58]

7. Choose Refactor\Extract Method.
8. Enter CalculateCircleCircumference and click OK.
9. Deleting the comments.

The refactored code would look something similar to the following:

public static float CalculateCircleArea(float radius)
{
 return (float)(Pi * (decimal)Math.Pow(radius, 2));
}

public static float CalculateCircleCircumference(float radius)
{
 return (float)(Pi * (decimal)(radius * 2));
}

static void WriteCircleMetrics(BinaryWriter writer,
 float radius)
{
 writer.Write(CalculateCircleArea(radius));
 writer.Write(CalculateCircleCircumference(radius));
}

This particular type of refactoring lends itself to situations where you want to
reuse logic. The assumption in the above is the code to calculate the area and
circumference appeared in multiple places and the refactoring results in several
places where CalculateCircleArea and CalculateCircleCircumference are
being invoked. Had that not been the case, the code could have been refactored to
use local variables instead to avoid the need for comments:

static void WriteCircleMetrics(BinaryWriter writer,
 float radius)
{
 float area = (float)(Pi * (decimal)Math.Pow(radius, 2));
 writer.Write(area);
 float circumference = (float)(Pi * (decimal)(radius * 2));
 writer.Write(circumference);
}

The variable names now perform the same task the prior comments did, but now
they are syntax checked by the compiler. The drawback of this method is that there is
no built-in automated refactoring for this in Visual Studio® 2010, and code like this
is more likely to be refactored to not needlessly require local variables.

Chapter 2

[59]

A comment can be used to provide information about many things. The comment
could be explaining a Magic Number.

A Magic Number is a constant literal value in code. This value is
generally numeric (hence the "Number" part of Magic Number) but could
apply to any non-numeric literal value (like strings). It is "Magic" because
its existence in the code has special meaning that isn't explicitly clear.

Refactoring a magic number is straightforward. A constant field can be added to a
class and all instances of the magic number can be replaced with the constant field.
Unfortunately Visual Studio® 2010 doesn't have a built-in automated refactoring
feature to convert a literal value to a constant member field. So, the process basically
involves performing a search-and-replace. I recommend using regular expressions to
limit the search to the whole word. For example, if I'm replacing the number with the
constant TheAnswer then I would enable regular expressions in the Find and Replace
form and search for "<42>" so I don't find numbers like 1424. The following two
methods use the literal 3.14159265358979323846264338327m for PI.

public static float CalculateCircleArea(float radius)
{
 // 3.14159265358979323846264338327m is PI
 return (float)(3.14159265358979323846264338327m *
 (decimal)Math.Pow(radius, 2));
}

public static float CalculateCircleCircumference(float radius)
{
 // 3.14159265358979323846264338327m is PI
 return (float)(3.14159265358979323846264338327m *
 (decimal)(radius * 2));
}

Once refactored, the code would end up looking similar to the following:

private const decimal Pi = 3.14159265358979323846264338327m;

public static float CalculateCircleArea(float radius)
{
 return (float)(Pi * (decimal)Math.Pow(radius, 2));
}

public static float CalculateCircleCircumference(float radius)
{
 return (float)(Pi * (decimal)(radius * 2));
}

Improving Code Readability

[60]

The example of creating a constant field for Pi may not be the most useful example
because there is Math.PI in the framework. The value-added here is that our Pi uses
decimals and is thus more accurate.

Dead code
Dead code is code that isn't used by any other code. When you're writing
frameworks and class libraries it can be difficult to track down dead code because
there's no automated way of finding dead code in Visual Studio®. Dead code in
frameworks and class libraries is usually restricted to private methods that aren't
being used, or blocks of code that don't get executed because parameters it depends
upon are never passed into the code. For the sake of maintainability, it's best to
remove dead code.

The Code Analysis feature aids in finding dead code by warning about unused local
variables and unused private code.

Intention-revealing design
Much of what we've detailed thus far has been an effort to refactor code to be
more intention-revealing in order to improve readability and thus maintainability.
Intention-revealing design is designing code that can stand on its own with little
or no documentation on how it works or what it does. Variables should have a
name that explains what is stored in the variable and how it is used or "Rename
refactoring" should be performed on them. Methods should have a name that
explains what will be performed when the method is executed and how it should
be used, or a Rename refactoring should be performed on them. Methods should do
one thing that is a responsibility of the class that contains the method, or a new class
should be created and a Move Method refactoring performed on the method. Classes
should have a name that explains what the class models and hints at how it should
be used.

Chapter 2

[61]

You ain't gonna need it
"You ain't gonna need it" (or YAGNI for short) is a principle that gained an
established foothold in the Extreme Programming community. The principle centers
around the tendency of some software to increase functionality for reasons other
than the features. "Featuritis"—the symptom of some software to increase features
simply to satisfy a check-list or some market collateral—is related to you ain't gonna
need it.

"You ain't gonna need it" gives us a criteria by which to focus our refactoring efforts.
If we know we don't need a particular feature, we can make better decisions about
what may or may not be dead code. Code that supports a particular feature, for
example, that we don't need will become dead code if we decide we ain't gonna need
that feature.

Code in a code base that supports a feature that isn't needed, or performs actions that
"might be needed in the future" increases the amount of code that needs to be read.
In order to effectively evolve a code base over time, the code within it needs to be
understood. Having more code than necessary to read and understand reduces the
readability of code as a whole.

Detail focusing on value-add and not what "might be". Focus on requirements and
don't increase scope just because a concept might include something.

For example, upon analysis of a system it may have been decided that a Customer
class is required to model the system. Upon writing the Customer class the developer
decided that Customer is a type of person and created the base class Person. Since
this class modeled a person, the developer added applicable properties like age,
weight, and height. If we were providing a framework that provides a generic way of
modeling a person in many different contexts these properties may be useful. In this
particular context, we're only modeling a customer, and as cliché as it may sound,
we don't need to view them as a person. Creating the Person base class and adding
properties to it that weren't going to be needed by the system is a waste of time.
That code needed to be written, tested, possibly documented, and debugged, all for
no valueadded. When changes to the system need to be made, the person doing the
change needs to read and understand this unneeded code before they can accurately
and reliably make the modification. This reduces the maintainability of the system
because changes to the system take longer than needed.

Improving Code Readability

[62]

You ain't gonna need it isn't limited to unnecessary features or features with little
functional value; it can also apply to the way developers design software. In
environments where communication with the end-user or the target audience
doesn't exist, developers can work in a fictional world where they're trying to fulfill
the requirements of a mythical user. This mythical user demands everything. Since
this isn't a real person, they can't be asked if they need something, or what priorities
to use for functionally that may be actually needed. Developers will tend to design
software that tries to do everything for everyone. This is a problem because, with this
attitude, software tends not to do anything very well and is so bloated it's hard to.

Every developer is guilty of some level of over-designing. It's easy to view something
in a different context to which it is going to be used and add sensible features and
functionality because it makes sense in that other context. Writing functional and
usable software is hard work. We need to narrow our efforts on what the users need
and the users need to prioritize what they want. Requests without prioritization are
requests that are all prioritized as low priority.

You ain't gonna need it brings our refactoring efforts to the functional level. We
need an established communication channel with our users. Ideally, we need a
relationship with them. Sometimes this can be hard, but the rewards are priceless.
If we know what the user really wants (which may not be what they've asked for)
and we know how to communicate with the user to gather that information, we
can focus our efforts on features and code that provides the most value. We may
think a particular feature, particular code, or particular logic is interesting, but we're
projecting our needs onto the software that we're writing to fulfil someone else's
needs. This leads to dissatisfaction of users and can lead to communication problems
and worse still, cancelation of software development efforts because of the opinion
that the software being produced isn't adding value to the user.

Refactoring you ain't gonna need it is effectively the same as refactoring dead code.

KISS principle
KISS, "Keep It Simple Stupid" (or the less pejorative "Keep It Short and Simple") is a
principle that suggests favoring simplicity over complexity. Simple code is easier to
read and consume.

There are many code smells that deal with detecting complexity and refactoring it to
simpler code. These smells deal with specific areas of complexity such as class-level
complexities, method-level complexities, and so on. Simplicity can apply in many
other places.

Chapter 2

[63]

Computer language syntax has a subset that deals with a more general context
and sometimes a subset that deals with more specific contexts. C# is no exception.
There have been additions to the language for specific scenarios. Lambdas, for
example, are a means towards functional programming that promote side-effect-free
programming and avoid having to specify the details of the algorithm. Lambdas are
a key part of the LINQ story. While you can use LINQ without lambdas, it's hard to
avoid lambdas with complex LINQ statements.

Lambdas are a form of anonymous methods; so they can be used wherever
anonymous methods can be used, which in turn can be used wherever a delegate
is expected. But, because the syntax allows it in many places doesn't mean that's an
appropriate use of it and more importantly, means the code is very readable. The
following code (and I've encountered similar code to this in the wild—despite its
contrived appearance) is perfectly legal:

 public void Execute(int x, int y, String text)
 {
 Action<int, int, String> validator =
 (xPos, yPos, textValue) =>
 {
 if (xPos > maxWidth)
 throw new ArgumentOutOfRangeException("xPos");
 if (yPos > maxHeight)
 throw new ArgumentOutOfRangeException("yPos");
 if (textValue == null)
 throw new ArgumentNullException("textValue");
 };
 validator(x, y, text);
 //...
 }

The Execute method starts with some code to validate the arguments it was given.
This particular implementation assigns a statement lambda to a delegate named
validator. The validation is then executed when the validator delegate is invoked.

Although the addition of validator makes the intention of the validation code
explicit; its use introduces lots of extra syntax that adds no value. Sure, as a
programmer you get to use syntax with that new-car-smell, but you sacrifice
readability for absolutely no extra value.

It's much more readable to use standard validation idioms, such as:

 public void Execute(int x, int y, String text)
 {
 if (x > maxWidth)

Improving Code Readability

[64]

 throw new ArgumentOutOfRangeException("x");
 if (y > maxHeight)
 throw new ArgumentOutOfRangeException("y");
 if (text == null)
 throw new ArgumentNullException("text");
 }

These idioms are easily recognizable because they are common and thus much
more readable.

There are other ways of making code overly complex.

Keeping track of code changes
Code that is changing is code that can't be used. Your refactoring efforts may get
pre-empted at any time with changes that are important to the viability of the
software product. Without some ability to save all your changes and return the
code to the state it was in when it was given to the customer, you run the risk of
accidentally publishing an incomplete refactoring resulting in a defect (which could
result in lost customer data). Sure, you could back up the code that was used on
the last build and work with a copy of the code. This is almost do-able if you're
the only developer. But, if you have more than one release of your software this
means having a copy for each release. If you have a customer that finds a defect in
a release older than the last release and the fix entails making a change to code that
has already been changed; you have to deal with manually merging the code into the
latest code. If you work with a team of developers, or plan on working with a team
of developers, this strategy is simply not feasible.

It's extremely important to use a tool to manage changes to the code it has to be
something that not only keeps track of what was done, who did it, and when it was
done, but also keeps track of milestones and the differences from version to version.
Source Code Control systems are an important part of software development. They
keep track of changes, let you manage code streams and the changes to code streams,
manage merging, and will handle locking if needed.

Chapter 2

[65]

Check-in often
Now that you're using a Source Code Control system, it's important to maximize
the use of that system. There's a principle called "check-in often". This principle
effectively means, that as soon as you have something working, you should check it
in. The Source Code Control system acts as a backup, so if you check-in often you're
less likely to lose a change. But, it's more than that. The more often you check-in, the
better granularity you have in your changes. If you made change A, change B, then
change C, and realized that change B is actually better than change C, and you had
checked in each of those changes then you could simply go to your Source Code
Control system and ask for change B. You could always rely on memory to go back
to change B, and that might work if change C was made fairly close in time change
B. But, if you're like me, sometimes the time between changes can get long enough
for me to forget the context and the details of what I was changing and it's almost
impossible for me to truly remember how to get the source code back to the state
it was in at the end of change B. Splitting hairs, maybe; but we're not dealing with
our own property or our own time. This is the property and time of our employer;
we should be doing everything we can to protect this property and not waste their
expensive time.

Removing unused references
Another code change that improves readability in some cases is removing unused
references. Visual Studio® includes the ability to optimize using directives and
remove unused using directives.

When you create a Windows Form class, for example, it automatically includes
using directives that the Visual Studio® team thought would be useful to a majority
of users. There are eight using directives added to the top of your Windows Form
class. The code generated by Visual Studio® only really needs one using directive
(using System.Windows.Forms;) but likely will use two (using System; as well).
Depending on your design philosophies and the requirements of your class, you
may be unlikely to need the other six using directives. Removing unused using
directives does not change the way the code behaves externally.

To remove unused references simply right-click on any using directive and choose
Organize Usings/Remove Unused Usings and all unnecessary using directives
will be removed. At this point you can then analyze what assemblies are referenced
in the project and decide to remove them (and gain a slight improvement in your
application's load time) without causing compile errors.

Improving Code Readability

[66]

Summary
How readable the code is affects how easily the code can be read, refactored, or
updated. Refactoring to address readability is useful for code bases or parts of the
code that people find difficult to change because it's hard to understand.

Visual Studio® 2010 contains several built-in automated refactorings that help
refactor a code base to improve code readability. We've detailed several aspects of
hard-to-read code and detailed the refactorings that can improve readability. We
have also detailed that making changes to code requires tracking. By using a Source
Code Control system the changes to the code base are tracked, and that if Check In
Often is followed, the code base can be returned to a state before any change.

We've introduced code smells as a way of detecting problems in code. We only
scratched the surface of code smells, there are dozens of code smells and more are
continually being defined.

Improving Code
Maintainability

In the previous chapter, we discussed code readability and how refactoring with a
goal to improving readability helps make code easier to understand and easier to
change. In this chapter, we'll continue on a similar note with code maintainability.
We'll continue our exploration of code smells and we'll discuss various topics
related to code maintainability and how to refactor to improve code maintainability,
including the following:

•	 Automated unit testing
•	 Feature Envy code smell
•	 Contrived Complexity code smell
•	 Don't Repeat Yourself
•	 Inappropriate Intimacy code smell
•	 Lazy Class code smell
•	 Detecting maintainability issues

Code maintainability
Code maintainability is very dependent on code readability. Code readability is
based on some fairly hard and fast rules such as fit methods within one or two screens,
use intention revealing names, one class per file, and so on. Other aspects of code
maintainability involve what the code base is actually trying to do.

Improving Code Maintainability

[68]

I'm a firm believer in if it ain't broken, don't fix it and it may seem like much of what
we talk about with refactoring is trying to fix something that isn't broken. If what
we're refactoring wasn't evolving over time and was functionally complete and
working, I would agree. But, it's unheard of that software doesn't change after a
particular release. As a consultant I often parachute into projects for a limited time
and leave; so, technically I'm not modifying the code and evolving the design over time.
But, I believe it's important to think of the other developers and try to leave the campsite in a
better state than when I arrived. It's easy to be selfish and see only the short-term life of
what you're working on; but, if you're reading this book, you're better than that.

What makes code more maintainable, to a certain degree, differs from project
to project. There are some common areas that cause maintainability problems
on software projects and we'll include those as we focus on refactoring to
improve maintainability.

We know that our code base is going to evolve over time, and we should have a
pretty good idea where it's going to evolve and how it's going to evolve. If you've
been on the project for some time, you've likely got a gut feeling about where
the project is headed. You've also have had a pretty good idea of where there
are problem areas and have at least a high-level view of what is causing some of
those problems. If you're new to the project, you've likely been asked, at least at
a conceptual level, how the software needs to change. You've probably also been
told about some problem areas. Reading this book, you've probably got a particular
project in mind (maybe one you're currently working on) and may have very specific
areas you're looking to improve. I obviously can't specifically address those first, but
I'll try to start with the most common areas.

Some of what makes a code base readable also overlaps with what makes a code base
more maintainable. Just as code smells helped us with readability, code smells will
also help us with maintainability. To recap: code smells are specific symptoms that
indicate specific potential problems in code that someone previously has fixed. The
Large Method smell, for example, addresses readability, but dealing with a Large
Method can also deal more specifically with maintainability. In this chapter, we'll
also delve deeper into other code smells like Contrived Complexity, Feature Envy,
and Inappropriate Intimacy.

Chapter 3

[69]

This is probably a good point to define what we mean by maintainability.
Maintainability implies that you have to maintain the code; you have to maintain
the code to fix bugs, add features, and to support fixing bugs and adding features.
Maintainability is about code's ability to accept change without introducing adverse
side-effects. Clearly if we're fixing bugs and adding features we're expecting specific
side-effects. So, refactoring for maintainability means changing the code to better
accept change without introducing unwanted side-effects. We've all worked on code
that seems fragile—you make what seems to be an innocuous change in one part of
the code and something somewhere else breaks (or otherwise has an adverse side-
effect). Or, we've worked with code that is really hard to make a simple change to
because it means changing so many pieces of code that (at least when we're making
the change) seem like they shouldn't need to be changed. So, what we're really trying
to do when we refactor for maintainability is to reduce coupling. There are other
areas of maintainability, but decoupling gives us the most value from our effort.

At this point we've described various ways of modifying code without modifying
how it behaves. We're gradually describing more far-reaching refactoring that starts
to delve more into design changes rather than code reorganization. But, what if we
don't do something right and we actually introduce an adverse side-effect? Now is
probably a good time to discuss ensuring how our refactoring efforts result in bugs
for users.

Automated unit testing
Automated unit testing validates and verifies that individual units of code perform
correctly based on constraints, requirements, pre-conditions, and post-conditions. It's
rare that developers write code without doing any sort of testing. If you're reading
this book, you're not a developer that doesn't test their code, right? We've got a code
base that we can be reasonably sure has been developer-tested to at least some level.
But, we're going to make changes to that code and we want it to act exactly how
it did before we made those changes. So, how do we assure that? Automated unit
testing allows us to create tests that verify that our code is doing what it's expected to
do and run the tests any time we want. Once we can run them any time we want, we
can continually run them (nightly, on every check-in/commit, build, and so on).

Automated unit testing allows us to know when a change we've made has created
an adverse side-effect. Until we've performed all the refactorings we'd like to reduce
fragility, we're likely going to introduce adverse side-effects during our refactoring
efforts—despite our good intentions and our advanced skill level.

Improving Code Maintainability

[70]

This may be starting to sound like much work. From a frame of mind not
accustomed to explicit and tasked refactoring efforts and existing automated unit-
testing, this whole refactoring thing is intimidating. It's important to remember
that refactoring (including unit-testing) supports the whole development effort.
Refactoring should never overshadow the fact that we're trying to deliver software,
despite its level of maintainability.

Refactoring should always try to avoid blocking the evolution of the software; it
needs to promote the evolution of the software. There may be times when the work
involved in a particular refactoring could take an extended period of time, but the
work should be organized as atomically as possible. That means changes shouldn't
take too much time and shouldn't leave the software in a non-working state for
very long. While the software is being refactored and in an unknown state it should
never be checked-in to the source code control system in a way that affects the
main stream or branch and other developers. It's important to remember that our
refactoring efforts are gradual. You should never expect to be able to perform all
your refactoring at once (or that no further refactoring will be needed once you've
done the refactoring you want to do today). Unit tests that test all the code don't
need to exist before we refactor and we don't need to finish all our refactoring before
we fix bugs and add features (regardless of how nice that would be).

Before we perform a refactoring we need to know how the code that will be the
focus of our refactoring works and performs today. If there is not an existing test, we
need to then create a test that detects what the code has done in order to test that it
still does that. The physical act of writing unit tests may introduce a need to further
refactor our code in order to focus our testing or to actually perform a certain test.
This is to be expected and is often a good way of focusing our refactoring efforts. If
you're still not sure where to start refactoring, try writing a unit test to verify and
validate a certain piece of code—like a method. If you find you can't focus the test on
that specific method without getting a bunch of other code you don't want or don't
need to test, refactor the code so you can.

Much of the effort to create unit tests for code rely on the code being maintainable;
so, completing unit tests often fulfil our more maintainable code desire. Let's have a
look at some code we would like to be able to test and see how we can refactor it to
create individual tests that verify and validate specific post-conditions.

Chapter 3

[71]

Let's go back to an invoicing example. To produce an invoice based on a collection of
billable items involves a series autonomous logic. Depending on the type of customer
or the type of services, an invoice will (among other things) need to sub-total each item
based on price and quantity, create an invoice sub-total, calculate taxes, and calculate
a final total. We can easily validate and verify that an invoice has done these tasks
correctly by simply reading an invoice. Doing this depends on producing a readable
invoice. We could write a unit test that takes readable invoice with known input
values, performs some Optical Character Recognition (OCR) on it, determines where
the output values are, reads the output values, then validates if the output values are
correct. But, that's a huge amount of work and is likely to be pretty slow. If we want
to automatically run that test during, say, the build or check-in, we could severely
impact our development process. We definitely don't want to do that. A better way is
to simply run code giving it a known input and getting an output and validating that
output against that known value. In order to do that, our code needs to be structured
in a way that makes that possible. Let's say we're unlucky and someone has written
invoice generation like this:

/// <summary>
/// Generate a viewable invoice to the display
/// device represented by <paramref name="graphics"/>
/// </summary>
/// <param name="graphics"></param>
public void GenerateReadableInvoice(Graphics graphics)
{
 graphics.DrawString(HeaderText,
 HeaderFont,
 HeaderBrush,
 HeaderLocation);

 float invoiceSubTotal = 0;
 PointF currentLineItemLocation = LineItemLocation;
 foreach (InvoiceLineItem invoiceLineItem in InvoiceLineItems)
 {
 float lineItemSubTotal =
 (float)((decimal)(invoiceLineItem.Price
 - invoiceLineItem.Discount)
 * (decimal)invoiceLineItem.Quantity);

 graphics.DrawString(invoiceLineItem.Description,
 InvoiceBodyFont,
 InvoiceBodyBrush,
 currentLineItemLocation);

 currentLineItemLocation.Y +=
 InvoiceBodyFont.GetHeight(graphics);
 invoiceSubTotal += lineItemSubTotal;

Improving Code Maintainability

[72]

 }

 float invoiceTotalTax =
 (float)((Decimal)invoiceSubTotal *
 (Decimal)TaxRate);
 float invoiceGrandTotal = invoiceTotalTax +
 invoiceSubTotal;

 graphics.DrawString(String.Format("Invoice SubTotal: {0}",
 invoiceGrandTotal - invoiceTotalTax),
 InvoiceBodyFont, InvoiceBodyBrush,
 InvoiceSubTotalLocation);
 graphics.DrawString(String.Format("Total Tax: {0}",
 invoiceTotalTax), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceTaxLocation);
 graphics.DrawString(
 String.Format("Invoice Grand Total: {0}",
 invoiceGrandTotal), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceGrandTotalLocation);

 graphics.DrawString(FooterText,
 FooterFont,
 FooterBrush,
 FooterLocation);
}

GenerateReadableInvoice draws a very simple invoice to a particular Graphics
object. It draws a header, subtotals each line item, draws each line item with
subtotal, calculates and draws the invoice total, calculates and draws total tax
and draws a footer.

This method is currently functional. But, we can't perform any automatic validation
or verifications of the calculations because they are intermixed with logic to draw to
a Graphics object. The Graphics class is sealed, so we couldn't even implement a
spy class and pass an instance to the method and spy on what is sent to DrawString.

If we want to automatically validate and verify the calculations performed when
we generate an interface, we'll have to change the design of some implementation
details. First, we need to decouple the calculations from the drawing logic. The
easiest way to separate the calculation logic from the drawing logic is to use the
Extract Method refactoring to extract a few methods. We can select the code that
calculates a line item subtotal, right-click, and choose Refactor\Extract Method....

Chapter 3

[73]

Enter the name of the method CalculateInvoiceTotalTax. We can then do the
same with the code that calculates the invoice total tax and the code that calculates
the invoice grand total. We'd then have something like this:

public void GenerateReadableInvoice(Graphics graphics)
{
 graphics.DrawString(HeaderText,
 HeaderFont,
 HeaderBrush,
 HeaderLocation);

 float invoiceSubTotal = 0;
 PointF currentLineItemLocation = LineItemLocation;
 foreach (InvoiceLineItem invoiceLineItem in InvoiceLineItems)
 {
 float lineItemSubTotal =
 CalculateLineItemSubTotal(invoiceLineItem);

 graphics.DrawString(invoiceLineItem.Description,
 InvoiceBodyFont,
 InvoiceBodyBrush,
 currentLineItemLocation);

 currentLineItemLocation.Y +=
 InvoiceBodyFont.GetHeight(graphics);
 invoiceSubTotal += lineItemSubTotal;

Improving Code Maintainability

[74]

 }

 float invoiceTotalTax =
 CalculateInvoiceTotalTax(invoiceSubTotal);
 float invoiceGrandTotal =
 CalculateInvoiceGrandTotal(invoiceSubTotal,
 invoiceTotalTax);

 graphics.DrawString(String.Format("Invoice SubTotal: {0}",
 invoiceGrandTotal - invoiceTotalTax),
 InvoiceBodyFont, InvoiceBodyBrush,
 InvoiceSubTotalLocation);
 graphics.DrawString(String.Format("Total Tax: {0}",
 invoiceTotalTax), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceTaxLocation);
 graphics.DrawString(
 String.Format("Invoice Grand Total: {0}",
 invoiceGrandTotal), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceGrandTotalLocation);

 graphics.DrawString(FooterText,
 FooterFont,
 FooterBrush,
 FooterLocation);
}

private static float CalculateInvoiceGrandTotal(
 float invoiceSubTotal, float invoiceTotalTax)
{
 float invoiceGrandTotal = invoiceTotalTax +
 invoiceSubTotal;
 return invoiceGrandTotal;
}

private float CalculateInvoiceTotalTax(float invoiceSubTotal)
{
 float invoiceTotalTax =
 (float)((Decimal)invoiceSubTotal *
 (Decimal)TaxRate);
 return invoiceTotalTax;
}

private static float CalculateLineItemSubTotal(
 InvoiceLineItem invoiceLineItem)
{
 float lineItemSubTotal =
 (float)((decimal)(invoiceLineItem.Price

Chapter 3

[75]

 - invoiceLineItem.Discount)
 * (decimal)invoiceLineItem.Quantity);
 return lineItemSubTotal;
}

This is functionally equivalent to what we had before, but now the logic to perform
the calculations has been separated from the logic that performs the drawing of the
invoice.

This is a form of Separation of Concerns. We're dealing with two concerns here:
one is the drawing of the invoice, and the other is the calculations. Separation of
Concerns (or SoC) involves designing a physical separation between the concerns. In
our example, our physical separation is separation by method. This separation could
easily have been by class.

Before we can actually test these new methods, we first need to change
their access modifiers to public from the private default that the extract
method feature generated. We can now create an automated test for these
new methods. If you prefer using Visual Studio® Unit Test, you can right
click a method like CalculateInvoiceGrandTotal and choose Create Unit
Tests... In the Create Unit Test form, you can accept the default selection of the
CalculateInvoiceGrandTotal, or also select the other new methods. Go ahead and
also check off CalculateInvoiceTotalTax and CalculateLineItemSubTotal and
press OK. Visual Studio® 2010 should generate a new test class and add some test
methods that look something like the following:

/// <summary>
///A test for CalculateInvoiceGrandTotal
///</summary>
[TestMethod()]
public void CalculateInvoiceGrandTotalTest()
{
 float invoiceSubTotal = 0F; // TODO: Initialize to an
 // appropriate value
 float invoiceTotalTax = 0F; // TODO: Initialize to an
 // appropriate value
 float expected = 0F; // TODO: Initialize to an appropriate
 // value
 float actual;
 actual =
 Invoice.CalculateInvoiceGrandTotal(invoiceSubTotal,
 invoiceTotalTax);
 Assert.AreEqual(expected, actual);
 Assert.Inconclusive(
 "Verify the correctness of this test method.");

Improving Code Maintainability

[76]

}

/// <summary>
///A test for CalculateInvoiceTotalTax
///</summary>
[TestMethod()]
public void CalculateInvoiceTotalTaxTest()
{
 IEnumerable<InvoiceLineItem> invoiceLineItems = null;
 // TODO: Initialize to an appropriate value
 Invoice2 target = new Invoice(invoiceLineItems); // TODO:
 // Initialize to an appropriate value
 float invoiceSubTotal = 0F; // TODO: Initialize to an
 // appropriate value
 float expected = 0F; // TODO: Initialize to an appropriate
 // value
 float actual;
 actual = target.CalculateInvoiceTotalTax(invoiceSubTotal);
 Assert.AreEqual(expected, actual);
 Assert.Inconclusive(
 "Verify the correctness of this test method.");
}

/// <summary>
///A test for CalculateLineItemSubTotal
///</summary>
[TestMethod()]
public void CalculateLineItemSubTotalTest()
{
 InvoiceLineItem invoiceLineItem = null; // TODO: Initialize
 // to an appropriate value
 float expected = 0F; // TODO: Initialize to an appropriate
 value
 float actual;
 actual =
 Invoice.CalculateLineItemSubTotal(invoiceLineItem);
 Assert.AreEqual(expected, actual);
 Assert.Inconclusive(
 "Verify the correctness of this test method.");
}

Chapter 3

[77]

We now have template unit tests that, by default, signal that the tests are
inconclusive. Since we haven't provided the inputs and the expected results, these
tests have no way of validating and verifying that our methods work. We now need
to create any dependant objects, set the input values and the expected values. Our
fictitious tax rate is an arbitrary 5%, so in order to finalize our tests we'd end up with
code like this:

/// <summary>
///A test for CalculateInvoiceGrandTotal
///</summary>
[TestMethod()]
public void CalculateInvoiceGrandTotalTest()
{
 float invoiceSubTotal = 123F;
 float invoiceTotalTax = 6.15F;
 float expected = 129.15F;
 float actual =
 Invoice.CalculateInvoiceGrandTotal(invoiceSubTotal,
 invoiceTotalTax);
 Assert.AreEqual(expected, actual);
}

/// <summary>
///A test for CalculateInvoiceTotalTax
///</summary>
[TestMethod()]
public void CalculateInvoiceTotalTaxTest()
{
 IEnumerable<InvoiceLineItem> invoiceLineItems =
 new List<InvoiceLineItem> {
 new InvoiceLineItem() {
 Price = 123, Discount = .10F, Quantity = 2
 }
 };
 Invoice target = new Invoice2(invoiceLineItems) {
 TaxRate = .05F
 };

 float invoiceSubTotal = 221.4F;
 float expected = 11.07F;
 float actual =
 target.CalculateInvoiceTotalTax(invoiceSubTotal);
 Assert.AreEqual(expected, actual);
}

/// <summary>

Improving Code Maintainability

[78]

///A test for CalculateLineItemSubTotal
///</summary>
[TestMethod()]
public void CalculateLineItemSubTotalTest()
{
 InvoiceLineItem invoiceLineItem = new InvoiceLineItem() {
 Price = 123, Quantity = 2, Discount = .05F
 };

 float expected = 245.9F;
 float actual =
 Invoice.CalculateLineItemSubTotal(invoiceLineItem);
 Assert.AreEqual(expected, actual);
}

Now, as the Invoice class evolves over time, we know that any adverse side-
effects to CalculateLineItemSubTotal, CalculateInvoiceTotalTax, and
CalculateInvoiceGrandTotal will be detected as soon as possible. This new design
means the Invoice class is more maintainable because it is more modular and more
object-oriented by clearly delineating behaviour in methods and any new adverse
side-effects will be pointed out as quickly as possible.

We effectively took a single method and refactored it into four methods. We
essentially performed a refactoring in response to a Large Method code smell.
Dealing with Large Method, as we've seen here, makes code much more
maintainable by modularizing logic, through more methods. We can test the logic
contained in those methods independently and more easily reuse that logic.

The ease with which someone can add a bug into the code base can depend on the
design of the API at their disposal. An API that is hard to understand or hard to
remember is an API that is easy to make a mistake with. An API should be intuitive.
That is, the developer shouldn't require a lot of conscious thought to program with
the API—especially conscious thought about the API as it applies to the domain in
which it services.

The System.Drawing namespace contains examples of some intuitive APIs. For
example, the Graphics.DrawLine effectively has two overloads. One that deals
with two-dimensional point values and one that deals with numeric coordinates.
DrawLine actually has four, but the two that deal with points have parameters in the
same, consistent order (one takes Point object arguments, the other PointF object
arguments) and the two that deal with numeric coordinates have parameters in the
same, consistent order (int and float values). This means, regardless of whether
I'm using PointF or Point objects, I would call DrawLine the same way:

graphics.DrawLine(Pens.Black, topLeftPoint, bottomRightPoint);
graphics.DrawLine(Pens.Black, firstPoint, secondPoint);

Chapter 3

[79]

And regardless of whether I'm using int or float values, again I'd call DrawLine
the same way:

graphics.DrawLine(Pens.Black, leftCoordinate,
 topCoordinate, rightCoordinate, bottomCoordinate);
graphics.DrawLine(Pens.Black, firstX, firstY,
 secondX, secondY);

Where the arguments are defined as follows:

Point topLeftPoint, bottomRightPoint;
PointF firstPoint, secondPoint;
int leftCoordinate, topCoordinate;
int rightCoordinate, bottomCoordinate;
float firstX, firstY, secondX, secondY;

The programmer doesn't have to think about how to call the method depending on
their arguments: it's intuitive.

An API that requires a developer to read lots of documentation before they can
attempt to use the API is an API that is difficult to use. An API that is difficult to use is
prone to error. Usually these are silly errors that could have easily been avoided if the
API didn't let them do what they did. An important design guideline to help make an
API easier and less prone to error is to practice Intention Revealing Naming.

Intention Revealing Naming involves using names that
reveal what the variable contains and how it is used, or method
names and signatures that reveal what the method does and how
it should be used.

When names are intention revealing, they are self-documenting. Most modern
Integrated Development Environments include some sort of statement
completion—a feature that reveals available identifiers based on the context of what
is being typed. This allows programmers to let the editor tell them what is available
to them while they type. If all the identifiers that are presented to the programmer
reveal nothing about what they are or what they do, the collection of revealed
identifiers is useless to them. For example, the following class and method don't
reveal much about what they do or how they could be used:

public class Customers
{
 public IEnumerable<Customer> Get(String name)
 {
 //...
 }
}

Improving Code Maintainability

[80]

Sure, Get is a valid name. But, presented with "Get" from IntelliSense after typing
"customer" doesn't offer much in the way of information for the programmer. With
regard to the name parameter given to Get, what if a customer of that name doesn't
exist? What if there are more than one customer that have that name? The name of
the class in conjunction with the name of the method doesn't reveal what it might do.
The following is much more intention revealing:

public class CustomerRepository
{
 public IEnumerable<Customer> FindCustomersByLastName(
 String name)
 {
 //...
 }
}

First, we've given our class name a more descriptive name. What we're operating
on is a repository of customers—it contains some number of customers. Next, we've
added some detail to our method name, not only revealing more about how the
method is used but also more about what it returns. There's a common idiom where
using a "Find" prefix when your method may return zero or more results instead
of "Get" prefix (which would always return one result or an exception if it could
not). This naming now leaves us free to extend our API in a consistent and easy-to-
understand way with methods such as FindCustomersByLastName (which would
be really hard to do or be consistent before with "Get"). We could also add related
methods like FindCustomerByCustomerNumber that would be very consistent with
the other methods and thus easier to consume. The use of plural and singular words
when dealing with results that specifically return zero, one or more, or zero or one, is
subtle but it makes the methods much more intention revealing.

Fortunately, it's easy to evolve our code base into something more intention
revealing. As we saw in Chapter 1, the fact that a particular class or a particular
method of a class may be used dozens of times, means we can get Visual Studio®
2010 to change every single instance of a class name, and every single reference to a
method within the entire solution. What once used to be tedious and prone to error
(although the compiler tells you right away when you've missed something) is now a
breeze with built-in refactoring to rename a class and a class member.

Chapter 3

[81]

Feature Envy code smell
When one class relies on another class more than itself, it has a code smell
called Feature Envy. A class with feature envy of another class means it is highly
coupled to that class. Any change to the class being envied means it affects the class
with the envy.

Feature Envy can be easy to detect in some circumstances, and hard in others. A
class that is only used by one other class and the other class simply delegates to
that class for most of its functionally has Feature Envy. This is easy to detect. A
base class that has only one subclass and the subclass modifies or extends very little
behaviour of the base is generally Feature Envy. This is harder to detect. Feature
Envy is subjective. If there is value to having another class, despite that class relying
on another class for most of its functionality, and that other class isn't used by other
classes, it might still be beneficial.

Feature Envy affects maintainability because logic spread amongst more than one
class has an explicit delineation of that logic. We respect that published interface and,
as we should, push back against change to that interface without good reason. When
you're looking at two classes, we can often not see the forest. We shouldn't see the
forest at that level. We can only assume that published interface is used outside the
context in which we're looking. With this restriction, it's not as easy to make arbitrary
changes to these envied classes.

Essentially what should be an implementation detail has been made public, to be
made dependant on by other classes. It's best to find and refactor Feature Envy as
quickly as possible before it has been made arbitrarily dependent upon. There's
nothing wrong with being depended upon, but it needs to be planned.

So, what can we do about Feature Envy? Visual Studio® 2010 doesn't have anything
specific in its refactoring abilities to deal with Feature Envy directly. If the class being
envied is autonomous—not the base class to the class with envy—then the easiest thing
to make the class an implementation detail is to make it a private nested class of the
envying class. That doesn't necessarily solve the problem, but it means no unplanned
dependencies can be made on this class. This can be done by moving the envied class
within the scope of the envying class and changing its access to private.

If the class being envied is actually the base class of the envying class then we can
use the Push Down refactoring. We haven't discussed the Push Down refactoring,
and it's not a built-in refactoring that Visual Studio® 2010 implements. Push Down
refactoring moves a member from a super class to a subclass. Let's have a look at the
Push Down refactoring. Let's say we have the following classes:

 public abstract class Shape
 {

Improving Code Maintainability

[82]

 public float Width { get; set; }
 public float Height { get; set; }
 public float Diameter { get; set; }
 }

 public class Circle : Shape
 {
 public float Radius { get { return Diameter/2; } }
 }

The Shape class is an abstraction that encapsulates something that acts like a shape.
For our purposes a shape has width, height, and diameter. Upon reflection, for
whatever reason (besides the obvious) we've decided that Diameter shouldn't
belong to Shape and should belong to Circle. We can implement this change with
the Push Down refactoring. We can move the Diameter property from the super
class to the sub class. This can be performed by drag-drop or cut/paste. This results
in the following:

 public abstract class Shape
 {
 public float Width { get; set; }
 public float Height { get; set; }
 }

 public class Circle : Shape
 {
 public float Radius { get { return Diameter/2; } }
 public float Diameter { get; set; }
 }

The Diameter property is now no longer a property of the super class Shape, but
a property of the sub class Circle. We're now saying that the Shape abstraction
doesn't need to encapsulate Diameter and that it is a property of a Circle.

Chapter 3

[83]

The problem with refactorings like Push Down that aren't directly supported by Visual
Studio® 2010 is that there is no automated refactoring of references. In the scope of the
Shape and Circle classes that we've presented here, we only need to cut the Diameter
property from Shape class and paste it into the Circle class. In the real world, Shape
and Circle are used by the code base and Circle.Diameter is referenced by other
code. To complete our refactoring we'd likely have to change all references to Shape.
Diameter. If we're truly refactoring and Circle.Diameter isn't used then it is Dead
Code and should simply be deleted. If Circle.Diameter is referenced, the easiest way
to complete the refactoring is to use the Find All References feature of Visual Studio®
and get a list of all references to Circle.Diameter before removing and moving it
to Shape.Diameter. Then, go through each reference in the Find All References list
changing each one to reference Shape.Diameter.

Design for the sake of reuse

Object-oriented Myopia is when the process or the principle
of objectifying concepts becomes more important than the value
it adds to the code base.

It's sometimes easy to get into what I call Object-oriented Myopia and either try to
force concepts into specific classes or to design classes that ignore the domain and let
another context influence the design of our classes. Depending on the context, shapes
may be a perfect example. In the "real world" we have polygons, squares, rectangles,
circles, ellipses, parallelograms, trapezoids, rhomboids, and so on. As designers, we
can go overboard objectifying concepts we know but are never needed in the domain
we're designing for—we tend to project a framework onto our domain model. We
sometimes think that our domain model needs to support more than our domain.
This is rarely due to bad intentions; possibly driven by the Fallacy of Reuse.

Udi Dahan coined the term Fallacy of Reuse—a form of object-oriented myopia.
This is when making something reusable becomes more important than fulfilling
requirements and implementing a model that echoes the problem domain.
Essentially, reuse needs to be designed; it needs to happen on purpose. Reuse by
accident occurs when you try to make something reusable but it can't be reused
right away. When it does get reused, it's often by accident; it can't be used by design
because it was based on fictional usage. A design might allow something to be
reused; but to design it to be reused in a way it needs to be reused is better.

Udi Dahan, The Fallacy of Reuse, http://www.udidahan.
com/2009/06/07/the-fallacy-of-reuse/

Improving Code Maintainability

[84]

Don't repeat yourself
Don't Repeat Yourself or DRY is about not doing the same thing twice. Reuse is
great, but reuse for the sake of reuse defeats the purpose. If something doesn't have
to be reused, don't make it reusable. Don't make a framework where a framework is
not needed, don't make a class hierarchy where none is needed, don't try to anticipate
solutions to fictional requirements, and don't do work that doesn't add value.

Inappropriate Intimacy code smell
In Object-Oriented Design, encapsulation is the practice of hiding implementation
details. A well encapsulated class doesn't make its implementation details public.
This is sometimes also referred to as Data Hiding or Information Hiding. I prefer not
to use these terms because they tend to allow designers to focus only on hiding data
(which is often defined differently by different people) and not all implementation
details. Let's look at an example of Inappropriate Intimacy:

public class Customer
{
 private List<PhoneNumber> phoneNumbers = new
 List<PhoneNumber>();
 public List<PhoneNumber> PhoneNumbers
 {
 get
 {
 return phoneNumbers;
 }
 }
 //...
}

This is a simple class that intends to implement a customer abstraction. In this
particular case, our customer only has zero or more phone numbers. We've
implemented a collection of phone number objects with the List<T> collection type.
We've then provided a PhoneNumbers property that provides read-only access to this
collection (the collection contents can be modified, but the collection can't be replaced).

Chapter 3

[85]

This seems innocuous enough, but what we've done is to inadvertently make
public our implementation details. The type of the PhoneNumbers property is
List<PhoneNumber>, the same as our private field. This is a contract with other
classes that use this class that they'll receive a List<PhoneNumber> object when they
access the PhoneNumbers property. This forces the Customer class to create an object
of type List<PhoneNumber> to fulfil this request. If the Customer class later decides
that List<T> is not appropriate for what it needs to do, it's out of luck. You may
think this is not that big a deal, we could do something like the following:

public class Customer
{
 private Stack<PhoneNumber> phoneNumbers =
 new Stack<PhoneNumber>();
 public List<PhoneNumber> PhoneNumbers
 {
 get
 {
 return new List<PhoneNumber>(phoneNumbers);
 }
 }
 //...
}

This uses the collection type Stack<T> instead of List<T>, and the PhoneNumbers
property simply creates a new List<PhoneNumber> object, populating it with the
content of the Stack<T> object—all the while seemingly retaining our contract.
The problem with this is that it breaks the contract; it doesn't allow other classes to
add or remove PhoneNumber objects from our Customer class. While this particular
implementation may be good, it's different from the original contract.

This obviously causes us maintenance problems because it limits what we can do
with our class. We're forced to use a certain concrete type. Unfortunately, the only
way to fix this is to break the contract and refactor the return type to something
abstract. For example:

public class Customer
{
 private List<PhoneNumber> phoneNumbers =
 new List<PhoneNumber>();
 public ICollection<PhoneNumber> PhoneNumbers
 {
 get
 {
 return phoneNumbers;
 }

www.allitebooks.com

http://www.allitebooks.org

Improving Code Maintainability

[86]

 }
 //...
}

This implementation allows similar functionality (Add, RemoteAt, and so on) while
encapsulating our implementation details. The class is now free to implement a
collection of PhoneNumber objects in different ways, like Dictionary<T> or even a
class that encapsulates a collection that doesn't keep all objects in memory and pages
objects to a storage device.

Unfortunately Visual Studio® 2010 doesn't include a built-in automated
refactoring for this, so we must perform the refactoring by manually changing the
signature of the property, then changing all references to the property that use the
List<PhoneNumber> type directly. Changing all the references can be done by using
the Find All References feature to get a list of references that we can simply double-
click and change the reference.

This is a rather simple example of Inappropriate Intimacy. And, in fact, there is a
Code Analysis rule that warns against this. Code Analysis will warn you that you're
exposing a concrete type that derives from an interface and suggests that you expose
the interface instead.

When we implement a class it's almost impossible to avoid exposing implementation
decisions to some extent. For example, a method that returns an Int32 exposes
the fact that it chose 32-bit integer to implement at least part of that method. With
low-level base types like Int32, Int64, String, Single, Double, or Decimal this
isn't a problem; and in fact it's usually a good idea—these base types have built-in
support by the CLR and we simply couldn't write something better. But, there are
all sorts of decisions we can make to implement a particular class or methods of
that class that aren't necessarily useful to expose.Exposing implementation details
will still obviously allow you to implement working code that others can use. But,
as we've discussed, exposing those implementation details like that couples the
implementation details to external code. This limits the maintainability of your class
because of your restricted options.

This isn't limited to framework or base-class library types. We could, very easily,
create a class to implement a specific algorithm, structure, protocol, concept, and so
on. If the implementation detail isn't relevant to client code to a class that uses that
implementation detail, it shouldn't be made public like that.

Chapter 3

[87]

Lazy Class code smell
The Lazy Class smell involves classes that do very little, or nothing useful at
all. There are some basic design patterns that specifically implement classes that
themselves do very little, or nothing at all. But, their value is recognizability. Patterns
like the Null Object pattern specifically implement classes that do nothing in order to
act as an easy to recognize or read placeholder.

Outside of these circumstances, classes that do nothing or little at all and don't act
as some sort of place holder really don't add much value to the source code. They
hinder maintainability because their interface imposes a contract on those that use it
and is public for anything to become coupled to.

A Lazy Class that isn't used is easy to deal with. Simply consider it dead code and
remove it. Lazy Classes that are used are a little more problematic. A Lazy Class
used by only one other class is only slightly less easy to deal with. These instances of
Lazy Classes can simply be subsumed by the class using them. In a case like this, the
class using the Lazy Class is delegating logic to another class when it should be part
of its private implementation details.

A Lazy Class that is a sub class of a super class can be dealt with simply by using the
Collapse Hierarchy refactoring—moving the logic from the sub class into the super
class and simply removing the sub class. There's no built-in automated refactoring
for this, so this process must be done manually in Visual Studio® 2010.

Lazy Classes that are used by more than one other class present a bit of a problem.
One way of dealing with it is simply the same as a single dependant class: just
subsume the logic being used into the other classes. This, of course, will work;
but we risk violating Don't Repeat Yourself. If that is part of a phased approach to
refactoring away the Lazy Classes, this may be acceptable. The repetition becomes
an implementation detail of several classes and can be dealt with without affecting
other classes by evolving it over time. This can often be done independently of one
another.

If you've recognized the Lazy Class and noticed that it is being used by several other
classes, you will likely recognize how to refactor away the Lazy Class in one phase.
After all, we're dealing with a class that does very little.

Let's look at an example of a Lazy Class and the process of refactoring it:
public class PastDueInvoice : Invoice
{
 DateTime PastDueDate
 {
 get; set;
 }
}

Improving Code Maintainability

[88]

The PastDueInvoice is an Invoice that is past due. It may seem logical for this
to be its own class, but it doesn't do enough to warrant the added maintainability
of another class. In this case, simply collapsing the hierarchy will be enough to
complete this refactoring. In order to do this, the PastDueDate is moved to Invoice,
and all uses of PastDueInvoice are changed to Invoice.

Lazy classes are often a side-effect of Object-oriented Myopia. Through transference,
in our haste to implement a perfect object model we introduce scope creep. We
introduce fictitious requirements that make sense in the context we're in but are
unnecessary. This could be the introduction of a hierarchy that doesn't add value
or simply separating logic into another class but contains very little logic. This
needless complexity introduces explicit interfaces and contracts that need to be
maintained over time and reduce the flexibility of the code base to change, reducing
maintainability.

Improved object-model usability
Designing an object-model is hard. First and foremost an object-model needs to fulfill
its functional requirements. If we can't do what we need to do with it, it doesn't offer
any value. Second, it needs to be robust and reliable. If it does do what we need to
do with it but can't rely on it or need to spend extraneous amounts of work to work
around problems, its value can be limited.

Even if we create a functional object model that is robust and reliable, it may be
difficult to use or easy to use it in incorrect ways making the code that uses it not
robust and unreliable.

One way this can happen is the choice of parameters and their order. It's easy
to create a method that does something useful but requires many parameters.
A method with many parameters is easy to call incorrectly while still being
syntactically correct. If some adjacent parameters are the same type, it's easy to
transpose arguments and end up calling the method incorrectly without any
compilation error.

Simply changing the order of parameters in such cases can make use of the method
less error prone and promote the appearance of better reliability and robustness.

Luckily Visual Studio® 2010 has a built-in automated refactoring to reorder
parameters. To reorder parameters of a method, simply right-click the method name
in the editor and choose Refactor/Reorder Parameters... You will be presented with
the Reorder Parameters form, such as the following:

Chapter 3

[89]

In our example, we'd like to make our CreateCustomer less likely to be
used incorrectly, so we'd like to change the signature so that identity and
customerNumber are not next to each other, and name and country are not next
to each other.

To do this, click on customerNumber and click the down arrow. This changes the
signature so that the order of the parameters are identity, name, customerNumber,
and country. Now press OK. The Preview Changes form displays each of the
reference changes that will be made. Pressing Apply will apply the changes and
reorder the arguments passed to all calls to the CreateCustomer method. This is
much easier and more reliable than manually changing each reference.

Now that we've changed the parameter, if we accidentally transposed two
arguments we'd end up with a compile error. Previously if we transposed two
arguments like this:

 Customer.CreateCustomer(1, 100, "Canada", "Peter Ritchie");

then we wouldn't be able to detect the problem until the code was executed and
tested. Now that we've changed the order of the parameters, if we transposed two
arguments like this:

 Customer.CreateCustomer(1, "Peter Ritchie", "Canada", 100);

a compiler error would be output when we try to compile it. This makes it much
harder for a bug to be introduced.

Improving Code Maintainability

[90]

Contrived Complexity
Erich Gamma et al introduced many software designers to a concept called patterns
with the book Design Patterns. Patterns have been around in other disciplines for
quite some time. A pattern is basically a recipe; it systematically describes a problem,
its solution, when to apply the solution, and the consequences.

Design patterns took off with many designers. After reading Design Patterns, many
could see many places to implement patterns like Strategy, Observer, Adapter, Bridge,
Visitor, and so on. Sometimes use of these patterns was applicable, but sometimes it
was not. Designers forced various patterns into places where they didn't really apply,
or in places that didn't really add value. Their zeal to use patterns wherever they could
increased the complexity of their code base with little added value.

This is the Contrived Complexity code smell—where extra complexity is introduced
for the sake of a design pattern or even for the sake of complexity. When extraneous
complexity is introduced, it makes the code base harder to understand and harder
to maintain. With design patterns, if they're forced into situations where they aren't
really meant to be in, it defeats the purpose of the design pattern.

A design pattern is a means to communicate a concept. Within code, it's a form of
documentation. When the code implements an Adapter, for example, the reader of
the code can understand what it is doing and what it is intending to do. But, when
the pattern is forced into places it doesn't belong, it makes it harder to understand
what is going on. Implementing the Strategy pattern, for example, where there's only
one possible policy that can be used adds complexity where it doesn't need to be.

The Strategy pattern is a useful pattern that separates policy from the code
that uses it to introduce the flexibility of using different policies depending on
run-time conditions. But, it's fairly complex to implement. Generally, implementing
the Strategy pattern means introducing an interface that abstracts the policies from
the code that uses it—a means by which to inject a policy into the code that needs
it and the classes that implement the differing policies. When you're learning the
Strategy pattern, it's easy to get caught up in the pattern and in your zeal to get
experience see any logically independent logic as a candidate for Strategy.

Once Strategy is introduced, there needs to be a means to manage the strategy
implementations and delivering them to the code that needs them.

Let's have a quick look at an example of overzealous use of Strategy. If we revisit
the Invoice class, a designer eager to get experience with Strategy might see an
opportunity to use Strategy with the calculation of an invoice's subtotal.

public interface IInvoiceGrandTotalStrategy
{

Chapter 3

[91]

 float CalculateGrandTotal(float invoiceSubtotal,
 float invoiceTotalTax);
}

public class InvoiceGrandTotalStrategy :
 IInvoiceGrandTotalStrategy
{
 public float CalculateGrandTotal(float invoiceSubTotal,
 float invoiceTotalTax)
 {
 float invoiceGrandTotal = invoiceTotalTax +
 invoiceSubTotal;
 return invoiceGrandTotal;
 }
}
public class Invoice
{
 private IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy;
 public Invoice(
 IEnumerable<InvoiceLineItem> invoiceLineItems,
 IInvoiceGrandTotalStrategy invoiceGrandTotalStrategy)
 {
 InvoiceLineItems =
 new List<InvoiceLineItem>(invoiceLineItems);
 this.invoiceGrandTotalStrategy =
 invoiceGrandTotalStrategy;
 }
 //...

Then, in order to calculate the invoice grand total, there would be code in the
Invoice class like this:

float invoiceGrandTotal =
 invoiceGrandTotalStrategy.CalculateGrandTotal(
 invoiceSubTotal,
 invoiceTotalTax);

Improving Code Maintainability

[92]

In order to implement the strategy pattern we've introduced
IInvoiceGrandTotalStrategy, an implementation of
IInvoiceGrandTotalStrategy InvoiceGrandTotalStrategy, an added field in
Invoice invoiceGrandTotalStrategy, and a changed constructor to inject the
strategy into the invoice object (since it's required in order to properly calculate
the invoice). This is approximately 15 extra lines of code, drastically increasing
the complexity and maintainability of the code. Now, someone not only needs to
understand that Strategy is being used here; but also understand why. The why isn't
apparent, and the reader will likely spend extra time trying to figure out the why—
wasting time.

This particular Contrived Complexity is fairly easy to refactor—the method
in InvoiceGrandTotalStrategy can be moved to the Invoice class, the
invoiceGrandTotalStrategy field and its assignment removed, and the
invoiceGrandTotalStrategy removed (via Remove Parameters automated
refactoring).

Strategy is a fairly easy to understand pattern (which may explain its frequent
misuse). Its misuse is fairly easy to detect. Strategy is meant to introduce the
ability for different policies to be used by code, depending on some condition—
usually at runtime. If this implementation only implements one policy
(InvoiceGrandTotalStrategy in our example), we know that Strategy isn't
being used properly.

Some readers may think that the fact that that a particular implementation only
implements one policy introduces extensibility. It does introduce extensibility,
and if you need that extensibility then this implementation is a good thing. But, if
this extensibility isn't immediately usable then it's not a good thing. If you're not
immediately using it, you don't know if how it was designed or implemented is
correct and if you don't have a requirement to extend it, you don't really have a way
to verify the design or implementation. This is an example of YAGNI.

So, we've seen some examples of refactoring object-oriented myopia, but what about
refactoring procedural code to be more object-oriented. Object oriented design is
effectively about modularity through designing objects and implementing their data
and behaviour through the use of abstraction, encapsulation, and polymorphism.
Polymorphism can be realized in many ways: subtype polymorphism (inheritance),
parametric polymorphism (Generics), and ad-hoc polymorphism (member
overloading). Through correct use of design of a domain model, we realize
encapsulation and abstraction.

Chapter 3

[93]

Not fully utilizing polymorphism can sometimes lead to implementing procedural
code, code that isn't truly object-oriented. Polymorphism gives us the ability to
create an object that performs logic for the situations to which it applies. This means
the choice of which type to instantiate should be the only decision that needs to
be made. Use of conditional statements is generally indicative of a procedural
design. The greater the number of conditionals in a particular block of code means
an increased number of potential paths through the code. These increased paths
increase the surface area for code coverage and testing of those paths within the
methods they are contained within. More conditionals mean more tests that need
to be written and performed in order to thoroughly test the code—making it harder
to maintain. The choices being made by the conditionals should be implemented
through polymorphism. The ultimate misuses of this are type-based conditionals—
comparisons based on the type of an object.

Shapes are a canonical example of procedure code where it should be object-
oriented. For example, let's say we have a service that draws shapes onto some sort
of canvas like Graphics. If it were procedural, it may look something like this:

public class ShapeDrawingService
{
 public void Draw(Graphics graphics, Shape shape,
 Point location)
 {
 Circle circle = shape as Circle;
 if(circle != null)
 {
 RectangleF rectangle =
 new RectangleF(location,
 new SizeF(circle.Radius * 2,
 circle.Radius * 2));
 graphics.DrawEllipse(Pens.Black, rectangle);
 return;
 }
 Square square = shape as Square;
 if(square != null)
 {
 graphics.DrawRectangle(Pens.Black, location.X,
 location.Y, square.Width, square.Width);
 return;
 }
 throw new ArgumentException("Unsupported Shape",
 "shape");
 }
}

Improving Code Maintainability

[94]

This code works, but it's more complex than it needs to be. Dealing with all shapes
is done in one method, and multiple comparisons are performed to find out what
shape it is dealing with. Since some sort of decision was made in order to create the
shape, and these comparisons are extraneous. As with most refactorings, this is fairly
easy to refactor. We simply need to create two overloads, one that takes a Circle
and one that takes a Square instead of Shape. We could do this entirely manually
by creating a new overload, changing the signature of the existing method, moving
code to the new overload, and then cleaning the existing method. But, we can use
some automated refactorings in this particular circumstance. We can use the extract
method with the body of one of the if statements to create a new method and when
we give it the same name as the original method it will create an overload using the
Shape subclass. If applicable, we may need to change the order of the parameters
of the new method to match the original method. We can do that with the Reorder
Parameters refactoring. We then need to remove the code in the original method that
dealt with the Shape type that is now handled by the new overload (if we extracted a
method from the Circle code, for example, that would have been replaced by a call
to Draw; we simply need to delete everything that deals with Circle). We then need
to change the type and name of the parameter of the original method to be a Shape
subclass (Square, if we extracted the Circle code into a new method). Since the
original method now takes a specific Shape subclass, we can now remove all code
except the call to Graphics method. We'd then end up with code that looks like the
following:

public class ShapeDrawingService
{
 public void Draw(Graphics graphics, Shape square,
 Point location)
 {
 graphics.DrawRectangle(Pens.Black, location.X,
 location.Y, square.Width, square.Width);
 }

 public void Draw(Graphics graphics, Circle circle, Point location)
 {
 RectangleF rectangle =
 new RectangleF(location,
 new SizeF(circle.Radius * 2, circle.Radius * 2));
 graphics.DrawEllipse(Pens.Black, rectangle);
 return;
 }
}

Chapter 3

[95]

What we have now is more object-oriented. We're making use of polymorphism
implemented by overloads to avoid extraneous type conditionals. The added benefit
of this implementation is that we now have compile error if we try to use a subclass
of Shape that isn't Circle or Square. Previously, this was a run-time error and could
only be detected if that scenario was actually executed (for example, with a specific
unit-test).

Doing this particular refactoring can often orphan the super class. This may have
been the only use of Shape (as a parameter in the original ShapeDrawingService.
Draw method). After doing this type of refactoring, it's a good idea to re-evaluate
whether you still need the super type.

Detecting maintainability issues
Visual Studio® 2010 includes a feature that calculates metrics based upon the code
and the structure of the code. These metrics include:

•	 Maintainability Index
•	 Cyclomatic Complexity
•	 Depth of Inheritance
•	 Class Coupling
•	 Lines of Code

All of these metrics can be used, in some fashion, to gauge the maintainability of
projects, namespaces, classes, and methods.

The Maintainability Index attempts to systematically rate the maintainability of a piece
of code through weighting a modified Halstead volume, Cyclomatic Complexity, and
Lines of Code. The Code Metrics features analyses compiled code (the Intermediate
Language contained in the assembly) which doesn't include comments, so the Halstead
volume used in the Maintainability Index doesn't take into account comments. The
introduction of comments does not have a specific effect on the maintainability of the
code for which it is commented, so this isn't necessarily a bad thing. A rating of 100
is the highest index code can receive. The index doesn't necessarily mean the code
maintainability can be improved or not. For example, an index of 100 doesn't mean
the code should not be evaluated for maintainability improvements. For example, our
original ShapeDrawingService.Draw method had a respectable index of 61 and a
green rating, yet it clearly needed improvement. The refactoring increased the index to
green ratings of 80 and 88. This is an improvement obviously, but 61 by itself is clearly
not enough to necessarily detect a maintainability issue.

Improving Code Maintainability

[96]

Maintainability index values of between 10 and 19 have a yellow rating, and index
values between 0 and 9 have a red rating. Red and yellow ratings are an indication
of code that is in dire need of evaluation for maintainability. But, what if all your
code is green? You can focus maintainability refactoring efforts not necessarily on
the value of a particular index; but on the difference of two or more values.

When looking at two values with a mandate to improve maintainability, the lower
index should be chosen first. With maintainability index, the higher the index the
better. Both values may be green, but the lower one may be a better candidate or
may pay better maintainability dividends when refactoring for maintainability. The
index should be taken with a pinch of salt though, as depending on how you refactor
the code, the original index may now be meaningless. For example, if you end up
removing a class during refactoring, that class's original index is now moot. You
can't measure the improvement because you don't have anything to compare it with.
When evaluating metric values, it's not useful to mandate a goal of reaching specific
values, despite being rated green, yellow, and red. For example, if they're all green
that doesn't mean there's no room for improvement.

There are many ways to refactor code to improve Maintainability Index. As we've
seen with our ShapeDrawingService, we can improve Maintainability Index by
refactoring from procedural to more object-oriented. Lines of code are weighted
in the index calculation, so, simply performing an Extract Method refactoring can
improve the Maintainability Index. Refactoring specifically to improve Cyclomatic
Complexity will also improve the Maintainability Index, which we'll look at next.

The Maintainability Index includes the Cyclomatic Complexity (CC); so,
improvements to Maintainability should also include improvements to CC. CC
is essentially a measurement of the number of branches in code. CC is based
on the number of conditionals within the code. We saw an improvement in our
ShapeDrawingService.Draw overloads because we reorganized the code to avoid
conditionals. The higher the CC value the higher the number of conditionals. A
method with no conditionals will have a CC metric of 1. Clearly we can't have all our
methods having a CC metric of 1, but it's better for the metric to be lower than higher.
A higher CC could be due to procedural code that could be more object-oriented. At
the very least, a large CC value means the code is too complex and should be dealt
with. Dealing with the code could be as simple as extracting some methods, or could
be as complex as introducing more classes. There's generally a direct relationship
between CC and the return on investment from refactoring the code; but as with
Maintainability Index, focusing on the difference in values rather than specific values
leads to better gains. As with Maintainability Index, this applies to evaluating the
specific values. Although you can't get a better value than 1, just because a value is
close to 1 doesn't mean there's no room for improvement.

Chapter 3

[97]

The Cyclomatic Complexity can only be improved by reducing conditionals. Using
polymorphism isn't the only way to reduce conditionals. Extract Method refactoring
can move some conditionals from one method to another; so you can get CC
improvements within a particular method with Extract Method. But be careful; you
are only moving the conditionals around within a class so the CC of the class won't
improve.

The Class Coupling metric measures a particular class's coupling to other classes.
A class that is coupled to many classes is harder to maintain because it's harder to
move around without those other classes and thus harder to use in other contexts.
High class coupling can be improved by consolidating multiple classes together,
if that makes sense. Some classes will always have higher coupling than other
classes simply because of their nature. Classes that are part of a framework should
tend toward lower class coupling values, but the value is ultimately subjective.
A particular class may be coupled to many other private classes in a particular
framework. In this case, it's unlikely that the class is any less reusable than it could
be if the other classes were consolidated within it. Don't ignore high class coupling
values, but take the value with a pinch of salt and evaluate each candidate within its
unique circumstances.

The only way to improve the Class Coupling metric is to use less unique classes.
For the most part we do want unique and specific classes in our code base, so
make sure your drive to improve Class Coupling isn't actually making your code
less maintainable. You could implement your application in one huge method in
one class and get a really low Class Coupling, but your other metrics would be
really high. So, when you're refactoring to improve class coupling, keep an eye on
Maintainability Index and Cyclomatic Complexity to make sure you're not making
things worse.

The last metric is Lines of Code (sometimes referred to as LOC). I don't recommend
refactoring specifically to lower Lines of Code. I recommend using it in conjunction
with the other metrics. All other metrics being equal, your efforts should start
with the code with significantly more Lines of Code. Two pieces of code with a
Maintainability Index of 50, one with 100 lines of code, and the other with 10,000
lines of code; the code with 10,000 lines will have that many more opportunities for
improvement.

Obviously, there's specific refactorings that reduce lines of code; but focus
refactoring efforts on improving the other metrics instead and use Lines of Code to
focus on which code to refactor, not how.

Improving Code Maintainability

[98]

Summary
We've seen how we can improve code maintainability with Visual Studio®. Visual
Studio® can be used to detect maintainability issues and refactor them through
refactorings like Pull Down to make code more maintainable. We've also seen how
we can make an API less prone to being used incorrectly by using the Reorders
Parameters Refactoring. Automated unit testing supports the refactoring effort and
maintains certain quality expectations by validating code before and after being
refactored.

In the next chapter, we'll continue our maintainability focus and detail how we can
use Visual Studio® to improve code navigation with object-oriented code through
naming, structure with refactorings like Extract Class, Pull Up Method, and Move
Method. We will also detail navigation with Visual Studio®.

Improving Code Navigation
Improving how code can be changed and how fast depends partly on the
navigability of the code. Code navigability is the ability of code to be understood
and maneuvered simply through reading it. If the code is hard to absorb and hard to
navigate, it's going to reduce the speed at which changes can be made to it.

There are many ways code can be made more navigable. We've discussed some ways
in previous chapters, such as restructuring in response to code smells like Large
Method or Large Class. Code is more navigable if large chunks of it aren't in one
method or class. By improving code structure, we can increase its understandability
through the introduction of new classes and methods that make concepts explicit
(and able to be checked), thus making code easier to absorb and maneuver through.
But, there are other ways of making code more navigable without specifically
addressing code smells. We'll discuss these in this chapter, including refactoring the
following to improve navigability:

•	 Object-oriented code
•	 Naming
•	 Structure
•	 Accounting for navigators (Visual Studio®)

Improving Code Navigation

[100]

Navigating object-oriented code
Object-oriented code is not procedural code.

The focus of procedural programming is to break down a programming task into a
collection of variables, data structures, and subroutines, whereas in object-oriented
programming it is to break down a programming task into objects with each
"object" encapsulating its own data and methods…

– Wikipedia (http://en.wikipedia.org/wiki/Procedural_programming)

Procedural code is inherently linear, has a beginning and an end, specifies one step
after another, and uses variables for application state. There's generally an entry
point, a collection of un-encapsulated data, and a series of steps that modify the
data before completion. Each step is generally dependant on the previous and it's
easy to follow from one step to the next. Object-oriented code is similar, but rather
than modifying global state and invoking many functions, object-oriented code
decouples and modularizes the logic into classes that each manage their own data or
state. Unlike procedural code, each class is essentially autonomous. Procedural code
implements structure through functions, but functions are just reusable containers of
code which translates input to an output or modifies global state.

Introduce inheritance or interface-driven design and the connections between classes
become even more disjointed. It becomes increasingly harder to follow object-oriented
code simply by reading it because of these disconnections. It's unclear that ClassA,
for example, makes use of ClassB because it only uses IInterfaceC—which ClassB
implements. This is on purpose, mind you, because we want to be as loosely coupled
as possible so that we may swap out one class for another without having to redesign
the class or classes that use the original. This, of course, comes at the cost of readability.

It's reasonably easy to read object-oriented code that uses a specific method of
decoupling when you know what the method of decoupling is. A veteran of a project
is less likely to have a harder time following code because she knows the decoupling
policies. A new member to the project will have a much harder time following
loosely coupled object-oriented code if they're unfamiliar with the decoupling
policies or implementations.

It's fairly easy to understand linear code—just follow it from beginning to end.
Object-oriented code often has a beginning but following it from step to step can be
much more difficult. The creation of an object is often not performed in line with the
steps being performed and it's much harder to know exactly where implementation
of the next step is. This is of course if the object-oriented code isn't simply procedural
code, hidden in an object-oriented language.

Chapter 4

[101]

Code written in an object-oriented language, where each class is directly coupled to
the classes it uses, is not much more object-oriented than the same code written in
a procedural language. Sure, the additional meta-detail of classes (their name, what
they encapsulate, and so on) increases the information within the code. But, the same
information can be implemented in most procedural languages with concepts like
modules, subfolders, namespaces, and so on.

In upcoming chapters, we'll explore in more detail ways in which object-oriented
code can be refactored to improve various aspects of the code base, such as
maintainability and quality.

Convention over Configuration
The Convention over Configuration (CoC) pattern—or design standard—details
that the design of code should follow particular conventions instead of requiring
configuration. This can be applied in many places. Certain frameworks have the
ability to be configured for their use in your code base—which is where this standard
emanated from. But, configuration can apply to many more things and at many more
levels. Documentation, for example, is a form of configuration. It configures the
reader. In the case of source code, if the source code requires the developer to read
and understand documentation about the source code, the developer is required to
absorb that configuration before the source code can be absorbed most efficiently.

Convention over Configuration has far reaching effects in the navigability of
a particular code base. To a certain extent, the convention ends up being
configuration as the developer must essentially be configured to use the convention.
Convention over Configuration adds value, especially when the convention is an
industry-standard convention. Developers learning the convention end up being
junior so that some level of learning (or configuration) would need to be realized
regardless; learning industry-standard conventions are a win-win.

Consistency
The principle of consistency goes a long way in making any of the navigability changes
useful. If a particular convention isn't implemented consistently, despite the ability to
improve navigability, the change may actually reduce navigability. Naming standards
are a good example. If there is a convention to prefix interface types with the letter I
and some interfaces don't follow this convention (good or bad) and leave it off or suffix
with Interface then the code is difficult to navigate because it forces the reader to think
and interpret before they can absorb the meaning or usage of the code.

Improving Code Navigation

[102]

Interfaces are a fairly benign example; the amount of thought involved in
recognizing DeviceInterface as an interface type may be extremely small, but the
rate at which reading and navigating code annoys the developer, I believe, is directly
proportional to its navigability.

When dealing with certain patterns, it becomes increasingly important to define
and be consistent with a particular convention. The Model-View-Controller pattern,
for example, essentially mandates that two classes be created, one to implement the
view and one to implement the controller. Each effectively implements support of
a particular user-interface concept. To not suffix each with View or Controller can
disconnect the class from the actual concept, introducing confusion and making the
code that much harder to navigate.

The issue of consistency is often a consideration for the I-prefix of interface
types convention. While most agree that polish notation is largely out-dated and
unnecessary, the convention of prefixing interfaces with I persists. This continues
to be a convention with many development teams for consistency with the .NET
Framework. Since interfaces in the .NET Framework are consistently prefixed with I,
it becomes confusing in non-.NET Framework code when interfaces are not prefixed
with I. I believe this last vestige of Polish Notation lives on simply because it is used
in the .NET Framework.

Conventions
We've touched on one convention (to prefix, or not prefix interface types with I).
Outside the specific Convention over Configuration abilities of specific frameworks
or libraries, there are certain conventions that can improve code navigability over
and above consistency.

Naming
Naming conventions are probably the most vital part of the navigability of a code
base. Names that are meaningless convey no information to the reader. Names that
require specific knowledge, or—worse yet—a crib sheet, require the user to stop and
think. This needlessly slows the reader down.

I won't get into too much detail on avoiding meaningless names. I'll leave it as an
exercise to the user why xyz instead of customerCount reduces navigability. I will
detail exceptions to this where names at face value are meaningless but acceptable
because they are convention.

Mathematically, names like x, y, and z have meaning, but generally single-letter
names have little value to the reader. An exception is iterated integer indexing
variables—which are generally acceptable as a single character like i.

Chapter 4

[103]

 InvoiceLineItem[] invoiceLineItems =
 new InvoiceLineItem[invoiceLineItemCount];
 for (int i = 0; i < invoiceLineItems.Length; ++i)
 {
 invoiceLineItems[i] = new InvoiceLineItem();
 //...
 }

This would be no more readable or understandable had it been written as the
following:

 InvoiceLineItem[] invoiceLineItems =
 new InvoiceLineItem[invoiceLineItemCount];
 for (int index = 0; index < invoiceLineItems.Length; ++index)
 {
 invoiceLineItems[index] = new InvoiceLineItem();
 //...
 }

This is because this is a common convention. Right or wrong, this convention aids in
the developers' speed at which they can read, absorb, and understand code because
it is common and the developer does not need to think about it. Naming variables i
where they are not iterators would cause confusion because the common convention
suggests they should be iterators.

Depending on the project, there may be project-specific naming conventions that
may need to be put into place, naming conventions that are specific to the project
or the organization.

There are, fortunately, common naming standards to help your project have naming
conventions that match the rest of the industry. This allows new members of your
project to hit the ground running, with respect to naming. The Framework Design
Guidelines and the .NET Framework Developers Guide, Guidelines for Names detail
various naming conventions that will allow the naming in your code base to be
consistent with the rest of the industry, with regard to the .NET community.

Names of Classes, Structs, and Interfaces: http://msdn.
microsoft.com/en-us/ library/ms229040.aspx

Names of Type Members: http://msdn.microsoft.com/
en-us/library/ms229012.aspx

Improving Code Navigation

[104]

A benefit of adopting these naming conventions is that they can be checked or
enforced by tools like Code Analysis or FxCop to analyze the code and check for
naming violations. For example, the CA1710 warning will warn against various
incorrect suffixes.

Microsoft Visual Studio® Code Analysis and FxCop are static code analysis tools.
This class of tools analyses software without physically executing it (unlike dynamic
analysis which analyses executing software. Visual Studio® Performance Analysis is
an example of dynamic analysis). Generally, static code analysis tools analyze source
code. Both Code Analysis and FxCop are slightly different than the classical static code
analysis tools in that they analyze compiled code, but the analysis is the Intermediate
Language that the compiler generates rather than the machine code that is physically
executed on a given processor (which is generated by the runtime's just-in-time (JIT)
compiler after an assembly is loaded for execution).

Keep in mind that naming conventions defined in these texts are fairly .NET
generalized, so don't expect these tools to check all your other chosen suffixing
conventions out-of-the-box.

Fortunately, changing a code base to consistently follow or implement a naming
convention is fairly easy. The Rename refactoring is all you need to rename an
errant name to a satisfactory name.

Scoping types with namespaces
Scoping types with namespaces allow you to logically organize code. Namespaces
could be viewed as code subfolders. The specific scope created by putting types
within a namespace allows for organizing of the code into logical units. The units
are first-class citizens in C#, so they are checked and validated by the compiler.

Similar organization can be attained through comments, but comments are
effectively ignored by the compiler and thus can be entered incorrectly or they
may be completely missing and the compiler will not warn you.

As with many refactorings, not refactoring to increase the depth of the namespace
hierarchy of your project doesn't mean your code isn't perfectly functional. What we
are attempting to address in this chapter is refactoring the structure of code to make
it easier to navigate. Our refactoring effort to improve readability also improves
navigability to a certain extent. For example, we can navigate to all references to a
class simply by searching for it by name—if we've performed Rename refactorings
to make our identifier declaration naming consistent and free of spelling errors.
Searching is more accurate, thus quicker to navigate with.

Chapter 4

[105]

Adding organization through increasing the namespace hierarchy isn't directly
associated with readability. Moving a class to a sub-namespace, for example, doesn't
help readability. Use of using directives generally hides namespaces from code and
thus doesn't come into focus while reading. There are cases where performing a
Move To Namespace refactoring along with Rename refactoring can improve the
readability of some code.

In our Sales and PartnerInvoice example, we can change the following code:

 SalesInvoice salesInvoice = new SalesInvoice(null, null);
 PartnerInvoice partnerInvoice =
 new PartnerInvoice();

Now, SalesInvoice and PartnerInvoice are moved to their own namespaces
(Invoicing.Domain.Sales and Invoicing.Domain.Partner respectively) and
both are renamed to "Invoice", as exemplified in their usage:

 Invoice salesInvoice = new Invoice(null, null);
 Invoicing.Domain.Partner.Invoice partnerInvoice =
 new Domain.Partner.Invoice();

This isn't necessarily easier to read. But, let's with the following:

 SalesInvoice invoice = new SalesInvoice(null, null);
 invoice.FooterText = "All sales final.";
 //...

Performing the same Move to Namespace refactorings along with Rename
refactorings will end up with the following:

 Invoice invoice = new Invoice(null, null);
 invoice.FooterText = "All sales final.";
 //...

This is, in my opinion, easier to read on its own.

Improving Code Navigation

[106]

IDE navigation
Now that we've seen design techniques that aid in navigability, let's see some of the
functionality in Visual Studio® where this improved navigability comes into play.

The Visual Studio® 2010 IDE offers many ways of navigating your code base over
and above simply opening a file and scrolling around the text with the mouse or the
arrow keys. We'll detail many of these features and discuss how we can refactor our
code to accommodate each of these features to make the code base easier to navigate
and thus easier to maintain.

Search
One of the easiest ways of navigating code in Visual Studio® 2010 is to search for it
with Find In Files. This searches for code based on the text you provide for the Find
what text.

The following is the Find and Replace form in Visual Studio® 2010:

Chapter 4

[107]

The Find and Replace form (in the Find in Files mode) consists of a textbox to enter
the Find What text, find options, and result options. The find options allow us to
specify case sensitivity, whether only whole words should match, and whether to
use some form of wildcard matching. The result options configure where the results
are displayed and what results are displayed.

When searching for particular identifiers in code, using the Match case and the
Match whole word options can be very useful. If we wanted to find Invoice and not
SalesInvoice, we could enter "Invoice" for the Find what text, and check the Match
case and Match whole word options.

Due to the fact that this is a simple textual search, it's important to have consistent
naming. If a developer was working with the AddCustomerForm form and they
wanted to find out where the Add Customer Controller was used, they might decide
to search for AddCustomerController. If a consistent naming convention wasn't in
place or the other developer had not suffixed the Add Customer controller class with
"Controller", the developer would not find any results. The developer would first
have to find out the exact name of the controller class (possibly without using Find in
Files).

Now, this is a somewhat contrived example to illustrate a point. Depending on the
circumstances, there are much better ways to find all the references to a particular
type. Find All References, for example, finds all references to a particular type or
member based on Visual Studio®'s internal hierarchy of the code (based on a form of
compilation of the code).

To fix an inconsistent naming that would make the code base hard to navigate, use
the Rename refactoring.

Improving Code Navigation

[108]

Class View
Another form of navigating code in Visual Studio® 2010 is the Class View. As seen
in the following diagram, the Class View is a hierarchical display of the classes, their
namespaces, and their members:

The Class View organizes classes by their project and their namespaces.

There are two panes in the Class View, the upper Objects pane and the lower
Members pane. The Objects pane mirrors the structure you've given to your solution
(projects, namespaces, types, and so on) and allows you to explore that structure
in much the same way as you'd explore the file system. It allows you to view your
code base at a higher level and drill-down to the actual code by double-clicking
a particular type or member.Without a consistent namespace convention, the
usefulness of the Class View to navigate your solution is reduced. The hierarchy may
be flattened and may lump all classes within the same level.

To make the Class View more efficient, classes may be grouped and moved to
specific namespaces with the Move To Namespace refactoring. Unfortunately,
there isn't a built-in refactoring to perform this; the simplest way to move a class
to another namespace is to change the namespace declaration for a particular class.

Chapter 4

[109]

namespace Invoicing
{
 public class Invoice
 {
 private IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy;
 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 IInvoiceGrandTotalStrategy invoiceGrandTotalStrategy)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.invoiceGrandTotalStrategy =
 invoiceGrandTotalStrategy;
 }
 //...

This can be another nested namespace declaration as follows:

namespace Invoicing
{
 namespace Domain
 {
 public class Invoice
 {
 private IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy;
 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.invoiceGrandTotalStrategy =
 invoiceGrandTotalStrategy;
 }
 //...

Or it can be nested with the dotted namespace syntax, as follows:

namespace Invoicing.Domain
{
 public class Invoice
 {

Improving Code Navigation

[110]

 private IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy;
 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 IInvoiceGrandTotalStrategy invoiceGrandTotalStrategy)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.invoiceGrandTotalStrategy =
 invoiceGrandTotalStrategy;
 }
 //...

Once the class is moved to the other namespace, the using directive needs to be
changed in all the other classes that use this one. I find the easiest way to get this
done is to simply start a re-compile. The errors resulting from the class name that
can't be found make a nice work list. First, simply double-click each error in the Error
List to navigate to the file with the error. Then, right-click the class usage with the
error in the code, and choose Resolve\using...

If your project has other errors (you're not refactoring and adding features, are
you?) then using Find All References before moving to the new namespace may be
more useful. Simply right-click the class you're going to move to a new namespace,
choose Find All References. Then, change the namespace for the class that you
want to move to a different namespace. The entries left in the Find All References
list are your work list. First, simply double-click an item in Find Symbols Results
to navigate to the file that uses the class whose namespace has just changed. Then,
right-click the class usage that now has an error and choose Resolve\using....

Depending on your project's guidelines, it may be necessary for classes to be within
a sub-folder with the same name as the namespace it is contained within. This is a
very common guideline because, out of the box, Visual Studio® automatically does
this when adding class files to folders. So, to be consistent with what Visual Studio®
does, many projects make the inverse to be a guideline: files in namespaces must be
contained in a folder structure that matches that of the namespace. In this case, part
of the refactoring will also include moving the file to the new or existing sub-folder.
This refactoring is easily accomplished by clicking the class in the Solution Explorer
and dragging it to another sub-folder. If the sub-folder does not exist yet, right click
on the project or the folder where you would like to create the folder and choose
Add\New Folder.

Chapter 4

[111]

Solution Explorer
Visual Studio® 2010 has the tried-and-true Solution Explorer, which is depicted in
the following screenshot:

The Solution Explorer organizes the projects, sub-folders, solution folders, and files
in a hierarchical display. You are able to act on each of the nodes in the hierarchy in
different ways. Depending on what node you right-click on, you can perform actions
like Add Item, Rename, Display Properties, and so on.

The Solution Explorer is much like hierarchical views like the Class View, except
it is the main dashboard for the solution. Despite similar interfaces in other places,
the Solution Explorer allows you to perform almost everything you can possibly
do to solution items either directly or indirectly. Because the Solution Explorer is
so powerful and it has an inherent ability to access all items in a solution, it's the
primary means of navigating projects and solutions. Optimizing the code structure to
take advantage of the Solution Explorer means increased navigability in our projects.

Improving Code Navigation

[112]

The Solution Explorer organizes solutions by project, folders, and files. The lowest
level of granularity is by file. If your classes aren't organized by files, you're not
getting as much out of the Solution Explorer as you could be. For example, if you
have more than one class in a file, there are certain things you can't do with the
Solution Explorer. Solution Explorer allows you to rename a file that, in turn, allows
you to rename the class and all references to it (effectively performing the Rename
refactoring). If your class is not contained within its own file (whose name matches
that of the class) you can't use this short-cut to Rename refactoring. You can still
rename it directly in the code or via Class View.

There's no built-in refactoring to move a class to its own file, but it's easy to manually
perform this refactoring. Simply right-click on the location Solution Explorer you
would like the class to exist (either a project itself, or a folder within a project) to have
the class created in a sub-namespace. Then choose Add\Class, enter the name of the
existing class and click Add. A new file is created with a class, with the same name
as an existing class. Simply cut and paste the previous class into the new file, update
the using directives, and you're done. You can perform the Add Class portion of
this refactoring in many other places, like the Class View, Class Diagram, Sequence
Diagram, and so on. But, due to the sheer number of tasks that can be performed from
the Solution Explorer, it is most likely visible and awaiting your command.

If your project has a mandate to physically keep classes in different namespaces
in physical sub-folders, you'll have a project structure like the following in the
Solution Explorer:

Chapter 4

[113]

Moving classes from the root to a sub-folder is accomplished by dragging it from its
location and dropping it on a sub-folder. Unfortunately, the Solution Explorer does
not act like the Windows 7 Explorer and does not expand sub-folders when you
hover a dragged file over a sub-folder. So, you must have the folder in which the
sub-folder is contained expanded in the Solution Explorer.

When projects start out, it may not be necessary to have many, if any, added
namespaces. In fact, if the project starts out small enough, adding namespaces may
hinder navigation. It's fairly rare that something starting out that small would end
up being so large as to benefit from namespaces, but it's not unheard of. As the
project evolves and grows in size, it's very likely that namespaces in which classes
live need to be changed. Depending on your design methodology, there may simply
be no need for any sort of namespace hierarchy (remember You Ain't Going To Need
It?). So, refactoring the namespace hierarchy is a very common refactoring.

Refactoring the namespace hierarchy is an excellent way of improving the navigability
of the code base in light of contemporary Integrated Development Environments that
provide high-level views of the source code. Namespaces help categorize and organize
code, which makes the code easier to navigate with such tools.

In more complex systems, an effective namespace hierarchy is vital in the ability
to name classes correctly. A good example of this can be found in many places in
the .NET Framework. The Timer classes are a good example. There are currently
three Timer classes in the .NET Framework. Each works best in different scenarios
(and each is in its own namespace). If they were not in different namespaces the
designers would have to result to unique names like SystemTimer, FormTimer,
and ThreadingTimer—none of which would add any value to developers. "Timer"
makes sense in each scenario, regardless of where each should be used.

When deciding on reusing a name already in use in another namespace, it's
important to make sure there's value to it. Having duplicate names in different
namespaces for the sake of having duplicate names, or for the sake of namespaces,
isn't a valid reason. For example, if the two classes are expected to be used in the
same places, the same name will be a hindrance to usability. The developer will be
forced to add a using alias or to use a fully-qualified name. For example:

 Invoice salesInvoice = new Invoice(null, null);
 Invoicing.Domain.Partner.Invoice partnerInvoice =
 new Domain.Partner.Invoice();

Improving Code Navigation

[114]

In this example, the designer has created two Invoice classes. One in the Sales
namespace (and the above code resolves this simply as Invoice because we have
a using Invoicing.Domain directive at the top of the file). There's clearly some
need for two unique Invoice classes: one to deal with general sales and one to deal
with partners. It becomes difficult to use the two classes together if they don't have
a unique name. This makes it harder to write code and harder to understand the
code. Depending on the circumstances, it may have simply been better to have a
PartnerInvoice and do away with the Sales and Partner sub-namespaces.

In any case, it's easy to refactor this to be more navigable. Simply perform
the Move To Namespace refactoring and Rename refactoring and change
the fully-qualified declarations.

Class Diagram
There exists a document type in Visual Studio® 2010 that depicts several
classes in diagrammatic form. This is the Class Diagram. It is depicted in
the following screenshot:

The Class Diagram contains two panes: The top design surface pane and the bottom
class details pane. The design surface pane diagrammatically shows the classes it
contains and their relationship.

Chapter 4

[115]

The Class Diagram is very similar in its navigational abilities to the Class View. The
design surface pane is similar to class nodes in the Class View, and the Class Details
pane is similar to the lower Members pane in the Class View.

The Class Diagram allows you to create a subset of classes within a project to which
you can navigate and edit. You can double-click on a class on the diagram surface
in the same way as you can double-click a class in the Class View and the Solution
Explorer, to navigate to a specific class. You can also double-click members of a class
in the Class Details pane, in the same way as you can double-click members in the
lower Members pane of the Class View, to navigate to a specific member of a class.

The Class Diagram allows you to edit much of the same attributes of classes as
does the Class View. You can Rename refactor (through the F2 keyboard shortcut
in addition to the Context Menu) the class and its members, add members, and edit
members. Editing members includes everything except the body (if applicable) of
the member including type, modifier, XML docs, and so on. Unfortunately, the Class
Diagram doesn't allow you to multi-select members so you can't modify members
(like modifier) en-masse.

With large, complex projects, using a Class Diagram as a means of navigation is
useful because you can create a sub-view of your project.

With navigational tools such as Solution Explorer and Class View, you have no
way of filtering out or focusing what subset of the project/solution you want to
navigate. You're limited to seeing everything and filtering out information by
collapsing namespaces. This isn't too much of an issue if how you want to focus your
navigation is on parity with how the code is structured with respect to namespaces.
If what subset you want to navigate isn't on parity with its namespace structure, a
Class Diagram can be useful.

To create a class diagram, simply right-click where you want the file to exist (project
or project folder) in a project in the Solution Explorer, and choose Add Item…. Select
Class Diagram as the template type, enter a name for the class diagram in Name
and click Add. You can now drag and drop what classes you want to be shown in
the diagram by dragging them from the Solution Explorer or the Class View onto
the Class Diagram design surface. You can place all the classes from a particular
namespace into a Class Diagram by dragging a project folder from the Solution
Explorer onto the Class Diagram design surface, or by dragging a namespace from
the Class View onto the Class Diagram design surface. Class may be removed from
the Class Diagram (without removing them from the project) by selecting the class
and pressing the Del key.

Improving Code Navigation

[116]

What the Class Diagram displays depends on what the developer adds to it; so,
there's less refactoring to make use of the Class Diagram optimal. To make use of the
Class Diagram optimal, design of the classes contained within it should be logical.
Refactoring for readability is enough to make use of the Class Diagram optimal.
Refactoring for readability may involve Rename refactoring, Move To Namespace
Refactoring, and so on.

Code Editor
The last navigational tool in Visual Studio® 2010 that we'll cover is the Code Editor.
"The Code Editor, how is that a navigational tool?" you ask. The Code Editor is just
like other views of code, such as the Class Diagram. It just happens to view the code
in raw form. The Code Editor is depicted in the following screenshot:

The Code Editor consists of text editor area, the ability to expand and contract
regions of code (to the left of the text editor area), the Class Name/Types combo box
above the text editor area, and the Method Name/Members combo box to the right
of the Class Name/Types combo box.

The Code Editor knows quite a bit about the code that it edits. You may not think
about it but you may often navigate around in code from within the Code Editor.
From the Code Editor you can do many things that other views of code also allow,
other than simply typing text. You can perform actions like Find all References and
Go to Definition.

Chapter 4

[117]

Find All References is useful when you're viewing a particular class and you want
to see where it is used. Find All References results in a list of locations where the
selected class is referenced in the solution. Double-clicking on a particular list
item navigates to the file and row and column where that item is referenced. Find
All References also works with variables and members to display a list of where
a particular variable or member is referenced within the entire solution. Find All
References has the shortcut Ctrl+, (Ctrl+comma).

Go to Definition is useful when you're editing code and you need to look at the
source for type, member, or variable that is referenced in other code. Using Go to
Definition takes you directly to the definition of the type, member, or variable. In the
case of a type (like a class or an interface) Go To Definition takes you to the top of the
type definition in whatever class it is in. Go To Definition has the shortcut F12.

Navigating Backward and Forward
When using navigational tools like Find All References and Go to
Definition, it's quite common to want to return to where you navigate
from. This can be done with the Navigate Backward command button.
The Navigate Backward command returns you to where you were when
you navigated to another piece of code with actions like Go to Definition
or double-clicking an entry in the Find All References results list. The
Navigate Backward is also enabled when you navigate more than 10 lines
away from the current cursor position with the mouse and when opening
a new file (Navigate Backward navigates back to the previous file and the
cursor position).
Once you navigate backward you can then navigate (or repeat the
previous navigation) forward with the Navigate Forward.
The Navigate Forward and Navigate Backward commands are available
on the Standard toolbar, next to the Undo and Redo buttons, and are
depicted in the following image:

With the standard C# Visual Studio® keyboard layout, you can also navigate
backward with Ctrl+- (hold Ctrl down while pressing the minus key) and navigate
forwards with Ctrl+Shift+-.

Improving Code Navigation

[118]

For the most part, nothing in particular needs to be done to promote navigability
in the text editor. You can go directly to declarations based on the text in the file or
navigate directly to a member based on the content of the Method Name/Members
combo box. The granularity of the code affects the range in which you can navigate to.
For example, if you have a large method, the navigational techniques available in the
text editor limit the number of places you can navigate to.To improve navigability in
the text editor, refactor any large method code smells. Breaking a large method into
multiple methods increase the number of places you can navigate with the text editor's
Method Names/Members combo box. The ability to understand the code will hinder
navigation, so naming is also an important aspect of code navigability within the text
editor. Use Rename refactor to ensure meaningful and consistent names.

Part of what makes code more navigable is the reader's ease with which they can
navigate to a particular location in the code base. For the most part, Visual Studio®
2010 offers many different techniques to perform this navigation, with a variety
of criteria. But, some of that criterion depends upon the reader's knowledge of the
code base. For example, searching for a particular type requires that the reader
knows almost exactly the name of the type. Naming standards and conventions and
consistent use of them go a long way in making code more navigable.

Navigation with design patterns and
principles
The purpose of many design patterns in object-oriented design is to acknowledge
that quality is tied to how decoupled a design is by introducing and/or increasing
decoupling. Some of the more notable patterns and principles are the Model View
Controller/Presenter and the Dependency Inversion principle. These patterns and
this principle increases decoupling.

The Model View Controller/Model View Presenter patterns (MVC/MVP)
provide a pattern of decoupling presentation logic from business logic. The logic
that performs business decisions like enforcing business rules is decoupled from the
presentation and its logic (like how to add items to user interface controls).

The Dependency Inversion principle designs designers into keeping classes
decoupled in the general case. This promotes independence and allows for greater
reusing and increases extensibility.

As more classes become physically decoupled from one another and become coupled
to abstractions, it becomes much harder to navigate the code, even with navigation
abilities of contemporary Integrated Development Environments.

Chapter 4

[119]

With the MVC/MVP pattern, the Model is abstracted away from the user interface
aspects by way of a Controller or Presenter. The Controller and Presenter are then
responsible for direct coupling to particular classes in the Model (or Domain). It
isn't necessary for the Controller or the Presenter to be directly coupled to particular
classes within the Model, but they would end up being used only by the Controller
or Presenter. The Controller and the Presenter are responsible for getting data from/
to the Model to/from the View (or the user-interface component).

So, when viewing the user-interface code (the View) it's difficult to trace back to the
actual source of the data being used by the View.

Dependency inversion almost always involves creating a dependency on an
abstraction rather than a concrete type (this is the opposite of creating a dependency
on a concrete type, thus it's inverted). This is usually done through some form
of interface-driven design, where the dependency is upon an interface whose
implementation is injected into the dependant. This injection can occur through the
constructor, through property setters, through setter methods, or even through a
proxy like a Factory or some other creational service.

Decoupling classes from one another can involve use of specific decoupling method,
methods like interface-driven design, or use of a framework like an Inversion of
Control Container (IoC container). We'll discuss refactoring to support these types
of decoupling, but when these decoupling methods are used it can make the code
harder to navigate. The code is easier to navigate when the particular method of
decoupling is known, but it's important for code to be structured in specific ways
and pre-defined conventions used in order to minimize the effect on navigability.

So how can we refactor our code to accommodate this? As we detailed earlier in the
chapter, one of the most important ways is to perform Rename refactoring in order to
use consistent naming conventions to make types and members easier to discover.

We'll get more into refactoring code to support patterns like Model View Controller
and Model View Presenter in future chapters. Future chapters will also cover
refactoring to principles like Dependency Inversion.

Improving Code Navigation

[120]

Summary
So, we've seen that the ability of a developer to navigate through the code quickly,
easily, and without valueless thought is a key attribute of a code base's ability to be
maintained and changed. There are many aspects that can affect the navigability
of a code base, including things like identifier naming, source code organization,
and how the Integrated Development Environment supports navigating the code
base. We've detailed the refactorings that can be performed in order to improve
navigability, such as Rename refactor, Move To Namespace refactoring, Move Class
To File refactoring, and so on.

In the following chapter, we'll begin to look at how we can refactor code to help
improve quality. We'll delve deeper into some object-oriented principles and
how to refactor code that doesn't follow these principles. We'll also look at some
design methodologies, their pros and cons, and how to refactor towards better
design methodologies.

Improving Design
Correctness

Design Correctness is a pretty strong term. For many, this is a very subjective term.
For the most part, if you ask two developers to look at the same design and have them
evaluate it, they'll give you a different list of changes they would make to the design
to make it correct. The focus of this chapter is understanding generally-accepted design
principles and methodologies, examples of violating them, and how to refactor code to
alleviate the maintenance issues resulting from these violations.

I'm not going to try to convince you that your design needs to change to
accommodate everything in this book. You need to evaluate any paradigm,
technology, or pattern for yourself and decide if it works in your circumstances.
You need to decide whether it fits your scenario, whether it needs improvement, or
whether there's a completely different technique that works better. When this book
was written, there were generally accepted industry principles and patterns that this
book uses, in part, to look at how to focus refactoring efforts.

This chapter focuses on some primarily design-focused principles and
methodologies that are generally accepted for improving a software system's design.
Most object-oriented principles, techniques, patterns, and methodologies attempt
to improve overall design by addressing the quantity and scope of dependencies
and coupling. It's generally accepted that reducing dependencies and unnecessary
coupling to those dependencies improves the ability for a code base to be maintained
by changing and evolving it over time. This, in turn, has an observed tendency to
help improve quality.

The principles and methodologies we'll detail in this chapter are as follows:

•	 Liskov substitution principle
•	 Composition over inheritance

Improving Design Correctness

[122]

•	 Object-oriented design and object behavior
•	 Move initialization to declaration refactoring
•	 Value types

Liskov substitution principle
In 1988, Barbara Liskov posited about what it means for a class to be a subtype of
another. She detailed What is wanted here is something like the following substitution
property: If for each object o1 of type S there is an object o2 of type T such that for all
programs P defined in terms of T, the behavior of P is unchanged when o1 is substituted
for o2 then S is a subtype of T. Robert Martin coined the name Liskov Substitution
Principle (LSP) and describes it in his Engineering Notebook column The Liskov
Substitution Principle as functions that use pointers or references to base classes must be able
to use objects of derived classes without knowing it. Essentially, what this means is that
a derived class should act exactly like a super class would when used as an object
reference of the super class.

Barbara Liskov, Data Abstraction and Hierarchy, SIGPLAN Notices, 23,5
(May, 1988).

Detecting or avoiding violating the Liskov Substitution Principle can be difficult at
times. It's a principle that can be overlooked by even the most seasoned of software
development designers. Most of the time the violation is very subtle, despite the
design appearing logical and sometimes matching the real world object.

The quintessential example is a Square class that derives from a Rectangle:

public class Rectangle
{
 public virtual Color Color { get; set; }

 public virtual float CalculateArea()
 {
 return Height * Width;
 }

 public virtual float Width { get; set; }

 public virtual float Height { get; set; }
}

public class Square : Rectangle
{
 public override float Height

Chapter 5

[123]

 {
 get
 {
 return base.Height;
 }
 set
 {
 // Set the width to be
 // the same as the height
 // to enforce a square.
 base.Height = value;
 base.Width = value;
 }
 }

 public override float Width
 {
 get
 {
 return base.Width;
 }
 set
 {
 // Set the height to be
 // the same as the width
 // to enforce a square.
 base.Width = value;
 base.Height = value;
 }
 }
}

In this example, we have a simple Rectangle class that is an abstraction for
information about a Rectangle. For our domain, we simply need to know that
a rectangle has a width and height that can be changed independently. We have
another class, Square, that derives from Rectangle, but it differs in that both the
width and the height are synchronized.

Improving Design Correctness

[124]

Violating the Liskov Substitution Principle often stems from a misguided drive to
model is-a relationships from the real world in a virtual world. The Rectangle/
Square scenario is a perfect example of this. While is-a relationships can be modeled
in object-oriented software, issues arise when the subclass does not behave the same
as the superclass. In the Rectangle/Square scenario, we don't view rectangle or
square as having any sort of behavior. Even when modeling rectangles and squares
in software, we don't generally view a Rectangle or Square as having behavior due
to the way we design them. In the example implementation, a rectangle is simply a
container of two floats: the width and the height. They overlook the implicit behavior
that the rectangle has.

One way of seeing the problem that arises is when we try to write a unit test for the
Rectangle and Square classes. There's really not much to test with a rectangle class,
so one test is to verify that there is no interaction between width and setting the
height (and vice versa). This could be done with something like the following:

/// <summary>
///This is a test class for RectangleTest and is intended
///to contain all RectangleTest Unit Tests
///</summary>
[TestClass()]
public class RectangleTest
{
 private Rectangle CreateRectangle()
 {
 return new Rectangle();
 }

 /// <summary>
 ///A test for Rectangle Constructor
 ///</summary>
 [TestMethod()]
 public void RectangleConstructorTest()
 {
 Exception exception = null;
 try
 {
 Rectangle target = CreateRectangle();
 }
 catch (Exception e)
 {
 exception = e;
 }
 Assert.IsNull(exception,
 "Rectangle constructor threw exception.");
 }

 /// <summary>
 ///A test for Height
 ///</summary>

Chapter 5

[125]

 [TestMethod()]
 public void HeightTest()
 {
 Rectangle target = CreateRectangle();
 float expected = 42F;
 float actual;
 target.Height = expected;
 actual = target.Height;
 Assert.AreEqual(expected, actual);
 }

 /// <summary>
 ///A test for Width
 ///</summary>
 [TestMethod()]
 public void WidthTest()
 {
 Rectangle target = CreateRectangle();
 float expected = 24F;
 float actual;
 target.Width = expected;
 actual = target.Width;
 Assert.AreEqual(expected, actual);
 }

 /// <summary>
 ///A test for potential interactions
 ///</summary>
 [TestMethod()]
 public void InteractionTest()
 {
 Rectangle target = CreateRectangle();
 float expectedWidth = 24F;
 float expectedHeight = 42F;
 float actualHeight;
 float actualWidth;
 target.Width = expectedWidth;
 target.Height = expectedHeight;
 actualHeight = target.Height;
 actualWidth = target.Width;
 Assert.AreEqual(expectedWidth, actualWidth);
 Assert.AreEqual(expectedHeight, actualHeight);
 }
}

All of these tests pass fine when tested solely with a Rectangle object. But, when
Square is substituted for its base class, we see that InteractionTest fails with a
message Assert.AreEqual failed. Expected:<24>. Actual:<42>.

Improving Design Correctness

[126]

This points out that Square, when used as a Rectangle, does not behave
intuitively. A non-intuitive API (which is the combination of Square and
Rectangle, and is a unique API) increases the likelihood that someone will
use the API incorrectly—in this case, incorrectly in the expectation that a Square
behaves the same as a Rectangle.

The square/rectangle scenario is a fairly easy scenario to refactor. In the real
world, we know that a square is a type of rectangle (as static shapes) but, does
the code base really need to view a square specifically as a type of a rectangle?
Many times we tend to transfer our real-world understanding of the objects we're
modeling into our domain without any specific need to. We've seen examples of
this in previous chapters, but it's been more explicit. Deriving Square directly from
Rectangle introduces implicit behavior and side-effects.

Fortunately, this is easy to refactor in Visual Studio® 2010. The easiest is to perform
a Convert to Sibling refactoring.

Convert to Sibling refactoring is changing the base class of particular
class to be the same as another class.

Convert to Sibling refactoring
Performing the Convert to Sibling class is not an automatic refactoring supported by
Visual Studio® 2010. So, it must be done manually; but, it's fairly straight forward.
The best case is simply that the class being changed needs to change its base class.
This case is fairly rare because if you're deriving from another class, you're most
likely overriding something. The next best case is that some functionality from the
superclass needs to be copied to the subclass and the class's base class is changed
or removed. The worse case is that the class being modified becomes nonsensical
when the logic from the base is copied to it. This is the case with the rectangle/
square scenario. Performing a refactoring that merely copies logic from the base and
removes the inheritance, we'd have something like this:

public class Square
{
 public float height;
 public float width;
 public float Height
 {
 get
 {
 return height;

Chapter 5

[127]

 }
 set
 {
 height = value;
 width = value;
 }
 }
 public float Width
 {
 get
 {
 return width;
 }
 set
 {
 width = value;
 height = value;
 }
 }
}

By removing the inheritance from Rectangle, Square becomes a very unclear class.
We now have a class with two properties to essentially contain the same value. You'd
want to get rid of one of the properties and focus on just one, like Width. Doing that,
our refactoring ends up like this:

public class Square
{
 public float Width { get; set; }
}

This, of course, requires that everything that was given a Square object and expected
a Rectangle object be changed to accept a Square object. This isn't always possible.
So, this refactoring may need to introduce a common base for both Square and
Rectangle to replace places where Rectangle is expected but Square can be
given. This is heavily dependent on the context in which the two classes are used.
In one case, this could be as simple as creating a new base class Shape, and moving
all common behavior and attributes (CalculateArea() and Color) to Shape and
deriving Rectangle and Square from Shape. We would complete this refactoring by
selectively replacing references to Rectangle with Shape—where appropriate.

Improving Design Correctness

[128]

Refactoring to single class
So far, we have focused on refactorings that deal with retaining the subclass.
Sometimes retaining this class simply isn't feasible. We'll look at another, less
pedantic example of a subclass that isn't truly substitutable for its base:

/// <summary>
/// Abstraction of customer
/// attributes and behavior
/// </summary>
public class Customer
{
 private List<Contact> contacts = new List<Contact>();

 public Customer(DateTime creationDate,
 String accountNumber)
 {
 AccountNumber = accountNumber;
 CreationDate = creationDate;
 Contacts = contacts;
 }

 /// <summary>
 /// Textual representation of
 /// customer account number
 /// </summary>
 public String AccountNumber { get; private set; }

 /// <summary>
 /// Contact information for the customer
 /// </summary>
 public IEnumerable<Contact> Contacts { get; private set; }

 /// <param name="description"></param>
 /// <summary>
 /// Comments about the customer
 /// </summary>
 public virtual void AddContact(Contact contact)
 {
 contacts.Add(contact);
 }

 /// <summary>
 /// Remove <paramref name="contact"/> from
 /// this customer
 /// </summary>
 /// <param name="contact"></param>
 public virtual void RemoveContact(Contact contact)

Chapter 5

[129]

 {
 contacts.Remove(contact);
 }

 /// <summary>
 /// Date the customer was created
 /// </summary>
 public DateTime CreationDate { get; private set; }

 /// <summary>
 /// Textual description of the customer
 /// </summary>
 public String Description { get; private set; }

 /// <summary>
 /// Add description for the customer
 /// </summary>
 public virtual void DescribeCustomer(String description)
 {
 Description = description;
 }

 /// <param name="description"></param>
 /// <summary>
 /// Comments about the customer
 /// </summary>
 public String Comments { get; private set; }

 /// <summary>
 /// Add comments to the customer
 /// </summary>
 /// <param name="comment"></param>
 public virtual void CommentOnCustomer(String comment)
 {
 Comments = comment;
 }
}

/// <summary>
/// Abstraction of an inactive customer's
/// attributes and behavior
/// </summary>
public class InactiveCustomer : Customer
{
 public InactiveCustomer(DateTime creationDate,
 String accountNumber)
 : base(creationDate, accountNumber)
 {

Improving Design Correctness

[130]

 }

 /// <summary>
 /// Add description for the customer
 /// </summary>
 public override void DescribeCustomer(string description)
 {
 throw new InvalidOperationException("Cannot change "
 + " description of an Inactive customer.");
 }

 /// <summary>
 /// Add contact information to the contact
 /// </summary>
 /// <param name="contact"></param>
 public override void AddContact(Contact contact)
 {
 throw new InvalidOperationException("Cannot "
 + " add contacts to an Inactive customer.");
 }

 /// <summary>
 /// Remove <paramref name="contact"/> from
 /// this customer
 /// </summary>
 /// <param name="contact"></param>
 public override void RemoveContact(Contact contact)
 {
 throw new InvalidOperationException("Cannot remove"
 + " contacts from an Inactive customer.");
 }

 /// <summary>
 /// Add comments to the customer
 /// </summary>
 /// <param name="comment"></param>
 public override void CommentOnCustomer(string comment)
 {
 throw new InvalidOperationException("Cannot add"
 + " comment top an Inactive customer.");
 }
}

The designer has designed a Customer class that is an abstraction for customer
information and behavior. It contains information about a customer that is required
to perform business operations. This information contains things like contact
information, description, comments, account number, the date when the customer
first became a customer, and so on.

Chapter 5

[131]

The designer also designed an InactiveCustomer. This is a customer that, for
whatever reason, is no longer active in the system. The designer chose to implement
InactiveCustomer as a specialization of Customer.

As you can see in the implementation of InactiveCustomer, there is certain
behavior that an inactive customer does not support. In this domain, that includes
changing the contacts, description, and comments. In order to implement this, the
programmer has chosen to simply throw an InvalidOperationException.

The designer intended that an InactiveCustomer would be instantiated to represent
a customer that is no longer active. Without putting too much thought into it, it's
easy to think that inactive customer has an is-a relationship with customer. There are
many good arguments why this isn't the case, but we're going to concentrate on the
problems that arise when substituting InactiveCustomer for its base, Customer.

It's logical to think that an InactiveCustomer can't have behaviors such as changing
contacts, but this means that InactiveCustomer can't be used anywhere a Customer
object is expected. For example, if we pass an InactiveCustomer object to a method
that accepts a Customer object and that method makes a call to AddContact, an
exception will occur. In a situation like this, there are two non-refactoring options.
One is that the exception is caught and something different is done instead. This is
difficult due to how general the exception is—InvalidOperationException doesn't
offer much detail about why the exception is being thrown, which doesn't offer much
criteria to decide what to do in light of the exception. Another option is to check to
see what type of Customer object we're dealing with and write different code when
it's an InactiveCustomer object. This, of course, circumvents polymorphism and
negates the benefits of inheritance.

So, how do we refactor in this case? For the most part, this may be domain-specific.
So, depending on your circumstances you may need to do something different than
what I'm going to propose.

The flaw in the design of these two classes isn't necessarily that an inactive
customer is a type of customer, it's that an inactive customer behaves the same
as an active customer. Customer becomes the model for an active customer due
to InactiveCustomer and the way it's designed. As you might be able to tell, an
inactive customer can be modeled in a better way.

Improving Design Correctness

[132]

The way of refactoring Customer/InactiveCustomer involves recognizing that
the behavior that needs to be modeled is that of an attribute of a customer, not
unique behaviors. Once recognizing this, refactoring is straight forward: a flag is
added to the Customer class and logic is moved from InactiveCustomer, use of
InactiveCustomer is removed and replaced with Customer and use of the new flag,
and the InactiveCustomer class is removed. This results in a single Customer class
similar to the following class:

public class Customer
{
 private List<Contact> contacts = new List<Contact>();

 public Customer(DateTime creationDate,
 String accountNumber)
 {
 AccountNumber = accountNumber;
 CreationDate = creationDate;
 Contacts = contacts;
 }

 // previously discuss members removed for clarity...

 public virtual void AddContact(Contact contact)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot add"
 + " contacts from an Inactive customer.");
 }
 contacts.Add(contact);
 }

 public virtual void RemoveContact(Contact contact)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot remove"
 + " contacts from an Inactive customer.");
 }
 contacts.Remove(contact);
 }

 public virtual void AddContact(Contact contact)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot add"
 + " contacts from an Inactive customer.");

Chapter 5

[133]

 }
 contacts.Add(contact);
 }

 public virtual void RemoveContact(Contact contact)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot remove"
 + " contacts from an Inactive customer.");
 }
 contacts.Remove(contact);
 }

 public virtual void DescribeCustomer(String description)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot change"
 + " description of an Inactive customer.");
 }
 Description = description;
 }

 public virtual void CommentOnCustomer(String comment)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot add"
 + " comment top an Inactive customer.");
 }
 Comments = comment;
 }

 public void Deactivate()
 {
 Inactive = true;
 }

 public void Reactivate()
 {
 Inactive = false;
 }
}

Improving Design Correctness

[134]

Where InactiveCustomer was being created, this could be refactored to
the following:

 Customer inactiveCustomer =
 new Customer(creationDate, customerAccountNumber);
 inactiveCustomer.Deactivate();

Composition over inheritance
After seeing some of the issues that arise from not correctly using inheritance, the
next logical step is to look at a principle that avoids inheritance altogether. This
principle is the Prefer Composition over Inheritance principle.

Composition over Inheritance means that classes should be composed of instances
of other classes to implement behavior or attributes instead of inheriting behavior or
attributes from a base class. This means that a class would contain one or more fields
that are references to other classes, and the current class delegates work to them.

Let's look at a slightly different design for Invoice. An invoice could be considered
simply as a collection of InvoiceLineItems. As such, we could implement it by
being a specialization of a collection type, List<T> for sake of argument. In this case,
we'd have a class similar to the following:

public class Invoice : List<InvoiceLineItem>
{
 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 IInvoiceGrandTotalStrategy invoiceGrandTotalStrategy)
 : base(invoiceLineItems)
 {
 this.invoiceGrandTotalStrategy =
 invoiceGrandTotalStrategy;
 }

 public void GenerateReadableInvoice(Graphics graphics)
 {
 graphics.DrawString(HeaderText,
 HeaderFont,
 HeaderBrush,
 HeaderLocation);

 float invoiceSubTotal = 0;
 PointF currentLineItemLocation = LineItemLocation;
 foreach (InvoiceLineItem invoiceLineItem in this)
 {

Chapter 5

[135]

 float lineItemSubTotal =
 CalculateLineItemSubTotal(invoiceLineItem);

 graphics.DrawString(invoiceLineItem.Description,
 InvoiceBodyFont,
 InvoiceBodyBrush,
 currentLineItemLocation);

 currentLineItemLocation.Y +=
 InvoiceBodyFont.GetHeight(graphics);
 invoiceSubTotal += lineItemSubTotal;
 }

 float invoiceTotalTax =
 CalculateInvoiceTotalTax(invoiceSubTotal);
 float invoiceGrandTotal =
 invoiceGrandTotalStrategy.CalculateGrandTotal(
 invoiceSubTotal,
 invoiceTotalTax);
 CalculateInvoiceGrandTotal(invoiceSubTotal,
 invoiceTotalTax);

 graphics.DrawString(String.Format(
 "Invoice SubTotal: {0}",
 invoiceGrandTotal - invoiceTotalTax),
 InvoiceBodyFont, InvoiceBodyBrush,
 InvoiceSubTotalLocation);
 graphics.DrawString(String.Format("Total Tax: {0}",
 invoiceTotalTax), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceTaxLocation);
 graphics.DrawString(String.Format(
 "Invoice Grand Total: {0}",
 invoiceGrandTotal), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceGrandTotalLocation);

 graphics.DrawString(FooterText,
 FooterFont,
 FooterBrush,
 FooterLocation);
 }

 // previously discussed members removed for clarity...
 public Font HeaderFont { get; set; }

 public Brush HeaderBrush { get; set; }

 public Font FooterFont { get; set; }

 public Brush FooterBrush { get; set; }

 public Font InvoiceBodyFont { get; set; }

Improving Design Correctness

[136]

 public Brush InvoiceBodyBrush { get; set; }

}

We have an Invoice class that derives from List<T>. The logic to store the
InvoiceLineItems is inherited from List<T>. We initialize the base in the
constructor by passing an IEnumerable<InvoiceLineItem> to the List<T>
constructor (: base (invoiceLineItems)) and iterate the collection using this in
the foreach loop.

This is fairly straightforward, and for our scenario it works fine. But, as we've
discussed, we're not simply trying to write software that works; we're trying to
write maintainable software that works.

In this example, we're limiting our Invoice class to always having an is-a relationship
with a collection of InvoiceLineItems. While an invoice is always going to have a
collection of InvoiceLineItem objects, that isn't going to be the only collection of
things an invoice may contain. An invoice may also contain a collection of addresses
(bill-to, ship-to, and so on); it may contain a collection of taxes (try designing
an invoice to support multiple regions with no consistent tax structure without
supporting an unknown number of taxes); or, it may contain a collection of payment
methods (that is, the purchaser wants to split up the payment between cash,
Mastercard, Visa, Amex, and so on).

.NET only supports inheritance from a single base class. To implement multiple-
inheritance, you'll have to build up a complex hierarchy. For example, for Invoice to
inherit from two classes, one of the base classes would have to inherit from the other.
This, of course, really limits what we can inherit from and really limits our ability to
subsequently inherit at all in the future. If we inherit from List<T>, we're always a
type of List<T>. Consumers of our class will become coupled to List<T> because
we're republishing its interface.

Another problem with inheritance is that it really makes our design details public. A
class must be concrete, at least partially, in order to be inherited from. We're forcing
our consumers to depend on concretions they have no control over. This also forces
our class to continue depending on that implementation detail. Our consumers are
now coupled to this implementation detail and we can't change it. This reduces the
flexibility in which to evolve our code, either in response to design/requirements
changes or to bug fixes.

Although lack of multiple-inheritance may seem like a limitation, it's a good thing.
It forces designers to think about inheritance. It prevents misusing inheritance
through multiple-inheritance. One of the side-effects of this is that inheritance is now
a limited resource. Having one and only one inheritance slot means many designers
try to keep this free, just in case—so, they avoid inheritance.

Chapter 5

[137]

Inheritance, or subtype polymorphism, is really only useful when you know
one class can really stand in for another. As we've seen, it's easy to misjudge
is-a relationships between classes and end up paying the price for it. Inheritance
introduces a coupling between two classes. Although the subclass obviously
depends on the superclass, there is now a dependency from the superclass to the
subclass. The superclass is now more restricted in how it can evolve itself.

Any member that a class publishes must be expected to be used; so, any changes
to that classe's existing interface must be thoroughly thought through. But, a
superclass's behavior is inherited by the subclass. So, not only must the changes to
member signatures (the interface) need to be well calculated, but now any change
to the behavior of virtual members needs to be well calculated.

One easy example of this is our customer/inactive-customer scenario, where
suddenly introducing an exception in the behavior of a superclass means
anything that uses the subclass also needs to expect this new behavior.

What else does inheritance give us and how do we refactor? One thing that subtype
polymorphism gives us is extensibility. I can create a superclass that defines a
set of base functionality and extension points as virtual/abstract members. I can
then create an interface to accept references to this type of object. A consumer of
this interface can choose to create a subtype of this class and override the virtual
members to extend existing functionality. For example:

public class Invoice : IDisposable
{
 private bool disposed = false;
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 protected virtual void OnDisposed()
 {
 }

 private void Dispose(bool disposing)
 {
 if (!disposed)
 {
 if (disposing)
 {
 // TODO: dispose of disposable members
 }
 disposed = true;

Improving Design Correctness

[138]

 OnDisposed();
 }
 }
}

In this modified Invoice class, we've begun to add support for IDisposable
members. We've derived from IDisposable and implemented the Dispose Pattern.
In addition to that, we've added a virtual OnDispose method so a derived class can
do something special when the object has been disposed.

Refactoring virtual methods to events
In our particular example, this allows derived classes to be informed of disposal, but
this is very limited. In all likelihood more than just the base class may be interested in
knowing when an object is disposed. This type of functionally is better implemented
by means of events. We can easily refactor this class to implement an event instead
of a virtual method by adding a public event, invoking the event where needed, and
removing the virtual method. This results in a class similar to the following:

public class Invoice : IDisposable
{
 private bool disposed = false;
 public event EventHandler Disposed;
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 if (!disposed)
 {
 if (disposing)
 {
 IDisposable disposable = HeaderBrush as
 IDisposable;
 HeaderBrush = null;
 if (disposable != null)
 {
 disposable.Dispose();
 }
 disposable = FooterBrush as IDisposable;
 FooterBrush = null;
 if (disposable != null)

Chapter 5

[139]

 {
 disposable.Dispose();
 }
 disposable = FooterFont as IDisposable;
 FooterFont = null;
 if (disposable != null)
 {
 disposable.Dispose();
 }
 disposable = HeaderFont as IDisposable;
 HeaderFont = null;
 if (disposable != null)
 {
 disposable.Dispose();
 }
 disposable = InvoiceBodyBrush as IDisposable;
 InvoiceBodyBrush = null;
 if (disposable != null)
 {
 disposable.Dispose();
 }
 disposable = InvoiceBodyFont as IDisposable;
 InvoiceBodyFont = null;
 if (disposable != null)
 {
 disposable.Dispose();
 }
 }

 EventHandler disposedEventHandler = Disposed;
 if (disposedEventHandler != null)
 {
 disposedEventHandler(this, EventArgs.Empty);
 }
 disposed = true;
 }
 }
}

Improving Design Correctness

[140]

Once we have this class we need to modify any derived classes to replace the virtual
method with an event handler. This can be done by changing the signature of the
method and adding that to the event handler. For example:

 protected void OnDisposed(object caller, EventArgs e)
 {
 //...
 }

To complete refactoring a derived class, assignment to the base's event should be
added in the derived class's constructor—adding a constructor if none exists.

Instead of changing the signature of the virtual method, you can simply let Visual
Studio® create a new method for you when you write the line of code to assign
a value to the base's Disposed event handler, then move the body of the virtual
method to the event handler and delete the virtual method.

The benefit of implementing events is that you can now have more than just the
base class notified, as opposed to a single base class with virtual methods.

Exceptions to preferring composition
Prefer Composition over Inheritance is a principle for a reason; there are exceptions
to this principle. It's not always possible to do what you want without using
inheritance. There are many frameworks that rely on subtype polymorphism as the
primary means of extension. The .NET Framework's WinForms is a good example
of this. In order to implement a WinForm form, you must derive from System.
Windows.Forms.Form.

Replace inheritance with delegation
refactoring
Refactoring to composition instead of inheritance involves making use of an instance
of another class instead of inheriting from another class. This refactoring is called
Replace Inheritance with Delegation. The class is now delegating responsibility to
another class instead of taking it on itself by inheriting it from another class, as was
previously done when Invoice derived from List<InvoiceLineItem>:

public class Invoice
{
 private IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy;
 private List<InvoiceLineItem> invoiceLineItems;
 public Invoice(IEnumerable<InvoiceLineItem>

Chapter 5

[141]

 invoiceLineItems,
 IInvoiceGrandTotalStrategy invoiceGrandTotalStrategy)
 {
 this.invoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.invoiceGrandTotalStrategy =
 invoiceGrandTotalStrategy;
 }
 //...

 public void GenerateReadableInvoice(Graphics graphics)
 {
 graphics.DrawString(HeaderText,
 HeaderFont,
 HeaderBrush,
 HeaderLocation);

 float invoiceSubTotal = 0;
 PointF currentLineItemLocation = LineItemLocation;
 foreach (InvoiceLineItem invoiceLineItem in
 invoiceLineItems)
 {
 float lineItemSubTotal =
 CalculateLineItemSubTotal(invoiceLineItem);

 graphics.DrawString(invoiceLineItem.Description,
 InvoiceBodyFont,
 InvoiceBodyBrush,
 currentLineItemLocation);

 currentLineItemLocation.Y +=
 InvoiceBodyFont.GetHeight(graphics);
 invoiceSubTotal += lineItemSubTotal;
 }

 float invoiceTotalTax =
 CalculateInvoiceTotalTax(invoiceSubTotal);
 float invoiceGrandTotal =
 invoiceGrandTotalStrategy.CalculateGrandTotal(
 invoiceSubTotal,
 invoiceTotalTax);
 CalculateInvoiceGrandTotal(invoiceSubTotal,
 invoiceTotalTax);

 graphics.DrawString(String.Format(
 "Invoice SubTotal: {0}",
 invoiceGrandTotal - invoiceTotalTax),
 InvoiceBodyFont, InvoiceBodyBrush,
 InvoiceSubTotalLocation);
 graphics.DrawString(String.Format("Total Tax: {0}",
 invoiceTotalTax), InvoiceBodyFont,

Improving Design Correctness

[142]

 InvoiceBodyBrush, InvoiceTaxLocation);
 graphics.DrawString(String.Format(
 "Invoice Grand Total: {0}",
 invoiceGrandTotal), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceGrandTotalLocation);

 graphics.DrawString(FooterText,
 FooterFont,
 FooterBrush,
 FooterLocation);
 }

 // previously discussed members removed for clarity...
}

Object-oriented design and object
behavior
Data-driven design is a form of bottom-up design where the design of the system
is based on the data that will be contained within the system. Of course, the data
in the system can't be modeled without knowing the requirements. Focusing on
just the data ignores requirements of how the system needs to work and focuses on
implementation details.

Focusing on just the data in the system means making implementation decisions too
early. Accurately modeling data in a system may require use of tools to manage that
model. This generally means using a RDBMS or using a data-modeling tool that only
supports an RDBMS.

In many organizations, investment in the relational model of the system is heavy and
the tendency to reuse that investment is high. There is a tendency for the domain
object model to be generated from the data model. There are actually commercial
tools to generate code based on an RDBMS.

Data-driven design when designing your domain model is very problematic. When
classes that contain state (data) don't also contain the behavior that operates on that
state we lose much of what we consider object-orientation. When we don't take into
account the behavior that an object is supposed to model, we end up modeling what
a RDBMS allows. For example:

public class Customer
{
 private List<Contact> contacts = new List<Contact>();

 public String AccountNumber { get; set; }

Chapter 5

[143]

 public IEnumerable<Contact> Contacts { get; set; }

 public DateTime CreationDate { get; set; }

 public String Description { get; set; }

 public String Comments { get; set; }

 public bool Inactive { get; set; }
}

This customer class is just a container for data. It doesn't contain any business logic.
The business rule where comments can't be updated when a customer is inactive
would have to be executed within another class when Comments is assigned to
it. This would have to be executed in all the places where Comments is assigned.
Someone making an assignment would have to know and remember to also do the
same. If this business rule is changed, all of this code would have to be changed.

A class designed this way technically implements data-hiding. The actual fields
aren't visible to the outside world, but nothing is truly being hidden.

If object-orientation wasn't an issue, we'd still have a problem with this model
as it pertains to the evolution of the data. If a DBA decides that the database was
normalized enough and performed some normalization tasks, adding or removing
tables, these classes would have to be updated and anything that used them would
have to be updated. This tightly couples the domain to the data.

Data-driven design makes for a very rigid design. Developers push back on making
changes to accommodate business logic and business rule changes because of the
effort to keep everything synchronized.

I've seen a few systems where the data layer was simply a collection of data-driven
classes like this, which were populated and saved to a database, and the business
logic layer was a collection of classes that didn't need to be persisted to the database
but didn't have anything directly to do with the UI. What in fact happens with
architectures like this is that the business logic and rules are strewn across the UI and
the business logic layer, and in some cases strewn across the UI, the business, and the
data layer. And while pragmatically the system may work, it's very fragile and very
hard to make changes to. Architectures like this defeat the purpose of layering. Their
lack of focus and principles generally mean a fundamental tenant of layer is violated
by introducing circular dependencies between the layers.

Improving Design Correctness

[144]

Designing data-driven classes like this are not a problem on their own. They become
a problem when they're misused within the rest of a system. Designing data-driven
classes like the previous example is fine if they're only used as a form of getting data
from the database to our object-oriented code and are an implementation detail of
the data layer. Domain objects—objects that model the state and behavior—would
then be instantiated based on the data in these data-driven classes and used by the
rest of the system. There are, fortunately, specific classes of tools or frameworks that
create these data-driven classes called Object/Relational Mappers (ORMs), which
we'll discuss in a later chapter.

There is actually a design pattern around this particular use of data-driven designed
classes called the Data Transfer Object (DTO). A Data Transfer Object is a data-
driven class whose purpose is to transfer data from one subsystem to another.
This is common in some data access designs, where the data access layer would
populate a DTO and that data would be used to populate or instantiate a domain
object to be used by the rest of the system. Data Transfer Objects become very useful
when you're dealing with systems whose subsystems are distributed and must
communicate together over-the-wire. Design of a domain object for use in-memory
can often be orthogonal to how data is transferred over the wire or to the layers
responsible for communicating the data. Service-oriented architectures (SOA) often
use web service APIs that have distinct restrictions on the type and format of data.
Data Transfer Object helps to shield the implementation details of transferring data
to and from subsystems without having to couple it to layers where it doesn't belong
or cannot be implemented.

If you find that you're dealing with a code base where the domain layer (or the
domain objects, if you have no layering) is mostly data-driven classes or that you
have some particularly data-driven classes, refactoring can get very complex.

Refactoring to improved object-orientation
Refactoring data-driven classes generally follow a particular purpose, moving
behavior (or logic) into a class and modifying use of the class by other classes. In
our Customer example, we would remove some setters from some properties and
introduce explicit behavior to the class.

/// <summary>
/// Abstraction of customer
/// attributes and behavior
/// </summary>
public class Customer
{
 private List<Contact> contacts = new List<Contact>();

Chapter 5

[145]

 public Customer(DateTime creationDate,
 String accountNumber)
 {
 AccountNumber = accountNumber;
 CreationDate = creationDate;
 Contacts = contacts;
 }

 /// <summary>
 /// Textual representation of
 /// customer account number
 /// </summary>
 public String AccountNumber
 {
 get;
 private set;
 }

 /// <summary>
 /// Contact information for the customer
 /// </summary>
 public IEnumerable<Contact> Contacts
 {
 get;
 private set;
 }

 /// <summary>
 /// Add contact information to the contact
 /// </summary>
 /// <param name="contact"></param>
 public virtual void AddContact(Contact contact)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot add"
 + " contacts from an Inactive customer.");
 }
 contacts.Add(contact);
 }

 /// <summary>
 /// Remove <paramref name="contact"/> from
 /// this customer
 /// </summary>
 /// <param name="contact"></param>
 public virtual void RemoveContact(Contact contact)

Improving Design Correctness

[146]

 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot remove"
 + " contacts from an Inactive customer.");
 }
 contacts.Remove(contact);
 }

 /// <summary>
 /// Date the customer was created
 /// </summary>
 public DateTime CreationDate
 {
 get;
 private set;
 }

 /// <summary>
 /// Textual description of the customer
 /// </summary>
 public String Description
 {
 get;
 private set;
 }

 /// <summary>
 /// Add description for the customer
 /// </summary>
 /// <param name="description"></param>
 public virtual void DescribeCustomer(String description)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot change"
 + " description of an Inactive customer.");
 }
 Description = description;
 }

 /// <summary>
 /// Comments about or by the customer, their preferences,
 ///
 /// </summary>
 public String Comments
 {

Chapter 5

[147]

 get;
 private set;
 }

 /// <summary>
 /// Add comments to the customer
 /// </summary>
 /// <param name="comment"></param>
 public virtual void CommentOnCustomer(String comment)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot add"
 + " comment top an Inactive customer.");
 }
 Comments = comment;
 }

 /// <summary>
 /// Whether the customer is active or not
 /// true if inactive, false if active.
 /// </summary>
 public bool Inactive
 {
 get;
 private set;
 }

 /// <summary>
 /// Deactivate the customer
 /// </summary>
 public void Deactivate()
 {
 Inactive = true;
 }

 /// <summary>
 /// Reactivate the customer
 /// </summary>
 public void Reactivate()
 {
 Inactive = false;
 }
}

Improving Design Correctness

[148]

In this new class, the highlighted changes include changing the Inactive, Comments,
Description, AccountNumber, and Contacts properties to get-only, and the
behaviors Deactivate, Reactivate, CommentOnCustomer, DescribeCustomer,
AddContact and RemoveContact were added to model the expected behavior (or
how the object is used) of the class.

I find this refactoring to be the best when performing one behavior at a time. With
Customer, for example, I would start with a behavior such as changing activation:
reduce the visibility of the Deactivated property, introduce Deactivate and
Reactivate methods, then update all the code that used the Deactivated property
to use either the Deactivate method or the Reactivate method.

Move initialization to declaration
In C# there are various options to initialize variables. Variables include member
and local variables. These variables can be simple types (one value) or they can be
aggregate types (a composition of multiple values).

The first time a variable that is a simple type is assigned, it is considered initialized.
Initialization of aggregate types is more complex. Aggregate types can be designed
to be completely initialized via a particular constructor, or the aggregate type may
only have a default constructor and initialization must occur through multiple
property/field assignments. There's also a hybrid of the two where initialization
occurs with both a constructor and field/property assignment.

I emphasize initialized and initialization in the above paragraph because for most
aggregate types, initialization is subjective. If the type is mutable it can be changed
throughout its lifespan and whether or not it's initialized depends on the code using
it and not on the type itself.

Mutable Type: A type that once instantiated can be modified.

The following is an example of a mutable type:

public class PersonName
{
 public string GivenName { get; set; }

 public string Surname { get; set; }
}

Chapter 5

[149]

This is a straightforward aggregate type that aggregates the components of a simple
person's name. It contains the given name of the person (or the first name, in many
Western cultures) and the surname of the person (or last name, in many Western
cultures). It only contains a default constructor (implicit, as we haven't defined any
constructors).

A typical initialization of this type would look like this:

 PersonName personName = new PersonName();
 personName.GivenName = "Peter";

 DoSomething();

 personName.Surname = "Ritchie";

This initialization is not an atomic operation; it's done in multiple steps involving
multiple instructions.

Atomic operation: An operation that has only one observable
side effect.

Although this particular snippet of code normally can't have its side effects observed
by any other thread than the current thread, and use of the personName object is
done after all the properties have been assigned, it has three observable side effects.
The first is a personName object where GivenName and Surname both have the value
String.Empty. The second is that GivenName has the value Peter and the Surname
has the value String.Empty. The third is that GivenNane has the value Peter and
Surname has the value Ritchie.

A PersonName instance is free to be changed at any time in its lifespan. Its value may
change to something else for whatever purpose. For example, we may have code like
the following:

 PersonName personName = new PersonName();
 personName.GivenName = "Peter";

 DoSomething();

 personName.Surname = "Ritchie";
 Use(personName);

 personName.GivenName = "Dennis";
 Use(personName);

In this example, the code is initializing personName to Peter Ritchie for the first call to
Use(), then initializing personName to Dennis Ritchie for the second call to Use().

Improving Design Correctness

[150]

Obviously this code works as it is, but it has some maintainability issues. As written,
initialization is implicit. It's implied that personName is or should be initialized to
Peter Ritchie before the first call to Use() and that it should be initialized to Dennis
Ritchie prior to calling Use() the second time. These initializations are implicit
because we're not atomically initializing personName. As it is written, another person
can edit the code to be something like the following:

 PersonName personName = new PersonName();
 personName.GivenName = "Peter";
 DoSomething();
 var customer = LookupCustomer(personName);
 personName.Surname = "Ritchie";
 Use(personName);
 personName.GivenName = "Dennis";
 Use(personName);

This introduces a new method call to LookupCustomer that makes use of
personName.

Value types
Value types don't represent an entity, or something with an identity. A value type
generally models something like an attribute or a characteristic. A value is something
that acts as a whole. System.DateTime is an example of a value type. November 5,
1970 is always November 5, 1970. Changing the day of the month of November 5, 1970
to 11 doesn't change November 5, 1970; it makes another date, November 11, 1970. A
value type isn't the same as a .NET value type—or a type modeled with a struct.

Value types are types that don't have an identity and don't represent
something else, they represent a value.

Refactoring to value type
Refactoring to a value type is simple. It basically entails making the type immutable
and providing the ability to construct the value in all possible ways. With our
PersonName, this could be done by refactoring the class as follows:

 public class PersonName
 {
 public PersonName(string givenName, string surname)
 {
 GivenName = givenName;
 Surname = surname;

Chapter 5

[151]

 }

 public PersonName(string givenName)

 : this(givenName, String.Empty)
 {
 }

 public string GivenName { get; private set; }

 public string Surname { get; private set; }
 }

Then, modify all the code that assigns values to the GivenName or Surname properties
and change the call to the constructor. Depending on how the PersonName instances
are used, this may also require introducing a new constructor call. For example, after
refactoring the PersonName class and changing the existing constructor calls, one of
our previous examples is left with an orphaned GivenName assignment:

 PersonName personName = new PersonName("Peter", "Ritchie");

 DoSomething();

 var customer = LookupCustomer(personName);

 Use(personName);

 personName.GivenName = "Dennis"; // orphaned

 Use(personName);

In order to resolve this, we need to introduce a new instance. This final refactoring
results in something similar to the following:

 PersonName personName = new PersonName("Peter", "Ritchie");

 DoSomething();

 var customer = LookupCustomer(personName);

 Use(personName);

 personName = new PersonName("Dennis", "Ritchie");

 Use(personName);

In the context of our example, this is just dandy. But, be careful when performing
this refactoring in other contexts. We started with a single instance of a PersonName
object and re-used it; in other contexts there may be some implicit side-effects that
result from this re-use that you'd lose by creating another instance. If this happens, I
would suggest you've got a design issue or two to address; it's something you should
watch out for.

Improving Design Correctness

[152]

Making a value type immutable becomes important due to the way they are used
and their lifespan. Value types are intended to be used as values (hence the name),
and they're meant to be modeling domain-specific values that represent primitive
types. Value types are generally transient; they don't live on their own beyond the
invocation of the application in which they are used, that is, they're not persisted
to some sort of repository unless they're aggregated in another type that does have
an identity.

Immutable types are not unique to Value Types. As parallelization and concurrency
becomes more mainstream taking greater advantage of multi-core and multi-processor
computers, immutability becomes more important. Sending a message from one
thread to another that is mutable, requires synchronization of changes to the object.
Changing an object in Thread A must not be interrupted by modifications of Thread
B, for example, because this will end up corrupting the data contained within the
object. Rather than having to deal with thread synchronization, making types are
used amongst threads immutable it eliminates the ability to modify data being
used by multiple threads and eliminates the need for expensive and error-prone
synchronization.

Modeling business rules appropriately
What we've shown here is a class that doesn't completely model the business rules
of the domain or the organization. In all likelihood, there exist rules around what
a valid person name is. We've modeled a class that only contains a given name and
a surname; so, we have explicitly modeled a business rule that details that a person
name only contains the given name and the surname. This is perfectly acceptable
for many domains. But, implicitly what is modeled is that both the given name and
surname are optional. This is clearly incorrect, I know of no domain where a person
can be nameless.

What the programmer is forced to do is implement the business rules associated
with a person name throughout the entire code base (or more specifically, where
PersonName is used). What this does, of course, is make it hard to enforce the
business rule as well as hard to maintain it. If the rule changes, we have that many
places to change how a person name is used correctly.

I'm not suggesting that the PersonName class should take on the responsibility of
validating itself directly. Validation of business rules should generally be explicit and
autonomous. But, whether or not a class is instantiated correctly often depends on
the design of that class's constructor. In our PersonName example, we haven't limited
how someone using the PersonName class can create an instance. So, they're able to
create any permutation of properties.

Chapter 5

[153]

If our business rules stipulate that a person name is only valid if they have a
given name and a surname, then refactoring PersonName is as simple as making
PersonName immutable and providing a single constructor that accepts the given
name and the surname. For example:

public class PersonName
{
 public PersonName(string givenName, string surname)
 {
 GivenName = givenName;
 Surname = surname;
 }

 public string GivenName { get; private set; }

 public string Surname { get; private set; }
}

These changes remove the default (implicit) constructor, make the GivenName and
Surname properties read-only outside of the PersonName class, and introduce a
single constructor to initialize GivenName and Surname at instantiation.

Summary
In this chapter, we've seen specific ways we can improve our design to reduce
coupling and improve maintainability. We've seen how to refactor to principles
like Composition over Inheritance, refactor violations of the Liskov Substitution
Principle, and refactor to practices like Value Types and initializing at declaration.
We've also seen how we can refactor our classes to be more object-oriented and focus
on the behavior as well as the state contained within a class.

In the next chapter, we'll expand on design-based refactoring. We'll look at
specific ways to refactor code to improve the potential for quality. We will
examine improving cohesion and decreasing coupling and principles that relate
to cohesiveness and decoupling.

Improving Class Quality
Larry Constantine is attributed with the creation of systematic measurement of
software quality. In the mid-to-late seventies, Larry Constantine (and Ed Yourdon)
attributed several things to the quality of software code. Under the umbrella of
structured design, among those attributes of quality software code were cohesion
and coupling. At the time they associated quality with generality, flexibility, and
reliability. We're going to concentrate on generality and flexibility and how cohesion
and coupling can be applied to increase code quality.

Larry Constantine: http://en.wikipedia.org/wiki/
Larry_Constantine.

Cohesion
Cohesion applies to many different disciplines. Cohesion in physics relates to the
force that keeps molecules integrated and united and that makes the molecule what
it is. A highly cohesive molecule is one that tends to remain autonomous and not
adhere to or blend with other molecules. In geology, cohesion is the strength of
substances to resist being broken apart. In linguistics, it's the degree to which text is
related. Text whose content relates to the same subject is cohesive.

Improving Class Quality

[156]

Cohesion in software is very similar to cohesion elsewhere. A cohesive block of code
is a block of code that relates well together and has the ability to remain together
as a unit. Object-oriented programming brings distinct cohesive abilities. All
programming languages have certain cohesive abilities, such as their ability to group
code in modules, source files, functions, and so on. A programming language's
ability to define physical boundaries enables cohesiveness. A module, for example,
defines a specific boundary for which some content is retained and other content
is repelled. Code from one module can use code from another module, but only in
specific and defined ways—usually independent of language syntax. All code within
a module has innate cohesion: their relation amongst themselves as being contained
within the module.

Any rule, principle, guideline, or practice needs to be implemented thoughtfully.
This text isn't a manual on how you must perform your refactoring; it's a description
of several types of refactorings and their impetus. By the same token, this text doesn't
set out to prove the benefits of any particular rule, principle, guideline, or practice.
"Mileage may vary" and incorrect usage will often negate most, if not all, benefits. I'll
leave it as an exercise for the reader to find the research that "proves" the benefits of
any particular rule, principle, guideline, or practice. This text assumes the generally
accepted benefits of various principles and practices, including cohesion, as an
indicator of quality. If you decide that the benefits aren't outweighing the costs, it's
up to you to decide not to implement that principle.

Class cohesion
Object-orientation brings extra cohesive abilities to the programmer. The
programmer has the ability to relate code together within a class. Other code can use
the code within a class, but only through its defined boundaries (the class's methods
and properties).

In object-oriented design, cohesion is generally much more than simply code
contained within a class. Object-oriented cohesiveness goes beyond the physical
relation of code within a class and deals with the relation of meaning of the code
within a class.

Object-oriented language syntax allows the programmer to freely relate code to
other code through a class definition, but this doesn't mean that code is cohesive.
For example, let's revisit our Invoice class so far.

/// <summary>
/// Invoice class to encapsulate invoice line items
/// and drawing
/// </summary>
public class Invoice

Chapter 6

[157]

{
 private IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy;
 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 IInvoiceGrandTotalStrategy invoiceGrandTotalStrategy)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.invoiceGrandTotalStrategy =
 invoiceGrandTotalStrategy;
 }

 private List<InvoiceLineItem> InvoiceLineItems
 {
 get;
 set;
 }

 public void GenerateReadableInvoice(Graphics graphics)
 {
 graphics.DrawString(HeaderText,
 HeaderFont,
 HeaderBrush,
 HeaderLocation);

 float invoiceSubTotal = 0;
 PointF currentLineItemLocation = LineItemLocation;
 foreach (InvoiceLineItem invoiceLineItem in
 InvoiceLineItems)
 {
 float lineItemSubTotal =
 CalculateLineItemSubTotal(invoiceLineItem);

 graphics.DrawString(invoiceLineItem.Description,
 InvoiceBodyFont,
 InvoiceBodyBrush,
 currentLineItemLocation);

 currentLineItemLocation.Y +=
 InvoiceBodyFont.GetHeight(graphics);
 invoiceSubTotal += lineItemSubTotal;
 }

 float invoiceTotalTax =
 CalculateInvoiceTotalTax(invoiceSubTotal);
 float invoiceGrandTotal =
 invoiceGrandTotalStrategy.CalculateGrandTotal(

Improving Class Quality

[158]

 invoiceSubTotal,
 invoiceTotalTax);
 CalculateInvoiceGrandTotal(invoiceSubTotal,
 invoiceTotalTax);

 graphics.DrawString(String.Format(
 "Invoice SubTotal: {0}",
 invoiceGrandTotal - invoiceTotalTax),
 InvoiceBodyFont, InvoiceBodyBrush,
 InvoiceSubTotalLocation);
 graphics.DrawString(String.Format("Total Tax: {0}",
 invoiceTotalTax), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceTaxLocation);
 graphics.DrawString(String.Format(
 "Invoice Grand Total: {0}",
 invoiceGrandTotal), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceGrandTotalLocation);

 graphics.DrawString(FooterText,
 FooterFont,
 FooterBrush,
 FooterLocation);
 }

 public static float CalculateInvoiceGrandTotal(
 float invoiceSubTotal, float invoiceTotalTax)
 {
 float invoiceGrandTotal = invoiceTotalTax +
 invoiceSubTotal;
 return invoiceGrandTotal;
 }

 public float CalculateInvoiceTotalTax(
 float invoiceSubTotal)
 {
 float invoiceTotalTax =
 (float)((Decimal)invoiceSubTotal *
 (Decimal)TaxRate);
 return invoiceTotalTax;
 }

 public static float
 CalculateLineItemSubTotal(
 InvoiceLineItem invoiceLineItem)
 {
 float lineItemSubTotal =
 (float)((decimal)(invoiceLineItem.Price
 - invoiceLineItem.Discount)

Chapter 6

[159]

 * (decimal)invoiceLineItem.Quantity);
 return lineItemSubTotal;
 }

 public string HeaderText { get; set; }

 public Font HeaderFont { get; set; }

 public Brush HeaderBrush { get; set; }

 public RectangleF HeaderLocation { get; set; }

 public string FooterText { get; set; }

 public Font FooterFont { get; set; }

 public Brush FooterBrush { get; set; }

 public RectangleF FooterLocation { get; set; }

 public float TaxRate { get; set; }

 public Font InvoiceBodyFont { get; set; }

 public Brush InvoiceBodyBrush { get; set; }

 public Point LineItemLocation { get; set; }

 public RectangleF InvoiceSubTotalLocation { get; set; }

 public RectangleF InvoiceTaxLocation { get; set; }

 public RectangleF InvoiceGrandTotalLocation { get; set; }
}

We have an operational Invoice class. It does some things, and they work. But, our
Invoice class isn't very cohesive. The Invoice class has distinct groups of fields.
Some are for the state of an invoice and some are for generating a readable invoice.
Methods that deal with the behavior and attributes of an invoice don't use the fields
that deal with generating a readable invoice.

Our Invoice class is implementing two distinct tasks: managing invoice state and
generating a readable invoice. The data required to generate a readable invoice (over
and above the data shown on an invoice) isn't used by Invoice when not generating
a readable invoice.

Our Invoice class can be said to have multiple responsibilities: the responsibility of
managing state and the responsibility of generating a readable invoice. What makes
an invoice an invoice may be fairly stable; we may occasionally need to add, remove,
or change fields that store data contained in an invoice. But, the act of displaying a
readable invoice may be less stable: it may change quite frequently. Worse still, the
act of displaying a readable invoice may depend on the platform it is running on.

Improving Class Quality

[160]

The Single Responsibility Principle
In terms of focusing refactoring efforts towards cohesiveness of a class, the Single
Responsibility Principle (SRP) gives us guidance on what a particular class should
or should not do. The Single Responsibility Principle states that "there should never
be more than one reason for a class to change". In the case of our invoice class there's
a couple of reasons why we'd need to change the class:

•	 The way an invoice is displayed needs to change.
•	 The data that is contained in an invoice needs to change.

The stability of each responsibility shouldn't need to depend on the other. That is,
any change to the Invoice class affects stability of the whole class. If I often need
to change the way an invoice renders a displayable invoice, all of Invoice is
instable—including its responsibility to the data an invoice contains.

The Single Responsibility Principle's focus is fairly narrow: class responsibility. A
novice may simply accept that scope and use it only to focus cohesion efforts at the
class level. The fact is that the Single Responsibility Principle is applicable at almost
all levels of software design, including method, namespace, module/assembly,
and process; that is, a method could implement too much responsibility, the types
within an assembly or namespace could have unrelated responsibilities, and the
responsibilities of a given process might not be focused effectively.

Simply saying "single responsibility" or detailing that something has too many
responsibilities is simple. But the actual act of defining what a responsibility is can
be very subjective and subtle. Refactoring towards Single Responsibility can take
some time and some work to get right. Let's see how we can improve quality
through better cohesion and the principle of single responsibility.

Refactoring classes with low-cohesion
Clearly single responsibility (and the heading of this section) suggests that we
should refactor Invoice into multiple classes. But, how do we do that given
our current scenario? The designer of this class has obviously thought that
the functionality of Invoice included rendering a readable invoice, so how
do we make a clean separation? Fortunately, the lack of cohesiveness gives us
our separation points. What makes an invoice an invoice doesn't include those
fields that deal solely with rendering a readable invoice. Fields like HeaderFont,
HeaderBrush, HeaderText, HeaderLocation, FooterFont, FooterBrush,
FooterText, FooterLocation, InvoiceBodyFont, InvoiceBodyBrush,
LineItemLocation, InvoiceBustTotalLocation, InvoiceTaxLocation, and
InvoiceGrandTotalLocation all deal with just the rendering responsibility.

Chapter 6

[161]

The Invoice class is modeling a real-world invoice. When you hold an invoice in
your hand or view it on the screen, it's already rendered. In the real-world we'd
never think that a responsibility of rendering an invoice would be a responsibility of
the invoice itself.

We know we want to retain our original Invoice class and we want to move
the rendering responsibility to a new class. This new class will encapsulate the
responsibility of rendering an invoice. Since this new class will take an Invoice
object and help another class produce something useful, we can consider this an
invoice rendering service.

In order to refactor our existing Invoice class to a new Invoice rendering service,
we start with a new InvoiceRenderingService class and move the HeaderFont,
HeaderBrush, HeaderText, HeaderLocation, FooterFont, FooterBrush,
FooterText, FooterLocation, InvoiceBodyFont, InvoiceBodyBrush,
LineItemLocation, InvoiceBustTotalLocation, InvoiceTaxLocation, and
InvoiceGrandTotalLocation fields to the InvoiceRenderingService. Next, we
move the GenerateReadableInvoice method to the InvoiceRenderingService.
At this point, we basically have a functional class, but since the
InvoiceRenderingService method was on the Invoice classes, the other properties
that the GenerateReadableInvoice uses need an Invoice object reference—
effectively changing it from "this" to a parameter to the GenerateReadableInvoice
method. Since the original Invoice class was never expected to be used externally
like this, we need to add a CalculateGrandTotal method that delegates to the
invoiceGrandTotalStrategy object. The result is something like the following:

/// <summary>
/// Encapsulates a service to render an invoice
/// to a Graphics device.
/// </summary>
public class InvoiceRenderingService
{
 public void GenerateReadableInvoice(Invoice invoice,
 Graphics graphics)
 {
 graphics.DrawString(HeaderText,
 HeaderFont,
 HeaderBrush,
 HeaderLocation);

 float invoiceSubTotal = 0;
 PointF currentLineItemLocation = LineItemLocation;
 foreach (InvoiceLineItem invoiceLineItem in
 invoice.InvoiceLineItems)
 {

Improving Class Quality

[162]

 float lineItemSubTotal =
 Invoice.CalculateLineItemSubTotal(
 invoiceLineItem);

 graphics.DrawString(invoiceLineItem.Description,
 InvoiceBodyFont,
 InvoiceBodyBrush,
 currentLineItemLocation);

 currentLineItemLocation.Y +=
 InvoiceBodyFont.GetHeight(graphics);
 invoiceSubTotal += lineItemSubTotal;
 }

 float invoiceTotalTax =
 invoice.CalculateInvoiceTotalTax(
 invoiceSubTotal);
 float invoiceGrandTotal =
 invoice.CalculateGrandTotal(
 invoiceSubTotal,
 invoiceTotalTax);
 Invoice.CalculateInvoiceGrandTotal(invoiceSubTotal,
 invoiceTotalTax);

 graphics.DrawString(String.Format(
 "Invoice SubTotal: {0}",
 invoiceGrandTotal - invoiceTotalTax),
 InvoiceBodyFont, InvoiceBodyBrush,
 InvoiceSubTotalLocation);
 graphics.DrawString(String.Format("Total Tax: {0}",
 invoiceTotalTax), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceTaxLocation);
 graphics.DrawString(String.Format(
 "Invoice Grand Total: {0}",
 invoiceGrandTotal), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceGrandTotalLocation);

 graphics.DrawString(FooterText,
 FooterFont,
 FooterBrush,
 FooterLocation);
 }

 public string HeaderText { get; set; }

 public Font HeaderFont { get; set; }

 public Brush HeaderBrush { get; set; }

 public RectangleF HeaderLocation { get; set; }

Chapter 6

[163]

 public string FooterText { get; set; }

 public Font FooterFont { get; set; }

 public Brush FooterBrush { get; set; }

 public RectangleF FooterLocation { get; set; }

 public Font InvoiceBodyFont { get; set; }

 public Brush InvoiceBodyBrush { get; set; }

 public Point LineItemLocation { get; set; }

 public RectangleF InvoiceSubTotalLocation { get; set; }

 public RectangleF InvoiceTaxLocation { get; set; }

 public RectangleF InvoiceGrandTotalLocation { get; set; }
}

Alternatively, the whole use of invoiceGrandTotalStrategy can be moved into
the InvoiceRenderingService—which is a better design decision.

Detecting classes with low-cohesion
So, we've seen a fairly simple example of making a not-so-cohesive class into two
more-cohesive classes; but, one of the tricky parts of refactoring away classes with
low cohesion is finding them. How do we find classes with low-cohesion?

Fortunately, many people have put time and effort over the years into defining
what it means for a class to be cohesive. There have been various metrics researched
and created over the years to define cohesion in classes. The most popular metric
is Lack of Cohesion of Methods (LCOM). Lack of Cohesion of Methods measures
the degree to which all methods use all fields. The more segregated field usage is
amongst methods of a class, the higher the Lack of Cohesion of Methods metric of
the class will be. Lack of Cohesion of Methods is a measure of the entire class, so it
won't point out where the class is not cohesive or indicate where the responsibilities
can be separated.

Improving Class Quality

[164]

Lack of Cohesion of Methods is a measurement of the degree to which fields are used
by all methods of a class. Perfection as defined by Lack of Cohesion of Methods is
that every method uses every field in the class. Clearly not every class will do this
(and arguably this will hardly ever happen); so, Lack of Cohesion of Methods is a
metric, as most metrics are, that requires analysis and thought before attempting
to act upon its value. LCOM is a value between 0 and 1, inclusive. A measure of 0
means every method uses every field. The higher the value, the less cohesive the
class; the lower the value, the more cohesive the class. A typical acceptable range
is 0 to 0.8. But, there's no hard-and-fast definition of specific value that represents
cohesive; just because, for example, a class has an LCOM value of 0.9, that doesn't
mean it can or should be broken up into multiple classes. Lack of Cohesion of
Methods values should be used as a method of prioritizing cohesion refactoring
work by focusing on classes with higher LCOM values before other classes (with
lower LCOM values).

In the case of our Invoice class, it's apparent that its LCOM value does mean it can be
split into multiple classes as we detailed in the previous section.

Method cohesion
Methods on their own can also suffer from low-cohesion. One symptom of a method
with low-cohesion is size. Methods with low-cohesion are often large. A large
method is generally doing more than it needs to. As we saw with the Large Method
Code Smell in Chapter 2, refactoring is as simple as breaking the method up into
multiple methods. Each method should take on a single responsibility.

Another symptom of a class that suffers from low-cohesion is one that has many
parameters. A method that takes many parameters is probably doing too many
things. Unfortunately, how to refactor depends on what is trying to be accomplished.
One example of too many arguments is often constructors. For example:

/// <summary>
/// Example of a class with low-cohesion
/// </summary>
public class Invoice
{
 public string GivenName { get; private set; }
 public string SurName { get; private set; }
 public string Street { get; private set; }
 public string City { get; private set; }
 public string Province { get; private set; }
 public string Country { get; private set; }
 public string PostalCode { get; private set; }

 public Invoice(IEnumerable<InvoiceLineItem>

Chapter 6

[165]

 invoiceLineItems, string givenName,
 string surName, string street,
 string city, string province,
 string country, string postalCode,
 Func<float, float, float> calculateGrandTotalCallback)
 {
 GivenName = givenName;
 SurName = surName;
 Street = street;
 City = city;
 Province = province;
 Country = country;
 PostalCode = postalCode;
 }

 //...
}

The Invoice class has taken on the extra responsibility of managing customer
information (given name, surname, street, and so on) and thus one of its constructors
has many parameters.

Refactoring methods with low-cohesion
Invoice could be refactored to make the constructor (and the class, for that matter)
more cohesive by encapsulating customer information into a Customer class,
encapsulating address information into an Address class and the Invoice class,
and accepting a Customer parameter to the constructor that initializes a Customer
property. The resulting refactoring would look like the following:

/// <summary>
/// Customer shape to encapsulate
/// name and address
/// </summary>
public class Customer
{
 public String FirstName { get; private set; }
 public String LastName { get; private set; }
 public Address Address { get; private set; }

 public Customer(string firstName, string lastName,
 Address address)
 {
 FirstName = firstName;
 LastName = lastName;
 Address = address;

Improving Class Quality

[166]

 }
}

/// <summary>
/// Address shape to encapsulate
/// western-style addresses
/// </summary>
public class Address
{
 public string Street { get; private set; }
 public string City { get; private set; }
 public string Province { get; private set; }
 public string Country { get; private set; }
 public string PostalCode { get; private set; }

 public Address(string street, string city, string province,
 string country, string postalCode)
 {
 Street = street;
 City = city;
 Province = province;
 Country = country;
 PostalCode = postalCode;
 }
}

/// <summary>
/// Invoice class that makes use
/// of <seealso cref="Customer"/>
/// </summary>
public class Invoice
{
 public Customer Customer { get; private set; }

 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems, Customer customer,
 Func<float, float, float> calculateGrandTotalCallback)
 {
 Customer = customer;
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.calculateGrandTotalCallback =
 calculateGrandTotalCallback;
 }
 //...
}

Chapter 6

[167]

We now have an Invoice class that makes use of the Customer class, and the
Customer class manages the customer (including address) responsibility.

This provides a much more cohesive constructor and encapsulates customer and
address information so that code to initialize that type of information does not have
to be repeated. We can use the code that used to be contained in Invoice anywhere
else with Customer without having to repeat that code within the other classes that
need it.

In other cases, a method with too many parameters is simply trying to do too many
things.

/// <summary>
/// Invoice that uses callback for
/// grand total calculation
/// </summary>
public class Invoice
{
 private Func<float, float, float>
 calculateGrandTotalCallback;

 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 Func<float, float, float> calculateGrandTotalCallback)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.calculateGrandTotalCallback =
 calculateGrandTotalCallback;
 }

 public List<InvoiceLineItem> InvoiceLineItems { get; set; }

 public float TaxRate { get; set; }

 public bool CalculateTotals(out float invoiceSubTotal,
 out float invoiceTotalTax, out float invoiceGrandTotal)
 {
 invoiceSubTotal = 0;
 foreach (InvoiceLineItem invoiceLineItem in
 InvoiceLineItems)
 {
 invoiceSubTotal +=
 (float)((decimal)(invoiceLineItem.Price
 - invoiceLineItem.Discount)
 * (decimal)invoiceLineItem.Quantity);
 }

Improving Class Quality

[168]

 invoiceTotalTax = (float)((Decimal)invoiceSubTotal *
 (Decimal)TaxRate);
 invoiceGrandTotal =
 calculateGrandTotalCallback(invoiceTotalTax,
 invoiceTotalTax);
 return true;
 }
 //...
}

CalculateTotals is a straightforward example that effectively returns three
floating-point values from a method: calculating three values and assigning them to
output parameters. What is common with methods with "multiple return values" is
to return a Boolean result. This Boolean result is always true—and an indication that
there's a design issue. In this example, the designer thought it would be useful to be
able to query all the total values at the same time. The problem with this is that if
only one value is needed, then the caller has to create a couple of dummy variables
to needlessly store the unwanted values.

In order to refactor this, we simply need to perform Extract Method refactorings
to split up the method into three methods: CalculateInvoiceGrandTotal,
CalculateInvoiceTotalTax, and CalculateLineItemSubtotal.

/// <summary>
/// Example of method with too many parameters
/// </summary>
public class Invoice
{
 private Func<float, float, float>
 calculateGrandTotalCallback;

 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 Func<float, float, float> calculateGrandTotalCallback)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.calculateGrandTotalCallback =
 calculateGrandTotalCallback;
 }

 public List<InvoiceLineItem> InvoiceLineItems { get; set; }

 public float TaxRate { get; set; }

 public bool CalculateTotals(out float invoiceSubTotal,
 out float invoiceTotalTax, out float invoiceGrandTotal)

Chapter 6

[169]

 {
 invoiceSubTotal = 0;
 foreach (InvoiceLineItem invoiceLineItem in
 InvoiceLineItems)
 {
 invoiceSubTotal +=
 (float)((decimal)(invoiceLineItem.Price
 - invoiceLineItem.Discount)
 * (decimal)invoiceLineItem.Quantity);
 }

 invoiceTotalTax = (float)((Decimal)invoiceSubTotal *
 (Decimal)TaxRate);
 invoiceGrandTotal =
 calculateGrandTotalCallback(invoiceTotalTax,
 invoiceTotalTax);
 return true;
 }
 //...
}

We've now introduced three methods. CalculateInvoiceGrandTotalextracts the
portion of code that calculates the invoice grand total and calculates the grand total
based on an invoice subtotal and invoice total tax. CalculateInvoiceTotalTax
extracts the portion of code that calculates the total tax based on an invoice subtotal.
CalculateInvoiceSubTotal extracts the portion of code that sums the line item
subtotals. Each of these methods takes on a single responsibility from the original
CalculateTotals—which had taken on multiple responsibilities.

Another example is method, which is both a query and a modifier. Sometimes,
this is easy to detect, as the word And is usually in the method name:
ChangeTaxAndCalculateGrandTotal. Sometimes, it's harder to detect and requires
a bit of analysis of the method body. For example:

/// <summary>
/// Example Command AND Query method
/// </summary>
/// <param name="taxRate"></param>
/// <returns></returns>
public float CalculateGrandTotal(float taxRate)
{
 TaxRate = taxRate;

 float invoiceSubTotal = 0;

 foreach (InvoiceLineItem invoiceLineItem in
 InvoiceLineItems)

Improving Class Quality

[170]

 {
 invoiceSubTotal +=
 (float)((decimal)(invoiceLineItem.Price
 - invoiceLineItem.Discount)
 * (decimal)invoiceLineItem.Quantity);
 }

 float invoiceTotalTax = (float)((Decimal)invoiceSubTotal *
 (Decimal)TaxRate);

 return calculateGrandTotalCallback(invoiceTotalTax,
 invoiceTotalTax);
}

This method first sets the TaxRate property, then proceeds to calculate the grand
total based on the TaxRate property. In the case of this method, it's not clear from its
signature (unlike ChangeTaxAndCalculateGrandTotal) that it is both a Command
and a Query.

Command: A method that performs an action on an object; generally
modifying state.
Query: A method or property that returns data to the caller.

In some circles, a Command is also known as a Modifier.

This can be refactored by performing the Separate Query from Modifier refactoring.

In our case, this is just a matter of removing the taxRate parameter from the method
and removing the assignment to the TaxRate property, similar to the following code:

/// <summary>
/// Refactored to Query and not Command
/// </summary>
/// <returns></returns>
public float CalculateGrandTotal()
{
 float invoiceSubTotal = 0;

 foreach (InvoiceLineItem invoiceLineItem in
 InvoiceLineItems)
 {
 invoiceSubTotal +=
 (float)((decimal)(invoiceLineItem.Price
 - invoiceLineItem.Discount)
 * (decimal)invoiceLineItem.Quantity);
 }

 float invoiceTotalTax = (float)((Decimal)invoiceSubTotal *

Chapter 6

[171]

 (Decimal)TaxRate);

 return calculateGrandTotalCallback(invoiceTotalTax,
 invoiceTotalTax);
}

Code that needs to calculate the grand total with a different tax rate should simply
use the TaxRate property before calling CalculateGrandTotal. For example,
instead of this:

 float grandTotal = invoice.CalculateGrandTotal(.12f);

We'd refactor to this:

 TaxRate = .12f;
 float grandTotal = invoice.CalculateGrandTotal();

In a more complex Separate Query From Modifier refactoring, a new method
or property would have to be created to separate the Query, and the method
performing the modification would remove the code that modifies state
and is renamed (for example, ChangeTaxRateAndCalculateGrandTotal to
CalculateGrandTotal) to be clear that it isn't modifying state. Calls to the method
would have to be changed to the new query method, and a call to the modifier added
before the call to the query.

Namespace cohesion
As with any logical grouping of code, what is contained within the grouping
may or may not be related. Syntactically, a namespace can contain any number of
classes with any number of purposes related to any number of things. Grouping in
a namespace is for the programmer; if it doesn't add any value, there's not much
point to using it. Classes within a namespace should be related to one another in a
particular way that adds value.

Refactoring namespaces with low-cohesion
Unfortunately, there isn't a built-in way to move a class from one namespace to
another. You can rename a namespace, but if there is more than one class within
the namespace, you "move" all the classes to a new or existing namespace.

Improving Class Quality

[172]

Let's say we have a class in the Invoicing namespace, and we want to move it to the
Invoicing.Domain namespace because this class represents a fundamental domain
entity and locating it in the Domain namespace will mean it will be cohesive with the
other members of the Domain namespace.

namespace Invoicing
{
 /// <summary>
 /// Address shape to encapsulate
 /// western-style addresses
 /// </summary>
 public class Address
 {
 public string Street { get; private set; }
 public string City { get; private set; }
 public string Province { get; private set; }
 public string Country { get; private set; }
 public string PostalCode { get; private set; }

 public Address(string street, string city,
 string province, string country, string postalCode)
 {
 Street = street;
 City = city;
 Province = province;
 Country = country;
 PostalCode = postalCode;
 }
 }
}

In order to perform a Move to Another Namespace refactoring, right-click the
namespace name Invoicing, and select Refactor\Rename… then enter "Invoicing.
Domain". This effectively "moves" the Address class to a new namespace, the
Invoicing.Domain namespace. This results in the following:

namespace Invoicing.Domain
{
 /// <summary>
 /// Address shape to encapsulate
 /// western-style addresses
 /// </summary>
 public class Address
 {
 public string Street { get; private set; }
 public string City { get; private set; }

Chapter 6

[173]

 public string Province { get; private set; }
 public string Country { get; private set; }
 public string PostalCode { get; private set; }

 public Address(string street, string city,
 string province, string country, string postalCode)
 {
 Street = street;
 City = city;
 Province = province;
 Country = country;
 PostalCode = postalCode;
 }
 }
}

The only "heavy lifting" at this point you'll have to do is move the file this class lives
in from one directory to another (if you're synchronizing namespace names with
directory names). This can be accomplished by dragging and dropping the file in the
Solution Explorer.

1. If your namespace has many classes in it and you don't want all the classes
to be moved, you'll have to manually perform the move:

2. Use Find All References to find all references to Address.
3. Change the namespace from Invoicing to Invoicing.Domain in

Address.cs.
4. For each entry in the Find Symbol Results, double-click.
5. Add using directive for Invoicing.Domain.
6. Optionally move Address.cs to another folder with drag/drop in Solution

Explorer.

Assembly cohesion
Assembly cohesion can be a bit of a red herring—it diverts attention away from
assemblies' inherent features as a deployment strategy. Breaking up a solution into
multiple assemblies simply to give related types a cohesive place to live is not the
intention here. Assemblies are a deployment strategy; assemblies may need to exist
for specific reasons unrelated to cohesion. For example, if two groups of different
code need to be executed in separate processes or on separate computers, they need
to live in different assemblies regardless of whether their packaging together would
be more cohesive.

Improving Class Quality

[174]

If you're restructuring a system at the assembly level, you've got some pretty specific
needs for what is contained in what assembly. That's not to say you won't have
multiple assemblies per deployment platform. You may want to have assemblies that
are shared amongst multiple applications, and they may need to be highly cohesive.
.NET is a good example of this. .NET 2.0 deployed a certain set of assemblies. .NET
3.0 added types and features, but they're primarily added to assemblies new to
.NET 3.0 to avoid changing existing binaries. For example, types in the System.
Data.Linq namespace could have been included the System.Data.dll assembly
and that assembly would have still been cohesive. But, because of the deployment
issues (where System.Data.dll shouldn't be modified for anything other than
show-stopper bugs) added, LINQ types and features were added to a new assembly:
System.Data.Linq.dll.

Refactoring assemblies
When approaching refactoring assemblies by moving classes from one to another,
the best starting point is to have all the projects associated with those assemblies in
one Visual Studio® solution. Often, systems already have this type of organization.
Larger projects may have to avoid this specific organization for performance and
usability reasons within Visual Studio®. A temporary solution that contains these
projects, in these cases, is the recommended place to start. When dealing with many
project files, this may cause a bit of grief creating and loading the solution, but it will
give a huge payoff if you want to move more than a couple of classes.

When approaching performing the Move Type to new Namespace from a single
solution, performing the refactoring within Visual Studio® becomes very simple.
Moving a class from one project to another becomes a simple process of selecting it
in the Solution Explorer and dragging it to another project folder and dropping it
while holding the Shift key down. Holding the Shift key down while dropping causes
a move to occur instead of a copy. Once copied, the new file should be edited to
change the original namespace to the destination namespace.

Coupling
Coupling is the degree to which two things are related. Coupling and cohesion
go hand in hand. Something that is highly-cohesive generally has low coupling.
Coupling is a form of dependency.

Chapter 6

[175]

There are many different types of coupling when we're talking about software design
and development. The effort here isn't to make a decoupled design, it's to change
the coupling. At some level, one piece of code is coupled to every other piece of code
in the system—there is rarely any change you can make to change that. Some code
is more highly-coupled to other code and uses the other code directly. Some code is
more loosely-coupled and uses other code indirectly. Efforts at refactoring towards a
more loosely-coupled design are about the degree to which coupling has been made
indirect.

Code can be coupled to other code by a shared data format (external coupling).
Code can be coupled to other code by the fact that it results in the execution of
other code (control coupling). Code can be coupled to other code by the fact that it
results in executing other code by way of an abstract interface (message coupling).
Code can be coupled to other code by the fact that they share data, usually in the
form of parameters (data coupling). Code can be coupled to other code by the fact
that it has a subclass relationship (subclass coupling). Code can also be coupled to
other code by that fact that it directly references a type's public interface (content
coupling). The direction and degree to which a type is coupled can also help focus
our refactoring efforts. Afferent coupling is the degree to which a type is depended
upon (inward coupling). Efferent coupling is the degree to which a type depends on
other types (outward coupling). High afferent coupling can indicate that a type has
too many responsibilities. It's trying to be everything to everyone and thus being
used by everyone. High efferent coupling could indicate a type is very dependant.
This becomes an issue when the types the class depends upon are in many different
assemblies, suggesting a cohesion issue at the assembly layer.

Highly-coupled software is generally accepted to exhibit certain traits, and it can
be hard to change. It's like pulling on the thread of a sweater; there are so many
dependencies it's impossible to predict how much code will need to be modified in
order to make a seemingly simple change. Highly-coupled code is also very rigid.
It's hard to move or hard not to duplicate it outside its current context. It carries a
lot of baggage (dependencies) with it that need to move with it as a unit. It's one
thing to move the code you want to move, it's exponentially harder to move all its
dependencies.

While good object-oriented design often promotes high cohesion, loosely coupled
design and structure can easily fall to the wayside.

Refactoring subclass coupling
Refactoring subclass coupling involves removing the inheritance relationship
between two classes. We discussed Composition over Inheritance in Chapter 5 and
detailed how to refactor from inheritance to composition.

Improving Class Quality

[176]

Refactoring content coupling
Content coupling is one class directly referencing another. There are several tactics
for refactoring away this coupling. Depending on the situation, one tactic may be
more applicable than another. One tactic is to use interface-based design and remove
the coupling to the content of the class and replace it with coupling to an interface
that the other class now implements. Another tactic is to replace method calls into
the other class with delegate invocations. A final tactic is to use events instead of
direct method calls.

For any particular refactoring, a combination of these tactics may be the best
solution. You may find that despite a one-to-one coupling between two classes,
it's more appropriate to use a combination of tactics to refactor away the content
coupling.

Interface-based design
If you're already coupled to a particular class, replacing use of that class with an
interface and having the other class implement that interface is the easiest way
to change the coupling between two classes. This reduces coupling from content
coupling to a more loosely coupled message coupling.

If the requirements of the other class are very complex or a series of members must
come from a single source, using interfaces is often the best solution. Having to
hook up several delegates or several events becomes tedious and error prone when
a single reference to an object that implements a particular interface is so simple.
Imagine if implementing a Windows Form wasn't as simple as deriving from Form
and having to register a number of delegates or events.

If you find that implementers of the interface would find default or base
implementation for them to be useful, implementing that interface may best be done
with an abstract class.

Our Invoice class is a good example of something that can be more loosely coupled
through interface-based design. It currently implements the calculation of grand
totals through interface-based design and the strategy pattern (see Chapter 9). This
could have easily been implemented through direct use of a particular class. For
example:

/// <summary>
/// Service to enapsulate calculation of
/// grand totals.
/// </summary>
public class InvoiceGrandTotalService
{

Chapter 6

[177]

 public float CalculateGrandTotal(float invoiceSubTotal,
 float invoiceTotalTax)
 {
 return invoiceSubTotal + invoiceTotalTax;
 }
}

/// <summary>
/// Invoice class that uses
/// <seealso cref="InvoiceGrandTotalService"/>
/// </summary>
public class Invoice
{
 InvoiceGrandTotalService invoiceGrandTotalService =
 new InvoiceGrandTotalService();

 public List<InvoiceLineItem> InvoiceLineItems { get; set; }

 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 }

 public float CalculateGrandTotal(float invoiceSubTotal,
 float invoiceTotalTax)
 {
 return invoiceGrandTotalService.CalculateGrandTotal(
 invoiceSubTotal, invoiceTotalTax);
 }
 //...
}

In this example, we've created the InvoiceGrandTotalService class that contains
the CalculateGrandTotal method. We then instantiate this class in the Invoice
class and make reference to it in the CalculateGrandTotal method.

Improving Class Quality

[178]

We've given away the surprise with this refactoring. We're obviously going
to replace direct use of the class with an interface. Since we essentially need
a reference to an object right from the start, and to effectively loosen the coupling,
we begin refactoring by accepting a reference to an IInvoiceGrandTotalStrategy
object in the constructor. We then change our InvoiceGrandTotalService
field to an IInvoiceGrandTotalStrategy field and initialize it in the
constructor. We finish our refactoring by replacing references from
invoiceGrandTotalServcie to invoiceGrandTotalStrategy. The
resulting refactoring will look similar to the following:

/// <summary>
/// Invoice class that uses
/// <seealso cref="IInvoiceGrandTotalStrategy"/>
/// </summary>
public class Invoice
{
 private IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy;

 public List<InvoiceLineItem> InvoiceLineItems { get; set; }

 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 IInvoiceGrandTotalStrategy invoiceGrandTotalStrategy)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.invoiceGrandTotalStrategy =
 invoiceGrandTotalStrategy;
 }

 public float CalculateGrandTotal(float invoiceSubTotal,
 float invoiceTotalTax)
 {
 return invoiceGrandTotalStrategy.CalculateGrandTotal(
 invoiceSubTotal, invoiceTotalTax);
 }
 //...
}

If you find that the relationship between the two classes is the invocation of one or
two methods that return or update data, you may find that delegates are the best
way of refactoring.

Chapter 6

[179]

Delegates
Loosely coupling to delegates requires that another class (usually the other class)
inform the class of what delegates to call. This is generally only useful if there are
only one or two delegates. Use of another class that contains many methods that are
used by the class becomes problematic to loosen coupling by using delegates simply
due to the number of delegate initializations that need to occur.

Use of delegates is generally called callbacks. A callback is something that another
class calls in order to obtain values or functionality from an external source. If you
find that use of the other class requires values or functionality from the other class,
use of callbacks may be an appropriate solution. This is particularly true if this is a
comprehensive value or a single functionality.

In our Invoice class, we really only have one method that we need to inject into an
Invoice object. This may be a perfect scenario for a callback.

Refactoring to a callback is much the same as refactoring to interface-based
design. In our particular case, we begin by accepting a Func<float, float,
float> parameter. Then, add a Func<float, float, float> field named
calculateGrandTotalCallback to the Invoice class. Next we need to
initialize the calculateGrandTotalCallback field in the constructor. Finally,
we need to replace the call to CalculateGrandTotal to an invocation of the
calculateGrandTotalCallback field. The refactoring should result in something
similar to the following:

/// <summary>
/// Example of using callback
/// instead of interface
/// </summary>
public class Invoice
{
 private Func<float, float, float>
 calculateGrandTotalCallback;

 public List<InvoiceLineItem> InvoiceLineItems { get; set; }

 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 Func<float, float, float> calculateGrandTotalCallback)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 this.calculateGrandTotalCallback =
 calculateGrandTotalCallback;
 }

Improving Class Quality

[180]

 public float CalculateGrandTotal(float invoiceSubTotal,
 float invoiceTotalTax)
 {
 return calculateGrandTotalCallback(
 invoiceSubTotal, invoiceTotalTax);
 }
 //...
}

If you find that you are only passing data to the other class and not receiving any
data from it, then events are the best way of refactoring.

Events
Although events are effectively callbacks, they have first-class status in C# and .NET
with their own syntax and follow a specific protocol. Events are an optional one-way
communication between one class and many subscribers. If you're refactoring from a
one-to-one coupling with another class and the use of that other class is to effectively
notify it of particular values and not receive any information in return, events are a
very apt refactoring.

Events are different from the average use of delegates in one important way:
multicasting. This means the standard event interface automatically supports
combining event listeners into a multicast delegate under the covers. You can
certainly support multicast delegates in our delegate example, but we'd have to
expand the interface to support "adding" and "removing" a callback. For example:

/// <summary>
/// Invoice class that supports
/// multicast delegates
/// </summary>
public class Invoice
{
 private Func<float, float, float>
 calculateGrandTotalCallback;

 //...

 public void AddCalculateGrandTotalCallback(
 Func<float, float, float> callback)
 {
 calculateGrandTotalCallback += callback;
 }

 public void RemoveCalculateGrandTotalCallback(
 Func<float, float, float> callback)
 {

Chapter 6

[181]

 calculateGrandTotalCallback -= callback;
 }
}

But, of course, this isn't what callbacks are intended for and thus not applicable for
our exemplified purpose. We only get one result from executing multiple delegates
with a multicast delegate. For the same reason, multicast delegates aren't suitable
for delegates that return values; events that return values are not appropriate.
Let's return to a disposable Invoice for a moment. Let's say we wanted to inform
a subscriber when we are disposed. One way of doing that is with delegates. For
example:

/// <summary>
/// Invoice that implements IDisposable
/// </summary>
public class Invoice : IDisposable
{
 private bool disposed = false;
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 if (!disposed)
 {
 if (disposing)
 {
 //...
 }
 Action callback = disposedCallback;
 if (callback != null)
 {
 callback();
 }
 disposed = true;
 }
 }

 private List<InvoiceLineItem> invoiceLineItems;
 private Action disposedCallback;

Improving Class Quality

[182]

 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems,
 Action disposedCallback)
 {
 this.invoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);

 this.disposedCallback =
 disposedCallback;
 }
 //...
}

This does what we want, but it limits us to just one subscriber—the subscriber
that created the Invoice object. Clearly this isn't the best way to do this, plus it's
uncommon and not intuitive. Using events is much more intuitive and supports
multiple subscribers. Refactoring to events involves changing the delegate to a public
event, removing the initialization of the delegate in the constructor, changing the
invocation of the Invoice constructor, changing the method used for the delegate
to include an object and an EventArgs parameter, using this new method to
assign an event to the Invoice object, and changing the Dispose method to use an
EventHandler object instead. This results in something like the following:

/// <summary>
/// Disposable Invoice and Disposed event
/// </summary>
public class Invoice : IDisposable
{
 private bool disposed = false;
 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 if (!disposed)
 {
 if (disposing)
 {
 //...
 }
 EventHandler handler = Disposed;
 if (handler != null)

Chapter 6

[183]

 {
 handler(this, EventArgs.Empty);
 }
 disposed = true;
 }
 }

 private List<InvoiceLineItem> invoiceLineItems;
 public EventHandler Disposed;

 public Invoice(IEnumerable<InvoiceLineItem>
 invoiceLineItems)
 {
 this.invoiceLineItems = new
 List<InvoiceLineItem>(invoiceLineItems);
 }
 //...
}

Refactoring external coupling
External coupling involves two pieces of code being coupled through the common
use of a data format or protocol. Issues arise when coupling to a specific data format
if the data format is less stable than the classes that use it. If the data format is less
stable and tends to change quite often, you may want to refactor the code to not be
directly coupled to the data format.

This coupling can be mitigating by performing the Introduce Adapter pattern. The
Adapter Pattern converts the less stable data format to a more stable format. It's
common that going from a persistent storage source to an in-memory representation
of data that a specific data format is used for persistent storage then used to create
objects (in-memory representations). Coupling the object-oriented class to this
flat data format means the class takes on the responsibility of conversion. This
can become out of control if there need to be many different data formats for this
object to support many different persistence mechanisms. Data formats often need
to change independently of the class(es) that use it due to size and performance
requirements, which leads to the domain class having a dependence on instability.

For example, we may need to instantiate an Invoice object based on a flat data
format such as the following:

/// <summary>
/// LineItemData shape for
/// serialization of line item data
/// </summary>
[StructLayout(LayoutKind.Sequential)]

Improving Class Quality

[184]

struct LineItemData
{
 public float Price;
 public float Discount;
 public float Quantity;
 public String Description;
}

/// <summary>
/// InvoiceData shape for
/// serialization of invoice data
/// </summary>
[StructLayout(LayoutKind.Sequential)]
struct InvoiceData
{
 public LineItemData[] LineItemData;
}

public class Invoice
{
 public Invoice(InvoiceData invoiceData)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(
 invoiceData.LineItemData.Length);
 foreach (LineItemData lineItemData in
 invoiceData.LineItemData)
 {
 InvoiceLineItems.Add(new InvoiceLineItem()
 {
 Price = lineItemData.Price,
 Discount = lineItemData.Discount,
 Description = lineItemData.Description,
 Quantity = lineItemData.Quantity
 });
 }
 }

 //...
}

We have two structures intended to be used for getting data in and out of some
sort of flat storage (file system, over the wire, and so on): LineItemData and
InvoiceData. The Invoice class populates itself when constructed with an
InvoiceData instance.

Chapter 6

[185]

This obviously couples the Invoice class directly with InvoiceData and indirectly
with LineItemData and their instability. We can get around this problem by
performing the Introduce Adapter refactoring.

This refactoring starts with abstracting the InvoiceData class by creating an adapter,
like InvoiceDataAdapter. The Invoice class would then be changed to make use of
InvoiceDataAdapter instead of directly using InvoiceData. This refactoring would
result in something like the following:

/// <summary>
/// Provides a translation of InvoiceData
/// into more appropriate interface
/// </summary>
public class InvoiceDataAdapter
{
 List<InvoiceLineItem> invoiceLineItems;

 public InvoiceDataAdapter(InvoiceData invoiceData)
 {
 invoiceLineItems = new
 List<InvoiceLineItem>(
 invoiceData.LineItemData.Length);
 foreach (LineItemData lineItemData in
 invoiceData.LineItemData)
 {
 invoiceLineItems.Add(new InvoiceLineItem()
 {
 Price = lineItemData.Price,
 Discount = lineItemData.Discount,
 Description = lineItemData.Description,
 Quantity = lineItemData.Quantity
 });
 }
 }
 public IEnumerable<InvoiceLineItem> InvoiceLineItems
 {
 get { return invoiceLineItems; }
 }
}

/// <summary>
/// Invoice class that ues InvoiceDataAdapter
/// </summary>
public class Invoice
{
 public List<InvoiceLineItem> InvoiceLineItems { get; set; }

Improving Class Quality

[186]

 public Invoice(InvoiceDataAdapter adapter)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(adapter.InvoiceLineItems));
 }

 //...
}

Dependency cycles
We can't discuss coupling without discussing Dependency cycles. A dependency
cycle (otherwise known as a Circular dependency) is when an item depends on
something else and that something else, or its dependants, depend on that item.
Where this presents a problem is at the deployment level. If something in assembly
A depends on something in assembly B and something in assembly B depends on
something in assembly A, the compiler won't be able to figure out which project to
build first and generate an error. Assembly cycles are easy to detect, you've got an
error to deal with. The Acyclic Dependency Principle details that the dependency
structure of packages must have no cycles.

Package is a grouping of elements. How the elements are grouped
is somewhat subjective, but generally means a physical grouping
(for example, assembly in .NET). However, it can be interpreted as
any grouping (for example, namespace).

I tend to view packages as all groupings: from assembly to class. The real problem
with dependency cycles rears its head at the assembly level, but the assembly
structure is dependent on the deployment requirements of the system. The
deployment requirements of the system are independent of the logical design of the
system. Sometimes, the physical deployment requirements of the system are not
known when initial design is begun, and often changes throughout the evolution of
a system.

Dependency cycles that don't span assembly boundaries aren't as easy to detect. If
class A uses class B and class B uses class A and they're all in the same assembly,
there will be no errors. That may or may not be a bad thing. Obviously, it hinders
your ability to maintain the code such that you cannot break those two classes out
into their own assembly.

Chapter 6

[187]

Proper dependency design
Dependencies between packages should always occur in one direction. There are
various guidelines about what direction makes for the most maintainable code. One
guideline deals with stability. The Stable Dependencies Principle (DSP) details that
a package should only depend on other packages that are more stable than it.

One means of providing stability is abstractiveness. The more abstract something
is, the more likely it can be stable. Interfaces, for example, since they only contain a
contract and no code, have no possibility that a code change will cause instability
with an interface. This assumes that thorough analysis went into the design of
the interface. This means the best kind of dependency is a dependency upon an
abstraction. The corollary to that is that abstractions should never depend on
concrete implementation.

Depending upon abstractions is covered in more detail in Chapter 7.

Another proper dependency design attribute has to deal with layering. Layers can
be physical and explicit or logical and implicit. A layer is some sort of abstraction
grouping of elements with a common goal. Some common contemporary layers are
the Data Layer and the User Interface Layer. Layers have levels. Some are lower
than other layers. The Data Layer, for example, is a lower-level layer compared to
the User Interface Layer, which is a higher-level layer. Proper dependency structure
between layers is always such that lower-level layers never depend on higher-level
layers. The abstraction between layers means a lower-level layer can be used by
any number of higher-level layers. Take the User Interface Layer and Data Layer
layers for example. I may have multiple User Interface Layers: a WinForm layer, a
WPF layer, a Web layer, and so on. If my Data Layer depended on one of the User
Interface layers, that User Interface layer would have to be deployed with all other
user interface layers. It would be catastrophic if we had to deploy WinForm code
with our Web User Interface Layer on a web server, for example.

We'll get more into refactoring as it relates to layers in Chapter 8.

Improving Class Quality

[188]

Summary
We've reviewed what it is to be highly cohesive and loosely coupled. We've seen
what it means to be non-cohesive and how to detect certain non-cohesiveness
through metrics. With some simple refactoring we can make something cohesive
where it was previously not.

By refactoring our code to be more cohesive and less coupled, we've improved the
maintainability of our code base. Classes are easier to move or reuse and we're less
likely to repeat ourselves. Changes are now easier to make because we've decreased
the dependencies.

In future chapters, we'll see how we can expand our efforts at loosely coupling even
further and discuss some of the benefits and features we can attain once there.

Refactoring to Loosely
Coupled

In the previous chapter, we started to discuss some techniques for changing the
coupling within code and to make its design coupled less to concretions and more
to abstractions.

In this chapter, we'll detail aspects of refactoring to a loosely-coupled design,
including the following:

•	 Dependency Inversion principle
•	 Dependency Injection
•	 IoC containers
•	 Factory patterns
•	 Decorator pattern

The end result of changing these couplings is often just deferring the coupling to
another class. This may be good for one class, and bad for the other. There are different
types of classes that are more apt at taking on this direct coupling, but many times just
moving a direct coupling from one place to another isn't the best solution.

At this point, it's worth providing more detail about what we mean by loosely coupled.

Refactoring to Loosely Coupled

[190]

What is loosely coupled?
Loosely coupled has to do with the degree to which one class is not directly coupled
to another. To any extent, any two classes within a system will be coupled to
some degree. The ideal design means every class is free to evolve without having
any affect on any other class in the system. For the most part, this is a fallacy.
Modification of anything within a system affects everything else in the system: the
system needs to be rebuilt, it needs to be redeployed, and so on.

The degree we're interested in here is the degree to which maintaining each
class affects compile-time dependencies on another class. This is important
for maintainability.

At worst, compile-time dependencies mean that any change to a class also requires
changing other classes—with the compile-time dependencies—to support the
change. Compile-time dependencies don't mean every change to a class requires
supporting changes to other classes with the compile-time changes to the changed
class. Changing the body of a method, for example (that is, without changing the
method's signature) will not require modifications of other classes in order to
continue calling the method.

What are coupling and dependencies?
It's important to take a quick moment to reiterate what we mean when we say
coupling and dependency. Dependency is fairly easy: the reliance on something
else. Coupling is the degree to which something depends on something else. The
key here is the degree. For more detail about detecting the degree to which items
are coupled, see the "Detecting highly-coupled". Again, at some level everything in
a system depends on everything else in the system, no matter the degree to which
they depend on something. The degree of the coupling could be at the source-code
level, or it could span process boundaries. The invoicing system depends on the class
Invoice to function—no level of design magic will ever change that fact. This is a
run-time dependency.

Our efforts at loosening the coupling isn't about removing run-time dependencies,
it's about changing the types of compile-time dependencies in our system.
Effectively, what we're striving for is Modularity.

Modularity is the design of a system so that distinct and logical parts are
independent of one another until assembled into the system.

This means that independent from one another at design-time; but made dependent
at compile-time or run-time.

Chapter 7

[191]

Clearly, we can never entirely decouple anything from anything else used within
a system; but we can design our classes, namespaces, assemblies, modules, and
subsystems so they act as components—entirely independent from one-another until
told how to work together.

Tightly-coupled
The inverse of loosely-coupled is tightly-coupled. Dependencies, as they are
commonly referred to, are compile-time dependencies. If one class cannot compile
without the existence of a reference to the assembly that contains another, it is
dependent on that class. This is tightly-coupled.

An example of tightly coupled is code that directly uses a particular class.
For example:

using (StreamWriter streamWriter = File.CreateText("log.txt"))
{
 streamWriter.Write("log.txt created");
}

This code creates a StreamWriter object that wraps the text file log.txt and
writes "log.txt created" to that file. It is tightly-coupled to the specific classes
File and StreamWriter.

Before we get too much further, let's introduce and detail some of the principles
and methodologies that can be used in our effort to refactor to loosely-coupled.

Dependency Inversion principle
The Dependency Inversion principle details that dependencies should be
"inverted" from their traditional high-level dependency on low-level
implementations. Of course, this doesn't mean that low-level implementations
should then depend on high-level implementations—that causes grief in too
many ways to mention in this chapter.

What the Dependency Inversion principle does detail is that both low-level and
high-level implementations should depend only on abstractions.

High-level modules should not depend on low-level
modules. Both should depend on abstractions.
Abstractions should not depend upon details. Details should
depend on abstractions.

Refactoring to Loosely Coupled

[192]

At face value, in terms of .NET software development and design, this means that
one class no longer depends on another class, but depends on an interface or an
abstract class.

Inversion of Control
Inversion of Control (IoC) is also known as the Hollywood Principle: Don't call us,
we'll call you. There are many different ways of implementing inversion of control:
callbacks, methods, constructor arguments, and so on. The key to understanding
Inversion of Control is don't call us, we'll call you—inverting the call us with call you
where the inversion comes from the fact that code doesn't call into other code, but
other code calls into it.

There are many cases where Inversion of Control is necessary in order to implement
the required functionality. In the example of callbacks, external code is calling back
into your code to pass information or to request functionality. This is often done
outside of your process flow (and isn't within your control and hence the inversion).
For example:

private void InitailizeTimer()
{
 Timer timer = new Timer(OnTimerTick,
 null,
 6000, // start in 6 seconds
 1000); // tick every 1 second afterward
}

private void OnTimerTick(object stateInfo)
{
 // Do something on every timer tick
}

In this example, InitializeTimer creates a System.Threading.Timer object
and passes it a delegate to the OnTimerTick method. The Timer object will then
invoke the callback causing OnTimerTick to be executed. Due to the fact that
Timer is controlling when things happen, we can't use procedural code to invoke
OnTimerTick; we must relinquish control (inverting it) to Timer and let it invoke
the callback as it sees fit.

For the most part, when we consider Inversion of Control we'll be considering how
Inversion of Control facilitates loosely-coupled through Dependency Injection.

Chapter 7

[193]

In terms of facilitating loosely-coupled, Inversion of Control is most
easily implemented by means of Inversion of Control Containers (IoC
Containers—which we get into greater detail later in the chapter). These
containers contain the knowledge (through configuration) of not only how
to instantiate specific types, but also have the knowledge of where these instances
can be used and how to inject them into other types.

In general, these containers are configured to associate an abstract type with a
concrete type. When creating any concrete types that require any other types
(abstract or concrete, either through constructor parameters or property setters) the
container knows to create those types before attempting to create the other type.

Dependency Injection
Dependency Injection is a more specific type of Inversion of Control. Dependency
Injection inverts traditional procedural control of dependencies from direct creational
dependency (through invocation of constructors) to an indirect dependency. Instead
of dependencies being created directly (call us), they are injected into the class that
depends on them from an external source (call you). When this is coupled with
Interface-based Design we can obtain the loosest coupling. This level of modularity
allows both the containing class and its dependencies to evolve independently.

By shifting object creation in this way, the how and what that are instantiated are
completely independent of a particular class and can vary completely independently.
For example, a pedantic (for the sake of illustrative purposes) invoice rendering
service could be implemented as follows:

/// <summary>
/// Service to encapsulate rendering of an invoice
/// </summary>
public class InvoiceRenderingService
{
 private Invoice invoice;

 public InvoiceRenderingService(IEnumerable<InvoiceLineItem>
 invoiceLineItems)
 {
 invoice = new Invoice(invoiceLineItems, new
 InvoiceGrandTotalStrategy());
 }

 public void GenerateReadableInvoice(Graphics graphics)
 {
 graphics.DrawString(HeaderText,
 HeaderFont, HeaderBrush, HeaderLocation);

Refactoring to Loosely Coupled

[194]

 float invoiceSubTotal = 0;
 PointF currentLineItemLocation = LineItemLocation;
 foreach (InvoiceLineItem invoiceLineItem in
 invoice.InvoiceLineItems)
 {
 float lineItemSubTotal =
 Invoice.CalculateLineItemSubTotal(invoiceLineItem);

 graphics.DrawString(invoiceLineItem.Description,
 InvoiceBodyFont, InvoiceBodyBrush,
 currentLineItemLocation);

 currentLineItemLocation.Y +=
 InvoiceBodyFont.GetHeight(graphics);
 invoiceSubTotal += lineItemSubTotal;
 }

 float invoiceTotalTax =
 invoice.CalculateInvoiceTotalTax(invoiceSubTotal);
 float invoiceGrandTotal =
 invoice.CalculateGrandTotal(
 invoiceSubTotal, invoiceTotalTax);
 invoice.CalculateInvoiceGrandTotal(invoiceSubTotal,
 invoiceTotalTax);

 graphics.DrawString(
 String.Format("Invoice SubTotal: {0}",
 invoiceGrandTotal - invoiceTotalTax),
 InvoiceBodyFont, InvoiceBodyBrush,
 InvoiceSubTotalLocation);
 graphics.DrawString(String.Format("Total Tax: {0}",
 invoiceTotalTax), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceTaxLocation);
 graphics.DrawString(
 String.Format("Invoice Grand Total: {0}",
 invoiceGrandTotal), InvoiceBodyFont,
 InvoiceBodyBrush, InvoiceGrandTotalLocation);

 graphics.DrawString(FooterText,
 FooterFont, FooterBrush, FooterLocation);
 }
 //...
}

Chapter 7

[195]

The InvoiceRenderingService class creates an Invoice object directly based
on supplied collection of InvoiceLineItem objects during creation. This of
course requires that the InvoiceRenderingService constructor take on the
responsibility of creating an Invoice object and directly coupling to the Invoice
type's constructor.

A more loosely-coupled approach would be that the InvoiceRenderingService
class constructor accepts an Invoice object as a parameter. More loosely coupled
still is if the InvoiceRenderingService constructor accepted an abstract invoice
interface, IInvoice as a reference to the invoice object.

This refactoring could be performed as follows:

1. Change the type of the invoice field to IInvoice.
2. Remove the initialization of the invoice field in the constructor.
3. Add an IInvoice parameter to the constructor.
4. Initialize the invoice field with the value of the IInvoice parameter.
5. Change code that invokes the InvoiceRenderingService constructor

to create an IInvoice reference and pass it to the constructor.

This results in an InvoiceRenderingService similar to:

public class InvoiceRenderingService
{
 private IInvoice invoice;
 public InvoiceRenderingService(IInvoice invoice)
 {
 this.invoice = invoice;
 }
 //...
}

The InvoiceRenderingService is now loosely-coupled to Invoice through sole
use of the IInvoice interface.

This is an example of Dependency Injection through a constructor parameter.
Dependency Injection can also be implemented in any way that allows external code
to pass a dependency into another class via a property setter, or method argument as
well. A field could also be used, but, public fields are generally considered deprecated.

Refactoring to Loosely Coupled

[196]

The general convention is that required dependencies be passed in as constructor
arguments and optional dependencies either through property setters or constructor
overrides that don't accept those particular dependencies. A required dependency is
one where the code requires a valid reference to that dependency in order to function
properly. In order to use your class, you know that other code must instantiate
your class—or call its constructor. In order to be sure that a valid reference to
this dependency exists in an instance of your class with dependency injection, it
would be accepted as a parameter in the constructor—checking for null. Optional
dependencies are those that don't require a valid reference in order for the class
to function properly. The optional dependencies can be accepted as constructor
parameters—but null values should be accepted.

What we've attained by this refactoring is essentially moving the code to perform
the construction to a different place, the creator of the InvoiceRenderingService
object. If the use of the InvoiceRedneringService object wasn't also inverted,
we've essentially just moved the problem somewhere else. This may be entirely
acceptable because the creator of the InvoiceRenderingService may not be in a
package as stable as the package that InvoiceRenderingService lives (for example,
InvoiceRenderingService is a domain object; and something that uses it may be a
UI object—something less stable depending on something more stable) which may
be a better dependency but possibly not ideal.

Unfortunately, the terminology we're dealing with is somewhat academic. The terms
have come from several people that have evolved them over time. While the terms
we've discussed so far in this chapter sound very similar, what they mean differs
in subtle ways. It's easy to get the three terms Dependency Inversion, Inversion of
Control, and Dependency Injection confused or view them much in the same way.
To further complicate matters, Dependency Injection is often referred to as DI, which
has the same initials as Dependency Inversion.

It helps to remember that Dependency Inversion is a principle and Dependency
Injection is a design or implementation detail. That is, you use Dependency Injection
as a way of following the Dependency Inversion Principle.

Working with IoC containers
There are a great number of IoC containers for .NET: StructureMap, Autofac,
Castle Windsor, Spring.NET, Ninject, Microsoft Unity, and so on. IoC containers
are third-party libraries that can be used within your code to better support
Dependency Injection. Some have more features than others, and some differ in their
API. Comparing and contrasting these containers and detailing their usage could fill
its own text; so, we won't get into that level of detail. But, we'll give a short example
of using an IoC container with Dependency Injection and loosely-coupled design.

Chapter 7

[197]

In sticking with the general theme of this book, we'll stick with something from the
Microsoft stack: Microsoft Unity. This by no means is to suggest it's better than any
of the other existing IoC containers. Suitability is subjective when it comes to IoC
containers, what you consider important criteria may, in fact, mean Unity is not the
best choice for you.

Here are some criteria to consider when choosing an IoC container:

•	 Does it support app.config-only configuration?
•	 Is it open-source?
•	 What are the support options?

Working with an IoC container like Unity is fairly simple. In order to use Unity,
specifically, you must first install it. Once installed, add a reference to Microsoft.
Practices.Unity. There are two basic steps to integrating the container into your
code: the first is configuring the container to associate types and the second is to
resolve instances of types from the container. In either step, you need to create an
instance of the container that you want, to register types and resolve instances. This
can be done as follows:

UnityContainer unityContainer = new UnityContainer();

You can configure the Unity container either in code or in your app.config file.
We'll only look at various options for configuration in code; but a simple association
of a type to an interface is done as follows:

unityContainer.RegisterType<Stream, MemoryStream>();

This tells Unity that the type MemoryStream is associated with a request for Stream
objects. When Unity is asked for an instance of a Stream object, it will create an
instance of a MemoryStream object. Unfortunately, this isn't enough information for
Unity to instantiate a MemoryStream object because by default, Unity tries to use the
constructor with the largest parameter list. In our case, it has no way to know what
to pass for those arguments. We need to tell it which constructor to use. This can be
done as follows:

unityContainer.RegisterType<Stream, MemoryStream>().
 Configure<InjectedMembers>().
 ConfigureInjectionFor<MemoryStream>(
 new InjectionConstructor());

Refactoring to Loosely Coupled

[198]

This tells Unity to configure the injected members for MemoryStream, so that it
should use the constructor with no arguments. Passing an InjectionConstructor
object to the CongfigureInjectionFor method, this tells Unity about the
construction injection requirements of this particular registration. By instantiating an
InjectionConstructor object without passing any arguments, this tells Unity there
are no arguments to use for constructor injection so it will use the default constructor
for MemoryStream.

The next step in integrating the container is to request instances from it. This can
be done by invoking the Resolve method, as follows:

Stream stream = unityContainer.Resolve<Stream>();

This asks Unity to resolve an instance of a Stream object. What we've configured
so farmeans that Unity will create an instance of MemoryStream and return it
from Resolve.

This is an extremely simple example that doesn't involve any extra dependencies.
When dealing with extra dependencies, we need to tell Unity how to resolve those
dependencies. For example, consider if we had a loosely-coupled Invoice class that
was dependant on an IInvoiceGrandTotalStrategy interface as follows:

public class Invoice : IInvoice
{
 private IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy;

 public Invoice(IInvoiceGrandTotalStrategy
 invoiceGrandTotalStrategy)
 {
 this.invoiceGrandTotalStrategy =
 invoiceGrandTotalStrategy;
 //...
 }
 //...
}

In order for Unity to construct this Invoice object, it would need a type registered
for IInvoiceGrandTotalStrategy. To do that, we'd do what we did before, plus
add another registration:

unityContainer.RegisterType<IInvoice, Invoice>().
 RegisterType<IInvoiceGrandTotalStrategy,
 InvoiceGrandTotalStrategy>().
 Configure<InjectedMembers>().
 ConfigureInjectionFor<Invoice>(new
InjectionConstructor(typeof(IInvoiceGrandTotalStrategy)));

Chapter 7

[199]

This is similar to our previous registration example: we're registering
Invoice for IInvoice resolutions and InvoiceGrandTotalStrategy for
IInvoiceGrandTotalStrategy resolutions and we're telling Unity how to inject
dependencies in the constructor. Instead of no constructor arguments, we're telling
Unity to use the constructor with the single IInvoiceGrandTotalStrategy parameter.
Now, when we ask Unity to resolve an IInvoice object, it will first instantiate an
InvoiceGrandTotalStrategy object, then instantiate an Invoice object by invoking
the constructor with the InvoiceGrandTotalStrategy parameter.

The purpose of a loosely-coupled design is not to replace all calls to operator new
with a request to the container. One common anti-pattern I see is just that; instead
of redesigning to use Dependency Inversion, all uses of operator new are replaced
with calls to Resolve<T>()—effectively manually resolving dependencies. This may
satisfy Stable Dependencies Principle in that Unity (or whatever container you've
chosen) may be more stable than the types Unity is creating, but it's still a needless
dependency, as we're still coupling to Resolve<T>(). Dependency Inversion
relinquishes this dependency and allows the container to automatically resolve
dependencies—as we've seen with the IInvoiceGrandTotalStrategy example.

Tightly coupled to creation
IoC containers are great, but what about scenarios where code actually does need
to create objects? Let's look at another example of some tightly-coupled code:

public partial class CreateInvoiceForm : Form
{
 private void okButton_Click(object sender, EventArgs e)
 {
 Invoice invoice =
 new Invoice(invoiceLineItems,
 new InvoiceGrandTotalStrategy());
 StoreInvoice(invoice);
 //...
 }

 private void StoreInvoice(Invoice invoice)
 {
 //...
 }
 //...
}

In this example, the CreateInvoiceForm class has taken on the responsibility of
creating an Invoice by directly calling its constructor—tightly-coupling it to the
Invoice class both by reference and creation.

Refactoring to Loosely Coupled

[200]

It's important that we make the distinction that okButton_Click both references and
creates Invoice objects because we can't refactor towards loosely-coupled without
addressing both issues. For example, we could refactor towards interface-based
design in and derive Invoice from IInvoice and use IInvoice references instead
of Invoice references.

This would result in CreateInvoiceForm refactoring to something like this:

public partial class CreateInvoiceForm : Form
{
 private void okButton_Click(object sender, EventArgs e)
 {
 IInvoice invoice =
 new Invoice(invoiceLineItems,
 new InvoiceGrandTotalStrategy());
 StoreInvoice(invoice);
 //...
 }
 //...
}

We've replaced references to Invoice with IInvoice here. This reduces our
coupling on Invoice, but doesn't reduce it enough to make it useful. We're still
coupled to the Invoice constructor, so we really haven't accomplished anything
useful in terms of making CreateInvoiceForm independent from Invoice.

Clearly the CreateInvoiceForm class needs to be able to create IInvoice objects.
But how do we do that without directly using a concrete class's constructor? We can
do this through the use of an Abstract Factory.

Factory Pattern
The Factory Pattern is a creational design pattern that takes the creation of an object
of a particular type and encapsulates it. This allows other types to relinquish some of
the responsibilities of how to create an object. This allows the details of how to create
an object to change independently of the code that creates it. There are several types
of implementations of the Factory Pattern. The Factory Pattern can be utilized either
as a Factory Class or a Factory Method. To be truthful, the Factory Class is just a
container for the Factory Method; the differentiation comes in the use of the factory.
The use of a factory could be via a delegate (Factory Method) or through an object
(Factory Class). The most flexible use of a factory is via factory method (implemented
through use of a delegate in .NET).

Chapter 7

[201]

The simplest implementation is a concrete factory. A concrete factory is a factory that
creates a specific type. For example:

public class InvoiceFactory
{
 public Invoice CreateInvoice(
 IEnumerable<InvoiceLineItem> invoiceLineItems)
 {
 return new Invoice(invoiceLineItems,
 new InvoiceGrandTotalStrategy());
 }
}

This class contains a single method, CreateInvoice that returns a reference to a new
Invoice object. This type of factory encapsulates some of the details of the creation
of a particular object, but really just creates an additional dependency (on the factory
class) with very little added value. Use of InvoiceFactory would still result in a
coupling directly to Invoice. Added value comes when providing a concrete type
through an abstract interface: the Abstract Factory.

Abstract Factory
The Abstract Factory pattern is a means of creating concretions based on a particular
abstraction. These factories can be used as a class, or they can be used as a method. A
design that hasn't fully reached being loosely coupled will have to deal directly with
the class before reaching a loosely coupled level where they can depend only on a
method (delegate). The power of the Abstract Factory comes in that it can supply the
caller with any number of different implementations of the abstract type—dependent
on some optional external criteria. External criteria are implemented as parameters
on the method that instantiates the concrete type. The method uses those parameters
to decide how to instantiate the concrete type.

The next step to refactoring our CreateInvoiceForm.okButton_Click method
involves breaking the dependency on the Invoice constructor through a factory.
We could start out by creating a factory class such as:

public class InvoiceFactory
{
 public static IInvoice CreateInvoice(
 IEnumerable<InvoiceLineItem> invoiceLineItems)
 {
 return new Invoice(invoiceLineItems,
 new InvoiceGrandTotalStrategy());
 }
}

Refactoring to Loosely Coupled

[202]

Then making use of InvoiceFactory in okButton_Click, such as:

public partial class CreateInvoiceForm : Form
{
 private void okButton_Click(object sender, EventArgs e)
 {
 IInvoice invoice =
 InvoiceFactory.CreateInvoice(invoiceLineItems);
 StoreInvoice(invoice);
 //...
 }
 //...
}

Now, CreateInvoiceForm is componentized in its relation to Invoice; they are now
both independent from one another.

CreateInvoiceForm is now loosely-coupled with regard to Invoice; but now
it's tightly-coupled to InvoiceFactory. We've mitigated the coupling somewhat
by using a static InvoiceFactory class; clients of InvoiceFactory don't carry
the burden of creation. Again, this is a slightly better dependency because the
InvoiceFactory interface is going to be more stable than both Invoice and
CreateInvoiceForm. But, even this coupling could be reduced.

We could continue much in the same vane as Invoice to Invoice and creating a
factory; but pretty soon we'll have factories for factories and we won't be able to stop.
No, this is not a better situation.

A solution to this is to use the Factory Method variant of the Factory Pattern. The
CreateInvoiceForm could be given a delegate to a method that creates IInvoice
objects and the CreateInvoiceForm becomes coupled only to some very abstract
delegate that could point to a static method or an instance method.

To refactor this, the following should be performed:

•	 Create a Factory<T, TResult> delegate
•	 Add a Factory<IEnumerable<InvoiceLineItem>, IInvoice> field

to the CreateInvoiceForm class
•	 Add a constructor to the CreateInvoiceForm class that accepts a

Factory<IEnumerable<InvoiceLineItem>, IInvoice> delegate.
•	 Add initialization of the factory field
•	 Replace the calls to InvoiceFactory.CreateInvoice with a call to

the factory delegate

Chapter 7

[203]

This would result in something similar to the following:

/// <summary>
/// Sample form for creating an invoice
/// </summary>
public partial class CreateInvoiceForm : Form
{
 CreateInvoiceForm(
 Factory<IEnumerable<InvoiceLineItem>, IInvoice>
 invoiceFactory)
 {
 this.invoiceFactory = invoiceFactory;
 }

 private Factory<IEnumerable<InvoiceLineItem>, IInvoice>
 invoiceFactory;
 private void okButton_Click(object sender, EventArgs e)
 {
 IInvoice invoice = invoiceFactory(invoiceLineItems);
 StoreInvoice(invoice);
 //...
 }
 //...
}

Decorator pattern
The decorator pattern is another implementation of inversion of control. Rather
than the traditional procedural technique of specifying all the steps that need to be
performed within a block of code, the Decorator Pattern implements a particular
interface or abstract class, wrapping another implementation of that interface and
then "decorates" it with additional behavior.

Now that we've discussed Interface-based Design and Dependency Injection, the
true power of patterns like Decorator starts to become apparent. The Decorator
pattern is quite a hurdle to succumb in a highly-coupled code base. It requires
many code changes that could introduce regression bugs, with very little value in
comparison. Decorators are generally transient changes to a code base—something
done temporarily to accomplish a specific goal.

For example:

/// <summary>
/// Logging Invoice Factory Decorator
/// </summary>

Refactoring to Loosely Coupled

[204]

public class LoggingInvoiceFactory : IInvoiceFactory
{
 private IInvoiceFactory invoiceFactory;

 public LoggingInvoiceFactory(IInvoiceFactory
 invoiceFactory)
 {
 this.invoiceFactory = invoiceFactory;
 }
 public Domain.IInvoice CreateInvoice(
 System.Collections.Generic.IEnumerable<
 Domain.InvoiceLineItem>
 invoiceLineItems)
 {
 Trace.WriteLine("Creating invoice");
 return invoiceFactory.CreateInvoice(invoiceLineItems);
 }
}

This LoggingInvoiceFactory implements IInvoiceFactory to "wrap" another
IInvoiceFactory implementer. It essentially logs the calls to it by invoking
Trace.WriteLine. This class can be substituted anywhere a IInvoiceFactory
object is required, adding functionality and decorating it with logging abilities.

At some point, the equivalent of the following code would need to be invoked in
order to use the LoggingInvoiceFactory:

 IInvoiceFactory invoiceFactory =
 new LoggingInvoiceFactory(new InvoiceFactory());

This code creates an InvoiceFactory object and then creates a
LoggingInvoiceFactory object passing the InvoiceFactory object to the constructor
so that LoggingInvoiceFactory may decorate it with logging functionality.

And a quick review of okButton_Click shows how the use of
LoggingInvoiceFactory is completely transparent:

 private void okButton_Click(object sender, EventArgs e)
 {
 IInvoice invoice =
 invoiceFactory(invoiceLineItems);
 StoreInvoice(invoice);
 //...
 }

Chapter 7

[205]

Decorators are very powerful in a loosely coupled design. Because of being loosely-
coupled, decorators can be chained and still be used by code that uses the abstract
interface. For example, we may decide that we not only want to log calls to the
factory, but should also keep statistics about how many objects are created. Rather
than include this functionality in LoggingInvoiceFactory and risk taking on too
much responsibility, we could create yet another decorator as follows:

public class StatisticalInvoiceFactory : IInvoiceFactory
{
 private IInvoiceFactory invoiceFactory;
 public uint CreatedObjectCount { get; private set;}

 public StatisticalInvoiceFactory(IInvoiceFactory
 invoiceFactory)
 {
 this.invoiceFactory = invoiceFactory;
 }
 public Domain.IInvoice CreateInvoice(
 System.Collections.Generic.IEnumerable<
 Domain.InvoiceLineItem>
 invoiceLineItems)
 {
 CreatedObjectCount += 1;
 return invoiceFactory.CreateInvoice(invoiceLineItems);
 }
}

This second decorator wraps another IInvoiceFactory object and counts how
many times CreateInvoice is called before delegating it on to the contained
IInvoiceFactory object. If this were to be used with the LoggingInvoiceFactory,
the following code would have to be invoked before massing IInvoiceFactory or
its CreateInvoice method on to another class/method to use it:

 IInvoiceFactory invoiceFactory =
 new LoggingInvoiceFactory(new StatisticalInvoiceFactory(
 new InvoiceFactory()));

This code creates an InvoiceFactory object which is used as a constructor argument
to a new StatisticalInvoiceFactory object, which is in turn used as a constructor
argument to a new LoggingInvoiceFactory.

Use of the resulting IInvoiceFactory object would result in the
LoggingInvoiceFactory.CreateInvoice being called, which calls
StatisticalInvoiceFactory.CreateInvoice, which would then call
InvoiceFactory.CreateInvoice to create an IInvoice object.

Refactoring to Loosely Coupled

[206]

As we can see from this example, decorators are an excellent means of implementing
single responsibility and separation of concerns, but without a loosely-coupled
implementation implementing them would also break separation of concerns and
single responsibility.

Detecting highly-coupled
Visual Studio® 2010 Premium and Ultimate include the Code Metrics feature, which
includes the Class Coupling metric. Code Metrics can be calculated by right-clicking
a project in the Solution Explorer and selecting Calculate Code Metrics.

An example output of the Code Metrics can be seen as follows:

The Class Coupling metric measures the number of unique classes referenced by a
particular project (assembly), namespace, class, or method. Focus on metric delta, not
a line in the sand. Creating a fixed metric goal and striving at all costs to attain that
goal rarely adds value. Developers will focus on very small improvements over very
big improvements. Setting a Class Coupling goal for classes of 2, for example, across
the board means developers are forced to strive for that goal. This would mean any
class should reference no more than two other classes. A value of 2 is too arbitrary
to be of any use. Improving from 3 to 2, for example, is an improvement of only a
single point. It's very difficult to define the benefit attained by a single point decrease
in Class Coupling for a particular class. It's also hard to justify the cost of this single
point decrease. Focus your loosely-coupled refactoring efforts with classes with the
highest Class Coupling. If large changes in Class Coupling are not obvious or too
much work; focus the refactoring effort on other aspects that offer better gains.

Chapter 7

[207]

Other metrics included in Code Metrics are Maintainability Index: a representation
of the relative ease of maintaining the code, Cycolmatic Complexity: a measure of the
structural complexity of the code, Depth of Inheritance: a measure of the number of
class definitions that extend to the root of the class hierarchy, and Lines of Code: a
measure of the IL lines of code. The built-in Code Metrics of Visual Studio® offers a
very high-level view of your code base. The metrics included are a very small subset
of the possible metrics that can be gathered for any particular code base. The built-in
metrics represents (arguably subjective) some of the more important metrics. As your
code base grows or as the management of that code base becomes more intense, you
may find that you will need to gather more in-depth metrics about your code base.

But, as with focusing on the minutia of the Visual Studio® Class Coupling metrics,
additional metrics offer the ability to be over-focused on metrics. The project can
come to a virtual stand-still while the minutia of these metrics are analyzed and what
to do about the metrics and how to put them in action becomes too much of a focus
for the team. Beware of this analysis paralysis and ensure you're balancing the value
attained by these analysis efforts.

With that in mind, there are third-party tools and applications that can adjunct
Visual Studio®'s Code Metrics features. Many of these third party software metrics
tools provide much more detail in the coupling metrics they provide. One such
tool is NDepend. NDepend was originally a tool to analyze and report on the
dependencies of a particular code base; NDepend has branched out into one of the
most comprehensive metrics gathering tools available to Visual Studio® users.

Types of coupling
As you get more into reducing coupling, you may find that you may want to focus
your refactoring efforts to the type of coupling. As with almost all metrics, they have
to be taken with a grain of salt and prioritized. Most details about the couplings
within your code base can only help in the prioritization of your refactoring efforts
based on coupling.

Afferent coupling
The number of dependencies something has on other types within the package is
afferent coupling. This inward coupling metric is a gauge of the responsibility taken
on by the types within an assembly, namespace, type, or method. A high afferent
coupling maybe a good thing for a particular package and suggest very good
cohesion—in that most of the types in the package share the same responsibility.

Refactoring to Loosely Coupled

[208]

Efferent coupling
The number of dependencies to other types is efferent coupling. This outward
coupling is a gauge of how independent the assembly, namespace, type, or method
is. Something that has a high number of external dependencies suggests it is not
independent. Something with a high number of external dependencies is said to have
the Feature Envy Code Smell and should most likely be subsumed into the package
that it depends upon most.

Interface segregation principle
With the power of Interface-based design, Dependency Injection, and Inversion of
Control containers; there's a propensity for the Extract Interface refactoring to be
invoked on many classes in a code base and those classes used solely through the
new extracted interface. This takes a giant leap towards loosely coupling, but can
create new, unnecessary couplings.

Each class has its own interface that is used (hopefully) by one or more other classes.
Each class may use that class in a very specific way, that is, it may not use its entire
interface. By simply extracting an interface from a class and forcing all users of
the class to be coupled to that one interface, you're forcing all those classes to be
coupled to all of those usages. By providing one interface for all these client usages,
it's suggesting one implementation (class) for the one interface. At the very least,
each implementation must certainly implement the entire interface—regardless of
whether a particular client usage of that interface uses the entire interface.

Enter the Interface Segregation Principle.

Interface Segregation Principle: Clients should not be forced to depend
on interfaces they do not use.

What the Interface Segregation Principle suggests is that these single interfaces
should be broken up into multiple interfaces. The perfect level of granularity would
be on interface per client, but that's an ideal that can become hard to maintain.
There's a sweet spot between a single interface and one interface per client that will
apply to your context or project.

For example, let's posit that the Person class in our system was created to subsume
Customer and support users of our system. This class would look like the following:

/// <summary>
/// Person class that can be used as
/// a customer or a user

Chapter 7

[209]

/// </summary>
public class Person : IUser, ICustomer
{
 private List<Contact> contacts = new List<Contact>();

 public Person(DateTime creationDate,
 String accountNumber)
 {
 AccountNumber = accountNumber;
 CreationDate = creationDate;
 Contacts = contacts;
 }

 public String AccountNumber { get; private set; }

 public IEnumerable<Contact> Contacts { get; private set; }

 public virtual void AddContact(Contact contact)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot add"
 + " contacts from an Inactive customer.");
 }
 contacts.Add(contact);
 }

 public virtual void RemoveContact(Contact contact)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot remove"
 + " contacts from an Inactive customer.");
 }
 contacts.Remove(contact);
 }

 public DateTime CreationDate { get; private set; }

 public String Description { get; private set; }

 public virtual void DescribeCustomer(String description)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot change"
 + " description of an Inactive customer.");
 }
 Description = description;
 }

Refactoring to Loosely Coupled

[210]

 public String Comments { get; private set; }

 public virtual void CommentOnCustomer(String comment)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot add"
 + " comment top an Inactive customer.");
 }
 Comments = comment;
 }

 public bool Inactive { get; private set; }

 public void Deactivate()
 {
 Inactive = true;
 }

 public void Reactivate()
 {
 Inactive = false;
 }

 public string UserName { get; private set; }

 public string Name { get; set; }

 public string Password {get; set;}

 public void UpdateUser()
 {
 // write user to physical storage...
 }
}

Where members AccountNumber, UserName, Name, CreationDate, Password,
and UpdateUser are used for users and AccountNumber, Name, AddContact,
CommentOnCustomer, Comments, Contacts, CreationDate, Deactivate,
DescribeCustomer, Description, Inactive, Reactivate, RemoveContact are
used for customers. (Note that AccountNumber and CreationDate are shared
between the two).

Clients that use Person in the user context shouldn't care about the other customer
members, and vice versa for clients that use Person in the customer context. The
fact is these clients shouldn't care about the Person implementation detail. They
should be free to concentrate simply on either their user or customer concern,
allowing them and the implementation details of a user and a customer to evolve
freely and independently.

Chapter 7

[211]

Interface segregation would suggest that user clients of Person should reference it
through one interface, and customer clients of Person should reference it through a
different interface. Should the implementation details of Person change—for whatever
reason—the clients would be none the wiser and simply continue as if nothing
happened. To refactor to this interface segregation, we can perform these actions:

•	 Create an IUser interface
•	 Create an ICustomer interface
•	 Derive Person from both IUser and ICustomer
•	 Replace referent of Person with either IUser or ICustomer

This would result in code similar to the following:

public interface IUser
{
 string AccountNumber { get; }
 string UserName { get; }
 string Name { get; set; }
 DateTime CreationDate { get; }
 string Password { get; set; }
 void UpdateUser();
}

public interface ICustomer
{
 string AccountNumber { get; }
 string Name { get; set; }
 void AddContact(Contact contact);
 void CommentOnCustomer(string comment);
 string Comments { get; }
 System.Collections.Generic.IEnumerable<Contact> Contacts
 { get; }
 DateTime CreationDate { get; }
 void Deactivate();
 void DescribeCustomer(string description);
 string Description { get; }
 bool Inactive { get; }
 void Reactivate();
 void RemoveContact(Contact contact);
}

public class Person : IUser, ICustomer
{
 //...
}

Refactoring to Loosely Coupled

[212]

We now have an IUser interface that contains the members AccountNumber,
UserName, Name, CreationDate, Password, and UpdateUser and an ICusomter
interface that contains members AccountNumber, Name, AddContact,
CommentOnCustomer, Comments, Contacts, CreationDate, Deactivate,
DescribeCustomer, Description, Inactive, Reactivate, RemoveContact and the
Person class now implements both IUser and ICustomer.

If at some point in the future, the design called for the Person class to be
implemented in two classes instead of one, user clients and customer clients would
not have to be refactored. For example:

public class User : IUser
{
 public User(DateTime creationDate,
 String accountNumber)
 {
 AccountNumber = accountNumber;
 CreationDate = creationDate;
 }

 public String AccountNumber { get; private set; }

 public DateTime CreationDate { get; private set; }

 public string UserName { get; private set; }

 public string Name { get; set; }

 public string Password {get; set;}

 public void UpdateUser()
 {
 // write user to physical storage...
 }
}

public class Customer : ICustomer
{
 private List<Contact> contacts = new List<Contact>();

 public Customer(DateTime creationDate,
 String accountNumber)
 {
 AccountNumber = accountNumber;
 CreationDate = creationDate;
 Contacts = contacts;
 }

 public String AccountNumber { get; private set; }

 public IEnumerable<Contact> Contacts { get; private set; }

Chapter 7

[213]

 public virtual void AddContact(Contact contact)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot add"
 + " contacts from an Inactive customer.");
 }
 contacts.Add(contact);
 }

 public virtual void RemoveContact(Contact contact)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot remove"
 + " contacts from an Inactive customer.");
 }
 contacts.Remove(contact);
 }

 public DateTime CreationDate { get; private set; }

 public String Description { get; private set; }

 public virtual void DescribeCustomer(String description)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot change"
 + " description of an Inactive customer.");
 }
 Description = description;
 }

 public String Comments { get; private set; }

 public virtual void CommentOnCustomer(String comment)
 {
 if (Inactive)
 {
 throw new InvalidOperationException("Cannot add"
 + " comment top an Inactive customer.");
 }
 Comments = comment;
 }

 public bool Inactive { get; private set; }

 public void Deactivate()

Refactoring to Loosely Coupled

[214]

 {
 Inactive = true;
 }

 public void Reactivate()
 {
 Inactive = false;
 }

 public string Name { get; set; }

 public string Password { get; set; }

 public void UpdateUser()
 {
 // write user to physical storage...
 }
}

We now have a Customer class and a User class that implement ICustomer and
IUser respectively. All the same functionality that Person implemented is still
there, and clients of IUser and ICustomer would not need to change.

Drawbacks of loosely-coupled
Loosely-coupled offers some ease of maintainability through the mere fact that we
can reduce our dependencies and change dependencies from instable concretions to
more stable abstractions. But, this design does have some drawbacks.

Despite the maintainability gains we get from the more stable dependencies
and the flexibility we get from the lack of being tightly-coupled, it can be
difficult to understand what components depend on what. For example, since
InvoiceRenderingService doesn't directly use Invoice at all, but uses IInvoice,
readers of the code must assume that InvoiceRedneringService actually uses
Invoice and thus depends upon it (at least with production code).

Other methods of loose-coupling
In this chapter, we've focused on loosely-coupling code within a single compile
unit—that is code that has access to any other code in the code base. The drawback
of this is that despite defining abstract interfaces for code to interact with other
code, there's nothing stopping a programmer from accessing that code directly and
becoming tightly-coupled once again.

Chapter 7

[215]

Other methods of implementing loose-coupled go beyond the compile-unit
boundary and involve process boundaries. A designer might think that separation
at the assembly level could help enforce loose-coupling, but the classes that should
be internal (and thus hidden) still need to be created by the other assembly and
segregation becomes very difficult. It doesn't stop the developer from simply making
the class in question public instead of internal and tight-coupling returns.

Web services
Publishing an interface via a web service limits the client of that interface to just
what is published. Unlike an assembly reference, there's no means to get at the
implementation details of the web service. The web service only makes available
what it wants or needs clients to have access to.

Web services use network communications to communicate, as such drastically
limiting how the two sides can communicate and what they communicate.
Implementing a web service implements a loosely-coupled design because it is
coupled only to the interface defined by the web service, so there's no way for the
client to become tightly coupled to any of the code that implements the web service.
This is very similar to using Interface-based design but we don't directly instantiate
any implementation details—everything is dealt with through the web service
interface only.

Implementing a web service is a response to very specific requirements and using
web services as a means of implementing and enforcing loosely-coupled design is
not recommended because of the drawbacks. Obviously communications is not in-
memory and is via network communications, so performance is much slower. Lack
of in-memory communications means data needs to be marshalled from one side
to the other. Generated proxies do most of the marshalling heavy-lifting; but this
process is often the conversion from binary data to text data and back again—having
a further affect on performance.

Communication hosts
Web services are generally something that is deployed on a completely different
computer—usually a web server. There are other techniques of maintaining
process-level boundaries between components like communication hosts.
Communication hosts are separate processes that can be communicated with
through specific technologies. These technologies include sockets or pipes. Sockets
are also network communications methods but they are easy to deploy and easy to
create and support communication within the same computer. Pipes are similar to
sockets but can be scoped to within the same computer and offer the same ease of
deployment as sockets.

Refactoring to Loosely Coupled

[216]

These non-compile-unit designs with loosely-coupled side-effects are outside the
scope of this book, and refactoring to such designs is not included.

Summary
In this chapter, we discussed what side-effects arise from being tightly coupled
and how it affects maintainability. With some refactorings specific to attaining a
loosely-coupled design, we saw how we can obtain an optimal level of flexibility—a
flexibility that increases maintainability by reaching componentization.

In the next chapter, we'll begin the section on refactoring architecture. We'll discuss
refactoring to layers, what benefits we'll get from layers, what that means for
testability, and detail the Model, View, Presenter pattern.

Refactoring to Layers
In the previous chapter, we detailed refactoring to a loosely-coupled design by
having classes communicate between each other by means of an abstract interface.
We want to refactor to loosely-coupled in order to componentize regions of our
software system and be able to modify or enhance a component and minimize the
effects on other components.

In this chapter, we take the concept of decoupling to the next level and delve into
layers. This journey will include the following destinations:

•	 What are layers?
•	 Model View Presenter pattern
•	 Business Logic and Domain Layers
•	 Data layers
•	 Plain Old CLR Objects (POCOs)
•	 Repository pattern

Layers
So far we've concentrated on abstractions at low-level physical boundaries. We've seen
how to refactor classes for increased abstraction to decouple classes from one another.
This increases independence and componentization and introduces a flexibility and
robustness without a change in external behavior of the software system.

Within a solution in Visual Studio, there are various physical groupings like class
(by default, a file), class library (DLL assembly), and application (EXE assembly).
Our class-level abstractions deal with this physical boundary. With software design,
we can increase the value that we get from the code base by also introducing
conceptual or logical boundaries. Layers are a design technique to logically group
similar functionality.

Refactoring to Layers

[218]

Grouping related functionalities into layers has some specific attributes over and
above simply conceptually thinking of a group of classes as one particular "layer".
A real-world layer is something that is laid atop another layer. Physically one layer
can, at most, contact two other layers (the layer above and the layer below); it cannot
contact any other layers. Logical layers in software design are similar.

When we create layers and implement them, we organize them from lower-level
concepts to higher-level concepts. Logical layers differ slightly from real-world
layers in that they "contact" (or take dependencies) only in one direction: downward.
In other words, lower-level layers never know about higher-level layers, even
though logically they're adjacent. Just as with real-world layers, logical layers only
know about adjacent layers (specifically adjacent lower layers).

To recap: a layer is a logical grouping of types with similar external assembly
dependencies. Dependencies between layers occur only in one direction: from
higher-level layers to adjacent lower-level layers.

Let's look at some typical examples of layering. One common layering design is to
have three layers: User Interface Layer, Business Logic Layer, and Data Access Layer.
With this common three-layer design, the User Interface Layer is the highest-level
layer and interfaces directly with the Business Logic Layer (and not the Data Access
Layer) and the Business Logic Layer interfaces directly with the Data Access Layer,
which is the lowest level layer. The layers are organized from high-level (more
conceptual) to low-level (more specific). The User Interface Layer deals mostly with
conceptual details that help the user use the system in a more intuitive way and that
are independent of how the system is physically implemented. The Data Access
Layer deals specifically with one implementation detail: data persistence. Typically,
applications make use of a relational database management system (RDBMS) to store
application data. The Data Access Layer encapsulates this implementation detail
from the rest of the system. In turn, the Business Logic Layer would encapsulate the
Domain details, which would include how those details get translated into requests
to the Data Access Layer. The Business Logic Layer would free the User Interface
Layer from knowing about and having to deal with the Data Access Layer, and the
Data Access Layer would free the Business Logic Layer from having to know about
and deal with whatever particular persistence mechanism was chosen. The following
diagram shows the associations between layers:

Chapter 8

[219]

This diagram details that the UI Layer makes use of the Business Logic Layer and the
Business Logic Layer makes use of the Data Access Layer. There are some explicit
rules of layering that are implied here: the lower-level layers are not dependent
on higher-level layers, dependency between layers is in one direction, and layer
interdependence is to adjacent layers.

In reality, this 3-layer architecture isn't fine-grained enough. Implementing a 3-layer
architecture like this means there are concerns that don't necessarily belong in any
of the three layers and have no place to live—often getting shoe-horned into one of
the three layers. This often leads to violations of the abstraction-between-layers and
unidirectional-dependency rules because of the various concerns in software systems
that are used by multiple layers.

Choosing to incorporate layers into a software system can be driven by several
motivations. As with our class-level abstractions, we gain componentization and
independence. One motivation for refactoring to a layered design may be one of
robustness and quality. As we further increase the componentization of a system, we
increase its ability to be changed and decrease its fragility. The fragility of a system
is often a motivation to refactor to layers. Refactoring to layers can be a precursor to
redesigning to tiers—separating functionality in layers to physical boundaries in tiers.

Business logic and domain layers
There are many terms for the same thing in our industry and business logic is
no exception. There are a few patterns that refer to data and types specific to the
business as the "Model". Other specialties like Domain-Driven Design call it the
"Domain". Traditionally, in the Microsoft community it has been called "Business
Logic". For the sake of consistency when we refer to the Domain, we're effectively
also referring to Business Logic or Model.

Refactoring to Layers

[220]

The Domain contains what is specific to and important to the business. Objects in the
business are modeled in our domain so that we may act upon them in a logical and
sensible way within our software system. We, the software experts, choose to echo
the terminology from our domain experts within our Domain, because we are not the
Domain Experts; we do not fully understand the Domain as they do. We use their
terminology to keep a one-to-one mapping with their domain to focus on how we
model it.

The Domain objects contain logic that has been defined by our Domain Experts with
respect to how the object acts. This may include behavior and rules.

At this point, we have a pretty good understanding of our domain, so it may be
worthwhile to start our refactoring effort with the Domain Layer.

I find it useful from a development standpoint for each layer to be contained within
its own assembly. The User Interface Layer would be a Graphical User Interface
application, a website, or something else that provides a user interface. Other layers
are implemented as class libraries—an assembly that contains the objects we wish
to model.

To begin refactoring, create a new class library. I prefer to have a naming scheme
similar to ProductName.Namespace(if the class library is to be shared, you may also
want to include a company identifier: Company.ProductName.Namespace). In our
case, we would name the domain class library as "Invoicing.Domain". This sets up
the namespace hierarchy nicely right off the bat after project creation.

What we started with is a single application assembly that contained all our domain
concepts, data access, and graphical user interface. So, we want to move our domain
objects into our new class library. For this particular refactoring we're dealing with
the following types: Invoice and InvoiceLineItem. We can either create new
Invoice and InvoiceLineItem classes in our new class library and copy the body
of the classes over, or we can drag-and-drop the classes to the class library in the
Solution Explorer—holding Shift down to move the files instead of copying them.
Drag-moving files in the Solution Explorer copies the files verbatim, so we have
to update our namespaces in each file. Simply rename InvoicingFrontEnd to
Invoicing.Domain in both Invoice.cs and InvoiceLineItem.cs.

Chapter 8

[221]

Now that we've moved our domain classes to their own class library, we now need to
make sure we can access these new classes in our front-end. Of course, in order to do
that we need to add a reference to our new class library project to the front-end. We'll
go ahead and do that now. Now that we know we can access our domain objects from
our Domain class library, we need to make sure that wherever we do, we have the
appropriate using directive. Since we no longer have an Invoice or InvoiceLineItem
class in our application project , we can't use the Find All References feature to see where
they all are and simply click on them one-by-one in the Find Symbol Results window.
We could go ahead and search for the words "Invoice" and "InvoiceLineItem",
but our results could be littered with a bunch of false positives. The easiest method
is to simply compile our solution and double-click each error (or press F8) and select
using Invoice.Domain from the smart-tag for each error (Ctrl+.[Ctrl+period] or
Shift+Alt+F10).

Once the solution compiles, run all the unit tests such that they pass and verify that
we have not broken anything.

At this point, we've now refactored to a Domain Layer.

Data Access Layers
A Data Access Layer is a low-level layer whose responsibility is to encapsulate the
implementation details of persisting objects to whatever data store we've chosen
for our software system. This data store is commonly a Relational Database
Management System (RDBMS). Having a Data Access Layer means that the fact
that we've chosen a particular RDBMS or that we've even chosen to store data in a
RDBMS won't influence code outside the Data Access Layer.

Refactoring UI data access to Data Access Layer
We'll continue our refactoring journey in this chapter from a user interface that
includes the data-access code within it.

Refactoring to Layers

[222]

We have a View Invoice form that accepts the unique ID for a particular invoice,
loads it from the database, then displays the aggregate information contained within
it. This form, when displaying a particular invoice, looks like this:

There is a Date field that shows the date the invoice was produced, and a Line Items
grid that shows the line items associated to this invoice. There is also a Preview…
button which provides the ability to preview how the invoice would look, if printed.

The code for the form is as follows:

/// <summary>
/// Sample form coupled to data-access
/// </summary>
public partial class ViewInvoiceForm : Form
{
 private Invoice invoice;

 public ViewInvoiceForm(Guid invoiceId)
 {
 using (SqlConnection connection =
 new SqlConnection(
 Properties.Settings.Default.ConnectionString))
 {
 connection.Open();
 DataSet invoiceDataSet = new DataSet("Invoice");
 using (SqlCommand command =

Chapter 8

[223]

 new SqlCommand("SELECT Id, Date, Title, " +
 "Status FROM Invoice WHERE (Id = @ID)", connection))
 {
 command.Parameters.Add("@ID",
 SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = invoiceId;
 using (SqlDataAdapter invoiceDataAdapter =
 new SqlDataAdapter())
 {
 invoiceDataAdapter.TableMappings.Add(
 "Table", "Invoices");
 command.CommandType = CommandType.Text;
 invoiceDataAdapter.SelectCommand = command;

 invoiceDataAdapter.Fill(invoiceDataSet);
 }
 }
 DataSet lineItemDataSet =
 new DataSet("LineItems");
 using (SqlCommand command =
 new SqlCommand("SELECT InvoiceId, Price," +
 " Discount,Quantity, Description, " +
 "TaxRate1, TaxRate2 FROM LineItem " +
 "WHERE (InvoiceId = @ID)",
 connection))
 {
 command.Parameters.Add("@ID",
 SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = invoiceId;
 using (SqlDataAdapter lineItemDataAdapter
 = new SqlDataAdapter())
 {
 lineItemDataAdapter.TableMappings.Add(
 "Table", "LineItems");

 command.CommandType = CommandType.Text;
 lineItemDataAdapter.SelectCommand = command;

 lineItemDataAdapter.Fill(lineItemDataSet);
 }
 }
 List<InvoiceLineItem> lineItems =
 new List<InvoiceLineItem>(
 lineItemDataSet.Tables["LineItems"]
 .Rows.Count);
 foreach (DataRow row in

Refactoring to Layers

[224]

 lineItemDataSet.Tables["LineItems"].Rows)
 {
 InvoiceLineItem invoiceLineItem =
 new InvoiceLineItem()
 {
 Description = row["Description"] as String,
 Discount = (float)(double)row["Discount"],
 Price = (float)(Decimal)row["Price"],
 Quantity = (int)row["Quantity"],
 };
 if (row["TaxRate1"] != DBNull.Value)
 {
 if ((String)row["TaxRate1"] == "GST")
 {
 invoiceLineItem.TaxRate1 =
 new FederalGST();
 }
 else if ((String)row["TaxRate1"] == "PST")
 {
 invoiceLineItem.TaxRate1 =new OntarioPST();
 }
 }
 if (row["TaxRate2"] != DBNull.Value)
 {
 if ((String)row["TaxRate2"] == "GST")
 {
 invoiceLineItem.TaxRate2 =
 new FederalGST();
 }
 else if ((String)row["TaxRate2"] == "PST")
 {
 invoiceLineItem.TaxRate2 =
 new OntarioPST();
 }
 }
 lineItems.Add(invoiceLineItem);
 }
 DataRow dataRow =
 invoiceDataSet.Tables["Invoices"].Rows[0];
 invoice = new Invoice(
 (String)dataRow["Title"],
 lineItems,
 (DateTime)dataRow["Date"])
 {

Chapter 8

[225]

 Id = (Guid)dataRow["Id"]
 };
 }

 InitializeComponent();

 Populate();
 }

 /// <summary>
 /// Fill in all the form's fields
 /// </summary>
 private void Populate()
 {
 dateTimePicker.Value = invoice.Date;
 foreach (var item in invoice.LineItems)
 {
 lineItemsListView.Items.Add(
 new ListViewItem(new string[]
 {
 item.Price.ToString(),
 item.Discount.ToString(),
 item.Quantity.ToString(),
 item.Description }));
 }
 }

 private void previewButton_Click(object sender,
 EventArgs e)
 {
 using (var form =
 InvoicePreviewFormFactory.Create(invoice))
 {
 form.ShowDialog(this);
 }

 }
}

The constructor is responsible for (in addition to calling InitializeComponent)
loading the invoice from the database based upon the invoice's ID and invoking
the Populate method. The Populate method flattens the Invoice attribute data
and populates the controls in the form. The previewButton_Click method
processes the Click event on the previewButton button control and displays an
InvoicePreviewForm form to show a visual representation of what the invoice
would look like if printed.

Refactoring to Layers

[226]

Obviously, the constructor of this form contains lots of code to deal with loading an
invoice from the database. As it stands, the implementation of this form works fine,
but this data access code introduces some potential issues. It's extremely likely that
somewhere else in our invoicing application that the ability of loading an invoice
from the database will be required. We could keep it in our View Invoice form and
either copy it to other places or write similar code; but, any changes to any of these
different blocks of invoice loading code would mean porting those changes to all
the other instances of that code. It is not very maintainable. We're also clearly tied
to a relational database and that relational database is SQL Server®. If we want to
change the RDBMS or switch away from a relational database (or a hybrid approach)
we'd have to change our user interface code to accomplish that. Or, if we wanted to
implement caching or lazy loading, we would have a hard time tracking down all
the data access code throughout the user interface to make that change and make the
cache/loading data available throughout the application—destabilizing the UI code
for no real value.

So, let's create a Data Access Layer and move the data access code to the Data
Access Layer and use the Data Access Layer from the form.

In the data-access code in our ViewInvoiceForm, we have some very apparent
scenarios: we want to load invoice line item data from the database and we
want to load invoice data from the database. This process is effectively to use a
SqlDataAdapter to execute a SqlCommand to populate a DataSet.

Just as we did with the Domain Layer, we'll start our Data Access Layer by creating
a new class library for it. Using the word "Layer" in my layer components doesn't
add any value to me, so I don't generally use the word "Layer" in the name. I simply
name it "Data". So, I would add a new class library to our Invoicing solution and
name it "Invoicing.Data".

Let's rename the automatically generated Class1 class to DataAccess and we'll
begin moving our data access functionality into it. Since we need to load invoice
line item data and invoice data, let's add a LoadInvoiceLineItems method and a
LoadInvoice method. This would be something similar to the following:

namespace Invoicing.Data
{
 public class DataAccess : IDataAccess
 {
 public DataSet LoadInvoiceLineItems(Guid invoiceId)
 {
 }

 public DataSet LoadInvoice(Guid invoiceId)
 {

Chapter 8

[227]

 }
 }
}

We now have a basic interface that we use to implement data access. We want
the other layer to access this layer via an interface, so we've also implemented the
following interface:

public interface IDataAccess
{
 DataSet LoadInvoice(Guid invoiceId);
 DataSet LoadInvoiceLineItems(Guid invoiceId);
}

We can now move the code that fills the DataSet for each type of data into each
new method and add connection string injection. For example:

/// <summary>
/// Sample IDataAcces implementation supporting
/// invoice and invoice line item data
/// </summary>
public class DataAccess : IDataAccess
{
 private string connectionString;
 public DataAccess(string connectionString)
 {
 this.connectionString = connectionString;
 }

 public DataSet LoadInvoiceLineItems(Guid invoiceId)
 {
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 DataSet lineItemDataSet =
 new DataSet("LineItems");
 using (SqlCommand command =
 new SqlCommand("SELECT InvoiceId, Price," +
 "Discount,Quantity, Description, " +
 "TaxRate1, TaxRate2 FROM LineItem " +
 "WHERE (InvoiceId = @ID)",
 connection))
 {
 command.Parameters.Add("@ID",
 SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = invoiceId;

Refactoring to Layers

[228]

 using (SqlDataAdapter lineItemDataAdapter
 = new SqlDataAdapter())
 {
 lineItemDataAdapter.TableMappings.Add(
 "Table", "LineItems");

 command.CommandType = CommandType.Text;
 lineItemDataAdapter.SelectCommand = command;

 lineItemDataAdapter.Fill(lineItemDataSet);
 }
 }
 return lineItemDataSet;
 }
 }

 public DataSet LoadInvoice(Guid invoiceId)
 {
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 DataSet invoiceDataSet = new DataSet("Invoice");
 using (SqlCommand command =
 new SqlCommand("SELECT Id, Date, Title," +
 " Status FROM Invoice WHERE (Id = @ID)",
 connection))
 {
 command.Parameters.Add("@ID",
 SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = invoiceId;
 using (SqlDataAdapter invoiceDataAdapter =
 new SqlDataAdapter())
 {
 invoiceDataAdapter.TableMappings.Add("Table", "Invoices");
 command.CommandType = CommandType.Text;
 invoiceDataAdapter.SelectCommand = command;

 invoiceDataAdapter.Fill(invoiceDataSet);
 }
 }
 return invoiceDataSet;
 }
 }
}

Chapter 8

[229]

At this point, we have a Data Access Layer: a layer concerned with how to get data
out of a data store. We could now use this Data Access Layer in our form, as follows:

/// <summary>
/// Construct ViewInvoiceForm based on
/// <paramref name="invoiceId"/>
/// </summary>
/// <param name="invoiceId"></param>
public ViewInvoiceForm(Guid invoiceId)
{
 IDataAccess dataAccess = new
 DataAccess(
 Properties.Settings.Default.ConnectionString);
 DataSet lineItemDataSet =
 dataAccess.LoadInvoiceLineItems(invoiceId);

 List<InvoiceLineItem> lineItems =
 new List<InvoiceLineItem>(
 lineItemDataSet.Tables["LineItems"]
 .Rows.Count);
 foreach (DataRow row in
 lineItemDataSet.Tables["LineItems"].Rows)
 {
 InvoiceLineItem invoiceLineItem =
 new InvoiceLineItem()
 {
 Description = row["Description"] as String,
 Discount = (float)(double)row["Discount"],
 Price = (float)(Decimal)row["Price"],
 Quantity = (int)row["Quantity"],
 };
 if (row["TaxRate1"] != DBNull.Value)
 {
 if ((String)row["TaxRate1"] == "GST")
 {
 invoiceLineItem.TaxRate1 =
 new FederalGST();
 }
 else if ((String)row["TaxRate1"] == "PST")
 {
 invoiceLineItem.TaxRate1 =new OntarioPST();
 }
 }
 if (row["TaxRate2"] != DBNull.Value)
 {

Refactoring to Layers

[230]

 if ((String)row["TaxRate2"] == "GST")
 {
 invoiceLineItem.TaxRate2 =new FederalGST();
 }
 else if ((String)row["TaxRate2"] == "PST")
 {
 invoiceLineItem.TaxRate2 =new OntarioPST();
 }
 }
 lineItems.Add(invoiceLineItem);
 }

 DataSet invoiceDataSet = dataAccess.LoadInvoice(invoiceId);
 DataRow dataRow =
 invoiceDataSet.Tables["Invoices"].Rows[0];
 invoice = new Invoice(
 (String)dataRow["Title"],
 lineItems,
 (DateTime)dataRow["Date"])
 {
 Id = (Guid)dataRow["Id"]
 };

 InitializeComponent();

 Populate();
}

In the above code, we now create an IDataAcces object and make use of its
LoadInvoiceLineItems and LoadInvoice methods instead of directly using
SqlCommand, SqlConnection, and SqlDataAdapter. The code to instantiate
InvoiceLineItem objects and Invoice objects continues to remain.

This remaining code is also not really the concern of the user interface and involves
quite a bit of business-specific logic about how to construct InvoiceLineItem
objects and Invoice objects from InvoiceLineItem objects, and so on. The current
code also interfaces directly with the Data Access Layer as well as interfaces with
objects in the Domain Layer—clearly violating our layering rules. We can introduce
a domain-specific concept called the Repository Pattern to provide an abstract
collection-like interface that other code can use to query and save domain data. The
repository would know how to interface with the Data Access Layer and take on the
business-specific logic of creating various domain objects.

Chapter 8

[231]

To refactor the remaining code from the ViewInvoiceForm class, we simply create
an IInvoiceRepsitory interface in our Domain project that contains a Load method
that takes a Guid invoiceId parameter such as the following:

namespace Invoicing.Domain
{
 public interface IInvoiceRepository
 {
 Invoice Load(Guid invoiceId);
 }
}

We then create an InvoiceRepository class that derives from
IInvoiceRepository, has a constructor that accepts an IDataAccess object, a
Load method that takes a Guid invoiceId parameter, and has an IDataAccess
dataAccess field. It should look something like this:

namespace Invoicing.Domain
{
 /// <summary>
 /// An in-memory-collection-like
 /// interface to Invoice objects
 /// </summary>
 class InvoiceRepository : IInvoiceRepository
 {
 IDataAccess dataAccess;

 public InvoiceRepository(IDataAccess dataAccess)
 {
 this.dataAccess = dataAccess;
 }

 public Invoice Load(Guid invoiceId)
 {
 DataSet lineItemDataSet =
 dataAccess.LoadInvoiceLineItems(invoiceId);
 List<InvoiceLineItem> lineItems =
 new List<InvoiceLineItem>(
 lineItemDataSet.Tables["LineItems"]
 .Rows.Count);
 foreach (DataRow row in
 lineItemDataSet.Tables["LineItems"].Rows)
 {
 InvoiceLineItem invoiceLineItem =new InvoiceLineItem()
 {
 Description = row["Description"] as String,

Refactoring to Layers

[232]

 Discount = (float)(double)row["Discount"],
 Price = (float)(Decimal)row["Price"],
 Quantity = (int)row["Quantity"],
 };
 if (row["TaxRate1"] != DBNull.Value)
 {
 if ((String)row["TaxRate1"] == "GST")
 {
 invoiceLineItem.TaxRate1 =new FederalGST();
 }
 else if ((String)row["TaxRate1"] == "PST")
 {
 invoiceLineItem.TaxRate1 =new OntarioPST();
 }
 }
 if (row["TaxRate2"] != DBNull.Value)
 {
 if ((String)row["TaxRate2"] == "GST")
 {
 invoiceLineItem.TaxRate2 =new FederalGST();
 }
 else if ((String)row["TaxRate2"] == "PST")
 {
 invoiceLineItem.TaxRate2 =new OntarioPST();
 }
 }
 lineItems.Add(invoiceLineItem);
 }

 DataSet invoiceDataSet =
 dataAccess.LoadInvoice(invoiceId);
 DataRow dataRow =
 invoiceDataSet.Tables["Invoices"].Rows[0];
 return new Invoice(
 (String)dataRow["Title"],
 lineItems,
 (DateTime)dataRow["Date"])
 {
 Id = (Guid)dataRow["Id"]
 };
 }
 }
}

Chapter 8

[233]

The code in the Load method is effectively the same as what we have just refactored
in the form.

To complete refactoring to a Data Access Layer, we simply update the form to make
use of an IInvoiceRepository object by adding an IInvoiceRepository parameter
on the constructor and making a call to IInvoiceRepository.Load. For example:

public ViewInvoiceForm(IInvoiceRepository invoiceRepository,
 Guid invoiceId)
{
 invoice = invoiceRepository.Load(invoiceId);

 InitializeComponent();

 Populate();
}

Refactoring domain data access to Data Access
Layer
Of course, starting with all the data access code in the user interface code is only
one way to start out. The other possibility is that the domain objects contain code to
perform data access of themselves. (Okay, there are probably a large finite number of
possibilities here; I'll concentrate on these two very common possibilities.) These two
possibilities are mutually exclusive for any particular domain object and rather than
showing refactoring to a Data Access Layer that contained both possibilities, I've
chosen to separate them into two methods of refactoring for clarity.

The other possibility is that the data access code could very easily have been
implemented right in the class that needs to be loaded:

/// <summary>
/// Sample domain class that is
/// coupled to data-access
/// </summary>
public class Invoice
{
 //...

 public static Invoice Load(Guid invoiceId)
 {
 using (SqlConnection connection =
 new SqlConnection(
 Properties.Settings.Default.ConnectionString))
 {
 connection.Open();

Refactoring to Layers

[234]

 DataSet invoiceDataSet = new DataSet("Invoice");
 using (SqlCommand command =
 new SqlCommand("SELECT Id, Date, Title," +
 " Status FROM Invoice WHERE (Id = @ID)",
 connection))
 {
 command.Parameters.Add("@ID",SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = invoiceId;
 using (SqlDataAdapter invoiceDataAdapter =
 new SqlDataAdapter())
 {
 invoiceDataAdapter.TableMappings.Add("Table", "Invoices");
 command.CommandType = CommandType.Text;
 invoiceDataAdapter.SelectCommand = command;

 invoiceDataAdapter.Fill(invoiceDataSet);
 }
 }
 DataSet lineItemDataSet =
 new DataSet("LineItems");
 using (SqlCommand command =
 new SqlCommand("SELECT InvoiceId, Price," +
 "Discount,Quantity, Description, " +
 "TaxRate1, TaxRate2 FROM LineItem " +
 "WHERE (InvoiceId = @ID)",connection))
 {
 command.Parameters.Add("@ID",SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = invoiceId;
 using (SqlDataAdapter lineItemDataAdapter
 = new SqlDataAdapter())
 {
 lineItemDataAdapter.TableMappings.Add(
 "Table", "LineItems");

 command.CommandType = CommandType.Text;
 lineItemDataAdapter.SelectCommand = command;

 lineItemDataAdapter.Fill(lineItemDataSet);
 }
 }
 List<InvoiceLineItem> lineItems =
 new List<InvoiceLineItem>(
 lineItemDataSet.Tables["LineItems"].Rows.Count);
 foreach (DataRow row in
 lineItemDataSet.Tables["LineItems"].Rows)
 {

Chapter 8

[235]

 InvoiceLineItem invoiceLineItem =
 new InvoiceLineItem()
 {
 Description = row["Description"] as String,
 Discount = (float)(double)row["Discount"],
 Price = (float)(Decimal)row["Price"],
 Quantity = (int)row["Quantity"],
 };
 if (row["TaxRate1"] != DBNull.Value)
 {
 if ((String)row["TaxRate1"] == "GST")
 {
 invoiceLineItem.TaxRate1 = new FederalGST();
 }
 else if ((String)row["TaxRate1"] == "PST")
 {
 invoiceLineItem.TaxRate1 =new OntarioPST();
 }
 }
 if (row["TaxRate2"] != DBNull.Value)
 {
 if ((String)row["TaxRate2"] == "GST")
 {
 invoiceLineItem.TaxRate2 =new FederalGST();
 }
 else if ((String)row["TaxRate2"] == "PST")
 {
 invoiceLineItem.TaxRate2 =new OntarioPST();
 }
 }
 lineItems.Add(invoiceLineItem);
 }
 DataRow dataRow =
 invoiceDataSet.Tables["Invoices"].Rows[0];
 return new Invoice(
 (String)dataRow["Title"],lineItems,
 (DateTime)dataRow["Date"])
 {
 Id = (Guid)dataRow["Id"]
 };
 }
 }
}

Refactoring to Layers

[236]

With this version of our Invoice class, we have a static Load method that performs
the same logic that we've seen previously. Obviously, we want to avoid an instance
method to load an Invoice object because the act of loading the object should create
it—we'd have to create an empty object and tell it to load itself, which would not be
very intuitive. The configuration of the connection string to connect to the database is
abstracted away through the Properties object, but now our domain entity is coupled
back to the main (UI) assembly. This drastically hinders how we can layer our
application. As is, Invoice simply can't be put into a Domain Layer because it would
introduce a circular dependency. As a static method, we also limit what we can do:
inheritance, interfaces, and polymorphism are pretty much out of the window. As
it stands, the Invoice class is tightly coupled, not only to types in the System.Data
namespace, but now tightly coupled to SQL Server. We've encapsulated which SQL
Server database elsewhere (in Properties), so changing to a different server won't
impact our code; but, if we wanted to change to a different type of data source such
as Oracle, MySQL, orAzure Database, we'd have to modify code within the Invoice
class. Why should changing the database require changes to Invoice.cs?

Also, what if we wanted our Invoice class to be persisted to two different types of
databases? What if we wanted to make our system multi-tier with one tier dealing
with Invoice objects in SQL Server, and another dealing with Invoice objects
within an in-memory cache? We'd have to build those two types of persistence
sources into Invoice to support that. Quickly Invoice gets overrun with data access
code making it hard to read, hard to maintain, and increasing the potential for error.

Domain entities are representations of real-world concepts in a business. They
need to be modeled in various different places in many different ways. They need
to be extremely flexible to be re-used in these ways. In order to do that, they need
to be entirely decoupled from everything else in the system. This specific aspect of
maintaining the Single Responsibility Principle is called Plain Old CLR Objects.

Plain Old CLR Objects
Plain Old CLR Objects (POCO) is a specific design technique of implementing
Single Responsibility that specifically separates object persistence from
domain objects.

In our example, we've completely written from scratch a means of storing our
object to a SQL Server database by means of ADO.NET. All this heavy lifting could
have been done by a persistence framework. That framework could have required
specific implementation details of our domain objects. POCO stemmed from the
Java™ community (which called it POJO) in response to JavaBeans™, which
required particular conventions for implementing properties, implementing specific
interfaces, and so on.

Chapter 8

[237]

So, fully refactoring from domain-object-based persistence to a Data Access Layer
means making our Domain object a POCO and moving the data access to another
layer. Moving the data access out of our Invoice object into a Data Access Layer
results in the same thing as we've already done, so we won't detail the DataAccess
and InvoiceRepository classes again.

Continuing with the refactoring, the Load method is completely removed from
Invoice. This leaves us with the modifications of where this, now missing, Invoice.
Load method is used. For example, let's say that our ViewInvoiceForm constructor
used Invoice.Load as follows:

public ViewInvoiceForm(IInvoiceRepository invoiceRepository,
 Guid invoiceId)
{
 invoice = Invoice.Load(invoiceId);

 InitializeComponent();

 Populate();
}

We would simply refactor that to the same code we ended up with in the previous
possibility:

public ViewInvoiceForm(IInvoiceRepository invoiceRepository,
 Guid invoiceId)
{
 invoice = invoiceRepository.Load(invoiceId);

 InitializeComponent();

 Populate();
}

At this point, we could simply accept what we have left as the User Interface Layer,
after all, it is using our model through a Domain Layer and the Domain Layer is
using a Data Access Layer—what's left must be a User interface layer.

User interface layers
User interface layers are fairly apparent: they're the layer of the software system
whose responsibility it is to interface with the user, usually through a graphic
user interface.

Refactoring to Layers

[238]

What we have left in the user interface is, of course, its own layer; this even satisfies
our layering rules it (communicates in one direction with only the adjacent lower
layer). But, the user interface code is still tightly coupled to the model and effectively
contains business logic code with regard to dealing with the invoice repository,
flatting invoice objects, and un-flatting data into invoice objects.

The user interface is the most unstable part of a software system. The user interface
is the canvas on which user provides their feedback about the system. The user
interface is how the user thinks about the system and how they communicate about
the system; in their mind the user interface is the entire system. Almost all changes to
a system other than logic defects are changes to how the system behaves: tweaks to
the UI.

Business logic, on the other hand, is generally stable. A business really must know
how their business operates and the rules by which it operates. The Business Logic
layer is a logical representation of the entities within the business, how the business
interoperates with those entities, and the rules by which they interoperate. The
business logic should be the most stable part of the system, because it's likely to have
less need to change. It's in our best interest to keep that stable logic in one component
and have other, less stable components depend on it. This way, as unstable
components get modified, the modifications can't inadvertently affect stable logic.
If we have business logic in our user interface and that user interface is frequently
changing, we have a greater chance of inadvertently changing the business logic
code and introducing a defect.

We've taken a great step so far to push out much of the business logic from the
user interface code and put it into another component: the Domain Layer. But, we
can take that a step further to make the user interface entirely decoupled from the
Domain Layer. We can do that with the Model View Presenter pattern.

Model View Presenter (MVP)
The Model View Presenter (MVP) pattern facilitates a layered architecture (but
doesn't implement layers on its own). We're unable to put business logic into the
appropriate layer if it's tangled up in the UI (View) and not decoupled into an
independent class that can live within a distinct layer.

As we've discussed, the Model is a representation of our business entities and logic.
It's akin to what we've described as being a responsibility of a Business Logic Layer
or, as we've chosen to call it, the Domain Layer.

The View is appropriately the user-interface component of MVP—how the user
physically views the system. In a WinForms application, the view implementation
is a Form.

Chapter 8

[239]

The final component in MVP is the Presenter. There are various flavors of MVP;
all have a consistent definition of the Model, but the separation of responsibilities
between the View and the Presenter changes. One variant is considered the
supervising controller, where the Presenter (or controller) takes on only some View/
Model synchronization. The other variant is considered the passive View, where the
View is basically "dumb"; it knows about processing events from the user and the
fields within it but delegates populating those fields based on domain entities to
the Presenter. A passive View is effectively implemented with Inversion of Control,
where it's told to do things (by the Presenter) rather than just doing them for itself.
The passive View variant allows us to obtain separation of UI concerns from business
logic and results in a more decoupled user interface design. It is this type of MVP
implementation we'll detail here.

The following diagram shows the association between the Model, the View, and the
Presenter with the MVP pattern:

In reality, the Model is more conceptual in this diagram and the Presenter will
actually use specific Model classes rather than a single class. The "Model" is more like
a namespace than an actual type. There is an implementation of the View that the
Presenter will use, via an interface. The View and the Presenter can live in different
layers and must be separated by abstractions (interfaces).

Refactoring to Layers

[240]

For our MVP refactoring, we'll refactor CreateInvoiceForm. The Create Invoice
form is used to create and edit invoices. It's very similar to the View Invoice form
except it will allow editing of the invoice title, adding line items, and not providing
a preview. The Create Invoice form has the following appearance:

The following is the CreateInvoiceForm class:

/// <summary>
/// Create invoice form coupled to the Model
/// </summary>
public partial class CreateInvoiceForm : Form
{
 public CreateInvoiceForm(Invoice invoiceToEdit)
 {
 InvoiceLineItems = new
 List<InvoiceLineItem>(invoiceToEdit.LineItems);
 Title = invoiceToEdit.Title;
 Date = invoiceToEdit.Date;
 InitializeComponent();
 }

 public CreateInvoiceForm()
 {
 InvoiceLineItems = new List<InvoiceLineItem>();

Chapter 8

[241]

 Title = DateTime.Now.ToString("d") + " Invoice";
 Date = DateTime.Now;
 InitializeComponent();
 }

 private void CreateInvoiceForm_Load(object sender,
 EventArgs e)
 {
 titleTextBox.Text = Title;
 dateTimePicker.Value = Date;

 Populate();
 }

 private void okButton_Click(object sender, EventArgs e)
 {
 DialogResult = DialogResult.OK;
 Close();
 }

 private void cancelButton_Click(object sender, EventArgs e)
 {
 DialogResult = DialogResult.Cancel;
 Close();
 }

 private void Populate()
 {
 lineItemsListView.Items.Clear();
 dateTimePicker.Value = DateTime.Now;
 foreach (var item in InvoiceLineItems)
 {
 lineItemsListView.Items.Add(
 new ListViewItem(new string[] {
 item.Price.ToString(),
 item.Discount.ToString(),
 item.Quantity.ToString(),
 item.Description
 }));
 }
 }

 private void addLineItemButton_Click(object sender,
 EventArgs e)
 {
 using (AddLineItemForm form = new AddLineItemForm())
 {
 if (form.ShowDialog(this) == DialogResult.OK)

Refactoring to Layers

[242]

 {
 InvoiceLineItems.Add(form.CreateLineItem());
 Populate();
 }
 }
 }

 public Invoice GetInvoice()
 {
 return new Invoice(titleTextBox.Text,
 InvoiceLineItems, dateTimePicker.Value);
 }

 public ICollection<InvoiceLineItem> InvoiceLineItems
 { get; set; }

 public DateTime Date { get; set; }

 public string Title { get; set; }
}

We first want to decouple the Create Invoice form from Invoicing.Domain.
Invoice. This is easily done by deleting the constructor that takes the Invoice
parameter (that responsibility will move to the Presenter, which we'll see in a
moment). Next, we want to decouple from Invoicing.Domain.InvoiceLineItem.
To that effect, we'll create a Data Transfer Object (DTO) for the line item data.

Data Transfer Object is a design pattern to encapsulate the
data-only aspects of domain data. Commonly referred to as
a DTO, the objects do not contain behavior and thus do not
model business logic or business rules and are meant only to
transfer data from one subsystem to another.

The line item DTO is as follows:

/// <summary>
/// Invoicing.Domain.InvoiceLineItem data
/// </summary>
public class InvoiceLineItemDTO
{
 public float Quantity { get; set; }

 public float Price { get; set; }

 public float Discount { get; set; }

 public string Description { get; set; }

 public ITaxRate TaxRate1 { get; set; }

Chapter 8

[243]

 public ITaxRate TaxRate2 { get; set; }

 public InvoiceLineItemDTO(InvoiceLineItem invoiceLineItem)
 {
 Quantity = invoiceLineItem.Quantity;
 Price = invoiceLineItem.Price;
 Discount = invoiceLineItem.Discount;
 Description = invoiceLineItem.Description;
 TaxRate1 = invoiceLineItem.TaxRate1;
 TaxRate2 = invoiceLineItem.TaxRate2;
 }

 public InvoiceLineItemDTO()
 {
 }

 public InvoiceLineItem ToInvoiceLineItem()
 {
 return new InvoiceLineItem()
 {
 Description = Description,
 Discount = Discount,
 Price = Price,
 Quantity = Quantity,
 TaxRate1 = TaxRate1,
 TaxRate2 = TaxRate2
 };
 }
}

This DTO will allow our view to evolve more independently from the Domain.
The next step in the refactoring is to change the AddLineItemForm to create the
DTO object instead of the domain object. The changed method would be like
the following:

public InvoiceLineItemDTO CreateLineItemDTO()
{
 return new InvoiceLineItemDTO()
 {
 Quantity = (int)quantityNumericUpDown.Value,
 Description = description,
 Discount = (float)discountNumericUpDown.Value,
 Price = (float)priceNumericUpDown.Value
 };
}

Refactoring to Layers

[244]

The next step in the refactoring is to make use of this new DTO by replacing use
of InvoiceLineIten with InvoiceLineItemDTO in our CreateInvoiceForm class.
This results in the following:

/// <summary>
/// Create invoice form decoupled from the Model
/// </summary>
public partial class CreateInvoiceForm : Form
{
 public CreateInvoiceForm()
 {
 InvoiceLineItemDTOs = new List<InvoiceLineItemDTO>();
 Title = DateTime.Now.ToString("d") + " Invoice";
 Date = DateTime.Now;
 InitializeComponent();
 }

 private void CreateInvoiceForm_Load(object sender,
 EventArgs e)
 {
 titleTextBox.Text = Title;
 dateTimePicker.Value = Date;

 Populate();
 }

 private void okButton_Click(object sender, EventArgs e)
 {
 DialogResult = DialogResult.OK;
 Close();
 }

 private void cancelButton_Click(object sender, EventArgs e)
 {
 DialogResult = DialogResult.Cancel;
 Close();
 }

 private void Populate()
 {
 lineItemsListView.Items.Clear();
 dateTimePicker.Value = DateTime.Now;
 foreach (var item in InvoiceLineItemDTOs)
 {
 lineItemsListView.Items.Add(
 new ListViewItem(new string[] {
 item.Price.ToString(),
 item.Discount.ToString(),

Chapter 8

[245]

 item.Quantity.ToString(),
 item.Description
 }));
 }
 }

 private void addLineItemButton_Click(object sender,
 EventArgs e)
 {
 using (AddLineItemForm form = new AddLineItemForm())
 {
 if (form.ShowDialog(this) == DialogResult.OK)
 {
 InvoiceLineItemDTOs.Add(form.CreateLineItemDTO());
 Populate();
 }
 }
 }

 public ICollection<InvoiceLineItemDTO> InvoiceLineItemDTOs
 { get; set; }

 public DateTime Date { get; set; }

 public string Title { get; set; }
}

The next step in the refactoring is to support the fact that the Presenter will deal
with the View through an abstraction, the ICreateInvoiceView interface:

 public interface ICreateInvoiceView
 {
 ICollection<InvoiceLineItemDTO> InvoiceLineItemDTOs
 { get; }
 DateTime Date { get; set; }
 string Title { get; set; }
 }

To proceed with the refactoring, we can now implement the Presenter. The Presenter
will initialize the View and create a domain Invoice object from the data contained
in the View when the user presses the OK button. The CreateInvoicePresenter
class is as follows:

/// <summary>
/// Encapsulation of Model to View interaction
/// </summary>
class CreateInvoicePresenter
{

Refactoring to Layers

[246]

 private ICreateInvoiceView view;

 public CreateInvoicePresenter(ICreateInvoiceView view)
 {
 this.view = view;
 }

 public void Start()
 {
 // TODO: wire up the other data, subscribe to events,
 // etc.
 }

 public Invoice GetInvoice()
 {
 List<InvoiceLineItem> invoiceLineItems =
 new List<InvoiceLineItem>();
 foreach (InvoiceLineItemDTO invoiceLineItemDTO in
 view.InvoiceLineItemDTOs)
 {
 invoiceLineItems.Add(
 invoiceLineItemDTO.ToInvoiceLineItem());
 }
 return new Invoice(view.Title, invoiceLineItems, view.Date);
 }
}

The final step of the refactoring process is to change the creation and use of the
CreateInvoiceForm form. Previously, we had something similar to the following
to bring up the CreateInvoiceForm form and create an Invoice object:

using (CreateInvoiceForm form = new CreateInvoiceForm())
{
 if (form.ShowDialog(this) == DialogResult.OK)
 {
 invoices.Add(form.GetInvoice());
 //...
 }
}

We now want to create a Presenter after creating the View, have it initialize the data
in the View, and create the Invoice object. This could be performed as follows:

using (CreateInvoiceForm form = new CreateInvoiceForm())
{
 CreateInvoicePresenter presenter =
 new CreateInvoicePresenter(form);

Chapter 8

[247]

 presenter.Start();
 if (form.ShowDialog(this) ==
 System.Windows.Forms.DialogResult.OK)
 {
 invoices.Add(presenter.GetInvoice());
 //...
 }
}

To support editing an invoice, an EditInvoicePresenter class could be created
that initialized the View with the data from an Invoice object, something like
the following:

/// <summary>
/// Encapsulation of Model to View interaction
/// </summary>
class EditInvoicePresenter
{
 private ICreateInvoiceView view;

 public EditInvoicePresenter(ICreateInvoiceView view)
 {
 this.view = view;
 }

 public void Start(Invoice invoice)
 {
 foreach (var invoiceLineItem in invoice.LineItems)
 {
 view.InvoiceLineItemDTOs.Add(
 new InvoiceLineItemDTO(invoiceLineItem));
 }
 view.Title = invoice.Title;
 view.Date = invoice.Date;
 }

 public Invoice GetInvoice()
 {
 List<InvoiceLineItem> invoiceLineItems =
 new List<InvoiceLineItem>();
 foreach (InvoiceLineItemDTO invoiceLineItemDTO in
 view.InvoiceLineItemDTOs)
 {
 invoiceLineItems.Add(
 invoiceLineItemDTO.ToInvoiceLineItem());
 }
 return new Invoice(view.Title, invoiceLineItems,

Refactoring to Layers

[248]

 view.Date);
 }
}

The EditInvoicePresenter class differs from the CreateInvoicePresenter
class by accepting an Invoice parameter in the Start method and initializing
the ICreateInvoiceView properties. Going by that route, it may be worthwhile
to rename ICreateInvoiceView to something more appropriate, like
IEditInvoiceView (if you believe creating a new invoice is the same as editing a
blank invoice).

Additional layers
We've discussed some common layers that often apply to many different software
systems, large and small. As systems become more complex, you may find the need
to address the complexity through additional layers. These layers may actually then
become tiers—physically separated from the other tiers via the process boundary
and communicated with via some out-of-process interface. These tiers may be
communicated with on other computers via network communications (sockets,
HTTPS, HTTP, WCF, and so on) or they may be communicated with over process
boundaries on the same computer through named pipes, COM, WCF, and so on.

How you layer your application depends entirely on its complexity, architecture,
and deployment needs. This book isn't a reference on how to layer all applications
or how to refactor to every possible layered architecture. However, there are, some
other layers you may run into or that may be applicable to your particular software
system:

•	 Application layer: This layer involves housing logic that coordinates tasks
between domain entities or other layers but doesn't contain business logic
or business rules. This layer shouldn't exist unless it adds value. If you can't
think of something that would fit in this layer, you don't need it.

•	 Service layer : This is another name for the application layer.
•	 Infrastructure layer: A general layer that houses infrastructure-specific

logic of the system. Logic that might fit within this layer: graphical drawing
(controls, etc.), messaging, persistence (in lieu of a Data Access Layer),
logging, and so on.

•	 Presentation layer: This is another name for the User Interface Layer.

Chapter 8

[249]

Summary
We've seen that componentization into layers keeps specific functionality decoupled
from the rest of the system. When we need to make changes to specific functionality
we can do that more easily with a layered architecture—we can keep logic that is
proven to work and is more stable separate from logic that is less stable and more
subject to change. Refactoring to a layered architecture allows us to support change
better and minimize the impact of those inevitable changes.

In the next chapter, we'll get into more detail with architectural patterns, what
improvements they offer, and how they facilitate the evolution of a software system.
Architectural patterns such as specification, strategy, and observer patterns will be
detailed, as well as what can be refactored to them.

Improving Architectural
Behavior

In the previous chapter, we examined grouping similar functionality with
like external dependencies into layers. These layers componentized a type of
functionality to decouple it from the rest of the system with specific relationships
between layers to maintain that decoupling.

We'll continue the architectural refactoring theme, focusing on refactoring
architectural behavior. We're not concerned with the external behavior of our
system, only with how our system behaves with regard to the behavior of
algorithmic execution, assignment of the responsibility of executing those
algorithms, and communication between the objects that have this responsibility.

This chapter will comprise the following areas of refactoring architectural behavior:

•	 Behavioral patterns
•	 Refactoring to behavioral patterns
•	 Strategy pattern
•	 Specification pattern
•	 Publish/Subscribe control paradigm
•	 Observer pattern

Improving Architectural Behavior

[252]

Behavioral patterns
Behavioral patterns are software design patterns that attempt to systematize
common ways of dealing with algorithms and assigning the responsibility of
those algorithms between classes. For the most part, behavioral patterns create
or promote class-level separation of algorithms and their use. We gain explicitness
from designing our system in this way.

There are two types of behavioral patterns: class patterns and object patterns. Class
patterns use inheritance to implement making the distribution of responsibility
explicit. Object patterns use object composition to implement making the distribution
of responsibility explicit. Inheritance as a means to keep responsibility separate
is probably fairly obvious; object composition might require a bit of explanation.
Object composition uses distinct classes in the same way that inheritance would need
to; but those classes are unrelated and would be used in groups within another to
implement specific functionality.

So, why would we want to refactor to any behavioral pattern in general? I'm glad
you asked. There are really two reasons for using any sort of pattern or principle.
The first is the warm-and-fuzzy feeling you get from correctness. Making concepts
explicit through the use of a class definition, future-proofing, easier to recognize, and
so on are all viable reasons for implementing any sort of pattern or principle; but that
deals mostly with new design. We're dealing with existing design. While correctness
may be a good thing to strive for in an existing code base, we need to avoid making
changes for the sake of changes. We have to deal with the fact that we have a code
base that works (works as in it has a certain level of quality and users are using it in a
certain way). Making changes risks affecting how the software behaves, and we want
to avoid that unless we have a very good reason. We also have to deal with the fact
that, despite our aptitude for writing code, we have deadlines that affect the financial
viability of the project.

The second reason to refactor to a behavioral pattern is that we know that
continued use of specific business logic or a business rule, as it is, is going to cause
maintainability issues or hinder our efforts at adding functionality to the system.

To focus what we should (and shouldn't) refactor to a behavioral pattern, there's some
specific changes we need to make to our system. One change that hints at refactoring
to a behavioral pattern is copying business logic from one place to another.

Chapter 9

[253]

Don't Repeat Yourself (DRY)
I couldn't resist the irony of re-addressing DRY in this chapter. Truth be told, it's not
just about the irony, one of the main intentions of behavioral patterns is to address
the inherent repetition of the type of business logic that behavioral patterns address.

Reuse is a bit of a fallacy with object-oriented design. Much of what we do in
object-oriented languages is making our code base more maintainable so we can
focus on the value we're trying to add to our users. It's not that we're trying to make
everything reusable; we're trying to make sure important concepts in the domain
we're modeling are explicit and that these important concepts aren't implicitly
repeated throughout our system. Business logic and business rules that aren't explicit
are harder to detect, harder to update (when repeated) and harder not to repeat.

We covered it in Chapter 2; but, DRY helps us have a one-stop-shop for each of our
important domain logic and rules to avoid having to hunt down multiple instances
of our domain logic and rules and update them, should our business rules need to
change. Behavioral patterns help us accomplish this.

So, knowing that we're about to repeat ourself in code is a good impetus for
refactoring to a behavioral pattern to keep the repetition to repeated method calls or
repeated class instantiations. Another reason for refactoring to a behavioral pattern
is that we've found repeated business logic and we know we need to change it. If
we're going to change it, we might as well encapsulate it into an implementation of
a behavioral pattern, so further changes will be easier to make. Some code smells
come into play when thinking about refactoring to behavioral patterns. When adding
another condition to a complex conditional, addressing a Conditional Complexity
code smell is a good motivation to refactor to a behavioral pattern. If you have to
modify a complex conditional in any way, simplifying it before modifying it will
help make it easier to modify in the future.

We've shown some criteria by which we can focus our refactoring efforts as it applies
to behavioral patterns in general. Let's now look at some specific behavioral patterns.

Strategy pattern
The strategy pattern is sometimes known as the Policy pattern. Strategy encapsulates
a group of specifically related business rules or policies that the system is trying to
model. It provides an object-oriented way, through polymorphism, to alternate
business rules at run-time, based upon criteria.

Strategy is commonly implemented as a class behavioural pattern by defining an
interface or an abstract class, then having each specific business rule be implemented
by a class that implements that interface or is a subclass.

Improving Architectural Behavior

[254]

// Trace output for current operation
TraceMethod traceMethod = GetTraceMethod();
String traceText = "testing";
if (traceMethod == TraceMethod.Trace)
{
 Trace.WriteLine(traceText);
}
else if (traceMethod == TraceMethod.Console)
{
 Console.WriteLine(traceText);
}
else if (traceMethod == TraceMethod.Debug)
{
 Debug.WriteLine(traceText);
}

In the above code, we have three specific blocks of business logic: one that uses
System.Trace, one that uses System.Console, and one that uses System.
Diagnostics.Debug. Which WriteLine method that is called is based on a
condition, the state of the TraceMethod variable traceMethod. Each one of these
lines of code is a specific policy.

Detecting need for strategy pattern
The strategy pattern is just an implementation of a runtime selectable policy. If
there is a single policy (business rule) that applies to a single scenario, there's no
need to implement the Strategy Pattern. If you find that additional policy needs to
be invoked in a given situation, based on some condition—even if there is currently
only one policy being invoked, refactoring to the Strategy Pattern will ease the
addition of another policy.

Use of a policy can manifest itself within code in a variety of ways. One way is
through multiple if statements that execute code with similar result. This can often
manifest as multiple returns based on several conditions. For example, in order to
calculate tax for our viewable invoice in InvoiceRenderingService, we could have
a simple block of code as follows:

// calculate tax
if (!invoice.Customer.IsTaxExempt)
{
 invoiceTotalTax += (lineItemSubTotal *
 (decimal)(invoiceLineItem.TaxRate1 == null ?
 0F : invoiceLineItem.TaxRate1.Percentage))
 + (lineItemSubTotal *

Chapter 9

[255]

 (decimal)(invoiceLineItem.TaxRate2 == null ?
 0F : invoiceLineItem.TaxRate2.Percentage));
}

This code simply increments our invoice's total tax by the amount of the invoice line
item price by the tax rates (if present), if the particular customer is not tax exempt.

We have two distinct policies here when it comes to calculating tax. One is that tax
is calculated based on multiplying the invoice line item's price by any tax percentage
applicable to that line item. The other, which may not seem like a calculation at
all, is to not calculate any tax. The addition of another scenario for calculating
tax, or changing one of the two existing scenarios means we need to change our
InvoiceRenderingService class—that is, InvoiceRenderingService has more
than one reason to change (See Single Responsibility Principle).

Refactoring to strategy pattern
Our goal isn't change for the sake of change, regardless of whether the resulting
change results in a better design. I'll have to leave it up to you, dear reader, to
ultimately decide the why when it comes to refactoring to the strategy pattern. In
terms of refactoring to use the Strategy Pattern, how do we know what is a candidate
for replacing with a Strategy Pattern implementation?

Strategy has some basic criteria for usage. The base criteria are that two or more
related blocks of business logic code are being executed based upon some condition.
The blocks of business logic code are mutually exclusive but related. The business
logic also has to have similar or identical semantics. That is, each piece of business
logic is used in a very similar way. We can't make use of polymorphism if the blocks
of business logic have completely different usage patterns.

Well, I've given up the secret to refactoring to the strategy pattern: polymorphism.
Okay, I hope it wasn't that much of a secret—it should have been obvious.
Typically, the polymorphism used when implementing the Strategy Pattern is to
use Subtype Polymorphism.

Subtype Polymorphism is often what is referred to as "polymorphism"
when discussing object-oriented languages. Subtype Polymorphism is the
ability for one of many types to be used for the invocation of a particular
method. This is done through inheritance. Subtype class objects can be
used wherever a supertype is expected.

Improving Architectural Behavior

[256]

In the case of implementing Strategy, the most common form of inheritance is
implementing an interface. So, the first step in refactoring to the Strategy Pattern is
the design and declaration of an interface that can consistently be used to implement
the possible policies that we'd like to implement. In our tax calculation case, it's fairly
straight-forward: we need a method that takes an amount and one or more ITaxRate
objects, then returns the tax to be charged on the item. In order to implement that, we
may have the following interface:

public interface ITaxCalculationStrategy
{
 float CalculatTaxReceivable(float amount,
 params ITaxRate[] taxRates);
}

We'd then replace our existing tax calculation code with something like the
following:

invoiceTotalTax += taxCalculationStrategy.CalculatTaxReceivable(
 lineItemSubTotal,
 invoiceLineItem.TaxRate1, invoiceLineItem.TaxRate2);

This code, of course, assumes there is an ITaxCalculationStrategy variable
taxCalculationStrategy that gets declared and initialized elsewhere. This variable
could be a member variable in the containing class that get's initialized through
Dependency Injection, or it could be initialized within this class.

In any case, we need to create some implementations of ITaxCalculationStrategy
in order for our taxCalculationStrategy to be initialized, regardless of
how it gets initialized. To that effect, let's split out our original code into two
ITaxCaulcuationStrategy implementations. The more processing-intensive
of the two is the non-tax exempt calculation. We'd refactor that simply by
creating a new class, say NormalTaxCalculationStrategy, have it derive from
ITaxCalculationStrategy and let Visual Studio® implement the stub methods by
right clicking ITaxCalculationStrategy in the NormalTaxCalculationStrategy
class definition and selecting Implement Interface\Implement Interface. That
results in the following code:

class NormalTaxCalculationStrategy : ITaxCalculationStrategy
{
 public float CalculatTaxReceivable(float amount,
 params ITaxRate[] taxRates)
 {
 throw new NotImplementedException();
 }
}

Chapter 9

[257]

To complete this particular step of the refactoring, we need to change our original
code slightly. Our original code assumed there were only two possible tax rates
which, unfortunately, is not the case everywhere. The CalculateTaxReceivable
accepts an array of ITaxRate objects. So, instead of simply adding the amount
multiplied by two tax rates; we'll iterate through the ITaxRate objects tallying the
total tax payable. A completed implementation of NormalTaxCalculationStrategy
may look like this:

class TaxCalculationStrategy : ITaxCalculationStrategy
{
 public float CalculatTaxReceivable(float amount,
 params ITaxRate[] taxRates)
 {
 float result = 0;
 foreach (var taxRate in taxRates)
 {
 if (taxRate != null)
 {
 result += amount * taxRate.Percentage;
 }
 }

 return result;
 }
}

The process for refactoring the tax exempt calculation into an ITaxCalculation
implementation is very similar. What differs (besides the name of the class,
which we'll call ExemptTaxCalculationStrategy) is the implementation of the
CalculateTaxReceivable method; which in our case simply returns zero. The
tax exception calculation refactored to an ExemptTaxCalculationStrategy class,
unsurprisingly, may look like the following:

/// <summary>
/// Example tax exempt tax calculation policy
/// </summary>
public class ExemptTaxCalculationStrategy :
 ITaxCalculationStrategy
{
 public float CalculatTaxReceivable(float amount,
 params ITaxRate[] taxRates)
 {
 return 0;
 }
}

Improving Architectural Behavior

[258]

I've kind of skimmed over the actual instantiation of the ITaxCalculation objects,
on purpose. At this point, the determination of which ITaxCalculation object to
use depends on context. Also, the frequency of instantiation of these objects has
many options. Let's start with determining instantiation strategy.

In our original pre-ITaxCalculationStategy code, we effectively had the selection
of the strategy within the InvoiceRenderingService.RenderReadableInvoice
method each time the line item subtotal tax was calculated. We could go ahead and
do effectively the same thing with our ITaxCalculationStrategy implementations
and end up with something similar to the following:

ITaxCalculationStrategy taxCalculationStrategy;
if (!invoice.Customer.IsTaxExempt)
{
 taxCalculationStrategy =
 new ExemptTaxCalculationStrategy();
}
else
{
 taxCalculationStrategy =
 new NormalTaxCalculationStrategy();
}

invoiceTotalTax += (decimal)
 taxCalculationStrategy.CalculatTaxReceivable(
 (float)lineItemSubTotal,
 new ITaxRate[] {invoiceLineItem.TaxRate1,
 invoiceLineItem.TaxRate2});

This, of course, is functional. We create a single new ITaxCalculationStrategy
object for each line item in the invoice whenever we render a readable invoice.
It's the same object that gets instantiated and no two instantiations are used
at the same time. Clearly this isn't the best approach to instantiating our
ITaxCalculationStrategy.

Many would have the obvious inclination to move the instantiation of the
object outside the loop. We then get a single instantiation per rendering. The
InvoiceRenderingService class is still responsible for making the decision
and we still have multiple ITaxCalculationStrategy objects being created
unnecessarily. We could make an instance of each of the ITaxCalculationStrategy
implementations static to the InvoiceRenderingService class; but, we then add the
responsibility of managing a collection of these objects.

Chapter 9

[259]

Remembering Chapter 7 and Dependency Injection, the most flexible way for
InoivceRenderingService to deal with which ITaxCalculationStrategy is
to delegate to the code that creates our InvoiceRenderingService. Since the
criteria by which an ITaxCalculationStrategy is independent from the criteria
for instantiating InvoiceRenderingService, this injection is best done with an
ITaxCalculationStrategy property that populates an ITaxCalcuationStrategy
field. This leaves the instantiation and taxCalculationStrategy variable out of our
RenderReadableInvoice method. Our final refactoring of RenderReadableInvoice
is to simply replace the previous tax calculation with the following:

invoiceTotalTax += (decimal)
 taxCalculationStrategy.CalculatTaxReceivable(
 (float)lineItemSubTotal,
 new ITaxRate[] {invoiceLineItem.TaxRate1,
 invoiceLineItem.TaxRate2});

Our refactored RenderingService (the other refactored parts) would look like this:

public class InvoiceRenderingService :
 IInvoiceRenderingService
{
 ITaxCalculationStrategy taxCalculationStrategy;
 ITaxCalculationStrategy TaxCalculationStrategy
 {
 set
 {
 taxCalculationStrategy = value;
 }
 }
 //...
}

Specification pattern
Within any code base there are always test for conditions that satisfy certain criteria.
In a more procedural code base these tests are often strewn throughout the code.
This, of course, works fine when we don't take into consideration extensibility and
maintainability when we define works.

Sometimes, these tests aren't related to the domain we're modelling; in which case
they're often constant and often of no direct correlation to our domain. The state of
multiple UI controls, for example, is a common test to modify the state of another UI
control. For example:

if (surnameTextBox.Text.Length != 0 &&
 givenNameTextBox.Text.Length != 0)

Improving Architectural Behavior

[260]

{
 continueButton.Enabled = true;
}
else
{
 continueButton.Enabled = false;
}

In this example, we only want the continue button to be enabled when the user
has entered both a given name and a surname. The state of the continue button
is an implementation detail of the UI, and not really a domain concern and not a
business rule.

There are other tests that we perform in code that are business concerns; they're
implementing a specific business rule. As has happened many times before, they
can be implicit within other code, for example:

// an invoice is past due when it hasn't been paid
// in 30 days (and a grace period of 10 days)
if (DateTime.Now > invoice.Date.AddDays(30 + 10))
{
 DrawRotatedString(graphics, "PAST DUE", Font,
 redBrush, graphics.VisibleClipBounds,
 geometricallyCenteredStringFormat, 45.0);
}

In this code there is a test on an Invoice instance to compare its date to see if it's
beyond a certain date. If it is beyond a certain date (and assuming it hasn't been paid)
then it's past due. In this case, we display "PAST DUE" on the invoice.

This particular test is a very specific domain logic—a domain business rule. This
business rule needs to be used throughout the system, not just when we print out
an invoice. This is a particular type of business rule, it's a predicate. A predicate is a
Boolean test on one or more criteria.

The specification pattern encapsulates the test of those criteria. The "specification" is
the definition of the test. In our example, the specification is that past due invoices
are 40 days old or older.

Chapter 9

[261]

Detecting need for specification pattern
The specification pattern is just an implementation of a predicate; a specific test of
values or objects based upon some criteria. You have to decide at some point to what
degree you want to implement specification patterns throughout your code base.
As we've discussed in prior chapters, we generally want to keep our domain layer
very concise, explicit, cohesive, and loosely coupled. I suggest limit refactoring to
specification pattern within the domain layer to make domain business rules very
explicit and less likely to be repeated.

What is a candidate for specification pattern? Any specific logic that evaluates
whether an object passes certain criteria could be a candidate. In other words,
anything that involves one of our domain types in an if statement.

Now that we've found a candidate for use of specification pattern implementation,
we need to focus on whether we should continue with the implementation based on
the need or expectation of change or reuse. If this is just an exercise in implementing
the specification pattern and there is no known need to implement the specification
pattern other than it can be implemented here, our efforts and time might be better
focused elsewhere.

Refactoring to specification pattern
With the goal of modifying or extending the domain predicates in our
implementation, we can begin to make those relevant domain concepts explicit
through the use of the specification pattern. At its essence, the specification pattern
is simply making a predicate explicit by encapsulating it in its own class. In its
simplest form, this could be a class that has an IsSatisfied method to perform the
test. For example:

class UnpaidInvoiceSpecification
{
 public bool IsSatisfiedBy(Invoice invoice)
 {
 return invoice.Status != InvoiceStatus.Paid;
 }
}

In this simple specification implementation we perform the test in the
IsSatisfiedBy method. If the invoice's status is not Paid then it satisfies the unpaid
specification. More complex predicates could have state related to the criteria
accepted within the constructor. Specifications generally perform the test on a single
parameter to IsSatisfiedBy and other criteria are an attribute of the specification.

Improving Architectural Behavior

[262]

We could then make use of this specification, for example, to find unpaid and paid
invoices:

List<Invoice> unpaidInvoices = new List<Invoice>();
List<Invoice> paidInvoices = new List<Invoice>();

foreach (Invoice invoice in invoices)
{
 if (unpaidInvoiceSpecification.IsSatisfiedBy(invoice))
 {
 unpaidInvoices.Add(invoice);
 }
 else
 {
 paidInvoices.Add(invoice);
 }
}

In this simple example, we iterate through a collection of invoices, executing the
specification for each one and add the invoice to another collection depending on
how it satisfied the specification.

If how we implemented the way the attribute of an invoice is being paid, or unpaid,
changes, then the client code that depends on it doesn't need to change—it simply
goes on making use of our UnpaidInvoiceSpecification class and it's none the
wiser. We've successfully hidden this implementation detail from the client code.

Looking at this example, one thing may become apparent to many readers: its lack
of scalability. Clearly, to find all unpaid invoices we need to load all the invoices into
memory (into an IEnumerable<T> implementation) and evaluate the specification on
each. Sure, the implementation of IEnumerable<T> may not need to load everything
into memory; but, we end up storing the results in memory. Often, when we design
specification implementations we like to take into account using that specification
with our flavour of data access. We obviously don't want to include data-access
specific code in our specification so we often off-load that heavy lifting to our
Repository. For example:

class UnpaidInvoiceSpecification
{
 public bool IsSatisfiedBy(Invoice invoice)
 {
 return invoice.Status != InvoiceStatus.Paid;
 }
 public IEnumerable<Invoice> SatisfyingElementsFrom(
 InvoiceRepository invoiceRepository)
 {

Chapter 9

[263]

 return
 invoiceRepository.SelectWhereInvoiceStatusNotPaid();
 }
}

We've now added a SatisfyingElementsFrom method that delegates the actual
evaluation of the test to the repository—which delegates that to the RDBMS through
whatever magic (like SQL) is required. This is a reasonable trade-off in certain
situations. We've still got an explicit point of entry for implementations of our policy.
If you're not in a situation where you're forced to implement something like this (that
is, you're not very restricted in database query generation within the application)
there's an alternative that lets us keep our specification implementation cohesive and
leaves all the logic acting upon the criteria within our specification. Through the use
of LINQ, we can make sure our specification implementation truly encapsulates the
logic to evaluate the criteria. For example:

class UnpaidInvoiceSpecification
{
 public bool IsSatisfiedBy(Invoice invoice)
 {
 return invoice.Status != InvoiceStatus.Paid;
 }

 public IEnumerable<Invoice>
 SatisfyElementsFrom(IQueryable<Invoice> invoices)
 {
 return from invoice in invoices
 where IsSatisfiedBy(invoice)
 select invoice;
 }
}

We've changed SatisfyElementsFrom to accept an IQueryable<T> parameter, on
which we perform a LINQ query using our IsSatisfiedBy method without having
to repeat ourselves. The result of the IQueryable<T> parameter could be returned
from somewhere else, like a Repository:

UnpaidInvoiceSpecification unpaidInvoiceSpecification =
 new UnpaidInvoiceSpecification();

IEnumerable<Invoice> unpaidInvoices =
 unpaidInvoiceSpecification.SatisfyElementsFrom(
 invoiceRepository.GetAllInvoices());

Improving Architectural Behavior

[264]

This gives us the ability to avoid repeating ourselves and have one tidy place where
this specific business rule is implemented. It also doesn't need, in itself, to load
all the invoices into memory to perform the action upon it, the IQueryable<T>
would perform lazy loading or caching as it sees fit. But, it suffers from forcing the
evaluation of the criteria on the local computer and not in the database. Clearly,
it would be quicker and more efficient to only ask the database for the data that
satisfies our criteria, not everything, then throw away what we don't need.

Fortunately, we can modify our specification slightly and keep the data-access-
specific code in the Repository:

class UnpaidInvoiceSpecification : Specification<Invoice>
{
 public override bool IsSatisfiedBy(Invoice invoice)
 {
 return IsSatisfiedBy().Compile()(invoice);
 }
 public Expression<Predicate<Invoice>> IsSatisfiedBy()
 {
 return invoice => invoice.Status != InvoiceStatus.Paid;
 }
}

Where UnpaidInvoiceSpecification derives from the following abstraction:

public abstract class Specification<T>
{
 public abstract bool IsSatisfiedBy(T candidate);
 public abstract Expression<Predicate<T>> IsSatisfiedBy();
}

In this abstract class, we define our IsSatisfiedBy overloads so that other classes
may use specifications as abstractions, as we'll see shortly. The first IsSatisfiedBy
overload is what we've seen already: a method that takes a candidate object to test if
it matches our criteria. The second is a new method that returns an Expression<T>
object that may be used by other methods either directly or by first compiling the
expression. It will become apparent why we chose to implement an abstract class
instead of an interface later.

Chapter 9

[265]

In UnpaidInvoiceSpecification, we've added an IsSatisfiedBy overload that
returns an Expression<Predicate<Invoice>> object. The original IsSatisfiedBy
method is updated to make use of this expression, compiling it to a delegate then
executing it with a specific invoice instance so we don't repeat ourselves. The
Expression<> object can now be passed along to another LINQ statement that
can be used by applicable LINQ providers to build a database query that will only
retrieve data from the database that satisfies our specification. For example:

public class InvoiceRepository
{
 private IQueryable<Invoice> invoiceQueryable;

 public IQueryable<Invoice>
 FindBySpecification(
 Specification<Invoice> specification)
 {
 return invoiceQueryable.Where(
 specification.IsSatisfiedBy());
 }
 //...
}

In this invoice repository, we have a FindBySpecification method that accepts an
abstract Invoice specification instance. The Expression<Predicate<Invoice>>
returned by the IsSatisfiedBy() method is simply passed on to an
IQueryable<Invoice> instance. Depending on the LINQ provider that supplied
the IQueryable<Invoice> instance, it will either pre-compile it to a delegate then
invoke the delegate for every instance of Invoice that the collection contains, or
use the expression to generate a query that will be executed directly on the database
to return only Invoice data that fulfils our criteria. This will drastically reduce
the amount of data that we receive from the database and drastically reduces the
number of Invoice objects that we need to process. It's very likely that processing
more Invoice objects is more time consuming than filtering out Invoice data at the
database level.

It's important to note, now that we've introduced an abstract
Specification<T> here, that we've introduced flexibility in how we deal
with specification implementations. Up until now we've dealt directly with an
UnpaidInvoiceSpecification instance and didn't support other specifications. The
InvoiceRepository.FindBySpecification method accepts any type of invoice
specification, not just our UnpaidInvoiceSpecification.

Improving Architectural Behavior

[266]

One of the things that come up often in terms of business rules that are predicates is
their need to be chained. In terms of a Boolean test, they're not always used alone—
you often want to use more than one predicate business rule in a single conditional.
I'm sure almost every reader has encountered implementations of predicates
business rule—like what we exemplified earlier—directly within the if statement.
It's not that this doesn't work; the frequency by which it is implemented this way
proves that it does. It's that specific business rule—a relevant domain concept—is
implemented implicitly. In order to chain that predicate with other predicates in
different places means repeating ourselves all over the code base.

The beauty of the specification pattern is its ability to fulfil chaining of specifications
on a particular domain entity. With any Boolean logic we often need to use logical
operators when we perform our test. We may want to decide if two criterion are met,
or that one criterion is met and another is not, or that either one of two criterion are
met. We could continue with every permutation of this; but these give us a base by
which to build all those other permutations: AND, NOT, and OR. Through a definite
hierarchy, we can build predicates (specifications) that can be chained through the
use of these logical operators. Now, we're not talking about the logical operators in
the language sense; we're talking about them in the abstract sense.

To support chaining of specifications we need to design a fluent interface on the
abstract Specification<T> class that will be reused by anything that implements
Specification<T>. To do that, we essentially create three new abstract
implementations of Specification<T>:

public abstract class Specification<T>
{
 public abstract bool IsSatisfiedBy(T candidate);
 public abstract Expression<Predicate<T>>
 IsSatisfiedBy();

 public Specification<T> And(Specification<T> other)
 {
 return new AndSpecification<T>(this, other);
 }

 public Specification<T> Or(Specification<T> other)
 {
 return new OrSpecification<T>(this, other);
 }

 public Specification<T> Not()
 {
 return new NotSpecification<T>(this);
 }

 private class AndSpecification<T> : Specification<T>

Chapter 9

[267]

 {
 private Specification<T> left;
 private Specification<T> right;
 public AndSpecification(Specification<T> left,
 Specification<T> right)
 {
 this.left = left;
 this.right = right;
 }
 public override bool IsSatisfiedBy(T candidate)
 {
 return IsSatisfiedBy().Compile()(candidate);
 }

 public override Expression<Predicate<T>> IsSatisfiedBy()
 {
 return left.IsSatisfiedBy()
 .And(right.IsSatisfiedBy());
 }
 }

 private class OrSpecification<T> : Specification<T>
 {
 private Specification<T> left;
 private Specification<T> right;
 public OrSpecification(Specification<T> left,
 Specification<T> right)
 {
 this.left = left;
 this.right = right;
 }
 public override bool IsSatisfiedBy(T candidate)
 {
 return IsSatisfiedBy().Compile()(candidate);
 }

 public override Expression<Predicate<T>> IsSatisfiedBy()
 {
 return left.IsSatisfiedBy()
 .Or(right.IsSatisfiedBy());
 }
 }

 private class NotSpecification<T> : Specification<T>
 {
 private Specification<T> specification;
 public NotSpecification(Specification<T> specification)

Improving Architectural Behavior

[268]

 {
 this.specification = specification;
 }
 public override bool IsSatisfiedBy(T candidate)
 {
 return IsSatisfiedBy().Compile()(candidate);
 }

 public override
 Expression<Predicate<T>> IsSatisfiedBy()
 {
 var expression = specification.IsSatisfiedBy();
 return Expression.Lambda<Predicate<T>>(
 Expression.Not(expression.Body),
 expression.Parameters.Single());
 }
 }
}

With this new abstract Specification<T> class, we've added three public methods:
And, Or, and Not.

The And method accepts another Specification<T> parameter and performs a
logical binary and between the current specification and the parameter. It does this
by returning a new Specification<T> object, the private AndSpecification<T>
class. The AndSpecification<T> class acts just like our other Specification<T>
objects by effectively invoking the IsSatisfiedBy methods on the two other
specifications and performing a logical and on their results.

The Or method accepts another Specification<T> parameter and performs a
logical binary or between the current specification and the parameter. It does this by
returning a new Specification<T> object, the private OrSpecification<T> class.
The OrSpecification<T> class acts just like our other Specification<T> objects by
effectively invoking the IsSatisfiedBy methods on the two other specifications and
performing a logical or on their results.

The Not method performs a logical unary not between on the result of the
specification's IsSatisfiedBy method result. It does this by returning a new
Specification<T> object, the private NotSpecification<T> class. The
NotSpecification<T> class acts just like our other Specification<T> objects
by effectively invoking the IsSatisfiedBy method of the other specification and
performing a logical not on the result.

Chapter 9

[269]

In order for AndSpecification<T>, OrSpecification<T>, and
NotSpecification<T> to do what it needs to do to with logical
operations to support LINQ providers that build queries based upon
expressions we made use of a couple infrastructure classes. The first class,
ExpressionParameterExchangerVisitor is as follows:

public class ExpressionParameterExchangerVisitor :
 ExpressionVisitor
{
 private readonly Dictionary<ParameterExpression,
 ParameterExpression> map;

 private ExpressionParameterExchangerVisitor(
 Dictionary<ParameterExpression, ParameterExpression>
 map)
 {
 this.map = map ??
 new Dictionary<ParameterExpression,
 ParameterExpression>();
 }

 protected override Expression
 VisitParameter(ParameterExpression p)
 {
 ParameterExpression replacement;

 if (map.TryGetValue(p, out replacement))
 {
 p = replacement;
 }

 return base.VisitParameter(p);
 }

 public static Expression
 ReplaceParameters(Dictionary<ParameterExpression,
 ParameterExpression> map, Expression exp)
 {
 return new ExpressionParameterExchangerVisitor(map)
 .Visit(exp);
 }
}

The ExpressionParameterExchangerVisitor class implements an Expression
visitor that visits each parameter of an expression. When it visits a parameter, and
that parameter is found in the map, it's replaced with another parameter. This class
is used by ExpressionExtensions.Combine to ensure that two combined predicates
use one set of parameters (or parameter, in this case).

Improving Architectural Behavior

[270]

The second class is an extension method class that adds the following extension
methods to Expression<T>: Combine, And, and Or. This class is a follows:

public static class ExpressionExtensions
{
 private static Expression<T>
 Combine<T>(this Expression<T> first,
 Expression<T> second,
 Func<Expression, Expression, BinaryExpression>
 operation)
 {
 // build a map of parameters from both
 // the second and first expressions
 var map = first.Parameters.Select((f, i) =>
 new { f, s = second.Parameters[i] })
 .ToDictionary(p => p.s, p => p.f);

 // make sure the second expression uses
 // the same parameters as the first
 var secondBody =
 ExpressionParameterExchangerVisitor.ReplaceParameters(
 map, second.Body);

 // create new expression from an operation on the first
 // and second expression bodies.
 return
 Expression.Lambda<T>(operation(first.Body,
 secondBody), first.Parameters);
 }

 public static
 Expression<Predicate<T>>
 And<T>(this Expression<Predicate<T>> first,
 Expression<Predicate<T>> second)
 {
 return first.Combine(second, Expression.And);
 }

 public static
 Expression<Predicate<T>>
 Or<T>(this Expression<Predicate<T>> first,
 Expression<Predicate<T>> second)
 {
 return first.Combine(second, Expression.Or);
 }
}

Chapter 9

[271]

The Combine method combines one predicate with another predicate. We need
to combine the two predicates into one in order for the LINQ provider to parse it
and be able to generate a query statement based on the expressions. The And and
Or method use the Combine method to combine two predicate expressions with
specific operation: And and Or respectively. These two methods make it easier
to read code that combines two predicates (that is, AndSpecification<T> and
OrSpecification<T>).

Let's look at how we'd make use of this comprehensive foundation for implementing
flexible specifications. There's not much point in performing Boolean logic when you
only have one predicate; so, let's add another short and sweet invoice specification
based upon a business rule:

class OverdueInvoiceSpecification : Specification<Invoice>
{
 private const int GRACE_PERIOD_DAYS = 10;
 private const int NET_DUE_DAYS = 30;
 private DateTime currentDate;

 public OverdueInvoiceSpecification(DateTime currentDate)
 {
 this.currentDate = currentDate;
 }

 public override bool IsSatisfiedBy(Invoice invoice)
 {
 return IsSatisfiedBy().Compile()(invoice);
 }

 public override
 Expression<Predicate<Invoice>> IsSatisfiedBy()
 {
 return invoice => currentDate >
 invoice.Date.AddDays(NET_DUE_DAYS)
 .AddDays(GRACE_PERIOD_DAYS);
 }
}

In this specification, we've gotten slightly more complex such that we've
parameterized the specification to accept a current date. We could have simply
used DateTime.Now as the date to compare; but then we've got the potential for the
specification to have different results depending on the time in which it's executed.
To avoid that, we store the date to compare within the state of the specification.

Our IsSatisfiedBy() method compares the current date with the overdue date (net
due timeframe plus a grace period) and checks to see if the current date is beyond
that. If so, the invoice is overdue.

Improving Architectural Behavior

[272]

Knowing which invoices are overdue is not as useful without knowing whether the
invoice is unpaid (although, the inverse is not always true). Now that we have our
logical operators for specifications, we can use both of these specifications to discern
whether an invoice if overdue and unpaid. For example:

UnpaidInvoiceSpecification unpaidInvoiceSpecification =
 new UnpaidInvoiceSpecification();
OverdueInvoiceSpecification overdueInvoiceSpecification =
 new OverdueInvoiceSpecification(DateTime.Now);

if (unpaidInvoiceSpecification
 .And(overdueInvoiceSpecification).IsSatisfiedBy(invoice))
{
 SendOverdueReminderEmail(invoice);
}

In this snippet of code, we create our two specifications:
unpaidInvoiceSpecification and overdueInvoiceSpecification. We then
use the Specification<T>.And method on the unpaidInvoiceSpecification
object passing it the overdueInvoiceSpecification object. This merges the two
predicates with an and operation. Finally, we call the IsSatisfiedBy method
passing in the invoice object to test if the invoice is unpaid and overdue; and, if
so, send a reminder e-mail.

The semantics would be similar if we wanted to detect if an invoice was unpaid
or overdue:

if (unpaidInvoiceSpecification
 .Or(overdueInvoiceSpecification).IsSatisfiedBy(invoice))
{
 //...
}

The difference here is that we use the Or method instead of the And method. The not
operation has slightly different semantics to it because it is a unary operation:

if(overdueInvoiceSpecification
 .And(unpaidInvoiceSpecification.Not()).IsSatisfiedBy(invoice))
{
 //...
}

With the Not method, its result should be passed to one of the binary operations to
be chained. In this case, we're testing to see if the invoice is overdue but paid.

Chapter 9

[273]

With the creation of our specification classes and an understanding of the semantics,
we can begin to refactor our existing code. With specifications it's a simple matter
of creating (or obtaining from our Dependency Injection container) a Specification
object than replacing our inline use of predicate business rules. If we revisit our
original example:

// an invoice is past due when it hasn't been paid
// in 30 days (and a grace period of 10 days)
if (DateTime.Now > invoice.Date.AddDays(30 + 10))
{
 DrawRotatedString(graphics, "PAST DUE", Font,
 redBrush, graphics.VisibleClipBounds,
 geometricallyCenteredStringFormat, 45.0);
}

We can replace this test with a call to our OverdueInvoiceSpecification as
follows:

OverdueInvoiceSpecification overdueInvoiceSpecification =
 new OverdueInvoiceSpecification(DateTime.Now);

if (overdueInvoiceSpecification.IsSatisfiedBy(invoice))
{
 DrawRotatedString(graphics, "PAST DUE", Font,
 redBrush, graphics.VisibleClipBounds,
 geometricallyCenteredStringFormat, 45.0);
}

Publish/Subscribe paradigm
In every software system, there are specific times when something needs to occur
in response to something else. Sometimes, this is as simple as adding code into an
existing sequence of code and sometimes this is adding a method call with a return
value into an existing sequence of code. Often what occurs is not relevant to what
is currently occurring, in other words it's not its responsibility. For the most part,
this is fine; we don't really care how things get done, just that things do get done.
This works well when we have a one-to-one relationship to what needs to occur in
response to something else. This even works when we have a one-to-x relationship;
where x is a fixed number.

Improving Architectural Behavior

[274]

This model starts to break down when you need to be able support a variable
number of responses or an unknown set of responses. In our one-to-one model, the
response is directly coupled to the action that is occurring. If that's all that needs to
happen then that's great. However, when we have a variable number of responses,
an unknown set of responses, or an asynchronous action with a response, then we
obviously can't implement that coupling without both sides at the table.

The publish/subscribe paradigm, at the lowest level, recognizes that there are
situations where there are external entities (subscribers) that would like to be
involved with the result of a particular action performed by a subsystem (publisher).

Publish/subscribe is based on the model that something would like to be informed
of information when it is available and that something publishing that information
may have zero or more subscribers to that information.

Observer pattern
The seminal definition of the Observer Pattern involved the publisher containing
publisher-specific code to keep track of all the subscribers through a collection of
interface or base class subscribers. The publisher would know how to communicate
with subscribers because they implemented a specific interface. When the publisher
published information that subscribers subscribed to, the publisher would iterate
through all the subscribers invoking whatever method it required of the subscribers
to inform them of the information. This required subscribers to implement a specific
interface, or derive from a specific base class, and implement specific methods with
specific names and a specific signature. The Observer pattern is one method of
implementing Publish/Subscribe.

Although much of that management could be delegated to another class; this is
pretty typical for most programming languages. .NET languages like C# and VB
have the ability to implement events. An event is something a type can specifically
add to their interface so that subscribers can optionally subscribe to be informed
of certain information. Events are implemented with delegates. Something that
publishes events effectively manages a collection of delegates associated with the
event. When the class reaches the point where it has information that subscribers are
interested in, it iterates the collection and invokes each delegate with the information
that it is interested in. This implementation frees the publisher from providing an
interface or subclass for it to understand how to communicate with subscribers and
also frees the subscribers from having to implement the coupling semantics through
that specific interface or subclass. We've avoided tangible ceremony that really didn't
add any value to either side. Events essentially use Duck Typing to determine the
coupling semantics.

Chapter 9

[275]

Duck Typing is a style of coupling semantics whereby the semantics is
not determined by the inheritance of a specific class or implementation of
a specific implementation, but by a specific method signature.

At its heart, the Observer Pattern recognizes that certain actions performed by one
class might need to be observed by many other classes. We use events to implement
the Observer Pattern in C#.

Detecting the need for the observer pattern
There are all sorts of places in most .NET applications that use the Observer Pattern.
These usages are probably pretty obvious. In WinForm applications, for example,
events are a very common way for user interface actions to be communicated back to
application code. The click of the mouse on a button, for example, is communicated
back to an application via the Button.Click event.

It's easy to add an event and wire up an event handler. But, it's harder to detect code
that could benefit from an Observer Pattern implemented as an event.

It's the other areas of the code that could benefit from the Observer Pattern where it's
difficult to detect. One particular area that could benefit from an Observer Pattern
implementation is providing an API for external applications to make use of our
software system.

Another area where the Observer Pattern shines is with the Model View Presenter
(MVP) pattern. Rather than having a circular dependency between the View and the
Presenter, the Presenter can be an Observer of the View and the View could publish
events that the Presenter subscribes to.

Refactoring to the observer pattern
Once we have candidate code that could benefit from the Observer Pattern we
need to extract it from its current class and move it to another class. What we need
to do is decouple the subscriber from the publisher—which requires that they be
separate classes.

Improving Architectural Behavior

[276]

Our invoicing application needs to add dashboard information that displays the
current state of the system. It will display information like number of invoices,
number of unpaid invoices, and so on. We could couple components like the
repository to the view and have the repository inform the view of information
directly through a method on the view. But, this would violate our layering rules and
introduce a dependency cycle between the domain and the presentation layers.

The alternative to this is to use the observer pattern. The view (likely via a presenter,
if using the MVP pattern) would be an observer of the repository and be informed of
the changes to data that the repository persists.

What information that is observed by the subscriber depends on circumstances. In the
case of being able to update our dashboard, the information could be as shallow as
something changed or it could be as deep as the actual number of number of invoices
and the number of unpaid invoices. Generally, I try to keep the information being
published to information that would normally be available. If, for a given operation,
the number of unpaid invoices is not known, that information wouldn't be published
even if the operation may affect the number of unpaid invoices. It's not really the
responsibility of that component to get that information if it doesn't already have it. If
the subscriber needs to get that information when it gets published information that
could mean that information has changed, it has the ability to go get it.

If we revisit our InvoiceRepository class:

public class InvoiceRepository : IInvoiceRepository
{
 IDataAccess dataAccess;

 public InvoiceRepository(IDataAccess dataAccess)
 {
 this.dataAccess = dataAccess;
 }

 public void Save(Invoice invoice)
 {
 DataSet invoiceDataSet =
 dataAccess.LoadInvoice(invoice.Id);
 DataRow invoiceRow;
 if (invoiceDataSet == null ||
 invoiceDataSet.Tables.Count == 0)
 {
 if (invoiceDataSet == null) invoiceDataSet =
 new DataSet();
 DataTable invoiceTable =
 invoiceDataSet.Tables.Add("Invoices");
 DataColumn column = new DataColumn("Id",

Chapter 9

[277]

 typeof(Guid));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Date", typeof(DateTime));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Title", typeof(String));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Status", typeof(int));
 invoiceTable.Columns.Add(column);
 invoiceRow =
 invoiceDataSet.Tables["Invoices"].NewRow();
 invoiceRow["Id"] = invoice.Id;
 }
 else
 {
 invoiceRow =
 invoiceDataSet.Tables["Invoices"].Rows[0];
 }
 invoiceRow["Date"] = invoice.Date;
 invoiceRow["Status"] = invoice.Status;
 invoiceRow["Title"] = invoice.Title;
 dataAccess.SaveInvoice(invoiceDataSet);
 // Save line item data...
 }
 //...
}

To refactor this to support notification of our view, we would add a DataUpdated
event to InvoiceRepository, and raise that event in the SaveInvoice method. For
example:

public class InvoiceRepository : IInvoiceRepository
{
 IDataAccess dataAccess;

 public InvoiceRepository(IDataAccess dataAccess)
 {
 this.dataAccess = dataAccess;
 }

 public event EventHandler<EventArgs> DataUpdated;
 = (o, a) => { };

 public void Save(Invoice invoice)
 {
 DataSet invoiceDataSet =
 dataAccess.LoadInvoice(invoice.Id);
 DataRow invoiceRow;

Improving Architectural Behavior

[278]

 if (invoiceDataSet == null ||
 invoiceDataSet.Tables.Count == 0)
 {
 if (invoiceDataSet == null)
 invoiceDataSet = new DataSet();
 DataTable invoiceTable =
 invoiceDataSet.Tables.Add("Invoices");
 DataColumn column = new DataColumn("Id",
 typeof(Guid));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Date", typeof(DateTime));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Title", typeof(String));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Status", typeof(int));
 invoiceTable.Columns.Add(column);
 invoiceRow =
 invoiceDataSet.Tables["Invoices"].NewRow();
 invoiceRow["Id"] = invoice.Id;
 }
 else
 {
 invoiceRow =
 invoiceDataSet.Tables["Invoices"].Rows[0];
 }
 invoiceRow["Date"] = invoice.Date;
 invoiceRow["Status"] = invoice.Status;
 invoiceRow["Title"] = invoice.Title;
 dataAccess.SaveInvoice(invoiceDataSet);
 // Save line item data...

 DataUpdated(this, EventArgs.Empty);
 }
 //...
}

Chapter 9

[279]

Summary
In this chapter, we've seen how we can refactor architectural behavior to increase
cohesion and reduce coupling to support evolving our code base. We've seen
through the use of the behavioral patterns Strategy, Specification and Observer that
we can make our classes more extensible. This helps us abide by the Open/Closed
Principle by providing a way of extending our classes' behavior without having to
directly modify them.

Open/Closed Principle states software entities (classes,
modules, functions, and so on) should be open for extension,
but closed for modification.

In the next chapter, we'll detail refactoring architectural structure to make adding
features easier and make working with third party libraries easier.

We'll also see how interfacing with the database less time consuming.

Improving Architectural
Structure

In the previous chapter, we detailed improving architectural behavior where we
discussed how the use of patterns helps us improve our architecture's behavior so
that we are better equipped to evolve and maintain our code.

In this chapter, we'll look at improving architectural structure through the use of
structural patterns. These patterns will include the following:

•	 Adapter
•	 Façade
•	 Proxy

We'll also look at Object/Relational Mapping (ORM) as a way of simplifying the
architectural structure and reducing the amount of code to reduce the work involved
in supporting database changes and expansion.

Structural patterns
Structural patterns define ways of structuring parts of the software system to
compose other objects. Just as with behavioral patterns, there are class structural
patterns and object structural patterns. Class structural patterns involve using
inheritance as a mechanism to structurally compose new classes from another class
or from a class hierarchy. The single-inheritance restriction of .NET means that our
ability to use inheritance to compose new classes is restricted. For the most part,
structural patterns are implemented as object structural patterns, which mean a class
is declared as a container for one or more other classes.

Improving Architectural Structure

[282]

Legacy code
Michael Feathers describes Legacy code as "…code without tests". Michael details
many ways of managing and dealing with legacy code. The ideal strategy for dealing
with legacy code is to make sure there are automated tests for the majority of the code.
I say "majority" because the Paretto principle (also known as the 80-20 rule) and the law
of diminishing returns apply to code coverage with automated tests—the work involved
in obtaining 100% coverage is prohibitively expensive for the returns. We won't get
into refactoring to support unit testing until the next chapter; so, we'll continue with
the impetus that we're refactoring to towards a better design. Another strategy for
dealing with legacy code is to simply rewrite it—adding supported automated testing
as code is written. We've effectively rejected this strategy as being too costly—after all,
if we couldn't write it correctly the first time, what makes us think we can do it right
this time? Yet, another strategy is to view the legacy code to support adding features or
modifying dependant code to simply decouple it with an abstraction.

There are all sorts of reasons why parts of a code base become "legacy". It's never
intentional. One of the biggest reasons I've seen for portions of a code base becoming
"legacy" is narrow responsibility. One person has historically been responsible for a
specific portion of the code base and that person is no longer on the team. No one else
on the team has had the budget to come up to speed on the code to fully understand
how to evolve and change that part of the code base. As a result, that portion of the
code base has languished; it hasn't evolved with the needs and standards of the rest of
the code base and has become "legacy code". No one wants to touch it, it's difficult to
change and changes often result in defects (from lack of understanding).

Difficult to evolve code isn't only a symptom of an abandoned portion of code; it
could be that a portion of code base has always been found to be difficult to modify
by members of the team. This often happens when code is written without any clear
understanding of either how it works or why it works. It is worked on until it passes
some abstract bar of functionality—that is, "it works"—then no one wants to touch
it for fear of breaking it (the House of Cards anti-pattern). On more experienced
software development teams, this is somewhat rare.

For the most part, this chapter is about how to deal with this legacy code. Whenever
possible, I'll point out areas where these refactorings make sense outside of dealing
with legacy code; but, the main motivation for these refactorings is to lessen the
impact that the legacy code has upon forthcoming changes.

Chapter 10

[283]

In Chapter 1, we outlined working refactoring into the process. The motivation is to
accept that change occurs and the impact on requirements means what we've already
worked on may need to change regardless of how well it works. It's important
for members of the development team to recognize this and have a reasonable
understanding of all areas of the software system. It's important to schedule time to
analyze existing code to make sure our understanding of the system hasn't changed
as that code was written and taken on technical debt. Part of analyzing that code
and looking for technical debt, is to refactor the code to remove the technical debt, if
feasible. Legacy code is no different, to respond effectively to change, someone has to
understand that legacy code and refactor it to make it more responsive to change.

Adapter pattern
Quite simply, the adapter pattern simply adapts one interface into another, more
acceptable interface. This structural pattern can be implemented in either of the two
implementation methods: object and class. There are circumstances where we can
perform structural class adaptation, by inheriting from another class and providing a
new, more application-friendly, interface. It's been my experience that this particular
implementation of the adapter pattern is rarer. The more common implementation,
from my experience, has been the structural object implementation, by creating a
new class (the adapter) that composes instances of one or more other classes. Neither
structural implementation is that different than the other. You can simply view the
class implementation as an object implementation with a single composed object that
happens to be the base class. The drawback of the class implementation is that the
base classes' interface can't be entirely hidden by an abstraction as can be done with
the object implementation.

Detecting need for the adapter pattern
There are many reasons why using the adapter pattern adds value. A third party
library has a fixed interface; if we accept that we need to use said third party library,
we accept that we need to use its interface. The interface may not be geared to our
particular usage patterns—it has to deal with multiple clients and our usage patterns
simply aren't part of the common scenarios. The third party library, while useful,
may simply have a poorly written interface.

Improving Architectural Structure

[284]

In terms of code in our code base, we may have legacy code that is simply too
costly to make anything other than trivial changes to. Much in the same way as a
third party library, our legacy code may suffer from the same flaws that our use of
third party libraries does. The legacy code may not have evolved in the same way
as the rest of the code base and has become increasingly difficult to work with.
We've already dealt with refactoring code to make it easier to use and thus more
maintainable, but what about circumstances where we simply can't do that? We may
simply not have the resources like time or experienced developers to make that level
of change. Often, the lack of experience with that portion of the code base means no
one can really estimate the level of effort required to make the change. This is often
rare; but still does occur.

In these circumstances it is often better to simply "wire-off" that portion our code
base, decoupling it through an abstraction. This decreases our coupling to that
portion of the code base and will allow us to evolve the rest of the code base more
efficiently and more effectively.

When we introduce an adapter to any other interface, we can often design that
adapted interface to be more testable. At the very least, creating an adapter should
make the code that uses that adapter more testable because that adapter decouples
its client from what is being adapted and thus more easily isolated during tests.

Refactoring to the adapter pattern
It's hard to show specific examples of refactoring to the adapter pattern that don't
seem pedantic to at least some readers. The motivation behind any particular
example to show the process more than anything else but I find it helpful to show
real-world examples that readers can associate with and at least some find useful.

Implementing the Model View Presenter (MVP) pattern in a WinForms application
is an example of a structural class adapter pattern implementation. Effectively, we're
inheriting from a Form object, providing new interface (the View) for the Presenter to
use. This allows our presenter to be decoupled from Form and allow isolation from it.

Model View Presenter (MVP) pattern is where the responsibilities of
the domain, the interaction with the user (UI), and transformation of
domain-specific data specifically for the UI (presentation) are decoupled
from one another in the Model, View, and Presenter—respectively.

This is useful during test so that we can substitute the view for a Test Double like a
stub or a mock so that parts of the system can be tested through automation without
having to invoke a user interface.

Chapter 10

[285]

Test Double is something that can be substituted for something
else—usually in the context of an automated test.

Apart from testability and increased decoupling, refactoring to the MVP pattern is
useful if you need share presentation logic across multiple types of views. The "view"
is any display of data in order for a user or client to act upon. This obviously is a
user-interface view; but could also include the addition of a web service interface,
another user-interface view, an API, and so on.

Back in Chapter 8, we refactored the ViewInvoiceForm for Dependency Injection.
We'll now refactor ViewInvoiceForm to implement the Model View Presenter
Pattern to show a class adapter pattern implementation.

When implementing MVP, I like to avoid having a circular dependency between
the View and the Presenter. The Presenter deals with coupling to the Model which
means it gets data from the Model to give to the View; but the View receives
commands from the user that affects the Model. This can easily lead to a circular
dependence—a cycle—between the Model and the View. This can lead to some
maintenance and flexibility issues. To avoid this, the coupling from the View to the
Presenter through Inversion of Control, implemented with the Observer Pattern—the
View communicates with the Presenter via events that the Presenter subscribes to.

The first step to refactoring to MVP is making a clear separation between the
Presenter's responsibilities and what are the View's responsibilities. As we've
described the MVP pattern, the Presenter is responsible for direct access to the
Domain (Model), decoupling the View from the Model, transforming data into
something the view can consume directly, and translating input from the user into
updates to the Model. The View is then responsible for displaying information to
the user and accepting their input and passing it along to the Presenter.

Where we left off with ViewInvoiceForm was that we changed the constructor
to accept a parameter for an IInvoiceRespository object (a Domain object)
so that the form could get the data for the invoice based on an invoice ID. The
form as it stands is coupled to two Domain concepts: the Invoice Repository and
the Invoice. Although we're more loosely coupled to the Invoice Repository via
IInvoiceRepository; we're too coupled for MVP.

To start, we need to decouple the View from the Invoice class. To do this, we'll
create a Data Transfer Object (DTO) class InvoiceLineItemDTO to encapsulate
line item data.

Improving Architectural Structure

[286]

Data Transfer Object (DTO) is a design pattern to encapsulate data
that needs to be transferred from one context to another and does not
implement any behavior.

Our InvoiceLineItemDTO class is very similar to our InvoiceLineItem class; but
lives in the same namespace as the View:

namespace InvoicingFrontEnd
{
 /// <summary>
 /// Data Transfer Object for InvoiceLineItem objects
 /// </summary>
 public class InvoiceLineItemDTO
 {
 public float Quantity { get; set; }

 public float Price { get; set; }

 public float Discount { get; set; }

 public string Description { get; set; }

 public ITaxRate TaxRate1 { get; set; }
 public ITaxRate TaxRate2 { get; set; }

 public InvoiceLineItemDTO(
 InvoiceLineItem invoiceLineItem)
 {
 Quantity = invoiceLineItem.Quantity;
 Price = invoiceLineItem.Price;
 Discount = invoiceLineItem.Discount;
 Description = invoiceLineItem.Description;
 TaxRate1 = invoiceLineItem.TaxRate1;
 TaxRate2 = invoiceLineItem.TaxRate2;
 }

 public InvoiceLineItemDTO()
 {
 }

 public InvoiceLineItem ToInvoiceLineItem()
 {
 return new InvoiceLineItem()
 {
 Description = Description,
 Discount = Discount,
 Price = Price,
 Quantity = Quantity,

Chapter 10

[287]

 TaxRate1 = TaxRate1,
 TaxRate2 = TaxRate2
 };
 }
 }
}

We then need to start providing an interface for the Presenter to be able to deal with
the Form object, without having to deal with it as a Form object (that is, "decouple" it
from Form). This is where we implement the adapter pattern. Our ViewInvoiceForm
class derives from Form, but we want our Presenter to communicate with it through
a different interface—which we'll call IEditInvoiceView:

public interface IEditInvoiceView
{
 ICollection<InvoiceLineItemDTO> InvoiceLineItemDTOs
 { get; }
 DateTime Date { get; set; }
 string Title { get; set; }
 event EventHandler<EventArgs> DataUpdated;
 event EventHandler<EventArgs> ShowPreview;
}

This interface uses nothing from our Model and uses nothing specific for a
Form object decoupling the View from the Model and decoupling the Presenter
from the implementation details of the View (the fact that it derives from Form).
InvoiceLineItemDTOs has the line item data for the invoice, and the rest of the
invoice data is stored in the Date and Title properties. The Presenter will be
informed of changes that need to be persisted back to the Model via the DataUpdated
event—at which point the event handler will query the InvoiceLineItemDTO
data and Date and Title. The next step is to have ViewInvoiceForm implement
IEditInvoiceView.

To support IEditInvoiceView, modify Populate to use InvoiceLineItemDTOs
instead of the invoice field's LineItems property. Our current implementation of
the InvoicePreviewFormFactory is coupled directly to some of our domain classes;
so, we'll create a ShowPreview event that will be raised in the previewButton_Click
method instead of calling InvoicePreviewFormFactory.Create. Now that the
invoice field is no longer needed, we'll remove that. To complete the refactoring, add
explicit processing of the OK button click, so that the DataUpdated event can be raised.

The results of our refactoring effort will look something similar to the following:

/// <summary>
/// Read-only view of a form.

Improving Architectural Structure

[288]

/// </summary>
public partial class ViewInvoiceForm
 : Form, IEditInvoiceView
{
 public ViewInvoiceForm()
 {
 InitializeComponent();
 }

 private void Populate()
 {
 dateTimePicker.Value = Date;
 foreach (var item in InvoiceLineItemDTOs)
 {
 lineItemsListView.Items.Add(
 new ListViewItem(
 new string[]
 {
 item.Price.ToString(),
 item.Discount.ToString(),
 item.Quantity.ToString(),
 item.Description }));
 }
 }

 private void previewButton_Click(object sender,
 EventArgs e)
 {
 ShowPreview(this, EventArgs.Empty);
 }

 List<InvoiceLineItemDTO> invoiceLineItemDTOs =
 new List<InvoiceLineItemDTO>();

 public ICollection<InvoiceLineItemDTO> InvoiceLineItemDTOs
 {
 get { return invoiceLineItemDTOs; }
 }

 public DateTime Date { get; set; }

 public string Title { get; set; }

 public event EventHandler<EventArgs> DataUpdated;
 public event EventHandler<EventArgs> ShowPreview;

 private void okButton_Click(object sender, EventArgs e)
 {
 DataUpdated(this, EventArgs.Empty);
 DialogResult = System.Windows.Forms.DialogResult.OK;

Chapter 10

[289]

 Close();
 }

 private void ViewInvoiceForm_Load(object sender,
 EventArgs e)
 {
 Populate();
 }
}

This leaves us with creating a Presenter to access the Model and populate
the View. We'll continue the refactoring by creating a Presenter class
EditInvoicePresenterClass:

/// <summary>
/// Presenter to encapsulate business logic
/// relating to editing/viewing invoices
/// </summary>
class EditInvoicePresenter
{
 private IEditInvoiceView view;

 public EditInvoicePresenter(IEditInvoiceView view)
 {
 this.view = view;
 }

 public void Start(Invoice invoice)
 {
 foreach (var invoiceLineItem in invoice.LineItems)
 {
 view.InvoiceLineItemDTOs.Add(
 new InvoiceLineItemDTO(invoiceLineItem));
 }
 view.Title = invoice.Title;
 view.Date = invoice.Date;
 view.DataUpdated += view_DataUpdated;
 view.ShowPreview += view_ShowPreview;
 }

 void view_ShowPreview(object sender, System.EventArgs e)
 {
 List<InvoiceLineItem> lineItems =
 new List<InvoiceLineItem>(
 view.InvoiceLineItemDTOs.Count);
 foreach (var invoiceLineItemDTO in
 view.InvoiceLineItemDTOs)

Improving Architectural Structure

[290]

 {
 lineItems.Add(
 invoiceLineItemDTO.ToInvoiceLineItem());
 }

 using (Form form = InvoicePreviewFormFactory.Create(
 view.Date, view.Title, lineItems))
 {
 form.ShowDialog((IWin32Window)view);
 }
 }

 public bool IsDirty { get; private set; }

 void view_DataUpdated(object sender, System.EventArgs e)
 {
 IsDirty = true;
 }

 public Invoice GetInvoice()
 {
 List<InvoiceLineItem> invoiceLineItems =
 new List<InvoiceLineItem>();
 foreach (InvoiceLineItemDTO invoiceLineItemDTO in
 view.InvoiceLineItemDTOs)
 {
 invoiceLineItems.Add(
 invoiceLineItemDTO.ToInvoiceLineItem());
 }
 return new Invoice(view.Title, invoiceLineItems,
 view.Date);
 }
}

In this class we have a constructor that initializes the presenter based on the
View. The Start method, which is called when we're about to start the process
of presenting the View, initializes the View and wires up the event handlers.
The ShowPreview handler instantiates an InvoicePreviewForm object with the
appropriate data and shows the form. The DataUpdated event handler updates
the IsDirty Flag. And the GetInvoice method is a convenient method to create a
Domain Invoice object based on the View's data.

This leaves us with replacing the current instantiation and use of the
ViewInvoiceForm class to include the Presenter. This can be done as follows:

using (var form = new ViewInvoiceForm())
{
 var presenter = new EditInvoicePresenter(form);

Chapter 10

[291]

 presenter.Start(invoice);
 form.ShowDialog(this);
}

Façade pattern
The adapter pattern adapts the interface of one class into a more acceptable interface.
Besides an interface that makes more sense in a specific concept, the adapter pattern
can decouple unrelated classes from one another, provide a cohesive encapsulation,
and make otherwise implicit concepts explicit. The façade pattern is very similar to
the adapter pattern; but creates a new interface to wrap several interfaces. A façade
pattern implementation has very little logic of its own; it simply manages several
other objects and group specific interactions with those objects into methods whose
name matches the intention or final goal of that interaction and generally contains
no state of its own. Façade pattern implementations are often implementing as
Singletons or used as if they were Singletons.

The façade pattern specifically makes particular interactions explicit (that may
otherwise be implicit as blocks of code within another class) through their grouping
within a method of the façade pattern implementation.

Domain-driven design includes the concept of Services. Services wrap operations
that are important to a software system but don't naturally fit within the
responsibilities of a specific class within the Domain. They may or may not include
business logic or rules. Services that don't include business logic or rules are
generally considered infrastructure services or application services. Services that
do contain business logic or rules can be thought of as domain services. Services
generally have no real state of their own and manage collaboration of other types.
Services are excellent examples of façade pattern implementations.

The façade pattern is very useful in implementing an external interface for external
clients to use. Generally, external interfaces make use of a particular protocol or
framework to manage the communication between the client and the supplier.
These protocols and frameworks have specific requirements for that communication.
Examples of these restrictions may include things like type of data or format of the data.

Detecting the need for façade
Implementing the façade pattern can improve maintainability of code by making the
concepts explicit. Code that's difficult to maintain because understanding it depends
on reading inline comments can often be improved by implementing a façade
around that code. The code in question usually requires many comments because it
doesn't really apply to the class it's contained within.

Improving Architectural Structure

[292]

Often, improving maintainability of code of this nature can simply be made
explicit methods of the class it currently resides within. This is perfectly
acceptable in many circumstances—after all, we're still taking functioning code
and refactoring it. So, maintainability unto itself may not be a sufficient motivation
to use a façade implementation.

Refactoring to the façade pattern
Unfortunately, the evolution of a code-base doesn't necessarily evolve from one
particular pattern or principle to another. As a result, we'll return to a concept that
we have introduced previously: the Data Access Layer. Generally, a Data Access
Layer is a façade over use of data access subsystems. Although the Data Access
Layer that we introduced in a prior chapter already effectively implemented a
façade, we'll see how to refactor potential code to that data access class.

Another common starting point of refactoring to a Data Access Layer (and definitely
one of the drawbacks of not having a Data Access Layer) is to have data access
code to persist an entity within the entity itself. There are varying degrees of data
access coupling within entities. I'll detail the worst-case scenario of having all the
entity-specific data access code within the entity mostly for readability rather than
an industry commentary (although, it does make refactoring to a Data Access Layer
very persuasive).

public void Load(string connectionString)
{
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 using (DataSet invoiceDataSet = new DataSet("Invoice"))
 {
 using (SqlCommand command =
 new SqlCommand("SELECT Id, Date, Title," +
 " Status FROM Invoice WHERE (Id = @ID)",
 connection))
 {
 command.Parameters.Add("@ID",
 SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = Id;
 using (SqlDataAdapter invoiceDataAdapter =
 new SqlDataAdapter())
 {
 invoiceDataAdapter.TableMappings.Add(
 "Table", "Invoices");

Chapter 10

[293]

 command.CommandType = CommandType.Text;
 invoiceDataAdapter.SelectCommand = command;

 invoiceDataAdapter.Fill(invoiceDataSet);
 }
 }
 DataRow dataRow =
 invoiceDataSet.Tables["Invoices"].Rows[0];
 Title = (String)dataRow["Title"];
 }
 using (DataSet lineItemDataSet =
 new DataSet("LineItems"))
 {
 using (SqlCommand command =
 new SqlCommand("SELECT InvoiceId, Price," +
 "Discount,Quantity, Description, " +
 "TaxRate1, TaxRate2 FROM LineItem " +
 "WHERE (InvoiceId = @ID)",
 connection))
 {
 command.Parameters.Add("@ID",
 SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = Id;
 using (SqlDataAdapter lineItemDataAdapter
 = new SqlDataAdapter())
 {
 lineItemDataAdapter.TableMappings.Add(
 "Table", "LineItems");

 command.CommandType = CommandType.Text;
 lineItemDataAdapter.SelectCommand = command;

 lineItemDataAdapter.Fill(lineItemDataSet);
 }
 }
 List<InvoiceLineItem> lineItems =
 new List<InvoiceLineItem>(
 lineItemDataSet.Tables["LineItems"]
 .Rows.Count);
 foreach (DataRow row in
 lineItemDataSet.Tables["LineItems"].Rows)
 {
 InvoiceLineItem invoiceLineItem =
 new InvoiceLineItem()
 {
 Description = row["Description"] as String,

Improving Architectural Structure

[294]

 Discount = (float)(double)row["Discount"],
 Price = (float)(Decimal)row["Price"],
 Quantity = (int)row["Quantity"],
 };
 if (row["TaxRate1"] != DBNull.Value)
 {
 if ((String)row["TaxRate1"] == "GST")
 {
 invoiceLineItem.TaxRate1 =new FederalGST();
 }
 else if ((String)row["TaxRate1"] == "PST")
 {
 invoiceLineItem.TaxRate1 =new OntarioPST();
 }
 }
 if (row["TaxRate2"] != DBNull.Value)
 {
 if ((String)row["TaxRate2"] == "GST")
 {
 invoiceLineItem.TaxRate2 =new FederalGST();
 }
 else if ((String)row["TaxRate2"] == "PST")
 {
 invoiceLineItem.TaxRate2 =new OntarioPST();
 }
 }
 lineItems.Add(invoiceLineItem);
 }
 }
 }
}

This single Load method in the Invoice class populates the Invoice class's Title, and
LineItems properties based on data in the database. It's missing error and missing
data checking—which I'll leave as an exercise for the reader so we can focus more on
the actual refactoring process. It's expected to be used like this:

Invoice invoice = new Invoice(guid);
invoice.Load(Properties.Settings.Default.ConnectionString);

The module-level design details of a Data Access Layer are generally project or team
specific. I generally tend towards putting a Data Access Layer into its own assembly
to make enforcing and detecting rules like no cycles and separation by interfaces
easier to enforce and detect.

Chapter 10

[295]

Visual Studio 2010 Layer Diagrams
In Visual Studio 2010 Premium and Ultimate editions, there is a new
feature called Layer Diagrams. You can declare your architectural
intentions with a layer diagram by defining what assemblies
constitute layers and the intended dependencies between them. You
can then use Validate Architecture to ensure that the dependencies
in code don't violate the expected dependencies between layers.

So, starting this refactoring requires creating a new class library project in
our solution to house our Data Access Layer. In our example, we'll call it Invoicing.
Data so our default namespace will be Invoicing.Data.

Once we have the project for our Data Access Layer, we can begin adding code
to it. We want to keep our Data Layer separated from the rest of our system
through an abstraction. We'll choose to implement this abstraction through
an interface. So, the next step is to create our interface. Our interface will be
named, creatively, IDataAccess. To start with, it will contain LoadInvoice and
LoadInvoiceLineItems method. Following is the definition of our interface:

namespace Invoicing.Data
{
 public interface IDataAccess
 {
 DataSet LoadInvoice(Guid invoiceId);
 DataSet LoadInvoiceLineItems(Guid invoiceId);
 }
}

Our data access class will be named DataAccess; so, we'll add a new class to our
Invoicing.Data project with this name, derive it from IDataAccess, and use the
Implement Interface menu item to add stub methods for IDataAccess. This results
in the following:

namespace Invoicing.Data
{
 public class DataAccess : IDataAccess
 {
 public DataSet LoadInvoice(Guid invoiceId)
 {
 throw new NotImplementedException();
 }

 public DataSet LoadInvoiceLineItems(Guid invoiceId)
 {

Improving Architectural Structure

[296]

 throw new NotImplementedException();
 }
 }
}

We'll effectively perform an Extract Method then a Move Method refactoring to
move code from the Invoice.Load method to each of the two DataAccess methods,
resulting in the following:

public class DataAccess : IDataAccess
{
 public DataSet LoadInvoiceLineItems(Guid invoiceId)
 {
 using (SqlConnection connection =
 new SqlConnection(connectionString))
 {
 connection.Open();
 DataSet lineItemDataSet =new DataSet("LineItems");
 using (SqlCommand command =
 new SqlCommand("SELECT InvoiceId, Price," +
 "Discount,Quantity, Description, " +
 "TaxRate1, TaxRate2 FROM LineItem " +
 "WHERE (InvoiceId = @ID)", connection))
 {
 command.Parameters.Add("@ID",
 SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = invoiceId;
 using (SqlDataAdapter lineItemDataAdapter
 = new SqlDataAdapter())
 {
 lineItemDataAdapter.TableMappings.Add(
 "Table", "LineItems");

 command.CommandType = CommandType.Text;
 lineItemDataAdapter.SelectCommand = command;

 lineItemDataAdapter.Fill(lineItemDataSet);
 }
 }
 return lineItemDataSet;
 }
 }

 public DataSet LoadInvoice(Guid invoiceId)
 {
 using (SqlConnection connection =
 new SqlConnection(connectionString))

Chapter 10

[297]

 {
 connection.Open();
 DataSet invoiceDataSet = new DataSet("Invoice");
 using (SqlCommand command =
 new SqlCommand("SELECT Id, Date, Title," +
 " Status FROM Invoice WHERE (Id = @ID)",
 connection))
 {
 command.Parameters.Add("@ID",
 SqlDbType.UniqueIdentifier);
 command.Parameters["@ID"].Value = invoiceId;
 using (SqlDataAdapter invoiceDataAdapter =
 new SqlDataAdapter())
 {
 invoiceDataAdapter.TableMappings.Add(
 "Table", "Invoices");
 command.CommandType = CommandType.Text;
 invoiceDataAdapter.SelectCommand = command;

 invoiceDataAdapter.Fill(invoiceDataSet);
 }
 }
 return invoiceDataSet;
 }
 }
}

We'll also separate the connection string into a field that get's initialized in the
constructor, so we don't have to pass it along every time we want to load data:

 private string connectionString;
 public DataAccess(string connectionString)
 {
 this.connectionString = connectionString;
 }

Code that invoked the Load method changes to the following:

IDataAccess dataAccess = new DataAccess(Properties.Settings.Default.
ConnectionString);
DataSet lineItemDataSet = dataAccess.LoadInvoiceLineItems(invoiceId);
List<InvoiceLineItem> lineItems =
 new List<InvoiceLineItem>(
 lineItemDataSet.Tables["LineItems"]
 .Rows.Count);
foreach (DataRow row in

Improving Architectural Structure

[298]

 lineItemDataSet.Tables["LineItems"].Rows)
{
 InvoiceLineItem invoiceLineItem =
 new InvoiceLineItem()
 {
 Description = row["Description"] as String,
 Discount = (float)(double)row["Discount"],
 Price = (float)(Decimal)row["Price"],
 Quantity = (int)row["Quantity"],
 };
 if (row["TaxRate1"] != DBNull.Value)
 {
 if ((String)row["TaxRate1"] == "GST")
 {
 invoiceLineItem.TaxRate1 =new FederalGST();
 }
 else if ((String)row["TaxRate1"] == "PST")
 {
 invoiceLineItem.TaxRate1 =new OntarioPST();
 }
 }
 if (row["TaxRate2"] != DBNull.Value)
 {
 if ((String)row["TaxRate2"] == "GST")
 {
 invoiceLineItem.TaxRate2 =new FederalGST();
 }
 else if ((String)row["TaxRate2"] == "PST")
 {
 invoiceLineItem.TaxRate2 =new OntarioPST();
 }
 }
 lineItems.Add(invoiceLineItem);
}

DataSet invoiceDataSet = dataAccess.LoadInvoice(invoiceId);
DataRow dataRow =
 invoiceDataSet.Tables["Invoices"].Rows[0];
Invoice invoice = new Invoice(
 (String)dataRow["Title"],
 lineItems,
 (DateTime)dataRow["Date"])
{
 Id = (Guid)dataRow["Id"]
};

Chapter 10

[299]

This completes this particular Refactor to Façade. This particular refactoring often
includes a refactoring to a Repository implementation to move the code that
processes the DataSet object into a Repository implementation to avoid having
to repeat it throughout the system. See Chapter 8 for details on refactoring to a
Repository implementation.

This Data Access façade implementation makes use of several classes from a couple
of subsystems: System.Data.SqlClient.SqlConnection, System.Data.DataSet,
System.Data.SqlClient.SqlCommand, System.Data.SqlClient.SqlDataAdapter,
and various other types indirectly from these subsystems. Conceptually, what we
want to be able to do (load invoice data) is simple; but we've got many lines of code
to use and manage types from these subsystems. This is much more complexity
than we want stuck in our Invoice class. Our DataAccess façade class hides all that
complexity within it. It's much easier to read with domain-specific terminology like
"LoadInvoice", plus it reduces the dependencies without our Invoice class. This
makes our Invoice class much more flexible.

Proxy pattern
The proxy pattern is defined as having the following intent: "Provide a surrogate or
placeholder for another object to control access to it". We've seen the Adapter and
how it can be used to manage access to another. It may seem that the proxy pattern
is a type of Adapter Pattern; but the proxy pattern controls access to a particular
object while providing an identical interface to that object. A proxy pattern must also
provide additional functionality; but effectively can be used in place of the other—
that is, it doesn't "adapt" the interface. Depending on the type of the proxy pattern
implementation, it may actually also be an adapter or façade pattern implementation
in the strictest sense because it adapts interfaces that would otherwise not be
available to the calling code or composes several objects to implement the interface.

There are generally four main types of proxy pattern implementations within .NET.
The first is the remote proxy. The remote proxy implementation is a local depiction
of an object that executes in a remote address space.

The next is the virtual proxy. A virtual proxy implementation attempts to implement
a placeholder for an expensive creation object so that the creation of the object needs
to occur until its first use (otherwise, until it's really needed). This is an example of
Lazy Initialization.

Improving Architectural Structure

[300]

Another implementation type is a protection proxy. This implementation controls
access to the contained object based on permissions or access rights. This control
could work in two ways. One would be that calling code that should not have access
to the contained object could be denied. Or, the proxy could encapsulate elevation of
permissions to effectively grant access to an object or resource that the calling code
would otherwise not have access to.

The final implementation type is the smart reference. The smart reference is often
a wrapper for a pointer in some native languages; but is basically a proxy that
adds functionality. Types of the smart reference proxies include smart pointers
and decorators.

Detecting need for proxy
From our descriptions of the types of Proxy Pattern implementations, you've likely
thought of some places in code you've worked on where the Proxy Pattern would fit
quite nicely. We'll detail some ways of detecting where using Proxy Pattern may be
appropriate.

Although the proxy pattern covers circumstances where you want to wrap another
object that takes a long time to perform operations, it has been my experience that
dealing with objects or resources whose operations have the potential to be lengthy
should not use the proxy pattern. Using the proxy pattern to encapsulate lengthy
operations just delays the lengthy operation—you still end up blocking the current
thread waiting for the lengthy operation. In cases where you want to encapsulate an
object whose operations have the potential to be lengthy, the Task Parallel Library in
.NET 4.0 provides much better support for parallelization of operations.

When you're looking to add functionality to an existing object without having to
modify the object, prefer the decorator pattern over the proxy pattern.

Refactoring to proxy
I generally try to use Interface-based design when implementing the proxy pattern.
This abstracts the type of the proxy from the use of the proxy. This helps with
testability, maintainability, and so on; but also means the type of proxy can be
determined at runtime (that is, through a Dependency Injection container). Using
interface-based design also means that implementing a proxy is much easier.

For our example, let's show implementing a Virtual Proxy. Let's say that our
RenderReadableInvoiceService loaded default coordinates and the font from
user preferences. Our Settings.settings in our Visual Studio project may look
something like the following:

Chapter 10

[301]

With this particular implementation, the construction of the
InvoiceRenderingService would be like the following:

public InvoiceRenderingService()
{
 HeaderLocation =
 Properties.Settings.Default.InvoiceHeaderLocation;
 FooterLocation =
 Properties.Settings.Default.FooterLocation;
 BodyLocation = Properties.Settings.Default.BodyLocation;
 SubtotalLocation =
 Properties.Settings.Default.SubtotalLocation;
 TaxLocation = Properties.Settings.Default.TaxLocation;
 GrandTotalLocation =
 Properties.Settings.Default.GrandTotalLocation;
 Font = Properties.Settings.Default.InvoiceFont;
}

With this particular implementation, we incur "expensive" calls to
Properties.Settings.Default that may result in accessing the local hard
drive or a remote share (depending on how Windows was deployed). If we
wanted to defer that until it was absolutely necessary (thus potentially avoiding
it altogether) we could implement a virtual proxy invoice rendering service and
implement Lazy Initialization.

Improving Architectural Structure

[302]

Since we're dealing with a class that already uses Interface-Based Design, we don't
need to create a new interface because InvoiceRenderingService implements
IInvoiceRenderingService. If we were refactoring a class that didn't already
implement an applicable interface, we would start with an Extract Interface refactoring.

To begin refactoring to virtual proxy with InvoiceRenderingService, we'll create
a new class named InvoiceRenderingServiceVirtualProxy. We'll derive it from
IInvoiceRenderingService and use Implement Interface/Implement Interface
to have Visual Studio create the methods and properties for us (in this case, just
one method ReaderReadableInvoice). Since we're implementing a proxy, we
need a field to store a reference to the object we're delegating to, so we'll add a
field of type IInvoiceRenderingService named realSubject. To continue the
refactoring, we'll implement the RenderReadableInvoice so that if realSubject
is null, it assigns a new instance of InvoiceRenderingService to it before calling
ReaderReadableInvoice on the realSubject object. That implementation of
InvoiceRenderingServiceVirtualProxy might look something like the following:

public class InvoiceRenderingServiceVirtualProxy
 : IInvoiceRenderingService
{
 private IInvoiceRenderingService realSubject;

 private Action<Invoice, Graphics>
 RenderReadableInvoiceProxy;

 public InvoiceRenderingServiceVirtualProxy()
 {
 RenderReadableInvoiceProxy = RenderReadableInvoiceImpl;
 }

 private void RenderReadableInvoiceImpl(Invoice invoice,
 Graphics graphics)
 {
 realSubject = new InvoiceRenderingService();
 RenderReadableInvoiceProxy =
 realSubject.RenderReadableInvoice;
 RenderReadableInvoiceProxy(invoice, graphics);
 }

 public void RenderReadableInvoice(Invoice invoice,
 Graphics graphics)
 {
 RenderReadableInvoiceProxy(invoice, graphics);
 }
}

Chapter 10

[303]

With this particular implementation, I've chosen to use delegates to
implement the detection of realSubject being null. Initialization
of InvoiceRenderingServiceProxy initializes the delegate
ReaderReadableInvoiceProxy to a method that instantiates an
InvoiceRenderingService object and assigns it to realSubject,
assigns the ReaderReadableInvoice method of that new instance to the
RenderReadableInvoiceProxy delegate, then re-invokes the delegate (and thus
the realSubject.RenderReadlbeInvoice method). Future invocations will simply
immediately invoke the realSubject.RenderReadlbeInvoice method. This
saves us from having to test the realSubject object for null on every invocation of
ReaderReadableInvoiceProxy.RenderReadlbeInvoice.

At this point, we have a class that can be used in place of
InvoiceRenderingService. Depending on how InvoiceRenderingService is
used determines how we complete the refactoring. If InvoiceRenderingService is
instantiated directly, we need to replace those instantiations with an instantiation of
InvoiceRenderingServiceVirtualProxy. This could be as simple as changing the
following:

 IInvoiceRenderingService invoiceRenderingService =
 new InvoiceRenderingService();

to this:

IInvoiceRenderingService invoiceRenderingService =
 new InvoiceRenderingServiceVirtualProxy();

If that original use of the InvoiceRenderingService isn't used as an
IInvoiceRenderingService reference, then use of InvoiceRenderingService
references will have to be changed to IInvoiceRenderingService references.

If instantiation of the InvoiceRenderingService object is done through a
Dependency Injection Container then completing the refactoring is just a matter
of configuring the container to map InvoiceRenderingServiceVirtualProxy to
IInvoiceRenderingService instead of InvoiceRenderingService. With Unity
app.config configuration, this means changing something like the following:

<type type="IInvoiceRenderingService"
 mapTo="InvoiceRenderingService"/>

to this:

<type type="IInvoiceRenderingService"
 mapTo="InvoiceRenderingServiceVirtualProxy"/>

Improving Architectural Structure

[304]

After creating an alias for InvoiceRenderServiceVirtualProxy in the
<typeAliases> element:

<typeAlias alias="InvoiceRenderingServiceVirtualProxy"
 type="InvoicingFrontEnd.InvoiceRenderingServiceVirtualProxy
 , InvoicingFrontEnd"/>

Object/Relational Mapping
Object/Relation Mapping (ORM) is the use of an ORM framework to map objects
(or more specifically, classes) to entities in a relational database (table, view, stored
procedure, and so on). More often than not, this is a class-to-table mapping; but this
could also be a mapping to views, functions, stored procedures, queries, and so on.

An ORM framework frees you from the need to design, write, test, and evolve code
that performs direct data-access to an RDBMS. One important side-effect of this is
the decoupling of the application from a specific relational database implementation.
Assuming the ORM framework supports more than one database brand, making
use of an ORM framework means moving from one database to another is that
much easier.

As we've seen earlier in this chapter, one possible implementation to load data from
the database is just a matter of populating DataSet objects and processing those
DataSet objects. There's no domain-specific value in this code. It's conceptually
simple code, but lengthy, full of SQL, hard to maintain, and fragile. It's basically the
same code with different SQL queries or statements—the only difference being how
many columns to process and their names. This code is tedious and time-consuming
to write and not really the value proposition of our software system.

When data access code is originally written, the database structure is usually simple.
Concepts are simple and there's usually a one-to-one relationship of properties
to columns and classes to tables. But, object-oriented design is based on software
engineering techniques and relational databases are based on mathematical
techniques like set theory. As a database grows, performance and storage can
become bottlenecks. Addressing these issues in a relational database is approached
in ways that don't match well with how we design object-oriented software systems.
Normalization in a database, for example, is about maximizing resources in the
database, not for making the data conceptually easier to read. Objects, on the other
hand, are an attempt to model real-world concepts. This disparity in the two ways of
modeling and processing data is called the Object-Relational Impedance Mismatch
or Impedance Mismatch for short. For example, a Manager class may derive from a
Person class. This relationship can't be modeled explicitly in a relational database. It's
this mismatch that takes time to alleviate and causes flexibility, maintainability, and
robustness issues.

Chapter 10

[305]

Object-Relational Impedance Mismatch is a term to
describe the divergence between the relational set theory
used in RDBMSs and object-oriented design. It's an
attempt to recognize the side-effects of using RDBMSs to
store and load data from and to object-oriented code.

Object/Relational Mappers free you from having to write this code. Instead of
writing lower-level code that actually uses database-specific classes, you define
which of your classes map to entities in your database (or databases).

I've often heard the argument that projects rarely change database brands and making
use of an ORM framework simply adds complexity that isn't needed. Refactoring to an
ORM framework requires a very specific need. The fact that the database might change
or even that the database needs to change isn't always impetus enough to refactor to
use an ORM framework. I've worked on several projects where the database brand or
the database version needed to change and that caused undue modifications to data
access code. This could have been avoided if an ORM was used.

One less-than-obscure way of dealing with data access is to generate the data access
code from the database schema. This code generation (or codegen) technique does
not address the Impedance Mismatch—it simply mirrors the database structure with
Value Objects and provides code to populate their fields and store the values of the
fields in a database. The developer still has to manually deal with areas of mismatch.

Problems with code generation
If you're working in a software system that is primarily a CRUD Interface, code
generation of a data-access layer is more than likely perfectly acceptable. For the
most part, the complexity in complex software systems comes from being business-
logic heavy. The need to refactor stems from that complexity, and the expectation of
this book is that readers are looking at ways of managing that business logic and are
likely to encounter the problems with code generation of a data access layer.

CRUD Interface is a software system that provides little or no
business logic and primarily simply provides a way to Create,
Remove, Update, and Delete data within the system. A software
system of this nature would normally contain no business logic or
domain layer and only user interface and data access layers.

Improving Architectural Structure

[306]

In a software system heavy with business logic, generation of business logic code is
impossible based upon database schema. The resulting lightweight classes that do
get generated are obviously missing business logic the system needs. Code generated
from a database schema that can (and will) change will have any manual changes
made to it lost when it is re-generated. This means the business logic must reside
somewhere else. This leads either to putting the business logic effectively into the
"user interface layer" (which may not be a tangible layer but the de facto "other"
layer) or creating a Domain Layer that is responsible for encapsulating access to
these generated classes. So, the problem is that the code exists and is easy to edit and
cause problems.

Code Generation has the implicit promise of being easy. In complex systems that rely
on much business logic, that appearance of ease might make generating business
logic persuasive. Business logic is application-specific. It's really hard to make
general-purpose code generation that also generates correct business logic. This
means that when a code generator does generate business logic there's lots of testing,
tweaking, and maintenance that goes along with it. The value you're attempting to
add is the software system, not the code generator. Hand-coded code generators
often result in a lot of work to perfect; work that could be better spent on direct value
to the end-user.

Detecting need to refactor to ORM
Refactoring to an ORM framework requires a bit of infrastructure in order to
happen correctly. It's helpful to have some level of abstraction of the data access.
Having a full-blown data-access layer is often very helpful in the process of
refactoring to an ORM framework; but it's more important that the data-access
layer be abstract. If the domain code is designed around some sort of relational
logic or relational data-access, then refactoring the data-access layer at any level
will be difficult.

An ORM framework effectively takes the place of your data-access layer. You may
still want to have a data-access layer that is effectively a wrapper around use of the
ORM framework.

As I pointed out earlier, the fact that database brand might, or even, will change, may
not be a persuasive reason to refactor to using an ORM. If you had used an ORM, that
transition may have been easier; but that's more a side-effect than a reason.

Chapter 10

[307]

One area of value that an ORM brings is its ability to decouple the necessary SQL
statements from your code which makes supporting large quantities of objects
or database entities much easier. You must know the SQL statement, table name,
or stored procedure name in order to map the data from the database to your
business logic regardless of whether you're using an ORM, writing your data access
code from scratch, or using code generation (that is, you have to choose what the
generator uses). Code generation effectively decouples the SQL from your code; but
embeds it into code within the software system. With an ORM if the SQL needs to
change (for example, from a statement to a stored procedure) you simply change the
configuration and not your code.

Refactoring to ORM
So, with the requirement that the software system needs to add persistence for
many more entities, let's look at how we can refactor what we've done so far to
use an ORM. So far, we have a distinct Data Access Layer to encapsulate our data
access code, a distinct Domain Layer to encapsulate our business logic entities and
their direct interaction with the Data Access Layer, and a distinct User Interface
Layer. Direct interaction with the ORM (beyond configuration) will be encapsulated
in the Domain Layer. Use of an ORM should not affect how the high-level layers
like the User Interface Layer interact with the Domain Layer (after all, we're still
going to load and store our domain entities). Use of the ORM simply becomes an
implementation detail of the Domain Layer. We're effectively off-loading the data
access work to the ORM—it becomes our Data Access Layer.

For this particular refactoring example, we'll show using NHibernate. There isn't
one ORM that is used by everyone; but NHibernate has been around in the .NET
community for the longest and has a good community around it. This book isn't
about choosing an ORM and it isn't specifically about how to refactor to every ORM.
So, we're picking one ORM and using it in the refactoring; the semantics of using an
ORM should be similar, the specific APIs will change.

We'll work with NHibernate 2.1.2—as of writing it's the current version of
NHibernate. We'll start with the assumption that it has been downloaded and
"installed". The first step is to add references to our Visual Studio project to the
NHibernate assemblies. The application assembly needs references to NHibernate.
dll, LinFu.DynamicProxy.dll, NHibernate.ByteCode.LinFu.dll and our
Domain Layer class library needs to reference NHibernate.dll. All these dlls can be
found in the directory where NHibernate was installed. The LinFu dlls will be in a
Required_For_LazyLoading directory.

Improving Architectural Structure

[308]

The next step is to configure NHibernate. There are multiple ways of doing this.
One way is via the app.config file. We've chosen the app.config configuration
method for various other things prior to this, so we'll continue with this method.
We first need to add to app.config a configuration section handler to the
app.config configSections element:

<section name="hibernate-configuration"
 type="NHibernate.Cfg.ConfigurationSectionHandler,
 NHibernate"/>

We then need to add the section that this configuration section handler will handle
to app.config:

<hibernate-configuration
 xmlns="urn:nhibernate-configuration-2.2">
 <session-factory>
 <property name="connection.provider">
 NHibernate.Connection.DriverConnectionProvider
 </property>
 <property name="connection.driver_class">
 NHibernate.Driver.SqlClientDriver
 </property>
 <property name="connection.connection_string">
 Data Source=(local)\sqlexpress;
 Initial Catalog=Invoices;
 Integrated Security=True;
 Pooling=False
 </property>
 <property name="dialect">
 NHibernate.Dialect.MsSql2008Dialect
 </property>
 <property name="show_sql">
 false
 </property>
 <property name="proxyfactory.factory_class">
 NHibernate.ByteCode.LinFu.ProxyFactoryFactory,
 NHibernate.ByteCode.LinFu
 </property>
 </session-factory>
</hibernate-configuration>

Chapter 10

[309]

This section configures multiple things. First, it configures the connection provider.
Here we're using the NHibernate.Connection.DriverConnectionHandler—which
is the built-in class that handles creating and disposing of database connections
(IDbConnection objects). Next, it configures the NHibernate database driver. Here
we're using the built-in SqlClientDriver because we're using a SQL Server Express
database. Next, it configures how we're talking with SQL server—the dialect. Here
we're using SQL Server 2008 Dialect because we're using SQL Server 2008 Express
Edition. Next, it configures to not trace the executed SQL statements. Finally, it
configures what proxy factory to use. Here, we're configuring the LinFu dynamic
proxy. The dynamic proxy implements the proxy pattern to deal with lazy loading
of data.As part of the configuration of NHibernate we need to tell it how our domain
entities map to data in the database. This is done through NHibernate mapping files.

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 assembly="Invoicing.Domain"
 namespace="Invoicing.Domain">

 <class name="Invoice" lazy="false" table="Invoice">
 <id name="Id">
 <generator class="guid" />
 </id>
 <property name="Title" />
 <property name="Date" />
 </class>

</hibernate-mapping>

Let's look at individual parts of the mapping file to see what is being configured:

 <class name="Invoice" lazy="false" table="Invoice">

This tells NHibernate that the name of our domain entity class is "Invoice" and
that direct access to the data is done through the "Invoice" table. Data won't be
lazy-loaded:

<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2"
 assembly="Invoicing.Domain"
 namespace="Invoicing.Domain">

This tells NHibernate that the Invoice class is in the Invoicing.Domain namespace
in the Invoicing.Domain assembly:

 <id name="Id">
 <generator class="guid" />
 </id>

Improving Architectural Structure

[310]

This tells NHibernate that the identity of the Invoice object is stored in the Id
property and that the identity of the invoice data is in the "Id" column. It also tells
NHibernate to automatically generate new identities through its GUID generator:

 <property name="Title" />

This tells NHibernate that the Invoice property Title is loaded and stored
from/to the database through the "Title" column:

 <property name="Date" />

This tells NHibernate that the Invoice property Date is loaded and stored
from/to the database through the "Date" column.

The properties on our Invoice class match the corresponding column names in
our Invoice table. This convention makes it easier to read code, mappings, and SQL
queries. This isn't always the case (or even the policy). If class name and table name
don't match (for example, the table is named "Invoices") the class element would
look like this:

 <class name="Invoice" lazy="false" table="Invoice">

If the Invoice.Date property name didn't match the corresponding column name
(it's named "InvoiceDate" for example) then the Date property attribute would look
like this:

 <property name="Date" column="InvoiceDate" />

There are various other options available to most ORMs, which include defining
what types to use for each property/column, whether to use specific SQL statements
or stored procedures, and so on. This is by no means a tutorial on NHibernate, so
we'll stick to the basics.

To continue the refactoring we need to initialize NHibernate. We're going to do this
in our Program.Main method. Depending on your circumstances, you may need to
do this elsewhere:

var configuration = new NHibernate.Cfg.Configuration();
configuration.Configure();
configuration.AddAssembly(
 typeof(Invoicing.Domain.Invoice).Assembly);

This code creates an NHibernate Configuration object, requests that it load the
configuration (in our case, from app.config) with a call to Configure(), then we
tell NHibernate what assembly contains our business entities (which is the assembly
where Invoice is located).

Chapter 10

[311]

Next, we need to update the InvoiceRepository class to use NHibernate instead of
Data Access Layer. The way NHibernate works is that requests to load or save data
are done through an ISession object. Our InvoiceRepository needs a reference to
an ISession implementation. We'll choose to use dependency injection and change
the constructor to initialize a new ISession field (session) based on a constructor
argument. Next, we'll update the Load method to make use of the session field. To
load an object from the database we simply tell the ISession reference what type to
load and its ID. In this case, we use generics to tell it what type we're dealing with in
the call to ISession.Load<T>(Object id):

 public class InvoiceRepository : IInvoiceRepository
 {
 NHibernate.ISession session;

 public InvoiceRepository(NHibernate.ISession session)
 {
 this.session = session;
 }

 public Invoice Load(Guid invoiceId)
 {
 return session.Load<Invoice>(invoiceId);
 }
 }

This code is much simpler than the code we had before. Conceptually, to support
loading any new entity requires a repository class as simple as this.

To finalize the refactoring we need to instantiate an ISession reference and
get it into our repository object when it is instantiated. Since we're now using a
Dependency Injection container, we'll configure our container with an ISession
object for it to use where we initialize our container:

using (IUnityContainer container =
 new UnityContainer())
{
 container.RegisterInstance(
 configuration.BuildSessionFactory().OpenSession());
}

Here we're asking the NHibernate configuration to build a ISessionFactory
reference, then call ISessionFactory.OpenSession() to open a session to our
configured database. The resulting ISession reference is registered with our Unity
container so that whenever an object that depends on an ISession reference is
created, it should always use this reference.

Improving Architectural Structure

[312]

ORM sessions
The ISession manages a particular connection to a database. In RDBMS parlance
this is similar to a transaction. The ISession deals in a single unit-of-work context
or a single transaction. If two database operations needed to be within the same
transaction (for example, one is dependent on the success of the other) then we'd
need those operations to be performed on the same ISession reference.

NHibernate's use of ISession is not a unique NHibernate concept. Other ORMs
have similar concepts; with Microsoft Entity Framework 4, it's an ObjectContext
object and with LINQ to SQL, it's a DataContext object.

Summary
We've seen how structural patterns allow us to compose new objects from existing
objects. This allows us to encapsulate functional within these new objects to
make more abstract objects. These more abstract objects are easier to decouple the
composing objects away from the rest of the system to make changes to them or the
rest of the system easier to realize.

ORM Frameworks allow us to make the database more abstract. We've seen how
using an ORM can make integration of the database easier, more flexible, and more
decoupled. Having a more abstract data-access implementation makes a more
cohesive application by making sure the nuances of a particular database brand are
unlikely to influence the design and the semantics of our software system.

In the next chapter, we'll review the importance of unit-testing. We'll discuss how
writing automated tests before, during, and after refactoring helps us understand
the requirements imposed on our software system. It will also allow us to verify that
those requirements are being met and validate that the parts of the system that have
been refactored are still functioning as expected.

Ensuring Quality with Unit
Testing

In the previous chapter, we discussed techniques for refactoring architecture
structure. We discussed how we change the architectural structure to promote
decoupling and decouple our code from external or legacy code.

In this chapter, we'll see how we can support the refactoring effort through the use of
unit testing to validate that the refactored code has not changed external behavior.

We'll discuss various aspects of unit testing, as well as how to approach unit testing
with Visual Studio®. We'll cover the following topics:

•	 Automated testing
•	 Unit tests
•	 Mocking
•	 Mocking frameworks
•	 Unit test frameworks
•	 Unit testing legacy code
•	 Test-driven development
•	 Third party refactoring tools

Ensuring Quality with Unit Testing

[314]

Change is not always good
Any change to existing code means it has the potential to change the external
behavior of the system. When we refactor code, we explicitly intend not to change
the external behavior of system. But how do we perform our refactorings while
being reasonably comfortable that we haven't changed external behavior?

The first step to validating that external behavior hasn't been affected is to define
the criteria by which we can validate that the external behavior hasn't changed.

Automated testing
Every developer does unit testing. Some developers write a bit of test code, maybe
an independent project that uses the code to verify it in some way then promptly
forgets about the project. Or even worse, they throw away that project. For the
purposes of this text, when I use the term "testing", I mean "automated testing".

Test automation is the practice of using a testing framework to facilitate and execute
tests. A test automation framework promotes the automatic execution of multiple
tests. Generally these frameworks include some sort of Graphical User Interface that
helps manage tests and their execution. Passing tests are "Green" and failing tests are
"Red", which is where the "Red, Green, Refactor" mantra comes from.

Unit tests
If we're refactoring, there's a chance that what we want to refactor isn't currently under
test. This means that if we do perform refactoring on the code, we'll have to manually
test the system through the established user interfaces to verify that the code works.
Realistically, this doesn't verify the code; this verifies that the external behavior hasn't
changed. There could very well be a hidden problem in the code that won't manifest
itself until the external behavior has been modified—distancing detection of the defect
from when it was created. Our goal is to not affect external behavior when refactoring,
so verification through the graphical user interface doesn't fully verify our changes and
is time consuming and more prone to human error.

What we really want to do is unit test the code. The term "unit test" has become
overloaded over the years. MSDN describes unit testing as taking:

…the smallest piece of testable software in the application, [isolating] from the
remainder of the code, and [determining] whether it behaves exactly as [expected].

Chapter 11

[315]

This smallest piece of software is generally at the method level—unit testing is
effectively about ensuring each method behaves as expected. Originally, it meant
to test an individual unit of code. "Unit test" has evolved to mean any sort of
code-based automated test, tests that developers write and execute within the
development process. With various available frameworks, the process of testing the
graphical user interface can also be automated in a code-based test, but we won't
focus on that.

It's not unusual for some software projects to have hundreds and thousands of
individual unit tests. Given the granularity of some of the tests, it's also not unusual
for the lines of code in the unit tests to outnumber the actual production code.
This is expected.

At the lowest level, we want to perform true "unit-testing", we want to test
individual units of code, independently, to verify that unit of code functions as
expected—especially in the presence of refactoring. To independently test these units
of code we often have to separate them from their dependant code. For example, if
I want to verify the business logic to uniquely generate an entity ID, there's no real
need for me to access the database to verify that code. That code to generate a unique
ID may depend on a collection of IDs to fully verify the algorithm to generate a
unique ID—but that collection of IDs, for the purposes of verification, doesn't need to
come from a database. So, we want to separate out use of some dependencies like the
database from some of our tests.

As we've seen in previous chapters, techniques for loosely-coupled design like
Dependency Inversion and Dependency Injection allow for a composable design.
This composable design aids in the flexibility and agility of our software system,
but it also aids in unit testing.

Other testing
Useful and thorough information about all types of testing could easily reach enough
information to take up several tomes. We're focusing on the developer task of
refactoring, so we're limiting our coverage of testing to absolute essential developer
testing: unit testing.

The fact that we're focusing on unit tests with regard to refactoring doesn't mean
that other types of testing is neither useful nor needed. The fact that developers
are performing unit tests doesn't preclude that they also need to perform a certain
level of integration testing and the QA personnel are performing other levels of
integration testing, user interface testing, user acceptance testing, system testing,
and so on.

Ensuring Quality with Unit Testing

[316]

Integration testing is combining distinct modules in the system to verify that they
interoperate exactly as expected. User interface testing is testing that the user
interface is behaving exactly as expected. User acceptance testing is verifying
that specific user requirements are being met—which could involve unit testing,
integration testing, user interface testing, verifying non-functional requirements,
and so on.

Mocking
Mocking is a general term that usually refers the substitution of Test Doubles for
dependencies within a system under test that aren't the focus of the test. "Mocking"
generally encompasses all types of test doubles, not just Mock test doubles.

Test Double is any object that takes the place of a production object for
testing purposes.
Mock is a type of Test Double that stands in for a production object
whose behavior or attributes are directly used within the code under test
and within the verification.

Test Doubles allow an automated test to gather the criteria by which the code is
verified. Test Doubles allow isolation of the code under test. There are several
different types of Test Doubles: Mock, Dummy, Stub, Fake, and Spy.

•	 Dummy is a type of Test Double that is only passed around within the test
but not directly used by the test. "null" is an example of a dummy—use of
"null" satisfies the code, but may not be necessary for verification.

•	 Stub is a type of Test Double that provides inputs to the test and may accept
inputs from the test but does not use them. The inputs a Stub provides to the
test are generally "canned".

•	 Fake is a type of Test Double that is used to substitute a production
component for a test component. A Fake generally provides an alternate
implementation of that production component that isn't suitable for
production but useful for verification. Fakes are generally used for
components with heavy integration dependencies that would otherwise
make the test slow or heavily reliant on configuration.

•	 Spy is a type of Test Double that effectively records the actions performed on
it. The recorded actions can then be used for verification. This is often used in
behavioral-based—rather than state-based—testing.

Chapter 11

[317]

Test doubles can be created manually, or they can be created automatically
through the use of mocking frameworks. Frameworks like Rhino Mocks provide
the ability to automatically create test doubles. Mocking framework generally rely
on a loosely-coupled design so that the generated test doubles can be substituted
for other objects based upon an interface.

Let's look at an example of writing a unit test in involving mocking. If we return
to one of our decoupling examples—InvoiceRepository—we can now test the
internals of InvoiceRepository without testing our Data Access Layer (DAL).
We would start by creating a test for the InvoiceRepository.Load method:

[TestClass()]
public class InvoiceRepositoryTest
{
 [TestMethod()]
 public void LoadTest()
 {
 DateTime expectedDate = DateTime.Now;
 IDataAccess dataAccess =
 new InvoiceRepositoryDataAccessStub(expectedDate);
 InvoiceRepository target = new
 InvoiceRepository(dataAccess);
 Guid invoiceId = Guid.NewGuid();

 Invoice actualInvoice = target.Load(invoiceId);

 Assert.AreEqual(expectedDate, actualInvoice.Date);
 Assert.AreEqual(invoiceId, actualInvoice.Id);
 Assert.AreEqual("Test", actualInvoice.Title);
 Assert.AreEqual(InvoiceStatus.Posted,
 actualInvoice.Status);
 Assert.AreEqual(1, actualInvoice.LineItems.Count());
 InvoiceLineItem actualLineItem =
 actualInvoice.LineItems.First();
 Assert.AreEqual("Description",
 actualLineItem.Description);
 Assert.AreEqual(1F, actualLineItem.Discount);
 Assert.AreEqual(2F, actualLineItem.Price);
 Assert.AreEqual(3F, actualLineItem.Quantity);
 }
}

Ensuring Quality with Unit Testing

[318]

Here, we're creating an instance of our repository passing it a Stub IDataAccess
class. We then invoke the Load method and verify the various attributes
of the resulting Invoice object. We, of course, don't have a class named
InvoiceRepositoryDataAccesStub, so we'll have to create one. This class, for the
purposes of this test, will look like this.

class InvoiceRepositoryDataAccesStub : IDataAccess
{
 private DateTime constantDate;

 public InvoiceRepositoryDataAccesStub(DateTime date)
 {
 constantDate = date;
 }

 public System.Data.DataSet LoadInvoice(Guid invoiceId)
 {
 DataSet invoiceDataSet = new DataSet("Invoice");
 DataTable invoiceTable =
 invoiceDataSet.Tables.Add("Invoices");
 DataColumn column = new DataColumn("Id",
 typeof(Guid));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Date", typeof(DateTime));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Title", typeof(String));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Status", typeof(int));
 invoiceTable.Columns.Add(column);
 DataRow invoiceRow =
 invoiceTable.NewRow();
 invoiceRow["Id"] = invoiceId;
 invoiceRow["Date"] = constantDate;
 invoiceRow["Status"] = InvoiceStatus.Posted;
 invoiceRow["Title"] = "Test";

 invoiceTable.Rows.Add(invoiceRow);
 return invoiceDataSet;
 }

 public System.Data.DataSet LoadInvoiceLineItems(
 Guid invoiceId)
 {
 DataSet lineItemDataSet = new DataSet("LineItem");
 DataTable lineItemTable =
 lineItemDataSet.Tables.Add("LineItems");
 DataColumn column =

Chapter 11

[319]

 new DataColumn("InvoiceId", typeof(Guid));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Price", typeof(Decimal));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Quantity", typeof(int));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Discount", typeof(double));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Description", typeof(String));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("TaxRate1", typeof(String));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("TaxRate2", typeof(String));
 lineItemTable.Columns.Add(column);

 DataRow lineItemRow =
 lineItemDataSet.Tables["LineItems"].NewRow();

 lineItemRow["InvoiceId"] = invoiceId;
 lineItemRow["Discount"] = 1F;
 lineItemRow["Price"] = 2F;
 lineItemRow["Quantity"] = 3;
 lineItemRow["Description"] = "Description";

 lineItemTable.Rows.Add(lineItemRow);

 return lineItemDataSet;
 }

 public void SaveInvoice(System.Data.DataSet dataSet)
 {
 throw new NotImplementedException();
 }
}

Here, we're manually creating DataSet object and populating rows with canned
data that we're specifically checking for in the validation code within the test.
It's worth noting that we haven't implemented SaveInvoice in this class. This is
mostly because we haven't implemented this in the production code yet; but, in the
case of testing Load, an exception would be thrown should it call SaveInvoice—
adding more depth to the validation of the Load method, since it shouldn't be using
SaveInvoice to load data.

Ensuring Quality with Unit Testing

[320]

In the InvoiceRepositoryTest.LoadTest method, we're specifically using the
InvoiceRepositoryDataAccessStub. InvoiceRepositoryDataAccessStub
is a Stub of and IDataAccess specifically for use with InvoiceRepository. If
you recall, a Stub is a Test Double that substitutes for a production component
but inputs canned data into the system under test. In our test, we're just
checking for that canned data to verify that the InvoiceRepository called our
InvoiceRepositoryDataAccessStub instance in the correct way.

Priorities
In a project with little or no unit tests, it can be overwhelming to begin refactoring
the code. There can be the tendency to want to first establish unit tests for the entire
code base before refactoring starts. This, of course, is linear thinking. An established
code base has been verified to a certain extent. If it's been deployed, the code
effectively "works". Attempting to unit test every line of code isn't going to change
that fact.

It's when we start to change code that we want to verify that our change doesn't have
an unwanted side-effect. To this effect, we want to prioritize unit-testing to avoid
having unit-testing become the sole focus of the team. I find that the unit-testing
priorities when starting out with unit-testing are the same as when a system has had
unit tests for some time. The focus should be that any new code should have as much
unit-testing code coverage as realistically possible and any code that needs to be
refactored should have code coverage as high as realistically possible.

The priority here is to ensure that any new code is tested and verified, and accept
the fact that existing code has been verified in its own way. If we're not planning on
immediately changing certain parts of code, they don't need unit-tests and should be
of lower priority.

Code coverage
Something that often goes hand-in-hand with unit testing is Code Coverage. The
goal of code coverage is to get as close to 100% coverage as reasonably possible.

Code Coverage is the measure of the percentage of code that is executed
(covered) by automated tests.

Code coverage is a metric generally used in teams that are performing unit tests
on a good portion of their code. Just starting out with unit testing, code coverage
is effectively anecdotal. It doesn't tell you much more than you are doing some
unit tests.

Chapter 11

[321]

One trap to get into as teams start approaching majority code coverage is to strive for
100% code coverage. This is both problematic and counterproductive. There is some
code that is difficult to test and even harder to verify. The work involved to test this
code is simply to increase code coverage percentages.

I prefer to view the code coverage delta over time. In other words, I concentrate on
how the code coverage percentage changes (or doesn't). I want to ensure that it's not
going down. If the code coverage percentage is really low (say 25%) then I may want
to see it increasing, but not at the risk of supplanting other work.

Mocking frameworks
As we've seen so far, we've manually created test doubles in order to isolate the
system under test. There are frameworks collectively called "Mocking Frameworks"
that facilitate automatic creation of Stubs, Fakes, Mocks, and Dummies. We have a
cursory look at a common subset of those frameworks now.

Rhino Mocks
Rhino Mocks is an open source mocking framework written by Ayende Rahien. To
use Rhino Mocks with your test project, simply add a reference to Rhino.Mocks.dll.

[TestClass]
public class InvoiceRepositoryTest
{
 /// <summary>
 /// Creates canned invoice data
 /// </summary>
 /// <param name="invoiceId"></param>
 /// <param name="constantDate"></param>
 /// <returns>DataSet of invoice data</returns>
 private DataSet CreateInvoiceDataSet(Guid invoiceId,
 DateTime constantDate)
 {
 DataSet invoiceDataSet = new DataSet("Invoice");
 DataTable invoiceTable =
 invoiceDataSet.Tables.Add("Invoices");
 DataColumn column = new DataColumn("Id",
 typeof(Guid));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Date", typeof(DateTime));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Title", typeof(String));

Ensuring Quality with Unit Testing

[322]

 invoiceTable.Columns.Add(column);
 column = new DataColumn("Status", typeof(int));
 invoiceTable.Columns.Add(column);
 DataRow invoiceRow =
 invoiceTable.NewRow();
 invoiceRow["Id"] = invoiceId;
 invoiceRow["Date"] = constantDate;
 invoiceRow["Status"] = InvoiceStatus.Posted;
 invoiceRow["Title"] = "Test";

 invoiceTable.Rows.Add(invoiceRow);
 return invoiceDataSet;
 }

 /// <summary>
 /// Creates canned line item data
 /// </summary>
 /// <param name="invoiceId"></param>
 /// <returns>DataSet of line item data</returns>
 private DataSet CreateLineItemDataSet(Guid invoiceId)
 {
 DataSet lineItemDataSet = new DataSet("LineItem");
 DataTable lineItemTable =
 lineItemDataSet.Tables.Add("LineItems");
 DataColumn column =
 new DataColumn("InvoiceId", typeof(Guid));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Price", typeof(Decimal));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Quantity", typeof(int));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Discount", typeof(double));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Description", typeof(String));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("TaxRate1", typeof(String));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("TaxRate2", typeof(String));
 lineItemTable.Columns.Add(column);

 DataRow lineItemRow =
 lineItemDataSet.Tables["LineItems"].NewRow();

 lineItemRow["InvoiceId"] = invoiceId;
 lineItemRow["Discount"] = 1F;
 lineItemRow["Price"] = 2F;
 lineItemRow["Quantity"] = 3;

Chapter 11

[323]

 lineItemRow["Description"] = "Description";

 lineItemTable.Rows.Add(lineItemRow);

 return lineItemDataSet;
 }

 /// <summary>
 /// Test Load Method
 /// </summary>
 [TestMethod]
 public void LoadTest()
 {
 DateTime expectedDate = DateTime.Now;
 Guid invoiceId = Guid.NewGuid();
 var mocker = new Rhino.Mocks.MockRepository();
 IDataAccess dataAccess = mocker.Stub<IDataAccess>();
 using (mocker.Record())
 {
 Rhino.Mocks.SetupResult.For(
 dataAccess.LoadInvoice(invoiceId))
 .Return(CreateInvoiceDataSet(invoiceId,
 expectedDate));
 Rhino.Mocks.SetupResult.For(
 dataAccess.LoadInvoiceLineItems(invoiceId))
 .Return(CreateLineItemDataSet(invoiceId));
 }

 InvoiceRepository target =
 new InvoiceRepository(dataAccess);

 Invoice actualInvoice = target.Load(invoiceId);

 Assert.AreEqual(expectedDate, actualInvoice.Date);
 Assert.AreEqual(invoiceId, actualInvoice.Id);
 Assert.AreEqual("Test", actualInvoice.Title);
 Assert.AreEqual(InvoiceStatus.Posted,
 actualInvoice.Status);
 Assert.AreEqual(1, actualInvoice.LineItems.Count());
 InvoiceLineItem actualLineItem =
 actualInvoice.LineItems.First();
 Assert.AreEqual("Description",
 actualLineItem.Description);
 Assert.AreEqual(1F, actualLineItem.Discount);
 Assert.AreEqual(2F, actualLineItem.Price);
 Assert.AreEqual(3F, actualLineItem.Quantity);
 }
}

Ensuring Quality with Unit Testing

[324]

Rhino Mocks works with the record/playback paradigm. In our case, we first
create a MockRepository that will be used to "load" mocks (and stubs, in our
case). We then ask Rhino Mocks to create a stub of our IDataAccess. We then ask
Rhino Mocks that we want the result of CreateInvoiceDataSet to be returned to
IDataAccess.LoadInvoice when given the value stored in invoiceId. The same
for LoadInvoiceLineItems and CreateLineItemDataSet. Rhino Mocks "records"
these actions. If we want to also validate behavior, (that is, that certain methods are
called and they're called in a certain order) we can use the "playback" feature. We're
concentrating on state-based tests in our examples, so we don't have a corresponding
playback call. We then proceed with the test using our stubbed IDataAccess and
verifying that Load returns the data that we expect it to for the given inputs.

Moq
Moq (pronounced "Mock") is an open source mocking framework. To use Moq with
your test project, simply add a reference to Moq.dll after installation.

Moq uses lambda expressions to configure each method in the test double. Our test
re-written to support Moq would look like the following:

/// <summary>
/// Test Load Method
/// </summary>
[TestMethod]
public void LoadTest()
{
 DateTime expectedDate = DateTime.Now;
 Guid invoiceId = Guid.NewGuid();
 var mock = new Moq.Mock<IDataAccess>();
 mock.Setup(da => da.LoadInvoice(invoiceId))
 .Returns(CreateInvoiceDataSet(invoiceId, expectedDate));
 mock.Setup(da => da.LoadInvoiceLineItems(invoiceId))
 .Returns(CreateLineItemDataSet(invoiceId));
 IDataAccess dataAccess = mock.Object;

 InvoiceRepository target = new
 InvoiceRepository(dataAccess);

 Invoice actualInvoice = target.Load(invoiceId);

 Assert.AreEqual(expectedDate, actualInvoice.Date);
 Assert.AreEqual(invoiceId, actualInvoice.Id);
 Assert.AreEqual("Test", actualInvoice.Title);
 Assert.AreEqual(InvoiceStatus.Posted,
 actualInvoice.Status);
 Assert.AreEqual(1, actualInvoice.LineItems.Count());

Chapter 11

[325]

 InvoiceLineItem actualLineItem =
 actualInvoice.LineItems.First();
 Assert.AreEqual("Description", actualLineItem.Description);
 Assert.AreEqual(1F, actualLineItem.Discount);
 Assert.AreEqual(2F, actualLineItem.Price);
 Assert.AreEqual(3F, actualLineItem.Quantity);
}

With this method, we start by creating a mock of our interface. Once we have a Mock
object we then configure what return values we would like our methods to have.
With Moq, the lambda expression tells Moq what method we want to configure.
Mock<T>.Setup accepts the lambda statement then parses that statement to find
what method we are referring to "da => da.LoadInvoice(invoiceId)" is code to
execute the IDataAccess.LoadInvoice method passing in a specific Guid value.
Moq parses that and allows you to configure what return value will be returned for
that specific Guid value. In our case, when IData.LoadInvoice is invoked with the
value in invoiceId, we return the results of the CreateInvoiceDataSet() method.
We configure IDataAccess.LoadInvoiceLineItems similarly. We then access the
Mock<T>.Object property to get the actual test double object that is used in the rest
of the test.

Unit testing existing legacy code
If we already have unit tests for a particular portion of code, then we can reasonably
be sure that we can detect whether changes to this code has caused any changes in
external behavior.

As we detailed in a previous chapter, legacy code is code that has no automated
tests associated with it. There's two realistic ways to deal with legacy code that we
detailed in the previous chapter: to go ahead and evolve it, or to decouple it from its
dependants and treat it like a third party library that we don't have control over.

When you're refactoring code, that refactoring is often to redesign the code to
follow principles like loosely-coupled. True unit-testing is possible only if the code
is loosely-coupled. This is a Catch-22. Clearly, we can't unit-test until we have a
loosely-coupled design where we want to unit test, but we can't verify refactoring to
loosely-coupled without unit-testing.

Ensuring Quality with Unit Testing

[326]

So, how do we deal with this paradox? Clearly, we can write succinct and efficient
unit tests to validate our existing legacy code before refactoring. But, we can begin
refactoring our legacy code and the code that uses it. Some fairly benign refactorings
can be applied to decouple the legacy code from the code that uses it. The Extract
Interface refactoring is excellent for this. A particular legacy class can have the
Extract Interface refactoring performed on it to create a new interface that matches
the public interface of the class that it is performed upon. This refactoring doesn't
replace use of variables that use the type with the new interface so you'll have to
manually do that for each case where you need it. This works out well because
you're going to focus on individual uses of the legacy code because you're testing
the code that uses the legacy code, not the legacy code.

If we look at a previous implementation of DataAccess, it originally did not
implement an IDataAccess interface. This class—which we'll use as an example
of a legacy component—may have been used like the following:

DataAccess dataAccess = new DataAccess(connectionString);
InvoiceRepository repository =
 new InvoiceRepository(dataAccess);

Where InvoiceRepository is implemented, partially, as follows:

public class InvoiceRepository : IInvoiceRepository
{
 DataAccess dataAccess;

 public InvoiceRepository(DataAccess dataAccess)
 {
 this.dataAccess = dataAccess;
 }
 //...
}

If we performed the Extract Interface on DataAccess to generate an IDataAccess
interface, we'd refactor our InvoiceRepository class to the following:

public class InvoiceRepository : IInvoiceRepository
{
 IDataAccess dataAccess;

 public InvoiceRepository(IDataAccess dataAccess)
 {
 this.dataAccess = dataAccess;
 }
 //...
}

Chapter 11

[327]

Both the Extract Interface refactoring and the refactoring of InvoiceRepository
are fairly benign. We've now decoupled InvoiceRepository from directly
using DataAccess, but haven't changed any logic (just variable types). With
little change to DataAccess (what we've deemed as the "legacy" component), the
InvoiceRepository (the system under test) is now free to use a Test Double as a
substitute for DataAccess in order to isolate the code in InvoiceRepository to fully
validate. This affords us the ability to test our repository without having to deploy,
install, populate, and configure a database.

TypeMock isolator
We've seen how facilitating unit tests sometimes requires changing existing code
in order to realistically test certain code. Mocking usually requires a certain level
of decoupled design in order to substitute product components with test doubles.
In addition to being a mocking framework, TypeMock isolator offers the ability to
stub out instance methods of class instances to replace their return value with
canned values.

For example, if we return to our DataAccess class example before it was
refactored for:

[TestClass]
public class InvoiceRepositoryTest
{
 private DataSet CreateInvoiceDataSet(Guid invoiceId,
 DateTime constantDate)
 {
 DataSet invoiceDataSet = new DataSet("Invoice");
 DataTable invoiceTable =
 invoiceDataSet.Tables.Add("Invoices");
 DataColumn column = new DataColumn("Id",
 typeof(Guid));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Date", typeof(DateTime));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Title", typeof(String));
 invoiceTable.Columns.Add(column);
 column = new DataColumn("Status", typeof(int));
 invoiceTable.Columns.Add(column);
 DataRow invoiceRow =
 invoiceTable.NewRow();
 invoiceRow["Id"] = invoiceId;
 invoiceRow["Date"] = constantDate;
 invoiceRow["Status"] = InvoiceStatus.Posted;

Ensuring Quality with Unit Testing

[328]

 invoiceRow["Title"] = "Test";

 invoiceTable.Rows.Add(invoiceRow);
 return invoiceDataSet;
 }

 private DataSet CreateLineItemDataSet(Guid invoiceId)
 {
 DataSet lineItemDataSet = new DataSet("LineItem");
 DataTable lineItemTable =
 lineItemDataSet.Tables.Add("LineItems");
 DataColumn column =
 new DataColumn("InvoiceId", typeof(Guid));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Price", typeof(Decimal));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Quantity", typeof(int));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Discount", typeof(double));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("Description", typeof(String));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("TaxRate1", typeof(String));
 lineItemTable.Columns.Add(column);
 column = new DataColumn("TaxRate2", typeof(String));
 lineItemTable.Columns.Add(column);

 DataRow lineItemRow =
 lineItemDataSet.Tables["LineItems"].NewRow();

 lineItemRow["InvoiceId"] = invoiceId;
 lineItemRow["Discount"] = 1F;
 lineItemRow["Price"] = 2F;
 lineItemRow["Quantity"] = 3;
 lineItemRow["Description"] = "Description";

 lineItemTable.Rows.Add(lineItemRow);

 return lineItemDataSet;
 }

 [TestMethod]
 public void LoadTest()
 {
 DateTime expectedDate = DateTime.Now;
 Guid invoiceId = Guid.NewGuid();
 String connectionString = "";
 DataAccess dataAccess =
 new DataAccess(connectionString);

Chapter 11

[329]

 Isolate.NonPublic.WhenCalled(dataAccess,
 "LoadInvoice").
 WillReturn(CreateInvoiceDataSet(invoiceId,
 expectedDate));
 Isolate.NonPublic.WhenCalled(dataAccess,
 "LoadInvoiceLineItems").
 WillReturn(CreateLineItemDataSet(invoiceId));
 InvoiceRepository target =
 new InvoiceRepository(dataAccess);

 Invoice actualInvoice = target.Load(invoiceId);

 Assert.AreEqual(expectedDate, actualInvoice.Date);
 Assert.AreEqual(invoiceId, actualInvoice.Id);
 Assert.AreEqual("Test", actualInvoice.Title);
 Assert.AreEqual(InvoiceStatus.Posted,
 actualInvoice.Status);
 Assert.AreEqual(1, actualInvoice.LineItems.Count());
 InvoiceLineItem actualLineItem =
 actualInvoice.LineItems.First();
 Assert.AreEqual("Description",
 actualLineItem.Description);
 Assert.AreEqual(1F, actualLineItem.Discount);
 Assert.AreEqual(2F, actualLineItem.Price);
 Assert.AreEqual(3F, actualLineItem.Quantity);
 }
}

In the LoadTest method, we create a DataAccess object passing the constructor
a dummy connection string. We then ask TypeMock isolator to return the result
of CreateInvoiceDataSet() when DataAccess.LoadInvoice() is called,
and to return the result of CreateLineItemDataSet() when DataAccess.
LoadInvoiceLineItem() is called. CreateInvoiceDataSet() mimics the result of
accessing the database by returning a canned DataSet containing invoice data.

CreateInvoiceLineItemDataSet() does something similar by returning a canned
DataSet containing related invoice line item data. We complete the unit test by
performing the same asserts we did in a previous example.

TypeMock isolator is useful for situations where you don't have control of the source
code for the components you want to mock.

Ensuring Quality with Unit Testing

[330]

Unit testing in Visual Studio®
Unit testing is supported directly in Visual Studio® 2010 editions Professional and
above. Visual Studio® supports automatically creating unit tests based on your
source code. You can right click a method or a class and selecting Create Unit
Tests…. For example, if we right clicked on our EditInvoicePresenter class and
chose Create Unit Tests…, we'd be presented with the following form:

The default action for a class is to select all methods within the class to be tested. If
we accept the defaults for this class and press OK, code similar to the following will
be generated:

/// <summary>
///This is a test class for CreateInvoicePresenterTest and is
/// intended to contain all CreateInvoicePresenterTest Unit
///Tests
///</summary>

Chapter 11

[331]

 /// <summary>
 ///A test for CreateInvoicePresenter Constructor
 ///</summary>
 [TestMethod()]
 public void CreateInvoicePresenterConstructorTest()
 {
 ICreateInvoiceView view = null; // TODO: Initialize to
 // an appropriate value
 CreateInvoicePresenter target =
 new CreateInvoicePresenter(view);
 Assert.Inconclusive(
 "TODO: Implement code to verify target");
 }

 /// <summary>
 ///A test for GetInvoice
 ///</summary>
 [TestMethod()]
 public void GetInvoiceTest()
 {
 ICreateInvoiceView view = null; // TODO: Initialize to
 // an appropriate value
 CreateInvoicePresenter target =
 new CreateInvoicePresenter(view); // TODO: Initialize
 // to an
 // appropriate
 // value
 Invoice expected = null; // TODO: Initialize to an
 // appropriate value
 Invoice actual;
 actual = target.GetInvoice();
 Assert.AreEqual(expected, actual);
 Assert.Inconclusive(
 "Verify the correctness of this test method.");
 }

 /// <summary>
 ///A test for Start
 ///</summary>
 [TestMethod()]
 public void StartTest()
 {
 ICreateInvoiceView view = null; // TODO: Initialize to
 // an appropriate value
 CreateInvoicePresenter target =

Ensuring Quality with Unit Testing

[332]

 new CreateInvoicePresenter(view); // TODO: Initialize
 // to an
 // appropriate
 // value
 target.Start();
 Assert.Inconclusive("A method that does not return a value cannot
 be verified.");
 }
}

The unit test creator in Visual Studio® analyzes the signature of each method and
automatically generates unit test code that performs a test with dummy data. You
simply have to fill in the blanks with the data you actually want to test with and
remove the Assert.Inconclusive call. Our first unit test is a modified version of
the above generated code.

Test driven development
As you start writing new code, you don't want to fall into the same trap as the
legacy code you have to deal with. You want this new code to have tests in order
to verify changes to it—either as the next step in your refactoring or in some future
refactoring. With Test-Driven Development (TDD) you actually make sure you
write the tests before you write the code. Let's have another look at our Model View
Presenter (MVP) refactoring.

When separating out business logic code from the GUI (Graphical User Interface)
we're now able to write tests to verify that business logic independent of the
user interfaces—tests that can be automated much easier. Before we refactored
CreateInvoiceForm, we knew we needed the presenter to create an invoice based
on information in the view as well as construct a presenter based on a specific view.
In this case, we want two tests: one to test that the presenter is created correctly with
the correct view reference, and one to verify that the presenter uses the correct data
from the view to create an Invoice object. In TDD we'd create these tests before we'd
create the classes to support them. For example:

/// <summary>
///A test for CreateInvoicePresenter Constructor
///</summary>
[TestMethod()]
public void CreateInvoicePresenterConstructorTest()
{
 ICreateInvoiceView view = new DummyCreateInvoiceView();
 CreateInvoicePresenter target =
 new CreateInvoicePresenter(view);

Chapter 11

[333]

 Assert.AreSame(view, target.View, "CreateInvoicePresenter.View had
unexpected value after construction.");
}

/// <summary>
///A test for GetInvoice
///</summary>
[TestMethod()]
public void GetInvoiceTest()
{
 string expectedTitle = "Test";
 DateTime expectedDate = DateTime.Now;
 List<InvoiceLineItemDTO> invoiceLineItemDTOs =
 new List<InvoiceLineItemDTO>() {
 new InvoiceLineItemDTO()
 {
 Quantity = 1,
 Description = "description",
 Discount = 0F,
 Price = 42F
 }
 };

 ICreateInvoiceView view =
 new MockCreateInvoiceView()
 {
 Title = expectedTitle,
 Date = expectedDate,
 InvoiceLineItemDTOs = invoiceLineItemDTOs
 };

 CreateInvoicePresenter target =
 new CreateInvoicePresenter(view);
 Invoice actual = target.GetInvoice();
 Assert.AreEqual(expectedTitle, actual.Title);
 Assert.AreEqual(expectedDate, actual.Date);
 InvoiceLineItem actualInvoiceLineItem =
 actual.LineItems.First();
 Assert.AreEqual(invoiceLineItemDTOs[0].Description,
 actualInvoiceLineItem.Description);
 Assert.AreEqual(invoiceLineItemDTOs[0].Discount,
 actualInvoiceLineItem.Discount);
 Assert.AreEqual(invoiceLineItemDTOs[0].Price,
 actualInvoiceLineItem.Price);
 Assert.AreEqual(invoiceLineItemDTOs[0].Quantity,
 actualInvoiceLineItem.Quantity);
}

Ensuring Quality with Unit Testing

[334]

In CreateInvoicePresenterConstructorTest we create Dummy Test Double to
pass to the CreateInvoicePresenter constructor that will only be used to verify,
is used for the CreateInvoicePresenter.View property. The test verifies that the
constructor is working correctly by verifying that View property contains the same
reference that was passed into CreateInvoicePresenter constructor through the
use of Assert.AreSame().

In the GetInvoiceTest method, we create all of the inputs to the test
(expectedTitle, expectedDate, and invoiceLineItemDTOs). We then use those
inputs to create Mock Test Double of the view when creating the presenter object.
The call to CreateInvoicePresenter.GetInvoice() will then use the attributes
of our Mock object to create an Invoice object. We then verify that what is returned
from GetInvoice is correct (and thus verify that GetInvoice is functioning
properly) through multiple calls to Assert.AreEqual on what we expect compared
to attributes of the Invoice object.

Had our Invoice object overridden the Equals method, we could have possibly
improved this test as follows:

public void GetInvoiceTest()
{
 List<InvoiceLineItemDTO> invoiceLineItemDTOs =
 new List<InvoiceLineItemDTO>() {
 new InvoiceLineItemDTO()
 {
 Quantity = 1,
 Description = "description",
 Discount = 0F,
 Price = 42F
 }
 };

 Invoice expectedInvoice = new Invoice("Title",
 new List<InvoiceLineItem>() {
 invoiceLineItemDTOs.First().ToInvoiceLineItem()
 },
 DateTime.Now);

 ICreateInvoiceView view =
 new MockCreateInvoiceView()
 {
 Title = expectedInvoice.Title,
 Date = expectedInvoice.Date,
 InvoiceLineItemDTOs = invoiceLineItemDTOs
 };

 CreateInvoicePresenter target =

Chapter 11

[335]

 new CreateInvoicePresenter(view);
 Invoice actual = target.GetInvoice();

 Assert.AreEqual(expectedInvoice, actual, "Actual invoice returned
from GetInvoice was not as expected.");
}

This simplifies our verification by process to a single call to Assert.AreEqual; but
we lose granularity in the detail of what part of the Invoice doesn't match. We also
employ InvoiceLineItemDTO.ToInvoiceLineItem, making the test dependant on
that working and effectively dependant on tests to verify ToInvoiceLineItem be
run and pass before this test. I'll leave it as an exercise of the reader to decide which
benefits and drawbacks are important.

This of course, results in compile errors if we try to build our test project. We then
create enough of the classes and code to get a clean compile. But, when we run the
two tests they will both fail because the code hasn't been written yet. The following
is just enough code to compile and fail the tests:

class DummyCreateInvoiceView : ICreateInvoiceView
{
 public ICollection<InvoiceLineItemDTO> InvoiceLineItemDTOs
 {
 get { throw new NotImplementedException(); }
 }

 public DateTime Date
 {
 get
 {
 throw new NotImplementedException();
 }
 set
 {
 throw new NotImplementedException();
 }
 }

 public string Title
 {
 get
 {
 throw new NotImplementedException();
 }
 set
 {
 throw new NotImplementedException();

Ensuring Quality with Unit Testing

[336]

 }
 }
}

class CreateInvoicePresenter
{
 public CreateInvoicePresenter(ICreateInvoiceView view)
 {
 }

 public ICreateInvoiceView View { get; private set; }

 public void Start()
 {
 // TODO: wire-up other data, subscribe to events, etc.
 }

 public Invoice GetInvoice()
 {
 return null;
 }
}

class MockCreateInvoiceView : ICreateInvoiceView
{
 public ICollection<InvoiceLineItemDTO> InvoiceLineItemDTOs {
 get;
 set;
 }

 public DateTime Date { get; set; }

 public string Title { get; set; }
}

Running the tests in the Visual Studio® 2010 test runner show that the tests fail:

Failing tests first? This may seem counterproductive, but doing this has
one striking benefit: it tests that unexpected things don't pass the test, that
is, the defaults don't cause the test to pass and that actual written code is
required to pass the test.

Chapter 11

[337]

Unit testing frameworks
Visual Studio® 2010 Professional Edition and better includes unit-testing. Visual
Studio® 2010 Premium includes additional testing tools like Code Coverage.
Visual Studio® 2010 Ultimate Edition includes extra features related to managing
the testing effort like Test Case Management. There are third party unit testing
frameworks that are available if you're using Visual Studio® 2010 Express or
Standard. We'll look at a common subset of these unit testing frameworks now.

NUnit
NUnit was one of the first unit testing frameworks available for .NET. It's the defacto
standard for automated testing on .NET. The original author of NUnit is actually
working for Microsoft now. Even if you find you're going to use the built-in Visual
Studio® unit testing, you may encounter unit tests written for NUnit so it may be
worthwhile understanding how NUnit works.

To write unit tests for NUnit, simply add a reference to the nunit.framework.dll
after installation.

NUnit differs from VS unit testing firstly in the names of the attributes that declare
a test class and a test method. NUnit uses TextFixtureAttribute instead of
TestClassAttribute and TestAttribute instead of TestMethod attribute. Many of
the Assert methods are the same. The following is an example of our test modified to
work with NUnit:

[TestFixture]

public class InvoiceRepositoryTest
{
[Test]
 public void LoadTest()
 {
 DateTime expectedDate = DateTime.Now;
 IDataAccess dataAccess =
 new InvoiceRepositoryDataAccessStub(expectedDate);
 InvoiceRepository target = new
 InvoiceRepository(dataAccess);
 Guid invoiceId = Guid.NewGuid();

 Invoice actualInvoice = target.Load(invoiceId);

 Assert.AreEqual(expectedDate, actualInvoice.Date);
 Assert.AreEqual(invoiceId, actualInvoice.Id);
 Assert.AreEqual("Test", actualInvoice.Title);
 Assert.AreEqual(InvoiceStatus.New,
 actualInvoice.Status);

Ensuring Quality with Unit Testing

[338]

 Assert.AreEqual(1, actualInvoice.LineItems.Count());
 InvoiceLineItem actualLineItem =
 actualInvoice.LineItems.First();
 Assert.AreEqual("Description",
 actualLineItem.Description);
 Assert.AreEqual(1F, actualLineItem.Discount);
 Assert.AreEqual(2F, actualLineItem.Price);
 Assert.AreEqual(3F, actualLineItem.Quantity);
 }
}

XUnit
XUnit is an open source unit-testing framework originating out of Microsoft.
Unfortunately, before going to press, XUnit didn't support .NET 4.0. So, to use XUnit
you have to change the target framework to something other than .NET 4.0 for your
test project and any project that your test project references (usually every other
project).

To write tests for XUnit, simply add a reference to the XUnit.dll after installation.

XUnit's semantics is a little different than other testing frameworks. The first thing to
notice is you don't have to attribute the test class at all. XUnit finds and executes tests
simply by the method attribute. In XUnit the method attribute is FactAttribute.
XUnit also doesn't use the same method names in the Assert class. Our test
modified to work with XUnit would look like the following:

public class InvoiceRepositoryTest
{
 [Fact]
 public void LoadTest()
 {
 DateTime expectedDate = DateTime.Now;
 IDataAccess dataAccess =
 new InvoiceRepositoryDataAccessStub(expectedDate);
 InvoiceRepository target = new
 InvoiceRepository(dataAccess);
 Guid invoiceId = Guid.NewGuid();

 Invoice actualInvoice = target.Load(invoiceId);

 Assert.Equal(expectedDate, actualInvoice.Date);
 Assert.Equal(invoiceId, actualInvoice.Id);
 Assert.Equal("Test", actualInvoice.Title);
 Assert.Equal(InvoiceStatus.Posted,
 actualInvoice.Status);

Chapter 11

[339]

 Assert.Equal(1,
 actualInvoice.LineItems.Count());
 InvoiceLineItem actualLineItem =
 actualInvoice.LineItems.First();
 Assert.Equal("Description",
 actualLineItem.Description);
 Assert.Equal(1F, actualLineItem.Discount);
 Assert.Equal(2F, actualLineItem.Price);
 Assert.Equal(3F, actualLineItem.Quantity);
 }
}

Automating unit-testing
So far we've detailed coding unit test and the automatic executing through some
sort of unit test framework. But, the executing of the tests has been a manual
process—pressing "Run" in order to execute the tests. This assumes a developer is
modifying code and running the tests to verify their changes. In an ideal world, this
would be enough to verify our software system. But, various aspects of software
development mean this isn't enough. Team software development, for example,
means that someone else on the team could have made a modification that causes a
test to fail. This failure may not be visible to them while they are both developing.
While both team members may execute all the tests and they all pass, the act of both
of them committing their changes to source control could introduce a failure that
they wouldn't notice. This failure could impact other team members causing them
decreased productivity or reduced quality.

Automated unit-testing is when the unit tests are run atomically. They may simply
be periodically run, or they may be run in response to a particular action (like
committing changes), or it may be a combination of both.

Some source control systems recognize that the code that is being committed may
pass unit tests locally but may not pass unit test once committed. These types of
source control systems have check-in policies that perform certain checks before fully
committing the revision. In terms of unit-testing, there is a policy that can be enabled
and/or configured that automatically executes the unit tests (or a subset thereof) and
will not allow the change set to be committed unless all the unit tests pass. This is the
most proactive way of ensuring unit tests are periodically executed so that changes
are least likely to affect other members of the team.

Ensuring Quality with Unit Testing

[340]

An alternative to using the revision control system to proactively deny commits that
don't pass all unit tests, unit tests can be periodically automatically executed and can
inform team members of the status. This can simply be scheduled as part of the build
environment, like unit tests automatically being executed every day at 2 a.m. This
could also be in response to check-ins: where unit tests are executed on a specific
server whenever a check-in is performed, and any errors are sent to team members
so they know as soon as possible that there's a problem.

Continuous Integration
There's a category of tools and features that implement a feature called Continuous
Integration. Continuous Integration promotes integration of the software system
under development and the work of development team members continuously.
Continuous Integration tools essentially facilitate the automation of the build
process. This sounds very simple, but there are lots of details to a full build process.
There's the integration with a source code control system, the extraction of the latest
source code from the source code control system, the compilation of the source
code, the execution of unit tests, compilation of installs, and communication of build
status with the team. This process can also include many other details like automatic
deployment to a test environment. Continuous Integration tools facilitate these tasks.
There are several tools available for Continuous Integration from open source to
commercial. Visual Studio® Team System (VSTS) includes Team Foundation Server
(TFS) that facilitates Continuous Integration. CruiseControl.NET is an open source
Continuous Integration tool. There are a few commercial Continuous Integration
tools; one of the more popular ones (other than TFS) is TeamCity.

Continuous Integration frees the development team from a manual build process
that someone has to be trained on and perform. Continuous Integration usually
includes the process of running the unit tests, so there's an up-to-date status on the
quality of the source code. The Continuous Integration tool can be configured to
periodically start the build process, and can often be configured to automatically
detect change set commits to the source code control system and automatically (and
thus continuously) execute the build process.

Continuous Integration means that the work of development team members is
integrated as quickly as possible. It's important that problems with the work product
of people are found as close to when they perform that work as possible. The longer
it takes to detect problems, the greater the amount of work involved is required to fix
the problem. The more work involved to fix a problem, the more likely that quality
will be affected. These tools mean problems are detected as closely as possible when
they're created.

Chapter 11

[341]

Continuous Integration leads to more rapid development of software, finding
failures and integration problems as quickly as possible, and reducing the work
involved in resolving integration and quality issues.

Continuous Integration relies heavily on a source code control system. If you're
unfamiliar with source code control systems, please refer to Chapter 2 for more
detail on source code control systems and the principle of check-in-often.

Third party refactoring tools
There's third party refactoring add-ons for Visual Studio® that increases the six
built-in refactorings into dozens of refactorings. A couple of those add-ins are
detailed below.

Resharper
JetBrains has a product called Resharper. Resharper (version 5) includes 40
factorings. Resharper includes many productivity utilities to aid in the development
of software, especially with regard to Test Driven Development. Resharper also
includes a unit test runner that works with Visual Studio® 2010 Standard—that
doesn't include a built-in unit test runner.

More information about Resharper can be found at
http://www.jetbrains.com/resharper/index.html

Refactor! Pro
DevExpress has a product called Refactor! Pro. Refactor! Pro has over 150
refactorings. As with Resharper, Refactor! Pro includes many productivity features
that when coupled with DevExpress' CodeRush, productivity gains are increased
even more.

I highly recommend using one of these two productivity tools. These tools offer
features and extensions to Visual Studio® that better match the way people code
and make coding that much more productive. After getting to know how to use
either one of these tools, you'll find developing software in just Visual Studio®
much less productive.

More information about Refactor Pro! can be found at
http://www.devexpress.com/Products/Visual_
Studio_Add-in/Refactoring/

Ensuring Quality with Unit Testing

[342]

Summary
In this chapter, we discussed that to support the refactoring effort some level of
automated unit testing is required to maintain the quality of the software. We
detailed some testing frameworks to facilitate writing and executing those tests.
We detailed other frameworks that aid in writing unit test faster, like mocking
frameworks. We also detailed how we might approach promoting unit testing for
new code through practices like test-driven development.

This ends our refactoring journey, so far. I hope this book shows you what you gain
from approaching refactoring as a succinct and independent task. It allows you to
evolve source code systematically while minimizing quality issues. Refactoring is a
recognition that software needs to change to suit the needs of its users over time and
the software projects need to be agile to support their users' changing needs.

Index
A
abstract factory

about 201
refactoring 202

abstractions 191
accumulative construction 53
acyclic dependency principle 186
adapter pattern

about 283
Data Transfer Object (DTO) class 285
DataUpdated event 287, 290
Form object 287
GetInvoice method 290
IEditInvoiceView 287
IInvoiceRespository object 285
invoice field 287
InvoiceLineItem class 286
InvoiceLineItemDTO class 286
InvoiceLineItemDTOs 287
InvoicePreviewForm object 290
LineItems property 287
Model View Presenter (MVP) pattern, im-

plementing in WinForms 284
need, detecting 283, 284
previewButton_Click method 287
refactoring to 284-291
ShowPreview handler 290
Test Double 285
ViewInvoiceForm 285
ViewInvoiceForm class 287, 290

AddContact 131
afferent coupling 207
aggregate types 148
And method 268, 271

AndSpecification<T> class 268
application layer 248
assembly cohesion

about 173
refactoring 174

Assert.AreEqual 335
atomic operation 149
automated testing 314
automated unit testing 69, 71, 72

B
Barbara Liskov 122
behavioral patterns

about 252
class patterns 252
Don't Repeat Yourself (DRY) 253
object patterns 252
observer, need detecting for 275
observer pattern 274, 275
observer pattern, refactoring to 275-278
publish/subscribe paradigm 273, 274
refactoring to, need for 252
specification pattern 259, 260
specification pattern, need detecting 261
specification pattern, refactoring to 261-273
strategy pattern 253, 254
strategy pattern, need detecting for 254, 255
strategy pattern, refactoring to 255-259
types 252

Big Design Up Front (BDUF) 11
business logic layer 218, 219, 238
business rules

modeling 152, 153
Button.Click event 275

[344]

C
CA1051

URL 41
CA1502 Avoid Excessive Complexity 27
CalculateArea() attribute 127
CalculateInvoiceGrandTotal 78
CalculateInvoiceGrandTotal method 75
CalculateInvoiceTotalTax method 73
CalculateLineItemSubTotal, CalculateInvoi-

ceTotalTax 78
CalculateTaxReceivable method 257
CalculateTotals 168
check-in often 65
Circular dependency. See dependency

cycles
class cohesion

about 156-159
detecting, with low-cohesion 163, 164
refactoring, with low-cohesion 160-163
single responsibility principle (SRP) 160

Class Coupling 206
class diagram, IDE navigation

about 114
bottom class details pane 114
creating 115
rename refactor 115
top design surface pane 114

classes
Shape class 82

class patterns 252
class, rename identifier refactoring

renaming 37
class view, IDE navigation

about 108
lower Members pane 108
Move To Namespace refactoring 108
nested namespace declaration 109
upper Objects pane 108

Clone Detective
about 42
URL 42

code
changes, tracking 64
performance 24
unused references 65
unused references, removing 65

code comments smell
about 56
example 57
magic number, refactoring 59

code coverage 320
code editor, IDE navigation

about 116
Navigate Backward command button 117
Navigate Forward command button 117
text editor area 116

code maintainability
about 67-69
automated unit testing 69-72
contrived complexity 90-93
Don't Repeat Yourself (DRY) 84
feature envy code smell 81
Feature Envy code smell 81, 82
inappropriate intimacy code smell 84-86
issues, detecting 95, 96
lazy class code smell 87, 88
maintainability issues, detecting 96, 97
object-model usability 88, 89

code metrics 27
code, navigating in Visual Studio® 2010

class diagram 114, 115
class view 108, 110
code editor 116-118
search 106, 107
solution explorer 111-114

code smells
about 23, 41, 68
code method smell 56-59
duplicate code smells 41, 42
long method smell 56

cohesion
about 155, 156
assembly cohesion 173
class cohesion 156-159
method cohesion 164, 165
namespace cohesion 171

collapse hierarchy refactoring 87
Color attribute 127
Combine method 271
command 170
Comments 143
communication hosts 215
complexity

[345]

reducing 23
composition over inheritance

about 134
exceptions 140
foreach loop 136
IDisposable 138
IEnumerable<InvoiceLineItem> 136
inheritance, replacing with delegation

refactoring 140, 142
Invoice class 136
InvoiceLineItem objects 136
InvoiceLineItems 134
List<T> 134
List<T> constructor 136
multiple-inheritance 136
object behavior 142, 144
object-orientation, refactoring to 144-148
object-oriented design 142, 144
superclass 137
virtual methods, refactoring to events

 138-140
consistency, Convention over Configuration

(CoC) pattern 101, 102
ContactInformation class 42
convention, Convention over Configuration

(CoC) pattern 102
Convention over Configuration (CoC) pat-

tern
about 101
consistency 101, 102
conventions 102
scoping types, with namespaces 104, 105

conventions, Convention over
Configuration (CoC) pattern

naming 102-104
Convert to Sibling refactoring 126, 127
coupling

about 174, 175, 190
content coupling 175
control coupling 175
data coupling 175
dependency cycles 186
external coupling 175
inward coupling 175
message coupling 175
outward coupling 175
proper dependency design 187

refactoring content coupling 176
refactoring external coupling 183, 185
refactoring subclass coupling 175
types 207
subclass coupling 175

coupling, types
afferent coupling 207
efferent coupling 208

CreateCustomer method 89
CreateInvoiceDataSet 324
CreateInvoiceDataSet() method 325, 329
CreateInvoiceForm class 199, 240, 242
CreateInvoiceForm.okButton_Click

method 201
CreateInvoiceForm refactoring 200
CreateInvoiceLineItemDataSet() 329
CreateInvoice method 205
CreateInvoicePresenter class 245
CreateInvoicePresenter constructor 334
CreateInvoicePresenterConstructorTest 334
CreateInvoicePresenter.View property 334
CreateLineItemDataSet() 329
CRUD Interface 305
Customer class 85, 132
Customer object 131
Customer parameter 165
Cyclomatic Complexity (CC) 96, 207
Cyclomatic Complexity software metric 27

D
data access layer

about 218, 221
domain data access, refactoring 233-236
UI data access, refactoring 221-233

Data Access Layer (DAL) 317
DataAccess.LoadInvoice() 329
DataAccess.LoadInvoiceLineItem() 329
DataAccess methods 296
DataAccess object 329
data-driven classes

designing 144
data-driven design 142-144
DataSet object 319
DataSet objects 304
Data Transfer Object (DTO) 144 242
DataUpdated event 277, 287, 290

[346]

dead code 60
decorator pattern 203, 206
dependency 190
dependency cycles 186
dependency injection

about 193-195
InvoiceLineItem objects 195
InvoiceRenderingService class 195
InvoiceRenderingService class

constructor 195
InvoiceRenderingService constructor 195
refactoring, performing 195

dependency inversion principle
about 118, 119, 191
abstractions 191
details 191
high-level modules 191
low-level modules 191

design patterns 118
details 191
detecting highly-coupled 190
DeviceInterface 102
Disposed event handler 140
domain data access

refactoring, to data access layer 233-236
domain-driven design 219
Domain Layer 220, 307
Don't Repeat Yourself (DRY) 41, 84, 253
Duck Typing 274, 275
dummy, test double 316
duplicate code

in class 42-45
in construction 53
in multiple classes 47-53

Duplicate Code Detector 42
duplicate code smells

advanced duplicate code refactoring 54-56
duplicate code, in class 42-46
duplicate code, in construction 53
duplicate code, in multiple classes 47-51

E
EditInvoicePresenter class 247, 248
efferent coupling 208
encapsulate field refactoring

about 39

reference changes, previewing 40
encapsulate field, simple refactoring 13
events

virtual methods, refactoring 138-40
Execute method 63
ExemptTaxCalculationStrategy 257
ExemptTaxCalculationStrategy class 257
Expression<> object 265
ExpressionParameterExchangerVisitor

class 269
Expression<T> object 264
extract interface, simple refactoring 13
extract method refactoring

about 37-39, 168
CalculateInvoiceGrandTotal 169
CalculateInvoiceTotalTax 169

extract method, simple refactoring 12
Extreme Programming. See XP

F
façade pattern

about 291
DataAccess methods 296
Invoice.Load method 296
Invoicing.Data 295
LineItems properties 294
LoadInvoiceLineItems method 295
Load method 294, 297
need, detecting 291
refactoring to 292-299

factory pattern 200
fake, test double 316
Fallacy of Reuse 83
feature envy code smell 81, 82
field design guidelines

URL 41
field, rename identifier refactoring

New name 35
Preview Code Changes region 34
Preview reference changes checkbox 35
Refactor\Rename.... 34
Rename form 34
renaming 33, 34

FindBySpecification method 265
foreach loop 136
FxCop

[347]

about 26
URL 26

G
GenerateReadableInvoice 72
GetInvoice method 290
GivenName assignment 151
Graphics class 72
Graphics method 94
Graphics object 72
GuidinvoiceId parameter 231

H
higher-level layers 218
high-level modules 191
highly-coupled

detecting 206, 207
Hollywood Principle. See IoC

I
ICreateInvoiceView interface 245
IDataAccess 324
IDataAccess class 318
IDataAccess.LoadInvoice method 325
IDataAccess object 231
IData.LoadInvoice 325
IDE navigation

class diagram 114, 115
class view 108-110
code editor 116, 117
search 106, 107
solution explorer 111-114

IEditInvoiceView 287
IInterfaceC 100
IInvoiceFactory object 205
IInvoiceGrandTotalStrategy parameter 199
IInvoice interface 195
IInvoiceRenderingService 302, 303
IInvoiceRepository object 233
IInvoiceRepository parameter 233
IInvoiceRepsitory interface 231
IInvoiceRespository object 285
Impedance Mismatch 304
InactiveCustomer 131

inappropriate intimacy code smell
Customer class 85
example 84
List<PhoneNumber> object 85
List<PhoneNumber> type 86
PhoneNumbers property 84

infrastructure layer 248
inheritance

about 100
replacing, with delegation refactoring

 140-142
initialization

moving, to declaration 148
InjectionConstructor object 198
Integrated Development Environment

(IDE) 9
intention-revealing design 60
Intention Revealing Naming 79
interface-driven design 100
interface segregation principle

about 208
example 208, 210
refactoring 211, 212

InvalidOperationException 131
Inversion of Control. See IoC
Inversion of Control Container (IoC

container) 119
Invoice attribute 225
Invoice class 78, 156, 159, 236, 310
Invoice classes 114
Invoice.Date property 310
InvoiceFactory object 204
invoice field 287
invoiceGrandTotalStrategy 92
InvoiceGrandTotalStrategy 92
invoiceGrandTotalStrategy field 92
InvoiceGrandTotalStrategy object 199
InvoiceGrandTotalStrategy parameter 199
Invoice instance 260
InvoiceLineItem class 221
InvoiceLineItemDTOs 287
InvoiceLineItemDTO.ToInvoiceLineItem

335
Invoice.Load method 237, 296
Invoice object 236
InvoiceRenderingService 301-303

[348]

InvoiceRenderingService class 255, 258
InvoiceRenderingService class constructor

195
InvoiceRenderingService constructor 195
InvoiceRenderingService object 196, 303
InvoiceRenderingServiceProxy 303
InvoiceRenderingService.Render

ReadableInvoice method 258
InvoiceRenderingServiceVirtualProxy 302,

303
InvoiceRenderingServiceVirtualProxy class

302
InvoiceRepository class 231, 276, 311, 326,

330
InvoiceRepository classes 237
InvoiceRepositoryDataAccessStub 320
InvoiceRepositoryDataAccessStub instance

320
InvoiceRepository.FindBySpecification

method 265
InvoiceRepository.Load method 317
InvoiceRepositoryTest.LoadTest method

320
Invoicing.Data 295
Invoicing.Domain directive 114
Invoicing.Domain namespace 172, 309
IoC

about 192, 193
example 192

IoC containers
about 193, 196
IInvoiceGrandTotalStrategy interface 198
InjectionConstructor object 198
integrating, into code 197
MemoryStream object 197
selecting, criteria 197
tightly-coupled code, example 199, 200

IQueryable<Invoice> instance 265
IQueryable<T> parameter 263
ISessionFactory.OpenSession() 311
ISession object 311
ISession reference 311
IsSatisfiedBy() method 265, 271
IsSatisfiedBy overload 264, 265
IsSatisfied method 261
ITaxCalcuationStrategy field 259
ITaxCalculation implementation 257

ITaxCalculation object 258
ITaxCalculationStrategy implementation

258
ITaxCalculationStrategy object 258
ITaxCalculationStrategy property 259
ITaxCalculationStrategy variable 256
ITaxCaulcuationStrategy implementation

256
ITaxRate objects 256

J
JetBrains

Resharper 341
just-in-time (JIT) compiler 104

K
Keep It Simple Stupid. See KISS principle
kernel 24
KISS principle 62, 64

L
Lack of Cohesion of Methods (LCOM) 163,

164
Larry Constantine

about 155
URL 155

layers
about 217
application layer 248
business logic layer 218, 219
business logic layer, used by UI layer 219
data access layer 218, 219
examples 218
higher-level layers 218
infrastructure layer 248
logical layers 218
lower-level layers 218
presentation layer 248
service layer 248
user interface layer 218

lazy class code smell 87
legacy code

unit testing 325, 326
LineItems properties 294
LineItems property 287

[349]

Lines of Code (LOC) 97
Liskov substitution principle

about 122
Convert to Sibling refactoring 126, 127
detecting 122
example 123
quintessential example 122
Rectangle class 123
Rectangle object 125
Rectangle/Square scenario 124
refactoring to single class 128, 130
Square class 122
square/rectangle scenario 126
violating 124

List<InvoiceLineItem> 140
List<PhoneNumber> object 85
List<PhoneNumber> type 86
List<T> 134
LoadInvoiceLineItems 324
LoadInvoiceLineItems method 226, 295
LoadInvoice method 226
Load method 231, 233, 294, 295, 297
LoadTest method 329
local variable, rename identifier refactoring

renaming 36
LoggingInvoiceFactory 204
logical layers 218
long method smell 56
LookupCustomer 150
loosely-coupled

about 190
communication hosts 215
drawbacks 214
methods 214
web services 215

loosely-coupled, methods
communication hosts 215
web services 215

lower-level layers 218
low-level modules 191
LSP. See Liskov substitution principle

M
magic number

about 59
refactoring 59

maintainability, code
about 68, 69
issues, detecting 95

MemoryStream object 197
method cohesion

refactoring, with low-cohesion 165-171
method, rename identifier refactoring

renaming 36
Mock 316
mocking 316
mocking frameworks

about 321
Moq 324
Rhino Mocks 321-324

MockRepository 324
Mock<T>.Setup 325
model 238
Model View Controller/Model View Pre-

senter patterns (MVC/MVP) 118
Model View Presenter (MVP) pattern

about 238
CreateInvoiceForm class 240, 242
Data Transfer Object (DTO) 242
line item DTO 242-245
refactoring 240, 246
refactoring 332

modifier 170
modularity 190
ModuleX 27
ModuleY 27
Moq

about 324
CreateInvoiceDataSet() method 325
IData.LoadInvoice 325
lambda expressions 324
Mock<T>.Object property 325
Mock<T>.Setup 325

move method refactoring 47
Move to Another Namespace refactoring

172
Move To Namespace refactoring 108
mutable type

about 148
example 148

[350]

N
namespace cohesion

about 171
refactoring, with low-cohesion 171-173

namespaces, Convention over Configuration
(CoC) pattern

coping types with 104, 105
naming conventions, Convention over

Configuration (CoC) pattern
naming 102-104

Navigate Backward command button 117
Navigate Forward command button 117
NDepend 207
NHibernate.Connection.Driver

ConnectionHandler 309
NormalTaxCalculationStrategy class

definition 256
Not method 268, 272
NotSpecification<T> class 268
NUnit 337, 338

O
ObjectContext object 312
object-orientation

refactoring to 144-148
object-oriented code

navigating 100
Object-oriented Myopia 83
object patterns 252
Object-Relational Impedance Mismatch 304
Object/Relational Mappers (ORMs) 144
Object/Relation Mapping (ORM)

about 304
code generation, issues 305
CRUD Interface 305
DataSet objects 304
Domain Layer 307
Invoice class 310
Invoice.Date property 310
InvoiceRepository class 311
Invoicing.Domain namespace 309
ISessionFactory.OpenSession() 311
Session object 311
ISession reference 311
NHibernate 307

NHibernate.Connection.DriverConnection-
Handler 309

ObjectContext object 312
Program.Main method 310
refactoring, need detecting 306
refactoring to 307-311
sessions 312
User Interface Layer 307

observer pattern
about 274, 275
Button.Click event 275
DataUpdated event 277
need, detecting 275
refactoring to 275-278
observer patternSaveInvoice method 277

OnTimerTick method 192
Open/Closed Principle 279
Optical Character Recognition (OCR) 71
Or method 268, 271
OrSpecification<T> class 268
OverdueInvoiceSpecification 273
overdueInvoiceSpecification object 272

P
package 186
Partner sub-namespaces 114
PastDueInvoice 88
patterns

refactoring to 22
PersonName class 152
PersonName instance 149
personName object 149
Plain Old CLR Objects (POCO) 236, 237
PointF object arguments 78
POJO 236
Populate method 225
Prefer Composition over Inheritance

principle.. See composition over
inheritance

presentation layer 248
presenter 239
previewButton_Click method 225, 287
principles

refactoring to 22, 23
procedural code 100
Program.Main method 310

[351]

Programming by Coincidence 16
proper dependency design

about 187
data layer 187
layers 187

Properties.Settings.Default 301
property, rename identifier refactoring

renaming 35
proxy pattern

about 299, 300
IInvoiceRenderingService 302, 303
InvoiceRenderingService 301-303
InvoiceRenderingService object 303
InvoiceRenderingServiceProxy 303
InvoiceRenderingServiceVirtualProxy

 302, 303
InvoiceRenderingServiceVirtualProxy

class 302
need, detecting 300
Properties.Settings.Default 301
ReaderReadableInvoice 302
ReaderReadableInvoice method 303
ReaderReadableInvoiceProxy 303
realSubject 302
realSubject object 303
realSubject.RenderReadlbeInvoice method

303
refactoring to 300-303
RenderReadableInvoiceService 300

publish/subscribe paradigm
publish/subscribe paradigmabout 273, 274

Pull Up Method refactoring 47
Push Down refactoring 81

Circle class 83
Circle.Diameter 83
Diameter property 82
Shape class 82
Shape classes 83
Shape.Diameter 83

Q
query 170

R
ReaderReadableInvoice 302
ReaderReadableInvoice method 303

ReaderReadableInvoiceProxy 303
realSubject 302
realSubject object 303
realSubject.RenderReadlbeInvoice method

303
Rectangle class 123
Rectangle object 125, 127
Rectangle/Square scenario 124
Refactor\Extract Method 72
refactoring

about 8, 10
code performance 24
code smells 23
complexity, reducing 23, 24
Customer 132
design methodologies 25
highly-used code 25
InactiveCustomer 132
in software development trenches 15
in Visual Studio 2010 26
kernel 24
need for 10, 11
Programming by Coincidence 16
refactoringbehavioral pattern 252
refactoringMove To Namespace refactoring

108
refactoringto behavioral pattern 252
refactoringto observer pattern 275, 276
refactoringto strategy pattern 255-259
Replace Inheritance with Delegation

 140, 142
rewriting option 16-19
simple refactoring 12
technical debt 15
to improved object-orientation 144-148
to patterns 22
to principles 22, 23
to single class 128-131
unit testing 11
unused code 25
virtual methods, to events 138-140
working, into process 20

refactoring content coupling
about 176
delegates 179, 180
events 180-183
interface-based design 176, 178

[352]

refactoring external coupling
about 183, 185

refactoring, in Visual Studio 2010
about 26
code metrics 27
static code analysis 26

refactoring subclass coupling 175
refactorings, Visual Studio®

about 32
encapsulate field refactoring 39, 40
extract method refactoring 37, 38, 39
rename identifier refactoring 33

Refactor! Pro 341
Relational Database Management System

(RDBMS) 221
remove parameters, simple refactoring 14
rename identifier refactoring

class, renaming 37
field, renaming 33-35
local variable, renaming 36
method, renaming 36
property, renaming 35

rename method, simple refactoring 13
rename variable, simple refactoring 12
RenderReadableInvoice method 259
RenderReadableInvoiceService 300
reorder parameters, simple refactoring 13
Replace Inheritance with Delegation

 140, 142
repository pattern 230
Resharper 341
Resolve method 198
Rhino Mocks

about 321, 322
CreateInvoiceDataSet 324
CreateLineItemDataSet 324
IDataAccess 324
LoadInvoiceLineItems 324
MockRepository 324

S
Sales namespace 114
Sales sub-namespaces 114
SatisfyingElementsFrom method 263
SaveInvoice method 277

scoping types, Convention over
Configuration (CoC) pattern

with namespaces 104, 105
search, IDE navigation

about 106
AddCustomerForm form 107
Find and Replace form 107
Find in Files mode 107
Match whole word options 107
whole word options 107

Separate Query from Modifier refactoring
170

Separation of Concerns (SoC) 75.
service class 47
service layer 248
Service-oriented architectures (SOA) 144
SetFaxNumber method 42
SetPhoneNumber method 42
ShapeDrawingService.Draw method 95
ShapeDrawingService.Draw overloads 96
Shape subclass 94
Shape type 94
simple refactoring, example

about 12
encapsulate field 13
extract interface 13
extract method 12
remove parameters 14
rename method 13
reorder parameters 13

single class
Customer class 130
Customer/InactiveCustomer 132
Customer object 131
InactiveCustomer 131, 134
InactiveCustomer class 132
InvalidOperationException 131
refactoring to 128-131

Single Responsibility principle,
Open-Closed principle, Liskov
Substitution principle, Interface
Segregation principle. See SOLID

Single Responsibility Principle (SRP) 160
SOLID 22

[353]

SolidsDD
about 42
URL 42

solution explorer, IDE navigation
about 111-113
FormTimer 113
Invoice classes 114
namespace hierarchy 113
Partner sub-namespaces 114
Sales namespace 114
SystemTimer 113
ThreadingTimer 113

specification pattern
about 259-261
And method 268, 271
AndSpecification<T> class 268
Combine method 271
example 259-261
Expression<> object 265
ExpressionParameterExchangerVisitor 269
ExpressionParameterExchangerVisitor class

269
FindBySpecification method 265
IEnumerable<T> implementation 262
Invoice instance 260
IQueryable<Invoice> instance 265
IQueryable<T> parameter 263
IsSatisfiedBy method 261
IsSatisfiedBy() method 265, 271
IsSatisfiedBy overload 264
need, detecting 261
Not method 268, 272
NotSpecification<T> class 268
Or method 268-272
OrSpecification<T> class 268
overdueInvoiceSpecification object 272
refactoring to 261-273
SatisfyingElementsFrom method 263
Specification<T> class 266
Specification<T> object 268
Specification<T> parameter 268
unpaidInvoiceSpecification 272
UnpaidInvoiceSpecification 265
UnpaidInvoiceSpecification class 262
UnpaidInvoiceSpecification instance 265

Specification<T> class 266, 268
Specification<T> parameter 268

spy, test double 316
Square object 127
square/rectangle scenario 126
Stable Dependencies Principle (DSP) 187
Start method 248
static code analysis 26, 27
StatisticalInvoiceFactory object 205
strategy pattern

about 253, 254
business logic 255
business logic, blocks 254
CalculateTaxReceivable method 257
example 254, 255
ExemptTaxCalculationStrategy 257
ExemptTaxCalculationStrategy class 257
InvoiceRenderingService class 258
InvoiceRenderingService.RenderReada-

bleInvoice method 258
ITaxCalculation implementation 257
ITaxCalculation object 258
ITaxCalculationStrategy field 259
ITaxCalculationStrategy implementation

258
ITaxCalculationStrategy object 258
ITaxCalculationStrategy property 259
ITaxRate objects 257
need, detecting 254, 255
NormalTaxCalculationStrategy 257
refactoring to 255-259
RenderReadableInvoice method 259
subtype polymorphism 255
System.Console 254
System.Diagnostics.Debug 254
System.Trace 254
taxCalculationStrategy variable 259
TraceMethod variable traceMethod 254
usage criteria 255

StreamWriter object 191
String.Empty 149
struct 150
structural patterns

about 281
adapter pattern 283
façade pattern 291
legacy code 282
proxy pattern 299, 300

stub, test double 316

[354]

subtype polymorphism 255
System.Console 254
System.Data.Linq namespace 174
System.Data namespace 236
System.DateTime 150
System.Diagnostics.Debug 254
System.Drawing namespace 78
System.Threading.Timer object 192
System.Trace 254

T
taxCalculationStrategy variable 259
TaxRate property 170
test double

about 316
types 316

test double, types
dummy 316
fake 316
mock 316
spy 316
stub 316

Test-Driven Development (TDD)
about 332-334
CreateInvoiceForm 332
CreateInvoicePresenter constructor 334
CreateInvoicePresenterConstructorTest 334
CreateInvoicePresenter.View property 334

Test-Driven-Development (TDD) process 8
third party refactoring tools

about 341
Refactor! Pro 341
Resharper 341

tightly-coupled
about 191
code, example 199, 200
example 191

ToInvoiceLineItem 335
TraceMethod variable traceMethod 254
TypeMock isolator

about 327, 328
CreateInvoiceDataSet() 329
CreateInvoiceLineItemDataSet() 329
CreateLineItemDataSet() 329
DataAccess.LoadInvoice() 329
DataAccess.LoadInvoiceLineItem() 329

DataAccess object 329
LoadTest method 329

U
Udi.dahan

Fallacy of Reuse 83
UI data access

refactoring, to data access layer 221-233
UI layer
unit tests

about 11, 314, 315
business logic layer used 219
code coverage 320
in Visual Studio® 330-332
legacy code 325, 326
mocking 316
other testing 315
priorities 320

UnpaidInvoiceSpecification class 262
UnpaidInvoiceSpecification instance 265
unused code 25
unused references

removing 65
Use() 150
user interface layer 218, 237, 307
using directives 65

V
value types

about 150
immutable types 152
making immutable 152
refactoring to 150

view 238
ViewInvoiceForm 285
ViewInvoiceForm class 231, 287, 290
ViewInvoiceForm constructor 237
virtual methods

refactoring, to events 138-140
Visual Studio®

unit testing 330-332

W
web services

about 215

[355]

implementing 215
WriteLine method 254

X
XP 8
XUnit 338, 339

Y
YAGNI 92. See You ain't gonna need it
You ain't gonna need it 61, 62

Thank you for buying
Refactoring with Microsoft Visual Studio 2010

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including
(but not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles
will offer information relevant to a range of users of this software, including administrators,
developers, architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

VSTO 3.0 for Office 2007
Programming
ISBN: 978-1-847197-52-8 Paperback: 260 pages

Get to grips with Programming Office 2007 using
Visual Studio Tools for Office

1. A step-by-step guide for brand-new Office
developers who want to explore programming
with VSTO

2. Precise information on programming in
Microsoft InfoPath, Word, Excel, PowerPoint,
Outlook, Visio, and Project 2007 using VSTO

3. Create your own fully featured Office
extensions

Learning SQL Server 2008
Reporting Services
ISBN: 978-1-847196-18-7 Paperback: 512 pages

A step-by-step guide to getting the most of Microsoft
SQL Server Reporting Services 2008

1. Everything you need to create and deliver data-
rich reports with SQL Server 2008 Reporting
Services as quickly as possible

2. Packed with hands-on-examples to learn and
improve your skills

3. Connect and report from databases,
spreadsheets, XML Data, and more

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Introduction to Refactoring
	What is refactoring?
	Why the term refactoring?
	Unit testing—the second half of the
equation
	Simple refactoring
	Technical debt
	In the software development trenches
	The option of rewriting
	Working refactoring into the process
	What to refactor
	Refactoring to patterns
	Refactoring to principles
	Code smells
	Complexity
	Performance
	Kernel
	Design methodologies
	Unused and highly-used code

	Refactoring in Visual Studio® 2010
	Static code analysis
	Code metrics

	Summary

	Chapter 2: Improving Code Readability
	Built-in Visual Studio® refactorings
	Rename identifier refactoring
	Rename field
	Rename property
	Rename method
	Rename local variable
	Rename class

	Extract Method refactoring
	Encapsulate Field refactoring

	The smell of code
	Duplicate code smell
	Duplicate code in a class
	Duplicate code in multiple classes
	Duplicate code in construction
	Advanced duplicate code refactoring

	Long method smell
	Code comments smell

	Dead code
	Intention-revealing design
	You ain't gonna need it
	KISS principle
	Keeping track of code changes
	Check-in often
	Removing unused references
	Summary

	Chapter 3: Improving Code Maintainability
	Code maintainability
	Automated unit testing
	Feature Envy code smell
	Design for the sake of reuse
	Don't repeat yourself
	Inappropriate Intimacy code smell
	Lazy Class code smell
	Improved object-model usability
	Contrived Complexity
	Detecting maintainability issues

	Summary

	Chapter 4: Improving Code Navigation
	Navigating object-oriented code
	Convention over Configuration
	Consistency
	Conventions
	Naming

	Scoping types with namespaces

	IDE navigation
	Search
	Class View
	Solution Explorer
	Class Diagram
	Code Editor

	Navigation with design patterns and principles
	Summary

	Chapter 5: Improving Design Correctness
	Liskov substitution principle
	Convert to Sibling refactoring
	Refactoring to single class

	Composition over inheritance
	Refactoring virtual methods to events
	Exceptions to preferring composition
	Replace inheritance with delegation refactoring

	Object-oriented design and object
behavior
	Refactoring to improved object-orientation

	Move initialization to declaration
	Value types
	Refactoring to value type
	Modeling business rules appropriately

	Summary

	Chapter 6: Improving Class Quality
	Cohesion
	Class cohesion
	The Single Responsibility Principle
	Refactoring classes with low-cohesion
	Detecting classes with low-cohesion

	Method cohesion
	Refactoring methods with low-cohesion

	Namespace cohesion
	Refactoring namespaces with low-cohesion

	Assembly cohesion
	Refactoring assemblies

	Coupling
	Refactoring subclass coupling
	Refactoring content coupling
	Interface-based design
	Delegates
	Events

	Refactoring external coupling
	Dependency cycles
	Proper dependency design

	Summary

	Chapter 7: Refactoring to Loosely Coupled
	What is loosely coupled?
	What are coupling and dependencies?
	Tightly-coupled

	Dependency Inversion principle
	Inversion of Control
	Dependency Injection
	Working with IoC containers
	Tightly coupled to creation
	Factory Pattern
	Abstract Factory

	Decorator pattern
	Detecting highly-coupled
	Types of coupling
	Afferent coupling
	Efferent coupling

	Interface segregation principle
	Drawbacks of loosely-coupled
	Other methods of loose-coupling
	Web services
	Communication hosts

	Summary

	Chapter 8: Refactoring to Layers
	Layers
	Business logic and domain layers
	Data Access Layers
	Refactoring UI data access to Data Access Layer
	Refactoring domain data access to Data Access Layer

	Plain Old CLR Objects
	User interface layers

	Model View Presenter (MVP)
	Additional layers
	Summary

	Chapter 9: Improving Architectural Behavior
	Behavioral patterns
	Don't Repeat Yourself (DRY)
	Strategy pattern
	Detecting need for strategy pattern
	Refactoring to strategy pattern
	Specification pattern
	Detecting need for specification pattern
	Refactoring to specification pattern
	Publish/Subscribe paradigm
	Observer pattern
	Detecting the need for the observer pattern
	Refactoring to the observer pattern

	Summary

	Chapter 10: Improving Architectural Structure
	Structural patterns
	Legacy code
	Adapter pattern
	Detecting need for the adapter pattern
	Refactoring to the adapter pattern

	Façade pattern
	Detecting the need for façade
	Refactoring to the façade pattern

	Proxy pattern
	Detecting need for proxy
	Refactoring to proxy

	Object/Relational Mapping
	Problems with code generation
	Detecting need to refactor to ORM
	Refactoring to ORM
	ORM sessions

	Summary

	Chapter 11: Ensuring Quality with Unit Testing
	Change is not always good
	Automated testing
	Unit tests
	Other testing
	Mocking
	Priorities
	Code coverage

	Mocking frameworks
	Rhino Mocks
	Moq

	Unit testing existing legacy code
	TypeMock isolator

	Unit testing in Visual Studio®
	Test driven development
	Unit testing frameworks
	NUnit
	XUnit

	Automating unit-testing
	Continuous Integration

	Third party refactoring tools
	Resharper
	Refactor! Pro

	Summary

	Index

