
www.allitebooks.com

http://www.allitebooks.org

Ruby on Rails Enterprise
Application Development
Plan, Program, Extend

Building a complete Ruby on Rails business application
from start to finish

Elliot Smith
Rob Nichols

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Ruby on Rails Enterprise Application Development
Plan, Program, Extend

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2007

Production Reference: 1011107

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847190-85-7

www.packtpub.com

Cover Image by Rob Nichols

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Elliot Smith

Rob Nichols

Reviewer

Keynan

Senior Acquisition Editor

David Barnes

Development Editor

Mithil Kulkarni

Technical Editor

Swapna V. Verlekar

Editorial Manager

Dipali Chittar

Project Manager

Abhijeet Deobhakta

Project Coordinator

Sagara Naik

Indexer

Monica Ajmera

Proofreader

Cathy Cumberlidge

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Elliot Smith has worked in IT since 1996: at OpenAdvantage (an open-source
solutions center) as a business analyst, as a learning technologist and web developer
at the University of Birmingham, England, and as a technical writer for Armada
Computer Publications. He runs his own training and consulting company, mooch
labs, when he gets a chance. He has an M.Sc. in Artificial Intelligence and a Ph.D. in
Computer Science from the University of Birmingham.

He thanks Nicola, his wife, for giving him the time and space to
write a book; Madeleine, his daughter, for keeping him sane while
doing it; and Rob Nichols for giving him the opportunity in the
first place.

www.allitebooks.com

http://www.allitebooks.org

Rob Nichols first started using computers during his apprenticeship at Rolls-Royce
in the early 1980s. At 23, he decided to change direction and started a degree in
Geology and Geography at Cardiff University. By 1995 he had gained a Ph.D. from
Bristol University, studying the behavior of quicksand.

During his time in Bristol and in a subsequent lectureship at Leeds University,
he started using the fledgling Internet to communicate with co-workers, gather
information, and present Geological information in the form of his first web pages.
Following his return to Britain from a lectureship in U.S.P. Fiji, Rob found himself
without another lectureship position to go on to. So, changing direction again, he
started working for a U.K. computer manufacturer, where he rose to the position of
Engineering Manager, managing a team of seventy maintenance and networking
engineers, and support staff.

Following the collapse of the U.K. computer market in 2002 he moved on to the
role of IT manager for a small business providing products and services to the
water industry. In this role, Rob has had great success developing intranet-based
business applications that streamlined business processes, saved time, and increased
efficiency. In doing so, he transformed the IT department from a business cost to a
profit generator by reducing costs and thereby increasing margins.

When not working with computers, Rob and his wife reside happily in a small
Midlands town in England, where he writes scripts for the local movie-makers club
and photographs the local wildlife.

Thank-you Diane, for putting up with my disappearances into the
study to "work on the book".

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Introduction 7

Why this Book? 7
Why Develop? 8
Why a Client/Server Based Web Application? 9
But why Ruby on Rails? 11

Rails Handles Menial Tasks 11
Clear Code 12
Text Based File 13
Open Source 14
Plentiful Documentation 14
Built-in Safe Test Environment 15

Ruby on Rails in Detail 15
Summary 16

Chapter 2: The Initial Problem 17
A Normal Day in the Office 17
Examining the Data 19
Data Objects 20

Database Table Design Rules 21
Separating the Data 22
Naming Conventions 22

Use Meaningful Names 22
Use a Consistent Naming Convention 23
Ruby on Rails Naming Conventions 24

Constants and Classes 24
Variables 24
Methods and Properties 24
Special Method and Property Suffixes 25
Reserved Words 26

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Back to the Data 26
Review the Result 29

Project Preparation Steps 30
How Good is the Source Data? 30
Tracking Who does What 32

No Log-On and No Authentication 33
Simple Password Access 34
User Log-On 35
Recording Access History 35
Access Control for Rory's Application 36

Data Validation 37
The Minimum Required Data is Entered 37
Each Record can be Uniquely Identified 38
Identify Fields that Need to Have a Particular Format 39
References to Data in Other Tables Point to Actual Data 41

Rory's Data 41
Person 42
Company 42
Address 42

Summary 42
Chapter 3: Laying the Foundations 43

Supporting Rails Development 43
Addressing the Challenges 45
Setting Up a Rails Stack 46

Installing a Rails Stack Using a Bundle 48
Installing a Custom Rails Stack 49

Installing Ruby and Rubygems 49
Ruby on Windows 50
Ruby on Linux 51
Ruby on Mac OS X 52

Installing Rails 52
A Note on Rails Documentation 53

Other Libraries 55
Capistrano for Easier Deployment 55
Mongrel: A Better Way to Run Rails Applications 56

Choosing a Database Platform 57
Installing MySQL 58
Checking Your MySQL Installation 61
MySQL GUI Tools 62
Ruby-MySQL: Making Ruby and MySQL Work Better Together 62

Installing an IDE 64
Eclipse 65
EasyEclipse 67

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Instructions for Masochists 71
In the Back Rooms at Acme… 71

Setting Up a Team Server 72
Quick Gem Installation 73

Remote Access via SSH 74
Adding Users 74

Version Control with Subversion 75
Subversion Standard Practices 77
Setting Up a Subversion Repository 81
Setting Up a Project in Subversion 82
Browsing Subversion from Eclipse 83
Other Subversion Clients 88

Using Other People's Servers 88
Back at Acme 88

Summary 89
Chapter 4: Working with Rails 91

The World According to Rails 92
Model-View-Controller Architecture 92
Convention over Configuration 94

Rails and MVC 95
Setting Up a New Rails Application 97

Using Mongrel to Serve Your Application 100
Connecting Rails to a Database 103

Creating a Database and System Account 104
Setting Up a Database Connection 106

Configuring the Rails Environments 108
Testing the Database Connection 111
Troubleshooting a MySQL Connection 112

ActiveRecord, Migrations, and Models 113
Model == Table 114
Which Comes First: The Model or The Table? 114
Building a Model with Migrations 115

Converting a Data Structure into a Migration 117
Defining Columns in Migrations 119
Other Operations Available in a Migration 121

Running a Migration 122
Rolling Back to a Previous Version of the Database 124

The Scaffold 125
Completing the Database 127

The companies Table 127
The addresses Table 127
Generating the Remaining Tables 128

Models in Detail 129

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Creating New Records in a Table via Models 129
Finders 131

Finding All of the Records in a Table 132
Virtual Attributes 133
Sorting Records 133
Finding a Single Record 134
Finding Records Matching Search Criteria 135
Finding Records Using Attribute-Based Finders 136
Finding Records by Raw SQL 136
Writing a Custom Finder 137
Viewing the SQL 138
Viewing Logs in Eclipse 138

Validation 141
Validating People 141
Validating Companies 148
Validating Addresses 148
Other Types of Validation 149

Testing 150
Setting Up for Testing 152
Anatomy of a Test Case 154
What Should be Tested? 154
Fixtures 155
Tests for the Person Model 157
Other Types of Assertion 161
Becoming Driven by Testing 163

Associations between Models 163
Parent to children (one-to-many): addresses to people 164
Parent to child (one-to-one): addresses to companies 168
Parent to children (one-to-many): companies to people 170
Many-to-many relationships 171
Dependencies 173
Testing Associations 174

Putting the Project into Context 175
Storing a Project in Subversion 175

Ignoring Temporary Files 176
Committing Code to the Repository 178

Processing Data 180
Exporting the Data from Outlook 180
Mapping a Text File to Database Tables 181
Coding the Script 183

Summary 185
Chapter 5: Building the User Interface 187

Controllers and Views: A Recap 187
Creating a Simple Controller and Its Views 189

Views and Layouts 192
Adding a View to the Application 192

Table of Contents

[v]

Displaying Model Instances in a View 194
Pagination 196
Linking to Another View 198
Adding a Layout 202
Adding a Stylesheet 204

Adding a Controller for Companies 206
Create the CompaniesController 206
Create the Index View 207
Test It! 208
Summary 208

Advanced View Techniques 208
Custom Helpers 209

Default Messages for Empty Fields 210
Date Formatting 211

Showing Associated Records 213
Refining Using a Helper 214
Showing an Address with a Partial 215

Rendering Pagination Links with a Partial 217
Adding a Menu 218

C*UD (Create, Update, Delete) 220
Creating a Person 221

Refining with a Helper 225
Validation Errors 226
The Flash 228
Finishing Touches 229

Updating a Person 231
Opportunities for Refactoring 233

Using Filters 233
Creating Application-Level Controller Methods 236

Deleting a Person 237
Adding Edit and Delete Links to a Person's Profile 239

Editing Multiple Models Simultaneously 240
Adding a New Address for a Person 240

Using Functional Testing for Complex Actions 244
Updating a Person and Their Address 249
Summary 250

Fleshing Out Companies and Addresses 250
Managing Companies 251

Stubbing Out the Navigation 251
A Shared View to Confirm Deletions 251
Attaching a Person to a Company 253
Creating and Updating Companies 254

Managing Addresses 256
Adding a Callback to Company Deletions 257

Table of Contents

[vi]

A Very Quick Interface for Addresses 261
Summary 262

Chapter 6: Into Production 263
An Application Ready for Production 263
The Application Server 266

Memory 266
Central Processor Unit–CPU 266
Hard Disks 267
Network Interface Card–NIC 267
Don't Forget Backup 268
Your First Production Server 268

Setting up the Server 268
Installing Ruby and Rails 268
Copying the Files to the Server 269
Using Subversion to Transfer the Application to
the Production Environment 269
Excluding Files from the Repository 270
The Production Database 271
Separating Development and Production Databases 272

Localhost database–single database.yml 273
Separate Development and Production database.yml files 274
Using Migration in Production 275
The Rails Database User 275

The Web Server 276
Mongrel 276
Mongrel Service on Windows 276
Limitations of Mongrel 279
Mongrel behind Apache 279
Installing Apache 281
Apache on Linux and Mac OS X 281
Apache on Windows 282
Domain Name System (DNS) 283
Configuring Apache to Act as a Proxy for a Rails Application 284

Rory's Production Installation 286
Using Two Host Names to Simplify Routing 286
Rory Puts his Intranet Application into Production 288

Errors in Production 288
Slow List Rendering due to Placement of
Additional Data Processing in Loop 288

Symptom 288
Cause 289
Fix 290

Application Error Following the Transferring of New Code to Production 291

Table of Contents

[vii]

Symptom 291
Cause 292
Solution 292

Back Up Rails 292
Backing Up the Code Repository 293
Back Up the Database 294
Combining Your Backup Scripts 295

Summary 296
Chapter 7: Improving the User Experience 297

Easy Access to the Application 297
Use Routes to Simplify the Entry Point URL 298
Build a Fast, Clear Home Page 299

Users Need to be Able to Find Items Easily 300
Use the Index View as the Core of the Search View 300
Search–The First Attempt 301
Do Not Trust User Input 302
Handle Nothing 304
Users Need to be Able to Search Without Knowing Exactly
What They Are Looking for 304
A Less Specific Search 305
Case Insensitive Searches 307

Adding AJAX to the Mix 307
Make the AJAX Libraries Available to our Rails Application 308

Enhancing Search with Auto-complete 309
Auto-complete—Wow!, but... 312

Use of AJAX—the Lessons Learned from Auto-Complete 313
Show and Hide Company Address Using link_to_remote 315

A Simple link_to_remote 315
A DOM Object to Update 316
Create a say_hello Action 319

Increasing the Functionality of link_to_remote 319
Show and Hide 319
Alternating link_to_remote Elements 320
Alternative Actions 321
Debugging JavaScript 322
Show/Hide within the Company Index List 322

Using AJAX to Edit a Field in Line 324
Render an AJAX Form via link_to_remote 325

A Little script.aculo.us: Drag and Drop 327
Make an Element Draggable 327
A Place to Drop the Element 329

Further AJAX 332

Table of Contents

[viii]

Help! 332
RDoc–Documentation for the Developer 332
Help for the User 334

Instiki Wiki Help 335
The Best User Help Systems 338

Keep Talking to Users 339
Summary 340

Chapter 8: Extending the Application 341
Dealing with User Feedback 341
Adding a Search Facility 342
Handling Errors 345

Catching Missing Record Errors 346
Catching UnknownAction and Routing Errors 349
Catching General Application-Level Errors 350
Catching "Rails has Fallen Over" Errors 351

Adding an Authentication System 352
Cookies and Sessions in Rails 353
Building the Authentication System 355

The User Model 356
Displaying the Login Form 358
Checking Submitted Credentials 358
Logging Out 361
Protecting Actions 362

Adding Simple Task Tracking 363
The Task Model 363
The Tasks Controller 365
Task Views 367
Showing Tasks for a Person 371
Redirecting to a Person after Adding or Editing a Task 376
Redirecting after a Deletion 378
Handling the Cancel Link 379
Setting a Default Person for a New Task 379
Summary 380

Uploading and Attaching Files 381
Using Plugins 382
Using acts_as_attachment for File Uploads 385
Managing File Attachments for a Task 387

Adding a Form for Attaching a File to a Task 388
Adding a File Attachment to a Task 390
Listing File Attachments for a Task 391
Deleting File Attachments for a Task 393
Protecting File Attachment Actions 395

Summary 395

Table of Contents

[ix]

Chapter 9: Advanced Deployment 397
Deployment with Capistrano 398

Getting Started with Capistrano 399
A Complete Deployment Recipe 402

Preparing the Production Database 402
First Deployment 403
Migrating the Production Database 405
Running Other Commands on the Server with invoke 406
Managing Mongrel from Capistrano 407
Centralizing File Uploads 408

Upgrading the Application 410
Cleaning Up Obsolete Releases 411

Downgrading the Application 412
Troubleshooting Deployment 413

Incompatible Rails Versions 413
Missing Libraries 415
Incorrect Subversion Password or Repository Permissions 416
User Doesn't Have SSH Access to the Server 416
Inaccessible Application Server 416
Inaccessible Database Server 416
Dealing with the Inexplicable 417
Getting Back to a Clean Slate 417

Housekeeping 418
Starting Mongrel Automatically 418
Clearing Out Stale Sessions 420
Keeping Log Files Manageable 422

Reducing Log Detail 423
Optimizing a Rails Application 424

Finding Bottlenecks 424
Controller Action Profiling Using around_filter 428
Profiling Everything 431
The Rails Profiler 432

Improving Application Performance with Caching 432
How Cache Elements are Named 433
Deciding What to Cache 434
Preparing for Caching 435
Page Caching 435
Action Caching 437
Fragment Caching 439
Fragment Caching for Actions 441
Avoiding Database Calls for Cached Fragments 442
Clearing out the Cache 445

Optimizing How Rails Uses the Database 447
Ordering for Eager Loading 449

Table of Contents

[x]

Scaling Your Rails Infrastructure 450
Using Apache to Serve Static Assets 451
Proxying to a Mongrel Cluster 456

Advanced Scaling 463
Summary 465

Chapter 10: Down the Track 467
Going off the Rails 467
SQL 471

Gathering Data from a Daughter Object's Daughter 472
Using a model’s ActiveRecord connection 475
Using GROUP BY to Summarize Data 476
A Deeper Look at Aggregate Functions 479

Business Processes 481
To Be Successful, Build Successful Business Applications 482

Automate Simple Repetitive Jobs 483
Rapid and Detailed Reporting 483
Ensure Customers Pay for the Goods and Services that the Business Provides 484
Review of Business Activity Examples 485

Dealing with Success 485
Just Because You Can, Doesn't Mean You Should 486
Bought in solutions Provide their Own Opportunities 486
Ensure There is Time to Complete Each Task 486

The Final Destination 487
Appendix A: Running Your Own Gem Server 489

Serving Installed Gems 490
Setting Your Gem Server as the Default 492

Creating a Gem Server Manually 492
Index 495

Preface
Ruby on Rails is a development framework designed to make the creation of web
applications straightforward, well structured, and productive. By using convention
over configuration, it reduces the work needed to set up an application and leaves
the developer to concentrate on the components that address the problem at hand.
That is, the common repetitive basic tasks are dealt with seamlessly and easily,
and therefore most effort can be concentrated on creating the particular elements
required for the current solution.

The strengths of this framework, that make it such an excellent tool to create Internet
applications, also make it an excellent system to create business applications within
private networks. It allows a developer to efficiently create distributed applications.
Thereby users throughout a company are able to enter, manipulate, and report
on data. This is done in a way that is easy to roll out and maintain; the resulting
applications are easy to expand and extend.

This book describes both how to create business applications using Ruby on Rails,
and how to create the complete creative environment. This includes how to support
the development process with systems such as version control and integrated
development environments, and deploy the final product on efficient web and
database servers.

What This Book Covers
Chapter 1 provides an overview of the book. You will learn why Ruby on Rails
should be used in preference to the multitude of other programming and scripting
frameworks for developing database-driven web applications.

Chapter 2 here you will learn about some of the conventions used in Rails, and the
Rails framework will be introduced. We describe some methods of controlling and
logging user access and discuss their merits and limitations. We also discuss data
validation and user input control via form design in this chapter.

Preface

[2]

Chapter 3 outlines how to lay some firm foundations for a sustainable Rails
development project. The core of this is obviously the Rails stack itself. You will learn
how to install and configure this in some detail. The chapter recommends a few of
the technologies closest to the heart of Rails, which can readily be used to support
your development work.

Chapter 4 will help you build from an idea and an initial Rails installation to a
fully-fledged data model, populated from an external data source, with full
validation and unit test suite. This chapter also provides examples of how to
integrate the application with external data sources, and how to share code
development across a team.

Chapter 5 describes how to build a web interface on top of the models developed
earlier. You will learn about creating a controller from scratch, how to add style
sheets, writing complex controller actions to update multiple models simultaneously,
and using pagination.

Chapter 6 describes how to set up a Rails production environment. In particular,
it covers the decisions you will need to make to successfully get your business
application up and running. Some coverage of error handling is presented, and
we describe some systems that will make it easier to back up and restore
your application.

Chapter 7 concentrates on the tools you can use to improve the user experience. These
include providing links into the application, providing search tools, enhancements to
the user interface, and providing help to the users.

Chapter 8 aims at showing more of the depth and usefulness of Rails, while at
the same time demonstrating how to extend an existing application with
new functionality.

Chapter 9 discusses advanced deployment of your application. You will learn how to
deploy your application with Capistrano. You will also learn about troubleshooting
deployment and optimizing your Rails applications.

Chapter 10 covers how you can improve your Rails skills further, and suggests
alternative skills that complement Ruby on Rails, thereby broadening your skill set.

What You Need for This Book
You need prior knowledge of Ruby on Rails, as this book helps developers to find
out how to rapidly build easily-deployed, easily-supported business applications.

Preface

[3]

Who is This Book for
Developers who have completed on-line Ruby on Rails tutorials and perhaps have
built their first basic application are a key group this book is aimed at, especially
those who like what they have seen in the basic tutorials, and now want to know
how to create an environment in which they can most efficiently develop new
applications and improve their understanding of the Rails framework.

This book is also aimed at developers who particularly want to create data-centric
applications within a private network, those who want to leverage the best of
intranet applications to provide distributed easily maintained applications.

On completion of the book the reader will not only know how to write better Ruby
on Rails code, but also how to create a development environment and roll out
completed applications onto production systems.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Preface

[4]

Any command-line input and output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction
This book describes how the web development framework, Ruby on Rails, can be
used to create small applications and, in particular, applications that form the key
components within business solutions. It uses the example of a customer contact
application to work through the process of solution creation; also providing a
practical description of the steps required. This book not only covers the coding
techniques, but also explains how to build a development environment, configure
host servers, and develop the application over and above its original scope.

Why this Book?
One could ask when picking up this book: "Why another book on Rails?". In
the last couple of years there have been a number of excellent books published,
describing this new web development framework. There are books that introduce the
framework and walk people through developing their first Rails applications. Other
books describe how to add specific functionality to existing applications. References
for the language and syntax also exist. So why do we need another book?

There are two answers to that question. The first is that there is a lack of material in
the middle ground. That is, there is a wealth of material on how to get started with
Rails, both in print and on the Internet. Then there are the latest books that address
the needs of the experienced developer, who requires information to supplement the
online source code documentation. What is less obvious is where a developer finds
the information to move them from the beginner who has built his first application,
to the experienced Rails aficionado who can get the most from the detailed
advanced literature.

This book is aimed at developers who have just started out with Rails, have worked
through the basic tutorials, and built their first applications. These developers, who
feel pleased with the achievement of building their first Rails application, now ask
the question, "What do I do next?"

Introduction

[8]

However, there is another target audience; developers who are looking for more than
just another book describing a 'web development tool'. These are the developers who
recognize and want to exploit the unique attributes of Rails that make it the ideal tool
to address a vital business requirement.

Rails is the ideal framework to develop small business applications.

This book, therefore, is also aimed at developers who want to find out how to rapidly
build small, easily deployable, easily supportable, business applications. They
come to this book not because they necessarily want to write Rails applications, but
because Rails is the ideal framework to build their business applications.

Why Develop?
Traditionally, there are two ways to implement an IT solution in a business process.

1. Buy an off-the-shelf solution.
2. Pay a developer to build a bespoke solution.

For many problems these are still the best options. However, when dealing with
specific, small, everyday problems, both have drawbacks.

Off-the-shelf solutions tend to be plentiful when trying to address the usual
run-of-the-mill problems. However, when it comes to overcoming a small,
specialized problem it can be difficult to find an appropriate off-the-shelf solution.
They are often designed to work for everyone, but do not seem to work for you. The
result is change in the working procedures to fit the application, instead of being able
to find the solution that neatly slots into your existing business process.

Another issue with buying an off-the-shelf solution to address every small problem,
is a proliferation of applications that do not communicate with one another. Often,
data that may be useful elsewhere in the business is locked up and inaccessible
within a number of independent applications.

Bringing in a specialist developer to create an application also brings in its own
problems, the most obvious of which is cost. For major business developments,
this cost is justifiable, but for many small problems it is not. Another problem is
supporting and developing the application after it has been rolled out. Often further
development requires bringing the developer back in at additional cost or finding
an alternative developer, who will spend much of their time working out how the
bespoke application works. As for fixing faults—custom applications tend to have
custom faults. The knowledge bases available for off-the-shelf applications will not
exist for your unique application.

Chapter 1

[9]

If you can develop the application yourself, with a framework that is easy to use
and encourages you to follow good practice, you can overcome these problems. You
will be able to rapidly develop and deploy solutions that are tailor-made to address
the current issues. Working to a clear, well defined framework, will make it easier
to write a code that you can return to six months later and understand. This makes
support and future development easier. As the development staff used is in-house,
costs will tend to be lower, and it will be more likely that the developer will be
available to fix problems.

Why a Client/Server based Web
Application?
The common response to the problem of gathering, tracking, or manipulating data
within an active business is to use spreadsheets. These bring their own problems,
particularly apparent when one tries to share the resulting files with multiple users
spread around the company. Trying to control data change and user updates is
difficult. The usual result is multiple copies of files spread about the company, with
some not being the same as others.

Attempts to manage these separate copies tend to add complication to the
spreadsheets, making them more likely to fail and more difficult to support. For
example, you might add a macro to automate a process within a spreadsheet,
only to find that the macro does not run on all the computers because of a missing
dependent file.

The answer is to centralize the data and then distribute tools that allow users to view,
manipulate, add, and report on the data. In networking terminology, the central
resource is the server, and the distributed end-user interface, the client.

The server part of the solution is a database: a central data storage system. In many
ways, this part is easy. There are many database systems available, from personal
desktop databases like Access and Open Office's "Base", to large corporate systems
such as Oracle and Microsoft's SQL server. Many such as MySQL, PostgreSQL, and
SQLite sit in the middle ground, providing excellent low cost database solutions for
most everyday requirements, and are particularly suited to web applications. They
are easy to find, and many are easy to install and use. Effective solutions can be
created with the minimum of customization.

The client part is more problematic: provide a user with an input and output tool
that is available wherever the information is required within the business. The
output from the system needs to be tailored to the user's requirements, if they are to
use the data most efficiently. The input must be controlled to maintain the quality

Introduction

[10]

and integrity of the data. "Rubbish in, rubbish out", is a cliché, but a useful one that
highlights the fact that a data system is only as good as the data it holds. Without
input control, a database can rapidly lose its value as it gets filled with data that
cannot be searched nor compared easily. For example, it is surprising to see that the
problems can be caused by entering the alphabetic character "o" where a zero should
be added.

Most databases have administration interfaces that afford a user the ability to
retrieve and input data, but by their nature they do so in an uncontrolled manner
that is unsuitable for most end-user requirements. Instead a user interface
is required.

The control of input and output is likely to be unique to the business requirement,
and therefore, this element usually requires the most customization. This raises a
problem that on first appearance may not seem to be too important, but on closer
inspection has a fundamental effect on the performance and stability of the resulting
application. The server part of the system will be located on a small number of easily
controlled servers. The distributed client part will be spread around the business'
desktop computers.

In many businesses (especially smaller businesses), desktop computers are often
varied, with new computers added as they are needed. There is often a wide range of
end-user computing hardware in place throughout a business. Servers, on the other
hand tend to be small in number and are brought in to address a limited number
of requirements.

Therefore, the straightforward server application (the database) is being held
on the most easily controlled and defined area of the network; the server. The
complicated client user interface is hosted on the most diverse part of the network;
users' computers. So there is a problem in that the part of the system that needs most
customization, and therefore is most likely to require maintenance, is located on the
most diverse part of the network. This is a recipe for failure.

Deploying the client side of the system via a web service overcomes this problem.
With a web service, the client application is split between a central web server, and
a distributed web interface (the users' web browser). The two are connected over
the network via a well-defined standard based protocol (HTTP). The majority of
computation and logical operations are carried out at the web server. The user's web
browser is used to display information and provide simple forms for user input.

In their simplest form, both the information display and input forms are presented
via standard languages (HTML or XHTML). This reliance on simple defined open
standards means that the work of the user's web browser is kept to a minimum, with
most of the complicated work being carried out at the web server.

Chapter 1

[11]

The result is that the least controlled part of the network (end user workstations)
now hosts the simplest part of the system (receiving and displaying the HTML
information). The more complicated parts of the system resides on the most easily
controlled parts of the network: the web and database servers.

Client PCs Web
Server Database

Least control
Minimum complexity

Greatest control
most complexity

Extra functionality can be added to the web pages presented to the user, by the use
of JavaScript (which allows logical operations to be carried out at the browser), XML
(as either an alternative to HTML or as part of custom data transfer operations), and
CSS (Cascading Style Sheets provide a way of improving the appearance of web
pages without significantly increasing the complexity of the HTML code. In essence,
the best way to convert drab web pages into attractive media experiences). These
three systems are combined into a framework called AJAX, which is used to greatly
enhance the user experience. There is a tradeoff between the addition of this extra
functionality, and the additional complication that results, but with care the tradeoff
is manageable, and resulting systems are still simpler than alternative solutions.

Therefore, a client/server based web application provides the ideal platform to store,
manipulate, and present data throughout a dispersed business environment.

But why Ruby on Rails?
There are a number of alternative programming and scripting frameworks that can
provide a web application to present data stored in a central database. So why use
Ruby on Rails rather than JSP, ASP.Net, or PHP?

Rails Handles Menial Tasks
An underlying principle of Ruby on Rails is that of convention over configuration.
Basically, this means that the designers of the framework have broken the workings
of a web application into its core components. Conventions have allowed the core
components to be standardized, and thereby access to them is greatly simplified.

Introduction

[12]

For example, if you want to save data comprising details of a list of bags, the Rails
convention is to save the list in a database table called bags. The convention then
prescribes that each line of data can be represented by an object that is the singular
of the table name. So if our table is bags, the object that can hold data from the tables
is a Bag object. Fields in the table are automatically converted to properties of
the object. So if there is a color field, the object will have this property; that is,
bag.color. All you need is to create the database schema, define the database
connection in a single configuration file, and your application will be able to create
your bags table and use the data in the table as Bag objects. Saving a new bag to the
database will be as simple as:

next_bag = Bag.new
next_bag.color = "Black"
next_bag.save

In three lines you've created a Bag object, defined the color as black, and saved it
to the database. Thanks to the Rails conventions, the system knows automatically
to save the data into a table called bags, and to enter the text Black into the color
field. Programmatically, you do not have to open the connection to the database,
define the database command that will input the data for you, and close the database
connection; all of that is taken care of, for you.

By keeping to the conventions, the application developer is able to concentrate on
the logic of an application and is freed from having to worry about the underlying
nuts and bolts. So rather than wasting time repeating the code required for all the
web applications, the developer can devote most of his time to work on the logic that
makes the new application different from the rest, and address the problem at hand.

With the use of convention, everyday tasks such as page pagination, data validation,
and search ahead AJAX tools, that can take tens of lines of code to write in other
frameworks, can be added in two or three lines of code.

Clear Code
Underlying everything is Ruby. Ruby is an elegant language with syntax that is easy
to understand and use.

The best way to demonstrate this is with an example:
this_day = Time.now
next_week = 1.week.from_now
seconds_between = next_week - this_day
seconds_in_day = 24 * 60 * 60
days_between = (seconds_between / seconds_in_day).to_i
print "There are " + days_between.to_s + " days between today and the
day next week"

Chapter 1

[13]

The code creates two times a week apart, and returns a short report describing the
number of days between the two. It appears very simple, but in fact, there is a lot of
work being done by Ruby:

First off, it has created five named objects. It was able to create these objects
on the fly without the programmer having to pre-define them.
Ruby has created objects of four different classes: this_day and next_week
are Time objects; seconds_between is a Float [decimal number]; seconds_
in_day and days_between are Fixnums [an integer type]; and the final
output text is a String.
In creating days_between, Ruby compared two different types of objects,
worked out the required class type to store the result (a Float), and then
allowed that object to be converted to a Fixnum Integer, thereby discarding
the unwanted decimal content (that is what the .to_i is doing).
When printing, Ruby has converted an Integer to a String (the .to_s tells
Ruby to do the conversion) and combined it with two strings to create a new
String object. The new object is then output to the console.

This ease of use means that the code is easy to write, but perhaps (more importantly)
it is easy to read. It means that you can easily understand code you wrote a year ago,
and another developer can read your code, modify it, or fix bugs.

The other aspect of Ruby that plays an important role in defining the coding used
in Rails, is that it is an Object Orientated Programming (OOP) language. Without
going into details, the consequence is that sections of code are separated into
discrete blocks each with well defined inputs and outputs. This helps to prevent
spaghetti code with code pathways being difficult to follow. This does not mean
that it is impossible to write gobbledygook in Ruby, but rather the structure of Ruby
encourages the programmer to write well formed code. Well formed code is easy to
read, understand, and modify. The creation of well formed code is the object of every
competent developer.

Text Based File
Ruby on Rails applications are built using three types of text files: Ruby code files
(.rb), HTML templates (typically rhtml files, but can also be rxml), and YAML
configuration files. Being text files, they are easy to edit, move, deploy, and back
up. No complicated development environment is required. Code does not require
compiling before use. You can create these files in Notepad on a Windows system,
edit them in Textmate on a Mac, and then deploy them on a Linux server, should
you so desire.

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Introduction

[14]

Open Source
Typically, open source software is considered a low cost option, though there is some
argument as to the on-going support costs. Certainly open source solutions are not
expensive and tend to be of good value. However, while the cost aspect is attractive,
there are other features of open source software that have more compelling benefits
to a business application developer.

Open access to source code: This allows you to read the underlying coding
to gain better understanding of how the system: works, thereby making
it easier to optimize your solution and more easily extend and customize
the functionality. With Ruby on Rails, this is even easier as much of the
underlying framework code is written in Ruby itself.
No vendor locks in: There are no hidden costs such as extra charges for
upgrades and bug fixes. Your choice of software solution is not reliant on the
status and expected longevity of the vendor. However, you are reliant on the
life of the open source project. If the community moves onto something else,
the project development can dry up. However, even in this case, the code
is still available and there is nothing to stop you further developing it. If a
vendor goes out of business, the code usually disappears too.
Written by and for the people using the software: Open Source applications
are written by the people who use the software. OK, not all the people who
use it, but a wide group of different users. This means that the resulting
applications work the way a lot of people who use them, want them to work.
They do not work the way a corporation has decided they should work and
more importantly they do not require you to work the way some faceless
corporate entity dictates, to get the best out of the application. This is one
of the key reasons why open source software is so often user friendly
and why so many people find using open source applications such a
liberating experience.

Plentiful Documentation
As already mentioned, there is a rapid increase in literature base available for
both Ruby and Rails. Online resources are plentiful too. For example, the site
http://api.rubyonrails.com lists the frameworks, classes, and methods used by
Ruby on Rails, allowing a developer to find the classes and methods they need, and
dig into the underlying code to see how they work.

Being open source, the manuals are also written by the people who use the system.
Too many manuals for commercial software seem more to be a list of functions,
rather than a guide on how to use those functions. Good examples of these are
instructions on how to install software. Help systems written by developers tend to

•

•

•

Chapter 1

[15]

skimp on this area, as the developers do not install very often and tend to install
in a fairly limited environment. End users on the other hand have a wide range of
installation issues. As users tend to write open source documentation, the resulting
manuals often have the solutions to a range of installation issues. Such is the case
for Ruby on Rails with there being guides and assistance to installing in a range
of environments.

Built-in Safe Test Environment
The test environment is built into the Rails framework, can be configured to populate
a test database, and then run test procedures on that data, reporting back on their
success. This means that you can safely test an application without adding live
data to it, whether at the creation stage, while modifying, or further developing
a production application, and during bug fixing. These tests are stored with the
application code and therefore can be used to test the application after moving code
to a new environment.

The test system encourages a developer to create test procedures early in the
development process, and use the resulting test code throughout the life of the
application. To detect system malfunction, test systems are used to help developers
identify when the code they have created does not quite work the way they expect it
to work.

The integrated test system can be used to ensure that applications are tested
effectively and often.

Ruby on Rails in Detail
Often when developing applications, the most difficult part is not creating the
application, but getting it to work with other systems. This can also be the case with
Ruby on Rails, particularly during the early stages of development.

In the early years of Rails, it was a common experience for new developers
to be creating useful Rails code within hours of their first introduction to the
framework. Then, it would take them days of research, head scratching, and many
reconfigurations to get their chosen web server to work well with their new Rails
application. Getting the connection to work between the Rails application and the
web server was often more difficult than writing the Rails code. Fortunately, the web
server connection headaches are a thing of the past, but this example illustrates that
a guide, which simply described how to write Rails code would leave a developer
with some difficult problems to solve before they could roll out a complete solution.
Therefore, some effort is made here not only to describe how to create a Rails

Introduction

[16]

application, but also how to get it to work with the operating system that will host it
and the services that will interact with it.

There are a number of tools that aid the developer to both generate and maintain
a good development environment. For example, an integrated development
environment (IDE) can make writing and working with code easier. Version control
systems provide many useful tools for a developer; especially if the developer works
in a team. This book is not a guide to these tools, but does describe how to configure
the tools and the Rails environment so that they work together.

Summary
This book is aimed at developers who are new to Ruby on Rails, but have some
familiarity with the framework and who want to move on from the basic tutorials. In
particular, the book is aimed at those who wish to use the unique attributes of Rails
to develop and roll out small applications. These applications will be straightforward
to develop, easy to roll out, and simple to maintain. The developer will also be
provided with guidance in creating a development environment where code can be
created, stored, and shared easily.

The Initial Problem
In this chapter, an example of the type of problem that often leads to the
development of a small business application is introduced. That is, to make available
to many the data currently restricted to a small number of people. Some of the
decisions and processes that a developer needs to consider and complete, before
starting to create a new application is described. In particular, how to organize
the data, define named objects, and start considering how users will interact with
the data. Whilst developing small business applications, I have found it important
to involve the end users throughout the development process and therefore user
involvement is introduced here too. At the end of this chapter, we will be ready to
move on to the creation of the application itself.

A Normal Day in the Office
Rory thinks this Monday is going to be a straightforward day in the office. A
problem in the email log needs investigation and the production team needs a
spreadsheet fixing. Ken, the company's Managing Director, appears at the door:

 "Rory, Mary in sales has just shown me her contacts list. That list is dynamite. She's
got all sorts of business contacts in there. I need the rest of the sales team to be able to
access that list. Get it sorted. I'll be back at the end of the week and will expect to see
something in place." With that Ken was gone.

This is a typical problem for an IT manager to face while managing a company's
computer systems. A small application is required on a short time scale. Often
budgets are limited and the scope of the project is poorly defined. We will use the
above example to describe the process of building a simple business application to
address this kind of a problem.

The Initial Problem

[18]

So, what are Rory's options? Two options spring to mind immediately, but both
have issues:

First, he could use a groupware email server such as Microsoft Exchange
and then use the functionality in the server to share Mary's contact list with
others in the company. If the company was already using a groupware
email server, this would probably be the simplest solution, but they have a
basic email server that does not provide this functionality. Upgrading to a
groupware email server would require work to prepare the server as well
as carry out the upgrade. As the upgrade will also require upgrading or
reconfiguring everyone's email clients, and migrating existing email data, the
process would need careful planning. It is not the sort of job to carry out in
a week. Also, these products usually have a significant cost, especially when
client licenses are taken into account. So this option's main problem would be
cost, and the difficulty of getting the solution in place within a week.
Second, the contact list could be exported out of Mary's email software and
published as a static web page. For example, it is fairly straightforward
to export a contact folder in Outlook as a tab delimited text file, and then
import that into a spreadsheet such as OpenOffice's Calc and then use the
spreadsheet application to tidy the data and publish it in an HTML format.
It is then simply a case of copying the resulting file to a web server. This is
probably the quickest solution to implement. However, the resulting data
would be static; the process would need to be repeated to keep the online
version up-to-date with any changes. The data would also be in a format that
is not easy to use elsewhere. If the data really is "dynamite", Rory is sure that
making it available to everyone is only the first thing that Ken will want to
do with it. Rory needs a solution that he can develop as Ken's requirements
grow. Therefore, conversion into a static web page is a dead end that will sort
the immediate problem, but leave Ken in the position of having to re-invent a
solution when Ken moves the goal posts. Rory's worked with Ken before—he
is confident the goal posts will change, and at a short notice.

Fortunately, there is another option providing the flexibility that the static web page
lacks; and unlike the groupware email solution, it would neither break the bank nor
take long to create it. That is, to export the data and build a Ruby on Rails application
to publish the data and allow that data to be managed.

So, Rory decides upon the Ruby on Rails option. How would he go about developing
a Ruby on Rails application to publish a list of sales contacts?

•

•

Chapter 2

[19]

Examining the Data
The first task is to examine the data, identify how it is organized, and how it can best
be structured within a database. The initial data will consist of a single list of people
and their contact details such as postal and email addresses, and telephone numbers.
There will also be other information about each contact, including the name of the
company they work for.

The simplest solution is to convert the data list into a single database table with each
column in the list being mapped to a table field. This is the approach Rory initially
considers. However, as he looks through the list of contacts, he notices that there is a
lot of duplication. In particular, a number of contacts work for the same companies.
If a company has three of its employees in the contacts list, information about the
company (its address for example) is held in three places; that is once with each
contact's details. It means that if the company moves location, all three contact details
will need to be updated at the same time. It can also be difficult to ensure consistency
of data if the same entries have to be matched in three places. For example, a user
may spot that company A's post code is wrong and correct it in the entry for the
contact which the user is working on at that time, but fail to realize that there are
other employees of that company whose details also have to be corrected. The result
is inconsistency in the data.

The best way to overcome the issues associated with multiple contacts working for
the same company is to split the company information out into a separate area. That
is, to have separate contact data and company data. Then all the contact data requires
is a pointer to tell the system, which of the entries in the company data relates to
this contact.

In the contact list data, there are three address types: Home, Business, and Other.
When Rory examines the data, he realizes that the "Other" address type is not used,
but contacts have both Home and Business addresses. Some contacts have only a
Home or a Business address, and some both. It is a fairly straightforward step to
assume that the Home address applies to the contact, and the Business address
applies to the company. It seems, therefore, that both the company and contact tables
require address information.

Is there an issue with having a duplication of address information in contacts and
companies data, and therefore should addresses have their own data area? There
is a possibility that two people who live together could appear in the contact list (a
husband and wife working for the same company, for example), or two companies
could share the same premises. However, the instances are likely to be uncommon;
and it seems excessive to base a major design decision like separating out addresses,
just on dealing with these occasional instances.

The Initial Problem

[20]

On the other hand, there is another reason why separating addresses may be an
advantage. The relationship between different parts of an address is special. For
example, a post code usually refers to a small number of properties within a small
geographical area. These special relationships can be used to carry out actions such
as verification. For example, a simple lookup process could be created to check that
the town in the address is valid for the given post code. Carrying out this processing
will be easier if all the addresses are together, so that their format is easy to control,
and all the data can be examined in one pass.

As Rory continues to examine the data, he notices more duplication and specially
formatted data. For example, some contacts have multiple email addresses and,
of course, email addresses have a special format themselves, with an ampersand
in the middle and a root level domain name at the end. The format of telephone
numbers conform to simple rules; would these be easier to validate and check if they
were separated. There are also dates within the data. For example, Birthdays and
Anniversaries. Other dates that would be useful to track are those for events such
as meeting dates, contract start and end, and project milestones. However, at the
moment, the data does not include this information.

Separating out all these data groups would result in the data being separated into
many locations, and a complicated inter-relationship between groups of data would
be required to create a meaningful output from the system. There is a tradeoff
between the benefits gained from separating data into groups and the added
complication that results from having to maintain many relationships between
the data groups. Often there is no right answer to this dilemma, and the solution
designer's task is to choose the best compromise. How can we tackle this dilemma?

Data Objects
Ruby, the programming language underlying Ruby on Rails, is an Object Orientated
Programming (OOP) language. OOP's use of objects to store and manipulate data
can point to a useful approach to use when deciding how to group data. That is, to
consider the real world entities you are modeling with your application and then
mapping the data objects to those entities. Groups of data are then defined as objects.

Let us use this approach to address Rory's problem on how far to separate his data
down into object groups, by considering how the data relates to the real business
entities he is trying to model.

People—the core real entities within the contact data are the people the list is
being used to track.
Companies—in simplistic terms, these are the business groups people in the
contact list belong to.

•

•

Chapter 2

[21]

Addresses—the labels that allow us to identify the geographical location
of the premises where companies and people reside, and that we can send
information and materials via the postal system.
Email addresses—the labels used to identify and locate people within the
Internet space and to which we can send messages and data to via email.
Telephone numbers—the labels used to identify the telephone a person uses
and its location within the telephone network.
Dates—Key dates tracked so as to allow the sales team to develop their
relationship with current and potential customers.

So, how do we use this breakdown of data objects to decide how the data should be
split? The best approach is to create a simple set of rules and then use those rules to
test each data object to see if it passes or fails. The rules need to describe the features
of a data object that makes it worthwhile separating them from the rest of the data
and treating them separately.

Database Table Design Rules
Rory looks at his data, considers what he is trying to achieve by separating the data
into objects, and comes up with the following rules:

1. A data object must comprise more than one piece of data. There is little point
in separating out the data if all you achieve is to add a pointer to a unique
piece of data.

2. The data within an object must relate directly to the entity described by the
object. Data has to be grouped logically or you may as well just group it by
the position within the list or not group it at all.

3. Separating the data object must provide a benefit that is not available or as
easily achieved if the data is not separated.

Using these rules, Rory is able to remove email addresses, telephone numbers, and
dates as candidates for separating into objects. Each of these items is a self-contained
single entity within Rory's data, and therefore, fails both rule 1 and 3. With each of
these, it is easiest to store them as single fields within the data and no obvious benefit
is apparent from separating them out. They will need individual methods to handle
them and carry out processes such as validation, but that is easy to handle at the
field level.

This leaves people, companies, and addresses.

•

•

•

•

The Initial Problem

[22]

Separating the Data
The next process is to consider which columns/fields in the original data belong to
which data objects. In OOP, each individual data column or field is described as a
property of the host data object. So this process is actually mapping the original data
fields to object properties.

The data will already be separated in the process of defining the data objects, but it is
a good idea, at this stage, to work through each property and check that the best fit is
used to associate it with its data object. As with choosing which objects to use, there
can be some ambiguity in choosing which object a property is best associated with,
and again it is a designer's task to choose the best association to suit the case at hand.

Rory's rules 2 and 3 help here again. For example, the city that has a company
belonging to it may be useful when trying to group companies together. So it could
be held within the company data. However, the city is more closely related to
addresses (rule 2). Rory thinks the benefits of having the city property in the company
area is far outweighed by the significant benefits in associating city with the rest
of the components that go together to make an address (rule 3). Therefore, the city
property is put with the address object.

Considering the data objects in relation to the real objects that they represent, also
helps to choose where to hold telephone data. For example, mobile telephones
belong to individual people, and therefore the mobile telephone numbers should be
stored within the people object. On the other hand, switchboard telephone numbers
relate to a company and therefore need to be within the company object.

Naming Conventions
Rory has identified the data entities and separated them into separate objects with
each entity being defined as a property of the object. The next issue is what he
will call these objects and properties. There are a number of things that need to be
considered when choosing names.

Use Meaningful Names
The more meaningful names we use in code, the easier it is to understand what the
code is doing when we return to the code months or years later (to debug or develop
further). If the code is easier to understand later, it will also be more understandable
for someone else who works on the code at a later date. Also, meaningful names
allow the code to do its own commenting; the clearer the names, the fewer comments
are required to remind ourselves what objects and properties do.

Chapter 2

[23]

For example, when I was taught trigonometry at school, I was taught the following
equation to describe the relationship between the lengths of the sides of a right
angled triangle:

a2 = b2 + c2

Where a is the length of the longest side (the hypotenuse),b, and c are
the lengths of the other two sides.

While writing the equation, it made it easier to simplify the length parameters into
the single letter representations a, b, and c. However, when learning the equation,
not only had I to remember the form of the equation, but also what each letter
represented. So, remembering one equation required two memory processes:
remember the equation and remember the where statement that described how each
parameter was mapped to the right letter. In isolation from the where clause, it can
be difficult to determine what the equation represented.

In coding, the benefit of shortening a parameter name is not as great as it is when
making calculations on paper. In fact, the advantages of lengthening the name
usually outweigh those of shortening it, if the lengthening is used to make the name
clearer. Look at how the representation below of the same equation is easier to
understand without defining a where statement:

long_side_length^2 = medium_side_length^2 + short_side_length^2

As the parameter names now describe the parameter itself, we no longer need a
where clause.

The names also demonstrate how the simple use of underscores can be used to
combine a series of words into a single text string in a way that makes them easy to
read. An alternative is to use "camel case" where a capital letter indicates the start of
each sub-word, so long_side_length becomes LongSideLength.

Use a Consistent Naming Convention
As names are often made up from a combination of words, it is always a good idea
to develop a simple set of rules to help keep each name of a consistent structure. For
example, if in the triangle equation the sides were labeled side_1, side_2, and three_
side, someone else reading the code would have to wonder what it was about the
third side that led to it being named using a different convention to the first two sides.
Being haphazard in naming objects and parameters leads to unnecessary confusion.

A naming convention will also allow you to take a few shortcuts in names. For
example, someone describing objects on a map of London may want to describe both
Green Park (an area of London) and some parks that are green. They could use long
names of green_park_the_district and park_that_is_green. However, if they used

The Initial Problem

[24]

a convention that:
place names always used camel case
descriptive text always followed the main description and was separated
by an underscore they could have names of GreenPark and Park_green as
simpler names.

Ruby on Rails Naming Conventions
Ruby on Rails has a set of its own naming conventions and complying with these
conventions simplifies many tasks. Therefore, this is a good point to introduce some
of these conventions as they can be used here to demonstrate some of the advantages
of using a consistent naming convention. Also, it is probably not a good idea to
describe many more naming conventions if they do not comply with the Ruby on
Rails conventions and have to be abandoned later.

Constants and Classes
In Ruby, constants are written in camel case. The form and function of an object is
defined by its Class. As Class names are constants, they always use camel case. So a
Class that describes hairy bikers would be the HairyBiker Class.

Variables
In Ruby, variables are lowercase and use underscores to separate sub-words (for
example, longest_side). Constant variables are by convention written in uppercase
with underscores to separate sub-words (for example, ABSOLUTE_ZERO). Prefixes to
variable names are used to define the scope of a variable with a single ampersand (@
name) signifying that a variable is an instance variable and Class variables start with
two ampersands (@@name)

Methods and Properties
Methods and Properties form sub-objects of a Class. They are treated as instance
variables and therefore always use lowercase and underscores to separate
sub-words. When used with the parent Class name, properties follow the Class
name and are separated from it by a full stop. So if a bag object of the Class Bag has
a property color, this would be written as bag.color.

•

•

Chapter 2

[25]

Special Method and Property Suffixes
Some key ending words have special significance.

_id is used to denote a foreign key. So in a Class Named Products, the
foreign key property that ties each product to a particular supplier would be
called supplier_id.
_at and _on denote times and dates, respectively. So, sold_at is the time
something was sold, and visited_on the date when a visit took place.
?, a question mark at the end of a Method name signifies that the Method
will only return true or false. So, if you want a Method that tests whether an
item is in stock or not, you would call it in_stock? and you could then use
this test:

 if item.in_stock?

!, an exclamation mark at the end of a Method name indicates that the
Method operates on the object it's raised on. If you have an array and you
want a Method that sorts the array you could call the Method sort!. This
usage is probably easier to demonstrate in an example:

this method returns a copy of array "items" as a new object
sorted_items = items.sort
whereas this method alters the object "items" itself
items.sort!

Please note that these are conventions. For example, adding a question mark to the
end of a Method you create, does not automatically force the Method to only return
true or false. The Method hello? shown below, will return the string Hello even
though the Method name ends with a question mark.

def hello?
return "Hello"
end

Conforming to these conventions makes it easier for others to understand your code.
Ruby naming conventions are not shortcuts to a particular functionality. Changing
a method name is not enough to change its functionality. You must also change the
underlying code.

Notice also that there are Rails Methods that do not conform to these conventions.
Some Methods operate on the object that raised them, but the Method name does not
end with an exclamation mark. For example, the Method model.save.

•

•

•

•

The Initial Problem

[26]

Reserved Words
The following are reserved words that cannot be used as object names:

BEGIN class ensure nil self when
END def false not super while
alias defined for or then yield
and do if redo true
begin else in rescue undef
break elsif module retry unless
case end next return until

This information was obtained from
http://www.ruby-doc.org/docs/ProgrammingRuby/, where further information
on reserved words can be found.

Back to the Data
Using the information that Rory has gathered, his next step is to separate the data
from Mary's contact list into the data object groupings of people, companies, and
addresses. To do this, he carries out the following:

The contact list is in Microsoft Outlook and Rory uses the Export feature of
this program to create a single tab delimited text file. He then imports that
into a spreadsheet which gives him a single table with all the field names
across the top.
On a large sheet of paper, he creates three tables, each with two columns. He
labels the three tables: People, Companies, and Addresses, respectively.
He then works through each of the field names, decides which data object the
field belongs to, and enters that on his sheet of paper in the appropriate table
in the left column. He starts with the first field Title that relates to the title a
person uses, and is therefore a property of the person. So Rory enters Title
in the left column of the People table. The next four fields follow Title into
the People table. However, Company holds the contact's company name that
is a Property of the company and therefore is the first entry in the Company
table. In this way, Rory works through all the fields.

•

•

•

Chapter 2

[27]

Once all the Outlook field names are separated into three tables, Rory goes
through each one and in the right column of the table, he enters a new name
for the field that will match Ruby on Rails' naming conventions. As he does
this, he is able to identify some fields that will not be required in the new
applications, and for these fields he skips the step of adding a Ruby on
Rails name.

The address table requires a little extra thought. When Rory gets to this table, he sees
that there are three sets of Address fields listed (business, home, and other). Each set
of addresses has the same types of components (Street, Street 2, Street 3, City, State,
and Postal Code). Therefore, the three addresses can be entered into a database as
three separate entries in the same table.

•

The Initial Problem

[28]

The end result is shown below.

When exporting data into comma delimited text files, commas within the
source data can cause a lot of problems when processing data later. Using
a tab delimited text file output format usually leads to fewer problems
and I recommend using tab delimited files rather, than comma delimited
files, whenever possible.

Chapter 2

[29]

Review the Result
Rory feels pleased with his results; so pleased that he takes them to Mary to show
her. He is rather disappointed when she looks at it and says, "I don't think that
will work."

This is not an uncommon occurrence for a developer. It is very easy to get so
intensely focused on a vision of what an application should look like that we fail to
appreciate that chosen options do not actually suit the end user's requirements.

There are two methods to deal with this. The first requires that we get the users
to create a detailed specification of what they want before we start, and then we
develop to that specification. The second, is to start with a rough outline of what is
required and then to involve the end user with the project development, showing
them mock-ups, prototypes, and pre-production versions. At each stage, we take into
account the user's comments and modify the design to suit them.

When creating applications for a separate organization, the first method has a lot of
benefits, especially where contracts and payments for work are concerned. However,
in the environment Rory finds himself, two things make the second method
more appropriate.

1. One, to create a specification with the level of details required to provide all
the information needed through the development, takes time and Rory's tight
deadline makes it difficult to set aside time to create a detailed specification.

2. Two, probably more importantly, the end users are not sure themselves of
what they want and therefore would be unable to create a detailed
initial specification.

It is my experience that when developing small business applications, it is
uncommon for the end users to have a very clear vision of what they want. They
also commonly have a poor appreciation of what functionality can and cannot be
provided by a small application. On the rare occasions when detailed specifications
have been available, working with the user throughout the development has led to
variation away from that initial specification and a better application as a result.

A problem with this method is that development can become aimless and meander,
achieving little that is useful. The developer needs to ensure that they work towards
a goal. We may not need to have a detailed map of how to get there, but we do need
to know where we are going.

The Initial Problem

[30]

Fortunately, there is one thing that end users are always clear about. They know the
problem they need a solution to. Always keep in mind the users' problem that is
being addressed and make the solution to that problem the key goal. Put that
goal at the top of your task list and remind yourself of it throughout the
development process.

Project Preparation Steps
In Rory's situation he should do the following on starting a new project:

1. Determine as clearly as possible the nature of the problem or issue the
application will address. Write this and place it somewhere that will remind
him of that goal throughout development.

2. Initially, he should create a rough outline of the solution and discuss it with
the users before starting development.

3. Endeavour to create mock-ups and prototypes as early as possible so that
users can see and understand how the final application will appear at an
early stage in development. This will allow them to provide useful feedback
early on in the process.

4. Prepare him for the occasions when users will decide that what has been
done so far does not suit their requirements.

It is always more fruitful to start development and then have to modify it as the
specification develops, than to postpone development until we have an ideal
specification. Therefore, the developer needs to be ready for review meetings that do
not go as expected, and changes in the specification that were not foreseen.

How Good is the Source Data?
The main problem Mary points out to Rory is that the separation of address types
is not as clear cut as he thought. Some of Mary's contacts are home workers, and for
them she has put their "home" address in the "business" address fields. Other contacts
are self-employed and for them their "home" is also their business address. In fact, as
they review the data, it becomes clear to Rory that Mary's allocation of addresses has
been fairly haphazard.

A previous solution's inability to control or correctly organize the data presented to
it, is often a key reason for replacing it with a new solution. For instance, one of the
problems with using a spreadsheet to store information is that they usually allow
free text entry of data. Users are often inconsistent with their entries, especially if
more than one person enters the data and free text entries put no control in place to
prevent this behavior.

Chapter 2

[31]

As an example, a company whose business systems created a works order for
each product they manufactured. Each works order contained a unique number
that was used to track the product through manufacture, sales, and after sales
support. The number comprised the first letters of the words "Works Order " and
then an incremental number. So the number of the first product produced by this
system had the form: "WO0001". Once in use, a problem became apparent in that
users commonly failed to appreciate that the second character was the letter "O"
and would often enter these product numbers as: "W00001". Less commonly, they
would enter all the round characters as: "O", including the zeros: "WOOOO1". The
result was that in reports a single product could appear as three separate products:
"WO0001", "W00001", and "WOOOO1".

The problem was fairly easy to deal with in the main applications. The problem
was more difficult to deal with in the small spreadsheets managers and supervisors
created for their teams to track progress and problems. These were often put together
simply and had no validation of input. The result was misreporting, and wasted time
tracking problems that had already been dealt with but logged with a different form
of the works order number.

Therefore, it is extremely likely that existing data will require processing before it is
input to an application. To do this successfully, the user and developer must work
together to create a set of rules to deal with any inconsistencies. Some processing can
be automated. In the works order example, it would be easy to process works order
numbers so that all zeros at the second character position were converted to "O"
and all O's in the following positions were converted to zeros. A simple batch script
could be created to carry out this processing. It could even be incorporated into the
data import process for the new application. However, some data inconsistencies
require manual correction and there can be little alternative than to have someone go
through the data and correct any inconsistencies.

Rory realizes that the address problem is not systematic. That is, there is nothing
within the data itself that would allow an automation script to detect that the data
needs to be altered. Therefore, he is unable to create a script to correct the problem.
However, when he suggests to Mary that she go through all her contacts and correct
the inconsistencies, she states that she cannot give in the time required to do that.
Therefore, Rory suggests a compromise—he prints out a listing of the contacts and
addresses, and then asks Mary to skim through these and mark any address she
spots as being incorrectly assigned. He suggests that if it is a home address that
should be a business address, she mark it with a "B", and if it is a business address
that should be a home address, she mark it with an "H". Self-employed workers
should be marked with "HB", which means that the same address is used for both
home and business. As this is a lot easier to do than manually move each one within

The Initial Problem

[32]

Mary's email application, and she readily agrees to do this. When she is finished,
Rory is able to process the raw data and move the addresses as marked.

However, even after going through this process, Rory realizes that some erroneous
address allocation has not been corrected. It becomes apparent that the new
application will need to have the facility to easily move addresses from the person to
the company so that inconsistencies within the data can be corrected as the data
is used.

Assume errors will get through from the source data and provide tools
within your application to easily correct those errors.
You can waste a lot of time and effort tracking down and correcting every
error in source data. To compound the problem, errors can often be hard
to identify within raw data, yet be only too obvious once the application
goes into production. A pragmatic solution to that problem is to accept
that some errors will get through, despite your best efforts. Make a best
effort to correct errors before and during the import process. Then make
sure you build in processes and methods that allow users to correct errors
easily as they find them. The key to success of this strategy is to make it
easy for the users of the application to identify and correct errors as they
find them.

Tracking Who does What
As Rory discusses the data processing with Mary, another issue is raised. Mary
becomes concerned that other people will start altering her data. She asks how she
would be able to find out who had over-written her entries.

System logs can be used to search for and correct errors that occur within an
application. However, often they are not so useful for tracking an individual user's
use of the system. Another thing to consider is that with web applications, it is not
straightforward to track who has accessed the application. To preserve anonymity
on the Internet, web systems tend not to pass user information back and forth unless
specifically configured or requested to do so.

To track and control who can access and change data we must both, log activity and
identify end-users. To do this, the solution is usually to force users to log onto the
application and thereby identify themselves. However, there are two issues with this.
First, providing a log-on utility and systems to prevent unauthorized access to the
application adds complication. Second, there can be resistance from users to log on
as it can be seen as an unnecessary inconvenience. Therefore, it is worth identifying
levels of authentication and user access logging, and then selecting the level that is
most appropriate to the current need.

Chapter 2

[33]

No Log-On and No Authentication
There are two main reasons why this level of authentication is appropriate. First, the
application is very basic and ease of development outweighs the requirement for
monitoring user activity. Second, total refusal of key users to having a log on process
(for example, if in spite of your best arguments, the person who pays your wages
insists that there is no user log-on process, you have little choice but not to have one).

There are three things to consider in this situation, to provide a minimum of logging
information with the minimum impact on development and use of
the application.

Log the creation and last update of a data entry. Ruby on Rails has
automated systems that will update "created_at" and "update_at" fields
with appropriate times if these fields exist in a data table. Therefore, always
include these fields in your tables. Knowing when a problem occurred is far
better than having no information about a problem. In fact, it is surprising
how much easier it can be to track down the source of a problem if you know
precisely when it happened.
If users refuse to use a log-on, consider tracking usage via their IP address.
IP addresses are passed from a user's browser to the server within the HTTP
header and therefore are fairly easy to detect and to use in a web application.
Within the confines of a company network, it is straightforward to identify
a user's computer from its IP address (even when dynamic addressing is in
place) and to track the user from there. IP address tracking is not perfect (for
example, if two users use the same computer, the system will not be able to
differentiate between the two), but it is far better than having no information
to track user activity.
Add either a free text entry (if users vary a lot) or a selection drop down
(if you can maintain a list of all users) that allows a user to simply identify
themselves when they enter or alter data. Include a "last_user" field in
each table and store the user's entry in that field and/or include the user
information in any log entry. Without a password or similar authentication
process, it will be impossible to rely on the integrity of this input, but in my
experience most users will use such a system and the resulting entries can
be useful when tracking down problems. If you use the selection option,
you can use cookies to remember a user's last selection. This makes the
system easier to use for the user, and therefore can encourage them to use it
properly, rather than just pick the first selection item they come to.

•

•

•

www.allitebooks.com

http://www.allitebooks.org

The Initial Problem

[34]

With this system, you will not be able to provide different levels of access to different
users. If different levels of access are required (for example, to allow data update
access, or higher level reporting), the users must identify themselves, and a log-on
system is the best way to do that.

This level of authentication is workable within the restricted area of a company
intranet. However, exposing a Ruby on Rails application to Internet access with no
authentication in place would be extremely unwise.

Simple Password Access
The simplest authentication system is to add a password field to all data entry and
update forms. When the form is submitted, the password is checked against the
stored password and data is only entered into the system if the passwords match.

In its simplest form, everyone with "create" or "update" access uses the same
password. In this case, the use of a password would not allow the system to identify
and log who had edited the data. However, you could give each user his/her own
password and then identify the user by the password added, or add a simple user
selector as described above.

If you use this system, consider these recommendations:

It is a good practice to change the password regularly and enforce a
minimum level of complexity to passwords. For example, a policy may
ensure that passwords are at least eight characters long, contain numbers,
and both upper and lower case letters.
Always create a system that allows either you or a designated user to
securely change the password. At some point, you will need to change the
password. If you do not, most users will come to learn the password and it
will become redundant.

This is the simplest system to create two level access rights: those two levels being
read-only for those who do not know the password and full access for those who do.

It is worth considering that if data is entered and updated often, this authentication
method is actually more inconvenient than a log-on system, as the password has
to be entered every time a form is submitted. Therefore, its use is best restricted to
simple systems that are rarely updated.

As the application does not need to track the logged-on user, this system is simpler
to create than a proper log-on system. Therefore, it can be useful to use if you need
to get an application in place in a hurry, or as a quick way to add simple password
protection to a system that previously had none. Especially, as a temporary stage to
provide some protection while a log-on system is developed.

•

•

Chapter 2

[35]

User Log-On
In most circumstances, the best way to control access and log activity is to use a
log-on system. A log-on system comprises three elements: a storage area—containing
a list of all users together with their authentication credentials (typically their
password); a log-on system—where a user can enter their log-on credentials and
thereby log-on, and a way of tracking and maintaining the logged-on status so that
the user is not continuously asked to log-on.

This system is more complicated than the other systems, but the extra effort is
worthwhile. Maintaining the logged-on status and controlling access based on that
status is usually the most difficult part of a log-on system. However, tools built into
the Rails framework help make this option relatively straightforward.

If users are allowed to change or specify their own passwords, consider
enforcing basic password conditions such as forcing a minimum password
length of 8 characters and use of upper and lower case characters,
and numbers.
Log-on status can be stored within the session. This allows a user only to log
on once each time they use the application. We can use cookies to remember
the user so that log-on screens have that user's name preselected next time
they access the system. Then they only have to enter their password to log
on. That will make the process easier for the user and they will be happier to
log on more often.
Think about what you want to protect with a log-on system. For many
systems, we only need to log and control adding, editing, and deleting data.
Therefore, if a user only wants to read some data, they may not need to log on.

I strongly recommend that you create and use a log-on system!

One of the best things about Ruby on Rails is how easy it is to reuse processes and
simplify common tasks. A good example of this is how easy it is to reuse a log-on
system once it is created. All it takes is a couple of lines of code in a new part of an
application, for that new part to implement the log-on functionality.

Recording Access History
To get the most out of a log-on system, we need to record some activities that users
carry out. We may not want to create a log entry every time a user views data, but
with most applications we will need to log when people add, change, and delete
data. For most cases, we probably do not want to record everything. What we want
is to be able to audit the use of the system, both to track down problems and to
provide reports to managers.

•

•

•

The Initial Problem

[36]

To achieve this, we need to create a new data object: the access history. As a minimum,
this data object should include the following:

The identity of the user who carried out the action
The time the action occurred
A description of the action
The condition of any status after the action occurred. For example, in a
project tracking system, we will want to log when the status changed to
"project completed" and "customer billed".

We will also want to consider how to display this information and who should have
access to it. Fortunately, a dynamic access-controlled web page is a splendid way of
displaying such information. Therefore, Ruby on Rails provides an ideal platform to
provide information on the access history.

Often, we need to be able to report on the access history of both individual objects
and overall access history. For example, a team manager will want to see a report
that keeps them up-to-date on how their team has been using the system. They will
want reports based on all activity. For them, systems that generate period totals will
help them create reports for their superiors. On the other hand, a project manager
will only want to see the history of access to specific projects. Therefore, consider
who will need activity reports from a system and be prepared to provide different
information to different groups.

The person managing the system (in small businesses that is often us, the developers)
will need a set of tools that lets them pull out the information needed to track down
problems. Therefore, we need to be able to follow individual processes through,
whether that is by following a user's progress, isolating changes to a specific area,
or view data for a specific small period of time. We could do this by viewing the
underlying data, but if we can create report and search systems that easily aid us
in these tasks, this time will be very well spent. Also never forget, that while we
may be the person managing the system now, it may be someone with less intimate
knowledge of the system who manages it in the future. Leverage Ruby on Rails to
make the administration job easier and we will all have more time to concentrate on
more interesting tasks.

Access Control for Rory's Application
As speed is of the essence in Rory's project and most users will require read-only
access, he decides to implement simple password access for the application, prior to
his deadline.

•

•

•

•

Chapter 2

[37]

For the immediate requirement this is a satisfactory solution. However, Rory is
conscious that once the system goes live and people start using it, more people will
want to add and update data. Upgrading access control to a log-on system will be a
requirement for the likely second stage of development.

Rory discusses this with Mary and explains why he is developing access control in
this way. She readily agrees to Rory's strategy.

However, Mary also asks Rory a question that makes him realize there is something
he's missed: "How do we stop users putting in invalid data?".

Data Validation
There is another control system that Rory needs to consider. That is, data validation.
Data validation provides a system whereby a user's data entries can be tested against
a series of rules. Only if the rules are passed, is the data entered into the database.
Rails, has a series of methods that make validation a straightforward task to set up
and maintain.

As with so much of Ruby on Rails, validation methods do much of the nuts and
bolts work for us. Two important processes are mostly taken care of: intercepting the
user's input of data before it gets to the database; and then if the validation tests are
failed, returning the data input form to the user (with a relevant warming message)
so that the user can correct their input and resubmit the form. Very few additional
lines of code are needed to set this up. We can then concentrate on deciding what
needs validating and the logic needed for those validations.

The next step is to ask what we need to validate or consider when setting up the
validation tasks.

The Minimum Required Data is Entered
The most basic level of data validation, tests whether the user has actually entered
some data. At a basic level, it means ensuring that at least one field has data in it.
However, we also need to consider if there is a minimal amount of data that needs to
be entered with each input. For example, if an application is a price list of products,
each product probably needs to have a price entered.

The Initial Problem

[38]

Each Record can be Uniquely Identified
Often this means having enough data to allow for the unique identification of the
new data. For example, when considering a list of people, there may be a number
of people with the surname Smith, and therefore it is likely that we would want to
validate that both a surname and first name are entered. We may also need to ensure
that a particular field entry is unique within the table or that a combination of fields
is unique. For example, we may want to ensure that addresses have a combination of
house number and zip code (or postal code) that is unique within the table.

However, it is also worth pointing out that the default behavior of Rails is to add an
ID field as the primary key. By definition, each ID must be unique within each table.
Therefore, all data records will be individually identifiable within the database. If
validation was turned off and a user entered ten records with no data, each would
have a different ID and therefore each of the ten empty entries could be identified
and manipulated individually.

It is considered bad practice to have identical records within a relational database.
Having an independent ID field allows a developer to do just that (see the empty
record example that I have described in the previous paragraph). Occasionally, we
may find ourselves creating tables of data with series of entries that are identical to
one another. Pragmatically, this may be the simplest solution to get an application
up and running. However, it is always indicative of a system that could be better
designed. Instead we should consider doing the following:

Test to see if the data already exists and reference the existing data rather
than adding a duplicate entry. For example, if we were importing a set of
orders and each order had a status, we may want to store the statuses in a
separate table. If we simply store each status in the statuses table, we will
have as many entries in the statuses table as there are in the orders table.
Instead, we should test to see if the current status already exists and then set
the order status_id to the id of the existing status; only adding a new status
where the current one does not already exist.
Add a field that uniquely identifies the entry. For example, we may want to
allow partial data to be entered while more data is gathered. A list of leads
in a Customer Relationship Management system may consist of very limited
information for new contacts that need to be validated manually at a later
date. In this case, adding fields that identify when, how, or why the data was
added (for example, a data import reference or "entered by George on 12-
Jun-07") or what the next action will be (for example, "assigned to Henry to
validate on 12-Jun-07") will make it easier to identify and manage each data
set at a later date.

•

•

Chapter 2

[39]

Log information
There are two ways of entering information like "entered by George
on 12-Jun-07". You can either generate the text string and then enter
it into a text field, or create new fields that store the information
programmatically. For example, by adding an updated_by field to store
the user id for George and an updated_at field to store the date/time
when the update was made.
In most circumstances you will want to use the second method. However,
there are circumstances where a text entry is better. The advantage a
text field entry has is that it can be read independently of any other
data. Therefore, if you export the data away from the user table, the
information will still be easy to read. It also stores the data as it is at the
time of entry. For example, you may find that George is deleted as a
user from the system at a later date. It can be easier to store the name as
a string, than to ensure that a system is in place to handle this situation.
Therefore, text field entries can be useful for activity logs where the log
entry is not to be altered once it has been created.

Identify Fields that Need to Have a Particular
Format
Some data must have a particular format for it to be correct. Email addresses are a
good example. Therefore, it makes sense to test the format of such data at the point
of input, and validation tasks are perfect for this task.

There is a trap here: it is a mistake to think of validating data input as
a way of controlling the user input. Rather, I strongly believe that we
should think of it as a way of helping the user detect and correct mistakes
that they have made. If we need to control input, we should use the
design of the input form to provide control and not the validation task.

Consider telephone numbers; a developer may have a preferred format for telephone
numbers. However, each of these three UK-style telephone numbers is a valid
representation of the same number: 0111 111111, (0111) 111111, and 0111111111. So
how do we handle the fact that a user may use any of the three given formats? There
are four options:

1. Provide a free text field and allow any of the formats to be used. This
will overcome the problem of different formats being entered, but add
complication later when we try to compare telephone numbers. For example,
0111 111111 and (0111) 111111 will appear to be different even though they
represent the same telephone number.

The Initial Problem

[40]

2. Configure validation so that it only allows through data formatted as we
prefer. When users enter an incorrect format, the entry is rejected and they
are prompted to re-enter the data. The result is likely to be annoyed users.
Users do not like having their entries rejected, especially when their mistake
was simply not to choose the format we prefer. At the very least, we should
provide, on the input form, a guide to correct usage.

3. Design the input form to closely match our desired format and provide
visual clues as to the correct format to use. For example, if we want credit
card entries to be entered as four sets of four characters, provide four text
boxes, four characters long rather than a single text box, where we expect
users to insert spaces into the appropriate places. Validation is then used to
check that the input data is likely to be correct.

4. Anticipate the formats that may be entered and process the data so that
the format used is detected and the entry reformatted to match our desired
format. Regular Expressions are ideal for detecting and modifying data
entries into a preferred format. Validation is then used to check that the input
data is likely to be correct.

Options 1 and 2 are both unsatisfactory and likely to result in poor data in the
database and a bad user experience, respectively.

Options 3 and 4 will help the user enter valid data. Option 3 makes it easy for the
user to enter data in the right format, and Option 4 allows users to use their preferred
format without upsetting the integrity of the data. Which one we use, depends on
how easily we can distinguish the different formats without compromising the
validation. If it is easy to distinguish between the alternative input formats, use
option 4. If it is difficult to distinguish between the formats use option 3.

Dates are a good example of where we should always use option 3. Living outside of
the U.S.A., I am very aware of the confusion between the dd/mm/yyyy and mm/
dd/yyyy formats. Programmatically, we cannot detect the difference between the
two, unless the day is greater than twelve. That is, it is impossible to tell whether a
single entry of 01/07/1916 refers to the day the Battle of the Somme started (1st July
1916), or 7th January of the same year. Therefore, always avoid allowing users to
enter dates in these two formats. To do this, use a named month drop-down within a
date selection. In that way, the confusion is avoided.

This brings us onto another point. If there are only a small number of options for
data entry (for example, the statuses: "Requested", "Processing", "Completed", and
"Shipped") do not use validation to control user input. Instead, use drop-downs or a
selection list to restrict user entry to only the valid entries. Validation can then be put
in place to detect errors when this system has been bypassed, but most of the time
the validation will be redundant.

Chapter 2

[41]

References to Data in Other Tables Point to
Actual Data
Within the database, data in separate tables are linked via foreign keys. In Ruby on
Rails, these are usually between the ID field of one table and a link field of another
table. The link field has a name comprising the singular name of the first table and
ending with the suffix _id. When data is entered or altered, a validation process can
be used to make sure that the entries in any link fields match an existing ID field
entry in the target table.

Therefore, if a people table contains a link to an addresses table, each person will
have an address_id field. The validation process would take the number in the
address_id field and check that there is a corresponding address record with a
matching ID.

Rory's Data
Having considered how he needs the contact data to be separated into tables and
validated, his data structure consists of three tables as shown below.

After considering his validation options, he makes the following decisions.

The Initial Problem

[42]

Person
First_name and last_name should not be empty.
Email should be a valid email address (matches regular expression) and
unique to this person.
Gender should be set to "M " or "F".
Address_id and company_id should reference records in the
appropriate tables.

Company
must have a name

Address
must have a street_1 entry
must have a valid post_code (regular expression match)
street_1 + post_code must be valid on creation of the address

A single regular expression is to be used to check and reformat telephone numbers.

Rory is now ready to start the practical steps of building his application.

Summary
In this chapter, a description of how to group data into separate data objects has been
presented, including the decisions made as to how many data objects are required
and how to allocate data to the appropriate object. The benefits of using a consistent
naming convention have been described, and some of the conventions used in Ruby
and the Rails framework have been introduced. In most real world cases, it can be
impossible to avoid data errors, and therefore, the need to ensure that we design
systems to cope with and manage data errors has been highlighted. Some methods
of controlling and logging user access have been described and their merits and
limitations discussed. Data validation and user input control via form design was
also discussed.

As many small business applications arise from the imprecise requirements of users,
methods to best manage this have been presented. These methods involve the end
users throughout the process, creating mock up and prototypes early in the process,
and setting clear goals.

•

•

•

•

•

•

•

•

Laying the Foundations
Any sustainable software development project needs good foundations. While it
is possible to write a Ruby on Rails application with nothing more than Ruby, a
few libraries, and a text editor; this approach does not lend itself well to a team
project where multiple authors may be working on the same code base. In addition,
deployment and maintenance of the application once it reaches production becomes
problematic if there is no supporting infrastructure in place.

This chapter outlines how to lay some firm foundations for a sustainable Rails
development project. The core of this is obviously the Rails stack itself: we'll see
how to install and configure this in some detail. But you also need some good
infrastructure under this to ease development, deployment, and maintenance. Rails
developers have faced the same issues all web developers face, and have integrated
Rails with a variety of supporting technologies; things like database servers, graphics
generation libraries, IDEs, version control systems, and web servers. Throughout the
chapter, we'll encounter a few of the technologies closest to the heart of Rails, which
can readily be used to support your development work.

Supporting Rails Development
In the preceding chapters, the example of the Acme development team was used
to illustrate the initial stages of a Rails project. In this chapter, we'll see how such a
team can set up its infrastructure for Rails development, using Acme as a case study.
As is typical of small companies, Acme has limited cash to pay for software, and
makes extensive use of open source software. We'll take the same approach, utilizing
several best breed of open source technologies which can accelerate your Rails
development.

Laying the Foundations

[44]

We'll also focus on setting up Rails development infrastructure on limited hardware.
In the case of Acme, they are again typical of many small companies and have the
minimum hardware setup they can get away with. The hardware they use for their
projects looks like the following screenshot:

The Internet

Broadband
connection

Router with firewall

Server:
Provides a shared
Network drive and
Apache web server

Rory’s PC,
running

Ubuntu Linux

Jenny’s PC
running

Windows XP

Acme intranet

Zooming in, the development environment looks like this:

Developer machine
There are two developer machines, belonging to Rory and Jenny,
respectively. Rory refuses to use Windows, and insists on Ubuntu Linux for
his machine; Jenny uses Windows XP Pro.
Server
 Runs Apache for the Acme web site, a shared network drive, and handles
local email (including spam filtering). Acme currently uses the shared
network drive for its ad hoc code repository. The plan is to deploy Rails
applications to this machine for use on the intranet by Acme staff.

There are other machines on the network, but they are used by administrators and
other company employees rather than for development work. However, they do
make use of the shared network drive on the server.

•

•

Chapter 3

[45]

This kind of heterogeneous environment is fairly typical where hardware has
been added as a company grows, and where developers get to install and manage
their own machines. It introduces extra challenges where the aim is to introduce
infrastructure to support new technologies, as it makes it harder to provide a
consistent environment for the team.

Another issue is that small teams tend to work in a single room where they can
manage projects verbally. In the case of Acme, if Jenny and Rory both need to
work on a single file, they make an ad hoc arrangement to prevent potential
synchronization problems, for example, "I'm working on library X, so stay off it for
a while". However, they are thinking of hiring contractors for some of their new
projects, who could potentially be working off-site, making ad hoc arrangements like
this unwieldy and slow. They have also been stung a few times when their ad hoc
verbal locking of files has failed, and they have both ended up simultaneously editing
a single file: important changes made by Jenny were overwritten by Rory when he
saved his copy of the file. Consequently, they have been considering using some
kind of version control system to manage their code better. This will also allow an
arbitrary number of developers in geographically-dispersed locations to work on a
single body of code. They also see the value of having a mechanism for rolling back to
previous versions of an application or individual files.

Addressing the Challenges
Acme's challenges are not unique, and we'll follow them throughout the chapter to
inform the process of building a Rails development infrastructure. Generalizing, they
boil down to the following:

The software choices need to support any operating system (as far as
possible). We'll concentrate mainly on Ubuntu Linux version 6.06 (Dapper
Drake), but will also cover Windows in some detail. Mac OS X is briefly
touched on, though not explored in depth as it is treated thoroughly in
other books.
The software needs to be low cost and should not lock a company into
proprietary systems (as discussed in Chapter 1).
The infrastructure should support collaborative project work (i.e. it should
have a version control system).
The infrastructure should enable the company to do solid deployments of
applications into production (i.e. provide them with a web/application server).
The infrastructure should help the team work with Rails, not make their
lives harder.

•

•

•

•

•

Laying the Foundations

[46]

Keeping these points in mind, we'll cover two broad groups of software:

1. The Rails stack
This is the set of components that you need to develop a Rails application.
Each developer needs a stack of his/her own, so that they can work on the
code from their own desk.

2. A team server
The server needs a Rails stack of its own, to enable it to run the Rails
applications. It will also need some additional software to support team
development and live deployments.

Green field infrastructure
In some halcyon situations, you will be working from scratch and
will be able to buy new hardware and source new software for your
development.
If you have this luxury, Rails, places no restrictions on your choice
of hardware. You have free reign to use any of the major hardware
platforms (Intel, AMD, Power PC) for your machines. You should get
as much RAM as you can afford, both for the server and the developer
machines, aiming for a minimum of 512Mb on the developer machines
and 1 Gb on the server machine. Rails can be quite RAM intensive (even
while developing a small application) and having a decent amount of
RAM can make the development process far more pleasurable.
Similarly, Rails places no restrictions on your choices of the operating
system. However, Linux is an excellent choice for the server. It is very
stable, powerful, fast, and flexible, and runs Rails beautifully. If you
choose to develop on Windows, XP Pro is the preferred choice; for the
server, Windows Server 2003 is a good choice.

Setting Up a Rails Stack
A Rails stack is the set of components you need to develop and run a Rails
application. The Rails stack on each of our preferred operating systems is fairly
similar and consists of the following:

Ruby
Ruby is a general purpose programming language. It is open source, making
it free to use, modify, and distribute. This means that you won't have to pay a
license fee to use it. We'll be using Ruby version 1.8.4 throughout the book.

•

Chapter 3

[47]

Rubygems
This is the packaging system used for the majority of Ruby libraries (packaged
Ruby libraries are called gems). The version used in this book is 0.9.3 .
Rails
Rails is actually composed of several related gems (see previous bullet point),
each of which needs to be installed to get a working Rails environment. Note
that this book is based on version 1.2.3 of Rails (current at the time of writing,
with version 2 still under development).
Other libraries
There are several other libraries which are useful for Rails development, for
example:

Capistrano (to help with deployment)
Mongrel (for serving Rails applications); note that other
servers such as Lighttpd can be used as an alternative to
Mongrel.

A database
This can either be a file-based database (like SQLite) or a database running
on a server (like MySQL or PostgreSQL). MySQL is used here, as it is
thoroughly integrated with Rails and is extremely stable. It is also worth
installing the MySQL bindings for Ruby for better performance.
An editor
A programmer's editor or Integrated Development Environment (IDE)
will make your life easier. We will be using EasyEclipse, but you can use
whichever editor or IDE you prefer. Some popular alternatives are covered in
the section: Installing an IDE later in this chapter.

The easiest route to setting up a Rails stack is to use a bundle—an integrated
package which provides all of the pieces you need in a Rails development
environment. This option is described briefly in the next section.

However, it is a good idea to learn how to install the components of the Rails stack
yourself, rather than using a bundle. This gives you maximum flexibility and an
insight into what makes your Rails applications tick. This is the approach we'll
be taking.

At the end of this section, we'll see how Acme sets up their Rails development
machines, as an example of how to put these recommendations into practice.

•

•

•

°

°

•

•

Laying the Foundations

[48]

Installing a Rails Stack Using a Bundle
An easy-to-install bundle exists for each of the operating systems we are considering
(Windows, Mac OS X, and Linux), handily packaging an entire Rails stack. If you
already have one or more components installed (e.g. you already have a web server
or database server), they can make things more complicated and create conflicts,
which are difficult to troubleshoot. We are not going to spend much time covering
installation of these packages (they're supposed to be easy, and are covered
extensively elsewhere), but here are some pointers.

InstantRails
The easy way to install Rails on Windows. It packages Ruby, all the Rails
libraries, plus some extras into a single zip file. Installing it is as easy as
unpacking the package and running an executable. You can get it from the
following link: http://rubyforge.org/projects/instantrails.
Locomotive
A one-click installer for Mac OS X, with a similar set of features to InstantRails.
However, it also provides capabilities for running multiple versions of Ruby
and Rails simultaneously. You can get it from the following link: http://lo-
comotive.raaum.org/.

AxleGrease
An add-on for XAMPP on Linux. XAMPP itself is an Apache, MySQL, PHP,
and Perl installer for Mac OS X, Linux, or Windows. It is available at http://
apachefriends.org/en/xampp.html. AxleGrease extends XAMPP by pro-
viding Ruby, the Rails gems, and various useful libraries, plus scripts to ease
deployment of Rails applications to the XAMPP Apache server. It should be
installed on top of a valid XAMPP installation. You can get it from the follow-
ing link: http://rubyforge.org/projects/rorox/.

While Rails bundles provide low-friction installation, you can gain complete control
over your environment by understanding a bit more about how to install the
components yourself. This approach is covered in the following sections. (You'll still
need to install an editor or IDE of some kind, so you may need to refer to that section
even if you are using a bundle.)

•

•

•

Chapter 3

[49]

Installing a Custom Rails Stack
If you want to go it alone and install the components of a Rails stack yourself, you
gain the advantage of being able to precisely tailor the pieces of software installed
on your system. For example, even if you don't want MySQL to be installed, it is
difficult to avoid if you use AxleGrease or InstantRails, which both bundle MySQL
(Locomotive uses SQLite). A custom installation means you can remove any of the
items that you don't need.

Another advantage of this approach is that you can sometimes leverage the package
management provided by your operating system (if it is Linux or Mac—the Ruby
packages are not a part of the mainstream Windows, and aren't covered by Windows
Update). This makes it easy to keep up with bug fixes and feature enhancements.
By contrast, the bundles described in the previous sections require you to manually
upgrade when a new version is released (though all, except AxleGrease, provide an
upgrade script to make this relatively simple).

One final benefit of a custom installation is that the package manager will track
dependencies for you, ensuring that all the parts work nicely together. While
the bundles do some of this work for you, you may find that adding new
libraries to them (e.g. new Ruby gems) may lead to dependency issues you have to
resolve yourself.

You will need to have administrator access on the machine to perform the
following installations.

Installing Ruby and Rubygems
The first step is to get a working Ruby installation. In this section, We will also look
at Rubygems, as it is included with Ruby on some platforms.

Laying the Foundations

[50]

Ruby on Windows
The easiest approach is to get the One-Click Ruby Installer from:
http://rubyforge.org/projects/rubyinstaller/. It is a good way to install
Ruby and Rubygems; ignore the text editors that it prompts you to install (FreeRIDE
and SciTE) by unticking the boxes on the options screen:

Chapter 3

[51]

Ruby on Linux
Most distributions (e.g. Ubuntu, Debian, and Fedora) provide packaged versions
of Ruby and its libraries, which can be installed via package management (e.g. apt,
yum, and synaptic). On Ubuntu, for example, you can use Synaptic:

Alternatively, you can install from the command line with:

$ apt-get install ruby ri rdoc irb

However, if you install Ruby on some wholly-free Linux distributions (like Debian),
you may find that Rubygems is not provided through the package management
system. This is because Rubygems is a package management system itself, and
the gem packaging approach is at odds with the Debian Filesystem Hierarchy
Standard (FHS—see: http://www.pathname.com/fhs/). The FHS specifies how
files relating to a piece of software are distributed across the system—configuration
files in /etc, documentation in /usr/share/doc, and so on. Rubygems, by contrast,
installs software libraries into a single directory, documentation and all, which is
incompatible with how Debian packages are organized and built.

Laying the Foundations

[52]

Consequently, the best approach for installing Rubygems is to download the source
and compile it yourself. This is easier than it sounds. First, you compile it yourself.
This is easier than it sounds. First, you need to get hold of the Rubygems source
from: http://rubyforge.org/projects/rubygems/ (you need the file with the
.tgz suffix).

Next, you need to install the tools for compiling the source. On Ubuntu Dapper, you
would do:

$ apt-get install build-essential

You are now in a position to install Rubygems from the command line. The examples
below use version 0.9.0:

$ tar xzf rubygems-0.9.0.tgz

$ cd rubygems-0.9.0

$ ruby setup.rb

$ gem update

Verify that gem is working by running the gem-v command and you should see
something like this:

$ gem -v

0.9.0

(The gem command is used to manage all the gems on the system: you use it to
install, uninstall, and list them.)

Ruby on Mac OS X
Ruby can be installed on Mac by first installing the DarwinPorts (http://
darwinports.opendarwin.org/). Once this is in place, you can install the Ruby port
and then the Rubygems port. Full instructions on using ports can be found on the
DarwinPorts website.

Installing Rails
You can install Rails from a command line:

$ gem install rails -y

The -y on the end of this command tells gem to install all of the Rails dependencies.
If you leave this off, gem will prompt you to install them anyway: adding the switch
just automatically answers yes to installing the dependencies.

Chapter 3

[53]

If this doesn't work for you, the most likely cause is a failure to install Rubygems. If
you are using the Windows One-Click Installer, try reinstalling it and make sure the
Enable RubyGems option is ticked as shown in the screenshot in the earlier section
Ruby on Windows. If you are using Linux, check that you have installed Rubygems
correctly by following the instructions given above.

When you use gem to install Rails, you are actually installing six separate gems.
If you prefer (the gem update site can be horrendously slow at times), you can
download them from http://rubyforge.org/projects/rails/ and install them
individually, provided you do so in this order:

1. rake
2. activesupport
3. actionpack
4. activerecord
5. actionwebservice
6. actionmailer
7. rails

Installing from downloaded gems (rather than from the network) can be particularly
useful if you have a whole load of developer machines you want to keep in
sync—setup a central repository holding the Rails gem files, make it available over
the network (e.g. via HTTP), and download and install the gems on the developer
machines from this repository. In this way, you can ensure that you are using the
same versions of the same gems. You can also extend this approach to cover other
non-Rails gems. See Appendix A for more details about running your own
gem server

A Note on Rails Documentation
While this book provides a thorough reference for using Rails, there are cases where
you really need to dig into the Rails API documentation to get all the information
you need. Fortunately, this is included with the Rails gems.

The simplest way to find the Rails documentation is to run the gem documentation
server with the following command:

$ gem_server

Laying the Foundations

[54]

The gem_server command runs a local web server, (on port 8808), which serves
up all your Ruby gem documentation, making it accessible via a web browser.
Browse to http://localhost:8808/ and you should see the front page of the
installed documentation:

Click on the [rdoc] links to see the local documentation for your gems.

To find the Rails documentation manually (e.g. if gem_server doesn't work):

On Windows, if you used the Ruby One-Click Installer (see the section Ruby
on Windows, earlier in this chapter) and installed it into C:\ruby, the gem
documentation is installed in:
C:\ruby\lib\ruby\gems\1.8\doc

On Linux, if you installed using apt-get, the documentation is installed in:
/usr/lib/ruby/gems/1.8/doc

Within the main documentation directory, you should see a directory for each
installed gem, for example:

actionmailer-1.3.3

actionpack-1.13.3

actionwebservice-1.2.3

•

•

Chapter 3

[55]

activerecord-1.15.3

activesupport-1.4.2

rails-1.2.3

rake-0.7.2

To get to the documentation for a given gem, go to the appropriate directory (e.g.
activerecord-1.14.4). Next, go to the rdoc directory. Then load the index.html
file in your browser.

Other Libraries
At this point, you may not be sure about what exactly your application is going to
do, and you may not have a fully-formed idea about which libraries you'll require.
However, there are a few libraries that are very useful when building practically any
Rails application (particularly if you build them how we're going to build them).

Many of the libraries are available using gem and are simple to install. Others require
a bit more work, but typically use the make build tool and Ruby's extconf to compile
and install Ruby extension code

Libraries vs. plugins
When you're developing with Ruby on Rails, there are two sources of
add-ons you may need to make use of.
Libraries are extensions to Ruby itself and can be used for writing
command line scripts or GUI applications in Ruby, as well as from within
Rails applications. These are the add-ons I'll be describing in this chapter.
Plugins are Rails-specific extensions. They have little meaning outside of
Rails, as they typically alter the behavior of classes specific to Rails. They
are covered in Chapter 8.

Capistrano for Easier Deployment
Capistrano is a deployment tool which is tightly integrated with Rails. It allows you
to do things like check out your application code from a version control system and
deploy it to production servers, restart application servers, etc. It can be installed
from the command line with:

$ gem install capistrano -y

We'll be covering Capistrano in some detail in Chapter 9.

Laying the Foundations

[56]

Mongrel: A Better Way to Run Rails Applications
Mongrel (http://mongrel.rubyforge.org/) is a great way to run Rails
applications in either a development or production environment. It provides a Ruby-
centric application server, specifically designed for running Ruby web frameworks
(as well as Ruby on Rails, it also supports Nitro and Camping). Additionally,
Mongrel can be fronted with Apache, enabling you to leverage Apache's awesome
power when serving static files (images, static HTML) while farming out dynamic
pages to your Rails application. You can even cluster Mongrel instances for higher
performance. By starting out with Mongrel, you are kitting yourself out with all the
tools you need to run applications efficiently once they get to production.

On Linux, you will need the development libraries for your version of Ruby to install
Mongrel. This is because Mongrel is compiled by gem for the architecture you are
using. The development library has the same name as the main library, with -dev
appended to it. In the case of Ruby 1.8.x, where the Ubuntu library is called ruby1.8,
the development library is ruby1.8-dev and can be installed with:

$ apt-get install ruby1.8-dev

Mongrel can now be installed via gem:

$ gem install mongrel -y

One, slight complication is that there are many versions of Mongrel, which can be
confusing. Here's a fraction of the list shown when installing it on Ubuntu:

Select which gem to install for your platform (i686-linux)

 1. mongrel 1.0.1 (ruby)

 2. mongrel 1.0.1 (mswin32)

 3. mongrel 1.0 (mswin32)

 4. mongrel 1.0 (ruby)

 5. mongrel 0.3.13.4 (ruby)

 6. mongrel 0.3.13.3 (ruby)

 7. mongrel 0.3.13.3 (mswin32)

...

Some guidelines for choosing which version to install:

1. Get the one with the highest version number (and nearest to the top of the
list). At the time of writing, this was version 1.0.1.

2. If you are installing on Windows, choose the mswin32 gem; on any other
system, use the gem marked ruby.

Chapter 3

[57]

The Mongrel dependencies are also installed by this command: daemons, which
enables you to run Ruby programs as background processes and manage them
through start/stop scripts; gem_plugin, which enables loading of 3rd party Mongrel
extensions; fastthread, which provides a faster threading implementation for Ruby;
and maybe others, depending on the version of Mongrel you are installing. If you are
prompted for a version of any of the dependent libraries you want to install, select
the one nearest to the top. Choose the mswin32 version if installing on Windows,
and the ruby version for other platforms.

It is also worth installing mongrel_cluster, which makes it easier to manage
multiple Mongrel instances for scaling your application gracefully. We won't be
using it for now, but it doesn't hurt to have it around:

$ gem install mongrel_cluster

If you are installing on Windows, it is a good idea to install the Windows services
support for Mongrel. With this, you can run Mongrel as a service on a Windows
server, so it starts when the machine boots. Install it with:

C:\> gem install mongrel_service

Mongrel configuration is described in Chapter 6, and again in more depth in
Chapter 9.

Choosing a Database Platform
Most Rails applications depend on a database for storing their data (though, you
can write a Rails application without a database, of course). Rails supports a variety
of databases, including most of the main open source ones (MySQL, PostgreSQL,
SQLite), as well as proprietary ones (Oracle, SQL Server).

If you work in a small development team with complete control over your
environment, you could do worse than choose MySQL as your database server.
You can use MySQL for internal development work with no cost whatsoever, no
strings attached, on as many machines as you like. If you want to, you can also roll
it out into production with little or no cost, and it will scale phenomenally well.
When you do want support, you can get it from MySQL AB (the company which
originated MySQL and owns the intellectual property): their support contracts are
reasonably priced (cheaper than those for many proprietary databases), and scale
from two-incident to 24-7 phone support. Aside from the cost angle, it is also easy to
learn and administer and is very stable, too. For these reasons and others, MySQL is
recommended as a database server for development work.

Laying the Foundations

[58]

Another database platform you will commonly encounter is SQL Server, as it's
part of Microsoft's Small Business Server, a ubiquitous piece of software in small
businesses. If you are building applications for a client who controls the production
platform, you may be required to use this for your database. Fortunately, Rails
cleanly separates the development and production environments, so it is
eminently plausible to develop on MySQL (for example), and deploy to SQL Server
for production.

In fact, because of how Rails is designed, your choice of database server at this point
is less important than it could be. For example, Rails lets you define your database
schema in a platform-agnostic fashion (via migrations, covered in the next chapter).
This means you can reproduce the same structure on a variety of database platforms
with little effort.

Personally, I like SQLite for my development work, because I can move a whole
application and its database between machines very easily; while I prefer MySQL for
production deployments.

Throughout the book, we'll be using Rails with MySQL. However, if you need to use
a different database, you can find information on configuring Rails to work
with your choice of database here: http://wiki.rubyonrails.com/rails/
pages/Howtos.

Installing MySQL
MySQL is included with several of the Rails bundles mentioned earlier: for example,
if you use InstantRails on Windows, you get MySQL for free. If you are installing
MySQL in standalone mode, installation is still straightforward. Recommendations
for the different platforms are given below.

MySQL on Windows
To install MySQL on Windows, download the Current Release for Windows from
the MySQL website (http://mysql.com/downloads/#downloads). Your best bet is
to get the Windows Essentials package, which includes all the binaries and command
line tools you need to run MySQL on Windows. (The larger Windows package adds
extra support for developers who need to get further into MySQL's internals.)

Chapter 3

[59]

MySQL comes with a full Windows installer, which takes you through the
installation process step-by-step. The Typical setup installs both the server and
command line utilities we need.

Configuration is also accomplished through a graphical wizard. During installation,
you will be asked whether you want to configure the server immediately, and should
do this.

The configuration wizard is slightly confusing (at least for me, as it uses terms like
OLAP and OLTP which are kind of irrelevant), so here are some recommendations
for each step of the configuration process:

1. Select Detailed Configuration.
2. Select Developer Machine. This prevents MySQL from hogging memory.
3. Select Multifunctional Database. This gives you the option to use the

InnoDB table type (if you want to), which supports transactions and
foreign keys.

4. Leave the InnoDB Tablespace Settings at their defaults.
5. Select Decision Support as you are unlikely to be pushing hundreds of

connections onto a developer's server.
6. Un-tick the Enable TCP/IP Networking setting. If installing for a developer,

the MySQL server doesn't need to be accessible to other machines over the
network. However, if you want to remotely manage MySQL from another
machine on the network (either from the command line or using the MySQL
Administrator GUI tool), you need to enable TCP/IP Networking here.

7. Set the default character set to the one you are most likely to work with. utf-8
is a good choice, as it is suitable for general-purpose work.

8. Check Install as Windows Service (so MySQL starts and stops automatically
with the machine) and Include Bin Directory in Windows PATH (so the
command line tools are readily accessible).

9. Set a New root password to secure the administrative user account.
10. Click on the Execute button.

Laying the Foundations

[60]

If everything has worked correctly, the MySQL server should start up and you
should see a window like this:

See section Checking Your MySQL Installation (later in this chapter) for instructions on
how to verify your installation.

When you are installing MySQL on a production server, some of these
settings may not be appropriate. For example, you may want to increase
the number of concurrent connections allowed, or turn on TCP/IP
networking (e.g. if you have multiple web servers which need to talk to a
single MySQL server).

MySQL on Linux
The easiest way to install MySQL on Linux is via package management,
e.g. on Ubuntu:

$ apt-get install mysql-server

On Ubuntu, this installs a standard MySQL server and command-line client. The
server is installed with InnoDB support and networking enabled (on the local
interface only), comparable to the Windows installation outlined in the previous
section. However, there is no root password set, which needs fixing. Run this
command from a prompt:

$ mysqladmin password <new password>

Where <new password> is the new password you want to apply.

Chapter 3

[61]

MySQL on Mac OS X
A binary distribution of MySQL is available for Mac OS X, from the same location as
the Windows downloads (http://mysql.com/downloads/). Alternatively, you can
install it via DarwinPorts (http://darwinports.opendarwin.org/). The MySQL
site has some hints on installation at http://dev.mysql.com/doc/refman/5.0/en/
mac-os-x.html.

MySQL is already installed on the server edition of Mac OS X, so you
shouldn't have to do any extra work to set it up on a Mac server.

Checking Your MySQL Installation
To check that your MySQL installation is working, the simplest approach is to use
the mysql command line program. It can be used to access every part of your MySQL
installation, from creating and managing databases, to configuring user permissions
and system settings. You can test whether your server is working and is available
with the following command line:

$ mysql -u root -p

Enter root's password when prompted. You should see something like this if you
logged in successfully:

Welcome to the MySQL monitor. Commands end with; or \g.

Your MySQL connection id is 11 to server version: 5.0.22-Debian_0ubuntu6.06-log

Type ''help;'' or ''\h'' for help. Type ''\c'' to clear the buffer.

mysql>

If this doesn't work, it could be that you typed the wrong password, or that the
password was not correctly set. Try to run the mysqladmin tool again to reset the
password. Alternatively, it may be that MySQL is not running, in which case you
might see this message:

$ mysql -u root -p

Enter password:

ERROR 2002 (HY000): Can''t connect to local MySQL server through socket
''/var/run/mysqld/mysqld.sock'' (2)

In this case, ensure that the MySQL server has started, e.g. on Linux:

$ /etc/init.d/mysql start

Laying the Foundations

[62]

If all else fails, it could be that the machine is not accessible over the network (try
pinging the machine), or it could be a configuration problem. Check the MySQL
manual for more troubleshooting tips (http://mysql.com/doc/).

MySQL GUI Tools
It is possible to control MySQL entirely from the command line. But if you prefer
using GUI clients in your day-to-day work, several are available:

1. MySQL Query Browser is the official MySQL AB GUI client. You can use
it to manage your server and its databases. It is open source and is easy to
install, either using apt-get on Ubuntu, or by installer on Windows or Mac
(from: http://www.mysql.com/products/tools/query-browser/).

2. MySQL Administrator is another official MySQL AB GUI client, a desktop
application which runs on Windows, Linux, and Mac OS X. It provides an
easy-to-follow wrapper around the MySQL configuration files.

3. phpMyAdmin is a web-based (PHP) MySQL management tool. It is
extremely widespread, often provided in shared hosting environments as the
end-user interface to a shared database server. It can be particularly useful if
you have multiple-developer teams, each of which needs different levels of
access to a shared server or their own private set of databases. One gripe is
that the interface is a bit clunky (like many web interfaces), but it is perfectly
functional and stable.

4. MySQL Workbench is a graphical database design tool, again from MySQL
AB. You can use it to generate graphical database models and synchronize
them to a database; or to reverse engineer the structure of an existing
database (e.g. if you wanted to migrate it to a different database platform). It
also supports Access, SQL Server, and Oracle database servers, so it could be
useful for projects where you are working with legacy database systems.

Ruby-MySQL: Making Ruby and MySQL Work
Better Together
The MySQL Ruby binding library is optional but useful. Rails will happily talk to
MySQL without this library using Ruby code (see below for one caveat); but the
conversation will be more efficient with it, as it uses faster C code. If you are using
Mac or Linux, it is well worth installing.

Chapter 3

[63]

At the time of writing, installation of the Ruby-MySQL is essential on
Ubuntu: if you do not install the bindings, Rails will fail to connect to the
database correctly and throw out an error, which looks something
like this:
Mysql::Error: Lost connection to MySQL server during
query: ...
Follow the instructions in the next section to perform the installation.

On Windows, the installation is extremely troublesome and not worth attempting:
your Rails application will still work with MySQL without the bindings.

If you insist on attempting to install Ruby-MySQL on Windows, you may
be able to get a pre-built binary from http://raa.ruby-lang.org/
project/mysql-ruby-win/ (none was available for Ruby 1.8.4 at the
time of writing).

Ruby-MySQL on Linux
On Linux, you can either install the MySQL Ruby bindings through package
management or by compiling it from source.

If using package management (the easiest approach) you can do:

$ apt-get install libmysql-ruby

Alternatively, to install from source, first download the .tar.gz file from http://
tmtm.org/downloads/mysql/ruby/. Get the highest version number compatible
with your version of Ruby: in my case, this was version 2.7. Then install, (as root),
using the command line:

$ tar zxvf mysql-ruby-2.7.tar.gz

$ cd mysql-ruby-2.7

$ ruby extconf.rb

$ make

$ make install

Note that if the MySQL database server is in a non-standard location, you will need
to specify this when running ruby extconf.rb. For example, to install with XAMPP,
you would do:

$ ruby extconf.rb --with-mysql-include=/opt/lampp/include/mysql/ \

--with-mysql-lib=/opt/lampp/lib/mysql/

Laying the Foundations

[64]

Ruby-MySQL on Mac OS X
The easiest approach to installing is to use one of the Ruby-MySQL ports (for the
DarwinPorts package manager—see http://darwinports.opendarwin.org/).
Search at http://darwinports.opendarwin.org/ports/?by=name&substr=mysql
for the port appropriate for your version of MySQL.

Installing an IDE
Using a decent Integrated Development Environment (IDE) can make a big
difference to your productivity as a programmer. While you can code a Rails
application with nothing more than a text editor, an IDE gives you several benefits
over a basic editor:

Syntax highlighting
An IDE will color your code by highlighting different data types, control
constructs (if...else...end, while...end, etc.), and variable names. This makes
it easier to spot places where you have made syntax errors, like missing a
closing quote character when defining a string.
Detecting syntax errors
In cases where syntax errors occur, an IDE can help you navigate to the
location of the error.
Automatic code indentation
Good indentation is very important in making code legible. While it is
possible to do this in a text editor, pressing the space bar can get tedious. An
IDE will provide facilities to customize indentation (e.g. tabs or spaces, N
spaces per indent), indent whole blocks of code consistently, and may also
help with auto-formatting of code.
Code templates
IDEs can help by generating boilerplate code for common tasks (e.g. a
skeleton for new HTML files).
Integration with external tools
Development is not just about coding: it's also about working with databases,
build tools, running batch scripts, copying files to servers, and so on. A good
IDE will provide support for common development tasks, but also enable
you to customize interactions with external applications.
Source code repository integration
Any serious coding project needs a source code repository, and your IDE
should support interaction with this repository. While this is related to the
previous point, your IDE should make version control easy and integrated
into the fabric of coding.

•

•

•

•

•

•

Chapter 3

[65]

A good text editor will provide some of these facilities, though not all. However,
any text editor is better than the Windows default, Notepad: Notepad can be very
problematic, as it doesn't handle line breaks on different operating systems that well.
So, if you are looking at code written on a UNIX machine, Notepad may very well
make it unintelligible.

One alternative is SciTE for Windows (http://www.scintilla.org/SciTE.html),
which supports syntax highlighting for a variety of languages; it is also a part of
the InstantRails bundle for Windows. However, it doesn't provide integration with
source code repositories. Other good choices are TextPad (http://textpad.com/)
and the Programmer's Notepad (http://www.pnotepad.org/).

Eclipse
One tool which provides all of the above facilities is Eclipse (http://eclipse.
org/). This is rapidly becoming the de facto development environment for many
programming languages, including Java and PHP, and is an excellent environment
for Rails development. Here's what it looks like in action on Linux, editing some
Rails code:

Laying the Foundations

[66]

Here, you can see the Ruby syntax highlighted (right-hand pane), plus the resource
view (left-hand pane) which shows the files and folders in the project. Also note the
icons on the files and folders: these indicate the relationship between the local file
system and a Subversion repository, enabling you to identify where you have made
changes to your code which aren't yet committed to the repository. Also note the
Tasks tab (bottom right) which you can use to leave yourself to dos.

Pros and Cons of Eclipse
Eclipse is a great development environment. However, some people see some cons
with using it:

It requires Java
This used to be an issue, as it meant you had to install Java, which had no
decent open source implementations. However, it is now possible to run
Eclipse using gcj, a complete open source Java implementation.
It is a big download
Getting everything you need for your development work requires around
100Mb of download. This is big, granted, but less important as bandwidth
soars into the stratosphere.
It is overkill
Many projects are small and don't need the overhead of a massive,
complicated IDE. Butyou don't have to use Eclipse for everything: you can
still use vim or a graphical text editor for quick edits or for tiny projects.
It is slow
This used to be more of an issue when RAM was expensive. However, while
startup is still a bit painful at times, once Eclipse is up and running it is very
responsive.
The interface is intimidating
However, it is highly customizable, so you can turn off the bits you don't like.

On the pros side:

It is cross platform (Windows, Mac OS X, and Linux)
This means you can use it in a mixed OS environment, and everyone
will have the same tool, which lowers training costs and makes sharing
application knowledge easier.
It is multi-purpose
While we are going to use Eclipse in the context of Rails development, you
can use it to develop in many other languages (e.g. C, Java, PHP, Perl, and
Python). This means that if a team develops using a variety of languages,
they can use a single piece of software and a consistent interface for all their
development work.

•

•

•

•

•

•

•

Chapter 3

[67]

It is extensible through plugins
Eclipse is multi-purpose because of its plugin architecture: potentially
anyone can extend Eclipse's functionality by writing their own plugin.
This means that a wealth of tools has emerged, using Eclipse as a base, and
practically any development task you might want to perform has an Eclipse
plugin available.
It is freely available
You can use Eclipse, with no charge or restrictions, on an unlimited number
of machines.

I believe the pros outweigh the cons, and that Eclipse is an ideal IDE for small teams
with smaller budgets. From now on we're going to code in Eclipse throughout the
rest of the book.

A couple of caveats about requirements: Eclipse is very RAM hungry and
won't perform brilliantly on machines with less than 512Mb of RAM: 1
GB of RAM will give good performance. You will also need about 200Mb
or so of hard disk space.

EasyEclipse
EasyEclipse is a nice packaging of Eclipse for Windows, Mac OS X, and Linux. It
includes a Java Runtime Environment (JRE), Eclipse, plus some stable and useful
plugins. The plugins included are dependent on the distribution you choose. Each
distribution bundles plugins for a particular development situation: for example,
there is an EasyEclipse for PHP, which includes PHP support, HTML editing tools,
and Subversion integration; and an EasyEclipse for Python, which includes support
for the Python language.

For our purposes, the best choice is Easy Eclipse for Ruby on Rails, which includes:

Eclipse, itself.
A Java Runtime Environment (in the Windows and Linux versions; Mac OS
X has its own JRE). This is required to run Eclipse.
Ruby Development Tools, for highlighting and syntax checking of Ruby
files, integrated testing, code hints, source formatting, and a debugger.
RadRails, for Rails-specific Eclipse features, such as convenient buttons
to run automated tests and extra controls for activating the Rails code
generators.
QuantumDB, for interacting with database servers. You can use it to run
SQL queries against databases and view tables and data graphically.

•

•

•

•

•

•

•

Laying the Foundations

[68]

Subclipse, for working with Subversion repositories. Code can be saved back
to the repository or checked out of it (more information about Subversion
is available in the Version Control section section towards the end of
this chapter).

Easy Eclipse for Ruby on Rails downloads are available at:

http://www.easyeclipse.org/site/distributions/ruby-rails.html

EasyEclipse is very simple to install, as described next.

Installing EasyEclipse on Windows
The download is an executable file which contains an installer. Double-click on the
downloaded file and follow the instructions; it's OK to accept all the default settings.

The best location for installing EasyEclipse is outside your Program
Files directory: If you install inside Program Files, you may find that
EasyEclipse won't run at all, as Java dislikes spaces in filesystem paths

Once installed, you should have a new item called EasyEclipse for Ruby on Rails in
your Start menu (under Programs).

Installing EasyEclipse on Linux
Download the EasyEclipse tarball for Linux (.tar.gz file). Unpack this file where
you want to install EasyEclipse, e.g. to put it in your home directory:

$ cd ~

$ tar zxvf easyeclipse-ruby-rails-1.0.2.tar.gz

$ ln -s ruby-rails-1.0.2 easyeclipse

The last command creates a symlink from the full directory name to an easier-to-
remember path.

•

Chapter 3

[69]

It is easy to create a launcher for Eclipse on your Desktop. In Ubuntu, right-click
on the desktop and select Create Launcher... from the context menu and fill in the
options in the Create Launcher dialog box. This is what the dialog box looks like
when complete:

(You can browse to the icon in the EasyEclipse installation directory.)

The important part of this is the Command text box, which should reference
the correct path to your Eclipse start script, e.g. for the demo user this might be
something like:

/home/demo/easyeclipse/eclipse

where /home/demo/easyeclipse/ references the symlink to the EasyEclipse
installation directory, and eclipse is the name of the Eclipse start script.

Note that you can pass extra arguments to Eclipse on the end of this command.
Modify the command line to make sure Eclipse has enough memory by passing
these arguments:

-vmargs -Xms256M -Xmx512M

What's actually happening here is that we are passing extra arguments to the Java
Runtime Environment (the -vmargs flag tells Eclipse "Here come some arguments
for Java"); the two arguments we're passing are: -Xms256M ("Claim a minimum of
256Mb of RAM") and -Xmx512M ("But don't claim more than 512Mb of RAM"). You
can set these higher if you like, but these values should be fine.

Laying the Foundations

[70]

Click on the Launcher to start Eclipse. During the first startup, you are prompted
to select a workspace: a default location for Eclipse to save projects to. Accept the
default location or set a custom path. Also tell Eclipse to Use this as the default and
do not ask again:

Once, the startup is complete, click on the Workbench icon to go to the main
Eclipse interface.

The last piece of configuration is to tell Eclipse where the Ruby binary is located
(which it uses to do syntax highlighting and the like.) First, locate the Ruby binary
using the command line:

$ which ruby

/usr/bin/ruby

Then, in Eclipse, set the Ruby interpreter under Window | Preferences | Ruby |
Installed Interpreters. Click on the Add button and fill in the dialog box with the
path to Ruby, e.g.

Chapter 3

[71]

Installing EasyEclipse on Mac OS X
EasyEclipse is provided as a disk image file (.dmg suffix) for Mac OS X. Download
this file, then double-click it to open up the Volume. Once inside, double-click on the
Installer Package to install to the /Applications folder. Use the Finder to locate the
EasyEclipse icon and double-click to run it. (You can drag and drop the icon into the
Dock to make it easier to find.)

Instructions for Masochists
If you really enjoy making life hard for yourself, it is feasible to install every
component of a Rails stack (more or less) from source code. This will really give you
an insight into how Rails stack ticks, but it is not for the faint-hearted.

The definitive instructions for doing this on a Mac are available at: http://
hivelogic.com/articles/2005/12/01/ruby_rails_lighttpd_mysql_tiger

Some Linux instructions are available on the Rails wiki:
http://wiki.rubyonrails.com/rails/pages/RailsOnUbuntu

(This approach could be tricky on Windows, as it would require addition of large
amounts of open source software before the compilation could even begin.)

As it is always the case with these sorts of how-to, they are continuously changing,
so the above URLs may have vanished by the time you are reading this. The Rails
wiki (http://wiki.rubyonrails.com/) is a good place to start looking for the most
up-to-date instructions.

In the Back Rooms at Acme…
Following the recommendations from the previous sections, the developers at Acme
decide on the following approach:

They first agree on MySQL as the database for development and
production deployment.
On the Windows XP machine (Jenny's), they install MySQL Windows
Essentials, Ruby (using the One-Click Installer, which includes Rubygems),
Mongrel and Capistrano (via gem), and EasyEclipse for Ruby on Rails.
On the Linux machine, Rory installs Ruby using Ubuntu's package
management system, compiles Rubygems, then adds the gems for Rails,
Capistrano, and Mongrel. Next, he installs MySQL using Ubuntu package
management and compiles Ruby-MySQL. He installs MySQL Query Browser
and MySQL Administrator to manage his MySQL server. Finally, he installs
EasyEclipse for Ruby on Rails.

•

•

•

Laying the Foundations

[72]

The Acme developers are now ready to start development. The next step is to setup
the infrastructure for their project, to enable them to work collaboratively on the
code and deploy live applications to their intranet.

Setting Up a Team Server
In this section, we'll see how to set up a team server for Rails development. We'll
only cover the key software for supporting Rails development and assume you can
install and configure the core of the operating system yourself. If you don't have
the resources to run your own server, several ways of outsourcing this function are
covered at the end of the chapter.

Another assumption we make is that this is not a publicly-available server
exposed to traffic from the Internet. Instead, the intranet server is sitting behind a
firewall, similar to the hardware setup at Acme, described in the Supporting Rails
Development section. We also assume that the only people with access to the server
are internal staff: no public or anonymous access. The configuration described below
is the bare minimum you can get away with in this situation, and will need tweaking
on public servers or servers open to the public at large.

Space prohibits covering how to setup a server for each of the main operating
systems (Linux, Windows, Mac OS X), so we'll be using Linux, a reliable and stable
platform for Rails team infrastructure. Having said this, all of the software covered
in this section will also run on Windows or Mac OS X, with installation being similar
to installation on Linux. For example, Subversion can run on Windows, and be
configured using the techniques described below. Differences between Linux and
these two operating systems are highlighted where appropriate.

In the next two sections, we'll see how to configure a team server for three core
functions:

Remote access, for deploy of Rails applications to the server using
Capistrano.
Storing Rails source code using a version control system.
Running Rails code in production using an application delivery platform
(i.e. a web server and/or application server).

If you have a separate servers for the code repository and web server, the
instructions below should be adaptable to your circumstances.
The software covered in these sections is not specific to Rails. However,
any Rails-specific issues involved in using this software are highlighted
later in the book.

•

•

•

Chapter 3

[73]

For reference, here's a list of the software needed on the team server:

Rails stack, comprising:
Ruby
Rubygems
Rails
Mongrel and mongrel_cluster
MySQL
Ruby-MySQL

Installing these components is covered in previous sections, and it is the same
for client machines. (Note that we don't need Capistrano on the server, only
on the developer machines.)
Server-only software:

SSH
Subversion

Installation of the server-only software is covered in the following sections.

We are not going to look at running Apache with Mongrel in the first
instance. Mongrel on its own is a perfectly viable deployment platform
for the first version of the application. Combining it with Apache is
covered later, in Chapter 9.

Quick Gem Installation
The default behavior of gem is to include documentation for each gem you install.
This slows down the installation process significantly, as gem generates the
documentation from the source code.

When you are installing gems on the server, you don't really need the
documentation. You can considerably speed up the installation progress by telling
gem to dispense with the documentation using the --no-rdoc and --no-ri switches
on the gem command. For example:

$ gem install rails -y --no-rdoc --no-ri

•

°

°

°

°

°

°

•

°

°

Laying the Foundations

[74]

Remote Access via SSH
Secure Shell (SSH) is a vital tool for remote administration. It is included by default
with practically every Linux distribution, and is very useful for Rails development,
as it enables automated deployment of applications via Capistrano. We are also
going to use it as the method of access to the Subversion repository.

The installation procedure on Ubuntu is simple:

$ apt-get install openssh-server

You can configure the port and various other options in /etc/ssh/sshd_config. For
more information, see the SSH website at, http://www.openssh.com/.

It is also possible to install an SSH server on Windows, and several SSH
Windows installers exist such as, OpenSSH for Windows (http://
sshwindows.sourceforge.net/) or the commercial WinSSHD
(http://www.bitvise.com/winsshd.html).

Adding Users
To enable access to the team server, you will need to add user accounts for each
developer on the team server. Use whichever tool you are most comfortable with. To
do this on Linux, you can either use one of the GUI user management tools, or add
the required users from the command line, e.g. for Rory:

$ sudo useradd --create-home --home-dir /home/rory -g users rory

$ sudo passwd rory

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

Once, Rory is setup as a user on the team server (with IP address 192.168.13.129),
he can try to login using the Linux command line client:

$ ssh rory@192.168.13.129

The authenticity of host ''192.168.13.129 (192.168.13.129)'' can''t be
established.RSA key fingerprint is 61:7a:6a:0e:5d:c5:0b:45:24:08:44:
f0:06:eb:07:c0.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ''192.168.13.129'' (RSA) to the list of known
hosts.

rory@192.168.13.129''s password:

Linux demo-server 2.6.15-23-386 #1 PREEMPT Tue May 23 13:49:40 UTC 2006
i686 GNU/Linux

...

Chapter 3

[75]

Note that the first time Rory logs into the server, he is prompted to accept the
authenticity of the certificate presented by the server. Once he's done this, providing
the server IP address doesn't change, he will not have to do it again.

If you're using Windows, you could use a tool like PuTTY (http://www.chiark.
greenend.org.uk/~sgtatham/putty/) to test whether you can login to the
SSH server.

Later in the chapter, we'll see how to use SSH to access a Subversion repository
from Eclipse.

Version Control with Subversion
Most companies need some way to share electronic files between the members of
staff: for example, timesheets, holiday forms, project documentation, etc. The typical
approach taken is to setup what's colloquially called a shared drive. This is often as
simple as a shared directory on a Windows machine in the corner of the office; or
if the company has the money, they may stretch to a dedicated server or Network
Attached Storage (NAS) appliance on their intranet.

Programmers working in these environments will often use the same approach,
reading and writing source code files from the shared drive, resolving locks and
conflicts manually (e.g. by email or verbally). In the Supporting Rails Development
section, we saw how Acme staff used their server in this way. However, this brings
with it a variety of problems, the most painful being accidental overwriting of other
people's modifications.

The best solution in this situation is a version control system. Using this approach,
developers each have their own local version of the code or working copy, checked
out from a central repository. When they make changes to the code, they can save
(commit) these changes back to the repository. Every other developer then has access
to the changes and can update their working copy to incorporate them.

In situations where two developers working on the same file make conflicting
changes, the version control system does its best to resolve the conflict and
automatically merge in both sets of changes. In cases where this is not possible, the
system will highlight conflicts and ask developers to manually resolve them. This
makes it nearly impossible for two developers to overwrite each other's work.

Laying the Foundations

[76]

The next section describes Subversion, the de facto standard open source version
control system. This is a core part of a successful team infrastructure for Rails
developments, as it provides:

Control of submissions to the repository so that one person cannot
accidentally overwrite another person's changes.
A historical record of changes made to the code (it keeps a record of every
modification).
The ability to take snapshots of released versions.
The ability to simultaneously develop multiple versions of a single
application.
And more...

Rails integrates nicely with Subversion via Capistrano (see the section Capistrano
for Easier Deployment). Capistrano can radically simplify application deployment,
making it easy to roll out a new version of an application, or to roll back if a new
version causes problems.

This will only give a brief overview of how to install and configure Subversion,
and will concentrate on showing how to integrate it with EasyEclipse. If you are
interested in exploring Subversion in more depth, get hold of the free online book
Version Control with Subversion from http://svnbook.red-bean.com/.

Installing Subversion
The simplest approach to installing Subversion on Ubuntu is via the command line
(as root) with:

$ apt-get install subversion

That's all there is to it.

If you want to install Subversion on Windows, a one-click installer is
available at, http://svn1clicksetup.tigris.org/.

The command line Subversion client application is called svn. Type the following at
a command line to see which version you are running and which subcommands
are available:

$ svn help

usage: svn <subcommand> [options] [args]

Subversion command-line client, version 1.3.1.

Type ''svn help <subcommand>'' for help on a specific subcommand.

...

•

•

•

•

•

Chapter 3

[77]

The administrative application is called svnadmin. We'll be using this in a
moment to setup our source code repository. But first, we'll cover some standard
practices for organizing team work around a Subversion repository.

Subversion Standard Practices
At its simplest, a Subversion repository is a place to store multiple parallel versions
of files relating to a project. These files will typically be code, but could also include
images, documentation, PDF files, and directories; in fact, any type of file you like.
(Unlike CVS, an older version control system which predates it, Subversion is easily
able to cope with binary files.)

One way to think of a Subversion repository is as a tree structure, similar to a
filesystem. It's not really a filesystem, and in fact it is more like a database, but this
is a useful analogy for understanding its structure. At the top of the tree, you have
the "root" of the repository; inside that, you have a separate "directory" for each
project in the repository. Assuming a repository with two projects, addressbook and
calendar, its layout can be visualized like this:

/repository root

/addressbook

/calendar

Laying the Foundations

[78]

Within individual project directories, the standard Subversion layout involves three
"subdirectories", representing three different aspects of a project:

Trunk
This represents the most up-to-date, mainstream version of the project's files.
If you are adding new features to the latest release of an application, you will
typically do so using trunk as a base.
Branches
This contains alternative, parallel versions of the project files. Each parallel
version has its own subdirectory inside the branches directory called a
branch. Each branch must have been derived from some other version of the
project files at one time, whether from trunk or another branch.
The most common use of branches is as a way of storing individual versions
of an application, such as version-0.2, version-0.3 etc. (the naming of branches
is flexible). Another, legitimate use is to create arbitrary branches like dodgy-
experimental-branch, where someone can try out new ideas without affecting
trunk. Any useful changes made in that branch could then be merged back
into trunk when ready.
Subversion's mechanism for creating branches is to copy some part of the
repository: usually, a branch is a complete copy of the application trunk at
some point of time. (You can think of this as equivalent to a literal directory
copy on a standard filesystem.) Once the copy is made, the source of the
branch (where the branch was copied from) and the branch itself are logically
separated from each other: any changes to the branch do not affect the source
unless a developer explicitly merges the changes in.
Tags
Tags are similar to branches, in that they are created by the same method (by
copying a section of the repository tree). However, they are not intended to
be worked on: they are static snapshots of the project files at a specific point
of time. A typical approach might be to label them release-0.2, release-0.3 etc.,
maintaining them as historical copies of the code base when new versions
are released.

•

•

•

Chapter 3

[79]

Focusing on the addressbook project, the three subdirectories can be visualized
like this:

/repository root

/addressbook

/addressbook/branches/version-1.0

/addressbook/branches/version-1.0/*/addressbook/tags

/addressbook/branches

/addressbook/trunk

/addressbook/trunk/*

The main development of the addressbook project goes on in the trunk of the
repository. There is also a single branch called version-1.0 in the branches directory,
which was copied from trunk when the first version of the application was released.
Development can be carried out in the version-1.0 branch without affecting the
content of trunk, as the former is logically isolated from the latter.

Note that version-1.0 is logically equivalent to a subdirectory inside the branches
directory and contains all the files in that version of the application. A developer
could check out the whole of version 1.0 by checking out that one branch. The
asterisk is used to denote the multiple files and subdirectories making up a version
of the application.

Laying the Foundations

[80]

We'll follow this standard structure for the projects in the rest of the book,
creating a "directory" for each project, with three subdirectories (trunk,
branches, and tags) inside it. This isn't the only way you can structure
a repository, but you will find that it is fairly standard among publicly-
accessible projects.

Revisions and Working Copies
The final complication we've hidden until now is the concept of a revision. A
revision is roughly comparable to a "third dimension" of the repository: time. A
revision is basically a snapshot of the state of the entire repository at a particular
point in time. Each time anyone makes a change to any part of the repository (e.g.
adding or deleting a file, modifying a file), they create a new revision of the whole
repository. This is not a literal copy of all the files in the repository, but in some ways
can be thought of as a "virtual" copy of it.

What does this mean for an individual project? When you do a "default" checkout
of a project from a repository, you get the project files as they appear in the HEAD
revision of the repository. The HEAD revision corresponds to the most recent
revision number of the repository. So, if the HEAD revision is 10, you get the
project files as they appear in revision 10. This is true even if the project files haven't
changed since revision 5 (or even earlier) of the repository.

When you checkout a project, you create a working copy of some subtree of the
repository. This is typically from trunk, but could also be from a branch. You then
work on your working copy until you are ready to commit your changes back. At
this point, Subversion compares your working copy to the part of the repository you
checked out in the first place. For each file, there are four possible outcomes:

1. The local file is unchanged and identical to the version in the repository.
Subversion does nothing.

2. The local file has not been modified, but it has been modified in the
repository since it was checked out. Subversion will not commit the file.
You need to modify the local copy to make sure it is up to date with the
repository.

3. The local file has been modified and no changes have been made in the
repository since it was checked out. In this case, the local file changes are
copied to the repository.

4. The local file has been modified, but it has been modified in the
repository since it was checked out. Subversion will not commit the file
to the repository. If you run an update operation, Subversion will attempt
to merge changes in the repository version into your local copy of the file.
Hopefully, you can subsequently commit your changes.

Chapter 3

[81]

Armed with this knowledge of some Subversion terminology, we are now in a
position to set up and start using a repository.

Setting Up a Subversion Repository
A Subversion repository is simply a specially-formatted directory structure on a
server. Inside the root directory of the repository are a series of subdirectories and
control files, which define the content of the repository and how it operates. The
command line tool svnadmin can be used to initialize and maintain this structure on
the team server.

You will need to login as the root user to perform the
following operations.

As the Subversion repository is part of the filesystem, all of the developers on the
project who need to write to the repository will need write permissions on the
repository directory. The easiest way to do this is to create a special group (e.g. svn)
to which all of the developers belong. The repository directory can be owned by this
group and made writable by it.

The svn group can be added using the Linux GUI user management tools (in
Ubuntu, under main menu | System | Administration | Users and Groups), or via
the command line:

$ groupadd svn

In Acme's case, Rory and Jenny will both need to be members of the svn group
(as will anyone else who needs to write into the repository). The easiest way to
accomplish this is to use the GUI user management tools available in Linux, or via
the command line with:

$ usermod -G svn -a rory

The above command adds Rory to the svn group, retaining his existing
group memberships.

Next, create the directory which will become the repository. This can be located
anywhere, but we'll use /repository:

$ mkdir /repository

Now that the directory is in place, initialize the repository structure inside it:

$ svnadmin create --fs-type=fsfs /repository

Laying the Foundations

[82]

The --fs-type=fsfs flag tells svnadmin to use the fsfs filesystem to store the
repository structure. This is the recommended filesystem, as it is faster, more stable,
and more efficient.

Set the group ownership of the /repository directory to svn, make the directory
writable by that group, and set the group ID on the directory. The latter step means
that any new folders or files added to the repository are also owned by (and writable
by) the svn group:

$ chgrp -R svn /repository

$ chmod -R g+sw /repository

For testing purposes, add a normal user account to the svn group. Then login as this
user, get a command line up and try this:

$ svn mkdir file:///repository/test -m ''testing''

Committed revision 1.

The message above (Committed revision 1) shows that the Subversion repository
is working correctly. The mkdir command created a directory called test inside the
repository; it also associated the comment testing with the revision (via the -m flag).

Use this command to view the first revision:

$ svn list file:///repository

You should get this in return:

test/

Once you have this up and running, you can delete your test directory with:

$ svn del file:///repository/test

Setting Up a Project in Subversion
A Rails project can be treated just like any other project in a Subversion repository,
adhering to the standard layout outlined in the Subversion Standard Practices
section. For now, we'll set up a blank project, ready to be populated with a Rails
application in later chapters.

Chapter 3

[83]

The first step is to create the project directory structure. Once the directories have
been created, this structure can be imported into the repository. We'll use the project
name Intranet. Enter these commands at the command line:

$ mkdir tmp

$ mkdir tmp/Intranet

$ mkdir tmp/Intranet/trunk

$ mkdir tmp/Intranet/branches

$ mkdir tmp/Intranet/tags

The tmp directory is a temporary store for the project structure (it can be deleted
later). The aim is for the content of the tmp directory to be copied to the root of
the repository, so the Intranet application will reside at /Intranet (relative to the
repository root).

Import the project structure into the repository with this command:

$ svn import tmp file:///repository/

Once this is done, the tmp directory can be removed. Check the project structure is
correctly setup by running this command:

$ svn list file:///repository/Intranet/

branches/

tags/

trunk/

From this point on, we'll interact with the repository through Eclipse rather than the
command line. However, in its current state, the repository is not easily available to
the team. We're going to access it over SSH, which is simple and secure to setup.

Browsing Subversion from Eclipse
EasyEclipse includes both Eclipse and the Subclipse plugin. The latter enables
Eclipse to communicate with Subversion repositories over SSH. This is the approach
we're going to use.

The best way to set this up is to first create a new Eclipse project based on a checkout
from a repository. We've already seen how to configure the Subversion repository
for the Intranet project, setting up a trunk, branches and tags for it. In this section, we
will start a new project by checking out the content of the Intranet trunk.

www.allitebooks.com

http://www.allitebooks.org

Laying the Foundations

[84]

To make this as realistic as possible, I will be accessing the server from
a separate developer machine. The steps below will still work if the
Subversion server and Eclipse are on the same physical machine.

Get EasyEclipse up and running on the developer machine, then follow these steps:

Select File | New | Project. In the dialog box, select SVN | Checkout Projects from
SVN as shown below:

Chapter 3

[85]

Click on Next >.

 The next dialog box asks for the location of the repository:

Select Create a new repository location and click on Next.

On the Linux version of EasyEclipse that I was using, the Next button
was disabled when I entered this dialog box (a bug). To fix this, I clicked
on the other option (Use existing repository location), then came back to
Create a new repository location. The Next button was now enabled.

In the Url text box of the next dialog box, enter the URL to the repository. It will look
like this:

svn+ssh://user@x.x.x.x/repository/path/to/project/
directory

Where x.x.x.x is the IP address or hostname of the server, /repository is the
path to the repository, and /path/to/project/directory is the path to the project
directory in the repository, relative to the repository root. Note that we are using
svn+ssh as the scheme for the URL: this makes use of SSH to connect to the server
and start an svnserve process, which presents the repository to the user.

Laying the Foundations

[86]

In our case, the client and server are on an internal network, and the client can reach
the server at IP address 192.168.13.129. The repository is located on the path /
repository on the team server; in addition, we want to work on the Intranet project,
so the last part of the path should read /Intranet. Putting this all together gives the
URL shown below:

EasyEclipse now contacts the server and prompts you for the username and
password for accessing the repository. Use the username and password set up in
section earlier in this chapter (covering how to setup SSH users on the team server):

Chapter 3

[87]

Note that the Save information checkbox: tick this so that there is no need to enter
the password every time you check code back into the repository.

A list of the subdirectories for the Intranet project are now displayed. Select trunk
and click on Next >.

Now , complete the final dialog box with the project details. A simple approach is to
give the project a name matching the one in the repository:

If this went smoothly, there should now be a new project in the left-hand sidebar of
EasyEclipse.

Laying the Foundations

[88]

There's nothing inside the project yet, but we will be adding content over the
following chapters.

Other Subversion Clients
If you are not convinced that EasyEclipse is the right Subversion client for you, or
if you have non-programmers who need access to the repository, TortoiseSVN
(http://tortoisesvn.tigris.org/) is a great alternative client tool for Windows.
It integrates very cleanly with Explorer and makes it easy for non-technical users to
work with version control.

If you are looking for a TortoiseSVN-style client for Linux, Meld is well worth a look
(http://meld.sourceforge.net/).

Using Other People's Servers
If you don't have access to your own dedicated server, there is still the possibility of
using external services for your development and deployment.

If you are looking for a Subversion repository, RubyForge (http://rubyforge.
org/) is the main repository of Ruby and Rails related projects. Teams developing
open source software can make use of their facilities to manage the project and host
their code in a Subversion server. However, if you are developing proprietary code,
your project will not be eligible for inclusion.

There are also commercial hosted project management solutions which may be
suitable if you are not developing open source software. Try googling for
hosted subversion.

If you are looking for a place to deploy your applications to, there are a variety
of companies either providing Rails support as part of a larger offering, or
providing dedicated Rails-only hosting. Ruby On Rails Webhosting
(http://www.rubyonrailswebhost.com/) is one site which maintains a list of Rails-
enabled hosting, along with user reviews.

Back at Acme
Acme already has a Linux server, housing a shared directory, with SSH installed
for remote administration. First, they install a Rails stack, mirroring Rory's Ubuntu
Linux developer machine setup. Next, they install Subversion set up user accounts
for each member of the team. That's all they need to do to get up and running.

Chapter 3

[89]

Rory and Jenny setup the repository structure for the Intranet project and configure
their instances of EasyEclipse to talk to the new repository over SSH. They are now
ready to start development of the Intranet application.

Summary
While Rails is easy enough to set up for a single user, there are many more choices
to make when configuring Rails infrastructure for a small team. Having to cope with
multiple operating systems and find productive and consistent developer tools,
while catering for collaborative code development, makes requirements considerably
more complex.

By choosing the proven, cross-platform, open source technologies recommended in
this chapter, many of these requirements can be met at low cost and with high levels
of reliability. Beyond meeting requirements, the deep integration between Rails and
the suggested tools makes development more rapid and of higher quality. These are
the reasons why it pays to get this right from the start.

In the next chapter, we'll start developing the Intranet application using these tools,
demonstrating how they provide a smooth Rails development experience

Working with Rails
It's now time to get our hands dirty and start developing a Rails application. In
Chapter 2, we saw the data structure for the Intranet application, which Acme
plans to build. In this chapter, we'll start building this application: in effect, we will
be looking over Rory's shoulder as he develops Intranet. For the purposes of this
chapter, Linux will be used as the development platform; but as all of the tools used
are cross-platform, the instructions should port easily to Windows and Mac.

Specifically, we'll focus on turning the abstract data structure for Intranet into a Rails
application. This requires a variety of concepts and tools, namely:

The structure of a Rails application.
Initializing an application using the rails command.
Associating Rails with a database.
The built-in utility scripts included with each application.
Using migrations to maintain a database.
Building models and validating them.
Using the Rails console to manually test models.
Automated testing of models using Test::Unit.
Hosting a project in a Subversion repository.
Importing data into the application using scripts.

You may have noticed that we haven't mentioned much about the application's user
interface. That's because we can build a large part of the application without having
to code HTML. We'll see how to add a front-end in the next chapter, but for now we
will concentrate on the data side of things.

•

•

•

•

•

•

•

•

•

•

Working with Rails

[92]

The World According to Rails
To understand how Rails applications work, it helps to get under its skin: find out
what motivated its development, and the philosophy behind it.

The first thing to grasp is that Rails is often referred to as opinionated software (see
http://www.oreillynet.com/pub/a/network/2005/08/30/ruby-rails-david-
heinemeier-hansson.html). It encapsulates an approach to web application
development centered on good practice, emphasizing automation of common tasks
and minimization of effort. Rails helps developers make good choices, and even
removes the need to make choices where they are just distractions.

How is this possible? It boils down to a couple of things:

1. Use of a default design for applications-
By making it easy to build applications using the Model-View-Controller
(MVC) architecture, Rails encourages separation of an application's database
layer, its control logic, and the user interface. Rails' implementation of the
MVC pattern is the key to understanding the framework as a whole.

2.	 Use	of	conventions	instead	of	explicit	configuration-
By encouraging use of a standard directory layout and file naming
conventions, Rails reduces the need to configure relationships between the
elements of the MVC pattern. Code generators are used to great effect in
Rails, making it easy to follow the conventions.

We'll see each of these features in more detail in the next two sections.

Model-View-Controller Architecture
The original aim of the MVC pattern was to provide architecture to bridge the gap
between human and computer models of data. Over time, MVC has evolved into an
architecture which decouples components of an application, so that one component
(e.g. the control logic) can be changed with minimal impact on the other components
(e.g. the interface).

Explaining MVC makes more sense in the context of "traditional" web applications.
When using languages such as PHP or ASP, it is tempting to mix application logic
with database-access code and HTML generation. (Ruby, itself, can also be used in
this way to write CGI scripts.) To highlight how a traditional web application works,
here's a pseudo-code example:

define a file to save email addresses into
email_addresses_file = 'emails.txt'

get the email_address variable from the querystring
email_address = querystring['email_address']

Chapter 4

[93]

CONTROLLER: switch action of the script based on whether
email address has been supplied
if '' == email_address
 # VIEW: generate HTML form to accept user input which
 # posts back to this script
 content = "<form method='post' action='" + self + "'>\
 <p>Email address: <input type='text' name='email_address'/></p>\
 <p><input type='submit' value='Save'/></p>\
 </form>"
else
 # VIEW: generate HTML to confirm data submission
 content = "<p>Your email address is " + email_address + "</p>"
 # MODEL: persist data
 if not file_exists(email_addresses_file)
 create_file(email_addresses_file)
 end if
 write_to_file(email_addresses_file, email_address)
end if

print "<html><head><title>Email manager</title></head>\
<body>" + content + "</body></html>"

The highlighted comments indicate how the code can be mapped to elements of the
MVC architecture:

Model components handle an application's state. Typically, the model does
this by putting data into some kind of a long-term storage (e.g. database,
filesystem). Models also encapsulate business logic, such as data validation
rules. Rails uses ActiveRecord as its model layer, enabling data handling in a
variety of relational database back-ends.
In the example script, the model role is performed by the section of code which saves the
email	address	into	a	text	file.

View components generate the user interface (e.g. HTML, XML). Rails uses
ActionView (part of the ActionPack library) to manage generation of views.
The example script has sections of code to create an appropriate view, generating either an
HTML	form	for	the	user	to	enter	their	email	address,	or	a	confirmation	message	acknowl-
edging their input.

The Controller orchestrates between the user and the model, retrieving data
from the user's request and manipulating the model in response (e.g. creating
objects, populating them with data, saving them to a database). In the case
of Rails, ActionController (another part of the ActionPack library) is used to
implement controllers. These controllers handle all requests from the user,
talk to the model, and generate appropriate views.

•

•

•

Working with Rails

[94]

In the example script, the code which retrieves the submitted email address, is performing
the controller role. A conditional statement is used to generate an appropriate response,
dependent on whether an email address was supplied or not.

In a traditional web application, the three broad classes of behavior described above
are frequently mixed together. In a Rails application, these behaviors are separated
out, so that a single layer of the application (the model, view, or controller) can be
altered with minimal impact on the other layers. This gives a Rails application the
right mix of modularity, flexibility, and power.

Next, we'll see another piece of what makes Rails so powerful: the idea of using
conventions to create associations between models, views, and controllers. Once you
can see how this works, the Rails implementation of MVC makes more sense: we'll
return to that topic in the section Rails and MVC.

Convention over Configuration
In the previous section, we met the MVC framework, used to define the general
design of every Rails application. The MVC framework naturally breaks an
application into three groups of components (models, views, and controllers). In
the "olden" days, a web application framework would typically define relationships
between these components using a configuration file (e.g. an XML file in the Struts
framework). Writing this configuration file was often a laborious and error-prone
task, and could take the same amount of time as writing the application code itself.

The Rails developers recognised that, most of the time, the relationships between
the parts of an MVC application are obvious, repetitive, and shouldn't require
configuration. There tends to be a common set of actions associated with each
controller ("show a list of model instances"; "show a single model instance";
"create, update, or delete a model instance"); and developers will tend to give them
similar names (list, show, delete, update, create). This realization prompted the
Rails developers to create a set of conventions around how common application
components are implemented: standards for class names and locations, controllers
and actions, file names, and directory structure.

Rail uses these conventions to minimize the need for configuration, automatically
generating much of it when the application is bootstrapped. As well as simplifying
configuration, the conventions also remove the need for a developer to make certain
decisions. In classical web applications, a developer would often have to decide
where to put files and directories, and then have to define relationships between
application elements (e.g. which views are used by which controller). By contrast,
every Rails application has a familiar directory structure, automatically generated
by tools; each file added to the project usually adheres to a naming standard; classes
follow a similar naming convention; and there are conventions for naming and

Chapter 4

[95]

locating supporting files, like Javascripts and images. By making choices for the
developer, Rails can save time (and sometimes arguments), leading to its much-
touted productivity gains.

If you need to, you can step outside the Rails conventions. Mostly,
though, there is no need to, and you can greatly reduce development time
by embracing the conventions instead.

Rails and MVC
At its core, the architecture of Rails is standard MVC; however, unlike older forms
of MVC for the web, Rails minimizes the effort needed to maintain the MVC pattern.
This is because the conventions inherent in Rails, as described in the previous
section, reduce the need for configuration. The diagram, below, gives a graphical
representation of how Rails implements MVC, and also summarizes how conventions
are used to define the workflow of an application. Our fledgling Intranet application is
used as an example; specifically, the page which displays a list of people:

Client
1) requests

/people/list

2) calls list action on
PeopleController

3) asks for
list of people

4) fetches
resultset

5) returns Person
instances

6) renders
template

7) returns
response
to client

list.rhtml
(view template)

Routing
(maps URLs
to controllers

+actions)

PeopleController

Person
(model class)

people
(table in

database)

Working with Rails

[96]

Fleshing out the steps in the diagram, here's what happens when a client requests a
list of people:

1. The client asks for the URL:/people/list.
2. Rails' routing code parses the URL into a request for a particular controller,

and a particular method on that controller. In this case, Rails uses a typical
route to fragment the path into a controller name (people) and the name of a
method on that controller (list). In this case, the following sequence
is executed:

a. An instance of the PeopleController class is created. Rails knows
to generate an instance of this class, as it uses the first part of the
path (= people), capitalised (= People), and with the string 'Controller'
appended (= PeopleController), to determine the correct controller class
to use. This returns a PeopleController object (which will be referred
to as "the controller" from now on). This is followed by:

b. A call to the list method (a.k.a. an action) of the controller. Again,
the path is used to determine, which method to call: in this case, the
second fragment of the path is list; hence Rails calls the list method.

The routing facilities in Rails are covered in more detail in the section on
routing in Chapter 7.

3. The list action of the controller uses the find method of the Person model
class to query the database. Each model class provides a find method, which
enables querying of the table associated with the model. Find methods are
covered in more detail in the section on find methods in Chapter 5.

4. The Person class is, by convention, associated with a table called people. The
Person class, therefore, generates the SQL required to retrieve a set of records
from the people table in the back-end database.
Note how the table name is the pluralized, lowercase equivalent of the model
class name: Person associates with people; Address associates with addresses;
Company associates with companies; etc. These relationships don't have to be
specified: they are configured solely through consistent names. (It is also pos-
sible to turn pluralization off, if you want to buck these conventions.)

5. The set of records is converted into an array of Person instances and
returned to the controller.

6. The controller uses a view template to create the output for the client. This
output will typically be based on an HTML outline, filled out with data from
the model. In our example, the template might produce an HTML table from
the array of Person instances, one row per person, showing the name of the
person and a link to their full details.

Chapter 4

[97]

The name of the template to render for a given action is derived by conven-
tion (again), and is based on the name of the action: in this case, the action
is called list, so Rails uses a template called list.rhtml. If there is no ap-
propriate .rhtml file, Rails will look for a .rxml (Builder XML template) file
instead. Views are covered in more detail in chapter.

7. The controller returns the generated HTML to the client.

As you can see, the Rails conventions enable some powerful connections
between aspects of the model, view, and controller components, with no need
for configuration.

The Rails "power tools" are the keys to leveraging its conventions, namely:

The rails command. This creates the "skeleton" for an application, including
the directory structure, public files (like error pages and Javascripts), stubs
for automated testing, plus several utility scripts. The created directories and
files follow the conventions described previously.
The Rails generators. These are included with the utility scripts, and added to
every new Rails application created using the rails command (see above).
They are used to add new components to the application, such as new
models or controllers, again following the naming conventions.

We'll see how to use these tools in the following sections, as we start building the
Intranet application.

Setting Up a New Rails Application
Every Rails application looks basically the same. Each has the same directories, and
even files with the same names. The reason for this is that Rails provides a command
(rails) for creating a stock set of directories and stub files as a starting point for
any new application, to be fleshed out as development progresses. These files and
directories are arranged in such a way that the different parts of Rails (in fact, it is
a framework of frameworks) can work together effectively. When starting a new
application, running the rails command is the first step.

If you followed the tutorial sections in Chapter 3, you will have checked out the
Intranet project from Subversion. This means, you already have an empty Intranet
directory inside your Eclipse workspace, "connected" to the code repository. Rather
than create a new directory for your application, you can use this existing one for
your application as shown below:

$ cd workspace

$ rails Intranet

•

•

Working with Rails

[98]

(Note that you may need to replace workspace with the directory you are using for
your Eclipse workspace.)

More generally, use this command from a prompt to start a new Rails application in
situations where you haven't created a project directory yet:

$ rails /path/to/application

Where /path/to/application is the path to the directory where you want your
application to live. If the directory doesn't exist, or if any directories in the path are
missing, they are created too. If you use a non-absolute path, the directories are
created below the current working directory.

Note that you must use operating-system-specific path separators, so on Windows
you would do:

$ rails c:\path\to\application

When you run the rails command, you should see something like this:

$ rails Intranet

exists

create app/controllers

create app/helpers

create app/models

create app/views/layouts

create config/environments

create components

...

create log/server.log

create log/production.log

create log/development.log

create log/test.log

(This has been truncated for brevity: the rails command generates a lot of stuff.)

The absolute path to the top-level directory containing the application is referred
to inside Rails as the RAILS_ROOT directory. In our case (as we're developing with
Rory), this directory is:

/home/rory/workspace/Intranet

Rather than going into too much detail, below is a summary of what is contained in a
fresh RAILS_ROOT directory. Directories which are particularly important are marked
with an asterisk, as we'll be spending most of our time inside them:

Chapter 4

[99]

*app contains the core MVC classes of the application (see the earlier section
Rails and MVC), separated into four subdirectories:

controllers contains controller definitions, which handle the
control flow of the application.
*models hold model definitions, which act as the layer
between the controllers and the database.
views contains templates for generating interface elements,
such as XHTML or XML output.
helpers are companions to views. They are intended to move
heavy lifting out of view templates and into "helper" methods,
which (generally) generate HTML elements.

Components is largely deprecated, and remains for historical reasons.
Originally, components were intended to encapsulate reusable chunks of
code, which could be shared across applications. They were superseded by
plugins (see the section on plugins in Chapter 8). You can safely delete this
directory.
*config holds the application's configuration. Most of the time, you only
need to worry about setting up the connection to the database (which we'll
do in the section Setting Up a Database Connection, later this chapter).
*db holds all database-related files and scripts. This includes dumps of
the database and schema definitions. We'll be working in this directory
throughout the chapter.
doc holds an auto-generated API documentation for your application. This is
covered briefly in the section introducing Rdoc in Chapter 5.
lib holds library files, which are not necessarily Rails-specific, e.g. generic
Ruby libraries. Any Ruby file you drop in here (anything ending in *.rb) is
automatically loaded during your application's startup. It is most often used
as the location for new Rake task definitions, which are added to the tasks
sub-directory (see the bullet point below on the Rakefile).
log holds log files for your application.
public contains static files, such as images and Javascripts.
*script contains helper scripts for your application, such as the interactive
console and code generators. We'll be using these later in this chapter.
test contains test cases for your code. Each time you auto-generate a new
model or controller, tests are added here. Testing is covered later in
this chapter.
tmp contains temporary files, namely cached output, session data, and
server sockets.

•

°

°

°

°

•

•

•

•

•

•

•

•

•

•

Working with Rails

[100]

vendor houses the plugins directory (for plugins, naturally—see the section
on Plugins in Chapter 8. It is also used to store the libraries you haven't
written yourself (such as external gems).
The README file in the root of your application directory contains generic
information for people who may be installing your application. The
README_FOR_APP file in the doc directory is probably a better place to add
your information, as this becomes part of any auto-generated documentation.
Rake is an important tool in your arsenal, enabling you to automate
repetitive development tasks. The Rakefile defines the set of tasks available
in your project. By default, these include things like running your test suite,
maintaining your database, and clearing temporary data. You can add your
own Rake tasks under lib/tasks.

This is a whirlwind tour, but should hopefully give some idea of what all that stuff
is for.

If you switch to Eclipse to browse your new Rails application, you might
wonder where the files have gone. This is because Eclipse doesn't monitor
changes to the filesystem. When we added our application files outside
Eclipse (by running the rails command), Eclipse didn't know anything
about it.
The solution is to refresh Eclipse's view of the filesystem. Right-click on
the name of the project and select the Refresh option from the context
menu. You should now be able to see your files.

Now we have a skeletal application, we are finally ready for some magic.

Using Mongrel to Serve Your Application
I expect you're dying to see your first Rails application up and running? It turns out
this is no work at all. Connect into your application's directory using the command
line, and run the following command:

$ ruby script/server

Or, on Windows:

$ ruby script\server

•

•

•

Chapter 4

[101]

We'll be using the Linux-style syntax throughout the book when running
the scripts, with forward slashes as path delimiters.

This command runs one of the Rails built-in scripts, located in the script
directory, which starts a Mongrel server whose single purpose is running your
Rails application.

If the server starts correctly, you should see:

=> Booting Mongrel (use 'script/server webrick' to force WEBrick)

=> Rails application starting on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

** Starting Mongrel listening at 0.0.0.0:3000

** Starting Rails with development environment...

** Rails loaded.

** Loading any Rails specific GemPlugins

** Signals ready. TERM => stop. USR2 => restart. INT => stop (no
restart).

** Rails signals registered. HUP => reload (without restart). It might
not work well.

** Mongrel available at 0.0.0.0:3000

** Use CTRL-C to stop.

Working with Rails

[102]

Note that the application is served on port 3000 by default and is accessible at the
URL http://localhost:3000/. If you open this URL in a browser, you should see
something like this:

Click on the About your application's environment link to see some information
about the versions of Ruby and Rails you are running with.

On Linux, you can dispense with the ruby command and just use this command to
run the server:

$ script/server

The only requirement for this to work is that the script should be able to find your
Ruby binary. This is defined in the shebang line (the first line of the file). Usually, the
default line works correctly:

#!/usr/bin/env ruby

However, if your Ruby installation isn't in your PATH environment variable, you
may have to modify the ruby part of this line to point at its location. For example, if
your Ruby installation is in /opt/ruby1.8.4 you would use the shebang:

#!/usr/bin/env /opt/ruby1.8.4/bin/ruby

Chapter 4

[103]

Our application isn't too exciting so far, we can't interact with it very much, and
it has little data to serve. In the next sections, we're going to build it up, taking a
data-centric approach.

As of Rails 1.2, if Mongrel is installed on your machine, it is used as the
default web server for your application. However, if you don't have
Mongrel installed, Mongrel isn't on your path, or you are using an
older version of Rails, WEBrick is used instead. The only difference is
that WEBrick is significantly slower, and not suitable for running Rails
applications in a production environment. Other than that, you can
happily develop an application using either.

Connecting Rails to a Database
Throughout decades of client-server computing, the architecture of database-
driven applications has been designed by database administrators working in the
"enterprise". This architecture places the responsibility for managing data squarely
in the database itself. Applications are considered "dumb", not to be trusted with
vital tasks like data validation and formatting, or managing relationships between
different tables. Using this traditional architecture, we might manage our Intranet
application's data structures (see Chapter 2) like this:

Stored procedures could be used to manage complex operations on the
database. For example, inserting a new person, company, and associated
addresses might be done using a single call to a stored procedure. This
would insert new records into the appropriate tables, manage foreign key
relationships between the new records, and perform validation of data.
Cascade operations could be used to manage dependencies between
records in related tables. For example, if the id field of a record in the
companies table changed, any references to that in the people table would
be updated.
Views could be used to retrieve, sort, and format data from one or more
tables using a single query. In our case, a view might be used to retrieve
the names, phone numbers, and website addresses from the companies
table, ordered by company name.

By contrast, in the Rails view of the world, the application is king, and the database
is its servant. This is due to Rails being the product of web developers: in the web
development environment, databases are typically unsophisticated buckets for
holding "stuff" (because they are often designed by people who aren't full-time
database administrators).

•

•

•

Working with Rails

[104]

However, beyond this, performing database operations through model classes
simplifies database access considerably: making a change to an application can be
done in the high-level application code, rather than by modifying low-level SQL
code in the database layer. Therefore, operations, which would be delegated to the
database in the traditional client-server architecture (such as the ones in the bullet
points above) are instead handled by ActiveRecord in a Rails application.

ActiveRecord is a so-called object-relational mapping (ORM) layer (also known as a
relational persistence layer), similar in scope to Hibernate (Java) or ADODB (PHP).
Instead of dealing with the database through SQL statements, an ORM layer presents
records in a database table as a series of objects; it also provides class-level methods
for creating database connections, querying tables, and so on. The fields in a record
are not read or written directly, but accessed through instance methods on an object.
This reduces the complexity and tedium of working with a relational database, as
the onus for creating database connections, correctly formatting SQL statements,
escaping quote marks in strings, etc. is moved into the ORM layer, away from
the developer.

Bruce Tate and Curt Hibbs call ActiveRecord an Object Relational
Wrapping layer, rather than a Mapping layer: their view is that as there is
no explicit configuration of the relationship between the model classes
and the database tables, it doesn't count as a "mapping". They have a
point, but the exact semantics aren't too important. Here, I'm treating
"mapping" in the sense that objects can be mapped onto records in the
database tables.

An ORM layer is one way to implement the model part of the MVC architecture, and
this is the role ActiveRecord fulfils in a Rails application: it acts as the intermediary
between the controller and the database, retrieving, validating, updating, and
deleting records on behalf of the controller.

Before we can see how this works, we need a database to use as the back-end for our
application. Setting this up is covered in the following sections.

Creating a Database and System Account
As described in Chapter 2, we're going to use MySQL as the database back-end for
the Intranet application. If you followed the installation instructions, you should have
MySQL available on your machine.

These instructions cover how to setup a database and user in MySQL.
However, if you have an alternative database back-end (Oracle, SQL
Server, PostgreSQL, etc.), create a database and a user with whichever
tools that are appropriate for your database instead.

Chapter 4

[105]

The first step is to initialise the MySQL database. You could use one of the MySQL
GUI clients to do this, but we'll use the command line as this works the same
regardless of your platform. Use this command to login to the database server on
your local machine:

$ mysql -u root -p

Note that -u root specifies we are logging in as the root user: you need to use an
account with sufficient privileges to create a new database. -p indicates that we
intend to use a password to login. If your login is successful, you should see:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1 to server version: 5.0.24a

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

Once you've logged in successfully, create a database called intranet_development with:

mysql> CREATE DATABASE intranet_development;

Query OK, 1 row affected (0.05 sec)

This is the database we'll be using during the development of our application. The
next step is to create a user account for our Rails application. This is a good practice:
instead of using a real person's account (or even worse, the root account) to connect
our Rails application to MySQL, we will use a dedicated system account. This gives
us a handful of security advantages:

The system account can be given minimal permissions: just the ones the
application needs to work with the database. If our application never needs
to create temporary tables, we don't need to give the system account the
CREATE TEMPORARY TABLES permission, for example. MySQL allows us to
refine permissions further, down to the individual table and row level
if required.
We can restrict the system account's access to the Rails application's database.
If the account's were compromised, the cracker's vandalism would be limited
to just that database.
We can restrict the load that the system account can put on the database
service, such as the number of queries, updates, and connections the system
account can make per hour. If the Rails application were hit by a denial of
service attack, these settings could help limit the damage that the application
can cause.

•

•

•

Working with Rails

[106]

The system account can be limited to accessing the database from a single IP
domain name, IP address, or IP range. Any attempt to access the database
from a machine outside the range automatically fails, further tightening
our setup.

Again, you can use either a GUI tool or the command line to create the system
account. Here's how to do it on the command line (once you are logged in to
MySQL):

mysql> GRANT ALL ON intranet_development.* TO intranet@localhost
IDENTIFIED BY 'police73';

Query OK, 0 rows affected (0.01 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

This simultaneously creates the intranet user account and gives that user all
permissions (known as privileges in MySQL) on the intranet database. The
IDENTIFIED BY clause specifies the account password ('police73'). @localhost
specifies the host name from which this user can access the database. If the database
server is on a separate physical box from the application server, the application
server's IP address or domain name should be used here. FLUSH PRIVILEGES applies
the permissions to the server.

A note on permissions
In the example above, the system account is given all permissions on the
database. You may not want to give your application this level of access
to the database, once it is in production. MySQL makes it trivial to restrict
permissions on individual tables or columns within tables and/or by SQL
operation (e.g. the production system account could just be given SELECT
permissions if the application just reads from the database tables).

Setting Up a Database Connection
The database connection settings for a Rails application are stored in a single file
called database.yml, inside the config directory (which is in turn inside the
RAILS_ROOT). The freshly-minted database.yml file (produced by the rails
command) can seem a bit confusing, mainly because it contains a lot of examples
and hints. However, after removing comments, it boils down to this:

development:
 adapter: mysql
 database: Intranet_development
 username: root

•

Chapter 4

[107]

 password:
 host: localhost
test:
 adapter: mysql
 database: Intranet_test
 username: root
 password:
 host: localhost
production:
 adapter: mysql
 database: Intranet_production
 username: root
 password:
 host: localhost

This is a YAML (rhymes with "camel") file, which configures the database settings
for each of the three Rails' environments: development, test, and production—which
is explained in the next section).

YAML, ("YAML Ain't a Markup Language"), is officially described as a "data
serialization language" (see, http://yaml.org/). Its purpose is comparable to
that of XML: both YAML and XML are used to define configuration settings, log
file formats, or other kinds of structured data. However, YAML has the following
benefits over XML:

Concise
Easy to parse
Easy to implement
Human-readable

The YAML syntax used in the database.yml file defines a YAML mapping from
keys to values. (If you've ever worked with a configuration file, the key-value
concept should be familiar.) When the file is read by Rails, it is converted into a Ruby
hash (c.f. a dictionary or associative array in other languages). The words which are
flush with the left of the file ('development', 'test', 'production') are the keys of this
top-level hash; in Ruby syntax, the hash looks like this:

{
 'development' => {...},
 'test' => {...},
 'production' => {...}
}

•

•

•

•

Working with Rails

[108]

Underneath each of these top-level keys is a series of name-value pairs; each series is
also converted into a hash. The parent key has this hash as a value. In Ruby syntax,
the resulting "hash of hashes" looks like this:

{
 'development' => {
 'adapter' => 'mysql',
 'database' => 'Intranet_development',
 'username' => 'root',
 'password' => nil,
 'host' => 'localhost'
 },
 'test' => {...},
 'production' => {...}
}

(The 'test' and 'production' sections are truncated for brevity.)

Each sub-hash specifies a database configuration for one of the Rails environments,
as described in the next section.

Configuring the Rails Environments
Rails can run an application in different modes; each mode is known as an
environment. Each environment is kept isolated from the others, uses a different
database, and handles logging and error checking differently. This makes it possible
to develop your code without breaking the live application, run tests without
wiping records from the live database, and run your application more efficiently in
production (amongst other things).

The three environments have different purposes and characteristics:

1. Development
This is the environment you use when building your application. Logging
and error reporting are at their most verbose, making it simpler to track
down bugs. This environment uses its own database which is kept isolated
from the production database.

2. Test
This environment is only normally used when running automated
tests. The database for this environment is regenerated from scratch
each time tests are run, by cloning the structure (not the data) of the
development environment.

Chapter 4

[109]

3. Production
Rails does a lot of work behind the scenes creating classes and their methods
on the fly (which is how it does the clever database reflection discussed
later in this chapter). In the production environment, this work is done once
when the application starts and cached to save work later (by contrast, in
development, it is done on each request). Debugging and logging are also set
to a minimum in this environment.

You can configure database settings by editing the section of the database.yml
file named after the environment. For now, we'll just edit the settings for the
development environment:

development:
 adapter: mysql
 database: 'intranet_development'
 username: intranet
 password: police73
 socket: /var/run/mysqld/mysqld.sock

You must use spaces, not tabs, in a YAML file: attempting to use tabs
in a YAML file will break it completely. For reference, so that you can
recognize it in case it happens to you, here's a YAML error caused by an
errant tab:
/usr/lib/ruby/1.8/yaml.rb:133:in 'load': syntax error on
line 13, col 11:
' adapter: mysql' (ArgumentError)

There is no need to configure the test and production databases at this point: we can
leave the default settings as they are until we need these environments.

Working with Rails

[110]

Each line of the configuration is described in more detail in the table below:

Configuration
option

Example setting Description

adapter mysql The type of database to which the
application is connected.

database 'intranet_development' The name of the database to use in this
environment. The Rails convention is
to use the suffix _development for
the development database, and _test
for the test database. (Note: quote
marks are used around the database
name as it contains an underscore:
MySQL is sometimes a bit funny
about underscores...)

username intranet The username for the system account.
password police73 The password for the system account.
host localhost If the application needs to connect to

the database server over a network,
this is the hostname or IP address of
the database server. Where the Rails
application and the database server
are running on the same machine,
localhost can be used.

socket /var/run/mysqld/mysqd.
sock

This is an interesting setting, and
one which is often overlooked. It is
mainly used on *nix machines, where
the database connection is made
using a Unix-style socket, rather
than a network (TCP) connection. In
some cases, it may not be possible
to create a network connection at all
(TCP can be switched off on MySQL
on *nix); in this case, specifying a
socket location is the only option. The
example setting shown here points at
the default socket location on Ubuntu.
See the section Troubleshooting a
MySQL Connection for more details
about sockets.

Chapter 4

[111]

Although we are using MySQL as our database server, ActiveRecord supports a range
of other back-ends. You can specify which by changing the adapter configuration
option to one of these values:

db2
firebird
frontbase
oci (Oracle)
openbase
postgresql
sqlite
sqlserver
sybase

Each adapter has its own set of configuration options: see the Rails documentation
for adapter-specific details. (Chapter 3 explains how to locate the Rails
documentation on your machine.)

Some adapters have specific requirements, such as the installation of
additional Ruby or native libraries. This may restrict your choice of
server operating system for running your Rails application. For example,
the sqlserver adapter requires the use of ODBC, which may in turn
require you to install a variety of ODBC software on your application
server (see http://wiki.rubyonrails.org/rails/pages/
HowtoConnectToMicrosoftSQLServerFromRailsOnLinux). Make
sure you are aware of all the pre-requisite software you need for some of
the Rails database adapters.

Testing the Database Connection
It is useful to check that the database connection is working before going any further.
There's an easy way to do this. Start up a Rails console session using another of the
built-in scripts Rails adds to your application called the console. Do this using the
command line, by connecting into RAILS_ROOT and running:

ruby script/console

You should see:

Loading development environment

>>

•

•

•

•

•

•

•

•

•

Working with Rails

[112]

If you do, Rails has loaded your application's components correctly. The command
prompt can now be used to enter commands, which directly manipulate your Rails
application, without having to use a browser: very useful for general testing and
tinkering. (We'll come back to the console throughout this chapter.) For now, enter
this command to test your database connection:

>> ActiveRecord::Base.connection

If the database connection is working correctly, you should see:

=> #<ActiveRecord::ConnectionAdapters::MysqlAdapter:0xb74dbe34 ...>

This has been truncated, as you get a lot of detail back from the console. But
providing an ActiveRecord::ConnectionAdapters::MySQLAdapter instance has
been successfully created, you can be happy that the database connection is working.

If the database connection fails, you might see this instead:

Mysql::Error: Can't connect to local MySQL server through socket '/var/
run/mysql/mysqld.sock' (2)

...which means the socket location is wrong.

Or:

Mysql::Error: Access denied for user 'intranet'@'localhost' (using
password: YES)

...which means the system account does not have access to the server and/or the database.

The next section covers what to do if one of these errors occurs.

Troubleshooting a MySQL Connection
If you discover that your MySQL connection isn't working (see the previous section),
check the following:

1. Test whether you can login to MySQL using the mysql command line
client and the system account, as specified in your database.yml file. If
you can login, it's likely that your database.yml file contains a typo in the
username and/or password.

2. If you can login with the mysql command line client using the system
account, try the command:
USE intranet_development;

Chapter 4

[113]

If you get an error at this point, it means the system account doesn't have
the correct level of access to the database. Check the permissions granted
to the system account.

3. Check that you are using the correct MySQL socket location. If you are
unsure where your socket is located, login using the MySQL command
line client and run this query:
| mysql> SHOW VARIABLES LIKE 'socket';

You should get back something like this:
+--------------------+--+

| Variable_name | Value |

+--------------------+--+

| socket | /var/run/mysqld/mysqld.sock |

+--------------------+--+

Now, make sure that the socket setting in database.yml matches the
value of the socket variable reported by MySQL.

4. If you are connecting using a host option, ensure that you can connect
from the application server to the database server using the mysql
command line client. If you can connect successfully, but your Rails
application can't, it may be that the host setting is wrong in
database.yml.

Hopefully, you should be able to fix pretty much any MySQL connection error by
following these steps.

ActiveRecord, Migrations, and Models
ActiveRecord is the ORM layer (see the section Connecting Rails to a Database) used in
Rails. It is used by controllers as a proxy to the database tables. What's really great
about this is that it protects you against having to code SQL. Writing SQL is one
of the least desirable aspects of developing with other web-centric languages (like
PHP): having to manually build SQL statements, remembering to correctly escape
quotes, and creating labyrinthine join statements to pull data from multiple tables.

ActiveRecord does away with all of that (most of the time), instead presenting
database tables through classes (a class which wraps around a database table is
called a model) and instances of those classes (model instances). The best way to
illustrate the beauty of ActiveRecord is to start using it.

Working with Rails

[114]

Model == Table
The base concept in ActiveRecord is the model. Each model class is stored in the
app/models directory inside your application, in its own file. So, if you have a model
called Person, the file holding that model is in app/models/person.rb, and the
class for that model, defined in that file, is called Person.

Each model will usually correspond to a table in the database. The name of the
database table is, by convention, the pluralized (in the English language),
lower-case form of the model's class name. (There are a few exceptions: see
the section, Many-to-many Relationships for details.) In the case of our Intranet
application, the models are organised as follows:

Table Model class File containing class definition
(in app/models)

people Person person.rb
companies Company company.rb
addresses Address address.rb

We haven't built any of these yet, but we will shortly.

Which Comes First: The Model or The Table?
To get going with our application, we need to generate the tables to store data
into, as shown in the previous section. It used to be at this point where we would
reach for a MySQL client, and create the database tables using a SQL script. (This is
typically how you would code a database for a PHP application.) However, things
have moved on in the Rails world.

The Rails developers came up with a pretty good (not perfect, but pretty good)
mechanism for generating databases without the need for SQL: it's called migrations,
and is a part of ActiveRecord. Migrations enable a developer to generate a database
structure using a series of Ruby script files (each of which is an individual migration)
to define database operations. The "operations" part of that last sentence is important:
migrations are not just for creating tables, but also for dropping tables, altering them,
and even adding data to them.

It is this multi-faceted aspect of migrations which makes them useful, as they can
effectively be used to version a database (in much the same way as Subversion can
be used to version code). A team of developers can use migrations to keep their
databases in sync: when a change to the database is made by one of the team and
coded into a migration, the other developers can apply the same migration to their
database, so they are all working with a consistent structure.

Chapter 4

[115]

When you run a migration, the Ruby script is converted into the SQL code
appropriate to your database server and executed over the database connection.
However, migrations don't work with every database adapter in Rails: check the
Database Support section of the ActiveRecord::Migration documentation (see
Chapter 3 for instructions on how to locate it) to find out whether your adapter is
supported. At the time of writing, MySQL, PostgreSQL, SQLite, SQL Server, Sybase,
and Oracle were all supported by migrations.

Another way to check whether your database supports migrations is to
run the following command in the console (the output shown below is the
result of running this using the MySQL adapter):

>> ActiveRecord::Base.connection.supports_migrations?
=> true

We're going to use migrations to develop our database, so we'll be building the
model	first. The actual database table will be generated from a migration attached to
the model.

Building a Model with Migrations
In this section, we're going to develop a series of migrations to recreate the database
structure outlined in Chapter 2.

First, we'll work on a model and migration for the people table. Rails has a
generate script for generating a model and its migration. (This script is in the
script directory, along with the other Rails built-in scripts.) The script builds the
model, a base migration for the table, plus scripts for testing the model. Run it
like this:

$ ruby script/generate model Person

 exists app/models/

 exists test/unit/

 exists test/fixtures/

 create app/models/person.rb

 create test/unit/person_test.rb

 create test/fixtures/people.yml

 exists db/migrate

 create db/migrate/001_create_people.rb

Working with Rails

[116]

Note that we passed the singular, uppercase version of the table name ("people"
becomes "Person") to the generate script. This generates a Person model in the file
app/models/person.rb; and a corresponding migration for a people table (db/
migrate/001_create_people.rb). As you can see, the script enforces the naming
conventions, which connects the table to the model.

The migration name is important, as it contains sequencing information: the "001"
part of the name indicates that running this migration will bring the database schema
up to version 1; subsequent migrations will be numbered "002...", "003..." etc., each
specifying the actions required to bring the database schema up to that version from
the previous one.

The next step is to edit the migration so that it will create the people table structure.
At this point, we can return to Eclipse to do our editing. (Remember that you need to
refresh the file list in Eclipse to see the files you just generated.)

Once, you have started Eclipse, open the file db/migrate/001_create_people.rb.
It should look like this:

class CreatePeople < ActiveRecord::Migration
 def self.up
 create_table :people do |t|
 # t.column :name, :string
 end
 end

 def self.down
 drop_table :people
 end
end

This is a migration class with two class methods, self.up and self.down. The
self.up method is applied when migrating up one database version number: in this
case, from version 0 to version 1. The self.down method is applied when moving
down a version number (from version 1 to 0).

You can leave self.down as it is, as it simply drops the database table. This
migration's self.up method is going to add our new table using the create_table
method, so this is the method we're going to edit in the next section.

Chapter 4

[117]

Ruby syntax
Explaining the full Ruby syntax is outside the scope of this book. For our
purposes, it suffices to understand the most unusual parts. For example,
in the create_table method call shown above:
create_table :people do |t|
 t.column :title, :string
 ...
end

The first unusual part of this is the block construct, a powerful technique
for creating nameless functions. In the example code above, the block
is initialized by the do keyword; this is followed by a list of parameters
to the block (in this case, just t); and closed by the end keyword. The
statements in-between the do and end keywords are run within the
context of the block.
Blocks are similar to lambda functions in Lisp or Python, providing a
mechanism for passing a function as an argument to another function.
In the case of the example, the method call create_table:people is
passed to a block, which accepts a single argument, t; t has methods
called on it within the body of the block. When create_table is called,
the resulting table object is "yielded" to the block; effectively, the object
is passed into the block as the argument t, and has its column method
called multiple times.
One other oddity is the symbol: that's what the words prefixed with a
colon are. A symbol is the name of a variable. However, in much of Rails,
it is used in contexts where it is functionally equivalent to a string, to
make the code look more elegant. In fact, in migrations, strings can be
used interchangeably with symbols.

Converting a Data Structure into a Migration
Referring back to the data structure in Chapter 2, we can build the people table with
this self.up method:

def self.up
 create_table :people do |t|
 t.column :title, :string
 t.column :first_name, :string, :null => false
 t.column :last_name, :string, :null => false
 t.column :email, :string, :limit => 100, :null => false
 t.column :telephone, :string, :limit => 50
 t.column :mobile_phone, :string, :limit => 50
 t.column :job_title, :string
 t.column :date_of_birth, :date
 t.column :gender, :string, :limit => 1

Working with Rails

[118]

 t.column :keywords, :string
 t.column :notes, :text
 t.column :address_id, :integer
 t.column :company_id, :integer
 t.column :created_at, :timestamp
 t.column :updated_at, :timestamp
 end
end

Arguments to the column method specify the name of the column, the type of the
column, and some optional parameters. For example:

t.column :name, :string

The above line of code specifies that the table (t) should contain a column called
name, which should be of data type string.

The extra :limit option passed in some of the column method calls, plus the various
column data types, are discussed in the next section. There are a few of things to note
first, though:

There's no need to specify the id column for the table: Rails will infer that we
need this and invisibly add the column definition for us.
first_name, last_name, and email are the only columns which cannot
contain null values: together they represent the minimum amount of data we
need to record about a contact. We mark this by passing :null => false to
prevent the insertion of null values into those columns.
The gender column was specified in the data structure as having the
MySQL data type ENUM. However, to keep the code database-agnostic, we'll
create this as a one character :string field in the migration. We will leave
management of the content of the column (i.e. it should contain "M" or "F") to
the model: see the section Checking for Inclusion in a Range of Values for details
of how we'll implement this.
The address_id column references the ID column of records in the
addresses table; the company_id column references the ID column of
records in the companies table. We'll be creating the migrations for these
tables and discussing how to define table-to-table relationships later in this
chapter (see the section Associations between Models, later in this chapter).
The created_at and updated_at columns have a special meaning in Rails:
see the tip box below.

•

•

•

•

•

Chapter 4

[119]

If you add a column to a table called created_at, created_on, updated_at, or
updated_on, Rails will automatically record a timestamp against records
in that table without you having to do any extra work:

*_on: When a record is created or updated, the current date is
automatically recorded in this column. Give a column with this name a
data type of :date.

*_at: When a record is created, the current date and time are automatically
recorded in this column. Give a column with this name a data type of
:timestamp.

Defining Columns in Migrations
When using migrations, bear in mind that a migration is (by design) a database-
agnostic representation of a database. It uses generic data types for columns, like
:binary and :boolean, to define the kind of data to be stored in a column.

However, different database servers implement the migration column types in
different ways. For example, MySQL doesn't have a boolean data type; so any
migration columns you define as :boolean are actually converted into TINYINT(1)
fields in the resulting MySQL database table (0 = false, 1 = true). Each migration
column type also has a range of extra options you can set, which again modify the
definition of the resulting field in the MySQL database.

The table below summarizes the migration column types, how they map to MySQL
field data types, and the extra options available.

Migration column
type...

Converts to MySQL field
type...

Available options1

:binary TINYBLOB, BLOB,
MEDIUMBLOB, or
LONGBLOB2

:limit => 1 to 4294967296
(default = 65536)2

:boolean TINYINT(1) -
:date DATE -
:datetime DATETIME -
:decimal DECIMAL :precision => 1 to 63

(default = 10)

:scale => 0 to 30
(default = 0)3

:float FLOAT -
:integer INT :limit => 1 to 11 (default = 11)

Working with Rails

[120]

Migration column
type...

Converts to MySQL field
type...

Available options1

:primary_key INT(11) AUTO_
INCREMENT PRIMARY
KEY

-

:string VARCHAR :limit => 1 to 255
(default = 255)

:text TINYTEXT, TEXT,
MEDIUMTEXT, or
LONGTEXT2

:limit => 1 to 4294967296
(default = 65536)2

:time TIME -
:timestamp DATETIME -

All column types accept a :null or :default option:

:null
The default value for this is true (i.e. the field's value can be null in the
database). Set :null => false if you don't want to allow nulls in the
database field, e.g.

t.column :first_name, :string, :null => false

Note that if you allow nulls in a field (:null => true or not specified), you
don't need to specify :default => NULL: NULL is already the default for a
field, which allows null values.
:default
Specify the default value for the database field when new records are added
to the table. The value you specify should be of the correct data type for the
column, e.g.

t.column :completed, :default => true (for a :boolean
column)
t.column :size, :default => 1 (for an :integer column)

t.column :name, :default => 'Unknown' (for a :string
column)

t.column :reminder_on, :default => Time.now (for a :
datetime, :date, :time or :timestamp column)

•

°

•

°

°

°

°

Chapter 4

[121]

Note that the default value should match the data type of the column (not the
field). For example, if you were using MySQL and had a :boolean column,
even though boolean fields are represented internally in MySQL as 1 digit
TINYINT fields, you would specify the :default as true or false (not 1 or 0).
This keeps your migrations portable to other database back-ends (for exam-
ple, while MySQL just emulates booleans, some database back-ends have a
native boolean data type, and a value of 1 or 0 might not make sense).

The :limit option on a :blob or :text column specifies the size of the database
field in bytes. You can set this directly in bytes, or use a convenience method to
specify the size, e.g. 2.kilobytes, 2.megabytes, 2.gigabytes(!). Note that MySQL
will actually create a field with a data type, which encompasses the size you
specify, i.e.

1 to 256 bytes: TINYBLOB or TINYTEXT
257 to 65536 bytes (64KiB): BLOB or TEXT
65537 to 16777216 bytes (16 MiB): MEDIUMBLOB or MEDIUMTEXT
16777217 to 4294967296 bytes (4 GiB): LONGBLOB or LONGTEXT

The :precision option specifies the number of digits to store before the point
in a decimal; the :scale option specifies the number of digits to store after the
decimal point.

Here are some examples of how to use these options:

column to store uploaded images up to 2Mb in size
t.column :image, :blob, :limit => 2.megabytes

column to store prices (6 digits before decimal point, 2 after)
t.column :price, :decimal, :precision => 6, :scale => 2

column to store whether someone's account is active (defaults to
false)
t.column :account_active, :boolean, :default => false

column to store someone's birth date (must not be null)
t.column :birth_date, :date, :null => false

Other Operations Available in a Migration
Migrations can be used to perform operations other than table creation. A complete
list is available in the documentation for ActiveRecord::Migration, but here are
examples of the more useful ones:

•

•

•

•

Working with Rails

[122]

create_table(table_name, options)
We've already used create_table; but it's worth mentioning here that you
can optionally pass extra arguments to this method, for example:

 # drop any existing people table and recreate from scratch
 create_table(:people, :force => true)

 # create a table with table type "MyISAM" (Rails defaults to InnoDB)
 # using a UTF-8, case-insensitive collation (NB this is
 # MySQL-specific, but the :options argument can be
 # used to pass any other database-specific table creation SQL)
 create_table(:people, :options =>
 'ENGINE MyISAM COLLATE utf8_unicode_ci')

 # rename the primary key to pid (if you don't want or haven't
 # got an ID field in the table)
 create_table(:people, :primary_key => 'pid')

rename_table(old_table_name, new_table_name)
Change the name of the table called old_table_name to new_table_name.
add_column(table_name, column_name, column_type, column_options)
This command is similar to the column method we've used already: column_
name, column_type, and column_options follow the principles described in
the section Defining Columns in Migrations.
remove_column(table_name, column_name)
Remove the column column_name from the table table_name.

As mentioned in the sample code above, the default engine used for
a table is InnoDB (which supports foreign keys and transactions).
However, InnoDB is not supported by default on all MySQL servers; or
it may be that you want to use MyISAM tables (which are optimised for
many-read situations) instead. In these situations, you can use the
:options argument to create_table to force the table type to
MyISAM (see the sample code above).

Running a Migration
A complete migration can be applied to the development database from the
command line (inside your application's RAILS_ROOT directory):

$ rake db:migrate

•

•

•

•

Chapter 4

[123]

When you run this command, Rails does the following:

1. It checks the current version of the database. This is stored in an auto-
generated table called schema_info in the database, containing a single
record with a single field, version. The value of this field is the current
version of the database. If the schema_info table doesn't exist, it is created
the first time you run a migration.

2. The migrations available in db/migrate are checked. Any migrations with
version numbers higher than the version stored in the schema_info table are
applied, lowest-numbered first.

3. The database version number is updated in schema_info.

If the command completes successfully, you should see this:

$ rake db:migrate

(in /home/rory/workspace/Intranet)

== CreatePeople: migrating ===

-- create_table(:people)

 -> 0.5130s

== CreatePeople: migrated (0.5158s) ==================================

You can check the table looks right using the command line MySQL client:

mysql> describe intranet_development.people;

+---------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+---------------+--------------+------+-----+---------+----------------+

| id | int(11) | NO | PRI | NULL | auto_increment |

| title | varchar(255) | YES | | NULL | |

| first_name | varchar(255) | NO | | NULL | |

| last_name | varchar(255) | NO | | NULL | |

| email | varchar(100) | NO | | NULL | |

| telephone | varchar(50) | YES | | NULL | |

| mobile_phone | varchar(50) | YES | | NULL | |

| job_title | varchar(255) | YES | | NULL | |

| date_of_birth | date | YES | | NULL | |

Working with Rails

[124]

+---------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+---------------+--------------+------+-----+---------+----------------+

| gender | varchar(1) | YES | | NULL | |

| keywords | varchar(255) | YES | | NULL | |

| notes | text | YES | | NULL | |

| address_id | int(11) | YES | | NULL | |

| company_id | int(11) | YES | | NULL | |

| created_at | datetime | YES | | NULL | |

| updated_at | datetime | YES | | NULL | |

+---------------+--------------+------+-----+---------+----------------+

16 rows in set (0.01 sec)

Finally, we have a database table our application can work with!

Rake
Rake is a Ruby build tool used extensively in Rails. It is similar in scope
to Ant for Java or make for C/C++ etc.: a tool designed for automating
repetitive tasks around software development. In the case of Rake,
this includes running tests, deploying code, maintaining the database,
generating documentation, and reporting code statistics.
Rather than attempting to list everything Rake does, we will introduce
individual tasks (that's what db:migrate is, a task) as they become
useful. If you are incurably curious about what Rake can do for your Rails
application, you can see a list of all the available tasks with the command
rake -T.

Rolling Back to a Previous Version of the
Database
If your table looks wrong, you can roll back to a table-free database with this
command:

$ rake db:migrate VERSION=0

Chapter 4

[125]

Once you get working with migrations, you can replace the "0" in the above
command with another version of the database, to either roll forward or back to
that version. For example, if you are at version 2 and you run rake db:migrate
VERSION=4, Rails will upgrade the database schema from version 2 to 4.

The Scaffold
Rails is supposed to be a rapid application development environment, but so far
we just have a back-end database. To get some instant front-end delight, we'll use
another Rails feature called scaffolding.

Scaffolding is a monstrously fast and terribly tempting short-cut to create an
interface for a model. It can be used to near-instantly (literally) generate some boiler
plate pages for performing CRUD (Create, Retrieve, Update, Delete) operations on
a database table (via a model). The code is basic and crude, and the interface is ugly
as sin; but with minuscule effort, the scaffold enables you to knock together a simple
administrative back-end for a database table within seconds.

The scaffold is also a useful learning tool, as it demonstrates the minimum amount
of code you need to write in your own controllers. It is also useful in situations
where you might be the only person who ever administers the database: if it doesn't
need to be fancy, the scaffold plus a few tweaks is a great way to quickly create the
administrator views.

To generate a scaffold, you simply need to specify the name of the model you want
to scaffold for. In our case, the model is called Person. Therefore, from inside RAILS_
ROOT, we would run:

$ ruby script/generate scaffold Person

This produces quite a few files, including controller classes and view templates for
all the CRUD actions on that model. Using this generated interface, we can now add
records to the people table in our database.

To do this, we need to start our application:

$ ruby script/server

Working with Rails

[126]

Then browse to http://localhost:3000/people to see the application in its
full glory:

I warned you it would be ugly. But the point is, we now have a working
administrative interface, which (with a bit of spit and polish) Rory could show to his
colleagues at Acme.

Feel free to play around, but bear in mind we are in the development database, and
will likely be destroying all the data at some point by running migrations backwards
and forwards.

Alternatives to the basic scaffold
If the scaffold is simply too ugly for you to look at, you could try one of
the prettier (but more complicated) alternatives:
The Ajax Scaffold Generator (http://ajaxscaffold.com/) provides
virtually the same functionality as the default scaffold, but wraps it in
a more responsive interface. It also has enhanced facilities for editing
records in one table which are associated with another table (see the
section Associations Between Models).
Streamlined (http://streamlined.relevancellc.com/) is a
framework for generating an administrative back-end for a set of Rails
model classes. The resulting interface is very rich in functionality and
much smoother to use than the scaffold. Streamlined also provides a
declarative language for specifying the layout of the administrative
interface, how relationships between models are displayed in the
interface, plus an authentication framework. On the negative side, the
documentation is practically non-existent, and it may well be difficult to
figure out how to configure the generated code.

Chapter 4

[127]

We'll go into scaffolding in more detail in the next chapter. Through the rest of
this chapter, we'll see how to build up the models associated with our new
database tables.

Completing the Database
The migration we created previously in this chapter built just one of the tables in
our database. Referring back to the data structure we designed in Chapter 2, there
are two more database tables to add: companies and addresses. The next two
sections give a brief overview of how to create these using migrations. In both
cases, the migrations are simple and don't require any commands we haven't
already encountered.

The companies Table
Create the model and migration for the companies table from the command line with:

$ ruby script/generate model Company

Edit db/migrate/002_create_companies.rb and insert this code:

class CreateCompanies < ActiveRecord::Migration
 def self.up
 create_table :companies do |t|
 t.column :name, :string, :null => false
 t.column :telephone, :string, :limit => 50
 t.column :fax, :string, :limit => 50
 t.column :website, :string
 t.column :address_id, :integer
 t.column :created_at, :timestamp
 t.column :updated_at, :timestamp
 end
 end

 def self.down
 drop_table :companies
 end
end

The addresses Table
Create the model and migration for the addresses table from the command line with:

$ ruby script/generate model Address

Working with Rails

[128]

Edit db/migrate/003_create_addresses.rb and insert this code:

class CreateAddresses < ActiveRecord::Migration
 def self.up
 create_table :addresses do |t|
 t.column :street_1, :string, :null => false
 t.column :street_2, :string
 t.column :street_3, :string
 t.column :city, :string
 t.column :county, :string
 t.column :post_code, :string, :limit => 10, :null => false
 t.column :created_at, :timestamp
 t.column :updated_at, :timestamp
 end
 end

 def self.down
 drop_table :addresses
 end
end

Generating the Remaining Tables
Applying the migrations to the database is done via the command line with:

$ rake db:migrate

(in /home/demo/workspace/Intranet)

== CreateCompanies: migrating ======================================

-- create_table(:companies)

 -> 0.5015s

== CreateCompanies: migrated (0.5022s) =============================

== CreateAddresses: migrating ======================================

-- create_table(:addresses)

 -> 0.2078s

== CreateAddresses: migrated (0.2089s) =============================

Note that this creates both of the tables: Rails recognizes that our database is at
version 1, meaning there are migrations for versions 2 and 3 to be applied.

You can use your MySQL client to check the generated tables. If you've made a
mistake, you can roll back to a previous version of the database using:

$ rake db:migrate VERSION=1

Chapter 4

[129]

(Replace "1" with the migration number you want to roll back to—see the section
Rolling Back to a Previous Version of the Database for more details.)

With our database completed, we are now ready to look at fleshing out the basic
models, adding validation and table-to-table relationships.

Models in Detail
ActiveRecord models are very powerful: they give you a great deal of control
over how data is inserted into the database. As mentioned previously, they act
as wrappers around your database tables: instead of writing a SQL statement to
perform operations on a table, you create instances of ActiveRecord model classes,
modify their properties, and then save them. ActiveRecord handles the SQL
generation and execution in the background, so you don't have to write SQL by hand
(though you can if you need to). You can also manage associations between tables
using convenience methods on your models which removes much of the complexity
it normally entails.

In this section, we will look at these aspects of models:

Using finders to pull information out of tables.
How Rails maps model attributes onto fields in database tables.
Writing validation code for models.
Defining associations between models.
Using unit tests to ensure models and associations behave correctly.

We'll only scratch the surface of ActiveRecord, as it would be impossible
to cover all of its features in a short chapter. However, you will get
an overview of what's available, and hints about where to find more
information if you need it.

Creating New Records in a Table via Models
In this section, we'll be manipulating our models using the Rails console (command
line with the Rails environment loaded). This helps enforce the separation between
models and other components: by ignoring the graphical interface, we can concentrate
on implementing business logic. This approach doesn't necessarily suit every type of
application: for example, where work-flow is complicated and you aren't clear what
the business rules are, exploring the interface using paper prototypes can help clarify
what the application should do. As Rory and Jenny have a clear idea of what the
Intranet application should do, a data-centric approach makes sense.

•

•

•

•

•

Working with Rails

[130]

The first step is to start the console:

$ ruby script/console

Loading development environment.

>>

At the moment, we don't have any records in the database. We can use the console
to add a few to the people table; at the same time, we can get an insight into how
ActiveRecord operates.

If we're adding records to the people table, we need to create instances of the Person
model class like this:

>> me = Person.new

=> #<Person:0xb7492134 @new_record=true, @attributes={"updated_at"=>nil,
"title"=>nil, "notes"=>nil, "gender"=>nil, "address_id"=>nil, "company_
id"=>nil, "date_of_birth"=>nil, "telephone"=>nil, "first_name"=>"",
"last_name"=>"", "created_at"=>nil, "keywords"=>nil, "mobile_phone"=>nil,
"email"=>""}>

What happened here? We created a new Person instance by calling the new method
on the Person class. The console shows us the return value from each command
we enter: in this case, the new method returns a Person instance, represented by
#<Person:...>. The character string 0xb7492134 is just an internal identifier for the
object, used by Ruby.

Note that this new instance has an instance variable called @attributes; this
is simply a hash, where the keys are the names of the fields in the people table
("gender", "title", "notes" etc.); and the values of the keys are the current settings
for those attributes (all nil at the moment). If we saved this model instance to the
database now, we'd end up with a record full of empty fields. Instead, let us set some
field values then save the record:

>> me.first_name = 'Elliot'

=> "Elliot"

>> me.last_name = 'Smith'

=> "Smith"

>> me.save

=> true

Here we are calling some of the instance methods ActiveRecord added to the Person
class. Each attribute in the @attributes hash has a corresponding so-called "setter"
method, which can be used to set the value of an attribute. The value you pass to
the setter should match the database field type: strings for VARCHAR and TEXT fields,
dates for DATE fields, integers for INT fields, etc.

Chapter 4

[131]

At the end of the sequence of commands above, the save method is called to save the
record to the database. (If you are curious, you can use your MySQL client to check
that the record has been inserted.)

You may be thinking that you can see what cleverness ActiveRecord is up to by
looking at the Person model class. Let's open it up in Eclipse. All the model files are
stored in the app/models directory; the Person model is in the file called person.rb
and looks like this:

class Person < ActiveRecord::Base
end

In fact, none of the setter methods on the class are visible in the source code: they are
all being added by ActiveRecord behind the scenes. A set of methods for accessing
attributes of a model instance ("getters") has also been added:

>> me.first_name

=> "Elliot"

>> me.last_name

=> "Smith"

The update_attributes method added by ActiveRecord enables multiple attributes
to be updated simultaneously from a hash, where the keys are the names of the
fields. The update is followed by a save to the database:

>> me.update_attributes(:email => "elliot@example.com", :title => "Dr.")

=> true

(This is used extensively in Rails to save values from submitted forms into
the database.)

Other useful methods are the find* variants ("finders"), which warrant their own
section (next).

Finders
ActiveRecord includes a range of methods for retrieving records from the database,
known as finder methods. Each time you create a model class, these methods
become available to that class; so each of our classes already has this capability.

Finders, like the attribute setters and getters of the previous sections, insulate the
developer from writing SQL. They can be used to retrieve individual records,
a whole set of records, or subsets of the records in a table. While working with
ActiveRecord from the console, finders can be useful for retrieving records to
work with.

Working with Rails

[132]

We're going to use the console in the next few sections (start it with ruby script/
console from inside your RAILS_ROOT directory). It is also useful if you have some
records to experiment with: use the instructions in the previous section to insert
a few.

Finding All of the Records in a Table
The simplest form of finder is the one which returns all of the records in a table:

>> results = Person.find :all

=> [#<Person:0xb7433d78 ...>, #<Person:0xb7433d3c ...>,
#<Person:0xb7433d00 ...>, #<Person:0xb7433cc4 ...>, #<Person:0xb7433c88
...>]

(Again, output is truncated for brevity.)

This finder returns an array of model instances; in this case, instances of our Person
class. We can iterate through these with the standard array methods provided by
Ruby, e.g.

>> results.each { |record| puts record.last_name }

Harker

Smith

Smith

Junket

Tribble

The command line used above:
results.each { |record| puts record.first_name }
is a short-hand block syntax understood by Ruby. The each method
effectively calls the block once for every element of the array, passing the
element into the block as the record argument.
We have already seen the longer block syntax in the section Building a
Model with Migrations, where it was used to define a migration.

It is also possible to limit the number of records returned, e.g. to return the first 5
records (when the people table is ordered by id):

>> Person.find :all, :limit => 5

Or to get a subset of records starting at some offset:

>> Person.find :all, :limit => 5, :offset => 5

The above gets records 6-10 from the people table (ordered by the id field).

Chapter 4

[133]

Virtual Attributes
ActiveRecord provides a default getter method for each attribute of a model class;
these attributes get mapped onto fields in the database table. However, there are
some situations where the default getters and setters are inadequate. For example, if
you want to provide an alternative representation of a field or combine multiple real
attributes into a single output attribute, you might need a custom getter.

In Rails, a pseudo-field derived from other real fields is referred to as a virtual
attribute: while it is derived from and accessed in the same way as actual field values
in the database table, a virtual attribute doesn't have a corresponding field of its own.

We'll write a full_name method, which will concatenate a person's title, first name,
and last name into a formatted string. We also need to cope with situations where
title has not been set, as it is not a required attribute:

class Person < ActiveRecord::Base
 # ... other methods ...

 def full_name
 out = (title.blank? ? '' : title + ' ')
 out + first_name + ' ' + last_name
 end
end

We'll make use of this in the next few sections when displaying records we retrieve.

Sorting Records
If we want to order the records, we can do this by passing an extra argument to the
find method call:

>> results = Person.find :all, :order => 'last_name DESC'

...

>> results.each { |record| puts record.full_name }

Mrs. Jo Harker

Ms. Sarah Junket

Mr. Frank Smith

Dr. Elliot Smith

Mr. Jeff Tribble

Working with Rails

[134]

Notice that the records are now ordered in descending order by last name (which is
why Frank Smith comes before Elliot Smith); you can specify ASC to sort in ascending
order (the default, if you specify neither ASC or DESC). You can pass any SQL fragment,
which would ordinarily follow the ORDER BY keywords in a SQL statement, e.g.

>> results = Person.find :all, :order => 'last_name, first_name'

...

>> results.each { |record| puts record.full_name }

Mrs. Jo Harker

Ms. Sarah Junket

Dr. Elliot Smith

Mr. Frank Smith

Mr. Jeff Tribble

(Sorting by last name in ascending order, then by first name in ascending order
where records have matching last names.)

Finding a Single Record
We can find a single record by ID:

>> Person.find 4

=> #<Person:0xb74a91d4 ...>

Note that this doesn't return an array, but a single instance of the Person model class.

What ActiveRecord does in the background is execute the following MySQL query:

SELECT * FROM people WHERE (people.id = 4) LIMIT 1;

In some cases, you won't want to use all of the fields in the table. You can improve
the efficiency of your queries by just returning the fields you need using the
:select option:

>> Person.find 4, :select => 'first_name'

=> #<Person:0xb74d8604 @attributes={"first_name"=>"Sarah"}>

In this example, the query is restricted to just returning the first_name field. Note
that you will need to retrieve a person's ID if you want to be able to save the model
instance back to the database. Also note the :select will work with find :all, too.

We can also retrieve an array of records with specific IDs:

>> Person.find [1,3]

=> [#<Person:0xb74a3d4c ...>, #<Person:0xb74a3d10 ...>]

Chapter 4

[135]

Finding Records Matching Search Criteria
One method for finding records by criteria is by passing a :conditions option to
find. For example, to find the first person with the last name "Junket":

>> Person.find :first, :conditions => "last_name = 'Junket'"

Or to find everyone with the surname "Smith":

>> Person.find :all, :conditions => "last_name = 'Smith'"

The :conditions option can also be passed an array, consisting of a SQL "template"
as the first element, followed by the values to substitute into the template:

>> Person.find :all, :select => 'last_name, first_name',

:conditions => ["last_name = ?", 'Smith']

=> [#<Person:0xb74556ec ...>, #<Person:0xb74556b0...>]

Note what we've done here is passed an array to the :conditions find option, with
a template and a substitution:

:conditions => ["last_name = ?", 'Smith']

The template should be a SQL fragment, suitable for placing after the WHERE clause in
a SQL query. Any values to be substituted are represented by question marks (?) in
the template. The :conditions array can be as complex as you want:

>> Person.find :all, :conditions => ["date_of_birth < ? AND last_name =
?", 20.years.ago, 'Smith']

=> [#<Person:0xb741da58...>]

This finds everyone born more than 20 years ago with the last name "Smith".

By using the template plus substitutions format for conditions, we don't
have to worry about correctly escaping strings in our SQL query, as
ActiveRecord does it for us; we can also be assured that ActiveRecord will
sanitize any values substituted into the SQL string, helping prevent SQL
injection attacks.

It is also possible to use LIKE statements as :conditions to perform wild-card
matches. However, note that these aren't as platform-portable as the above SQL
statements. For example, to perform case-insensitive matches in PostgreSQL, you
have to use the ILIKE keyword (rather than LIKE); while MySQL defaults to
case-insensitive matching.

Working with Rails

[136]

In the case of MySQL, we can do a wild-card match using LIKE with this syntax (to
get everyone whose first name starts with "j" or "J"):

>> results = Person.find :all, :conditions => "first_name LIKE 'j%'"

...

>> results.each { |record| puts record.full_name }

Mr. Jeff Tribble

Mrs. Jo Harker

Finding Records Using Attribute-Based Finders
ActiveRecord provides one further set of conveniences for finding records: dynamic
attribute-based finders. This mouthful means that you can make up finders based on
field names in the table, on the fly. For example, to get all the people in the database
with the first name "Elliot".

>> Person.find_by_first_name 'Elliot'

You can also specify multiple fields to filter on by joining the names of the fields with
"and", e.g. to get everyone with the first name "Elliot" and last name "Smith":

>> Person.find_by_first_name_and_last_name 'Elliot', 'Smith'

By default, dynamic finders will return a single record; but they can also return an
array by using find_all_by, instead of find_by:

Person.find_all_by_last_name "Smith"

Note that you can also pass standard finder options to dynamic finders, like :select
and :conditions:

>> Person.find_by_first_name 'Elliot', :select => 'first_name'

>> Person.find_by_last_name 'Smith', :conditions => ['date_of_birth < ?',
20.years.ago], :select => 'first_name'

Finding Records by Raw SQL
One last resort for performing queries is to pass the raw SQL to ActiveRecord
yourself. Instead of using the standard find method, you create the SQL "manually"
(as you would if crafting a PHP application without an ORM layer). You then
execute this string using the find_by_sql method:

>> Person.find_by_sql "SELECT first_name FROM people"

Chapter 4

[137]

Note that find_by_sql returns an array of instances.

In some situations, a call to find_by_sql is far faster than the standard
find method. This is because ActiveRecord doesn't need to inspect the
model classes to work out which fields are in the table and then generate
the SQL. Instead, you are removing a chunk of processing time by doing
the dirty work yourself. This approach is worth considering where your
application has database bottlenecks or where it has many large tables.

Writing a Custom Finder
Don't forget that you can add your own finder-style methods to your class for extra
convenience, too. In our Intranet application, we are very often going to want to get
a list of everyone in the people table, sorted by name. We can write a wrapper round
find to do this, inside the Person class:

class Person
 ...
 def self.find_all_ordered
 find :all, :order => 'last_name, first_name'
 end
end

Specifying a method name starting with the keyword self creates a new class-level
method. We can call it like this:

>> results = Person.find_all_ordered

...

>> results.each { |record| puts record.full_name }

Mrs. Jo Harker

Ms. Sarah Junket

Dr. Elliot Smith

Mr. Frank Smith

Mr. Jeff Tribble

(This is the same output as when we used find in the section Sorting Records.)

Working with Rails

[138]

Viewing the SQL
ActiveRecord does a lot of work in the background creating SQL statements for you.
If you are curious about what ActiveRecord is doing, you can see the SQL statements
in their raw form by reading the RAILS_ROOT/log/development.log file. For
example, here's what Person.find :all gets translated into by Rails:

[4;36;1mPerson Load (0.002825)[0m [0;1mSELECT * FROM people [0m

The unusual characters are in the output ("[4;36;1m", "[0m" etc.), are colorization
specifications, so that in editors which are capable of understanding ANSI
colorization codes, you get different colors for different elements of the log. My
preference is to turn off colorization by adding this line to the bottom of the
config/environment.rb file:

ActiveRecord::Base.colorize_logging = false

This gives you far more sensible log output:

Person Load (0.000403) SELECT * FROM people

The important part of this, besides the SQL statement, is the number between the
brackets. This shows the length of time (in seconds) that the query took to execute.

Looking at the raw SQL queries can sometimes help identify problems with badly-
formatted queries, or where large inefficient queries are being generated, which
could be slimmed down using find_by_sql. We'll have more to say about the logs
in the section on logging in chapter 6.

In the production environment, logging of SQL queries is turned off
by default-you need to be in the development environment to see
these messages.

Viewing Logs in Eclipse
Unfortunately, if you are looking at logs in Eclipse, you may find that the log file
opens in an external editor. You can setup Eclipse to open them instead as follows:

1. Go to the Window menu and select Preferences.

Chapter 4

[139]

2. In the Preferences dialog box, go to General | Editors | File Associations:

3. Click the Add button to add a new file association.
4. Enter *.log for the File type field:

5. Click OK.

Working with Rails

[140]

6. Click on Add (next to the Associated editors field) to setup an editor for this
file type.

7. In the Editor Selection dialog, select the SQL Text Editor option:

This editor does a decent job of highlighting SQL code, while leaving the rest
of the logs readable. If you don't have the SQL Text Editor, choose Text Edi-
tor instead.

8. Click OK.
9. In the Preferences dialog, click OK.

The association should now be set up. Try opening a log file in Eclipse to check
if it works.

Chapter 4

[141]

Validation
The models we developed in the previous sections are working how we intended:
we can insert new records into the database and retrieve them again. However,
the current models do nothing to validate our input, making it possible to add
new records where all of the fields contain empty strings. This is despite the fact
that we specified that some fields in the database tables could not be set to null,
as ActiveRecord automatically sets any unset string attributes to the empty string.
MySQL treats an empty string differently from NULL; so a record with empty strings
for the first_name, last_name, or email field is acceptable to MySQL when it is
inserted. In the case of the Intranet application, this could mean many contact records
without contact information.

Validation of data input is another aspect of ActiveRecord. In traditional web
applications, validation can be cumbersome, to say the least. ActiveRecord provides
a framework which makes validation virtually trivial. The validation framework
handles validation in the model, independently of the front-end, so we can modify
our models and test our validations using the console. We will also be using unit
tests to verify our validation code wherever necessary (see the Testing section later in
this chapter), rather than by manually testing through a front-end.

We'll take a look at validation in the context of the Intranet application, rather than in
the abstract. We can set up most of the required validations using the validates_*
methods in ActiveRecord, a whole family of methods for appending validation code
to models. We will be using the most common and useful ones, demonstrating in
detail how they can be applied to our Person model class.

We will also see how to add more complex custom validation to models, to capture
situations not covered by the macro methods; then add validation to our other two
models (Company and Address).

Validating People
Recall that in our data structure (see Chapter 2) we specified that each person added
to the people table had to meet the following validation criteria:

first_name and last_name should not be empty.
email should be a valid email address and unique to this person.
gender should be set to "M" or "F".
address_id and company_id should reference records in the
appropriate tables.

•

•

•

•

Working with Rails

[142]

We can apply these validations by adding checks on the attributes of instances of the
Person model, as follows:

Checking for Empty Field Values
Use the validates_presence_of method for this. The validation code is added to
the class definition, inside the app/models/*.rb files. In the case of the Person class,
it goes in app/models/person.rb:

class Person < ActiveRecord::Base
 validates_presence_of :first_name,
 :message => "Please enter a first name"
 validates_presence_of :last_name,
 :message => "Please enter a last name"

 ...
end

validates_presence_of is actually a method call on the Person class, which adds
new instance methods to the class. The new instance methods are automatically
called when a record is created or updated. In this case, they check that the specified
attributes (first_name and last_name) contain non-blank values (i.e. not nil or the
empty string).

A symbol representing the name of the attribute (e.g. :first_name, :last_name)
is the first argument passed to the method. The second :message argument used in
the code above is optional; if you leave it off, ActiveRecord will use a default error
message. In the case of validates_presence_of, the default message is:

"<attribute> can't be blank"

You can restrict when validations are applied using an optional :on argument, e.g:

validate when creating new records and updating existing records
(this is the default)
validates_presence_of :first_name, :on => :save
ONLY validate when creating new records
validates_presence_of :first_name, :on => :create
ONLY validate when updating existing records
validates_presence_of :first_name, :on => :update

The :on option is available on all of the validates_* methods covered here.
However, in the Intranet application, we can just use the default behavior, and
validate on both creation of new records and updates to existing ones.

Chapter 4

[143]

To test your validation code, use the console:

>> p = Person.new

=> #<Person:0xb7436850 ...>

>> p.save

=> false

>> p.errors

#<Person:0xb7436850 @new_record=true, @errors=#<ActiveRecord::
Errors:0xb74349d8 @errors={"first_name"=>["Please enter a first name"],
"last_name"=>["Please enter a last name"]} ...>

The errors method returns an object containing any current errors on the model.
This method gets the content of the @errors instance variable, which contains the
validation error messages, keyed by the name of the attribute. You can access errors
for an individual attribute too:

>> p.errors['last_name']

=> "Please enter a last name"

>> p.errors['first_name']

=> "Please enter a first name"

The default error message strings are stored in a hash in ActiveRecord.
These strings are used if you don't use a :message option when
calling a validation message. The default error messages hash can be
accessed using:
ActiveRecord::Errors.default_error_messages

You can set your own error messages by manipulating this hash. For
example, to change the message for validates_presence_ofof errors
(for example, from the default "can't be blank" to "must not be empty"),,
you can edit config/environment.rb and add this line:
ActiveRecord::Errors.default_error_messages[:blank] =
"must not be empty"
Now any validates_presence_of failures will return an error
message like "First name must not be empty".

Checking Against a Regular Expression
The email attribute should comply with the standard format for email addresses. We
can specify this as a regular expression. I tend to try and find a suitable expression on
the web for this purpose; here's one, which works for about 99% of the cases (from,
http://regular-expressions.info/email.html):

/^[A-Z0-9._%-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$/i

Working with Rails

[144]

Note that it is possible that this regular expression will match some invalid email
addresses, but it trades off completeness against simplicity.

We can apply this regular expression as a validation in the Person class using the
validates_format_of method:

class Person < ActiveRecord::Base
 EMAIL_REGEX = /^[A-Z0-9._%-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$/i
 validates_format_of :email, :with => EMAIL_REGEX,
 :message => "Please supply a valid email address"

 ...
end

Here we've set up a constant EMAIL_REGEX inside the Person class; this is then
passed as the :with option to the validates_format_of method.

We can test this from the console:

>> p = Person.new(:first_name => 'Elliot', :last_name => 'Smith')

=> #<Person:0xb742dbec ...>

>> p.email = 'elliot at example.com'

=> "elliot at example.com"

>> p.save

=> false

>> p.errors['email']

=> "Please supply a valid email address"

>> p.email = 'elliot@example.com'

=> "elliot@example.com"

>> p.save

=> true

Checking for Uniqueness
Another constraint we need is to restrict email addresses, so that we only have a
single person associated with a given email address. ActiveRecord enables us to
add multiple validations to a single field simply by calling multiple validates_*
methods, one after another:

class Person < ActiveRecord::Base
 EMAIL_REGEX = /^[A-Z0-9._%-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$/i
 validates_format_of :email, :with => EMAIL_REGEX,
 :message => "Please supply a valid email address"
 validates_uniqueness_of :email, :message => "This email address
 already exists"

 ...
end

Chapter 4

[145]

When you create a new record and validates_uniqueness_of is in place,
ActiveRecord runs a query against the database. This checks whether any existing
records have a field with a value equal to the attribute value in the new record. To
demonstrate, let's add a new record using the console:

>> p = Person.new(:first_name => 'William', :last_name => 'Shakes', :
email => 'w.shakes@example.com')

=> #<Person:0xb790f4e0 ...>

>> p.save

=> true

That one was added OK. Now, try to add another record with the same email
address:

>> p = Person.new(:first_name => 'Bill', :last_name => 'Shakes', :email
=> 'w.shakes@example.com')

=> #<Person:0xb790f4e0 ...>

>> p.save

=> false

The save method returns false, meaning that the save failed. You can see, "This
email address already exists" error message if you examine p.errors. You can also
see the SQL query that ActiveRecord ran to check for uniqueness by examining the
development.log log file:

SELECT * FROM people WHERE (people.email = 'w.shakes@example.com')
LIMIT 1

Because this query returns a record, the validation fails and the record isn't saved. It's
worth bearing in mind that this type of validation runs a query on the database every
time it is called: consider carefully when to use it, and whether this extra overhead is
warranted for your application. In the Intranet application, accuracy of data is very
important to prevent duplicate contacts, so a check is vital. In the case of signing up
for a newsletter, ensuring unique email addresses may be less crucial: perhaps it's
not so important if someone receives two copies of a newsletter each month, as they
can always get in touch to correct the error if annoyed. In that situation, the extra
overhead of validates_uniqueness_of may not be desirable.

Checking for Inclusion in a Range of Values
The gender attribute should contain the value "M" or "F" ("male" or "female").
However, the people table merely constrains the gender attribute to being a one
character string: it doesn't restrict that string to one of the two allowed values. We
are going to enforce the constraint using validation.

Working with Rails

[146]

The first step is to setup constant GENDERS, which stores the valid values for the
gender attribute:

class Person < ActiveRecord::Base
 GENDERS = {'M' => 'male', 'F' => 'female'}
 ...
end

We could have used a separate genders table to store this data, but decided not to
(see the tip box below for the reason). The next step is to add some validation, which
checks whether the gender attribute is set to one of the keys in the GENDERS hash:

class Person < ActiveRecord::Base
 GENDERS = {'M' => 'male', 'F' => 'female'}
 validates_inclusion_of :gender, :in => GENDERS.keys,
 :message => "Please select 'M' or 'F' for gender"

 ...
end

The validates_inclusion_of method creates a validation which compares an
attribute value against some enumerable object like an array. The enumerable object
is passed using the :in option. In this case, we are using the keys of the GENDERS
array as the enumerable object (referenced by GENDERS.keys). The validation is case-
sensitive: so the values 'm' and 'f' will not be accepted. In the application, it is likely
that we'd use radio buttons or a drop-down box to select gender in a form, in which
case this validation might seem redundant. However, the rule ensures that, if our
forms were maliciously manipulated to return an invalid or empty value for gender,
we could catch errors before they got to the database.

Why use a hash to store genders, rather than a table? This is a decision
made for pragmatic reasons (to cut down on the number of database
tables), but strictly speaking it goes against relational database principles:
really, we should have a genders table, which stores all valid genders,
and should reference the appropriate gender_id in the people
table. For now, the hash solution is adequate: as we only use gender
information in a single table, we are effectively folding the hypothetical
genders table into the people table (the only place it is used). If we
needed to use gender elsewhere, a separate table would be the
proper approach.

Chapter 4

[147]

Test the validation using the console:

>> p = Person.new

=> #<Person:0xb74ecafc ...>

>> p.gender = 'X'

=> "X"

>> p.save

=> false

>> p.errors

=> #<ActiveRecord::Errors:0xb74e83bc @errors={"gender"=>["Please select
'M' or 'F' for the genre"], ...} ...>

>> p.gender = 'M'

=> "M"

>> p.save

=> true

Validating Related Records
Validation of the related company and address for a person depends on associations
with other tables. This type of validation is covered in detail in the sections
Validating a Person's Address and Validating a Person's Company (after the associations,
themselves have been set up).

Summary
Here is the complete validation code for the Person model:

class Person < ActiveRecord::Base
 EMAIL_REGEX = /^[A-Z0-9._%-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$/i
 validates_format_of :email, :with => EMAIL_REGEX,
 :message => "Please supply a valid email address"

 validates_uniqueness_of :email,
 :message => "This email address already exists"

 validates_presence_of :first_name,
 :message => "Please enter a first name"

 validates_presence_of :last_name,
 :message => "Please enter a last name"

 GENDERS = {'M' => 'male', 'F' => 'female'}
 validates_inclusion_of :gender, :in => GENDERS.keys,
 :message => "Please select 'M' or 'F' for the genre"

 ...
end

Working with Rails

[148]

Validating Companies
The validation code for the Company model in app/models/company.rb is very
simple, as we only need to ensure a company has a name:

class Company < ActiveRecord::Base
 validates_presence_of :name,
 :message => "Please enter a company name"
end

Validating Addresses
The validation code for the Address model in app/models/address.rb is as follows:

class Address < ActiveRecord::Base
 validates_presence_of :street_1,
 :message => "Please enter an initial line for the address"

 POSTCODE_REGEX = /^[A-Z][A-Z]?[0-9][A-Z0-9]? ?[0-9]
 [ABDEFGHJLNPQRSTUWXYZ]{2}$/i
 validates_format_of :post_code, :with => POSTCODE_REGEX,
 :message => "Please enter a valid post code"

 def validate_on_create

 if Address.find_by_street_1_and_post_code(street_1, post_code)

 errors.add_to_base('Street address and post code already exist
 in the database')

 end

 end

end

The UK postcode regular expression is from Wikipedia (http://en.wikipedia.
org/wiki/UK_postcodes). It will allow some invalid postcodes through; but like
the regular expression for email addresses (see section, Checking Against a Regular
Expression), it is simple to follow and will catch 95% of cases.

The first line of the address (street_1) is validated, as an initial address line and
post code are required to uniquely identify a UK address.

The final validation (highlighted) is the most interesting, as it demonstrates how
to perform a custom validation not available using the default Rails methods. This
is done by defining a validate_on_create method, which is run to validate any
records when they are created.

Chapter 4

[149]

The validate_on_create method can check attributes on the instance using
whichever criteria you like. For example, you could validate a host name against a
DNS look-up service or check a country code against a web service (neither of which
is possible with the macros). ActiveRecord runs any custom validate_on_create
method in tandem with validations defined using the validates_* macros.

In this case, the street_1 and post_code attributes on the new instance are used
to look up a record in the addresses table: if an address with matching street_1
and post_code already exists, validation fails, and a generic error message is added
to the model instance (add_to_base enables adding an error message to the whole
instance, rather than a particular field).

An alternative approach to ensuring the uniqueness of the combination
of street_1 and post_code would be to add a unique index to the
database table, based on these two columns. Then, if an INSERT was
performed with matching field values, it would fail due to the index
constraint. However, you would then need to write some custom error
catching code to trap this error and present it meaningfully through
the model. The approach here is simpler and just makes use of existing
features of ActiveRecord.

There is validate_on_update method, to be applied only on updates to records;
and also a validate method that you can define to perform validation on both record
creation and updates.

Other Types of Validation
There are several more esoteric validates_*_of methods, which are summarised
below (along with those with already seen), with examples of how you can use them.

validates_uniqueness_of, validates_presence_of, and
validates_format_of are covered above.
validates_acceptance_of
Used where a user must tick a box to agree to the terms and conditions (or
similar). There doesn't have to be an attribute corresponding to the tick box
in the model.
validates_confirmation_of
Compares an attribute with a submitted form field to ensure they contain the
same value.
validates_exclusion_of
Compares an attribute value against an enumerable object and only returns
true if the attribute value is not in that object (the inverse of validates_
inclusion_of).

•

•

•

•

Working with Rails

[150]

validates_length_of
Ensures that an attribute's value is not too long or too short. You can set a
minimum length, a maximum length, or a range the length should sit within.
validates_numericality_of
Ensures that an attribute is a number. Can be constrained to be an integer, or
allow both integers and floating point numbers.
validates_associated
In the section on Associations Between Models, we'll see how to use
this method.

Another method worth mentioning is validates_each, which enables you to create
a custom validation for one or more attributes by running them through a block.
It is used as the basis for Rails' built-in validation methods. See the documentation
of ActiveRecord::Validations::ClassMethods for more details of how to use it
(and for more details about the methods listed above).

Testing
Testing web applications is a laborious process. Often, it consists of developers
sitting in front of web browsers and "pretending" to use the system, clicking around
and filling forms with garbage. There are several draw-backs to this approach:

Incompleteness-
It is difficult to follow every possible path through the application. Testing
of some actions may be neglected or missed entirely if they only occur under
unusual circumstances.
Inconsistency-
The first time the application is tested, one set of paths through the
application will be used; when forms are completed and submitted, some
fields will be left empty, others filled. On subsequent tests, different paths
may be followed and different form fields completed; and different again
the next time; and so on. This makes it difficult to compare different test
sessions, as there is no consistency in how the application is used during
different sessions.
Unrepeatability-
Because the testing process is essentially random, when bugs are
encountered it is often difficult to reconstruct the actions which led to the
bug occurring.

•

•

•

•

•

•

Chapter 4

[151]

It is possible to ameliorate some of these problems by writing a test script, which
human testers follow, to ensure that the same parts of the application are tested the
same way in different sessions. But writing these scripts is time-consuming and tedious.

An alternative approach is to use automated testing. In environments where setting
up the test harness is a cumbersome task, automated testing can in itself be time-
consuming. For example, PHP has several unit testing frameworks, but they are
rarely used as they are a pain (a small pain, but still a pain) to install and configure,
before you even start learning how to write the tests.

By contrast, Rails makes testing easy and seductive. Each time you use the generators
to create new components for your application, Rails adds test stubs for your code,
depending on the type of component. The types of tests provided by Rails breaks
down into:

Unit tests-
These tests the models in the application. You can use them to check that
your validation code works as expected, and to test associations between
models. We'll look at these in this chapter.
Functional tests-
These test actions on controllers. Rails provides some convenient classes
for emulating an HTTP client as it interacts with your application: so you
can do things like fill in a form and submit it, and check that Rails correctly
adds new records to the database. Functional tests are less about testing
the database and more about testing that correct data is being assigned to
instance variables, routing is working correctly, the response code is correct
(success/redirect), the session/cookies are being updated properly, the
correct template is being rendered, etc.. This makes them less important than
unit testing, but still very useful for testing large, complex applications.
Integration tests-
These enable testing of workflows across controllers. For example, if you
had a login form protecting the list of contacts, you could test that the list is
correctly protected; then test that a user is able to login to access the list.

For most applications, thorough unit testing goes a long way towards improving
the stability of the code: it becomes easy to trace where changes are being made to
the model code, and where assumptions are coming undone (known in the testing
vernacular as regressions—behavior which previously worked, but which is broken
by a code modification). If models do change, unit tests provide a good prompt as
to which controllers and views also need to change as a consequence. Unit testing
is a pragmatic solution, which a company can easily invest in; while functional and
integration testing are useful, they add yet more time to the development cycle.

•

•

•

Working with Rails

[152]

Remember, also, that there is a separate testing environment baked into each Rails
application (see the section, Configuring	the	Rails	Environments): you can run tests
without affecting either the development or production databases. The test stub
generators remove the pain of installing and configuring the test harness; and the
separate environment removes the havoc that automated testing can wreak on a real
database. These two factors mean that testing in Rails is a pleasure.

For the purposes of the Intranet application, at least for now, we are going to rely on
unit testing. We'll return to functional and integration testing in later chapters.

Setting Up for Testing
In our application, the testing framework has been automatically applied during
our work with the generators. To take advantage of it, we just need to setup a test
database. Follow the instructions in the section Creating a Database and System Account
to add a new database; the process is summarized below:

mysql> CREATE DATABASE intranet_test;

Query OK, 1 row affected (0.18 sec)

mysql> GRANT ALL PRIVILEGES ON intranet_test.* TO intranet@localhost
IDENTIFIED BY 'police73';

Query OK, 0 rows affected (0.25 sec)

mysql> FLUSH PRIVILEGES;

Query OK, 0 rows affected (0.00 sec)

We've used the same database user (intranet) for the intranet_test database as
we used for the intranet database: if you prefer, you can use a separate dedicated
testing user.

We also need to edit config/database.yml to configure the test database:

test:
 adapter: mysql
 database: intranet_test
 username: intranet
 password: police73
 socket: /var/run/mysqld/mysqld.sock

Now, we are ready to run the tests from the command line with rake:

$ rake test:units

(in /home/rory/workspace/Intranet)

/usr/bin/ruby1.8 -Ilib:test "/usr/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/

Chapter 4

[153]

rake/rake_test_loader.rb" "test/unit/person_test.rb" "test/unit/company_
test.rb" "test/unit/address_test.rb"

Loaded suite /usr/lib/ruby/gems/1.8/gems/rake-0.7.1/lib/rake/rake_test_
loader

Started

...

Finished in 0.861688 seconds.

3 tests, 3 assertions, 0 failures, 0 errors

So far, so good. Running the command rake test:units initiates a Rake task, which
does the following:

1. Removes any existing tables and data from the test database (which is why
it should be a separate database from development or production).

2. Clones the structure of the current development database into the test
database. None of the data is copied into the test database, just the table
structures: any test data you want to pre-populate the test database with is
added using fixtures (next section).

3. Loads all of the *.rb files in RAILS_ROOT/test/unit. These files contain test
classes (aka test cases), which inherit from the Test::Unit::TestCase class
(from Ruby's built-in unit testing library). In our case, there are three files,
corresponding to our three models:

test/unit/address_test.rb

test/unit/company_test.rb

test/unit/person_test.rb

The set of test cases is collectively known as a test suite.

4. Any methods prefixed with test_ inside the test cases are run. In addition,
if a setup method is defined for a test case, this method is run before each of
the test_ methods; if a teardown method is defined, it is run after each of the
test_ methods completes.
Each test_ method contains assertions about the expected behavior of the
models in the application. If the expectations are met, all assertions in the
test return true and the test passes; if any expectation fails (i.e. any assertion
returns false), the test fails. Failures are reported as they occur; if runtime
exceptions occur during the tests, they are also reported and cause the test in
which they occur to fail.

°

°

°

Working with Rails

[154]

5. When all the tests complete, a summary of the results is shown:
tests: the number of test_ methods run
assertions: the number of assertions made during the tests
failures: the number of tests which failed
errors: exceptions which occurred during testing

In the next section, we'll see how a test case works, and write our own.

Anatomy of a Test Case
The default test case for the Person model (in test/unit/person_test.rb) is
defined as:

require File.dirname(__FILE__) + '/../test_helper'

class PersonTest < Test::Unit::TestCase
 fixtures :people

 # Replace this with your real tests.
 def test_truth
 assert true
 end
end

The first line loads the test_helper.rb code from another file inside the test
directory. This file governs the general behavior of tests; we'll return to it in the
next section.

The fixtures method loads some test data into the testing database, using database
records defined in YAML files (see the section, Setting Up a Database Connection for
more information about YAML). We'll come onto fixtures shortly.

The only default test method is test_truth. This calls the assert method with the
argument true, which always returns true (it always passes). We need to replace
this dummy method with our own tests.

What Should be Tested?
The next question when applying unit tests to a model is "What should we test?". My
answer to that is: test all validations, associations, and utility methods. This might seem
excessive, as ActiveRecord already has a test suite, which checks that the validation
macros work correctly. However, what we are testing is that instances of our models
adhere to the behavior we expect them to have; not whether the validation code
performs validation (which we know it does).

°

°

°

°

Chapter 4

[155]

Thorough testing like this is particularly important where several people are
working on a single code base. As an example, imagine that Rory writes some
validation code, which says a person must have a first name. In another part of the
application, he makes the assumption that any people he displays will have first
names (as he's decided they aren't valid otherwise), and writes some view code,
displaying people and their first names.

Meanwhile, Jenny decides that an empty first name is OK: as long as someone has
a last name, their first name is unimportant. She removes Rory's validation code for
first names.

The next time Rory runs his view code, he gets a regression: any people he tries to
display who don't have a first name causes an error to be raised. Rory is perplexed
and spends the afternoon working out what's going on.

In this situation, the tests for the validation rules on Person would be broken by
Jenny's change to the code. The next time the test suite runs, the test failures will help
Rory see what has changed. This makes it much easier to keep the behavior of the
application stable, as it forces Jenny to rewrite any tests for the Person model if she
wants to change the validation code. It also highlights to Jenny where her change
will have an impact on other parts of the application: she can just see which tests fail
and fix the code to make them pass again.

Now we have all agreed that testing is a good thing, the next step is to put in place
some fixtures: data we can mangle during testing to see whether our expectations
about a model hold up.

Fixtures
When you create a model, a blank fixtures file is also created (as well as the test stub
discussed previously). The fixtures file is a way of creating dummy records so that
each time you run your tests, you have a consistent data set to work from. Rails
automatically loads fixtures when running test cases, converting them into records in
the test database.

The fixtures file for a model is added to the test/fixtures directory; the name of
the fixtures file is the database table name + ".yml" (so we have addresses.yml,
companies.yml, and person.yml). Each fixtures file is written in YAML: the top
level keys are easy-to-remember names for the individual records; indented under
each key are the field names and values for each record.

By default, a test case just loads the fixtures for the model under test. If you want
to load other fixtures for other models, you can just append extra arguments to the
fixtures method call (the first line inside the test class definition):

fixtures :people, :companies

Working with Rails

[156]

This can be useful when testing associations (see Associations Between Models).

Following our own guidelines, we want to test the find_all_ordered method. To
do this, we need at least three records in the person.yml fixture file, so we can check
whether they are ordered by last name, and whether two people with the same last
name are additionally ordered by first name. During the tests, we will reset attributes
on these test records and try to save them back to the test database to exercise other
parts of the validation code:

ginger:
 id: 1
 title: 'Mrs.'
 first_name: 'Ginger'
 last_name: 'Bloggs'
 email: 'ginger@example.com'
 gender: 'F'
fred:
 id: 2
 first_name: 'Fred'
 last_name: 'Bloggs'
 email: 'fred@example.com'
 gender: 'M'
albert:
 id: 3
 first_name: 'Albert'
 last_name: 'Always'
 email: 'albert@example.com'
 gender: 'M'

Notice that the records are put into the YAML file in non-name order, to make sure
the sorting is being done by the find_all_ordered method, and isn't just due to
the ordering of the fixtures file. Also notice that all of the records are valid, having
an email address, first name, last name, and gender. However, it is not necessary
to setup the attributes which aren't validated and which we're not testing (like
telephone, mobile_phone, etc.).

Transactional and Instantiated Fixtures
Each time Rails runs a test method, it does so inside a database transaction: any
changes made during the course of running the test method are undone when the
test completes (using a SQL ROLLBACK command). In other words, the fixtures	are	
transactional, effectively being "replenished" after each test.

Chapter 4

[157]

With MyISAM tables, we have to be careful: transactions are not supported and have
no effect when running our tests. The consequence is that any changes we make
during a test (e.g. deleting a record from a table) impact on later tests. Data you were
expecting to be available may have disappeared, or may not have the attributes you
expected. This can cause chaos: your tests become dependent on the order in which
they are applied and what happened in tests previous to the current one.

The fix is simple: turn off transactional fixtures during testing if you are using
MyISAM tables. Edit this line in test/test_helper.rb:

self.use_transactional_fixtures = true

And change it to:

self.use_transactional_fixtures = false

If you are using a database or table type which supports transactions,
leave this setting as true: it makes running the test suite faster and
more efficient.

The other change you can make to the test/test_helper.rb file is to turn on
instantiated fixtures. All this means is that Rails will convert any fixtures that you
define into instance variables on the test case. This makes it easier to reference
records added from your fixtures from inside your test cases.

Change the line:

self.use_instantiated_fixtures = false

to:

self.use_instantiated_fixtures = true

This does add a slight overhead, so you may want to leave it set to false if you have
a lot of test cases or fixtures.

Tests for the Person Model
We are now ready to write some tests for the Person model. We have the following
expectations about its behavior:

A person should have a valid email address.
No two people can have the same email address.
A person without a first name is invalid.

•

•

•

Working with Rails

[158]

A person without a last name is invalid.
A person's gender must be set to 'M' or 'F'.
The full_name method should format a person's title, first name, and last
name into a correctly-formatted string. We also need to check that the output
is correct where a person doesn't have a title.
The find_all_ordered method should correctly sort people. The array
returned should sort people by last name and then by first name in
ascending order.

We can add test methods to check each of these expectations.

A person should have a valid email address
We need to test whether a record can be saved with an invalid email address. So, we
will reset the email address for one of the fixture records and try to save it; we expect
it to fail (return false):

def test_reject_invalid_email_addresses
 @fred.email = 'fred @ hello.com'
 assert !@fred.save
 @fred.email = 'fred bloggs@hello.com'
 assert !@fred.save
end

Some points to note:

You can reference fixtures with the name of the record, prefixed with "@".
This returns a model instance you can manipulate. If you have turned
off instantiated fixtures (see the previous section), you need to reference
people(:fred) to get the model instance instead.
We want the save to fail; so our assertion states: "We're expecting the save
to return false. So, taking the logical inverse (not) of the value returned by
save, we're expecting to get true."
You might want to add other invalid email addresses that you are likely to
encounter, to make sure that the regular expression rejects them all.

No two People can have the Same email address
This one is simple:

def test_email_must_be_unique
 @fred.email = @albert.email
 assert !@fred.save
end

•

•

•

•

•

•

•

Chapter 4

[159]

Here, we just set Fred's email to the same value as Albert's, then try to save Fred's
record. We expect this to fail.

A person without a first name is invalid
def test_must_have_first_name
 @fred.first_name = ''
 assert !@fred.save
end

Here, we just set Fred's last name to the empty string and try to save his record. We
expect it to fail.

A person without a last name is invalid
def test_must_have_last_name
 @fred.last_name = ''
 assert !@fred.save
end

Very similar to the test for :first_name (see above).

A person's gender must be set to 'M' or 'F'
def test_reject_invalid_genders
 @fred.gender = 'P'
 assert !@fred.save
end

Here, we just set Fred's gender to something other than "M" or "F" and try to save his
record. We expect this to fail.

The full_name method should produce a correctly-
formatted string
We need to test cases where a person has a title, and cases where they don't:

def test_full_name_correctly_formatted
 assert_equal 'Mrs. Ginger Bloggs', @ginger.full_name
 assert_equal 'Fred Bloggs', @fred.full_name
end

The find_all_ordered method should correctly sort people
This one is slightly more complicated, as we need to test that:

All people are returned by the method.
The records are in the ascending order of last_name.
Where the last_name fields of two records are the same, they should be inof two records are the same, they should be in
ascending first_name order.

•
•
•

Working with Rails

[160]

Here's the code:

def test_find_all_ordered
 people_in_order = Person.find_all_ordered
 assert_equal 3, people_in_order.size
 assert people_in_order[0].last_name <= people_in_order[1].last_name
 assert people_in_order[1].last_name <= people_in_order[2].last_name

 # fred should come before ginger,
 # even though they both have the same surname
 assert_equal 'Fred', people_in_order[1].first_name
 assert_equal 'Ginger', people_in_order[2].first_name
 assert people_in_order[1].first_name <= people_in_order[2]
 .first_name
end

Things to note:

We use a new type of assertion, assert_equal(expected, actual), to
compare an expected value with an actual value..
We use <= to compare fields in pairs of records returned by the
find_all_ordered method.
Because we know which fixtures are loaded, we can use expectations about
which record is where to do further testing, like how the people are ordered
by first_name when their last_name field values are the same. In our
fixtures, we know that Fred Bloggs should come before Ginger Bloggs in the
array, and can explicitly test this.

Test for positives as well as negatives
One thing which can catch you out is that fixtures	don't	have	to	be	valid: for
example, when first writing the fixtures for Person, I missed out gender
attributes. My tests worked fine when I was checking for saves failing; but
when I tried to check whether a save was successful, the tests failed, due
to the lack of a valid gender attribute (not for the reason I thought they
should fail).
I suggest including a test which checks whether one of your fixtures will
save to the database. That way you can be sure that you are testing with
what you think you are testing with, i.e. valid fixtures which will save to
the database. For example:
def test_sanity
 assert @fred.save
end

•

•

•

Chapter 4

[161]

Other Types of Assertion
Several other types of assertion are possible; they are listed below, along with those
we've already seen:

assert(expected)
Passes if expected is true.
assert_dom_equal(expected, actual)
Passes if the two HTML strings expected and actual are equivalent. Its
inverse, assert_dom_not_equal, is also available.
assert_tag(conditions)
Passes if the response body meets the criteria specified in the conditions
hash. For example, this assertion checks that the response body contains a
<title> HTML element with text "Intranet":
assert_tag :tag => 'title', :child => /^Intranet$/

The inverse, assert_no_tag, is also available. Both of these assertions make
most sense in the context of functional testing: we'll see an example of how to
use them in the chapter where functional and integration testing is covered.
assert_instance_of(klass, object)
Passes if object is an instance of the class klass.
assert_kind_of(klass, object)
Passes if object has the class klass, or if klass is a superclass of object's
class, or if klass is one of the modules included in object's class.
assert_equal(expected, actual)
Passes if expected and actual are equal (tested using the == operator).
assert_not_equal(expected, actual)
Passes if expected and actual are not equal.
assert_nil(object)
Passes if object is nil; assert_not_nil is also available.
assert_raise(ExceptionClass) { ... }
Passes if an exception of the specified ExceptionClass is raised by the
following block.
assert_nothing_raised {...}
Passes if the supplied block does not raise an exception.
assert_match(regular_expression, string)
Passes if string matches regular_expression; its inverse, assert_no_
match, is also available.

•

•

•

•

•

•

•

•

•

•

•

Working with Rails

[162]

assert_recognizes(expected_options, path)
Passes if path, when passed through routing, produces the
expected_options hash as output. For example, the following assertion
passes if routing matches the path 'companies' to the companies#index
controller/action pair:
assert_recognizes({:controller => 'companies', :action =>
'index'}, 'companies')

This can be used to unit test your routing.
assert_generates(expected_path, options)
This is like the inverse of assert_recognizes: it passes if options, when
passed to routing, produces expected_path as output. For example, we
could check that the companies#index controller/action pair is assigned the
route 'companies':
assert_generates('companies', {:controller => 'companies', :
action => 'index'})

assert_routing(path, options)
This combines assert_generates(path, options) and assert_
recognizes(options, path) into a single assertion, checking that routing
works in both directions (for generation of paths from options, and
recognition of options from paths).
assert_redirected_to(options)
Passes if the controller action just called redirected to the same place as
specified by the redirection options. We'll see this in use in the section on
functional testing in Chapter 5.
assert_response(expected_code)
Passes if the response code was of the type expected_code. We'll see this used
in a functional test in Chapter 5.
assert_template(expected_template)
Passes if the response was rendered using the template expected_template.
This is used in functional tests (see the section on functional tests in
Chapter 5).
assert_valid(object)
Passes if the ActiveRecord instance object validates.

These can be used inside test_ methods in a similar way to how we've seen assert
and assert_equal being used earlier.

•

•

•

•

•

•

•

Chapter 4

[163]

Becoming Driven by Testing
While some of the tests we wrote might feel like overkill, they provide a high degree
of peace of mind. I always feel happier when I know my code can be run through a
suite of automated tests to highlight any assumptions I've made, which may have
been broken.

Another advantage is that the tests become essential for bug fixing as coding
progresses. If you come across a bug, you can write a test to replicate the conditions
which produce the bug. At this point, the test will fail, as you haven't fixed the bug
yet. Then, you can modify the code which causes the bug until the test passes. Before
you know it, you are doing test-driven development (TDD).

We haven't approached the Intranet application from a TDD perspective, as TDD is
still alien to many developers, and requires a paradigm-shift in how development
is approached. However, I would encourage you to at least retro-fit tests to your
application, so you get a taste of the benefits; and to code a test to encapsulate each
bug you encounter. Over time, you may find that it becomes natural to write tests
first then write the code to make them pass. Rails makes this as painless as possible.

We've only covered unit tests for the Person model here. Tests for the
other models are available in the code repository for the book, and follow
a similar pattern. Hopefully, the guidelines given for writing the Person
model tests can be extended to other models you create.

Associations between Models
In Chapter 2, we used the Outlook address export as the initial basis for designing
the Intranet application's database structure. Rather than have a single table, which
replicated Outlook's export format directly, we decided to use three tables to
prevent duplication of data: addresses, companies, and people. We then created
associations between tables by putting "pseudo" foreign keys into appropriate tables.
The resulting associations are:

1. An address belongs to zero or more people, and each person has one or
no address (we might not have home addresses for every person in the
database).

2. An address belongs to zero or one company, and each company has one
address (a company address is mandatory).

3. A person belongs to one company (required), and each company can have
zero or more associated people.

Working with Rails

[164]

The advantage of this is that if a company has multiple employees, we only record
the company details once in the companies table; we then link people to the
company using the company_id foreign key field in the people table. Similarly,
address data is common to both people and companies: by separating it out into
a single table, we can search addresses by referencing the single addresses table,
rather than having to search across both the people and companies tables. We can
also associate multiple people with a single address (for example, a married couple
will have a joint address).

Despite our data structure, ActiveRecord remains unaware of the associations
between tables. However, it only needs a small nudge to recognize them. The
addition of a few simple lines of code to the model classes will enable ActiveRecord
to manage the relationships for us, so we can reference a person's company from a
Person instance, a company address from a Company instance, and so on. In the next
three sections, we'll see how each relationship in the database can be transformed
into an association between models.

Parent to children (one-to-many):
addresses to people
The addresses and people tables have a one-to-many relationship in the database.
In other words, a record in the addresses table may be related to zero or more
records in the people table. The table on the "many" side of the relationship contains
a foreign key to the table on the "one" side of the relationship. Ignoring fields
irrelevant to the relationship, this can be represented in a standard database
diagram as:

one many

people

id
address_id

addresses

id

In our Rails application, this kind of database relationship is represented in
ActiveRecord as an association between the Person and Address models. The
association is marked in each of the participating models.

In the Person model:
class Person < ActiveRecord::Base
 belongs_to :address
 ...
end

Chapter 4

[165]

In the Address model:

class Address < ActiveRecord::Base
 has_many :people
 ...

end

We can generalize the translation from a one-to-many relationship in the database to
model associations, so we could use it with any pair of related tables:

Where you have a one-to-many relationship in the database between the
table parents (on the "one" side of the relationship) and the table children
(on the "many" side, containing the foreign key):

In the Parent model class, insert has_many :children

In the Child model class, insert belongs_to :parent

Which modifies instances of the classes as follows:
Parent instances get a children method (which returns an
array of Child instances); and a children= method (which
accepts an array of Child instances as an argument and sets
the children collection).
The parent also gets other methods, which enable new objects to
be added to the collection of children, such as children << child,
which appends a new instance child to the collection; children.
build(attributes={}), which constructs a new Child instance
using the attributes hash and links it to the parent (without sav-
ing); and children.create(attributes={}), which builds a Child
instance from attributes and also saves it.
As the collection children is an array, all the standard array meth-
ods, such as empty? and size, work as expected.
Finally, it is possible to interrogate the collection using find to re-
trieve the subset of children matching specific criteria. For example,
you could get an Address instance:
addr = Address.find 1

Then use find on its people collection to get an array of all the
women living at that address:
women = addr.people.find(:all, :conditions => {:gender =>
'F'})

Child instances get a parent method (which returns a
Parent instance); and a parent= method (which accepts a
single Parent instance as an argument).

•

°

°

•

°

°

Working with Rails

[166]

Before we can see the effect of this, we need to create an Address:

>> addr = Address.new(:street_1 => '44 Monty Avenue', :city =>
'Molltoxeter', :post_code => 'MX12 1YH') # create an address

>> addr.save

=> true

We can now assign this address to a person (assuming, you have at least one person
in the database):

>> pers = Person.find :first # find a person

>> pers.address = addr # assign an address to the person

>> pers.save

=> true

This is all you need to associate the new address with the person. Once associated,
you can retrieve a person's address using the address method:

>> pers = Person.find :first # find a person

=> #<Person:0xb74a4228 ...>

>> pers.address # retrieve the address for the person

=> #<Address:0xb74a2504 @attributes={"city"=>"Molltoxeter", "updated_
at"=>"2006-11-03 14:33:20", "county"=>nil, "street_1"=>"44 Monty Avenue",
"street_2"=>nil, "post_code"=>"MX12 1YH", "street_3"=>nil, "id"=>"5",
"created_at"=>"2006-11-03 14:33:20"}>

By using the belongs_to method in the Person class, we have appended new
address (a getter) and address= (a setter) methods to instances of that class:

When address is called, ActiveRecord retrieves a record from the Address
table where the address.id field equals the value in the person's address_
id attribute.
When address= is called with an Address instance as an argument, the id of
that Address instance is set as the address_id attribute for the person.

If you have multiple people associated with address, you can also query in the other
direction, from an address to an array of associated people:

>> a = Address.find :first # find an address

>> a.people # find the people associated with the address

=> [#<Person:0xb744a5c8 ...>, #<Person:0xb744a58c ...>]

•

•

Chapter 4

[167]

One point worth stating about associations is that they don't have to be
symmetrical: if you never intend to find the people associated with an
address (for example), you don't have to add has_many :people to the
Address class. The belongs_to :address association in the Person
class will still work without it.

Validating a Person's Address
Now that the relationship between the people and addresses table has been
established, we are in a position to validate associations between their respective
models (Person and Address). In Chapter 2, the validation rules we specified stated
that a person can optionally have a home address. In cases where a person does
have a home address, when we validate a person, we also need to validate that
address. This is useful in situations where we are creating a new person and address
simultaneously: it ensures that before we save the person into the database, any
address assigned to them references a valid address.

Rails provides a convenient validates_associated method for this purpose, which
we can add to the Person model:

class Person < ActiveRecord::Base
 belongs_to :company
 belongs_to :address
 validates_associated :address
 ...
end

Note that this method only performs validation where an address has been assigned:
where the address for a person is blank (nil), validation of the address is skipped.
Validation succeeds where an address assigned to a person in turn passes all of
its own validation rules (i.e. the validations on the Address class). In situations
where the associated record is required (e.g. a company must have an address), you
need to use validates_presence_of to check for the associated record, as well as
validates_associated. See section Validating a Company's Address for an example
of how to do this.

Working with Rails

[168]

Parent to child (one-to-one):
addresses to companies
These two tables have a parent-to-child relationship in the database; this is like a
one-to-many relationship, except there is at most one record at the "many" side of
the relationship. In other words, a record in the addresses table is a parent of zero
or one record in the companies table. The "child" in the relationship is the table
containing the foreign key:

parent child

companies

id
address_id

addresses

id

This might seem a slightly odd way of describing this relationship, but it is perfectly
legitimate in ActiveRecord terms: "parent-child" doesn't necessarily denote a
dependency in this context.

In the Company class, we add belongs_to:

class Company < ActiveRecord::Base
 belongs_to :address
 ...
end

In the Address class, we add has_one:

class Address < ActiveRecord::Base
 has_one :company
 ...
end

Again, we can generalize this translation:

Where you have a parent-to-child relationship in the database between
the table parents (on the "parent" side of the relationship) and the table
children (on the "child" side, containing the foreign key):

In the Parent model class, insert has_one :child
In the Child model class, insert belongs_to :parent

•

°

°

Chapter 4

[169]

This modifies instances of the classes as follows:
Parent instances get a child method (which returns
a Child instance); and a child= method (which
accepts a Child instance as an argument). They also
get build_child(attributes={}) and create_
child(attributes={}) methods. The former constructs a
Child instance and links it to the parent, but doesn't save it;
the latter builds the Child instance, links it to the parent, and
saves it too.
Child instances get a parent method (which returns a
Parent instance); and a parent= method (which accepts a
single Parent instance as an argument)

Testing the association from the console follows a similar pattern to testing the one-
to-many relationship of the previous section:

>> comp = Company.find :first # find a company

=> #<Company:0xb7432888 ...>

>> addr = Address.find :first # find an address

=> #<Address:0xb7430150 ...>

>> comp.address = addr # assign the address to the company

=> #<Address:0xb7430150 ...>

>> comp.save # save the company

=> true

>> comp.address # retrieve the address for a company

=> #<Address:0xb7430150 ...>

>> addr.company # retrieve the company associated with an address

=> #<Company:0xb7427f00 ...>

Validating a Company's Address
One other requirement of the data structure designed in Chapter 2 is that a company
must have a valid address: this is vital for the contacts database to have any value.

How can we check that the address associated with a company is valid? We need
to ensure that:

1. An associated address has been assigned to the company.
2. The associated address is itself valid.

•

°

°

Working with Rails

[170]

We can capture these requirements using validates_presence_of and
validates_associated in tandem:

class Company < ActiveRecord::Base
 has_many :people
 belongs_to :address

 validates_presence_of :name,
 :message => "Please enter a company name"

 validates_presence_of :address,

 :message => 'Address must be supplied'

 validates_associated :address,

 :message => 'Address is invalid'

end

validates_presence_of ensures that an address has been assigned to the
company; validates_associated ensures that the address (if assigned) is itself valid.

If you create an association between two tables which don't support
foreign keys (like MyISAM tables), the only way to enforce the association
is to add some validation code to the models. Without this validation,
ActiveRecord will happily accept nil values in foreign key fields.

Parent to children (one-to-many): companies
to people
This relationship is very similar to the addresses to people relationship:

one many

people

id
company_id

companies

id

It can be marked in the Company model class with:

class Company < ActiveRecord::Base
 has_many :people
 ...
end

Chapter 4

[171]

And in the Person class with:

class Person < ActiveRecord::Base
 belongs_to :company

 # ... other methods ...
end

Validating a Person's Company
The code for validating the company for a person is similar to that for validating
their address. A person doesn't necessarily have to be associated with a
company at all; so we can dispense with validates_presence_of, and just use
validates_associated:

class Person < ActiveRecord::Base
 # ... other methods ...

 validates_associated :company
end

Many-to-many relationships
Our application doesn't (yet) contain any many-to-many relationships in the
database structure. But it's easy to think of situations where we might want to have
this kind of relationship. For example, Ken might decide he wants to be able to
categorise companies: each company will have zero or more categories, and each
category will have zero or more associated companies. This would require a many-
to-many relationship.

The typical way of implementing a many-to-many relationship in a database is by
adding a link table between the two related tables:

The link table stores pairs of IDs:
One ID from the table on the "left" of the relationship (the
"sinisters" table).
One ID from the "right-hand" table (the "dexters" table).

Each of the related tables has a one-to-many relationship with the link table.

"Sinister" and "dexter" are terms from heraldry, denoting placement of an
object on the left of a heraldic symbol or on the right, respectively.

•

°

°

•

Working with Rails

[172]

In the case of categories and companies, we might end up with:

“sinisters” link table

categories_companies

category_id
company_id

categories

id

“dexters”

companies

id

ActiveRecord makes it convenient to manage the associations between the models
for these tables: use the method has_and_belongs_to_many in each model:

class Categories < ActiveRecord::Base
 has_and_belongs_to_many :companies
 ...
end

class Companies < ActiveRecord::Base
 has_and_belongs_to_many :categories
 ...
end

We can generalize this to the following guidelines:

Where you have a many-to-many relationship in the database between the
table sinisters and the table dexters:

In the Sinister model class, insert
has_and_belongs_to_many :dexters

In the Dexter model class, insert
has_and_belongs_to_many :sinisters

Create a link table called dexters_sinisters with two fields:
dexter_id

sinister_id

The name of the link table should be composed of the names of the two
tables you are linking, arranged in alphabetical order, with an underscore
in between.
This modifies instances of the classes as follows:

Sinister instances get a dexters method (which returns an
array of Dexter instances); and a dexters= method (which
accepts an array of Dexter instances as an argument).

•

°

°

•

°

°

•

°

Chapter 4

[173]

Dexter instances get a sinisters method (which returns an
array of Sinister instances); and a sinisters= method (which
accepts an array of Sinister instances as an argument).

Dependencies
In our database structure, we specified that when an address is deleted, we should
remove its associated company. This makes sense, given that we don't want any
companies to have invalid addresses; without the dependency, we could delete an
address, but still have references to it in the company_id field of the companies table.

To specify the dependency, pass an optional :dependent => :destroy option to the
has_one method call in the parent class:

class Address < ActiveRecord::Base
 has_one :company, :dependent => :destroy
 ...
end

The effect of this is to delete a company when its associated "parent" address is
deleted. If you are going to use this method for dependency tracking, you need to be
clear about the consequences, and ensure that project stakeholders are in agreement:
do they really want cascading deletion of companies if an address is removed?

Also note that you can specify other :dependent options with the has_one method:

has_one :company, :dependent => :nullify
Sets the foreign key in the related company record to null, rather than
destroying it.
has_one :company, :dependent => :delete
Deletes the associated company without calling its destroy method.

Similarly, you can use a :dependent option with the has_many method, as used in
the Company class, e.g.

has_many :people, :dependent => :destroy
Destroys all dependent records in the people table when a company
is destroyed.
has_many :people, :dependent => :nullify
Sets the company_id field to null for dependent records in the people table
when the company is destroyed.
has_many :people, :dependent => :delete_all
Removes all dependent records in the people table when a company is
destroyed, but without calling the destroy method.

°

•

•

•

•

•

Working with Rails

[174]

Note that you can't set a :dependent option when using
has_and_belongs_to_many.

Testing Associations
It's often useful to test validation of associations, as well as validation of attributes.
For example, in our model, we have a custom validation which checks whether the
address_id attribute references a real Address in the database. We can write a unit
test for the Company model which checks this validation code, as follows.

First, create a fixture for a valid address in test/fixtures/addresses.yml:

acme_hq:
 id: 1
 street_1: '14 Blockfield'
 street_2: 'Minsterton'
 city: 'Jupiterton'
 post_code: 'BX1 4FG'

Next, create a fixture for a company in test/fixtures/companies.yml:

acme:
 id: 1
 name: 'Acme'
 address_id: 1

Note how this references the valid address_id (= 1) for the fixture we created above.

Load the addresses fixtures into the unit test for Company in
test/unit/company_test.rb:

class CompanyTest < Test::Unit::TestCase
 fixtures :companies, :addresses
 ...
end

Finally, write a test method to check that the validation code for the association
behaves as expected:

class CompanyTest < Test::Unit::TestCase
 fixtures :companies, :addresses
 def test_must_have_real_address
 # Should fail with invalid address
 @acme.address = nil
 assert !@acme.save
 # Should save when assigned a valid address
 @acme.address = @acme_hq
 assert @acme.save
 end
end

Chapter 4

[175]

Putting the Project into Context
Throughout this chapter, we have been building our application up, based on the
data structure developed in Chapter 2. We have put in place the whole of the model
layer for the application, including the necessary validation code and associations
between models. We have also assured ourselves that the model is stable, by
building some tests to confirm its behavior.

But there are a couple of areas we have neglected so far:

1. How can this work be shared with other members of the team (via the
Subversion repository)?

2. How can we get a list of Outlook contacts into the database?

The remainder of this chapter covers these topics.

Storing a Project in Subversion
We've done quite a bit of coding in this chapter, but so far we're the only
developers who can see it. It's high time we committed what we've written to
the Subversion repository.

If you're using Eclipse, you may have been wondering what the question marks on
the file and directory icons mean:

Working with Rails

[176]

The question marks highlight the directories and files which the Subversion
repository doesn't know about yet. These are the files we need to commit.

Before we leap in, it's worth taking some time to decide whether we need all of the
highlighted files. Some of the files in the application are temporary, and don't need to
be included. The next section describes how to exclude these files from the repository.

Ignoring Temporary Files
As well as the source code, our application directory contains several temporary files
in the following directories:

db: If you dump your database structure, it is stored in a file called
schema.rb inside this directory. As this file can be reconstructed
dynamically, it is a good idea to exclude it from the repository.
log: Contains log data (in *.log files) for individual Rails environments.
When you run your applications using Mongrel (see Chapter 2), the log file
for Mongrel is also stored here.
tmp/cache: If you use view caching (see section on view caching) to improve
your application's performance, cache fragments will be stored here.
tmp/sessions: If you followed the brief introduction to the scaffold in the
section: The Scaffold, and accessed your application via a web browser, there
may be several session files stored in this directory, prefixed with ruby_sess.
These files store session data for connected clients, and can occasionally be
orphaned when sessions end (e.g. the user closes their browser). By the way,
provided no clients are connected, you can just delete these files.
tmp/sockets: In some configurations (mainly, if running Rails applications
under FastCGI), socket files will be stored here.
tmp/pids: When running Rails under Mongrel, the process ID (PID) files
identifying the server processes will be stored here.

Ideally, we want to exclude all temporary files from the Subversion repository: they
are only applicable to the machine which created them. Any missing files will be
created as soon as the application runs on a different machine, so there is no harm in
excluding them. Other bonuses are that checking out an application is faster (no big
log files); and that potentially sensitive information (e.g. debugging information in
development.log) is not included when the application is distributed.

•

•

•

•

•

•

Chapter 4

[177]

Subversion provides a facility for setting filename patterns which should be ignored
(i.e. not committed to the repository and only stored in the working copy). This is
done by setting a Subversion property called svn:ignore on each directory which
contains temporary files. This property is a newline-separated list of filename
patterns; any files with matching names are ignored and excluded from commits.

Files can be added to svn:ignore using the svn command line tool (have a look
at svn help propedit); however, Eclipse provides a simple wrapper around this
functionality, so we'll use that instead:

1. Right-click on the directory containing the files we want to ignore (see the list
above): tmp/sessions, for example.

2. Select Team | Set Property...
3. In the Set an svn property dialog box, select svn:ignore from the Property

name drop-down box. Ensure the Enter a text property radio button is
ticked, and enter ruby_sess.* in the text area (a pattern which matches the
temporary Ruby session files we want to ignore—you can use an asterisk
character as a wild-card). The completed dialog box should look
like this:

4. Click OK.

Working with Rails

[178]

The svn:ignore property is now set on the tmp/sessions directory. If at any time
you want to edit or delete properties, right-click on the directory again and select
Team | Show Properties from the context menu.

Following the same steps, set the following svn:ignore properties on the
other locations:

db: set to schema.rb.
log: set to * (ignore everything in this directory).
tmp/cache: set to *.
tmp/sessions: set to *.

tmp/sockets: set to *.
tmp/pids: set to *.

Committing Code to the Repository
Finally, commit the code to repository, follow these steps.

1. Right click on the project name (Intranet, in our case).
2. Select Team | Commit from the context menu. You should see this

dialog box:

•

•

•

•

•

•

Chapter 4

[179]

Enter a suitable comment in the Edit the commit comment text area; click on
the Select All button to select all resources for commit to the repository.

3. Click OK. Eclipse will whirr away, committing the code to the repository.
Once it is finished, you should see this in the resource view:

Note that the yellow "barrels" on the files and directories indicate that they
have been successfully added to the repository, and that they are in sync
with it.

Each time you modify anything inside the project, Eclipse highlights the changed
file with a white asterisk on a black background; it will also highlight any directories
which contain a modified file, however deep the file is in the directory structure,
with the same icon. You can right-click on the project or on the changed file(s) and
select Team | Commit to commit the changes to the repository.

If you create new files, you will need to add them in to version control: simply right-
click on the file and select Team | Add to Version Control.

Working with Rails

[180]

Try to use helpful comments each time you commit changes to the
repository. Ideally, you should outline the reasoning behind the change,
rather than explain the mechanics of what has changed. The repository
can be queried to discover which parts of the code have changed; but it
can't be queried for why the change occurred. For example, a comment
like the fillowing:
"Added national insurance numbers for people."
This is more useful than:
"Added ni attribute to Person."

Processing Data
The original impetus behind the Intranet application was to make Mary's address
book available to everyone working at Acme. So far, we have deconstructed Mary's
Outlook address book export file, built a database from it, and developed a set of
Rails models to wrap that database. The next step is to get the data, which was
exported from Outlook, and process it with a script to insert records into the Intranet
database. Rather than doing this manually, we are going to use the power of Ruby,
coupled with ActiveRecord, to do the import for us.

Exporting the Data from Outlook
Microsoft Outlook provides an export facility for contact data (File | Import and
Export). The Acme team exports to a spreadsheet initially, as this makes it easier
to do the initial data analysis. We won't dwell on the export process, as it is self-
explanatory and fairly trivial: the Outlook documentation provides some good
guidance on how to do this.

From the spreadsheet, they produce a tab-separated flat-file database, contacts.
tsv. Here's a fragment of the file:

The first line of the file contains the field names; each subsequent line represents a
single contact from Outlook, with tabs between the field values.

Chapter 4

[181]

One issue which is immediately apparent is that some of the fields in the Outlook
export file have new line characters in them. This is a problem, as the new line
character is also used to delineate individual records (one record per line). The first
fix is a manual one, therefore: removing any new line characters within field values.
The result is this (record 3 for Frank Monk is the only one affected):

This might be impractical for thousands of records: in such cases, the
alternative would be to do more parsing of the raw text files to clear out
anomalies. For example, the first pass might count tab characters, and
combine multiple lines with too-few tabs into a single line with the correct
number of tabs.

The next step is mapping the columns in the text file onto tables and fields in
the database.

Mapping a Text File to Database Tables
The script will have to break up each row of the text file into multiple instances of
our models: a Person instance, a Company instance, an Address instance for the
person's home address and an Address instance for the person's work address. To
do this, the columns in the text file must be mapped onto the models in the Intranet
application and attributes of those models. The table below describes how the Acme
team decides to do this mapping. As two addresses are constructed for each line in
the text file, the company Address instance is marked as Address(c), and the personal
Address instance as Address(p).

Field exported from Outlook Maps to model/attribute Notes
Title Person/title -
First Name Person/first_name Required.
Last Name Person/last_name Required.
Company Company/name -
Job Title Person/job_title -
Business Street 1 Address(c)/street_1 -
Business Street 2 Address(c)/street_2 -
Business Street 3 Address(c)/street_3 -
Business City Address(c)/city -

Working with Rails

[182]

Field exported from Outlook Maps to model/attribute Notes
Business State Address(c)/county -
Business Postal Code Address(c)/post_code -
Home Street Address(p)/street_1 -
Home Street 2 Address(p)/street_2 -
Home Street 3 Address(p)/street_3 -
Home City Address(p)/city -
Home State Address(p)/county -
Home Postal Code Address(p)/post_code -
Business Fax Company/fax -
Business Phone Company/telephone If a value is provided for this

field and for Company Main
Phone, this field is ignored

Company Main Phone Company/telephone If a value is provided for this
field and for Business Phone,
this field is used

Home Phone Person/telephone -
Mobile Phone Person/mobile_phone -
Birthday Person/date_of_birth DD/MM/YY
E-mail Address Person/email Required.
Gender Person/gender "male" or "female"; if not set,

"male" is assumed
Keywords Person/keywords -
Notes Person/notes -
Web Page Company/website -

Any other fields in the text file are ignored.

Another aspect of adding lines from the text file is doing it in the correct order. The
associations we defined earlier in this chapter (see the section Associations Between
Models) indicate that we should add records to the database in this order:

1. Personal address
2. Company address
3. Company (referencing the company address just added as the value for the

address_id field)
4. Person (referencing the company just added as the value for the

company_id field, and the personal address just added as the value for the
address_id field)

Chapter 4

[183]

We also need to consider the validation rules we defined earlier (see the section
Validation). These may prevent some of the data in the Outlook export file from
being added to the database: for example, if a person has no email address, his
record is invalid according to our validation rules, which requires first_name,
last_name, and email to contain values. The approach taken by Acme to deal with
this is as follows:

1. Write the script so that it highlights errors as they occur, e.g. print the line of
the import file where the error occurs and show the validation errors thrown.

2. Run the script with the initial text file.
3. Fix problems with the text file as they are highlighted during the import.

For example, if an address cannot be saved because of a missing post code,
determine the post code for that address; if a person cannot be saved because
their email address is missing, ring them up and find out the their email
address.

4. Roll the database back to a blank slate.
5. Re-run the script.
6. Re-iterate steps 2 to 5 until the script returns no unexpected or

unwanted errors.
This approach wouldn't work in situations where the import is to be run periodically
with no human intervention. In situations like this, the only approach may be to
relax the validation rules to allow broken data into the system. In the case of Acme,
where they are planning to do a one-off import, they can afford to be picky, and
make sure the data is clean before it is inserted into the database.

Coding the Script
Once Acme has cleaned their data as far as possible, and decided a process for
further purifying the data as they go, they are ready to start coding. Acme stores
the script in db/import inside their Rails application; they call it import_from_
outlook.rb. Rather than go through the whole script line-by-line, we'll have a look
at a pseudo-code overview of the script over the next two pages. The full code for the
script is available from the book's code repository.

Script for importing Outlook address data into Intranet.
Where data is retrieved from columns in the import file, the mapping
described in the section Mapping a Text File to Database Tables is
used
to work out, which column it goes into in the database
Each time a save fails, show an error message and the line number
in the file where the error occurred.
Run this script through script/runner

Working with Rails

[184]

open contacts.tsv file (tab-separated contacts file exported from
Outlook)
read in the first line (which contains the column headings)
split the first line around the tab character "\t" into array raw_
field_names
create a hash which maps the field name onto its index position in the
array; this makes it easier to reference fields within the subsequent
lines by field name, rather than position

for each remaining line:
 split around tab character into an array of values

 # parse out company address
 get company street_1 and post_code

 if there is an existing address with the same street_1 and post_code:
 use that for the company address
 else:
 parse out the remaining address fields to create a new address
 save new address
 use it for the company address
 end

 # parse out personal address
 get personal street_1 and post_code
 if there is an existing address with the same street_1 and post_code:
 use that for the personal address
 else:
 parse out the remaining address fields to create a new address
 save new address
 use it as the personal address
 end

 # company
 get the company name field
 if there is an existing company with that name:
 use that company as the person's company
 else:
 parse out the remaining company fields to fill out the company
 details associate the company with the company address
 extracted earlier
 save new company
 end

 # person
 parse out the person fields to create a new person (using the
mapping)
 associate with personal address
 associate with company
 save new person
end # no more lines in file

Chapter 4

[185]

One of the most important tips in this script is how to load the Rails environment
to make the database available without having to run the application in a server
setting. Rails makes this simple: you just need to run the script/runner script that
is included with your application, passing it the location of the script file, e.g.

$ ruby script/runner db/import/import_from_outlook.rb

Once the script is ready, the Acme developers tests it repeatedly against the data
exported from Mary's Outlook address book, until they are happy it is as error
free as possible. This is made possible by their migrations, which enable them to
start each test run from a blank slate by running the following commands from the
command line (inside RAILS_ROOT):

$ rake db:migrate VERSION=0

$ rake db:migrate

$ ruby script/runner db/import/import_from_outlook.rb

...

Here is a tangible example of the benefits of migrations: the Acme developers can
repeat the cycle of destroying the database, rebuilding it, then inserting the data as
many times as they need to, until they have ironed out any problems with the
import file.

Summary
In this chapter, we have covered a lot of ground. We have gone from an idea and an
expectant Rails installation to a full-fledged data model, populated from an external
data source, with full validation and unit test suite. We have also written a script to
get the data into the application, and shared the code development across the team.

We also had a tantalizing glimpse of how Rails exposes this data to end users
through a browser interface when we applied the scaffold. In the next chapter, we
will exploit the full power of Rails to go beyond the scaffold, building the logic for
the application controllers, and fleshing out the user interface.

Building the User Interface
In the last chapter, we worked on implementing a solid model layer for the
application. While the console and unit tests are a fine way for developers to access
the models, they are not a suitable interface for the intended users of the system
(Acme administrative staff). This chapter describes how to build a web interface onto
the models we have developed, including:

A walk-through of creating a controller from scratch
How to use views, layouts, and helpers
Using pagination
Linking views together to create drill-downs
Adding style-sheets
Writing custom helpers and partials
Writing complex controller actions to update multiple models
simultaneously
Fleshing out the application functionality

By the end of the chapter, we will have a basic, fully-functional web-based
CRM application.

Controllers and Views: A Recap
The model layer of the last chapter is the first part of the Model-View-Controller
jigsaw. Implementing a user interface on top of the model layer means building the
two remaining MVC components (see the section Model-View-Controller Architecture
at the start of Chapter 4):

1. Controllers, which handle the control flow and interact with the model layer
2. Views, which present data to the user and enable them to interact with

the controllers

•
•
•
•
•
•
•

•

Building the User Interface

[188]

How do you decide which controllers and views do you need to build? Rails helps us
with our decision making by suggesting a convention: one controller for each model.
The controller for the model handles all of the operations on it; typically the CRUD
operations, i.e.

Creating a new instance
Retrieving all the instances of the model
Updating an instance
Deleting an instance

Making a controller for each model seems a sensible place to start. In the rest of the
chapter, we will build up the following controllers, corresponding to the models we
built in the previous chapter:

Controller class File containing controller definition
(in app/controllers)

PeopleController people_controller.rb

CompaniesController companies_controller.rb

AddressesController addresses_controller.rb

Notice how we are applying the conventions mentioned in Chapter 4 (Rails and
MVC): the controller name is the name of the model, pluralized, with "Controller"
appended. The file name is the lowercase version of the controller class name, with
underscores separating discrete words.

There is nothing to stop you having a single controller, which manages
all of your tables. However, this would make the class definition too
complex. By sticking to the conventions, we get a neat segregation of the
actions and views specific to a particular model.

We'll be looking at the workflow for building a simple controller, explaining where
to put the code that defines the controller actions and where to put the associated
views. Along the way, we'll see how to organize the layout for your application and
customize the look and feel with a stylesheet.

•

•

•

•

Chapter 5

[189]

Creating a Simple Controller and Its
Views
Remember in the last chapter that we created a simple controller and view for
the people table using the scaffold? The scaffold is a powerful tool for getting
started with Rails: it creates some boilerplate code for the controller and all its view
components with a single command. However, as a learning tool it is not too useful.
Initially, the controller can be baffling and take some time to understand; in addition,
it produces terrible HTML, which has to be manually fixed. So, instead of sticking
with the scaffold for the Person model, we will build a controller and views for that
model from scratch.

The first thing we need to do is clean up the files created by the scaffold, so we can
start from a clean slate. We can use a script to remove the controller and associated
tests (while leaving the model intact):

$ script/destroy controller people

However, this doesn't remove the views. These reside in app/views/people, so
remove the files inside this directory (e.g. in Eclipse, highlight them and press
the Delete key).

There are a few other places where we have some residue from the scaffold, which
should be removed:

1. app/views/layouts/people.rhtml

2. public/stylesheets/scaffold.css

Now, we are ready to create the controller. Although it might seem crazy, we
are actually going to use a generator to replace some of the files we just deleted.
However, this will give us nice clean class definitions that we can modify at
our leisure:

$ script/generate controller people

 exists app/controllers/

 exists app/helpers/

 exists app/views/people

 exists test/functional/

 create app/controllers/people_controller.rb

 create test/functional/people_controller_test.rb

 create app/helpers/people_helper.rb

Building the User Interface

[190]

The most important file for us is app/controllers/people_controller.rb. We
could have manually created this file for ourselves; the generator just makes it easy
and means we don't have to remember the syntax for declaring the controller class.

Open the file using Eclipse and edit it to look like this:

class PeopleController < ApplicationController
 def index
 render :text => 'Hello world'
 end
end

Next, start the server:

$ script/server

Browse to http://localhost:3000/people. You should see:

Not much to look at yet, but it demonstrates how easy it is to create a controller to
serve content. Let's look at the class definition step by step:

class PeopleController < ApplicationController
 ...
end

The first line declares a new class called PeopleController. The less-than
symbol (<) denotes inheritance in Ruby. In this case, our class is inheriting from
an ApplicationController class. If you look carefully in the app/controllers
directory, you should see a file called application.rb. This is the one that contains
the ApplicationController class definition that our controller inherits from:

class ApplicationController < ActionController::Base
 session :session_key => '_Intranet_session_id'
end

Chapter 5

[191]

This class, in turn, inherits from the Base class inside the ActionController
module, one of the core Rails libraries. The ApplicationController class sits
between our controllers and the core Rails libraries. This makes it simple for us
to add functionality to all of our controllers: any methods we define inside the
ApplicationController class become available to any of our inheriting controllers,
which turns out to be very useful.

The session method call in the ApplicationController class
definition sets the key used for session cookies belonging to this
application. See Chapter 8 for more details.

The next part of the class definition adds an action method called index to the
controller:

...
 def index
 render :text => 'Hello world '
 end
...

All this method does is write some text into the response, using the built-in render
method (available to all controller classes). The render method is the primary means
of writing content to the response. It accepts a variety of arguments, as we'll see
shortly; for now, we are using a :text option to send a string to be rendered. This
bypasses the Rails templating system entirely, sending raw text to the response.

When we visited the URL http://localhost:3000/people, how did Rails know
to call the index method? In Chapter 4 (Rails and MVC), we saw how the default
routing in Rails breaks up the path in the URL into a controller name and an action to
call on that controller. The controller name here is "people", so the PeopleController
was invoked; as there is no action specified, Rails routes the request to the default
action, index.

That's all there is to it. However, writing an application this way doesn't get us
much further than PHP or similar languages. To render a whole HTML page,
we would have to put the template in-line inside the method definition, which
would be terrible. Fortunately, Rails has a view framework, which makes it easy to
separate HTML templates from the controller actions, and tie the two together with
conventions. In the next section, we'll use this to write a view, which displays a list of
people in our database.

Building the User Interface

[192]

Views and Layouts
Before writing a view, we need to understand how Rails composes views into a full
HTML page. The default language for writing Rails views is called ERb (Embedded
Ruby). It's "embedded" because, the Ruby code is inserted among standard HTML
tags; the code generates dynamic content inside the HTML page, based on the data
retrieved from the model layer. You might also see the template language referred to
as RHTML (Ruby HTML), as it is a particular dialect of ERb focused on web pages.
Here's an ERb template, which will produce the same output as our existing index
method, but nicely wrapped in valid XHTML:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en_GB" xml:lang="en_
GB">
<head>
<title>Intranet</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
</head>
<body>
<p><%= 'Hello world' %></p>

</body>
</html>

The non-HTML part of this page (the embedded Ruby bit) is the highlighted
<p><%= 'Hello world' %></p> line. When Rails reads a template file like this one,
it scans for any sections surrounded by the <% and %> tags. The Ruby code between
the tags is then run; in this case, the code is = 'Hello world'. This prints a string into
the response, replacing the tags and the code (the = character is a shortcut to print a
string). The resulting HTML rendered to the response for this line is:

<p>Hello world</p>

The <% %> tags are used to inject dynamic elements into a page (like <?php ... ?> in
PHP, or <% ... %> in ASP). As well as printing strings into the output, the tags may
also wrap any valid piece of Ruby code: we'll see more of this later.

Adding a View to the Application
Associating a view with a controller action is achieved by placing the RHTML for the
view into a file with the right name, in the right location inside the app directory.

The formula for the location of a view is:

<TEMPLATE_ROOT>/<controller>/<action>.rhtml

Chapter 5

[193]

Here, <TEMPLATE_ROOT> is the root directory for views, with the default being
RAILS_ROOT/app/views; <controller> is the name of the controller this view is
associated with, and <action> is the action, which renders this view to the user. In
our case, using the default TEMPLATE_ROOT, the file for the people controller and
index action is called:

RAILS_ROOT/app/views/people/index.rhtml

Create a file with this name and add the RHTML code from the previous section to it.

To modify the TEMPLATE_ROOT for your application, you can add
a line to the configuration file for the appropriate environment (i.e.
production.rb or development.rb inside the config directory) or
for all environments (by editing environment.rb). For example, this
will set the TEMPLATE_ROOT to a directory my_views inside the
RAILS_ROOT directory:

config.action_controller.template_root = File.
join(RAILS_ROOT, 'my_views')

For a view to be rendered by an action, the action must either explicitly or implicitly
call the render method. To make our index action explicitly render our new RHTML
template, the index method inside the PeopleController could look like this:

def index
 render :action => 'index'
end

This is the same render method used in the previous version of the code, but with
the argument :action => 'index' (instead of :text => 'Hello world'). This
argument is specifying that render should use the template associated with the
current controller's index action (i.e. index.rhtml). However, because this is such a
common pattern, Rails allows us to simply omit the render line altogether:

def index
end

To test the template, start the server with script/server and browse to
http://localhost:3000/people. You should see practically the same page in your
browser as before, but now rendered from the template rather than using inline text
output directly from the controller.

Building the User Interface

[194]

You can use Eclipse to generate the first XHTML page for a new
Rails project (File | New | Other, then select PHP > HTML file).
This means you don't have to remember the DOCTYPE syntax for the
XHTML file, or the elements commonly inside the <head> element.
You can use Firefox's Web Developer Toolbar
(http://chrispederick.com/work/webdeveloper/) to ensure
that your first template page is a valid XHTML; then periodically test
other pages to make sure you are not breaking things as you add more
complex markup.
If you don't already use XHTML for your web applications, there are
good reasons to start doing so. XHTML enforces a clean separation
between the meaning of a page (marked up using HTML tags) and
how the page is presented (which is encapsulated in a separate CSS
file); see http://www.w3.org/TR/xhtml1/ for more details.

Displaying Model Instances in a View
How do we get data from our database into a view? To make this more concrete,
let's look at displaying a list of people using our index action, rendering the records
through the index.rhtml template.

The first step is to get the data from the database via the Person model in the
PeopleController, by adding some code to the index method:

class PeopleController < ApplicationController
 def index
 @people = Person.find_all_ordered
 end
end

This method now makes use of the find_all_ordered method on the Person model
class (see the section Writing a Custom Finder in Chapter 4), which returns all the
records from the people table, ordered by last name, then by first name. The return
value from the class method call is stored in an instance variable @people (the '@'
marks it as an instance variable). Any instance variables set inside an action like this
are available to the next-rendered view template (index.rhtml, in our case). In this
case, the instance variable is set from the model; however, we can set any instance
variable we like using whatever method we want, and it will be automatically
available to the template.

As the finder in this case returns an array of model instances, we can loop over them
using ERb (put this code inside the <body> tag):

Chapter 5

[195]

<h1>People list</h1>
<table>
<tr>
<th>Name</th>
</tr>
<% @people.each do |person| -%>

<tr><td><%= person.last_name + ', ' + person.first_name %></td></tr>

<% end -%>

</table>

Here, we are using a block (highlighted) to iterate over the @people array, and
creating an HTML table row for each person. Used in this way, the block acts like a
foreach in PHP: it enables processing each element of the array in turn, assigning
one to a temporary variable (here called person) on each iteration. (Note that the
person variable doesn't need to be an instance variable, as it is only used within the
scope of the block.)

The -%> at the end of the first line is a new piece of syntax we haven't used before
(notice the extra minus sign). This removes any newline characters from the end of
a line of ERb code when that line of code is run. Where a template contains lines of
ERb that don't produce any output, the - ensures that each such line produces no
newline characters in the source. Without the -, ERb that produces no HTML will
still add a newline character to the HTML source.

Inside the block, we have access to all of the standard methods on the model
instances; here, the methods correspond to the field names in the people table. In this
case, we are just showing each person's last and first names.

Test the new view at http://localhost:3000/people (you don't need to restart the
server if it is already running, as the views will be refreshed automatically):

Building the User Interface

[196]

This view is very basic, and can get very long as the database fills up. The solution to
this is to add some pagination to the results so that we can display just a few records
at a time.

Pagination
Pagination in other languages can be a real pain. But Rails provides a variety of
wrapper classes that make pagination simple.

We are going to add a paginator to the index action for our application. The first step
is to replace our current method definition with one that uses the paginator classes:

def index
 @paginator, @people = paginate :person, :per_page => 2,
 :order => 'last_name, first_name'
end

The method we're calling here is paginate, available to all controllers. This takes a
symbol representing the model class we want to paginate over (:person) as its first
argument. Rails converts this into a reference to the correct class (Person), and calls
that class's find method. The rest of the arguments specify conditions for the find:

1. :per_page defines the number of records to return on each page (we're using
2 here, as we don't have many records, but want to be able to check that
pagination is working).

2. :order sorts the records (see the section Sorting Records in Chapter 4).

The method returns an array with two elements: an instance of the
ActionController::Pagination::Paginator class (which we'll return to
momentarily), and an array of model instances. We map the elements of the returned
array onto two instance variables, @paginator and @people respectively.

Our index.rhtml view already uses the model instances to create the list of person
names, so we can test the new index action at http://localhost:3000/people.
You should see the first two records from the database displayed. Now, try accessing
http://localhost:3000/people?page=2; you should see the next two records.
Rails is automatically parsing the page parameter from the request URL and
retrieving the appropriate records for the page (in the case of MySQL, by using a
LIMIT clause in the query). We're currently supplying the page parameter manually,
but what we really want is an automated set of "pager links" at the base of the page,
where each link points to an individual page of results.

Chapter 5

[197]

We could manually code the pager links in HTML, but fortunately Rails provides
some useful HTML-generation methods we can use instead, called helpers.

Helpers
A Rails helper is a Ruby method used within ERb, which generates
some HTML or JavaScript output. These methods can be called from any
view template and are available automatically to all templates. It is also
possible to create your own helpers, either for use with any controller
or on a per-controller basis (see the section Custom Helpers later in
this chapter).

The helper we're interested in here is pagination_links, which will create a series
of page links. The helper can be invoked in the app/views/people/index.rhtml
view template with:

<p><%= pagination_links(@paginator) %></p>

Place this at the bottom of the page, just before the </body> tag. Browse to
http://localhost:3000/people and you should see:

Note the links to the results pages at the base of the page. The pagination_links
helper can also be supplied with other options to customize its behavior:

show links to the 3 pages before and the 3 pages
after the current page (default is 2 either side);
any pages not linked to are represented by '...'
pagination_links(@paginator, :window_size => 3)

include a link to the current page (default is false)
pagination_links(@paginator, :link_to_current_page => true)

add some extra querystring parameters to each link URL
pagination_links(@paginator, :params => { :day => 'today' })

Building the User Interface

[198]

It's also relatively simple to interrogate the paginator to find the current page
number and the total number of pages, making it possible to do Previous and
Next links:

<p>
<% page_num = @paginator.current.number -%>

<% last_page_num = @paginator.last.number -%>

<%= link_to('Previous', :page => page_num - 1) + " " unless 1 ==
page_num -%>

<%= pagination_links(@paginator) %>
<%= link_to('Next', :page => page_num + 1) unless last_page_num ==
page_num -%>

</p>

The highlighted sections of the code demonstrate how to query the paginator to find
the current page and its number (@paginator.current.number), and how to work
out the last page number (@paginator.last.number—there is also @paginator.
first for the first page). Next, two links are added using the link_to helper, which
creates an HTML <a> element (more on this helper in the next section). However,
here the helper is called conditionally by appending an unless clause. This
compares the current page number (page_num) with 1 to decide whether to display
the Previous link; and with the total number of pages (last_page_num) to decide
whether to generate the Next link.

Linking to Another View
The people list view doesn't tell us much about a person (just their name). The
next logical view for us to build is a detailed view for a single person; this will be
accessible from the list view by a hyperlink on a person's name, creating a so-called
drill-down.

The first step is to put a link onto each name when it is displayed. There is another
Rails helper (see the previous section), which can help here, called link_to. This will
turn any string into an HTML link (<a>) element, enabling you to either specify an
absolute URL or a URL for a controller, and/or action inside the application. Edit the
app/views/people/index.rhtml template and change the code that lists people so
it looks like this:

<% @people.each do |person| -%>
<tr><td>
<%= link_to person.full_name, :action => 'show', :id => person.id %>

</td></tr>
<% end -%>

Chapter 5

[199]

Recall that we defined the full_name method in Chapter 4 (see the section
Virtual Attributes), to show a person's title, first name, and last name. Visit
http://localhost:3000/people and you should see a list of links, rather than plain
text names. If you view the HTML source, there is a line like this for each person:

Mr. Frank Monk

This is what link_to produces. Dissecting the code above, line by line, explains
what's going on:

1. First, we call the link_to method, passing three arguments:
The text for the link (person.full_name).
The action the link should point to, used to construct the
href attribute for the <a> element. Note that we don't have to
specify the controller: unless we specify to the contrary, Rails
assumes the current controller (people) as the destination.
An id to add into the URL. This is a special argument, which
tells Rails to set the ID part of the URL, in this case from the
person's ID.

2. The destination for the link is built from the controller, the action, and the ID
parts. These are joined together according to the routing configuration (see
Chapter 7 Improving the User Experience for more information on routing).

3. The link_to method returns an HTML <a> element with the generated
href attribute and link text. This is printed to the output using the standard
<%= ... %> syntax.

link_to can also take optional arguments to insert extra attributes into the <a>
element. For example, we can append arbitrary parameters to the URL produced by
passing them as extra options:

<%= link_to 'Bill', :action => 'show', :id => person.id,
:random => 'true' %>

which produces the following:

Bill

(We used this approach in the previous section to add a page parameter to the
query string.)

As another example, if we wanted to set the HTML class and title attributes, we
could do the following:

<%= link_to full_name, { :action => 'show', :id => person.id },
{ :title => "Show details", :class => "person_link" } %>

°

°

°

Building the User Interface

[200]

{Why all the extra braces}?
In the first version of the link_to method call, we passed a few
arguments without needing to use any braces; in the second version,
we separated the arguments into two groups, each delimited by braces:
the first set for building the href attribute of the <a> element, and the
second specifying extra HTML attributes. This is because, if you pass
a range of arguments to a Ruby method using key => value syntax,
but without braces, Ruby will gather all of those: key => value pairs
into a hash. In the case of link_to, if we leave the braces off, all of the
arguments after the first are gathered into a hash of URL options. This
isn't what we want—only some of them are used to generate the URL,
and the rest are to add attributes to the HTML elements.
The method signature for link_to actually has four parameters:
link_to(link_text, url_options, html_options, more_
options)

By adding the braces when we call the method with multiple key =>
value pairs as arguments, we are explicitly dividing those pairs into
two separate hashes, one for url_options and the second for html_
options. (more_options is yet another hash, which is passed through
to the main URL-generation function on the controller, which we don't
need to worry about.) This is what we want.
Many Rails methods have similar signatures and will try to do smart
things with hashes. Sometimes they fail, and you get odd error messages.
If in doubt, you can always put braces around the arguments passed to a
method to explicitly group them.

Once we have the link, we need to hook it up to the controller. Note that our links
point to an action called show in the PeopleController class, so we add this next:

def show
 @person = Person.find(params[:id])
end

We are again using the find method of the Person class within this action. But rather
than retrieving all the people in the database, we are using the id parameter from the
request to determine the ID of the person to retrieve. The params method, available
to every controller, returns a hash containing all the GET and POST parameters from
the request. In this case, params contains an :id key, which holds the ID passed in
the request; the value of the :id key, in turn, is derived from the request URL, using
routing to decompose the URL into its component parts (the inverse of how routing
composes URLs from component parts, e.g. when used internally by link_to).

Chapter 5

[201]

The final step is to add a view to show the person's details. This goes in app/views/
people/show.rhtml (so that it is automatically associated with the show action):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en_GB" xml:lang="en_
GB">
<head>
<title>Intranet</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
</head>
<body>
<h1><%= @person.full_name %></h1>

<p>Job title: <%= @person.job_title %></p>

<p>Email address: <%= mail_to @person.email %></p>

<p>Telephone: <%= @person.telephone %></p>

<p>Mobile phone: <%= @person.mobile_phone %></p>

<p>Date of birth: <%= @person.date_of_birth %></p>

<p>Gender: <%= @person.gender %></p>

<p>Keywords: <%= @person.keywords %></p>

<p>Notes:
<%= @person.notes %></p>

</body>
</html>

The important part of the code is highlighted, which displays the fields from the
retrieved Person instance. In all cases, except for email, the attribute is displayed as
it is; in the case of the email attribute, another built-in helper called mail_to is used
to convert the email address into a "mail to" link.

However, the eagle-eyed among you will have noticed that we have a big chunk of
repeated HTML in the show.rhtml view template (the header for the HTML file,
above the <body> tag, and from </body> down), which is the same as the HTML in
the index.rhtml view template. In the next section, we'll see how to fix this so the
"wrapper" HTML only occurs in one place. You may also have noticed that we have
blanks in the display where attributes have not been set: we will fix this later in the
chapter (see the section Custom Helpers), where we'll look at writing some custom
helpers to manage this, displaying a "not defined" message instead.

Building the User Interface

[202]

Adding a Layout
Rails provides a way of abstracting out the "wrapper" portions of an RHTML page
(the bits above and below the content of a view) into a separate layout template
(layout for short). A layout typically contains the boiler-plate HTML, which occurs
on every page: for example, the DOCTYPE declaration, <head> element, links to
stylesheets or JavaScripts common across the application, etc. In most cases, it makes In most cases, it makesIn most cases, it makes
sense to use one layout for the whole application (which makes the views for every
controller look the same); however, Rails does provide the facility to set a different
layout for each controller, or for a group of controllers, covered briefly below.

All layouts are stored in the app/views/layouts directory. Within this directory,
convention is used to associate a layout with one or more controllers, or with the
application as a whole. To associate a layout with every controller in an application,
it should be named application.rhtml; to associate a layout with a particular
controller, it should be named after the controller: for example, a layout specific to
PeopleController would be called people.rhtml. Rails will use the most-specific
layout available when rendering an individual view template.

For the Intranet application, copy one of the existing view templates from app/
views/people (index.rhtml will do) to app/views/layouts. Rename the file to
application.rhtml and modify its content to the following:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en_GB" xml:lang="en_
GB">
<head>
<title>Intranet</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
</head>
<body>
<%= yield %>

</body>
</html>

The highlighted section of the above code outputs the content generated by the view
template for the action; this is then wrapped inside the layout template to produce
the final page rendering.

Chapter 5

[203]

In the view templates, instead of outputting the whole of the wrapper HTML
(DOCTYPE, <head>, etc.), now, we just need to generate the HTML that goes inside
the <body> element. The code for app/views/people/show.rhtml looks like this as
a result:

<h1><%= @person.full_name %></h1>
<p>Job title: <%= @person.job_title %></p>
<p>Email address: <%= mail_to @person.email %></p>
<p>Telephone: <%= @person.telephone %></p>
<p>Mobile phone: <%= @person.mobile_phone %></p>
<p>Date of birth: <%= @person.date_of_birth %></p>
<p>Gender: <%= @person.gender %></p>
<p>Keywords: <%= @person.keywords %></p>
<p>Notes:
<%= @person.notes %></p>

We also need to edit app/views/people/index.rhtml, removing everything
from (and including) <body> up, and everything from (and including) </body>
down, leaving just the content specific to that view. If you now visit http://
localhost:3000/people, the page should remain unchanged, even though, behind
the scenes, it is being rendered via a layout.

Using an application.rhtml layout is fine for cases where you want every
controller to have the same layout; and we have already seen that per-controller
layouts are also possible by naming the layout after the controller. However, it is also
possible to bend the conventions further. You can force a layout for a controller using
the layout method inside the controller class definition, e.g.

class PeopleController < ApplicationController
 layout 'pretty'
 ...
end

This would force the PeopleController to use the layout in app/views/layouts/
pretty.rhtml. Using this technique makes it possible to arbitrarily associate
controllers with layouts, entirely overriding the conventions.

Page Titles in Layouts
Having a single layout for the whole application makes it significantly simpler to
write views, as we don't have to worry about duplicating HTML in multiple places.
However, our current setup doesn't support different titles for each page, as the
content of the <title> element is set once in the layout. This makes the browser
history completely meaningless, and removes a potential navigation element.

Building the User Interface

[204]

Rails comes to the rescue once more. Any instance variables initialized in a controller
action are available to the layout, as well as to the view. So we can set a title for each
action and then output this inside the <title> element in the layout.

First, for each action in PeopleController, set a variable called @page_title:

def index
 @paginator, @people = paginate :person, :per_page => 2,
 :select => 'id, last_name, first_name',
 :order => 'last_name, first_name'
 @page_title = "People (page #{@paginator.current.number})"

end

def show
 @person = Person.find params[:id]
 @page_title = "Profile for " + @person.full_name

end

The @page_title variable can contain information about the context of the action—in
our case, the number of the results page we are on for the index action, and the
person's full name for the show action. We can now make use of this variable in the
app/views/layouts/application.rhtml layout, inside the <title> element:

<title><%= @page_title || 'Intranet' %></title>

The || syntax means that the content of the @page_title variable is used for the
page title if it has been set; if it is nil, the string 'Intranet' is used as a default
instead. We can also access this variable inside view templates, to make the page
<title> element have the same content as the page <title> element. For example,
in app/views/people/show.rhtml we can do the following:

<h1><%= @page_title %></h1>

<p>Job title: <%= @person.job_title %></p>
...

Adding a Stylesheet
Styling the simple views created in the previous sections can be done through a
standard CSS stylesheet. For example, we could put borders and padding on tables,
and change the font in the following manner:

{
 font-family: verdana, arial, helvetica, sans-serif;
}
table, tr, td, th {
 border: solid #777 thin;
 padding: 5px;

Chapter 5

[205]

 border-collapse: collapse;
 text-align: left;
 vertical-align: top;
}

The Rails convention is to put stylesheet files into the public/stylesheets
directory. The name of the stylesheet isn't too important, and you can use core.css,
base.css, or similar; for Intranet, we'll use base.css.

If you place your stylesheets in public/stylesheets, you can use the
stylesheet_link_tag helper to pull your stylesheets into a page. In our case, as
we want the stylesheet to be used for every page, and every page uses the same
layout (app/views/layouts/application.rhtml), it makes sense to call the helper
from that layout:

<head>
<title><%= @page_title || 'Intranet' %></title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<%= stylesheet_link_tag 'base' %>

</head>

which produces the following:

<link href="/stylesheets/base.css?1165272734" media="screen"
rel="Stylesheet" type="text/css" />

You may be wondering why a seemingly random number has been
appended to the generated URL (in this case, 1165272734). This number
is called the Rails asset ID, and represents the last time the referenced file
was modified. Browsers cache assets they fetch, using the URL (including
the querystring) as the key for the cached asset. As Rails includes the
file modification time in the URL for an asset (stylesheets, JavaScripts,
images), the browser cache is forced to store different versions of the asset
under different keys. This ensures that the browser always fetches new
versions of assets when the asset file has been modified.
Note that this only happens in the development environment; in
production, the URLs just reference the asset, without a querystring,
so they are cached just once by the browser, using its standard
caching settings.

Building the User Interface

[206]

The stylesheet_link_tag takes one or more stylesheet file names, minus the
.css suffix, and with no path information (providing the stylesheet is in public/
stylesheets). If your stylesheets are in unconventional locations, you can pass a
path to the stylesheet, e.g.

link to '/styles/core.css'
stylesheet_link_tag '/styles/core'
link to '/stylesheets/mystyles/fancy.css'
(relative paths are append to '/stylesheets')
stylesheet_link_tag 'mystyles/fancy'

You can also pass an options hash to set attributes on the <link> element
produced, e.g.

stylesheet_link_tag 'print', :media => 'print'

Adding a Controller for Companies
The previous sections went into some detail about the concepts of controllers and
views, and how they fit together. In this section, we will fast-track the creation of
another controller and a view (for companies), both to get a feel for the flow of
creating a controller, and to summarize what we've just covered.

Create the CompaniesController
First, generate the controller for the Company model from the command line:

$ script/generate controller companies

Now, add the index action (which will display a list of companies) to app/
controllers/companies_controller.rb:

class CompaniesController < ApplicationController
 def index
 @paginator, @companies = paginate :company, :per_page => 10,
 :order => 'name'
 @page_title = "List of Companies"
 end
end

Chapter 5

[207]

Create the Index View
Add the view for the index action (in app/views/companies/index.rhtml):

<h1><%= @page_title %></h1>
<table>
<tr>
<th>Name</th>
<th>Phone</th>
<th>Fax</th>
<th>Website</th>
</tr>
<% for company in @companies -%>
<tr>
<td><%= company.name %></td>
<td><%= company.telephone %></td>
<td><%= company.fax %></td>
<td><%= link_to(company.website, company.website) %></td>
</tr>
<% end -%>
</table>
<p>
<% page_num = @paginator.current.number -%>
<% last_page_num = @paginator.last.number -%>
<%= link_to('Previous', :page => page_num - 1) + " " unless 1 ==
page_num -%>
<%= pagination_links(@paginator) %>
<%= link_to('Next', :page => page_num + 1) unless last_page_num ==
page_num -%>
</p>

Note that the pagination code here is identical to the code in the people index
template. We will investigate a way to avoid this repetition later in the chapter (see
the section Rendering Pagination Links with a Partial).

Because this view contains almost all the information relating to a company (barring
the company address, which we'll return to later in the section Showing Associated
Records), a view to show a single company is redundant, as it will contain no more
information than the index view. For now, then, we can leave this action out. There
is an important point here: if you don't need an action, don't add it to the controller.
This is also an advantage of custom-building your actions and views, as opposed to
using the scaffold to generate them for you.

Building the User Interface

[208]

Test It!
That's all the work we need to do to view the list of companies. Fire up the server
and browse to: http://localhost:3000/companies. You should see the
following page:

You may notice that there are gaps in some of the cells in the table, if a company
doesn't have a particular attribute specified (e.g. missing fax or telephone number).
We will deal with this situation later (see the section Default Messages for Empty Fields
later in this chapter).

Summary
This section demonstrated the whole process of writing controllers and their views,
showing how to build the CompaniesController to display data from the Company
model. With a firm grounding in the concepts underlying controllers, views, layouts,
and helpers, we are well prepared for building more complex actions and views,
including those for managing data input and validation.

Advanced View Techniques
In this section, we will look at a few utility features and techniques for
extending views.

Chapter 5

[209]

Custom Helpers
As discussed earlier, a helper is a method that encapsulates logic that might otherwise
clutter a view template. Rails includes a multitude of built-in helpers, some of which
we've already encountered (link_to, mail_to, stylesheet_link_tag), and others
we'll meet shortly (see the section C*UD (Create, Update, Delete) later in this chapter).
However, it is sometimes useful to create custom helpers, to centralize the view logic
in an application. Examples of cases where we might want to do this are given below:

Displaying an image wrapped inside a link tag, perhaps with class
attributes on both the and <a> elements
Showing error messages with consistent styling across the whole application
Formatting date objects into a more readable format
Showing consistent text for empty fields (e.g. "not specified") when
displaying a model instance
Displaying a login link to users who haven't logged in yet, or showing a
username if they are logged in

In all of these cases, the logic could be put directly in the template; but too much
clutter makes templates hard to follow and repetitive. Helpers provide a means to
keep templates clean and simple while not restricting the flexibility of views.

There is one more consideration when writing helpers: Rails provides two locations
where you can put them:

1.	 Controller-specific
In a file specific to the controller, in app/helpers/<controller>_helper.
rb, where <controller> is the name of the controller. For example, helpers
specific to PeopleController would go in app/helpers/people_helper.
rb; these might include methods to format a person's name or email address.

2. Application-level
In a file shared by all controllers, in app/helpers/application_helper.rb.
This might include generic date formatting or error message helpers.

Rails will automatically load the controller-specific helpers when a controller is
invoked, and the application-level helpers for every controller invocation. We will
look at an example of both types of helpers in the next two sections, each of which
will take some logic out of our views.

•

•

•

•

•

Building the User Interface

[210]

Virtual attributes and helpers (a recap)
In Chapter 4, we saw how to write virtual attributes which derive from
real fields in the table but have no corresponding field of their own.
Virtual attributes should be used where the output will be used in
multiple contexts; helpers should be used to manipulate data to view-
specific output. That distinction should be kept in mind here: the helpers
we're writing produce output we're only going to use in HTML views.

Default Messages for Empty Fields
When displaying individual records, the current show.rhtml template shows an
ugly blank where a field has no set value. Instead, it may be better to show a default
message where a record has a blank field, e.g. "not specified". We will potentially
need this functionality in multiple views, so it makes sense to add the helper to
app/helpers/application_helper.rb:

module ApplicationHelper
 # Display a default message for empty fields.
 #
 # +field_value+ is the value to process.
 def d(field_value=nil)
 if field_value.blank?
 return content_tag('em', 'not specified')
 else
 return field_value
 end
 end
end

The d method (helper) defined here is passed a field value, which is interrogated by
the Rails convenience method blank?; blank? returns true if the value is empty or
nil. If no argument is passed, the value nil is assigned to field_value by default
(the parameter field_value=nil in the method signature specifies the default).
If the field value is blank, the helper supplies a default empty field message inside
an element, via the content_tag helper: this takes a string representing an
HTML tag as the first argument, and the content to put inside the tag as its second
argument; optionally, you can pass extra :attribute => value pairs to add to the
HTML element.

Chapter 5

[211]

This method can be called wherever a field could be blank. For example, we can
rewrite app/views/people/show.rhtml using it (highlighted lines below):

<h1><%= @page_title %></h1>
<p>Job title: <%=d @person.job_title %></p>

<p>Email address: <%= mail_to @person.email %></p>
<p>Telephone: <%=d @person.telephone %></p>

<p>Mobile phone: <%=d @person.mobile_phone %></p>

<p>Date of birth: <%=d @person.date_of_birth %></p>

<p>Gender: <%= @person.gender %></p>
<p>Keywords: <%=d @person.keywords %></p>

<p>Notes:
<%=d @person.notes %></p>

However, for fields that are never empty (because we made sure they had a value
when performing validation), we don't need to use the d function.

Date Formatting
The display for a person's date of birth defaults to the international standard date
notation (YYYY-MM-DD, e.g. "1968-01-08"). However, this is alien to most people:
it would make more sense to show a "humanized" version of the date instead (e.g.
"8th January 1968"). We could first add a generic date formatting method to the
application_helper.rb file to do this:

module ApplicationHelper
 ...
 # Display date in human-readable format, e.g. "8th January 1968".
 #
 # Returns +nil+ if +date_to_format+ is blank.
 def human_date(date_to_format)
 if date_to_format.blank?
 out = nil
 else
 # Get the day part of the date with
 # the "ordinal suffix" (th, rd, nd) appended
 day = date_to_format.day.ordinalize

 # strftime accepts a formatting string, which specifies
 # which parts of the date to include in the output string
 out = date_to_format.strftime("#{day} %B %Y")
 end

 out
 end
end

Building the User Interface

[212]

The strftime method used in the human_date method is very useful for formatting
Date and DateTime objects. It accepts a format string, much like PHP's strftime
function, containing placeholders for elements of the date and/or time, marked with
a preceding "%" character. Here are the placeholders you can use with the Ruby
version of strftime; the examples, all use 6th December 2006 at 9:30 a.m. as the date
being formatted:

Placeholder... Is replaced by... Example
%A Full day name Wednesday
%a Short day name Wed
%w Day of the week (0...6, with Sunday being 0) 3
%d Day of month, zero-padded 06
%e Day of month, with a leading space if less than 10 6
%j Day of the year (001...366) 340
%U Week number (00...53); the first Sunday of the year is

treated as the first day of the first week
49

%W Week number (00...53), the first Monday of the year
is treated as the first day of the first week

49

%B Full month name December
%b Short month name Dec
%m Month number, zero-padded 12
%H Hour of day, zero-padded 09
%Y Four-digit representation of the year 2006
%y Two-digit representation of the year 06
%I (capital i) Hour of the day, 12-hour clock (01...12) 09
%M Minute of hour, zero-padded 30
%S Seconds of minute, zero-padded 00
%T Time (same as "%H:%M:%S") 09:30:00
%c The preferred date and time representation Wed Dec 6 09:30:00

2006
%x Preferred date representation without time 12/06/06
%X Preferred time representation without date 09:30:00
%p The meridiem in uppercase (AM or PM) AM
%P The meridiem in lowercase (am or pm) am
%% Literal percentage symbol (%) %
%F ISO date representation (same as "%Y-%m-%d") 2006-12-06

Chapter 5

[213]

"Zero-padded" means that a single leading zero is added to the representation of the
time part if its value is less than 10.

Here are a few more examples of format strings for strftime, using some of
these placeholders:

Standard UK date format: "%d/%m/%Y"-
Example output: "06/12/2006"
Standard UK date format with short year: "%d/%m/%y"-
Example output: "06/12/06"
Standard UK date format with time: "%d/%m/%Y %T"-
Example output: "06/12/2006 09:30:00"

We can now modify app/views/people/show.rhtml to use our new
human_date method:

<p>Date of birth:
<%=d human_date(@person.date_of_birth) %></p>

Showing Associated Records
The views we've created so far show one or more records from a single table.
However, more often than not, tables in the database are related to each other. We
need to be able to pull records out of the related tables and show them alongside
each other.

In the Intranet application, thehe show.rhtml template for the PeopleController
shows a person's details, as stored in the people table. As well as these details,
we also need to show a person's home address. The address is stored in a separate
table, addresses; the address_id field in the people table acts as a foreign key,
referencing a record in this table (see Chapter 4 Working with Rails).

We can access a person's address inside the show.rhtml template through the
@person instance, using its address method:

<% address = @person.address -%>

The address method is automatically available on instances of the Person class, as
the Person class declares a belongs_to relationship with the Address model (see the
section Associations between Models, in Chapter 4). in Chapter 4).

•

•

•

Building the User Interface

[214]

We can then append some more ERb code to show.rhtml to display attributes
from the address (but only if the person has an address—the conditional parts
are highlighted):

<p>Address:

<% address = @person.address -%>
<% if address -%>

<%= address.street_1 %>

<%= address.street_2 + tag('br') unless address.street_2.blank? -%>
<%= address.street_3 + tag('br') unless address.street_3.blank? -%>
<%= address.city + tag('br') unless address.city.blank? -%>
<%= address.county + tag('br') unless address.county.blank? -%>
<%= address.post_code %>
<% else -%>

<%= d %>
<% end -%>

</p>

This code fragment demonstrates how to conditionally execute a block of code inside
an RHTML template, using if...else...end. It also calls the d helper defined
earlier, to display an error message if the person doesn't have a home address set.

Refining Using a Helper
There are several repeated lines in the template, which show parts of the address
(plus a
 element), but only if they have a value, e.g:

<%= address.street_2 + tag('br') unless address.street_2.blank? -%>

This is a good case where an application-level helper can reduce the repetition in
a template:

module ApplicationHelper
 ...
 # Display +field_value+ followed by a
 element,
 # but only if +field_value+ is set; otherwise return nil.
 def field_with_break(field_value)
 unless field_value.blank?
 return field_value + tag('br')
 else
 return nil
 end
 end
end

Chapter 5

[215]

We can now reduce the address part of the template to:

<p>Address:

<% address = @person.address -%>
<% if address -%>
<%= address.street_1 %>

<%= field_with_break address.street_2 -%>
<%= field_with_break address.street_3 -%>
<%= field_with_break address.county -%>
<%= field_with_break address.city -%>
<%= address.post_code %>
<% else -%>
<%=d nil %>
<% end -%>
</p>

Showing an Address with a Partial
The show.rhtml template is specific to a person: it shows their details, including
their home address. However, companies can also have addresses: so we will need to
include some code to render a company's address in app/views/companies/index.
rhtml (we've avoided this so far).

One option would be to add a block of address-rendering code to app/views/
addresses/index.rhtml, to show the address for each company; this would be
similar to the code we already have in app/views/people/show.rhtml. But this
would mean repeating ourselves, as we would have identical blocks of code in
multiple locations.

In addition to adding repetition, we are already breaking Rails conventions by by
rendering addresses from inside views for PeopleController. Typically, theTypically, the
templates for a model are stored in a folder specific to the corresponding controller;
but here, the RHTML code for rendering an Address is tied into the template for
the Person model. But, at the same time, we don't want to show an address in its
own full-page template: we only want to show it in conjunction with a person or
company. So adding a full template for displaying an address inside a layout
is unnecessary.

Rails provides a solution for this situation: partial templates (or partials for short).
A partial is used to generate a page fragment (typically RHTML), which can be used
inside other templates. They can be called from inside other RHTML files, or even
rendered directly from inside a controller (in lieu of a full-page template), to produce
a "fragment" of output.

Building the User Interface

[216]

By convention, Rails partials are included in the views directory for the controller.
In our case, a partial for addresses goes in app/views/addresses. To distinguish
partials from full-page templates, an underscore is prepended to the name of the
partial: for example, the partial to show an address would intuitively be called
show.rhtml. Our partial should therefore go in the file app/views/addresses/
show.rhtml; the content can be cut and pasted from the show.rhtml file for people
(app/views/people/show.rhtml), and looks like this:

<% if address -%>
<%= address.street_1 %>

<%= field_with_break address.street_2 -%>
<%= field_with_break address.street_3 -%>
<%= field_with_break address.city -%>
<%= field_with_break address.county -%>
<%= address.post_code %>
<% else -%>
<%= d %>
<% end -%>

The main difference between the original we copied and this code is that references
to the @person variable have been removed. Instead, a local variable called address
is referenced. Provided this variable is passed to the partial when it is called from a
controller or view, the partial can be used inside any other template.

Another difference is that paragraph tags have been removed from the partial. This
means the output can be used either inside paragraphs (e.g. when showing a person)
or inside table cells (e.g. in the companies list).

To render the partial inside another template, call it using the render method, e.g. in
app/views/people/show.rhtml:

...
<p>Notes:
<%=d @person.notes %></p>
<p>Address:</p>
<p><%= render :partial => 'addresses/show',
:locals => {:address => @person.address} %></p>

Two things to note here are:

The render method takes an option :partial, which specifies the path to
the partial, relative to the views directory. Note that the underscore at the
front of the partial name and the ".rhtml" suffix are excluded.
The :locals option can send a hash of :name => value pairs to the partial.
You can think of these as arguments being passed to a method: each pair is
converted into a variable (here, address) set to the value passed in (here,
the address instance associated with the person, @person.address). These
variables then become available within the partial.

•

•

Chapter 5

[217]

We can also reuse this partial inside app/views/companies/index.rhtml:

<% for company in @companies -%>
<tr>
<td>
<%= link_to company.name, { :action => 'show', :id => company.id },
{ :title => "Show details for this company" } %>
</td>
<td><%= company.telephone %></td>
<td><%= company.fax %></td>
<td><%= link_to(company.website, company.website) %></td>
<td><%= render :partial => 'addresses/show',

:locals => {:address => company.address} %></td>

</tr>
<% end -%>

Rendering Pagination Links with a Partial
The two index.rhtml templates we have written so far (one for people, the other for
companies) have a repeated section of pagination code at the bottom. Rather than
having this code in two places, it is better to put it in one file and pull this into the
individual templates: a partial (see previous section) is an obvious solution.

However, the pagination code is not associated with any particular model; so where
should it go? There is yet another Rails convention, which suggests that partials
with no obvious "home" go into a directory called app/views/shared. Create this
directory and add a file to it called _paginator.rhtml, which will contain the
paginator code. The content of this file can be modified from the code at the bottom
of app/views/people/index.rhtml:

<p><% page_num = paginator.current.number -%>
<% last_page_num = paginator.last.number -%>
<%= link_to('Previous', :page => page_num - 1) + " " unless 1 ==
page_num -%>
<%= pagination_links(paginator) %>
<%= link_to('Next', :page => page_num + 1) unless last_page_num ==
page_num -%></p>

The main change is replacing @paginator with paginator (minus the '@'). Instead
of using an instance variable, we will instead pass the required variable in using
the :locals option to render.

Building the User Interface

[218]

Call the new partial from app/views/people/index.rhtml and app/views/
companies/index.rhtml, replacing the existing paginator code:

<%= render :partial => 'shared/paginator',
:locals => { :paginator => @paginator } %>

Partial or helper?
Everything we've done with partials so far could also have been achieved
with helpers: both enable the generation of chunks of content to insert
inside templates, encapsulating logic, and repeated mark-up. So when
should you use a partial and when a helper?
A good guideline is to look at the amount and complexity of markup
(HTML or XML), you intend to generate. If you are primarily creating
markup with little logic, use a partial: this is a much more natural way
of laying out HTML or XML fragments. If you are doing a lot of logic in
the partial, use a helper: too much logic looks ugly and awkward inside a
partial, and is difficult to read when surrounded by HTML code.

Adding a Menu
Now that we have two controllers, navigating between them is becoming a pain:
each time we want to get to a controller, we have to type the right path into the
address bar in the browser. We need a menu.

There are several options to consider when deciding where to locate a menu:

When using a single layout for our whole application (as we are), the layout
template (app/views/layouts/application.rhtml) is the logical location
for the menu. The menu can just be added as a standard RHTML fragment.
When using different layouts for different controllers (see the earlier section,
Adding a Layout), each layout might have its own menu, too. In this case, each
menu could be coded into the appropriate layout, possibly using a helper to
ensure consistency of styling.
A variant of the above is where there are different layouts for different
controllers, but with a single menu common to all of them. In this case, the
menu could be stored in a partial, and pulled into the appropriate place in
each layout.

To keep things simple, we'll put our menu into app/views/layouts/application.
rhtml. We always have the option to extract it into a partial or helper later, if we
want to. This is the revised <body> element, including the menu links:

•

•

•

Chapter 5

[219]

...
<body>

<div id="menu">
 <p>Menu</p>

 <%= link_to 'Companies', :controller => 'companies' %>
 <%= link_to 'People', :controller => 'people' %>

</div>
<div id="content">
 <%= yield %>
</div>

</body>
...

The page is separated into two separate <div> elements, one for the menu and one
for the page content. The menu itself is an unordered list; each list element uses the
link_to helper to generate a link to the specified controller; as no action is specified,
the index action is assumed in both cases.

Without some extra styling, the menu will be at the top of the page and will be
displayed as a bulleted list. This can be fixed with some simple CSS to position the
two <div> elements adjacent to each other, style the colours, and turn off bullet adjacent to each other, style the colours, and turn off bullet
points on the menu list items (in public/stylesheets/base.css):

#menu {
 float: left;
 width: 15%;
 background-color: #FFF280;
 padding: 1% 1% 0 1%;
}
#menu > ul > li {
 list-style-type: none;
 margin-left: -2.5em;
}
#content {
 float: right;
 margin-left: 2%;
 margin-right: 2%;
 width: 79%;
}

Building the User Interface

[220]

The result makes our application look more like the real thing:

While this goes some way to making navigation easier, we still have the issue that
if we go to the root of the web server, we get the Rails welcome page. We will fix
this later by setting a specific controller and action as the default for the application,
using routes (see Chapter 7 Improving the User Experience). When we go to the root
of the application, we will then get the default controller/action, instead of the
welcome page.

C*UD (Create, Update, Delete)
The previous sections of this chapter described how to do the Retrieve part of
CRUD: pulling records from the database and formatting them as HTML. In this
section, we will look at the other parts of CRUD: creating records, updating them,
and deleting them.

We'll start with adding people, as this is the most likely way new data would make
its way into the database: someone rings up Acme, and the member of staff adds
their details to the database, such as name, email address, and phone number. They
would probably want to attach a company record to the person at the same time, too.

Chapter 5

[221]

Creating a Person
As with retrieve operations, we need two elements to implement person creation:

1. Controller actions to manage displaying the form for creating a record, as well
as performing operations on the model to add the record to the database.

2. A view to display the interface, which enables the user to input the data for
the new record.

Tackling the controller first, we can add a new action to app/controllers/people_
controller.rb, which displays the form; and a create action, which manages
adding the data to the database:

class PeopleController < ApplicationController
 # ... other actions ...

 # Only accept post requests to the new action;
 # redirect to index otherwise
 verify :method => :post, :only => :create,
 :redirect_to => {:action => :index}

 # Display a form to add a person, or attempt to save
 # if data posted in the request.
 def new
 @page_title = 'Add a new person'
 @person = Person.new
 end

 # Save submitted data to the database
 def create
 @person = Person.new(params[:person])
 if @person.save
 redirect_to :action => 'index'
 else
 @page_title = 'Add a new person'
 render :action => 'create'
 end
 end
end

The verify method ensures that the create method only accepts POST (and not
GET requests). Any non-POST requests get automatically redirected to the index
action. This prevents malicious users sending GET requests to create new people in
the database.

Building the User Interface

[222]

When the create action runs, an instance variable, @person, is created and
populated with parameters from the request; specifically, those associated with
:person. As in PHP, Rails parses POST parameters into a hash of name-value pairs,
accessible via the params method. So a POST body like this:

day=today&name=ell

is parsed into the hash:

{ :day => 'today', :name => 'ell' }

Additionally, Rails understands the specially formatted fields in HTML forms with
names of the form object[field]. POST parameters with a name formatted like
this create a sub-hash within the main params hash. The key into the sub-hash is
derived from the first part of the field name (object). In our case, a POST request
like the following:

day=today&name=ell&person%5Bfirst_name%5D=bill&person%5Blast_
name%5D=brum

is parsed into the hash:

{ :day => 'today', :name => 'ell', :person => { :first_name => 'bill',
:last_name => 'brum' } }

If you're wondering about the %5B and %5D parts of the POST parameters,
these are the URL-encoded representations of the [and] characters
respectively. An <input> element like this:
<input type="text" name="person[first_name]"
value="Bill" />
ends up sending a URL-encoded POST parameter like this:
person%5Bfirst_name%5D=bill

Within the controller, we can then retrieve just the POST parameters relating
to the person by accessing the :person key inside params, which would give us
{ :first_name => 'bill', :last_name => 'brum' }.

Once @person has been instantiated, the action tries to save the input, which will
return true or false. In cases where the save is successful, the redirect_to helper
is used to send the client back to the index page (which lists all the people in
the database).

Where the save fails, the default app/views/people/new.rhtml template is
rendered. (Recall that if render is not explicitly called, the default is to call
render :action => <action_name>, where <action_name> is the name of the
action being executed.)

Chapter 5

[223]

We'll create the form template next, used to insert the details for the person. To keepTo keep
things simple, we'll start with a basic version of the form, which only displays the
required fields for a person (first_name, last_name, email, gender):

<% form_for :person, @person, :url => {:action => 'create'} do |f| %>
<p><label for="person_first_name">First name</label>:</
strong>

<%= f.text_field :first_name %></p>
<p><label for="person_last_name">Last name</label>:</
strong>

<%= f.text_field :last_name %>
</p>
<p><label for="person_email">Email address</label>:</
strong>

<%= f.text_field :email %></p>
<p><label for="person_gender">Gender</label>:
<%= f.select :gender, Person::GENDERS.keys %></p>
<p><%= submit_tag 'Save' %></p>
<% end %>

This template does the following:

1. Uses the form_for method to create a form object for the Person model,
using the @person instance to populate the fields of the form. As we are
creating a new object, @person initially has blank fields. However, each time
we POST to the create action, a new @person is created and populated with
values from the request. So, if we are trying to save the new person and have
validation errors, the object will contain the values we just set for each field.
This means Rails can re-display the form and re-fill the fields with the values
we first entered, and show this alongside the validation error messages.

2. Creates the individual form fields using more Rails form helpers. Note that
each helper is called as a method on the object returned by form_for (f), e.g.
f.text_field :first_name

The text_field helper creates a standard HTML <input> element, generat-
ing the name of the element from the name of the model and setting its value
by calling the first_name method on the model instance (@person here). The
resulting HTML is:
<input id="person_first_name" name="person[first_name]" size="30"
type="text" value="" />

Note that the id attribute is set to the name of the model, followed by an
underscore, then the name of the attribute. The for attributes on the <label>
elements are formatted in the same way.

Building the User Interface

[224]

You can specify extra HTML options by passing them to text_field, e.g.
f.text_field :first_name, :size => 20, :class => 'myfield'

The other form helper used in the form is select:
f.select :gender, Person::GENDERS.keys

select creates a <select> element, with options derived from a collection.
In this case, we pass in the keys from the Person::GENDERS hash (i.e. ['M',
'F']), which yields:
<select id="person_gender" name="person[gender]">

<option value="M">M</option>

<option value="F">F</option>

</select>

You can pass a hash of name => value pairs as the collection argument; but
the select helper uses the name part of each pair to create the <option>
value attribute, and uses the value part of each pair to create the <option>
text. Passing the whole Person::GENDERS hash:
f.select :gender, Person::GENDERS

therefore, gives the wrong output (the full gender name is used for the value
attributes on the <option> elements):
<select id="person_gender" name="person[gender]">

<option value="male">M</option>

<option value="female">F</option>

</select>

Here is a case for making Gender a model in its own right: this would give
us the flexibility to format the genders so that they are suitable for creating a
drop-down. As it is, we will stick with the simple solution for now, using the
short form of the gender for both the option values and text.

To test the new form, browse to http://localhost:3000/people/new. Try adding
one or two people and check that they appear in the people index. Don't worry about
displaying validation errors for the moment: we'll come to that shortly.

Chapter 5

[225]

Refining with a Helper
Notice all the repeated HTML code in the create.rhtml template
(highlighted below)?

<p><label for="person_first_name">First name</label>:

<%= f.text_field :first_name %></p>
<p><label for="person_last_name">Last name</label>:</
strong>

<%= f.text_field :last_name %>

</p>

Time to add a custom helper! (Note that there is a minimal amount of HTML
code to create here, so a helper is fine, rather than a partial.) We can make this
an application-level helper, as we're likely to need it in other forms. We can also
take the opportunity to use the helper to mark required fields with an asterisk:

module ApplicationHelper
 # ... other helpers ...

 # Format a label element for a form field.
 #
 # +options+ can include:
 #
 # [:required] If +true+, an asterisk is added to the label.
 # [:field_name] If true, the for attribute on the label
 # is set from +model+ + +field_name+;
 # otherwise, for attribute is set from
 # +model+ + lowercased and underscored +label_text+.
 #
 # Example call:
 # label(:person, 'Email')
 #
 # Example output:
 # <label for="person_email">Email</label>:
 def label(model, label_text, options={})
 # Use the field_name option if supplied
 field_name = options[:field_name]
 field_name ||= label_text.gsub(' ', '_')

 # The value for the for attribute.
 label_for = (model.to_s + '_' + field_name).downcase
 # The <label> tag
 label_tag = content_tag('label', label_text, :for => label_for)
 # Add an asterisk if :required option specified.
 label_tag += '*' if options[:required]

Building the User Interface

[226]

 # Finish off the label.
 label_tag += ':'

 # Wrap the <label> tag in a tag.
 content_tag('strong', label_tag)
 end
end

This is now ready for use in the form template, e.g.:

<p><%= label :person, 'First name', :required => true %>

<%= f.text_field :first_name %></p>
<p><%= label :person, 'Last name', :required => true %>

<%= f.text_field :last_name %></p>

Validation Errors
One of the beauties of the Model-View-Controller architecture is that the validation
code we added to our models in Chapter 4 Working with Rails is still quietly doing
its work in the background. If you attempt to add a person and leave one of the
required fields blank, calling @person.save will return false, as the validation fails.
Although, difficult to spot, Rails will also modify the view, wrapping any form
element for which validation failed in a <div> element, e.g.:

<div class="fieldWithErrors"><input id="person_first_name"
name="person[first_name]" size="30" type="text" value="" /></div>

By styling this <div> with some CSS (in public/stylesheets/base.css), we can
highlight the fields with errors, putting a red border around them, e.g.

.fieldWithErrors {
 border: 0.2em solid red;
 display: table;
}

Try saving an invalid person record now: any fields with errors are surrounded by a
red border. Note that this works best in Firefox; in Internet Explorer, the red border
spans the width of the whole page, rather than hugging the input element as it does
in Firefox.

Chapter 5

[227]

While automatic addition of a <div> is a cute trick, it does mean that
the layout for forms built with the form helpers is somewhat limited:
<div> elements appearing in the middle of your HTML can throw your
format into unexpected shapes. This is why it's safest to put the label
on one line and the input element after a linebreak (
) within the
same paragraph. If you want more control over layout and want to avoid
these automatic <div> elements, you can create input elements using the
lower-level *_tag helpers, e.g. for a text field:
<%= text_field_tag 'person[email]', @person.email %>
(Note that there is no need to reference the form being built, f, as there
is with the text_field helper.) If you take this approach, Rails will not
wrap the field with a <div> if it throws a validation error; which means,
you will have to manually highlight fields with errors too, perhaps with a
custom helper.

The model validation rules defined in the previous chapter also set error messages
when validation fails; we saw how to use these from the command line. We can get
all the error messages for a model using another helper, error_messages_for:

<%= error_messages_for :person %>

This will display a block with a red frame, with errors shown as bullet points.
Alternatively, we can get at the error messages (if any) for individual fields using
the error_message_on method. For example, to place the error message for the
first_name text field under the text input element:

<p><%= label :person, 'First name', :required => true %>

<%= f.text_field :first_name %>
<%= error_message_on :person, :first_name %></p>

Where an error message occurs, this helper adds a <div> to the view, with text set
to the error message for the field, e.g. if validation of first_name fails this code
will render:

<p><label for="person_first_name">First name</label>*:</
strong>

<div class="fieldWithErrors"><input id="person_first_name"
name="person[first_name]" size="30" type="text" value="" /></div>
<div class="formError">Please enter a first name</div></p>

This <div> can easily be styled with CSS in public/stylesheets/base.css, e.g. to
put error messages in slightly smaller, red text:

.formError {
 color: red;
 font-size: 0.9em;
}

Building the User Interface

[228]

We'll add the remaining error messages later, in the section Finishing Touches.

The Flash
Giving the user feedback about problems with their input is vital; but equally
important is giving some feedback about actions that completed successfully.
Currently, the user gets no feedback about whether their actions added a new
person; they have to scan the list of people to see their new record.

What's needed is a short informational message indicating that the action was
successful; this message needs to be carried from the action that adds the record to
the view that is displayed next. However, we are currently using a redirect when
the save is successful, back to the index view. The action we redirect to by default
doesn't know anything about the previous action, due to the stateless nature of HTTP
requests and responses.

The solution in other languages is to place the message into the client session, to
maintain the client's state between the two requests. Indeed, Rails provides session
classes, which provide the same functionality. However, for this particular use
case (storing a short piece of data across two requests, which can be immediately
discarded when it's been used), Rails provides a further convenience within sessions
called the flash. Values stored in the flash have exactly the property that we need:
they are set up in response to one request, and then available to the response of the
next request (from the same client). After the second request, they are cleared out
automatically. This means we can put a message into the flash in the create action,
then display it in the index action, if the two occur in sequence. Rails manages
clearing out the message once it's been displayed.

Adding a message to the flash in the create action is simple (highlighted below):

class PeopleController < ApplicationController
 # ... more actions ...

 def create
 @person = Person.new(params[:person])
 if request.post? and @person.save
 flash[:notice] = 'Person added successfully'

 redirect_to :action => 'index'
 else
 @page_title = 'Add a new person'
 render :action => 'new'
 end
 end
end

Chapter 5

[229]

The flash is a hash, associated with a client session. To set a value in this hash,
you use the flash method to return the hash; then specify the key you want to set
(:notice here) and its value ("Person added successfully").

The next step is to display this in the view. We don't need to do anything in the
controller to get at the content of the flash, as it is accessible by default from every
view template. We can put items from the flash wherever we want them, in any
template (associated with a layout, action, or partial). In the Intranet application,
we could need flash notices in any view, so the logical location for it is in the layout
template for the whole application (app/views/layouts/application.rhtml):

<div id="content">
<% if flash[:notice] -%>

<p class="notice"><%= flash[:notice] %></p>

<% end -%>

<%= yield %>
</div>

The if...end ensures that a paragraph tag is only added if the flash has been set;
the <p> tag itself is styled with class="notice", which we can define in the CSS file
to show flash messages in green (public/stylesheets/base.css):

.notice {
 color: green;
}

Try adding a new person: you should get your confirmation message displayed at
the top of the page in green.

The flash isn't restricted to containing just text: any Ruby object can
be placed inside it. If you need to retain an object between actions (for
whatever reason), it can also be used as a temporary store for that.

Finishing Touches
Putting all of the above together gives us the following template for app/views/
people/new.rhtml:

<h1><%= @page_title %></h1>
<p>Required fields are marked with "*".</p>

<% form_for :person, @person, :url => {:action => 'create'} do |f| %>
<p><%= label :person, 'Title' %> <%= f.text_field :title, :size => 8
%></p>
<p><%= label :person, 'First name', :required => true %>

Building the User Interface

[230]

<%= f.text_field :first_name %>
<%= error_message_on :person, :first_name %></p>
<p><%= label :person, 'Last name', :required => true %>

<%= f.text_field :last_name %>
<%= error_message_on :person, :last_name %></p>
<p><%= label :person, 'Job title' %>
<%= f.text_field :job_title %></p>
<p><%= label :person, 'Telephone' %> <%= f.text_field :telephone, :
size => 16 %>
<%= label :person, 'Mobile', :field_name => 'mobile_phone' %>
<%= f.text_field :mobile_phone, :size => 16 %></p>
<p><%= label :person, 'Email address', :field_name => 'email', :
required => true %>

<%= f.text_field :email %>
<%= error_message_on :person, :email %></p>
<p><%= label :person, 'Gender', :required => true %>
<%= f.select :gender, Person::GENDERS.keys %>
<%= error_message_on :person, :gender %></p>
<p><%= label :person, 'Date of birth' %>

<% this_year = Time.now.year -%>

<%= f.date_select :date_of_birth, :order => [:year, :month, :day], :
include_blank => true, :end_year => (this_year - 100),

:start_year => this_year %>

</p>
<p><%= label :person, 'Keywords' %> <%= f.text_field :keywords %></p>
<p><%= label :person, 'Notes' %>

<%= f.text_area :notes %></p>

<p><%= submit_tag 'Save' %> | <%= link_to 'Cancel', :action => 'index'
%></p>
<% end %>

Note that we've added all the required labels (marked with an asterisk where the
field is required) and validation error notifications.

We've also used a couple of new helpers here (highlighted):

date_select creates a series of drop-downs (<select> elements) for
selecting the separate elements of a date and time. The :order option
specifies how to arrange the drop-downs; :start_year and :end_year
specify the range of years to show. If :start_year is less than :end_year,
the year <option> elements are sorted in descending order.

•

Chapter 5

[231]

The resulting <select> elements have specially formatted names, which
Rails will re-compose into a single date-time string when the form is
submitted. This string is used to set the date for the person's date of birth
when the model is saved back to the database.
text_area creates an HTML <textarea> element.

A final finishing touch is to add a menu item linked to the create action (in app/
views/layouts/application.rhtml):

...
<%= link_to 'People', :controller => 'people' %>

<%= link_to 'Add a person', :controller => 'people',

:action => 'new' %>

...

Updating a Person
Once records are in the contact database, we may still need to go back periodically
and alter them. Fortunately, we can reuse a lot of the code and techniques from the
previous new and create actions to accomplish this.

Firstly, we need edit and update actions to manage displaying the form and
inserting the record:

class PeopleController < ApplicationController
 # .. other actions ...

 # Add update to the list of actions, which only
 # accept post requests
 verify :method => :post, :only => [:create, :update],
 :redirect_to => {:action => :index}

 def edit
 @person = Person.find(params[:id])
 @page_title = 'Editing ' + @person.full_name
 end

 def update
 @person = Person.find(params[:id])
 if @person.update_attributes(params[:person])
 flash[:notice] = 'Person updated successfully'
 redirect_to :action => 'index'
 else

•

Building the User Interface

[232]

 @page_title = 'Editing ' + @person.full_name
 render :action => 'edit'
 end
 end
end

The edit action fetches a person's record from the database using a finder (the
person's ID is passed in as part of the URL, in much the same way as it is for the
show action in the PeopleController, and available from params) and creates
@page_title from the person's name; then it renders the form for editing the
person's details. The update action attempts to update the person's record using the
request parameters (but only if the request is a POST, as set by the verify method).
The update_attributes method updates all of the model instance's attributes, and
then attempts to save the instance to the database, returning true (save successful) or
false (save failed, normally due to validation errors).

Next, we need a template to display a form when someone edits an existing person's
record. This will be virtually the same as the form for adding a person; plus, the
text_field and other form helpers we used for the create form will automatically
populate the form with the details in the retrieved Person instance (@person).
However, the form will need to submit to a different URL (/people/update/X,
where X is the person's ID, rather than to /people/create). The obvious answer to
this is to put the form into a partial, called _form.rhtml; then turn the new.rhtml
and edit.rhtml templates into wrappers around it, e.g. new.rhtml looks like this:

<% form_for :person, @person,
:url => {:action => 'create'} do |f| %>
<%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

_form.rhtml contains all of the code taken out of this template, plus the title at
the top of the page and the instruction about required fields—see the source code
repository for the complete listing. One other point to note is that we now have to
pass the f argument into the partial as a local, otherwise, the partial has no access
to it.

The edit.rhtml template looks like this:

<% form_for :person, @person,
:url => {:action => 'update', :id => @person.id} do |f| %>
<%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

Chapter 5

[233]

Rather amazingly, that's it. The last step is to add links to app/views/people/
index.rhtml view, which points to the update form for each person's record (the
changed parts of the template are highlighted below):

<table>
<tr>
<th>Name</th>
<th>Actions</th>

</tr>
<% for person in @people -%>
<% full_name = person.last_name + ', ' + person.first_name -%>
<tr>
<td>
<%= link_to full_name, { :action => 'show', :id => person.id },
{ :title => "Show details", :class => "person_link" } %>
</td>
<td>

<%= link_to 'Edit', :action => 'edit', :id => person.id %>

</td>

</tr>
<% end -%>
</table>

Try clicking through few of the edit links from the index page to ensure that you can
see the form populated correctly. Also, check that the validation still works correctly.

Opportunities for Refactoring
Rails provides a lot of helpers for common tasks, so you don't have to keep
reinventing the wheel when writing views. However, your own application is likely
to have chunks of code that occur in multiple places. Always keep an eye out for
opportunities for refactoring this type of code, and make use of the framework to
remove duplication: in Rails parlance, this is known colloquially as DRY-ing out
your code (where DRY stands for "Don't Repeat Yourself"). In this section, we'll see a
few places where we can DRY out our Intranet application.

Using Filters
Filters are a useful tool in Rails. They enable you to run some method before, after,
or even around an action (like servlet filters in Java). This makes them ideal for
implementing functionality like authentication and authorization (you can prevent
an action being run, if a person is not logged in), and logging (e.g. you could log the
parameters passed to one or more of the actions in a controller).

Building the User Interface

[234]

However, they are also useful for more mundane tasks, like setting the stage for an
action by creating instance variables before it runs. This means we can take repeated
code out of actions and put it into a controller method, then use a filter to run that
method before each action wherever that code is needed.

In the PeopleController we have three actions, which each run the same piece of
code (highlighted):

def show
 @person = Person.find(params[:id])

 ...
end

...
def edit
 @person = Person.find(params[:id])

 ...
end

...
def update
 @person = Person.find(params[:id])

 ...
end

The first step in turning this into a before filter is to add a private method to the
bottom of the PeopleController class definition, which does the preparation for
the action:

private
def get_person
 @person = Person.find(params[:id])
end

This method is scoped as private so that it is not publicly available; without this
keyword, the default is for the method to be public, which would actually expose
it as a controller action. In addition, the method is placed at the bottom of the class
because the private keyword will apply to any method definitions following it
(unless those methods are explicitly marked as public or protected). This keeps the
action method definitions public, while protecting methods like this one, which are
only intended for internal use by the controller.

Next, strip out the lines from the show, edit, and update actions (the ones
highlighted above), which this method replaces.

Chapter 5

[235]

Finally, add a before_filter definition to the PeopleController class definition:

class PeopleController < ApplicationController
 before_filter :get_person, :only => [:show, :update, :edit]

 # ... other methods ...
end

Here, the :only option specifies that actions in front of we want the filter to run. An
:except option is also available, so we can rewrite the above as:

class PeopleController < ApplicationController
 before_filter :get_person, :except => [:index, :new, :create]

 # ... other methods ...
end

If neither an :only nor :except option is used, the filter runs before all
controller actions.

If you call before_filter multiple times when defining a controller, each of the
applicable filters will be applied before an action is run.

The sister after_filter method enables you to call some method after action
invocations. For example, the following after_filter globally replaces the word
"People" in the output from a template with the word "Fools":

class PeopleController < ApplicationController
 after_filter :replace_with_fools
 # ... other methods ...

 private
 def replace_with_fools
 response.body.gsub!(/People/, 'Fools')
 end
end

Not very useful, but mildly amusing. The important point is that the response body
is accessible via the response.body method call; the filter can either change the
response body in place (as it is done here by gsub!), or modify and then reset it
using response.body=. You can also set response headers or otherwise modify the
response with an after_filter, perhaps based on properties of the output from a
template. More practical uses of an after_filter might be to write a hard copy of
a generated response to a debug log, or to email an administrator if certain phrases
occur in generated content.

Building the User Interface

[236]

Creating Application-Level Controller Methods
When we perform the create and update actions, adding a new record or
modifying an existing one respectively, both actions set a message in the flash and
redirect back to the index action, e.g. from create:

def create
 @person = Person.new(params[:person])
 if request.post? and @person.save
 flash[:notice] = 'Person added successfully'

 redirect_to :action => 'index'

 else
 @page_title = "Add a new person"
 render :action => 'new'
 end
end

There is an opportunity here to slim down our code. But rather than create a method
on the controller itself, we'll create it on the ApplicationController (in app/
controller/application.rb), so we can use this functionality in any controller:

class ApplicationController < ActionController::Base
 session :session_key => '_Intranet_session_id'

 # Set +message+ under the :notice key in the flash,
 # then redirect to the index action.
 private
 def redirect_to_index(message=nil)
 flash[:notice] = message
 redirect_to :action => 'index'
 end
end

Then rewrite the create action to use it:

def create
 @person = Person.new(params[:person])
 if request.post? and @person.save
 redirect_to_index 'Person added successfully'

 else
 @page_title = "Add a new person"
 render :action => 'new'
 end
end

Chapter 5

[237]

And modify the update action too:

def update
 if @person.update_attributes(params[:person])
 redirect_to_index 'Person updated successfully'
 else
 @page_title = "Editing " + @person.full_name
 render :action => 'edit'
 end
end

We can use the redirect_to_index method in any controller, inside any action
where we want to set the flash and redirect back to the controller's index. Small
adjustments like this can radically improve the readability and coherence of
your code.

Deleting a Person
Adding a delete action is pretty trivial: the scaffold does it in a few lines of code.
However, in the scaffold, the code for doing the deletion (the destroy action) is ugly,
for two reasons:

1. Confirmation of the action is performed through JavaScript (when you click
on a Destroy link). If a user has JavaScript disabled, they don't get a chance
to confirm the deletion, and it goes ahead, recklessly.

2. Early versions of the scaffold put the destroy action behind a link (not
behind a form). This works OK, but doesn't account for accelerator software
(like the Google Web Accelerator). Accelerator software works with the
browser to pre-fetch possible future pages by following links on the current
page; then, when one of the possible pages is visited, it loads more quickly,
as it is already cached locally. Unfortunately, some Rails applications, when
used with accelerator software, ended up having their database emptied:
the accelerator fetched all the Destroy links, disregarding the JavaScript
confirmation prompts, and destroying all the records in the database!
The solution in newer versions of the scaffold is to use a weird JavaScript
hack, which, when a Destroy link is clicked, turns the link into a form with
method="post" and submits it; then puts a filter on the destroy action so
it only accepts POST requests. This is bad. While it solves the accelerator
problem, it completely breaks the links for browsers without JavaScript
support (e.g. screen readers, Lynx).

Building the User Interface

[238]

A simple and more accessible approach is to place a confirm step between the
user clicking on the Destroy link and the destroy action being executed. The
confirm step displays a form with method set to "post" and a big Confirm button:
the record only gets deleted if the user clicks on the button. This prevents the
accelerator problem, gets around ugly scaffold-style hacks, and makes Destroy
links usable in browsers without JavaScript.

And it's very simple to implement in Rails. First, add delete and confirm actions
to PeopleController:

class PeopleController < ApplicationController
 before_filter :get_person, :only => [:show, :edit, :update, :
confirm, :delete]

 verify :method => :post, :only => [:create, :update, :delete],
 :redirect_to => {:action => :index}

 # ... other methods ...

 def confirm
 @page_title = "Do you really want to delete \
 #{@person.full_name}?"
 end

 def delete
 if 'yes' == params[:confirm]
 @person.destroy
 redirect_to_index 'Person deleted successfully'
 end
 end

 # ... private methods ...
end

Note that the confirm and delete actions are added to the before filter's :only
option, so that the @person variable is populated with the record to be deleted (see
the earlier section Using Filters). The delete action will only perform the deletion
in response to a POST request (set using the verify method), which must contain a
parameter 'confirm' with the value 'yes'.

Next, create a view to display the confirmation form (in app/views/people/
confirm.rhtml), which is shown when the confirm action is first called:

<h1><%= @page_title %></h1>
<% form_tag :action => 'delete', :id => @person.id do %>
 <%= hidden_field_tag 'confirm', 'yes' %>

 <p><%= submit_tag 'Yes' %> |
 <%= link_to 'Cancel', request.referer %></p>
<% end %>

Chapter 5

[239]

We've used the simple form_tag helper here, which generates a plain HTML form
from URL parameters. Clicking the Confirm button submits a 'confirm=yes'
parameter via a POST request to the right action and ID. That's why the
hidden_field_tag helper is used to add this form element:

<input type="hidden" name="confirm" value="yes" />

The other new feature we haven't seen before is use of request.referer to set the
URL of the Cancel button. The referer method returns the URL of the page the user
was on before visiting this one, so it's a useful way to send a user back to where they
came from, canceling the current action.

Finally, add another link into the people index view for each person (app/views/
people/index.rhtml) to delete a person's record:

<td>
<%= link_to 'Edit', :action => 'update', :id => person.id %> |
<%= link_to 'Delete', :action => 'confirm', :id => person.id %>
</td>

Is deletion a good idea?
One other consideration is whether to allow deletions at all. Deleting a
record may destroy valuable historical data about interactions with a
customer you are perhaps no longer dealing with, or who has gone out
of business.
It might be better to instead disable a person's record, but keep a copy of
it in the database, and then filter out inactive records from the person list
unless the user specifically requests to see them. A simple implementation
may be to add a Boolean active column to the Person model, which
could be used to filter the people index view. We aren't going to go
down this route with Intranet, for the sake of simplicity.

Adding Edit and Delete Links to a Person's
Profile
This is a trivial change, but it makes a big difference to usability. Add two links to
the show.rhtml template for a person: one to edit the person, and one to delete
their record:

<p><%= link_to 'Edit', :action => 'edit', :id => @person.id %> |
<%= link_to 'Delete', :action => 'confirm', :id => @person.id %></p>

Now, you can skip around the application to your heart's content.

Building the User Interface

[240]

Editing Multiple Models Simultaneously
So far, we have dealt with the simple case where a controller manages create, update,
and delete operations for a single instance of the Person model at a time. However,
this is only part of the story.

Each person also optionally has an associated address, stored in the addresses
table. We separated addresses from people, as companies also have addresses: it is
good practice to store all instances of a certain type of data in a single table. In the
case of Intranet, this makes searching for an address far easier, as we only have to
search over a single table in the database. On the other hand, it makes managing
addresses tougher, as we potentially have two controllers (PeopleController and
CompaniesController) that can create and modify Address instances.

While this use case is not rare, it is difficult to find good examples of
implementations in the wild. Hopefully, we will address (excuse the pun) this
deficiency in the next section. We'll implement a single form, which will enable a
user to both add a new person to the database and optionally, at the same time, add
a new address.

Adding a New Address for a Person
To insert an address at the same time as we insert or edit a person's record, we
need to add some new address fields at the bottom of app/views/people/_form.
rhtml. The user can use these fields to enter the address at the same time as they
enter a person's details. As we're going to need these address fields when creating As we're going to need these address fields when creating
companies too, we'll put them into a partial, app/views/address/_form.rhtml, so
we can reuse them more easily:

<% if address.errors[:base] -%>
<p><%= error_message_on :address, :base %></p>
<% end -%>
<p><%= label :address, 'Street 1', :required => true %>

<%= text_field :address, :street_1 %>
<%= error_message_on :address, :street_1 %></p>
<p><%= label :address, 'Street 2' %>

<%= text_field :address, :street_2 %></p>
<p><%= label :address, 'Street 3' %>

<%= text_field :address, :street_3 %></p>
<p><%= label :address, 'City' %>

<%= text_field :address, :city %></p>
<p><%= label :address, 'County' %>

<%= text_field :address, :county %></p>
<p><%= label :address, 'Post code', :required => true %>

<%= text_field :address, :post_code %>
<%= error_message_on :address, :post_code %></p>

Chapter 5

[241]

A few points to note about this form:

We are not referencing an @address instance variable when creating the form
fields here, but use address instead. We'll pass this address argument in as
a local variable (through the :locals option) when we render the partial.
We are not going to create a new form to contain the address, but simply
place the fields relating to the address inside a surrounding form. In the
current case, this will put the address fields inside the person form. This
means we can submit data for the person and the address simultaneously.
We are using the text_field helpers and specifying :address as the first
argument to each method call. This will yield a set of form elements with
names in the format address[<field_name>], where <field_name> is the
name of a field in the addresses table.
The label helper we developed earlier in this chapter is used throughout.
The highlighted parts of the code are where validation messages will be
shown. Note that the top error message references :base, which is not a field
associated with an Address instance. In fact, this refers back to a generic
error message we set if there is a validation error on the whole instance;
namely, if street_1 and post_code reference an existing address (see the
section Validating Addresses in Chapter 4). This message is shown at the top of
the form, as it applies to the whole address, and not just to a single field.

Next, we pull this form into the main form for adding a new person (app/views/
people/_form.rhtml):

...
<p><%= label :person, 'Notes' %>

<%= f.text_area :notes %></p>
<div id="address">
<h2>Enter address details (optional)</h2>
<%= render :partial => 'addresses/form',
:locals => {:address => @address} %>
</div>

<p><%= submit_tag 'Save' %></p>

The new lines are highlighted. These just render the new partial inside a <div>
element, passing a local :address variable to the app/views/addresses/_form.
rhtml partial. At the moment, :address references an instance variable, @address,
which we haven't set yet. Let's do that in the controller (app/controllers/people_
controller.rb). While we're doing this, let's add some code to save a person's
address and assign it to the person, too:

class PeopleController < ApplicationController
 # ... other actions ...
 def new

•

•

•

•

•

Building the User Interface

[242]

 @page_title = "Add a new person"
 @person = Person.new
 @address = Address.new

 end

 def create
 @person = Person.new(params[:person])
 @person.build_address(params[:address])

 if @person.save
 redirect_to_index 'Person added successfully'
 else
 @page_title = "Add a new person"
 @address = @person.address

 render :action => 'new'
 end
 end

end

We're just creating a new Address instance here, and building it from the :address
part of the request parameters (which gathers all the form fields whose names begin
with "address" into a hash), using the build_address method automatically added
by the association (see the section Associations between Models in Chapter 4). As we're
creating a new Person, Rails will save the address to the database when we save the
person associated with it.

This works perfectly well if both the person and address validate first time.
However, we get problems if we want to add a person without an address. Our codee want to add a person without an address. Our code
won't let us do this, as it always tries to save the address, which sometimes we don't
want to fill in (e.g. if we don't have someone's home address).

To fix this, we'll add a class method to the model, from_street_1_and_post_code,
which will give us an address, depending on whether the user has supplied the
street_1 and post_code parameters; in cases where they haven't supplied a
street_1 or post_code, it returns nil. The method utilizes the Rails find_or_
initialize_by_* method to either retrieve an existing address or initialize a new
one (without saving it). This method is similar to the find_by_* methods discussed
in Chapter 4 (in the section Finding Records Using Attribute-Based Finders), and can be
passed multiple fields to initialize a record. There are also find_or_create_by_*
methods available to models, which will additionally save records they create. from_
street_1_and_post_code also updates the attributes of the retrieved or initialized
object from a hash of parameters passed to the method:

class Address < ActiveRecord::Base
 # ... other methods ...

 # Look up or initialize an address from params

Chapter 5

[243]

 # if street_1 or post_code supplied;
 # otherwise return nil; NB does not save the address.
 #
 # +params+ is a hash of name/value pairs used to set
 # the attributes of the Address instance.
 def self.from_street_1_and_post_code(params)
 params ||= {}
 street_1 = params[:street_1]
 post_code = params[:post_code]
 if street_1.blank? and post_code.blank?
 address = nil
 else
 address = find_or_initialize_by_street_1_and_post_code(street_1,
post_code)
 address.attributes = params
 end

 address
 end
end

We then modify the create action to use this new model method:

class PeopleController < ApplicationController
 # ... other actions ...

 def create
 @person = Person.new(params[:person])
 @person.address = Address.from_street_1_and_post_code(params[
 :address])

 @address = @person.address || Address.new

 if @person.save
 redirect_to_index 'Person added successfully'
 else
 @page_title = "Add a new person"
 render :action => 'new'
 end
 end

end

If no street_1 or post_code parameters are in the request, Address.from_street_
1_and_post_code returns nil, and the person's address is set to nil; however, we
still need a valid Address instance for use in the view. So, in the second highlighted
block, we set the @address instance variable to the person's address; or, if it is nil, to
a new Address.

Building the User Interface

[244]

When @person.save is called, the validity of the new person record is checked.
Recall from Chapter 4 that a person's address is only valid if it is nil or a valid
Address instance. If the person is valid and their address is valid or nil, both will be
saved; otherwise, neither is.

Try adding some new people to the application, with valid person and address
details, with valid person details only, with valid address details only, and with
invalid person and address details. You should only see validation error messages on
the address if either street_1 or post_code is set; otherwise, the person should be
added without an address (providing the person fields validate).

Using Functional Testing for Complex Actions
The actions defined in the previous section are sufficiently complex to feel nervous
about. We need to be sure that the controller responds correctly to different
combinations of request parameters: street_1 set, but post_code not; valid address,
but invalid person; and so on. In Chapter 4, we saw how unit testing can be used to
codify expectations about how models should validate. Functional testing can be
used in a similar way for controllers, to store expectations about how they should
work and ensure that those expectations aren't broken by changes to the code.

Functional tests effectively interact with the application in the same way that a
client browser does, making requests to controller actions and receiving responses;
the testing occurs on the responses, where we can check that the correct response
codes were received, the response body contained the correct HTML, validation is
managed correctly, the client was redirected correctly, and so on.

Each time you generate a controller, Rails adds a functional test skeleton for it to the
test/functional directory, with the name <controller name>_controller_test.
rb. To write functional tests for the PeopleController class, for example, we need
to modify test/functional/people_controller_test.rb. Open this file and
delete the test_truth method (which is just a stub to demonstrate the format of
testing methods).

Chapter 5

[245]

We want to test expectations about how the PeopleController's create action
should respond to different request parameters, as outlined in the table below:

Person
parameters

Address
parameters

Expectation Test method to create

Invalid Any Person not created;
address not created; form
displayed again

test_create_bad_person

Valid No street_1 and
no post_code

Person created with nil
address; redirected to
index

test_create_person_nil_address

Valid post_code, but
no street_1

Person not created;
validation errors
returned for the address;
form displayed again

test_create_bad_street_1

Valid street_1, but no
post_code

Person not created;
validation errors
returned for the address;
form displayed again

test_create_bad_post_code

Valid Valid (street_1
and post_code
both supplied)

Person and address both
created successfully;
redirected to index

test_create_person_address

Note that we're mapping each expectation to be tested onto a separate test method.
For functional testing, as for unit testing, the test methods are named test_*, a
special name which Ruby's testing framework uses to identify methods to include
in the test suite. Aside from the requirement to be prefixed with test_, you can give
your methods any name you wish: here, the method name includes the name of the
action being tested (create) and bad to denote cases where we're testing against
invalid request data.

Here's how we code the first test, test_create_bad_person. Add the test inside the
PeopleControllerTest class definition in test/functional/people_controller_
test.rb:

Test the create action with bad request parameters
def test_create_bad_person
 # Send a post request to the create action with no parameters
 post :create

 # The response should be rendered using the people/new template
 assert_template 'people/new'
 # The response should contain a div with class 'formError'
 assert_select 'div[class=formError]'
end

Building the User Interface

[246]

Some points to note:

The post method used sends a POST request to the specified action on this
controller. There is also a get method to send a GET request. Both can be
supplied with a parameters hash (see later in this section).
assert_template can check whether an action renders a particular template,
specified relative to the views directory. Here we make sure that the
PeopleController's new template (which shows the form for adding a new
person) is rendered.
assert_select is a very powerful method for checking the content of the
response body. It can be supplied with very fine-grained selectors (similar
to CSS or XPath selectors), which attempt to find a matching element in the
response body.

Other assert_* methods can also be used inside functional tests:
see the section Other Types of Assertion in Chapter 4 for a full list of
methods available.

To run the functional tests, call the following from the command line:

$ rake test:functionals

...

Started

..

Finished in 0.103625 seconds.

2 tests, 3 assertions, 0 failures, 0 errors

Any failed tests or errors are reported, along with the details of the test where they
occurred. Note that we've run two tests here, as the CompaniesController also has
a stub for its functional tests.

Next is test_create_person_nil_address, to test that a POST request with valid
person parameters, but no address parameters, correctly creates a person with a
nil address:

def test_create_person_nil_address
 # Clear out the people table
 Person.delete_all

 # Post new person details with blank address
 post :create, :person => {
 :first_name => 'Bob',
 :last_name => 'Parks',

•

•

•

Chapter 5

[247]

 :email => 'bob@acme.biz',
 :gender => 'M'
 }

 # Check there is one person in the database
 person = Person.find(:first)
 assert_equal 'bob@acme.biz', person.email

 # Check their address is nil
 assert_equal nil, person.address

 # Check we get redirected to the index after creation
 assert_redirected_to :action => :index
end

Here we're sending some data in the POST body by passing a hash of parameters
to the post method. Note that you have to mirror the structure of the request as
it would arrive from the form, meaning that you have to nest all of the person
parameters inside a nested hash, keyed by :person. Also note that we can use
assert_redirected_to to specify a route we expect the controller to redirect to; the
parameters passed to this mirror those used with link_to and url_for. In this case,
if a person's record is successfully created, we expect to be redirected back to the
index action on this controller.

Similarly, to test requests where partial (invalid) address parameters are supplied,
we do:

def test_create_bad_street_1
 # Post valid person details, but with empty value for street_1
 post :create,
 :person => {
 :first_name => 'Bob',
 :last_name => 'Parks',
 :email => 'bob@acme.biz',
 :gender => 'M'
 },
 :address => {
 :post_code => 'B15 1AU'
 }

 # Check the new form is shown again
 assert_template 'people/new'

 # Check we get validation errors for street_1 input element
 assert_select 'div[class=fieldWithErrors]' do
 assert_select 'input[id=address_street_1]'
 end
end

Building the User Interface

[248]

Note that this follows a similar format to the previous test, but that we are also
passing an :address key in with the post parameters, specifying an invalid address
(missing a street_1 attribute). We then use assert_select to test for the presence
of a <div> element with class attribute equal to fieldWithErrors; and nest a
further assert_select inside it, to check that the error <div> is wrapping the
<input> element with id attribute set to address_street_1. This tests that the form
is displayed again, with an error message next to the street_1 form field.

assert_select statements can be nested arbitrarily deep in tests,
and selectors can be far more complex than shown here: see the Rails
documentation for the HTML::Selector class for details of the
full syntax.

test_create_bad_post_code is similar to the previous test, and is not listed here:
see the source code for the complete listing.

Our final test, test_create_person_address, checks that if valid person and
address data are supplied, both a person and an address are created and
correctly associated:

def test_create_person_address
 # Clear out the people and addresses tables
 Person.delete_all
 Address.delete_all

 # Send post with valid person and address
 post :create,
 :person => {
 :first_name => 'Bob',
 :last_name => 'Parks',
 :email => 'bob@acme.biz',
 :gender => 'M'
 },
 :address => {
 :street_1 => '11 Harley Street',
 :post_code => 'B15 1AU'
 }

 # Check person created
 person = Person.find(:first)
 assert_equal 'bob@acme.biz', person.email

 # Check address created
 address = Address.find(:first)
 assert_equal 'B15 1AU', address.post_code

Chapter 5

[249]

 # Check person's address is the created address
 assert_equal person.address_id, address.id

 # Check redirected to index
 assert_redirected_to :action => :index
end

This test uses many of the same methods as previous tests. The main things we're
testing here are that the person and address are created, and that the address_id
attribute for the person is set to the id of the newly-created address (highlighted).

This section has been a whirlwind tour of the potential of functional testing, and
we've only skated over the surface of its possibilities. As you can see, it can be
time-consuming to test every possible combination of request parameters; however,
where you are writing mission-critical software, or software where the controller
logic is complex, functional testing is a vital technique for ensuring consistency and
stability in your application.

Updating a Person and Their Address
Luckily for us (thanks to Rails), the code for editing an existing person and their
address is virtually identical to the code for creating a person. The chief difference is
that the edit and update actions retrieve an existing person and their address
(if available):

class PeopleController < ApplicationController
 before_filter :get_person, :only => [:show, :update,
 :edit, :confirm, :delete]
 verify :method => :post, :only => [:create, :update,
 :delete], :redirect_to => {:action => :index}

 # ... other methods ...

 def edit
 @page_title = 'Editing ' + @person.full_name
 @address = @person.address || Address.new
 end

 def update
 @person.address = Address.from_street_1_and_post_code(params[:
address])
 @address = @person.address || Address.new

 if @person.update_attributes(params[:person])
 redirect_to_index 'Person updated successfully'
 else
 @page_title = 'Editing ' + @person.full_name
 render :action => 'edit'
 end
 end
end

Building the User Interface

[250]

The only minor issue with this code is that an edit to someone's address will actually
add a new address to the database, rather than update the old one. The old one will
remain until manually removed from the system. However, it does mean that if
someone enters an address that already exists in the database, that address is used
instead of creating a new one. There is also the potential for creation of duplicate or
near-duplicate addresses, if there are slight differences between how street_1 and
post_code are typed.

Finally, we need an app/views/people/edit.rhtml template to present a form
for editing a person, which pulls in the existing _form.rhtml partial we
created earlier:

<% form_for :person, @person,
:url => {:action => 'update', :id => @person.id} do |f| %>
<%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

Summary
The functionality put in place throughout this section gives users all the tools
they need to edit people and their addresses. However, this doesn't complete the
functionality required in the Intranet application: the next section covers how to build
the remaining pieces.

Fleshing Out Companies and Addresses
The Intranet application is missing some functionality before it will be really useful. It
still needs to:

Provide create, update, and delete actions for companies (we already have
an index view for companies, which we can continue to use).
Enable users to associate a person's company (from the person update and
create views).
Delete addresses if they are no longer attached to a person or company.

In this section, we will briefly see how to implement this functionality. The
techniques should be familiar from the previous sections, but extra detail is given for
any new techniques.

•

•

•

Chapter 5

[251]

Managing Companies
The remaining actions we need for companies are delete, new, create, edit, and
update. Action methods go into app/controllers/companies_controller.rb;
views go into app/views/companies.

Stubbing Out the Navigation
We want the index view to link to the edit and delete actions for each company.
Add a new Action column to app/views/companies/index.rhtml, and add two
links for each company row:

<td>
<%= link_to 'Edit', :action => 'update', :id => company.id %> |
<%= link_to 'Delete', :action => 'delete', :id => company.id %>
</td>

At the moment, these links don't lead anywhere; but having them available makes it
easier to find your way around while building up the remaining functionality.

A Shared View to Confirm Deletions
It turns out that the view and action for confirming company deletion are
virtually identical to those for confirming deletion of a person. Here is another
refactoring opportunity.

First, move app/views/people/confirm.rhtml to app/views/shared/confirm.
rhtml. This makes the view for confirming a deletion into a shared template, easily
usable by any controller. We need to make this view generic, so it will work with
any object (currently, it references @person). Modify it like this (@object replaces
@person in the highlighted line):

<h1><%= @page_title %></h1>
<% form_for :action => 'delete', :id => @object.id do %>

<%= hidden_field_tag 'confirm', 'yes' %>
<p><%= submit_tag 'Yes' %> |
<%= link_to 'Cancel', request.referer %> </p>
<% end %>

Next, modify the confirm and delete actions in app/controllers/people_
controller.rb, extracting the code that is common to those actions for any
controller into separate private methods (confirm_delete and do_delete):

def confirm
 prompt = "Do you really want to delete #{@person.full_name}?"
 confirm_delete(@person, prompt)

Building the User Interface

[252]

end

def delete
 do_delete(@person)
end

private
def confirm_delete(object, prompt)
 @object = object
 @page_title = prompt
 render :template => 'shared/confirm'
end

private
def do_delete(object)
 if 'yes' == params[:confirm]
 object.destroy
 object_name = object.class.name.humanize
 redirect_to_index object_name + ' deleted successfully'
 end
end

Now the confirm_delete method manages confirmation of the deletion of any
generic object, and the confirm action in PeopleController just invokes this
method, passing in the @person instance variable and @person.full_name as a
prompt. The prompt is displayed in the confirmation screen, which is constructed
by rendering the shared/confirm.rhtml template. (The :template option will
render any template, including ones for controllers other than the one currently
being invoked.)

The delete action calls the do_delete method, which in turn calls the object's
destroy method; a bit of class reflection is used to create the message for the flash
(#{object.class.name.humanize} yields a human-readable version of the class
name of the object).

Move the confirm_delete and do_delete methods into the
ApplicationController class so they are available to every controller.

Finally, add delete and confirm actions to CompaniesController too, referencing
the generic confirm_delete and do_delete methods:

class CompaniesController < ApplicationController
 # ... other methods ...

 def confirm
 @company = Company.find(params[:id])
 prompt = "Do you really want to delete #{@company.name}?"
 confirm_delete(@company, prompt)

Chapter 5

[253]

 end

 def delete
 @company = Company.find(params[:id])
 do_delete(@company)
 end
end

The final thing to do is add some delete links to the app/views/companies/index.
rhtml template:

<%= link_to('Delete', :action => 'confirm', :id => company.id) %>

The beauty of this refactoring is that it makes it trivial to add delete and confirm
actions to any controller from this point on. The confirm action should pass the
object we're trying to delete plus some prompt to the confirm_delete method; the
delete action should call do_delete with the object to delete; and Rails will do
the rest.

Attaching a Person to a Company
A likely scenario would be for a person to change company: someone at Acme would
then search for a person's record to modify their company association. Adding this
functionality to the person edit form is actually very simple, as we are simply setting
the company_id for a record in the people table. As this is a simple attribute, we
merely need to add a drop-down box of companies to the form for editing a person.
First, we need to get the list of companies to populate the drop-down by adding
another before_filter for the PeopleController's edit, new, update, and
create actions (any action that is expected to render the form):

class PeopleController < ApplicationController
 before_filter :get_companies, :only => [:edit, :new, :update,
 :create]

 # ... other methods ...

 private
 def get_companies
 @companies = Company.find(:all, :order => 'name')
 end
end

Then add the drop-down box to the app/views/people/_form.rhtml partial, before
the address entry part of the form:

<h2>Company (optional)</h2>
<p><%= f.collection_select(:company_id, @companies, :id, :name,
:include_blank => true)
 %></p>

Building the User Interface

[254]

The collection_select helper creates a <select> element around the output from
options_from_collection_for_select. As a company is optional for a person, the
:include_blank option is set to true so that a blank option is displayed at the top of
the drop-down. Rails will now manage this attribute as it manages the other simple
attributes for a person (like first_name, last_name, etc.).

We can also amend the show view for a person (in app/views/people/show.rhtml)
to display the name of the company they work for:

<p>Company:
<%= (@person.company ? @person.company.name : d) %></p>

Creating and Updating Companies
The basic actions for creating or updating a company (without its address) are
similar to the initial actions created earlier in this chapter, and fairly trivial. We'll
skip those and go straight to the more complex case: creating or updating a company
and an address from a single form.

Unlike a person, where the address is optional, a company must always be assigned
an address. The validation code on the Company model we wrote in Chapter 4
ensures that an address must be supplied, and that the address is itself valid. So
providing we assign an address and check the validity of the company, Rails will
cascade validation to the associated address. If the company validates, it means the
address is valid too, and we can save both safely.

Below is the code for the new, create, edit, and update actions. It again uses the
Address.from_street_1_and_post_code method we defined in the section Adding
a New Address for a Person, to either find an existing address to assign to a company
or create a new one from the supplied :address parameters:

class CompaniesController < ApplicationController
 def new
 @page_title = 'Add a new company'
 @company = Company.new
 @address = Address.new
 end

 def create
 @company = Company.new(params[:company])
 @company.address = Address.from_street_1_and_post_code(params[
 :address])

 # @company.address might be nil,
 # so set a sensible default if it is
 @address = @company.address || Address.new

 if @company.save

Chapter 5

[255]

 redirect_to_index 'Company added successfully'
 else
 @page_title = 'Add a new company'
 render :action => :new
 end
 end

 def edit
 @company = Company.find(params[:id])
 @page_title = 'Editing ' + @company.name
 @address = @company.address
 end

 def update
 @company = Company.find(params[:id])
 @company.address = Address.from_street_1_and_post_code(params[
 :address])
 @address = @company.address || Address.new

 if @company.update_attributes(params[:company])
 redirect_to_index 'Person updated successfully'
 else
 @page_title = 'Editing ' + @company.name
 render :action => 'edit'
 end
 end
end

ActiveRecord handles validation of the address associated with the company, so we
can be certain that @company.save only succeeds when both the company and its
address are valid.

Here is the form partial, which goes with these actions
(app/views/companies/_form.rhtml):

<h1><%= @page_title %></h1>
<p>Required fields are marked with "*".</p>

<% if @company.errors[:address] -%>

<p><%= error_message_on :company, :address %></p>

<% end -%>

<p><%= label :company, 'Company name', :field_name => 'name',
:required => true %>

<%= f.text_field :name %>
<%= error_message_on :company, :name %></p>
<p><%= label :company, 'Telephone' %>

<%= f.text_field :telephone %></p>
<p><%= label :company, 'Fax' %>

Building the User Interface

[256]

<%= f.text_field :fax %></p>
<p><%= label :company, 'Website' %>

<%= f.text_field :website %></p>

<h2>Address*</h2>
<div id="address">
<h3>Enter address details</h3>
<%= render :partial => 'addresses/form', :locals => {:address =>
@address} %>
</div>
<p><%= submit_tag 'Save' %> | <%= link_to 'Cancel', :action =>
'index' %></p>

Note that any validation errors to do with the company's address are at the top
of the form (highlighted). If the address fails to validate, the error message will
appear here.

We will also need a template for the new action (app/views/companies/new.rhtml):

<% form_for :company, @company,
:url => {:action => 'create'} do |f| %>
<%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

and one for the edit action (app/views/companies/edit.rhtml):

<% form_for :company, @company,
:url => {:action => 'update', :id => @company.id} do |f| %>
<%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

Finally, add a link to the menu (in app/views/layouts/application.rhtml) to
create a new company:

<%= link_to 'Add a company', :controller => 'companies', :action =>
'new' %>

That completes the functionality for adding and updating companies. Again, you
may want to ensure that this works as expected by adding some functional tests for
this controller: an example is given in the code repository for the book.

Managing Addresses
Earlier we saw that addresses don't really have a life of their own: they are always
associated with a company or a person, and don't need to be treated as entities in
their own right. So, it seems a wasted effort to spend too long writing administration
pages for them (and time is running out for Rory and co.).

Chapter 5

[257]

However, it is clear that addresses may become orphans if there are no longer
companies or people associated with them. At the moment, there is no way to tidy
up if a company is deleted and its address orphaned.

There are several ways to approach this issue. Here are a few suggestions:

1. Create a scaffold for the Address model. This will quickly supply CRUD
operations for the model, but won't make it simple to identify orphaned
addresses without some modification (e.g. displaying entities associated with
each address).

2. Run a scheduled task to clear up the database. Using cron or similar, scan
the database every evening for addresses that no longer have associated
companies or people and delete them.

3. Cascade deletions to addresses. Each time a person or company is deleted,
check and delete any addresses that have become orphans as a consequence.

The last of these is the most interesting and tidiest: rather than managing addresses
through their own administration screens and having to manually identify orphans,
we can have them deleted automatically when they become orphans.

This approach is not suitable if you want to maintain addresses regardless
of whether they are associated with any other entities in the database.

Adding a Callback to Company Deletions
To manage addresses that no longer have an associated company or person, we an
add a callback handler for the Person and Company model classes. Each time an
instance of either is deleted, we check whether any associated address is orphaned as
a result, and, if it is, delete it too.

A callback enables you to trigger events in response to actions on records in
the database, such as a new record being added, a record being updated, or a
record being deleted. There are about a dozen callback points available (see the
documentation for ActiveRecord::Callbacks), but the one we're interested in
is after_destroy, which enables you to specify an action to trigger after a record
is destroyed. In this case, it will enable us to clear out orphaned addresses after a
company or person is destroyed.

Building the User Interface

[258]

First off, create a callback handler in one of the two models—Company is as good as
any. This is defined by creating a new method called after_destroy in the Company
class definition:

class Company < ActiveRecord::Base
 # ... validation methods etc. ...

 def after_destroy
 unless address_id.blank?
 address = Address.find address_id
 if address.people.empty? and address.company.nil?
 address.destroy
 end
 end
 end
end

Note that, despite the callback being triggered after the Company instance has been
destroyed, it still has access to the attributes the model instance had before the record
was destroyed. This means we can reference the company's address_id and use
it to look up its associated address. The callback handler checks whether the
potentially-orphaned address still has either an associated company, or one or more
associated people, by querying the database. If the address is not associated with any
other records, it can be safely deleted.

Rather than copying this callback handler into the Person class definition, it would
be better to keep things DRY and have the handler in a single location. But where
should we put it? In the case of controllers, we have the ApplicationController
class we can use for any methods we want to make available to all controllers.
However, we don't have a similar "superclass" for our models, so there is no obvious
location to put the callback to make it accessible to both Person and Company.

Instead, we can use an observer as the location for the callback handler. Observers
are special classes that wait for and then respond to lifecycle events on ActiveRecord
classes, such as addition of new records, updates to records, or deletion of records.
You specify which events trigger the observer by creating methods named after the
type of event, such as the after_destroy method we just saw.

Either an observer can be assigned to a single model (in which case, you just need to
create a class named after the model, e.g. a PersonObserver observer would observe
events occurring on the Person model); or, you can create an observer with an
arbitrary class name and instruct it to watch for events across multiple models using
the observe method. We'll take the latter approach and write one observer that
manages addresses in response to events occurring on the Person or Company model.

Chapter 5

[259]

Locate the observer in app/models/address_owner_observer.rb and cut and paste
the after_destroy callback method from the Company class into it. The other slight
modification required is that the callback should accept an object to be manipulated
(here called record): this will represent the just-deleted person or company. You also
need to declare the class, inheriting from the ActiveRecord::Observer class:

class AddressOwnerObserver < ActiveRecord::Observer
 observe Person, Company

 def after_destroy(record)
 unless record.address_id.blank?

 address = Address.find address_id
 if address.people.empty? and address.company.nil?
 address.destroy
 end
 end
 end
end

We need to add the new check on the address_id (highlighted), as an address is
optional for people, but not for companies.

The final step is to "switch on" the observer by adding it to the application's
configuration inside config/environment.rb. Note that there is already a
commented-out line inside the configuration that sets the value for config.active_
record.observers. Uncomment this line and set the value to the name of your
observer, e.g. (highlighted)

Rails::Initializer.run do |config|
 # ... other settings ...

 # Activate observers that should always be running
 config.active_record.observers = :address_owner_observer

 # ... yet more settings ...
end

The observer now works as a callback handler for both model classes. The easiest
way to see it in effect is to use the console:

$ script/console

Loading development environment.

>> a = Address.new(:street_1 => '78 Blink Street',

:post_code => 'B14 2QQ')

=> #<Address:0xb75c7b0c ...}>

>> a.save # Save the address to the database

Building the User Interface

[260]

=> true

>> c = Company.new(:name => 'Charming Pottery')

=> #<Company:0xb759ba84 ...}>

>> c.address = a # Associate the address with the company

=> #<Address:0xb75c7b0c ...>

>> c.save # Save the company to the database

=> true

>> c.address_id # ID of the address associated with the company

=> 16

>> c.destroy # The callback is triggered by this method call

=> #<Company:0xb759ba84 ...>

>> Address.find 16 # Try to retrieve the address from the database

ActiveRecord::RecordNotFound: Couldn't find Address with ID=16

...

As you can see, the callback handler deleted the new address we just created, in
response to deletion of the company it was attached to.

Unit Testing for Callbacks
Unit tests are a good way to encapsulate the kind of callback checks we performed
manually with the console (above), making sure that they behave as expected. For
example, to test the this callback, the unit test could:

1. Create an address
2. Create a person
3. Create a company
4. Assign the address to the person
5. Assign the address to the company
6. Delete the company
7. Verify that the address still exists in the database

Conversely, you could write a test to verify that an orphaned address is correctly
deleted. For example:

Test that the after_destroy call-back for Company
correctly triggers deletion of an orphaned address.
def test_deletes_orphaned_address
 @acme.destroy
 assert_raise(ActiveRecord::RecordNotFound) { Address.find 1 }
end

Chapter 5

[261]

See the source code repository (test/unit/company_test.rb) for example unit
tests, which perform more callback testing.

A Very Quick Interface for Addresses
While we are managing addresses via their associated companies and people, it is
sometimes useful to get an overview of all the addresses in the system. But, because
we're doing most of the management in other pages, it seems a waste of effort to
build a whole interface. One of the beauties of Rails is that we can very quickly add
a management interface for a model, which we can flesh out later or just leave it as
it is. We saw the scaffold generator in the last chapter, which adds all the files to
implement a CRUD interface for a model. However, there is an even simpler way to
implement a scaffold for a model (in our case, the Address model).

First, create a controller for the model:

$ script/generate controller addresses

Next, edit the controller (app/controllers/addresses.rb):

class AddressesController < ApplicationController
 scaffold :address
end

The scaffold method builds all the actions for the controller invisibly: simply pass
it the name of the model to scaffold for. It also generates the required views without
creating any files in your application. If you create any actions with the standard
scaffold names (e.g. create, new, edit, update) inside the controller, your method
will override the default scaffold ones. Using the scaffold command inside your
controller class definition can be a good first step to getting a controller up and
running: any actions you haven't yet defined for your controller are provided by the
scaffold defaults.

Next, start the server (if it's not already running) and browse to
http://localhost:3000/addresses. You should see a list of addresses in the
system. That's all you need to do to get a quick interface for addresses up and
running; you could even add it to the menu system (though, remember that we set
up companies as dependent on addresses: if you delete an address, any associated
company is also destroyed).

Building the User Interface

[262]

Summary
Throughout this chapter, we've grown a user interface over the solid model we built
in Chapter 4. Rather than using simple scaffold-style controllers and views, we've
dug deep into the patterns and techniques you will need to implement complex
functionality in real-world applications.

Even with this level of coverage, there is still an embarrassment of riches to be
discovered in Rails: we have only scratched the surface of what's possible. However,
you can hopefully see how the template system, helpers, filters, and observers
provide an excellent foundation for creating minimal, powerful code, and get an idea
of how models, views, and controllers fit together.

In the next chapter, armed with a fully-functional Intranet application, we will see
how to deploy to a production server, ready for the assault of real users.

Into Production
Running a Rails application in the production environment is a crucial part of any
project. It represents the successful completion of a working application and delivery
of that application to its customer base. It is rarely the final stage. All applications we
have worked on have needed modifying from their initial production incarnation.

So, what is needed to get a Rails application into the production environment?

A working Rails application.
A production server environment.
A system for transferring development Rails code to the
production environment.

This chapter will describe how to create a Rails production environment. In
particular, the decisions we need to make to successfully get a small business
application up and running. Error handling in the production environment is a little
different to that of the development environment and therefore some coverage of
error handling is presented. We will also describe some systems that will make it
easier to backup and restore your application.

An Application Ready for Production
In many Rails tutorials and guides there is a common theme: don't worry about the
production environment, it is something you can sort out later. I strongly believe this
is a mistake.

Do not wait until your application is built before you create and test the
production environment!
If you cannot get your application working in the production
environment, any time you spent creating that application has
been wasted.

•

•

•

Into Production

[264]

Our application may be the most beautifully crafted piece of coding ever created, but
if we cannot present it to our users, we might as well have created a chocolate teapot.

Therefore, it is important, before we spend time developing our application, that we
create and test our production environment. This is particularly important with Rails
because at the time of writing, creating a good production environment can be the
most problematic part of Rails development. The good news is that solutions to most
of the common problems are being developed and are coming on line all the time. In
particular, the creation of Mongrel (a Ruby web server that will be discussed later in
the chapter) has greatly simplified the process and removed the worst headaches.

Rory comes to similar conclusions. He does not want to spend all week creating
his application just to find that it only works on his computer. The whole point of
the task Ken has set for him is to make the contact data available to everyone in the
company. Even if others can browse his computer, he does not want his system to
slow down to provide everyone else with a new service. However, he also spots a
conundrum: "I need an application to test the production environment, but I want
to do the test before I create an application." The solution is to create a simple test
application that can be passed to the production system and tested there. Scaffold
makes it very easy to create a basic working application. So, Rory creates and
develops a test application:

1. Rory first creates a test application in an empty folder.
 $ rails TestApp

2. Scaffold needs an existing SQL table to create the correct application code, to
match the table structure. Moving into the application folder, Rory creates a
test model first, so he can use migration to create the initial database table.

 $ ruby script/generate model TestThing

3. He then modifies 001_create_test_things.rb by removing the comments.
He thereby creates the migration code shown below. As this is a very basic
test, only one database field is required.

 class CreateTestThings < ActiveRecord::Migration
 def self.up
 create_table :test_things do |t|
 t.column :name, :string
 end
 end
 def self.down
 drop_table :test_things
 end
 end

Chapter 6

[265]

4. Rory is using MySQL and decides to use the default Test schema for all the
environments of this test application. He modifies database.yml to suit. The
resulting database.yml is shown below. Notice that all environments use
the same database schema and therefore have the same content.

 development:
 adapter: mysql
 database: Test
 username: root
 password: password
 host: localhost

 test:
 adapter: mysql
 database: Test
 username: root
 password: password
 host: localhost

 production:
 adapter: mysql
 database: Test
 username: root
 password: password
 host: localhost

5. Rory then creates the new table using Rake.

 $ rake migrate

6. Finally, he can create the scaffold, which he tests with the help
of WEBrick or Mongrel. The application is available at:
"http://localhost:3000/test_things/list"

 $ ruby script/generate scaffold TestThing
 $ ruby script/server

Rory, now, has a working Rails application that he can test in his production
environment. It has only the minimum of functionality, but it is all that is needed to
demonstrate the viability of the production environment.

Into Production

[266]

The Application Server
At this point, it is worth reviewing the specification of a server platform that will
host a production Rails environment. For small business applications, it is initially
practical to run the Rails application, a web server, and database, all on the same
computer. There are a number of steps that can be taken to improve performance
as use of the application increases. However, for most purposes, when putting your
first application into production, the single server solution is a good starting point.

Memory
As mentioned in Chapter 3: Laying the Foundations, the main consideration for a
Rails server is plenty of RAM. Rails and databases are memory intensive. Each
Rails instance typically uses 25 to 35Mb of RAM. While this may not be a lot for a
dedicated server, it can be significant on a shared server. For example, Rory only has
a single server that also acts as a file and print server, web server, and the company
email server. This arrangement is typical of many small businesses. On a shared
server, the additional memory used for each Rails instance, and the database behind
the application can easily take the used memory beyond the size of the physical
memory. At this point, the operating system will more aggressively use the hard disk
as memory cache and the performance of the server will plummet as a result.

I would consider 1Gb RAM a minimum for a Rails production server, and
would recommend at least 2Gb of RAM.

Central Processor Unit–CPU
A modern computer with a single CPU will deliver Rails-generated web pages in
a timely fashion over a local area network. Differences of CPU speed of one or two
steps are unlikely to make a significant impact on performance. When specifying a
server, use the budget that may have been used to upgrade the processor a couple of
steps to upgrade the memory instead.

However, a Rails application can hog a CPU occasionally. For example, in Rory's
application, the process of importing data from a CSV file is likely to take a few
seconds during which Ruby will push the CPU to maximum usage and therefore
negatively impact the other applications also running on the server. In this situation,
multiple processors can allow other processes to carry on while Ruby loads one of
the CPUs. Therefore, while not necessary, having a server with multiple CPUs is
advantageous. Of the two, having a server with two moderate performance CPUs

Chapter 6

[267]

is preferable to having a server with a single very fast processor. In these days, of
multi-core processors, having a dual core processor provides similar benefits to
having two separate CPUs.

Hard Disks
Rails applications are relatively small as they mainly comprise simple text files. For
example, an intranet application that provides multiple functions and services to a
small business can typically comprise 1400 files spread over 700 folders and yet take
up less than 10Mb of disk space. Of course, the data stored in the database takes
up much more disk space, but for many small applications MySQL takes up less
than 1Gb of the disk space, including the data files. In these days, when it is getting
difficult to buy a hard disk with a capacity of less than 100Gb, disk space used by a
Rails application is rarely an issue.

However, access speed to the disks can be an area where performance can be
improved especially in boosting the performance of the database. The simplest and
best way to increase disk access speeds is to use an array of disks instead of a single
hard disk. A RAID 1 system (pair of mirrored disks) will provide enhanced read
speeds (as well as improved fault tolerance), though slower write speeds, when
compared to a single disk. RAID 5 systems (at least three disks) provide faster read
and write speeds, with performance improving as more disks are added to the array.
That is, a seven disk array will be faster than an array of three identical disks on the
same controller.

The increase in performance and additional fault tolerance (both RAID 1 and 5
systems are designed to handle the loss of one of the disks in the array), make RAID
1 or 5 an attractive option for any business server, including those hosting a Rails
production environment.

Network Interface Card–NIC
Rails applications are designed to work over the Internet, where bandwidth is
typically two orders of magnitude less than that available on a business' local area
network (LAN). For example, currently most users would consider 10Mb/s a fast
Internet connection, but a small business can easily buy a small 1Gb/s LAN switch
for less than $40. So, a Rails application will not be throttled by a standard 100Mb/s
dedicated network connection. However, the key word is dedicated. In a shared
server environment, there may be another service that is hogging the network
connection. For example, a user may be downloading a large file from the server.
A faster network connection will lessen the impact of providing multiple services
simultaneously, to multiple users over a single interface. Therefore, if you have a

Into Production

[268]

100Mb/s network, providing a 1Gb/s connection from your server into the core
of the network it is likely to improve the service performance. This will require a
1Gb/s NIC in your server and a 1Gb/s port in your core LAN switch.

Don't Forget Backup
If our application becomes as popular as I am sure we all hope they will, our
users will start to rely on them. One consequence of this is that if there is a failure,
there must be a way to recover the system quickly and with the least loss of data.
Therefore, regular backup is essential. Two databases in particular need to be backed
up: your main database, and your Subversion repository. Traditionally, tape systems
have been used for backup, but recently network attached storage (NAS), often in
the form of dedicated disk arrays, have become a popular alternative. An in-depth
discussion on the pros and cons of the different backup solutions is beyond the scope
of this book. Suffice to say that the key point is that we invest in a reliable backup
system, and use that system to regularly backup our user's data and our Rails code.

Your First Production Server
In summary, your first production server should have:

Plenty of RAM as a must.
Multiple CPUs, hard disk RAID, and fast network connections are desirable.
Include a system to back up your Subversion repository and main database.

Setting up the Server
Once you have your server platform, the next task is to create a Rails environment.

Installing Ruby and Rails
The process for installing Ruby and Rails on a server is exactly the same as the
installation on a development system described in Chapter 3: Laying the Foundations.
So for example, installation on a Windows 2003 server would involve the
following steps:

Install Ruby using the one-click installer.
Use gems to install Rails:

 gem install rails --include-dependencies

It is as straightforward as that!

•

•

•

•

•

Chapter 6

[269]

Copying the Files to the Server
As a Rails application comprises a collection of text files, creating an application
on a production server can be as simple as copying the application folder on a
development system to the production server. There is no compiling to be done, nor
registering the application with the system. As long as Ruby and Rails is installed
and running correctly, just copying the application files to another location creates a
copy of that application in the new location.

The copying can be done by sharing the target folder and copying over the files,
transfer via FTP, or even zipping up the folder and emailing it. The options are as
plentiful as there are different ways of copying files from one computer to another.

However, there is a straightforward way to transfer the application files to the server
without relying on a development computer having a current production version
of the application ready. That is, to transfer the files directly from the Subversion
repository. This allows you to easily control which version of the application is
passed to the server and provides a simple mechanism to update the production
server as development continues. To achieve this, Subversion (or at least a SVN
client such as TortoiseSVN) must be installed on the server (see installation details in
Chapter 3: Laying the Foundations). As the server is also the obvious place to host the
Subversion repository, there is a good chance it is already installed on the server.

Using Subversion to Transfer the Application
to the Production Environment
The command to create a new copy of an application from a Subversion repository is:

$ svn checkout <source location> <destination>

A -r switch can be used to specify the revision of the application to be checked out.

$ svn checkout svn+ssh://rory@192.168.13.129/repository/Intranet -r
100 intranet

This command running at the server will checkout a copy of Rory's application to a
folder called "intranet". The revision 100 has been checked out.

On an intranet, where the server and network are controlled by the application
owner, using checkout to create the production system is useful, in that we then have
svn tools on the server that allow us to easily compare the production version of the
application with the latest development version. If we were hosting the application
on an externally hosted server (for example, our ISP's server on the Internet),
providing easy links back into our SVN repository is not such a useful

Into Production

[270]

thing to do and would present a security risk. Therefore, if the application is being
hosted externally, use "svn export" to create a non-version-controlled copy of
the application.

Therefore, if this command is followed by:

$ cd intranet
$ ruby script/server

...an instance of WEBrick or Mongrel will start on the server and the application
will become available at http://server_name:3000/ where server_name is the
network name of the server. However, this does assume the production database is
available and the application is configured to use it (see below).

Once the application has been checked out on the server, it can be kept
up-to date using:

$ svn update

...to update the server to the latest version, or:

$ svn update -r 101

...to update the server version of the application, to the repository version 101.

Update can also be used to roll back to a previous version. Therefore,

$ svn update -r 100

...will revert the application back to version 100, replacing files with earlier versions
where changed, deleting files added as part of revision 101, and adding files deleted
in revision 101.

Excluding Files from the Repository
Populating the production environment from the repository does raise an issue:
there are files in the application that are specific to the current instance. For example,
the log files. One thing we do not want to do is transfer a copy of the development
log to the production server, especially as this file can get very big, very quickly.

Chapter 6

[271]

When I first started using Rails, I could not work out why my server lost
a gigabyte of hard disk space when I updated the production version of
my application. I had created an infinite loop on a development platform
at one point during development. What I had not noticed was that this
had resulted in a huge log file. As the log files were then included in the
repository, checking out a copy of the repository resulted in me copying
development.log to the server, and therefore a significant loss of disk
space. When I tracked down the problem, I quickly worked out how to
remove log files from the repository!

Fortunately, files such as log and temporary files are created on the fly by Rails if
they do not exist. Therefore, if they are excluded from the repository, they will be
automatically created in any checked out copy when the application is started.

Excluding files was discussed in Chapter 4: Working with Rails and a method was
described using Eclipse. However, if we find ourselves needing to remove these files
at the server, we can remove them directly using svn. The following svn commands
(run in the application root) will remove log and temporary files from the repository:

$ svn remove log/*

$ svn propset svn:ignore "*.log" log/

$ svn update log/

$ svn remove tmp/*

$ svn propset svn:ignore "*" tmp/

$ svn update tmp/

$ svn commit -m "remove log and tmp files and ignore them in future"

The Production Database
Installation of MySQL is described in Chapter 3: Laying the Foundations. The process
of installing the database on a server is the same as installing it on a development
system so it is not repeated here.

In the section above, which describes transferring of the files to the production
server, it was stated that the application could be started if the production database
was available and the application was configured to use it. It is time to discuss the
implications of that statement.

There are two places where the production database is likely to be hosted: on the
Rails server itself, or on a dedicated database server accessible over the network.
Having the database on the same server as the Rails application is the simplest
solution and the one outlined for Rory's application. It means a simpler configuration

Into Production

[272]

and less hardware to provide. However, it also means that the server's processing
power has to be shared with the Rails application and the database engine, together
with any other applications running on the server.

Moving the database to a dedicated server provides better performance as operation
of the database engine is not impeded by other process and the full speed and
processing power of a server can be dedicated to the database. These benefits usually
outweigh the disadvantage of placing a network connection between the application
and the database. That is, the major work in database entry and retrieval is not the
passing of the initial and resultant data back and forth, but rather the processes
required to search through the database and safely insert or retrieve that data within
all the other data held in the database. As an analogy, for a magician performing
a card trick, handing out cards is the easy part of the process. The difficult bit is
shuffling and manipulating the pack to make sure the correct cards are handed out,
and returning cards to the pack in a manner that they can easily be retrieved later, at
the end of the trick.

For the initial stage of small application development, hosting the database on
the same server as the Rails application provides acceptable performance, and
this arrangement is described here. Moving the database to a separate server is a
common way of improving performance as the use of an application grows. This
will be discussed in Chapter 9: Advanced Deployment (which describes a number of
strategies used when scaling up an application and improving performance).

Separating Development and Production
Databases
I recommend not to use the same database for production and development systems.
Rails already separates database schema into development, test, and production.
However, it is still fairly easy to accidentally run a development system in
production mode and thereby expose live data to an incomplete system. Also, it can
be useful to run an application in production mode while developing an application,
but we will want to do so in a safe environment away from the production server.

To clarify this point: A Rails application runs slightly differently in the production
mode to how it runs in the development mode. When developing an application,
you may want to run the application in the production mode to check for problems
that are specific to the production mode (for example, issues with caching). If you
are not to expose production data to a development system, a development system
needs its own "production" environment, and therefore its own production
database area.

Chapter 6

[273]

Also, occasionally problems can manifest on a production system that were not
evident on development systems. We then need to determine if there is something
specific to the server that is causing the problem. To do that, it is useful to run
Rails on the server in a configuration that is as close as possible to that used in
development work, and therefore we would want to run the production server
in development mode. Also, in trouble-shooting problems specific to the server
environment, it can be useful to run unit and function tests. Therefore, the
production server needs to be able to run its own test environment.

The easiest way to achieve this is to run databases locally on each development
system. With an open source database such as MySQL, this is easy to achieve as
MySQL can easily be installed on many systems. For a commercial database, such
as Oracle, you may well want to use an alternative strategy, such as having a central
development database server or instance.

However, this poses a problem. If different databases are used during development
and in production, how will the application know, which database to use and how
to access it when it is moved from one environment to another? There are two
solutions to this problem, both of which involve the configuration of the database
configuration file "database.yml":

Localhost database–single database.yml
The host name "localhost" is a generic name used across most operating systems,
to describe the local computer. It is usually tied to the TCP/IP loopback address
of 127.0.0.1. Therefore, if you make a connection to localhost, you are not making
a connection to a specific system, but rather the local system. If you configure
database.yml to use the database on localhost, the application will look for an
instance of the database running on the local computer. When the application is
running on a development computer, the application will use the database on
that development computer. When running on the production server, it will look
for a database on that server. Therefore, the same database.yml can be used in
production and development. This is how the database.yml used in Rory's TestApp
is configured and is evident from this excerpt:

 production:
 adapter: mysql
 database: Test
 username: root
 password: password
 host: localhost

Into Production

[274]

Not having to have different configuration files for each environment greatly
simplifies configuration and this is the technique I would recommend to use initially.
However, there are some disadvantages, like the following:

The same user name and passwords are used in both development and
production server systems, which means your production database is only as
secure as your development systems.
If you host the database on a separate server, it will no longer be accessible
via localhost and therefore it will be more difficult to create a single
database.yml that will work in both the development and production
environments. Therefore, although we may start by using the localhost
solution, as we scale up our application, we will probably need to move to a
different system.

Separate Development and Production
database.yml files
An alternative approach is to create different database.yml files; one for
development, and another for production. The main problem then is making sure the
production version is not overwritten by the development version when updating
the application. Therefore, an essential step is to exclude database.yml from the
Subversion repository:

$ svn remove config/database.yml
$ svn propset svn:ignore "database.yml" config/
$ svn update config/
$ svn commit -m "Removing database.yml and ignoring it in future"

That means, we will have to maintain versions of this file elsewhere. It is also a
good idea to provide an example copy for the developers. The advantage is greater
flexibility. The disadvantages are as follows:

The possibility that in spite of our steps to avoid it, a development version of
database.yml could replace the production version, or vice versa.
It becomes difficult to test the database.yml outside of the production
environment. If you make a typographical error in the production version,
the error will only become apparent in production. Conversely, tests of
the development database.yml are of limited relevance to the production
application. It is fortunate that database.yml is a fairly simple file. If we use
this method, it is a good idea to keep this configuration file simple.

•

•

•

•

Chapter 6

[275]

Ruby heresy—I hate YAML
Ruby enthusiasts seem to always prefer YAML over other configuration
file formats such as XML. Personally, YAML leaves me cold. My biggest
problem with it is that white space characters have specific meaning for
YAML. That means that substituting a space with a tab in a YAML file
such as database.yml can break your application. Worse errors in Rails
resulting from tab substitution gives very little indication of the root cause
of the problem. As text editors can automatically replace pairs of spaces
with tabs, the problem can easily catch out the unwary. Always be very
careful when editing YAML files, that you do not replace a space or
series of spaces with a tab.

There are other techniques, such as dynamically generating elements of database.
yml based on environmental variables, but the two methods described above are the
simplest and probably the best starting points.

Using Migration in Production
The default rake migrate command creates development mode database tables. On
the server, we need to create production mode database tables. Therefore, we need to
alter the migration command to suit.

rake environment RAILS_ENV=production db:migrate

The Rails Database User
In the example of a test application given at the start of this chapter, the root account
was used in the database set up. While this can be a convenient and expedient thing
to do, it is not the best practice (as has already been discussed in Chapter 4: Working
with Rails).

The alternative to using the master account is to create a dedicated account for the
application. This account should then be restricted to being able to access and alter
only those parts of the database that stores the application data. Using the same
Rails database user name and password for development and production makes
using a shared localhost database.yml simpler, and is the technique used in our
Intranet application.

However, there is no reason why you cannot use a different sa or root password
on the production server to that on development servers, and this is a good idea,
especially if development systems are taken off-site.

Into Production

[276]

The Web Server
Prior to the middle of 2006, setting up the web server to host the application on a
production server was hard work, involving a lot of manual configuration, trial, and
error. And then came, Mongrel! Mongrel is a fast HTTP library and server for Ruby.
Installing it is straightforward and using this utility has greatly simplified publishing
Rails applications. In fact, Mongrel is now the default Rails web server, and once
installed will replace WEBrick as the local web server started via script/server.

Mongrel
Installing Mongrel on a server (or other Rails system) is carried out via gem:

$ gem install mongrel –-include-dependencies

Once installed, we can start a mongrel instance by opening a console or command
prompt in the root directory of our application and entering the following command:

$ mongrel_rails start -d

This will start a mongrel instance serving the Rails application on port 3000. To view
the application's default page, browse to this URL:

http://localhost:3000/

There are a number of options that we can use to modify the configuration of
Mongrel. We can list all the options by using the -h switch:

$ mongrel_rails start -h

For example, to run a Mongrel instance on the default HTTP port 80 and in
production mode, start mongrel like this:

$ mongrel_rails start -d –-port 80 –-environment production

...or more concisely:

$ mongrel_rails start -d -p 80 –e production

Mongrel Service on Windows
If using a Windows server, we can install a service based instance of Mongrel by
using a gem called mongrel_service. This gem is installed with this command:

c:\> gem install mongrel_service –-include-dependencies

Chapter 6

[277]

Once installed, we can create a new Mongrel service using the command
mongrel_rails. For example:

c:\> mongrel_rails service::install -N myapp \ -c c:\my\path\
to\myapp -p 4000 -e production

This will install a service called "myapp", and will serve the application whose root
can be found at the path "c:\my\path\to\myapp". The application will be available
at port 4000 and will be run in production mode.

In this example, the service name is simply "myapp". I would recommend that you
make the name a little more descriptive on your production server. Windows runs a
lot of services and we will want to easily locate the Mongrel service in amongst them.
The name specified by the -N switch is just a label, so we are not confined to simply
having the application name. Quotes can also be used to enter a multiple word string
as the name. Therefore, in the service creation command, we could replace:

-N myapp

...with something like:

-N "Rails app myapp on port 4000"

The service can be managed via the Services GUI (accessed via Administrators Tools
in Control Panel).

Into Production

[278]

The previous screenshot shows Mongrel services highlighted in the Services GUI.
The menu shown can be accessed by right-clicking on the service. The service can be
started and stopped via this menu, or buttons on the toolbar.

Selecting "Properties" from the menu opens the service properties GUI. If on this
screen we change the "Startup type" from Manual to Automatic, the service will be
started as Windows starts.

A Mongrel service can be removed from the command prompt using the
service:remove option. For example:

c:\> mongrel_rails service:remove -N "Rails app Intranet"

The service is initially disabled and is only completely removed on system reboot.

Chapter 6

[279]

Limitations of Mongrel
Although, Mongrel has greatly simplified the delivery of Rails applications, it is not
without its own limitations. The main three are:

Mongrel only serves Ruby applications (including, but not exclusively, Rails
applications) and static HTML documents. If we also want to host another
non-Ruby application (such as a PHP Wiki for example), we will need to run
the other application on another web server, either independently or behind
a proxy shared by our Rails application.
Only one action can be carried out at a time on a single Mongrel instance.
Therefore, if two actions are requested at the same time, Mongrel will only
start processing the second action when it has completed processing the first.
So, in an instance where two users request a new page at the same time, the
users whose request arrives at the server second, will experience a delay
while the first user's request is processed.
Mongrel's performance is good enough for many small applications on
its own, but it is not as fast as some other web servers. If we find the
performance of our application is not as good as required we may have
to use Mongrel in combination with another web server to improve
performance. However, this is not the only option to boost performance. We
should also consider reviewing our application and removing bottlenecks,
and consider using strategies such as caching. Performance improvements
gained via these actions may well be significantly better than those gained by
changing the web server system.

In spite of these limitations, for many small applications, a simple Mongrel instance
will provide an adequate web service. It is certainly a good starting point.

Mongrel behind Apache
The limitations of Mongrel can be mitigated by hosting Mongrel behind Apache.
Apache is the most widely used web server on the Internet. It is a very flexible and
a versatile web server that can run on many operating systems including Windows
XP and 2003 server, Mac OS, and all flavors of Linux. The application can be
downloaded from http://www.apache.org, a website that also contains a great deal
of documentation on the use of Apache.

•

•

•

Into Production

[280]

Hosting Mongrel behind Apache means, using Apache as the main web interface
for the user, and then using Apache's proxying capabilities to pass those requests to
Mongrel that require dynamic processing by the Rails application. The advantages of
this arrangement are:

Apache can host other dynamic web applications such as PHP, and static
web sites. This means that you are not limited to a single web development
or hosting environment. Of course, on discovering the wonders of Ruby
on Rails, you may well not want to develop dynamic websites using other
languages and frameworks. However, you may have existing applications
that you wish to continue supporting. Also, there are a lot of web
applications available that you may want to take advantage of. As much as
you may enjoy developing Rails applications, there is no point reinventing
the wheel every time. It is likely that for some applications, the simplest and
most expedient option will be to bring in a pre-existing application rather
than build a solution from scratch. Therefore, it makes sense to use a system
that will not greatly limit your options.
Apache can provide a way for an application to be delivered via a cluster of
Mongrel instances. That is, you can use Apache's traffic management and
load balancing capabilities to spread the load across multiple instances of
Mongrel. So, if two users send requests for dynamic content, Apache will
direct the first request to one Mongrel instance, and the second to a
different Mongrel instance. Mongrel clustering will be described in more
detail in Chapter 9: Advanced Deployment.
Apache is faster than Mongrel at delivering static content (for example,
image files and style sheets). You can configure Apache to bypass Mongrel to
deliver these files directly. A description of how to do this is given later in
the chapter in the discussion "Configuring Apache to Act as a Proxy for a
Rails Application".

Setting up Apache to support other dynamic web application systems is beyond
the scope of this book. Also, to start with, we will probably not need to cluster
multiple Mongrel instances, or have to squeeze out that extra bit of performance that
bypassing Mongrel for static content will provide.

Therefore, at this stage of application development, it is enough to say that hosting
your Mongrel instance behind Apache is a good idea. I will describe here how to
configure Apache to work with a single instance of Mongrel. Information on how to
use Apache to improve performance and scale up your application will be presented
in Chapter 9: Advanced Deployment.

•

•

•

Chapter 6

[281]

Installing Apache
To take advantage of the simplest and most straightforward techniques for using
Apache with Mongrel, it is strongly recommended that version 2.2 of Apache or later
is used. The proxy modules available with earlier versions of Apache were not as
easy to configure and set up to proxy Mongrel.

For detailed instructions on installing Apache, look at the documentation at
http://www.apache.org. The basics are presented here and should give you
enough information for a basic installation.

Apache on Linux and Mac OS X
The following instructions describe how to install Apache on a Linux system. Note
that VERSION_NO must be replaced by the version number of the application that you
are installing.

Download a copy of the application:
$ lynx http://httpd.apache.org/download.cgi

Extract the source code into a new folder and move to that folder:
$ gzip -d httpd-VERSION_NO.tar.gz
$ tar xvf httpd-VERSION_NO.tar
$ cd httpd-VERSION_NO

You must then configure the code prior to compiling it.
$./configure --prefix=APPLICATION_ROOT

Replace APPLICATION_ROOT with the location where you want Apache to be
installed. If the prefix option is left out, Apache is installed at /usr/local/apache2.

Then compile and install Apache.

$ make
$ make install

Some systems may require you to use sudo to install the application. So, for example,
you may need to use this alternative command to install.

$ sudo make install

The configuration of Apache is controlled by the file httpd.conf, which is located
in the conf folder in the root of Apache's application folders (that is at the location
you specified with APPLICATION_ROOT or /usr/local/apache2). You should check
through the contents of this file at this stage and update them to suit your system.

Into Production

[282]

You can then test the application by making sure it starts.
$ APPLICATION_ROOT/bin/apachectl -k start

Then browse to http:/localhost, and you will see a message, which will confirm
that Apache is running.

The same process can be used to install Apache on a Mac running OS X. That is,
download the source code and unpack it into a suitable location. Then use this:

./configure
make
sudo make install

...to install Apache in the default application location.

Apache on Windows
You can download the Apache source files and compile them yourself on a Windows
system. However, most Windows users will find it easier to install Apache with a
binary installer that uses Windows Installer to simplify the process. Installation is
simply a case of downloading the binary installer (a *.msi file), double clicking on
it to run the installer, and then following the wizard through. Make sure that when
prompted you select the option "for All Users, on Port 80, as a Service" rather than
"only for the Current User, on Port 8080, when started Manually".

Chapter 6

[283]

Using a Windows Server as a Production host is a viable option
When I started writing this chapter, I thought one of the statements I
would be writing at this point would be "Windows is not a sensible
platform to act as a production host for Rails". In preparing for this
chapter, I read up on a number of methods people had used to achieve
Mongrel clusters on Windows systems. They were all complicated and
very much in the early stages of development. As clustering is the easiest
way to scale-up an application, using a platform where this option was
not available is extremely restrictive and therefore would not be a
sensible approach, in my opinion. However, two things have changed.
The latest version of Apache (2.2.3) now supports a greatly improved
and simplified proxy module, and Mongrel has been developed to use
mod_proxy_balancer, which is a component of the Apache proxy.
These changes mean that Apache is now much easier to use with
Mongrel, and this simple configuration is available on Windows as well
as Linux, Mac, and other UNIX based systems. This allows you to choose
the operating system that best suits your situation. I would recommend
you use the one you are most familiar with. If you are a Windows user, do
not feel this will restrict your ability to take advantage of the best Ruby on
Rails has to offer.

This will install Apache into the folder:
C:\Program Files\Apache Software Foundation\Apache2.2

It will also install a service called Apache2, which can be started, stopped, and set
to automatically start on boot from the Services GUI in the same way as described
above for a Mongrel service.

Domain Name System (DNS)
Running a local DNS server provides the greatest flexibility in controlling access
within our network. This will allow us to configure the names of the systems on our
network and provide clear Internet style URLs.

It is common for a company to run a private network using private IP addresses (for
example: 192.168.x.x or 10.x.x.x), which are separated from the Internet by a Network
Address Translation (NAT) system. In such an environment it is commonly thought
good practice to use a local root domain name space for our private network. So
our private domain will end ".local" rather than ".com" or similar. So, instead of
companyname.com, we would use companyname.local within our network. The
advantages of this arrangement are that it separates the name space we use on the
Internet from that used internally, and it also makes it more difficult for someone to
access an internal system from the Internet, thereby helping us control access to
our application.

Into Production

[284]

If we use public IP addresses within our organization, we may control the name
space ourselves or the DNS may be hosted by our Internet Service Provider (ISP).
In this case, we may well use our Internet name space internally. However, that
should not prevent us from being able to control the DNS and add new host names
as required.

Adding our own host names (A records) to our DNS allows us to do the following:

Create a host name of www and bind it to the IP address of our server.
That will allow us to use http://www.companyname.local to access our
application rather than http://servername.companyname.local. That is
mainly a cosmetic change, though it is surprising the number of users who
are confused by a web address that does not start www.
Create a host name that is specific for the application. If we create an A record
that maps our application name to the IP address of our server, we will be able
to use a URL of http://applicationname.companyname.local. When using
Apache, we can use this application-specific URL to help route traffic to the
correct destination.

Configuring Apache to Act as a Proxy for a Rails
Application
To act as a proxy for Rails, Apache requires the following modules: proxy_module
and proxy_http_module. These two modules rely on mod_proxy.so and
mod_proxy_http.so respectively and we will require both to be present in the
modules folder of our Apache application.

As stated in Chapter 3: Laying the Foundations, mod_proxy is available with the
default install of Apache 2 on some Linux distributions, but not enabled. To enable it,
run this command as root:

$ a2enmod proxy

and then:
$ /etc/init.d/apache2 force-reload

We will then need to modify the httpd.conf file (in Apache's conf folder) to
configure Apache to proxy Mongrel. Always make a copy of httpd.conf before you
start editing it, in case you need to go back to the previous configuration.

First, uncomment the two LoadModule statements for proxy_module and
proxy_http_module by removing the # marks at the start of the relevant lines.

LoadModule proxy_module modules/mod_proxy.so
#LoadModule proxy_ajp_module modules/mod_proxy_ajp.so

•

•

Chapter 6

[285]

#LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
#LoadModule proxy_connect_module modules/mod_proxy_connect.so
LoadModule proxy_http_module modules/mod_proxy_http.so
#LoadModule proxy_ftp_module modules/mod_proxy_ftp.so

Then add a new section:

<VirtualHost www.companyname.local:80>
 ServerName www.companyname.local
 ServerAlias www.companyname.local

 ProxyPass / http://www.companyname.local:4000/
 ProxyPassReverse / http://www.companyname.local:4000
 ProxyPreserveHost on

</VirtualHost>

Replace www.companyname.local with the full DNS name for your server. This
configuration assumes that the Mongrel instance will be using port 4000.

We can also add the following lines between the ServerAlias statement and the first
ProxyPass statement:

ProxyPass /images !
ProxyPass /stylesheets !

This will cause Apache not to pass requests for files in the images and stylesheet
folders Mongrel. The effect of this is for static image and style sheet files to be served
via Apache, rather than Mongrel. As Apache is quicker at handling static files, this
provides a performance boost. If Apache's document root is set as the public folder
in the Rails application, this will work as it is. However, it is more likely that we will
have to tell Apache where these files are, by using an Alias entered immediately after
the two new Proxy Pass lines:

Alias /images /path/to/public/images
Alias /stylesheets /path/to/public/stylesheets

Apache will need to be restarted for the change to take affect. Failure to start
indicates that Apache was unable to work with the new configuration. This may
be a syntax error or absence of a required file (mod_proxy.so, for example). If this
happens, check the file /logs/error.log that should contain the information
needed to identify the source of the problem.

Into Production

[286]

Rory's Production Installation
Rory is now ready to install the components required to provide a production
environment for his Rails application. He installs: Ruby; the Rails, and Mongrel
gems; a SVN client, MySQL, and Apache on his server. He then follows these steps to
install and run his test application.

1. From a development PC he adds the test application to a Subversion
repository called test_app. His local domain is company.local, and he has
unimaginatively called his server "server".

 svn import -m "Rails test application"
 http://server.company.local/svn/test_app

2. He then moves to his server. As it is on his network he is easily able to access
it directly. He then uses the SVN client to download the application to his
server using "svn checkout".

3. Rory then uses migration to create the MySQL database tables (he does not
have to create a scheme, as a test scheme already exists. As he is using
root access for this test, he also does not have to create a user account at
this point).

 $ rake db:migrate

4. From the application folder, he runs "ruby script/server" to start an instance
of Mongrel. He browses to http://server.company.local:3000/ and
checks that the application is working at this point. Once he has made this
check, he stops this Mongrel instance.

5. Again from the application folder, he starts up a Mongrel instance to serve
his application.
$ mongrel_rails start -d -p 4000 –e production

6. He browses to http://server.company.local:4000/ and checks that the
application is working at this point too.

7. He moves to the Apache application folder and first makes a copy of
conf/httpd.conf. He edits httpd.conf and restarts the Apache server. He
then uses a browser to test the application.

Using Two Host Names to Simplify Routing
Rory already has web pages and applications running on his server. If he were
simply to route all traffic to Mongrel, these other resources would cease to be
available. He therefore decides to provide two name spaces for Apache to use, one
for Rails and one for the existing pages. He therefore updates his DNS server by
adding a new A host record of "intranet" mapped to the IP address of his server.

Chapter 6

[287]

He already has an A host record of "www" mapped to his server, and he intends
keeping this for his existing systems.

He then updates his httpd.conf as follows:

He removes the comments from the two LoadModule statements for
proxy_module and proxy_http_module as described above.
He comments out the default name of the server and adds two virtual hosts.
One for www, and the other for Intranet.
He also adds a line defining the IP address of his server (in this example,
10.0.0.1) as a NameVirtualHost. This tells Apache that virtual hosts are being
used for the service at this address. Without this line, the system will see the
virtual hosts as clashing and revert to the first one it finds.

 # ServerName www.company.local:80

 NameVirtualHost 10.0.0.1

 <VirtualHost www.company.local:80>
 ServerName www.company.local
 DocumentRoot "C:/Program Files/Apache Software Foundation/
 Apache2.2/htdocs"
 </VirtualHost>

 <VirtualHost intranet.company.local:80>
 ServerName intranet.company.local
 ServerAlias intranet.company.local

 ProxyPass / http://intranet.company.local:4000/
 ProxyPassReverse / http://intranet.company.local:4000
 ProxyPreserveHost on

 </VirtualHost>

He then stops and restarts his Apache server. He tests the system by first browsing
to http://www.company.local where he finds he is able to access his existing web
pages. He browses to http://intranet.company.local, and using this URL, he is
able to access his test application.

Once Rory is satisfied that his test application is working, and therefore his
production environment also works, he stops the Mongrel instance and deletes the
test application folder, thereby removing the test application from his system. He
then restores the httpd.conf and restarts Apache.

•

•

•

Into Production

[288]

Rory Puts his Intranet Application into
Production
As development of his application progresses, Rory gets to the point where he wants
to load the application onto the production server, so that a wider user base can
access it. He is fairly sure that the application is ready for more public viewing and
he has tested it thoroughly in development mode. To get the Intranet application
onto the server and running in production mode, Rory follows the steps he used to
get the test application into production mode. That is with one exception: instead of
checking out the test application from the Subversion repository, he checks out the
Intranet application.

Errors in Production
One of the features of production mode is that error messages are suppressed or
greatly simplified at the browser. As some errors only manifest at the server, it is
important that you are able to identify the cause of errors, so as to fix them. The best
resource for doing this is the production.log, which is located in the log folder of
your application.

Providing an in-depth description of all error types and resultant logs is beyond the
scope of this book. Therefore, instead, I have decided to use a couple of examples
of problems I have found recently in a live application. These examples show the
production log and describe the symptoms, cause, and fix for each problem. They
demonstrate the type of log entry that a problem can generate, and how I was able to
use that information to correct the problem.

Slow List Rendering due to Placement of
Additional Data Processing in Loop
This example shows how adding additional processing within the loop building
lines in a list view table, negatively impacted the performance of the application.
It also shows how this problem was highlighted by information within the
production log.

Symptom
The code for rendering a list of job codes had been simplified to make it easier to
maintain. However, on putting into production, the list page became very slow. I
investigated the production log and found this:

Chapter 6

[289]

Processing JobcodeController#list (for 192.168.0.234 at 2006-12-19
11:42:59) [GET]
 Session ID: 34901004e225fb2b8c43d3933b021049
 Parameters: {"action"=>"list", "controller"=>"jobcode"}
Rendering within layouts/jobcode
Rendering jobcode/list
Completed in 8.42200 (0 reqs/sec) | Rendering: 0.24800 (2%) | DB:
8.14200 (96%) | 200 OK [http://miggins.bromyard.local/jobcode]

The key information from the log was that the list action was taking almost eight
and half seconds to complete, and that 96% of this time was taken up accessing the
database (last line).

Cause
I had created a new class method and instance method to identify whether an item
was live—that is its timestamp matched the current timestamp. The code for these
methods was in the Jobcode model method:

 #When new job codes are added to the database or updated they are
 given a timestamp
 #The current timestamp is the most recent one used.
 def Jobcode.current_timestamp
 last_timestamp = Jobcode.find(:first, :order => 'timestamp desc').
 timestamp
 end

 #Job numbers are only live if they have been updated
 #or added during the last update
 def is_live?
 self.timestamp == Jobcode.current_timestamp
 end

I then used the is_live? method, to highlight the inactive job codes with an
alternative style in the list view table:

 <% @jobcodes.each do |code| -%>
 <% if code.is_live?
 class_name = "no_alert"
 else
 class_name = "alert"
 end -%>
 <tr class=<%= class_name %>>

This meant that when listing each job code, the current_timestamp method was
run. So, each line resulted in a query to the database. It was all these calls to the
database that was taking up most of the eight and a half seconds.

Into Production

[290]

Fix
I added "@lastest_timestamp = Jobcode.current_timestamp" to the controller's
list method as the latest timestamp only needed to be ascertained once. I then tested
against @latest_timestamp on each line:

 <% @jobcodes.each do |code| -%>
 <% if code.timestamp == @lastest_timestamp
 class_name = "no_alert"
 else
 class_name = "alert"
 end -%>
 <tr class=<%= class_name %>>

This meant that each test was made against a single variable held in memory rather
than a new call to the database. The result was a significant performance improvement:

Processing JobcodeController#list (for 192.168.0.234 at 2006-12-19
11:52:34) [GET]
 Session ID: 34901004e225fb2b8c43d3933b021049
 Parameters: {"action"=>"list", "controller"=>"jobcode"}
Rendering within layouts/jobcode
Rendering jobcode/list
Completed in 0.29600 (3 reqs/sec) | Rendering: 0.11000 (37%) | DB:
0.15400 (52%) | 200 OK [http://miggins.bromyard.local/jobcode]

This example demonstrates how page completion statistics in the production log can
be used to identify bottlenecks in the application. Removing such bottlenecks can be
one of the best performance boosts you can make to an application.

The main cause of this problem was poor coding, rather than an inherent Rails
problem. However, a key reason for presenting it here is that it demonstrates the
impact of poor coding decisions vary depending on where the code is put. It is very
easy to put poorly-thought-through-functionality within a loop, and as a result, for
the impact of poor coding decisions to be greatly amplified.

In particular, list views by their nature are places where additional processing on
each loop through the data can greatly slow down the page load. For this reason it is
usually a best practice to get the data as close as possible to the final output within
the controller method. Ideally, looping through the data in the view should only
involve placement of data within the page and not additional processing of the data.

Chapter 6

[291]

Application Error Following the Transferring
of New Code to Production
This is an example of an error seen at the server, but not on the development system.
The problem occurred due to a simple oversight, but such oversights can be difficult
to track down. Fortunately, the information need to track down the problem was
present within the production log.

Symptom
This problem manifested in production, so the only error message at the browser
was "Application Error". Returning to the development system and following exactly
the same steps produced no error. However, the production log showed a long error
message, within which was a key piece of information.

Into Production

[292]

Cause
The key entry in the log that led me to the cause of the problem was this line:

ActionView::TemplateError (No rhtml, rxml, rjs or delegate template
found for jobcode/_list_table) on line #17 of app/views/jobcode/list.
rhtml:

One of the modifications I had made recently was to extract the list code from one
view and create a partial based on that code. I then used the partial in two different
views. However, I forgot to add the new partial file to the Subversion repository.
When I updated the production code, the file was omitted because it was not in
the repository.

Solution
I added the partial file to the repository and ran svn update again on the server. This
uploaded the file to the production system.

This problem demonstrates that it is possible to have errors in the production
systems that are not in the development system. Therefore, you need to be able to
test and bug track in the production environment. A second point is that errors can
result in long entries into the log. In my experience, the most useful information
is in the first few lines of the log entry (that is, near the top of the log). Do not be
overwhelmed by long log entries. Start from the top and work down through each
line. You will often find the root cause in the first few lines.

Back Up Rails
An important aspect of delivering an application to end users, that is easily
over-looked, is back up. If our application is to be used regularly, users need to be
assured that should disaster strike, we will be able to restore the application. More
importantly we can restore their data that they have stored within the application.
Therefore, backup is an important part of any production environment.

In this section, I will briefly outline a couple of systems that we can use to more
easily back up a Rails application.

Chapter 6

[293]

Backing Up the Code Repository
One strategy that could be used to back up our application code is simply to back
up the files in the application folder. There are two issues with this. It is difficult
to backup files that are in use, and therefore unless we shutdown our application
during backup, it is likely that not all of the files will be backed up. Second, backing
up the application folder only backs up the most recent version of an application.
Previous versions would be lost unless we keep an extensive set of back ups.

There is a simple solution to both problems and that is to back up the Subversion
repository. This contains not only the current version of the application, but also the
earlier versions and newer development versions. Subversion has a facility to export
its contents to a file. This file can be easily restored to a new instance of Subversion.

To create an export file from the repository use svnadmin's dump option:
$ svnadmin dump path_to_repository > dump_filename

For example, on a Windows system we could use the following command to create
a dump file.

$ svnadmin dump c:\repository > dumpfile.dump

We can use a svnadmin dump to export only parts of the repository. We can also
make incremental backups (the default is a full backup. An incremental backup will
contain only the files that have changed since the last full backup). The following
shows the syntax for an incremental backup of revisions 100 to 104 of a repository.

$ svnadmin dump –incremental –revision 100:104 path_to_repository >
dump_filename

To recover the Subversion repository, you would use the svnadmin load option after
first recreating a blank repository. The syntax of the commands would be:

$ svnadmin create repository_name
$ svnadmin load repository_name < dump_filename

To create a scheduled automatic backup, we could run the svnadmin dump
command within a batch file and then use a cron or scheduled task to run the
batch file at an appropriate time. This would create a simple file that can be easily
incorporated into our standard backup routine.

However, we could also use Ruby to run a backup dump. The example below
shows the contents of a file called BackupSVN.rb and will backup a repository at
"c:\repository" on a Windows system.

filename = "svn_output#{Time.new.strftime('%Hh%Mm%Ss%a%d%b%Y')}.dump"
repository_location = 'c:\repository'
exec "svnadmin dump #{repository_location} > #{filename}"

Into Production

[294]

Running the program will create a dump file. The Time.new.strftime('%Hh%Mm%S
s%a%d%b%Y') element causes the filename to include a simple time stamp. As with a
batch file, such a batch process could be scheduled with cron or a scheduled task.

Back Up the Database
A number of ways for backing up a MySQL database are documented at
http://dev.mysql.com/doc/refman/5.1/en/backup.html.

On a Windows system the easiest method is via MySQL Administrator. This is an
administration utility that can be downloaded from http://www.mysql.com. This
application provides recovery and scheduled backup facilities and is cross platform.
The backups generate files that can be easily incorporated into a standard backup to
tape or network storage.

However, it is possible to use a Ruby script to generate MySQL backups too.

Chapter 6

[295]

For example, we could use MySQL's mysqldump utility, which acts in a very similar
way to svnadmin's dump option. In its default mode, mysqldump not only outputs
the data, but also the SQL code needed to recreate the tables and then insert the data
into the new tables. The dump, therefore, automatically saves the data with the code
required to recreate the table structures as they were at the time. Restoring the dump
data will not require us to run a migration, and therefore we do not need to track the
migration version with each data dump.

Like svnadmin, mysqldump is accessible from the command line and can get a full
listing of the options available by entering:

$ mysqldump –-help

The command to create a dump file of all tables in the database is:

$ mysqldump --all-databases -u root -p > dump.sql

The -p switch will force the system to prompt for the root password. In a script we
will need to replace the -p switch with the --password switch. This longer switch
allows us to specify a password. So, if the root password was PASSWORD, we could
add the following line to our Ruby backup script to generate a backup dump file for
the MySQL database.

filename = "mysql_output#{Time.new.strftime('%Hh%Mm%Ss%a%d%b%Y')}.sql"
exec "mysqldump --all-databases -u root --password=PASSWORD >
#{filename}"

On a Windows system, you may need to provide a path to the MySQL bin folder, but
once that is done, the script works as it is given above.

Combining Your Backup Scripts
Unfortunately, exec terminates the Ruby instance. Therefore, an exec call has to
be the last line of a backup script. We cannot simply paste the MySql backup script
onto the end of the Subversion backup script to combine the two into one script, as
only the first exec call will trigger. However, there is another way to execute shell
commands within Ruby, and that is to use popen. Below is an example of Ruby code
that will execute both backup commands:

def run(command)
 IO.popen(command, 'r+') do |io|
 io.close_write
 output = io.readlines
 for line in output
 puts line
 end

Into Production

[296]

 end
end

filename = "svn_output#{Time.new.strftime('%Hh%Mm%Ss%a%d%b%Y')}.dump"
repository_location = 'c:\repository'
run("svnadmin dump #{repository_location} > #{filename}")
filename = "mysql_output#{Time.new.strftime('%Hh%Mm%Ss%a%d%b%Y')}.sql"
run("mysqldump --all-databases -u root --password=PASSWORD >
#{filename}")

The run method defined in the first half of that code can be used to execute other
shell commands. Therefore, you can add additional maintenance tasks to this script
as required.

The "for line in output" loop, prints out the lines returned by the shell command.
As the outputs of the two backup processes are piped to files, the combined backup
code will return nothing to the console. If you were to add this to the end of the code:

run('ping 127.0.0.1')

...the output of the ping command would be output to the console after the two
backup processes had completed.

Summary
The application is now running in the production mode.

In this chapter, we have described how to create and maintain a production
environment. We have also described how to pass code into this environment, and
backup and restore both the code and the data that the application generates.

At this stage, we have used simple solutions to get the application into production
and have not described in any detail some of the more advanced systems that can be
used to automate production roll-out (for example, by using Capistrano) and
scaling up the application (for example, by clustering). These systems will be
discussed in Chapter 9: Advanced Deployment.

Rory's application is now available to a wider audience. Naively, he thinks
that means he is close to completing his task. However, when more users start
investigating the application, their reactions and actions are not quite what he
expected. He soon realizes that getting the application into production mode is not
the end of the story.

Improving the User
Experience

It would be nice to say that at this point, the application was finished. The design
brief has been satisfied, and the main user has looked over the production instance
and expressed her satisfaction. Rory has taken a simple list of contacts and converted
it into an application that is available throughout the organization; not just to view,
but also for others to add and modify contact information. He has taken steps to
ensure that the system is reliable, performs reasonably well, and has even gone to
the trouble of developing a backup regime. Anyone would think the project was
finished. That is anyone who has not put a new application in front of a group
of users.

In this chapter, we will concentrate on the tools we can use to improve the user
experience. These include providing links into the application, providing search
tools, enhancements in the user interface, and providing help to the users.

It is the end of the week and time for Rory to present the new application to Ken.
Rory is asked to demonstrate the new application to Ken on his PC. At first, the
demonstration goes well, especially when Ken realizes how easy it is to access with
no need to install a new application on his system.

Easy Access to the Application
Then Ken raises the first issue. "How am I going to get back to that web page?".
Rory's first thought is to add a bookmark, but when he opens Ken's bookmarks his
eyes are assaulted by a cascade of disorganized bookmarks. He should have realized
that they would not be well managed when he saw Ken's desktop was packed full of
shortcuts to applications and documents.

Improving the User Experience

[298]

In general, users hate having to remember the URL to an application. So, if you want
users to use your application regularly, you need to give them an easy way in.

Use Routes to Simplify the Entry Point URL
The URL Rory used to access the application during the demonstration was:

http://intranet.company.local/people/list

In fact, he missed a trick here. Because there is an index action in the people
controller, and as discussed in Chapter 5, Rails will use that action to return content
to the browser if no action is specified in the URL. So, Rory could have used:

http://intranet.company.local/people

However, he could have simplified the URL further still, by modifying the
application's routes. These are modified via /config/routes.rb. Rory could add the
following to simplify the entry URL further still:

map.connect '', :controller => "people"

This would simplify the entry URL to a pathless default action of:

http://intranet.company.local

However, before this works, Rory must first, either rename or delete the file
/public/index.html, as Rails will always try to return this page if no path to a
controller is specified in the URL. Only after it has failed to find an index.html
document, will it look in routes.rb for an alternative.

The map.connect entry has to be inserted between:

ActionController::Routing::Routes.draw do |map|

...and the final

end

The simplest syntax to use with the route is:

map.connect 'url_path', :controller => 'controller_name', :action =>
'action_name'

Where url_path is the part of the URL that is to be entered after the basic web server
address, so that Rory could add a path:

map.connect 'sales_contacts', :controller => 'people', :action =>
'list'

Chapter 7

[299]

This would allow him to use this URL to access the list of people:

http://intranet.company.local/sales_contacts

Build a Fast, Clear Home Page
There is a problem with making the pathless default action point at a particular part
of your application: it does not scale well. It is fine when the application is simple
and has a single main role. In this situation, having a single path into the application
works fine. However, as applications grow, more functions will be added and a
single entry looses its usefulness.

The solution is to create a home page, which contains links to different parts of our
application. As we develop our intranet we can add links on our homepage, to each
new function or application.

Get the home page right and users will use it as their default home page. To achieve
that we will need three things:

Provide links to external resources that the users use regularly.
A simple, clear design that is easy to navigate.
The fastest possible page load.

The home page needs a clear layout with a number of well chosen links. It also needs
to appear as soon as the browser opens. If users start to detect that a home page
is delaying their access to web resources, they will stop using it. Users will put up
with a short delay while going to a specific part of an application, but they will not
tolerate a delay that occurs every time they open their browser.

The easiest way to ensure that the page loads as quickly as possible is to make it a
static HTML page. Any dynamic content will increase the time the page takes to
load. A user's home page is the one place, in my opinion, where the speed of static
content outweighs the easy maintenance and flexibility of dynamic content. We can
use CSS to control the layout of the page, and thereby simplify the HTML code and
make it easier to maintain.

If we already have an intranet or are hosting our Rails application behind an Apache
server, we can host the page within our existing static content. Another option is to
host it within our Rails application, and there is already a place provided for it. We
can name the home page index.html and put it into our Rails application's public
folder, replacing the existing file of that name. We then put the CSS file for this page
in the /public/stylesheets folder and update the path in our index.html to suit.
Remove any entries in routes.rb of the type:

map.connect '', :controller => "controller_name"

•

•

•

Improving the User Experience

[300]

Then, if we type the basic path to our server into our browser, we'll be taken to
our new home page. For Rory this means that he accesses a home page by entering
http://intranet.company.local in his browser.

Users Need to be Able to Find Items
Easily
One feature of the application that Ken highlights quickly is the time it takes to
search through the lists of companies and people in the application. He asks Rory to
build in a search function.

Use the Index View as the Core of the Search
View
When Rory starts to write a new search view, he soon realizes that he is repeating the
same code that he has in his index view; that is a list of records. The difference is that
in the index view all records are being shown, whereas in the search view, a subset of
all the records is being shown. If he renders the index view, but passes it the result of
the search call, the coding will be greatly simplified.

Chapter 7

[301]

If the index view is rendered when processing the search action, the index view
needs to contain the search form; that is the form where the users submit their search
criteria. This is often a good thing, rather than being a problem. That is, users are
presented with a search option each time they access an index view. They can start
querying and sampling the index list without having to move to a separate view.
However, to achieve this, the search form needs to be small and simple.

It is a good idea to provide immediate user access to a quick and simple search tool.
Often, this is the only search option required. However, if more advanced options
are required, we can always add a second advanced search action.

If you would prefer not to have a search box in your list view, an
alternative approach would be to extract from the list view, the code that
displays the list of contacts, and put that code into a partial. You could
then use the same partial for both the search and list views.

Search–The First Attempt
Rory's first attempt at a search function is not satisfactory and inherently insecure.
However, it makes a good starting point for describing how to add search
functionality. it also demonstrate some problems that can occur.

To create a search function, Rory initially adds a search form by altering the start of
views/companies/index.rhtml to:

<h1><%= @page_title %></h1>
<p><%= form_tag({:controller => 'companies',
 :action => 'search'},
 {:method => :get}) %>
<label for="term">Find company with name:</label>
<%= text_field_tag "term" -%>
<%= submit_tag 'Go' %>
</form></p>

He then adds the following method to the companies' controller:

 def search
 name = params[:term]
 @paginator, @companies = paginate :company,
 :per_page => 10,
 :order => 'name',
 :conditions => "name = '#{name}'"
 @page_title = "List of companies called #{name}"
 render :action => 'index'
 end

Improving the User Experience

[302]

He uses @page_title to create a page title that is specific to the search. This is useful
when navigating back and forth through the browser history, as each search will
have a different title and therefore will be more easily identified.

When Rory enters a company name into the search textbox and clicks on the Go
button, the entry for that company is listed and he can navigate to the show or edit
view from there. However, as he starts trying a few options he discovers a problem.
He enters a company name that includes an apostrophe and an error is generated.
When he investigates this further he finds there is something missing from his
current code.

Do Not Trust User Input
The problem with Rory's code is that it relies on the user entering a correctly
formatted search term, and not entering potentially damaging code. Consider these
two examples:

The user enters a name such as "O'Connell and Son". The SQL WHERE clause
generated from this entry will be "WHERE name = 'O'Connell and Son' ".
This will cause a SQL error, as the apostrophe in the company name will
pair with the first apostrophe within the conditions statement. The WHERE
clause in the SQL statement will effectively become "WHERE name = 'O' ".
The second part "Connell and Son' " will appear to the database parser as an
additional code statement and as it does not match any valid SQL statement,
an error is generated.
The user injects SQL into their query. For example, they could enter a term
"Bob'; Delete from users; Select * from companies where name = 'Bob"
which would result in a where clause: "WHERE name = 'Bob'; Delete
from users; Select * from companies where name = 'Bob' ".
This would parse as three SQL commands:

The ActiveRecord generated SQL query ending with
name = 'Bob'

Delete from users

SELECT * FROM companies WHERE name = 'Bob'

The ActiveRecord SQL query and the final SELECT statement will do no
harm, but the DELETE statement will delete all records from the table users.

•

•

•

°

°

°

•

Chapter 7

[303]

There is a convention that SQL code is written with all reserved words
in upper case, and lower case is used for program specific identifiers.
However, as the example of SQL injection demonstrates, code that does
not conform to this convention will still be processed and executed.
The convention is useful as most developers find that it makes SQL
code easier to read. Therefore I would recommend that you use that
convention, but you do not have to.

Fortunately there is a Rails construct that will deal with both issues. Rails will run a
number of processes on an entry including removing any potentially harmful code, if
we pass :conditions an array formatted as follows:

Element 1: The string containing the text you want inserted into the SQL
WHERE statement, with any variables replaced with a question mark. So
"name = #{name}" becomes "name = ?".
Element 2: The variable you wish to substitute into Element 1 at the question
mark location.

Therefore, to use this technique in Rory's code, he would change the conditions
statement. So the controller code became:

 def search
 name = params[:term]
 @paginator, @companies = paginate :company,
 :per_page => 10,
 :order => 'name',
 :conditions => ["name = ?", name]
 @page_title = "List of companies called #{name}"
 render :action => 'index'
 end

Besides dealing with errors in a user's input, this technique also handles different
data types. For example, rather than having to reformat dates into the default SQL
format (YYYY-MM-DD) before using them in a query, Rails will do that for us. So to
restrict the returned records to only those created on a given date, we would use:

:conditions => ["created_on = ?", date]

We can also have a number of variables within each statement. In this case, Element
2 will either need to be replaced with a list of the substitutes, or with an array
containing the variables that need to be substituted into the first element. Either way,
the set of substitutes must be in the order they are to be substituted into the first
element. For example, if we wanted to only return companies created in the last ten
days, whose names were "Bloggins", we could use either:

:conditions => ["name = ? and created_at > ?", name, 10.days.ago]

•

•

Improving the User Experience

[304]

...or create an array:

condition_elements = [name, 10.days.ago]

...and use that in the :conditions statement:

:conditions => ["name = ? and created_at > ?", condition_elements]

Handle Nothing
There are two conditions that need to be handled. There are no companies in the
database, and/or no companies are returned by the current search.

Between the end of the search form and the start of the table displaying the list of
companies, Rory can add a conditional statement. If there is no data returned from
the query, the statement will return a message to the user instead of an empty table.

<% unless @companies.empty? -%>
<h2> No companies match your criteria </h2>
<% else -%>

...and to the end of the code, add an end to close the if statement as follows:

<% end -%>

He could also add code to differentiate between there being nothing to show because
a search has failed, or because there is no data in the database.

Users Need to be Able to Search Without
Knowing Exactly What They Are Looking for
With Rory's code as it is, the user needs to know the name of the company they are
searching for to get a successful result to their search. For example, if a company
name was "Biggum", and a user searched for "Bigum" the company would not be
located with this search. As it will be common for users not to know the exact name
or spelling of a company name, we need to provide them with another way to
search. There are two approaches to dealing with this problem:

Provide a search tool that is less specific. That is, a tool that will let a user
search for part of the company name and return a list of all matches.
Provide a list of matching results, as the search criteria is entered, from which
the user can select the correct match.

•

•

Chapter 7

[305]

The second approach is a more complicated process. In the first, all that is required
is a small change to the way the database is queried. Whereas in the second
approach, a system has to be put in place to continually monitor a user's input
and update a list showing matching companies as new characters are added to the
search string. However, in Rails, the second approach is actually simpler to create,
because a number of helpers have been created that automate the process. The
automated process relies on AJAX which deserves a section on its own. So rather
than introducing it here, I will initially describe the first approach, and then use the
second approach as an introduction to using AJAX with Rails.

A Less Specific Search
SQL provides a way of constructing a conditional WHERE statement so that instead
of looking for an exact match, the system returns any rows where the field being
queried simply contains the string being searched for. This only works with character
string fields, but can be a very useful technique to use with text searches.

When we use a Class.find method in Rails, ActiveRecord builds a SQL statement
from our code input, and uses that to query the database. As we have already seen,
ActiveRecord uses the contents of the conditions element to construct the WHERE
clause of the SQL query. So when searching for companies called "Biggum"
Rory's code:

:conditions => ["name = ?", name]

...would be translated to:

WHERE name = 'Biggum'

The WHERE clause has the format:

WHERE field_name = search_string

The alternative approach replaces the equals operator (=) with the operator LIKE.
If LIKE is used on its own, it simply replaces the equals operator when comparing
string character fields. However, when combined with the % operator, it becomes
more flexible as the % becomes a wild-card entry. So:

LIKE 'be'—matches field entries that consist only of the character string 'be'
LIKE 'be%'—matches field entries that start with the character string 'be'
LIKE '%be'—matches field entries that end with the character string 'be'
LIKE '%be%'—matches field entries that contain the character string 'be'

•

•

•

•

Improving the User Experience

[306]

So if Rory changes his code to use the format:

WHERE field_name LIKE '%search_string%',

...users entering new search stings will only need to know that the company name
contains a certain sequence of characters. It then becomes a fairly simple task for
most users to find a sequence of characters that will return a search result that
contains the company name they are looking for.

To achieve this, Rory could simply replace the conditions entry with:

:conditions => "name LIKE '%#{name}%'"

However, as discussed above, by so doing Rory would expose his application to
problems caused by users' incorrectly formatted entries. Instead a better approach is
to use:

:conditions => ["name LIKE ?", "%#{name}%"]

Note that the % operators have to be added to the right-hand-side of the statement,
otherwise ActiveRecord will insert a set of apostrophes inside the % operators.

As we may want to use LIKE in many places within our application, the best DRY
practice is to add a method to prepare text for use in a LIKE statement. Rory adds the
following to application.rb:

 protected
 # Adds apostrophe to text for SQL LIKE statement.
 # prep_for_like('search') > '%search%'
 # prep_for_like('search', 'start') > 'search%'
 # prep_for_like('search', 'match') > 'search'
 def prep_for_like(text, placement='contain')
 case placement
 when 'match'
 text
 when 'start'
 "#{text}%"
 when 'end'
 "%#{text}"
 else
 "%#{text}%"
 end
 end

Rory could then update the conditions statement to:

:conditions => ["name LIKE ?", prep_for_like(name)]

Chapter 7

[307]

Case Insensitive Searches
With MySQL, the WHERE statements are case insensitive in the default
configuration. That is the statement WHERE field = 'HELLO' will find all of these
variations: Hello; HELLO; hello; or even heLLo. However, many databases are case
sensitive. Even with MySQL, an administrator can turn off case insensitivity.

If you find your database is case sensitive, you will need to adjust your search
code so that users do not have to match the case that a string is stored in within the
database. The easiest way to do this is to force both the query string and the text
being compared, into the same case— either upper or lower. In fact, it is a good
practice to use this technique for all search queries in case your application is moved
to a database that is case sensitive.

In SQL the function LCASE converts a string to lower case. Therefore, the following
variation of the conditions statement forces SQL to do a case insensitive comparison.

:conditions => ["LCASE(name) like LCASE(?)", prep_for_like(name)]

Adding AJAX to the Mix
Like many web acronyms, such as PHP and SOAP, the technology represented by
the letters AJAX no longer match exactly the words being represented. In particular,
AJAX need not be Asynchronous, nor involve XML. The technology has moved
on, but the original acronym remains. So rather than spending time describing the
processes in detail, let's describe what AJAX can bring to our application:

Direct client side access to the browser's rendering engine. That is, the page
being presented to a user can change and be modified by the user's direct
interaction with the browser.
Data transfer between the server and browser without page reload. Page
elements can be updated without having to reload the whole page.
Client side processing. Much of the processing being carried out by AJAX
elements is carried out by the user's browser, and therefore the processor
within the user's computer rather than server processors. So AJAX can be
used to spread the processor load.

Most of this processing is created through the use of JavaScript, a scripting language
that has become the de facto universal browser scripting language. JavaScript has
been around since 1995 and none of the "new" AJAX processes and methods are in
themselves ground breaking. Even the key background data transfer API typically
used by AJAX (that is XMLHttpRequest) had been used in many applications before
the term AJAX was coined.

•

•

•

Improving the User Experience

[308]

What AJAX has brought to web development is the packaging of these processes and
methods into easy-to-use cross browser compliant libraries. These AJAX libraries
have made it much easier to add JavaScript functionality into a web application.
They provide structured access and syntax for functions and classes that have been
tested and proven on the main web browsers such as Internet Explorer, Mozilla,
Opera, Konqueror and Safari. This cross browser, functionality is important as each
browser can treat JavaScript differently. For example, Microsoft's Internet Explorer
uses a variation of JavaScript called JScript. AJAX libraries are coded to handle the
variable behavior of the different browsers. This invaluable functionality makes it far
easier to write one set of code that will work correctly in all these browsers.

Do not confuse JavaScript with Java. They are two separate programming
languages and should be treated quite separately. Code from one is not
interchangeable with code from the other.

Rails uses two AJAX libraries:

Thomas Fuchs' script.aculo.us (http://script.aculo.us)
Sam Stephenson's Prototype (http://prototype.conio.net/)

These are located in the public/javascripts folder within a Rails application.

However, not only are these libraries made available within the default Rails
installation, but also a number of Ruby Helpers have been created to simplify still
further the incorporation of AJAX into a Rails application. It is possible to add
many effects purely with Ruby objects and methods. However, some knowledge of
JavaScript is helpful when tweaking an application to work exactly as wanted.

So without further ado, let us start using AJAX to provide an alternative search tool,
and in doing so, start demonstrating what AJAX can do and how easily it can be
added into our applications.

Make the AJAX Libraries Available to our
Rails Application
Before our Rails application can use AJAX functions and classes, we must first make
the libraries available to the pages generated by the application. In HTML we would
do this by adding code, such as the following, to the head section of the page:

<script src="/javascripts/prototype.js type="text/javascript">

•

•

Chapter 7

[309]

This would make the Prototype library available to the HTML page. We would have
to add a second statement to make the script.aculo.us library available and
additional lines for any other libraries.

In Rails, a helper method is used to make AJAX available to our application pages.
The method is javascript_include_tag. The addition of an identifier 'prototype'
as shown in the following code generates the HTML code:

<%= javascript_include_tag 'prototype' %>

There is also a default action that will load all the AJAX libraries in the
javascripts folder:

<%= javascript_include_tag :defaults %>

As well as loading the Prototype and script.aculo.us libraries, this statement will
also load application.js. This file is empty (except for a comment) when created,
and is the place to add any custom JavaScript classes and functions that we may wish
to add to our application.

The ideal place to insert javascript_include_tag, is into layouts. Then all views
that are presented within these layouts will get access to the AJAX libraries. For
Rory, this means inserting a line between <head> and </head> in views/layouts/
application.html.

Enhancing Search with Auto-complete
The auto-complete AJAX helpers create a system that monitors an input text box and
provides the user with a drop-down list of results that match the user's input as they
type. The user can then select from the list the item they are searching for. Note that
for version 2.0 of Rails, auto-complete will not be included with the default Rails
installation. However, it will still be available as a separate plug-in.

For Rory's application, we will create an auto-complete function for the company
name search system. To do this he makes the following modifications:

In the Controller, companies_controller, he adds the following on its own
line, before any of the method definitions:

 auto_complete_for :company, :name

Then in the view companies/index.rhtml he replaces the text box in the
search form with the following:

 <%= text_field_with_auto_complete :company, :name %>

•

•

Improving the User Experience

[310]

Now when Rory navigates to the company/index view in his browser the
auto-completion function appears.

In the figure above, the letter p was typed and a list of the three company names
appeared in a drop-down list below the text box. On entering an l, the list reduced by
one (the company with a name that did not contain "pl"). Once selected with a mouse
click, the chosen complete company name is automatically entered into the text box.

There is one more modification for Rory to make to companies_controller. At
the moment the search method is waiting for a "term" to be returned in the HTML
header. However,

text_field_with_auto_complete :company, :name

...will return the data in a field entitled company[name]. If Rory were to look at the
new URL for the search view, he can see that ?company%5Bname%5D= plus the search
string is appended to the companies/search URL on submission of the form. %5B and
%5D are hexadecimal representation of the HTML characters [and] respectively. To
access the data in the HTML header field company[name], Rails uses the following
construct— params[:company][:name]. Therefore, the search controller method
needs to be updated to use this construct instead of params[:term]. At the same
time Rory can rearrange the start of the method so that the params statement is only
required once. This will make it easier to modify this element as required. Rory also
uses an if statement to catch instances where no name data is passed to the
search method.

Rory's modified search method is shown below. The code first gathers the name
passed from the auto_complete form, checks that data has been passed and is not an
empty string, and then passes the name to a paginated company find method. The
method uses the index view to display the resulting subset of companies that match
the search criteria and a search specific page title is created by including the searched
for string in @page_title.

 def search
 name = params[:company][:name]
 if name and name.length > 0

•

Chapter 7

[311]

 @paginator, @companies = paginate :company,
 :per_page => 10,
 :order => 'name',
 :conditions => ["UCASE(name) like UCASE(?)",
 prep_for_like(name)]
 @page_title = "List of companies with names that
 contain '#{name}'"
 render :action => 'index'
 else
 redirect_to :action => 'index'
 end
 end

So in three lines of code and a small modification to the search method,
auto-complete has been implemented. It is so simple to implement that I think it
is worth commenting on just how complex the underlying tasks are that Rory has
just enabled.

An observer has been implemented that watches the text box and triggers an
action when a user makes an entry of a single character into the text box.
The text entered into the text box is then retrieved.
An XMLHttpRequest is used to send the retrieved text to the server where it
is used to generate a query of the database.
The results of that query are then returned to the browser via
XMLHttpRequest.
The query results are used to build a drop-down list.
The drop-down list is displayed. That drop-down has the following features:

It is displayed within a box above the existing page content,
immediately below the text box.
Styling is used to highlight the currently selected item.
Each entry is made active so that selecting it triggers the next
event, and passes a reference to that next event from which
the item selected can be determined.

The selected entry is then inserted into the text box.

In fact just the following two lines enable all of that functionality. The
controller code:

auto_complete_for :company, :name

•

•

•

•

•

•

°

°

°

•

Improving the User Experience

[312]

...and the view code:

<%= text_field_with_auto_complete :company, :name %>

Cross referencing auto-complete
Most tutorials for Rail's auto-complete feature use the standard
arrangement where the auto-complete entries are created from the field
being queried. However, we do not have to generate the auto-complete
drop-down list from the field we are ultimately populating or querying
with the entry into the text box.

Consider this example. We have a table, listing the names of children and another
table, listing the names of adults. We want to offer the users a search box for them to
use to search through the surnames of adults, for surnames that match those in the
table of children. The basic solution would be to raise the auto-complete on :adult
and :surname. Then as the user started to enter text into the search box, they would
be prompted with a list of existing adult surnames. However, the list would contain
surnames that did not match names in the child surname list, but only appeared in
the adult list.

An alternative approach would be to raise the auto-complete on :child and :
surname, and then use the resulting params[:child][:surname] to build a query
of the adults table. Both auto_complete_for :child, :surname and the handling of
params[:child][:surname] would appear in the adult controller. That way, users
will be prompted to select surnames that actually match the existing child surnames.

Some of the most useful instances of auto-complete that I have
implemented, have used this technique.

Auto-complete—Wow!, but...
My first reaction on implementing auto-complete was "Wow!". Most people who I
demonstrated it to were similarly impressed. In the next few days I went through the
application I was working on and added auto-complete to various text boxes; after
all, it was only a few lines of code and did not take long to add.

Over the following weeks I became more familiar with auto-complete and as I did, I
found myself slowly removing the auto-complete occurrences. I now use it sparingly
in a few key instances. There were certain issues I had with using the Rails Auto-
complete helper. They are as follows:

Chapter 7

[313]

When errors occur, they are both obvious to the user and difficult to debug.
When auto-complete fails, the usual result is that page styling gets altered
when typing starts in the text input box. Typically the text size for the page
decreases and the selection list fails to appear. (You can replicate this effect
by commenting out the auto_complete_for statement in the controller).
Often error messages are generated neither at the browser nor at the server.
Errors occur after a user enters input at the browser. Most page source
viewers pull a fresh copy of the page from the server. That is, a fresh copy
showing the page before the user input.
Therefore they do not show how the page is altered as the user makes their
input. This makes it difficult to determine the cause of the problem.
A dedicated JavaScript debugging utility must be used to visualize
the problem.
Auto-complete makes it difficult to alter if something goes wrong. There are
no obvious configuration settings to tweak. We have no choice but to delve
into the underlying helpers and methods.
Auto-complete can slow down user input. In a simple text box search form,
if we want to search for entries containing the word "plumber", we simply:
select the input box, type the word; and press the Enter key. If we do that
with auto-complete enabled, we will not search for "plumber". With
auto-complete, as we type "plumber" a list appears of matching entries in the
database, with the first one selected in yellow. Entering carriage return via
the keyboard selects the highlighted entry and inputs that into the form. It
does not enter the string we have typed.

It is now clear to me that much of the reason I had problems with auto-complete
was that I was adding it because it was a cool feature. I was not adding it because its
features addressed a specific problem or requirement of the application. If not used
appropriately, auto-complete simply adds complications and its own set of issues to
the application.

Use of AJAX—the Lessons Learned from
Auto-Complete
I have spent some time here describing and then picking apart a single Rails AJAX
helper method. I did not do this because I think auto-complete is a particularly bad
method. In fact, I believe that when used appropriately, auto-complete is a very
useful addition to the developer's tool box. The reason I chose to highlight some
of the problems with auto-complete is that it is easy to implement and test
auto-complete for yourself. It is also easy to replicate the problems I have described
above. Most importantly, a more general set of lessons can be derived from the
lessons learned from using auto-complete.

•

•
•

•

•

•

Improving the User Experience

[314]

The use of AJAX is seductive, in that it can be easy to implement, looks so
good and currently is associated with a lot of kudos in web circles.
When we add an AJAX function, we will add both benefits and burdens. For
example, AJAX is more difficult to debug than standard Rails applications.
If the "out-of-the-box" functionality does not quite match what we want, it
can be difficult to make small changes to the functionality of an AJAX
helper method.
AJAX can provide functionality that would be difficult to achieve in
another way.

Use AJAX because it addresses a problem that would be difficult to deal
with another way.
Used appropriately, AJAX is an excellent addition to the functionality
available to us as small business application developers. Use it where it is
not needed and you will simply make your application more difficult
to maintain.

Before I go on to describe some more AJAX techniques, there is one last point to
make. If you return to Chapter 1: Introduction and look at the reasons put forward
for using Ruby on Rails to build small business applications, you will find one of the
benefits of this system was stated as:

...	reliance	on	simple	defined	open	standards	means	that	the	work	of	the	user's	web	
browser is kept to a minimum, with most of the complicated work being carried out
at the web server.

AJAX reverses this approach. It adds processing and complication to the browser
side of the application. It puts more reliance on users' browsers behaving as we
expect them to. It increases the likelihood that a user's choice of browser and/or
browser plug-ins could affect the functionality of our application. The more we use
AJAX, the more we move away from the paradigm of concentrating the complication
at the server where it is easiest to control. Using AJAX will always cause a trade off
away from simple maintenance and toward a rich user interface. That should not
stop us making the decision to accept such a trade off when appropriate, but should
mean that we make it as a conscious decision following an assessment of the pros
and cons.

Having highlighted some of the issues with using AJAX, I will now describe a couple
of AJAX functions that I have found particularly useful.

•

•

•

•

Chapter 7

[315]

Show and Hide Company Address Using
link_to_remote
One aspect of the application that Ken points out to Rory is that the listing of
companies is very long and takes a lot of scrolling up and down to navigate. Ken
asks why each company has to take up so much space within the index view. When
Rory examines the layout of the list of companies, he realizes that the company
addresses greatly increase the vertical height of each company entry. If he removes
the addresses from the listing, there will be more companies shown in any view of
the company index view.

Rory discusses with Mary whether he could remove addresses from the company
index view. Mary is not keen. She states that it is sometimes useful to compare
company addresses while investigating the relationship between companies or
while planning a series of visits. However, she does agree that most of the time, the
addresses are not needed. "What would be great," she says "would be if you choose
an option to simply view an address and then hide it again." Rory thinks that the
AJAX helper link_to_remote might provide him with just the tool to do this.

The AJAX helper link_to_remote, provides a modified HTML anchor on a page.
The anchor is different from a standard HTML anchor in that instead of providing a
link to another web page, the link_to_remote anchor provides a link to a JavaScript
function. That function modifies an element on the current page. Therefore, the
link_to_remote feature needs to do three main tasks:

1. Provide a link on the page and a set of rules for what to do when that link is
activated.

2. Identify an element to be modified on the page.
3. Find the correct content to display within the identified page element when

activated.

A Simple link_to_remote
link_to_remote is used within a view. The syntax is:

link_to_remote(name, options = {}, html_options = {})

...where name is the anchor text to be displayed at this point. Details of the options
available can be found at:

http://api.rubyonrails.com/classes/ActionView/Helpers/
PrototypeHelper.html

Improving the User Experience

[316]

Here, I will describe a basic set of options, and later on when discussing Rory's
requirement I will describe some more advanced options.

One of the simplest usages of link_to_remote is like this:

<%= link_to_remote "Say Hello",
 :update => "output_place",
 :url => {:action => 'say_hello'} -%>

This code does three things, stated as follows:

1. It displays the string "Say Hello" at this point in the page and places that
text within an HTML anchor.

2. It defines "output_place" as the name of the element on the page that will
be modified when the anchor is activated.

3. The entry :url, specifies that the action 'say_hello' will provide the
content used to modify "output_place".

At the moment, clicking on the created anchor link does nothing because neither
output_place nor the action say_hello have been created.

A DOM Object to Update
XHTML and HTML pages have a hierarchical structure defined by the Document
Object Model (DOM). Each page element is defined as an object and placed within
the structure defined by the DOM. An early definition of this model as it related to
HTML can be found here:

http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/introduction.html

More up-to-date definitions can be found via a web search for dom definition.

Therefore each element within an XHTML document can be related to every other
element within the document by their relative positions within the DOM. So consider
this part of an XHTML page:

<div id="fruit_list">

 Apples
 Pears
 Oranges

</div>

Chapter 7

[317]

Its DOM representation would be as shown below.

div id= fruit_list”“

ul

li

“Pears”

lili

“Oranges”“Apples”

From this you can see that:

The ul element is lower within the hierarchy than the div element.
The ul element is a child or descendant object of the div parent.
The ul element has three li descendant elements.
The three li elements are at the same level and are called sibling elements.
The text within an li tags is a decedent element of that li element.

We can navigate up, down and across this structure using JavaScript.

I will use some JavaScript here as it makes it easier to explain what the
AJAX helper method is doing. While knowledge of JavaScript is helpful
when using AJAX, the Rails AJAX helpers make it possible to carry out
many sophisticated JavaScript driven operations without entering any
JavaScript code. The AJAX libraries themselves simplify the JavaScript
coding, and Rails is able to manipulate those library functions and objects
via Ruby code. Therefore, do not worry at this point if you do not have
any knowledge of JavaScript.

However, first we must get to a starting point. All XHTML and HTML documents
have a root ancestor element called "document" and we could start from this point
and navigate down to the div containing the fruit list within the DOM. However,
there is an easier way in which JavaScript allows us to navigate directly to a named
element. In the example above there is one named object, the div element. Its name
fruit_list is defined by the id attribute. The following JavaScript code creates four
objects by first accessing the named div and then navigating from that point down
through the DOM to access elements at each level below:

<script language="JavaScript" type="text/javascript">
 var fruit_list_div = document.getElementById("fruit_list");

•
•
•
•
•

Improving the User Experience

[318]

 var the_ul = fruit_list_div.getElementsByTagName("ul")[0];
 var li_elements = the_ul.getElementsByTagName("li");
 var second_li_text = li_elements[1].innerHTML;
 alert(second_li_text);
</script>

The output of this script is an alert box containing the word "Pears". That is the text
contained within the second li element.

The Prototype library contains a set of functions that make navigating the DOM
a little simpler. The JavaScript below does the same as the script above, but uses
Prototype functions to simplify the script:

<script language="JavaScript" type="text/javascript">
 var fruit_list_div = $("fruit_list");
 var the_ul = fruit_list_div.down("ul");
 var li_elements = the_ul.immediateDescendants();
 var second_li_text = li_elements[1].innerHTML;
 alert(second_li_text);
</script>

The key functions to point out are:

$("fruit_list")– returns the DOM element with the ID fruit_list. In
our example, that is the div element.
element.down("ul")– returns the first child ul below the current element.
There is also an "up" function that allows us to navigate to parent nodes.
element.immediateDescendants()– returns an array of all the elements
immediately below the current element.

A full description of the Prototype API can be found here:
http://www.prototypejs.org/api

This example demonstrates that it is easy to access an element within the DOM
using $(element_id), if we uniquely identify the element with an ID. It is also fairly
straightforward to navigate and collect elements near the named element.

If we return to our link_to_remote example, we need to identify an element as
"output_place" that will be modified when the link is activated. The simplest
solution is to add a div element at the place in the document where we want any
new content to appear:

<div id="output_place"></div>

•

•

•

Chapter 7

[319]

This can be anywhere within the page displayed when the view is rendered. We can
then grab this element with $("output_place"). In fact, the link_to_remote helper
even puts the ID within $(), so all the helper needs is the entry:

:update => "output_place"

Create a say_hello Action
Lastly we need to create the code that will generate content to be placed within
the output_place div when the link is activated. So in the controller we add the
following code to create a new action called say_hello.

 def say_hello
 render :text => "Well hello there!"
 end

If we now navigate to the view containing the link_to_remote, and click on the link
Say Hello, Rails will render the text Well hello there! within the output_place div.

Increasing the Functionality of link_to_remote
One of the best things about link_to_remote, is the number of simple-to-use
advanced options. These allow us to extend and control the operation of
link_to_remote very easily. A full listing of the options is available at
http://api.rubyonrails.com. Rather than detail each option, I will use them
here to show how Rory can achieve his objective of being able to hide and show
the address entries.

Show and Hide
When Rory starts thinking about what he requires he draws up the following list:

An initial arrangement with the elements displayed as desired when the page
is first loaded.
A show action displaying the extra content the user will see when selecting
the show link.
A hide action that will remove the extra content created with the
show action.
A link that indicates the current state, and that can be used to switch
between, show and hide states.

•

•

•

•

Improving the User Experience

[320]

However, the simplest AJAX actions are to add and remove whole elements. Also, it
is easier to replace a link than alter it. Therefore, the way the AJAX tools work lend
themselves to a different arrangement.

In many cases the arrangement of the initial elements and the final
arrangement after the hide action, will be the same. So rather than having
one action that creates the initial state, and then another that reproduces that
effect, a simpler arrangement is to use a partial. Insert the partial on page
load, and then reinsert it when returning to the previous state.
If the hide element has no content, it is in effect "hide all content". We can
replace the partial with a rendering of an empty element.
Have a partial that contains the extra content. In effect the show/hide
action is then switching between the partial currently being shown and its
alternative.
Have two link scripts. Hide the inactive one and make the current one
visible, That is, display the hide link when the extra content is shown, and
display the show link when the extra content is hidden.

Alternating link_to_remote Elements
To work through how to create the required show/hide effect, it is simplest to start
with alternating links. Coming up is some view code that achieves a very simple
show and hide effect with link_to_remote links.

<p>

 <%= link_to_remote "Show Alternative Partial",
 :update => "output_place",
 :url => {:action => 'show_alternative_stuff'},
 :success => "$('show_alternative_link').hide()",
 :complete => "$('show_initial_link').show()" %>

 <%= link_to_remote "Show Initial Partial",
 :update => "output_place",
 :url => { :action => 'show_initial_stuff' },
 :success => "$('show_initial_link').hide()",
 :complete => "$('show_alternative_link').show()" %>

</p>

<div id="output_place"><%= render :partial => 'initial_stuff' -%></
div>

•

•

•

•

Chapter 7

[321]

The two links are placed together within a single pair of p tags.
Each link is uniquely identified by an enveloping named span.
The span containing the link that will hide the content is initially hidden
using a style attribute within the span tag: style="display: none;"

Both links update the same div element: output_place.
The show link displays content as prescribed by the show_alternative_
stuff action, and the hide link displays content as prescribed by the show_
initial_stuff action.
Both links use the :success option. This allows us to specify an additional
AJAX or JavaScript command to trigger if the link_to_remote process is
successful. Both links use this option to hide themselves. The link will remain
in place if the link_to_remote fails, allowing the user to try again.
Both links use the :complete option to show the alternative link. The
complete option triggers an AJAX or JavaScript command when the link_
to_remote action is completed.

Alternative Actions
Before we can use this code, the show_initial_stuff and show_alternative_stuff
actions will need to be configured in the controller:

 #Renders a partial called some_stuff
 def show_alternative_stuff
 render :partial => "alternative_stuff"
 end
 def show_initial_stuff
 render :partial => "initial_stuff"
 end

The show_stuff action renders a partial. That is the partial passed to the browser
to display within the target "output_place" div. The show_initial_stuff action
renders the same partial that was initially displayed within the output_place div.

So lastly we need to create two partials and place them within the controller's view
folder. For this example, the content of the _initial_stuff.rhtml file is:

<h2>This is the initial partial</h2>
<p>This is the original text to be displayed.</p>

The content of the _alternative_stuff.rhtml file is:

<h2 style="color:green;">This is the replacement partial</h2>
<p style="color:red;">This is some alternative text to be displayed.</
p>

•

•

•

•

•

•

•

Improving the User Experience

[322]

Now when we click on the link "Show Alternative Partial" the contents of
_alternative_stuff.rhtml replaces the initial text in the output_place div. Then
clicking on the "Show Initial Partial" link returns the contents of "output_place" div
to its initial state.

Debugging JavaScript
As I stated earlier, JavaScript can be difficult to debug. One very useful tool to help
debug our AJAX actions is Firebug (http://getfirebug.com/). Firebug is a Firefox
plugin. The figure below shows the response information from activating the Show
Initial Partial link

Such information is often essential when tracking down AJAX related problems.

Show/Hide within the Company Index List
Fortunately, the company address in Rory's index view is already being rendered
as a partial. So instead of creating a new partial, all Rory has to do is alter the place
where the partial is rendered. That is, instead of it being loaded as the page is built, it
will be rendered as a response to a link_to_remote action.

The table cell is currently created with the following code in the view
app/views/companies/index.rhtml:

<td><%= render :partial => 'addresses/show', :locals => {:address =>
company.address} %></td>

Chapter 7

[323]

Rory needs to replace this content with two link_to_remote entries and an output
div. He also needs to move the render code to a new action within the controller.

He starts by adding new actions to the controller app/controller/companies_
controller.rb:

 def show_address
 @address = Address.find(params[:id])
 render :partial => 'addresses/show', :locals => {:address => @
address}
 end

 def hide_address
 render :text => " "
 end

For the show_address action, he moves the render statement from the view to the
controller's action code. Then adds a method to identify the address and pass it to the
partial. The render code is altered to use @address for the local address.

The hide_address simply renders a blank entry.

The content of the company list table cell is then updated from:

<td><%= render :partial => 'addresses/show', :locals => {:address =>
company.address} %></td>

...to:
<td><%
 show_link = "show_address_#{company.id}"
 hide_link = "hide_address_#{company.id}"
 output_place = "address_#{company.id}"
 %>
 <span id="<%= show_link -%>">
 <%= link_to_remote "Show",
 :update => output_place,
 :url => {:action => 'show_address', :id =>
 company.address_id},

 :before => "$('#{output_place}').update('Loading ...')",
 :success => "$('#{show_link}').hide()",
 :complete => "$('#{hide_link}').show()"
 %>

 <span id="<%= hide_link -%>" style="display: none;">
 <%= link_to_remote "Hide",
 :update => output_place,
 :url => {:action => 'hide_address'},

Improving the User Experience

[324]

 :success => "$('#{hide_link}').hide()",
 :complete => "$('#{show_link}').show()"
 %>

 <div id="<%= output_place -%>"></div>
</td>

A few things to note:

For each company, there is now a set of hide and show links, and an output
div. If Rory used the same names throughout the list, the system would be
unable to determine which links to show and hide, and which output div to
put the address content. Therefore, Rory has to uniquely identify each link
and output div. He does this by appending the company ID to each tag ID.
So for the first company, the ID of the show_address span tag becomes
show_address_1.
As having to append the company ID to a number of elements in many
places is repetitive and prone to error, Rory adds a small section to the start
of the new code, where the IDs of the current show link, hide link and output
div are defined.
Rory uses the :url option to add a parameter to the show link that will pass
the addressid to the controller action. This ensures that selecting each show
link will result in the correct address being shown.

As the address takes a little time to load, Rory adds a :before option to the
show link. This alters the content of the output div as the link_to_remote
action starts, and Loading... is displayed. This text is overwritten when the
output div is updated with the address, and therefore the loading message
disappears on completion.

Using AJAX to Edit a Field in Line
There is an AJAX helper method in_place_edit_for which is combined with a
second method in_place_editor_field to create a simple way to edit a field in
place. To demonstrate, try the following.

Add this to app/controllers/people_controller.rb (below the
before_filter lines):

 in_place_edit_for :person, :notes

Then change app/views/people/show.rhtml so that the line:

 <p>Notes:
<%=d @person.notes %></p>

•

•

•

•

•

•

Chapter 7

[325]

...becomes:
 <p>Notes:
<%=d in_place_editor_field
 :person, :notes %></p>

Then browse to a person and select the show option. If you now hold your
mouse cursor over a notes value, it will go yellow (you may have to go into
an edit view to create some notes before this option becomes available – see
note below on limitations). Clicking on the value opens a simple form in
which you can alter the note and save it.

While this method is very easy to implement, it is not very flexible and is difficult to
extend. Some of the limitations are stated as follows:

The form simply contains a text input field, so we have to use a different
technique to update entries from selection lists or use Rails date
selection tools.
The technique relies on there being an entry to update. If nothing is entered
there is no value to click on; so no way to view the form. Therefore, we
cannot add information via this technique; only update existing entries.
It is difficult to validate any entries submitted via the in_place_editor.
The in_place_editor is aimed at the show view. However, in line editing is
most useful when it can be done from a list view and the tool is not so easy to
use within a list.

In my opinion, it is easier to go to an edit view and make changes, rather than go to
a view, and then reveal and submit each in_place_editor form. Using a standard
edit view uses fewer clicks than using an in_place_editor enabled show view.

So rather than using the in_place_editor, return the people controller and show
view to their previous state and I will demonstrate how Rory can achieve similar
results via link_to_remote, and another AJAX helper method, form_remote_tag.

Render an AJAX Form via link_to_remote
Mary comes to Rory with a new request. She is finding that telephone numbers are
used more than anything else in the application and she wants a quick and easy way
to enter and update them. Preferably she would like to change them without leaving
the index view. Rory decides to extend what he has learned using link_to_remote
to satisfy Mary's request.

•

•

•

•

•

Improving the User Experience

[326]

The first step is to create a link_to_remote in the telephone cell of the company list.
As it needs to appear with any existing data, he makes it very small, simply a plus
sign. So in app/views/companies/index.rhtml he replaces:

<td><%= company.telephone %></td>

...with:

<td><%
 tele_output = "telephone_#{company.id}"
 -%>
 <%= link_to_remote "+",
 :update => tele_output,
 :url => {:action => 'show_update_telephone', :id =>
 company.id } -%>
 <span id="<%= tele_output -%>"><%= company.telephone -%>
</td>

This is a simple link_to_remote.

Rory then updates app/controller/companies_controller.rb by adding two
new methods:

 def show_update_telephone
 @company = Company.find(params[:id])
 render :partial => 'update_telephone', :locals => {
 :company => @company}
 end

 def update_telephone
 @company = Company.find(params[:id])
 @company.telephone = params[:telephone]
 @company.save
 render :text => @company.telephone
 end

The action show_update_telephone is used by the link_to_remote. It causes a
partial _update_telephone.rhtm to be rendered and passes a company object to
the partial. The partial contains an AJAX form and the method update_telephone
handles the data returned by that form. Here is the content of app/views/
companies/_update_telephone.rhtm:

<% tel_output = "telephone_#{company.id}"
 tel_form = "telephone_form_#{company.id}" %>

<div id=<%= tel_form %>>
 <%= form_remote_tag(:update => tel_output,
 :url => { :action => :update_telephone },

Chapter 7

[327]

 :complete => "$('#{tel_form}').remove()") %>
 <%= text_field_tag :telephone, company.telephone %>
 <%= hidden_field_tag :id, company.id %>
 <%= submit_tag "Update" %>
 <%= end_form_tag %>
</div>

<div id="<%= tel_output %>"></div>

As with the previous link_to_remote tags, the company ID is appended to tag
names so that each telephone entry within the list is uniquely identified.

The main new element is the form_remote_tag. This is quite like a standard
form_tag, except that, it uses an AJAX XMLHttpRequest to submit the data.
Therefore any data input into the form is passed to the server without refreshing
the whole page. Most of the options used by link_to_remote are available to
form_remote_tag, and Rory uses the :complete option to remove the form once a
new entry has been submitted.

The rest of the form is generated using standard form elements. It is this that gives
this technique such advantage over the in_place_editor. Any form element
available to us in a standard form can be used in the form partial. While this form is
used to update a single field, it would be easy to add additional fields and options
(such as replacing a whole list row with an input form) become possible with only
fairly small changes to the basic technique.

A Little script.aculo.us: Drag and Drop
The AJAX functionality described so far has concentrated on tools provided by the
Prototype library. Before leaving AJAX, an example is given here of some script.
aculo.us functionality that could be added to Rory's application. Drag and drop is
used to allow a user to grab an address and put it aside while searching through the
addresses on a page.

Make an Element Draggable
Prototype tools mainly allow users to access data from outside and then use it
within, the user interface. The script.aculo.us tools concentrate on allowing a user
to manipulate the interface itself. One of the simplest functions to make available to
the user, is the ability to drag one element on a web page to another location on the
same page. That is, to make the element draggable.

Improving the User Experience

[328]

The behavior of a draggable object is defined within the AJAX class Draggable. To
make an element draggable we need to create a new instance of an object of the
JavaScript class Draggable, and associate that new object with the element. This can
be done by adding the following code to a view:

<%= javascript_tag "new Draggable('element_id')" -%>

Where element_id is the id of the element to be dragged. Rails provides a helper
method to simplify this still further:

<%= draggable_element :element_id -%>

Always place the code that associates a DOM element with a Draggable
object below the HTML that defines the DOM element on the page.

Unlike objects in Rails, JavaScript can be sensitive to where an object is created and
used. If the code that associates an element with a Draggable object, is put before
the code that defines the element within the DOM, the code will not work as we
desire it to. JavaScript will not look ahead in the HTML code for an element that
matches the element_id. It will only look back through the DOM elements that have
already been defined. It will, therefore, fail to find the element and then associate the
Draggable object with a null. This will not raise an error — it just will not make the
element draggable when it is placed on the page.

Therefore, this will not work as desired:

<%= draggable_element :element_id -%>
<div id="element_id">stuff to be dragged</div>

Whereas this will work:

<div id="element_id">stuff to be dragged</div>
<%= draggable_element :element_id -%>

We wish to make the addresses in the company list draggable. These addresses are
displayed in a div element whose name is defined by output_place. We, therefore,
already have an ID for the element to be dragged. Adding a draggable_element
statement below the output_place div and using the output_place variable to
define the element will make addresses draggable:

 <div id="<%= output_place -%>"></div>

 <%= draggable_element output_place -%>

Chapter 7

[329]

Once the draggable functionality is implemented, it becomes possible to show any
address and then drag it to another part of the company list page, where it will stay
when released. It is worth playing with this behavior as it has some unexpected
results. Drag an address to another part of the page and then click on the "hide"
link for this address. The address disappears as expected. However, if we then click
on the "show" link, the address does not appear in its normal position, but back in
the place where we dragged it. This is because not only the content of the div was
moved by dragging, but also the div itself. Therefore, when the link_to_remote
call behind the "show" link is triggered, it inserts the address into the div at its
new position. The :revert option causes a dragged element to return to its
original position when dropped. In this instance, :revert provides a more
predictable behavior.

There is also the issue of whether a user would know that an element is draggable.
Unless we provide clues as to the draggability of an element, there is no clue for
a user that an element can be dragged; the element will look just like the static
elements around it. CSS is the obvious way to overcome this. We can define a
"draggable" DOM class and use that to define style elements in the page's style sheet
to alter the appearance.

The modification to the output_place element shown below incorporates both a
:revert option and Draggable class definition.

 <div class="draggable" id="<%= output_place -%>"></div>
 <%= draggable_element output_place,
 :revert => true -%>

To display visual clues to the user, we also add a definition of .draggable to base.css:

.draggable {
 cursor : move;
}
.draggable:hover{
 background : yellow;
}

This causes the pointer (cursor) appearance to change as the mouse pointer moves
over the draggable element. It also turns the background color of a draggable
element to yellow while the mouse is over that element.

A Place to Drop the Element
Dragging elements around a page may have some use, but draggability becomes
much more useful if we can use the fact that an element has been dragged
somewhere to drive another event. This is particularly the case if we can pass
information from the dragged element to the triggered event.

Improving the User Experience

[330]

The simplest way to achieve this is to use another set of AJAX objects called
droppables. These are DOM elements that can receive dragged elements. Using
Rails, an element can be defined as droppable like this:

<div id="drop_place_id">drop it here</div>
<%= drop_receiving_element :drop_place_id %>

To demonstrate how to use droppables, let us create a new area at the bottom of the
company list page, which includes:

An area where droppable elements can be dropped (address_drop)
An element where new output can be created (address_drop_output)
And the code that defines address_drop as a droppable and an action that
results from an element being drop.

<div id="address_drop">
<h2>Address drop</h2>
<p>Drop an address here.</p>
</div>
<%= drop_receiving_element :address_drop,
 :update => "address_drop_output",
 :url => {:action => 'show_address'},
 :before => "$('address_drop_output').update('Loading ...')" -%>

Note that the drop_receiving_element method allows the same options that we
have used before with link_to_remote:

:update defines the DOM element that will be modified when the event
is triggered.
:url defines the controller method that will handle the action.
:before allows us to give the users an indication that something is changing.

We now have somewhere to drop our addresses. However, to use the dropping
process to determine a particular event we need to pass information from the
dropped element to the controller. Fortunately, the method drop_receiving_
element provides a mechanism to do this: the dropped element's ID is passed to the
controller and can be accessed at the controller via params[:id].

In Rory's application, it should then be fairly easy to use the element id with the
companies_controller's show_address method to output the dropped address.
However, the design of the show_address method and the link_to_remote code
that use it means that there is a small complication. The Rails object ID used to create
each address droppable's ID is a Company object, whereas show_address uses
Address object IDs. There are two ways to handle this—detect the type of ID being

•

•

•

•

•

•

Chapter 7

[331]

passed to the method and alter the way the method handles the ID to suit; or change
the link_to_remote code so that it also uses the company ID. The first provides
better performance (because we do not always first have to find a company before
we can look up an address) the second is more scalable (because more of the code
is reused, that is we are not using a different set of code for each option). There is a
third option which is to use an address ID to identify the droppables, but there is a
possibility that this would not create unique IDs on the page as two companies could
share the same address. I will use the second option as it demonstrates the important
components and how they can be used together.

First we will modify the link_to_remote to use the company ID, pass the same
parameter name to the controller as the default drop_receiving_element (that is,
:id), pass the same information (output_place) and alter the names of the elements
so that they are a little more meaningful.

<%
 show_link = "show_address_for_company_#{company.id}"
 hide_link = "hide_address_for_company_#{company.id}"
 output_place = "address_for_company_#{company.id}"
%>
<span id="<%= show_link -%>">
 <%= link_to_remote "Show",
 :update => output_place,
 :url => {:action => 'show_address', :id => output_place},
 :before => "$('#{output_place}').update('Loading ...')",
 :success => "$('#{show_link}').hide()",
 :complete => "$('#{hide_link}').show()"
 %>

We then need to modify the companies_controller show_address method to
handle the fact that the ID being passed to it will now be a Company ID and will
have the prefix "address_for_company_" to deal with:

 def show_address
 @address = Company.find(params[:id].delete(
 "address_for_company_")).address
 render :partial => 'addresses/show', :locals => {
 :address => @address}
 end

With these changes implemented, the user is now able to choose an address and drag
it to the area with the heading "Address drop". When they do this, the address will
appear below the heading.

Improving the User Experience

[332]

This example shows how some of the techniques used with link_to_remote can
also be used with drag and drop elements to provide additional functionality. In
particular, it demonstrates how drag and drop can be used to trigger events, and
provide information to the process controlling the event that will allow it to alter its
behavior (depending on the identity of the element dropped).

Further AJAX
I have only touched the surface of AJAX here. I hope I have demonstrated some
simple techniques that achieve some effects that are particularly useful in small
business application development. The AJAX helper methods I have demonstrated
here are easy to use and very flexible.

However, there is a wealth of AJAX objects and functions available both through
Ruby and directly via JavaScript. Some of the most exiting developments for Rails
developers are coming via RJS (Ruby-generate JavaScript) which can be used to
combine JavaScript functions to achieve complex tasks without the developer writing
any JavaScript – all coding being in Ruby. If you wish to pursue AJAX on Rails
further, a good start is an Internet search on "RJS Rails". There are also a number of
dedicated books on the subject starting to appear.

Help!
One simple truth of software is that users are not developers. However, most
discussion on documentation for Rails applications revolves around the developer
and ignores the needs of the user. There is a system to automatically generate
documentation that can greatly help a developer. I will discuss this system here,
but I will also discuss help for users. The two are not the same and the latter is often
neglected when discussing application development.

RDoc–Documentation for the Developer
The system for automatically generating system documentation is called RDoc. This
is part of Ruby gems and therefore installed when we install Rails. RDoc extracts the
definitions of classes, methods and attributes from a Rails application and presents
them within a structured collection of HTML documents. Perhaps the most widely
used example is http://api.rubyonrails.com, which is itself created with RDoc.

To create a similar set of documents within the application doc folder, run this
command at the application root:

rake doc:app

Chapter 7

[333]

A doc/app folder is then created with a fresh set of RDoc documents within it.
Access the documentation via doc/app/index.html.

The default format of the documents is the same as that used by the Ruby core
documentation as the following screenshot shows.

The upper three panes allow a user to browse and select particular source Files (left
pane), Classes (center pane) and Methods (right pane).

Improving the User Experience

[334]

RDoc pulls out each method from its def declaration. It populates the output with
any comments we add immediately before the method. For example, this method:

 #This comment will be displayed in the rdoc
 def rdoc_help_example
 render :text => "Help!"
 end

...will create this entry within the RDoc documentation, as shown below:

Clicking on the method name opens a new window, as shown below, containing the
method's source code:

This system makes it very easy to document our application for our own records and
to help colleagues and others who develop or debug our application at a later date.

Help for the User
RDoc is a good tool for developers, but users need something different. They will not
want to know how all the underlying components work, nor need to be able to see
source code. What they need to know is what to click on or select to achieve the
task at hand. RDoc does not provide that. What is needed is a different system for
end-user help.

Chapter 7

[335]

The solution I use and recommend is a wiki. We can use an off-the-shelf wiki
application such as DokuWiki (http://wiki.splitbrain.org/wiki:dokuwiki), or
build one ourselves in Rails.

The one prerequisite is that an individual wiki page should be directly accessed via a
URL. This means that some wikis, are not suited to application help documentation.
(For example, TiddlyWiki is an excellent personal wiki that I used a lot to keep notes
when I started Rails development. However, it relies on client side JavaScript links
to access individual wiki entries, and the URL remains constant as simply that of the
TidlyWiki document. Therefore it is not suitable for a Rails help system.)

A wiki provides the following advantages:

Built-in tools to help us create attractive documents with text formatting and
image insertion.
The writing tools are available within the browser. We do not need another
application to write entries.
Built-in search tools to assist users to find the help entry they need.
User control to allow a team of people to help you maintain and develop the
help system.

The most important advantage is the last one. In my opinion, the best help systems
are those that actively encourage user input. With a wiki, we can allow our users to
correct, update and improve on our help entries. Users are the best people to know
what they need with a help system, so why not provide them with the tool for them
to update as they require.

Instiki Wiki Help
Rory decides to use Instiki, a wiki based on Rails, for his user help system. Rory
installs Instiki by downloading the files from the project's rubyforge page
(http://rubyforge.org/projects/instiki/) and unziping them to their own
directory. He then uses Mongrel to host a new instance of the Instiki application.

Instiki is built using Rails and therefore can be hosted in the same way as Rory's
Intranet application. On Linux, the application can be started simply by running
"instiki". To host the system via Mongrel on a Windows system, we would have to
carry out a couple of tweaks.

•

•

•

•

Improving the User Experience

[336]

Add the path to the application's lib/native/win32 folder to your system
path. Instiki uses a SQLite database, and the Windows drivers are held in
this folder.

Then add a new Mongrel service instance:

 mongrel_rails service::install -N instiki \ -c <path to instiki>
 -p 2500 -e production

As Instiki is a Rails application, we can modify it in the same way as any other Rails
application. For example, in version 0.11.0, if we create new content via a Firefox
browser, the main text area is too large and becomes displaced down the page.
An examination of the code shows that the text area is defined in line 17 of
app/views/wiki/new.rhtml:

<textarea name="content" id="content" style="width: 450px; height:
500px">

•

•

Chapter 7

[337]

A similar text area in app/views/wiki/edit.rhtml which is displayed correctly in
Firefox is defined via:

<textarea name="content" id="content" style="width: 70%; height:
500px">

By changing the width configuration to 70% in new.rhtml, the form is displayed
correctly in Firefox. We could even extract the form code as a partial and then use
the same code in both views as both forms have a lot of similarity. The advantage of
using a Rails wiki is that we can easily develop it to suit our needs.

Rory decides to provide a new virtual server at wiki.company.local in the same
way that he created intranet.company.local (see Chapter 6: Into Production)
and adds a virtual host to his Apache configuration. To do this, he creates a new
DNS A Host called "wiki" using his server's IP address, and adds the code below
to httpd.conf:

</VirtualHost>

<VirtualHost wiki.company.local:80>
 ServerName wiki.company.local
 ServerAlias wiki.company.local

 ProxyPass / http://wiki.company.local:2500/
 ProxyPassReverse / http://wiki.company.local:2500
 ProxyPreserveHost on

</VirtualHost>

On first entry, he sets up the Instiki application to use a base path of "help".

Improving the User Experience

[338]

Rory then creates a helper method to create links to the wiki, so that he has one
place to update the URL for the wiki, should he need to move it. Therefore in app/
helpers/application_helper.rb, he adds:

 #Generates a link to the wiki page holding relevant help
information.
 def help_link(wiki_entry_name=nil)
 wiki_url = "http://wiki.robhome.local/help/show"
 if wiki_entry_name
 wiki_url += "/#{wiki_entry_name}"
 link_text = "Help for #{wiki_entry_name.underscore.humanize}"
 else
 wiki_url += "/HomePage"
 link_text = "Help"
 end
 link_to link_text, wiki_url, {:target => '_blank'}
 end

For his first wiki he creates a new entry called CompanyList and in this he writes
a guide as to the use of the company listing in the application index view. He then
goes to app/views/companies/index.rhtml and adds a new help_link to the
bottom of the page:

<%= help_link 'CompanyList' %>

The Best User Help Systems
If you look at a help page you have written, and find that it can be summed up as a
list of features available in the application, I would be safe to bet that you have not
written the best help system you could. How many help systems have you used
where the entry for "the X feature button" reads "this button activates the X feature".
Yet most systems I have used have plenty of entries just like that.

So how do we avoid just listing the features? The best way I have found is not to
treat the help system as the place to describe all the features available. Instead, use
the help system to describe the processes a user goes through to carry out the tasks
they achieve via the application.

For example, look at two help system entries for using the facility to edit telephone
numbers within the company list created earlier in this chapter:

1. The plus sign at the start of a telephone number allows you to edit
that number.

Chapter 7

[339]

2. To edit a telephone number, click on the plus sign at the start of telephone
number. The number will then appear in an input box in which you can edit
the number. Change the number to the correct entry and then click on the
Update button. The new number will then be saved to the server. You must
be logged on to access this feature.

The first entry simply tells the user what the plus sign is. The second tells the user
how to use the feature, when accessed via the plus sign. The first describes the
feature, the second the process to go through to achieve the task of changing a
telephone number. The second entry is better in that it tells a user how to use the
feature, and in doing so, it also describes what the feature does.

When writing user help information, I recommend the following:

Look at each user interface and list the tasks that users are likely to carry out
using that interface.
For each task, note down the steps a user will need to go through to use
that user interface to achieve the task. Use this list as the core of the
help document.
If there are a number of similar tasks, describe the simplest first, and then
describe how to alter the steps to achieve the different similar tasks.
When you have finished, go back over the user interface and make sure that
all the features have been used somewhere within the tasks steps, If you
find a feature that is not described with a task step, then simply describe
what that feature does. Even then think of an example of how a user may
use that feature, and describe that if you can. (However, if you are unable to
think of an example task for the feature, I would question why that feature is
included within the interface. A better option may be to remove the feature!)

Keep Talking to Users
Rory's application is now in production and he has been responding to user
issues and feedback. In my experience this period can be the most fruitful in the
development process. This is the time when very small adjustments could have
large impacts on the usefulness of the application. It is often only when users start
to use an application that they really appreciate how it can make their job easier. It
is then that they start making comments like: "It would be great if I could see this
information in that screen".

•

•

•

•

Improving the User Experience

[340]

An example: I built a stock control system for a purchasing team. The system allowed
users to track the purchasing and selling of equipment, and replaced a shared Excel
spreadsheet. The users liked the system, but it was a month into using it when one
of them said: "It would be great if we had an easy way of viewing a list of all the
ordered kit that we are expecting to arrive this week". An hour later, there was a link
on the main screen that took the users to just such a listing. In fact, there were three
links – one to show last week's expected deliveries, one to the the present week's, and
another to next week's. Those three links became three of the most used links in the
application. In one step I had made it much easier for users to see what they should
be expecting to come in through the door. I thought I had already provided tools to
give all the views a user would use, but I had missed the combination of stock on
order and delivery in the current week. The users never before had such a simple
way of viewing this information, and had also not imagined it was possible, and
therefore had not asked for it when the system was specified.

This is one example, but it has been a common one for me. The key point is that the
best way to improve the user experience is for you to keep an open communication
with the users. Keep listening to your users. They are the source of your most
productive modifications.

Summary
In this chapter, we have described how to improve the users' experience by
simplifying entry to the application, adding search facilities, and providing a
help system.

We have also introduced AJAX, initially looking at a basic set of helper methods
(auto_complete) that easily provide some advanced enhancements to form fields.

We have then looked at some of the problems that these basic techniques highlight.
We went on to show how a particular, more advanced helper function
(link_to_remote) can be used to update and expand the information on a page
without reloading the page. This method is very flexible and some variations are
shown, including using link_to_remote, to load a form that can then be submitted
again without reloading the page. Some drag and drop functionality is also
described. These AJAX examples give a feel of what can be achieved using these
systems and how they can be used within Rails.

Lastly, we described help systems and the importance of using different help
systems to support users and other developers. The two groups require different
information and therefore require help in different ways.

Extending the Application
In this chapter, we're going to see how to extend the Intranet application, using
mock (but hopefully realistic) feedback from users as a basis for the extensions. The
feedback covers both desired enhancements to existing features, and new feature
requests. Doing this will demonstrate more breadth of the features provided by the
Rails, and how to logically add new components to an application.

The feedback received from the users included:

Adding people search facilities
Handling errors properly
Using sessions and cookies for user authentication
Doing simple task tracking
Adding file uploads

We're also going to look at integrating the work of other programmers into a project.
The primary means for doing this is through plugins, so we'll see how to discover
and install them for your own applications.

Dealing with User Feedback
Users at Acme have been putting the Intranet system through its paces for a few
weeks. They are generally happy with how it works, and Ken (the Managing
Director) is pleased with its progress. But comments from users indicate that a
few niggling issues have arisen during the pilot phase. Rory and Jenny have put
aside some time to deal with these issues, as well as time to add new features to the
system. They arranged the feedback from users in order of priority and ended up
with the following list of points to address:

•

•

•

•

•

Extending the Application

[342]

"It's too hard to find people. When I'm on the phone with someone, I need
a quick way to locate their record."
Rory and Jenny knew that simple listing of people would be insufficient in
day-to-day work. As the system fills up with contacts, it takes longer and
longer to page through the listing to find someone. They decide to extend the
system to enable searching for a person by name, part of a name, keywords,
or notes associated with them.
"Sometimes I bookmark pages, and then when I come back to them
everything's broken."
Rory and Jenny have done little to capture possible errors in the application.
For example, if someone tries to access the record of a company that has been
deleted, they get a nasty default Rails ActiveRecord::RecordNotFound
error message. They decide to tidy up the system, so it handles common
errors more elegantly.
"I need to record the tasks I carry out, so I can see the history of what I've
done with a client."
This request was made by quite a few members of staff, so Rory and Jenny
decide that it should be given some priority. They opt for a simple task
tracking utility, which will allow activities to be attached to a person's record.
Each task will also be associated with an individual user of the system,
so future enhancements could include tracking who's carried out which
activities. They decide not to attempt a full-fledged calendar, as this would
require too much work.
"I quite often send documents to people, but can't store them on the
Intranet."
A file upload facility would enable members of the staff to attach documents
(e.g. quotes, presentations) to tasks.

Having decided on a plan of work, they tackle each feature request in turn. We'll be
working alongside them as they make these changes to the system.

Adding a Search Facility
The first step in extending the system is to enable searching for people. This requires
changes to a few parts of the system:

A new action, which performs the search against the Person model,
retrieving an array of Person instances from the database. As the
search only uses the Person model, the logical place to locate the action
is in the controller, which manages the other actions for that model:
PeopleController. We'll call the action search.

•

•

•

•

•

Chapter 8

[343]

A view template to display the results of the search. We already have a view
template that can render an array of Person instances: app/views/people/
index.rhtml. Therefore, we can just reuse that template, with some minor
modifications such as a different page title.
A form where a user can type a search term and perform the search. We
can add this to the layout for the application (app/layouts/application.
rhtml) to make it available from any page.

Once this functionality is in place, we'll be able to search the people table with a
URL like this:

http://localhost:3000/people/search?term=James

We first need a search action on the PeopleController (in app/controllers/
people_controller.rb). This is fairly similar to the index action: it retrieves a set
of records from the database using a paginator and displays them. As noted above,
we can also use the same view template (index.rhtml) to output the HTML, but
we'll have to explicitly call it inside the action (highlighted below) as the action name
doesn't match the template name. Here's the action in full:

def search
 @paginator, @people = paginate :person, :per_page => 10,
 :select => 'id, last_name, first_name',
 :order => 'last_name, first_name'

 @page_title = "Search results (page #{@paginator.current.number})"
 render :action => 'index'

end

Test this at http://localhost:3000/people/search?term=Jeff (put anything
you like at the end of the URL—it's not being used yet). You should see something
very similar to the index page for PeopleController, but with a different title
(Search results...). This proves that the route, action, and template are all
working together.

Next, we need to use the term parameter passed in the URL to narrow the results. In
Chapter 4 (Finding Records Matching Search Criteria), we saw how to use a :conditions
option to restrict the results returned by find. We can also use a :conditions option
with the paginate method to restrict by our search term (highlighted):

def search
 # Get the search term from the querystring and put
 # percentage signs round it so it can be used with a LIKE query
 term = "%#{params[:term]}%"

 @paginator, @people = paginate :person, :per_page => 10,
 :select => 'id, last_name, first_name',

•

•

Extending the Application

[344]

 :order => 'last_name, first_name',
 :conditions => ['last_name LIKE :term or first_name LIKE :term \

 OR notes LIKE :term OR keywords LIKE :term', {:term => term}]

 @page_title = "Search results (page #{@paginator.current.number})"
 render :action => 'index'
end

The :conditions option here uses an alternative syntax available for SQL templates:
instead of a question mark in the query (as used in Chapter 4, Finding Records
Matching Search Criteria), you can use named placeholders, prefixed with a colon
character. Then, you can use a hash as the second element of the array (here, {:term
=> term}) to specify the values to insert into the placeholders. Here we're using a
single value, which gets inserted into four places in the query. This is a neat shortcut,
particularly when you need to put the same value into multiple places in the query.

Now, try doing a search for someone in your database. For example, if you have a
person called "Jeff" in your database, try doing:

http://localhost:3010/people/search?term=jeff

As we used LIKE in the query, the search is case-insensitive (at least, when using
MySQL). Hopefully, the page should only show people matching your query, e.g.:

Chapter 8

[345]

The last step is to add a search form. To keep things simple, we'll add it to the layout
directly (app/views/layouts/application.rhtml), at the bottom of the menu:

<%= link_to 'Addresses', :controller => 'addresses' %>

<p>Search people</p>

<% form_tag({:controller => 'people', :action => 'search'}, {:method
=> :get}) do -%>

<p><input type="text" name="term" size="8" value=""/>

<%= submit_tag 'Go' %></p>

<% end -%>

</div>

As we haven't got a model instance we are working with here, form_for (which we
used in Chapter 5, e.g. in the section Creating a Person) isn't really applicable. The
simpler form_tag helper generates an HTML <form> element, which doesn't need
to reference a model. It's also possible to pass both URL options (the first argument)
and HTML options (the second argument) to the helper, to customize its behavior: in
this case, we set the method to GET, to pass the term variable in the querystring.

Handling Errors
By default, Rails doesn't handle various errors that normal people make when using
web applications. When URLs are being cut and pasted from email clients, they
can often lose characters; when people bookmark pages inside an application, the
bookmarks may be rendered invalid by someone else making changes to the
system (e.g. deleting records). These and other user "errors" can make Rails
produce unfortunate error messages, which could baffle normal users, even with
the application running in the production environment. For example, here's
what happens if you try to display a person whose record doesn't exist (in the
production environment):

Extending the Application

[346]

It turns out there are five common classes of error to catch:

1. Missing records, as in the example above.
2. Unknown actions. For example, if you visit http://localhost:3000/

people/foo, you will get an Unknown action: No action responded to foo
error message. This is because Rails can't map the foo part of the URL onto a
valid action in the PeopleController class.

3. Routing errors. These occur if Rails can't map the URL onto a valid
controller. For example, visiting http://localhost:3000/bar, you will
get a Routing Error: no route found to match "/bar" with {:method=>:get}
error message. This is because none of the routes specified in the routing
configuration can map the URL to a valid controller and action.

4. General application errors. These can occur for any number of reasons:
missing Ruby libraries, broken code, infinite loops which overflow the
stack, etc. However, in most cases, Rails will still be running and capable of
rendering an intelligible error report.

5. Rails falling over. Occasionally, Rails itself will break and your application
will become completely unavailable. This tends to happen if Rails is running
on FastCGI (which is still often the case if you run applications on shared
hosting), and far, far less when Rails is running on Mongrel. As these errors
break Rails itself, they are caught by the web server running the application.

Each of these errors is relatively easy to catch and handle.

Catching Missing Record Errors
Missing record exceptions (of the class ActiveRecord::RecordNotFound) occur
where a model's find method is called with an ID that doesn't match a record in
the database. One approach to catching this type of error would be to put error
catching code directly into PeopleController. For example, we could modify the
get_person method to redirect to the index if the Person.find method call raises
an exception:

private
def get_person
 @person = Person.find(params[:id])
rescue
 redirect_to_index 'Person could not be found'
end

Chapter 8

[347]

This utilizes the rescue construct available in Ruby (similar to the try...catch or
try...except of other languages) to capture any errors raised by Person.find. It
then reuses the redirect_to_index method if such an error occurs (see Creating
Application-Level Controller Methods in Chapter 5) to set a message and show the index
page of the current controller.

The above approach can be useful where you want very fine-grained control
over exceptions. However, there are several situations in the Intranet application
where this type of exception can occur, and fine-grained exception handling is not
really necessary: a more generic approach would be more suitable. Rails provides
a controller-level hook called rescue_action_in_public that we can exploit to
manage errors in a more generic fashion. Add the following method definition to
app/controllers/application.rb (inside the class definition):

protected
def rescue_action_in_public(exception)
 if exception.is_a?(ActiveRecord::RecordNotFound)
 @message = "Record not found"
 end
end

The rescue_action_in_public method accepts exceptions thrown by actions,
enabling you to change the response depending on the kind of exception raised
(is_a? is used here to check the class of the exception). In this case, we are just
setting up an instance variable @message with a user-friendly error message.
However, if you navigate to a non-existent record you'll still get a stack trace of the
error, even in the production environment. This is because we are working on localhost:
Rails knows that we are working on the same machine where the server is running,
and thus is assuming we're really developing and not in production.

To fix this assumption, add another method definition to app/controllers/
application.rb:

protected
def local_request?
 false
end

The local_request? method is called each time a controller action is triggered. By
default, it returns true if the client IP address is 127.0.0.1; by making it return false
in all situations, no requests are treated as local by virtue of their IP address.

Extending the Application

[348]

Now, in the production environment, you should see an "Application error" page
instead of a stack trace for missing record errors. In the development environment,
you will still get a stack trace for these errors: Rails still treats every request as local
when the application is running in that environment. This behavior is governed by the
production environment settings in config/environments/development.rb, namely:

config.action_controller.consider_all_requests_local = true

If you want to run your application in the development environment (with automatic
reloading of changes to classes and templates), but still test your error catching code,
set this value to false to get the non-local error messages.

Rails also provides a generic rescue_action method, which works
in almost the same way as rescue_action_in _public (it takes an
exception as an argument, and you can respond to different classes of
exception inside its body). The only difference is that rescue_action
doesn't care whether requests are local or not: it will always perform the
error trapping you define inside it. I'd only recommend using this if you
never want to display stack traces in the browser, and just want to work
directly with the log files.

To display a custom page with an error message, create a new page in app/views/
shared/exception.rhtml:

<h1>An exception occurred</h1>
<p class="exception"><%= @message %></p>

Note that it renders the @message instance variable, set by
rescue_action_in_public, inside a paragraph.

Next, add a new style to public/stylesheets/base.css to style the error message
in the template:

.exception {
 color: red;
}

Then render that template from the rescue_action_in_public method:

protected
def rescue_action_in_public(exception)
 if exception.is_a?(ActiveRecord::RecordNotFound)
 @message = "Record not found"
 end
 render :template => 'shared/exception'

end

Chapter 8

[349]

Now, when you generate a missing record error by entering a bogus person ID,
you should see a styled error page when running in production or when
consider_all_requests_local is set to false:

Rails' default behavior is to render a plain HTML page when errors occur,
located in the public directory: 404.html for routing errors and 500.
html for general errors. While this works OK, it doesn't show the error
messages in the context of the application (menus, color schemes, logos,
etc.). The advantage of the approach shown here is that the error pages
can still use the layouts you've defined for your controllers.

Catching UnknownAction and Routing Errors
These types of errors occur when Rails attempts to service a URL that maps onto
a non-existent action (ActionController::UnknownAction) and/or non-existent
controller (ActionController::RoutingError), or if the URL cannot be parsed at
all (again, a RoutingError). As these cases are effectively equivalent to HTTP "Page
not found" errors (with status code 404), a logical approach is to reproduce a "Page
not found"-style error inside the application. We can actually just extend the error-
catching code inside rescue_action_in_public to do this:

protected
def rescue_action_in_public(exception)
 if exception.is_a?(ActiveRecord::RecordNotFound)

Extending the Application

[350]

 @message = "No record with that ID could not be found"
 elseif exception.is_a?(::ActionController::UnknownAction) or

 exception.is_a?(::ActionController::RoutingError)

 @message = "Page not found"

 end

 render :template => 'shared/exception'
end

The only thing that's unusual about this is how the class of the exception is
referenced:::ActionControllerRoutingError, with two colons at the beginning,
before the module name. This is to do with Ruby namespaces: because we are sitting
inside the ApplicationController class, we have to work up from this class to the
ActionController module (think of '::' as similar to '..' when defining paths in the
href attribute of an HTML <a> element).

Catching General Application-Level Errors
Occasionally, your application will throw errors that aren't due to user error, but
down to bugs or parts of your infrastructure disappearing (e.g. the MySQL server
breaking). Try stopping your MySQL server and see what happens to your application:
because you've defined rescue_action_in_public, you will get a Mysql::Error
in the development environment; or your exception template (app/views/shared/
exception.rhtml) in the production environment, sans error message.

As we can't be sure of all the sundry error messages we might possibly suffer, we
just need to apply a generic else to our current error catching code to handle all
of them:

protected
def rescue_action_in_public(exception)
 if exception.is_a?(ActiveRecord::RecordNotFound)
 @message = "No record with that ID could not be found"
 elseif exception.is_a?(::ActionController::UnknownAction) or
 exception.is_a?(::ActionController::RoutingError)
 @message = "Page not found"
 else

 @message = "The application is not currently available"

 end

 render :template => 'shared/exception'
end

Chapter 8

[351]

Catching "Rails has Fallen Over" Errors
This type of error is a different kettle of fish, and requires a different approach.
We're talking drastic errors: the kind where Rails itself implodes, and the application
doesn't even raise its head above the parapet. This can happen if FastCGI is running
your application and ties itself in knots, for example. The end user gets the dreaded
"application error" as a response:

Application Error-
Rails application failed to start properly

These kinds of errors are unpredictable and hard to produce on demand. The
response from the server also varies according to the type of server. For example, if
you're running FastCGI under Apache, you will typically be seeing an error returned
by Apache: the request never reaches Rails, as Rails itself isn't running properly.

The exact text rendered for this kind of error is defined at the bottom of the file
RAILS_ROOT/public/.htaccess:

ErrorDocument 500 "<h2>Application error</h2>Rails application failed
to start properly"

This file is an Apache control file, which tells Apache what to do if an error occurs
inside a Rails application running under CGI or FastCGI. If you want some text
more in keeping with your application, you can either manually code some HTML
here; or (better) create a custom HTML error page, styled in the same way as your
application, and set the ErrorDocument directive to point at that. There is a template
for this in public/500.html already, so you can edit that as a starting point; then, to
set that as the error document, change the ErrorDocument directive to:

ErrorDocument 500 /500.html

If you are running an application under Mongrel, with Apache sitting in front of it
acting as a proxy, the most likely error you'll get will be this one (a 503, rather than a
500 error):

Service Temporarily Unavailable
The server is temporarily unable to service your request due to
maintenance downtime or capacity problems. Please try again later.

Extending the Application

[352]

If you see this error, it means your Mongrel process needs restarting. See Chapter 9
for more information about keeping an Apache/Mongrel combination up
and running.

Adding an Authentication System
When a web client makes requests to a web server, the server's default behavior is to
treat each request in isolation from those around it. If the client makes three requests
in a row, for example, there is no default sequencing information in those requests
to tie them together: to all intents and purposes, they may as well come from
different clients. This makes it very difficult to provide continuity between different
responses: for example, if the client is filling a shopping basket, how does the server
tell that the three requests relate to a single basket, rather than three separate ones?

This is where cookies come in. A cookie originates on the server and is sent to the
client: the server is effectively saying, "I don't know who you are, but if you send this
cookie back to me with your next request, I can keep track of you." Each time a client
makes a request to a server it scans its stored cookies (typically held in text files)
and sends back any that originated from that server. Effectively, the client is saying
"Here's that cookie you sent me, which proves who I am. This request relates back to
the other one I made a few seconds ago."

Cookies can store any type of textual information (including serialized objects), but
their most common use is as an identifier for a session: a sequence of requests from
a single client. On the first request from a client, the server responds by setting a
session ID cookie on the client and reserving a "scratch pad" for data relating to the
session, which could be a file on the server's file system or some space in a database
table. As the client subsequently interacts with the server (e.g. adding items to a
shopping basket), the server writes that information onto the scratch pad. It knows
which pad to use, as each request from the client carries the identifying session ID.
The data stored on the server is a part of the client session; but the only data passing
between the client and the server is an identifier for that session: a pointer to the
scratch pad.

This is important, because it is how most web applications implement authentication.
The basic pattern is as follows:

1. The client requests a protected page in the application.
2. The server sends a session identifier (a cookie) to the client. This cookie

should be sent back to the server with each subsequent request from the
client. Plus, as the client requested a protected page, but hasn't logged in yet,
the server redirects the client to the login page.

Chapter 8

[353]

3. The client receives the redirection to the login form, as well as the Set-
Cookie instruction from the server.

4. The client makes a new request for the login page, sending the session
identifier cookie with it.

5. The server responds by sending an HTML form asking for the client's login
credentials.

6. The client fills in the username and password fields and submits them back
to the server. The session identifier cookie is again sent with the request.

7. The server tries to find a record in the user database with a username and
password matching those submitted by the client:

a. If a record exists, the server puts a mark in the client session to show
that they have logged in successfully, and redirects the client to the
protected page they requested.

b. If the record doesn't exist, the server shows the login form again and
denies access to the protected page.

This is the pattern we're going to follow for Intranet's authentication system.
Before we do that, though, we'll have a brief look at how sessions and cookies are
implemented in Rails.

Cookies and Sessions in Rails
Session handling is turned on by default in Rails. This means that the session
identifier cookies are already being transmitted automatically between the web
browser and the Intranet application, even though we haven't done anything yet.

To see this happening, you'll need some kind of tool that can interrogate
request and response headers (e.g. LiveHTTPHeaders in Firefox, from
http://livehttpheaders.mozdev.org/). As an example, when the URL
http://localhost:3000/people was requested from Intranet, the following
Set-Cookie header came back in the response:

Set-Cookie: _Intranet_session_id=69289c7593407d1a5cadefd3de09a8e7;
path=/

Extending the Application

[354]

Notice that this is a cookie which expires when the browser closes (there's no explicit
expiry date set). Also, note that the cookie is called _Intranet_session_id. The
name of this cookie comes from a setting in the ApplicationController class (in
app/controllers/application.rb):

class ApplicationController < ActionController::Base
 session :session_key => '_Intranet_session_id'

 # ... other methods ...
end

Each application has its own :session_key setting, so that cookies for an application
don't get mixed with cookies from unrelated applications on the same domain. You
can change this name if you wish, but for our purposes we can leave it as it is.

On subsequent requests, the client sends back the session ID cookie:

Cookie: _Intranet_session_id=69289c7593407d1a5cadefd3de09a8e7

The Rails application can store data relating to this session via the session method
on controllers. For example, if we wanted to store the date and the time when
someone's session started, we might do this in the ApplicationController class:

class ApplicationController < ActionController::Base
 before_filter :track_login_time

 # Set the :login_time in the session if not already set
 protected
 def track_login_time
 session[:login_time] ||= Time.now

 end
end

Session data relating to the client is stored as a hash; the session method exposes
this hash and enables the application to store values in it or retrieve values from it. If
you want to destroy a session at any time, use:

reset_session

Similarly, we can set and retrieve cookies using the cookies method on a controller.
For example, we might do something like record a user's font size preference in a
cookie, which expires in two years' time:

def set_preference
 cookies[:font_size] = {:value => 'small',
 :expires => 2.years.from_now}
end

Chapter 8

[355]

Note that the hash can also contain other standard cookie options, such as :secure,
:path, and :domain: see the documentation for the ActionController::Cookies
module for more details.

The preceding code sends this header in the response:

Set-Cookie: font_size=small; path=/; expires=Fri, 20 Feb 2009 08:03:27
GMT

Each time the client comes back to the application, providing the cookie hasn't
expired, the preference is sent as a request header:

Cookie: font_size=small

And Rails can pick up the font size preference from the cookies inside a controller:

font_size = cookies[:font_size]

Building the Authentication System
Now that we've seen how to manage sessions in Rails, we are ready to start putting
together the components required for the authentication system. These are:

1. A User model, which stores usernames and passwords in the users table in
the database.

2. An index action to display the login form. To keep things simple, we'll
add a dedicated login_controller.rb to manage this and other
login-related actions.

3. A check_credentials action, to check submitted credentials and either
redirect the user back to the protected page they requested (if they logged in
successfully), or show the login form.

4. A logout action to reset the user's session and log them out. This is also
useful during testing.

5. A before_filter on our controllers to authenticate the user before
permitting them to perform certain actions. In the case of our application, we
want to protect any action that can modify the database, i.e. create, update,
and delete. The employees' action on CompaniesController is a trickier
one, as it both displays and allows editing of employees: in this case, it makes
sense to disable the editing buttons where the user isn't logged in, rather than
deny access to the action altogether.

Extending the Application

[356]

The User Model
First generate the User model from the command line (inside RAILS_ROOT):

$ ruby script/generate model User

Edit db/migrate/004_create_users.rb to set up the columns for the users table:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table :users do |t|
 t.column :username, :string, :null => false

 t.column :passwd, :string, :null => false

 t.column :last_login, :datetime

 end
 end

 def self.down
 drop_table :users
 end
end

Note the column name passwd (instead of password) as "password" is a reserved
word in MySQL, and can create problems when you're working with the
MySQL console.

Apply the migration to the database:

$ rake db:migrate

A few simple modifications to the User class itself will also improve security and
reliability. Firstly, some validation to make sure a username only exists once within
the users table; secondly, validation to ensure a user has both a username and a
password; and finally, application of a one-way digest to passwords stored in
the database.

The first two of these measures are self-explanatory. The final measure, using a
digest of the password, means that passwords are stored in a form that prevents
them from being read from the database directly: instead of being stored as plain
text, they will be stored as an SHA1 digest. SHA1 is a hash algorithm that converts
a text string into a longer, random-looking string; retrieving the original string from
the digested version of the string is nigh-on impossible. For example, for the plain
text 'elliot', the SHA1 digest is:

dee6300e151043f915cc24dbc1409935bc4ae592

Chapter 8

[357]

The advantage of this approach is in protecting passwords from people who might
read the users table in the database (e.g. administrators, or people who've stolen it).
Even with access to the table, the user's password is not visible.

Here's how the User class is implemented (in app/models/user.rb) to perform the
required validations and to implement digested passwords:

require 'digest/sha1'

class User < ActiveRecord::Base
 validates_presence_of :username
 validates_uniqueness_of :username
 validates_presence_of :passwd

 def passwd=(pwd)
 write_attribute('passwd', Digest::SHA1.hexdigest(pwd))
 end
end

The unusual parts of this is the require 'digest/sha1' statement at the top, which
pulls in the SHA1 digest library, and the passwd= method. This method overrides the
default mutator method for the passwd field, as supplied by ActiveRecord. Instead,
the custom method intercepts the passwd attribute before it reaches the database,
applying an SHA1 digest to it as it is set.

While some kind of management interface for users would make life easier in the
long term, the console provides an acceptable temporary measure for adding users.
Add at least one for testing purposes:

$ ruby script/console

Loading development environment.

>> u = User.new :username => 'elliot', :passwd => 'police73'

=> #<User:0xb711f848 @attributes={"passwd"=>"bdbc07452121cfe2f35ff510b291
c09b2418d2db", "username"=>"elliot"}, @new_record=true>

>> u.save

=> true

Another alternative would be to add a migration to create the default
system users, or maybe write a batch script to add them from a tab-
separated file.
It's also possible to use something other than the database to store user
credentials, e.g. an LDAP server, and interface with this from your
Rails application.

Extending the Application

[358]

Displaying the Login Form
The next component is the controller for managing the login process. Generate it first:

$ ruby script/generate controller login index logout

We passed both the name of the controller (login) and the names of the actions we
want to define for it (index, logout). This adds empty method definitions for the
actions to app/controllers/login_controller.rb, and creates an empty view
template for each too.

The index action will just display a simple login form, which we define by modifying
app/views/login/index.rhtml:

<h2>Please login to continue</h2>
<% form_tag :action => 'check_credentials' do -%>
<p><%= label :login, 'Username' %></p>
<p><%= text_field 'login', 'username' %></p>
<p><%= label :login, 'Password' %></p>
<p><%= password_field 'login', 'passwd' %></p>
<p><%= submit_tag "Submit" %></p>
<% end -%>

Note that the action attribute for the form is set to the check_credentials action
on the LoginController: we'll write that next.

Checking Submitted Credentials
The check_credentials action will retrieve the username and password from the
submitted form and use them to look up a record in the users table with matching
username and password. If a record exists, the credentials submitted correctly
identify a user, and they can be logged in; if not, access is denied.

As the action will be needed to perform a database lookup, we'll need some code to
perform the query. This code should be a part of the model. (Recall that the model
implements the business logic of the application. Controllers should be lightweight,
with as little involvement in the database as possible, so we don't want the database
query code in the LoginController.) So the first step is to write a method for the
User model, which can look up a user by his/her username and (hashed) password:

class User < ActiveRecord::Base
 # ... other methods, validation etc.
 def self.authenticate(username, passwd)
 hashed_passwd = Digest::SHA1.hexdigest(passwd)
 user = self.find_by_username_and_passwd(username, hashed_passwd)
 return user
 end
end

Chapter 8

[359]

The authenticate method takes a username and password, hashes the password,
then uses a dynamic finder (see: Finding Records Using Attribute-Based Finders in
Chapter 4) to search for a matching record. The return value is a User instance if one
was retrieved, or nil if the finder fails to retrieve a record. We can write a unit test to
check if the method works correctly (in test/unit/user_test.rb):

require File.dirname(__FILE__) + '/../test_helper'

class UserTest < Test::Unit::TestCase
 def setup
 User.new(:username => 'elliot', :passwd => 'police73').save
 end

 def test_authenticate
 assert User.authenticate('elliot', 'police73')
 assert !(User.authenticate('elliot', 'bilbo'))
 assert !(User.authenticate('frank', 'police73'))
 end
end

and run it with:

$ rake test:units

Now that this method is in place, we can add a first version of the
check_credentials action:

class LoginController < ApplicationController
 def index
 end

 def logout
 end

 def check_credentials

 username = params[:login][:username]

 passwd = params[:login][:passwd]

 user = User.authenticate(username, passwd)

 redirect_to_index "Logged in OK? " + (!(user.nil?)).to_s

 end

end

For now, this action just redirects to the login page, displaying Logged in OK?
true if the login was successful, or false otherwise. Try it by going to
http://localhost:3000/login and entering some valid/invalid credentials,
making sure that the controller responds correctly.

Extending the Application

[360]

To start transforming this simple outline into a full-fledged authentication system,
we'll do several things:

1. Set a session variable called :logged_in to true when the user successfully
logs in. Otherwise, set it to false.

2. When a user logs in successfully, store their User object in the session. This
is useful for personalization. We'll also set the date and time of the login in
their user record.

3. When the user requests a protected page, store its URL in the session
as :destination before redirecting them to the login page. If the user
successfully logs in, redirect them back to that original page; if they fail to
login, redirect back to the login form again.

Here's the implementation:

class LoginController < ApplicationController
 def index
 end

 def check_credentials
 username = params[:login][:username]
 passwd = params[:login][:passwd]

 # Default state is NOT to be logged in.
 session[:logged_in] = false

 user = User.authenticate(username, passwd)
 unless user.nil?
 # Set a marker in the session to show user is logged in.
 session[:logged_in] = true

 # Set a login success notice.
 flash[:notice] = "You have logged in successfully"

 # Store the login date and time.
 user.last_login = Time.now
 user.save

 # Store the user in the session.
 session[:user] = user

 # Set the destination to the protected page originally
 # requested, or to the list of people if coming in fresh.
 destination = session[:destination] ||
 {:controller => 'people'}
 else
 # Redirect back to the login form.
 destination = {:controller => 'login'}

 # Set a login failure notice.

Chapter 8

[361]

 flash[:notice] = "Your username and/or password were not
recognised"
 end

 redirect_to destination
 end
end

Logging Out
The logout action on the LoginController is simple; it resets the user's session and
redirects them back to the home page for the application:

class LoginController < ApplicationController
 # ... other actions

 def logout
 reset_session
 flash[:notice] = "You have logged out"
 redirect_to :controller => 'people'
 end
end

With these components in place, you can now test the login process. Log in at
http://localhost:3000/login; you should be redirected to the people list. Now
logout at http://localhost:3000/logout; you should see a You have logged
out message.

It's hard to tell whether you are logged in or logged out at the moment, but a small
addition to the menu (in app/views/layouts/application.rhtml) can help here:

<div id="menu">
...

<p>
<% if session[:logged_in] -%>

Logged in as <%= session[:user].username %>;

<%= link_to 'Logout', :controller => 'login', :action => 'logout' %>

<% else -%>

<%= link_to 'Login', :controller => 'login' %>

<% end -%>

</p>

</div>

This displays the user's username and a logout link if they are already logged in;
otherwise, it shows a login link.

Extending the Application

[362]

Protecting Actions
The final step is to protect some actions on controllers to prevent access by users
who aren't logged in. Firstly, write a private method called authorize on the
ApplicationController class, which checks whether a user has the :logged_in
variable set to true in their session:

If they haven't, the URL of the current page is stored in the session (under the
:destination key, as used in the check_credentials action) and the user
is immediately redirected to the login form.
If they have, no action is taken, and the rest of the page can be displayed.

Here's the method (in, app/controllers/application.rb):

class ApplicationController < ActionController::Base
 # ... other methods ...

 protected
 def authorize
 unless (true == session[:logged_in])
 session[:destination] = request.request_uri
 redirect_to :controller => 'login'
 return false
 end
 end
end

Note that the method explicitly returns false: this ensures that the filter chain halts
at this point, no other filters are executed, and the user is immediately redirected.

To apply this method, we'll use a before_filter assigned to the actions we want
to protect. For example, we can put it inside the PeopleController to protect any
destructive actions:

class PeopleController < ApplicationController
 before_filter :authorize, :except => [:index, :search, :show]

 # ... other before_filter settings ...
 # ... other methods ...
end

Note that authorize is the first before_filter (they are applied in the same order
as listed within the class definition). We use an :except option rather than :only
so that the default is to authorize every action. If we add new actions, this ensures
that the default is to protect them; if we want them to be public; we have to explicitly
expose them.

•

•

Chapter 8

[363]

To test this, log out and browse around the index, search, and show pages for
people. You should be able to see them fine. Now, try to edit a person: you should be
redirected to the login form. Once you log in, you should be redirected back to the
original edit page you requested and be able to modify the person's details.

You can set a similar filter on the CompaniesController to protect that too:

class CompaniesController < ApplicationController
 before_filter :authorize, :except => [:index]

 # ... other before_filter settings ...
 # ... other methods ...
end

Finally, we need to protect AddressesController. Recall that this just uses the
scaffold, so we need to enable the scaffold actions that list all addresses or show a
single record: index and show, respectively:

class AddressesController < ApplicationController
 before_filter :authorize, :except => [:index, :show]

 scaffold :address
end

Adding Simple Task Tracking
The next feature requested for Intranet is a simple task-tracking module. This will
enable users of the system to record activities they carry out with clients. Acme
staff tend to work on an individual basis with other companies, and therefore
would prefer to track activity with people rather than the companies they represent.
(However, as people are associated with companies, all the activity related to a
company can be aggregated from the tasks carried out with its employees.)

Rory and Jenny decide to implement a task list, which is displayed in a read-only
mode alongside a person's record when in the "show" view, arranged in reverse
chronological order (newest at the top). That person's tasks will also become editable
by clicking on a link next to the task.

The Task Model
As always, the first step is to create a model to represent a task. A task will need the
following fields:

title: The title of the task
description: A description of the task (optional)

•

•

Extending the Application

[364]

user_id: The member of Acme staff who "owns" the task
person_id: The person (client) the task is associated with
complete: Whether the task is complete (true/false)
start: The start date and time for the task
end: The end date and time for the task (optional)

Note that Rory and Jenny aren't aiming to produce a full-fledged project management
system. They are just aiming at a tool for recording activity with clients. Eventually, it
might grow into or be replaced by a full project management tool; for now, they have
limited time, and want to provide as much functionality as simply as possible.

Generate a model from the command line:

$ ruby script/generate model Task

Write the migration to build the tasks table (in db/migrate/006_create_tasks.rb):

class CreateTasks < ActiveRecord::Migration
 def self.up
 create_table :tasks do |t|
 t.column :title, :string, :null => false
 t.column :description, :text
 t.column :user_id, :integer
 t.column :person_id, :integer
 t.column :complete, :boolean, :null => false,
 :default => false
 t.column :start, :datetime, :null => false
 t.column :end, :datetime
 end
 end

 def self.down
 drop_table :tasks
 end
end

As tasks have relationships to both a Person and a User, these relationships must
be specified in the Task model (app/models/task.rb). We also need to validate
the fields:

class Task < ActiveRecord::Base
 belongs_to :person
 belongs_to :user
 validates_presence_of :title, :message => 'Please supply a title'
 validates_associated :person, :message => 'The specified person is
invalid'

•

•

•

•

•

Chapter 8

[365]

 validates_associated :user, :message => 'The specified owner is
invalid'
 validates_presence_of :start,
 :message => 'Please set a start date and time for the task'
end

The other side of the relationship to Person also needs to be specified
(in app/models/person.rb), as we'd like to be able to show all the tasks relating
to a person. This requires a has_many method call (highlighted below) inside the
Person class definition:

class Person < ActiveRecord::Base
 include AddressHandler

 belongs_to :company
 belongs_to :address
 has_many :tasks, :order => 'complete ASC, start DESC',

 :dependent => :nullify

 # ... other methods ...
end

Notice that the relationship includes the option :order => 'complete ASC, start
DESC', to ensure that the associated tasks are retrieved in ascending order of whether
they are complete (incomplete tasks first), then descending order of their start date-
times. This is the desired order for displaying tasks alongside a person's full details.
We also include a :dependent => :nullify option, so that if a person's record is
destroyed, any of their dependent tasks have their person_id set to NULL.

We can also specify a has_many association in the User model:

class User < ActiveRecord::Base
 has_many :tasks, :order => 'complete ASC, start DESC',
 :dependent => :nullify

 # ... other methods ...
end

Again, the :dependent => :nullify option is specified, so that any tasks associated
with a user have their user_id attribute set to NULL, if that user is deleted.

The Tasks Controller
Next, generate the controller that will handle CRUD operations for tasks:

$ ruby script/generate controller tasks

Extending the Application

[366]

The CRUD actions themselves are simple to add into the controller: as they only have
to deal with a single model (Task) in isolation, they don't have the complexity of the
previous controllers we've created. The actions look like this:

class TasksController < ApplicationController
 before_filter :authorize, :except => [:index, :show]

 before_filter :get_task, :only => [:show, :edit, :update,

 :confirm, :delete]

 def index
 @page_title = "All tasks"
 @tasks = Task.find(:all, :order => 'title')
 end

 def show
 @page_title = "Task: " + @task.title
 end

 def new
 @page_title = "Adding new task"
 @task = Task.new
 end

 def create
 @task = Task.new(params[:task])
 if @task.save
 redirect_to_index "Task added successfully"

 else
 @page_title = "Adding new task"
 render :action => 'new'
 end
 end

 def edit
 @page_title = "Edit " + @task.title
 end

 def update
 if @task.update_attributes(params[:task])
 redirect_to_index "Task updated successfully"

 else
 @page_title = "Edit " + @task.title
 render :action => 'edit'
 end
 end

 def confirm
 confirm_delete(@task,

 "Are you sure you want to delete " + @task.title + "?")

Chapter 8

[367]

 end

 def delete
 do_delete(@task)

 end

 private

 def get_task

 @task = Task.find(params[:id])

 end

end

We're starting to see the code we've written previously paying off now: the
highlighted sections show the use of authentication via the authorize method;
application of a before_filter to fetch a task if the user is showing, editing or
deleting it; use of the generic confirm_delete and do_delete methods to delete
a task; and use of our generic redirect_to_index method. This demonstrates the
advantages of constant refactoring, and how Rails enables us to create our own
powerful macros for common patterns.

Task Views
We now need some view templates to go with the actions defined in the
previous section.

Here's index.rhtml (to display a table of all tasks):

<h1><%= @page_title %></h1>
<table>
<tr>
<th>Title</th><th>Actions</th>
</tr>
<% @tasks.each do |task| -%>
<tr>
<td>
<%= link_to task.title, :action => 'show', :id => task.id %>
</td>
<td>
<%= link_to 'Edit', :action => 'edit', :id => task.id %> |
<%= link_to 'Delete', :action => 'confirm', :id => task.id %>
</td>
</tr>
<% end -%>
</table>

Extending the Application

[368]

Here's show.rhtml (to display one task):

<h1><%= @page_title %></h1>
<p>(<%= datetime_span(@task.start, @task.end) %>)</p>
<%= content_tag('p', @task.description) if @task.description %>
<p><%= show_complete(@task) %> |
Owner: <%= @task.user.username %></p>
<p><%= link_to 'Edit', :action => 'update', :id => @task %> |
<%= link_to 'Delete', :action => 'delete', :id => @task %> |
<%= link_to 'Back to index', :action => 'index' %></p>

Note that the above template calls a helper method in app/helpers/application_
helper.rb called datetime_span (first highlighted section). This helper displays a
start and (optionally) an end date/time in human-readable form; if both are present,"
to " is placed between them:

module ApplicationHelper
 # ... other helpers ...
 # Display a start/end datetime span in human readable form. If
 # both are given, ' to ' is placed in the middle of the string.
 #
 # +start_datetime+ is a Datetime instance,
 # +end_datetime+ is optional.
 def datetime_span(start_datetime, end_datetime=nil)
 str = start_datetime.strftime('%Y-%m-%d@%H:%M')
 if end_datetime
 str += ' to ' + end_datetime.strftime('%Y-%m-%d@%H:%M')
 end
 str
 end
end

Another helper, show_complete (from app/helpers/tasks_helper.rb, as it works
with a task's complete attribute and is thus specific to tasks) is used to display the
complete status of the task. If the task is complete, this helper returns the string
"Complete"; if it is incomplete, the helper returns a tag with a class attribute
set to "exception" and content "Incomplete". When rendered in the browser, any
incomplete tasks appear with a red "Incomplete" message:

module TasksHelper
 def show_complete(task)
 if task.complete?
 'Complete'
 else
 content_tag('span', 'Incomplete', :class => 'exception')
 end
 end
end

Chapter 8

[369]

Here's the new.rhtml template:

<% form_for :task, @task, :url => {:action => 'create'} do |f| %>
<%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

And the template for edit.rhtml:

<% form_for :task, @task, :url => {:action => 'update', :id => @task.
id} do |f| %>
<%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

Finally, the most complicated template is _form.rhtml (called by both edit.rhtml
and new.rhtml). This follows the pattern of previous forms, like the one we created
for people in Chapter 5 (Creating a Person). As the form needs to show both the owner
of the task and the person associated with the task, we first need to retrieve the
system users and people to populate the two drop-downs in the TaskController.
We achieve this with get_users and get_people methods, which are called using a
before_filter:

class TasksController < ApplicationController
 before_filter :get_people, :only => [:edit, :update, :new,
 :create]
 before_filter :get_users, :only => [:edit, :update, :new, :create]

 # ... other methods ...

 private
 def get_people
 @people = Person.find_all_ordered
 end

 private
 def get_users
 @users = User.find(:all, :order => 'username')
 end
end

With all the required data made available by the controller, we can now create the
form itself in _form.rhtml:

<h1><%= @page_title %></h1>
<p>Required fields are marked with "*".</p>

<p><%= label :task, 'Title', :required => true %>
<%= f.text_field :title %>
<%= error_message_on :task, :title %></p>
<p><%= label :task, 'Description' %>

Extending the Application

[370]

<%= f.text_area :description, :rows => 5, :cols => 30 %></p>
<p><%= label :task, 'Owned by user', :field_name => 'user' %>
<select name="task[user_id]">

<%= options_from_collection_for_select @users, :id, :username,
session[:user].id %>

</select>

<%= error_message_on :task, :user %></p>
<p><%= label :task, 'Associated with person', :field_name => 'person'
%>
<%= f.collection_select :person_id, @people, :id, :full_name,
:include_blank => true %>
<%= error_message_on :task, :person %></p>
<p><%= label :task, 'Complete' %> <%= f.check_box :complete %></p>

<% this_year = Time.now.year -%>
<p><%= label :task, 'Start', :required => true %>
<%= f.datetime_select :start, :start_year => this_year - 5,
:end_year => this_year + 5 %>
<%= error_message_on :task, :start %></p>
<p><%= label :task, 'End' %>
<%= f.datetime_select :end, :start_year => this_year - 5,
:end_year => this_year + 5, :include_blank => true, :default => nil
%></p>
<p><%= submit_tag 'Save' %> |
<%= link_to 'Cancel', :action => 'index' %></p>

Most of this should be self-explanatory (if a little dense). Two areas of code, which
may be unfamiliar, are highlighted:

1. The first highlighted section shows the use of options_from_collection_
for_select method to create the options for the owner drop-down. As we
want to specify a default selected option for the owner attributed (set to the
logged-in user), we can't use collection_select, as this method does not
allow a default selected option to be supplied.

2. The check_box method creates an HTML <input type="checkbox" ...>
element, which can be set using a Boolean attribute on a model (in our case,
the complete attribute).

This completes the basic CRUD controller and views for tasks. To try them out,
navigate to: http://localhost:3000/tasks, create a few tasks, then show, edit,
and delete them, to test out all of the actions. Finally, ensure that you add a few tasks
to the database so that you have some data to work with in the next section.

Chapter 8

[371]

To be really useful, Intranet should go beyond these simple views and show tasks
attached to a person. This is the context in which tasks are going to be used, so
it makes sense to show them with a person's details, rather in an isolated "task
administration" area. To accomplish this with whom we need to embed a list of
records (tasks) inside their "parent" record's display (the person, the tasks are
associated). This is slightly different from what we've done previously, where we've
showed a parent record and one associated record simultaneously: for example,
in our form, which enabled editing a person and their address at once (see: Editing
Multiple Models Simultaneously in Chapter 5). Instead, we now need a way to show
multiple tasks associated with a person, and enable users to easily add new tasks or
edit/delete the existing ones in the list. The next section describes how to do this.

Showing Tasks for a Person
As tasks are managed in the context of a person, the obvious thing to do is to display
them alongside a person's details in app/views/people/show.rhtml. We'll do this
by separating the template into two <div> elements: one containing the person's
details (the current content of the show.rhtml template), and the other containing
the list of tasks associated with them.

First, wrap the entire content of the app/views/people/show.rhtml template in a
<div> element with id="left_panel":

<div id="left_panel">

<h1><%= @page_title %></h1>
<p>Job title: <%=d @person.job_title %></p>
...
<p><%= link_to 'Edit', :action => 'update', :id => @person %> |
<%= link_to 'Delete', :action => 'delete', :id => @person %></p>
</div>

Next, add the new <div> element (to hold the task list) at the bottom of the template
with id="right_panel":

...
<%= link_to 'Delete', :action => 'delete', :id => @person %></p>
</div>

<div id="right_panel">

<h1>Tasks</h1>

</div>

Extending the Application

[372]

Now we add some CSS styling (in public/stylesheets/base.css) to position the
two <div> elements alongside each other:

#left_panel {
 float: left;
 width: 60%;
}
#right_panel {
 float: right;
 width: 39%;
 top: 0em;
 position: relative;
 background-color: #EEE;
 padding-left: 1%;
}

Browse to the details for a person to check that the layout is as expected. For
example, in Firefox the page looks like this:

Notice the area on the right for listing tasks. Now, create a partial app/views/
tasks/_task.rhtml to show a single task for a person. (As a starting point, you
can copy the full show.rhtml template.) We'll use this partial once for each task
associated with a person, and render the results inside the <div id="right_panel">
element of the person's show template. Here's what the task partial looks like:

Chapter 8

[373]

<div class="task">
<p><%= task.title %></p>
<p>(<%= datetime_span(task.start, task.end) %>)</p>
<%= content_tag('p', task.description) if task.description %>
<p><%= show_complete(task) %> |
Owner: <%= task.user.username %></p>

<p><%= link_to 'Edit', :controller => 'tasks', :action => 'edit',
:id => task.id %> |
<%= link_to 'Delete', :controller => 'tasks', :action => 'confirm',
:id => task.id %></p>
</div>

The main changes were:

1. Place the whole task inside a <div> element with class="task". This will
make it easy to style each task when displayed in a list.

2. Convert references to the @task instance variable into references to a local
task variable. This is because we're going to be calling the partial from inside
the show.rhtml template for the PeopleController, and setting the task
variable once for each of the person's tasks.

3. Replace the heading with a <p> element containing the task title.
4. Remove the Back to index link (irrelevant in the context of a partial).
5. When creating the Edit and Delete links with link_to, pass a :controller

=> 'tasks' option, as deletions and updates will be managed by the
TasksController (not the PeopleController, which is the context in which
the template is rendered).

To render a person's tasks inside app/views/people/show.rhtml, edit the bottom
few lines of the template to look like this:

<div id="left_panel">
<h1>Tasks</h1>

<p><%= link_to 'Add a new task', :controller => 'tasks', :action =>
'new', :default_person_id => @person.id %>

<% tasks = @person.tasks -%>
<% if tasks.empty? -%>

<p>No tasks are associated with this person</p>

<% else -%>

<% for task in tasks -%>
<%= render :partial => 'tasks/task', :locals => {:task => task} %>
<% end -%>

<% end -%>

</div>

Extending the Application

[374]

Points to note:

A link to add a new task is shown in a paragraph just under the Tasks
heading. Note that this link includes the person's ID as the default_person_
id option. This means that when creating a new task, we can associate the
person with it by default.
If a person has no associated tasks, an explanatory message is displayed; if
the person does have associated tasks, they are rendered by a loop, which
runs the _task.rhtml partial once for each task.
The _task.rhtml partial is referenced using 'tasks/task', as we are
rendering it from within the PeopleController. Therefore, we need to
specify the "absolute" path of the partial (relative to app/views).
On each iteration, the current task is passed into the rendered partial.

However, if you try to display a person's details at this point, you get this error:

undefined method 'show_complete' for #<#<Class:0xb72309f8>:0xb72309d0>

(NB you will get a different <Class> string.) Why is our show_complete helper
causing this error to be thrown? Remember, we are trying to render a task in the
context of PeopleController. By default, the PeopleController class only knows
about application-level helpers (defined in app/helpers/application.rb) and its
own helpers (defined in app/helpers/people_helper.rb); and show_complete
is a task helper (in app/helpers/tasks_helper.rb), making it inaccessible to
PeopleController.

To use the task helpers inside the PeopleController, simply add a line to the
class definition (in app/controllers/people_controller.rb) to include the
TasksHelper module in the controller:

class PeopleController < ApplicationController
 helper TasksHelper

 # ... other methods ...
end

•

•

•

•

Chapter 8

[375]

Now, when you display a person's details (provided they have an associated task),
you should see something like:

This is close to what we want. One remaining issue is that the tasks are a bit spread
out: we can afford to style them in a more compact way, so add a few more lines to
public/stylesheets/base.css to reduce the white space between the paragraphs:

.task {
 padding: 0.5em 1em 0.5em 1em;
 margin-top: 0.5em;
 font-size: 0.9em;
}
.task p {
 margin: 0em;
}

Extending the Application

[376]

This gives us a slightly better layout (notice how the tasks list is more compact):

Redirecting to a Person after Adding or
Editing a Task
The application now lists the tasks associated with a person alongside the person's
details. When a user clicks on an Edit link for a task, or Add a new task, they are
taken through to the tasks controller and the appropriate action. However, once their
edits are completed, they are redirected back to the tasks index, rather than to the
person associated with the task.

What we need to do instead is redirect the user back to the show action for the person
associated with the task instead of to the list action. To do this, we first need to
alter the create and update methods in the TasksController class, which otherwise
just redirect to the TasksController index page:

class TasksController < ApplicationController
 # ... other methods ...

 def create
 @task = Task.new(params[:task])
 if @task.save
 flash[:notice] = "Task added successfully"

Chapter 8

[377]

 redirect_to_person @task.person_id

 else
 @page_title = "Adding new task"
 render :action => 'new'
 end
 end

 def update
 if @task.update_attributes(params[:task])
 flash[:notice] = "Task added successfully"

 redirect_to_person @task.person_id

 else
 @page_title = "Edit " + @task.title
 render :action => 'edit'
 end
 end

 private

 def redirect_to_person(person_id)

 if person_id

 redirect_to :controller => 'people', :action => 'show',

 :id => person_id

 else

 redirect_to :action => 'index'

 end

 end

end

Rather than redirecting to the index action, these two actions now call the
redirect_to_person method, defined as a private method on this controller.
If a person has been assigned to the task, a redirect to that person's record is
performed; if not, the tasks index is displayed instead. Now, if you create or update
a task, you will be redirected back to the associated person's record when the save
completes. If the task doesn't validate, you'll see the form again with validation
errors, as per usual.

In the next few sections, we'll see how to really polish up the redirections, including
redirecting correctly after deletions, handling the Cancel link, and setting a default
person for new tasks.

Extending the Application

[378]

Alternatives to the "external edit with redirect" approach
While we took the approach of editing a person's tasks on a separate page
then redirecting back to the person's details, there are a couple of other
approaches we could have taken instead.
Integrated forms
This is the approach we took with addresses: we incorporated the address
form into the person (and company) form. However, we were only
dealing with a single address at a time there. In the case of people and
tasks, we could potentially have multiple tasks to edit, and we don't want
to display an editing form for each individual task.
In-place editors
We could attach an in-place editor to each task so that it becomes editable
in the page when clicked (see Chapter 7 Improving the User Experience
for examples of in-place editing). This is an elegant solution, as the user
never leaves the page, so there are no lengthy round-trips to the server.
However, it only works if AJAX is available.
The advantages of the external edit with redirect approach (used here) are
that it requires no JavaScript, but remains reasonably clean to implement,
as we don't need a separate edit form for each task.

Redirecting after a Deletion
Recall the actions we added to ApplicationController, to manage generic
deletions for any controller (see A	Shared	View	to	Confirm	Deletions in Chapter 5).
While they work fine, they assume that after a deletion we want to return to the
index action of the controller. In the current case, we would prefer to redirect back to
the PeopleController's show action, for the person whose task we just deleted.

The solution is to make the do_delete (in app/controllers/application.rb)
action more generic, so that it will accept a hash which specifies a URL to redirect to:

class ApplicationController < ActionController::Base
 # ... other methods ...
 private
 def do_delete(object, redirect_options=nil)
 if 'yes' == params[:confirm]
 object.destroy
 object_name = object.class.name.humanize

 flash[:notice] = object_name + ' deleted successfully'
 redirect_options ||= {:action => 'index'}
 redirect_to redirect_options
 end
 end
end

Chapter 8

[379]

The changes are highlighted. Note how we can now pass in a redirect_options
argument, which defaults to nil. Within the method, we set redirect_options
to a hash just containing {:action => 'index'} if it hasn't been passed in as an
argument (that's what ||= does). Finally, we use redirect_to and pass it this hash.
Note that this change doesn't break any of the previous calls to this method in other
controllers, as we set a default for the redirect_options parameter (nil) in the
method definition.

To use this in the TasksController, we just modify the delete action so that it
redirects back to the person associated with the task just deleted:

class TasksController < ApplicationController
 # ... other methods ...

 def delete
 redirect_options = { :controller => 'people',
 :action => 'show', :id => @task.person_id }

 do_delete(@task, redirect_options)
 end
end

Handling the Cancel Link
The Cancel link available when creating or updating a task should return the user
to that person's details. We can manage this by redirecting to a person's details if the
task has been assigned to a person, or to the tasks index if not. Edit the Cancel link in
app/views/tasks/_form.rhtml:

<p><%= submit_tag 'Save' %> |
<%
if @task.person_id
 cancel_url_options = {:controller => 'people', :action => 'show',
 :id => @task.person_id}
else
 cancel_url_options = {:action => 'index'}
end
-%>
<%= link_to 'Cancel', cancel_url_options %></p>

Setting a Default Person for a New Task
The last step is a small one, but can make quite a difference to usability. What we'll
do is set a default person for new tasks, based on the ID of the person whose tasks
we're editing.

Extending the Application

[380]

This is actually very simple, and just requires a small change to the
TasksController's new action (highlighted):

class TasksController < ApplicationController
 # ... other methods ...

 def new
 @page_title = "Adding new task"
 @task = Task.new
 if params[:default_person_id]

 @task.person = Person.find(params[:default_person_id])

 end

 end
end

If a default_person_id has been supplied in the querystring, the appropriate
Person instance is retrieved from the database and assigned to @task (via the
person= method). Then, when the form for creating a task is displayed, the person
is pre-selected from the Associated with person drop-down box, as the person has
already been assigned to the task. If a task is being created without a person ID
specified, the drop-down box for selecting the person defaults to the blank option at
the top.

Summary
This solution is still not perfect. For example, if you update a person's details, their
tasks aren't even mentioned. It may be necessary to include the task listing in the
edit.rhtml template, as well as in show.rhtml. Also, every time we edit, delete,
or add a task we are redirected back to the record of the person associated with the
task: in some cases, we may just want to bulk-edit tasks, and redirect back to the
task index instead. These refinements are possible, but the system we've built so far
covers the common case, where tasks are edited in the context of a person.

However, the simple task manager we've built is fairly flexible and intuitive
for users. More importantly, writing it has enabled us to explore techniques for
managing a list of child objects from inside their parent, without adding too much
complexity and retaining cross-browser compatibility. This is a common use case,
and one for which there is little guidance elsewhere.

Chapter 8

[381]

Uploading and Attaching Files
The final feature request for Intranet is a facility for uploading files and associating
them with tasks. Rails provides some simple, PHP-like wrappers around standard
HTML file upload forms, which you can use in their raw form. For example, here's a
simple upload form:

<h1><%= @page_title %></h1>
<% form_tag({:action => 'receive'}, {:multipart => true}) do -%>
<p>Select a file to upload:

<%= file_field_tag('file_to_upload', :size => 40) %></p>
<p><%= submit_tag 'Upload' %></p>
<% end -%>

Note that this generates an HTML form with a file field for browsing to a local file.
The important part is the :multipart => true option passed to form_tag: this sets
the form's enctype attribute to "multipart/form-data", the encoding required
when posting files over HTTP.

The next step is to write a controller, which will render this form with its index
action, and handle uploads via the receive action (at which the above form points).
This can be placed into app/controllers/upload_controller.rb (and the view
above can go into app/views/upload/index.rhtml):

class UploadController < ApplicationController
 def index
 @page_title = 'Upload a file'
 end

 def receive
 # Get the uploaded file as an object.
 file_to_upload = params[:file_to_upload]

 # The full path to the file on the original filesystem.
 full_filename = file_to_upload.original_filename

 # Get the last part of the filename.
 short_filename = File.basename(full_filename)

 # Retrieve the content of the file.
 file_data = file_to_upload.read

 # Append a timestamp to the filename to ensure it's unique
 # and set the path to somewhere inside public/files.
 new_filename = File.join(RAILS_ROOT, 'public/files',
 Time.now.to_i.to_s + '_' + short_filename)

 # Save the file into a folder inside the Rails app.
 File.open(new_filename, 'w') { |f| f.write(file_data) }

 # Set the flash and direct back to index.
 redirect_to_index 'File uploaded successfully'
 end
end

Extending the Application

[382]

The last step is to create a files directory inside RAILS_ROOT/public, to hold the
uploaded files. Now, browse to http://localhost:3000/upload, and you should
be able to upload files to your heart's content.

This is a rough and ready file upload system. It doesn't handle multiple versions of
the same file, or attach files to other records in the database, or display the uploaded
files in any kind of list; but it does demonstrate the basic principles.

But there is a better way: by using a plugin.

Using Plugins
Rails plugins are a mechanism to embed chunks of functionality inside your
applications, extending and overlaying the basic Rails framework. Their role is
similar to a Firefox add-on, or a Drupal module: they can add new views, controllers,
helpers, migrations, generators, etc.; in fact, any Rails "component" can be bundled
inside a plugin.

Plugins are useful as they can provide you with functionality which might take
days to write, in a matter of seconds. There are dozens (hundreds?) of plugins
available, with functionality ranging from UK postcode validation (validates_as_
uk_postcode) to methods for easily building SQL queries (where) to integration
with other systems (s3, mint). They can also be useful for packaging your own code,
turning it into an easily-distributable bundle. However, for our purposes, we'll just
be using other people's plugins in this chapter.

The first step in using plugins is to find them. Repositories are typically accessible
via HTTP, but some use HTTPS or Subversion (svn). In most cases, the repository
is actually a Subversion repository exposed over HTTP, HTTPS or the Subversion
protocol; when you are installing a plugin, you are actually exporting or checking
out code from a repository (see Chapter 3 Laying the Foundations for an explanation of
Subversion concepts).

To access svn:// URLs on Windows, you will need to install the
command-line Subversion client (see Chapter 3 Laying the Foundations).

By default, Rails ships with access to the official Ruby on Rails plugins repository
(http://dev.rubyonrails.com/svn/rails/plugins/). To see a full list of the
repositories available, use the script/plugin script from the command line and
pass the discover command:
$ ruby script/plugin discover
Add http://www.agilewebdevelopment.com/plugins/? [Y/n] y
Add svn://rubyforge.org/var/svn/expressica/plugins/? [Y/n] y
Add http://soen.ca/svn/projects/rails/plugins/? [Y/n] y
...

Chapter 8

[383]

Answer Y (or press return) to each line, adding as many repositories as you like. The
list of repositories is stored in a file called .rails_plugin_sources in your home
directory (Documents and Settings on Windows, or /home/username on *nix). Each
time you use the plugin script from now on, the repositories recorded in that file are
accessed to build a list of plugins available for you to install.

If you want to add a single repository to your preferences, or manually add a
repository not in the list returned by the discover command, you can do it with:

$ ruby script/plugin source <URL for repository>

To see a list of available plugins in the repositories you've selected:

$ ruby script/plugin list

This might take a while, as the script will interrogate all the new repositories and
list the plugins they are offering (unfortunately, not alphabetically). Here's a short
fragment of a full list:

account_location http://dev.rubyonrails.com/svn/rails/plugins/
 account_location/
acts_as_taggable http://dev.rubyonrails.com/svn/rails/plugins/
 acts_as_taggable/
browser_filters http://dev.rubyonrails.com/svn/rails/plugins/
 browser_filters/
continuous_builder http://dev.rubyonrails.com/svn/rails/plugins/
 continuous_builder/
deadlock_retry http://dev.rubyonrails.com/svn/rails/plugins/
 deadlock_retry/

...

To install a plugin available from one of your preferred repositories:

$ ruby script/plugin install <name of plugin>

So, to install acts_as_taggable from the list above, you would do:

$ ruby script/plugin install acts_as_taggable

+ ./acts_as_taggable/init.rb

+ ./acts_as_taggable/lib/README

+ ./acts_as_taggable/lib/acts_as_taggable.rb

+ ./acts_as_taggable/lib/tag.rb

+ ./acts_as_taggable/lib/tagging.rb

+ ./acts_as_taggable/test/acts_as_taggable_test.rb

Extending the Application

[384]

You can see here that the plugin is downloaded a file at a time, via a svn export (i.e. a
download which disassociates the files from the repository). It ends up being installed
into the RAILS_ROOT/vendor/plugins directory, under a directory with the same
name as the plugin: in this case, RAILS_ROOT/vendor/plugins/acts_as_taggable.

A plugin can be removed with:

$ ruby script/plugin remove <name of plugin>

which deletes the plugin's directory from vendor/plugins.

An alternative to this approach is to svn checkout the plugin. This leaves the
association between the plugin and its origin Subversion repository intact, which
means that you can upgrade it easily. Install a plugin this way with:

$ ruby script/plugin install -x <name of plugin>

Passing the -x flag to the install command uses a feature of Subversion called
externals, which associates the plugin with your application's Subversion repository.
This means that each time someone checks out your application, they will also check
out the plugin from its repository (which is external to yours). It also means that each
time someone does an svn up on your application to update it, they will also update
any external plugins (installed with the -x flag) from their repositories. Note that the
plugin itself is not included in your repository: just a reference to its origin repository.

In cases where a project is going to be widely distributed (e.g. to a team or to the
public) and is already in its own Subversion repository, using the -x flag when
installing plugins is recommended.

If your application isn't itself associated with a Subversion repository,
using the -x flag when installing a plugin will throw this error message:
Cannot install using externals because this project is not
under subversion.
In this case, your only option is to install without the -x flag.

The plugin script can run a number of other commands, such as directly
installing a plugin from a URL, or listing all the plugins in a given repository. Run
the plugin script without a command specification (ruby script/plugin) to see
what's available.

Chapter 8

[385]

Using acts_as_attachment for File Uploads
Back to the file upload functionality we want to add to Intranet. We'll be using
acts_as_attachment, a widely-used plugin with rich functionality, for our file
upload management. This is provided by the techno weenie site (http://techno-
weenie.net/), and is written by one of the core Rails developers (Rick Olson). Using
it saves a lot of time, as the plugin provides generators and extra options for forms,
which make is easier to process uploaded files. To get at it we have to add the techno
weenie repository to our plugin sources:

$ ruby script/plugin source http://svn.techno-weenie.net/projects/plugins

Next, install the acts_as_attachment plugin using the -x flag:

$ ruby script/plugin install -x acts_as_attachment

This pulls the plugin into our application, as well as creating an externals definition
in our Subversion repository, which links the plugin into Intranet.

At the time of writing, acts_as_attachment was in the process of
being deprecated in favor of attachment_fu. However, the beta state
of attachment_fu meant that we went with the tried-and-tested
plugin instead.

With the plugin installed, we can generate a model to represent files uploaded to
Intranet. acts_as_attachment provides a handy generator for this:

$ ruby script/generate attachment_model file_attachment

This creates a FileAttachment model and migration for us, and each file we upload
will be represented by a record in the file_attachments table in the database.

acts_as_attachment can either store uploaded files in the database or on the file
system. What's the difference?

If you store files in the database, the data for the file is stored in a field in
the specified table. This can make your database enormous, but can simplify
access and backups.
If the filesystem method is used for file storage, a physical file is written to
the file system, while its location and metadata are stored in the database
table. This is more economical and intuitive, so it's the approach we'll
be taking.

•

•

Extending the Application

[386]

acts_as_attachment can also manage image files, producing
thumbnails from them and resizing them. However, this functionality is
dependent on having a Ruby graphics library available (e.g. RMagick).
This is not important for Intranet, as most of the files are likely to be text
or PDFs. For now, we'll just deal with the simple case, and ignore parts of
the plugin only relevant to images.

Before creating the file_attachments table, take a minute to edit the migration in
db/migrate/006_create_file_attachments.rb. The edited version of the file is
shown below:

class CreateFileAttachments < ActiveRecord::Migration
 def self.up
 create_table :file_attachments do |t|
 t.column "content_type", :string
 t.column "filename", :string
 t.column "size", :integer
 t.column "task_id", :integer

 t.column "parent_id", :integer

 end
 end

 def self.down
 drop_table :file_attachments
 end
end

We've specified a task_id field (highlighted) to associate the uploaded file with a
task. However, it is also necessary to specify a parent_id field, which mirrors the
parent record ID (in this case, the ID of the parent task): this is because acts_as_
attachment uses this internally to decide which records and files need to be deleted
from the file system when a parent record is deleted (and a dependency has been
specified). Unfortunately, in this version of acts_as_attachment, both are needed,
even though this introduces duplication and confusion.

Run the migration to add the new table to the database:

$ rake db:migrate

We also need to edit the FileAttachment model to associate a file with a task, set up
storage on the file system, set a maximum size for uploaded files, and tell the model
where uploaded files should be stored:

class FileAttachment < ActiveRecord::Base
 belongs_to :task

 acts_as_attachment :storage => :file_system,

Chapter 8

[387]

 :max_size => 10.megabytes,
 :file_system_path => 'public/files'

 validates_as_attachment
end

The :filesystem_path option (highlighted) sets RAILS_ROOT/public/files as
the location for uploaded files. If you haven't already created the public/files
directory, do so now. On *nix, this directory must be writable by the user who
owns the Rails process (in our case, by the owner of the Mongrel process, which is
running the application). When a file is uploaded, it is stored in a subdirectory of
the :filesystem_path; the name of the subdirectory corresponds to the parent_id
of the record in the file_attachments table. For example, if a file in the file_
attachments table has the filename confused.jpg and a parent_id of 12, it will
end up being stored in RAILS_ROOT/public/files/12/confused.jpg.

The final step is to mark the other side of the tasks to file_attachments
relationship, specifying that tasks can have many files attached:

class Task < ActiveRecord::Base
 belongs_to :person
 belongs_to :user
 has_many :file_attachments, :dependent => :destroy,

 :order => 'filename'

 # ... other methods ...
end

The has_many relationship (highlighted) has the :dependent option set to
:destroy, to ensure that when a task is deleted, all the associated records in the
file_attachments table are also deleted. When an instance of FileAttachment is
deleted, acts_as_attachment will also simultaneously remove related files from the
file system. We also specify that attachments should be ordered by filename when
retrieved through this association.

Managing File Attachments for a Task
Each file has a task with which it is associated. The controller must therefore act in
the same way as the TasksController we saw earlier in this Chapter: each time we
add or delete an attachment, we need to redirect back to the task associated with the
attachment when the action completes.

We won't provide any advanced versioning or editing capabilities, so
there is no need for an update action in this development iteration.

Extending the Application

[388]

As with the views we wrote for the TasksController, we'll display file attachments
in a separate area next to the task when editing it. When we're displaying a task,
we'll just list its associated files as hyperlinks.

Unlike tasks, we won't provide a page that enables a file attachment to be uploaded
and arbitrarily associated with a task. Instead, all file uploads will be explicitly
associated with a task, and only listed or edited in that context. At a later date,
it will still be possible to list all the files that have been uploaded in an "über file
attachments list", but we'll keep things simple for now.

To sum up, here's the extra functionality we need:

In the task edit form (app/views/tasks/edit.rhtml), show a secondary
file attachment form (app/views/file_attachments/_form.rhtml), which
enables file attachments to be added for the task. We'll write this first, as
the other functionality is hard to add and debug without having any file
attachments to experiment with.
Note that we're not going to enable file attachments on new tasks: the task
must first be saved to the database and then edited again to add file attach-
ments to it.
Create a FileAttachmentsController that can add a single file for a
specified task. As each file is associated with a task, when a file is added by
the FileAttachmentsController, redirect back to the TasksController to
update the associated task.
Amend the task partial (app/views/tasks/_task.rhtml) to list file
attachments.
Extend the attachments form and the controller to manage file attachment
deletions.
Protect the actions on the FileAttachmentsController so they are only
accessible to logged in users.

Adding a Form for Attaching a File to a Task
First, create a form that enables a new file to be uploaded and associated with a
task (in app/views/file_attachments/_form.rhtml—you'll need to create the
file_attachments directory in app/views first). This form is similar to the one we
created at the beginning of this section, requiring the correct form encoding and a
file field:

<h2>File attachments</h2>

<% form_for 'new_attachment', :url => {:controller => 'file_
attachments',

•

•

•

•

•

Chapter 8

[389]

:action => 'receive', :task_id => task.id},

:html => {:multipart => true} do |f| %>

<p>Upload a new attachment:

<%= f.file_field(:uploaded_data, :size => 20) %></p>

<p><%= submit_tag 'Save' %></p>

<% end %>

This template expects to be handed a task parameter (first highlighted line)
representing the Task instance with which newly-uploaded files should be associated.

The second highlighted line creates the file upload field, giving it the special name
'uploaded_data'. If you use this name for a file field, acts_as_attachment knows
that the file uploaded with it is to be saved as an instance of your file model (in
our case, as an instance of FileAttachment). Although there is only a single
field containing the file data, the special 'uploaded_data' name means that
acts_as_attachment decomposes it into content_type, size, filename, etc.
The decomposed data is then used to set the corresponding attributes on the
model instance.

We want to make this form available when a task is being edited, so edit app/views/
tasks/edit.rhtml to look like this (the changes are highlighted):

<div id="left_panel">

<% form_for :task, @task, :url => {:action => 'update', :id => @task.
id}
do |f| %>
<%= render :partial => 'form', :locals => {:f => f} %>
<% end %>
</div>

<div id="right_panel">

<%= render :partial => 'file_attachments/form',

:locals => {:task => @task} %>

</div>

Notice how the @task variable is passed as a local variable when rendering the
file_attachments/form partial. We also created two <div> elements, one for the
task and the other for the file attachment management panel, then reused the
"left_panel" and "right_panel" IDs (used earlier to style the person view and
show their tasks alongside their details) to make the two <div> elements sit next to
each other.

Extending the Application

[390]

You should end up with a task update form that looks like this:

Adding a File Attachment to a Task
Now we can add the FileAttachments controller and receive action, which the
form in the previous section posts to. First, we need a controller. From the command
line, run the generator:

$ ruby script/generate controller file_attachments

Now add the receive action:

class FileAttachmentsController < ApplicationController
 def receive
 # Get the task the file is to be attached to.
 task = Task.find(params[:task_id])
 task_id = task.id

 # Get the ID of the person associated with the task;
 # we'll use this to redirect back to the task update view
 # for the person.
 person_id = task.person_id

 # Create the attachment.
 @new_attachment = FileAttachment.new(:task_id => task_id,
 :parent_id => task_id)
 @new_attachment.attributes = params[:new_attachment]

Chapter 8

[391]

 @new_attachment.save

 # Set the flash and direct back to update action
 # for task/person.
 flash[:notice] = 'File uploaded successfully'
 redirect_to :controller => 'tasks', :action => 'edit',
 :id => task_id, :person_id => person_id
 end
end

The action pulls the task_id from the request parameters and uses this to get a Task
instance to associate this attachment with. It also gets the associated person_id from
the task, so that once the action completes, the controller redirects back to the task
edit page.

When creating the attachment, we first get a fresh instance of FileAttachment;
setting its parent_id and task_id attributes to the the ID of the task. The remainder
of the attributes are set from the :new_attachment parameters in the request: this
includes a special uploaded_data field (discussed earlier, see: Adding a Form for
Attaching a File to a Task), which sets attributes specific to acts_as_attachment (i.e.
content_type, size, and filename).

Listing File Attachments for a Task
As we've specified an association between a task and its file attachments, adding a
listing is simple. Edit the bottom part of app/views/tasks/_task.rhtml like this:

...
Owner: <%= task.user.username %></p>

<div class="file_attachments_for_task">

<p>File attachments</p>

<% unless task.file_attachments.empty? -%>

<% for attachment in task.file_attachments -%>

<p>

<%= link_to attachment.filename, attachment.public_filename %>

</p>

<% end -%>

<% else -%>

<p>None</p>

<% end -%>

</div>

...

Extending the Application

[392]

The important part of this template is how we create the link, using two methods
added to the model instances by acts_as_attachment: filename gives us the plain
file name for the attachment (e.g. quotation.doc), while public_filename gives
the publicly-accessible path to the file (e.g. /public/files/10/quotation.doc).

Finally, style the attachments area to make it stand out a bit more (in public/
stylesheets/base.css):

.file_attachments_for_task {
 background-color: #DDD;
 padding: 0.5em;
}

You should now be able to add a few attachments to a task and view them, e.g.:

Chapter 8

[393]

Deleting File Attachments for a Task
Now that the layouts are in place, and we are able to see the attachments for a
task, we can extend the attachment management panel to handle deletions as well
as additions.

First, when we display app/views/file_attachments/_form.rhtml, we'll display
each existing attachment with a check box next to it: if the form is submitted and any
check boxes have been selected, the associated attachments are removed. As well
as deleting the record from the file_attachments table in database, the associated
physical file will also be removed. Here's the new form appended to the top of
the template:

<h2>File attachments</h2>

<% form_tag :controller => 'file_attachments',
:action => 'remove', :task_id => task.id do %>

<% unless task.file_attachments.empty? -%>
<p>Tick boxes to select attachments to delete</p>

<% for attachment in task.file_attachments -%>
<p>
<%= check_box_tag 'attachments_to_remove[]', attachment.id, false,
:id => 'attachments_to_remove_' + attachment.id.to_s %>
<%= link_to attachment.filename, attachment.public_filename %>
</p>
<% end -%>

<%= submit_tag 'Delete' %>

<% else -%>
<p>No attachments</p>
<% end -%>

<% end -%>

<p>OR</p>

<% form_for 'new_attachment', :url => {:controller => 'file_
attachments',
:action => 'receive', :task_id => task.id},
:html => {:multipart => true} do |f| %>
...

An interesting point to note here is that we can build traditional forms with Rails,
without having to resort to using form_for. We've used the check_box_tag helper
here to create a series of check boxes all called attachments_to_remove[]. As
the name of the form element ends with '[]', Rails will automatically gather the
parameters into an array when the form is submitted (as it happens in PHP with the
form elements named this way).

Extending the Application

[394]

Here's what the page looks like when rendered:

Next, we add a new remove action to FileAttachmentsController to handle
deletion of file attachments. This action will redirect back to the task edit form (as
the receive action does). We can also take this opportunity to do a bit of refactoring:
the redirection is the same for both receive and remove actions, so we can move
that into a separate redirect_to_person_task method; and we need to retrieve a
Task instance, task_id, and person_id to run both actions; so we can move those
operations into a prepare method and use a before_filter to call it. Here's the
resulting controller class definition:

class FileAttachmentsController < ApplicationController
 before_filter :prepare

 def receive
 @new_attachment = FileAttachment.new(:task_id => @task_id,
 :parent_id => @task_id)
 @new_attachment.attributes = params[:new_attachment]
 @new_attachment.save

 # Set the flash and direct back to update action for task.
 flash[:notice] = 'File uploaded successfully'
 redirect_to_person_task
 end

 def remove

 FileAttachment.destroy params[:attachments_to_remove]

Chapter 8

[395]

 flash[:notice] = 'Attachments removed'

 redirect_to_person_task

 end

 private
 def redirect_to_person_task
 redirect_to :controller => 'tasks', :action => 'edit',
 :id => @task_id, :person_id => @person_id
 end

 private
 def prepare
 task = Task.find(params[:task_id])
 @task_id = task.id
 @person_id = task.person_id
 end
end

The new remove action is highlighted: it destroys an array of FileAttachment IDs
retrieved from the attachments_to_remove request parameter.

Protecting File Attachment Actions
The last step is to secure the FileAttachmentsController so that only logged-in
users are able to manage attachments. This is as simple as adding one line to the
top of the class definition, to protect every action on the controller (see the section
Protecting Actions earlier in this chapter):

class FileAttachmentsController < ApplicationController
 before_filter :authorize

 # ... other methods ...
end

Finally, the file attachment functionality is complete!

Summary
The aim of this chapter has been to show more of the depth and usefulness of Rails,
while at the same time demonstrate how to extend an existing application with new
functionality. The beauty of Rails is that it is easy to tack new functionality on with
extra components, whether new actions for existing controllers, new actions for all
controllers, or new models and plugins.

Extending the Application

[396]

This chapter has hopefully given you the confidence to grow your application
to meet new requirements and some guidance about how to go about adding
new functionality.

In the next chapter, we'll see how to improve the efficiency and performance of a
Rails application: making use of caching, using Capistrano for automating repetitive
tasks, and setting up the infrastructure for large scale deployment.

Advanced Deployment
So far, we've dealt with a simple deployment situation—a single production machine
running Intranet as a Mongrel instance, backed by a MySQL database. This will be
able to cope with a fair amount of traffic, and it may be that in your situation, there
will be no need for anything more complex.

Having said this, one issue that will definitely arise is how to roll out new versions ofwill definitely arise is how to roll out new versions of definitely arise is how to roll out new versions of
the application. This introduces several challenges, such as ensuring the application
is compatible with new versions of Rails, upgrading the database, and so on.
Capistrano, a tool for simplifying and automating deployment of applications, was
designed to ease multiple deployments, and we'll be seeing how it can help us meet
these challenges. We'll also cover common deployment issues and their solutions,deployment issues and their solutions,,
plus other housekeeping that an application requires, such as clearing out stalehousekeeping that an application requires, such as clearing out stale an application requires, such as clearing out stale
sessions and managing log files.

If you have a lot of users connecting to the application concurrently, you may find
that things start to slow down. In this chapter, we'll cover how to keep up your
application's speed using some simple techniques, such as caching. If things are still
too slow, the next option may be to add more hardware to cope with the load. We'll
see how to scale a Rails application using Apache, as well as by adding more servers.

This chapter is slightly trickier to follow than previous ones, as we're now
considering two machines—one for development and a second for production
(called the development machine and production server respectively in this
chapter).). Intranet is being deployed from the former to the latter. You can still follow
the tutorial on a single machine by treating it as both the development machine and
production server: simply ensure that you can login to it via SSH. If you want to test
the Apache deployment tips, ensure you have Apache installed (see Chapter 6 forChapter 6 for for
some instructions). The section on large-scale deployments is harder to simulate with
a single machine, so we'll just be covering some of the concepts to give you an idea of
the issues and solutions.

Advanced Deployment

[398]

Deployment with Capistrano
Capistrano is designed to make your life easier by automating the repetitive tasks
associated with application deployment. Typically, to get a Rails application into
production, we would log in to the production server using SSH, and perform the
following actions:

Check out the latest version of our code from the repository into the correct
directory on the server.
Update the production database using migrations. If the database is
significantly altered, it may be necessary to stop the Mongrel process first,
to prevent any errors from occurring. If the database structure changes,
but the application code is still expecting the old structure, there could be a
disastrous mismatch.
Restart the Mongrel process so that it is serving the latest version of the
code (remember that in production, changes to the code are not dynamically
loaded by Rails, so we have to restart the server process to make changes live).

In fact, this is how we did our first production deployment. However, if we have to
repeat deployment several times, we need to remember each step and the order in
which they should be applied every time, which can be tedious and error-prone.

An alternative is to use Capistrano, which eases the deployment process by
automating the above tasks for us. When we trigger it, it will log in to the server,
check out the latest code from the Subversion repository, update the database,
and restart Mongrel, all using a handful of simple commands. We don't even have
to leave our development machine. Even better, it will also make it easy for us to
roll back to a previous version of the application if something goes wrong with
the deployment. This can of course be done manually, but this requires a precise
sequence of steps to be followed—something at which people are inherently bad, but
at which computers excel.

While Capistrano can be used to deploy from Windows, it is not designed
to deploy to a Windows production server. It is best used for deployment
to *nix or Mac servers.

In the following sections, we'll see how to set up the deployment environment and
deploy Intranet onto the production Linux server. For more details on installation of
each component, refer to Chapter 3Chapter 3 Laying the Foundations.

•

•

•

Chapter 9

[399]

Getting Started with Capistrano
The first step in using Capistrano is to apply it to a Rails application. For example, if
the application were in /home/demo/Intranet you would do:

$ cap --apply-to /home/demo/Intranet

This command adds two files to the application:

lib/tasks/capistrano.rake: Applying Capistrano to your application
makes some extra Rake tasks available (see Running a Migration in
Chapter 4). However, these tasks are now deprecated, and Capistrano has its
own command-line tool (cap, as used above) to run tasks, so the file can be
ignored or deleted.
config/deploy.rb: This file contains the configuration for Capistrano and
should not be deleted. It specifies where your Subversion repository is,
where your servers (web, application, database) are, how to log in to them
via SSH, which directory to deploy the application to, etc. It is also the place
where you put custom tasks specific to your application; we'll see some of
these later.

The next step is to customize the configuration file (config/deploy.rb) to tell
Capistrano where the production server is and how to log in to it. Here are the lines
that need to be configured, along with some sample data:

set :application, "Intranet"
role :web, "192.168.13.129"
role :app, "192.168.13.129"
role :db, "192.168.13.129", :primary => true

Capistrano can cope with setups where an application is to be deployed to multiple
servers, with each server having a different role. The roles available by default in
Capistrano (you can define your own on top of these) are:

app: An application server, running the Rails application. Typically, this will
be a machine running Rails under one or more Mongrel processes.
web: A web server serving static files. Some applications serve JavaScripts,
stylesheets, and static HTML files from a web server like Apache, running on
a completely separate machine from the Rails processes proper.
db: A database server, storing the back-end data for the application. You
need to set the :primary => true option for a role if you want to be able to
run migrations automatically through Capistrano.

•

•

•

•

•

Advanced Deployment

[400]

In our case, we're using a single server, which acts as the web server, application
server, and database server, as well as the Subversion server. That's why we
removed this line from the generated Capistrano file:

role :db, "db02.example.com", "db03.example.com"

You only need multiple role :db lines if you are using multiple database servers.
The default deploy.rb file also contains multiple specifications for both :web and
:app servers. As we only have a single server, we can trim those settings down to
leave a single host specification 192.168.13.129 (the IP address of our server), as
in the example on the previous page. You could use a domain name instead of an IP
address here; so, if the IP address 192.168.13.129 were registered with the domain
name server.company.local, we could have configured deploy.rb with:

set :application, "Intranet"

role :web, "server.company.local"

role :app, "server.company.local"

role :db, "server.company.local", :primary => true

When you ask Capistrano to deploy your application, it will attempt to log in via
SSH to the :web, :app and :db servers to do the necessary code check out and
command-line actions (e.g. run migrations, restart Mongrel) to get your application
running. Our recommendation would be to create one user account on each server
specifically for Capistrano. The home directory of this account can be used as the
deployment location for Rails applications, and the same user account can be used to
check out code from the local Subversion repository.

Log in to the server and set up an account specifically for deploying Rails
applications (e.g. I called mine captain). On a Linux server, you can do this
as follows:

$ sudo groupadd captain

$ sudo useradd --create-home -g captain captain

$ sudo passwd captain

Enter new UNIX password:

Retype new UNIX password:

passwd: password updated successfully

$ sudo mkdir /home/captain/apps

$ sudo chown captain.users /home/captain/apps

The final command creates a directory called apps inside captain's home directory.
This is where we will deploy our Rails applications to.

Chapter 9

[401]

It's worth checking that you can log in over SSH to the production server
from the development machine using the account you've just created,
before attempting a deployment with Capistrano. This will ensure that
the account is set up correctly.

Once you have a Capistrano user on the production server, you need to add its
username and password to the deployment recipe (deploy.rb):

set :user, "captain"
set :password, "police73"

If you have the expertise, you can set up SSH public key authentication for
logins from developer machines to the server instead of using usernames
and passwords. This is more secure, as it means you don't need to put
usernames and passwords in your deployment recipes. See http://
sial.org/howto/openssh/publickey-auth/ for some instructions.

Once Capistrano has logged in via SSH, it will need to check out the code from
the Subversion repository. As we are using Subversion over an SSH tunnel (via an
svn+ssh URL), we specify the username as part of the repository URL:

svn+ssh://captain@server.company.local/repository/#{application}/trunk

Each time we deploy the application, we will be prompted for the password of the
captain user. This is because Capistrano has no mechanism for caching passwords
between SSH sessions, or for allowing you to specify an svn+ssh password in the
configuration file.

If you get annoyed with continually being prompted by Subversion for
passwords, investigate an SSH password-caching tool like Pageant for
Windows (http://www.chiark.greenend.org.uk/~sgtatham/
putty/download.html), or ssh-agent for *nix and Mac systems
(included with the OpenSSH tools). Alternatively, you can use the even
simpler method of setting up a password-less public key on the client,
and registering that key with the server. See the previous tip box for
more information.
Another alternative is to enable access to the Subversion repository over
HTTP for checkouts. If you're using this configuration, you can add the
Subversion credentials directly to deploy.rb:
set :svn_username, "captain"
set :svn_password, "police73"

Capistrano will then be able to automatically log in to the repository over
HTTP and check out the code, without requiring you to enter a password.

Advanced Deployment

[402]

Finally, set the directory on the server into which the Rails application code should
be checked out. This will depend on how your application server is set up and the
permissions of the person who is deploying the application. As we have a captain
account specifically for our Rails applications, we can use the apps directory inside
that user's home directory as our deployment destination:

set :deploy_to, "/home/captain/apps/#{application}"

This references the application variable set earlier in the recipe ("Intranet"),
specifying that the application is deployed to /home/captain/apps/Intranet.

A Complete Deployment Recipe
The final deployment recipe looks like this:

ip_address = "192.168.13.129"

set :application, "Intranet"

role :web, ip_address

role :app, ip_address

role :db, ip_address, :primary => true

set :user, "captain"

set :password, "police73"

set :repository, "svn+ssh://captain@#{ip_address}/repository/#{application}/
trunk"

set :deploy_to, "/home/captain/apps/#{application}"

We've created a variable ip_address to store the IP address of our single server, to
help prevent typos. We've then referenced it in several places in the recipe.

Preparing the Production Database
We are also going to need a production database on the server. Creating a database
and user was discussed in Chapter 4 Creating a Database and System Account, and
configuring the production environment in the database.yml file was covered in
Chapter 6 The Production Database.

As a quick reminder: in the case of MySQL, we can create the database and user on
the server with the mysql command-line client:
$ mysql -uroot -p

Once into the client, do:

mysql> CREATE DATABASE intranet_production;

mysql> GRANT ALL ON intranet_production.* TO intranet@localhost
IDENTIFIED BY 'police73';

mysql> FLUSH PRIVILEGES;

Chapter 9

[403]

(Replace police73 with the password you want to give to the intranet user.)

Then we can configure the database.yml file for the production database like this:

production:
 adapter: mysql
 database: 'intranet_production'
 username: intranet
 password: police73
 host: localhost

First Deployment
With the configuration file edited to the deployment environment, we are ready to
set up the required directories on the server. Connect into the RAILS_ROOT for the
Intranet application and run the cap setup command:

$ cap setup

 * executing task setup

 * executing "umask 02 &&\n mkdir -p /home/captain/apps/Intranet /
home/captain/apps/Intranet/releases /home/captain/apps/Intranet/shared /
home/captain/apps/Intranet/shared/system &&\n mkdir -p /home/captain/
apps/Intranet/shared/log &&\n mkdir -p /home/captain/apps/Intranet/
shared/pids"

 servers: ["192.168.13.129"]

 [192.168.13.129] executing command

 command finished

As you can see, this logs into the application server(s) and creates several directories,
which will store releases of the application and related temporary files (logs, pids).
The directories (inside /home/captain/apps) are:

Intranet: The main directory for the application.
Intranet/releases: Individual releases of the application end up in
here. Each time you deploy the application via Capistrano, you add a new
directory for that release inside this directory.
Intranet/shared: Each release of the application shares the files in here,
which means you have a shared set of log files, a single location for Mongrel
pid files, etc.
Intranet/shared/log: All releases of the application put their logs into
this directory.
Intranet/shared/pids: When the application is running under Mongrel,
the Mongrel pid file should go in this directory.

•

•

•

•

•

Advanced Deployment

[404]

Intranet/shared/system: This can be used to house files and directories
that need to remain constant across releases. We'll be using it shortly as a
place to store file uploads (see the previous chapter, where we added
this functionality).

We can now deploy the application into this directory structure:

$ cap cold_deploy

You should get feedback on the task's progress like this:

 * executing task deploy

 * executing task update

 ** transaction: start

 * executing task update_code

 * querying latest revision...

captain@192.168.13.129's password:

...

 * executing task spinner

 * executing "sudo -u app /home/captain/apps/Intranet/current/
 script/spin"

 servers: ["192.168.13.129"]

 [192.168.13.129] executing command

 ** [out :: 192.168.13.129] sudo:

 ** [out :: 192.168.13.129] no passwd entry for app!

 command finished

command "sudo -u app /home/captain/apps/Intranet/current/script/spin"
failed on 192.168.13.129

You will be prompted for captain's password at some point; this will be used to log
in to the Subversion repository and check out the code.

This almost looks OK. However, an error occurred towards the end of the
command's execution, during the spinner task:

no passwd entry for app!

This is because Capistrano logged in as captain and tried to run a script inside the
deployed Rails application (script/spin) as the :app user; but the :app user doesn't
exist on the production server. It turns out, this error is irrelevant for our case, as we
don't want to start the server using script/spin; we want to override this behavior
to start Mongrel instead (see the section Managing Mongrel from Capistrano). So, we
can ignore this error for now. The important thing is that our code has been deployed
to the production server. Where is it?

•

Chapter 9

[405]

Look inside the apps/Intranet directory and you'll see that some new files and
directories have been created:

current: This is a symlink (a shortcut in Windows parlance) to the latest
release in the releases directory.
revisions.log: This file contains a record of when releases were made and
who made them.
releases/yyyymmddhhnnss: Each sub-directory of the releases directory
contains a version of our application. When a new release of the application
is deployed, a new sub-directory is added under the releases directory.
Note that each sub-directory is timestamped with the date and time when the
release was deployed.
While the releases are independent of each other, each contains more sym-
links that point up to the shared directory (see the previous section). This
ensures that different releases all share a single set of log files, pid files, etc.

If you want to see the full set of tasks made available by Capistrano,
execute the following on the command line:
cap show_tasks

Migrating the Production Database
The cold_deploy task doesn't run the database migrations. So, while our code is
deployed, there is no database for it to work with. We can apply our migrations to
the production database with another Capistrano task, migrate:

$ cap migrate

 * executing task migrate

 * executing "cd /home/captain/apps/Intranet/current && rake
 RAILS_ENV=production db:migrate"

 servers: ["192.168.13.129"]

 [192.168.13.129] executing command

 ** [out :: 192.168.13.129] (in /home/captain/apps/Intranet/
releases/20070413171324)

 ** [out :: 192.168.13.129] == CreatePeople: migrating ==================
==================================

 ** [out :: 192.168.13.129] -- create_table(:people)

 ** [out :: 192.168.13.129] -> 0.0831s

 ** [out :: 192.168.13.129] == CreatePeople: migrated (0.0837s) =========
==================================

...

•

•

•

Advanced Deployment

[406]

If this works, you should see something like the output on the previous page
(truncated for brevity). Note that the production database was used as the target for
migrations (Capistrano's default environment).

Running Other Commands on the Server with
invoke
There is no default Capistrano task for starting Mongrel (but we'll be writing one
shortly). However, we can run any arbitrary task on the server using cap invoke.
The invoke command logs into the server using the username and password set in
deploy.rb; then, on the remote machine, it executes the command passed to it. For
example, to start our application, we can do:

$ export COMMAND="cd /home/captain/apps/Intranet/current; \

mongrel_rails start -d -e production -p 4000 \

-P /home/captain/apps/Intranet/shared/pids/mongrel.pid"

$ export ROLES=app

$ cap invoke

First, we set up the command we want to execute by specifying a COMMAND
environment variable. Here, the command we're setting up will run mongrel_rails
to start a Mongrel instance to serve a Rails application; next, we specify the group of
machines where we want to run the command using a ROLES environment variable.
To specify multiple roles, place commas between them (e.g. ROLES=web,app). Finally
we invoke COMMAND on the remote machines.

Hopefully, you'll see the mongrel_rails command being executed:

 * executing task invoke

 * executing "mongrel_rails start -d -e production -p 4000 -P
 /home/captain/apps/Intranet/shared/pids/mongrel.pid"

 servers: ["192.168.13.129"]

 [192.168.13.129] executing command

 command finished

With the database migrated and Mongrel started, the application is now in
production. Use a browser to confirm it is up and running; if not, see the section later
in this chapter for some hints about how to troubleshoot your deployment.

In the next section, we'll write a new Capistrano task that encapsulates the manual
Mongrel command above.

Chapter 9

[407]

Managing Mongrel from Capistrano
In the previous section we saw how to do a cold deployment of our code to the
server; we also saw that the command threw an error, as Capistrano tried to run
the script/spin command to start the application. This is because Capistrano is
running its spinner task as a sub-task of the cold_deploy task, which in turn calls
script/spin inside the application.

However, we can override any of Capistrano's default tasks with our own by
defining appropriate methods in the deployment recipe. In our case, we want to
override the spinner task, which will be used to cold start a Mongrel instance for
the application, and we'll also need to override the restart task, which stops the
application and starts it again (so that any changes to the code are reflected in the
production instances). For good measure, we can add our own stop task (sometimes
it's useful to be able to just stop Mongrel) and add an alias, start, for the spinner
task. To define these tasks, add the following into the section commented with TASKS
in config/deploy.rb:

Where to store Mongrel PID file
mongrel_pid = "#{shared_path}/pids/mongrel.pid"

Port to run on
port = 4000

desc "Override the spinner task with one which starts Mongrel"
task :spinner, :roles => :app do
 run <<-CMD
 mongrel_rails start -e production -p #{port}
 -P #{mongrel_pid} -c #{current_path} -d
 CMD
end

desc "Alias for spinner"
task :start do
 spinner
end

desc "Override the restart task with one which restarts Mongrel"
task :restart, :roles => :app do
 run "mongrel_rails restart -P #{mongrel_pid}"
end

desc "Stop Mongrel"
task :stop, :roles => :app do
 run "mongrel_rails stop -P #{mongrel_pid}"
end

Advanced Deployment

[408]

We now have spinner and restart tasks that override the defaults provided by
Capistrano, plus a start alias for the spinner task, and a new stop task. A few
points to note:

The run method can be used to execute a command-line string on the server;
here we're executing our custom mongrel_rails command (see previous
section), passing the environment to run in, the port to use, where to place
the pid file, and which application to run. You can use run to execute any
valid command on a deployment server.
Inside our custom tasks, we can reference the Capistrano variables
release_path and shared_path. These refer to the absolute path to the
latest release of the application and to the shared directory respectively.
We're scoping our two tasks to particular roles using the :roles => :app
option, meaning, we only run them on the application server, where Mongrel
is running; if you need to specify multiple roles, pass an array of role names
into this option, e.g. :roles => [:app, :web].
In case you're not familiar with the <<-CMD ... CMD syntax: this is known as
heredoc, and can be used to create multi-line strings without the necessity of
inserting newline characters and escaping quote marks.

Adding these tasks means that Capistrano will call the correct commands when we
cold deploy or deploy a new version of the application. We can also run our tasks
manually to get "remote control" of our Mongrel servers with:

$ cap start

$ cap stop

$ cap restart

Centralizing File Uploads
One other issue that isn't immediately obvious is that Intranet's file upload
functionality complicates the picture. Currently, uploaded files are stored in the
public/files directory. However, when we upgrade the application, we effectively
start from a clean slate again: we get a new public/files directory which is empty.
What we really want is to keep file uploads in a central location available to every
release—each time we upgrade, we still reference the same file uploads directory.

Capistrano provides a shared/system directory for exactly this scenario. Data that
is part of the back-end store for the application is used by every release (similar to
how we have a single database instances for all releases). In our case, we'll create a
files sub-directory inside shared/system; then we'll create a symbolic link (like
a Windows shortcut) from the public/files directory of the application to the
shared/system/files directory.

•

•

•

•

Chapter 9

[409]

First we define a task in config/deploy.rb, which will set up the required
directories and symlinks. The task creates the directory shared/system/files
with the appropriate permissions (read, write, execute for the captain user; read
and execute for everyone else), removes the existing public/files directory in
the newly deployed release, and creates a symlink from public/files to shared/
system/files:

task :symlink_for_file_uploads, :roles => :app do
 run <<-CMD
 mkdir -p -m 775 #{shared_path}/system/files &&
 rm -Rf #{release_path}/public/files &&
 ln -s #{shared_path}/system/files #{release_path}/public/files
 CMD
end

We can now make use of Capistrano's callback mechanism to hook into the execution
of tasks, before or after they run. This enables us to layer our tasks over the existing
Capistrano default tasks, adding functionality to them without having to fiddle with
Capistrano's core code.

To hook into a task, we provide a callback handler. This is a custom task which
has a special name, significant to Capistrano. The name should consist of
before_ or after_, followed by the name of the task we want to attach our handler
to. In this case, we want to create the directories and symlinks after the new version
of the application has been retrieved from Subversion. The task that updates the
application code from Subversion is called update_code; therefore, our callback
handler should be called after_update_code. It is defined like this:

task :after_update_code do
 symlink_for_file_uploads
end

Now when you deploy the application again, you should see the symlink_for_
file_uploads task being executed after the code for the release has been updated
from Subversion, e.g.:

$ cap deploy

 ...

 * executing task after_update_code

 * executing task symlink_for_file_uploads

 * executing "mkdir -p -m 775 /home/captain/apps/Intranet/shared/system/
files &&\n rm -Rf /home/captain/apps/Intranet/releases/20070428155358/
public/files &&\n ln -s /home/captain/apps/Intranet/shared/system/
files /home/captain/apps/Intranet/releases/20070428155358/public/files"

 ...

Advanced Deployment

[410]

You can verify that the symlink has been created correctly by connecting to the
current release directory, then going to the public directory and listing the directory
contents (notice the italicised files entry in the listing below):

$ ls -go

total 44

-rw-rw-r-- 1 235 2007-04-28 16:50 404.html

-rw-rw-r-- 1 309 2007-04-28 16:50 500.html

-rwxrwxr-x 1 477 2007-04-28 16:50 dispatch.cgi

-rwxrwxr-x 1 859 2007-04-28 16:50 dispatch.fcgi

-rwxrwxr-x 1 476 2007-04-28 16:50 dispatch.rb

-rw-rw-r-- 1 0 2007-04-28 16:50 favicon.ico

lrwxrwxrwx 1 47 2007-04-28 16:50 files -> /home/captain/apps/Intranet/
shared/system/files

drwxrwxr-x 3 4096 2007-04-28 16:43 images

-rw-rw-r-- 1 7552 2007-04-28 16:50 index.html

drwxrwxr-x 3 4096 2007-04-28 16:43 javascripts

-rw-rw-r-- 1 99 2007-04-28 16:50 robots.txt

drwxrwxr-x 3 4096 2007-04-28 16:43 stylesheets

lrwxrwxrwx 1 41 2007-04-28 16:50 system -> /home/captain/apps/Intranet/
shared/system

Upgrading the Application
Capistrano really shows its character when you want to easily upgrade an
application: with a single command, deploy a new version from the repository and
migrate the database, far more easily than the old-fashioned way of doing each step
in the deployment manually. To see this in action, we'll add a new migration to
the application, which will set up a default administrator account. First create the
skeleton for the migration (on the development machine):

$ ruby script/generate migration default_admin_user

Then edit db/migrate/008_default_admin_user.rb and add this content:

class DefaultAdminUser < ActiveRecord::Migration
 def self.up
 u = User.new(:username => 'admin', :passwd => 'admin').save
 end

 def self.down
 User.find_by_username('admin').destroy
 end
end

Chapter 9

[411]

When the migration is applied, a default administrative user with username admin
and password admin is added to the users table. (The highlighted section of the
code shows where the credentials are set.). Ensure that the migration is added
to the Subversion repository, so it is available when you next deploy to the
production server.

The command to check out the latest version of the code and apply any new
migrations is:

$ cap deploy_with_migrations

This will also restart the Mongrel instance, and you can now test that the new admin
account has been correctly added to the database.

Cleaning Up Obsolete Releases
After you've deployed several new releases, your production server will get cluttered
with obsolete entries in the releases directory. To clear out all of the releases except
for the most recent five, do:

$ cap cleanup

Note that by default this Capistrano task will attempt to use sudo when deleting
the obsolete files and directories. However, if the account Capistrano uses to log in
(in our case, captain) is unable to use sudo on the production server, you'll get this
error message when you run the task:

$ cap cleanup

 ...

 * executing "sudo rm -rf /home/captain/apps/Intranet/
releases/20070428153649" servers: ["192.168.13.129"]

 [192.168.13.129] executing command

 ** [out :: 192.168.13.129] captain is not in the sudoers file. This
incident will be reported.

 ...

To turn off this behavior, you have to tell Capistrano that it doesn't need to use sudo
to perform tasks on the production server. Add this line near the top of config/
deploy.rb:

set :use_sudo, false

Advanced Deployment

[412]

This should fix the problem and allow the cleanup task to run correctly.

In our case, it's safe to turn off sudo, as the captain user owns the
directory into which we're deploying the application, and is also the
owner of the Mongrel process that is running the application. In situations
where this is not the case (for example, if you are running Mongrel
under one user account and the application files are owned by a different
account), you may not have the option to turn off sudo. In this case, you
may need to add the Capistrano user to the sudoers file instead. How
to do this is beyond the scope of this book; but the sudo website
(http://www.gratisoft.us/sudo/) has plenty of documentation
that should help.

Downgrading the Application
The final situation that we need to deal with is what happens when deployment of
a new version of the application goes wrong: perhaps once it's on the production
server, some unexpected fault brings the whole site down. In this situation, you need
to be able to go back to the last known good version of the application, which will
usually be the previous release. Capistrano provides a task to do this:

$ cap rollback

This command actually rolls back the application code, shifting the current symlink
to point at the previous version of the application in the releases directory.
However, it doesn't automatically roll back the database: potentially you could roll
back to version 1 of your application while retaining a database structure that only
works with version 2.

Capistrano can be used to work around this issue, and run migrations up or down to
bring the database back in line with the application version. Currently this has to be
done manually after you've run cap rollback.

For example, say we roll back to the version of the application before the migration
(of the previous section) was added. We also want to roll back to the version of
the database before the migration was applied. To find the latest migration in the
application, take a look in the current/db/migrate directory (this is the "rolled
back" application directory). In our case, the highest numbered migration in that
directory is 007_create_file_attachments.rb; so, we need to migrate the
database down to version 7. The command for doing this is:

$ cap -s migrate_env="VERSION=7" migrate

 * executing task migrate

 * executing "cd /home/captain/apps/Intranet/current && rake RAILS_
ENV=production VERSION=7 db:migrate"

Chapter 9

[413]

 servers: ["192.168.13.129"]

 [192.168.13.129] executing command

 ** [out :: 192.168.13.129] (in /home/captain/apps/Intranet/
releases/20070502221404)

 ** [out :: 192.168.13.129] == DefaultAdminUser: reverting ==============
=================================

 ** [out :: 192.168.13.129] == DefaultAdminUser: reverted (0.2761s) =====
=================================

 command finished

(Replace the number 7 in the command with the appropriate version to migrate to.)

Troubleshooting Deployment
Rails deployment is complex, involving Subversion checkouts, web, database and
application servers, multiple user accounts, and a variety of permissions. With
so many variables in the mix, things can go wrong and often do. On top of that,
Capistrano is a complex beast, doing a complex job, which makes things even worse.
Consequently, you will run across deployment errors. To help you work out what's
happening when these occur, here are some examples of the kinds of error you might
have to face, and fixes for them.

Incompatible Rails Versions
If the version of Rails on the production server mismatches the one required
by the application, you may get this error message when you run cap
deploy_with_migrations:

 ** [out :: 192.168.13.129] Cannot find gem for Rails ~>1.2.3.0:

 ** [out :: 192.168.13.129] Install the missing gem with 'gem install -
v=1.2.3 rails', or

 ** [out :: 192.168.13.129] change environment.rb to define RAILS_GEM_
VERSION with your desired version.

The error is being thrown because of this line in config/environment.rb:

RAILS_GEM_VERSION = '1.2.3' unless defined? RAILS_GEM_VERSION

Advanced Deployment

[414]

This states the version of Rails required by the application. As the version of Rails on
the production server and the version on the development server are different, Rails
will refuse to start the application. There are three ways to fix this:

1. Remove the offending line from environment.rb: This is the simplest fix,
but it means that your Rails application won't check the version of Rails that
it is running under. If the application relies on specific Rails features that are
absent from old versions of Rails (for example), and you deploy to a server
lacking those features, the application may not work correctly.

2. Freeze gems into the application: Rails provides a facility that enables you to
take Rails with the application. This technique is known as "freezing" Rails,
and is accomplished by running the following rake task:

 rake rails:freeze:gems

What this does is copy the current Rails gems (rails, activerecord,
activesupport, actionpack, actionmailer, actionwebservice) into the
vendors/rails directory inside the application. Rails will now use the gems
in that directory instead of the centrally-installed gems when running the
application. Note that this technique is only useful if the version of Rails you
need isn't installed on the production server.
If you'd rather freeze a specific Rails version into your application (rather
than the one installed on the development machine) you can do:

 rake rails:freeze:edge TAG=rel_1-2-3

where rel_1-2-3 is a Subversion tag representing release 1.2.3 of Rails (see
Chapter 3 for coverage of what Subversion tags are). You can get a full list of for coverage of what Subversion tags are). You can get a full list of
Rails tags by visiting http://svn.rubyonrails.org/rails/tags/.
The down side to using the rake tasks to freeze Rails gems is that they export
the specified version of Rails into the vendor/rails directory. This means
that you will need to store the whole of Rails in your application's Subversion
repository too, which isn't ideal. A better approach is to manually create a
link in your application that references the Rails Subversion repository using
the svn:externals property (discussed in Chapter 8 in the context of plu-
gins). You can do this by editing this property via Eclipse (editing Subversion
properties is covered in the section Ignoring Temporary Files in Chapter 4) and
setting its value to one of the Rails version tags, e.g.:

 vendor/rails
 http://svn.rubyonrails.org/rails/tags/rel_1-2-3/

If you now do an svn up to update your application, Rails will be fetched into
vendor/rails; however, you no longer need to store Rails in your repository.
Instead it will be automatically fetched from the Rails repository proper each
time your application is checked out, as your application now just references
the external repository.

Chapter 9

[415]

The only other issue with this approach is that you are reliant on the Rails
Subversion repository being available to perform your deployment. If you
don't want this dependency, don't use the svn:externals approach.

3. Upgrade Rails on the server: Ensure that the production server is using the
same version of Rails as the application by ensuring the correct version is
installed, e.g.

 gem install rails -v 1.2.3

Missing Libraries
One other more obscure situation you may run across is where the version of Ruby
on the server is different from the one on the development machine(s). For example,
imagine your application uses the libxml-ruby library (an alternative Ruby XML
library, which is faster than Ruby's default REXML library). libxml-ruby is installed
on the developer machines but not on the production server; the gem is pulled into
the application in environment.rb with:

require 'libxml-ruby'

On the production server, the libxml-ruby gem is not available. When you try to
start Mongrel (e.g. with cap spinner), the command fails; however, no indication
of this is given by Capistrano, and when you try to browse to the application, it
is unavailable.

Mongrel logs its activity into a file inside the application's log directory; in the case of
an application deployed under Capistrano, this file is shared/log/mongrel.log; it
should hopefully give you more insights into any errors that occur while Mongrel is
starting, e.g.:

** Starting Mongrel listening at 0.0.0.0:4000
** Starting Rails with production environment...
/usr/local/lib/site_ruby/1.8/rubygems.rb:251:in 'report_activate_
error': Could not find RubyGem libxml-ruby (>= 0.0.0) (Gem::LoadError)

 from /usr/local/lib/site_ruby/1.8/rubygems.rb:188:in
'activate'
 from /usr/local/lib/site_ruby/1.8/rubygems.rb:66:in 'active_
gem_with_options'
...

In any situation where Capistrano doesn't report any errors but your application has
failed to start, check this log first.

Advanced Deployment

[416]

Incorrect Subversion Password or Repository
Permissions
In cases where Capistrano is trying to check out code from the Subversion repository
and you type in the wrong password, you may see this error message:

captain@192.168.13.129's password:

Permission denied, please try again.

Run the task again and type in the correct password.

User Doesn't Have SSH Access to the Server
If Capistrano tries to log in to a server using the username and password credentials
you supplied, and those credentials are incorrect, you may see this error message:

 ** [update_code] exception while rolling back: Net::SSH::
AuthenticationFailed, captain

authentication failed for 'captain'

Fix the user and password settings in config/deploy.rb.

Inaccessible Application Server
If you get the IP address or domain name of an application or web server wrong in
config/deploy.rb, you are likely to see this error message:

** [update_code] exception while rolling back: Errno::EHOSTUNREACH, No
route to host - connect(2)

/opt/lampp/lib/ruby/gems/1.8/gems/net-ssh-1.0.10/lib/net/ssh/transport/
session.rb:88:in 'initialize': No route to host - connect(2) (Errno::
EHOSTUNREACH)

This indicates that Capistrano is unable to log in to the server. Fix the IP addresses
and/or host names assigned to any role settings in config/deploy.rb.

Inaccessible Database Server
If you spell the database host name incorrectly, you will get an Unknown MySQL
server error when running cap migrate (see below, where the host name is
"localhosti" instead of "localhost").

$ cap migrate

 * executing task migrate

 * executing "cd /home/captain/apps/Intranet/current && rake RAILS_

Chapter 9

[417]

ENV=production db:migrate"

 servers: ["192.168.13.129"]

 [192.168.13.129] executing command

 ** [out :: 192.168.13.129] (in /home/captain/apps/Intranet/
releases/20070413171324)

 ** [out :: 192.168.13.129] rake aborted!

 ** [out :: 192.168.13.129] Unknown MySQL server host 'localhosti' (1)

 ** [out :: 192.168.13.129] (See full trace by running task with --trace)

 command finished

command "cd /home/captain/apps/Intranet/current && rake RAILS_
ENV=production db:migrate" failed on 192.168.13.129

Fix the host property in config/database.yml to make this go away.

Dealing with the Inexplicable
When everything else fails, you may need to do some more significant debugging.
In Chapter 6:Chapter 6: Errors in Production, we covered some of the common errors and fixes.
Other approaches:

1. Check the log files: mongrel.log and production.log should give you
some clues; the MySQL log files might also help.

2. Run the application in the development environment on the production
server. This should give you more immediate error reporting in the browser,
which makes life easier when you are trying to unravel knotty problems.

3. Run the test suite on the production server. This is usually worth doing
anyway, but can be particularly useful when trying to track down
obscure errors.

Getting Back to a Clean Slate
If you get really stuck, the only thing left to do may be to completely wipe the
application off the production server and start from scratch. With any luck, this
shouldn't be necessary too often. Here are some instructions for completely
rebuilding your application on the production server:

1. Log onto the production server.
2. Back up the production database using mysqldump (see Back Up Rails

in Chapter 6).
3. Copy the shared/system directory somewhere safe.

Advanced Deployment

[418]

4. Kill all the Mongrel processes on the server. To manually stop Mongrel, do:
$ mongrel_rails stop -P apps/Intranet/shared/pids/mongrel.pid
(passing the path to your Mongrel PID file as the -P option)

5. Check all the Mongrel processes are dead:
 $ killall mongrel_rails

6. Rewind the database back to version 0:
 $ rake db:migrate VERSION=0

7. Remove the directory containing all deployed versions of the application. (In
the Acme case, this is the entire Intranet directory).

This puts you back to a clean slate. You can now go back to the development
machine and run:

$ cap setup

$ cap cold_deploy

$ cap migrate

Once this finishes, the code and database are back to the latest version. You can now
import the MySQL backup into the production database, and move the contents of
shared/system back into the appropriate directory inside the deployed application.

Housekeeping
There are a few techniques that are rarely covered in the Rails printed literature,
even though they are essential to keeping Rails applications in good working order.
This section covers these bits and pieces.

Starting Mongrel Automatically
Currently, Mongrel has to be started and stopped manually from the development
machine. If the production server is rebooted, someone will have to remember
to restart the application too. A better solution is to add a start/stop script to the
production server to run Mongrel automatically with the server.

First, create a *nix script to control the application in script/mongrel_init. Here's
an example for Ubuntu:

#!/bin/bash
Ubuntu Linux init script for Rails application

set these variables to your production environment
APP_USER=captain
APP_NAME=Intranet

Chapter 9

[419]

APP_PORT=4000
APP_HOME=/home/captain/apps/Intranet

more variables - you don't need to set these
CURRENT=$APP_HOME/current
PID=$APP_HOME/shared/pids/mongrel.pid
MONGREL="sudo -u $APP_USER /usr/bin/mongrel_rails"
ENVIRONMENT=production

load library functions
. /lib/lsb/init-functions

case "$1" in
 start)
 log_begin_msg "Starting Rails application $APP_NAME"
 $MONGREL start -c $CURRENT -e $ENVIRONMENT -p $APP_PORT -P $PID -d
 log_end_msg 0
 ;;
 stop)
 log_begin_msg "Stopping Rails application $APP_NAME"
 $MONGREL stop -P $PID
 log_end_msg 0
 ;;
 restart)
 log_begin_msg "Restarting Rails application $APP_NAME"
 $MONGREL restart -P $PID
 log_end_msg 0
 ;;
 *)
 echo "Usage: $0 {start|stop|restart}"
 exit 1
 ;;
esac
exit 0

You'll need to set the variables prefixed with APP_ in the above script to values
appropriate to your production server.

This script is in a format that can be used by the *nix initialization (init)
system to control Mongrel during server starts, stops, and reboots. For
more about *nix init scripts, see http://www.linux.com/article.
pl?sid=06/01/03/1728227.

Next, make the script executable:

$ chmod +x script/mongrel_init

Advanced Deployment

[420]

This script can now be executed with a start, stop, or restart option, e.g.

$./mongrel_init start

$./mongrel_init stop

$./mongrel_init restart

Deploy the application to the server. Then, on the production server, copy the script
from script/mongrel_init into the /etc/init.d directory:

$ sudo cp script/mongrel_init /etc/init.d/mongrel_intranet

Finally, you need to add the script to the initialization sequence for the production
server. On Ubuntu Linux, you can do this with:

$ sudo update-rc.d mongrel_intranet defaults

Now Mongrel should start and stop with the server.

Clearing Out Stale Sessions
One other common task you need to perform is clearing out stale session files (i.e.
sessions associated with clients who are no longer connecting to the application).
Rails doesn't do this automatically for you. If you are using file system sessions
(see the section Cookies and Sessions in Rails in Chapter 8) and have a busy site, theChapter 8) and have a busy site, the) and have a busy site, the
RAILS_ROOT/tmp/sessions directory for your application can rapidly fill up with
session files as a result.

Rails provides a simple Rake task to clear out stale session files:

$ rake tmp:sessions:clear

This script just does a blanket clean-up of session files, regardless of whether they
are still in use. However, it's simple enough to write a script that will clear out any
session files in a time-sensitive fashion, which should leave behind those still being
actively used. For example, here's one to clear sessions that were last accessed more
than 6 hours ago, which you can add to script/clear_sessions:

#!/bin/bash
Clear out stale sessions (last accessed more than 6 hours ago)
/usr/bin/find /home/captain/apps/Intranet/current/tmp/sessions \
-name "ruby_sess*" -amin +360 -exec rm {} \;

The session files for the application are all prefixed with "ruby_sess". This script
finds all of the files in the sessions directory (RAILS_ROOT/tmp/sessions), matching
this file name pattern (the -name switch) that were last accessed (the -amin switch)
more than 6 hours (360 minutes) ago (+360). Each matching file is passed to the rm
command (via the -exec switch), which removes it.

Chapter 9

[421]

Make the script executable:

$ chmod +x script/clear_sessions

Deploy the script to the production server. Make sure it is still executable
once deployed.

To call the script on a schedule, set up a cron job to run every hour on the
production server, using whatever cron tools you have available. You should do this
as the captain user, who has permission to write into the sessions directory. For
example:

$ su - captain

Password:

$ crontab -e

will open up captain's crontab for editing. Add this line:

0 * * * * /home/captain/apps/Intranet/current/script/clear_sessions

which schedules the clear_sessions.sh script to run at 0 minutes past every hour
of every day. If things are working correctly, you should see entries like this in
/var/log/syslog, indicating that the command ran:

May 9 00:00:41 demo-server /USR/SBIN/CRON[7079]: (captain) CMD (/
home/captain/apps/Intranet/current/script/clear_sessions)

If the script fails to run correctly, you'll get error messages sent to the standard Linux
mail spool; for the captain user on Ubuntu, this goes to /var/mail/captain. An
individual error email looks something like this:

From captain@demo-server Wed May 09 00:00:41 2007
...
From: root@demo-server (Cron Daemon)
To: captain@demo-server
Subject: Cron <captain@demo-server> /home/captain/apps/Intranet/
current/script/clear_sessions
...
Date: Wed, 09 May 2007 00:00:41 +0100

/bin/sh: /home/captain/apps/Intranet/current/script/clear_sessions:
Permission denied

Emailed errors can be useful in helping track down problems with a cron job. If you
have an email server correctly configured for email, you could forward the output
from cron jobs to an arbitrary administrator email address instead.

Advanced Deployment

[422]

Keeping Log Files Manageable
The Rails log files are essential for tracking down issues with your application.
However, after a few weeks or months of operation, those files start to get big. As
well as taking up disk space, this can make them slow to open with a text editor
for viewing.

The solution is to rotate the logs; that is, periodically rename the current log, and
archive it, and open a fresh empty file for storing new log entries. Here's a sample
Ruby script for doing this, which you could place in script/rotate_logs:

#!/usr/bin/env ruby
Rotate logs on production server; call via cron
LOG_ROOT = File.join(File.dirname(__FILE__), '../log')
suffix = Time.now.strftime('%Y-%m-%d')

['mongrel', 'production'].each do |log_for|
 log_file = File.join(LOG_ROOT, log_for + '.log')
 archived_log_file = log_file + '.' + suffix
 File.rename(log_file, archived_log_file)
 File.new(log_file, 'w')
end

This script takes the current mongrel.log and production.log script and renames
them, appending the date in YYYY-MM-DD format to each filename as a new suffix.
It then creates new empty log files, mongrel.log and production.log, which the
application can continue logging into. Make sure you deploy the new script to the
server (using cap deploy).

To run the script periodically, add it to the captain user's crontab (see the previous
section for instructions on editing crontab). For example, adding this line to the
crontab will run the script at seven minutes past midnight every day:

7 0 * * * /usr/bin/ruby \ /home/captain/apps/Intranet/current/script/
rotate_logs

A final nicety is to ensure that all the custom scripts we're adding are made
executable when deployed to the production server. (I found myself doing this
manually each time I deployed new scripts, as the correct permissions weren't being
stored in the Subversion repository.) You can do this by adding a new Capistrano
task to config/deploy.rb called make_scripts_executable, and then by including
this script as part of the after_update_code task (see the earlier section Centralizing
File Uploads):

desc "Make all custom scripts (in script directory) executable"
task :make_scripts_executable, :roles => :app do
 run "chmod -R u+x #{release_path}/script"

Chapter 9

[423]

end

task :after_update_code do
 symlink_for_file_uploads
 make_scripts_executable

end

Note that you could go even further than this, and add a handler to cold_deploy to
create the cron jobs for you. That task is left as an exercise for you.

Reducing Log Detail
One other way of managing logs more effectively is to reduce the amount of detail
they contain. Rails supports different so-called log levels. The best way to imagine
these is as representing different levels of sensitivity; the lower the log level, the less
sensitive the logging system is; the less sensitive it is, the less it reports on what the
application is doing. The log levels available are:

:debug (most sensitive)
:info

:warn

:error

:fatal (least sensitive)

The log level can be configured as per environment. The default log levels for each
environment are as follows:

test: log level = :debug
development: log level = :debug
production: log level = :info

I'd recommend leaving the log levels for test and development as they are, at their
most sensitive. However, for production, you may find that you don't want such
verbose logging (the :info log level includes details of every controller/action
invocation, templates rendered, time for rendering etc., which can result in large log
files very quickly).

To reduce the sensitivity of logging, edit config/environments/production.rb
and set the config.log_level directive as follows:

config.log_level = :error

•

•

•

•

•

•

•

•

Advanced Deployment

[424]

You'll need to restart Mongrel for the new log level to take effect.

Setting the log level to :error tells Rails to ignore warnings and only report on
errors (serious and fatal). In turn, this reduces the amount of data written into the
logs, which means they don't grow so rapidly. If you find that reducing logging
in this way makes it hard for you to track down errors when they occur, you can
always turn up the sensitivity again.

Optimizing a Rails Application
There comes a point in the life of most applications when the people using it
complain about it. Sometimes this is down to the usability of the application's front
end—buttons in the wrong place, tortuous workflow, bad color choices, small fonts,
etc. This is largely down to interface design, an enormous topic outside the scope of
this book.

Other times, an application may have a great interface but still be unusable. Often,
this is because it's just too slow. In the case of Rails, this problem might arise soonerjust too slow. In the case of Rails, this problem might arise sooner. In the case of Rails, this problem might arise sooner
than you expect. The Ruby interpreters available at present (mid 2007) are quite slow
themselves; coupled with that, all the clever meta-programming that makes Rails
such a pleasure for developers turns it into a resource-hogging nightmare for
system administrators.

Slowness is something you can deal with, requiring minimal artistry and resources.can deal with, requiring minimal artistry and resources. deal with, requiring minimal artistry and resources.
This section covers how to track down particular issues with your application, and
what to do about them once you've found them. We'll be looking at several aspects
of this:

1. Finding bottlenecks in the application
2. Using caching to increase performance
3. Scaling up the infrastructure to improve performance in general

Finding Bottlenecks
If users complain that a Rails application "feels slow", they might not give you much
to work with. Some may give you more useful clues, like mentioning certain screens
that render slowly, but end users are often unable to provide the kind of detailed
information you need to make improvements. You need to be able to home right in

Chapter 9

[425]

on suspect lines of code. It may be that a mere handful of controllers, actions, helpers
or methods are causing the problems, giving an overall impression of slowness. You
need to know where those lines of code are.

The first step is to gather some solid usage data from the application logs, to use for
further analysis. Rails logs are a rich seam of data waiting to be mined, including
details of requests made and how long each response took. In addition, the response
times are further decomposed into the time taken to run queries against the database
and the time taken to render the response body (e.g. the HTML page). This is
invaluable when hunting for the causes of problems.

In the previous section, we discussed turning down the log sensitivity to
reduce the size of log files. However, to get enough useful data to identify
slow parts of the application, you will need to switch the log level to
:info or :debug.

Here is an example from Intranet's production.log running at :info logging level;
the example below was produced by the PeopleController's show action:

Processing PeopleController#show (for 127.0.0.1 at 2007-05-23
22:46:28) [GET]
 Session ID: 12ea4dfe55a2ba103cdb14587b702411
 Parameters: {"action"=>"show", "id"=>"4", "controller"=>"people"}
Rendering within layouts/application
Rendering people/show
Completed in 0.04771 (20 reqs/sec) | Rendering: 0.01422 (29%) | DB:
0.03226 (67%) | 200 OK [http://localhost/people/show/4]

The last line (highlighted) is the one we're interested in. There are three figures here
we can use for analysis:

1. The response was completed in 0.04771 seconds
2. The time spent on rendering was 0.01422 seconds (29%)
3. The time spent on database activities (DB) was 0.03226 seconds (67%)

While this is interesting, on its own it doesn't help identify which controller/action
combinations are slowest. We need comparative data across all controller/action
responses, and a decent mass of it, to produce meaningful statistics.

Advanced Deployment

[426]

Mocking up data for analysis
The best logs for analysis are those from a version of the application
running in production, after it's been in use for (at least) several days. This
will give you the most realistic data to work with.
If you don't have this sort of data, you can use a tool like Apache Bench
(ab), included with the Apache web server distribution, to create some
mock data instead. Apache Bench enables you to run a mass of concurrent
HTTP requests against a website, emulating access by web browsers. See
http://httpd.apache.org/docs/2.2/programs/ab.html
for details.
Alternatively, you could write your own spidering program to randomly
visit pages on your site and recursively follow links from each page. This
can be used to build a reasonable mass of data very quickly. A sample
Ruby script that does this, script/spider.rb, is available from the
book's Subversion repository. The script starts from the path /people,
visiting that page 10-100 times; parses links out of each visited page,
adding any URLs found to the queue of paths to visit; then visits each of
those pages 10-100 times; and so on. Note that this doesn't send any "post"
requests or log in as an adminstrator; but this capability could easily
be added.

As the format of Rails logs is entirely predictable, it's straightforward to write a
summarizer to analyze log file data. An example is available in the book's Subversion
repository as script/quick_logfile_analyzer.rb. The script parses the log file,
grouping requests by controller/action; it then averages out the requests and orders
them, listing the controller/action pairs visited and the associated response times;
the fastest-responding ones are at the top and the slowest ones at the bottom. Here's
an example of the bottom of its output for some sample log data:

...

PeopleController#show completed in an average time of 0.181 seconds
(5.5 requests per second)
(times based on 659 requests)
Rendering took on average 0.131 seconds (72%)
Database queries took on average 0.012 seconds (6%)

TasksController#create completed in an average time of 0.198 seconds
(5.1 requests per second)
(times based on 1 request)
Rendering took on average 0.134 seconds (67%)
Database queries took on average 0.007 seconds (3%)

CompaniesController#employees completed in an average time of 0.203
seconds (4.9 requests per second)

Chapter 9

[427]

(times based on 10 requests)
Rendering took on average 0.058 seconds (28%)
Database queries took on average 0.024 seconds (11%)

AddressesController#index completed in an average time of 0.467
seconds (2.1 requests per second)
(times based on 8 requests)
Rendering took on average 0.136 seconds (29%)
Database queries took on average 0.011 seconds (2%)

AddressesController#show completed in an average time of 1.044 seconds
(1.0 requests per second)
(times based on 2 requests)
Rendering took on average 0.365 seconds (34%)
Database queries took on average 0.005 seconds (0%)

TasksController#update completed in an average time of 3.048 seconds
(0.3 requests per second)
(times based on 3 requests)
Rendering took on average 2.498 seconds (81%)
Database queries took on average 0.040 seconds (1%)

As you would expect, update and create actions are slowest: typically, SQL UPDATE
and INSERT operations are slower in MySQL databases (as evidenced by the slower
database query times for those actions in the log extract above). However, the
slowest action that simply retrieves data is the PeopleController's show action.
This is to be expected, as this action potentially involves every table in the database,
pulling in a Person object, an associated Address for that person, the Company they
work for, a set of Tasks associated with that person, and FileAttachment objects
attached to the tasks. If any action is going to be slow, it's likely to be this one.

Is it worth it?
Before you go any further, consider whether it's worth the effort to
optimize your application. You now have some firm data from which to
estimate the number of requests per second your application should be
able to field. In our case, our slowest action has the capacity to handle
approximately 25 requests per second. If your application is not likely to
reach the estimated capacity, the effort of optimizing may not be worth it.
Don't optimize for the sake of it; only do so if you really need to.

So, we now know which controller and action we might consider optimizing.
However, we don't know why it's slow. At this point, we need to be able to see
what's going on when we call the PeopleController's show action, and identify
which parts of the action are slow.

Advanced Deployment

[428]

To get right inside actions, you can use Ruby's profiling mechanism to get a very
low-level view of what's going on inside your application. This approach is covered
in the next section.

If you can, cache
The biggest bottleneck in most Rails application is page rendering; as
you can see from the sample data on the previous page, for our slowest
retrieve action (PeopleController#show), rendering takes 76% of the
total response time. Judicious use of caching can dramatically improve the
performance of most Rails applications. If your application is slow, it may
not even be necessary to go to the extent of profiling your actions: just use
caching on the slowest controller/action pairs and you will frequently see
a marked improvement. We'll take a look at caching shortly.

Controller Action Profiling Using around_filter
Ruby provides classes for profiling running code. These can be employed as a
wrapper around controller actions to find out exactly what's going on when they're
called. For example, you can manually run the profiler inside the Rails console
(script/console) to watch method calls. Below is an example of using the console
to profile the Person.find method:

$ script/console

Loading development environment.

>> require 'profile'

>> Profiler__.start_profile

>> Person.find 1

>> Profiler__.stop_profile

>> Profiler__.print_profile(STDOUT)

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 10.66 0.13 0.13 1 130.00 160.00 Mysql::Result#each

 10.66 0.26 0.13 52 2.50 6.54 RubyLex#getc

 9.02 0.37 0.11 27 4.07 6.30 Module#module_eval

 5.74 0.44 0.07 1846 0.04 0.04 String#==

 3.28 0.48 0.04 34 1.18 3.24 Array#include?

 ...

Chapter 9

[429]

I've taken out some of the return values for brevity. The start_profile and
stop_profile class methods are the key; they bracket the code to be profiled,
Person.find 1, and start/stop the profiling mechanism. The profile itself is printed The profile itself is printed
using the print_profile class method; in this case, it is printed to standard
output (STDOUT).

To put the profiling around an individual controller action directly inside Rails
(instead of manually, as above), we can apply an around_filter to the methods
we want to profile. We saw examples of before_filter and after_filter in the
section Using Filters in Chapter 5;Chapter 5;; around_filter can similarly be used to run some
code before an action (to start the profiler) and again after the action (to stop the
profiler and print its results). By creating a class and giving it a class method called
filter, we can specify that class itself as the filter. The filter method should
accept a controller and an action block as arguments; it should also call the action,
otherwise around_filter will just block it.

Following is an example filter class that does the job—starting the profiler, calling
the action, then stopping the profiler and writing the profile results into a file.
Add it inside the ApplicationController class definition (in app/controllers/
application.rb):

class ApplicationController < ActionController::Base
 # ... other methods ...

 if DEFINE_PROFILER
 # A class which can be used as an around_filter for a controller,
 # to profile actions on that controller; profiles get
 # written into the profile directory with the
 # filename '<controller>_<action>.txt'
 class ProfileFilter
 require 'profile'

 # Extend the ProfileFilter class with methods from the
 # Profiler__ class
 extend Profiler__

 # The filter class method must be implemented to
 # employ this class as a filter
 private
 def self.filter(controller, &action)
 start_profile
 action.call
 stop_profile

 profile_file_name = controller.controller_name.to_s + '_' \
 + controller.action_name.to_s + '.txt'
 out = File.open(

Advanced Deployment

[430]

 File.join(RAILS_ROOT, 'profile', profile_file_name), 'w'
)
 print_profile(out)
 end
 end
 end
end

Why is this class definition wrapped in an if...end statement? It turns out that
just having the class defined inside the controller slows it down the immensely.
By making definition of the class conditional, we can easily switch it off when not
needed by setting DEFINE_PROFILER to false, which prevents the controller from
being slowed down.

So where do we set the DEFINE_PROFILER variable? We can add it to the bottom of
the environment.rb file to set it in every environment:

DEFINE_PROFILER = true

If we want to have a different setting for each environment, we could instead
specify this for individual environments inside their configuration files (config/
environments/production.rb etc.).

Next, create a directory for storing profiles called profile; each controller/action
profile gets its own file in that directory.

An around_filter can now be applied to any controller you want to profile by
amending the controller's class definition. You can also apply :except and :only
options, as for other types of filter, e.g.:

class PeopleController < ApplicationController
 around_filter ProfileFilter, :only => [:show]

 # ... other methods ...
end

Note that this makes the application considerably slower; but it can help you identify
which parts of an action are absorbing the most time. Here's a sample of the output
(from profile/people_show.txt):

 % cumulative self self total

time seconds seconds calls ms/call ms/call name

15.08 0.84 0.84 3 280.00 400.00 ERB::Compiler::ExplicitScanner#scan

 5.03 1.12 0.28 269 1.04 13.31 Array#each

 5.03 1.40 0.28 7 40.00 42.86 Kernel.sleep

 4.31 1.64 0.24 269 0.89 0.93 Object#method_added

 3.05 1.81 0.17 73 2.33 2.74 ActiveRecord::Base#connection

Chapter 9

[431]

 2.69 1.96 0.15 9 16.67 218.89 Dependencies.new_constants_in

 2.33 2.09 0.13 24 5.42 6.25 ActiveRecord::Base#define_read_method

 2.15 2.21 0.12 19 6.32 18.95 ActionController::Routing::

 RouteSet#generate

 2.15 2.33 0.12 400 0.30 0.30 String#<<

 1.97 2.44 0.11 432 0.25 0.25 Module#===

 1.80 2.54 0.10 74 1.35 1.35 Array#include?

 1.80 2.64 0.10 19 5.26 5.26 Mysql#query

...

Note that by far the slowest part of the action is the ERB::Compiler::
ExplicitScanner#scan method, whose three calls take 15% of the total time of the
action. This method is invoked during view rendering; looking back at the output
from the simple log analyzer of the previous section, rendering accounts for 72% of
the execution time for this action, on average; so calls to this method account for 15%
of that. By contrast, database methods take 6% of the action's execution time.

To reiterate the tip from the end of the previous section: caching is likely to improve
performance here, taking a bite out of that 72%. In most cases, it is more likely to
improve your application's performance, and do so more simply, than any other
optimization. But it's nice to have data from the profiler to back up this assertion.

The example above uses the standard, slow built-in Ruby profiler,
which makes testing lots of actions very time-consuming. If you need
a faster profiler, take a look at ruby-prof (http://rubyforge.org/
projects/ruby-prof/). It seemed a bit buggy when I used it with
Rails, sometimes producing incomplete profiles, but you may have better
luck with it.

Profiling Everything
If you want to profile everything, it is possible to run the whole Mongrel process,
along with any actions carried out by the application, under the profiler. To do this,
run the following from the command line (on *nix):

$ ruby -r profile script/server 2> profile/everything_profiled.txt

This loads the profiling library (-r profile), starts the server, and redirects any
profiling output into the profile/everything_profiled.txt file. This produces
a great deal of output, and is harder to decipher than the individual action profiles
shown above. However, you can always search through the output for the actions
you are interested in, and the extra detail may be useful on occasion.

Advanced Deployment

[432]

The Rails Profiler
Rails contains its own profiler script, in script/performance/profiler. It can be
used to test individual methods inside your application and help you identify what
they are doing. I personally don't tend to use it very often, as I think it's more useful
to profile controller actions (see previous section). The Rails profiler can't do that
by default. But the built-in profiler can be useful where you have inexplicably slow
methods and want to find out why.

To use the profiler, pass it a code fragment and a number of times to run that
fragment, e.g.:

$ script/performance/profiler "Person.find :all" 10

You get standard Ruby profiler output, which you can then use to identify the
slowest parts of the method call.

Improving Application Performance with
Caching
As mentioned in the previous sections, using caching is the quickest and easiest
way to improve the performance of a Rails application. Rails provides several types
of caching, each of which provides speed benefits. However, they are not all equal
in terms of speed benefit, and have different areas of application. The table below
summarizes the types of caching available.

Type of
caching

Speed Description

Page Fastest Caches whole views for a particular route, storing each as a full
HTML page*.
Can only be used for pages where every client gets the same content;
e.g. a public home page, which looks the same for every visitor.
As the action isn't invoked (Rails delivers the HTML file directly),
filters aren't activated, so it is not suitable for pages which require
authentication or other use of filters.
As the whole HTML page is cached, Apache can be used to serve the
cached page directly if it is available.

Action Second
fastest

Caches individual controller actions as whole HTML pages, like
page caching*.
BUT the action and any filters still run, so it is possible to use
authentication etc.
Can only be used where an action produces the same output for
all clients.

Chapter 9

[433]

Type of
caching

Speed Description

Fragment Slowest Caches parts of views, e.g. a menu or a content area*.
A fragment can be as small as a single paragraph, so this technique is
very flexible and fine grained.
Can be used to cache different content for different users.

* See notes on how cache elements are named, in the following section

How Cache Elements are Named
Caching stores cache elements (entire HTML pages or HTML fragments) under
keys; the base key for a cached element is the path of the visited page minus the
querystring. For example, these paths would each produce a different cache key:

people

people/index (even though it refers to the same page as people)
people/show/5

While the following two paths would produce the same cache key:

people/index?page=1

people/index?page=2

The three different types of caching take the base cache key produced by the path
and append other pieces of information to get the full location, as shown in the
table below.

Type of
caching

Cache key
prefix 1

Cache
key
suffix

Example cache key for
path /people/show/5

Default location when caching
to file_store on localhost:4000 2

Page - .html people/show/5.html public/people/show/5.html
Action <host:

port>/
.cache localhost:4000/

people/show/5.cache
tmp/cache/localhost:4000/
people/show/5.cache

Fragment <host:
port>/

.cache localhost:4000/
people/show/5.cache

tmp/cache/localhost:4000/
people/show/5.cache

1 Action and fragment caching uses the host name and port number as part of the
cache key. This makes it possible for a single Rails application to be served under
multiple domain names, while allowing each to have its own isolated cache.

•

•

•

•

•

Advanced Deployment

[434]

The default cache store is file_store: the cache elements are kept on the local
filesystem. The table shows where each type of cache element is kept when this cache
store is used: page cache elements go into the public directory, while action and
fragment cache elements go into tmp/cache. Other cache stores are available, as we'll
see in the section Advanced Scaling, later this chapter.

If you need to change the location for cached page elements, set the following
directive in config/environment.rb:

Set page cache location to public/cached_pages
ActionController::Base.page_cache_directory = "public/cached_pages"

To change the location of the fragment (and action) cache, set this directive in
config/environment.rb:

Set fragment (and action) cache store type to :file_store
and store cached fragments in tmp/fragments
ActionController::Base.fragment_cache_store = :file_store, "tmp/
fragments"

Deciding What to Cache
The first step when using caching is to decide which types of caching can be used in
your application. The table in the previous section gave some idea of the situations
where different types of caching are applicable; let's see whether any of them apply
to Intranet:

Page caching: This can only be used where every client visiting a given path
gets the same view. If there are any differences based on the client's status,
you can't use page caching effectively. In the case of Intranet, each page
contains a link to the login page for anonymous users, or displays the
user's username once they have logged in. This means that page caching
isn't feasible.
Action caching: Like page caching, action caching stores a whole page of
HTML for each path. Unlike page caching, the action is still invoked by Rails,
so authentication filters can run. This makes it possible to do something
like show cached pages to anonymous users, but show the same pages
dynamically when the user is logged in. However, this would be a slightly
complicated solution, and one that is not worth pursuing in our context.
Fragment caching: In the case of Intranet, this is the most flexible and useful
of options. It can be used at several points in our code to cache parts of the
page that remain stable between requests, while enabling us to retain the
flexibility to show different views to different users.

•

•

•

Chapter 9

[435]

Looking at the options available, it seems clear that fragment caching is best suited
to our needs. We'll briefly look at page and action caching in the following sections,
but concentrate on wringing most of our performance improvements out of
fragment caching.

Caching vs. static HTML pages
If you have a page that changes once in a blue moon and that doesn't need
to be generated by Rails, another option is available—create an HTML
file and serve it direct from the web server, bypassing Rails entirely.
Examples might be a terms and conditions page, an "about us" page, or
contact information: all of these pages rarely change but are usually an
essential part of a public web application.
If you are using Apache as a front-end for your Rails application, you
can use conditional URL rewriting (available in Apache's mod_rewrite
module) to serve static pages where they are available; this leaves any
URLs that can't be mapped to files to be served dynamically by Rails
instead. The section Using Apache to Serve Static Assets (later this chapter)
covers how to use this technique to serve static files, such as JavaScripts
and stylesheets, as well as cached pages and actions.

Preparing for Caching
Before you can start using caching, you need to enable it for the environment you're
running under. By default, the production environment has caching enabled, but the
development environment does not.

Set whether caching is on or off by editing the appropriate environment file
(config/environments/production.rb, config/environments/development.rb)
and setting this directive:

config.action_controller.perform_caching = true

Page Caching
Page caching is very simple to implement. Inside a controller's class definition you
simply specify the names of actions to which you want to apply page caching, e.g.

class PeopleController < ApplicationController
 caches_page :index, :show

 # ... other methods ...
end

Advanced Deployment

[436]

With this in place, visiting /people will create an HTML file, public/people.html.
If you look in the log file, you should see something like this:

Cached page: /people.html (0.00065)

This indicates that Rails has cached the page into a file called people.html; the path
/people.html indicates that this file is stored inside the public directory. Note that
Rails doesn't create a people directory, as there is only a forward slash at the start of
the path, not anywhere within it. If we visited the path /people/index, Rails would
actually create a new file in public/people/index.html, with the same content
as public/people.html. Even though both paths point to the same controller and
action, caching considers the two paths in isolation and creates one cached HTML
file for each.

The next time the /people path is requested, Rails will deliver the public/people.
html file and not run the index action at all. You won't even get an indication in
the log file that this has happened as Rails isn't even invoked. Great! We're already
saving time.

Similarly, if we visit the show action for a particular person (e.g. people/show/5),
we'll get another HTML file in public/people/show/5.html, containing the cached
HTML for that person's detail page. The next time we visit that same path, we'll see
the cached page. As the person's ID is part of the path, each person's detail page gets
its own element in the cache and its own HTML file in public/people/show.

However, it's not all roses. What happens if there are several pages of people to list
using the index action? Recall that we created some pagination links at the bottom
of the people#show view (in app/views/people/show.rhtml) to enable clicking
through the list of people 10 at a time (see the section Pagination in Chapter 5). Each
pagination link contains a page variable in the querystring, like this:

/people?page=2

The index action uses this to decide which page of results to show. However, if
you click on these pagination links and the /people path has a cached element
in public/people.html, each link just displays the first page of results that was
cached. This is because caching ignores the querystring; so each page of results is
treated as a request for /people and mapped onto the public/people.html
cache element.

The solution is to include the page number as part of the path (which caching
doesn't ignore) instead of as a querystring variable (which caching does ignore).
In config/routes.rb, add a rule to do this, just above the default routing rule for
controllers and actions (highlighted):

Chapter 9

[437]

ActionController::Routing::Routes.draw do |map|
 # ... other routes ...

 # Enable caching of paginating index pages for PeopleController

 map.connect 'people/index/:page', :controller => 'people',

 :action => 'index'

 # Install the default route as the lowest priority.
 map.connect ':controller/:action/:id'
end

Now the pagination links have URLs like this:

people/index/2

Each page gets cached into public/people/index/X.html, where X is the page
number (and value of the page parameter). This solves the problem. Anywhere
where you want to cache a page that changes based on request parameters, those
request parameters need to be part of the cache key; the simplest way to ensure
this is to fold required parameters into the path using the routing configuration, as
shown above.

While page caching is fast, once a cached element for a controller#action has
been generated, Rails is no longer invoked when its path is requested. This means
that even if a cached page required authentication the first time it was cached, once
it exists in the cache it will be delivered to everyone, ignoring authentication. If you
have pages that are the same for every logged in user that you want to cache, but still
want to exclude unauthenticated users, you need to use action caching instead, as
described in the next section.

Keep in mind that the page caching above is for demonstration purposes
only. The pages in Intranet change depending on the user, and whether
they are logged in or not; page caching is not feasible in our case. If we
used page caching, the first-cached version of a page might contain a
logged-in user's username. This could then become the cached page that
all subsequent users see, causing confusion when they apparently see
themselves logged in under a different username.

Action Caching
Action caching caches entire HTML pages, like page caching; but cached elements
are delivered via Rails, rather than directly from the cache. This means that you can
still use filters for authentication (and other tasks). So if you have a page that you
want only logged in users to see, and the page is the same for all of those users (e.g. a
message of the day page), action caching is the answer.

Advanced Deployment

[438]

The cache elements created by action caching are still keyed by path: this
means that any querystring parameters that alter the page output
need to be part of the path, as described for paging parameters in the
previous section.

There are few places in Intranet where action caching is applicable. But for the
purposes of explication, here's how to cache the PeopleController's index and
show actions, as hilighted in the following code:

class PeopleController < ApplicationController
 helper TasksHelper

 before_filter :authorize, :except => [:index, :search, :show]
 before_filter :get_person, :only => [:update, :delete]
 before_filter :all_addresses, :only => [:update, :create]

 caches_action :index, :show

 # ... other methods ...
end

The caches_action method in the class definition can be passed the names of one
or more actions to cache. Note that this method should be called after any filter
definitions to ensure that the filters are applied before caching is carried out.

The first visit to the path /people generates a cache file in tmp/cache/
localhost:4000/people.cache (not in the public directory). (Note how the host
name and port are part of the cache key.) You should see a line like this in the log:

Cached fragment: localhost:4000/people (0.00038)

Subsequent visits to the page receive the content of the cache file. However, unlike
page caching, the log will record this, as Rails is invoked to retrieve the page from
the cache:

Fragment read: localhost:4000/people (0.00023)

As both requests are logged, we can compare the before-caching and after-caching
requests. In my case, here are the times for rendering the page on the first visit,
before a cached action is available (16 requests per second):

Completed in 0.06197 (16 reqs/sec) | Rendering: 0.01825 (29%) | DB:
0.00812 (13%)

These are the times when the request is served from the cache (230 requests
per second):

Completed in 0.00433 (230 reqs/sec) | DB: 0.00129 (29%)

Chapter 9

[439]

In the second case, statistics for Rendering are absent; the templating engine isn't
invoked as the HTML for the page is retrieved from the cache, not generated. Even
taking into account the slight slow-down caused by writing into the cache during the
first request, the request served from the cache is an order of magnitude faster.

Again, action caching is not really suitable for Intranet, for the reasons
described at the end of the section on page caching; each page is different
for every user.
However, this raises an interesting point; if we took the username
out of the HTML for the page, we could cache pages for all users
(e.g. /people, /people/show/X). In cases where you need to do page
or action caching, but the page content prevents you from doing so, it
might be worth making pages generic so they can be cached.

Fragment Caching
Fragment caching is the most useful caching option where you have an application
with no generic pages (i.e. pages that stay the same for all users). However, even
in these types of application, there will still be large parts of the page that are the
same for all users; for example, a menu, a header, or footer may be entirely static.
But these elements may still be generated using Rails; for example, the menu may be
constructed using the link_to helper, as is the case with Intranet's menu.

Caching static fragments can remove the load caused by calling helper methods
continually. Rather than caching a whole page, we just cache part of a view and store
the generated HTML fragment. This is done directly inside view templates, rather
than inside the controller as is done for page and action caching. For example, here's
how we might cache the menu in app/views/layouts/application.rhtml:

...
<body>
<% cache(:controller => 'menu') do -%>

<div id="menu">
<p>Menu</p>

<%= link_to 'Companies', :controller => 'companies' %>

<%= link_to 'Add a company', :controller => 'companies',
:action => 'create' %>

<%= link_to 'People', :controller => 'people' %>

Advanced Deployment

[440]

<%= link_to 'Add a person', :controller => 'people',
:action => 'create' %>

<%= link_to 'Addresses', :controller => 'addresses' %>

<% end -%>

...
</body>
</html>

The start of the HTML fragment to cache is marked with <% cache(<options>)
do -%>, where <options> is a hash passed to Rails' url_for method. <options> is
converted into a path (using the routing configuration) to generate the cache key for
the fragment. Note that the path doesn't have to exist in this case; there is no menu
controller, but we are still passing it as part of the path specification. The end of the
fragment is marked with <% end -%>. The resulting fragment is stored in tmp/cache/
localhost:4000/menu.cache.

Fragment caching can even be used to store different views for different users.
For example, we could cache the login link or logged-in username by passing the
username as a component of the cache key:

<%

start caching

user = session[:user]

username = (user.nil? ? nil : user.username)

cache(:controller => 'login_panel', :username => username) do

-%>

<% if session[:logged_in] -%>
Logged in as <%= session[:user].username %>;
<%= link_to 'Logout', :controller => 'login', :action => 'logout' %>
<% else -%>
<%= link_to 'Login', :controller => 'login' %>
<% end -%>

<% end # end caching -%>

Each logged in user now gets a personalised fragment in the cache store. For
example, if the admin user is logged in, their menu is cached in tmp/cache/
localhost:4000/login_panel.username=admin.cache. Users who aren't logged
in get the version of the menu cached in tmp/cache/localhost:4000/login_
panel.cache (note there's no username parameter in the filename).

Chapter 9

[441]

Fragment Caching for Actions
The fragment cache can be used to store any generated HTML, including the entire
output from the template for an action. Good candidates for this are templates for
actions that display data; in our case, show and index actions on any controller.

As an example, we'll cache the output from the show action for PeopleController.
To do this, edit the app/views/people/show.rhtml template, putting:

<% cache do -%>

above the first line and:

<% end -%>

as the very last line, wrapping all of the template's RHTML. As we've specified
no options to the cache method call, the cache key for the fragment will be
localhost:4000/people/show/X, where X is the ID of the person. Visit a person's
detail page in your browser and check that the cache file is being generated (in tmp/
cache/localhost:4000/people/show/X.cache). You can also check the log file for
a line like this:

Cached fragment: localhost:4000/people/show/2 (0.00238)

On the next visit to the same page, the cached fragment is used instead of the HTML
for the page being generated. To give a rough idea of the speed difference (in the
production environment), consider the initial generation of the cached version, as
follows:

Completed in 0.19671 (5 reqs/sec) | Rendering: 0.11522 (58%) | DB:
0.05368 (27%)

A subsequent request answered by reading from the cache, is recorded as follows:

Completed in 0.00615 (162 reqs/sec) | Rendering: 0.00288 (46%) | DB:
0.00255 (41%)

Much faster! However, one point to note is that, unlike page or action caching,
fragment caching still runs the code inside the action. This means that for the show
action, the database call to retrieve the person's record from the database still runs.
This is despite the fact that we are not using the person's record to generate the
HTML for the page any more, as it is being pulled from the cache. In the next section,
we'll look at some techniques for avoiding these redundant database queries.

Advanced Deployment

[442]

Avoiding Database Calls for Cached Fragments
Usually, an action will retrieve one or more records to service a request; for example,
the show action in the PeopleController pulls in the person's record from the
database (using the get_person method, triggered as a before_filter). When you
cache a fragment for a controller, the action will carry on running these database
actions, even though they may have become redundant. Once a fragment has been
cached, Rails no longer needs the database retrieval to generate the fragment's
HTML, as it is retrieved from the cache instead.

The usual technique is to skip the retrieval of the database record if a fragment for
the page exists. In our case, we can edit the show method so that it only retrieves a
person's record if there is no cached fragment for it. To check for the existence of a
fragment, you can use the read_fragment method:

def show
 get_person unless read_fragment({})

 # NB NEXT LINE DOESN'T WORK PROPERLY ANY MORE - see text!
 @page_title = 'Person profile for ' + @person.full_name
end

Note that read_fragment is passed an empty hash ({}) as an argument. Here, if
you do this, Rails uses the path of the current page as the key to search for in the
fragment cache. read_fragment works in a similar way to the cache helper we saw
in the previous section. You give it a set of options suitable for passing to url_for,
and those options are used to generate the key for a cache element to read.

As we are now only calling get_person if a fragment doesn't exist, we can remove it
from the PeopleController's before_filters:

before_filter :get_person, :only => [:update, :delete]

Here's what happens the first time a path like /person/show/5 is requested:

1. The show action is invoked.
2. As read_fragment returns nil (no cached element for person/show/5),

get_person is called.
3. get_person sets the @person instance variable via a database query.

However, if the same path is requested again, the following happens:

You have a nil object when you didn't expect it!
The error occurred while evaluating nil.full_name

Chapter 9

[443]

What's going on here? The problem is that this time round, the cache fragment does
exist, so Rails doesn't perform the database query. This means that the @person
instance variable is not set. Recall that the show action sets the @page_title by
referencing the @person variable:

def show
 get_person unless read_fragment({})
 @page_title = 'Person profile for ' + @person.full_name
end

Now that there is no @person variable set, @person returns nil; so when the template
tries to call @person.full_name (i.e. nil.full_name), we get the error message.

To work around this, we need to be able to cache some content for the @page_title
variable when we first cache the show action, then check for a cached title when we
run the show action, instead of assuming @person has been set.

We can work round this by employing the full power of the Rails caching
mechanism. When the show action is invoked, we check for a page title fragment in
the cache; if it's there, we retrieve it and set the @page_title instance variable; if not,
we generate it from the @person object then store it in the cache. Here's the rewritten
show action that implements this behavior:

def show
 get_person unless read_fragment({})

 title_cache_key = fragment_cache_key({}) + '.title'

 @page_title = read_fragment(title_cache_key)
 unless @page_title
 @page_title = 'Person profile for ' + @person.full_name
 write_fragment(title_cache_key, @page_title)

 end
end

The highlighted lines include a couple of calls to Rails methods we've not
seen before:

fragment_cache_key generates a key for an element in the fragment
cache. In the case of the title, we use the cache key for the path plus a suffix
".title". This means that the title for the page /people/show/5 will get the
cache key people/show/5.title; and when using a filesystem cache (as we
are here) will end up in the file RAILS_ROOT/tmp/cache/people/show/5.
title.cache. You can use this to generate your own custom cache keys for
any type of fragment you like.
write_fragment(title_cache_key, @page_title) writes the
@page_title instance variable into the cache, under the generated key.

•

•

Advanced Deployment

[444]

As we're likely to need to do this kind of custom caching in several places, it is useful
to make this into a generic method available to all controllers by adding it to the
ApplicationController class:

class ApplicationController < ActionController::Base
 # ... other methods ...

 # Store a fragment in the cache; "." + fragment_suffix is
 # appended to the standard cache key for this
 # controller/action; if a fragment with this key exists,
 # return it; if not, call the block &generator to create
 # the value, store it in the cache, and return it
 private
 def handle_text_fragment(fragment_suffix, &generator)
 text_fragment_name = fragment_cache_key({}) + "." +
 fragment_suffix
 value = read_fragment(text_fragment_name)
 unless value
 begin
 value = generator.call
 write_fragment(text_fragment_name, value)
 rescue
 value = ''
 end
 end
 return value
 end
end

To use this to set the @page_title variable in the show action:

def show
 get_person unless read_fragment({})

 fragment = handle_text_fragment("title") { @person.full_name }
 @page_title = "Profile for " + fragment
end

What we're doing here is calling handle_text_fragment with title as the suffix
for the fragment cache key; this means the method will work with a cache fragment
called people/show/X.title (where X is the ID of the person to show). If the
fragment exists, the fragment variable is set to its value; if not, the block { @person.
full_name } is executed to generate the value instead, and that value stored in the
cache. Finally, @page_title is constructed from the string "Profile for " with
whatever handle_text_fragment returned appended to it.

Chapter 9

[445]

This means that we can now remove the database query altogether, as both the
person's details and the page title are cached in step with each other. This produces
phenomenal speedups. Before caching:Before caching:

Completed in 0.12266 (8 reqs/sec) | Rendering: 0.03310 (26%) |
DB: 0.08563 (69%) | 200 OK [http://localhost/people/show/4]

When the same page is rendered from the cache:

Completed in 0.00718 (139 reqs/sec) | Rendering: 0.00537 (74%) | DB:
0.00000 (0%) | 200 OK [http://localhost/people/show/4]

From 8 requests per second to 139! Also note that there are now no database queries
(DB: 0.00000 (0%) in the log entry).

The only downside to this approach is that the fragment for the page content and its
title have to stay in sync. If the page title fragment is deleted but the page content
fragment remains, Rails will always try to run the generator block to create the new
fragment; but as the database fetch is being skipped, the generator block has no
@person variable to work with, and returns the empty string (that's why the
begin...rescue block is there: to capture situations where the block code causes an
error). However, this is a small price to pay for the performance benefits gained.

Clearing out the Cache
Up until now we've happily been caching the output of what were previously
dynamic pages. However, we've done nothing to ensure that the cache doesn't
become stale (i.e. displaying data that is no longer correct or may not even exist any
more). What if a person's record is updated? At the moment, the application knows. What if a person's record is updated? At the moment, the application knows
nothing about this and the show action continues to deliver stale data from the cache.

What we need is a way of expiring elements in the cache when data changes. For
example, if a person's record is updated, we will need the cached show page to expire
for that person; similarly, if we cache the index page (which lists all people on the
system) we need to expire it if new people are added, to keep the list up to date.

It is possible to manually expire the cache using one of the Rails built-in Rake tasks:

$ rake tmp:cache:clear

This can be useful if you have generated pages that very rarely change and don't rely
on the database; in the case of Intranet, the menu may occasionally change, but any
changes aren't connected to database actions and are difficult to detect. In this case,
the easiest thing is to clear the cache when you make a change to the RHTML file
containing the menu (app/views/layouts/application.rhtml).

Advanced Deployment

[446]

But this technique is laborious where you have cached pages that should expire
when data in the database changes. A better technique here is to automatically
detect changes in the database and expire the cached fragments associated with
those changes.

Rails provides a special ActionController::Caching::Sweeper class for exactly
this purpose. Create a new file in app/controllers/people_sweeper.rb with
this content:

class PeopleSweeper < ActionController::Caching::Sweeper
 observe Person

 def after_update(record)
 clear_people_fragments(record)
 end

 def after_destroy(record)
 clear_people_fragments(record)
 end

 def clear_people_fragments(record)
 key = fragment_cache_key(:controller => 'people',
 :action => 'show', :id => record.id)

 expire_fragment(key)
 expire_fragment(key + ".title")
 end
end

A sweeper is a combination filter (which runs some code before or after a controller
action is invoked) and observer (which watches the database for changes). Inside
it, you define callback handlers that respond to actions on the observed models. In
this case, observe Person specifies that the sweeper will only respond to changes
to the Person model. When the sweeper responds to a database change, its callback
handlers (before_*, after_*) can then be used to expire cache elements. Here, we're
expiring the cached view for the show action.

A sweeper is activated by attaching it to a controller, as follows (highlighted):

class PeopleController < ApplicationController
 helper TasksHelper

 before_filter :authorize, :except => [:index, :search, :show]
 before_filter :get_person, :only => [:show, :update, :delete]
 before_filter :all_addresses, :only => [:update, :create]

 cache_sweeper :people_sweeper, :only => [:update, :delete]

 # ... other methods ...
end

Chapter 9

[447]

When the update or delete actions are invoked on the PeopleController, the
appropriate sweeper handler (one of its after_* methods) is called, with the
modified record (Person instance) being passed in as an argument. Each of these
methods in turn calls clear_people_fragments, which expires the appropriate
fragments from the cache using the expire_fragment method.

Note that if we were caching the output of the people/index page, the sweeper
should expire its associated cache elements when update or delete actions occur.
Also note that there are additional expire_page and expire_action methods
available to the sweeper if you are using page or action caching.

Optimizing How Rails Uses the Database
One other easy optimization you can perform is to reduce the load Rails puts on the
database. By default, ActiveRecord is quite wasteful of resources. To demonstrate,
consider the case where we have a person with associated address, company, and
three tasks. If you call the PeopleController's show action for this person (with an
ID of 1), the following four SQL queries are executed (along with a few others—see
the logs):

1. Load details from the people table: SELECT * FROM people WHERE
(people.'id' = 1)

2. Load the person's associated company: SELECT * FROM companies WHERE
(companies.'id' = 1)

3. Load the person's associated address details: SELECT * FROM addresses
WHERE (addresses.'id' = 1)

4. Load the person's tasks: SELECT * FROM tasks WHERE (tasks.person_id = 1)
ORDER BY complete ASC, start DESC

This issue is sometimes termed the 1+N query problem (http://www.infoq.com/
articles/Rails-Performance). When Rails retrieves an object (like a person) that
has an association to other objects (like companies, addresses, and tasks), it runs one
query for the person, plus another query to retrieve the data for each association (N
more queries).

The reason this is wasteful is that a knowledgeable SQL programmer would be
able to convert this into a single left outer join query (a.k.a. a left join), pulling the
required data from the four tables in one pass. The companies, addresses, and
tasks tables have associations with the people table, so our programmer could
construct this single query to pull all the data out via shared keys:

SELECT * FROM people
LEFT OUTER JOIN companies ON people.company_id = companies.id
LEFT OUTER JOIN addresses ON people.address_id = addresses.id
LEFT OUTER JOIN tasks ON people.id = tasks.person_id

Advanced Deployment

[448]

If you've done any PHP programming with SQL, you are probably familiar with
this syntax. This statement retrieves data from all four tables, joining the rows in the
different tables together using the shared keys. The downside to this approach is
that it returns one row for each task, along with copies of the person, company, and
address records resulting in each task carrying several fields of redundant data. In
a traditional language, it would be the programmer's job to loop through the rows,
ignoring the repeated data and picking out the individual tasks.

Fortunately, Rails provides functionality to avoid both the multiple queries and the
pain of manually sifting the redundant data. ActiveRecord enables eager loading of
associations, which, like an expert SQL programmer, performs the necessary left join
operations to load all the data in one pass. As a bonus, it also manages the result set
and converts it into objects without the programmer having to do any work.

It's very simple to implement, too. In our case, we can change the PeopleController
to load the person plus their company, address, and tasks in one pass. We'll do this
by editing the private get_person method in the PeopleController, which loads a
person's record for subsequent display or editing:

class PeopleController < ApplicationController
 # ... other methods ...

 private
 def get_person
 @person = Person.find(params[:id],
 :include => [:company, :address, :tasks])

 end
end

The important part of this is the new :include option, which is passed to find
(highlighted). This tells ActiveRecord to create an SQL statement that includes left
joins to the three associated tables. Note that you can do this from either side of an
association; in our case, we're joining from the person through two belongs_to
associations (to address and company) and a has_many association (to tasks).

If you run the show action for the person again, you shouldn't notice any difference
in the browser (though see the next section for one caveat). But if you look in
the logs, you'll see that the four separate queries we saw earlier have gone, to be
replaced by one looking like this:

Person Load Including Associations (0.035309) SELECT people.'id' AS
t0_r0, people.'title' AS t0_r1, people.'first_name' AS t0_r2,
...
addresses.'id' AS t2_r0, addresses.'street_1' AS t2_r1,
...

Chapter 9

[449]

tasks.'id' AS t3_r0, tasks.'title' AS t3_r1, tasks.'description' AS
t3_r2,
...
FROM people LEFT OUTER JOIN companies ON companies.id = people.
company_id LEFT OUTER JOIN addresses ON addresses.id = people.
address_id LEFT OUTER JOIN tasks ON tasks.person_id = people.id WHERE
(people.'id' = 1)

We've taken a lot of the detail out to keep things brief, but you can hopefully see that
Rails has constructed a left join SQL query similar to the one we hand-crafted earlier.
This single query was run instead of four separate ones. The fact that the show action
(when run via a browser) still renders the page correctly also shows that Rails has
intelligently dissected the data into a Person instance and its associated objects (an
Address, a Company, and one or more Task instances). Bear in mind, though, that
although the number of queries has been reduced, construction of objects from the
SQL result sets still has to be performed.

Ordering for Eager Loading
There is one small caveat to mention for eager loading. Note that the left join
statement constructed by Rails doesn't order the results in any way. But remember
that we specified ordering when we associated the person model with the
task model:

has_many :tasks, :order => 'complete ASC, start DESC',
:dependent => :nullify

In our original version of the show action, the tasks shown are ordered, due to
the ordering specified for the association. By contrast, when using eager loading,
ordering on associations is ignored, so the tasks come out in ID order. The result is
that the show action using eager loading has a different task order from our original
show action. If you want to retain ordering for tasks (as we do), you need to attach an
:order option to the find method call, e.g.

class PeopleController < ApplicationController
 # ... other methods ...

 private
 def get_person
 @person = Person.find(params[:id],
 :include => [:company, :address, :tasks],
 :order => 'tasks.complete ASC, tasks.start DESC')

 end
end

Advanced Deployment

[450]

Tasks are now displayed in the same order as they were before we implemented
eager loading.

Other Optimizations
Using caching is the most important optimization you can make, and can
yield instant results. Trimming the number of database queries using
eager loading can also help.
However, the bottleneck may sometimes be in other parts of your
application: perhaps a slow connection to a web service you are querying,
a lag caused by parsing complex XML files, or a query to an enormous
database table. The techniques covered earlier in this chapter should go
some way to helping you find those bottlenecks. But as they can be fairly
application specific, we have decided not to cover the gamut of possible
solutions here.

Scaling Your Rails Infrastructure
In Chapter 6, we saw how to put a whole Rails application running on MongrelChapter 6, we saw how to put a whole Rails application running on Mongrel, we saw how to put a whole Rails application running on Mongrel
behind Apache, so that any requests to the virtual host http://intranet.company.
local/ are proxied through to the Mongrel instance on port 4000 (via mod_proxy).
This made it simple to present a Rails application via a user-friendly URL and
without a port number.

In the remainder of this chapter, we'll extend this basic configuration to make the
application perform more efficiently by applying the following techniques:

Setting up Apache to serve static assets: This technique reduces the load on
Mongrel, leaving it to concentrate on running Rails (what it's good at), and
letting Apache serve static files like images, JavaScripts, and HTML (what
Apache is good at).
Using Apache to load balance onto a Mongrel cluster: Instead of using a
single Mongrel instance to run the application, we can assemble a "pack" of
Mongrels to handle the load. Apache sits in front of the pack, distributing
requests evenly between the Mongrel instances.
Advanced techniques for scaling: Going beyond a single machine, we'll
discuss the de facto standard techniques for scaling a Rails application across
multiple physical machines.

•

•

•

Chapter 9

[451]

FastCGI
In the bad old days, the main approach for deploying Rails applications
was FastCGI. These days, this approach is largely deprecated in fresh
production environments in favor of Mongrel. However, you may still
find that FastCGI is the only option offered by your shared hosting
company; most hosting companies offering Rails hosting use the
FastCGI approach.
If you have the option, go for Mongrel; if you are forced to use FastCGI,
good luck! I have always found it flaky and resource-intensive, and won't
be covering it here.

Using Apache to Serve Static Assets
The first performance improvement we can make to our infrastructure is to enable
Apache to serve static files for our application (i.e. images, JavaScripts, and cached
pages). In Chapter 6, we created a basic setup for putting a Mongrel instance
behind Apache running mod_proxy; in this section, we will amend this basic
setup, adding some rewrite rules to serve static files through Apache, bypassing
Mongrel altogether.

The resulting configuration will look like this:

Client

Requests

URLs mapped to
static resources

URLs mapped to
dynamic resources

Front-end web
server

(Apache)

Rails process
(running under

Mongrel)

File system:
image files,

HTML pages, etc.

Database

Advanced Deployment

[452]

Any resources that exist on the filesystem are served directly by Apache; any
remaining URLs are proxied through to the application running as a Mongrel instance.

Tweaking Our Basic mod_proxy Configuration
Our basic setup in Chapter 6 didn't deal with the shared directories we're now
using with Capistrano; our application is in the captain's home directory
(/home/captain/apps/Intranet), but Apache's log files are still going into their
default location. The first thing we can do is edit httpd.conf to log the virtual host
into /home/captain/apps/Intranet/shared/log. Then we'll tell Apache that the
DocumentRoot for this virtual host is in the current/public directory; that way, we
can configure Apache to serve static files directly from there and bypass Rails. Here
is the amended VirtualHost entry for intranet.company.local:

<VirtualHost *:80>
 ServerName intranet.company.local
 ServerAlias www.intranet.company.local

 # Put the Apache logs in the shared Capistrano log directory
 ErrorLog /home/captain/apps/Intranet/shared/log/intranet-error.log
 CustomLog /home/captain/apps/Intranet/shared/log/intranet-access.log
common

 # Point the DocumentRoot into the current public directory
 DocumentRoot /home/captain/apps/Intranet/current/public

 # Proxy all requests through to Mongrel
 ProxyPass / http://127.0.0.1:4000/
 ProxyPassReverse / http://127.0.0.1:4000/
 ProxyPreserveHost On
 ProxyRequests Off
</VirtualHost>

Reload Apache to make the changes take, e.g. if you followed the Linux installation
instructions in Chapter 6 you can do:Chapter 6 you can do: you can do:

$ /etc/init.d/apache2.2 graceful

At the moment, Apache isn't doing anything other than proxying all requests, so the
Intranet logs won't contain any hint that we've moved the Apache log files. In the
next section, we'll get Apache to serve static files, which will add some entries to
the logs.

Chapter 9

[453]

Adding Rewrite Rules to Serve Static Files
To get Apache to serve static files, we first need to make some changes to the
permissions on the directory where those files exist. We can do this using a
standard <Directory> directive for the public directory of our Rails application
in httpd.conf:

<Directory /home/captain/apps/Intranet/current/public>
 AllowOverride none
 Options FollowSymLinks
 Order allow,deny
 Allow from all
</Directory>

Next, we modify the <VirtualHost> entry, adding some directives which invoke
the powerful features of Apache's mod_rewrite module (which we enabled while
installing Apache in Chapter 6). The mod_rewrite module can be configured to
change incoming request URLs into different ones, based on the conditions specified.
Here's what the rewrite rules look like (highlighted):

<VirtualHost *:80>

 ServerName intranet.company.local

 ServerAlias www.intranet.company.local

 # Put the Apache logs in the shared Capistrano log directory

 ErrorLog /home/captain/apps/Intranet/shared/log/intranet-error.log

 CustomLog /home/captain/apps/Intranet/shared/log/intranet-access.log common

 # Point the DocumentRoot into the current public directory

 DocumentRoot /home/captain/apps/Intranet/current/public

 # Turn on the rewrite engine

 RewriteEngine on

 # Useful for debugging rewriting

 RewriteLog /home/captain/apps/Intranet/shared/log/intranet-rewrite.log

 RewriteLogLevel 9

 # 1. If you're using page or action caching,

 # this directive will serve cached files direct from Apache

 RewriteRule ^([^.]+)$ $1.html [QSA]

 # 2. Check whether there is a file matching the request path

 RewriteCond %{DOCUMENT_ROOT}%{REQUEST_FILENAME} !-f

 # 3. Only triggered if no matching file found; proxy through

 # to Mongrel

 RewriteRule ^/(.*)$ http://127.0.0.1:4000%{REQUEST_URI} [P,QSA,L]

</VirtualHost>

Advanced Deployment

[454]

Note the use of RewriteEngine on, which makes mod_rewrite available for this
virtual host; and a couple of directives to turn on verbose rewrite engine debugging,
logged into a new log file (intranet-rewrite.log) alongside the Apache and
Rails logs.

More complex are the RewriteCond and RewriteRule directives. Below, each of the
numbered highlighted sections in the code is explained in more detail:

1. The first RewriteRule directive specifies that any request URLs matching the
regular expression ^([^.]+)$ (i.e. any that don't contain a period character)
are transformed using the substitution $1.html. In effect, this turns every
request URL without a period character into a request for the same URL with
.html appended. The odd-looking [QSA] flag states that any querystring
attached to the original request URL should then be appended to the new
.html URL too. (QSA stands for "Query String Attach".)

For example, if the original request was for:
http://intranet.company.local/people/search?term=angela

This would get rewritten by this rule to:
http://intranet.company.local/people/search.html?term=angela

(Note the extra .html.)
2. The RewriteCond directive specifies that any RewriteRule directives

that follow it should only be applied if there is no file at the location
%{DOCUMENT_ROOT}%{REQUEST_FILENAME}. (-f is the mechanism for telling
mod_rewrite to test for the existence of a file; !-f only returns true if the
specified file doesn't exist).

%{DOCUMENT_ROOT} returns the absolute path to the document root for the
host: in this case, /home/captain/apps/Intranet/current/public.
%{REQUEST_FILENAME} returns the path part of the URL, minus the
querystring.
When does this RewriteCond return true and trigger rewriting by the sub-
sequent rules? As an example, take this URL: http://intranet.company.
local/people/search.html?term=angela.
Here, the %{REQUEST_FILENAME} variable contains: /people/search.html.
So the RewriteCond only returns true if there is a file at the path: /home/
captain/apps/Intranet/current/public/people/search.html.

Chapter 9

[455]

3. The final RewriteRule, only triggered if there is no static file that can serve
the request (see bullet point 2), proxies any remaining requests through to
the Mongrel instance in the background. The [P, QSA, L] flags cause Apache
to proxy the request (P), attach the querystring (QSA) and stop processing
rewrite rules if this one is matched (L). (Note that using mod_rewrite enables
us to remove the mod_proxy directives we used previously.)

To see this in action, we'll return to the request for the URL:
http://intranet.company.local/people/search?term=angela

This URL has the REQUEST_URI: /people/search and querystring:and querystring:
term=angela

The rewrite rule would convert this URL to: http://127.0.0.1:4000/peo-
ple/search?term=angela, which would be served by the Mongrel instance which would be served by the Mongrel instance
running on localhost, port 4000.

In the next section, we'll set up a load-balanced cluster of Mongrels and
use rewrite rules to proxy dynamic requests to the cluster instead of to a
single Mongrel instance.

Remember to reload Apache once you've edited the httpd.conf file:

$ /etc/init.d/apache2.2 graceful

Once we've set this up, how do we know it's working? That's what the rewrite log
file, intranet-rewrite.log, is for.

For URLs proxied through to Mongrel you should see entries like this in the should see entries like this in the
rewrite log:

192.168.13.1 - - [11/Jun/2007:17:08:16 +0100] [intranet.company.local/
sid#8126278][rid#8185fe8/initial] (2) forcing proxy-throughput with
http://127.0.0.1:4000/companies
192.168.13.1 - - [11/Jun/2007:17:08:16 +0100] [intranet.company.local/
sid#8126278][rid#8185fe8/initial] (1) go-ahead with proxy request
proxy:http://127.0.0.1:4000/companies [OK]

For static files in the public directory, served directly by Apache without rewriting, directly by Apache without rewriting,
you should see entries like this in the rewrite log:

192.168.13.1 - - [11/Jun/2007:17:08:16 +0100]
[intranet.company.local/sid#8126278][rid#818a668/initial]
(1) pass through /stylesheets/base.css

Advanced Deployment

[456]

For cached pages and actions, where the URL is rewritten to one with the URL is rewritten to one with .html on the
end, you should see log entries like this in the rewrite log:

192.168.13.1 - - [11/Jun/2007:17:15:42 +0100] [intranet.company.local/
sid#8126278][rid#8185fe8/initial] (1) go-ahead with /home/captain/
apps/Intranet/current/public/people.html [OK]

Once you are happy that your rewrite rules are working correctly,
comment out the lines that enable rewrite logging in the
httpd.conf file.

Proxying to a Mongrel Cluster
In the previous section, we saw how to serve static files from Apache while proxying
requests for dynamic content through to a single Mongrel instance. In this section,
we'll see how to scale this architecture by employing several Mongrel instances as
the target for Apache to proxy dynamic requests onto.

The resulting configuration will look like this:

Client

Requests

URLs mapped to
static resources

URLs mapped to
dynamic resources

Front-end web
server

(Apache)

mod_proxy_balancer

File system:
image files,

HTML pages, etc.

Database

Mongrel
on port
4000

Mongrel
on port
4001

Mongrel
on port
4002

Chapter 9

[457]

In our configuration, we'll use three Mongrel instances, running on ports 4000, 4001
and 4002, to serve dynamic requests. Three instances is a good figure to start out
with when creating a Mongrel cluster, as it provides a decent amount of redundancy
(you can lose two instances and the application will keep running) and performance
(for example, this will help prevent the application from grinding to a halt during
large file uploads).

The setup we'll discuss here will still be serving data from a single
database, files off a single file system, and session data from a single
session store, all located on one server. Where you need to introduce
multiple physical machines and possibly multiple domains, you'll need
to think about using a distributed session store and/or database cluster.
The section Advanced Scaling later in this chapter covers these techniques
in overview.

There are two steps involved in setting up this arrangment:

1. Setting up the Mongrel cluster
2. Configuring Apache to proxy dynamic requests to the cluster (rather than the

current arrangement, where requests go to a single Mongrel instance).

We'll cover each step in the following sections.

Setting up the Mongrel Cluster
The mongrel_cluster gem provides commands for configuring a cluster of Mongrel
instances (see the section Mongrel: a Better Way to Run Rails Applications in Chapter
3). We'll use this to set up our cluster on the production server. Run this command to Run this command to
create a configuration file for our cluster:

$ mongrel_rails cluster::configure -e production -p 4000 -N 3 \

-c /home/captain/apps/Intranet/current/ -a 127.0.0.1 \

-C /home/captain/apps/Intranet/shared/system/intranet_cluster.yml \

-P /home/captain/apps/Intranet/shared/pids/mongrel.pid \

--user captain --group captain

The flags set the following elements of the configuration:

-e = environment to run each instance under.
-p = port number of the first Mongrel.
-N = number of Mongrel instances to start in the cluster; the ports for the Mongrel instances to start in the cluster; the ports for the
instances start from the one set using the -p flag, with the port number being
incremented by 1 for each subsequent instance; in our case, we'll end up with
instances on ports 4000, 4001, and 4002.

•

•

•

Advanced Deployment

[458]

-c = RAILS_ROOT directory of the application to serve.
-a = run the instances only on the IP address specified; here we're restricting
the Mongrel instances to only respond to requests originating on the same
machine (localhost).
-C = location of the generated configuration file.
-P = where to put the pid file for the cluster; each instance gets its own
pid at this location, with the port number inserted before the suffix; in our
case, we'll get the PID files mongrel.4000.pid, mongrel.4001.pid and
mongrel.4002.pid.
--user = user to run the Mongrel instances as; note we've set it to the
captain user.
--group = group to run the Mongrel instances as.

Here's what the resulting configuration file (/home/captain/apps/Intranet/
shared/system/intranet_cluster.yml) looks like:

user: captain
cwd: /home/captain/apps/Intranet/current/
port: "4000"
environment: production
group: captain
address: 127.0.0.1
pid_file: /home/captain/apps/Intranet/shared/pids/mongrel.pid
servers: 3

You may also want this file in the Subversion repository (e.g. in the
config directory) so it can be included the first time the application is
deployed to a clean server.

Next, we need to add a script to the system that will start our cluster. Before we do
this, though, we'll stop our existing Mongrel instance:

$ sudo /etc/init.d/mongrel_intranet stop

We can now edit our /etc/init.d/mongrel_intranet script to start the cluster,
rather than an individual Mongrel instance:

#!/bin/bash
Ubuntu Linux init script for Rails application in cluster

set these variables to your production environment
CONF=/home/captain/apps/Intranet/shared/system/intranet_cluster.yml
APP_NAME="Intranet"

more variables - you shouldn't need to change this

•

•

•

•

•

•

Chapter 9

[459]

MONGREL="/usr/bin/mongrel_rails"

load library functions
. /lib/lsb/init-functions

case "$1" in
 start)
 log_begin_msg "Starting Mongrel cluster: $APP_NAME"
 $MONGREL cluster::start -C $CONF
 log_end_msg 0
 ;;
 stop)
 log_begin_msg "Stopping Mongrel cluster: $APP_NAME"
 $MONGREL cluster::stop -C $CONF
 log_end_msg 0
 ;;
 restart)
 log_begin_msg "Restarting Mongrel cluster: $APP_NAME"
 $MONGREL cluster::restart -C $CONF
 log_end_msg 0
 ;;
 *)
 echo "Usage: $0 {start|stop|restart}"
 exit 1
 ;;
esac
exit 0

To start the cluster manually, do:

$ sudo /etc/init.d/mongrel_intranet start

You can also use stop and restart to control the cluster as a single entity.

Test the cluster by browsing to http://localhost:4000/, http://
localhost:4001/ and http://localhost:4002/. You should see the same Rails
application at each location. Note that you won't be able to see these servers from
any machine other than the one they're running on (i.e. on localhost), as we
specified they should only serve on the localhost IP address.

We'll also need to use this new script inside our Capistrano recipe to start/stop/
restart the cluster when we deploy a new version of the application (replacing our
previous versions of these tasks in config/deploy.rb):

Cluster config file location
cluster_config = "#{shared_path}/system/intranet_cluster.yml"

desc "Override the spinner task with one which starts Mongrel"

Advanced Deployment

[460]

task :spinner, :roles => :app do
 run <<-CMD
 sudo mongrel_rails cluster::start -C #{cluster_config}
 CMD
end

desc "Alias for spinner"
task :start do
 spinner
end

desc "Override the restart task with one which restarts Mongrel"
task :restart, :roles => :app do
 run "sudo mongrel_rails cluster::restart -C #{cluster_config}"
end

desc "Stop Mongrel"
task :stop, :roles => :app do
 run "sudo mongrel_rails cluster::stop -C #{cluster_config}"
end

Note how we had to use sudo in each of these commands so that the
Mongrel instances are able to be run as the captain user and group.

The next section covers how to load-balance from Apache onto our new
Mongrel cluster.

Load Balancing from Apache to the Mongrel Cluster
The mod_proxy_balancer module in Apache enables you to set up several
workers (servers that received proxied requests from the load balancer) and
distribute requests to a single virtual host across them. In our case, this means
that each Mongrel is a worker, which gets a share of the requests coming into
http://intranet.company.local/ dished out to it; any requests for static files are
still served directly by Apache, without touching the cluster. mod_proxy_balancer
does its best to ensure that the load on each of the servers is evenly balanced; you
have a choice of whether load is determined using the number of requests served,
or the number of bytes. We'll use the number of requests (the default) and configure
Apache to evenly distribute load across the cluster.

Note that you must have Apache 2.2 installed to use
mod_proxy_balancer. Earlier versions of Apache do not have
support for this module.

Chapter 9

[461]

The first step in configuring the proxying through to a cluster is to tell Apache where
the workers are. This is done in the httpd.conf file as follows:

<Proxy balancer://intranet_cluster>
 BalancerMember http://127.0.0.1:4000
 BalancerMember http://127.0.0.1:4001
 BalancerMember http://127.0.0.1:4002
</Proxy>

This can go above the VirtualHost directive for intranet.company.local. We
simply specify a Proxy directive with a special balancer:// URL; then add a
BalancerMember directive for each of our Mongrel instances.

Finally, you reference the balancer inside the rewrite rules for the VirtualHost,
instead of http://localhost:4000 (the URL of our old, singular Mongrel instance).
The necessary change is highlighted below; note that I've also removed rewrite
debugging and the directive for serving cached pages and actions, which aren't used
in Intranet:

<VirtualHost *:80>

 ServerName intranet.company.local

 ServerAlias www.intranet.company.local

 # Put the Apache logs in the shared Capistrano log directory

 ErrorLog /home/captain/apps/Intranet/shared/log/intranet-error.log

 CustomLog /home/captain/apps/Intranet/shared/log/intranet-access.log common

 # Point the DocumentRoot into the current public directory

 DocumentRoot /home/captain/apps/Intranet/current/public

 # Turn on the rewrite engine

 RewriteEngine on

 # Static files can be served straight off the filesystem

 RewriteCond %{DOCUMENT_ROOT}%{REQUEST_FILENAME} !-f

 RewriteRule ^/(.*)$ balancer://intranet_cluster%{REQUEST_URI} [P,QSA,L]

</VirtualHost>

Reload Apache to make the changes take effect:

$ sudo /etc/init.d/apache2.2 graceful

If you now browse to http://intranet.company.local/, you are seeing dynamic
pages being delivered by the Mongrel workers in the cluster. If you are one of those
people (like me) who likes to see things in writing before you believe them, you can
turn on debugging for your Mongrel cluster in the intranet_cluster.yml file
like this:

user: captain
cwd: /home/captain/apps/Intranet/current/
port: "4000"

Advanced Deployment

[462]

environment: production
group: captain
address: 127.0.0.1
pid_file: /home/captain/apps/Intranet/shared/pids/mongrel.pid
servers: 3
debug: true

This will create a directory, shared/log/mongrel_debug, containing more
information than you are likely to need about what your Mongrel cluster is doing.
For proof that the cluster is working, the rails.log file should contain entries
like this:

Fri Jun 15 12:13:06 BST 2007 REQUEST /people
--- !map:Mongrel::HttpParams
SERVER_NAME: 127.0.0.1
HTTP_MAX_FORWARDS: "10"
PATH_INFO: /people
HTTP_X_FORWARDED_HOST: intranet.company.local
HTTP_USER_AGENT: ApacheBench/2.0.40-dev
SCRIPT_NAME: /
SERVER_PROTOCOL: HTTP/1.1
HTTP_HOST: 127.0.0.1:4002

REMOTE_ADDR: 192.168.13.1
...
HTTP_X_FORWARDED_SERVER: intranet.company.local

REQUEST_URI: /people
SERVER_PORT: "4002"
...

Browse a few pages across the application, have a check in the logs, and make sure
that each port number in the cluster appears at least once in this file. That should be
enough proof.

However, if you really need visible proof right before your very eyes, here's how
you can see the actual host and port of the Mongrel instance serving each page of an
application. First, add a before_filter to app/controllers/application.rb:

class ApplicationController < ActionController::Base
 # ... other methods ...

 before_filter do |controller|
 controller.instance_variable_set(:@host_and_port,

Chapter 9

[463]

 controller.request.env['HTTP_HOST'])
 end

 # ...
end

This sets an instance variable called @host_and_port for every action on every
controller; this returns the true host and port of the Mongrel instance serving the
request, rather than the one in the request URL.

Next, display that instance variable in the application layout (app/views/layouts/
application.rhtml), e.g. in the page <title> element:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en_GB" xml:lang="en_
GB">
<head>
<title><%= @page_title || 'Intranet' %> on

<%= @host_and_port %></title>

...

Now if you visit http://intranet.company.local/, you should notice that the
host and port number are included in the title bar of the browser; if the cluster is
working correctly, the port number should change occasionally between requests.
That should satisfy even the hardest skeptic that the cluster is working and being
proxied to correctly.

Advanced Scaling
Throughout this chapter, we've seen how to progressively improve the performance
of a Rails application; first by identifying bottlenecks, then by improving
performance using caching, and finally by scaling up using Apache and Mongrel
clustering. The resulting configuration is strong enough to manage significant
loads. If you are building applications to service an intranet (as we've been doing
throughout this book), this configuration is likely to be sufficient.

Advanced Deployment

[464]

However, if your application is on the public Internet and popular, you are likely to
face other issues which this arrangement isn't able to cope with. Here are a few brief
tips and pointers about improving performance by further scaling out your
Rails infrastructure:

Use a faster session and cache store: We've stuck with the file system for
caching both session data and cached fragments. However, input-output (IO)
to a hard disk can often prove a bottleneck for large applications. You can
improve the IO speed by writing temporary data to more efficient types of
store, rather than to the file system. The de facto standard way of doing this
for large Rails application is memcached (http://danga.com/memcached/).
Rather than storing data on the disk, memcached acts like a big "lookup
table" in memory where you can store session and cache data. IO to memory
is far faster than IO to disk, so expensive disk operations can be entirely
eliminated by utilising it. See http://wiki.rubyonrails.com/rails/
pages/MemCached for some links to useful tutorials and other information.
While memcached isn't necessary in our case, you can use it to make
impressive performance improvements to heavily-used Rails applications.
Another less-heavyweight approach would be to use the database as a
session store; see the Rails documentation for ActionController::Base
for details.
Add more hardware: In the configuration we've used here, everything is
running on a single machine. Another option to scale out the infrastructure
would be to add more hardware and distribute servers across it; for example,
put the database server on one machine and the Mongrel instances plus
Apache on another; or have a separate machine dedicated to Apache, for
serving all your static assets like images, stylesheets, and JavaScripts (Rails
out of the box can cope with this scenario, and has a config.action_
controller.asset_host setting in config/environments/production.rb
where you can specify a separate "asset server" for serving all static files).
Replicate or cluster the database: If the database is the bottleneck in your
application, you could split the database functionality across two machines,
and replicate from the master to the slave. The slave could then be used for
retrieval (e.g. for reporting or producing relatively-static parts of the website)
while the master could be used to handle updates (e.g. taking customer
orders). See the MySQL website for more details: http://dev.mysql.com/
doc/refman/5.1/en/replication.html.

Another approach might be to cluster MySQL (or whichever database you're
using), to effectively turn multiple database servers across serveral machines
into one or two "super" database servers. See the MySQL website for more
details: http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html.

•

•

•

Chapter 9

[465]

Use a faster load balancer: Apache is a general-purpose web server, not
specifically optimized for load balancing. If you really just want a load
balancer and not a large web server, you could potentially get more
performance by using a smaller, more specialized tool. The current flavor
of the month in the Rails community is Nginx (http://nginx.net/), an
exceedingly fast, small web server and load balancer, which is relatively
easy to configure for use with a Mongrel cluster. You could also try a
dedicated load balancer like Pound (http://www.apsis.ch/pound/) or Pen
(http://siag.nu/pen/). For the extreme Rails enthusiast, there is also the
option of using a hardware load balancer across large numbers of Mongrel
instances—see http://tinyurl.com/gefp5 for a thorough round-up of the
issues involved.

Summary
As we've seen in this chapter, building a Rails application is not just about
coding using the framework; it also requires consideration of other issues around
deployment. Capistrano can go a long way to making those issues less painful by
making deployment much smoother.

Beyond deployment of the application itself, we also considered the environment
around the application: the web server it is running on, the log files it accumulates,
what happens when the machine is physically restarted, and so on. We've seen a
few useful tips and techniques for making your applications run happily
and indefinitely.

Even when your application is up and running, you need to stay tuned into its
performance, listening to users and keeping an eye on any issues that arise. You also
need to know how to identify and deal with those issues right down in the raw code;
we put together a few useful scripts to help with this.

Finally, when issues arise, we saw that there are several highly effective things you
can do to improve performance. We'd consider caching to be the simplest and most
efficient of them. Beyond improvements to the code, the decoupled nature of Rails
also makes it easy to improve performance by adding more servers (software
and hardware).

•

Down the Track
Throughout this book, we have followed Rory in the construction of his first Ruby
on Rails application. The process of building a basic application has been described
using this example. From this straightforward starting point, the application has
been developed and expanded allowing us to describe the techniques used to
overcome problems and create working solutions that can be used in a variety
of situations.

So where does a developer of a small business applications go from here? A simple
answer to this is that a developer can improve their Rails and Ruby skills further
and become an expert in the language and the framework. However, there is an
alternative approach, which is to widen your skills. That is, to develop skills in the
areas and systems that work with Rails and your applications in your environment.
Therefore, in this chapter, we will cover both: how one can improve one's Rails
skills further and suggest alternative skills that complement Ruby on Rails, thereby
broadening your skill set. Rather than using Rory's solution to discuss the issues,
we will use our own experiences to describe some paths that have led us beyond the
ability to build straightforward Rails applications.

Going off the Rails
Convention is the strength of Rails. It makes it easier to use, and the resulting code
is easier to read as well as modify. It is the convention that goes a long way to make
Ruby on Rails such a good and agile development environment.

Yet, at some point while creating applications, you will need to break the basic
conventions. The danger in this is that you can end up with a disorganized mess.
However, in my experience the process of going beyond conventions has taught
me more than any other process about how Rails works. It has given me a deeper
understanding of how the different parts work together. I believe that going through
this process has been an essential part of my Rails skill development.

Down the Track

[468]

When I was younger, I used to kayak canoe and the development of my canoeingcanoeing
skills gave a useful analogy to my skill development in Rails. I spent a couple
of years learning the basic kayak skills: paddling straight, changing direction,
sculling sideways, escaping from an over-turned kayak, preventing over-turning,
and eventually the Eskimo roll. This initial maneuver allows a canoeist to right
a capsized kayak without leaving their seat. Even after I had learnt the skill and
practised it many-a-times in safe environments, it was some time before I used it to
right a genuine capsize. That is, to restore to upright a capsized kayak that I had not
deliberately over-turned. Then the day came: I was caught in a wave and flipped
upside down. Previously, I would have bailed out, but on this occasion I held fast,
adjusted my paddles, and flipped the kayak upright.

From that point on, my canoeing skill leaped up to a new level. Because, I no longer
had to worry about capsizing the kayak, I was able to be more adventurous. And
if I over did it, a quick twist of the torso and flick of the paddles, and I was upright
again. I went from being a canoeist that kept to the quiet stretches of water to the one
who thoroughly enjoyed the rough water.

The analogy is useful as it allows me to make the following points:

The skill is not in being able to capsize a kayak (in fact, learners can be very
good at capsizing), but rather the skill is in the ability to return back to the
upright position. Similarly, any developer can break the standard Rails
conventions: the skill is in being able to break the convention and then tidy
up the result so that the rest of the application is not adversely affected.
The Eskimo roll is not the first skill you learn as a canoeist. You should not
start your Rails development by breaking the conventions. You need to
be skilled at Rails to understand the effect of breaking a convention, and
therefore limit its impact.
Even after you master the Eskimo roll, the best position to be in a kayak is
upright. Keeping to the Rails conventions makes the framework a joy to work
with. Break conventions because you have to, not for any other reason.

•

•

•

Chapter 10

[469]

The process of successfully breaking the Rails convention goes through the cycle
described in figure 1.

This cycle has three elements:

1. Identify the need to break convention: we find there is something we want
the application to do, that we are unable to do within the standard
Rails practice.

2. Construct a solution to the problem: following some research and testing a
solution is found that allows us to achieve the desired solution.

3. Reconcile the solution with the rest of the application to minimize the impact:
modifications are made to the application so the solution can be integrated.
This is the hardest part of the process, but is the most important part for
success to be achieved. It basically requires that our solution passes on to
Rails resulting objects that behave as closely as possible to the standard
Rails objects.

The key to success is in completing the whole cycle.

Down the Track

[470]

The point where I first went off the Rails was while working with an application
that was relatively mature. It had been developed over a number of months and
was already in daily use within the business. However, as its importance within the
business grew, so did a requirement for it to be able to use data from an external
source. In this case, it was a time-sheet application, the database for which was
hosted on a Microsoft SQL server. My Rails application used a MySQL database. The
structure of the time-sheet data was complex and it would be very complicated to
create Rails models to match each table. Therefore, two basic conventions were being
broken. The first, reasonably minor: data being spread across two databases. The
second, more fundamental: the database data to model object relationship did not
comply to what ActiveRecord expected.

My first attempt at a solution was difficult to maintain. It relied on a single model, a
custom connection to the MS SQL database and multiple find_by_sql calls grabbing
data via complex joins of views and tables in the time-sheet database. It worked,
but each time I used objects that were created via the model, I had to customize the
connection to other objects. The solution would not scale. The more I used it, the
more modifications I needed to make. However, the process did teach me how to
connect to a second database, and how I could use customized model methods to
replicate the way a normal Rails model behaves.

I then discovered that MS SQL Server Integration Services (SSIS) can be used to pull
the data I needed into a new database. Most of the joins could be managed within
the SSIS data transfer. The resulting database would then have a simpler structure. I
only needed to read information from the time-sheet system; no writing back to the
time-sheet system was required. So, I did not have to maintain a link between the
new database and the time-sheet system. Instead, a scheduled process passed new
time-sheet data to the new database at midnight each night. With a simpler data
structure, I was able to split the data across a small number of Rails models that more
accurately matched the data structure. However, the structure was such that I still
had to work differently with the model objects using the time-sheet data, than with
the normal ActiveRecord objects. This build of the solution taught me how I could
use the database tools to simplify the problem.

The third iteration of a solution came about when I realized that some fairly small
modifications to the SSIS data transfer would allow me to structure the new database
in a manner that was compliant with ActiveRecord. That is with table names being
plurals of object names, each table having a primary key field called ID, and field
names in lower case with underscores separating the words. Once I had done this,
the deviation from Rails convention was reduced to a minimum—that minimum
deviation being that some data was on a second database. The only problem then
was to ensure that ActiveRecord did not try to access data across both databases with
a single SQL call. To do this, custom methods were written that recreated the model
connections normally generated by belongs_to and has_many relationships.

Chapter 10

[471]

So, for example, in a projects model rather than using "has_many: tasks" to create a
project.tasks relationship, a new project method called tasks would be created
that returned an array of task objects. Similarly, a project method in the task model
returned a project object that matched the project to which the task belonged. This,
therefore, replicated the behavior that would have been achieved with "belongs_to:
project" in a normal Rails application.

What I had done, in effect, was three Eskimo rolls; that is three rotations through
the cycle of: identify the requirement to break convention; find a solution; reconcile
the solution with the rest of the application. Each time I went through the cycle, the
solution became simpler and the deviation away from the basic Rails practice
became less.

A measure of the solution's success was that I was able to use the final solution to
pull information from a third system: the company accounts. While going through
the three cycles, I learned more about the interaction between model objects and
their databases than I believe I could easily have if I had not had to fix my broken
conventions.

In my experience, the most useful skills required to allow me to step outside the Rails
conventions have been an understanding of the underlying Ruby language and SQL
database tools. However, I have also used modifications to web servers to over come
other Rails issues. To get the best from Rails, one must learn to get the best out of the
supporting systems.

Better to go off the Rails than grind to a halt
The key point here is that success does not come from the breaking, but
from the fixing. If you come to a point where you cannot proceed without
breaking the standard conventions, then break them, but always carry out
the whole cycle by reconciling and minimizing the impact. It is always
better to find a solution and improve it, than to grind to a halt because
you cannot find a solution within the standard tool set. Often, the process
of stepping outside of Rails will help you find a better way to solve your
problem within Rails.

SQL
I saw a posting in a Rails newsgroup asking for advice on the best administrative
tool to use with the poster's SQL database. The majority of replies suggested that
with the development of migrations a Rails developer should keep away from SQL.
This newsgroup thread seems to reflect the views of a number of Rails developers.
The more I develop Rails applications, the more I am confident that this view is

Down the Track

[472]

mistaken. A developer who ignores SQL is tying one hand behind their back. SQL
databases form the core of almost all Rails applications, and not using the free extra
resources that SQL can provide, seems daft to me.

Migration is a splendid system that simplifies database table creation and
modification. Migrations add order, structure, and ease to table development.
However, creating tables is only a small part of what a SQL database engine can do.
SQL tools provide a very efficient system to process, combine, and compare data.
What is more, the SQL tools are installed when you install the database, so they are a
free resource waiting to be used.

However, there is also the argument that ActiveRecord is already leveraging SQL
within each Rails application, and usually makes a very good job of generating SQL
calls from executing Rails code. This is a sound argument. So, if this is true, where is
the need to create and use custom SQL code? The simple answer is, when standard
Rails code and the resulting ActiveRecord generated SQL takes too long to process
the data; or SQL offers a way to summarize, compare, or combine data in a simpler
manner than what can be done within Ruby and Rails.

In my experience, ActiveRecord generated SQL works well when retrieving and
processing data from one or two tables. When you start wanting to combine data
from three or more tables, processing the data purely within Rails and ActiveRecord
generated SQL can take many seconds. In these circumstances, a custom SQL call can
greatly improve the performance.

A second area where an understanding of SQL is useful, is when you need to apply
grouping to a data set. ActiveRecord supports grouping, however, it is not as simple
as it might first appear. In my experience, it is often easiest to create the required
grouping statement in SQL and then reverse engineer it back into an ActiveRecord
find statement.

A detailed guide to SQL is beyond the scope of this book. So instead, I will describe
here a couple of examples that show how a knowledge of SQL can help to create
better, or at least faster, Rails applications.

Gathering Data from a Daughter Object's
Daughter
In building a project management application, I needed to process data that was held
within a daughter object that was itself a daughter object. That is, each project was
represented by a project object. Each project had a number of daughter objects called
tasks. Each Task could also have daughter objects called budget.

Chapter 10

[473]

project1

task3task2task1 task4

budget2budget1 budget6

budget3 budget4 budget5

Within the model definition, for each model class, I was able to specify the
relationship. So, a project has_many tasks, and a task has_many budgets. Also,
budgets belong_to task, and tasks belong_to project.

I could also use :through option to create a project has_many budgets relationship in
the Project model:

has_many :budgets, :though :tasks

And improve performance of retrieving Budget information when iterating through
a project’s tasks by using an :include option in the definition of the has_many tasks
statement:

has_many :tasks, :include => :budgets

However, in my main project reporting tool, I needed to be able to output the final
project budget value. This was not a simple task. If a task had three budgets, the
final budget was not the sum of all the three budgets, but rather the value of the last
budget. Also, I needed to be able to assign a budget to a task, but set a flag to prevent
that budget from being used when calculating the total project budget.

So, to get the project budget, I needed to sum the last budget item in each task that
had a flag set for it to be included in the project budget. I created a task method
called final_project_budget that returned the value of a relevant budget object,
if one existed. I was then able to use Project.tasks to return a collection of tasks
assigned to the project and then iterate through them to calculate the sum of the
values returned by the final_project_budget method.

Down the Track

[474]

The process worked fine. It accurately returned the correct figure each time. The
code was fairly simple and therefore easy to modify and maintain. The problem was
that the resulting report took eight seconds to render for one project. This was not
apparent initially, when each project only had a couple of tasks, but as tasks were
added the application slowed.

The main problem was that each-and-every retrieval of a budget data from a task
involved a separate SQL call to the database. So, one SQL call would return the list
of tasks relating to a project, and then a further SQL call would be called on each task
to get the budget information. Then some processing in Ruby added the budgets
together and returned the correct number.

My solution was to create a single SQL call that gathered and processed all the
information in one go. This is the SQL statement used:

SELECT SUM([value]) as total_budget
FROM [Data_Warehouse].[dbo].[budgets] budget
INNER JOIN (
 SELECT MAX([target_on]) as date
 , [task_id]
 FROM [Data_Warehouse].[dbo].[budgets]
 WHERE [project_id] = 147 AND [part_of_parent] = 1
 GROUP BY [task_id]
) AS last_target_on
ON last_target_on.date = budget.target_on
AND last_target_on.task_id = budget.task_id

This is Transact SQL used on a MS SQL database, and therefore the syntax may not
be correct for other databases. However, it is not the code itself that is important, but
the fact that a single SQL call could be created that did all the processing required.

The code uses the SQL SUM function to add up the values assigned to a number
of budget entries. Most of the work is carried out with a JOIN to a second SELECT
statement. This second statement finds only the latest budgets assigned to each task,
and that have the part_of_parent flag set (it is this flag that determines whether
a budget is to be included in the project budget). This JOIN, therefore, ensures that
only the correct last budgets for each task are passed to the initial SUM([value])
statement.

It was then a case of replacing 147, (the id for a particular project), with code that
would insert the current project's ID, using the SQL statement with a find_by_sql
call, and then processing the result to output the solution as required.

 def total_budget
 sql = "SELECT SUM([value]) as total_budget
 FROM [HL_Data_Warehouse].[dbo].[budgets] budget

Chapter 10

[475]

 INNER JOIN (
 SELECT MAX([target_on]) as date
 , [task_id]
 FROM [HL_Data_Warehouse].[dbo].[budgets]
 WHERE [project_id] = #{self.id} AND [part_of_parent] = 1
 GROUP BY [task_id]
) AS last_target_on
 ON last_target_on.date = budget.target_on
 AND last_target_on.task_id = budget.task_id"
 budget = Budget.find_by_sql(sql)
 return budget[0].total_budget

 end

This method was added to the Project model. Then, for a Project object called project,
the application could call project.total_budget to return the total budget.

As a result of this modification, the page that had taken eight seconds to load
now took eight tenths of a second to load; ten times faster to load than before
the modification.

Using a model’s ActiveRecord connection
There is a better technique to using find_by_sql for the total_budget method.
The above example, while useful in that it shows a real world example of how an
application was improved by adding some SQL magic, is also problematic. The issue
is that it has forced the results of the SQL call into a collection of budget objects. This
does not cause an error, but it would be neater if the objects returned using the SQL
query formed a simple array of hashes whose properties were defined solely by the
data returned from the database and did not inherit any of the properties from the
parent model.

The solution is to use the parent’s connection to the database, and then use one
of two connection methods to return the data in a more suitable set of object. The
options are:

connection.select_all(sql)
#returns data in an array of hashes where each hash corresponds to a
data row.

connection.select_one(sql)
#returns a single hash containing the first row of data from the sql
call

Therefore, a better version of the total_budget method using the connection object,
would be as follows:

 def total_budget
 sql = “SELECT SUM([value]) as total_budget

Down the Track

[476]

 FROM [HL_Data_Warehouse].[dbo].[budgets] budget
 INNER JOIN (
 SELECT MAX([target_on]) as date
 , [task_id]
 FROM [HL_Data_Warehouse].[dbo].[budgets]
 WHERE [project_id] = #{self.id} AND [part_of_parent] = 1
 GROUP BY [task_id]
) AS last_target_on
 ON last_target_on.date = budget.target_on
 AND last_target_on.task_id = budget.task_id”
 budget = connection.select_one(sql)
 return budget.total_budget
 end

Using GROUP BY to Summarize Data
GROUP BY is a very useful SQL option that can be used to quickly generate summary
reports. It can be used via an ActiveRecord find method using the : group option.
However, its use is not as simple as it might appear from the Rails api pages.
Consider this example:

We have an application that stores data on the contents of boxes of fruit. It contains a
single MySQL table:

ID fruit quantity source
1 Orange 50 Jaffa
2 Apple 110 UK
3 Orange 30 Jaffa
4 Apple 60 UK
5 Orange 90 Spain
6 Pear 40 UK
7 Orange 110 Spain
8 Orange 110 Spain
9 Apple 50 Belgium
10 Apple 20 France
11 Pear 110 UK

We want a summary report that details how many of each type of fruits you have in
all the boxes. We can use GROUP BY to do this. However, it is not as simple as
the following:

report = Boxes.find(:all, :group => 'fruit')

Chapter 10

[477]

This would generate the following:

ID fruit quantity source
2 Apple 110 UK
1 Orange 50 Jaffa
6 Pear 40 UK

This has not provided a summary, but rather has simply pulled out the first entry for
each type of fruit.

So, what is missing?

Let us start by looking at the SQL that generated the group data:

SELECT * FROM boxes b GROUP BY fruit

The problem is that by using the short-hand * in the SELECT part of the statement, the
job of selecting what is to be returned has been handed over to SQL. As the example
above demonstrates, SQL's best effort will usually not give us the desired result.
Instead, we must specify, which fields are to be included in the output. However, the
following would generate an error:

SELECT fruit, quantity FROM boxes b GROUP BY fruit

We also need to specify an aggregate function for each field that is not being
grouped. Here are some of the commonly used aggregate functions:

AVG—Average value for those in the field.
COUNT—Number of items in the group.
MAX—Maximum value in group. If used on a MySQL varchar field, it
returns the last value in an alphabetical order.
MIN—Minimum value in group. If used on a MySQL varchar field, it returns
the first value in an alphabetical order.
SUM—adds together the values held in the field.

The field fruit is being grouped, so it can stay as it is in the SQL statement. An
aggregate function needs to be applied to the quantity field, as this field is not
being grouped. That is, there will be a number of quantity values in each group, but
only one fruit value. So, all we need to tell SQL is, which quantity value should be
returned for a group; the fruit value is automatically returned.

SELECT fruit, sum(quantity) AS 'total_quantity' FROM boxes b GROUP BY
fruit

•

•

•

•

•

Down the Track

[478]

This will produce the desired result:

fruit total_quantity
Apple 240
Orange 390
Pear 150

Notice that AS was needed to specify a meaningful name for the quantity output.

To generate the desired result set in Rails, the following code can be used.

report = Boxes.find(:all,
 :select => "fruit, sum(quantity) AS 'total_quantity'",
 :group => 'fruit')

By using the select option in the find statement, the output was controlled and the
desired results obtained.

It is also possible to group on multiple fields. For example:

SELECT fruit,
 source,
 sum(quantity) as 'quantity',
 count(*) as 'boxes'
FROM boxes b
GROUP BY fruit, source

This will produce a report showing how many fruits there are from each source and
in how many boxes:

fruit source quantity boxes
Apple France 20 1
Apple Belgium 50 1
Apple UK 170 2
Orange Jaffa 80 2
Orange Spain 310 3
Pear UK 150 2

Chapter 10

[479]

From this, we can see there are three boxes of Spanish oranges containing 310 fruits
in total. The Rails code would look like this:

report = Boxes.find(:all,
 :select => "fruit,
 source,
 sum(quantity) AS 'total_quantity',
 count(*) as 'boxes'"
 :group => 'fruit, source')

Simple, don't you think! Well not really.....

A Deeper Look at Aggregate Functions
Aggregate functions need to be used carefully. Consider how you would find the
source of the boxes with the least fruit of each type. Your first stab at a solution
may be:

SELECT fruit,
 MIN(quantity) AS 'quantity',
 MIN(source) AS 'source'
FROM boxes
GROUP BY fruit

This would return the record set below, which at first glance looks correct:

fruit quantity source
Apple 20 Belgium
Orange 30 Jaffa
Pear 40 UK

However, the source of the box with the least apples is France and not Belgium. In
fact, it is only by chance that the other two records match the correct result. MIN
(source) has returned the first source in alphabetical order—not the source that
matches the minimum quantity.

To get the correct result, we first need to find the minimum quantities for each fruit
and then use that data to pull out the records that match that information. The
following code does that:

SELECT b.fruit, b.quantity, b.source
FROM boxes b
JOIN (SELECT fruit, MIN(quantity) AS 'quantity'
 FROM boxes

Down the Track

[480]

 GROUP BY fruit
) AS s
ON b.fruit = s.fruit AND b.quantity = s.quantity

The result is shown below.

fruit quantity source
Orange 30 Jaffa
Pear 40 UK
Apple 20 France

ActiveRecord's find method has a: joins option and can be used to construct this
query. A: from option is also needed so that an alias of 'b' can be specified for the
boxes table. However, the resulting code is more complex than the original
SQL code:

report = Boxes.find(:all,
 :select => 'b.fruit, b.quantity, b.source'
 :from => 'boxes b'
 :join => "(SELECT fruit, MIN(quantity) AS 'quantity'
 FROM boxes
 GROUP BY fruit
) AS s
 ON b.fruit = s.fruit AND b.quantity = s.quantity)"

Personally, I would use a find_by_sql method as it would be easier to maintain:

sql = "SELECT b.fruit, b.quantity, b.source
 FROM boxes b
 JOIN (SELECT fruit, MIN(quantity) AS 'quantity'
 FROM boxes
 GROUP BY fruit
) AS s
 ON b.fruit = s.fruit AND b.quantity = s.quantity"
report = Boxes.find_by_sql(sql)

Knowledge of SQL makes it easier to get the most of the: group option in
ActiveRecord's finds method and also makes it easier to extend further SQL's GROUP
BY options.

Chapter 10

[481]

A little SELECT goes a long way
In both of these examples, refining the SQL SELECT statement sent to
the database greatly improved the efficiency with which Rails was able
to obtain the data required for the application. Mastering this one, SQL
command can provide many dividends. SELECT statements simply
read data and therefore do not alter the data in the database. Therefore,
you can safely experiment with them to find the statement that achieves
what you need. Time spent mastering this SQL command will give you a
simple way to improve the performance of Rails applications.

Business Processes
In building business applications, a developer is endeavoring to model or support a
business process. With large applications, the job of identifying and then analyzing
the business process is usually carried out by a different person or team than those
who write and develop the resultant application. With small business applications,
this is less likely to be the case. Either, the size of the project or the team working on
the application, prohibits the use of specialists to study the business process.

Therefore, to realize the maximum potential for small business application
development, it is usually the case that the developer will also need to take on the
role of analyzing the business process. It may even be the case that to keep up a
supply of new work, the developer themselves will need to identify potential new
projects and development opportunities.

The key skill to being able to identify opportunities for new applications is an
understanding of how businesses work. In fact, I would go so far as to say that
once you are reasonably competent at building applications, time spent studying
business processes is more important to a small application developer, than
perfecting coding skills.

I would highly recommend that anyone wanting to make a career in this field takes
time to study business processes. Two of the most valuable courses I have taken
part in recently were on business management and management accounts. The skills
and knowledge gained during those courses has made me much more successful at
identifying the best opportunities to improve business processes. Since completing
those courses, I am confident that I now make more successful applications.

Down the Track

[482]

To Be Successful, Build Successful Business
Applications
What is it that makes a business application successful? The answer is simple: an
application that generates profit.

Forget clever design, efficient use of processors, elegant interface. All of these are
desirable, but if your applications do not provide a demonstrable benefit to the
business, you might as well have stayed at home. The benefits that all businesses
need are those that improve the bottom line: they increase profits. There is no better
hook to catch the interest of people who will pay you to create applications for them,
than for you to demonstrate that you can increase their profits.

So, how do small applications generate profit? There are three ways to generate more
profit within a business:

Increase sales by either increasing the number of sales or increasing the
revenue from each sale (or less easily, both).
Reduce what it costs you to sell.
Spend as little as you can on the parts of the business that generate the least
profit, and minimize any resources given over to loss making activities.

Business applications can address all of these profit opportunities. For example,
when we choose an elegant programming framework like Rail to create business
applications, to be successful we do so because:

It allows us to create applications more quickly and therefore increase the
number of applications we can produce at the same cost.
The resulting code is easy to maintain, so it costs us less to support the
application.
The framework conventions allow us to spend more time on the aspects of
the application that are unique to the project, and spend minimal time on the
less productive routine tasks.

If you ask most people how a business increases profits, they will usually reply that
the business increases sales. However, it is usually far easier to increase profits by
reducing costs and minimizing the time spent on loss making activities. It is in these
areas that most opportunities for small business applications arise.

A full insight into business processes is beyond the scope of this book; it is a large
area of study. Instead, below are a number of examples of areas where opportunities
for small applications commonly arise.

•

•

•

•

•

•

Chapter 10

[483]

Automate Simple Repetitive Jobs
A simple way to reduce costs is to reduce the time it takes to carry out repetitive
tasks. One of my most successful applications is an Excel macro. A colleague was
processing the output from a series of data loggers. This output was in the form of
comma-delimited text files. He had to open each one, carry out some processing to
normalize the data, and then reformat it to create a graphical report. The process
took him a couple of hours for each set of data (the data was broken down into many
subsections and each had to be normalized separately). It took me a few hours to
write an Excel VBA macro that would input the data, normalize it, and reformat
it for the graphical report. The result was that a process that had taken a couple of
hours manually could be completed in a second or two. The macro was written five

years ago and is still in constant use—perhaps two or three times a week. That single,
simple application has saved hundreds of hours of work, thereby freeing up my
colleague to do more revenue generating work than he previously had the time
to do.

Rapid and Detailed Reporting
Rapid: One of the main difficulties in managing a business is the speed at which
information on current activities becomes available. It is common for a business not
to know the full cost of a project until after the project has completed and long after
the time when there was any opportunity to address any excess in expenditure.
Also, that information may become available in a central accounting department
reasonably rapidly, but take some time to filter down to the people who could use
that information to improve the way they work.

Therefore, applications that gather and analyze cost information rapidly and present
it in easy to understand and relevant reports are a boon to any business. They allow
managers to identify where the costs are being generated and react in time to cut
down costs spent on non-profit making activities, and divert resources to successful
parts of the business.

Detailed: It is a common mistake of unsuccessful small businesses not to analyze
their costs properly and repeatedly sell their services too cheaply. In this situation,
a common trap is to think that all that is needed to correct the situation is to work
harder. Sales teams try harder to sell more of the same loss making services and
people work longer hours to satisfy the extra orders. The result is a lot of people
working very hard to make a loss!

Often, it is not a lack of effort that puts a company out of business. They fail because
they do not have the information available that tells them their costs have in fact
outstripped the revenue their activity raises.

Down the Track

[484]

A time-sheet system is a typical application that addresses these types of problem.
Imagine a paper based time-sheet system whereby sheets are submitted at the end
of each week or month. All these sheets then have to be approved by supervisors
before being passed to a clerk to input into a central system where the data on the
sheets can be analyzed. This process takes days. Reports can themselves take time
to generate. The result can be that the reports, on time spent on a project, reach the
managers weeks after the time was actually committed. Also, because of the effort
required in processing these time-sheets, the level of details is often reduced to
simplify the process. However, this makes the system less useful and can lead to
over-sights into areas where resources are being wasted. This type of paper based
time-sheet system is not uncommon in small businesses.

An online time-sheet system can allow an employee to submit time-sheet
information soon after they have carried out the work. As soon as the data has been
submitted, the data is available to analyze. A central database system can analyze
varied data very rapidly, so more detailed information can be gathered. Managers
can have reports on activity within days, if not hours, of it happening and can use
that information to improve the way their current activities are developing. In that
way, they can use the resources intelligently to maximize profits.

Ensure Customers Pay for the Goods and Services
that the Business Provides
When people think of customers obtaining goods without paying for them, their first
thought is usually theft. Unfortunately, over-sight is a far easier way for customers to
obtain goods or services without paying for them. The project manager who forgets
to sign off a project as complete, the well intentioned technician who upgrades
one part of a customer's system while repairing another, the accountant who puts
an instruction to invoice in their "completed" tray instead of their "to-do" tray, the
warehouse worker who puts two items in a carton when there should have been
only one. All of these can lead to a customer receiving goods for free and the effect is
that the total cost of getting the goods to the customer becomes a loss to the business.
Such over-sights are very expensive to a business.

Therefore, systems are required that track orders for goods and services, and the
paths of items through the business. Reports on completion, and more importantly
lack of completion, of each sale are important to every successful business. For
example, a sales process system can track a sale from the initial order right through
to payment of invoice. It can provide reports on the status of all items and highlight
orders that have not yet been invoiced. Such a system would help minimize the
likelihood that customers receive goods without paying for them.

Chapter 10

[485]

Review of Business Activity Examples
The examples above are just three areas where business activity can be enhanced
with the addition of small applications. As I stated at the start of this section, this is
not a comprehensive list or set of descriptions, but rather examples that demonstrate
there are many areas where small applications can benefit a business.

My key point is that all businesses have systems and processes that can be improved,
and we as application developers have the tools to make those improvements. Yet, as
you complete this book, you may be surprised to find there is not a queue of business
leaders beating at your door. Every town has a multitude of businesses. If each has
processes that can be improved with the addition of small applications, why are
business managers not scrambling for your services? In my experience, the answer
is simple; managers often do not understand the capabilities of simple computer
applications and fail to recognize their potential benefits.

Therefore, as a small application developer we have two choices: either to wait for
the relatively small number of opportunities that others will bring to us; or actively
go out and identify the multitude of opportunities that can be found within
any business.

Small business applications do not come to he who waits
If you wish to work full time on small business applications, you cannot
rely on others to bring you new projects. You need to develop the skills
to identify opportunities for new applications. To do that successfully
and repeatedly, you must learn to identify business processes that can be
simplified, made more effective, and/or efficient via a small application.

Dealing with Success
Unfortunately, there is a flip side (why are things never easy). Once we develop the
skills to identify the potential areas where the applications will improve the way
a business works, the problem can become one of the volume and time available.
There can be just too many applications for a small team to develop. In addition to
this, once senior managers start to realize the benefits our applications provide,
the pressure to provide even more solutions in shorter time scales can become
almost oppressive.

In many ways, being a successful developer in demand is a good position to be in,
but it does bring its own problems. Here are a few strategies to help in this situation:

Down the Track

[486]

Just Because You Can, Doesn't Mean You Should
I expect that you got into application development because you enjoy it and find
it rewarding. That is certainly why I develop applications. However, the desire to
develop, and one's own pride in the work we do can lead to developers taking on
projects that they do not have the time or resources to complete satisfactorily. This
is especially the case for larger projects or in periods when the demand is high. In
such cases, a better option is to buy an off-the-shelf solution. Also, there is no point
in reinventing the wheel—if an application is readily available that will satisfy the
requirement and is within budget, it is almost always a mistake to develop your own
solution instead, unless you have a very good reason to do so.

Therefore, when we identify a potential new project, we should always ask the
question "Is there an application readily available that would satisfy the project
requirements?" If we identify such an application, we then need to analyze the costs
and benefits of using that application, then compare those with a similar analysis of
an application we would build ourselves. If such analysis demonstrates that buying
the application is more beneficial, buy the solution.

Bought in solutions Provide their Own
Opportunities
However, just because an application is bought in, does not mean that we cannot use
our own skills to improve the way the application works within the target business.

In fact, developing an infrastructure, whereby one application's data is used by
another application throughout the business can be a demanding and rewarding
task. Some very useful small business applications simply allow one off-the-shelf
system to use data from another system. It is another potential area for development.
Although Rails was not designed to work with multiple data sources, it is fairly
straightforward to allow it to. Also, Ruby is able to handle this sort of work. Using
Ruby without Rails is a small leap once we understand how the systems underlying
Rails work.

Ensure There is Time to Complete Each Task
Application development often hits unexpected complications and the time required
to create a new application is notoriously difficult to predict. Therefore, always
include time to deal with unforeseen problems, while setting and agreeing to
deadlines. In fact, if you are really finding it difficult to judge how long a project will
take to complete, it is surprising how well taking your best estimate and doubling it
works. It can make a very good starting point for your first projects. Once you
have a few under your belt, you should be able to make more sophisticated
scheduling estimates.

Chapter 10

[487]

Taking the time to review how long it took to complete a task will be very useful as
it will allow us to improve our projected completion schedules. The better we can
make our own projections, the less likely it is that we will find ourselves working to
other people's unrealistic deadlines.

The Final Destination
Within this book, we hope to have provided you with the information you need
to move from Rails novice to confident small business application developer. By
considering the development environment as a whole, rather than code in isolation,
we have described not only how to put an application together, but also how to bring
together all the parts that are required to build a working solution.

One may wish to spend as much time as possible writing good Rails code, but
successful application development cannot be carried out in a bubble. At some
point, it must integrate with its environment. To do so in a Rails environment, the
application must work well on the platform hosting it. Data needs to be retrieved
from databases efficiently, processed, and handed on to web servers. As this reliance
on other systems is so important to the final product, we have taken time to
describe how to set up the environment, and most importantly the integration
between services.

Like most people, we like an easy life. In development that means making use of
the tools available to simplify the job. It means, using an integrated development
environment that simplifies and helps organize the creation and editing of code. Just
as important is having a source control system that reliably and simply stores version
information to facilitate backup and collaboration. Therefore, these topics have also
been covered.

In this final chapter, we have moved beyond Rails by considering the skills one
can use to broaden a developer's skill set. we have also, in the clichéd language of
business, considered applications as solutions to business problems, rather than
simply collections of code. In this, we hope we have highlighted that there is more
to writing successful applications than good coding skills. The applications have to
work well, but they also need to satisfy a businesses requirement.

However, as important as all of the above is, there is one overriding message that we
hope this book passes on:

Ruby on Rails is an excellent system to build small business applications.

Down the Track

[488]

It provides the tools to build scalable, easily maintained applications that are simple
to distribute throughout a business. The code is flexible and can be transferred to
many different environments. Its structure is portable and easy to back up. Most
importantly, it does so many of the routine tasks for the developer that they are
left to concentrate on the parts of the application that matter. That is, the unique
attributes that will allow each application to closely match the requirements of the
project that spawned it.

Ruby on Rails has provided us with the tools to most efficiently fill our working days
building small business applications; a task we get great satisfaction from. Our hope
is that the contents of this book helps you gain as much satisfaction from using this
excellent framework to solve the problems that arise within the businesses you work
for and with.

Running Your Own
Gem Server

Rubygems is a great system for maintaining libraries for use with Ruby. It makes it
simple to upgrade to new versions of Rails, Capistrano, Mongrel, etc. with a
single command.

However, if you use a default Rubygems configuration, each time a developer
installs a gem they fetch it from a repository on the Internet. This could result in
different developers ending up with different versions of a single gem, depending
on which was available when they performed the installation. While this might
not make a difference in some cases, with gems like Rails (which change radically
between versions), it could result in an application working on one machine and
not on another.

Another issue is finding the more obscure gems, which reside in non-standard
repositories. In this case, configuring the developers' machines for each non-standard
repository can be painful, particularly if you use several such repositories.

The simplest way to give developers access to a consistent repository with all the
gems they require is to set up your own gem server. There are two methods for
doing this:

1. If you have a machine with all the required gems installed, you can use the
built-in gem_server command on that machine to serve up its gems
to others.

2. You can serve gems out of Apache by manually setting up a gem repository.
This gives you more control over which gems are presented to client
machines, but is harder to maintain.

Both techniques are covered in the next two sections.

Running Your Own Gem Server

[490]

Serving Installed Gems
To explain how this technique is applied, let's remind ourselves of Acme's setup.
They have a production machine to which their applications are deployed, which
contains most of the gems required by the developers (see, Chapter 3). Note that
I said most, as Capistrano is not installed: technically, it is only required on the
developer machines. However, to be able to serve it from the production machine, it
needs to be installed on that machine too. (The gem_server command only offers up
gems installed on the machine where it is running.) They install Capistrano (and its
dependencies) with the following:

$ gem install capistrano -y

Next, they can make the gems on the production machine available via HTTP using
this simple command:

$ gem_server

[2007-07-03 21:34:38] INFO WEBrick 1.3.1

[2007-07-03 21:34:38] INFO ruby 1.8.4 (2005-12-24) [i486-linux]

[2007-07-03 21:34:38] INFO WEBrick::HTTPServer#start: pid=7543 port=8808

As you can see from the output, this starts a WEBrick server on the default port
8808 (gem_server -p N can be used to start the server on port N). Browsing to
http://<server address>:8808/ (replacing <server address> with the
IP address or domain name of the production machine) will now yield the
documentation for the gems on the server. We had a brief look at this feature in
the section: A Note on Rails Documentation in Chapter 3. If the gems were installed
without documentation (using the --no-rdoc switch), you will just get a list of the
installed gems without documentation links.

But there is another hidden aspect to the gem server: if you browse to the same
address with the path /gems/, i.e. to http://<server address>:8808/gems/, you'll
see the gems installed on the server displayed as links.

Appendix A

[491]

This indicates that the gem server is presenting its installed gems over HTTP. Once
this is up and running, you can now use the gem command line tool on a developer
machine to list the gems on the gem server:

$ gem list --remote --source http://192.168.13.131:8808

Bulk updating Gem source index for: http://192.168.13.131:8808

*** REMOTE GEMS ***

actionmailer (1.3.3)

 Service layer for easy email delivery and testing.

... etc. ...

(Replacing the IP address of the --source URL with the one for your server,
of course.)

You can also install a gem from your own gem server with:

$ sudo gem install rails -y --source http://192.168.13.131:8808

Password:

Bulk updating Gem source index for: http://192.168.13.131:8808

Successfully installed rails-1.2.3

Running Your Own Gem Server

[492]

Setting Your Gem Server as the Default
If you want to configure gem to use your gem server as the default repository, create
a file called .gemrc in your home directory (/home/username on Linux, Documents
and Settings\Username on Windows). Next, add this single line (it's a YAML file):

gem: --source http://192.168.13.131:8808 -y

Remember to replace the --source URL with the one appropriate to your server.
Note that I also added the -y switch to ensure that all dependencies are installed
each time you install a gem. Now, each time you install a gem, your intranet gem
server will be used as the default repository, rather than the public Internet
gem repository.

Creating a Gem Server Manually
While the approach of the previous section is simple to set up, it doesn't give you
much control over which gems are offered on the server. If you want to offer gems
without installing them, you have the option to create a gem server manually. In
the case of Acme, where they already have Apache installed on the production
machine, it makes sense to make use of that to present the gems over HTTP. This
also has the advantage that Apache starts and stops with the physical machine, due
to its incorporation into the init sequence (see, Apache on Linux and Mac OS X
in Chapter 4); with the gem_server command, you would have to write your own
start/stop script to get this happen.

To set up a gem server using Apache on Linux, follow these steps:

First, create a directory to use as the base for the gem server. To keep things simple, I
created this as a sub-directory inside Apache's htdocs directory (as root):

$ mkdir /opt/apache2.2/htdocs/gemserver

Next, create the directory, which will hold the gems:

$ mkdir /opt/apache2.2/htdocs/gemserver/gems

Gems are typically available for download from Rubyforge, though they may be
offered from non-standard repositories. For example, you can get the Rails gems
from http://gems.rubyforge.org/gems/. We'll start by getting the Rake gem
to demonstrate:

$ cd /opt/apache2.2/htdocs/gemserver/gems/

$ wget http://gems.rubyforge.org/gems/rake-0.7.3.gem

Appendix A

[493]

A gem is just a zip file with a nonstandard suffix (.gem). Put all the gem files you
want to serve into the gems directory.

Configure Apache to serve the new directory as a virtual host by adding the
following directive to /opt/apache2.2/conf/httpd.conf:

<VirtualHost *:80>
 ServerName gems.company.local
 DocumentRoot /opt/apache2.2/htdocs/gemserver
</VirtualHost>

You will need to add the new domain name to the DNS as appropriate:
see Chapter 6, Into Production for details. Reload Apache:

$ /etc/init.d/apache2.2 graceful

The final step to enable your repository is to index the gems it contains:

$ index_gem_repository.rb -d /opt/apache2.2/htdocs/gemserver

Note that the -d switch should reference the directory above the gems directory. This
adds two files, yaml and yaml.Z, and a directory, quick, to the gemserver directory.
These are used by clients (like the gem command line tool) to discover gems in
the repository.

Now, test that the repository responds correctly to gem from a remote machine:

$ gem list --remote --source http://gems.company.local/

*** REMOTE GEMS ***

Need to update 1 gems from http://gems.company.local/

.

complete

rake (0.7.3)

 Ruby based make-like utility.

Using this technique, you can make a precise set of gems available to developers.
The down side is that you need to run the index_gem_server.rb command
each time you add or change gems, to update the index (or you could use cron
to do this automatically); you have to maintain the repository and ensure that the
dependencies between gems are satisfied; and the documentation isn't displayed if
you visit http://gems.company.local/ (the gems aren't necessarily installed, so
may not have documentation available).

You can set up developer machines to use the repository, as their default, as outlined
in the section: Setting Your Gem Server as the Default on the previous page.

Index
A
action caching 434, 437
ActiveRecord

about 104
finder methods 131
migration 113
model 113
models, organising 114
validation 141

addresses
adding, for person 240-244
functionality, implementing 250
managing 256
orphaned address, suggestions 257
overview 261

advantages, Ruby on Rails
built-in safe test environment 15
clear code 12, 13
documentation 14, 15
menial tasks, handling 11, 12
open source 14
text based file 13

AJAX
about 307
adding to application 307
auto-complete, search enhancing 309
drag 327
dragging elements 329
drop 327
droppables 330, 331
element, making draggable 327-329
field in line, editing 324
field in line, limitations 325
form rendering, via link_to_remote

325, 327

helper 315
libraries 308
libraries making available,

to Rails application 308
script.aculo.us 327

AJAX helper
link_to_remote 315

Apache
about 281
as proxy for Rails application 284
basic mod_proxy, configuring 452
configuring 281
installing on Linux 281
installing on Mac OS X 282
installing on Windows 282, 283
load balancing, to Mongrel cluster 460
Mongrel 280
proxy for Rails, Apache configuring 285
rewrite rules adding, to serve static files

453-456
static assets, serving 451

Apache Bench 426
application. See also Rails application

accessing 297
AJAX helper 315
auto-complete, disadvantages 313
auto-complete function, creating 309, 310
auto-complete function, crossreferencing

312
auto-complete function, implementing

311, 312
case insensitive searches 307
conditions, handling 304
downgrading 412
entry URL simplifying, using routes 298
extending 341

[496]

home page, building 299
index view, rendering 300
Instiki, installing 335
Instiki, modifying 337
Instiki hosting, via Mongrel on Windows

336
Instiki wiki, helper method creating 338
less specific search 305, 306
link_to_remote, alternating links 320
Rails, dealing with errors 303
search function, building 300
search function, creating 301, 302
searching, appropriately 304, 305
search view, writing 300
upgrading 410
user feedback 339
user help system 338
user input 302
view, adding 192

application, developing
about 17
data, examining 19, 20
data, manipulating 26, 28
data, separating 22
data, validating 37
database table design rules 21
data objects 20
naming conventions 22
options 18
proper timing 486, 487
result, reviewing 29
strategies 486

application, extending
search facility, adding 342

application server
about 266
Central Processor Unit 266
CPU 266
hard disks 267
LAN 267
memory 266
Network Interface Card 267
NIC 267

assertion
about 161
types 161, 162

associations
about 174
advantage 164
relationship 164
result 163
testing 174

authentication system
about 352
actions, protecting 362, 363
adding 352
building 355
credentials submitted, checking 358-361
implementing 352, 353
logging out 361
login form, displaying 358
login process, testing 361
user model, creating 356, 357

auto-complete
about 309
creating 310
disadvantages 313
function, creating 309
implementing 311
search, enchancing 309

B
backup

about 268, 292
backup scripts, combining 295, 296
code repository, backing up 293
MySQL database, backing up 294, 295
Rails 292

business process
about 481
applications, building 482
business activity, example 485
business applications creating,

framework used 482
business management 481
cost reducing 483
customer payment, ensuring 484
customized solution 8
data gathering 472-475
detailed reporting 483, 484
management accounts 481
off the shelf solution 8

[497]

profit, generating 482
rapid reporting 483
redundancy, reducing 483
solutions, improving 486
solution types 8
strategies 486
success, dealing with 485
successful applications, building 482

C
C*UD. See also CRUD

about 220
address, updating 249
person, creating 221-224
person, deleting 237, 238
person, updating 231, 249
person deleting, disadvantages 239
Rails form helpers 223

caching
about 432
action caching 433-438
application performance, improving 432
cache elements, naming 433
clearing out 445-447
elements, expiring 445
enabling 435
fragment caching 433-440
Intranet, applying to 434
page caching 433-436
preparing for 435
sweeper 446, 447
types 432, 433
versus static HTML pages 435

callback
company deletions, adding to 257
handler 257
observer 258
observer, locating 259
observer, switching on 259
unit testing 260

Capistrano
about 397, 398
application, deploying 400
application, downgrading 412
application, upgrading 410
application server, inaccessible 416

configuration file, customizing 399
database server, inaccessible 416
deployment, starting 403
deployment with 398
files, adding to application 399
file uploads, centralizing 408
final deployment 402
getting started 399-402
installing 55
installing, command line used 55
libraries, missing 415
Mongrel, managing from 407, 408
no access to server 416
obsolete releases, cleaning 411, 412
other commands running, with invoke 406
production database, migrating 405
production database, preparing 402
Rails version, incompatible 413
repository permissions 416
roles 399
server, logging to 416
ssh-agent 401
Subversion password, incorrect 416
tasks, adding 408

companies
callback adding, to deletion 257
creating 254-256
deletion, confirming 251-253
functionality, implementing 250
managing 251
navigation, building 251
orphaned address, suggestions 257
person, attaching to 253, 254
updating 254-256

controller
creating 365
CRUD operations, handling 365

controllers
about 187
adding, for companies 206
application-level controller methods,

creating 236, 237
class 188
companiescontroller, creating 206
CompaniesController class, creating 206
creating 189-191
edit, adding 239

[498]

index view, creating 207
links, deleting 239
multiple models, editing 240
person, creating 221-224
person, deleting 237
person, updating 231, 233
Rails form helpers 223
testing 208
views, creating 189

convention
breaking 469
breaking cycle 469
over configuration 94, 95

cookies 352
CRUD. See also C*UD

about 125
operations 188
person, deleting 239

custom helpers
about 209
date, formatting 211, 212
empty fields, default messages for 210, 211
place holders 212, 213

custom Rails stack, installing
advantages 49
database platform, selecting 57
IDE, installing 64
libraries 55
MySQL, installing 58
Rails, installing 52
Rails documentation 53
Ruby, installing 49
Ruby-MySQL, working together 62
Rubygems, installing 49

D
data, validating

fields with specific format 39, 40
minimum data requirement 37
referencing 41
unique data identification 38, 39

database
addresses table, creating 127
companies table, creating 127
configuration options 111
connection, setting up 106, 107
connection, testing 111

creating 104
dependencies 173, 174
development database 272
development database, separating 272, 273
development database.yml files,

separating 274
localhost database 273
many-to-many relationship 171
MySQL connection, troubleshooting 112
one-to-many relationship 164, 170
one-to-one relationship 168
other tables, creating 128
previous version 124
production database 271
production database, preparing 402
production database, separating 272, 273
production database.yml files,

separating 274
Rails environment, configuring 108
settings, configuring 109, 110
single database.yml 273
tables, creating 127

database platform, selecting
MySQL, installing 58

data gathering
aggregate functions 477-480
data summarizing, GROUP BY used

476-479
data objects

about 20
database table design rules 21

data processing
about 180
data exporting, from outlook 180, 181
script, coding 183-185
text file mapping, to database tables 181

dependencies 173
deploying, Rails application

Capistrano 55
FastCGI 451

deployment
about 397
final deployment 402
first deployment 404, 405
production database, migrating 405
production deployment 398
starting 403
troubleshooting 413

[499]

with Capistrano 398
detailed reporting 483
development database

production database, separating 272
production database.yml files,

separating 274
development machine 397
Document Object Model

about 316
updating 316, 317, 318

DOM. See Document Object Model
Domain Name System/Server

about 283
host name, adding 284

dragging elements 329

E
EasyEclipse

for PHP 67
for Python 67
for Ruby on Rails 67
installing 68
installing on Linux 68
installing on Mac OS X 71
installing on Windows 68
Java Runtime Environment 67
Masochists, instructions 71

Eclipse
about 65
advantages 66
disadvantages 66

Embedded Ruby. See ERb
ERb

about 192
helper 197
Ruby HTML 192
template 192

errors
additional data processing, cause 289
additional data processing, impact on

performance 288
additional data processing, solution 290
additional data processing, symptom 288
application error, cause 292
application error, solution 292
application error, symptom 291

at server 291
in production 288

errors handling
about 345
application-level errors, catching 350
application error 351
classes 346
missing record errors, catching 346-349
Rails has fallen over errors, catching 351
routing errors, catching 349
service temporarily unavailable 352
to catch 346
UnknownAction, catching 349

F
FastCGI 451
feedback

about 341
dealing with 341
user feedback 341
user feedback, dealing with 342

FHS 51
file

application, upgrading 410
attaching 381, 382
file attaching to task, form adding 388
file attachment, adding to task 390
file attachment, deleting for task 393
file attachment, listing for task 391
file attachment, protecting 395
file attachment managing, for task 387
file attachments 387
file uploads, centralizing 408
obsolete releases, cleaning 411, 412
uploading 381, 382
uploading, using acts_as_attachment 385

Filesystem Hierarchy Standard 51
file uploading

about 381
using acts_as_attachment 385

filters 233
finders

about 131
custom finder, writing 137
dynamic attribute based finders 136
Eclipse, setting up 138, 140

[500]

logs in Eclipse, viewing 138
records, returning 132
records, sorting 133
records by Raw SQL, finding 136
records matching search criteria,

finding 135
records using attribute based finders,

finding 136
single record, finding 134
SQL, viewing 138
virtual attributes 133

fixtures
about 155
instantiated fixtures 157
transactional fixtures 156

flash
about 228
message, adding 228, 229

fragment caching
about 434, 439
database calls, avoiding 442, 443
for actions 441

framework
client/server, need for 9-11
need for developing 8, 9

functional testing
about 244
running 246

G
gem server

creating manually 492
installed gems, serving 490
setting, as default 492
setting up, using Apache on Linux 492, 493
setting up techniques 489

GUI Tools
MySQL Administrator 62
MySQL Query Browser 62
MySQL Workbench 62
phpMyAdmin 62

H
helper

about 197
application level 209

controller specific 209
custom helper, adding 225
custom helpers 209
versus partial 218
writing 209

I
IDE

benefits over basic editor 64, 65
Eclipse 65
installing 64

index view
about 300
creating 207
rendering 300, 301

Instiki
about 335
hosting, via Mongrel on Windows 336
installing 335
modifying 336

Instiki wiki. See also wiki
about 335
helper method, creating 338

Integrated Development Environment.
See IDE

intranet
files, attaching 381
simple task tracking, adding 363

L
layout

about 202
adding 202, 203
layout template 202
page titles 203, 204

libraries
about 55
versus plugins 55

link_to_remote
about 315
address entries, hiding 319
address entries, showing 319
advantages 319
AJAX form, rendering 325
alternating links 320
alternative actions 321, 322

[501]

company address, hiding 315
company address, showing 315
functionality, increasing 319
JavaScript, debugging 322
use 316
within company index list, hiding 322
within company index list, showing 322

log files, managing
log detail, reducing 423

log levels 423

M
machine

about 397
development machine 397
production server 397

memory 266
menu

about 218
adding 218
locating, issues 218, 220

migration
about 114
ActiveRecord 114
class 116
columns, defining 119
column types 119-121
data structure converting, to migration 118
data stucture converting, to migration 117
editing, Eclipse used 116
extra options 119-121
model, building 115
MySQL field data types, mapping 119-121
operations 121
running 115, 122
use 114

model
about 114, 129
aspects 129
associations between models 163
command line, creating from 364
finders 131
fixtures 155
migration, building with 115
new records creating, via models 129-131
organising 114

task model 363
testing 150
validation 141

Model-View-Controller Architecture.
See MVC

models
editing 240
mutiple models, editing 240

Mongrel
about 276
Apache 280
application, serving 100
configuration, modifying 276
guidelines for installing 56, 57
installing 56
installing, gem used 56
installing on Linux 56
installing on server 276
installing on Ubuntu 56
installing on Windows 57
limitations 279
load balancing, from Apache 460
Capistrano, managing from 407
Mongrel behind Apache, hosting 279
Mongrel cluster, proxying to 456, 457
Mongrel cluster, setting up 457-459
Mongrel service, removing 278
Mongrel service on Windows 276-278
Rails applications, running 56
starting automatically 418, 419

Mongrel cluster
about 456
load balancing, from Apache 460
manually starting 459
proxying to 456
setting up 457-459
testing 459

mutiple models, editing
about 240
address, updating 249
address adding, for person 240-243
functional testing using, for complex

actions 244
person, updating 249

MVC
about 92
architecture 93, 94

[502]

Rails 95
MySQL

GUI Tools 62
installing 58
installing on Linux 60
installing on Mac OS X 61
installing on Windows 58
integrating Ruby 62
MySQL installation, checking 61, 62
recommendations 59, 60
troubleshooting, connection 112, 113

N
naming conventions

classes 24
consistency 23
constants 24
for Ruby on Rails 24
meaningful names 22, 23
methods 24
properties 24
property suffixes 25
reserved words 26
special methods 25
variables 24

NAS 75, 268
network attached storage 75, 268
Network Interface Card 267

O
object-relational mapping layer.

See ActiveRecord
object-relational wrapping layer.

See ActiveRecord
ORM layer. See ActiveRecord

P
page titles 203
pagination

about 196
links rendering, with partial 217

parameters
address 245
person 245

partial
address, showing 215
pagination links, rendering 217
versus helper 218

partial templates
about 215

person, creating
errors, validating 226, 227
final step 229, 230
flash 228
helper, refining with 225

person model
behavior 157
find_all_ordered method 159, 160
full_name method 159
gender must be M or F 159
no same email address 158
person without first name is invalid 159
person without last name is invalid 159
tests 157
valid email address 158

plugins
about 55, 382
acts_as_attachment 385
externals 384
finding 382
removing 384
uses 382
versus libraries 55

production
migration using 275
production database 271

production database
about 271
development database, separating 272
development database.yml files,

separating 274
production environment

application transferring, using Subversion
269

components, installing 286
creating 264
errors 288
installing components 286
intranet application, into production 288
production database, migrating 405

[503]

production database, preparing 402
Rails application, running 263
routing simplifying, using host names

286, 287
server 268
test application, installing 286
test application, running 286
testing 264

profiler
about 428
manually running 428

project
about 175
Subversion, storing in 175, 176
temporary files, ignoring 176

R
Rails

asset ID 205
backup 268, 292
code repository, backing up 293
cookies 352-355
database, backing up 294
database connection, setting up 111
database user 275
DRY 233
Embedded Ruby 192
ERb 192
form helpers 223
functional testing using, for complex

actions 244
gems downloading 53
helper 197
installing 52
installing, command line used 52
installing, gems used 53
installing on server 268
migration, running 122
MVC, implementing 96
partial templates 215
plugins 382
plugins, installing 383
power tools 97
profiler 432
Rake 124
refactoring 233

refactoring, application-level controller
creating 236

refactoring, using filters 233, 235
scaffolding 125
Server Integration Services 470
session 352
session, handling 353, 355
skills analogy 468
solutions 470, 471
testing, types 151
views 192

Rails and MVC 95
Rails application. See also application

AJAX, adding 307
AJAX libraries, making available 308, 309
Apache Bench 426
auto-complete, search enhancing 309
bottlenecks, finding 424
controller action profiling, using

around_filter 428
convention over configuration 94
database, connecting to 103
database, creating 104
database connection, setting up 106
database platform, selecting 57, 58
data mocking up, for analysis 426
developer help 332
developing 91
eager loading 449
errors, dealing with 303
features 92
history 92
issues, tracking 424
keeping in order 418
libraries 55
log detail, reducing 423
log files, managing 422, 423
log levels 423
Mongrel, starting automatically 418, 419
MVC 92
MySQL, installing 58
optimising 424
optimizing 447, 448, 449
page rendering, caching used 428
performance, improving 450
performance improving, bottlenecks

finding 424

[504]

performance improving, caching used 432
performance improving, infrastructure

scaling 450
production environment, creating 264
production environment, running in 263
production environment, testing 264
profiling 431
Rails logs 425
Rails logs, analysis 425
Rails profiler 432
RDoc-documentation, for developer 332
serving, Mongrel using 100, 102
setting up 97, 98
stale session files, clearing out 420, 421
static assets serving, using Apache 451, 456
system account, creating 104
techniques 450
user help 334
user help system, guidelines 339
wiki 335
working 92

Rails asset ID 205
Rails deployment

application server, inaccessible 416
database server, inaccessible 416
errors, fixing 414, 415
libraries, missing 415
no access to server 416
Rails version, incompatible 413
Rails version incompatible, errors 413
repository permissions 416
Subversion password, incorrect 416
troubleshooting 413

Rails development
developer machine 44
environment 44
foundations, laying 43
goals, setting 45
hardware, setting up 44
Rails stack 46
server 44
supporting 43
team server 46
team server, setting up 72
version control system 45

Rails documentation
about 53

finding 53
finding, manually 54

Rails environment
characteristics 108
configuring 108
development 108
production 109
test 108
uses 108

Rails form helpers 223
Rails infrastructure

about 450
cache store 464
database, clustering 464
database, replicating 464
faster load balancer, using 465
faster session 464
hardware, adding 464
memcached 464
scaling 450, 464
static assets serving, using Apache 451, 456

Rails logs
about 425
analysis 425
data mocking up, for analysis 426
summarizer, writing 426

Rails stack
bundle, used 47
Capistrano 47
custom Rails stack installing 49
database 47
EasyEclipse 47
editor 47
Mongrel 47
Rails 47
Ruby 46
Rubygems 47
setting up 46

Rails stack, installing
AxleGrease 48
bundle, used 48
InstantRails, on Windows 48
Locomotive, on Mac OS X 48
XAMPP, on Linux 48

rapid reporting 483
RDoc-documentation 332

about 332

[505]

records
showing 213

refactoring 233
relational persistence layer.

See ActiveRecord
relationship

addresses to companies 168
addresses to people 164
companies to people 170
many-to-many 171
many-to-many, guidelines 172
one-to-many 164, 170
one-to-one 168
parent to child 168
parent to children 164, 170

remote, accessing
Secure Shell, used 74
users, adding 74

revision 80
Rory

contact data, separating 41
person 42
tables 41

Ruby
controller action profiling, using

around_filter 428, 430
installing 49
installing on Linux 51
installing on Linux, Debian used 51
installing on Mac OS X 52
installing on server 268
 installing on Ubuntu, Synaptic used 51
installing on Windows 50
integrating MySQL 62
profiling 428
ruby-prof 431
syntax 117

Ruby-MySQL
installing 62
installing on Linux 63
installing on Mac OS X 64
installing on Windows 63

Rubygems
about 489
gem server 489
installing 49, 52
installing, command line used 52

uninstalling 52
Ruby HTML 192
Ruby on Rails

add-ons 55
advantages 11
libraries vs plugins 55
Nitro and Camping 56
platform 46

Ruby on Rails Webhosting 88

S
scaffold 189
scaffold generator 261
scaffolding

about 125
alternatives 126
CRUD 125

scaling 463
script.aculo.us

about 327
dragging elements 329
droppables 330, 331
element, making draggable 327-329

search
auto-complete 309
case insensitive searches 307
less specific search 305

search facility
about 342
action 342
adding 342-345
form 343
view template 343

search view
about 300
index view 300
writing 300

server
application server 266
application transferring to production

environment, using Subversion
269, 270

database.yml files, disadvantages 274
development database, separating 272, 273
development database.yml files,

separating 274

[506]

errors 291
files, copying, to 269
files excluding, from repository 270, 271
installing Rails 268
installing Ruby 268
localhost database 273
production, using migration 275
production database 271
production database, hosting 271
production database, separating 272, 273
production database.yml files,

separating 274
production server, requirements 268
Rails database user 275
Rails environment, creating 268
setting up 268
single database.yml 273
single database.yml, disadvantages 274

session
about 228, 352
handling 353, 355

shared drive 75
simple task tracking

about 380
cancel link, handling 379
default person for new tasks, setting

379, 380
in-place editors 378
integrated forms 378
person tasks, showing 371-375
redirecting, after deletion 378, 379
redirecting to person, after task adding

376, 377
redirecting to person, after task editing

376, 377
redirecting to person, alternatives 378
task controller 367
task controller, creating 365
task model 365
task model, creating 363
task views 367-369

SQL
about 471
aggregate functions 479
data gathering 472
data summarizing, GROUP BY used 476
migration 472

standard Subversion layout
branches 78
example 79
HEAD revision 80
revision 80
tags 78
trunk 78
working copies 80
working copies, outcomes 80

stylesheet
about 204
adding 204, 206

Subversion
about 76
browsing from Eclipse 84-87. See also

EasyEclipse; See also EasyEclipse
external services, accessing 88
installing 76
installing on Ubuntu, command line used

76
Meld 88
project in Subversion, setting up 82, 83
standard Subversion layout 78
Subversion clients 88
Subversion repository 77
Subversion repository, setting up 81, 82
syn 76
TortoiseSVN 88

Subversion repository
addressbook 77
calendar 77
code committing 179
project in Subversion, storing 175
projects 77
temporary files, ignoring 176

system account
advantages 105, 106
creating 104, 105
permissions 106

T
tables

about 127
addresses table 127
associations 129
companies table 127

[507]

InnoDB 122
MyISAM 122
new records creating, via models 129
other tables 128
records, finding 132
text file mapping, to database 181

task
cancel link, handling 379
controller 365
default person for new tasks, setting 380
file attaching to task, form adding 388, 389
file attachment, adding to 390, 391
file attachment, deleting for 393-395
file attachment, listing for 391, 392
file attachment, protecting 395
 file attachments, managing for 387
model 363
person tasks, showing 371-375
redirecting, after deletion 378
redirecting to person, after adding 376
 redirecting to person, after editing 376
simple task tracking 363
views 367

team server
about 72
accessing, users adding 74
core functions, configuring 72

team server, setting up
gems, installing 73
software, installing 73
Subversion repository 77
version control with subversion 75

test application
creating 264, 265
developing 264, 265

testing
about 150
advantages 163
anatomy 154
automated testing 151
choosing criteria 154, 155
disadvantages 150
for negatives 160
for positives 160
functional tests 151
integration tests 151
person model 157

regressions 151
setting up for 152, 153
TDD 163
test driven development 163
types, by Rails 151
unit tests 151

tracking
about 32
access control 36
access history, recording 35, 36
no authentication 33
no log on 33
simple password access 34
user log on 35

troubleshooting
application, rebuilding on production

server 417
application server, inaccessible 416
credentials incorrect 416
database server, inaccessible 416
errors, fixing 414-417
inexplicable, dealing with 417
libraries, missing 415
Rails version, incompatible 413

U
user

experience, improving 297
feedback 339, 341
feedback, dealing with 341
help guidelines 339
help system 338

user interface
building 187
controllers 189
layouts 192
views 192
view techniques 208

V
validation

about 141
addresses, validating 148
companies, validating 148
companys address, validating 169

[508]

empty field values, checking for 142
inclusion in range of values, checking for

145, 147
methods 149, 150
persons address, validating 167
persons company, validating 171
records related, validating 147
regular expression, checking against 143
uniqueness, checking for 144, 145

version control system 75
views

about 192
adding 201
adding, to application 192, 193
address showing, with partial 215-217
custom helpers 209
drill down 198
extending 208
layout, adding 202
linking 198-200
menu 218
model instances, displaying 194, 195
records, showing 213
refining, helper used 214, 215
stylesheet, adding 204

virtual attributes 133, 210

W
web developer tool 194
web server

about 276
Apache 280
DNS 283
Domain Name System/Server 283
Domain Name System/Server, host name

adding 284
Mongrel installing 276

wiki. See also Instiki wiki
about 335
advantages 335

Y
YAML

about 107, 275
benefits over XML 107

	Ruby on Rails Enterprise Application Development
	Table of Contents
	Preface
	Introduction
	Why this Book?
	Why Develop?
	Why a Client/Server based Web Application?
	But why Ruby on Rails?
	Rails Handles Menial Tasks
	Clear Code
	Text Based File
	Open Source
	Plentiful Documentation
	Built-in Safe Test Environment

	Ruby on Rails on Detail
	Summary

	The Initial Problem
	A Normal Day in the Office
	Examining the Data
	Data Objects
	Database Table Design Rules

	Separating the Data
	Naming Conventions
	Use Meaningful Names
	Use a Consistent Naming Convention
	Ruby on Rails Naming Conventions
	Constants and Classes
	Variables
	Methods and Properties
	Special Method and Property Suffixes
	Reserved Words

	Back to the Data
	Review the Result
	Project Preparation Steps

	How Good is the Source Data?
	Tracking Who does What
	No Log-On and No Authentication
	Simple Password Access
	User Log-On
	Recording Access History
	Access Control for Rory's Application

	Data Validation
	The Minimum Required Data is Entered
	Each Record can be Uniquely Identified
	Identify Fields that Need to Have a Particular Format
	References to Data in Other Tables Point to Actual Data

	Rory's data
	Person
	Company
	Address

	Summary

	Laying the Foundations
	Supporting Rails Development
	Addressing the Challenges
	Setting Up a Rails Stack
	Installing a Rails Stack Using a Bundle

	Installing a Custom Rails Stack
	Installing Ruby and Rubygems
	Ruby on Windows
	Ruby on Linux
	Ruby on Mac OS X

	Installing Rails
	A Note on Rails Documentation

	Other Libraries
	Capistrano for Easier Deployment
	Mongrel: A Better Way to Run Rails Applications

	Choosing a Database Platform
	Installing MySQL
	Checking Your MySQL Installation
	MySQL GUI Tools
	Ruby-MySQL: Making Ruby and MySQL Work Better Together

	Installing an IDE
	Eclipse
	EasyEclipse

	Instructions for Masochists
	In the Back Rooms at Acme…

	Setting Up a Team Server
	Quick Gem Installation
	Remote Access via SSH
	Adding Users

	Version Control with Subversion
	Subversion Standard Practices
	Setting Up a Subversion Repository
	Setting Up a Project in Subversion
	Browsing Subversion from Eclipse
	Other Subversion Clients

	Using Other People's Servers
	Back at Acme

	Summary

	Working with Rails
	The World According to Rails
	Model-View-Controller Architecture
	Convention over Configuration
	Rails and MVC

	Setting Up a New Rails Application
	Using Mongrel to Serve Your Application

	Connecting Rails to a Database
	Creating a Database and System Account
	Setting Up a Database Connection
	Configuring the Rails Environments
	Testing the Database Connection
	Troubleshooting a MySQL Connection

	ActiveRecord, Migrations, and Models
	Model == Table
	Which Comes First: The Model or The Table?
	Building a Model with Migrations
	Converting a Data Structure into a Migration
	Defining Columns in Migrations
	Other Operations Available in a Migration

	Running a Migration
	Rolling Back to a Previous Version of the Database

	The Scaffold
	Completing the Database
	The companies Table
	The addresses Table
	Generating the Remaining Tables

	Models in Detail
	Creating New Records in a Table via Models
	Finders
	Finding All of the Records in a Table
	Virtual Attributes
	Sorting Records
	Finding a Single Record
	Finding Records Matching Search Criteria
	Finding Records Using Attribute-Based Finders
	Finding Records by Raw SQL
	Writing a Custom Finder
	Viewing the SQL
	Viewing Logs in Eclipse

	Validation
	Validating People
	Validating Companies
	Validating Addresses
	Other Types of Validation

	Testing
	Setting Up For Testing
	Anatomy of a Test Case
	What Should Be Tested?
	Fixtures
	Tests for the Person Model
	Other Types of Assertion
	Becoming Driven by Testing

	Associations between Models
	Parent to children (one-to-many): addresses to people
	Parent to child (one-to-one): addresses to companies
	Parent to children (one-to-many): companies to people
	Many-to-many relationships
	Dependencies
	Testing Associations

	Putting the Project into Context
	Storing a Project in Subversion
	Ignoring Temporary Files
	Committing Code to the Repository

	Processing Data
	Exporting the Data from Outlook
	Mapping a Text File to Database Tables
	Coding the Script

	Summary

	Building the User Interface
	Controllers and Views: A Recap
	Creating a Simple Controller and Its Views
	Views and Layouts
	Adding a View to the Application
	Displaying Model Instances in a View
	Pagination
	Linking to Another View
	Adding a Layout
	Adding a Stylesheet

	Adding a Controller for Companies
	Create the CompaniesController
	Create the Index View
	Test It!
	Summary

	Advanced View Techniques
	Custom Helpers
	Default Messages for Empty Fields
	Date Formatting

	Showing Associated Records
	Refining Using a Helper
	Showing an Address with a Partial

	Rendering Pagination Links with a Partial
	Adding a Menu

	C*UD (Create, Update, Delete)
	Creating a Person
	Refining with a Helper
	Validation Errors
	The Flash
	Finishing Touches

	Updating a Person
	Opportunities for Refactoring
	Using Filters
	Creating Application-Level Controller Methods

	Deleting a Person
	Adding Edit and Delete Links to a Person's Profile

	Editing Multiple Models Simultaneously
	Adding a New Address for a Person
	Using Functional Testing for Complex Actions

	Updating a Person and Their Address
	Summary

	Fleshing Out Companies and Addresses
	Managing Companies
	Stubbing Out the Navigation
	A Shared View to Confirm Deletions
	Attaching a Person to a Company
	Creating and Updating Companies

	Managing Addresses
	Adding a Callback to Company Deletions
	A Very Quick Interface for Addresses

	Summary

	Into Production
	An Application Ready for Production
	The Application Server
	Memory
	Central Processor Unit–CPU
	Hard Disks
	Network Interface Card–NIC
	Don't Forget Backup
	Your First Production Server

	Setting up the Server
	Installing Ruby and Rails
	Copying the Files to the Server
	Using Subversion to Transfer the Application to the Production Environment
	Excluding Files from the Repository
	The Production Database
	Separating Development and Production Databases
	Localhost database–single database.yml
	Separate Development and Production database.yml files
	Using Migration in Production
	The Rails Database User

	The Web Server
	Mongrel
	Mongrel Service on Windows
	Limitations of Mongrel
	Mongrel behind Apache
	Installing Apache
	Apache on Linux and Mac OS X
	Apache on Windows
	Domain Name System (DNS)
	Configuring Apache to Act as a Proxy for a Rails Application

	Rory's Production Installation
	Using Two Host Names to Simplify Routing
	Rory Puts his Intranet Application into Production

	Errors in Production
	Slow List Rendering due to Placement of Additional Data Processing in Loop
	Symptom
	Cause
	Fix

	Application Error Following the Transferring of New Code to Production
	Symptom
	Cause
	Solution

	Backup Rails
	Backing Up the Code Repository
	Backup the Database
	Combining Your Backup Scripts

	Summary

	Improving the User Experience
	Easy Access to the Application
	Use Routes to Simplify the Entry Point URL
	Build a Fast, Clear Home Page

	Users Need to Be Able to Find Items Easily
	Use the Index View as the Core of the Search View
	Search–The First Attempt
	Do Not Trust User Input
	Handle Nothing
	Users Need to Be Able to Search Without Knowing Exactly What They Are Looking for
	A Less Specific Search
	Case Insensitive Searches

	Adding AJAX to the Mix
	Make the AJAX Libraries Available to our Rails Application
	Enhancing Search with Auto-complete
	Auto-complete – Wow!, but...

	Use of AJAX – the Lessons Learned from Auto-Complete

	Show and Hide Company Address Using link_to_remote
	A Simple link_to_remote
	A DOM Object to Update
	Create a say_hello Action

	Increasing the Functionality of link_to_remote
	Show and Hide
	Alternating link_to_remote Elements
	Alternative Actions
	Debugging JavaScript
	Show/hide Within the Company Index List

	Using AJAX to Edit a Field in Line
	Render an AJAX Form via link_to_remote

	A Little script.aculo.us: Drag and Drop
	Make an Element Draggable
	A Place to Drop the Element

	Further AJAX

	Help!
	RDoc–Documentation for the Developer
	Help for the User
	Instiki Wiki Help
	The Best User Help Systems

	Keep Talking to Users
	Summary

	Extending the Application
	Dealing with User Feedback
	Adding a Search Facility
	Handling Errors
	Catching Missing Record Errors
	Catching UnknownAction and Routing Errors
	Catching General Application-Level Errors
	Catching "Rails has Fallen Over" Errors

	Adding an Authentication System
	Cookies and Sessions in Rails
	Building the Authentication System
	The User Model
	Displaying the Login Form
	Checking Submitted Credentials
	Logging Out
	Protecting Actions

	Adding Simple Task Tracking
	The Task Model
	The Tasks Controller
	Task Views
	Showing Tasks for a Person
	Redirecting to a Person after Adding or Editing a Task
	Redirecting after a Deletion
	Handling the Cancel Link
	Setting a Default Person for a New Task
	Summary

	Uploading and Attaching Files
	Using Plugins
	Using acts_as_attachment for File Uploads
	Managing File Attachments for a Task
	Adding a Form for Attaching a File to a Task
	Adding a File Attachment to a Task
	Listing File Attachments for a Task
	Deleting File Attachments for a Task
	Protecting File Attachment Actions

	Summary

	Advanced Deployment
	Deployment with Capistrano
	Getting Started with Capistrano
	A Complete Deployment Recipe

	Preparing the Production Database
	First Deployment
	Migrating the Production Database
	Running Other Commands on the Server with invoke
	Managing Mongrel from Capistrano
	Centralizing File Uploads
	Upgrading the Application
	Cleaning Up Obsolete Releases

	Downgrading the Application

	Troubleshooting Deployment
	Incompatible Rails Versions
	Missing Libraries
	Incorrect Subversion Password or Repository Permissions
	User Doesn't Have SSH Access to the Server
	Inaccessible Application Server
	Inaccessible Database Server
	Dealing with the Inexplicable
	Getting Back to a Clean Slate

	Housekeeping
	Starting Mongrel Automatically
	Clearing Out Stale Sessions
	Keeping Log Files Manageable
	Reducing Log Detail

	Optimizing a Rails Application
	Finding Bottlenecks
	Controller Action Profiling Using around_filter
	Profiling Everything
	The Rails Profiler

	Improving Application Performance with Caching
	How Cache Elements are Named
	Deciding What to Cache
	Preparing for Caching
	Page Caching
	Action Caching
	Fragment Caching
	Fragment Caching for Actions
	Avoiding Database Calls for Cached Fragments
	Clearing out the Cache

	Optimizing How Rails Uses the Database
	Ordering for Eager Loading

	Scaling Your Rails Infrastructure
	Using Apache to Serve Static Assets
	Proxying to a Mongrel Cluster

	Advanced Scaling

	Summary

	Down the Track
	Going off the Rails
	SQL
	Gathering Data from a Daughter Object's Daughter
	Using a model’s ActiveRecord connection
	Using GROUP BY to Summarize Data
	A Deeper Look at Aggregate Functions

	Business Processes
	To Be Successful, Build Successful Business Applications
	Automate Simple Repetitive Jobs
	Rapid and Detailed Reporting
	Ensure Customers Pay for the Goods and Services, the Business Provides
	Review of Business Activity Examples

	Dealing with Success
	Just Because You Can, Doesn't Mean You Should
	Bought in solutions Provide their Own Opportunities
	Ensure There is Time to Complete Each Task

	The Final Destination

	Running Your Own Gem Server
	Serving Installed Gems
	Setting Your Gem Server as the Default

	Creating a Gem Server Manually

	Index

