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Preface
Scala is an audacious programming language that blends object-oriented and functional
programming concepts on the JVM. Scala has grown from relative obscurity to a top choice
for developing robust and maintainable JVM applications. However, writing highly
performant applications remains a challenge without a deep understanding of the language
and the advanced features that it provides.

Since 2011, we have used Scala to solve complex business challenges with demanding
performance requirements. In Scala High Performance Programming, we share the lessons that
we have learned over the years and the techniques we apply when writing software. We
explore the language and its ecosystem of tools and widely-used libraries in this book.

Our goal with this book is to help you understand the options that are made available to
you by the language. We empower you to gather the information that is needed to make
informed design and implementation decisions in your software systems. Rather than feed
you a few Scala-fish and send you on your way, we help you learn how to fish and give you
the tools to write more functional and more performant software. Along the way, we
motivate technical discussions by concocting business problems that are reminiscent of real-
world problems. We hope that by reading this book, you can come to appreciate the power
of Scala, and find the tools to write more functional and more performant applications.

What this book covers
Chapter 1, The Road to Performance, introduces the concept of performance and the
important terms for this topic.

Chapter 2, Measuring Performance on the JVM, details the tools that are available on the
JVM to measure and evaluate performance, including JMH and Flight Recorder.

Chapter 3, Unleashing Scala Performance, provides a guided tour of various techniques and
patterns to take advantage of the language features and improve program performance.

Chapter 4, Exploring the Collection API, discusses various collection abstractions that are
provided by the standard Scala library. We focus on eagerly evaluated collections in this
chapter.
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Chapter 5, Lazy Collections and Event Sourcing, is an advanced chapter that discusses two
types of lazy sequences: views and streams. We also give a brief overview of the event
sourcing paradigm.

Chapter 6, Concurrency in Scala, discusses the importance of writing robust concurrent
code. We dive into the Future API that is provided by the standard library, and introduce
the Task abstraction from the Scalaz library.

Chapter 7, Architecting for Performance, this closing chapter combines deeper knowledge
on previously covered topics and explores CRDTs as building blocks for distributed
systems. This chapter also explores load control policies with the free monad to build
systems with bounded latency characteristics when facing high throughput.

What you need for this book
You should install Java Development Kit version 8 or higher for your operating system to
work through all code examples. This book discusses the Oracle HotSpot JVM, and it
demonstrates tools that are included in Oracle JDK. You should also get the latest version of
sbt (version 0.13.11, at the time of writing) from h t t p : / / w w w . s c a l a - s b t . o r g / d o w n l o a d
. h t m l.

Who this book is for
You should possess a basic knowledge of the Scala programming language, have some
familiarity with elementary functional programming concepts, and have experience of
writing production-level JVM software. We recommend that readers who are new to Scala
and functional programming spend some time studying other resources before reading this
book in order to get the best out of it. Two excellent Scala-centric resources are Programming
in Scala, Artima Press and Functional Programming in Scala, Manning Publications. The former
is best suited for strong object-oriented Java programmers that are looking to understand
the language first and the functional programming paradigm second. The latter focuses
heavily on the functional programming paradigm and less so on language-specific
constructs.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

http://www.scala-sbt.org/download.html
http://www.scala-sbt.org/download.html
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Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, and user inputs are shown as follows: "The -
XX:+FlightRecorderOptions accepts a parameter named settings, which, by default,
points to $JAVA_HOME/jre/lib/jfr/default.jfc."

A block of code is set as follows:

def sum(l: List[Int]): Int = l match {
  case Nil => 0
  case x :: xs => x + sum(xs)
}

Any command-line input or output is written as follows:

    sbt 'project chapter2' 'set javaOptions := Seq("-Xmx1G")' 'runMain
highperfscala.benchmarks.ThroughputBenchmark
src/main/resources/historical_data 250000'

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Let's start on the Overview
tab of the Code tab group."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

mailto:feedback@packtpub.com
https://www.packtpub.com/books/info/packt/authors
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / S c a l a - H i g h - P e r f o r m a n c e - P r o g r a m m i n g. We also have other code bundles
from our rich catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i
s h i n g /. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Scala-High-Performance-Programming
https://github.com/PacktPublishing/Scala-High-Performance-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s /
d o w n l o a d s / S c a l a H i g h P e r f o r m a n c e P r o g r a m m i n g _ C o l o r I m a g e s . p d f.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you could report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website or added to any list of existing errata under the Errata
section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/ScalaHighPerformanceProgramming_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/ScalaHighPerformanceProgramming_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com
mailto:questions@packtpub.com


1
The Road to Performance

We welcome you on a journey to learning pragmatic ways to use the Scala programming
language and the functional programming paradigm to write performant and efficient
software. Functional programming concepts, such as pure and higher-order functions,
referential transparency, and immutability, are desirable engineering qualities. They allow
us to write composable elements, maintainable software, and expressive and easy-to-
reason-about code. However, in spite of all its benefits, functional programming is too often
wrongly associated with degraded performance and inefficient code. It is our goal to
convince you otherwise! This book explores how to take advantage of functional
programming, the features of the Scala language, the Scala standard library, and the Scala
ecosystem to write performant software.

Scala is a statically and strongly typed language that tries to elegantly blend both functional
and object-oriented paradigms. It has experienced growing popularity in the past few years
as both an appealing and pragmatic choice to write production-ready software in the
functional paradigm. Scala code compiles to bytecode and runs on the Java Virtual
Machine (JVM), which has a widely-understood runtime, is configurable, and provides
excellent tooling to introspect and debug correctness and performance issues. An added
bonus is Scala's great interoperability with Java, which allows you to use all the existing
Java libraries. While the Scala compiler and the JVM receive constant improvements and
already generate well-optimized bytecode, the onus remains on you, the developer, to
achieve your performance goals.

Before diving into the Scala and JVM specifics, let's first develop an intuition for the
holy grail that we seek: performance. In this first chapter, we will cover performance basics
that are agnostic to the programming language. We will present and explain the terms and
concepts that are used throughout this book.
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In particular, we will look at the following topics:

Defining performance
Summarizing performance
Collecting measurements

We will also introduce our case study, a fictitious application based on real-world problems
that will help us illustrate techniques and patterns that are presented later.

Defining performance
A performance vocabulary arms you with a way to qualify the type of issues at-hand and
often helps guide you towards a resolution. Particularly when time is of the essence, a
strong intuition and a disciplined strategy are assets to resolve performance problems.

Let's begin by forming a common understanding of the term, performance. This term is
used to qualitatively or quantitatively evaluate the ability to accomplish a goal. The goal at-
hand can vary significantly. However, as a professional software developer, the goal
ultimately links to a business goal. It is paramount to work with your business team to
characterize business domain performance sensitivities. For a consumer-facing shopping
website, agreeing upon the number of concurrent app users and acceptable request
response times is relevant. In a financial trading company, trade latency might be the most
important because speed is a competitive advantage. It is also relevant to keep in mind
nonfunctional requirements, such as “trade executions can never be lost,” because of
industry regulations and external audits. These domain constraints will also impact your
software's performance characteristics. Building a clear and agreed upon picture of the
domain that you operate in is a crucial first step. If you cannot define these constraints, an
acceptable solution cannot be delivered.

Gathering requirements is an involved topic outside the scope of this
book. If you are interested in delving deeper into this topic, we
recommend two books by Gojko Adzic: Impact Mapping: Making a big
impact with software products and projects (h t t p : / / w w w . a m a z o n . c o m / I m p a
c t - M a p p i n g - s o f t w a r e - p r o d u c t s - p r o j e c t s - e b o o k / d p / B 0 0 9 K W D K V A)
and Fifty Quick Ideas to Improve Your User Stories (h t t p : / / w w w . a m a z o n
. c o m / F i f t y - Q u i c k - I d e a s - I m p r o v e - S t o r i e s - e b o o k / d p / B 0 0 O G T 2 U 7

M).

http://www.amazon.com/Impact-Mapping-software-products-projects-ebook/dp/B009KWDKVA
http://www.amazon.com/Impact-Mapping-software-products-projects-ebook/dp/B009KWDKVA
http://www.amazon.com/Fifty-Quick-Ideas-Improve-Stories-ebook/dp/B00OGT2U7M
http://www.amazon.com/Fifty-Quick-Ideas-Improve-Stories-ebook/dp/B00OGT2U7M
http://www.amazon.com/Fifty-Quick-Ideas-Improve-Stories-ebook/dp/B00OGT2U7M
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Performant software
Designing performant software is one of our goals as software engineers. Thinking about
this goal leads to a commonly asked question, “What performance is good enough?” We
use the term performant to characterize performance that satisfies the minimally-accepted
threshold for “good enough.” We aim to meet and, if possible, exceed the minimum
thresholds for acceptable performance. Consider this: without an agreed upon set of criteria
for acceptable performance, it is by definition impossible to write performant software! This
statement illustrates the overwhelming importance of defining the desired outcome as a
prerequisite to writing performant software.

Take a moment to reflect on the meaning of performant for your domain.
Have you had struggles maintaining software that meets your definition
of performant? Consider the strategies that you applied to solve
performance dilemmas. Which ones were effective and which ones were
ineffective? As you progress through the book, keep this in mind so that
you can check which techniques can help you meet your definition of
performant more effectively.

Hardware resources
In order to define criteria for performant software, we must expand the performance
vocabulary. First, become aware of your environment's resources. We use the term resource
to cover all the infrastructure that your software uses to run. Refer to the following resource
checklist, which lists the resources that you should collect prior to engaging in any
performance tuning exercise:

Hardware type: physical or virtualized
CPUs:
        Number of cores
        L1, L2, and L3 cache sizes
        NUMA zones
RAM (for example, 16 GB)
Network connectivity rating (for example, 1GbE or 10GbE)
OS and kernel versions
Kernel settings (for example, TCP socket receive buffer size)
JVM version
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Itemizing the resource checklist forces you to consider the capabilities and limitations of
your operating environment.

Excellent resources for kernel optimization include Red Hat Performance
Tuning Guide (h t t p s : / / g o o . g l / g D S 5 m Y) and presentations and
tutorials by Brendan Gregg (h t t p : / / w w w . b r e n d a n g r e g g . c o m / l i n u x p e
r f . h t m l).

Latency and throughput
Latency and throughput define two types of performance, which are often used to establish
the criteria for performant software. The illustration of a highway, like the following photo
of the German Autobahn, is a great way to develop an intuition of these types of
performance:

The Autobahn helps us think about latency and throughput. (image wikimedia,
https://en.wikipedia.org/wiki/Highway#/media/File:Blick_auf_A_2_bei_Rastst%C3%A4tte_Lehrter_See_(2009).jpg. License Creative Commons CC BY-SA 3.0)

https://goo.gl/gDS5mY
http://www.brendangregg.com/linuxperf.html
http://www.brendangregg.com/linuxperf.html
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Latency describes the amount of time that it takes for an observed process to be completed.
Here, the process is a single car driving down one lane of the highway. If the highway is
free of congestion, then the car is able to drive down the highway quickly. This is described
as a low-latency process. If the highway is congested, the trip time increases, which is
characterized as a high-latency or latent process. Performance optimizations that are within
your control are also captured by this analogy. You can imagine that reworking an
expensive algorithm from polynomial to linear execution time is similar to either improving
the quality of the highway or the car's tires to reduce road friction. The reduction in friction
allows the car to cross the highway with lower latency. In practice, latency performance
objectives are often defined in terms of a maximum tolerable latency for your business
domain.

Throughput defines the observed rate at which a process is completed. Using the highway
analogy, the number of cars traveling from point A to point B per unit of time is the
highway's throughput. For example, if there are three traffic lanes and cars travel in each
lane at a uniform rate, then the throughput is: (the number of cars per lane that traveled
from point A to point B during the observation period) * 3. Inductive reasoning may
suggest that there is a strong negative correlation between throughput and latency. That is,
as latency increases, throughput decreases. As it turns out, there are a number of cases
where this type of reasoning does not hold true. Keep this in mind as we continue
expanding our performance vocabulary to better understand why this happens. In practice,
throughput is often defined by the maximum number of transactions per second your
software can support. Here, a transaction means a unit of work in your domain (for
example, orders processed or trades executed).

Thinking back to the recent performance issues that you faced, how would
you characterize them? Did you have a latency or a throughput problem?
Did your solution increase throughput while lowering latency?

Bottlenecks
A bottleneck refers to the slowest part of the system. By definition, all systems, including
well-tuned ones, have a bottleneck because there is always one processing step that is
measured to be the slowest. Note that the latency bottleneck may not be the throughput
bottleneck. That is, multiple types of bottleneck can exist at the same time. This is another
illustration of why it is important to understand whether you are combating a throughput
or a latency performance issue. Use the process of identifying your system's bottlenecks to
provide you with a directed focus to attack your performance dilemmas.
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From personal experience, we have seen how time is wasted when the operating
environment checklist is ignored. Once, while working in the advertising domain on a high-
throughput real-time bidding (RTB) platform, we chased a throughput issue for several
days without success. After bootstrapping an RTB platform, we began optimizing for a
higher request throughput goal because request throughput is a competitive advantage in
our industry. Our business team identified an increase from 40,000 requests per second
(RPS) to 75,000 RPS as a major milestone. Our tuning efforts consistently yielded about
60,000 RPS. This was a real head scratcher because the system did not appear to exhaust
system resources. CPU utilization was well under 100%, and previous experiments to
increase heap space did not yield improvements.

The “aha!” moment came when we realized that the system was deployed within AWS with
the default network connectivity configured to 1 Gigabit Ethernet. The requests processed
by the system are about 2KB per request. We performed some basic arithmetic to identify
the theoretical maximum throughput rate. 1 Gigabit is equivalent to 125,000 kilobytes.
125,000 kilobytes / 2 kilobytes per request translates to a theoretical maximum of 62,500
RPS. This arithmetic was confirmed by running a test of our network throughput with a
tool named iPerf. Sure enough, we had maxed out our network connectivity!

Summarizing performance
We properly defined some of the main concepts around performance, namely latency and
throughput, but we still lack a concrete way to quantify our measurements. To continue
with our example of cars driving down a highway, we want to find a way to answer the
question, “How long a drive should I expect to go from point A to point B?” The first step is
to measure our trip time on multiple occasions to collect empirical information.

The following table catalogs our observations. We still need a way to interpret these data
points and summarize our measurements to give an answer:

Observed trip Travel time in minutes

Trip 1 28

Trip 2 37

Trip 3 17

Trip 4 38

Trip 5 18
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The problem with averages
A common mistake is to rely on averages to measure the performance of a system. An
arithmetic average is fairly easy to calculate. This is the sum of all collected values divided
by the number of values. Using the previous sample of data points, we can infer that on
average we should expect a drive of approximately 27 minutes. With this simple example, it
is easy to see what makes the average such a poor choice. Out of our five observations, only
Trip 1 is close to our average while all the other trips are quite different. The fundamental
problem with averages is that it is a lossy summary statistic. Information is lost when
moving from a series of observations to the average because it is impossible to retain all the
characteristics of the original observations in a single data point.

To illustrate how an average loses information, consider the three following datasets that
represent the measured latency required to process a request to a web service:

https://cdp.packtpub.com/scalahighperformanceprogramming/wp-content/uploads/sites/154/2016/05/image_01_002.png
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In the first dataset, there are four requests that take between 280 ms and 305 ms to be
completed. Compare these latencies with the latencies in the second dataset, as follows:

The second dataset shows a more volatile mixture of latencies. Would you prefer to deploy
the first or the second service into your production environment? To add more variety into
the mix, a third dataset is shown, as follows:
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Although each of these datasets has a vastly different distribution, the averages are all the
same, and equal 292 ms! Imagine having to maintain the web service that is represented by
dataset 1 with the goal of ensuring that 75% of clients receive a response in less than 300 ms.
Calculating the average out of dataset 3 will give you the impression that you are meeting
your objective, while in reality only half of your clients actually experience a fast enough
response (requests with IDs 1 and 2).
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Percentiles to the rescue
The key term in the previous discussion is “distribution.” Measuring the distribution of a
system's performance is the most robust way to ensure that you understand the behavior of
the system. If an average is an ineffective choice to take into account the distribution of our
measurements, then we need to find a different tool. In the field of statistics, a percentile
meets our criteria to interpret the distribution of observations. A percentile is a
measurement indicating the following value into which a given percentage of observations
in a group of observations falls. Let's make this definition more concrete with an example.
Going back to our web service example, imagine that we observe the following latencies:

Request Latency in milliseconds

Request 1 10

Request 2 12

Request 3 13

Request 4 13

Request 5 9

Request 6 27

Request 7 12

Request 8 7

Request 9 75

Request 10 80

The 20th percentile is defined as the observed value that represents 20% of all the
observations. As there are ten observed values, we want to find the value that represents
two observations. In this example, the 20th percentile latency is 9 ms because two values
(that is, 20% of the total observations) are less than or equal to 10 ms (9 ms and 7 ms).
Contrast this latency with the 90th percentile. The value representing 90% of the
observations: 75 ms (as nine observations out of ten are less than or equal to 75 ms).

Where the average hides the distribution of our measurements, the percentile provides us
with deeper insight and highlights that tail-end observations (the observations near the
100th percentile) experience extreme latencies.

If you remember the beginning of this section, we were trying to answer the question,
“How long a drive should I expect to go from point A to point B?” After spending some
time exploring the tools available, we realized that the original question is not the one we
are actually interested in. A more pragmatic question is, “How long do 90% of the cars take
to go from point A to point B?”



The Road to Performance

[ 16 ]

Collecting measurements
Our performance measurement toolkit is already filled with useful information. We defined
a common vocabulary to talk about and explore performance. We also agreed on a
pragmatic way to summarize performance. The next step in our journey is to answer the
question, “In order to summarize them, how do I collect performance measurements?” This
section introduces you to techniques to collect measurements. In the next chapter, we dive
deeper and focus on collecting data from Scala code. We will show you how to use various
tools and libraries designed to work with the JVM and understand your programs better.

Using benchmarks to measure performance
Benchmarks are a black-box kind of measurement. Benchmarks assess a whole system's
performance by submitting various kinds of load as input and measuring latency and
throughput as system outputs. As an example, imagine that we are working on a typical
shopping cart web application. To benchmark this application, we can write a simple HTTP
client to query our service and record the time taken to complete a request. This client can
be used to send an increasing number of requests per second and output a summary of the
recorded response times.

Multiple kinds of benchmark exist to answer different questions about your system. You
can replay historical production data to make sure that your application is meeting the
expected performance goals when handling realistic load. Load and stress test benchmarks
identify the breaking points of your application, and they exercise its robustness when
receiving exceptionally high load for an extended period of time.

Benchmarks are also a great tool to compare different iterations of the same application and
either detect performance regression or confirm improvements. By executing the same
benchmark against two versions of your code, you can actually prove that your recent
changes yielded better performance.

For all their usefulness, benchmarks do not provide any insight into how each part of the
software performs; hence, they are black-box tests. Benchmarks do not help us identify
bottlenecks or determine which part of the system should be improved to yield better
overall performance. To look into the black box, we turn to profiling.
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Profiling to locate bottlenecks
As opposed to benchmarking, profiling is intended to be used to analyze the internal
characteristics of your application. A profiler enables white-box testing to help you identify
bottlenecks by capturing the execution time and resource consumption of each part of your
program. By examining your application at runtime, a profiler provides you with great
details about the behavior of your code, including the following:

Where CPU cycles are spent
How memory is used, and where objects are instantiated and released (or not, if
you have a memory leak!)
Where IO operations are performed
Which threads are running, blocked, or idle

Most profilers instrument the code under observation, either at compile time or runtime, to
inject counters and profiling components. This instrumentation imposes a runtime cost that
degrades system throughput and latency. For this reason, profilers should not be used to
evaluate the expected throughput and latency of a system in production (as a reminder, this
is a use case for a benchmark).

In general, you should always profile your application before deciding to do any
performance-driven improvement. You should make sure that the part of the code you are
planning to improve actually is a bottleneck.

Pairing benchmarks and profiling
Profilers and benchmarks have different purposes, and they help us answer different
questions. A typical workflow to improve performance should take advantage of both these
techniques and leverage their strengths to optimize the code improvement process. In
practice, this workflow looks like the following:

Run a benchmark against the current version of the code to establish a1.
performance baseline.
Use a profiler to analyze the internal behavior and locate a bottleneck.2.
Improve the section causing a bottleneck.3.
Run the same benchmark from step 1 against the new code.4.
Compare the results from the new benchmark against the baseline benchmark to5.
determine the effectiveness of your changes.
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Keep in mind, it is important to run all benchmarking and profiling sessions in the same
environment. Consult your resource checklist to ensure that your environment remains
constant across tests. Any change in your resources invalidates your test results. Just like a
science experiment, you must be careful to change only one part of the experiment at a time.

What roles do benchmarking and profiling play in your development
process? Do you always profile your application before deciding on the
next part of the code to improve? Does your definition of “done” include
benchmarking? Are you able to benchmark and profile your application in
an environment as close to production as possible?

A case study
Throughout this book, we will provide code examples to illustrate the topics that are
covered. To make the techniques that were described previously as useful as possible in
your professional life, we are relating our examples to a fictitious financial trading
company, named MV Trading. The company name originates from the combination of the
first name initials of your dear authors. Coincidentally, the initials also form the Unix file
move command, symbolizing that the company is on-the-move! Since inception one year
ago, MV Trading has operated successful stock trading strategies for a small pool of clients.
Software infrastructure has been rapidly built in the last twelve months to support various
arms of the business. MV Trading built software to support real-time trading (that is,
buying and selling) on various stock market exchanges, and it also built a historical trade
execution analysis to create better performing trading algorithms. If you do not have
financial domain knowledge, do not worry. With each example, we also define key parts of
the domain.

Tooling
We recommend that you install all the necessary tooling up-front so that you can work
through these examples without setup time. The installation instructions are brief because
detailed installation guides are available on the websites that accompany each required tool.
The following software is needed for all upcoming chapters:

Oracle JDK 8+ using v1.8 u66 at the time of writing
sbt v0.13+, using v0.13.11 at the time of writing, which is available at h t t p : / / w w w
. s c a l a - s b t . o r g /

http://www.scala-sbt.org/
http://www.scala-sbt.org/
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Detailed steps to download the code bundle are mentioned in the Preface
of this book. Please have a look at it.
The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u
b . c o m / P a c k t P u b l i s h i n g / S c a l a - H i g h - P e r f o r m a n c e - P r o g r a m m i n g.
We also have other code bundles from our rich catalog of books and
videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check
them out!

Summary
In this chapter, we focused on understanding how to talk about performance. We built a
vocabulary to discuss performance, determined the best way to summarize performance
with percentiles, and developed an intuition to measure performance. We introduced our
case study, and then we installed the required tools to run the code samples and the source
code provided with this book. In the next chapter, we will look at available tools to measure
JVM performance and analyze the performance of our Scala applications.

www.allitebooks.com

https://github.com/PacktPublishing/Scala-High-Performance-Programming
https://github.com/PacktPublishing/Scala-High-Performance-Programming
https://github.com/PacktPublishing/
http://www.allitebooks.org


2
Measuring Performance on the

JVM
In the previous chapter, we introduced and defined important concepts that are related to
performance. While extremely valuable, our journey so far has been somewhat academic,
and you may grow impatient to exercise your newly acquired knowledge. Luckily, this
second chapter does just this! We will take a close look at a real-world scenario and dive
head first into the code to profile the application and measure its performance
characteristics. This hands-on chapter focuses on one of MV Trading's most successful
products: the order book. This is a critical piece of software that was developed to deliver
high throughput while maintaining low latency. In this chapter, we will cover the following
topics:

Benchmarking the latency and throughput of an application
Profiling a system with Flight Recorder
Using JMH to microbenchmark our code

A peek into the financial domain
This month marks the one year anniversary for MV Trading (MVT). In the last year, the
company delivered great returns to its clients by capitalizing on novel trading strategies.
These strategies work most effectively when trades can be placed within milliseconds of
receiving new price information. To support trading with low latency, the MVT engineering
team directly integrated into a stock market exchange. Exchange integration involved
datacenter work to collocate the trading system with the exchange and development effort
to build the trading system.
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A key component of the trading system, known as the order book, holds the state of the
exchange. The goal of the exchange is to keep track of how many buyers and sellers have an
active interest in a stock and at what price each side is willing to trade. As traders, such as
MVT, submit orders to buy and sell a stock, the exchange determines when a trade happens
and notifies the buyer and the seller about the transaction. The state managed by the
exchange and by extension, MVT, is interesting because orders do not always execute when
they reach the exchange. Instead, orders can remain in an open or pending state for up to
the length of the trading day (on the order of six hours). This first version of the order book
allows traders to place orders called limit orders. Limit orders include a constraint on the
minimally-acceptable price. For buys, the limit represents the highest price that the trader
wishes to pay, and for sells, this indicates the lowest price the trader wishes to receive in
exchange for the stock. Another operation that is supported by the order book is the
cancelation of an outstanding limit order, which removes its presence from the book. To
help summarize the possible order states, the following table itemizes possible outcomes to
support exchange actions:

Exchange action Outcome

Limit order with a price worse than
best bid or offer submitted.

The order rests on the book, meaning that the order
remains in a pending state until an order from the
opposing side generates a trade or the submitted order
is canceled.

Limit order with a price better than
or equal to best bid or offer
submitted.

The order crosses the book. Crossing the book is
industry jargon that indicates an order caused a trade to
happen because its price matched one or more orders
from the opposing side of the book. A trade consists of
two executions, one per side.

Cancelation submitted for a resting
order.

The resting order is removed from the book.

Cancelation submitted for an
already executed or non-existent
order.

The cancelation request is rejected.

 

Let's suppose that as a newly-hired MVT employee, you just joined the engineering team
that is in charge of maintaining and improving the order book. Today is your first day, and
you are planning to take most of the morning to calmly skim through the code and get
familiar with the application.
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After checking out the source code repository, you start with the domain model:

case class Price(value: BigDecimal)
case class OrderId(value: Long)

sealed trait LimitOrder {
  def id: OrderId
  def price: Price
}

case class BuyLimitOrder(id: OrderId, price: Price)
  extends LimitOrder
case class SellLimitOrder(id: OrderId, price: Price)
  extends LimitOrder

case class Execution(orderId: OrderId, price: Price)

The class and trait definitions in the preceding code represent the business concepts. We
especially notice the two kinds of orders (BuyLimitOrder and SellLimitOrder) that are
identified by their unique ID and the associated price assumed to be in USD.

You may wonder why we decided to create distinct class definitions for
Price and OrderId while they only serve as mere wrappers for a unique
attribute (respectively a BigDecimal for the price, and a Long for the
unique ID). Alternatively, we can instead rely directly on the primitive
types.
A BigDecimal could represent a lot of different things, including a price,
but also a tax rate or a latitude on the globe. Using a specific type,
named Price, gives contextual meaning to the BigDecimal and makes
sure that the compiler helps us catch possible errors. We believe that it is
good practice to always define explicit types to represent business
concerns. This technique is part of the best practices known as domain-
driven design, and we often apply these principles throughout the book.
To learn more about this approach to software development, we
recommend the excellent book Domain-Driven Design: Tackling Complexity
in the Heart of Software (h t t p : / / w w w . a m a z o n . c o m / D o m a i n - D r i v e n - D e s i
g n - T a c k l i n g - C o m p l e x i t y - S o f t w a r e / d p / 0 3 2 1 1 2 5 2 1 5) by Eric Evans.

http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
http://www.amazon.com/Domain-Driven-Design-Tackling-Complexity-Software/dp/0321125215
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The OrderBook module leverages the domain model to define the available commands and
the resulting events that can be produced by the book:

object OrderBook {
  // all the commands that can be handled by the OrderBook module
  object Commands {
    sealed trait Command
    case class AddLimitOrder(o: LimitOrder) extends Command
    case class CancelOrder(id: OrderId) extends Command
  }

  // events are the results of processing a command
  object Events {
    sealed trait Event
    case class OrderExecuted(buy: Execution, sell: Execution)
      extends Event
    case object LimitOrderAdded extends Event
    case object OrderCancelRejected extends Event
    case object OrderCanceled extends Event
  }

  // the entry point of the module - the current book and
  // the command to process are passed as parameters,
  // the new state of the book and the event describing the
  // result of processing the command are returned
  def handle(book: OrderBook, command: Command): (OrderBook, Event) = //
omitted for brevity
}

Let's suppose that you are about to look at the implementation of the handle function in 
detail when you notice a message in your IM client from your technical lead, Alice:
“Everybody in the conference room. We have a problem in production!”

Readers with financial domain expertise likely realize that the presented
actions reflect a subset of the functionality of an actual financial exchange.
One evident example is the absence of quantity from an order. In our
examples, we assume each order represents a desire to buy an equal
number of shares (for example, 100 shares). Experienced readers are aware
that order volume further complicates order book state management, for
example, by introducing the notion of partial executions. We are
deliberately simplifying the domain to balance working on a realistic
problem while minimizing the barrier to comprehension for readers who
are new to the domain.
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Unexpected volatility crushes profits
Alice and the head trader, Dave, kick off the meeting by summarizing the production 
problem. You digested a lot of insight into the problem from the meeting. You learned that
currently, there is high market volatility and the rapid swings in prices amplify
opportunities to generate profitable trades. Unfortunately for MVT, in recent weeks, the
high volatility has brought with it unseen levels of order volume. Traders have been
flooding the markets with limit orders and cancelations to react to the quickly changing
price action. The MVT order book is certified via load testing to handle a maximum of
15,000 orders per second (OPS) with a 99th percentile latency of 10 milliseconds (ms). The
current market conditions are producing sustained levels of 45,000 OPS, which is
destroying tail-end order book latencies. In production, the deployed version of the order
book is now producing 99th percentile latencies of up to 80 ms and maximum latencies
reaching 200 ms. In the trading business, a slow reaction can quickly turn a profitable trade
into a sizable loss. This is exactly what has been happening at MVT. Typically, in times of
volatility, MVT is able to generate healthy returns, but in recent weeks, there have been
staggering losses. Our goal is to apply the techniques that we learned in Chapter 1, The
Road to Performance, to make inroads on the performance woes.

The traders at MVT are looking for a quick performance win to take advantage of the
current market environment. The traders believe that the market volatility will persist for
another week before subsiding. Once the volatility disappears, so do money-making
opportunities. Therefore, it's been stressed to the engineering team that an incremental
reduction in 99th percentile latency to 40 ms should halt trading strategy losses and actually
produce small profits. Once the volatility subsides, more in-depth and extensive
performance improvements are welcomed. For now, the clock is ticking, and we need to
find a way to stop the losses by improving performance incrementally.

Reproducing the problem
This is not quite the first day you were expecting, but what an exciting challenge ahead of
you! We start our investigation of the performance issue by reproducing the problem. As
we mentioned in the previous chapter, it is always critical to properly benchmark an
application to establish a baseline. The baseline is used to evaluate the effectiveness of any
improvement that we may try to implement. We create two simple benchmarks to
reproduce the load observed in production and measure the throughput and latency of the
system.
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But wait, I have not finished studying how OrderBook is actually
implemented! You are correct! You still have no idea of the
implementation of the module. However, production is broken, and we
need to act fast! More seriously, this is our way of highlighting an
important characteristic of benchmarking that we mentioned in Chapter
1, The Road to Performance. Benchmarks treat the application as a black box.
You had time to study the module interface, and this is enough to write
good benchmarks.

Throughput benchmark
Our first benchmark measures the throughput of our application. The operations team
provided us with historical data that was logged from the production environment. This
data contains several hundred thousand actual commands that were processed by the order
book. We use this sample and replay these messages against a testing environment to get an
accurate idea of the system's behavior.

Recall from Chapter 1, The Road to Performance, that it is important to run
all benchmarks under the exact same environment to be able to compare
them. To ensure consistency across tests, we created a command generator
that is capable of outputting a static set of commands. We encourage you
to review it.

Here is the code for our throughput benchmark, which you can find under the
chapter subproject:

object ThroughputBenchmark {

  def main(args: Array[String]): Unit = {
    val commandSample = DataCodec.read(new File(args(0)))
    val commandCount = args(1).toInt

    jvmWarmUp(commandSample)

    val commands = generateCount(commandSample, commandCount)

    val start = System.currentTimeMillis()
    commands.foldLeft(OrderBook.empty)(OrderBook.handle(_, _)._1)
    val end = System.currentTimeMillis()
    val delayInSeconds = (end - start) / 1000.0

    println {
      s"""
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         |Processed ${commands.size} commands
         |in $delayInSeconds seconds
         |Throughput: ${commands.size / delayInSeconds} operations/sec"""
        .stripMargin
    }
  }
}

The code is fairly straightforward, so let's walk through it. First, we read our input
arguments, the first one being the path to the file that contains our historical data, and the
second one is the number of commands that we want to run. Note that in our
implementation, if we ask for more commands than what is contained in our static file, the
program will just loop through the provided commands. We then warm up the JVM by
executing up to 100,000 commands without recording any throughput information. The
point of a warm-up is to give the JVM the opportunity to exercise the code and find possible
hotspots that can be optimized by the just-in-time (JIT) compiler.

The JIT compiler is a compiler that runs after the application has been
started. It compiles the bytecode (that is, the result of the first compilation
by the javac compiler) on-the-fly into an optimized form, usually native
instructions for the operating system. The JIT is able to optimize the code,
based on runtime usage. This is something that the traditional compiler
cannot do because it runs before the code can be executed.

The next part of the code is where we actually record the throughput. We save the starting 
timestamp, execute all the commands against an initially empty order book, and record the
end timestamp. Our throughput in operations per second is easily calculated by dividing
the command count by the elapsed time to execute them all. As our throughput is measured
in seconds, millisecond precision is sufficient for our benchmarking needs. Lastly, we print
out the interesting results. We can run this benchmark parameterized with 250,000
commands by issuing:

    sbt 'project chapter2' 'set javaOptions := Seq("-Xmx1G")' 'runMain
highperfscala.benchmarks.ThroughputBenchmark
src/main/resources/historical_data 250000'

Running the benchmark over a range of command counts yields the following results:

Command count Processing time (seconds) Throughput (operations per second)

250,000 2.2 112,309

500,000 6.1 81,886

750,000 12.83 58,456
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1,000,000 22.56 44,328

We can see that when the command count increases, our throughput decreases. One
explanation could be that the order book grows in size when receiving more orders, and
thus becomes less efficient. At this point, we are able to evaluate the throughput of our
application. In the next section, we focus on measuring the latency of the program.

Our benchmark and the ones that we will write later in this chapter are
naive. It runs the test and the order book in the same JVM. A more realistic
example would involve an order book with a server that maintains TCP
connections to clients exchanging FIX messages (FIX being the most
widely-used protocol in finance) to place or cancel orders. Our benchmark
would impersonate one of these clients to simulate production load on our
order book. For the sake of simplicity and to allow us to focus on more
interesting subjects, we decided to leave this concern aside.

Latency benchmark
Recall from Chapter 1, The Road to Performance, that the latency is the time that it takes for
an operation to happen, where the definition of an operation depends on your domain. In
our case, we define an operation as the processing of a command from the time it is
received to the time a new order book and a corresponding event are generated.

The first latency benchmark
The following listing shows a first version of our latency benchmark:

object FirstLatencyBenchmark {

  def main(args: Array[String]): Unit = {

    val commandSample = DataCodec.read(new File(args(0)))
    val (commandsPerSecond, iterations) = (args(1).toInt, args(2).toInt)
    val totalCommandCount = commandsPerSecond * iterations

    jvmWarmUp(commandSample)

    @tailrec
    def sendCommands(
      xs: List[(List[Command], Int)],
      ob: OrderBook,
      testStart: Long,
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      histogram: HdrHistogramReservoir): (OrderBook, HdrHistogramReservoir)
      =
      xs match {
        case head :: tail =>
          val (batch, offsetInSeconds) = head
          val shouldStart = testStart + (1000 * offsetInSeconds)

          while (shouldStart > System.currentTimeMillis()) {
            // keep the thread busy while waiting for the next batch to be
            sent
          }

          val updatedBook = batch.foldLeft(ob) {
            case (accBook, c) =>
              val operationStart = System.currentTimeMillis()
              val newBook = OrderBook.handle(accBook, c)._1
              val operationEnd = System.currentTimeMillis()
              // record latency
              histogram.update(operationEnd - operationStart)
              newBook
          }

          sendCommands(tail, updatedBook, testStart, histogram)
        case Nil => (ob, histogram)
      }

    val (_, histogram) = sendCommands(
      // Organizes commands per 1 second batches
      generateCount(commandSample, totalCommandCount)
        .grouped(commandsPerSecond).zipWithIndex
        .toList,
      OrderBook.empty,
      System.currentTimeMillis(),
      new HdrHistogramReservoir())

    printSnapshot(histogram.getSnapshot)
  }
}

The beginning of this code is similar to what we had in our throughput benchmark. We use
an HdrHistogram to record each operation's latency. The tail-recursive method
sendCommands is where most of the interesting things happen (we take a closer look at tail-
recursion in a later chapter). Our commands are grouped by batches of size and
commandsPerSecond, meaning that we will send one batch per second. We record the
current time before sending a command (operationStart) and after receiving a response
(operationEnd). These timestamps are used to update the histogram.
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HdrHistogram is an efficient implementation of a histogram. This is
specifically designed to be used in latency and performance-sensitive
applications. It maintains a fixed cost both in space and time. It does not
involve memory allocation operations, and its memory footprint is
constant. To learn more about HdrHistogram, visit
http://hdrhistogram.org/.

At the end, after all batches have been processed, we take a snapshot of the state of the
histogram and print interesting metrics. Let's give this a run:

    sbt 'project chapter2' 'set javaOptions := Seq("-Xmx1G")' 'runMain
highperfscala.benchmarks.FirstLatencyBenchmark
src/main/resources/historical_data 45000 10'
    ... // removed for brevity
    [info] Processed 450000 commands
    [info] 99p latency: 1.0 ms
    [info] 99.9p latency: 1.0 ms
    [info] Maximum latency: 24 ms

We exercise our system with a rate of 45,000 operations per second for 10 seconds, and we
see a latency of 1 ms for the 99.9th percentile. These are outstanding results! They are also
completely wrong. In our hurry to write a latency benchmark, we overlooked a too often
ignored issue: the coordinated omission problem.

The coordinated omission problem
Our benchmark is broken because we measure the time required to process a command
without taking into account the time the command had to wait to be processed. This
becomes a problem if the previous command took longer than expected to be processed.
Take our previous example: we ran 45,000 commands per second, that is, 45 commands per
millisecond. What if processing the first 45 commands takes longer than 1 millisecond? The
next 45 commands have to wait before being picked up and processed. However, with our
current benchmark, we ignore this waiting time. Let's take an example of a web application
serving pages over HTTP. A typical benchmark may record request latency by measuring
the elapsed time between the moment a request is handled by the web server and the time a
response is ready to be sent back. However, this would not account for the time it took for
the web server to read the request and actually send back the response. A better benchmark
will measure the latency as the time between the moment the client sent the request and the
moment it actually received a response. To learn more about the coordinated omission
problem, refer to the discussion thread containing direct links to articles and presentations
at https://groups.google.com/forum/#!msg/mechanical-sympathy/icNZJejUHfE
/BfDekfBEs_sJ.

http://hdrhistogram.org/
https://groups.google.com/forum/#!msg/mechanical-sympathy/icNZJejUHfE/BfDekfBEs_sJ
https://groups.google.com/forum/#!msg/mechanical-sympathy/icNZJejUHfE/BfDekfBEs_sJ
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To fix this problem, we need to record operationStart not when we start processing a
batch of commands, but when the batch of commands should have been processed,
regardless of whether the system is late.

The second latency benchmark
In our second attempt, we make sure to start the clock to take into account when a
command is meant to be sent, as opposed to when it is ready to be processed.

The benchmark code remains unchanged except for the recording of latency, which now
uses shouldStart instead of operationStart:

histogram.update(operationEnd - shouldStart)

After this change, this is the new benchmark output:

    sbt 'project chapter2' 'set javaOptions := Seq("-Xmx1G")' 'runMain
highperfscala.benchmarks.SecondLatencyBenchmark
src/main/resources/historical_data 45000 10'
    ... // removed for brevity
    [info] Processed 450000 commands
    [info] 99p latency: 743.0 ms
    [info] 99.9p latency: 855.0 ms
    [info] Maximum latency: 899 ms

The results are very different when compared to our first benchmark. Actually, this new
code also has a flaw. This assumes that all the requests sent in the same second are
supposed to be processed at the very beginning of this second. While technically possible, it
is more likely that these commands will be sent at different times during the second (a few
during the first millisecond, some more during the second millisecond, and so on). Our
current benchmark probably greatly overestimates our latency by starting the timer too
soon for most commands.

The final latency benchmark
We will attempt to fix the latest issue and finally come up with a reliable benchmark. At this
point, we are trying to address the problem of the distribution of the commands over each
second. The best way to solve this issue would be to use real production data. If the
recorded commands that we are using for our benchmark had a timestamp attached to
them (that is, the moment they were received by the production system), we could replicate
the distribution of commands observed in production.



Measuring Performance on the JVM

[ 31 ]

Unfortunately, our current order book application does not record the timestamp when
logging data. We could go different routes. One option is to randomly send the commands
over a second. Another is to assume an even distribution of the commands (that is, the same
amount is sent on each millisecond).

We choose to modify the benchmark assuming the latter. To accomplish this goal, we
modify the generation of events. As our new strategy distributes commands over time
rather than batching commands, for a single instant, the new command list return type
changes from List[(List[Command], Int)] to List[(Command, Int)]. The logic to
generate the command list changes to account for our new strategy, as follows:

  generateCount(sampleCommands, totalCommandCount)
    .grouped(cps.value)
    .toList.zipWithIndex
    .flatMap {
      case (secondBatch, sBatchIndex) =>
        val batchOffsetInMs = sBatchIndex * 1000
        val commandIntervalInMs = 1000.0 / cps.value
        secondBatch.zipWithIndex.map {
          case (command, commandIndex) =>
            val commandOffsetInMs =
              Math.floor(commandIntervalInMs * commandIndex).toInt
            (command, batchOffsetInMs + commandOffsetInMs)
        }
    }

The creation of our set of commands is a bit more involved. We now calculate an offset for
each command, taking into account the amount of milliseconds that should elapse between
each command. Our final results with this benchmark are as follows:

    sbt 'project chapter2' 'set javaOptions := Seq("-Xmx1G")' 'runMain
highperfscala.benchmarks.FinalLatencyBenchmark
src/main/resources/historical_data 45000 10'
    [info] Processed 450000 commands
    [info] 99p latency: 92.0 ms
    [info] 99.9p latency: 137.0 ms
    [info] Maximum latency: 145 ms
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We finally established a good latency benchmark for our system, and sure enough, our 
results come close to what is currently being observed in production.

Hopefully, this exercise made you reflect on your own production system
and what kind of operation you may want to benchmark. The main thing
to take away from this section is the importance of properly recording an
operation's latency and taking into account the coordinated omission
problem. What do you think would be the best way to measure the latency
of your system? If you already have benchmarks in place, do they account
for the coordinated omission effect?

Locating bottlenecks
Now that we are able to consistently reproduce the bad performance in production with our
benchmark, we have confidence that the impact of any of the changes that we make can be
accurately measured. The benchmarks treated the order book as a black box, meaning you
have no insight into what areas of the order book are causing our performance woes. If you
were previously familiar with this code, you could use your intuitions as a heuristic to
make educated guesses about the subcomponents that require a deeper focus. As this is day
one for you at MVT, you do not have previous intuition to rely on. Instead of guessing, we
will profile the order book to gain deeper insights into various facets of our black box.

The JDK bundles an excellent profiler that is named Flight Recorder. Flight Recorder is free
to use in nonproduction environments. Refer to Oracle's license,
http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/about.h

tm, to learn more about commercial usage. The existence of a great profiler is another
reason that Scala is a pragmatic choice for production-quality functional programming.
Flight Recorder works using internal JVM hooks to record events that are emitted by the
JVM at runtime. The events that are captured by Flight Recorder cover memory allocation,
thread state changes, IO activity, and CPU activity. To learn more about Flight Recorder
internals, refer to Oracle's Flight Recorder
documentation: http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-
guide/about.htm#sthref7. In contrast to third-party profilers, which do not have access
to JVM internals, Flight Recorder is able to access data outside of JVM safepoints. A JVM
safepoint is a time when all threads are suspended from execution. Safepoints are necessary
to coordinate global JVM activities, including stop-the-world garbage collection. To read
more about JVM safepoints, check out this excellent blog article by Alexey Ragozin
at http://blog.ragozin.info/2012/10/safepoints-in-hotspot-jvm.html. If a
profiler is only able to inspect at safepoints, it is likely the profiler is missing useful data
points because only a partial picture emerges.

http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/about.htm
http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/about.htm
http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/about.htm#sthref7
http://docs.oracle.com/javacomponents/jmc-5-5/jfr-runtime-guide/about.htm#sthref7
http://blog.ragozin.info/2012/10/safepoints-in-hotspot-jvm.html
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Let's take our first look inside the order book by setting up a Flight Recorder trial. To
expedite cycle time, we set up the profiler via sbt while we execute a run of
ThroughputBenchmark replaying historical data. We set up Flight Recorder with the
following JVM parameters:

    sbt 'project chapter2' 'set javaOptions := Seq("-Xmx1G", "-
XX:+UnlockCommercialFeatures", "-XX:+FlightRecorder", "-
XX:+UnlockDiagnosticVMOptions", "-XX:+DebugNonSafepoints", "-
XX:FlightRecorderOptions=defaultrecording=true,dumponexit=true,dumponexitpa
th=/tmp/order-book.jfr")'

The max JVM heap size is set to match our benchmark runs, followed by four JVM
parameters. The -XX:+UnlockCommercialFeatures and -XX:+FlightRecorder
parameters are required to emit JVM events for Flight Recorder. The Flight Recorder
documentation references -XX:+UnlockDiagnosticVMOptions and -
XX:+DebugNonSafepoints to improve sampling quality. These options instruct the
compiler to generate metadata that enables Flight Recorder to capture samples that are not
at safepoints. The final argument configures Flight Recorder to begin recording as soon as
the program starts and to dump profiling results to the provided path when the program
exits. In our case, this means that the profile will begin when the benchmark starts and
terminate when the benchmark concludes. Alternatively, it is possible to configure Flight 
Recorder to delay its start time and to record for a fixed time by the following
configurations:

    sbt 'project chapter2' 'set javaOptions := Seq("-Xmx1G", "-
XX:+UnlockCommercialFeatures", "-XX:+FlightRecorder", "-
XX:+UnlockDiagnosticVMOptions", "-XX:+DebugNonSafepoints", "-
XX:StartFlightRecording=delay=10s,duration=60s,name=Recording,filename=/tmp
/order-book.jfr")'

The preceding options configure Flight Recorder to start after five seconds (the delay
option) and record for one minute (the duration option). The result is stored in
/tmp/order-book.jfr.

We are now ready to generate profile results. Next, we run the benchmark configured to
replay 2,000,000 requests. The more requests played back, the more opportunities there are
for the profiler to capture JVM events. All other things equal, prefer longer profiles over
shorter ones. The following output shows the benchmark invocation and the resulting
output:
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    sbt 'project chapter2' 'set javaOptions := Seq("-Xmx1G", "-
XX:+UnlockCommercialFeatures", "-XX:+FlightRecorder", "-
XX:+UnlockDiagnosticVMOptions", "-XX:+DebugNonSafepoints", "-
XX:FlightRecorderOptions=defaultrecording=true,dumponexit=true,dumponexitpa
th=/tmp/order-book.jfr")' 'runMain
highperfscala.benchmarks.ThroughputBenchmark
src/main/resources/historical_data 2000000'
    [info]
    [info] Processed 2000000 commands
    [info] in 93.276 seconds
    [info] Throughput: 21441.742784853555 commands/sec

To have a look at the profiling results, we use Java Mission Control (JMC), a free, bundled
GUI that supports, among other features, inspecting Flight Recorder results, and running
Flight Recorder profile sessions. JMC exists in the same directory as the Java executable,
which means that it is accessible on your path by just typing the following:

    jmc

Once the GUI loads, open the profiler results by navigating to File | Open. Browse to the
profile results and click on OK to load them. As we look at the results, we will build a
checklist of questions to consider when reviewing profiler results. These probing questions
are intended to make you critically analyze the results. These questions ensure that the
experiment results truly address the hypothesis that led to the profile. At the end of this
chapter, we will present the questions in a single checklist to make it easier to revisit later.

Did I test with the expected set of resources?
If the test environment was set up to use incorrect resources, the results are invalidated. For
this reason, it makes sense to double-check the environment setup first. Fortunately, Flight
Recorder captures much of this information for you.
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The General and System tab groups are the areas to focus on for this checklist item. In
General, click on JVM Information to identify key JVM facts. In this section, confirm the
following:

Areas to focus on Reason to focus on the area

JVM start time This is a quick spot check that confirms that this test executed when
you think it did. With a few profile results, ensuring that you are
reviewing the correct results is trivial. As you collect more information
and investigate additional hypotheses, this simple check ensures that
you are not conflating results.

JVM version Variations in JVM version can yield different results. Ensure that you
are using the same JVM version as your production environment.

JVM command-line
arguments and JVM
flags

It is common to tune the JVM via command-line arguments. Often, the
parameterization will change between runs, making it difficult to recall
later on which run corresponded to which set of arguments. Reviewing
this information provides useful context to review the results.

Java application
arguments

Similar to the previous concern, the goal is to ensure that you are
confident that you understand the inputs to your test.

To supplement confirmation of JVM configuration, view the GC Configuration tab under
the Memory tab group. This tab details garbage collection configuration, which reflects a
combination of user-supplied configuration and JVM defaults. As you are likely aware,
small changes in the garbage collection configuration can yield significant runtime
performance changes. Given the sensitivity of application performance to garbage collection
configuration, you should reflect on each parameter in this tab. Questions to consider while
reviewing are as follows:

If I configured this parameter, did the configured value take effect?
If I did not configure this parameter, what effect might tuning this value have?
This question often helps you to create hypotheses for future profile runs.

Next, we focus on the System tab group. The Overview tab itemizes non-JVM resources to
make it clear which resources were used to create this profile. Continuing with the theme of
questions from the General tab group, the overarching goals are as follows:

To confirm whether recorded information matches the resources that you
expected to use (for example, does the amount of available RAM match how
much you thought was present?)
To look for unexpected differences between the test resources and a production
environment (for example, my local machine uses kernel v3.18.x while
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production is on an older minor version, v3.17.x)

If you are configuring your system via environment variables, there is an Environment
Variables tab that should be reviewed. Like the Overview tab, you are looking to ensure
your test resources are provisioned and configured as you intended. It bears repeating that
any unexpected differences in your test resources always invalidate test results.

Was the system environment clean during the profiling?
Once you are comfortable that the appropriate resources were used, the next step is to
confirm that only the application being profiled used resources. This is an important
diagnostic step prior to reviewing test results because it ensures that the profiled
application was truly isolated for the test. Fortunately, Flight Recorder catalogs useful
information to answer this question. In the System tab group, the Processes tab captures all
the processes running during the profiling. Scan this list with the following questions in
mind:

When I scan the list of processes, do I see anything that should not be running?
When I filter by the command-line column and enter java, do I see the expected
set of JVM applications running?
When I scan the list of processes, do I see any duplicate processes?

Next, inspect the Recording tab under the General tab group. Flight Recorder provides the
ability to create concurrent recordings. The profile results will contain the union of the
concurrent recordings. If there are multiple recordings unexpectedly happening in only one
of several runs, then you may not have an apples-to-apples results comparison between
recordings.

The next area to focus on is system CPU usage over the duration of the profiling. Within the
General tab group, select the Overview tab. This view displays the CPU usage panel, which
provides you with the ability to inspect machine CPU usage throughout the recording.
Here, you are looking for unexpected divergences between JVM and machine total CPU
usage. The following screenshot depicts a scenario where there is a divergence worth
investigating:
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Unexpected non-JVM CPU usage highlighted by the CPU Usage panel

In the preceding screenshot, the combination of JVM + Application (User) and JVM +
Application (Kernel) indicates the JVM-under-test's CPU usage, and Machine Total
indicates machine (that is, JVM-under-test and all other processes) CPU usage. For the
majority of this recording, the JVM-under-test CPU usage represents the majority of
machine CPU usage. If your application should be the only process using system resources,
then the small delta between the small delta between JVM + Application (User) and
Machine Total represents the desired state. The divergences near the middle of the
recording period indicate that another process or other processes were using CPU
resources. These spikes suggest abnormal behavior that can negatively impact profiling
results. It is worth considering what other processes are using system resources and
whether or not your test results remain valid.
This is a good opportunity to introduce the range navigator, which is the small horizontal
widget at the top of each tab containing red marks. The range navigator is a timeline that
displays events from the current tab that happen over time with red marks. By default, the
entire timeline is selected and the duration of the profiling is displayed above the center of
the timeline. You can select a subset of the timeline to zoom in on an area of interest. For
example, you may wish to zoom in on CPU usage when the machine CPU usage spikes up.
When selecting a subset of the timeline and data is only available for a specific point in time
(for example, at start of recording) or the data does not represent a time series (for example,
the JVM version), then the data is hidden or replaced with N/A.

A final spot check is to check the used machine physical memory in the Memory Usage
panel in the Overview tab under the Memory tab group. During this spot, check whether
you are trying to assess if the amount of used machine physical memory is a sensible value.
If there is little machine physical memory remaining and the reserved heap is a small
fraction of the total machine physical memory, you should pause to consider what other
processes are using memory. This scenario is illustrated in the following screenshot:
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Non-JVM processes using most of the available memory captured by the Memory Usage panel

In the preceding example, the reserved heap space is 2 GB out of an available 16 GB system
memory, and 13 GB of system memory is used. This implies that 11 GB of system memory
is consumed by processes other than the profiled JVM. Unless you expect to have other
processes running in your test environment, this type of memory-usage discrepancy
warrants further investigation. For example, if your application makes use of off-heap
memory, this discrepancy may invalidate your test results because your application may be
unable to allocate memory as needed, or may result in excessive system swapping.

Are the JVM's internal resources performing to
expectations?
We began our profiling checklist with the widest possible criterion by verifying that the
resources are provisioned and configured correctly. We continue to tighten the scope of our
checklist by focusing on JVM configuration to ensure that test results are created from valid
configurations. Now, we introspect JVM internals to continue verifying that the profile has
not been compromised.

Nearly all production applications involve multithreading to make better use of multiple
CPU cores or to separate I/O intensive work from CPU-centric work. The Threads tab
group helps you familiarize yourself with the division of labor within the application and
provides hints for where it may make sense to look deeper. The following table outlines
areas of focus within the Threads tab group and highlights questions that you need to
consider when you are new or unfamiliar with the application that is being profiled and
when you have several profile results to compare:
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Focus area New to the application Familiar with the application

Thread Count
panel in the
Overview tab

How many total threads exist? Is this
different than the count you might
expect? For example, if the application
is CPU-bound and there are ten times
the number of threads than cores, this
may be a warning sign that the
application is poorly tuned.

Are there qualitative changes in
the thread count across profiles?
For example, a doubling or
halving of the thread count could
indicate a configuration error.

Hot Threads
panel in the Hot
Threads tab

Is the distribution of sample counts
even, or are there a couple of threads
that dominate the sample count? The
hottest threads are likely indicative of
threads to dive deeper into and also
areas of the code you should be most
familiar with.

Have there been significant
changes in thread sample count
distribution? If so, do these
changes seem sensible to you?

Top Blocking
Locks, Top
Blocked Threads,
and Top Blocking
Threads in the
Contention tab

Familiarize yourself with where locks
exist and which threads block most
often. This can be useful information to
bear in mind when considering what
factors are affecting critical path
performance.

Compared to previous profile
results, is there an increase in
either the frequency or
distribution of thread blocking?
Are there new locks appearing in
the results?

Latency Stack
Traces in the
Latencies tab

Familiarize yourself with the different
maximum latencies per event type to
better understand which operations
affect the application most. Make
mental notes to dive deeper into the
more latent sections of the application.

Are maximum latencies
qualitatively increasing,
decreasing, or similar to previous
profile results? When multiple
top-level stack traces exist for an
event type, consider the ones
affecting critical path
performance the most.

After thoroughly inspecting the Threads tab group, you should begin to have a mental
picture forming about how this application functions and which areas are likely to be most
interesting for further study. We now turn to a topic that links closely to JVM
threading: I/O.

The I/O tab group provides valuable information about the profiled application's file and
socket access. Like the review of the Threads tab group, this section may provide hints that
your application has unexpected or undesirable behavior. Before diving into this tab group,
pause to consider when or what causes disk reads and writes, and network reads and
writes. As you review the Overview tab, do you see divergences between your thinking
and the profiler results? If so, you should identify why this discrepancy exists and whether

www.allitebooks.com

http://www.allitebooks.org
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it invalidates your test results.

An example of unexpected I/O behavior could be excessive writes to standard out. This
might happen accidentally when a debugging statement is left behind. Imagine if this side-
effect occurs on the critical path of your application. This will negatively impact profile
results and invalidates testing. In Flight Recorder, writes to standard out are captured by a
blank write path. The following screenshot shows file write results from a simple, one-off
application that repeatedly writes to standard out at a high frequency:

Identifying unexpected writes to standard out via the I/O tab group

This example is exaggerated for effect, which is why there is a continuous block of constant
writes over time. By inspecting the File Write tab, we can also see how much time was
spent writing to standard out, how much data was written, and how many writes occurred.
In approximately 15 seconds of execution, a whopping 40,000 writes took place! The file
write stack trace provides invaluable information, allowing us to backtrack to identify
which parts of the application are responsible for the writes. Flight Recorder also allows
you to view writes by thread. In a production application with dedicated writer threads,
you can quickly isolate undesired I/O access.
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Monitoring I/O reads and writes presents a good opportunity to discuss how to configure
Flight Recorder recording parameters. The -XX:+FlightRecorderOptions accepts a
parameter named settings, which, by default, points to
$JAVA_HOME/jre/lib/jfr/default.jfc. You can either provide your own
configuration file or modify the default file. In this configuration file, you can tweak the
events that are recorded by Flight Recorder and the frequency at which to capture certain
events. For example, by default, the java/file_write event has a threshold of 20 ms. This
is a reasonable default, but you may wish to tune the value lower if you are focused on
profiling file writes. Setting the threshold lower means that more event samples are
captured. Tune carefully because more is not always better. A lower threshold implies
higher overhead and more information to sift through.

A final area to investigate is the Exceptions tab under the Code tab group. Even if you are
closely monitoring application logs during a profiling, you may not be persisting the logs
for historical analysis. Fortunately, Flight Recorder captures exceptions and errors for
review. Scanning the exceptions and errors, take note of how many total exceptions and
errors occurred and which ones happen most frequently. Shrink the time horizon with the
range navigator to better understand if exceptions and errors are concentrated at
application startup, later in the profiling, or uniformly occurring. The timing at which
exceptions and errors occur often provides insight into whether or not the root cause is
misconfiguration or unexpected runtime behavior. As always, if you notice an alarming
number of exceptions or errors, consider invalidating the profile results until you have a
deeper understanding about why they are happening.

Where are the CPU bottlenecks?
At this stage, we have completed all checks necessary to maximize the likelihood that the
profiler results are valid and worth investigating further. Now, we begin arguably the most
fun part of the profiling process: identifying CPU bottlenecks. This is an enjoyable process
because the profiler gives you a detailed look inside the black box of your application. It is
an opportunity to objectively test your hypotheses and mental model of how the application
works by comparing with the profiler results. Once you identify the bottlenecks, you will
feel a sense of relief that you now know where to pinpoint your next set of changes to
improve application performance.

Let's start on the Overview tab of the Code tab group. This view is useful to sensitize
yourself from the bottom-up on which areas of the code are most expensive. The following
figure displays the Overview tab for a sample run of the order book:
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The Code Overview tab summarizing expensive packages and classes

In this view, the initial goal is to get a sense for the distribution of CPU time in the
application. The Hot Packages panel quickly makes it clear to us that the order book is
heavily reliant upon code from the scala.collection package. The Hot Classes panel
shows that the order book is spending a significant amount of time, approximately 55% of
the time, performing some type of iteration operations. In this screenshot, we also see that
only a subset of the profile duration is selected with the range navigator. It is often helpful
to view different subsets of the profile period to determine if hot spots remain constant over
time. In this example, the early part of the profile results are excluded because they include
time spent preparing requests to be sent to the order book. Selecting this subset allows us to
focus purely on order book operations without pollution from test setup.
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It is important to note that the percentage column indicates the amount of application time
spent executing in the displayed package and class. This means that this view, along with
the Hot Methods tab, are bottom-up views rather than top-down views. In a top-down
view, the percentage column indicates the sum total amount of time spent in part of a stack
trace. This view is captured in the Call Tree tab. This distinction is key because these two
views help us answer different questions. The following table explores several topics from
both perspectives to better understand when each view is most helpful:

Topic Top-down view (Call Tree) Bottom-up view (Overview/Hot
Methods)

Point of view This is from a macro picture to a
micro picture

This is from a micro picture to a
macro picture

Determining hot
spots

These are areas of the code base
that delegate to the most
expensive function calls

These are the most expensive
functions

Example questions
best answered by
each view

• Is the order book cancel
operation more expensive than
adding a resting limit order?
• Where is CPU time spent on
the critical path?

• Did switching from a Double price
representation to a BigDecimal
representation create any hot spots?
• Relative to the rest of the
application, which tree operations are
most costly?

 

As a first-time profiler of the order book, you now know from the Overview tab that the
order book makes heavy usage of Scala collections, but you do not yet have a feel for which
order book operations are causing the performance to suffer. To deepen your
understanding about the cost of different order book operations, you take a top-down view
by investigating the Call Tree tab:
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Investigating order book bottlenecks using Call Tree

Drilling down Call Tree, it becomes abundantly clear that the cancelation operation is the
bottleneck. Overwhelmingly, CPU time is spent canceling orders rather than adding them.
You call over the company's sharpest trader, Dave, to share this finding. Dave's eyes light
up when you mention that cancelations are costly. As a trading domain expert, he is well
aware that in volatile times, the frequency of cancelations increases significantly as
compared to calmer market periods. Dave explains that traders frequently cancel orders in
volatile markets to quickly adjust to swinging prices. Cancelations beget cancelations
because traders are learning valuable pricing information. Ending the conversation, he tells
you to cancel everything else that you are doing (no pun intended!) and focus on improving
the performance of order canceling.

You walk away from the conversation feeling better knowing that you have identified the
bottleneck that is likely to be the source of MVT trade losses. To get a better feel, you dig a
bit deeper into the Call Tree to reveal which functions within Cancel Order are expensive.
This is the process of moving from a macro view to a micro view. You end up looking at the
Call Tree tab, which is displayed as follows:
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Understanding which cancel order functions are the slowest via Call Tree

The Call Tree shows that canceling an order involves an invocation of the RedBlackTree
find() function and the exists() function. As you look deeper into the call, you also
notice that the percentage column becomes smaller. This is because in a top-down view, the
percentage column represents the sum total CPU time spent on a particular function and all
the functions beneath it. According to the results, 84.48% of CPU time was spent
executingOrderBook$$anonfun$handleCancelOrder$1.apply() and the functions
deeper in the Call Tree. From this view, we also see that of the 84.48% of CPU time, 53.24%
of the time is spent withinAbstractIterator.exists() and deeper function calls. This
looks like the biggest bottleneck, with the invocation of Queue.iterator() in second
place, taking 31.24% of CPU time.

Reflecting on this information, you are curious to start at the bottom, so-to-speak, with the
most expensive functions, and work your way through the backtrace to identify affected
order book operations. To address your curiosity, you investigate the Hot Methods tab and
see the following view:
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Going from the micro to the macro view with Hot Methods

By an order of magnitude, you discover the same two culprits from the Call Tree
investigation are the hottest methods. This is a reassuring finding because it builds
confidence that changes to the implementation of canceling an order are likely to yield
qualitative benefits. As you have not spent any time studying the source code, there is still a
significant amount of mystery about the implementation. Taking a step back to consider the
situation, you think about the operations being modeled in the abstract. Canceling an order
involves finding the existing order that could have any price and then once found,
modifying the state of the order book to remove the order. Your intuition suggests that
some of these operations are likely linear, or possibly logarithmic at best. As you begin
considering what other implementation could be faster, Dave interrupts your thoughts.

In a rushed voice, you hear, “Have you fixed the order book? We need to get it deployed
now!” Of course, you have no idea how to respond, and the thought of deploying code on
day one makes you a bit uneasy. You share your findings with Dave, hoping that your
findings will satisfy his appetite for progress and buy you more time to think.
Unfortunately, Dave is not thrilled to hear the order book performance mystery remains
unsolved, “We're losing money everyday because of this!” You acknowledge that you
understand the gravity of the situation and that you are moving as fast as you can. It is your
first day, after all! Dave sighs and acknowledges he is being a bit tough, and that his
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exasperation is causing him to overreact. As the conversation is winding down, Dave
mentions his appreciation for how quickly you came up to speed, and he makes some small
talk about how he cannot understand how his brand new smartphone, loaded with extra
memory, still runs slowly. “Nothing seems to be working quickly anymore!” he exclaims.
His mention of memory causes you to have an epiphany.

You remember that you have not yet reviewed memory usage results. You are hoping that
there are some easy wins available by tuning the garbage collector to improve performance
without making code changes. Before making any changes, you check out the Memory tab
group for insight into memory allocation patterns.

What are the memory allocation patterns?
The Memory tab group is the final area that remains to dive into for our analysis. Even
though we have not spent time looking at the order book source code, the Code tab group
illustrated the relative costs of the different order of operations. Studying the Hot Methods
provides insight into the types of objects that are used by various areas of the order book.
Looking into the memory allocation patterns, we want to identify young and old generation
garbage collection trends and which objects are most and least allocated.

The default Flight Recorder configuration settings do not track object allocations. For a
more complete view of memory consumption, the following configuration settings should
be enabled:

Allocation-profiling-enabled
Heap-statistics-enabled
gc-enabled-all
Allocation-profiling-enabled for both java/object_alloc_in_new_TLAB and
java/object_alloc_outside_TLAB events

Once a profile is generated with all the preceding parameters enabled, you will get a first
glimpse into application memory allocation patterns in the Heap panel on the Garbage
Collections tab:
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Visualizing memory allocation patterns via the Garbage Collections tab

This view shows a shape that is commonly referred to as a sawtooth pattern. There are
frequent garbage collections creating a tooth-like pattern in the data as the JVM is
constantly freeing young generation memory. Garbage collection tuning is a vast topic that
is beyond the scope of this book. We encourage you to dig deeper into this area by reading
through this well-written blog post entitled, “Understanding Java Garbage Collection”
(http://www.cubrid.org/blog/dev-platform/understanding-java-garbage-col
lection/).

As shown in the following screenshot, Flight Recorder also provides summary metrics per
garbage collection category in the GC Times tab:

Summarizing garbage per collection event type

http://www.cubrid.org/blog/dev-platform/understanding-java-garbage-collection/
http://www.cubrid.org/blog/dev-platform/understanding-java-garbage-collection/
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The following are some questions worth considering when inspecting a visualization of
heap usage and a breakdown of garbage collection per collection type:

Question Thoughts to consider

On average, does
memory usage
remain constant,
slope downwards,
or slope upwards?

An upward slope in memory can point to a memory leak. In this
scenario, the heap will grow until the old generation fills, causing an old
generation collection. If there is a memory leak, old generation
collections will not clear much memory and eventually cause an out of
memory error. The order book's memory usage appears constant for the
profiled period. When making this type of judgement, obtain the longest
possible profile to ensure you are viewing as complete of a picture as
possible.

Do outlier pause
times correlate with
other major events?

According to the garbage collection breakdown, the maximum collection
time is an order of magnitude that is larger than the average collection
time. Scan the Heap panel for collection pauses that are qualitatively
larger than the average. Do you see a pattern among the outliers?
Consider your application's interaction with external systems and the
machine it is deployed onto. Could there be an explanation for the
occurrence of extreme pauses? It may also be worthwhile to compare
outliers across profiles to determine whether the pattern is specific to a
single profile or appears to be systemic.

What is the
frequency of
collections and how
long is a typical
collection lasting?

All other things being equal, a lower collection count is preferable
because it suggests garbage is generated at a slower rate. That said, a
lower collection count can be the result of an increased heap size, which
may cause an increase in the average collection time. The takeaway is
that inspecting collection count and latencies should be taken with a
grain of salt. For this reason, the total garbage collection time metric is
insightful. The total collection time reflects the effects of collection
frequency and duration. Additionally, this does not suffer from loss like
the average collection duration.

What is the lifespan
of an object for
important use
cases?

While studying these breakdowns of garbage collection performance, it
is important to build an intuition for how memory is allocated for
different use cases in your application. Understanding this relationship
may help you figure out why certain allocation patterns occur. In volatile
markets, we expect that the order book has a lot of short-lived objects
because traders are frequently canceling orders. In less-volatile markets,
we likely expect that the average age of an order resting on the book is
higher, which implies more long-lived objects.
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Studying these views of memory allocation provides a summary of memory allocation
activity. Investigating the Allocations tab provides several different ways to see which
parts of the application are applying memory pressure. Flight Recorder provides three
allocation views: by class, by thread, and by profile:

Correlating high-pressure List allocations via Allocations by Class

Class and profile allocations are shown in the preceding screenshot. Note that Allocations
by Thread are skipped in this case because the order book is single-threaded.

Confirming memory allocation pressure using top-down Allocation Profile view
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When you are reviewing these allocation views, you should consider the following
questions. As you read through these questions, reflect on how you would answer them to
better understand how to improve order book performance:

Question Thoughts to consider

When inspecting Allocation
by Class, is there a positive
correlation between classes
with heavy collection
pressure and classes that are
referenced on the critical
path?

If you determine that the classes creating the most garbage
collection pressure are also often allocated on the critical path,
then you have good reason to believe that if you optimize the
critical path, there will be both algorithm speed and garbage
collection benefits. The order book results indicate that List
allocations is the worst offender. The backtrace shows that the
allocations are almost entirely coming from handling Cancel
Orders, which we know to be the bottleneck.

When inspecting Allocation
by Thread, what does the
distribution of garbage
collection pressure look like?

Noting which threads are responsible for generating the most
garbage collection pressure can direct you towards areas of the
code to focus intently on. Ameliorating garbage collection
pressure by the worst offenders will be reflected in the total
pause time.

When drilling down the
Allocation Profile
stacktrace, do known CPU
time bottlenecks correlate
with high garbage collection
pressure?

The order book shows that approximately 99% of garbage is
generated when handling Cancel Orders. This is affirmation
that handling Cancel Orders is computationally expensive and
is further slowing down the system due to high object allocation
rates. Establishing this correlation provides strong evidence that
code changes to this section of the code will yield qualitative
performance improvements.

Trying to save the day
Knowing that Dave will soon ask you again about improvements to order book
performance, you take a few minutes to reflect on your findings. It is clear that handling
Cancel Orders is both the CPU time and the memory allocation bottleneck. With more time
to think about the problem, you are confident you can change the order book
implementation to address either concern or possibly both. Unfortunately, time is one thing
you do not currently have. One interesting observation from the memory allocations is that
most garbage tends to be short-lived in a volatile market. Two inexpensive options to test
come to mind:
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JVM memory tuning options Hypothesis

Switch from the default old
generation collection, parallel
old, to Concurrent Mark
Sweep (CMS).

The CMS collector is designed to keep your application
responsive. Switching to the CMS collector may not improve
order book throughput, but it may provide more consistent
response latency during highly-volatile market movements.

Increase the new size from the
default, approximately one-
third of maximum heap size, to
three-fourths of maximum heap
size.

The order book has 1 GB of heap to store state, and it is
currently only using approximately 380 MB to store young
generation objects. You want to leverage the intuition that
frequent cancels lead to frequent short-lived objects.
Increasing the new generation size is a bet that there will be
less than 250 MB of tenured objects and that an increased
young generation heap improves order book throughput due
to more infrequent collections.

 

The following table summarizes the results for each experiment:

Setup Command 99th

percentile
in ms

Original sbt 'project chapter2' 'set   javaOptions := Seq("-Xmx1G")' 'runMain
highperfscala.benchmarks.FinalLatencyBenchmark
src/main/resources/historical_data   45000 10'

92

CMS
collector

sbt 'project chapter2' 'set   javaOptions := Seq("-Xmx1G",   "-
XX:+UseConcMarkSweepGC")'
'runMainhighperfscala.benchmarks.FinalLatencyBenchmark
src/main/resources/historical_data 45000 10'

118

750M
new size

sbt 'project chapter2' 'set   javaOptions := Seq("-Xmx1G", "-
XX:NewSize=750M")' 'runMain
highperfscala.benchmarks.FinalLatencyBenchmark
src/main/resources/historical_data 45000 10'

74

CMS
collector
and 750M
new size

sbt 'project chapter2' 'set   javaOptions := Seq("-Xmx1G", "-
XX:NewSize=750M", "-XX:+UseConcMarkSweepGC")'   'runMain
highperfscala.benchmarks.FinalLatencyBenchmark
src/main/resources/historical_data 45000 10'

148
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It looks like it will be more complicated than expected to improve the performance of the
order book. At least one of the options, increasing the new size, seems to yield a better
overall latency. We suggest that you take the time to go over this chapter again and repeat
the process of benchmarking and profiling the application with these new sets of options.
Observe what new behaviors these JVM options introduce, and try to understand the
resulting increase or decrease in latency.

A word of caution
We want to take a moment to highlight some context about the profiling results that we
interpreted in the previous section. We worked through an example that exhibited multiple
real-world concerns. We laid out a pragmatic approach to working through the
performance problem that has been applied by your authors at their day jobs. The point to
be cautious of is that the order book is likely much simpler than most applications you
work on day-to-day. We deliberately chose an example that was complicated enough to
illustrate how to work through a performance problem, but also simple enough to
understand without hours of code review. In practice, you will possibly need to repeat
profiling numerous times, each time testing out a new hypothesis, in order to gain traction
with your performance problem. Applying the structured approach that we walked
through will ensure that you validate your results before analyzing them, and it will also
ensure that you have well-founded evidence to pinpoint where to make changes.

A profiling checklist
We worked through each item on the profiling checklist throughout the chapter. We present
the entire checklist for ease of reference, as follows:

Did I test with the expected set of resources?1.
Was the system environment clean during the profiling?2.
Are resources internal to the JVM performing as I would expect?3.
Where are the CPU bottlenecks?4.
What are the memory allocation patterns?5.

Taking big steps with microbenchmarks
In the coming chapters, we will share techniques from the functional paradigm and from
the Scala language that enable you to write more performant software. However, you
should not accept our prescriptions at face value. Measuring the performance is the
objective way to determine whether the changes improve performance. A microbenchmark
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is a term used to describe a benchmark that exercises a small, isolated portion of a larger
application. As microbenchmarks, by design, test a small piece of code, it is often easier to
run a microbenchmark than to benchmark an entire application when a nuanced change is
made.

Unfortunately, accurately observing the performance of nuanced changes is difficult,
particularly on the JVM. Consider these order book-related examples of changes that
warrant microbenchmarking. 

Replacing the data structure holding resting limit orders with one that handles
cancels more efficiently
Normalizing stock prices from a double representation to an integer
representation to perform order matching with a lower overhead
Determining the performance boost of reordering a set of branch statements to
reflect the order you perceive to be accessed most frequently

How would you measure the performance before and after each change? You may try
writing small benchmark programs, which are similar to the ThroughputBenchmark. This
approach is likely to provide you with untrustworthy results due to the JVM's cleverness.
The JVM applies a number of heuristics to make runtime optimizations. In a production
environment, these changes are welcome because improved performance is always
welcomed. However, in a microbenchmark, these changes are not welcomed because they
decrease confidence that the microbenchmark is isolating only the nuanced change.
Examples of changes the JVM is capable of making include the following:

Dead-code elimination
Just-in-time optimization (refer to our earlier sidebar regarding the JIT compiler)
Constant folding (an optimization to avoid the evaluation on each call of a
function with constant arguments and a return value dependent on these
parameters)

We encourage you to read more about JVM optimizations by reading Oracle's The Java
HotSpot Performance Engine Architecture
(http://www.oracle.com/technetwork/java/whitepaper-135217.html). Given that
this is a challenge to isolate small code changes, how can we write a proper
microbenchmark? Fortunately, the OpenJDK team recognized these same challenges and
introduced a library for this purpose named JMH, the Java microbenchmarking harness
(http://openjdk.java.net/projects/code-tools/jmh/). JMH is designed for the
express purpose of overcoming the limitations that we referenced in order to isolate the
performance impact of your changes. The process to work with JMH is similar to other
testing libraries. Similar to JUnit, JMH defines a set of annotations to control test setup and

http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://openjdk.java.net/projects/code-tools/jmh/
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execution. Although tests can be run in several ways, we focus on executing tests via the sbt
plugin, sbt-jmh (https://github.com/ktoso/sbt-jmh), for ease of use. Let's walk
through the process of creating, running, and analyzing a microbenchmark with the order
book. In future chapters, we will leverage our JMH knowledge to objectively measure the
performance impact of prescribed changes.

Are there changes that you made recently to your application that could
benefit from microbenchmarking? If you did not microbenchmark the
change, do you think microbenchmarking could have led you towards
alternative solutions?

Microbenchmarking the order book
Having made progress towards improving performance by tweaking JVM memory settings,
you set your eyes towards better understanding cancel performance. Based on the existence
of a scala.collection.immutable.Queue in the profiler results, you hypothesize that
there may be a linear time traversal of a FIFO queue to support order cancels. One way to
test this hypothesis is to devise a microbenchmark that measures the cancelation
performance in different scenarios. You brainstormed the following scenarios:

Canceling a nonexistent order
Canceling the first order in line for a price level
Canceling the last order in line for a price level

Canceling a nonexistent order happens in the real world when a resting order is crossed
before the cancel request arrives. This is an interesting scenario because you are unsure
whether there is early termination logic to make this operation cheaper or whether
canceling a nonexistent order requires inspecting the entire order book. The remaining two
scenarios focus on the fill guarantees that are provided by stock exchanges. When multiple
orders are placed at the same price, they are guaranteed to be filled on a first-come, first-
served basis. You are speculating that the FIFO queue seen in the profile results is
preserving the time ordering of resting orders for a price level. You expect canceling the
first order in line to be faster by a linear factor than canceling the final order in line.

After reading through the excellent JMH examples at
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main

/java/org/openjdk/jmh/samples/ and some deep thinking, you are able to put
together the following tests that capture the scenarios that you are interested in. The code is
in-full and is followed by a walkthrough, displayed as follows:

@BenchmarkMode(Array(Throughput))
@OutputTimeUnit(TimeUnit.SECONDS)

https://github.com/ktoso/sbt-jmh
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/
http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples/
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class CancelBenchmarks {

  @Benchmark
  def cancelLastOrderInLine(b: BookWithLargeQueue): (OrderBook, Event) =
OrderBook.handle(b.book, b.cancelLast)

  @Benchmark
  def cancelFirstOrderInLine(b: BookWithLargeQueue): (OrderBook, Event) =
OrderBook.handle(b.book, b.cancelFirst)

  @Benchmark
  def cancelNonexistentOrder(b: BookWithLargeQueue): (OrderBook, Event) =
OrderBook.handle(b.book, b.cancelNonexistent)
}

object CancelBenchmarks {

  @State(Scope.Benchmark)
  class BookWithLargeQueue {
    private val p = Price(BigDecimal(1.00))
    private val firstId: Int = 1
    private val defaultCancelLast = CancelOrder(OrderId(-1))

    @Param(Array("1", "100", "1000"))
    var enqueuedOrderCount: Int = 0

    var book: OrderBook = OrderBook.empty

    @Setup(Level.Trial)
    def setup(): Unit = {
      if (enqueuedOrderCount < 0)
        sys.error(s"Invalid enqueued order count = $enqueuedOrderCount")
      assert(book == OrderBook.empty)
      assert(cancelLast == defaultCancelLast)

      cancelLast = CancelOrder(OrderId(enqueuedOrderCount))
      book = {
        (firstId to enqueuedOrderCount).foldLeft(OrderBook.empty) {
           case (ob, i) =>
             OrderBook.handle(ob, AddLimitOrder(BuyLimitOrder(OrderId(i),
             p)))._1
         }
      }

      assert(cancelLast != defaultCancelLast)
      if (enqueuedOrderCount > 0)
        assert(book.bids.head._2.size == enqueuedOrderCount,
          s"Book built incorrectly! Expected book to contain " +
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            s"$enqueuedOrderCount bids for $p, but actual book is $book")
   }

    var cancelLast: CancelOrder = defaultCancelLast
    val cancelFirst: CancelOrder = CancelOrder(OrderId(firstId))
    val cancelNonexistent: CancelOrder = CancelOrder(OrderId(-1))
  }
}

Rather than duplicating JMH documentation, we will focus on the specific segments of
interest and expect you to also investigate the JMH samples for additional context.
Surveying the CancelBenchmarks class, you see the use of annotations to define 
benchmarks and control the benchmark outputs. Several benchmark modes exist. We are
using the throughput mode to measure the number of times the benchmark completes in a
fixed period of time. The implementation of each cancellation benchmark differs only by the
ID of the order being canceled. Let's switch focus to the CancelBenchmarks object, which
provides the necessary scaffolding to set up each benchmark.

The CancelBenchmarks object defines the BookWithLargeQueue state, which we
observed is an argument to each benchmark. Defining the state that is required by the test is
the first step towards parameterizing the benchmark. For this set of tests, we simplify the
test setup by creating an order book with only a single price level at $1.00. We focus on
sweeping the number of orders enqueued for the $1.00 price level in order to help identify
the runtime behavior that we believe to be operating in linear time. The use of the param
annotation supplies a set of default values to sweep for enqueued order count. We use the
setup annotation to instruct JMH to prepare the state of the order book prior to invoking
each of the three benchmarks. For each enqueued order count value, JMH invokes the
setup method to create an order book with the desired number of resting orders at the
$1.00 level.

Next, we run the benchmarks from sbt. JMH provides a number of command-line flags that
control test configuration, which can be viewed from sbt using the following command:

    sbt 'project chapter2' 'jmh:run -help'

All parameters that are configured as annotations can be overridden by supplying the
associated command-line flag. The following is a sample invocation of CancelBenchmarks:

    sbt 'project chapter2' 'jmh:run CancelBenchmarks -wi 3 -w 5s -i 30 -r
10s -jvmArgs "-Xmx1G -Xms1G" -gc true -foe true -p
enqueuedOrderCount=1,10,50,100'

In this invocation of JMH, we configure three warm-up iterations, each running for 5
seconds. Warm-up iterations do not count toward the output throughput result. We
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configure 30 recorded iterations, each lasting 10 seconds to compute throughput. We supply
a 1 GB heap size for this test and switch on exiting the benchmark on uncaught exceptions
to defend against a regression in the code. Lastly, we parameterize the enqueued order
counts that we wish to sweep, indicating that we want to run three warm-up iterations and
30 recorded iterations for an enqueued order count of 1, 10, 50, and 100 orders.

With a single order in the book, we hypothesize that all operations should be approximately
equally expensive. As we believe that cancel operations run in linear time, our expectation
is that each benchmark should be approximately five times slower when the enqueued
order count is 50 than when the count is 10. We cap testing at 100 enqueued orders because
in discussion with Dave, we learned that in his experience, he has never analyzed a book
with more than 85 orders in a level. Capping at 100 orders ensures that we understand
performance characteristics at a level that we do not expect to see in production but could
conceivably occur.

Imagine that you are writing a microbenchmark for the most performance-
sensitive use case in your system. What variables would be important to
sweep to have a complete understanding of how the system performs in
this use case? How would you go about identifying a base case, step
values, and a maximum value to parameterize your tests? Consider
speaking with domain experts or using production data to guide decision
making.

After executing the test, we see the following results summarized, as follows:

Benchmark Enqueued
order count

Throughput (ops
per second)

Error (ops per
second)

Error as
percentage of
throughput

Cancel first order 1 6,688,878.23 Â±351,518.041 Â±5.26

Cancel first order 10 2,202,233.77 Â±103,557.824 Â±4.70

Cancel first order 50 555,592.56 Â±18,632.547 Â±3.35

Cancel first order 100 305,615.75 Â±14,345.296 Â±4.69

Cancel last order 1 7,365,825.52 Â±284,773.895 Â±3.87

Cancel last order 10 1,691,196.48 Â±54,903.319 Â±3.25

Cancel last order 50 509,339.60 Â±15,582.846 Â±3.06

Cancel last order 100 242,049.87 Â±8,967.785 Â±3.70

Cancel nonexistent
order

1 13,285,699.96 Â±374,134.340 Â±2.82
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Cancel nonexistent
order

10 3,048,323.44 Â±140,983.947 Â±4.62

Cancel nonexistent
order

50 772,034.39 Â±16,535.652 Â±2.14

Cancel nonexistent
order

100 404,647.90 Â±3,889.509 Â±0.96

From this result set, we can answer a number of interesting questions that help us
characterize order book performance. Here are some questions for you to answer by
inspecting the results:

Does the base case of a single enqueued order result in qualitatively similar
performance across the three benchmarks?
Does each benchmark exhibit linear throughput degradation as enqueued order
count increases?
As enqueued order count increases, are there changes in relative performance
between benchmarks (for example, between canceling the first and last order
when the enqueued order count is 100 instead of 10)?
Does it appear that there is early termination logic in place when evaluating
nonexistent orders?

In addition to these questions that are specific to the order book, it is critical to ask yourself
the following questions of any benchmark result:

Do the results pass a test of reasonableness?
What could have gone wrong with the test (that is, producing invalid results),
and have we put in place safeguards to prevent these shortcomings from
occurring?

Errors in measurement or test setup destroy the integrity of your results. These questions
aim to make you critically analyze the microbenchmark results. The test of reasonableness
requires you to develop a mental model for the executed test. Using the order book, we
need to consider what is a plausible number of cancel operations per second. One way to
answer this question is to take one of the throughput results, for example, cancel last order
with 50 queued orders, and compute the average milliseconds per operation. This is useful
because we have a sense for the cost on a per-operation basis from earlier benchmarks;
509,339.595 cancels per second translates to approximately 0.002 ms per operation. This
result might be surprisingly low, but bear in mind these results do not account for
coordinated omission because there is no targeted throughput rate (that is, the test attempts
to send as many cancels per second as possible). The other reason the cost might be lower
than expected is because there is only one price level in the book. Typically, the book
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contains numerous price levels on the buying and selling sides. This may direct us toward
designing benchmarks that sweep the number of price levels to better inform our
understanding of the cost of managing multiple price levels.

The second question forces us to critically analyze the test setup and the test methodology.
For example, how do we know that the setup function produces the intended order book?
One way to defend against this is to add assertions to enforce intended constraints. Another
concern to verify is that each cancel invocation in the benchmark yields the intended event.
Adding assertions to the benchmark for a single trial may address this concern. However,
leaving assertions in the benchmark code is likely to affect performance, and this should be
used sparingly, if at all. For added safety, it could make sense to write unit tests for the
scenarios that are being tested to ensure that the desired behavior occurs and ensure that
the unit test and performance test code are shared.

When interpreting JMH results, it is important to consider the significance of the computed
error. JMH computes error by constructing a confidence interval from a benchmark's
iterations. The confidence interval assumes that the results follow a normal distribution,
and the error represents the range of the computed 99.9% confidence interval. This suggests
that all other things being equal, running more benchmark iterations improves your
confidence in the results. The final column in the results table is illustrative of the variability
of the results. The lower the variability, the more inclined you should be to trust the results.
High result variability suggests that there is an error in measurement or that there is
something inhibiting your ability to measure true performance characteristics. This is often
a warning sign that you need to revisit your testing methodology and that you should put
little trust in the results.

For our example, we ran 30 iterations to record throughput information.
What do you think are the implications of running with fewer iterations?
Alternatively, consider the effects of running fewer iterations with
increased duration. For example, 10 iterations, each lasting 30 seconds.
Build a hypothesis and then run JMH to see the results. Developing
awareness for the sensitivity of different benchmark parameters is another
way to build an intuition for how to approach future benchmarks.

As our JMH configuration does not account for coordinated omission and instead sends a
firehose of cancel requests to the order book, we should focus on the relative results rather
than the absolute throughput values. The order book-related questions that are posed after
the results hone in on relative differences that should be visible independent of the testing
environment (for example, available cores or RAM). There is value in focusing on relative
concerns because the answers should be more robust to change. If future code changes
cause significant relative changes, for example, causing an exponential instead of linear
cancel performance degradation, you can have higher confidence that this degradation is
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due to a code change instead of an environmental change.

In this section, we saw how to set up, execute, and interpret a JMH microbenchmark. Along
the way, we looked at the shortcomings of microbenchmarking without JMH, and the
concerns to be aware of during benchmark result analysis. We've only scratched the surface
of the capabilities of JMH. We will build on this introduction to JMH in future chapters.

Summary
Congratulations, in this chapter you helped improve MVT order book performance, which
is going to directly translate to increased company profits and reduced losses! Along the
way, you took an in-depth look at how to benchmark and profile on the JVM and what
shortcomings to avoid. You also worked through a JMH microbenchmarking primer that
will allow you to objectively assess performance improvements in future chapters. In the
next chapter, we will look at how Scala language features can be used to write functional
software, and we will assess their performance impacts using the skills that we learned in
this chapter.



3
Unleashing Scala Performance

In this chapter, we will look at Scala-specific constructs and language features, and examine
how they can help or hurt performance. Equipped with our newly-acquired performance 
measurement knowledge, we will analyze how to use the rich language features that are
provided by the Scala programming language better. For each feature, we will introduce it,
show you how it compiles to bytecode, and then identify caveats and other considerations
when using this feature.

Throughout the chapter, we will show the Scala source code and generated bytecode that
are emitted by the Scala compiler. It is necessary to inspect these artifacts to enrich your
understanding of how Scala interacts with the JVM so that you can develop an intuition for
the runtime performance of your software. We will inspect the bytecode by invoking the
 javap Java disassembler after compiling the command, as follows:

    javap -c <PATH_TO_CLASS_FILE>

The minus c switch prints the disassembled code. Another useful option is -private,
which prints the bytecode of privately defined methods. For more information on javap,
refer to the manual page. The examples that we will cover do not require in-depth JVM
bytecode knowledge, but if you wish to learn more about bytecode operations, refer to
Oracle's JVM specification at h t t p : / / d o c s . o r a c l e . c o m / j a v a s e / s p e c s / j v m s / s e 7 / h t m
l / j v m s - 3 . h t m l # j v m s - 3 . 4.

Periodically, we will also inspect a version of the Scala source code with Scala-specific
features removed by running the following command:

    scalac -print <PATH>

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-3.html#jvms-3.4
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-3.html#jvms-3.4
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This is a useful way to see how the Scala compiler desugars convenient syntax into
constructs that the JVM can execute. In this chapter, we will explore the following topics:

Value classes and tagged types
Specialization
Tuples
Pattern matching
Tail recursion
The Option data type
An alternative to Option

Value classes
In Chapter 2, Measuring Performance on the JVM, we introduced the domain model of the
order book application. This domain model included two classes, Price and OrderId. We
pointed out that we created domain classes for Price and OrderId to provide contextual
meanings to the wrapped BigDecimal and Long. While providing us with readable code
and compilation time safety, this practice also increases the number of instances that are
created by our application. Allocating memory and generating class instances create more
work for the garbage collector by increasing the frequency of collections and by potentially
introducing additional long-lived objects. The garbage collector will have to work harder to
collect them, and this process may severely impact our latency.

Luckily, as of Scala 2.10, the AnyVal abstract class is available for developers to define their
own value classes to solve this problem. The AnyVal class is defined in the Scala doc (h t t p
: / / w w w . s c a l a - l a n g . o r g / a p i / c u r r e n t / # s c a l a . A n y V a l) as, “the root class of all value
types, which describe values not implemented as objects in the underlying host system.”
The AnyVal class can be used to define a value class, which receives special treatment from
the compiler. Value classes are optimized at compile time to avoid the allocation of an
instance, and instead they use the wrapped type.

Bytecode representation
As an example, to improve the performance of our order book, we can define Price
and OrderId as value classes:

case class Price(value: BigDecimal) extends AnyVal
case class OrderId(value: Long) extends AnyVal

http://www.scala-lang.org/api/current/#scala.AnyVal
http://www.scala-lang.org/api/current/#scala.AnyVal
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To illustrate the special treatment of value classes, we define a dummy method taking a
Price value class and an OrderId value class as arguments:

def printInfo(p: Price, oId: OrderId): Unit =
  println(s"Price: ${p.value}, ID: ${oId.value}")

From this definition, the compiler produces the following method signature:

public void printInfo(scala.math.BigDecimal, long);

We see that the generated signature takes a BigDecimal object and a long object, even
though the Scala code allows us to take advantage of the types defined in our model. This
means that we cannot use an instance of BigDecimal or Long when calling printInfo
because the compiler will throw an error.

An interesting thing to notice is that the second parameter of printInfo
is not compiled as Long (an object), but long (a primitive type, note the
lower case 'l').  Long and other objects matching to primitive types, such
as Int, Float or Short, are specially handled by the compiler to be
represented by their primitive type at runtime.

Value classes can also define methods. Let's enrich our Price class, as follows:

case class Price(value: BigDecimal) extends AnyVal {
  def lowerThan(p: Price): Boolean = this.value < p.value
}

// Example usage
val p1 = Price(BigDecimal(1.23))
val p2 = Price(BigDecimal(2.03))
p1.lowerThan(p2) // returns true

Our new method allows us to compare two instances of Price. At compile time, a
companion object is created for Price. This companion object defines a lowerThan method
that takes two BigDecimal objects as parameters. In reality, when we call lowerThan on
an instance of Price, the code is transformed by the compiler from an instance method call
to a static method call that is defined in the companion object:

public final boolean lowerThan$extension(scala.math.BigDecimal,
scala.math.BigDecimal);
    Code:
       0: aload_1
       1: aload_2
       2: invokevirtual #56  // Method
scala/math/BigDecimal.$less:(Lscala/math/BigDecimal;)Z
       5: ireturn
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If we were to write the pseudo-code equivalent to the preceding Scala code, it would look
something like the following:

val p1 = BigDecimal(1.23)
val p2 = BigDecimal(2.03)
Price.lowerThan(p1, p2)  // returns true

Performance considerations
Value classes are a great addition to our developer toolbox. They help us reduce the count
of instances and spare some work for the garbage collector, while allowing us to rely on
meaningful types that reflect our business abstractions. However, extending AnyVal comes
with a certain set of conditions that the class must fulfill. For example, a value class may
only have one primary constructor that takes one public val as a single parameter.
Furthermore, this parameter cannot be a value class. We saw that value classes can define
methods via def. Neither val nor var is allowed inside a value class. A nested class or
object definitions are also impossible. Another limitation prevents value classes from
extending anything other than a universal trait, that is, a trait that extends Any, only
has defs as members, and performs no initialization. If any of these conditions are not
fulfilled, the compiler generates an error. In addition to the preceding constraints that are
listed, there are special cases in which a value class has to be instantiated by the JVM. Such
cases include performing a pattern matching or runtime type test, or assigning a value class
to an array. An example of the latter looks like the following snippet:

def newPriceArray(count: Int): Array[Price] = {
  val a = new Array[Price](count)
  for(i <- 0 until count){
    a(i) = Price(BigDecimal(Random.nextInt()))
  }
  a
}

The generated bytecode is as follows:

public
highperfscala.anyval.ValueClasses$$anonfun$newPriceArray$1(highperfscala.an
yval.ValueClasses$Price[]);
    Code:
       0: aload_0
       1: aload_1
       2: putfield      #29  // Field
a$1:[Lhighperfscala/anyval/ValueClasses$Price;
       5: aload_0
       6: invokespecial #80  // Method
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scala/runtime/AbstractFunction1$mcVI$sp."<init>":()V
       9: return

public void apply$mcVI$sp(int);
    Code:
       0: aload_0
       1: getfield      #29  // Field
a$1:[Lhighperfscala/anyval/ValueClasses$Price;
       4: iload_1
       5: new           #31  // class
highperfscala/anyval/ValueClasses$Price
       // omitted for brevity
      21: invokevirtual #55  // Method
scala/math/BigDecimal$.apply:(I)Lscala/math/BigDecimal;
      24: invokespecial #59  // Method
highperfscala/anyval/ValueClasses$Price."<init>":(Lscala/math/BigDecimal;)V
      27: aastore
      28: return

Notice how mcVI$sp is invoked from newPriceArray, and this creates a new instance
of ValueClasses$Price at the 5 instruction.

As turning a single field case class into a value class is as trivial as extending the AnyVal
trait, we recommend that you always use AnyVal wherever possible. The overhead is quite
low, and it generate high benefits in terms of garbage collection's performance. To learn
more about value classes, their limitations, and use cases, you can find detailed descriptions
at h t t p : / / d o c s . s c a l a - l a n g . o r g / o v e r v i e w s / c o r e / v a l u e - c l a s s e s . h t m l.

Tagged types – an alternative to value classes
Value classes are an easy to use tool, and they can yield great improvements in terms of
performance. However, they come with a constraining set of conditions, which can make
them impossible to use in certain cases. We will conclude this section with a glance at an
interesting alternative by leveraging the tagged type feature that is implemented by the
Scalaz library (h t t p s : / / g i t h u b . c o m / s c a l a z / s c a l a z).

The Scalaz implementation of tagged types is inspired by another Scala
library, named shapeless. The shapeless library provides tools to write
type-safe, generic code with minimal boilerplate. While we will not
explore shapeless, we encourage you to learn more about the project at h
t t p s : / / g i t h u b . c o m / m i l e s s a b i n / s h a p e l e s s.

http://docs.scala-lang.org/overviews/core/value-classes.html
https://github.com/scalaz/scalaz
https://github.com/milessabin/shapeless
https://github.com/milessabin/shapeless
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Tagged types are another way to enforce compile-type checking without incurring the cost
of instance instantiation. They rely on the Tagged structural type and the @@ type alias that
are defined in the Scalaz library, as follows:

type Tagged[U] = { type Tag = U }
type @@[T, U] = T with Tagged[U]

Let's rewrite part of our code to leverage tagged types with our Price object:

object TaggedTypes {

  sealed trait PriceTag
  type Price = BigDecimal @@ PriceTag

  object Price {
    def newPrice(p: BigDecimal): Price =
      Tag[BigDecimal, PriceTag](p)

    def lowerThan(a: Price, b: Price): Boolean =
      Tag.unwrap(a) < Tag.unwrap(b)
  }
}

Let's perform a short walkthrough of the code snippet. We will define a PriceTag sealed
trait that we will use to tag our instances, a Price type alias is created and defined as
a BigDecimal object tagged with PriceTag. The Price object defines useful methods,
including the newPrice factory function that is used to tag a given BigDecimal object and
return a Price object (that is, a tagged BigDecimal object). We will also implement an
equivalent to the lowerThan method. This function takes two Price objects (that is, two
tagged BigDecimal objects), extracts the content of the tags that are
two BigDecimal objects, and compares them.

Using our new Price type, we rewrite the same newPriceArray method that we
previously looked at (the code is omitted for brevity, but you can refer to it in the attached
source code), and print the following generated bytecode:

public void apply$mcVI$sp(int);
    Code:
       0: aload_0
       1: getfield      #29  // Field a$1:[Ljava/lang/Object;
       4: iload_1
       5: getstatic     #35  // Field
highperfscala/anyval/TaggedTypes$Price$.MODULE$:Lhighperfscala/anyval/Tagge
dTypes$Price$;
       8: getstatic     #40  // Field
scala/package$.MODULE$:Lscala/package$;



Unleashing Scala Performance

[ 68 ]

      11: invokevirtual #44  // Method
scala/package$.BigDecimal:()Lscala/math/BigDecimal$;
      14: getstatic     #49  // Field
scala/util/Random$.MODULE$:Lscala/util/Random$;
      17: invokevirtual #53  // Method scala/util/Random$.nextInt:()I
      20: invokevirtual #58  // Method
scala/math/BigDecimal$.apply:(I)Lscala/math/BigDecimal;
      23: invokevirtual #62  // Method
highperfscala/anyval/TaggedTypes$Price$.newPrice:(Lscala/math/BigDecimal;)L
java/lang/Object;
      26: aastore
      27: return

In this version, we no longer see an instantiation of Price, even though we are assigning
it to an array. The tagged Price implementation involves a runtime cast, but we anticipate
that the cost of this cast will be less than the instance allocations (and garbage collection)
observed in the previous value class Price strategy. We will look  at tagged types again
later in this chapter, and use them to replace a well-known tool of the standard library:
the Option.

Specialization
To understand the significance of specialization, it is important to first grasp the concept of
object boxing. The JVM defines primitive types (boolean, byte, char, float, int, long,
short, and double) that are stack-allocated rather than heap-allocated. When a generic
type is introduced, for example, scala.collection.immutable.List, the JVM
references an object equivalent, instead of a primitive type. In this example, an instantiated
list of integers would be heap-allocated objects rather than integer primitives. The process
of converting a primitive to its object equivalent is called boxing, and the reverse process is
called unboxing. Boxing is a relevant concern for performance-sensitive programming
because boxing involves heap allocation. In performance-sensitive code that performs
numerical computations, the cost of boxing and unboxing can can create significant
performance slowdowns. Consider the following example to illustrate boxing overhead:

List.fill(10000)(2).map(_* 2)

Creating the list via fill yields 10,000 heap allocations of the integer object. Performing the
multiplication in map requires 10,000 unboxings to perform multiplication and then 10,000
boxings to add the multiplication result into the new list. From this simple example, you
can imagine how critical section arithmetic will be slowed down due to boxing or unboxing
operations.
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As shown in Oracle's tutorial on boxing at h t t p s : / / d o c s . o r a c l e . c o m / j a v a s e / t u t o r i a
l / j a v a / d a t a / a u t o b o x i n g . h t m l, boxing in Java and also in Scala happens transparently.
This means that, without careful profiling or bytecode analysis, it is difficult to discern
where you are paying the cost for object boxing. To ameliorate this problem, Scala provides
a feature named specialization. Specialization refers to the compile-time process of
generating duplicate versions of a generic trait or class that refer directly to a primitive type
instead of the associated object wrapper. At runtime, the compiler-generated version of the
generic class (or, as it is commonly referred to, the specialized version of the class) is
instantiated. This process eliminates the runtime cost of boxing primitives, which means
that you can define generic abstractions while retaining the performance of a handwritten,
specialized implementation.

Bytecode representation
Let's look at a concrete example to better understand how the specialization process works.
Consider a naive, generic representation of the number of shares purchased, as follows:

case class ShareCount[T](value: T)

For this example, let's assume that the intended usage is to swap between an integer or long
representation of ShareCount. With this definition, instantiating a long-
based ShareCount instance incurs the cost of boxing, as follows:

def newShareCount(l: Long): ShareCount[Long] = ShareCount(l)

This definition translates to the following bytecode:

  public
highperfscala.specialization.Specialization$ShareCount<java.lang.Object>
newShareCount(long);
    Code:
       0: new           #21  // class orderbook/Specialization$ShareCount
       3: dup
       4: lload_1
       5: invokestatic  #27  // Method
scala/runtime/BoxesRunTime.boxToLong:(J)Ljava/lang/Long;
       8: invokespecial #30  // Method
orderbook/Specialization$ShareCount."<init>":(Ljava/lang/Object;)V
      11: areturn

https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
https://docs.oracle.com/javase/tutorial/java/data/autoboxing.html
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In the preceding bytecode, it is clear at instruction 5 that the primitive long value is boxed
before instantiating the ShareCount instance. By introducing the @specialized
annotation, we are able to eliminate the boxing by having the compiler provide an
implementation of ShareCount that works with primitive long values. It is possible to
specify which types you wish to specialize by supplying a set of types. As defined in the
Specializables trait
(http://www.scala-lang.org/api/current/index.html#scala.Specializable),
you are able to specialize for all JVM primitives, as well as, Unit and AnyRef. For our
example, let's specialize ShareCount for integers and longs, as follows:

case class ShareCount[@specialized(Long, Int) T](value: T)

With this definition, the bytecode now becomes the following:

  public
highperfscala.specialization.Specialization$ShareCount<java.lang.Object>
newShareCount(long);
    Code:
       0: new           #21  // class
highperfscala.specialization/Specialization$ShareCount$mcJ$sp
       3: dup
       4: lload_1
       5: invokespecial #24  // Method
highperfscala.specialization/Specialization$ShareCount$mcJ$sp."<init>":(J)V
       8: areturn

The boxing disappears and is curiously replaced with a different class name, ShareCount
$mcJ$sp. This is because we are invoking the compiler-generated version
of ShareCount that is specialized for long values. By inspecting the output of javap, we
see that the specialized class generated by the compiler is a subclass of ShareCount:

 public class highperfscala.specialization.Specialization$ShareCount$mcI$sp
extends highperfscala.specialization.Specialization$ShareCount<java
.lang.Object>

Bear this specialization implementation detail in mind as we turn to the Performance
considerations section. The use of inheritance forces tradeoffs to be made in more complex
use cases.

http://www.scala-lang.org/api/current/index.html#scala.Specializable
http://www.scala-lang.org/api/current/index.html#scala.Specializable
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Performance considerations
At first glance, specialization appears to be a simple panacea for JVM boxing. However,
there are several caveats to consider when using specialization. A liberal use of
specialization leads to significant increases in compile time and resulting code size.
Consider specializing Function3, which accepts three arguments as input and produces
one result. To specialize four arguments across all types (that
is, Byte, Short, Int, Long, Char, Float, Double, Boolean, Unit, and AnyRef) yields 10^4
or 10,000 possible permutations. For this reason, the standard library conserves the
application of specialization. In your own use cases, consider carefully which types you
wish to specialize. If we specialize Function3 only for Int and Long, the number of
generated classes shrinks to 2^4 or 16. Specialization involving inheritance requires extra
attention because it is trivial to lose specialization when extending a generic class. Consider
the following example:

  class ParentFoo[@specialized T](t: T)
  class ChildFoo[T](t: T) extends ParentFoo[T](t)

  def newChildFoo(i: Int): ChildFoo[Int] = new ChildFoo[Int](i)

In this scenario, you likely expect that ChildFoo is defined with a primitive integer.
However, as ChildFoo does not mark its type with the @specialized annotation, zero
specialized classes are created. Here is the bytecode to prove it:

  public
highperfscala.specialization.Inheritance$ChildFoo<java.lang.Object>
newChildFoo(int);
    Code:
       0: new           #16  // class
highperfscala/specialization/Inheritance$ChildFoo
       3: dup
       4: iload_1
       5: invokestatic  #22  // Method
scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
       8: invokespecial #25  // Method
highperfscala/specialization/Inheritance$ChildFoo."<init>":(Ljava/lang/Obje
ct;)V
      11: areturn

The next logical step is to add the @specialized annotation to the definition of ChildFoo.
In doing so, we stumble across a scenario where the compiler warns about the use of
specialization, as follows:

class ParentFoo must be a trait. Specialized version of class ChildFoo will
inherit generic highperfscala.specialization.Inheritance.ParentFoo[Boolean]



Unleashing Scala Performance

[ 72 ]

class ChildFoo[@specialized T](t: T) extends ParentFoo[T](t)

The compiler indicates that you have created a diamond inheritance problem, where the
specialized versions of ChildFoo extend both ChildFoo and the associated specialized
version of ParentFoo. This issue can be resolved by modeling the problem with a trait, as
follows:

  trait ParentBar[@specialized T] {
    def t(): T
  }

  class ChildBar[@specialized T](val t: T) extends ParentBar[T]

  def newChildBar(i: Int): ChildBar[Int] = new ChildBar(i)

This definition compiles using a specialized version of ChildBar, as we originally were
hoping for, as seen in the following code:

  public
highperfscala.specialization.Inheritance$ChildBar<java.lang.Object>
newChildBar(int);
    Code:
       0: new           #32  // class
highperfscala/specialization/Inheritance$ChildBar$mcI$sp
       3: dup
       4: iload_1
       5: invokespecial #35  // Method
highperfscala/specialization/Inheritance$ChildBar$mcI$sp."<init>":(I)V
       8: areturn

An analogous and equally error-prone scenario is when a generic method is defined around
a specialized type. Consider the following definition:

  class Foo[T](t: T)

  object Foo {
    def create[T](t: T): Foo[T] = new Foo(t)
  }

  def boxed: Foo[Int] = Foo.create(1)

Here, the definition of create is analogous to the child class from the inheritance example.
Instances of Foo wrapping a primitive that are instantiated from the create method will be
boxed. The following bytecode demonstrates how boxed leads to heap allocations:

  public
highperfscala.specialization.MethodReturnTypes$Foo<java.lang.Object>
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boxed();
    Code:
       0: getstatic     #19  // Field
highperfscala/specialization/MethodReturnTypes$Foo$.MODULE$:Lhighperfscala/
specialization/MethodReturnTypes$Foo$;
       3: iconst_1
       4: invokestatic  #25  // Method
scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
       7: invokevirtual #29  // Method
highperfscala/specialization/MethodReturnTypes$Foo$.create:(Ljava/lang/Obje
ct;)Lhighperfscala/specialization/MethodReturnTypes$Foo;
      10: areturn

The solution is to apply the @specialized annotation at the call site, as follows:

def createSpecialized[@specialized T](t: T): Foo[T] = new Foo(t)

One final interesting scenario is when specialization is used with multiple types and one of
the types extends AnyRef or is a value class. To illustrate this scenario, consider the
following example:

  case class ShareCount(value: Int) extends AnyVal
  case class ExecutionCount(value: Int)

  class Container2[@specialized X, @specialized Y](x: X, y: Y)

  def shareCount = new Container2(ShareCount(1), 1)

  def executionCount = new Container2(ExecutionCount(1), 1)

  def ints = new Container2(1, 1)

In this example, which methods do you expect to box the second argument to Container2?
For brevity, we omit the bytecode, but you can easily inspect it yourself. As it turns
out, shareCount and executionCount box the integer. The compiler does not generate a
specialized version of Container2 that accepts a primitive integer and a value
extending AnyVal (for example, ExecutionCount). The shareCount method also causes
boxing due to the order in which the compiler removes the value class type information
from the source code. In both scenarios, the workaround is to define a case class that is
specific to a set of types (for example, ShareCount and Int). Removing the generics allows
the compiler to select the primitive types.
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The conclusion to draw from these examples is that specialization requires extra focus to be
used throughout an application without boxing. As the compiler is unable to infer scenarios
where you accidentally forgot to apply the @specialized annotation, it fails to raise a
warning. This places the onus on you to be vigilant about profiling and inspecting bytecode
to detect scenarios where specialization is incidentally dropped.

To combat some of the shortcomings that specialization brings, there is a
compiler plugin under active development, named miniboxing, at h t t p : /
/ s c a l a - m i n i b o x i n g . o r g /. This compiler plugin applies a different
strategy that involves encoding all primitive types into a long value and
carrying metadata to recall the original type. For example, boolean can be
represented in a long using a single bit to signal true or false. With this
approach, performance is qualitatively similar to specialization while
producing orders of magnitude fewer classes for large permutations.
Additionally, miniboxing is able to more robustly handle inheritance
scenarios and can warn when boxing will occur. While the
implementations of specialization and miniboxing differ, the end user
usage is quite similar. Like specialization, you must add appropriate
annotations to activate the miniboxing plugin. To learn more about the
plugin, you can view the tutorials on the miniboxing project site.

The extra focus to ensure specialization produces heap allocation free code is worthwhile
because of the performance wins in performance-sensitive code. To drive home the value of
specialization, consider the following microbenchmark that computes the cost of a trade by
multiplying share count with execution price. For simplicity, primitive types are used
directly instead of value classes. Of course, in production code this would never happen:

@BenchmarkMode(Array(Throughput))
@OutputTimeUnit(TimeUnit.SECONDS)
@Warmup(iterations = 3, time = 5, timeUnit = TimeUnit.SECONDS)
@Measurement(iterations = 30, time = 10, timeUnit = TimeUnit.SECONDS)
@Fork(value = 1, warmups = 1, jvmArgs = Array("-Xms1G", "-Xmx1G"))
class SpecializationBenchmark {

  @Benchmark
  def specialized(): Double =
    specializedExecution.shareCount.toDouble * specializedExecution.price

  @Benchmark
  def boxed(): Double =
    boxedExecution.shareCount.toDouble * boxedExecution.price
}

object SpecializationBenchmark {

http://scala-miniboxing.org/
http://scala-miniboxing.org/
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  class SpecializedExecution[@specialized(Int) T1, @specialized(Double)
T2](
    val shareCount: Long, val price: Double)
  class BoxingExecution[T1, T2](val shareCount: T1, val price: T2)

  val specializedExecution: SpecializedExecution[Int, Double] =
    new SpecializedExecution(10l, 2d)
  val boxedExecution: BoxingExecution[Long, Double] = new
BoxingExecution(10l, 2d)
}

In this benchmark, two versions of a generic execution class are defined.
SpecializedExecution incurs zero boxing when computing the total cost because of 
specialization, while BoxingExecution requires object boxing and unboxing to perform
the arithmetic. The microbenchmark is invoked with the following parameterization:

    sbt 'project chapter3' 'jmh:run SpecializationBenchmark -foe true'

We configure this JMH benchmark via annotations that are placed at the
class level in the code. This is different from what we saw in Chapter 2,
Measuring Performance on the JVM, where we used command-line
arguments. Annotations have the advantage of setting proper defaults for
your benchmark, and simplifying the command-line invocation. It is still
possible to override the values in the annotation with command-line
arguments. We use the  -foe command-line argument to enable failure on
error because there is no annotation to control this behavior. In the rest of
this book, we will parameterize JMH with annotations and omit the
annotations in the code samples because we always use the same values.

The results are summarized in the following table:

Benchmark Throughput (ops per second) Error as percentage of throughput

boxed 251,534,293.11 ±2.23

specialized 302,371,879.84 ±0.87

 

This microbenchmark indicates that the specialized implementation yields approximately
17% higher throughput. By eliminating boxing in a critical section of the code, there is an
order of magnitude performance improvement available through the judicious usage of 
specialization. For performance-sensitive arithmetic, this benchmark provides justification
for the extra effort that is required to ensure that specialization is applied properly.
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Tuples
First-class tuple support in Scala simplifies use cases where multiple values need to be
grouped together. With tuples, you can elegantly return multiple values using a concise
syntax without defining a case class. The following section shows how the compiler
translates Scala tuples.

Bytecode representation
Let's look at how the JVM handles creating a tuple to understand how the JVM supports
tuples better. To develop our intuition, consider creating a tuple with an arity of two, as
follows:

def tuple2: (Int, Double) = (1, 2.0)

The corresponding bytecode for this method is as follows:

  public scala.Tuple2<java.lang.Object, java.lang.Object> tuple2();
    Code:
       0: new           #36  // class scala/Tuple2$mcID$sp
       3: dup
       4: iconst_1
       5: ldc2_w        #37  // double 2.0d
       8: invokespecial #41  // Method scala/Tuple2$mcID$sp."<init>":(ID)V
      11: areturn

This bytecode shows that the compiler desugared the parenthesis tuple definition syntax
into the allocation of a class named Tuple2. There is a tuple class that is defined for each
supported arity (for example, Tuple5 supports five members) up to Tuple22. The bytecode
also shows at the  4 and 5 instructions that the primitive versions of Int and Double are
used to allocate this tuple instance.

Performance considerations
In the preceding example, Tuple2 avoids the boxing of primitives due to specialization on
the two generic types. It is often convenient to tuple multiple values together because of
Scala's expressive tupling syntax. However, this leads to excessive memory allocation
because tuples with an arity larger than two are not specialized. Here is an example to
illustrate this concern:

def tuple3: (Int, Double, Int) = (1, 2.0, 3)
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This definition is analogous to the first tuple definition that we reviewed, except that there
is now an arity of three. This definition produces the following bytecode:

  public scala.Tuple3<java.lang.Object, java.lang.Object, java.lang.Object>
tuple3();
    Code:
       0: new           #45  // class scala/Tuple3
       3: dup
       4: iconst_1
       5: invokestatic  #24  // Method
scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
       8: ldc2_w        #37  // double 2.0d
      11: invokestatic  #49  // Method
scala/runtime/BoxesRunTime.boxToDouble:(D)Ljava/lang/Double;
      14: iconst_3
      15: invokestatic  #24  // Method
scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
      18: invokespecial #52  // Method
scala/Tuple3."<init>":(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Objec
t;)V
      21: areturn

In this bytecode, the absence of specialization is clear because of the presence of integer and
double boxing. If you are working on a performance-sensitive region of your application
and find occurrences of tuples with an arity of three or larger, you should consider defining
a case class to avoid the boxing overhead. The definition of your case class will not have any
generics. This enables the JVM to use primitives instead of allocating objects on the heap for
the primitive tuple members.

Even when using Tuple2, it is still possible that you are incurring the cost of boxing.
Consider the following snippet:

case class Bar(value: Int) extends AnyVal
def tuple2Boxed: (Int, Bar) = (1, Bar(2))

Given what we know about the bytecode representation of Tuple2 and value classes, we
expect the bytecode for this method to be two stack-allocated integers. Unfortunately, in
this case, the resulting bytecode is as follows:

  public scala.Tuple2<java.lang.Object,
highperfscala.patternmatch.PatternMatching$Bar> tuple2Boxed();
    Code:
       0: new           #18  // class scala/Tuple2
       3: dup
       4: iconst_1
       5: invokestatic  #24  // Method
scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
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       8: new           #26  // class
highperfscala.patternmatch/PatternMatching$Bar
      11: dup
      12: iconst_2
      13: invokespecial #29  // Method
highperfscala.patternmatch/PatternMatching$Bar."<init>":(I)V
      16: invokespecial #32  // Method
scala/Tuple2."<init>":(Ljava/lang/Object;Ljava/lang/Object;)V
      19: areturn

In the preceding bytecode, we see that the integer is boxed and an instance of Bar is
instantiated. This example is analogous to the final specialization example that we
investigated involving Container2. Looking back at that example, it should be evident
that Container2 is a close analog to Tuple2. As before, due to how specialization is
implemented by the compiler, the compiler is unable to avoid boxing in this scenario. If you
are faced with performance-sensitive code, the workaround remains defining a case class.
Here is proof that defining a case class erases the undesired value class instantiation and
primitive boxing:

 case class IntBar(i: Int, b: Bar)
 def intBar: IntBar = IntBar(1, Bar(2))

This definition produces the following bytecode:

  public highperfscala.patternmatch.PatternMatching$IntBar intBar();
    Code:
       0: new           #18  // class
highperfscala.patternmatch/PatternMatching$IntBar
       3: dup
       4: iconst_1
       5: iconst_2
       6: invokespecial #21  // Method
highperfscala.patternmatch/PatternMatching$IntBar."<init>":(II)V
       9: areturn

Note that IntBar is not defined as a value class because it has two parameters. In contrast
to the tuple definition, there is neither boxing nor any reference to the Bar value class. In
this scenario, defining a case class is a performance win for performance-sensitive code.
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Pattern matching
For programmers who are new to Scala, pattern matching is often one of the language
features that is the simplest to understand, but it also unlocks new ways to think about
writing software. This powerful mechanism enables you to match on disparate types with
compile-time safety using an elegant syntax. Given how central this technique is to writing
Scala in the functional paradigm, it is important to consider its runtime overhead.

Bytecode representation
Let's consider an example that involves order processing with an algebraic data type
representing the possible sides of an order:

  sealed trait Side
  case object Buy extends Side
  case object Sell extends Side
  def handleOrder(s: Side): Boolean = s match {
    case Buy => true
    case Sell => false
  }

The terminology algebraic data type (ADT) is a more formal way of
referring to a sealed trait and its cases. For example, Side, Buy, and Sell
form an ADT. For our purposes, an ADT defines a closed set of cases.
For Side, the enclosed cases are Buy and Sell. The sealed modifier
provides closed set semantics because it disallows the extension of Side in
separate source files. The closed set semantics implied by an ADT is what
allows the compiler to infer whether or not a pattern match statement is
exhaustive. If you are interested in studying another example of an ADT,
view the order book commands defined in Chapter2, Measuring
Performance on the JVM.

As shown in the following bytecode, pattern matching is desugared into a set of if
statements:

 public boolean
handleOrder(highperfscala.patternmatch.PatternMatching$Side);
    Code:
       0: aload_1
       1: astore_2
       2: getstatic     #148  // Field
highperfscala.patternmatch/PatternMatching$Buy$.MODULE$:Lhighperfscala.patt
ernmatch/PatternMatching$Buy$;
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       5: aload_2
       6: invokevirtual #152  // Method
java/lang/Object.equals:(Ljava/lang/Object;)Z
       9: ifeq          17
      12: iconst_1
      13: istore_3
      14: goto          29
      17: getstatic     #157  // Field
highperfscala.patternmatch/PatternMatching$Sell$.MODULE$:Lhighperfscala.pat
ternmatch/PatternMatching$Sell$;
      20: aload_2
      21: invokevirtual #152  // Method
java/lang/Object.equals:(Ljava/lang/Object;)Z
      24: ifeq          31
      27: iconst_0
      28: istore_3
      29: iload_3
      30: ireturn
      31: new           #159  // class scala/MatchError
      34: dup
      35: aload_2
      36: invokespecial #160  // Method
scala/MatchError."<init>":(Ljava/lang/Object;)V
      39: athrow

Inspecting the bytecode shows how the Scala compiler is able to desugar pattern match
expressions into a set of efficient if statements with the ifeq instructions at the 9 and
24 indexes. This an illustrative example of how Scala is able to provide expressive and
elegant first-class language features that retain efficient bytecode equivalents.

Performance considerations
Pattern matching against values that contain state (for example, a case class) imposes
additional runtime costs that are not immediately clear when looking at the Scala source
code. Consider the following extension to the previous example that introduces state:

  sealed trait Order
  case class BuyOrder(price: Double) extends Order
  case class SellOrder(price: Double) extends Order
  def handleOrder(o: Order): Boolean = o match {
    case BuyOrder(price) if price > 2.0 => true
    case BuyOrder(_) => false
    case SellOrder(_) => false
  }
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Here, the example is more complicated because the instance type must be identified for all
three cases with the added complexity of a predicate on the BuyOrder price in the first case.
In the following, we look at a snippet of the scalac output with all Scala-specific features
removed:

        case10(){
          if
(x1.$isInstanceOf[highperfscala.patternmatch.PatternMatching$BuyOrder]())
            {
              rc8 = true;
              x2 =
(x1.$asInstanceOf[highperfscala.patternmatch.PatternMatching$BuyOrder]():
highperfscala.patternmatch.PatternMatching$BuyOrder);
              {
                val price: Double = x2.price();
                if (price.>(2.0))
                  matchEnd9(true)
                else
                  case11()
              }
            }
          else
            case11()
        };
        case11(){
          if (rc8)
            matchEnd9(false)
          else
            case12()
        };

This desugaring illustrates several interesting points about the Scala compiler. Identifying
the type of Order utilizes isInstanceOf from java.lang.Object, which maps to
the instanceOf bytecode instruction. Casting, by way of asInstanceOf, coerces
the Order into either a BuyOrder price or a SellOrder.  The first takeaway is that pattern
matching types carrying state incurs the runtime cost of type-checking and casting.

A second insight is that the Scala compiler is able to optimize away the instance checking
for the second pattern match by creating a Boolean variable named rc8 to determine
whether a BuyOrder was discovered. This neat optimization is simple to handwrite, but it
removes the elegance and simplicity of pattern matching. This is another example of how
the compiler is able to produce efficient bytecode from expressive, high-level code.
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From the preceding examples, it is now clear that pattern matches are compiled to if
statements. One performance consideration for critical path code is the ordering of pattern
match statements. If your code has five pattern match statements and the fifth pattern is the
most frequently accessed, then your code is paying the price of always evaluating four
other branches. Let's devise a JMH microbenchmark that estimates the linear access cost of
pattern matching. Each benchmark defines ten pattern matches using different values (for
example, the value class, the integer literal, the case class, and so on). For each benchmark,
the matched index is swept to show the cost of accessing the first, the fifth, and the the tenth
pattern match statement. Here is the benchmark definition:

class PatternMatchingBenchmarks {

  @Benchmark
  def matchIntLiterals(i: PatternMatchState): Int = i.matchIndex match {
    case 1 => 1
    case 2 => 2
    case 3 => 3
    case 4 => 4
    case 5 => 5
    case 6 => 6
    case 7 => 7
    case 8 => 8
    case 9 => 9
    case 10 => 10
  }

  @Benchmark
  def matchIntVariables(ii: PatternMatchState): Int = ii.matchIndex match {
    case `a` => 1
    case `b` => 2
    case `c` => 3
    case `d` => 4
    case `e` => 5
    case `f` => 6
    case `g` => 7
    case `h` => 8
    case `i` => 9
    case `j` => 10
  }

  @Benchmark
  def matchAnyVal(i: PatternMatchState): Int = CheapFoo(i.matchIndex) match
{
    case CheapFoo(1) => 1
    case CheapFoo(2) => 2
    case CheapFoo(3) => 3
    case CheapFoo(4) => 4
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    case CheapFoo(5) => 5
    case CheapFoo(6) => 6
    case CheapFoo(7) => 7
    case CheapFoo(8) => 8
    case CheapFoo(9) => 9
    case CheapFoo(10) => 10
  }

  @Benchmark
  def matchCaseClass(i: PatternMatchState): Int =
    ExpensiveFoo(i.matchIndex) match {
      case ExpensiveFoo(1) => 1
      case ExpensiveFoo(2) => 2
      case ExpensiveFoo(3) => 3
      case ExpensiveFoo(4) => 4
      case ExpensiveFoo(5) => 5
      case ExpensiveFoo(6) => 6
      case ExpensiveFoo(7) => 7
      case ExpensiveFoo(8) => 8
      case ExpensiveFoo(9) => 9
      case ExpensiveFoo(10) => 10
    }
}

object PatternMatchingBenchmarks {

  case class CheapFoo(value: Int) extends AnyVal
  case class ExpensiveFoo(value: Int)

  private val (a, b, c, d, e, f, g, h, i, j) = (1, 2, 3, 4, 5, 6, 7, 8, 9,
10)

  @State(Scope.Benchmark)
  class PatternMatchState {
    @Param(Array("1", "5", "10"))
    var matchIndex: Int = 0
  }
}

Performance was evaluated by running 30 trials, each lasting 10 seconds with three warm-
up trials, each lasting 5 seconds. Here is the benchmark invocation:

    sbt 'project chapter3' 'jmh:run PatternMatchingBenchmarks -foe true'
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The results are summarized in the following table:

Benchmark Index to
match

Throughput (ops per
second)

Error as
percentage of
throughput

Throughput
change as
percentage of
base run

matchAnyVal 1 350,568,900.12 ±3.02 0

matchAnyVal 5 291,126,287.45 ±2.63 -17

matchAnyVal 10 238,326,567.59 ±2.95 -32

matchCaseClass 1 356,567,498.69 ±3.66 0

matchCaseClass 5 287,597,483.22 ±3.50 -19

matchCaseClass 10 234,989,504.60 ±2.60 -34

matchIntLiterals 1 304,242,630.15 ±2.95 0

matchIntLiterals 5 314,588,776.07 ±3.70 3

matchIntLiterals 10 285,227,574.79 ±4.33 -6

matchIntVariables 1 332,377,617.36 ±3.28 0

matchIntVariables 5 263,835,356.53 ±6.53 -21

matchIntVariables 10 170,460,049.63 ±4.20 -49

 

The last column takes the first trial of each benchmark when matching the first index as the
base case. For trials matching the fifth and tenth indexes, the relative performance drop is
displayed. In every case, except matching the fifth index of literal integers, throughput
degrades nearly linearly as deeper indexes are matched. The one trial that defies this
pattern is the trial matching literal integers. In this trial, performance improves relative to
the first index when accessing the fifth index. Upon inspection of the bytecode, we discover
that this scenario produces a jump table instead of a set of if statements. Here is a snippet
from the generated bytecode:

       6: tableswitch   { // 1 to 10
                     1: 113
                     2: 109
                     3: 105
                     4: 101
                     5: 97
                     6: 92
                     7: 87
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                     8: 82
                     9: 77
                    10: 72
               default: 60
          }

This bytecode snippet demonstrates that the JVM converts a pattern match on integer
literals to a jump table using the tableswitch instruction. This is a constant time operation
rather than a linear traversal of if statements. Given that the observed error is several
percentage points and the observed differences across the three trials are roughly several
percentage points, we can deduce that the linear access cost does not apply to this scenario.
Instead, matching literal integers at the Nth index has a constant access cost due to the
generated jump table. In contrast, matching an integer variable proves to be nearly twice as 
expensive at the tenth index. The clear takeaway from this experiment is that, for any
pattern match that is generating a series of if statements, there is a linear cost to access the
Nth pattern match statement. If you pattern match at least three cases in performance-
sensitive code, consider reviewing the code to determine whether the statement order
matches the access frequency.

Do you have examples of pattern matching containing only two patterns?
In scenarios involving only two pattern match statements that directly
match a value, the compiler is able to generate an efficient jump table.
When matching primitive literals (for example, string literals or integer
literals), the compiler is able to generate jump tables for larger pattern
matches. Analogous to the @tailrec annotation, Scala defines a @switch
annotation for you to indicate to the compiler that you expect this pattern
match statement to be compiled to a jump table. If the compiler is unable
to generate a jump table, and instead it produces a series of if statements,
then a warning will be issued. Like the @tailrec annotation, the compiler
will apply the jump table heuristic whether you provide the @switch
annotation or not. In practice, we do not often use this annotation because
of its limited applicability, but it is worthwhile to be aware of its existence.
The following is an example of an annotated pattern match that compiles
to a jump table:

def processShareCount(sc: ShareCount): Boolean =
(sc: @switch) match {
case ShareCount(1) => true
case _ => false
}
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Tail recursion
A function is said to be recursive when it calls itself. Recursion is a powerful tool, and it is
often used in functional programming. It allows you to break complex problems into
smaller subproblems, making them easier to reason through and solve. Recursion also
works well with the idea of immutability. Recursive functions provide us with a good way
to manage changing state without using mutable structures or reassignable variables. In this
section, we focus on the different shortcomings of using recursion on the JVM, and
especially in Scala.

Let's take a look at a simple example of a recursive method. The following snippet shows a
sum method that is used to calculate the sum of a list of integers:

def sum(l: List[Int]): Int = l match {
  case Nil => 0
  case x :: xs => x + sum(xs)
}

The sum method presented in the preceding code snippet performs what is called head-
recursion. The sum(xs) recursive call is not the last instruction in the function. This method
needs the result of the recursive call to compute its own result. Consider the following call:

sum(List(1,2,3,4,5))

It can be represented as:

1 + (sum(List(2,3,4,5)))
1 + (2 + (sum(List(3,4,5))))
1 + (2 + (3 + (sum(List(4,5)))))
1 + (2 + (3 + (4 + (sum(List(5))))))
1 + (2 + (3 + (4 + (5))))
1 + (2 + (3 + (9)))
1 + (2 + (12))
1 + (14)
15

Note how each time we perform a recursive call, our function is left hanging, waiting for the
right side of the computation to finish to be able to return. As the calling function needs to
complete its own computation after receiving the result of the recursive call, a new entry is
added to the stack for each call. The stack has a limited size, and nothing prevents us from
calling sum with a very long list. With a sufficiently long list, a call to sum would result in a
StackOverflowError:

    $ sbt 'project chapter3' console
    scala> highperfscala.tailrec.TailRecursion.sum((1 to 1000000).toList)
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    java.lang.StackOverflowError
      at scala.collection.immutable.Nil$.equals(List.scala:424)
      at highperfscala.tailrec.TailRecursion$.sum(TailRecursion.scala:12)
      at highperfscala.tailrec.TailRecursion$.sum(TailRecursion.scala:13)
      at highperfscala.tailrec.TailRecursion$.sum(TailRecursion.scala:13)
      at highperfscala.tailrec.TailRecursion$.sum(TailRecursion.scala:13)
    ...omitted for brevity

The stack trace shows all the recursive calls piling up on the stack, waiting for the result
from the following step. This proves that none of the calls to sum were able to
complete without first completing the recursive call. Our stack ran out of space before the
last call could be performed.

To avoid this problem, we need to refactor our method to make it tail-recursive. A recursive
method is said to be tail-recursive if the recursive call is the last instruction performed. A
tail-recursive method can be optimized to turn the series of recursive calls into something
similar to a while loop. This means that only the first call is added to the stack:

def tailrecSum(l: List[Int]): Int = {
  def loop(list: List[Int], acc: Int): Int = list match {
    case Nil => acc
    case x :: xs => loop(xs, acc + x)
  }
  loop(l, 0)
}

This new version of sum is tail-recursive. Note that we create an internal loop method,
which takes the list to sum, as well as an accumulator to compute the current state of the
result. The loop method is tail-recursive because the recursive loop(xs, acc+x) call is
the last instruction. By calculating the accumulator as we iterate, we avoid stacking
recursive calls. The initial accumulator value is , as follows:

    scala> highperfscala.tailrec.TailRecursion.tailrecSum((1 to
1000000).toList)
    res0: Int = 1784293664

We mentioned that recursion is an important aspect of functional
programming. However, in practice, you should only rarely have to write
your own recursive method, especially when dealing with collections such
as List. The standard API provides already optimized methods that
should be preferred. For example, calculating the sum of a list of integers
can be written, as follows:

list.foldLeft(0)((acc, x) => acc + x)

Or when taking advantage of Scala sugar, we can use the following:
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list.foldLeft(0)(+)

The foldLeft function is internally implemented with a while loop and
will not cause a aStackOverflowError exception.

Actually, List has a sum method, which makes calculating the sum of a
list of integers even easier. The sum method is implemented
with foldLeft and is similar to the preceding code.

Bytecode representation
As a matter of fact, the JVM does not support tail-recursion optimization. To make this
work, the Scala compiler optimizes tail-recursive methods at compile time and turns them
into a while loop. Let's compare the bytecode that was generated for each implementation.

Our original, head-recursive sum method compiled into the following bytecode:

public int sum(scala.collection.immutable.List<java.lang.Object>);
    Code:
       0: aload_1
// omitted for brevity
      52: invokevirtual #41  // Method
sum:(Lscala/collection/immutable/List;)I
      55: iadd
      56: istore_3
      57: iload_3
      58: ireturn
// omitted for brevity

While the tail recursive loop method produced the following:

  private int loop(scala.collection.immutable.List<java.lang.Object>, int);
    Code:
       0: aload_1
    // omitted for brevity
      60: goto          0
   // omitted for brevity

Note how the sum method calls itself with the invokevirtual instruction at the 52 index
and still has to perform some instructions with the returned value. On the contrary,
the loop method uses a goto instruction at the 60 index to jump back to the beginning of
its block, thus avoiding stacking several recursive calls to itself.
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Performance considerations
The compiler can only optimize simple tail-recursion cases. Specifically, only self-calling
functions where the recursive call is the last instruction. There are many edge cases that
could be described as tail-recursive, but they are too complex for the compiler to optimize.
To avoid unknowingly writing a nonoptimizable recursive method, you should always
annotate your tail-recursive methods with @tailrec. The @tailrec annotation is a way to
tell the compiler, “I believe you will be able to optimize this recursive method; however, if
you cannot, please give me an error at compile time.” One thing to keep in mind is
that @tailrec is not asking the compiler to optimize the method, it will do so anyway if it
is possible. The annotation is for the developer to make sure the compiler can optimize the
recursion.

At this point, you should realize that all while loops can be replaced by a
tail-recursive method without any loss in performance. If you have been
using while loop constructs in Scala, you can reflect on how to replace
them with a tail-recursive implementation. Tail recursion eliminates the
use of mutable variables.

Here is the same tailrecSum method with the @tailrec annotation:

def tailrecSum(l: List[Int]): Int = {
  @tailrec
  def loop(list: List[Int], acc: Int): Int = list match {
    case Nil => acc
    case x :: xs => loop(xs, acc + x)
  }
  loop(l, 0)
}

If we attempted to annotate our first, head-recursive, implementation, we would see the
following error at compile time:

    [error]
chapter3/src/main/scala/highperfscala/tailrec/TailRecursion.scala:12: could
not optimize @tailrec annotated method sum: it contains a recursive call
not in tail position
    [error]   def sum(l: List[Int]): Int = l match {
    [error]                                ^
    [error] one error found
    [error] (chapter3/compile:compileIncremental) Compilation failed
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We recommend always using @tailrec to ensure that your methods can be optimized by
the compiler. As the compiler is only able to optimize simple cases of tail-recursion, it is
important to ensure at compile time that you did not inadvertently write a nonoptimizable
function that may cause a StackOverflowError exception. We now look at a few cases
where the compiler is not able to optimize a recursive method:

def sum2(l: List[Int]): Int = {

 def loop(list: List[Int], acc: Int): Int = list match {
   case Nil => acc
   case x :: xs => info(xs, acc + x)
 }
 def info(list: List[Int], acc: Int): Int = {
   println(s"${list.size} elements to examine. sum so far: $acc")
   loop(list, acc)
 }
 loop(l, 0)
}

The loop method in sum2 cannot be optimized because the recursion involves two different
methods calling each other. If we were to replace the call to info by its actual
implementation, then the optimization would be possible, as follows:

def tailrecSum2(l: List[Int]): Int = {
  @tailrec
  def loop(list: List[Int], acc: Int): Int = list match {
    case Nil => acc
    case x :: xs =>
     println(s"${list.size} elements to examine. sum so far: $acc")
     loop(list, acc)
 }

 loop(l, 0)
}

A somewhat similar use case involves the compiler's inability to take into account by-name
parameters:

def sumFromReader(br: BufferedReader): Int = {
 def read(acc: Int, reader: BufferedReader): Int = {
   Option(reader.readLine().toInt)
     .fold(acc)(i => read(acc + i, reader))
 }
 read(0, br)
}
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The read method cannot  be optimized by the compiler because it is unable to use the
definition of Option.fold to understand that the recursive call is effectively in the tail
position. If we replace the call to fold by its exact implementation, we can annotate the
method, as follows:

def tailrecSumFromReader(br: BufferedReader): Int = {
  @tailrec
  def read(acc: Int, reader: BufferedReader): Int = {
    val opt = Option(reader.readLine().toInt)
    if (opt.isEmpty) acc else read(acc + opt.get, reader)
  }
  read(0, br)
}

The compiler will also refuse to optimize a nonfinal public method. This is to prevent the
risk of a subclass overriding the method with a non-tail-recursive version. A recursive call
from the super class may go through the subclass's implementation and break the tail-
recursion:

class Printer(msg: String) {
 def printMessageNTimes(n: Int): Unit = {
   if(n > 0){
     println(msg)
     printMessageNTimes(n - 1)
   }
 }
}

Attempting to flag the printMessageNTimes method as tail-recursive yields the following
error:

    [error]
chapter3/src/main/scala/highperfscala/tailrec/TailRecursion.scala:74: could
not optimize @tailrec annotated method printMessageNTimes: it is neither
private nor final so can be overridden
    [error]     def printMessageNTimes(n: Int): Unit = {
    [error]         ^
    [error] one error found
    [error] (chapter3/compile:compileIncremental) Compilation failed

Another case of recursive methods that cannot be optimized is when the recursive call is
part of a try/catch block:

def tryCatchBlock(l: List[Int]): Int = {
 def loop(list: List[Int], acc: Int): Int = list match {
   case Nil => acc
   case x :: xs =>
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     try {
       loop(xs, acc + x)
     } catch {
       case e: IOException =>
         println(s"Recursion got interrupted by exception")
         acc
     }
 }

 loop(l, 0)
}

In contrast to the prior examples, in this example the compiler is not to blame. The recursive
call is not in the tail position. As it is surrounded by a try/catch, the method needs to be
ready to receive a potential exception and perform more computations to address it. As
proof, we can look at the generated bytecode and observe that the last instructions are
related to the try/catch:

private final int loop$4(scala.collection.immutable.List, int);
    Code:
       0: aload_1
      // omitted for brevity
      61: new           #43  // class scala/MatchError
      64: dup
      65: aload_3
      66: invokespecial #46  // Method
scala/MatchError."<init>":(Ljava/lang/Object;)V
      69: athrow
      // omitted for brevity
      114: ireturn
    Exception table:
       from    to  target type
          48    61    70   Class java/io/IOException

We hope that these few examples have convinced you that writing a non-tail-recursive
method is an easy mistake to make. Your best defense against this is to always use the
@tailrec annotation to verify your intuition that your method can be optimized.

The Option data type
The Option data type is used pervasively throughout the Scala standard library. Like
pattern matching, it is a language feature often adopted early by Scala beginners.
The Option data type provides an elegant way to transform and handle values that are not
required, doing away with null checks often found in Java code. We assume you
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understand and appreciate the value that Option brings to writing Scala in the functional
paradigm, so we will not reiterate its benefits further. Instead, we focus on analyzing its
bytecode representation to drive performance insights.

Bytecode representation
Inspecting the Scala source code, we see that Option is implemented as an abstract class
with the possible outcomes, Some and None, extending Option to encode this relationship.
The class definitions with implementations removed are shown for convenience in the
following code snippet:

sealed abstract class Option[+A] extends Product with Serializable
final case class Some[+A](x: A) extends Option[A]
case object None extends Option[Nothing]

Studying the definitions, we can infer several points about the bytecode representation.
Focusing on Some, we note the absence of extending AnyVal. As Option is implemented
using inheritance, Some cannot be a value class due to limitations that we covered in
the Value class section. This limitation implies that there is an allocation for each value
wrapped as a  Some instance. Furthermore, we observe that Some is not specialized. From
our examination of specialization, we realize that primitives wrapped as Some instances will
be boxed. Here is a simple example to illustrate both concerns:

def optionalInt(i: Int): Option[Int] = Some(i)

In this trivial example, an integer is encoded as a Some instance to be used as an Option
data type. The following bytecode is produced:

  public scala.Option<java.lang.Object> optionalInt(int);
    Code:
       0: new           #16  // class scala/Some
       3: dup
       4: iload_1
       5: invokestatic  #22  // Method
scala/runtime/BoxesRunTime.boxToInteger:(I)Ljava/lang/Integer;
       8: invokespecial #25  // Method
scala/Some."<init>":(Ljava/lang/Object;)V
      11: areturn

As we expected, there is an object allocation to create a Some instance, followed by the
boxing of the provided integer to construct the Some instance.
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The None instance is a simpler case to understand from the bytecode perspective. As None
is defined as a Scala object, there is no instantiation cost to create a None instance. This
makes sense because None represents a scenario where there is no state to maintain.

Have you ever considered how the single value, None, represents no value
for all the types? The answer lies in understanding the Nothing type. The
Nothing type extends all other types, which allows None to be a subtype
of any  A type. For more insight into the Scala type hierarchy, view this
useful Scala language tutorial at h t t p : / / d o c s . s c a l a - l a n g . o r g / t u t o r
i a l s / t o u r / u n i f i e d - t y p e s . h t m l.

Performance considerations
In any non-performance-sensitive environments, it is sensible to default to using Option to 
represent values that are not required. In a performance-sensitive area of the code, the
choice becomes more challenging and less clear-cut. Particularly in performance-sensitive
code, you must first optimize for correctness and then performance. We suggest always
implementing the first version of the problem that you are modeling in the most idiomatic
style, which is to say, using Option. Using the awareness gained from the bytecode
representation of Some, the logical next step is to profile in order to determine whether or
not Option use is the bottleneck. In particular, you are focusing on memory allocation
patterns and garbage collection costs. In our experience, there are often other overhead
sources present in the code that are more costly than Option use. Examples include
inefficient algorithm implementation, a poorly constructed domain model, or inefficient use
of system resources. If, in your case, you have eliminated other sources of inefficiency and
are positive that Option is the source of your performance woes, then you need to take
further steps.

An incremental step towards improved performance might include removing use of the
Option higher-order functions. On the critical path, there can be significant cost savings by
replacing higher-order functions with inlined equivalents. Consider the following trivial
example that transforms an Option data type into a String data type:

Option(10).fold("no value")(i => s"value is $i")

On the critical path, the following change may yield substantive improvements:

val o = Option(10)
if (o.isDefined) s"value is ${o.get} else "no value"

http://docs.scala-lang.org/tutorials/tour/unified-types.html
http://docs.scala-lang.org/tutorials/tour/unified-types.html
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Replacing the fold operation with an if statement saves the cost of creating an anonymous
function. It bears repeating that this type of change should only ever be considered after
extensive profiling reveals Option usage to be the bottleneck. While this type of code
change is likely to improve your performance, it is verbose and unsafe due to usage of
o.get. When this technique is used judiciously, you may be able to retain use of
the Option data type in critical path code.

If replacing higher-order Option function use with inlined and unsafe equivalents fails to
sufficiently improve performance, then you need to consider more drastic measures. At this
point, profiling should reveal that Option memory allocation is the bottleneck, preventing
you from reaching your performance goals. Faced with this scenario, you have two options
(pun intended!) to explore, both of which involve a high cost in terms of time to implement.

One way to proceed is to admit that, for the critical path, Option is unsuitable and must be
removed from the type signatures and replaced with null checks. This is the most
performant approach, but it brings significant maintenance costs because you and all other
team members working on the critical path must be cognizant of this modeling decision. If
you choose to proceed this way, define clear boundaries for the critical path to isolate null
checks to the smallest possible region of the code. In the next section, we explore a second
approach that involves building a new data type that leverages the knowledge that we
gained in this chapter.

Case study – a more performant option
If you are not yet ready to lose information that is encoded by the Option data type, then
you may wish to explore alternative implementations of Option that are more garbage-
collection-friendly. In this section, we present an alternative approach that also provides
type-safety while avoiding boxing and instantiation of the Some instances. We leverage
tagged types and specialization, and disallow null as a valid value for Some to come up
with the following implementation:

sealed trait Opt

object OptOps {

  def some[@specialized A](x: A): A @@ Opt = Tag(x)
  def nullCheckingSome[@specialized A](x: A): A @@ Opt =
    if (x == null) sys.error("Null values disallowed") else Tag(x)
  def none[A]: A @@ Opt = Tag(null.asInstanceOf[A])

  def isSome[A](o: A @@ Opt): Boolean = o != null
  def isEmpty[A](o: A @@ Opt): Boolean = !isSome(o)
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  def unsafeGet[A](o: A @@ Opt): A =
    if (isSome(o)) o.asInstanceOf[A] else sys.error("Cannot get None")

  def fold[A, B](o: A @@ Opt)(ifEmpty: => B)(f: A => B): B =
    if (o == null) ifEmpty else f(o.asInstanceOf[A])
}

This implementation defines factory methods to construct optional types (that
is, some, nullCheckingSome, and none). In contrast to Scala's Option, this
implementation uses tagged types to add type information to a value rather than creating a
new value to encode optionality. The implementation of none takes advantage of null
being a value in Scala rather than a language in keyword as is the case in Java. Remember,
unless performance requirements required such extreme measures, we would not default to
these more esoteric approaches. The tagged type returned by each factory method preserves
type-safety, and it requires an explicit unwrapping to access the underlying type.

If you would like to learn more about Scala's representation of the null
value, we encourage you to check out these two StackOverflow posts at h t
t p : / / s t a c k o v e r f l o w . c o m / q u e s t i o n s / 8 2 8 5 9 1 6 / w h y - d o e s n t - n u l l -

a s i n s t a n c e o f i n t - t h r o w - a - n u l l p o i n t e r e x c e p t i o n and h t t p : / / s t a
c k o v e r f l o w . c o m / q u e s t i o n s / 1 0 7 4 9 0 1 0 / i f - a n - i n t - c a n t - b e - n u l l -

w h a t - d o e s - n u l l - a s i n s t a n c e o f i n t - m e a n. In both posts, multiple
responders provide excellent responses that will help you deepen your
understanding.

The remaining methods in OptOps define methods that you would find in the
implementation of Scala's Option. Rather than instance methods, we see that the methods
are static because there are no new instances that are allocated by the factory methods. It is
possible to define an implicit class that would provide a syntax emulating instance method
invocation, but we avoid doing this because we are operating under the assumption of
extreme performance sensitivity. Semantically, the operations that are defined in OptOps
are equivalent to the Scala Option analogs. Instead of matching against a value
representing no value (that is, None), we again take advantage of the ability to reference
null as a value.

With this implementation, the runtime overhead consists of instance checking and
invocations of scalaz.Tag. We lose the ability to pattern match, and instead we must
either fold or, in extreme cases, use isSome and unsafeGet. To get a better understanding
of runtime differences, we microbenchmarked Option creation using Scala's Option and
the preceding tagged type implementation. The microbenchmark gives you a taste for the
change in syntax. We encourage you to run javap to disassemble the bytecode in order to
prove to yourself that this implementation avoids boxing and object creation:

http://stackoverflow.com/questions/8285916/why-doesnt-null-asinstanceofint-throw-a-nullpointerexception
http://stackoverflow.com/questions/8285916/why-doesnt-null-asinstanceofint-throw-a-nullpointerexception
http://stackoverflow.com/questions/8285916/why-doesnt-null-asinstanceofint-throw-a-nullpointerexception
http://stackoverflow.com/questions/10749010/if-an-int-cant-be-null-what-does-null-asinstanceofint-mean
http://stackoverflow.com/questions/10749010/if-an-int-cant-be-null-what-does-null-asinstanceofint-mean
http://stackoverflow.com/questions/10749010/if-an-int-cant-be-null-what-does-null-asinstanceofint-mean
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 class OptionCreationBenchmarks {

  @Benchmark
  def scalaSome(): Option[ShareCount] = Some(ShareCount(1))

  @Benchmark
  def scalaNone(): Option[ShareCount] = None

  @Benchmark
  def optSome(): ShareCount @@ Opt = OptOps.some(ShareCount(1))

  @Benchmark
  def optSomeWithNullChecking(): ShareCount @@ Opt =
    OptOps.nullCheckingSome(ShareCount(1))

  @Benchmark
  def optNone(): ShareCount @@ Opt = OptOps.none

  @Benchmark
  def optNoneReuse(): ShareCount @@ Opt = noShares
}

object OptionCreationBenchmarks {
  case class ShareCount(value: Long) extends AnyVal
  val noShares: ShareCount @@ Opt = OptOps.none
}

We run the test with the following familiar parameters:

    sbt 'project chapter3' 'jmh:run OptionCreationBenchmarks  -foe true'

The results are summarized in the following table:

Benchmark Throughput (ops per second) Error as percentage of
throughput

optNone 351,536,523.84 ±0.75

optNoneReuse 344,201,145.90 ±0.23

optSome 232,684,849.83 ±0.37

optSomeWithNullChecking 233,432,224.39 ±0.28

scalaNone 345,826,731.05 ±0.35

scalaSome 133,583,718.28 ±0.24
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Perhaps the most impressive result here is that throughput increases approximately 57%
when using the tagged type implementation of Some over the Scala-provided
implementation. This is likely due to reduced memory allocation pressure. We see
that None creation throughput is qualitatively similar. We also observe that there appears to
be zero cost to add a null check in the construction of a tagged Some option. If you trust
your team to avoid passing around null values, then the check is superfluous.
We also created a set of benchmarks to evaluate fold performance to get a sense of the
relative cost of using this alternative Option implementation. Here is the source code for a
simple fold benchmark:

class OptionFoldingBenchmarks {

  @Benchmark
  def scalaOption(): ShareCount =
    scalaSome.fold(ShareCount(0))(c => ShareCount(c.value * 2))

  @Benchmark
  def optOption(): ShareCount =
    OptOps.fold(optSome)(ShareCount(0))(c => ShareCount(c.value * 2))

}

object OptionFoldingBenchmarks {

  case class ShareCount(value: Long) extends AnyVal

  val scalaSome: Option[ShareCount] = Some(ShareCount(7))
  val optSome: ShareCount @@ Opt = OptOps.some(ShareCount(7))
}

This benchmark was run using the same set of parameters as before:

    jmh:run OptionFoldingBenchmarks  -foe true

The results of this test are summarized in the following table:

Benchmark Throughput (ops per second) Error as percentage of throughput

optOption 346,208,759.51 ±1.07

scalaOption 306,325,098.74 ±0.41
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In this benchmark we are hoping to prove that there is no significant throughput
degradation when using the alternative tagged type-inspired implementation over the Scala
Option. A significant degradation in performance would jeopardize the performance wins
that we found in the creation benchmark. Fortunately, this benchmark suggests fold
throughput actually increases approximately 13% over the Scala Option fold
implementation.

It is a relief to see benchmarking yield results that confirm your
hypothesis. However, it is equally important to understand why favorable
results were produced, and to be able to explain this. Without an
understanding of how these results happened, you are unlikely to be able
to reproduce the results. How would you explain fold throughput
improvement of the tagged type-inspired implementation over the Scala
Option implementation? Consider the implementation and memory
allocation differences that we covered.

The benchmarks suggest that the tagged type-inspired Option implementation yields
qualitative performance improvements over the Scala Option implementation. If you are
faced with a performance issue and profiling reveals the Scala Option to be the bottleneck,
it may make sense to explore this alternative implementation. While the performance
improves, realize that a tradeoff exists. When using the alternative implementation, you
lose the ability to pattern match. This seems like a small price to pay because you are able to
instead use the fold operation. The higher price to pay is integration with the standard
library and third-party libraries. If your critical path code interacts heavily with the Scala
standard library or a third-party library, you will be forced to rewrite significant chunks of
code to use the alternative Option implementation. In this scenario, if you are under time
pressure, it may make sense to reconsider whether or not modeling parts of the domain
with null is sensible. If your critical path code avoids significant interaction with the Scala
standard library or third-party libraries, then using the alternative Option implementation
might be an easier decision.

Our case study is inspired by a novel approach Alexandre Bertails explores in his blog post
at h t t p s : / / b e r t a i l s . o r g / 2 0 1 5 / 0 2 / 1 5 / a b s t r a c t - a l g e b r a i c - d a t a - t y p e /. He solves
the same performance issues that we addressed by defining an approach that he refers to as
abstract algebraic data types. Both approaches rely on using type constraints to
model Option without instance allocation. By abstracting over the Option algebraic data
type and its operations, he is able to devise an implementation free of allocations and
boxing. We encourage you to explore this approach because it is another great example of
how to achieve safety while still providing excellent performance.

https://bertails.org/2015/02/15/abstract-algebraic-data-type/
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Summary
In this chapter, we dived into the bytecode representation and performance considerations
of commonly-used Scala language features. In our case study, you saw first-hand how you
can combine several areas of knowledge about Scala language features in combination with
the excellent Scalaz library to produce an Option implementation that is better suited for
high-performance needs.

A consistent theme across all our examples is to promote type-safety and correctness while
taking into account performance tradeoffs. As functional programmers, we value compile
time correctness and referential transparency. Even with the usage of null in the tagged
type Option implementation, we preserved correctness because the null value is an
internal implementation detail. When you reflect on the strategies that we covered, consider
how each one preserves referentially transparent (that is, side-effect-free) code while still
enabling you to reach your performance goals.

At this point, you should feel more confident about the tradeoffs that are introduced by
Scala's elegant language features. Through our analysis, you learned how to translate from
concise Scala syntax to JVM bytecode. This is an invaluable skill to debug performance
issues. As you practice your awareness by studying more examples, you will develop a
stronger intuition for where potential problems lie. Over time, you can refer back to this
chapter in order to review common remediation strategies to balance the tradeoff
between elegance and safety with performance. In the next chapter, we will continue to
grow our ability to leverage Scala to write performant, functional code by diving into
collections.



4
Exploring the Collection API

In this chapter, we return to MVT in order to take on challenges that span multiple MVT
teams. The market data team requires improved critical path order book performance to
handle increased cancel request volume. The data science team wants better ad hoc data
analysis tools to research trading strategies. Everyone has a problem that had to be solved
yesterday. That's the start-up lifestyle!

We use the functional paradigm, our existing knowledge, and the Scala collections API to
our advantage to solve these challenges. The power of the Scala language and its collections
API allow you to approach problems in ways that you may not have thought possible
before. As we work through these challenges and encounter new Scala collection usage, we
detail collection implementation and tradeoffs to consider. We will consider the following
collections in this chapter:

List
TreeMap
Queue
Set
Vector
Array
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High-throughput systems – improving the
order book
In Chapter 1, The Road to Performance, you met MVT's head trader, Dave, under tense
circumstances. The financial markets underwent a period of extreme volatility that exposed
a weakness in the order book design. After speaking to Dave, you learned that in volatile
markets, order volume is dominated by cancels because traders are reacting to quickly
changing market conditions. Through order book benchmarking and profiling, you
confirmed the suspicion that under high volume, cancel performance causes high order
book response latency.

Although the market volatility that caused trading losses has passed, Dave recognizes the
risk that future volatility poses for MVT's returns. Dave wants to invest engineering effort
into making the order book more performant when cancelations frequently occur. By
working with the data science team, Dave analyzed historical order book activity over a
three month period and discovered interesting market characteristics. He shares with you
that in the three months analyzed, on a per trading day basis, cancels comprised, on
average, 70% of order book commands. The analysis also revealed that on the most volatile
market days, cancel activity represents about 85% of order book activity. Known for his
puns, Dave concludes with, “Now, you know everything I know. Like the order book, we
are counting on you to execute!”

Understanding historical trade-offs – list
implementation
Excited to improve order book performance, your first step is to familiarize yourself with
the order book implementation. As you open up the order book repository, you ping Gary,
a fellow engineer who has prior order book development experience. As Gary knows the
history of order book development, he tells you to check out ListOrderBook. “This was
our first attempt at modeling the order book. I think you can learn from our design by
seeing its first incarnation,” he adds, “Once you understand the implementation, check
out QueueOrderBook. That's the next version of the order book. You profiled an older
iteration of this implementation when we had the volatility wave. Let me know if you have
any questions!” After thanking him, you dig into the repository to find ListOrderBook.
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The ListOrderBook class defines the following state to manage buys (bids) and sells
(offers):

case class ListOrderBook(
  bids: TreeMap[Price, List[BuyLimitOrder]],
  offers: TreeMap[Price, List[SellLimitOrder]]) {
  def bestBid: Option[BuyLimitOrder] =
    ??? // hidden for brevity
  def bestOffer: Option[SellLimitOrder] =
    ??? // hidden for brevity
}

To refresh our memory, here are definitions of Price, BuyLimitOrder,
and SellLimitOrder:

sealed trait LimitOrder {
  def id: OrderId
  def price: Price
}
case class BuyLimitOrder(id: OrderId, price: Price) extends LimitOrder
case class SellLimitOrder(id: OrderId, price: Price) extends LimitOrder
case class Price(value: BigDecimal)

The LimitOrder is an algebraic data type (ADT) that represents the two possible order
sides. The Price class is a strongly-typed wrapper for BigDecimal. Recalling the 
performance boost that value classes provide, you modify the definition of Price, as
follows:

case class Price(value: BigDecimal) extends AnyVal

The ListOrderBook class uses two Scala collection types to maintain its state: List
and TreeMap. Let's have a deeper look at these data structures to understand the tradeoffs
that they present.

List
Scala implementsList as an immutable singly-linked list. A List is an ordered collection
of elements of the same type. A List is a sealed abstract class with two
implementations: Nil, which represents the empty list, and :: (often called cons), which is
used to represent an element and a tail. To make things more concrete, let's look at some
pseudocode, which is close to the actual implementation:

sealed trait List[+A]
case object Nil extends List[Nothing]
case class ::[A](head: A, tail: List[A]) extends List[A]
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A List of three integers can be constructed using the following notation:

val list = ::(1, ::(2, ::(3, Nil)))

Note the plus sign in the definition of the List trait. The plus (+) sign
indicates that List is covariant on its type parameter, A. Covariance
allows you to express polymorphic constraints with generic types. To
make this more concrete, consider the following definitions:
sealed trait Base
case class Impl(value: Int) extends Base

Here, a relationship is expressed between Base and Impl. The Impl class
is a subtype of Base. When used with List, covariance allows us to
express that List[Impl] is a subtype of List[Base]. Expressed with an
example, covariance is what allows the following snippet to compile:
val bases: List[Base] = List[Impl](Impl(1))

Covariance belongs to the broader topic of variances. If you wish to learn
more about variances in Scala, refer to this excellent blog post by Andreas
Schroeder at h t t p s : / / b l o g . c o d e c e n t r i c . d e / e n / 2 0 1 5 / 0 3 / s c a l a - t y
p e - s y s t e m - p a r a m e t e r i z e d - t y p e s - v a r i a n c e s - p a r t - 1 /.

Unlike most other Scala collections, List supports pattern matching on its content. This is a
powerful way to write expressive code that handles multiple scenarios while retaining
compile-time safety that all possible cases are handled. Consider the following snippet:

List(1,2,3,4) match {
  case 1 :: x :: rest => println(s"second element: $x, rest: $rest")
}

In this simple pattern match, we are able to express several concerns. Here, 1 is 1, x is 2,
and rest is List(3,4). When compiled, this snippet elicits a compiler warning because
the Scala compiler infers that there are possible List patterns that were unmatched (for
example, empty List). Compiler-provided warnings minimize the chance of your
forgetting to handle a valid input.

A List is optimized for prepend operations. Adding 0 to the previous list is as easy as
doing this:

val list = ::(1, ::(2, ::(3, Nil)))
val listWithZero = ::(0, list)

https://blog.codecentric.de/en/2015/03/scala-type-system-parameterized-types-variances-part-1/
https://blog.codecentric.de/en/2015/03/scala-type-system-parameterized-types-variances-part-1/
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This is a constant-time operation, and it has almost no memory cost, as List implements 
data sharing. In other words, the new list, listWithZero, is not a deep copy of list. 
Instead, it re-uses all its allocated elements and allocates only one new element, the cell 
containing 0:

In contrast to prepend operations, append operations (that is, adding an element to the end
of the list) are computationally expensive because the entire List must be copied:

Given the poor append performance of List, you may wonder whether it is safe to use a map
transform. A map transform occurs by applying a function to successive elements in
the List, which can be logically represented by appending transformed values to a
new List. To avoid this performance pitfall, List.map overrides the default
implementation provided by the trait TraversableOnce to apply the transform using
prepend operations. This provides improved List.map performance while retaining the
same API. Overriding default behavior to provide a specialized implementation is a
common Scala collections pattern. Constant time head operations make List ideal for
algorithms involving last-in, first-out (LIFO) operations. For random access and first-in,
first-out (FIFO) behaviors, you should employ List selectively.

In the next section, we investigate TreeMap. The TreeMap class is the implementation of
the SortedMap trait that is used to maintain bids and offers.
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TreeMap
The TreeMap class is a map that orders keys according to a provided ordering strategy. The
following snippet of its class definition makes the ordering requirement clear:

class TreeMap[A, +B] private (tree: RB.Tree[A, B])(implicit val ordering:
Ordering[A])

The Ordering class is a type class that defines a contract for the natural ordering of
elements of the A type.

If type classes are a concept that is new to you, we encourage you to read
Daniel Westheide's well-written blog post on the topic at h t t p : / / d a n i e l
w e s t h e i d e . c o m / b l o g / 2 0 1 3 / 0 2 / 0 6 / t h e - n e o p h y t e s - g u i d e - t o - s c a l

a - p a r t - 1 2 - t y p e - c l a s s e s . h t m l.

In ListOrderBook, we see that Price is the key. Looking at the companion object
of Price, we see that the ordering is defined by delegating to the underlying BigDecimal
type's ordering definition:

object Price {
  implicit val ordering: Ordering[Price] = new Ordering[Price] {
    def compare(x: Price, y: Price): Int =
      Ordering.BigDecimal.compare(x.value, y.value)
  }
}

The TreeMap class referenced by ListOrderBook, like List, is immutable. Immutability
provides strong reasoning guarantees. We can be certain that there are no side effects
because the effect of adding or removing a value from the map is always reflected as a new
map.

The TreeMap class implementation is a special type of binary search tree, the red-black tree.
This tree implementation provides logarithmic operation time for lookups, additions, and
removals. You might be surprised to see TreeMap in place of HashMap. As documented in
the Scala collections performance overview
(http://docs.scala-lang.org/overviews/collections/performance-character
istics.html), HashMap provides constant time lookups, additions, and removals, which is
faster than TreeMap. However, TreeMap offers superior performance when performing
ordered traversals. For example, finding the largest key in the map can be done in
logarithmic time with TreeMap, while this is done in linear time for HashMap. This
difference is an indicator that the order book implementation requires efficient
ordered Price traversals.

http://danielwestheide.com/blog/2013/02/06/the-neophytes-guide-to-scala-part-12-type-classes.html
http://danielwestheide.com/blog/2013/02/06/the-neophytes-guide-to-scala-part-12-type-classes.html
http://danielwestheide.com/blog/2013/02/06/the-neophytes-guide-to-scala-part-12-type-classes.html
http://docs.scala-lang.org/overviews/collections/performance-characteristics.html
http://docs.scala-lang.org/overviews/collections/performance-characteristics.html
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Adding limit orders
Coming back to the ListOrderBook implementation, we see the following partial method
definition reflects the heart of the order book:

  def handle(
    currentTime: () => EventInstant,
    ob: ListOrderBook,
    c: Command): (ListOrderBook, Event) = c match {
    case AddLimitOrder(_, o) => ??? // hidden for brevity
    case CancelOrder(_, id) => ??? // hidden for brevity
  }

It might seem curious that a function is supplied as an argument to
retrieve the current time. A potentially simpler way to achieve the same
effect is to invoke System.currentTimeMillis(). The shortcoming of
this approach is that accessing the system clock is a side-effect, which
means that the function is no longer referentially transparent. By
providing a function to retrieve the current time, we are able to control
how this side-effect happens and produce repeatable test cases.

Given a Command, an order book instance, and a way to obtain the current time for event
timestamps, an Event and a new state are produced. To refresh our memory, here are the
commands the order book can process:

  sealed trait Command
  case class AddLimitOrder(i: CommandInstant, o: LimitOrder) extends
Command
  case class CancelOrder(i: CommandInstant, id: OrderId) extends Command

The following are the possible events created by processing commands:

  sealed trait Event
  case class OrderExecuted(i: EventInstant, buy: Execution,
    sell: Execution) extends Event
  case class LimitOrderAdded(i: EventInstant) extends Event
  case class OrderCancelRejected(i: EventInstant,
    id: OrderId) extends Event
  case class OrderCanceled(i: EventInstant,
    id: OrderId) extends Event

Let's focus on supporting the AddLimitOrder command to better understand the
algorithmic properties of historical design choices. When adding a limit order, one of two
outcomes is possible:

The incoming order price crosses the book resulting in OrderExecuted
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The oncoming order rests on the book resulting in LimitOrderAdded

Deducing whether or not the order crosses the book requires looking at the best price on the
opposing side. Returning to the definition of LimitOrderBook with complete
implementation of bestBid and bestOffer, we see the following:

case class ListOrderBook(
  bids: TreeMap[Price, List[BuyLimitOrder]],
  offers: TreeMap[Price, List[SellLimitOrder]]) {
  def bestBid: Option[BuyLimitOrder] =
    bids.lastOption.flatMap(_._2.headOption)
  def bestOffer: Option[SellLimitOrder] =
    offers.headOption.flatMap(_._2.headOption)
}

The implementation shows that we are taking advantage of the logarithmic ordered search
property of TreeMap. The best bid is the key with the highest price, which is the last value
in the tree because the ordering is ascending. The best offer is the key with the lowest price,
which is the first value in the tree.

Focusing specifically on the addition of a buy limit order and given the best offer, the
following comparison occurs to determine whether the incoming buy order crosses the
book or rests on the book:

orderBook.bestOffer.exists(buyOrder.price.value >= _.price.value)
  match {
          case true => ??? // cross the book
          case false => ??? // rest on the book
  }

Let's first assume that the incoming buy order's price is lower than the best offer, which
means the order is added to the book (that is, rests on the book). The question we are trying
to answer is, “where in the book should the order be added?” The order book performs a
logarithmic search to find the price level associated with the order price. From the
definition of ListOrderBook, you know that each value in the map (the price level) is
represented as a List of orders. Recalling a discussion with the head trader, Dave, you
remember that orders within a price level are executed based on time priority. The first
order added to a price level is the first order to be executed. Conceptually, a price level is a
first-in, first-out (FIFO) queue. The implication is that adding an order to a price level is a
linear time operation because the order is appended to the end. The following snippet
confirms your hypothesis:

val orders = orderBook.bids.getOrElse(buyOrder.price, Nil)
          orderBook.copy(bids = orderBook.bids + (buyOrder.price ->
orders.:+(buyOrder))) ->
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            LimitOrderAdded(currentTime())

The snippet shows that adding a resting limit order to the book involves a linear time
append operation to List of BuyLimitOrder. In your mind, you are beginning to wonder
how MVT was able to trade profitably at all with this order book. Before leaping to this
harsh judgment, you consider how crossing the book is handled.

Assuming that the incoming buy order's price is greater than or equal to the best offer price,
then the buy order crosses the book, causing an execution. Time priority dictates that the
first sell order received is executed against the incoming buy order, which translates to
taking the first sell order in the price level. When generating an execution, you realize that
modeling a price level with a List provides constant time performance. The following
snippet shows how a price level is modified on a buy execution:

      case (priceLevel, (sell :: Nil)) => (orderBook.copy(offers =
orderBook.offers - sell.price),
        OrderExecuted(currentTime(), Execution(buy.id, sell.price),
          Execution(sell.id, sell.price)))
      case (_, (sell :: remainingSells)) => (orderBook.copy(offers =
orderBook.offers + (sell.price -> remainingSells)),
        OrderExecuted(currentTime(),
          Execution(buy.id, sell.price), Execution(sell.id, sell.price)))

The ListOrderBook takes advantage of the List pattern matching to handle the two
possible cross scenarios:

The executed sell order is the only order available in the price level
Additional sell orders remain at the price level

In the former scenario, the price level is removed from the book by removing the key from
the offers TreeMap. In the latter scenario, the remaining orders form the new price level.
Clearly, the order book is optimized for executions over adding resting orders. You wonder
why this bias exists in the order book implementation. You wonder to yourself, “perhaps,
executions are more much more prevalent than resting orders?” You are unsure and make a
mental note to chat with Dave.

Pause for a moment to consider biases in systems that you have designed.
Did you optimize operations proportional to usage or latency constraints?
Looking back, did your design choices lead you towards the best possible
performance for the most important operations? Of course, hindsight
makes it easy to call out suboptimal design choices. By reflecting on how
you made these choices, you might be better able to avoid similar
deficiencies in future systems.
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Canceling orders
The ListOrderBook also supports the CancelOrder command to remove an existing
order by ID. Cancel requests pose an algorithmic challenge to ListOrderBook. As only the
order ID is provided, ListOrderBook cannot efficiently determine which side the order
rests on (that is, buy or sell). To determine the side, the buy and sell price levels are swept to
find the order ID. This is an operation that is proportional to the number of price levels per
side and the length of each price level. The worst case scenario is submitting an order ID
that does not exist in the order book. The entire book must be swept to identify the absence
of the provided order ID. A malicious trader could slow down MVT order book operations
by submitting a constant stream of nonexistent order IDs. You make a note to talk with
Dave about malicious trading activities and what MVT can do to defend against them.

Assuming that the order referenced by the cancel request exists in the book and its price
level is discovered, the act of removing the cancelled order from the book is also expensive.
Canceling is a linear time operation that requires traversing the linked list of orders and
removing the node with the matching order ID. The following snippet implements
canceling a sell order in ListOrderBook:

orderBook.offers.find { case (price, priceLevel) => priceLevel.exists(_.id
== idToCancel) }
        .fold[(ListOrderBook, Event)](orderBook ->
        OrderCancelRejected(currentTime(), idToCancel)) {
        case (price, priceLevel) =>
          val updatedPriceLevel = priceLevel.filter(_.id != idToCancel)
          orderBook.copy(offers = updatedPriceLevel.nonEmpty match {
            case true => orderBook.offers + (price -> updatedPriceLevel)
            case false => orderBook.offers - price
          }) -> OrderCanceled(currentTime(), idToCancel)

Studying this snippet, it is unsurprising to you that cancelation performance is the least
performant order book operation. There are two linear time passes performed per price
level to cancel the order. First, exists traverses the list of price level orders to determine
whether the ID to be canceled exists in the price level. Once the price level containing the ID
is found, there is a second traversal via filter to update the state of the order book.

The cancelation implementation in ListOrderBook is an illustration of the double-edged
sword of Scala's expressive collection API. By virtue of being expressive, the cancelation
logic is simple to understand and to maintain. However, its expressiveness also makes it
easy to hide that the runtime performance of removing an order from a price level is 2 * N,
where N is the number of orders in a price level. This simple example makes it clear that in
a performance-sensitive environment, it is important to take a step back from the code to
consider the runtime overhead of the data structure that is being used.
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The current order book – queue implementation
You refrain from judging ListOrderBook too harshly because you know from your prior 
software development experiences that there were likely extenuating circumstances that led
to this implementation. You turn your attention to the current order book implementation,
which is in QueueOrderBook. Looking over the source code, you are surprised to discover
the implementation appears to match ListOrderBook except for the price level data
structure:

case class QueueOrderBook(
  bids: TreeMap[Price, Queue[BuyLimitOrder]],
  offers: TreeMap[Price, Queue[SellLimitOrder]])

The only difference between the two implementations is the use of
scala.collection.immutable.Queue in place of List to represent a price level. From a
modeling perspective, using a FIFO queue makes sense. As time priority dictates execution
order, a FIFO queue is a natural fit to store resting orders. You begin wondering whether
switching out List for Queue was done purely for modeling purposes. The question on
your mind is, “how does replacing List with Queue improve order book performance?”
Understanding this change requires digging deeper into Scala's Queue implementation.

Queue
This snippet of a Queue definition reveals an interesting insight:

class Queue[+A] protected(protected val in: List[A], protected val out:
List[A])

Without reading deeply into the Queue implementation, we see that it uses two Lists to
manage state. Given the usage of List to model a FIFO queue in ListOrderBook, it should
not be surprising to see the usage of List to build an immutable FIFO queue data structure.
Let's look at the enqueue and dequeue operations to understand how in and out
impact Queue performance. The following snippet shows the implementation of enqueue:

def enqueue[B >: A](elem: B) = new Queue(elem :: in, out)

As the element is prepended to in, enqueueing is a constant time operation. Recall that the
analogous ListOrderBook operation is adding a resting order, which has linear runtime
performance. This is a clear performance win for QueueOrderBook. Next, we
consider dequeue implementation:

def dequeue: (A, Queue[A]) = out match {
    case Nil if !in.isEmpty => val rev = in.reverse ; (rev.head, new
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Queue(Nil, rev.tail))
    case x :: xs            => (x, new Queue(in, xs))
    case _                  => throw new NoSuchElementException("dequeue on
empty queue")
  }

As the implementation shows, dequeue throws an exception when
invoked with an empty Queue. The exception is an unexpected outcome to
invoking dequeue and feels out of place in the functional programming
paradigm. For this reason, Queue also provides dequeueOption that
returns an Option. This makes the handling of an empty Queue explicit
and easier to reason about. We recommend using dequeueOption in any
situation where you cannot guarantee that dequeue will always be called
on a nonempty Queue.

The dequeue operation is more involved than enqueue due to the interaction between in
and out. To understand how the Queue state is managed with the dequeue operations,
review the following table. This table walks through a series of the enqueue and dequeue
operations, listing the state of in and out at each step. As you review the table, consider
which  dequeue patterns match statements that are invoked:

Operation In Out

enqueue(1) List(1) Nil

enqueue(2) List(1, 2) Nil

enqueue(3) List(1, 2, 3) Nil

dequeue Nil List(2, 3)

dequeue Nil List(3)

enqueue(4) List(4) List(3)

dequeue List(4) Nil

dequeue Nil Nil

 

As the enqueue and dequeue invocations are intermingled, both in and out retain state. In
the final sequence displayed, the queue returns to its initial state (that is, both in and out
empty). The key insight from this implementation is that Queue amortizes the cost
of dequeue to be constant time by deferring transfers from in and out. Each element
transfer from in and out is a linear time reverse operation to maintain first-in, first-out
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ordering. Deferring the cost of this expensive operation until out is empty is a form of lazy
evaluation. This is an illustrative example of how lazy evaluation can be used to improve
runtime performance.

Now that you have an understanding of how Queue is implemented, you can reason about
the performance improvements delivered by QueueOrderBook. The following table
itemizes the runtime performance of each scenario to modify a price level:

Scenario ListOrderBook QueueOrderBook

Add resting limit order Linear Constant

Generate execution Constant Amortized constant

Cancel order Linear Linear

 

This table illustrates how understanding the runtime characteristics of the Scala collection
API can result in tangible performance wins with small changes to your implementation.
Recall that when QueueOrderBook was introduced, it was noted that its implementation is
identical to ListOrderBook, the module changes to replace List operations with
analogous Queue operations. This is a comparatively simple change for the performance
boost shown previously.

You are excited to see the performance win to handle limit orders with QueueOrderBook,
but you are left wondering about what can be done about cancelation performance.
It remains unsettling to you that QueueOrderBook retains the same cancelation
performance. In particular, because of the recent market volatility that exposed order book
cancelation performance's weakness that caused MVT to trade unprofitably. Lazy
evaluation was a big performance win to handle limit orders. Can this principle also be
applied to cancel requests?

Improved cancellation performance through lazy
evaluation
Queue provides high-performance enqueue and dequeue operations using the additional
state, the second List, to defer and to batch expensive operations. This principle can be
applied to the order book. When canceling an order, there are two expensive operations:

Identifying the price level containing the order-to-be-canceled
Traversing a Queue or List to remove the canceled order
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Focusing on the second operation, the motivating question is, “how can the order book
defer the cost of linear traversal to modify internal state?” To answer this question, it is
often helpful to consider the strengths of your implementation. With either order book
implementation, we know there is excellent execution performance. One strategy that takes
advantage of this insight is to defer cancellation until order execution occurs. The approach
is to use additional state to maintain the intent to cancel without removing the order from
order book state until it is performant to do so. This approach could look like the following:

case class LazyCancelOrderBook(
  pendingCancelIds: Set[OrderId],
  bids: TreeMap[Price, Queue[BuyLimitOrder]],
  offers: TreeMap[Price, Queue[SellLimitOrder]])

The LazyCancelOrderBook class adds additional state in the form of
a scala.collection.immutable.Set to manage the IDs of canceled requests that have
not been reflected into the the state of bids and offers. Before diving into
how pendingCancelIds is used, let's investigate the Scala implementation of Set.

Set
Scala's implementation of Set is neither an ADT, such as List, nor a concrete
implementation, such as TreeMap. Instead, it is a trait, as shown in this snippet of its
definition:

trait Set[A]

The reason the standard library defines it is as a trait is to support specific implementations
depending upon the element count. The Set companion object defines five
implementations for sizes zero to four. Each implementation contains a fixed number of
elements, as shown in Set3, as follows:

class Set3[A] private[collection] (elem1: A, elem2: A, elem3: A)

When the number of elements is small, the runtime performance is faster with hand-rolled
Set implementations. With this technique, additions and removals point to the next or
previous hand-rolled implementation. For example, consider + and - from Set3:

    def + (elem: A): Set[A] =
      if (contains(elem)) this
      else new Set4(elem1, elem2, elem3, elem)

    def - (elem: A): Set[A] =
      if (elem == elem1) new Set2(elem2, elem3)
      else if (elem == elem2) new Set2(elem1, elem3)
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      else if (elem == elem3) new Set2(elem1, elem2)
      else this

After Set4, the standard library uses an implementation named HashSet. This is visible
when adding an element to Set4:

 def + (elem: A): Set[A] =
      if (contains(elem)) this
      else new HashSet[A] + (elem1, elem2, elem3, elem4, elem)

The HashSet is analogous to TreeMap because it is backed by an efficient data structure to
manage internal state. For HashSet, the backing data structure is a hash trie. The hash trie
provides amortized constant time performance for additions, removals, and contains
operations as per the Scala collections performance overview
(http://docs.scala-lang.org/overviews/collections/performance-character
istics.html). If you want to dig deeper into how a hash trie works, the Scala hash trie
overview
(http://docs.scala-lang.org/overviews/collections/concrete-immutable-co
llection-classes.html#hash-tries) is a good starting point.

Returning to the LazyCancelOrderBook, we now know that common set operations
with pendingCancelIds are completed in amortized constant time. Provided that we
focus on additions and removals, and contains operations, this suggests there will be
minimal overhead as the size of the set increases. We can use pendingCancelIds to
represent the intent to remove an order from the order book without paying the cost of
performing the removal. This simplifies the handling of a cancel order to be a constant time
addition to pendingCancelIds:

def handleCancelOrder(
    currentTime: () => EventInstant,
    ob: LazyCancelOrderBook,
    id: OrderId): (LazyCancelOrderBook, Event) =
    ob.copy(pendingCancelIds = ob.pendingCancelIds + id) ->
      OrderCanceled(currentTime(), id)

The implementation of handleCancelOrder becomes trivial because the work to remove
the order from the book is deferred. While this is a performance win, this implementation
suffers from a serious deficiency. This implementation is no longer able to identify order
IDs that are absent from the order book, which result in OrderCancelRejected. One way
to account for this requirement is to maintain an additional Set containing order IDs
actively resting on the book. Now, the LazyCancelOrderBook state looks like the
following:

case class LazyCancelOrderBook(

http://s.scala-lang.org/overviews/collections/performance-characteristics.html
http://s.scala-lang.org/overviews/collections/performance-characteristics.html
http://docs.scala-lang.org/overviews/collections/concrete-immutable-collection-classes.html#hash-tries
http://docs.scala-lang.org/overviews/collections/concrete-immutable-collection-classes.html#hash-tries
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  activeIds: Set[OrderId],
  pendingCancelIds: Set[OrderId],
  bids: TreeMap[Price, Queue[BuyLimitOrder]],
  offers: TreeMap[Price, Queue[SellLimitOrder]])

With this definition, we can rewrite handleCancelOrder to account for nonexistent order
IDs:

def handleCancelOrder(
    currentTime: () => EventInstant,
    ob: LazyCancelOrderBook,
    id: OrderId): (LazyCancelOrderBook, Event) =
    ob.activeIds.contains(id) match {
      case true => ob.copy(activeIds = ob.activeIds - id,
        pendingCancelIds = ob.pendingCancelIds + id) ->
        OrderCanceled(currentTime(), id)
      case false => ob -> OrderCancelRejected(currentTime(), id)
    }

This implementation involves three amortized, constant time operations when the order ID
exists in the book. First, there is an operation to identify whether or not the order ID exists
in the order book. Then, the provided order ID is removed from the active ID set and added
to the pending cancel set. Previously, this scenario required two linear runtime operations.
The degenerate scenario of handling a nonexistent order ID now shrinks to a single
amortized constant time operation.

Before celebrating performance wins, bear in mind that we still need to remove canceled
orders from the book. To reduce the cost of cancelations, two potentially large sets were
added to the order book, which increases the size of the memory footprint and garbage
collection pressure. Additionally, benchmarking is needed to prove that theoretical
performance improvements translate to real-world performance.

To complete LazyCancelOrderBook implementation, we need to account for activeIds
when handling a limit order and pendingCancelIds when generating an execution. As
you may recall, handling a limit order involved two scenarios:

Adding a resting limit order
Crossing the book to generate an execution

Here is a partially implemented snippet that prepares us to handle these two scenarios for a
BuyLimitOrder:

orderBook.bestOffer.exists(_.price.value <= buy.price.value) match {
        case true => ??? // crossing order
        case false => ???  // resting order
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To support resting buy orders, the provided buy order must be enqueued and additionally,
the buy order ID must be added to the activeOrderIds set:

      def restLimitOrder: (LazyCancelOrderBook, Event) = {
        val orders = orderBook.bids.getOrElse(buy.price, Queue.empty)
        orderBook.copy(bids = orderBook.bids + (buy.price ->
orders.enqueue(buy)),
          activeIds = orderBook.activeIds + buy.id) ->
LimitOrderAdded(currentTime())
      }

orderBook.bestOffer.exists(_.price.value <= buy.price.value) match {
        case true => ??? // crossing order
        case false => restLimitOrder

The logic to add a resting limit order is shown in the preceding code and extracted into a
method named restLimitOrder. This logic resembles the analogous scenario
for ListOrderBook with the added amortized constant time active order ID addition
operation. This change is straightforward and adds little processing time overhead. Finally,
we consider the more complicated order crossing scenario. This scenario is analogous
to Queue.dequeue in that this implementation pays the cost of the deferred action. The first
dilemma to solve is identifying which order can be executed and which orders must be
removed because they are canceled. findActiveOrder supplies this functionality and is
shown with the assumption that orderBook is lexically in scope, as follows:

      @tailrec
      def findActiveOrder(
        q: Queue[SellLimitOrder],
        idsToRemove: Set[OrderId]): (Option[SellLimitOrder],
Option[Queue[SellLimitOrder]], Set[OrderId]) =
        q.dequeueOption match {
          case Some((o, qq)) => orderBook.pendingCancelIds.contains(o.id)
match {
            case true =>
              findActiveOrder(qq, idsToRemove + o.id)
            case false =>
              (Some(o), if (qq.nonEmpty) Some(qq) else None, idsToRemove +
o.id)
          }
          case None => (None, None, idsToRemove)
        }

findActiveOrder recursively inspects a sell price level until an executable order is found
or the price level is empty. In addition to optionally resolving a sell order that can be
executed, the method returns the remaining price level. These order IDs have been canceled
and must be removed from pendingCancelIds. Here, we see the bulk of the canceled
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work deferred when the cancel request was handled. Execution is now amortized to be a
constant time operation when executions occur repeatedly without a cancelation in-
between. The worst case scenario is a linear runtime that is proportional to the number of
canceled orders in the price level. Let's look at how findActiveOrder is used to update
the state of the order book:

orderBook.offers.headOption.fold(restLimitOrder) {
        case (price, offers) => findActiveOrder(offers, Set.empty) match {
          case (Some(o), Some(qq), rms) => (orderBook.copy(
            offers = orderBook.offers + (o.price -> qq), activeIds =
orderBook.activeIds -- rms),
            OrderExecuted(currentTime(),
              Execution(buy.id, o.price), Execution(o.id, o.price)))
          case (Some(o), None, rms) => (orderBook.copy(
            offers = orderBook.offers - o.price, activeIds =
orderBook.activeIds -- rms),
            OrderExecuted(currentTime(),
              Execution(buy.id, o.price), Execution(o.id, o.price)))
          case (None, _, rms) =>
            val bs = orderBook.bids.getOrElse(buy.price,
Queue.empty).enqueue(buy)
            (orderBook.copy(bids = orderBook.bids + (buy.price -> bs),
              offers = orderBook.offers - price,
              activeIds = orderBook.activeIds -- rms + buy.id),
              LimitOrderAdded(currentTime()))
        }
      }

Order crossing implementation is now arguably more complicated than in ListOrderBook
or QueueOrderBook due to the work to remove canceled orders and to remove the
removed order IDs from pendingCancelIds. In all three pattern match statements, the set
of returned order IDs returned as the final tuple member is removed from
pendingCancelIds to indicate that the order is now removed from the book. The first two
pattern match statements handle the distinction between finding an active order with one or
more remaining orders in the price level and finding an active order with zero remaining
orders in the price level. In the latter scenario, the price level is removed from the book. The
third pattern match statement accounts for the scenario where an active order is not found.
If an active order is not found because all orders were pending cancelation, then, by
definition, the entire price level was searched, and it is, therefore, now empty.



Exploring the Collection API

[ 119 ]

Benchmarking LazyCancelOrderBook
As a rigorous performance engineer, you realize that although your code compiles and your
tests pass, your work is not yet complete. You begin pondering how to benchmark
LazyCancelOrderBook to determine whether or not your changes have improved real-
world performance. Your first idea is to test cancelation in isolation to confirm that this
operation has indeed been optimized. To do this, you rework CancelBenchmarks, which
was introduced in Chapter 2, Measuring Performance on the JVM, to work
with QueueOrderBook and LazyCancelOrderBook. This benchmark sweeps different
price level sizes canceling the first order, the last order, and a nonexistent order. We omit
the source code because it is identical to the previous implementation and instead consider
the results. These results were produced by running the following:

    sbt 'project chapter4' 'jmh:run CancelBenchmarks -foe true'

The benchmark provides us with the following results:

Benchmark Enqueued
order count

Throughput (ops per
second)

Error as
percentage of
throughput

eagerCancelFirstOrderInLine 1 6,912,696.09 ± 0.44

lazyCancelFirstOrderInLine 1 25,676,031.5 ± 0.22

eagerCancelFirstOrderInLine 10 2,332,046.09 ± 0.96

lazyCancelFirstOrderInLine 10 12,656,750.43 ± 0.31

eagerCancelFirstOrderInLine 1 5,641,784.63 ± 0.49

lazyCancelFirstOrderInLine 1 25,619,665.34 ± 0.48

eagerCancelFirstOrderInLine 10 1,788,885.62 ± 0.39

lazyCancelFirstOrderInLine 10 13,269,215.32 ± 0.30

eagerCancelFirstOrderInLine 1 9,351,630.96 ± 0.19

lazyCancelFirstOrderInLine 1 31,742,147.67 ± 0.65

eagerCancelFirstOrderInLine 10 6,897,164.11 ± 0.25

lazyCancelFirstOrderInLine 10 24,102,925.78 ± 0.24
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This test demonstrates that LazyCancelOrderBook consistently
outperforms QueueOrderBook when canceling the first order, the last order, and a
nonexistent order across order queue sizes of one and ten. This is exactly as expected
because LazyCancelOrderBook defers the most expensive work until an order is executed.
We see constant performance independent of the position of the order-to-be-canceled,
which is further proof that the removal work is deferred. Also as expected, we see that
canceling a nonexistent order results in improved performance because a linear traversal is
no longer required to ascertain the absence of an order. However, we notice the
performance hit as the enqueued order count increases from one to ten
for LazyCancelOrderBook. We can hypothesize that the nearly 50% throughput reduction
is due to the overhead of managing the state of active and pending cancel order IDs.

This result is a promising sign that your changes are indeed improving the real-world
performance. As the new implementation passed the initial litmus test, you think about
how to representatively simulate a combination of executions and cancelations. You decide
to focus on creating a microbenchmark that combines executions and cancelations to
exercise LazyCancelOrderBook in scenarios that more closely resemble production. You
think back to a recent lunch conversation you had with Dave about market trading flows
and recall that he said it is common to see about two cancelations per execution. Running
with this idea, you create a benchmark that interleaves trades and cancelations. For both
order book implementations, you want to test performance when during the following
scenarios:

Two trades per cancelation
One trade per cancelation
Two cancelations per trade

These three scenarios will help reveal shortcomings in LazyCancelOrderBook by focusing
on production-like order book activities. The benchmark requires initializing each order
book with a set of resting orders to be canceled or executed against. The following snippet
demonstrates how to initialize the order books in a JMH test:

@State(Scope.Benchmark)
  class InterleavedOrderState {
    var lazyBook: LazyCancelOrderBook = LazyCancelOrderBook.empty
    var eagerBook: QueueOrderBook = QueueOrderBook.empty

    @Setup
    def setup(): Unit = {
      lazyBook = (1 to maxOrderCount).foldLeft(LazyCancelOrderBook.empty) {
        case (b, i) => LazyCancelOrderBook.handle(
          () => EventInstant.now(), b, AddLimitOrder(
            CommandInstant.now(), BuyLimitOrder(OrderId(i), bidPrice)))._1
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      }
      eagerBook = (1 to maxOrderCount).foldLeft(QueueOrderBook.empty) {
        case (b, i) => QueueOrderBook.handle(
          () => EventInstant.now(), b, AddLimitOrder(
            CommandInstant.now(), BuyLimitOrder(OrderId(i), bidPrice)))._1
      }
    }
  }

Before each trial, both order books will be filled with maxOrderCount (defined to be 30)
resting bids. As there are three scenarios to test and two order books, there are six
benchmarks defined for this test. Each set of three scenarios is the same per order book
implementation. To avoid duplication, the following snippet shows the three benchmarks
implemented for LazyCancelOrderBook:

@Benchmark
  def lazyOneToOneCT(state: InterleavedOrderState): LazyCancelOrderBook = {
    val b1 = LazyCancelOrderBook.handle(() => EventInstant.now(),
      state.lazyBook, firstCancel)._1
    LazyCancelOrderBook.handle(() => EventInstant.now(),
      b1, firstCrossSell)._1
  }

@Benchmark
  def lazyTwoToOneCT(state: InterleavedOrderState): LazyCancelOrderBook = {
    val b1 = LazyCancelOrderBook.handle(() => EventInstant.now(),
      state.lazyBook, firstCancel)._1
    val b2 = LazyCancelOrderBook.handle(() => EventInstant.now(),
      b1, secondCancel)._1
    LazyCancelOrderBook.handle(() => EventInstant.now(),
      b2, firstCrossSell)._1
  }

@Benchmark
  def lazyOneToTwoCT(state: InterleavedOrderState): LazyCancelOrderBook = {
    val b1 = LazyCancelOrderBook.handle(() => EventInstant.now(),
      state.lazyBook, firstCancel)._1
    val b2 = LazyCancelOrderBook.handle(() => EventInstant.now(),
      b1, firstCrossSell)._1
    LazyCancelOrderBook.handle(() => EventInstant.now(),
      b2, secondCrossSell)._1
  }
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These benchmarks follow the convention of denoting the cancelation frequency (“C”) first
and the trade frequency (“T”) second. For example, the final benchmark implements the
scenario that represents one cancelation for every two trades. The commands are defined as
values out-of-scope to avoid generating garbage during benchmark invocation. The
benchmark invocation looks like the following:

    sbt 'project chapter4' 'jmh:run InterleavedOrderBenchmarks -foe true'

This invocation produces the following results:

Benchmark Throughput (ops per second) Error as percentage of throughput

eagerOneToTwoCT 797,339.08 ± 2.63

lazyOneToTwoCT 1,123,157.94 ± 1.26

eagerOneToOneCT 854,635.26 ± 2.48

lazyOneToOneCT 1,469,338.46 ± 1.85

eagerTwoToOneCT 497,368.11 ± 0.72

lazyTwoToOneCT 1,208,671.60 ± 1.69

 

Across the board, LazyCancelOrderBook outperforms QueueOrderBook. The relative
difference between lazy and eager performance shows an interesting relationship. The
following table captures the relative performance difference:

Benchmark LazyCancelOrderBook percentage performance improvement

OneToTwoCT 141.00%

OneToOneCT 172.00%

TwoToOneCT 243.00%

 

Studying the preceding table, we observe that LazyCancelOrderBook shows the greatest
performance win when there are two cancelations per trade. This result demonstrates the
benefit of deferring the cost of processing a cancelation request. The next trend that we see
is that as the frequency of trades increases and the frequency of cancelations
decreases, QueueOrderBook performance improves relative to LazyCancelOrderBook.
This result makes sense because LazyCancelOrderBook incurs extra costs when
performing a trade. In addition to searching for canceled orders, LazyCancelOrderBook
must update activeIds. The QueueOrderBook avoids these costs, but we see the
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overwhelming cost of cancelation processing continues to overshadow QueueOrderBook
performance. Summarizing these results, we have more confidence
that LazyCancelOrderBook is a stand-in replacement for QueueOrderBook. In scenarios
involving heavy volumes of cancelations, it appears to be a clear winner, and in other
scenarios, it appears to maintain parity with QueueOrderBook.

Lessons learned
In this section, we leveraged Scala collections, in conjunction with the judicious use of lazy
evaluation, to improve the performance of a critical component in MVT's infrastructure. By
working through several order book implementations, you learned first-hand how a well-
suited data structure can improve performance while a less optimal choice can derail
performance. This exercise also exposed you to how Scala implements several of its
collections, which you can now use to your advantage when working on a performance
problem.

LazyCancelOrderBook illustrates how valuable deferred evaluation can be in a
performance-sensitive environment. When faced with a performance challenge, ask
yourself the following questions to see whether it is possible to defer work (CPU work, not
your actual work!). The following table lists each question and how it was answered with
the order book:

Question Application to order book example

How can I decompose into
smaller discrete chunks?

The act of canceling was decomposed into identifying the
event that was sent to the requester and removing the
canceled order from the book state.

Why am I performing all of
these steps now?

Originally, order removal happened eagerly because it was
the most logical way to model the process.

Can I change any constraints
to allow me to model the
problem differently?

Ideally, we would have liked to remove the constraint
requiring rejection of nonexistent orders. Unfortunately, this
was out of our control.

What operations in my system
are most performant?

Executing an order and resting an order on the book are the
most performant operations. We leveraged fast execution time
to perform removals of canceled orders from the book.
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Like any approach, deferred evaluation is not a panacea. Diligent benchmarking and
profiling are necessary to validate the benefit delivered by the change. Arguably the
implementation of LazyCancelOrderBook is more complicated than QueueOrderBook,
which will increase the cost to maintain the system. In addition to making implementation
more complicated, it is now more difficult to reason about runtime performance due to the
variable cost of order execution. For the scenarios that we tested, LazyCancelOrderBook
remained at parity with or better than QueueOrderBook. However, we only exercised a few
of the many possible scenarios, and we did so with only a single price level in the order
book. In a real-world environment, additional benchmarking and profiling are needed to
build enough confidence that this new implementation delivers better performance.

Historical data analysis
You have done great work with the order book, and we hope, have learned valuable skills
along the way! It is now time to explore a new facet of MVT's activities. A group of expert
traders and data scientists are constantly studying historical market data to design
performant trading strategies. Until now, the company has not had the luxury of
allocating technical resources to this team. As a result, this group has been using clunky,
unreliable, and under-performing tools to analyze market data and build elaborate trading
strategies. With a performant order book, the top priority is to focus on improving the
strategies implemented by the company. Your new best friend, Dave, has explicitly asked
for you to join the team and help them modernize their infrastructure.

Lagged time series returns
The main tool used by the team is a simple program designed to compute lagged time series
returns from historical trade execution data. So far, this tool has been a big disappointment.
Not only does it return mostly invalid results, it is also slow and fragile. Before diving into
the code, Dave gives you a short presentation of the business rules involved. Return time
series are derived from midpoint time series. A midpoint is calculated on each minute, and
it is based on the bid and ask prices of each trade execution. Consider the following table as
a simple example:

Execution time Bid price Ask price Midpoint

01/29/16 07:45 2.3 2.5 2.55

01/29/16 07:46 2.1 2.4 2.25

01/29/16 07:47 2.9 3.4 3.15



Exploring the Collection API

[ 125 ]

01/29/16 07:48 3.2 3.4 3.3

01/29/16 07:49 3.1 3.3 3.2

 

The formula to calculate a midpoint is (bid_price + ask_price) / 2. For example, the midpoint
at 01/29/16 07:47 is (2.9 + 3.4) / 2, that is, 3.15.

In the real world, a midpoint would be weighed by the volume of the
transaction, and the time series would use a more fine-grained time unit,
such as seconds or even milliseconds. To keep the example simple, we
disregard the volume dimension by assuming a volume of 1 for all
executions. We also focus on calculating one data point per minute instead
of a more granular time series that would use seconds or even
milliseconds.

A series of midpoints is used to compute a series of returns. A series of returns is defined 
for a certain rollup value in minutes. To calculate the three minute return at time t3, the 
formula is: (midpoint_at_t3 – midpoint_at_t0) / midpoint_at_t0. We also multiply the result 
by 100 to use percentages. If we use the previous midpoint series to calculate a three minute 
return series, we obtain the following table:

Time Midpoint 3 minute return

01/29/16 07:45 2.55 N/A

01/29/16 07:46 2.25 N/A

01/29/16 07:47 3.15 N/A

01/29/16 07:48 3.3 22.73

01/29/16 07:49 3.2 29.69

 

Note that the first three midpoints do not have a corresponding three minute return as there
is no midpoint that is old enough to be used.

You are now familiar with the domain and can have a look at the existing code. Starting
with this model:

case class TimestampMinutes(value: Int) extends AnyVal {
  def next: TimestampMinutes = TimestampMinutes(value + 1)
}
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case class AskPrice(value: Int) extends AnyVal
case class BidPrice(value: Int) extends AnyVal
case class Execution(time: TimestampMinutes, ask: AskPrice, bid: BidPrice)

case class Midpoint(time: TimestampMinutes, value: Double)
object Midpoint {
  def fromAskAndBid(time: TimestampMinutes,askPrice: AskPrice,
   bidPrice: BidPrice): Midpoint =
   Midpoint(time, (bidPrice.value + askPrice.value) / 2D)
}

case class MinuteRollUp(value: Int) extends AnyVal
case class Return(value: Double) extends AnyVal

object Return {
  def fromMidpoint(start: Midpoint, end: Midpoint): Return =
    Return((end.value - start.value) / start.value * 100)
}

Everything looks straightforward. Note that prices, midpoints, and returns are represented
as Int and Double. We assume that our system is able to normalize the prices as integers
instead of decimals. This simplifies our code, and also improves the performance of the
program since we use primitive Double instead of, for example, BigDecimal
instances. TimestampMinutes is similar to the more commonly used Epoch timestamp, but
only down to the minute (see https://en.wikipedia.org/wiki/Unix_time).

After studying the model, we look at the existing implementation of the
computeReturnsWithList method:

def computeReturnsWithList(
  rollUp: MinuteRollUp,
  data: List[Midpoint]): List[Return] = {
  for { i <- (rollUp.value until data.size).toList} yield
Return.fromMidpoint(data(i - rollUp.value), data(i))
}

This method assumes that the list of midpoint received as input is already sorted by
execution time. This randomly accesses various indices of the list to read the midpoints that
are required to compute each return. To compute the second return value (index 1 in the
returned list) with a rollup value of three minutes, we access elements at index 4 and 1 in
the input list. The following diagram provides a visual reference for how returns are
computed:

https://en.wikipedia.org/wiki/Unix_time
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You have been warned that this method is slow, but it is also incorrect. Dave has verified
many times that it returns incorrect results. Before tackling the performance issue, you have
to handle the correctness problem. Optimizing an incorrect approach would not be a good
use of your time and, therefore, of the company's money! Rapidly, you realize that this
method puts too much trust in the data that it is fed. For this algorithm to work, the input
list of midpoints has to do the following:

This has to be properly sorted by execution time, from the oldest to the newest
execution
This has to have no more than one midpoint per minute
This has to not contain any minutes without a midpoint, that is, it has no missing
data points

You bring this up to Dave to better understand how the midpoint series is generated. He
explains that it is loaded from sequential logs that are recorded by the order book. It is
certain that the list is sorted by execution time. Also, he assures you that considering the
large volume of trades handled by the order book, it is impossible to have a minute without
a single execution. However, he acknowledges that it is more than likely that more than one
midpoint is computed for the same execution time. It looks like you have found the
problem causing invalid returns. Fixing it should not be too complicated, and you think that
it is now time to reflect on the performance issue.

We spent time studying the structure of a singly-linked list in the previous section. You
know that it is optimized for operations involving the head and the tail of the list. On the
contrary, randomly accessing an element by its index is an expensive operation requiring
linear time. To improve midpoint execution performance, we turn to a data structure with
improved random access performance: Vector.
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Vector
To improve the performance of our system, we should reconsider the data structure that
stores Midpoint values. A good option is to replace List with Vector, another Scala
collection provided by the standard library. The Vector is an efficient collection that
provides effectively constant time random access. The cost of random access operations
depends on various assumptions, such as, the maximum length of the Vector. The Vector
is implemented as an ordered tree data structure called a trie. In a trie, the keys are the
indices of the values stored in the Vector (to learn more about tries and their use cases,
see https://en.wikipedia.org/wiki/Trie). As Vector implements the Seq trait, just
like List, modifying the existing method is straightforward:

def computeReturnsWithVector(
  rollUp: MinuteRollUp,
  data: Vector[Midpoint]): Vector[Return] = {
  for {
    i <- (rollUp.value until data.size).toVector
  } yield Return.fromMidpoint(data(i - rollUp.value), data(i))
}

Changing the type of the collection is enough to switch to a more performant
implementation. To make sure that we actually improved the performance, we devise a
simple benchmark that is designed to use a few hours of historical trade executions and
measure the throughput of each implementation. The results are as follows:

Benchmark Return rollup
in minutes

Throughput (ops per
second)

Error as percentage
of throughput

computeReturnsWithList 10 534.12 ± 1.69

computeReturnsWithVector 10 49,016.77 ± 0.98

computeReturnsWithList 60 621.28 ± 0.64

computeReturnsWithVector 60 51,666.50 ± 1.64

computeReturnsWithList 120 657.44 ± 1.07

computeReturnsWithVector 120 43,297.88 ± 0.99

 

Not only does Vector yield significantly better performance, it delivers the same
throughput regardless of the size of the rollup. As a general rule, it is better to use Vector
as a default implementation for immutable indexed sequences. Vector effectively provides
constant time complexity not only for element random access but also for head and tail
operations, as well as to append and prepend elements to an existing Vector.

https://en.wikipedia.org/wiki/Trie
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The implementation of Vector is a tree structure of parity 32. Each node is implemented as
an array of size 32, and it can store either up to 32 references to child nodes or up to 32
values. This 32-ary tree structure explains why the complexity of Vector is “effectively
constant” instead of “constant”. The real complexity of the implementation is log(32, N),
where N is the size of the vector. This is considered close enough to actual constant time.
This collection is a good choice to store very large sequences because the memory is
allocated in chunks of 32 elements. These chunks are not preallocated for all levels of the
tree, but only allocated as needed.

Until Scala 2.10, one downside of Vector as compared to List was the lack of pattern
matching support. This is now fixed and you can pattern-match an instance of Vector in
the same way you pattern match a List. Consider this short example of a method pattern
matching a Vector to access and return its third element or return None if it contains
fewer than three elements:

def returnThirdElement[A](v: Vector[A]): Option[A] = v match {
 case _ +: _ +: x +: _ => Some(x)
  case _ => None
}

Invoking this method in the REPL demonstrates that pattern matching can be applied, as
follows:

    scala> returnThirdElement(Vector(1,2,3,4,5))
    res1: Option[Int] = Some(3)

Data clean up
The return algorithm is now blazingly fast. That is, blazingly fast to return incorrect results!
Remember that we still have to handle some edge cases and clean up the input data. Our
algorithm only works if there is exactly one midpoint per minute, and Dave informed us
that we are likely to see more than one midpoint computed for the same minute.

To handle this problem, we create a dedicated MidpointSeries module and make sure
that an instance of MidpointSeries, wrapping a series of Midpoint instances, is properly
created without duplicates:

class MidpointSeries private(val points: Vector[Midpoint]) extends AnyVal
object MidpointSeries {

 private def removeDuplicates(v: Vector[Midpoint]): Vector[Midpoint] = {
   @tailrec
   def loop(
     current: Midpoint,
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     rest: Vector[Midpoint],
     result: Vector[Midpoint]): Vector[Midpoint] = {
     val sameTime = current +: rest.takeWhile(_.time == current.time)
     val average = sameTime.map(_.value).sum / sameTime.size

     val newResult = result :+ Midpoint(current.time, average)
     rest.drop(sameTime.size - 1) match {
       case h +: r => loop(h, r, newResult)
       case _ => newResult
     }
   }

   v match {
     case h +: rest => loop(h, rest, Vector.empty)
     case _ => Vector.empty
   }
 }

 def fromExecution(executions: Vector[Execution]): MidpointSeries = {
   new MidpointSeries(removeDuplicates(
     executions.map(Midpoint.fromExecution)))
 }

Our removeDuplicates method uses a tail recursive method (Refer to Chapter 3,
Unleashing Scala Performance). This groups all the midpoints with the same execution time,
calculates the average value of these data points, and builds a new series with these average
values. Our module provides a fromExecution factory method to build an instance
of MidpointSeries from a Vector of Execution. This factory method
calls removeDuplicates to clean up the data.

To improve our module, we add our previous computeReturns method to
the MidpointSeries class. That way, once constructed, an instance of MidpointSeries
can be used to compute any return series:

class MidpointSeries private(val points: Vector[Midpoint]) extends AnyVal {

 def returns(rollUp: MinuteRollUp): Vector[Return] = {
   for {
     i <- (rollUp.value until points.size).toVector
   } yield Return.fromMidpoint(points(i - rollUp.value), points(i))
 }
}
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This is the same code that we previously wrote, but this time, we are confident that points
does not contain duplicates. Note that the constructor is marked private, so the only way
to instantiate an instance of MidpointSeries is via our factory method. This guarantees
that it is impossible to create an instance of MidpointSeries with a “dirty” Vector. You
release this new version of the program, wish good luck to Dave and his team, and leave for
a well deserved lunch break.

As you return, you are surprised to find Vanessa, one of the data scientists, waiting at your
desk. “The return series code still doesn't work”, she says. The team was so excited to
finally be given a working algorithm that they decided to skip lunch to play with it.
Unfortunately, they discovered some inconsistencies with the results. You try to collect as
much data as possible, and spend an hour looking at the invalid results that Vanessa is
talking about. You noticed that they all involved trade executions for two specific symbols:
FOO and BAR. A surprisingly small amount of trades is recorded for these symbols, and it
is not unusual for several minutes to elapse between trade executions. You questioned Dave
about these symbols. He explains that these are thinly traded tickers, and it is expected to
see a lower trading volume for them. The problem is now clear to you. The midpoint series
recorded for these symbols do not fulfill one of the prerequisite of your algorithm: at least
one execution per minute. You refrain from reminding Dave that he assured you this
situation was impossible and start working on a fix. The trader is always right!

You are not confident that you can rework the algorithm to make it more robust while
preserving the current throughput. A better option would be to find a way to clean up the
data to generate the missing data points. You seek advice from Vanessa. She explains that it
would not disturb the trading algorithm to perform a linear extrapolation of the missing
data points, based on the surrounding existing points. You write a short method to
extrapolate a midpoint at a certain time using the previous and following points
(respectively, a and b in the following snippet):

private def extrapolate(a: Midpoint,b: Midpoint, time: TimestampMinutes):
Midpoint = {
 val price = a.value +
   ((time.value - a.time.value) / (b.time.value - a.time.value)) *
     (b.value - a.value)
 Midpoint(time, price)
}

With this method, we can write a clean up method that follows the model of the previously
mentioned removeDuplicates function to preprocess the data:

private def addMissingDataPoints(
  v: Vector[Midpoint]): Vector[Midpoint] = {
 @tailrec
 def loop(
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   previous: Midpoint,
   rest: Vector[Midpoint],
   result: Vector[Midpoint]): Vector[Midpoint] = rest match {
   case current +: mPoints if previous.time.value == current.time.value - 1
=>
     // Nothing to extrapolate, the data points are consecutive
     loop(current, mPoints, result :+ previous)

   case current +: mPoints if previous.time.value < current.time.value - 1
=>
     //Need to generate a data point
     val newPoint = extrapolate(previous, current, previous.time.next)
     loop(newPoint, rest, result :+ previous)

   case _ => result :+ previous
 }

 v match {
   case h +: rest => loop(h, rest, Vector.empty)
   case _ => Vector.empty
 }
}

Our internal tail-recursive method handles the case where two points are already
consecutive, and the case where a point is missing. In the latter case, we create a new point
with our extrapolate method and insert it in the result Vector. Note that we use this
new point to extrapolate consecutive missing points. We update our factory method to
perform this additional clean up after removing possible duplicates:

def fromExecution(executions: Vector[Execution]): MidpointSeries = {
 new MidpointSeries(
   addMissingDataPoints(
     removeDuplicates(
       executions.map(Midpoint.fromExecution))))
}

We now have the assurance that our input data is clean and ready to be used by our return
series algorithm.

Handling multiple return series
The team is impressed by the improvements that you implemented, and by how quickly
you were able to fix the existing code. They mention a project they have had in mind for a
while without knowing how to approach it. A couple of weeks ago, Vanessa designed a
machine learning algorithm to evaluate trading strategies over several tickers, based on
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their return series. This algorithm requires that all the return series involved contain the
same amount of data points. Your previous changes already took care of this requirement.
However, another condition is that the return values must be normalized or scaled. A
feature is a machine learning term for an individual measurable property. In our example,
each return data point is a feature. Feature scaling is used to standardize the range of
possible values to ensure that broad ranges of values do not distort a learning algorithm.
Vanessa explains that scaling features will help her algorithm to deliver better results. Our
program will handle a set of return series, compute a scaling vector, and calculate a new set
of normalized return series.

Array
For this system, we consider switching from Vector to Array. Array is a mutable, indexed
collection of values. It provides real constant complexity for random access, as opposed
to Vector, which implements this operation in effectively constant time. However, contrary
to Vector,  Array is allocated once as a single and contiguous chunk of memory.
Furthermore, it does not permit append and prepend operations. A
Scala Array is implemented with a Java Array, which is memory optimized. A
Scala Array is more user-friendly than the native Java Array. Most methods that are
available on other Scala collections are made available when using Array. Implicit
conversions are used to augment Array with ArrayOps and WrappedArray. ArrayOps is a
simple wrapper for Array to temporarily enrich Array with all the operations found in
indexed sequences. Methods called on ArrayOps will yield an Array. On the contrary, a
conversion from Array to WrappedArray is permanent. Transformer methods called
on WrappedArray yield another WrappedArray. We see this in the standard library
documentation, as follows:

val arr = Array(1, 2, 3)
val arrReversed = arr.reverse   // arrReversed is an Array[Int]
val seqReversed: Seq[Int] = arr.reverse
// seqReversed is a WrappedArray

Having decided to use Array for our new module, we start working on the code to scale the
features of each return series:

class ReturnSeriesFrame(val series: Array[Array[Return]]) {
  val scalingVector: Array[Double] = {
    val v = new Array[Double](series.length)
    for (i <- series.indices) {
      v(i) = series(i).max.value
    }
      v
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  }
}

A scaling vector is computed for a set of series. The first value of the vector is used to scale
the first series, the second value for the second series, and so on. The scaling value is simply
the greatest value in the series. We can now write the code to use the scaling vector and
compute the normalized version of the frame:

object ReturnSeriesFrame {
def scaleWithMap(frame: ReturnSeriesFrame): ReturnSeriesFrame = {
 new ReturnSeriesFrame(
   frame.series.zip(frame.scalingVector).map {
case (series, scaling) => series.map(point => Return(point.value /
scaling))
   })
}
}

We zip each series with its scaling value, and create a new scaled return series. We can
compare the presented version of the code using Array with another, almost identical,
implementation using Vector (this code is omitted here for brevity, but it can be found in
the source code attached to the book):

Benchmark Series Size Throughput in operations
per second

Error as percentage of
throughput

normalizeWithVector 60 101,116.50 ± 0.85

normalizeWithArray 60 176,260.52 ± 0.68

normalizeWithVector 1,440 4,077.74 ± 0.71

normalizeWithArray 1,440 7,865.85 ± 1.39

normalizeWithVector 28,800 282.90 ± 1.06

normalizeWithArray 28,800 270.36 ± 1.85

 

These results show that Array performs better than Vector for shorter series. As the size
of the series increases, their respective performances are on-par. We can even see that the
throughput is identical for a series containing 20 days of data (28,800 minutes). For larger
sequences, the locality of Vector and its memory allocation model alleviate the difference
with Array.
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Our implementation is idiomatic: it uses higher-order functions and immutable structures.
However, using transform functions, such as zip and map, creates new instances of Array.
An alternative is to leverage the mutable nature of Array to limit the amount of garbage
generated by our program.

Looping with the Spire cfor macro
Scala supports two loop constructs: the for loop and the while loop. The latter, in spite of
its good performance characteristics, is usually avoided in functional programming. It
requires the usage of mutable state and var to keep track of the looping condition. In this
section, we will show you a technique to take advantage of while loop performance that
prevents mutable references from leaking into application code.

Spire is a numeric library written for Scala that allows developers to write efficient numeric
code. Spire leverages patterns, such as, type classes, macros, and specialization (remember
specialization from Chapter 3, Unleashing Scala Performance). You can learn more about
Spire at https://github.com/non/spire.

One of the macros made available by Spire is cfor. Its syntax is inspired from the more
traditional for loop that is encountered in Java. In the following implementation of feature
scaling, we use the cfor macro to iterate over our series and normalize the values:

def scaleWithSpire(frame: ReturnSeriesFrame): ReturnSeriesFrame = {
 import spire.syntax.cfor._

 val result = new Array[Array[Return]](frame.series.length)

 cfor(0)(_ < frame.series.length, _ + 1) { i =>
   val s = frame.series(i)
   val scaled = new Array[Return](s.length)
   cfor(0)(_ < s.length, _ + 1) { j =>
     val point = s(j)
     scaled(j) = Return(point.value / frame.scalingVector(i))
   }
   result(i) = scaled
 }

 new ReturnSeriesFrame(result)
}

https://github.com/non/spire
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This example highlights that cfor macros can be nested. The macro is essentially syntactic
sugar that compiles to a Scala while loop. We can examine the following generated
bytecode to prove this:

public highperfscala.dataanalysis.ArrayBasedReturnSeriesFrame
scaleWithSpire(highperfscala.dataanalysis.ArrayBasedReturnSeriesFrame);
    Code:
       0: aload_1
       1: invokevirtual #121                // Method
highperfscala/dataanalysis/ArrayBasedReturnSeriesFrame.series:()[[Lhighperf
scala/dataanalysis/Return;
       4: arraylength
       5: anewarray     #170                // class
"[Lhighperfscala/dataanalysis/Return;"
       8: astore_2
       9: iconst_0
      10: istore_3
      11: iload_3
     [... omitted for brevity]
      39: iload         6
      [... omitted for brevity]
      82: istore        6
      84: goto          39
      [... omitted for brevity]
      95: istore_3
      96: goto          11
      99: new           #16                 // class
highperfscala/dataanalysis/ArrayBasedReturnSeriesFrame
     102: dup
     103: aload_2
     104: invokespecial #19                 // Method
highperfscala/dataanalysis/ArrayBasedReturnSeriesFrame."<init>":([[Lhighper
fscala/dataanalysis/Return;)V
     107: areturn

We notice the two goto statements, instructions 96 and 84, which are used to loop back
respectively to the beginning of the outer loop and the inner loop (which respectively begin
with instructions 11 and 39). We can run a benchmark of this new implementation to
confirm the performance gain:
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Benchmark Series size Throughput (ops per
second)

Error as percentage of
throughput

normalizeWithArray 60 176,260.52 ± 0.68

normalizeWithCfor 60 256,303.49 ± 1.33

normalizeWithArray 1,440 7,865.85 ± 1.39

normalizeWithCfor 1,440 11,446.47 ± 0.89

normalizeWithArray 28,800 270.36 ± 1.85

normalizeWithCfor 28,800 463.56 ± 1.51

The macro, which is compiled to a while loop, is able to deliver better performance. Using
the cfor construct, we are able to retain performance while avoiding the introduction of
multiple vars. Although this approach sacrifices immutability, the scope of mutability is
limited and less error-prone than an equivalent implementation using an imperative while
or for loop.

Summary
In this chapter, we explored and experimented with various collection implementations. We
discussed the underlying representation, complexity, and use cases of each data structure.
We also introduced a third-party library, Spire, to improve the performance of our
programs. Some of the implementations presented drifted away from typical functional
programming practices, but we were able to restrict the use of mutable state to internal
modules, while still exposing functional public APIs. We expect that you are eager to learn
more, but in the next chapter, we will become lazy! In contrast to this chapter, which
focused on eager collections, we turn our attention to lazy collections in the next chapter.



5
Lazy Collections and Event

Sourcing
In the last chapter, we explored a number of Scala collections that readily perform
evaluations eagerly. The Scala standard library provides two collections that operate lazily:
views and streams. To motivate an exploration of these collections, we will tackle another
performance dilemma at MVT revolving around performance reports that are generated for
clients. In this chapter, we will cover the following topics:

Views
Stream processing with two real-world applications
Event sourcing
Markov chain generation

Improving the client report generation speed
Wanting to learn more about the customers of MVT, you decide to attend the weekly client
status meeting. As you look around, you see that you are the only engineer here and
everyone else is from the sales team. Johnny, the head of the MVT client management team,
runs through a list of newly-signed on clients. Each time he reads off a name, a loud bell is
rung. It seems like a strange custom to you, but the sales team is excitedly cheering each
time the bell rings.

After the new client listing ends and the ringing in your ears stops, one of the sales team
members asks Johnny, “When will the performance reports be generated faster? Clients are
calling me everyday complaining about the inability to see their positions and profits and
losses during the trading day. It's embarrassing that we do not have this kind of
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transparency, and we will lose business because of this.” You realize that the report in
question is a PDF that can be downloaded via the private web portal that is exposed by
MVT to clients. Unless a client is sophisticated enough to set up his or her own reporting
using MVT's performance API, then the client is dependent upon the portal to inspect
recent trading performance.

Realizing that this is an opportunity to better understand the issue, you ask, “Hi, I'm from
the engineering team. I thought I would sit in today to learn more about our clients. Can
you share more about the reporting performance problem? I'd like to help address the
concern.” Through conversation with the sales team, you learn that the PDF report is a first
step towards a real-time streaming web app. The PDF report allows MVT to quickly give
trading performance insight to clients. Each time the client clicks View Performance, a
report is generated that summarizes the performance trend by displaying whether or not
the client has realized a profit or a loss in the last hour, day, and seven days. Particularly
when the market is volatile, you learn that clients are more likely to generate reports. The
sales team thinks this exacerbates the issue because reports generate even slower when
everyone is trying to see recent trading performance. In some of the worst cases, the
performance report takes about a dozen minutes to generate, which is totally unacceptable
to clients that expect near real-time results.

Diving into the reporting code
Eager to dig into the problem, you find the repository that is responsible for working with
reporting data. You explore the domain model to understand the concerns represented in
this scope:

case class Ticker(value: String) extends AnyVal
case class Price(value: BigDecimal) extends AnyVal
case class OrderId(value: Long) extends AnyVal
case class CreatedTimestamp(value: Instant) extends AnyVal
case class ClientId(value: Long) extends AnyVal

sealed trait Order {
  def created: CreatedTimestamp
  def id: OrderId
  def ticker: Ticker
  def price: Price
  def clientId: ClientId
}
case class BuyOrder(created: CreatedTimestamp, id: OrderId, ticker: Ticker,
price:   Price, clientId: ClientId) extends Order

case class SellOrder(created: CreatedTimestamp, id: OrderId, ticker:
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Ticker, price: Price,clientId: ClientId) extends Order

case class Execution(created: CreatedTimestamp, id: OrderId, price: Price)

In the reporting context, linking orders to executions is important to build the performance
trend report because this association allows MVT to identify the profit or loss realized from
the trade. ClientId is a concept that you have not worked with before when working on
the order book or performing data analysis. The client ID is used to identify an MVT client's
account. As trades are executed on behalf of clients, the client ID allows us to link an
executed order to a client account.

Scanning the code base, you spot the representation of a performance trend report before it
is converted into PDF format:

sealed trait LastHourPnL
case object LastHourPositive extends LastHourPnL
case object LastHourNegative extends LastHourPnL

sealed trait LastDayPnL
case object LastDayPositive extends LastDayPnL
case object LastDayNegative extends LastDayPnL

sealed trait LastSevenDayPnL
case object LastSevenDayPositive extends LastSevenDayPnL
case object LastSevenDayNegative extends LastSevenDayPnL

case class TradingPerformanceTrend(
  ticker: Ticker,
  lastHour: LastHourPnL,
  lastDay: LastDayPnL,
  lastSevenDay: LastSevenDayPnL)

The profit and loss (PnL) trend is represented by distinct ADTs for each supported time
period: the last hour, last day, and last seven days. For each stock ticker, these three time
periods are included inTradingPerformanceTrend. Across multiple tickers, you infer a
client can identify whether or not MVT is generating a profit or a loss over time. Inspecting
the signature of the trend method which is responsible for
computing TradingPerformanceTrend, you confirm your thinking:

def trend(
  now: () => Instant,
  findOrders: (Interval, Ticker) => List[Order],
  findExecutions: (Interval, Ticker) => List[Execution],
  request: GenerateTradingPerformanceTrend):
List[TradingPerformanceTrend]
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case class GenerateTradingPerformanceTrend(
  tickers: List[Ticker], clientId: ClientId)

Computing the performance trend requires a way to determine the current time in order to
determine how far to look back to compute each time period's trend. The findOrders
and findExecutions arguments are functions that query the reporting data store for
orders and executions that were created within a time interval for a particular ticker. The
final argument contains the client's ID and the tickers to report on. Each period's trend is
computed by a generalized inner-method named periodPnL, which looks like the
following:

  def periodPnL(
    duration: Duration): Map[Ticker, PeriodPnL] = {
    val currentTime = now()
    val interval = new Interval(currentTime.minus(duration), currentTime)
    (for {
      ticker <- request.tickers
      orders = findOrders(interval, ticker)
      executions = findExecutions(interval, ticker)
      idToExecPrice = executions.groupBy(_.id).mapValues(es =>
        Price.average(es.map(_.price)))
      signedExecutionPrices = for {
        o <- orders
        if o.clientId == request.clientId
        price <- idToExecPrice.get(o.id).map(p => o match {
          case _: BuyOrder => Price(p.value * -1)
          case _: SellOrder => p
        }).toList
      } yield price
      trend = signedExecutionPrices.foldLeft(PnL.zero) {
        case (pnl, p) => PnL(pnl.value + p.value)
      } match {
        case p if p.value >= PnL.zero.value => PeriodPositive
        case _ => PeriodNegative
      }
    } yield ticker -> trend).toMap
  }

The periodPnL method is an involved method that contains several logical steps. For each
client-provided ticker, the associated orders and executions for the provided time period
are retrieved. In order to correlate orders with executions, a map of OrderId to Execution
is built by using groupBy. To simplify later calculations, the average execution price of each
executed order is computed to reduce multiple executions for a single order to a single
value.
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With the idToExecPrice lookup table built, the next logical step is to filter out orders for
other clients. Once only the client's orders remain, idToExecution is used to identify the
orders that executed. The final two steps compute the performance trend by tabulating the
client's absolute return (that is, profit and loss). The steps involve two additions to the
domain model, as follows:

case class PnL(value: BigDecimal) extends AnyVal
object PnL {
  val zero: PnL = PnL(BigDecimal(0))
}

sealed trait PeriodPnL
case object PeriodPositive extends PeriodPnL
case object PeriodNegative extends PeriodPnL

The PnL value is a value class that is used to represent the client's dollar return. PeriodPnL
is analogous to the previously introduced ADT that can be applied to any time period of
data. This allows PeriodPnL to be reused for the last hour, last day, and last seven days
trend computations.

When the trade represents a buy, the execution price is negated because the transaction
represents cash being exchanged for stock. When the trade represents a sell, the execution
price remains positive because the transaction represents exchanging stock for cash. After
computing the performance trend for each ticker, the List of the Ticker and PeriodPnL
tuples is converted to a Map.

Digesting this implementation, you can start to imagine why generating this PDF is time-
consuming. There is no sign of caching results, which means that the trend report is
recomputed each time a client makes a request. As the number of clients requesting reports
increases, there is an increased wait time while reports are computed. Re-architecting the
reporting infrastructure to cache reports is too large a near-term change. Instead, you try to
identify incremental changes that can improve report generation performance.

Using views to speed up report generation time
When working on the order book, we learned that List eagerly evaluates results. This
property means that, in periodPnL, the de-sugared for-comprehension filter and map
operations performed on orders produce new lists. That is, each transformation produces
a new collection. For customers with large order counts, it can be costly in terms of CPU
time to iterate over an order set three times, in addition to incurring garbage collection costs
due to repeated List creation. To ameliorate this concern, Scala provides a way to defer
transforming elements until an element is needed by a downstream computation.
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Conceptually, this is done by adding a view on top of the eagerly evaluated collection that
allows transformations to be defined with deferred evaluation semantics. A lazily evaluated
view of a collection can be constructed from any Scala collection by invoking view. For
example, this snippet creates a view from a List of integers:

val listView: SeqView[Int, List[Int]] = List(1, 2, 3).view

From this snippet, we learn that Scala represents a view into a collection with a different
SeqView type that is parameterized by two types: the collection element, and the collection
type. Seeing a view in use makes it easier to understand its runtime differences with an
eagerly evaluated collection. Consider the following snippet performing the same
operations on a List and a view over a List:

println("List evaluation:")
val evens = List(0, 1, 2, 3, 4, 5).map(i => {
  println(s"Adding one to $i")
  i + 1
}).filter(i => {
  println(s"Filtering $i")
  i % 2 == 0
})

println("--- Printing first two even elements ---")
println(evens.take(2))

println("View evaluation:")
val evensView = List(0, 1, 2, 3, 4, 5).view.map(i => {
  println(s"Adding one to $i")
  i + 1
}).filter(i => {
  println(s"Filtering $i")
  i % 2 == 0
})

println("--- Printing first two even elements ---")
println(evensView.take(2).toList)

This snippet performs simple arithmetic and then filters to find the even elements. For the
sake of deepening our understanding, the snippet breaks the functional paradigm by
adding the println side effect. The output of the list evaluation is as expected:

List evaluation:
Adding one to 0
Adding one to 1
Adding one to 2
Adding one to 3
Adding one to 4
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Adding one to 5
Filtering 1
Filtering 2
Filtering 3
Filtering 4
Filtering 5
Filtering 6
--- Printing first two even elements ---
List(2, 4)

With eager evaluation, each transformation is applied to each element before moving to the
next transformation. Now, consider the following output from view evaluation:

View evaluation:
--- Printing first two even elements ---
Adding one to 0
Filtering 1
Adding one to 1
Filtering 2
Adding one to 2
Filtering 3
Adding one to 3
Filtering 4
List(2, 4)

As we discussed earlier, with lazy evaluation no transformations are applied until an
element is needed. In this example, this means that the addition and filtering do not occur
until the invocation of toList. The absence of output after “view evaluation” is evidence
that zero transformations occurred. Curiously, we also see that only the first four of six
elements are evaluated. When a view applies transformations, it applies all transformations
to each element rather than applying each transformation to all elements. By applying all
transformations in one step, the view is able to return the first two elements without
evaluating the entire collection. Here, we see the potential performance gains from view
usage due to lazy evaluation. Before applying the concept of views to the performance
trend report, let's take a deeper look at view implementation.

Constructing a custom view
Views are able to defer evaluation by returning a data structure that composes the previous
transformation state with the next transformation. The Scala implementation of views is
admittedly complicated to digest because it provides a large number of capabilities while
retaining support for all Scala collections. To build an intuition for how views are
implemented, let's construct our own lazily evaluated view that works only for List and
only supports map operations. To begin, we define the operations that are supported by our
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implementation of a PseudoView view:

sealed trait PseudoView[A] {
  def map[B](f: A => B): PseudoView[B]
  def toList: List[A]
}

The PseudoView is defined as a trait that supports lazy application of a transformation
from A to B and also supports evaluating all transformations to return a List. Next, we
define two view types of view to support the initial case when zero transformations have
been applied and to support applying a transformation to a previously transformed view.
The signatures are shown in the following snippet:

final class InitialView[A](xs: List[A]) extends PseudoView[A]
final class ComposedView[A, B](xs: List[A], fa: A => B) extends
PseudoView[B]

In both scenarios, the original List must be carried through to support eventually applying
the transformations. In the InitialView base case, there are zero transformations, which is
why there is no additional state. ComposedView supports chaining computations by
carrying the state of the previous fa transformation.

Implementing InitialView is a straightforward delegation to ComposedView:

final class InitialView[A](xs: List[A]) extends PseudoView[A] {
  def map[B](f: A => B): PseudoView[B] = new ComposedView[A, B](xs, f)
  def toList: List[A] = xs
}

The List implementation shows how transformations are chained together using function
composition:

final class ComposedView[A, B](xs: List[A], fa: A => B) extends
PseudoView[B] {
  def map[C](f: B => C): PseudoView[C] = new ComposedView(xs,
f.compose(fa))
  def toList: List[B] = xs.map(fa)
}

Let's construct a PseudoView companion object that provides view construction, as follows:

object PseudoView {
  def view[A, B](xs: List[A]): PseudoView[A] = new InitialView(xs)
}
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We can now exercise PseudoView with a simple program to demonstrate that it defers
evaluation:

println("PseudoView evaluation:")
val listPseudoView = PseudoView.view(List(0, 1, 2)).map(i => {
  println(s"Adding one to $i")
  i + 1
}).map(i => {
  println(s"Multiplying $i")
  i * 2
})

println("--- Converting PseudoView to List ---")
println(listPseudoView.toList)

Running this program, we see output equivalent to usage of Scala's view implementation:

PseudoView evaluation:
--- Converting PseudoView to List ---
Adding one to 0
Multiplying 1
Adding one to 1
Multiplying 2
Adding one to 2
Multiplying 3
List(2, 4, 6)

PseudoView helps build an intuition about how Scala implements views. From here, you
can begin considering how to support other operations. For example, how can filter be
implemented? The filter is interesting to consider because it constrains the original
collection. As defined, PseudoView is ill-equipped to support the filter operations,
which is one illustration of the complexity that is handled by Scala views. Scala views
tackles this challenge by defining a trait named Transformed. The Transformed trait is the
base trait for all view operations. A partial definition is shown, as follows:

trait Transformed[+B] extends GenTraversableView[B, Coll] {
  def foreach[U](f: B => U): Unit
  lazy val underlying = self.underlying
}

The underlying lazy value is how the originally wrapped collection is accessed. This is
analogous to how PseudoView passed the List state into ComposedView. Transformed
defines a side-effecting foreach operation to support collection operations in a lazy
manner. Using foreach allows implementations of this trait to modify the underlying
collection. This is how filter is implemented:
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trait Filtered extends Transformed[A] {
  protected[this] val pred: A => Boolean
  def foreach[U](f: A => U) {
    for (x <- self)
      if (pred(x)) f(x)
  }
}

Transformed is used within the view API to maintain the state of necessary operations,
while the external API supports interacting with SeqView. Following another pattern that is
commonly found in Scala collections, SeqView inherits a number of operations by mixing in
other traits. SeqView indirectly mixes in TraversableViewLike, which provides access to
the Transformed operations.

Applying views to improve report generation
performance
With our newly-developed intuition for views, we may view (no pun intended!) the 
construction of performance trend reports differently. Scala's implementation of views
makes it trivial to switch from eagerly evaluated collections to a lazily evaluated version. If
you recall, once the order ID to the average execution price lookup table is constructed, a
series of transformations are applied to the orders that are retrieved for the duration and
ticker. By converting orders to a view, there is an opportunity to avoid unnecessary
transformations and improve the speed of the performance trend report.

While it is trivial to convert to a view, it is less trivial to identify under which conditions
lazy evaluation out-performs eager evaluation. As a good performance engineer, you want
to benchmark your proposed change, but you do not have access to historical order and
execution data to build a benchmark. Instead, you write a microbenchmark that simulates
the problem that you are modeling. The question that you are trying to answer is, “For what
size collection and what number of operations does it make sense to use a view over a
List?” There is a cost to constructing a view because it involves retaining information
about the deferred transformation, which implies it will not always be the most performant
solution. You come up with the following scenarios to help answer your question:

  @Benchmark
  def singleTransformList(state: ViewState): List[Int] =
    state.numbers.map(_ * 2)

  @Benchmark
  def singleTransformView(state: ViewState): Vector[Int] =
    state.numbers.view.map(_ * 2).toVector
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  @Benchmark
  def twoTransformsList(state: ViewState): List[Int] =
    state.numbers.map(_ * 2).filter(_ % 3 == 0)

  @Benchmark
  def twoTransformsView(state: ViewState): Vector[Int] =
    state.numbers.view.map(_ * 2).filter(_ % 3 == 0).toVector

  @Benchmark
  def threeTransformsList(state: ViewState): List[Int] =
    state.numbers.map(_ * 2).map(_ + 7).filter(_ % 3 == 0)

  @Benchmark
  def threeTransformsView(state: ViewState): Vector[Int] =
    state.numbers.view.map(_ * 2).map(_ + 7).filter(_ % 3 == 0).toVector

For each collection type, a List, and a view over a Vector, you define three tests that
exercise an increasing number of transformations. Vector is used instead of List
because toList on a view is not specialized for List. As we have previously seen, List
operations are written to take advantage of constant time and prepend performance.
The toList performs linear time append operations, which gives the false impression that
views deliver lower performance. Switching to Vector provides effectively constant time
append operations. The state for this benchmark looks like the following:

@State(Scope.Benchmark)
class ViewState {

  @Param(Array("10", "1000", "1000000"))
  var collectionSize: Int = 0

  var numbers: List[Int] = Nil

  @Setup
  def setup(): Unit = {
    numbers = (for (i <- 1 to collectionSize) yield i).toList
  }
}

ViewState sweeps different collection sizes to help identify how sensitive view
performance is to collection size. The benchmark is invoked via the following:

    sbt 'project chapter5' 'jmh:run ViewBenchmarks -foe true'
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This invocation produces the following results:

Benchmark Collection size Throughput (ops per
second)

Error as percentage
of throughput

singleTransformList 10 15,171,067.61 ± 2.46

singleTransformView 10 3,175,242.06 ± 1.37

singleTransformList 1,000 133,818.44 ± 1.58

singleTransformView 1,000 52,688.80 ± 1.11

singleTransformList 1,000,000 30.40 ± 2.72

singleTransformView 1,000,000 86.54 ± 1.17

twoTransformsList 10 5,008,830.88 ± 1.12

twoTransformsView 10 4,564,726.04 ± 1.05

twoTransformsList 1,000 44,252.83 ± 1.08

twoTransformsView 1,000 80,674.76 ± 1.12

twoTransformsList 1,000,000 22.85 ± 3.78

twoTransformsView 1,000,000 77.59 ± 1.46

threeTransformsList 10 3,360,399.58 ± 1.11

threeTransformsView 10 3,438,977.91 ± 1.27

threeTransformsList 1,000 36,226.87 ± 1.65

threeTransformsView 1,000 58,981.24 ± 1.80

threeTransformsList 1,000,000 10.33 ± 3.58

threeTransformsView 1,000,000 49.01 ± 1.36

 

The results give us an interesting insight into the cases where using a view yields better
performance. For a small collection, such as 10 elements in our benchmark, a List performs
better, regardless of the amount of operations, although this gap closes at 1,000,000
elements. When transforming a large collection, 1,000,000 elements in our benchmark, a
view is more efficient with an increasing differential as the number of transformations
increases. For example, with 1,000,000 elements and two transformations, views deliver
approximately triple the throughput of List. In the case of a medium size collection, such
as 1,000 elements in this example, this is not as clear-cut. When performing a single
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transformation, an eager List performs better, while a view delivers better throughput
when applying more than one transformation.

As the volume of your data and the transformation count increase, it becomes more likely
that a view offers better performance. Here, you see the tangible benefit of avoiding
intermediate collections. A second axis of performance to consider is the nature of the
transformation. Transformations that benefit from early termination (for example, find),
benefit strongly from lazy evaluation. This benchmark illustrates that it is important to
understand the size of your data and the transformations that you intend to perform.

View caveats
Views offer a simple way to improve performance with minimally invasive changes to your
system. The ease of use is part of the allure of views, which may tempt you to use them
more frequently than you otherwise would. As our benchmarking in the previous section
shows, there is a nontrivial overhead to using views, which means defaulting to views is a
suboptimal choice. Looking past the pure performance perspective, there are other reasons
to tread carefully when using views.

SeqView extends Seq
As views mirror the collection API, it can be a challenge to identify when transformations
are being applied lazily. For this reason, we recommend setting well-defined boundaries for
view usage. When working on client reporting, we limited view usage to a single inner-
function and used a List eager collection type as the return type. Minimizing the area of a
system performing a lazy evaluation can reduce cognitive load when building a runtime
execution mental model.

On a related note, we feel that it is important to be cautious about how a view is
transformed into an eagerly evaluated collection type. We showed conversion by invoking
toList, which makes the intent explicit. SeqView also provides a force method to force
evaluation. As a general rule, we avoid using force because it typically
returns scala.collection.immutable.Seq. SeqView retains the collection type as its
second generic parameter, which allows force to return the original collection type when
there is enough evidence. However, certain operations, such as map, cause the view to lose
evidence of the original collection type. When this happens, force returns the more
general Seq collection type. Seq is a trait that is a super-type to all sequences in the
collection library, including views and another lazy data structure that we will discuss later,
named scala.collection.immutable.Stream. This inheritance scheme allows the
following three statements to compile:
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val list: Seq[Int] = List(1, 2, 3)
val view: Seq[Int] = list.view
val stream: Seq[Int] = list.toStream

We believe this is undesirable because the Seq data type hides critical information about the
underlying implementation. It represents both lazy and eagerly evaluated collections with
the same type. Consider the following snippet example to understand why this is
undesirable:

def shouldGenerateOrder(xs: Seq[Execution]): Boolean =
  xs.size >= 3

In this manufactured example, imagine that shouldGenerateOrder is invoked with
a Vector, but then later the Vector is swapped out for SeqView. With Vector, identifying
collection length is a constant time operation. With SeqView, you cannot reason with
certainty about the runtime of the operation, except to say that it is definitely more
expensive than Vector.size. Seq usage, and, therefore, the usage of force, should be
avoided because it is difficult to reason about runtime behavior, and this can lead to
unexpected side-effects.

In a typical software system, areas of responsibility are separated into discrete modules.
Using the performance trend reporting example, you can imagine a separate module
containing the translation from List[TradingPerformanceTrend] to a PDF report. You
may be tempted to expose the view to other modules to extend the benefit of lazy
transformations. If benchmarks justify making this type of change, then we encourage you
to choose one of these options. Our preferred choice in this scenario is to use Stream, which
is a lazily evaluated version of List. We explore Stream later in this chapter. Alternatively,
if Stream cannot be used, be strict in your use of the SeqView datatype to clearly demarcate
that the collection is lazily evaluated.

Views are not memoizers
One additional consideration when using views is to be cognizant of when transformations
are repeatedly applied. For example consider this manufactured example that focuses on a
use case where a view is used as a base for multiple computations:

> val xs = List(1,2,3,4,5).view.map(x => {  println(s"multiply $x"); x * 2
})
xs: scala.collection.SeqView[Int,Seq[_]] = SeqViewM(...)
> val evens = xs.filter(_ % 2 == 0).toList
multiply 1
multiply 2
multiply 3
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multiply 4
multiply 5
evens: List[Int] = List(2, 4, 6, 8, 10)

> val odds = xs.filter(_ % 2 != 0).toList
multiply 1
multiply 2
multiply 3
multiply 4
multiply 5
odds: List[Int] = List()

In this example, xs is a view on a list of integers. A map transformation is lazily applied to
multiply these integers by 2. The view is then used to create two List instances, one
containing even elements, the other containing odd elements. We observe that the
transformation is applied to the view twice, each time we turn the view into a list. This
shows that the transformation is lazily applied, but the results of the computation are not
cached. This is a characteristic of views to keep in mind, as expensive transformations
applied several times can cause significant slowdowns. This is also the reason why side-
effects should be avoided in transformations applied to views. If, for some reason,
referential transparency is not upheld, the combination of side-effects and multiple
evaluations due to view usage can lead to exceptionally difficult to maintain software.

This example is straightforward, and the misuse of views is easy to spot. However, even
methods that are provided by the standard library can lead to undesirable results when
used with views. Consider this snippet:

> val (evens, odds) = List(1,2,3,4,5).view.map(x => {  println(s"multiply
$x"); x * 2 }).partition(_ % 2 == 0)
evens: scala.collection.SeqView[Int,Seq[_]] = SeqViewMF(...)
odds: scala.collection.SeqView[Int,Seq[_]] = SeqViewMF(...)

> println(evens.toList, odds.toList)
multiply 1
multiply 2
multiply 3
multiply 4
multiply 5
multiply 1
multiply 2
multiply 3
multiply 4
multiply 5
(List(2, 4, 6, 8, 10),List())
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This example achieves the same results as the previous sample, but we rely on the built-in
partition method to split the original list into two distinct collections each operating on
the original view. Again, we see the map transformation applied twice to the original view.
This is due to the underlying implementation of partition in TraversableViewLike.
The main takeaway is that views and lazy evaluation can help yield better performance, but
they should be used carefully. It is a good idea to experiment and try your algorithm in the
REPL to confirm that you are using views correctly.

In our running example on reporting on trading performance trends, we saw an easy-to-
miss example of lazy evaluation when operating on a Map. Recall that there was a lookup
table built using the following code:

executions.groupBy(_.id).mapValues(es =>
Price.average(es.map(_.price)))

The return type of mapValues is Map[A, B], which does not suggest any difference in
evaluation strategy. Let's run a simple example in the REPL:

> val m = Map("a" -> 1, "b" -> 2)
m: scala.collection.immutable.Map[String,Int] = Map(a -> 1, b -> 2)
> val m_prime = m.mapValues{ v => println(s"Mapping $v"); v * 2}
Mapping 1
Mapping 2
m_prime: scala.collection.immutable.Map[String,Int] = Map(a -> 2, b -> 4)
> m_prime.get("a")
Mapping 1
res0: Option[Int] = Some(2)
> m_prime.get("a")
Mapping 1
res1: Option[Int] = Some(2)

Notice how, each time we call get on m_prime to retrieve a value, we can observe the
transformation being applied, even when using the same key. The mapValues is a lazily-
evaluated transformation of each value in the map akin to a view operating on the keys of a
map. The types that are involved do not provide any insight, and unless you inspect the
implementation of Map or carefully read the documentation that is associated
with mapValues, you will likely miss this important detail. Consider the caveats of views
when working with mapValues.
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Zipping up report generation
While investigating the implementation of TradingPerformanceTrend, we took a deep
dive into views and found how they can improve performance. We now return to the
implementation of trend to complete the generation of
the List[radingPerformanceTrend]. The following snippet shows trend with the
implementation of periodPnL hidden because we thoroughly reviewed it:

def trend(
  now: () => Instant,
  findOrders: (Duration, Ticker) => List[Order],
  findExecutions: (Duration, Ticker) => List[Execution],
    request: GenerateTradingPerformanceTrend):
List[TradingPerformanceTrend] = {
    def periodPnL(
      start: Instant => Instant): Map[Ticker, PeriodPnL] = { ... }
    val tickerToLastHour = periodPnL(now =>
      now.minus(Period.hours(1).getMillis)).mapValues {
      case PeriodPositive => LastHourPositive
      case PeriodNegative => LastHourNegative
    }
    val tickerToLastDay = periodPnL(now =>
      now.minus(Period.days(1).getMillis)).mapValues {
      case PeriodPositive => LastDayPositive
      case PeriodNegative => LastDayNegative
    }
    val tickerToLastSevenDays = periodPnL(now =>
      now.minus(Period.days(7).getMillis)).mapValues {
      case PeriodPositive => LastSevenDayPositive
      case PeriodNegative => LastSevenDayNegative
    }
    tickerToLastHour.zip(tickerToLastDay).zip(tickerToLastSevenDays).map({
      case (((t, lastHour), (_, lastDay)), (_, lastSevenDays)) =>
        TradingPerformanceTrend(t, lastHour, lastDay, lastSevenDays)
    }).toList
  }

This method focuses on marshaling the translation of PnL for a time period to the
appropriate time period's performance trend. The final expression involving two
invocations of zip makes the transformation from three maps with keys of Ticker and
corresponding period PnL trend values to List[TradingPerformanceTrend] elegant.
zip iterates over two collections to yield a tuple for each index of both collections. Here is a
simple snippet to illustrate zip usage:

println(List(1, 3, 5, 7).zip(List(2, 4, 6)))
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This yields the following:

List((1,2), (3,4), (5,6))

The result is that corresponding indexes are “zipped” together. For example, at index one,
the first list's value is three and the second list's value is four, yielding the tuple, (3, 4).
The first list has four elements while the second list only has three elements; this is silently
omitted from the resulting collection. This behavior is well-documented, but it might be
unexpected at first glance. In our reporting use case, we are certain that each key (that is,
each Ticker), appears in all three maps. In this use case, we are certain that all three maps
are of equal length.

However, there is a subtle bug in our usage of zip. The zip uses a collection's iterator to
iterate over elements, which implies that usage of zip is sensitive to ordering. Each of the
three maps is constructed by invoking toMap, which indirectly delegates to
a scala.collection.immutable.HashMap implementation of Map. Similar to Set, Scala
provides several handwritten implementations of Map (for example, Map2) for small
collection sizes before constructing a HashMap. By now, you may realize the flaw, HashMap
does not guarantee ordering.

To fix this bug and retain usage of zip, we can leverage our earlier discovery
of SortedMap, the trait backed by TreeMap with sorted keys. Swapping out Map
for SortedMap and making appropriate changes to define an Ordering for Ticker, we
now have a bug-free, elegant solution to generating trading performance trend reports.
With a judicious usage of views, we found a way to deliver iterative performance
improvements with minimally invasive changes. This will give the sales team something to
ring the bell about! This gives us additional time to consider other approaches to generating
reports.

Rethinking reporting architecture
After deploying a new version of the web portal that generates the performance report
containing your view changes, you begin wondering what else can be done to improve
report generation performance. It strikes you that, for a particular time interval, the report is
immutable. The computed PnL trend for a particular hour never changes once computed.
Although the report is immutable, it is needlessly being recomputed each time a client
requests the report. Given this line of thinking, you wonder how difficult it is to generate a
new report each hour as new execution data becomes available. On-the-fly, order and
execution events can be transformed as they are created into the inputs that are required for
the client performance trend report. With a pregenerated report, the web portal
performance issues should completely disappear because the responsibility of report
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generation no longer belongs to the web portal.

This new report generation strategy leads us to explore a new design paradigm, called
event sourcing. Event sourcing describes an architectural approach to designing systems
that relies on processing events over time instead of relying on a model of the current state
to answer different questions. The reporting system that we worked on performs significant
work to identify the subset of orders that executed because current state rather than events
is stored. Imagine that, instead of working with data, such as Order and Execution, we
instead worked with events that represent things that happened in the system over time.
One relevant event to report could be the OrderExecuted event that can be modeled, as
follows:

case class OrderExecuted(created: CreatedTimestamp, orderId: OrderId,
price: Price)

This event describes something that happened instead of representing a snapshot of current
state. To extend this example, imagine if Order also included an optional Price to denote
execution price:

sealed trait Order {
  def created: CreatedTimestamp
  def id: OrderId
  def ticker: Ticker
  def price: Price
  def clientId: ClientId
  def executionPrice: Option[Price]
}

If this data model is mapped to a relational database, executionPrice would be a nullable
database value that is overwritten when an execution occurs. When the domain model only
reflects the current state, then immutability is lost. As a functional programmer, this
statement should concern you because you understand the reasoning capabilities that
immutability provides. Storing only the current state of data may also lead to excessively
large objects that are difficult to program with. For example, how would you represent that
an Order was canceled? With the current approach, the most expedient method is to add a
Boolean flag named isCanceled. Over time, as your system's requirements become more
complicated, the Order object will grow and you will track more characteristics about the
current state. This means that loading a set of Order objects into memory from a database
will grow more unwieldy due to growing memory requirements. This is a dilemma that
you likely have experienced if you have extensive Object Relational Mapping (ORM)
experience.
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To avoid bloating Order, you may try to deconstruct the concept of an order to support
multiple use cases. For example, if you are only interested in executed orders, the model
may change the executionPrice datatype from Option[Price] to Price, and you may
no longer require the canceled Boolean flag because, by definition, an executed order could
not have been canceled.

Identifying multiple definitions or representations for what you once thought was a single
concept is an important step toward addressing the shortcomings that we walked through.
Extending this approach, we come back to the topic of event sourcing. We can replay a set
of events to build OrderExecuted. Let's slightly modify the events emitted from the order
book to look like the following:

sealed trait OrderBookEvent
case class BuyOrderSubmitted(created: CreatedTimestamp,
  id: OrderId, ticker: Ticker, price: Price, clientId: ClientId)
  extends OrderBookEvent
case class SellOrderSubmitted(created: CreatedTimestamp,
  id: OrderId, ticker: Ticker, price: Price clientId: ClientId)
  extends OrderBookEvent
case class OrderCanceled(created: CreatedTimestamp, id: OrderId)
  extends OrderBookEvent
case class OrderExecuted(created: CreatedTimestamp,
  id: OrderId, price: Price) extends OrderBookEvent

If all OrderBookEvents were persisted (for example, to disk), it is then possible to write a
program that reads all the events and constructs a set of ExecutedOrders by
correlating BuyOrderSubmitted and SellOrderSubmitted events with OrderExecuted
events. An advantage that we see with this approach is that, over time, we are able to ask
new questions about what happened in our system and then easily answer them by reading
the events. In contrast, if a model built on the current state did not include executions when
it was first designed, it is impossible to retroactively answer the question, “Which orders
executed last week?”

Our new idea is exciting, and it has the potential to yield great improvements. However, it
comes with a set of challenges. The main difference with the previous section is that our
new use case does not load the Order and Execution collections in memory from a data
store. Instead, we are planning to process the incoming OrderBookEvent as it is generated
by the order book. Conceptually, this approach still involves processing a sequence of data.
However, with the previous approach, the entire data set existed prior to beginning any
transformations. Processing events on-the-fly requires designing software that handles data
that has not yet been generated. Clearly, neither eager collections nor views are a good tool
for our new system. Luckily, the standard Scala library provides us with the right
abstraction: Stream. Let's take a closer look at this new collection type to better understand
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how Stream can help us implement an event sourcing approach to the client performance
reporting architecture.

An overview of Stream
A stream can be seen as a mix between a list and a view. Like a view, it is lazily evaluated
and transformations are applied only when its elements are accessed or collected. Like
a List, the elements of a Stream are only evaluated once. A Stream is sometimes
described as an unrealized List, meaning that it is essentially a List that has not yet been
fully evaluated, or realized.

Where a List can be constructed with the cons (::) operator, a Stream can be similarly
constructed with its own operator:

> val days = "Monday" :: "Tuesday" :: "Wednesday" :: Nil
days: List[String] = List(Monday, Tuesday, Wednesday)

> val months = "January" #:: "February" #:: "March" #:: Stream.empty
months: scala.collection.immutable.Stream[String] = Stream(January, ?)

The syntax to create a Stream is close to the one to create a List. One difference is the
returned value. Where a List is immediately evaluated, a Stream is not. Only the first
element ("January") is computed; the remaining values are still unknown (and denoted by
a? character).

Let's observe what happens when we access part of the stream:

scala> println(months.take(2).toList)
List(January, February)
scala> months
res0: scala.collection.immutable.Stream[String] = Stream(January, February,
?)

We forced the evaluation of the first two elements of the Stream by turning it into a List
(see the following sidebar). The first two months are printed. We then display the value
of months to discover that the second element ("February") is now computed.

In the preceding example, toList is the call that forces the evaluation of
the Stream. take(2) is a lazily applied transformer that also returns an
unevaluated Stream:

scala> months.take(2)
res0: scala.collection.immutable.Stream[String] = Stream(January, ?)
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To highlight the evaluation characteristics of a Stream, we look at another example of
creating a Stream:

def powerOf2: Stream[Int] = {
  def next(n: Int): Stream[Int] = {
    println(s"Adding $n")
    n #:: next(2 * n)
  }
  1 #:: next(1)
}

This short snippet defines a function that creates a Stream of powers of 2. It is an
infinite Stream initialized with the first value 1 and the tail is defined as another Stream.
We added a println statement to allow us to study the evaluation of the elements:

scala> val s = powerOf2
s: Stream[Int] = Stream(1, ?)

scala> s.take(8).toList
Adding 1
Adding 2
Adding 4
Adding 8
Adding 16
Adding 32
Adding 64
res0: List[Int] = List(1, 1, 2, 4, 8, 16, 32, 64)

scala> s.take(10).toList
Adding 128
Adding 256
res1: List[Int] = List(1, 1, 2, 4, 8, 16, 32, 64, 128, 256)

Note how the first eight elements are only evaluated when we perform the first conversion
to a List. In the second call, only elements 9 and 10 are computed; the first eight are
already realized and are part of the Stream.

Based on the previous example, you may wonder if a Stream is an
immutable data structure. Its fully qualified name
is scala.collection.immutable.Stream, so this should give you a
good hint. It is true that accessing the Stream and realizing some of its
elements causes a modification of the Stream. However, the data structure
is still considered immutable. The values it contains never change once
assigned; even before being evaluated, the values exist and have a
definition in the Stream.
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The previous example shows an interesting property of Stream: it is possible to create a
virtually infinite Stream. The Stream that is created by powerOf2 is unbounded and it is
always possible to create one more element thanks to our next method. Another useful
technique is the creation of recursive streams. A recursive Stream refers to itself in its
definition. Let's adapt our previous example. Instead of returning the complete sequence of
powers of 2, we will allow the caller to set a starting value:

def powerOf2(n: Int): Stream[Int] = math.pow(2, n).toInt #:: powerOf2(n+1)

The math.pow is used to compute 2^n. Note that we calculate the first value and define the
rest of the Stream as powerOf2(n+1), that is, the next power of 2:

scala> powerOf2(3).take(10).toList
res0: List[Int] = List(8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096)

The companion object of Stream provides several factory methods to instantiate a Stream.
Let's look at a few of them:

Stream.apply: This allows us to create a Stream for a finite sequence of values:

       scala> Stream(1,2,3,4)
       res0: scala.collection.immutable.Stream[Int] = Stream(1, ?)
       scala> Stream(List(1,2,3,4):_*)
       res1: scala.collection.immutable.Stream[Int] = Stream(1, ?)

Stream.fill[A](n: Int)(a: => A): This produces a Stream containing the
element a, n times:

       scala> Stream.fill(4)(10)
       res0: scala.collection.immutable.Stream[Int] = Stream(10, ?)
       scala> res0.toList
       res1: List[Int] = List(10, 10, 10, 10)

Stream.from(start: Int): This creates an increasing sequence of integers
beginning with start:

       scala> Stream.from(4)
       res0: scala.collection.immutable.Stream[Int] = Stream(4, ?)
       scala> res0.take(3).toList
       res1: List[Int] = List(4, 5, 6)

We invite you to look at the other methods that are available on the companion object. Note
that a Stream can also be constructed from a List directly, as follows:

scala> List(1,2,3,4,5).toStream
res0: scala.collection.immutable.Stream[Int] = Stream(1, ?)
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The previous code may be misleading. Turning a List into a Stream does not spare the
price of evaluating the whole List in memory. Similarly, if we were to apply
transformations (such as map or filter) to the List before the call to toStream, we would
be performing these computations on the entire List.

Just like a List, you can pattern match on a Stream, as follows:

scala> val s = Stream(1,2,3,4)
s: scala.collection.immutable.Stream[Int] = Stream(1, ?)
scala> s match {
     | case _ #:: _ #:: i #:: _ => i
     | }
res0: Int = 3

This pattern matching extracts the third element from the s stream. Pattern matching on a
stream forces the realization of the elements required to evaluate the match expression. In
the preceding case, the first three items are calculated.

To pattern match on an empty stream, you can use the Stream.Empty
object. It is a singleton instance to represent an empty Stream. It works
similarly to Nil for List. Note that the object Stream contains an empty
method returning this singleton; however, pattern matching requires a
stable identifier, and it cannot use calls to a method as a valid case.

Transforming events
Returning to the reporting system, how can we apply the principles of event sourcing and
leverage Stream to change how reports are generated? To compute
TradingPerformanceTrend for a client, we need to compute PnL trend values for three
time periods: each hour, each day, and each seven days. We can write a method with the
following signature that gets us closer to identifying the PnL for each trend:

def processPnl(e: OrderBookEvent, s: TradeState): (TradeState,
Option[PnlEvent])

The signature of processPnl accepts an OrderBookEvent and state in the form
of TradeState to produce a new TradeState and, optionally, a PnlEvent. Let's first
inspect PnlEvent to understand the end result of this method before
inspecting TradeState:

sealed trait PnlEvent
case class PnlIncreased(created: EventInstant, clientId: ClientId,
  ticker: Ticker, profit: Pnl) extends PnlEvent
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case class PnlDecreased(created: EventInstant, clientId: ClientId,
  ticker: Ticker, loss: Pnl)extends PnlEvent

case class Pnl(value: BigDecimal) extends AnyVal {
  def isProfit: Boolean = value.signum >= 0
}
object Pnl {
  def fromExecution(buy: Price, sell: Price): Pnl =
    Pnl(sell.value - buy.value)

  val zero: Pnl = Pnl(BigDecimal(0))
}

We see that PnlEvent models an ADT that expresses when a client's PnL increased or
decreased. Using the past tense to name the event (for example, increased) makes it clear
that this is a fact or a record of something that has completed. We have not yet looked at
how TradeState is defined or the implementation of processPnl, but we can already
infer the behavior by studying the emitted events. We display the definition
of TradeState, which is needed to correlate submitted orders with executions, as follows:

case class PendingOrder(ticker: Ticker, price: Price,
  clientId: ClientId)

  case class TradeState(
    pendingBuys: Map[OrderId, PendingOrder],
    pendingSells: Map[OrderId, PendingOrder]) {
    def cancelOrder(id: OrderId): TradeState = copy(
      pendingBuys = pendingBuys - id, pendingSells = pendingSells - id)
    def addPendingBuy(o: PendingOrder, id: OrderId): TradeState =
      copy(pendingBuys = pendingBuys + (id -> o))
    def addPendingSell(o: PendingOrder, id: OrderId): TradeState =
      copy(pendingSells = pendingSells + (id -> o))
  }
object TradeState {
 val empty: TradeState = TradeState(Map.empty, Map.empty)
}

Next, we inspect the implementation of processPnl to view how PnlEvents are created,
as follows:

  def processPnl(
    s: TradeState,
    e: OrderBookEvent): (TradeState, Option[PnlEvent]) = e match {
    case BuyOrderSubmitted(_, id, t, p, cId) =>
      s.addPendingBuy(PendingOrder(t, p, cId), id) -> None
    case SellOrderSubmitted(_, id, t, p, cId) =>
      s.addPendingSell(PendingOrder(t, p, cId), id) -> None
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    case OrderCanceled(_, id) => s.cancelOrder(id) -> None
    case OrderExecuted(ts, id, price) =>
      val (p, o) = (s.pendingBuys.get(id), s.pendingSells.get(id)) match {
        case (Some(order), None) =>
          Pnl.fromBidExecution(order.price, price) -> order
        case (None, Some(order)) =>
          Pnl.fromOfferExecution(price, order.price) -> order
        case error => sys.error(
          s"Unsupported retrieval of ID = $id returned: $error")
      }
      s.cancelOrder(id) -> Some(
        if (p.isProfit) PnlIncreased(ts, o.clientId, o.ticker, p)
        else PnlDecreased(ts, o.clientId, o.ticker, p))
  }

This implementation shows that the PnlEvent is pattern matched to determine the event
type, and this is handled accordingly. When an order is submitted, TradeState is updated
to reflect that there is a new pending order that will be either canceled or executed. When
an order is canceled, the pending order is removed from TradeState. When an execution
occurs, the pending order is removed and, additionally, a PnlEvent is emitted after
computing the trade PnL. The trade PnL compares the execution price to the pending
order's original price.

PnlEvent provides enough information to compute PnL trend performance for all three
time periods (hour, day, and seven days) required by TradingPerformanceTrend. The
transformation from OrderBookEvent to PnlEvent is side-effect-free, and the creation of a
new event, instead of replacing current state, leads to an immutable model. In the light of
these characteristics, processPnl is easily unit-testable and makes the intent explicit. By
making the intent explicit, it is possible to communicate with less technical stakeholders
about how the system works.

Using PnlEvent as an input to a method that follows the analogous (State,
InputEvent) => (State, Option[OutputEvent]) signature, we can now compute
hourly PnL trend, as follows:

def processHourlyPnl(e: PnlEvent, s: HourlyState): (HourlyState,
Option[HourlyPnlTrendCalculated])

This signature shows that, by maintaining state in HourlyState, it is possible to emit
the HourlyPnlTrendCalculated event. The emitted event is defined, as follows:

case class HourlyPnlTrendCalculated(
      start: HourInstant,
      clientId: ClientId,
      ticker: Ticker,
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      pnl: LastHourPnL)

For a particular hour, client ID, and ticker, HourlyPnlTrendCalculated is a record of
whether the last hour PnL is positive or negative. The HourInstant class is a value class
with a companion object method that transforms an instant to the start of the hour:

case class HourInstant(value: Instant) extends AnyVal {
  def isSameHour(h: HourInstant): Boolean =
    h.value.toDateTime.getHourOfDay == value.toDateTime.getHourOfDay
}
object HourInstant {
  def create(i: EventInstant): HourInstant =
    HourInstant(i.value.toDateTime.withMillisOfSecond(0)
     .withSecondOfMinute(0).withMinuteOfHour(0).toInstant)
}

Let's have a look at how HourlyState is defined to better understand the state that is
needed to yield HourlyPnlTrendCalculated:

case class HourlyState(
      keyToHourlyPnl: Map[(ClientId, Ticker), (HourInstant, Pnl)])
object HourlyState {
 val empty: HourlyState = HourlyState(Map.empty)
}

For a ClientId and a Ticker, the PnL for the current hour is stored in HourlyState.
Accumulating the PnL allows processHourlyPnl to determine the PnL trend at the end of
an hour. We now inspect the implementation of processHourlyPnl to see how PnlEvent
is transformed into HourlyPnlTrendCalculated:

def processHourlyPnl(
 s: HourlyState,
 e: PnlEvent): (HourlyState, Option[HourlyPnlTrendCalculated]) = {
 def processChange(
   ts: EventInstant,
   clientId: ClientId,
   ticker: Ticker,
   pnl: Pnl): (HourlyState, Option[HourlyPnlTrendCalculated]) = {
   val (start, p) = s.keyToHourlyPnl.get((clientId, ticker)).fold(
     (HourInstant.create(ts), Pnl.zero))(identity)
   start.isSameHour(HourInstant.create(ts)) match {
     case true => (s.copy(keyToHourlyPnl = s.keyToHourlyPnl +
       ((clientId, ticker) ->(start, p + pnl))), None)
     case false => (s.copy(keyToHourlyPnl =
       s.keyToHourlyPnl + ((clientId, ticker) ->
         (HourInstant.create(ts), Pnl.zero + pnl))),
       Some(HourlyPnlTrendCalculated(start, clientId, ticker,
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         p.isProfit match {
           case true => LastHourPositive
           case false => LastHourNegative
         })))
   }
 }

 e match {
   case PnlIncreased(ts, clientId, ticker, pnl) => processChange(
     ts, clientId, ticker, pnl)
   case PnlDecreased(ts, clientId, ticker, pnl) => processChange(
     ts, clientId, ticker, pnl)
 }
}

Handling an increased and decreased PnL follows the same flow. The inner-method named
processChange handles the identical processing steps. The processChange determines
whether or not to emit HourlyPnlTrendCalculated by comparing the HourInstant
value that is added when an entry is first added to the state with the hour of the timestamp
provided by the event. When the comparison shows the hour has changed, then the hourly
PnL trend has been computed because the hour is completed. When the hour is unchanged,
the provided PnL is added to the state's PnL to continue accumulating the hour's PnL.

An obvious shortcoming of this approach is that, when a client or a ticker
does not have any executed orders, it will not be possible to determine
that the hour is completed. For simplicity, we are not treating time as a
first-class event. However, you can imagine how it is possible to model the
passing of time as an event that is a second input to processHourlyPnl.
For example, the event might be the following:
case class HourElapsed(hour: HourInstant)

To use this event, we could change the signature of processHourlyPnl to
receive an event argument that is of the Either[HourElapsed,
PnlEvent] type. Scheduling HourElapsed on a timer enables us to
modify the implementation of processHourlyPnl to emit
HourlyPnlTrendCalculated as soon as the hour elapses instead of
when a trade occurs in the next hour. This simple example shows how you
can model time as an explicit part of the domain when you consider your
system from an event sourcing point of view.

It is straightforward to imagine writing analogous methods that emit events for the daily
and seven day PnL trend events, and then a method that awaits all three PnL trend events
to produce the TradingPerformanceTrendGenerated event. The final step is to write a
side-effecting method that persists TradingPerformanceTrend so that it can be read by
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the web portal. At this point, we have a collection of methods that performs transformations
on events, but they are not yet wired together cohesively. Next, we take a look at how to
create a pipeline to transform events.

Note that, in this case study, we do not actually calculate a PnL.
Performing a real PnL calculation would involve more complicated
algorithms and would force us to introduce more domain concepts. We
opted for a simpler approach with a report that is closer to an exposure
report. This allows us to focus on the code and the programming practices
that we want to illustrate.

Building the event sourcing pipeline
We use the term pipeline to refer to an arranged set of transformations that may require
multiple steps to yield a desired end result. This term brings to mind an image of a set of
pipes spanning multiple directions with twists and turns along the way. Our goal is to write
a program that receives PnlEvents traits and prints the HourlyPnlTrendCalculated
events to a standard output. In a true production environment, you can imagine replacing
printing to standard output with writing to a persistent data store. In either case, we are
building a pipeline that performs a set of referentially transparent transformations and
concludes with a side-effect.

The pipeline must accumulate the intermediate state of each transformation as new events
are processed. In the functional programming paradigm, accumulation is often associated
with a foldLeft operation. Let's look at a toy example that sums a list of integers to better
understand accumulation:

val sum = Stream(1, 2, 3, 4, 5).foldLeft(0) { case (acc, i) => acc + i }
println(sum) // prints 15

Here, we see foldLeft applied to compute the sum of a list of integers by providing an
initial sum value of zero and currying a function to add the current element to the
accumulated sum. The acc value is an often used shorthand for 'accumulator'. In this
example, the accumulator and the list elements share the same data type, integer. This is
merely a coincidence and is not a requirement for foldLeft operations. This implies that
the accumulator can be a different type than the collection element.

We can use foldLeft as the basis of our event sourcing pipeline to support processing a
list of OrderBookEvents while accumulating intermediate state. From the implementation
of the two processing methods, we saw the need to maintain TradeState
and HourlyState. We define PipelineState to encapsulate the required state, as follows:
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case class PipelineState(tradeState: TradeState, hourlyState: HourlyState)
object PipelineState {
  val empty: PipelineState = PipelineState(TradeState.empty,
HourlyState.empty)
}

PipelineState serves as the accumulator when folding over the OrderBookEvent,
allowing us to store the intermediate state for both of the transformation methods. Now, we
are ready to define the signature of our pipeline:

def pipeline(initial: PipelineState, f: HourlyPnlTrendCalculated => Unit,
xs: List[OrderBookEvent]): PipelineState

The pipeline accepts the initial state, a side-effecting function to be invoked when
an HourlyPnlTrendCalculated event is generated, and a set of OrderBookEvents to
source. The return value of the pipeline is the state of the pipeline once the events are
processed. Let's look at how we can leverage foldLeft to implement pipeline:

def pipeline(
    initial: PipelineState,
    f: HourlyPnlTrendCalculated => Unit,
    xs: Stream[OrderBookEvent]): PipelineState = xs.foldLeft(initial) {
    case (PipelineState(ts, hs), e) =>
      val (tss, pnlEvent) = processPnl(ts, e)
      PipelineState(tss,
        pnlEvent.map(processHourlyPnl(hs, _)).fold(hs) {
          case (hss, Some(hourlyEvent)) =>
            f(hourlyEvent)
            hss
          case (hss, None) => hss
        })
  }

The implementation of pipeline is based on folding over the provided events using the
provided PipelineState as a starting point for accumulation. The curried function
provided to foldLeft is where the wiring of transformations takes place. Stitching together
the two transformation methods and the side-effecting event handler requires handling
several different scenarios. Let's walk through each of the possible cases to better
understand how the pipeline works. The processPnl is invoked to produce a
new TradeState and optionally yield a PnlEvent. If no PnlEvent is generated,
then processHourlyPnl is not invoked and the previous HourlyState is returned.
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If a PnlEvent is generated, then processHourlyPnl is evaluated to determine whether
an HourlyPnlTrendCalculated is created. When HourlyPnlTrendCalculated is
generated, then the side-effecting HourlyPnlTrendCalculated event handler is invoked
and the new HourlyState is returned. If no HourlyPnlTrendCalculated is generated,
then the existing HourlyState is returned.

We construct a simple example to prove that the pipeline works as intended, as follows:

val now = EventInstant(HourInstant.create(EventInstant(
      new Instant())).value)
    val Foo = Ticker("FOO")

    pipeline(PipelineState.empty, println, Stream(
      BuyOrderSubmitted(now, OrderId(1), Foo, Price(21.07), ClientId(1)),
OrderExecuted(EventInstant(now.value.plus(Duration.standardMinutes(30))),
        OrderId(1), Price(21.00)),
      BuyOrderSubmitted(EventInstant(now.value.plus(
        Duration.standardMinutes(35))),
        OrderId(2), Foo, Price(24.02), ClientId(1)),
OrderExecuted(EventInstant(now.value.plus(Duration.standardHours(1))),
        OrderId(2), Price(24.02))))

At the start of the hour, a buy order is submitted for the stock, FOO. Within the hour, the
buy order is executed at a price lower than the buying price, indicating the trade was
profitable. As we know, the current implementation relies on executions in the subsequent
hour in order to produce HourlyPnlTrendCalculated.  To create this event, a second buy
order is submitted at the start of the second hour. Running this snippet produces a
single HourlyPnlTrendCalculated event that is written to standard output:

HourlyPnlTrendCalculated(HourInstant(2016-02-15T20:00:00.000Z),ClientId(1),
Ticker(FOO),LastHourPositive)

Although the wiring together of transformations is somewhat involved, we managed to
build a simple event sourcing pipeline using only the Scala standard library and our
existing knowledge of Scala collections. This example demonstrated the power of foldLeft
to help build an event sourcing pipeline. Using this implementation, we can write a fully-
featured program that is able to write a pregenerated version of the performance report to a
persistent data store that can be read by the web portal. This new design allows us to shift
the burden of report generation outside the web portal's responsibilities, allowing the web
portal to provide a responsive user experience. Another benefit of this new approach is how
it puts a domain-oriented language at the center of the design. All our events use business
terms and focus on modeling domain concepts, making it easier for developers and
stakeholders to communicate with each other.
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You might be wondering about a data structure that shares some
characteristics of Stream that we did not yet mention: Iterator. As the
name implies, Iterator provides facilities to iterate over a sequence of
data. Its simplified definition boils down to the following:
trait Iterator[A] {
  def next: A
  def hasNext: Boolean
}

Like Stream, an Iterator is able to avoid loading an entire dataset into
memory, which enables programs to be written with constant memory
usage. Unlike Stream, an Iterator is mutable and intended for only a
single iteration over a collection (it extends the TraversableOnce trait). It
should be noted that, according to the standard library documentation,
one should never use an iterator after calling a method on it. For example,
calling size on an Iterator returns the size of the sequence, but it also
consumes the entire sequence and renders the instance of Iterator
useless. The only exceptions to this rule are next and hasNext. These
properties lead to software that is difficult to reason with, which is the
antithesis of what we strive for as functional programmers. For this
reason, we omit an in-depth discussion about Iterator.

We encourage you to further explore event sourcing by reading the documentation of the
Event Store database at h t t p : / / d o c s . g e t e v e n t s t o r e . c o m / i n t r o d u c t i o n / e v e n t - s o u
r c i n g - b a s i c s /. Event Store is a database that is developed around the concept of event
sourcing. Event Store was created by Greg Young, a notable writer on the topic of event
sourcing. While enriching your understanding about event sourcing, reflect on when you
believe it is appropriate to apply the event sourcing technique. For CRUD applications that
have simple behavior, event sourcing may not be a worthwhile time investment. When you
model more complex behaviors or consider scenarios involving strict performance and
scaling requirements, the time investment for event sourcing may become justified. For
example, like we saw with performance trend reporting, considering the performance
challenges from the event sourcing paradigm exposed an entirely different way of
approaching the design.

As you continue exploring the world of stream processing, you will discover that you wish
to construct more complex transformations than our event sourcing pipeline example. To
continue digging deeper into the the topic of stream processing, we suggest researching two
relevant libraries: akka streams and functional streams (formerly, scalaz-stream).
These libraries provide tools to build more sophisticated transformation pipelines using
different abstractions than Stream. In combination with learning about Event Store, you
will deepen your understanding of how event sourcing ties in with stream processing.

http://docs.geteventstore.com/introduction/event-sourcing-basics/
http://docs.geteventstore.com/introduction/event-sourcing-basics/
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Streaming Markov chains
With the simple program at the end of the previous section, we demonstrated that we can
wire together a pipeline of transformations operating on events. As a well-intentioned
engineer, you wish to develop automated tests that prove the pipeline works as intended.
One approach is to add a sample of historical production data into the repository to build
tests. This is often a good choice, but you are concerned that the sample is not large enough
to represent a broad number of scenarios. Another option is to write a generator of events
that can create production-like data. This approach requires more up-front effort, but it
yields a more dynamic way to exercise the pipeline.

A recent lunchtime conversation with Dave about Markov chains sparked the thought
about testing the event sourcing pipeline with generated data. Dave described how a
Markov chain is a statistical model of state transitions that only relies on the current state to
determine the next state. Dave is representing the states of the stock market as a Markov
chain, allowing him to build trading strategies based on whether or not he perceives the
stock market to be in an upswing, downswing, or steady state. After reading through the
Markov chain Wikipedia page, you envision writing an event generator based on a Markov
chain.

Our end goal is to be able to generate an infinite number of OrderBookEvents that follows
production-like patterns. For example, we know from previous experience that
proportionally there are often more cancelations than executions, particularly during
volatile markets. The event generator should be able to represent different probabilities of
events occurring. As a Markov chain only depends on its current state to identify its next
state, a Stream is a natural fit because we only need to inspect the current element to
determine the next element. For our representation of a Markov chain, we need to identify
the chance of transitioning from the current state to any of the other possible states. The
following table illustrates one possible set of probabilities:

Current state Chance of buy Chance of sell Chance of
execution

Chance of
cancel

BuyOrderSubmitted 10% 15% 40% 40%

SellOrderSubmitted 25% 10% 35% 25%

OrderCanceled 60% 50% 40% 10%

OrderExecuted 30% 30% 55% 30%
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This table defines the likelihood of receiving an OrderBookEvent given the
current OrderBookEvent. For example, given that a sell order was submitted, there is a
10% chance of seeing a second sell order next and a 35% chance that an execution occurs
next. We can develop state transition probabilities according to the market conditions that
we wish to simulate in the pipeline.

We can model the transitions using the following domain:

  sealed trait Step
  case object GenerateBuy extends Step
  case object GenerateSell extends Step
  case object GenerateCancel extends Step
  case object GenerateExecution extends Step

  case class Weight(value: Int) extends AnyVal
  case class GeneratedWeight(value: Int) extends AnyVal
  case class StepTransitionWeights(
    buy: Weight,
    sell: Weight,
    cancel: Weight,
    execution: Weight)

In this domain, Step is an ADT that models the possible states. For a given Step, we will
associate StepTransitionWeights to define the probability of transitioning to different
states based on provided weightings. GeneratedWeight is a value class that defines the
weight generated for the current Step. We will use GeneratedWeight to drive the
transition from one Step to the next Step.

Our next step, so-to-speak, is to make use of our domain to generate events according to
probabilities that we define. To make use of Step, we define a representation of the Markov
chain state that is required, as follows:

  case class State(
    pendingOrders: Set[OrderId],
    step: Step)

The Markov chain requires knowledge of the current state, which is represented by step.
Additionally, we put a twist on the Markov chain by maintaining the set of orders that are
submitted that are neither canceled nor executed in pendingOrders. This additional state
is needed for two reasons. First, generating cancel and execution events requires linking to a
known order ID. Second, we constrain our representation of a Markov chain by requiring at
least one pending order to exist before creating a cancel or an execution. If there are no
pending orders, it is invalid to transition to a state that generates either OrderCanceled
or OrderExecuted.
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Using State, we can write a method with the following signature to manage transitions:

def nextState(
      weight: StepTransitionWeights => GeneratedWeight,
      stepToWeights: Map[Step, StepTransitionWeights],
      s: State): (State, OrderBookEvent)

Given a way to generate a weight from the current StepTransitionWeights, a mapping
of Step to StepTransitionWeights, and the current State, we are able to produce a
new State and an OrderBookEvent. For brevity, we omit the implementation
of nextState because we want to focus most intently on stream processing. From the
signature, we have enough insight to apply the method, but we encourage you to inspect
the repository to fill in any blanks in your understanding.

The nextState method is the driver of state transitions in our Markov chain
representation. We can now generate an infinite Stream of OrderBookEvents based on
transition probabilities using the convenience Stream method, iterate. From the Scala
documentation, iterate produces an infinite stream by repeatedly applying a function to
the start value. Let's see how we can use iterate:

val stepToWeights = Map[Step, StepTransitionWeights](
      GenerateBuy -> StepTransitionWeights(
        Weight(10), Weight(25), Weight(40), Weight(40)),
      GenerateSell -> StepTransitionWeights(
        Weight(25), Weight(10), Weight(40), Weight(25)),
      GenerateCancel -> StepTransitionWeights(
        Weight(60), Weight(50), Weight(40), Weight(10)),
      GenerateExecution -> StepTransitionWeights(
        Weight(30), Weight(30), Weight(60), Weight(25)))

    val next = State.nextState(
      t => GeneratedWeight(Random.nextInt(t.weightSum.value) + 1),
      stepToWeights, _: State)

    println("State\tEvent")
    Stream.iterate(State.initialBuy) { case (s, e) => next(s) }
      .take(5)
      .foreach { case (s, e) => println(s"$s\t$e")  }

This snippet creates a Markov chain to generate various OrderBookEvents by providing a
mapping of Step to StepTransitionWeights as the basis to invoke State.nextState.
State.nextState is partially applied, leaving the current state unapplied. The next
function has the State => (State, OrderBookEvent) signature. With the necessary
scaffolding in place, Stream.iterate is used to generate an infinite sequence of multiple
OrderBookEvents by invoking next. Similar to foldLeft, we provide an initial value to
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begin the initialBuy iteration, which is defined as follows:

val initialBuy: (State, OrderBookEvent) = {
      val e = randomBuySubmitted()
      State(Set(e.id), GenerateBuy) -> e
    }

Running this snippet produces output that is similar to the following:

    State = State(Set(OrderId(1612147067584751204)),GenerateBuy)
    Event =
BuyOrderSubmitted(EventInstant(2016-02-22T23:52:40.662Z),OrderId(1612147067
584751204),Ticker(FOO),Price(32),ClientId(28))
    State = State(Set(OrderId(1612147067584751204),
OrderId(7606120383704417020)),GenerateBuy)
    Event =
BuyOrderSubmitted(EventInstant(2016-02-22T23:52:40.722Z),OrderId(7606120383
704417020),Ticker(XYZ),Price(18),ClientId(54))
    State = State(Set(OrderId(1612147067584751204),
OrderId(7606120383704417020), OrderId(5522110701609898973)),GenerateBuy)
    Event =
BuyOrderSubmitted(EventInstant(2016-02-22T23:52:40.723Z),OrderId(5522110701
609898973),Ticker(XYZ),Price(62),ClientId(28))
    State = State(Set(OrderId(7606120383704417020),
OrderId(5522110701609898973)),GenerateExecution)
    Event =
OrderExecuted(EventInstant(2016-02-22T23:52:40.725Z),OrderId(16121470675847
51204),Price(21))
    State = State(Set(OrderId(7606120383704417020),
OrderId(5522110701609898973), OrderId(5898687547952369568)),GenerateSell)
    Event =
SellOrderSubmitted(EventInstant(2016-02-22T23:52:40.725Z),OrderId(589868754
7952369568),Ticker(BAR),Price(76),ClientId(45))

Of course, each invocation differs depending upon the random values that are created for
GeneratedWeight, which is used to probabilistically select the next transition. This snippet
provides a base to compose larger-scale tests for the reporting infrastructure. Through this
example, we see an interesting application of Markov chains to support generating
representative events from various market conditions without requiring access to volumes
of production data. We are now able to write tests to confirm whether or not the reporting
infrastructure correctly computes PnL trends in different market conditions.
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Stream caveats
For all their goodness, Stream should be used with caution. In this section, we mention a
few of the main caveats of Stream, and how to avoid them.

Streams are memoizers
While views do not cache the result of a computation and, therefore, recalculate and realize
each element each time it is accessed, Stream does save the final form of its elements. An
element is only ever realized once, the first time it is accessed. While this is a great
characteristic to avoid computing the same result several times, it can also lead to a large
consumption of memory, to the point where your program may eventually run out of
memory.

To avoid Stream memoization, it is good practice to avoid storing a Stream in a val. Using
a val creates a permanent reference to the head of the Stream, ensuring that every element
that is realized will be cached. If a Stream is defined as a def, it can be garbage collected as
soon as it is no longer needed.

Memoization can happen when calling certain methods that are defined on Stream. For
example, drop or dropWhile will evaluate and memoize all the intermediate elements to
be dropped. The elements are memoized as the methods are defined on an instance
of Stream (and Stream has a reference on its own head). We can implement our own drop
function to avoid caching the intermediate elements in memory:

@tailrec
def drop[A](s: Stream[A], count: Int): Stream[A] = count match {
  case 0 => s
  case n if n > 0 => drop(s.tail, count - 1)
  case n if n < 0 => throw new Exception("cannot drop negative count")
}

We pattern match on the value of count to know whether we can return the given Stream
or need to perform a recursive call on the tail. Our method is tail-recursive. This makes sure
that we do not keep a reference to the head of the Stream, since a tail-recursive
function recycles its reference each time that it loops. Our s reference will only point to the
remaining part of the Stream, not the head.
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Another example of a problematic method is max. Calling max will memoize all the
elements of the Stream to determine which one is the greatest. Let's implement a safe
version of max, as follows:

def max(s: => Stream[Int]): Option[Int] = {
 @tailrec
 def loop(ss: Stream[Int], current: Option[Int]): Option[Int] = ss match {
   case Stream.Empty => current
   case h #:: rest if current.exists(_ >= h) => loop(rest, current)
   case h #:: rest => loop(rest, Some(h))
 }
 loop(s, None)
}

This time, we used an internal tail recursive function to be able to expose a friendly API. We
represent the current max value as an Option[Int] to handle the case where the method is
called with an empty Stream. Note that max accepts s as a by-name parameter. This is
important because, otherwise, we would be keeping a reference to the head of the Stream
before calling the internal tail-recursive loop method. Another possible implementation is
as follows:

def max(s: => Stream[Int]): Option[Int] = {
 @tailrec
 def loop(ss: Stream[Int], current: Int): Int = ss match {
   case Stream.Empty => current
   case h #:: hs if h > current => loop(hs, h)
   case h #:: hs if h <= current => loop(hs, current)
 }

 s match {
   case Stream.Empty => None
   case h #:: rest => Some(loop(rest, h))
 }
}

This implementation is arguably simpler. We check in the max function whether the Stream
is empty or not; this allows us to either return right away (with None), or call loop with a
valid default value (the first element in the Stream). The loop does not have to deal
with Option[Int] anymore. However, this example does not achieve the goal of avoiding
memoization. The pattern matching will cause rest to keep a reference on the entire tail of
the original Stream, which will prevent garbage collection of the intermediate elements. A
good practice is to only pattern match on a Stream inside a consuming, tail-recursive
method.



Lazy Collections and Event Sourcing

[ 176 ]

Stream can be infinite
We saw during our overview that it is possible to define an infinite Stream. However, you
need to be careful when working with an infinite Stream. Some methods may cause the
evaluation of the entire Stream, leading to OutOfMemoryError. Some are obvious, such
as toList, which will try to store the entire Stream into a List, causing the realization of
all the elements. Others are more subtle. For example, Stream has a size method that is
similar to the one defined on List. Calling size on an infinite Stream will cause the
program to run out of memory. Similarly, max and sum will attempt to realize the entire
sequence and crash your system. This behavior is particularly dangerous as Stream
extends Seq, the base trait for sequences. Consider the following code:

def range(s: Seq[Int]): Int = s.max - s.min

This short method takes a Seq[Int] as single parameter, and returns its range, that is, the
difference between the greatest and lowest elements. As Stream extends Seq the following
call is valid:

val s: Stream[Int] = ???
range(s)

The compiler will happily and promptly generate the bytecode for this snippet. However, s
could be defined as an infinite Stream:

val s: Stream[Int] = powerOf2(0)
range(s)
java.lang.OutOfMemoryError: GC overhead limit exceeded
  at .powerOf2(<console>:10)
  at $anonfun$powerOf2$1.apply(<console>:10)
  at $anonfun$powerOf2$1.apply(<console>:10)
  at scala.collection.immutable.Stream$Cons.tail(Stream.scala:1233)
  at scala.collection.immutable.Stream$Cons.tail(Stream.scala:1223)
  at scala.collection.immutable.Stream.reduceLeft(Stream.scala:627)
  at scala.collection.TraversableOnce$class.max(TraversableOnce.scala:229)
  at scala.collection.AbstractTraversable.max(Traversable.scala:104)
  at .range(<console>:10)
  ... 23 elided

The call to range never returns due to the implementation of max and min. This example
illustrates a good practice that we mentioned earlier in this chapter.
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Summary
Throughout this chapter, we explored two lazily evaluated collections that are provided by
the standard Scala library: views and streams. We explored their characteristics and
implementation details, as well as the limitations to bear in mind when using these
abstractions. Leveraging your newly-acquired knowledge, you addressed a critical
performance problem affecting MVT clients trying to view their performance trend.

In the Stream sections, we took the opportunity to tie the concept of stream processing to
event sourcing. We briefly explored the event sourcing paradigm and introduced a simple
event-driven transformation pipeline to improve the architecture of the reporting system
and to define a stronger domain model. Lastly, we built a Markov chain event generator to
exercise our new approach to generating reports.

By exploring both eager and lazy collections, you now possess a strong working knowledge
of the collections that are provided by the Scala standard library. In the next chapter, we
will continue our exploration of Scala concepts viewed through the functional paradigm by
diving into concurrency.



6
Concurrency in Scala

In this chapter, we will switch our focus from collections to a different topic: concurrency.
Being able to take advantage of all the CPU resources that your hardware provides is
critical to writing performant software. Unfortunately, writing concurrent code is not an
easy task because it is easy to write unsafe programs. If you come from Java, you may still
have nightmares involving synchronized blocks and locks! The java.util.concurrent
package provides numerous tools that make writing concurrent code simpler. However,
designing stable and reliable concurrent applications can still be a daunting challenge. In
this chapter, we will explore the tools that are provided by the Scala standard library to take
advantage of concurrency. After a short presentation of the main abstraction, Future, we
will study its behavior and usage pitfalls that we should avoid. We will end this chapter by
exploring a possible alternative to Future named Task, which is provided by the Scalaz
library. In this chapter, we will explore the following topics:

Concurrency versus parallelism
Future usage considerations
Blocking calls and callbacks
Scalaz Task

Parallelizing backtesting strategies
The data scientists are off and running with the data analysis tools that you built for them to
research trading strategies. However, they have hit a wall because backtesting strategies is
becoming too expensive. As they have built more sophisticated strategies that require more
historical data, and employ more stateful algorithms, backtesting has taken longer. Once
again, you are being called upon to help out at MVT by leveraging Scala and the functional
paradigm to deliver performant software.
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The data scientists have incrementally built out a backtesting tool that allows the team to
determine a strategy's performance by replaying historical data. This works by providing a
preset strategy to run, the ticker to test against, and the time interval of historical data to
replay. The backtester loads market data and applies the strategy to generate trading
decisions. Once the backtester finishes replaying historical data, it summarizes and displays
strategy performance results. The backtester is heavily depended on to determine the
efficacy of proposed trading strategies before putting them into production for live trading.

To begin familiarizing yourself with the backtester, you look into the code, as follows:

  sealed trait Strategy
  case class PnL(value: BigDecimal) extends AnyVal
  case class BacktestPerformanceSummary(pnl: PnL)
  case class Ticker(value: String) extends AnyVal

  def backtest(
    strategy: Strategy,
    ticker: Ticker,
    testInterval: Interval): BacktestPerformanceSummary = ???

In the preceding snapshot from the data analysis repository, you see the primary method
that drives backtesting. Given a Strategy, Ticker, and Interval, it can
produce BacktestPerformanceSummary. Scanning the repository, you find a file
named CrazyIdeas.scala that shows Dave as the only commit author. In here, you see
example invocations of the backtester:

def lastMonths(months: Int): Interval =
    new Interval(new DateTime().minusMonths(months), new DateTime())
backtest(Dave1, Ticker("AAPL"), lastMonths(3))
backtest(Dave1, Ticker("GOOG"), lastMonths(3))
backtest(Dave2, Ticker("AAPL"), lastMonths(3))
backtest(Dave2, Ticker("GOOG"), lastMonths(3))

The usage of the backtester gives you a clue to a possible performance improvement. It
looks like when Dave has a new idea, he wants to evaluate its performance on multiple
symbols and compare it against other strategies. In its current form, backtests are performed
sequentially. One way to improve the execution speed of the backtester is to parallelize the
execution of all backtesting runs. If each invocation of the backtester is parallelized and if
there are spare hardware resources, then backtesting multiple strategies and symbols will
finish faster. To understand how to parallelize the backtester, we first need to dive into the
topic of asynchronous programming and then see how Scala supports concurrency.
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Before diving into the code, we need to enrich our vocabulary to discuss
the properties of asynchronous programming. Concurrency and
parallelism are often used interchangeably, but there is an important
distinction between these two terms. Concurrency involves two (or more)
tasks that are started and executed in overlapping time periods. Both tasks
are in-progress (that is, they are running) at the same time, but only one
task may be performing actual work at any instant in time. This is the case
when you write concurrent code on a single-core machine. Only one task
can progress at a time, but multiple tasks are ongoing concurrently.
Parallelism exists only when both tasks are truly running at the same time.
With a dual-core machine, you can execute two tasks at the same time.
From this definition, we see that parallelism depends on the hardware that
is available for use. This means that the property of concurrency can be
added to a program, but parallelism is outside the control of the software.
To better illustrate these concepts, consider the example of painting a
room. If there is only one painter, the painter can paint the first coat on a
wall, move on to the next wall, go back to the first wall for the second coat
and then finish the second wall. The painter is painting both walls
concurrently, but can only spend time on one wall at any given time. If
two painters are on the job, they can each focus on one wall and paint
them in parallel.

Exploring Future
The primary construct in Scala to drive concurrent programming is Future. Found in
the scala.concurrent package, Future can be seen as a container for a value that may
not yet exist. Let's look at a simple example to illustrate usage:

scala> import scala.concurrent.Future
import scala.concurrent.Future

scala> import scala.concurrent.ExecutionContext
import scala.concurrent.ExecutionContext

scala> val context: ExecutionContext =
scala.concurrent.ExecutionContext.global
context: scala.concurrent.ExecutionContext =
scala.concurrent.impl.ExecutionContextImpl@3fce8fd9

scala> def example(){
  println("Starting the example")
  Future{
    println("Starting the Future")
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    Thread.sleep(1000)  // simulate computation
    println("Done with the computation")
 }(context)

println("Ending example")
}

The preceding example shows a short method, creating a Future value simulates an
expensive computation and prints a couple of lines to make it easier for us to understand
the flow of the application. When running example, we see the following output:

scala> example()
Starting the example
Ending example
Starting the future
// a pause
Done with the computation

We can see that Future was executed after the end of the example method. This is because
when a Future is created, it starts its computation concurrently. You may be wondering,
“What is this context object of the ExecutionContext type that is used when creating
the Future?” We will explore ExecutionContext in-depth shortly, but for now, we treat it
as the the object that is responsible for the execution of the Future. We
import scala.concurrent.ExecutionContext.global, which is a default object that is
created by the standard library to be able to execute the Future.

A Future object is a stateful object. It is either not yet complete when the computation is
underway or completed once the computation finishes. Furthermore, a completed Future
can be either a success when the computation was able to complete, or it can be a failure if
an exception was thrown during the computation.

The Future API provides combinators to compose the Future instances and manipulate
the result that they contain:

scala> import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.ExecutionContext.Implicits.global

scala> import scala.concurrent.Future
import scala.concurrent.Future

scala> Future(1).map(_ + 1).filter(_ % 2 == 0).foreach(println)

2

This snippet from the Scala console shows construction of a Future data type that wraps a



Concurrency in Scala

[ 182 ]

constant integer value. We see that the integer contained in the Future data type is
transformed using functions that are similar to the ones that we expect to find on Option
and collection data types. These transforms are applied once the preceding Future
completes, and return a new Future.

As promised, we now look into ExecutionContext. The ExecutionContext can be
thought of as the machinery behind Future that provides runtime asynchrony. In the
previous snippet, a Future was created to perform simple addition and modulo division
without explicitly providing an ExecutionContext instance at the call site. Instead, only
an import of the global object was provided. The snippet executes because global is an
implicit value and the signature of map accepts an implicit ExecutionContext. Let's look
at the following signature of map to deepen our understanding:

def map[S](f: T => S)(implicit executor: ExecutionContext): Future[S]

From the signature of map, we see that unlike the map transformation on List, the Future
requires a curried, implicit ExecutionContext argument. To understand how
an ExecutionContext provides runtime asynchrony, we need to first understand its
operations:

trait ExecutionContext {
  def execute(runnable: Runnable): Unit
  def reportFailure(cause: Throwable): Unit
  def prepare(): ExecutionContext = this
}

The execute is a side-effecting method that operates on a java.lang.Runnable. For
those familiar with concurrency in Java, you most likely recall that Runnable is the
commonly-used interface to allow threads and other java.util.concurrent abstractions
to execute code concurrently. Although we do not know how Future achieves runtime
asynchrony yet, we do know there is a link between Future execution and creation of
a Runnable.

The next question we will answer is, “How do I create an ExecutionContext? ” By
studying the companion object, we discover the following signatures:

def fromExecutorService(e: ExecutorService, reporter: Throwable => Unit):
ExecutionContextExecutorService
def fromExecutorService(e: ExecutorService):
ExecutionContextExecutorService
def fromExecutor(e: Executor, reporter: Throwable => Unit):
ExecutionContextExecutor
def fromExecutor(e: Executor): ExecutionContextExecutor
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The standard library provides convenient ways to create an ExecutionContext from
either a java.util.concurrent.Executor
or java.util.concurrent.ExecutorService.

If you are unfamiliar with the machinery that is provided by the
java.util.concurrent package and you are looking for a deeper
treatment than that provided by the API documentation, we encourage
you to read Java Concurrency in Practice by Brian Goetz (h t t p : / / j c i p . n e
t /). Although Java Concurrency in Practice was written around the release
of JDK 6, it contains numerous principles that continue to apply today.
Reading this book will provide you with a deep understanding of the JDK-
provided concurrency primitives that are utilized by the Scala standard
library.

The return type of the factory methods is a more specialized version of
ExecutionContext. The standard library defines the following inheritance chain
for ExecutionContext:

trait ExecutionContextExecutor extends ExecutionContext with
java.util.concurrent.Executor
trait ExecutionContextExecutorService extends ExecutionContextExecutor with
java.util.concurrent.ExecutorService

Also, in the ExecutionContext companion object, we find the implicit context used in our
first example, as follows:

def global: ExecutionContextExecutor = Implicits.global

The documentation for the definition of Implicits.global indicates that
this ExecutionContext is backed by a thread pool with a thread count that is equal to the
available processor count. Our dive into ExecutionContext shows us how the
simple Future example runs. We can illustrate how a Future applies
its ExecutionContext to execute on multiple threads:

  Future(1).map(i => {
    println(Thread.currentThread().getName)
    i + 1
  }).filter(i => {
    println(Thread.currentThread().getName)
    i % 2 == 0
  }).foreach(println)

http://jcip.net/
http://jcip.net/
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We extend the original snippet to print the name of the thread performing each
transformation. When run on a machine with multiple cores, this snippet yields variable
output, depending on which threads pick up the transformations. Here is an example
output:

ForkJoinPool-1-worker-3
ForkJoinPool-1-worker-5
2

This example shows that one worker-3 thread performed the map transformation while
another worker-5 thread performed the filter transformation. There are two key insights
to draw from our simple example about how Future affects control flow. First, Future is a
data type for concurrency that enables us to break the control flow of a program into
multiple logical threads of processing. Second, our example shows that Future begins
execution immediately upon creation. This means that transformations are applied
immediately in a different flow of the program. We can use these insights to improve the
runtime performance of Dave's crazy ideas.

Future and crazy ideas
We apply Future to Dave's set of backtests to improve performance. We believe there is an
opportunity for a performance improvement because Dave's laptop has four CPU cores.
This means that by adding concurrency to our program, we will be able to benefit from
runtime parallelism. Our first attempt utilizes a for-comprehension:

implicit val ec = scala.concurrent.ExecutionContext.Implicits.global
for {
      firstDaveAapl <- Future(backtest(Dave1, Ticker("AAPL"),
lastMonths(3)))
      firstDaveGoog <- Future(backtest(Dave1, Ticker("GOOG"),
lastMonths(3)))
      secondDaveAapl <- Future(backtest(Dave2, Ticker("AAPL"),
lastMonths(3)))
      secondDaveGoog <- Future(backtest(Dave2, Ticker("GOOG"),
lastMonths(3)))
    } yield (firstDaveAapl, firstDaveGoog, secondDaveAapl, secondDaveGoog)

Each backtest invocation is wrapped with the creation of a Future instance by
calling Future.apply. This companion object method uses a by-name parameter to defer
evaluation of the argument, which, in this case, is the invocation of backtest:

def apply[T](body: =>T)(executor: ExecutionContext): Future[T]
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After running the new version of CrazyIdeas.scala, you are disappointed to see the
runtime execution has not improved. You quickly double-check the number of CPUs on
your Linux box, as follows:

$ cat /proc/cpuinfo  | grep processor | wc -l
8

Having confirmed there are eight cores available on your laptop, you wonder why the
execution time matches the original serial execution time. The solution here is to consider
how the for-comprehension is compiled. The for-comprehension is equivalent to the
following simpler example:

Future(1).flatMap(f1 => Future(2).flatMap(f2 => Future(3).map(f3 => (f1,
f2, f3))))

In this desugared representation of the for-comprehension, we see that the second Future
is created and evaluated within the flatMap transformation of the first Future. Any
transformation applied to a Future (for example, flatMap) is only invoked once the value
provided to the transform has been computed. This means that the Future in the preceding
example and the for-comprehension are executed sequentially. To achieve the concurrency
that we are looking for, we must instead modify CrazyIdeas.scala to look like the
following:

    val firstDaveAaplF = Future(backtest(Dave1, Ticker("AAPL"),
      lastMonths(3)))
    val firstDaveGoogF = Future(backtest(Dave1, Ticker("GOOG"),
      lastMonths(3)))
    val secondDaveAaplF = Future(backtest(Dave2, Ticker("AAPL"),
      lastMonths(3)))
    val secondDaveGoogF = Future(backtest(Dave2, Ticker("GOOG"),
      lastMonths(3)))
    for {
      firstDaveAapl <- firstDaveAaplF
      firstDaveGoog <- firstDaveGoogF
      secondDaveAapl <- secondDaveAaplF
      secondDaveGoog <- secondDaveGoogF
    } yield (firstDaveAapl, firstDaveGoog, secondDaveAapl, secondDaveGoog)

In this snippet, four backtests are kicked off concurrently and the results are transformed
into a Future of a Tuple4 consisting of four BacktestPerformanceSummary values.
Seeing is believing, and after showing Dave the faster runtime of his backtests, he is excited
to iterate quickly on new backtest ideas. Dave never misses a chance to throw around a pun,
exclaiming, “Using all my cores is making my laptop fans really whiz. Not sure I'm a fan of
the noise, but I sure do like the performance!”
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Future usage considerations
In the previous example, we illustrated the ease of use of the Future API by investigating
how to introduce concurrency to the backtester. Like any powerful tool, your usage
of Future must be disciplined to ensure correctness and performance. This section
evaluates topics that commonly cause confusion and error when using the Future to add
concurrency to your program. We will detail performing side-effects, blocking execution,
handling failures, choosing an appropriate execution context, and performance
considerations.

Performing side-effects
When programming with Future, it is important to remember that Future is inherently a
side-effecting construct. Unless the success or failure factory methods are used to lift a
value into a Future, work is scheduled to be executed on a different thread (part of
the ExecutionContext that is used to create the Future). More importantly, once
executed, a Future cannot be executed again. Consider the following snippet:

scala> import scala.concurrent.Future
import scala.concurrent.Future

scala> import scala.concurrent.ExecutionContext.Implicits.global
import scala.concurrent.ExecutionContext.Implicits.global

scala> val f = Future{ println("FOO"); 40 + 2}
FOO
f: scala.concurrent.Future[Int] =
scala.concurrent.impl.Promise$DefaultPromise@5575e0df

scala> f.value
res3: Option[scala.util.Try[Int]] = Some(Success(42))

The Future is computed and prints FOO as expected. We can then access the value wrapped
in the Future. Note that when accessing the value, nothing is printing on the console. Once
completed, the Future is merely a wrapper for a realized value. If you want to perform the
computation again, you need to create a new instance of Future.
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Note that the preceding example uses Future.value to extract the result
of the computation. This is for the sake of simplicity. Production code
should rarely, if ever, use this method. Its return type is defined
as Option[Try[A]]. An Option is used to represent the case of a
completed Future with a Some, and an unrealized Future with a None.
Furthermore, remember that a realized Future can have two states:
success or failure. This is the purpose of the inner Try. Like Option.get,
it is almost never a good idea to use Future.value. To extract a value
from a Future, refer to the additional techniques described next.

Blocking execution
When we added concurrency to the backtester, we wrote a for-comprehension returning
Future[(BacktestPerformanceSummary, BacktestPerformanceSummary,

BacktestPerformanceSummary, BacktestPerformanceSummary)], which may leave
you wondering how you access the value wrapped in the Future. Another way of asking
the question is, “Given Future[T], how do I return T?” The short answer is, “You don't!”
Programming with many Future requires a shift in thinking away from synchronous
execution towards asynchronous execution. When programming with an asynchronous
model, the goal is to avoid working with T directly because it implies a synchronous
contract.

In practice, there are situations where it is useful to have the Future[T] => T function.
For example, consider the backtester snippet. If the code from the snippet is used to create a
program by defining an object extending App, the program will terminate before
backtesting completes. As the threads in the ExecutionContext global are daemon
threads, the JVM terminates immediately after creating the Future. In this scenario, we
need a synchronization mechanism to pause execution until the result is ready. By
extending the Awaitable trait, Future is able to provide such facilities. The Await module
exposes two methods that achieve this goal:

def ready[T](awaitable: Awaitable[T], atMost: Duration): awaitable.type
def result[T](awaitable: Awaitable[T], atMost: Duration): T

As Future extends Awaitable, a Future can be supplied as an argument to either method.
The ready halts program flow until T is available and returns the completed Future[T]. In
practice, ready is rarely used because it is conceptually strange to return a Future[T] from
a synchronous call instead of T. You are more likely to commonly use result, which
provides the desired transformation returning T given Future[T]. For example,
CrazyIdeas.scala can be modified to look like the following:
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    val summariesF = for {
      firstDaveAapl <- Future(backtest(Dave1, Ticker("AAPL"),
lastMonths(3)))
      firstDaveGoog <- Future(backtest(Dave1, Ticker("GOOG"),
lastMonths(3)))
      secondDaveAapl <- Future(backtest(Dave2, Ticker("AAPL"),
lastMonths(3)))
      secondDaveGoog <- Future(backtest(Dave2, Ticker("GOOG"),
lastMonths(3)))
    } yield (firstDaveAapl, firstDaveGoog, secondDaveAapl, secondDaveGoog)

    Await.result(summariesF, scala.concurrent.duration.Duration(1,
java.util.concurrent.TimeUnit.SECONDS))

In this snippet, we see the blocking, synchronous invocation of Await.result to return
the Tuple of Future[BacktestPerformanceSummary]. This blocking call is
parameterized with a timeout to defend against the scenario where the Future is not
computed within a certain amount of time. Using a blocking call to retrieve the backtest
results means that the JVM will only exit after the backtest completes or when the timeout
expires. When the timeout expires and the backtest is incomplete, result and ready throw
a TimeoutException.

Blocking execution of your program is potentially detrimental to your program's
performance, and it should be used with caution. Using the methods on the Await
companion object make blocking calls easy to recognize. As ready and result throw an
exception when timing out, rather than returning a different data type, you must take extra
caution to handle this scenario. You should treat any synchronous call involving
asynchrony (that either does not provide a timeout or does not handle the timeout) as a
bug.

Programming asynchronously requires a mindset shift to write a program that describes
what to do when the value appears rather than writing programs that require a value to
exist before acting on it. You should be suspicious of any use of Await that interrupts
transformation of a to-be-computed value. A set of transformations should be composed by
acting upon Future[T] instead of T. Usage of Await should be restricted to scenarios
where a program has no other work to perform and requires the result of the
transformation, as we saw with the backtester.
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As the standard library models timeout with an exception instead of a
different return type, it is hard to enforce that a timeout is always handled
One way to improve safety is to write a utility method that returns
Option[T] instead of T to account for the timeout scenario:
object SafeAwait {
  def result[T](
    awaitable: Awaitable[T],
    atMost: Duration): Option[T] =
    Try(Await.result(awaitable, atMost)) match {
      case Success(t) => Some(t)
      case Failure(_: TimeoutException) => None
      case Failure(e) => throw e
    }
}

With this new method, an entire error class is eliminated. As you
encounter other unsafe transformations, consider defining methods that
return a data type that encodes expected errors to avoid accidentally
mishandling the transformation result. What other examples of unsafe
transformations come to mind?

Handling failures
Working with Future requires disciplined handling of error scenarios to avoid writing a set
of transformations that are difficult to reason about. When an exception is thrown inside
a Future transformation, it bubbles up within the transformation's thread of computation
and interrupts downstream transformations. Consider the following motivating example:

Future("not-an-integer").map(_.toInt).map(i => {
      println("Multiplying")
      i * 2
    })

What do you expect to occur after the first map transformation? It is clear that the
transformation will fail because the provided input cannot be cast to an integer. In this
scenario, the Future is considered to be a failed Future and downstream transformations
operating on the wrapped Int value, in this example, will not occur. In this simple
example, it is obvious that the transformation cannot continue. Imagine a larger code base
operating on data more complicated than a single integer with multiple failure scenarios
across multiple namespaces and source files. In a real-world setting, it is more challenging
to identify where an asynchronous computation broke down.
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Future provides facilities for handling failures. It provides recover and recoverWith in
order to continue downstream transformations. The signatures are as follows:

def recover[U >: T](pf: PartialFunction[Throwable, U])(implicit executor:
ExecutionContext): Future[U]
def recoverWith[U >: T](pf: PartialFunction[Throwable, Future[U]])(implicit
executor: ExecutionContext): Future[U]

The difference between these two recovery methods is that the partial function provided to
recover returns U, while recoverWith returns Future[U]. In our previous example, we
can use recover to supply a default value to continue a transformation, as follows:

Future("not-an-integer").map(_.toInt).recover {
  case _: NumberFormatException => -2
}.map(i => {
  println("Multiplying")
  i * 2
})

Running this snippet produces the following output:

Multiplying
Multiplication result = -4

This approach allows you to continue a pipeline of transformations when one transform
fails, but it suffers from the same shortcoming as the methods on Await. The
returned Future[T] data type does not reflect the possibility of failure. Using recovery
methods is error-prone because it is impossible to know whether the error conditions have
been handled without reading through the code.

The error handling that we investigated is appropriate to handle failures during a
computation. It is likely that after a series of transformations complete, you will wish to
perform special logic. Imagine you are building a web service that submits trading orders to
exchanges. Order submission is successful if the order was submitted to the exchange;
otherwise, it is considered a failed submission. As order submission involves
communication with an external system, the exchange, you modeled this action with a
Future. Here is what the method handling order submission looks like:

  def submitOrder(
    ec: ExecutionContext,
    sendToExchange: ValidatedOrder => Future[OrderSubmitted],
    updatePositions: OrderSubmitted => Future[AccountPositions],
    o: RawOrder): Unit = {
    implicit val iec = ec

    (for {
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      vo <- ValidatedOrder.fromRawOrder(o).fold(
        Future.failed[ValidatedOrder](new Exception(
        "Order failed validation")))(Future.successful)
      os <- sendToExchange(vo)
      ap <- updatePositions(os)
    } yield (os, ap)).onComplete {
      case Success((os, ap)) => // Marshal order submission info to caller
      case Failure(e) =>  // Marshal appropriate error response to caller
    }
  }

An ExecutionContext, a way to submit orders, and a way to update a customer's trading
positions after the trade is submitted allow a customer provided RawOrder to be submitted
to the exchange. In the first processing step, the RawOrder is converted into
a ValidatedOrder, and then lifted into a Future. Future.failure
and Future.successful are convenient ways to lift or to wrap a computed value into
a Future. The value is lifted into a Future to allow the entire sequence of steps to be
written as a single for-comprehension.

Following the completion of all processing steps, onComplete is invoked to
asynchronously handle completion of request processing. You can imagine in this context
that completing request processing implies creating a serialized version of a response and
transmitting this to the caller. Previously, the only mechanism at our disposal to perform
work once a value is computed is to block using Await. onComplete is an asynchronously
invoked callback that registers a function to be invoked when the value is completed. As
shown in the example, onComplete supports handling success and failure cases, which
makes it a general-purpose tool to handle the outcome of a Future transformation. In
addition to onComplete, Future provides onFailure specifically for failure cases
and onSuccess and foreach specifically for success cases.

These callback methods expose a method signature that returns Unit. As a functional
programmer, you should be leery of invoking these methods because they are side-
effecting. The onComplete invocations should only happen at the absolute end of a
computation when a side-effect can no longer be deferred. In the web service example, the
side-effect is transmission of the response to the caller. Another common use case for using
these side-effecting callbacks is to handle cross-cutting concerns, such as application
metrics. Coming back to the web service, here is one way to increment an error counter
when order submission to the exchange fails:

   (for {
      vo <- ValidatedOrder.fromRawOrder(o).fold(
        Future.failed[ValidatedOrder](
        new Exception("Order failed validation")))(Future.successful)
      os <- {
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        val f = sendToExchange(vo)
        f.onFailure({ case e => incrementExchangeErrorCount() })
        f
      }
      ap <- updatePositions(os)
    } yield (os, ap))

In this snippet, a side-effect is performed when submission to the exchange fails via the
onFailure callback. In this isolated example, it is straightforward to track where the side-
effect is happening. However, in a larger system it can be a challenge to identify when and
where callbacks were registered. Additionally, from the Future API documentation, we
learn that callback execution is unordered, which indicates that all callbacks must be treated
independently. This is why you must be disciplined about when and where you apply these
side-effects.

An alternative approach to error handling is to use a data type that can encode errors. We
have seen this approach applied with Await when Option was the returned data
type. Option makes it clear that the computation might fail while remaining convenient to
use because its transformations (for example, map) operate on the wrapped value.
Unfortunately, Option does not allow us to encode the error. In this case, it is helpful to use
another tool from the Scalaz library called disjunction. Disjunction is conceptually similar
to Either, which can be used to represent one of two possible types. Disjunction is
different from Either because its operations are right-biased. Let's take a look at a simple
example to illustrate this idea:

scalaz.\/.right[Throwable, Int](1).map(_ * 2)

The \/ is the shorthand symbol used by Scalaz to represent a disjunction. In this example, a
right disjunction is created by wrapping the one integer literal. This disjunction either has
the Throwable value or the Int value, and it is analogous to Either[Throwable, Int].
In contrast to Either, the map transformation operates on the right side of the disjunction.
In this example, map accepts an Int value as input because the right side of the disjunction
is an Int value. As disjunction is right-biased, it is a natural fit to represent failure and
success values. Using the infix notation, it is common to define error handling with Future
as Future[Throwable \/ T]. In place of Throwable, one can define an ADT of possible
error types to make error handling explicit. This approach is favorable because it enforces
handling of failure cases without relying on the author to invoke a recovery method. If you
are interested to learn more about how to use disjunction as a tool for error handling,
review Eugene Yokota's excellent Scalaz tutorial at h t t p : / / e e d 3 s i 9 n . c o m / l e a r n i n g - s c
a l a z / E i t h e r . h t m l.

http://eed3si9n.com/learning-scalaz/Either.html
http://eed3si9n.com/learning-scalaz/Either.html
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Hampering performance through executor
submissions
As Future provides an expressive and easy-to-use API, it is common to perform numerous 
transforms to complete a computation in a large-scale system. Reflecting on the order
submission web service mentioned in the previous section, you can imagine multiple
application layers operating on a Future. A production-ready web service typically
composes together multiple layers to service a single request. An example request flow may
contain the following stages: request deserialization, authorization, application service
invocation, database lookups and/or third-party service callouts, and response translation to
a JSON format. If each of these stages in the workflow is modeled with a Future, then it is
common to have five or more transformations to handle a single request.

Decomposing your software system into small areas of responsibility in a way that is
similar to the preceding example is a good engineering practice to support testing in
isolation and improving maintainability. However, this approach to software design comes
with a performance cost when working with Future. As we have seen through our
example usage, nearly all transforms on a Future require submitting work to an Executor.
In our example workflow, most stages in the transformation are small. In this scenario, the
overhead of submitting work to the executor dominates the execution time of the
computation. If the order submission web service services numerous customers with
stringent throughput and latency requirements, then it is possible that engineering practices
focusing on testability and maintainability will result in poorly performing software.
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If you consider the preceding diagram, you can see a thread pool with four threads being
used to apply transforms to a Future. Each transform is submitted to the pool and there is
a chance that a different thread is picked for the computation. This diagram visualizes how
multiple small transforms may hamper performance due to the overhead of Executor
submissions.

Just how large is the overhead of Executor submissions? This is the motivating question to
write a benchmark to quantify the overhead of submitting work to an Executor. The
benchmark focuses on adding 1 to an integer N-times in two ways. One approach is to
perform the addition operation within a single Future, while the second approach is to
perform each addition operation with a new Future transformation. The latter approach is
a proxy for the stages of order submission request processing that uses multiple Future
transformations in a larger software system. Performing integer addition is the proxy
operation because it is an extremely cheap computation, which means that the execution
time will be dominated by Executor submissions. The benchmarks look like the following:
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  @Benchmark
  def manyTransforms(state: TransformFutureState): Int = {
    import scala.concurrent.ExecutionContext.Implicits._
    val init = Future(0)
    val res = (1 until state.operations).foldLeft(init)
      ((f, _) => f.map(_ + 1))
    Await.result(res, Duration("5 minutes"))
  }

  @Benchmark
  def oneTransform(state: TransformFutureState): Int = {
    import scala.concurrent.ExecutionContext.Implicits._
    val res = Future {
      (1 until state.operations).foldLeft(0)((acc, _) => acc + 1)
    }
    Await.result(res, Duration("5 minutes"))
  }

TransformFutureState allows the number of operations to be parameterized.
manyTransforms represents each addition operation using a map transformation that
involves submitting work to an Executor. oneTransform performs all addition operations
using a single Executor submission via Future.apply. In this controlled
test, Await.result is used as a blocking mechanism to await the completion of the
computation. The results of running this test on a two-core machine with five
transformations and ten transformations can be seen in the following table:

Benchmark Map count Throughput (ops per second) Error as percentage of
throughput

manyTransforms 5 463,614.88 ± 1.10

oneTransform 5 412,675.70 ± 0.81

manyTransforms 10 118,743.55 ± 2.34

oneTransform 10 316,175.79 ± 1.79

While both scenarios yield comparable results with five transformations, we can see a clear
difference with ten transforms being applied. This benchmark makes it clear that Executor
submissions can dominate performance. Although the cost can be high, our advice to you is
to model your system without considering this cost up-front. In our experience, it is easier
to rework a well-modeled system for performance improvements than it is to extend or to
rework a poorly-modeled but performant system. For this reason, we advise against going
to great lengths to group Executor submissions when attempting to put together the initial
version of a complex system.



Concurrency in Scala

[ 196 ]

Once you have a good design in place, the first step is to benchmark and to profile in order
to identify whether Executor submissions are the bottleneck. In the event that you
discover that your style of Future usage is causing performance bottlenecks, there are
several courses of action you should consider.

The lowest cost development option is to replace unnecessarily costly Future creation with
the use of Future.success or Future.failure. The order submission web service took
advantage of these factory methods to lift values into a Future. As the value is already
computed, these factory methods avoid submitting any tasks to the Executor that are
referenced by the provided ExecutionContext. Replacing usages of Future.apply with
either Future.successful or Future.failure when the value is already computed can
yield cost savings.

A more expensive alternative in terms of development effort is to rework your
implementation to group together Future transformations in a way similar
to manyTransforms. This tactic involves reviewing each application layer to determine
whether transforms within a single layer can be combined. If possible, we recommend that
you avoid merging transformations across application layers (for example, between request
deserialization or authorization and application service processing) because this weakens
your model and increases maintenance cost.

If neither of these options produces acceptable performance, then it may be worthwhile to
discuss with the product owners the option of addressing the performance issue with
hardware. As your system's design has not been compromised and it reflects solid
engineering practices, then it likely can be horizontally scaled or clustered. Depending on
the state tracked by your system, this option might be possible without additional
development work. Perhaps product owners value a system that can be easily maintained
and extended more than performance. If this is the case, adding scale to your system may
be a viable way forward.

Provided that you are unable to buy your way out of the performance challenge, then there
are three additional possibilities. One option is to investigate an alternative to Future,
named Task. This construct, which is provided by the Scalaz library, allows computations
to be performed with fewer Executor submissions. This option involves significant
development because the Future data type will need to be replaced throughout the
application with Task. We will explore Task at the end of this chapter and investigate the
performance benefits that it can provide.

Independent of using Task, it can be useful to review your application's model to critically
question whether or not there is unnecessary work being done on the critical path. As we
saw with MVT's reporting infrastructure and the introduction of stream processing, it is
sometimes possible to rethink a design to improve performance. Like the introduction
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of Task, reconsidering your system's architecture is a large-scale change. The last resort
option is to merge application layers in order to support grouping Future transformations.
We advise against exercising this option, unless all other suggestions have failed. This
option results in a code base that is more difficult to reason about because concerns are no
longer separated. In the short-run, you may reap performance benefits, but in our
experience, these benefits are outweighed in the long-run by the cost of maintaining and
extending such a system.

Handling blocking calls and callbacks
As described in the first part of this chapter, the Future API provides an elegant way to
write concurrent programs. As it is considered a bad practice to block on a Future, it is not
unusual to see Future being widely used across an entire code base. However, it is unlikely
that your system is only composed of your own code. Most real-world applications leverage
existing libraries and third-party software to avoid re-implementing existing solutions to
some common problems (such as data encoding and decoding, communication over HTTP,
database drivers, and so on). Unfortunately, not all libraries use the future API, and it may
become a challenge to gracefully integrate them into your system. In this section, we will
examine some common pitfalls that you may encounter and mention possible
workarounds.

ExecutionContext and blocking calls
While working on the backtester, you noticed that one module of the code is used to load
some historical buy orders from a relational database. Since you started rewriting the
application to take advantage of Future, the module API is fully asynchronous:

def findBuyOrders(
 client: ClientId,
 ticker: Ticker)(implicit ec: ExecutionContext): Future[List[Order]] = ???

However, after profiling the application, you noticed that this part of the code performs
quite poorly. You attempted to increase the database connection count, first doubling it,
then tripling it, both without success. Attempting to understand the cause of the problem,
you look at all the locations where the method is called, and you noticed the following
pattern:

import scala.concurrent.ExecutionContext.Implicits.global
findBuyOrders(clientId, tickerFoo)
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All the callers are importing the global ExecutionContext to be implicitly used by the
method. The default thread pool is backed by a ForkJoinPool, and it is sized based on the
available cores on the machine. As such, it is CPU-bound and designed to handle
nonblocking, CPU intensive operations. This is a good choice for applications that do not
perform blocking calls. However, if your application runs blocking calls asynchronously
(that is, in a Future execution), relying on the default ExecutionContext will most likely
quickly degrade performance.

Asynchronous versus nonblocking
Before going further, we want to clarify some of the terms used in this section. Nonblocking
can be a confusing term in the context of concurrency. When using Future, we perform 
asynchronous operations, meaning that we start a computation so it can proceed with the
flow of the program. The computation is executed in the background and will eventually
yield a result. This behavior is sometimes called nonblocking, meaning that the API call
returns immediately. However, blocking and nonblocking most often refer to I/O operations
and how they are performed, especially how the thread that is performing the operation is
used. For example, writing a sequence of bytes to a local file can be a blocking operation
because the thread calling write will have to wait (block) until the I/O operation is
completed. When using nonblocking constructs, such as the ones provided in the java.nio
package, it is possible to perform I/O operations that will be executed without blocking a
thread.

It is possible to implement an API with a combination of the following behaviors:

API characteristics Returns Blocks a thread?

Synchronous/blocking At the end of the
computation

Yes, the calling thread executes the
operation

Asynchronous/blocking Immediately Yes, this blocks a thread from a
dedicated pool

Asynchronous/nonblocking Immediately No, the thread is freed-up while the
blocking operation is performed

Using a dedicated ExecutionContext to block calls
Clearly, our problem is that we are using the ExecutionContext global to perform
blocking calls. We are querying a relational database, and most JDBC drivers are
implemented to perform blocking calls. The pooled threads call the driver and block while
waiting for the query and the response to travel over the network, making them unusable



Concurrency in Scala

[ 199 ]

by other computations. An option is to create a dedicated ExecutionContext to execute
the Future, including blocking operations. This ExecutionContext is sized with more
threads in the anticipation that they will be blocked when performing their computation:

val context = ExecutionContext.fromExecutorService(
  Executors.newFixedThreadPool(20)
)
findBuyOrders(clientId, tickerFoo)(context)

The first benefit is that we have more threads available, meaning that we can initiate more
queries concurrently. The second benefit is that the other asynchronous computations
performed in our system are done on a separate pool (for example, the global context), and
they will avoid starvation since no threads are blocked.

We write a short benchmark to evaluate the performance of our new system. In this
example, we use a mock implementation of findBuyOrders to simulate querying the
database:

def findBuyOrders(
 client: ClientId,
 ticker: Ticker)(ec: ExecutionContext): Future[List[Order]] = Future {
 Thread.sleep(100)
 Order.staticList.filter(o => o.clientId == client
   && o.ticker == ticker)
}(ec)

We pass the ExecutionContext as a parameter. Our benchmark compares the throughput
of an application relying on the default ExecutionContext and one using
an ExecutionContext, which is dedicated to blocking operations; the latter is 
initializedwith twenty times more threads. The results are as follows:

Benchmark Operation count Throughput (ops per
second)

Error as percentage of
throughput

withDefaultContext 10 3.21 ± 0.65

withDedicatedContext 10 9.34 ± 1.00

withDefaultContext 1,000 0.04 ± 2.56

withDedicatedContext 1,000 0.73 ± 0.41

The results confirm our intuition. The dedicated pool is bigger than the default context in
anticipation of threads being blocked waiting for a blocking operation to finish. Having
more threads available, it is able to start more blocking operations concurrently, thus
achieving a better throughput. Creating a dedicated ExecutionContext is a good way to
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isolate blocking operations and make sure that they do not slow down CPU-bound
computations. When designing your dedicated thread pool, make sure that you understand
how the underlying resources (for example, connections, file handles, and so on) are used.
For example, when dealing with a relational database, we know that one connection can
only be used to perform one query at a time. A good rule of thumb is to create a thread pool
with as many threads as the amount of connections that you want to open with your
database server. If the number of connections is less than the thread count, some threads
may be waiting for a connection and remain unused. If you have more connections than
threads, the opposite situation may occur and some connections may remain unused.

A good strategy is to rely on the type system and the compiler to ensure that you are not
mixing up different ExecutionContext instances. Unless the type is differentiated, you
may accidentally use a CPU-bound context when performing blocking operations. You can
create your own DatabaseOperationsExecutionContext type wrapping an
ExecutionContext, and accept this type when creating your database access module.
Another idea is to use tagged types that are provided by Scalaz. Refer to Chapter 3,
Unleashing Scala Performance, for a refresher on tagged types. Consider the following
example:

object DatabaseAccess {

 sealed trait BlockingExecutionContextTag

 type BlockingExecutionContext = ExecutionContext @@
BlockingExecutionContextTag

 object BlockingExecutionContext {
   def fromContext(ec: ExecutionContext): BlockingExecutionContext =
     Tag[ExecutionContext, BlockingExecutionContextTag](ec)

  def withSize(size: Int): BlockingExecutionContext =
fromContext(ExecutionContext.fromExecutor(Executors.newFixedThreadPool(size
)))
}
}

class DatabaseAccess(ec: BlockingExecutionContext) {
  // Implementation elided
}

Using a tagged types for our ExecutionContext gives us additional safety. It is easy to
make a mistake in the main method while wiring up your application, and inadvertently
use the wrong ExecutionContext when creating yourmodules.
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Using the blocking construct
The standard library provides a blocking construct that can be used to signal blocking 
operations executed inside a Future. We can modify our previous example to
leverage blocking instead of a dedicated ExecutionContext:

import scala.concurrent.ExecutionContext.Implicits.global
def findBuyOrders(
 client: ClientId,
 ticket: Ticker): Future[List[Order]] = Future {
   scala.concurrent.blocking{
     Thread.sleep(100)
     Order.staticList.filter(o => o.clientId == client && o.ticker ==
ticker)
   }
}

Note that in the preceding implementation, we use the default ExecutionContext to
execute the Future. The blocking construct is used to notify the ExecutionContext that
a computation is blocking. This allows the ExecutionContext to adapt its execution
strategy. For example, the default global ExecutionContext will temporarily increase the
number of threads in the pool when it performs a computation wrapped with blocking. A
dedicated thread is created in the pool to execute the blocking computation, making sure
that the rest of the pool remains available for CPU-bound computations.

You should use blocking cautiously. The blocking construct is merely used to
notify ExecutionContext that the wrapped operation is blocking. It is the responsibility of
the ExecutionContext to implement a specific behavior or ignore the notification. The
only implementation that actually takes it into account and implements special behavior is
the default ExecutionContext global.

Translating callbacks with Promise
While Future is the main construct of the scala.concurrent API, another useful
abstraction is Promise. Promise is another way to create and complete a Future.
The Future is a read-only container for a result that will eventually be computed. Promise
is a handle that allows you to explicitly set the value contained in a Future. A Promise is
always associated with only one Future, and this Future is specific to the Promise. It is
possible to complete the Future of a Promise with a successful result, or an exception
(which will fail the Future).

Let's look at a short example to understand how Promise works:
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scala> val p = Promise[Int]  // this promise will provide an Int
p: scala.concurrent.Promise[Int] =
scala.concurrent.impl.Promise$DefaultPromise@d343a81

scala> p.future.value
res3: Option[scala.util.Try[Int]] = None
// The future associated to this Promise is not yet completed

scala> p.success(42)
res4: p.type = scala.concurrent.impl.Promise$DefaultPromise@d343a81

scala> p.future.value
res5: Option[scala.util.Try[Int]] = Some(Success(42))

A Promise can only be used once to complete its associated Future, either with a success
or a failure. Attempting to complete an already realized Promise will throw an exception,
unless you use trySuccess, tryFailure, or tryComplete. These three methods will
attempt to complete the Future that is linked to the Promise and return true if
the Future was completed or false if it was already previously completed.

At this point, you may be wondering in what circumstances you would really take
advantage of Promise. Especially considering the previous example, would it be simpler to
return the internal Future instead of relying on a Promise? Keep in mind that the
preceding snippet is meant to demonstrate a simple workflow that illustrates the Promise
API. However, we understand your question. In practice, we see two common use cases
for Promise.

From callbacks to a Future-based API
The first use case is to turn a callback-based API into a Future-based API. Imagine having
to integrate with a third-party product, such as the proprietary database that MVT obtained
recently by purchasing usage licenses. This is a great product that is used to store historical
quotes per timestamp and ticker. It comes with a library to be used by a client application.
Unfortunately, this library, while fully asynchronous and nonblocking, is callback-oriented,
as follows:

object DatabaseClient {
  def findQuote(instant: Instant, ticker: Ticker,
    f: (Quote) => Unit): Unit = ???

  def findAllQuotes(from: Instant, to: Instant, ticker: Ticker,
    f: (List[Quote]) => Unit, h: Exception => Unit): Unit = ???
}
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There is no doubt that the client works fine; after all, MVT paid a lot of money for it!
However, it will not be easy to integrate it with your own application. Your program relies
heavily on Future. This is where Promise can help us, as follows:

object DatabaseAdapter {

  def findQuote(instant: Instant, ticker: Ticker): Future[Quote] = {
    val result = Promise[Quote]

    DatabaseClient.findQuote(instant, ticker, {
      q: Quote =>
        result.success(q)
    })

    result.future
  }

  def findAllQuotes(from: Instant, to: Instant, ticker: Ticker):
  Future[List[Quote]] = {
    Val result = Promise[List[Quote]]
    DatabaseClient.findQuote(from, to, ticker, {
      quotes: List[Quote] => result.success(quotes)
    }, {
      ex: Exception => result.failure(ex)
    }
  }

  result.future
}

Thanks to the Promise abstraction, we are able to return a Future. We simply
use success and failure in the respective callbacks to call the proprietary client. This use
case often arises in production when you have to integrate with a Java library. Even though
Java 8 introduced a significant improvement to the Java concurrent package, most Java
libraries still rely on callbacks to implement asynchronous behavior. Using Promise, you
can fully leverage the existing Java ecosystem in your program without giving up on Scala
support for concurrent programming.

Combining Future with Promise
Promise can also be used to combine instances of Future. For example, let's add a timeout
capability to Future:

def run[A](f: => Future[A], timeout: Duration): Future[A] = {
  val res = Promise[A]
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  Future {
    Thread.sleep(timeout.getMillis)
     res.tryFailure(new Exception("Timed out")
  }

  f onComplete {
  case r => res.tryCompleteWith(f)
  }

  res.future
}

Our method takes a by-name Future (that is, a Future that has not started its execution
yet) as well as the timeout value to apply. In the method, we use a Promise as a container
for the result. We start an internal Future that will block for the timeout duration before
failing the Promise with an Exception. We also start the main Future and register a
callback to complete the Promise with the result of the computation. The first of the
two Futures that terminates will effectively complete the Promise with its result. Note
that in this example, we use tryFailure and tryCompleteWith. It is likely that
both Futures will eventually terminate and try to complete the Promise. We are only
interested in the result of the first one that completes, but we also want to avoid throwing
an Exception when attempting to complete an already realized Promise.

The preceding example is a naive implementation of a timeout. It is mostly
a prototype used to demonstrate how Promise can be leveraged to
enriched Future and implement complex behavior. A more realistic
implementation would probably involve a ScheduledExecutorService.
A ScheduledExecutorService allows you to schedule the execution of
a computation after a certain delay. It allows us to schedule the call
to tryFailure without blocking a thread with a call to Thread.sleep.
We made the choice to keep this example simple and not introduce a new
type, but we encourage you to research this implementation of
ScheduledExecutorService.

In practice, you may occasionally have to write your own custom combinators for Future.
Promise is a useful abstraction in your toolbox if you need to do this. However, Future
and its companion object already provide a number of built-in combinators and methods
that you should try to leverage as much as possible.
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Tasked with more backtest performance
improvements
Discovering Future and adopting an asynchronous mindset helped you better utilize your
computing resources to test multiple strategies and tickers faster. You improved
performance by treating the backtest as a black box. Without changing the implementation
of the backtest, there were straightforward performance wins. Identifying logical sequences
of transformations as candidates for concurrency is a good strategy to apply when
considering how to speed up your software.

Let's extend this idea to a smaller logical unit of processing within the backtester. A backtest
exercises a strategy for a ticker across a time period. After speaking with Dave, you discover
that MVT does not maintain positions overnight. At the end of each trading day, MVT
trading systems mitigate risk by ensuring that all stock positions are liquidated. This is
done to defend against volatile overnight price moves after the market closes, which the
company is unable to react to by trading. As positions are not held overnight, each trading
day can be simulated independently of the previous trading day. Returning to our
asynchronous mindset, this insight implies that trading day simulations can be performed
concurrently.

Before jumping into the implementation using Future, we will share an alternative
abstraction, named Task, which is provided by the Scalaz library. Task provides
compelling usage reasons for our proposed backtest modifications. We introduce Task
next, provided that you are up to the task!

Introducing Scalaz Task
ScalazTask provides a different approach to achieve concurrency. Although Task can be
used in a way that mimics Future, there are important conceptual differences between
these two abstractions. Task allows fine-grained control over asynchronous execution,
which provides performance benefits. Task maintains referential transparency as well,
which provides stronger reasoning abilities. Referential transparency is a property of
expressions that are side-effect free. To better understand this principle, consider the
following simple sum method:

def sum(x: Int, y: Int): Int = x + y

Imagine that we are performing two summations:

sum(sum(2, 3), 4)
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As sum is side-effect free, we can replace sum(2, 3) with its result, as follows:

sum(5, 4)

This expression will always evaluate to 9, which satisfies referential transparency. Now
imagine a twist in the implementation of sum:

class SumService(updateDatabase: () => Unit) {
  def sum(x: Int, y: Int): Int = {
    updateDatabase()
    x + y
  }
}

Now, sum includes a side-effect of writing to a database that breaks referential
transparency. We can no longer perform the replacement of sum(2, 3) with the value 9
because then the database will not be updated. Referential transparency is a concept at the
heart of the functional programming paradigm because it provides strong reasoning
guarantees. The Haskell wiki provides additional commentary and examples worth
reviewing at h t t p s : / / w i k i . h a s k e l l . o r g / R e f e r e n t i a l _ t r a n s p a r e n c y.

Let's take a look at common Task API usage to better understand how Task works.

Creating and executing Task
The methods provided by theTask companion object are the main entry points to the API,
and the best ways to create an instance of Task. The Task.apply is the first method to
inspect. It takes a computation returning an instance of A (that is, a by-name parameter of
the A type) and an implicit ExecutorService to run the computation. Contrary to Future,
which uses ExecutionContext as an abstraction for a thread pool, Task uses
the ExecutorService, which is defined in the Java standard library:

scala> val t = Task {
     |   println("Starting task")
     |   40 + 2
     | }
t: scalaz.concurrent.Task[Int] = scalaz.concurrent.Task@300555a9

The first thing that you may have noticed is that, even though we instantiated a new Task,
nothing is printed on the screen. This is an important difference when comparing Task
and Future; while Future is eagerly evaluated, a Task is not computed until you explicitly
ask for it:

scala> t.unsafePerformSync

https://wiki.haskell.org/Referential_transparency
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Starting task
res0: Int = 42

The preceding example calls the unsafePerformSync instance method to execute the task.
We can see the println as well as the returned result 42. Note that unsafePerformSync
is an unsafe call. If the computation throws an exception, the exception is re-thrown
by unsafePerformSync. To avoid this side-effect, calling unsafePerformSyncAttempt is
preferred. The unsafePerformSyncAttempt instance catches the exception and has a
return type of Throwable \/ A, which allows you to cleanly handle the failure case. Note
that when creating the task t, we did not provide an ExecutorService. By default, apply
creates a Task to be run on DefaultExecutorService, a fixed thread pool for which the
size is based on the count of available processors on the machine using a default parameter.
The DefaultExecutorService is analogous to the global ExecutionContext that we
explored with Future. It is CPU-bound and sized based on the available cores on the
machine. We can also supply a different ExecutorService at creation time:

scala> val es = Executors.newFixedThreadPool(4)
es: java.util.concurrent.ExecutorService =
java.util.concurrent.ThreadPoolExecutor@4c50cd8c[Running, pool size = 0,
active threads = 0, queued tasks = 0, completed tasks = 0]

scala> val t = Task {
 println("Starting task on thread " + Thread.currentThread.getName)
 40 + 2
}(es)
t: scalaz.concurrent.Task[Int] = scalaz.concurrent.Task@497db010

scala> println("Calling run from " + Thread.currentThread.getName)
Calling run from run-main-1

scala> t.unsafePerformSync
Starting task on thread pool-8-thread-2
res2: Int = 42

The output shows that theTask is executed on the supplied ExecutorService, not on the
main thread.

Speaking of Task execution, let's perform a little experiment. We will create an instance
of Task and call unsafePerformSync twice in a row:

scala> val t = Task {
     |   println("Starting task")
     |   40 + 2
     | }
t: scalaz.concurrent.Task[Int] = scalaz.concurrent.Task@300555a9
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scala> t.unsafePerformSync
Starting task
res0: Int = 42

scala> t.unsafePerformSync
Starting task
res1: Int = 42

We observe that Starting task prints after each call to unsafePerformSync. This
indicates that the full computation is executed each time we call unsafePerformSync. That
is another difference with Future. While a Future memorizes its result after the
computation, a Task performs its computation each time we call unsafePerformSync. In
other words, Task is referentially transparent and, therefore, closer to the functional
programming paradigm than Future.

Asynchronous behavior
Like Future, it is possible (and even recommended) to use Task in an asynchronous way.
An instance of Task can be executed asynchronously by calling unsafePerformAsync.
This method takes a callback of type(Throwable \/ A) => Unit that is called at the end
of the computation. Observe the following snippet:

def createAndRunTask(): Unit = {
 val t = Task {
   println("Computing the answer...")
   Thread.sleep(2000)
   40 + 2
 }

 t.unsafePerformAsync {
   case \/-(answer) => println("The answer is " + answer)
   case -\/(ex) => println("Failed to compute the answer: " + ex)
 }

 println("Waiting for the answer")
}

We create ourTask, and add a Thread.sleep to simulate an expensive computation. We
call unsafePerformAsync and use a simple callback to print the answer (or an exception, if
the computation fails). We call createAndRunTask and observe the following output:

scala> TaskExample.createAndRunTask()
Waiting for the answer

scala> Computing the answer...
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The answer is 42

We can see that our last statement, “Waiting for the answer” was printed first. This is
because unsafePerformAsync returns immediately. We can see the statement from our
computation, as well as the answer printed in our callback. This method is a rough
equivalent to onComplete, which is defined on Scala's Future.

Another useful method provided by the companion object of Task is async. Remember
how we previously used Promise to turn a callback-based API into an API returning an
instance of Future? It is possible to achieve the same goal with Task; that is, we can turn a
callback-based API into a more monadic API returning a Task, as follows:

object CallbackAPI {
  def doCoolThings[A](a: => A, f: (Throwable \/ A) => Unit): Unit = ???
}

def doCoolThingsToTask[A](a: => A): Task[A] =
 Task.async { f =>
   CallbackAPI.doCoolThings[A](a, res => f(res))
 }

Evaluating this method in the REPL yields the following:

> val t = doCoolThingsToTask(40+2)
> t.map(res => res / 2).unsafePerformSync
res2: Int = 21

Our doCoolThingsToTask method uses Task.async to create a Task instance from a
callback-based API that is defined in CallbackAPI. The Task.async can even be used to
turn a Scala Future into a Scalaz Task:

def futureToTask[A](future: Future[A])(implicit ec: ExecutionContext):
Task[A] =
 Task.async { f =>
   future.onComplete {
     case Success(res) => f(\/-(res))
     case Failure(ex) => f(-\/(ex))
   }
 }

Note that we have to supply an ExecutionContext to be able to call onComplete
on Future. This is due to Future eager evaluation. Almost all methods that are defined
on Future will submit a computation to a thread pool immediately.
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It is also possible to convert a Task to a Future:
def taskToFuture[A](t: Task[A]): Future[A] = {
  val p = Promise[A]()
  t.unsafePerformAsync {
    case \/-(a) => p.success(a)
    case -\/(ex) => p.failure(ex)
  }
  p.future
}

The execution model
Understanding the Task execution model requires understanding the Scalaz Future
execution model because Task composes a Scalaz Future and adds error handling. This is
visible from the definition of Task:

class Task[+A](val get: Future[Throwable \/ A])

In this definition, Future is the not the Scala standard library version, but instead this is an
alternative version that is provided by Scalaz. The Scalaz Future decouples defining
transformations from execution strategy, providing us with fine-grained control
over Executor submissions. Scalaz Future accomplishes this by defining itself as a
trampolining computation. Trampolining is a technique that describes a computation as a
discrete series of chunks that are run using constant space. To dive into the details of how a
trampoline works, we recommend reading Runar Bjarnason's paper, Stackless Scala With
Free Monads, available at h t t p : / / b l o g . h i g h e r - o r d e r . c o m / a s s e t s / t r a m p o l i n e s . p d f.

Task builds on Scalaz Future by providing error handling with the Scalaz \/
disjunction. Task is the description of a computation. Transformations add to the
description of the computation that will eventually be executed by a thread pool. To begin
evaluation, a Task must be explicitly started. This behavior is interesting because when
a Task is finally executed, we can limit computation execution to a single thread. This
improves thread reuse and reduces context switching.

http://blog.higher-order.com/assets/trampolines.pdf
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In the preceding diagram, we see various calls to apply and map. These calls are merely
modifying the definition of the task to be performed. It is only when we
call unsafePerformAsync that the computation is realized in a different thread. Note that
all the transforms are applied by the same thread.

We can exercise Future and Task performance in a short microbenchmark comparing their
throughput based on the transform (for example, map and flatMap), and the count of
transformations applied. A snippet of the benchmark can be found, as follows:

@Benchmark
def mapWithFuture(state: TaskFutureState): Int = {
  implicit val ec = state.context
  val init = Future(0)
  val res = (1 until state.operations).foldLeft(init)
    ((f, _) => f.map(_ + 1))
  Await.result(res, Duration("5 minutes"))
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}

@Benchmark
def mapWithTask(state: TaskFutureState): Int = {
  val init = Task(0)(state.es)
  val res = (1 until state.operations).foldLeft(init)
    ((t, _) => t.map(_ + 1))
  res.unsafePerformSync
}

Both scenarios run similar computations. We create an initial instance of Future or Task
containing 0, and we apply several consecutive map operations to add 1 to the accumulator.
Two other scenarios performed the same computation but with flatMap instead. The
results for flatMap are displayed in the following table:

Benchmark Operation
count

Throughput (ops per
second)

Error as percentage of
throughput

flatMapWithFuture 5 41,602.33 ± 0.69

flatMapWithTask 5 59,478.50 ± 2.14

flatMapWithFuture 10 31,738.80 ± 0.52

flatMapWithTask 10 43,811.15 ± 0.47

flatMapWithFuture 100 4,390.11 ± 1.91

flatMapWithTask 100 13,415.30 ± 0.60

The results for map operations can be found in the following table:

Benchmark Operation count Throughput (ops per
second)

Error as percentage of
throughput

mapWithFuture 5 45,710.02 ± 1.30

mapWithTask 5 93,666.73 ± 0.57

mapWithFuture 10 44,860.44 ± 1.80

mapWithTask 10 91,932.14 ± 0.88

mapWithFuture 100 19,974.24 ± 0.55

mapWithTask 100 46,288.17 ± 0.46

This benchmark highlights the performance gain due to the different execution model of
Task. Even for a small number of transforms, the throughput is better with a deferred
evaluation.
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Modeling trading day simulations with Task
Equipped with our understanding of Task, we now have the knowledge necessary to add
concurrency to the execution of a single backtest run. You may recall that we discovered 
from Dave that MVT closes its positions at the end of each trading day. This insight allows
us to model each trading day independently. Let's familiarize ourselves with the current
implementation by beginning with the model, as follows:

  case class PnL(value: BigDecimal) extends AnyVal
  object PnL {
    def merge(x: PnL, y: PnL): PnL = PnL(x.value + y.value)
    val zero: PnL = PnL(0)
  }
  case class BacktestPerformanceSummary(pnl: PnL)
  case class DecisionDelayMillis(value: Long) extends AnyVal

The profit-and-loss is the output of each simulated trading day. PnL provides a convenient
method to add together two PnL instances, which can be used to sum the simulation PnL
across multiple trading days. Once all the trading days are simulated, a
BacktestPerformanceSummary is created to capture the simulation profit-and-loss. For
our work on the backtester, we will use a Thread.sleep to simulate computationally
expensive work in place of an actual decisioning strategy. The length of the sleep is
parameterized by DecisionDelayMillis.

We show a simplified version of the backtester that shows how DecisionDelayMillis is
used to simulate a trading day, as follows:

  def originalBacktest(
    testDays: List[MonthDay],
    decisionDelay: DecisionDelayMillis): BacktestPerformanceSummary =
    {
    val pnls = for {
      d <- testDays
      _ = Thread.sleep(decisionDelay.value)
    } yield PnL(10)
    BacktestPerformanceSummary(pnls.reduceOption(PnL.merge).getOrElse(
      PnL.zero))
  }

The original backtest displays how a list of days is simulated in a synchronous fashion. For
reproducibility, we substitute a constant profit-and-loss of $10 in place of a dynamic value.
This backtest ignores the application of a ticker and a strategy to focus on the core of our
dilemma: How can we use Task to add concurrency to a backtest?

From our examples, we saw that Task introduces concurrency through submission of
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multiple Tasks to an ExecutorService and by performing the side-effect of running
a Task with unsafePerformAsync to avoid a blocking wait for the result. As a first step,
let's implement a version of the backtest that uses Task without introducing concurrency:

  def backtestWithoutConcurrency(
    testDays: List[MonthDay],
    decisionDelay: DecisionDelayMillis): Task[BacktestPerformanceSummary] =
    {
    val ts = for (d <- testDays) yield Task.delay {
      Thread.sleep(decisionDelay.value)
      PnL(10)
    }
    Task.gatherUnordered(ts).map(pnls => BacktestPerformanceSummary(
      pnls.reduceOption(PnL.merge).getOrElse(PnL.zero)))
  }

This implementation changes the return type to Task[BacktestPerformanceSummary].
Since the Task is not run, referential transparency is maintained within this method. Each
trading day is simulated using Task.delay. delay is a lazy variant of Task.now that
defers evaluation of the provided value. Let's look at the following signature to confirm:

def delay[A](a: => A): Task[A]

If we had instead used Task.now in place of Task.delay, the sleep (that is, the simulation)
would have taken effect before running Task. We also see the use of another new
capability, Task.gatherUnordered. gatherUnordered is useful when you wish to make
the following transformation:

List[Task[A]] => Task[List[A]]

Although List is used here, this relationship exists for any Seq. gatherUnordered
provides a way to take a collection of Task and instead operate on a single Task that wraps
a collection of the underlying type. Let's look at the following signature to make our
understanding more concrete:

def gatherUnordered[A](tasks: Seq[Task[A]], exceptionCancels: Boolean =
false): Task[List[A]]

This signature closely matches the previous function that we defined with the addition of
an optional Boolean parameter. When exceptionCancels is set to true, any
pending Task will not be evaluated. gatherUnordered allows us to merge together the
results of each trading day's profit-and-loss and return a single Task
wrapping BacktestPerformanceSummary. The Scala Future companion object provides
an analogous method, named sequence, that performs the same operation on a sequence
of Futures.
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This is a functioning implementation of the backtest, but it does not add concurrency to the
simulation of historical trading days. For our next iteration, we take advantage of a new
part of the Task API, Task.fork. Let's see how it is used, and then we will explain how it
works:

  def backtestWithAllForked(
    testDays: List[MonthDay],
    decisionDelay: DecisionDelayMillis): Task[BacktestPerformanceSummary] =
    {
    val ts = for (d <- testDays) yield Task.fork {
      Thread.sleep(decisionDelay.value)
      Task.now(PnL(10))
    }
    Task.gatherUnordered(ts).map(pnls => BacktestPerformanceSummary(
      pnls.reduceOption(PnL.merge).getOrElse(PnL.zero)))
  }

This implementation gathers trading day PnL in the same way as before, but instead this
uses a combination of Task.fork and Task.now to simulate the trading day. Let's look at
the signature of Task.fork to understand how runtime behavior changes:

def fork[A](a: => Task[A])(implicit pool: ExecutorService =
Strategy.DefaultExecutorService): Task[A]

fork accepts a Task as a by-name parameter and an implicit ExecutorService that
defaults to the CPU-bound executor. The signature shows that fork submits the
provided Task to pool in order to fork the computation into a different thread. fork is an
explicit way to control concurrency with Task. Conceptually, fork is analogous to
any Future transformation (for example, map) that involves submission to an executor.
As fork lazily evaluates its argument, Task.now can be used to lift the trading day's profit-
and-loss into a Task. With this implementation, the Task that represents each trading day is
submitted to an executor. If we assume 30 trading days are being backtested and the
computer used has two cores, then this implementation allows each core to simulate 15 
trading days instead of a single core simulating 30 days.

As we saw in earlier benchmarks, submitting a high volume of small computations to an
executor is expensive. As we have explicit control over concurrency with Task using fork,
we can improve our performance by optimizing the frequency of executor submissions. In
our third attempt, we take advantage of knowing the number of trading days to be
simulated to control executor submissions. The implementation now looks like the
following:

  def backtestWithBatchedForking(
    testDays: List[MonthDay],
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    decisionDelay: DecisionDelayMillis): Task[BacktestPerformanceSummary] =
    {
    val ts = for (d <- testDays) yield Task.delay {
      Thread.sleep(decisionDelay.value)
      PnL(10)
    }
    Task.gatherUnordered(ts.sliding(30, 30).toList.map(xs =>
      Task.fork(Task.gatherUnordered(xs)))).map(pnls =>
      BacktestPerformanceSummary(
        pnls.flatten.reduceOption(PnL.merge).getOrElse(PnL.zero)))
  }

This implementation returns to representing the simulation of each trading day without any
concurrency using Task.delay. In contrast to the previous implementations, the list of
trading day simulation Tasks is divided into chunks of 30 using sliding. Each chunk of
30 Tasks is wrapped with an invocation of Task.fork to execute concurrently. This
approach allows us to balance the benefits of concurrency with the overhead of executor
submissions.

Of these three implementations, which is most performant? The answer is not
straightforward because it depends on the number of simulation trading days and the
computational cost of simulating a trading day. To better understand the tradeoffs, we
write a microbenchmark that tests each of the three backtest implementations. We show the
state required to run the benchmark, as follows:

  @State(Scope.Benchmark)
  class BenchmarkState {
    @Param(Array("1", "10"))
    var decisionDelayMillis: Long = 0
    @Param(Array("1", "12", "24" ))
    var backtestIntervalMonths: Int = 0

    var decisionDelay: DecisionDelayMillis = DecisionDelayMillis(-1)
    var backtestDays: List[MonthDay] = Nil

    @Setup
    def setup(): Unit = {
      decisionDelay = DecisionDelayMillis(decisionDelayMillis)
      backtestDays = daysWithin(trailingMonths(backtestIntervalMonths))
    }
  }
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This benchmark allows us to sweep different backtest interval and decision delay
combinations. Using a daysWithin method, which is omitted from the snippet, a count
representing the number of months is converted into the list of simulation trading days. We
display the implementation of only one benchmark because the other two are identical, as
follows:

@Benchmark
def withBatchedForking(state: BenchmarkState): BacktestPerformanceSummary =
  Backtest.backtestWithBatchedForking(state.backtestDays,
  state.decisionDelay)
    .unsafePerformSync

To accurately time how long it takes to complete the Task computation, we start the
computation with the blocking unsafePerformSync method. This is a rare example where
it is acceptable to make a blocking call without a timeout. In this controlled test, we are
confident that all invocations will return. For this test, we sweep the the month count,
leaving the decision delay fixed at 1 ms. Running this benchmark on a machine with four
cores produces the following results:

Benchmark Months Decision delay
milliseconds

Throughput (ops
per second)

Error as percentage
of throughput

withoutConcurrency 1 1 25.96 ± 0.46

withAllForked 1 1 104.89 ± 0.36

withBatchedForking 1 1 27.71 ± 0.70

withoutConcurrency 12 1 1.96 ± 0.41

withAllForked 12 1 7.25 ± 0.22

withBatchedForking 12 1 8.60 ± 0.49

withoutConcurrency 24 1 0.76 ± 2.09

withAllForked 24 1 1.98 ± 1.46

WithBatchedForking 24 1 4.32 ± 0.88

The results make the tradeoff between the overhead and the benefits of batching clearer.
Batching is a clear win as the number of months increase with a short 1 ms computational
delay. Consider the scenario of backtesting 24 months with a 1 ms decision delay.
Assuming 30-day months, there are 720 trading days to simulate. Split into batches of 30,
there are 24 invocations of fork instead of 720. The overhead for splitting the Task into
batches, and gathering each batch's results, is overshadowed by the order of magnitude of
fewer executor submissions. Our explicit control over forking yielded a doubling of
throughput in this scenario.
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As the number of months decreases, the overhead of creating Task batches becomes a
dominating factor. In a 12-month backtest, there are 360 trading days, yielding 12 batches.
Here, batching yields about a 20% throughput improvement over forking all Task. Cutting
the number of trading days in half from the 24-month test reduced the performance
advantage by more than half. In the worst-case scenario, when there is one month to
simulate, the batching strategy fails to take to advantage of all the cores on the machine. In
this scenario, one batch is created, leaving CPU resources underutilized.

Wrapping up the backtester
As we have seen, there are a number of variables at play here. Accounting for
computational costs, the number of available cores, the expected number of Task executor
submissions, and batching overhead can be challenging. To extend our work, we can
investigate a more dynamic batching strategy that takes better advantage of CPU resources
with smaller backtest intervals. Using this benchmark, we got a taste for the additional tools
that Task provides, and how explicit control of executor submissions can affect throughput.

The insights that we gleaned by working on the backtester can be applied to larger-scale
software systems as well. We focused on analyzing results with a short 1 ms decision delay.
As the cost of executing each Task increases (for example, 10 ms decision delay),
diminishing marginal performance improvements are gained from batching. This is because
the cost of executor submissions becomes overshadowed by the cost of the computation.
While 1 ms appears to be a small amount of time, there are a potentially surprising number
of computations that can be completed in this time frame. Consider that a throughput of
1,000 operations per second translates to 1 operation per millisecond. Reflecting on
benchmarks that we have performed in our earlier efforts and through your own work, you
can find numerous examples where we worked with operations that have a throughput
higher than 1 operation per millisecond. The takeaway from this thought experiment is a
large number of use cases fit within the definition of a short computation (that is, 1 ms),
which means that there are a significant number of opportunities to optimize concurrency
through the judicious use of fork.

The backtester is a prime candidate for batching because the amount of
work, namely the number of days to simulate, is known at the start of
processing. In a stream processing environment, the amount of work is
unknown. For example, consider the order book receiving events on-the-
fly. How can you implement batching in a streaming environment?
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We hope that backtester provided an illustrative example to give you a feeling for Task.
There are additional tools that are provided by Task that we did not explore. We invite you
to read the documentation for Task in the Scalaz library. In the book entitled, Functional
Programming in Scala, written by two Scalaz contributors, Rúnar Bjarnason and Paul
Chiusano, there is an excellent chapter describing the implementation of a simplified
version of Scalaz Task. This is a great resource to understand the design of the API.

Summary
In this chapter, we discovered how to harness the power of asynchronous programming
with the Scala standard library using Future and Promise. We improved MVT backtesting
performance by introducing concurrency to improve runtime performance and discovered
how Promise can be used to extend Future. Along the way, we investigated the
shortcomings of Future along with the techniques to mitigate these shortcomings. We also
explored an alternative to Future with Scalaz Task, which provides compelling
performance benefits while retaining referential transparency. Using what you have learned
in this chapter, you can take full advantage of multicore hardware using Scala to scale your
software systems and deliver higher throughput. In our final chapter, Chapter
7, Architecting for Performance, we explore a set of advanced functional programming
techniques and concepts to enrich your functional programming toolbox.



7
Architecting for Performance

We have come a long way in our exploration of Scala and various techniques to write
performant code. In this final chapter, we look at more open-ended topics. The final topics
are largely applicable beyond Scala and the JVM. We dive into various tools and practices to
improve the architecture and the design of an application. In this chapter, we explore the
following topics:

Conflict-free replicated data types (CRDTs)
Throughput and latency impact of queueing
The Free monad

Distributed automated traders
Thanks to our hard work, MVT is thriving. The sales department is signing contracts like
there is no tomorrow, and the sales bell is ringing from sunrise to sunset. The order book is
able to handle more orders, and as a result of the increase in traffic, another product offered
by MVT is incurring performance issues: the automated trading system. The automated
trader receives orders from the order book and applies various trading strategies in real
time to automatically place orders on behalf of the customers. As the order book is
processing an order of magnitude of more trade orders, the automated trading system is
unable to keep up, and, therefore, cannot efficiently apply its strategies. Several big
customers recently lost a lot of money due to bad decisions made by the algorithm and the
high latency of execution. The engineering team needs to solve this performance issue.
Alice, your technical lead, has tasked you with finding a solution and preventing the
company from losing newly-acquired customers.

In the previous chapter, we studied and took advantage of concurrency. We learned how to
design code to leverage the power of multicore hardware. The automated trader is already
optimized to run concurrent code and utilize all the CPU resources on the machine. The
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truth is, there is only so much one machine can handle, even with several cores. To scale the
system and keep up with the traffic coming from the order book, we will have to start
implementing a distributed system.

A glimpse into distributed architectures
Distributed computing is a rich topic, and we cannot pretend to address it entirely in a
single chapter. This short section gives a brief and incomplete description of distributed
computing. We will try to give you an overview of the paradigm and point to some of the
main benefits and challenges of distributed systems.

The idea behind distributed computing is to design a system involving several components,
which runs on different machines and communicates with each other (for example, over a
network) to achieve a task or provide a service. A distributed system can involve
components of different natures, each component providing a specific service and
participating in the realization of the task. For example, a web server can be deployed to
receive HTTP requests. To service a request, the web server may communicate over the
network to query an authentication service to validate credentials and a database server in
order to store and retrieve data and complete the request. Together, the web server, the
authentication service, and the database form a distributed system.

A distributed system can also involve several instances of the same component. These
instances form a cluster of nodes, and they can be used to divide the work among them.
This topology allows a system to scale out and support a higher load by adding more
instances to the cluster. As an example, if a web server is able to handle 20,000 requests per
second, it may be possible to run a cluster of three identical servers to handle 60,000
requests per second (assuming that your architecture allows your application to scale
linearly). Distributed clusters also help achieve high availability. If one of the nodes crashes,
the others are still up and able to fulfill requests while the crashed instance is restarted or
recovers. As there is no single-point of failure, there is no interruption of service.

For all their benefits, distributed systems come with their drawbacks and challenges. The
communication between components is subject to failure and network disruptions. The
application needs to implement a retry mechanism and error handling, and then deal with
lost messages. Another challenge is managing shared state. For example, if all the nodes use
a single database server to save and retrieve information, the database has to implement
some form of a locking mechanism to ensure that concurrent modifications do not collide. It
is also possible that once the cluster node count grows sufficiently large, the database
will not be able to serve them all efficiently and will become a bottleneck.
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Now that you have been briefly introduced to distributed systems, we will go back to MVT.
The team has decided to turn the automated trader into a distributed application to be able
to scale the platform. You have been tasked with the design of the system. Time to go to the
whiteboard.

The first attempt at a distributed automated trader
Your first strategy is simple. You plan to deploy several instances of the automated trader
to form a cluster of nodes. These nodes can share the work and handle each part of the
incoming orders. A load balancer in front of the cluster can distribute the load evenly
among the nodes. This new architecture helps scale out the automated trader. However,
you are facing a common problem with distributed systems: the nodes have to share a
common state to operate. To understand this requirement, we explore one of the features of
the automated trader. To be able to use MVT's automated trading system, customers have
to open an account with MVT and provision it with enough money to cover their trades.
This is used as a safety net by MVT to execute orders on behalf of its clients without
running the risk of a customer being unable to honor their transactions. To ensure that the
automated strategies do not overspend, the automated trader keeps track of the current
balance of each customer and checks the balance of a customer before placing an automated
order on their behalf.

Your plan consists of deploying several instances of the automated trading system. Each
instance receives a portion of the orders processed by the order book, runs a strategy and
places matching order on behalf of a customer. Now that the system consists of several
identical instances running in parallel, each instance can place orders on behalf of the same
customer. To be able to perform the balance validation, they all need to be aware of the
current balance of all customers. Customer balances become a shared state that has to be
synchronized in the cluster. To solve this problem, you envision a balance monitor server
deployed as an independent component and holding the state of each customer's balance.
When a trade order is received by a node of the automated trading cluster, the node
interrogates the balance monitor server to verify that a customer's account has enough
funds to place an automated trade. Similarly, when a trade is executed, a node instructs the
balance monitor server to update the balance of the customer.
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The preceding diagram describes various interactions between the components of your
architecture. Automated Trader 1 receives an incoming trade and queries the balance
monitor server to check whether the client has enough funds to perform a trade. The
balance monitor server either authorizes or rejects the order. At the same time, Automated
Trader 3 sends an order that was previously approved by the balance monitor server and
updates the client's balance.

You probably spotted a flaw in this design. It is possible to run into a race
condition where two different instances of the automated trader may
validate the balance of the same customer, receive an authorization from
the Balance Monitor Server, place both trades in parallel and go over the
limit of the client's account. This is comparable to a race condition that you
can encounter with a concurrent system running on a single machine. In
practice, the risk is low and is accepted by companies that are similar to
MVT. The limit used to cut-off a client is usually set lower than the actual
balance to account for this risk. Designing a platform to handle this case
would increase the latency of the system because we would have to
introduce more drastic synchronization across the nodes. This is a good
example of business and technical domains working together to optimize
the solution.
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At the end of this design session, you take a short walk to clear your mind while drinking a
bottle of carbonated water. As you return to the whiteboard, the crude reality hits you. Like
a flat bottle of carbonated water, your idea has fizzled out. You realize that all these arrows
linking rectangles are in reality messages that are traveling over the network. Currently,
while a single automated trader relies on its internal state to execute strategies and place
orders, this new design requires the automated trader to query an external system over the
network and wait for the answer. This query happens on the critical path. This is another
common issue with distributed systems: components with focused roles need to
communicate with each other to accomplish their tasks. This communication comes at a
cost. It involves serialization, I/O operations, and transfer over a network. You share your
reflections with Alice, who confirms that this is a problem. The automated trader has to
keep the internal latency as low as possible for its decisions to be relevant. After a short
discussion, you agree that it would endanger performance for the automated trader to
perform a remote call on the critical path. You are now left with the task of implementing a
distributed system with components sharing a common state without communicating with
each other on the critical path. This is where we can start talking about CRDTs.

Introducing CRDTs
CRDT stands for Conflict-free Replicated Data Types. CRDTs were formally defined by
Marc Shapiro and Nuno Preguiça in their paper, Designing a commutative replicated data
type (refer to h t t p s : / / h a l . i n r i a . f r / i n r i a - 0 0 1 7 7 6 9 3 / d o c u m e n t). A CRDT is a data
structure that is specifically designed to ensure eventual consistency across multiple
components without the need for synchronization. Eventual consistency is a well-known
concept in distributed system, which is not exclusive to CRDTs. This model guarantees that
eventually, if a piece of data is no longer modified, all nodes in a cluster will end up with
the same value for this piece of data. Nodes send each other update notifications to keep
their state synchronized. The difference with strong consistency is that at a given time, some
nodes may see a slightly outdated state until they receive the update notice:

https://hal.inria.fr/inria-00177693/document
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The preceding diagram shows an example of eventual consistency. All the nodes of the
cluster hold the same piece of data (A = 0). Node 1 receives an update to set the value of A
to 1. After updating its internal state, it broadcasts the update to the rest of the cluster. The
messages reach their targets at different instants, which means that until we reach step 4, A
has a different value depending on the node. If a client queries node 4 for the value of A at
step 3, they receive an older value as the change has not yet been reflected in node 4.
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A problem that may arise with eventual consistency is the resolution of conflicts. Imagine a
simple example where nodes in a cluster share the state of an array of integers. The
following table describes a sequence of events involving updating the state of this array:

Instant Event State change

T0 Initialization of the cluster Nodes 1 and 2 hold the same value for the array
of integers: [1,2,3]

T1 Node 1 receives a request to
update the value at index 1 from 2
to 4

Node 1 updates its internal state to [1,4,3] and
sends an update message to node 2

T2 Node 2 receives a request to
update the value at index 1 from 2
to 5

Node 2 updates its internal state to [1,5,3] and
sends an update message to node 1

T3 Node 1 receives the update from
node 2

Node 1 needs to decide whether it should ignore
or take into account the update message

Our cluster now needs to resolve the conflict. Should node 1 update its state when receiving
the update from node 2? If node 2 does the same, we end up with two nodes holding a
different state. What about the other nodes? Some may receive the broadcast from node 2
before the one from node 1 and vice versa.

Various strategies exist to deal with this problem. Some protocols use timestamps or vector
clocks to determine which update was performed later in time and should take precedence.
Others simply assume that the last writer wins. This is not a simple problem and CRDTs are
designed to completely avoid conflicts altogether. Actually, CRDTs are defined to make
conflicts mathematically impossible. To be defined as a CRDT, a data structure has to
support only commutative updates. That is, regardless of the ordering in which the update
operations are applied, the end state must always be the same. This is the secret of eventual
consistency without merge conflict. When a system uses CRDTs, all the nodes can send each
other update messages without a need for strict synchronization. The messages can be
received in any order, and all the local states will converge to the same value eventually.



Architecting for Performance

[ 227 ]

In the preceding diagram, we see that node 3 and node 1 receive two different changes.
They send this update information to all the other nodes. Note that we are not concerned
with the order in which the updates are received by the other nodes. As the updates are
commutative, their order has no impact on the final state that will be computed by each
node. They are guaranteed to hold the same piece of data once all of them have received all
the update broadcasts.

There exist two types of CRDT:

Operation-based
State-based

They are equivalent in that it is always possible to define a state-based CRDT for each
operation-based CRDT and vice-versa. However, their implementations differ and provide
different guarantees in terms of error-recovery and performance. We define each type and
consider its characteristics. As an example, we implement each version of the simplest
CRDT: an increase-only counter.

The state-based increase-only counter
With this model, when a CRDT receives an operation to perform from a client, it updates its
state accordingly and sends an update message to all the other CRDTs in the cluster. This
update message contains the full state of the CRDT. When the other CRDTs receive this
message, they perform a merge of their state with the received new state. This merge
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operation has to guarantee that the end state will always be the same. It has to be
commutative, associative, and idempotent. Let's look at a possible implementation of this
data type:

case class CounterUpdate(i: Int)
case class GCounterState(uid: Int, counter: Int)

class StateBasedGCounter(
 uid: Int, count: Int, otherCounters: Map[Int, Int]) {

 def value: Int = count + otherCounters.values.sum

 def update(
   change: CounterUpdate): (StateBasedGCounter, GCounterState) =
   (new StateBasedGCounter(uid, count + change.i, otherCounters),
     GCounterState(uid, count))

 def merge(other: GCounterState): StateBasedGCounter = {
   val newValue = other.counter max otherCounters.getOrElse(other.uid,0)
   new StateBasedGCounter(uid, count, otherCounters.+(other.uid ->
newValue) )
 }
}

The update method can be used by clients to increase the value of the counter. This returns
a new state-based counter containing an updated count, and it generates a CounterState
object that can be sent to all the other CRDTs in the cluster. The merge is used to handle
these CounterState messages and merge the new state of the other counters with the local
state. A counter has a unique ID in the cluster. The internal state is composed of the local
state (that is, count) and the states of all the other counters in the cluster. We keep these
counters in a map that we update in the merge method when receiving state information
from a different counter. Merging is a simple operation. We compare the incoming value
with the one that we have in the map and keep the greatest one. This is to ensure that if we
receive two update messages in the wrong order, we do not override the latest state (that is,
the greatest number) with an older update message that was delayed.

The operation-based increase-only counter
Operation-based CRDTs are similar to state-based CRDTs with the difference that update
messages only contain a description of the operation that was just performed. These CRDTs
do not send their full-state in an update message, but they are merely a copy of the
operation that they just performed to update their own state. This ensures that all the other
CRDTs in the cluster perform the same operation and maintain their state in sync. The
updates can be received in a different order by each node of the cluster. To guarantee that
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the end state is the same for all the nodes, the updates have to be commutative. You can see
an example of this data structure, as follows:

class OperationBasedCounter(count: Int) {

 def value: Int = count

 def update(change: CounterUpdate): (OperationBasedCounter, CounterUpdate)
 =
   new OperationBasedCounter(count + change.i) -> change

 def merge(operation: CounterUpdate): OperationBasedCounter =
   update(operation)._1
}

This implementation is shorter than the state-based example. The update method still
returns an updated instance of the counter, and the CounterUpdate object that was
applied. For an operation-based counter, it is enough to broadcast the operation that was
applied. This update is received by the merge method of the other instances to apply the
same operation to their own internal state. Note that update and merge are
equivalent, merge is even implemented in terms of update. In this model, there is no need
for a unique ID per counter.

Operation-based CRDTs use potentially smaller messages because they only send each
discrete operation as opposed to their full internal state. In our example, the state-based
update contains two integers, as opposed to only one for the operation-based update.
Smaller messages can help reduce bandwidth usage and improve the throughput of your
system. However, they are sensitive to communication failures. If an update message is lost
during the transmission and does not reach a node, this node will be out of sync with the
rest of the cluster with no way of recovering. If you decide to use operation-based CRDTs,
you have to be able to trust your communication protocol and be confident that all update
messages reach their destination and are properly processed. State-based CRDTs do not
suffer from this issue because they always send their entire state in an update message. If a
message is lost and does not reach a node, this node will only be out of sync until it receives
the next update message. It is possible to make this model even more robust by
implementing a periodic broadcast of the node's state, even when no updates are
performed. This would force all nodes to regularly send their current state and ensure that
the cluster is always eventually consistent.
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CRDTs and automated traders
Based on the requirements of our system, it seems that CRDTs are a good fit for our
implementation. Each node can keep the current state of each customer's balance in
memory as a counter, update it when placing orders, and broadcast update messages to the
rest of the system. This broadcast can be done outside the critical path, and we do not have
to worry about handling conflicts, as this is what CRDTs are designed for. Eventually, all
nodes will have in memory the same value for each balance, and they will be able to locally
check for trade authorization. The balance monitor server can be removed entirely.

To implement the state of the balance as a CRDT, we need a more sophisticated counter
than the one we previously explored. The balance cannot be represented as an increase-only
counter because, occasionally, orders are canceled and the system must credit the
customer's account. The counter has to be able to handle both increment and decrement
operations. Luckily, such a counter exists. Let's look at a simple implementation of a state-
based counter:

case class PNCounterState(incState: GCounterState, decState: GCounterState)

class StateBasedPNCounter private(
 incCounter: StateBasedGCounter,
 decCounter: StateBasedGCounter) {

 def value = incCounter.value - decCounter.value

 def update(change: CounterUpdate): (StateBasedPNCounter, PNCounterState) =
{
   val (newIncCounter, newDecCounter, stateUpdate) =
     change match {
       case CounterUpdate(c) if c >= 0 =>
         val (iC, iState) = incCounter.update(change)
         val dState = GCounterState(decCounter.uid, decCounter.value)
         (iC, decCounter, PNCounterState(iState, dState))
       case CounterUpdate(c) if c < 0 =>
         val (dC, dState) = decCounter.update(change)
         val iState = GCounterState(incCounter.uid, incCounter.value)
         (incCounter, dC, PNCounterState(iState, dState))
     }

   (new StateBasedPNCounter(newIncCounter, newDecCounter), stateUpdate)
 }

 def merge(other: PNCounterState): StateBasedPNCounter =
   new StateBasedPNCounter(
     incCounter.merge(other.incState),
     decCounter.merge(other.decState)
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   )
}

The PN counter leverages our previous implementation of an increase-only counter to
provide the decrement capability. To be able to represent a counter as a state-based CRDT,
we need to keep track of the state of both increment and decrement operations. This is
necessary to guarantee that we do not lose information if our update messages are received
in the wrong order by other nodes.

Remember that the increase-only counter guarantees conflict resolution by
assuming that the highest value of the counter is necessarily the most up-
to-date. This invariant does not hold true for the PN counter.

This implementation shows you another interesting property of CRDTs: simple and basic
structures can be composed to create more complex and feature-rich CRDTs. Should we
proceed to demonstrate the implementation of an operation-based counter? As it turns out
and we are sure you spotted this earlier, our previous increase-only counter already
supports decrement operations. Applying a positive or a negative delta is handled by the
operation-based counter.

When the balance is not enough
You have finished the implementation of the proof-of-concept and call Alice to get some
feedback. She spends a few minutes studying your new design and your code. “Looks good
to me. Do not forget to synchronize the account blacklist as well.” What is she talking
about? “Checking the account balance is only one of the criteria to allow or block an
automated trade. Other attributes of the client need to be taken into consideration. Today,
the automated trader runs a trust algorithm in the background, and it calculates a score for
each customer. If the score falls below a certain threshold, the account is blacklisted until
the end of the trading day, and all automated orders are denied. I like your design, but you
need to incorporate this blacklist into the new system.” Faced with this new challenge, you
think that the best solution would be to implement the blacklist as a CRDT as well,
provided that it fits your current design.

A new CRDT – the grow-only set
One CRDT is designed to handle our new use case. The grow-only set data type implements
a set that only supports the addition of new elements without duplicates. We can
implement the blacklist as a grow-only set. Each node can run its own trust algorithm and
can decide whether a client should be blacklisted and denied automated trading for the rest
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of the day. At the end of the day, the system can clear the set. We display a possible
implementation of a state-based grow-only set, as follows:

case class AddElement[A](a: A)
case class GSetState[A](set: Set[A])

class StateBasedGSet[A](val value: Set[A]) {

 def contains(a: A): Boolean = value.contains(a)

 def update(a: AddElement[A]): (StateBasedGSet[A], GSetState[A]) = {
   val newSet = new StateBasedGSet(value + a.a)
   (newSet, GSetState(newSet.value))
 }

 def merge(other: GSetState[A]): StateBasedGSet[A] = {
   new StateBasedGSet(value ++ other.set)
 }

}

Our implementation supports adding an element by calling the update method. It returns a
new instance of StateBasedGSet with an updated set, as well as a GSetState instance to
be broadcast to the other nodes. This update contains the entire state of the counter, that is,
the internal set. An operation-based implementation is trivial and left as an exercise for the
reader (a possible solution is provided in the code repository). Similar to the increment-
decrement counter explored earlier, it is possible to create a set that supports both adding
and removing an element. There is one caveat though: as adding and removing an element
are not commutative operations, one must take precedence on the other. In practice, a 2P-set
can be created to support adding and removing items, but once removed, an element
cannot be added again. The remove operation takes precedence and guarantees that the
operations are commutative and can be handled without conflicts. A possible
implementation is to combine two grow-only sets, one for adding elements, and the other to
remove them. Again, we see the power of simple CRDTs that can be combined to create
more powerful data types.

Free trading strategy performance
improvements
You stare at your agile burn down chart and discover that you completed all your story
points before the sprint ends tomorrow. You are excited to have delivered this week's
features early, but you are left wondering whether or not you will have yet another
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discussion with the scrum master about estimation. Instead of spending mental energy on
estimating, you instead return your attention to an issue that Dave raised. At a recent lunch
together, Dave talked about how the company's trading strategies lose money when trading
decisions are made based on stale information. Even several milliseconds can make the
difference between extremely profitable trades and losses. His words piqued your interest
to see if you can improve the performance of MVT's trading strategies.

MVT's trading strategies are downstream consumers of the order book. The trading
strategies listen for changes in the best bid and offer (BBO) in order to determine when to
submit buy or sell orders. At lunch, Dave explained that tracking the BBO has historically
proven to give the most signals for MVT's trading strategies. The best bid refers to the bid
with the highest price, and the best offer refers to the offer with the lowest price. When
either side of the BBO changes due to a cancellation, execution, or new limit order, then a
BBO update event is transmitted to downstream trading strategies. The model representing
this event is BboUpdated, and it looks like the following:

case class Bid(value: BigDecimal) extends AnyVal
case class Offer(value: BigDecimal) extends AnyVal
case class Ticker(value: String) extends AnyVal
case class BboUpdated(ticker: Ticker, bid: Bid, offer: Offer)

MVT deploys each trading strategy within its own JVM to ensure that failures do not affect
other running strategies. When deployed, each trading strategy maintains BBO
subscriptions for the set of tickers it trades.

Having spent a significant amount of time working on the order book, you hope to find
opportunities to apply your functional programming knowledge to yield better
performance. During your lunch with Dave, you discovered that “better performance” has
a slightly different meaning for trading strategy development than it does for other systems.
You asked Dave, “If you could choose between an improvement in latency or throughput,
which would you choose?” Dave sarcastically replied, “Why do I have to choose? I want
both!” Afterwards, he went on to say, “Latency! Almost every time a trading strategy makes
a decision using old BBO updates, we lose money. In fact, if we could, I would rather throw
away old BBO updates. We only trade high-volume tickers, so we are pretty much
guaranteed to see another BBO update immediately.” As you start looking into the code
base, you wonder whether you can utilize Dave's thinking to improve trading strategy
performance.
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Benchmarking the trading strategy
Recalling the lessons that you learned when working on the order book, your first step is to
benchmark. You select one of MVT's production trading strategies and adapt the
benchmark that you wrote to exercise the order book, FinalLatencyBenchmark, to send
the BboUpdated events to the trading strategy. Originally, the benchmark focused on
displaying the 99th percentile latency and higher. As you know that latency is the most
important factor in your performance investigation, you modify the benchmark to also emit
the median and 75th percentile latencies. This will give you a more holistic view into the
latency of trading strategy performance.

Looking at the production metrics system, you see a time series trading volume chart for
the system that you want to benchmark. It shows that it is a low-volume day, only about
4,000 BBO updated events per second. You dig through historical metrics to find the highest
volume day in the last few weeks. The market has been volatile again, so a recent high-
volume day is likely a good proxy for a high throughput rate to benchmark. About two
weeks ago, there was a trading day with a sustained peak of 12,000 BBO updated events per
second. You plan to begin benchmarking at the lower end of the spectrum with 4,000 events
per second, ramping up to 12,000 events per second to see how performance changes.

The testing methodology is to measure latency for an equivalent number of events across
throughput rates while ensuring a thorough test at each throughput level. To accomplish
this goal, you multiply the higher throughput, 12,000 events per second, by 30 trials for a
sum total of 360,000 events. At 4,000 events per second, running the benchmark for 90 trials
produces the equivalent of 360,000 events. Running the benchmarks in a test environment
replicating production gives the results displayed in the following table. The table
abbreviates events per second as EPS:

Percentile 4,000 EPS 12,000 EPS

50th (median) 0.0 ms 1,063.0 ms

75th 0.0 ms 1,527.0 ms

99th 10.0 ms 2,063.0 ms

99.9th 22.0 ms 2,079.0 ms

100th (maximum) 36.0 ms 2,079.0 ms

These results illustrate a startling contrast in performance. At 4,000 events per second, the
trading strategy appears to perform well. 99% of events are responded to within 10 ms, and
we observe that up to the 75th percentile, the strategy is responding with miniscule delay.
This suggests that on low-volume days, this trading strategy is able to decide on
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information quickly, which should bode well for profitability. Unfortunately, at 12,000
events per second, the performance is unacceptable. Having not yet looked at the code, you
wonder whether you can spot any sudden changes in performance by sweeping several
more throughputs. You try a binary search between 4,000 and 12,000 events per second and
get the following results:

Percentile 9,000 EPS 10,000 EPS 11,000 EPS 11,500 EPS

50th (median) 0.0 ms 4.0 ms 41.0 ms 487.0ms

75th 5.0 ms 9.0 ms 66.0 ms 715.0 ms

99th 32.0 ms 47.0 ms 126.0 ms 871.0 ms

99.9th 58.0 ms 58.0 ms 135.0 ms 895.0 ms

100th (maximum) 67.0ms 62.0 ms 138.0 ms 895.0 ms

You chose 9,000 events per second as a starting point because it divided evenly into the total
event count, 360,000. At this level of throughput, the strategy's profile is qualitatively closer
to the 4,000 events per second profile. As results looked reasonable at this level, you
increased the throughput approximately halfway between 9,000 and 12,000 events per
second to the next level that divides evenly into 360,000. At 10,000 events per second, we
once again observe a profile that remains similar to the 4,000 events per second profile.
There is a discernible increase in the median and 75th percentile latencies, suggesting the
strategy's performance is beginning to degrade. Next, you increase the throughput to the
midpoint, 11,000 events per second. As you cannot run 32.72 trials, you instead round up to
33 trials for a total of 363,000 events. These results are qualitatively worse than the 4,000
events per second results by approximately an order of magnitude at each measured
percentile. Admittedly, these are weak performance results, but does this profile closely
resemble the profile at 12,000 events per second?

You are now a bit alarmed because 11,000 events per second is approximately 90% of the
throughput at 12,000 events per second. Yet, the results do not display close to 90%
similarity. If the trading strategy decreased linearly you would expect to see latencies
approximating 90% of the latencies that were observed at 12,000 events per second.
Unsatisfied with this performance profile, you try one more throughput, 11,500 events per
second. At this throughput level, you run the benchmark for 31 trials, totaling 356,500
events. Increasing the throughput by approximately 5% resulted in an observed median
latency that is roughly 11 times greater and an observed 99th percentile latency that is nearly
six times greater. These results make it clear that the strategy's runtime performance
degrades exponentially. To better reason about the results, you quickly throw together the
following bar graph:
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This bar graph visualizes the exponential decay in performance. Interestingly, we observe
that all measured latency percentiles follow consistent patterns of decay, further
substantiating the hypothesis that the strategy has exhausted its capacity to process
requests. Before jumping into improving the trading strategy performance, you ponder,
“How can I bound the exponential increases in latency?”

Instead of seeing consistent decay across all measured latency percentiles,
imagine that the median and 75th percentiles remained qualitatively
constant across all configured throughput levels. Does this profile suggest
the same types of performance impediment as the scenario that we are
working through? Take a moment to consider what could cause such a
distribution to arise.

The danger of unbounded queues
Benchmarking revealed a universal truth about performance tuning: unbounded queues kill
performance. Here, we use the term queue to broadly mean a waiting line, instead of
specifically focusing on the queue data structure. For example, this benchmark queues
events to be transmitted at specific points in time in a List. In a production environment,
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this queue exists at multiple levels. The sender of the BboUpdated events likely queues
events at the application-level, and subsequently, the network protocol (for example, TCP)
may employ its own sets of queues to manage transmission to the consumer. When events
are processed at a rate slower than they are produced, the system becomes unstable because
the backlog of work always increases. Given infinite memory and zero response time
guarantees, it is possible for an application to continue processing an ever-growing queue
of items. However, in practice, when a system cannot stabilize itself by increasing its
consumption rate to match or exceed the production rate, the system eventually spirals out
of control. A system's hardware resources are finite, and as a consumer falls behind, it will
require increasing amounts of memory to cope with the growing backlog. Taken to an
extreme, increasing memory requirements causes more frequent garbage collections, which
in turn, further slow down consumption. This is a cyclical problem that will eventually
exhaust memory resources, causing a system to crash.

By inspecting the trading system code, you will discover that there is a queue for message
processing within the trading system. This application-level queue is a
LinkedBlockingQueue that separates the network I/O thread from the application thread.
In the benchmark, the thread driving the benchmark adds events directly to the queue,
simulating the behavior of a production network thread receiving events from the outside
world. It is a common practice to group together logical parts of an application into separate
thread pools in order to gain efficiencies by parallelizing processing work.

When we previously explored concurrency with Future and Task, we
indirectly worked with queues. The ExecutorService that receives
submissions from Future and Task manages its workload by enqueuing
tasks into a BlockingQueue. The factory methods that are provided
in Executors do not allow the caller to provide a queue. If you explore
the implementation of these factory methods you discover the kind and
the size of BlockingQueue created.

Adding a buffer between the network layer and the application layer typically bodes well
for performance. A queue can enable an application to tolerate momentary consumption
slowdowns and bursts of messages from a producer. However, as we have seen in our
benchmarking, buffers are a double-edged sword. The default constructor for
LinkedBlockingQueue is effectively unbounded, setting a limit that is equal to the
maximum supported integer value. By buffering messages indefinitely when the rate of
production is consistently higher than the consumption rate, the trading system's
performance degrades to an unusable state.
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Applying back pressure
What would happen if we instead chose to bound the queue that is receiving events to a
smaller limit? When the production rate exceeds the consumption rate and the queue
reaches capacity, one option is for the system to block until a spot is available in the queue.
Blocking forces event production to halt, which describes a strategy for applying back
pressure. In this context, pressure refers to the queue of events to be processed. The
pressure manifests itself with increasing resource usage (for example, memory). By
adopting a policy of blocking further production, the system is applying pressure back to
the producer. Any queues that exist between the application-level consumer and the
producer will also eventually reach capacity, forcing the producer to change its production
rate in order to continue transmitting events.

To implement this back pressure policy, all queues must be bounded to a size that avoids
excessive resource usage, and production into queues must block when full. This is
straightforward to implement with implementations of the JDK-provided BlockingQueue
interface. For example, the following snippet displays this strategy
with LinkedBlockingQueue:

val queue = new LinkedBlockingQueue[Message](1000)
queue.put(m)

In this snippet, we see construction of a LinkedBlockingQueue with a capacity limit of
1,000 messages. Based on knowledge of the production environment, you feel comfortable
retaining up to 1,000 messages in-memory without exhausting memory resources. The
second line in the snippet demonstrates a blocking operation to enqueue an element
via put.

When applying back pressure, the choice in queue size is critical. To illustrate why, let's
assume that we measured the maximum trading system processing latency to be 0.5 ms
once a message is consumed from the event queue. At maximum, the total processing
latency for an event is equal to 0.5 ms plus the time spent waiting to be processed. Consider
the scenario where the queue has a size of 1,000 and 999 events are queued when a new
event arrives. In the worst case scenario, the new event waits 499.5 ms for the 999 other
events that are already enqueued to be processed, plus 0.5 ms to be processed. Configuring
a queue size of 1,000 yielded a maximum latency of 500 ms, showing that maximum latency
is directly proportional to queue size.

A more disciplined approach to sizing queues involves considering environment resources
and understanding the maximum latency that is tolerated by the business. From informal
discussions with Dave, we learned that even several milliseconds can make or break a
trading strategy's profitability. Until we have a moment to check in with him, let's assume
that 10 ms is the maximum delay the strategy can tolerate without risking significant
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trading losses. Using this information, we can calculate a queue size that ensures that the 10
ms latency limit is respected. In the previous example, we performed the following worst-
case scenario arithmetic:

maximum total processing latency = queue size * maximum processing time

We can rearrange this formula to solve for queue size, as follows:

queue size = maximum total processing latency / maximum processing time

From this arithmetic, we substitute in known values to compute queue size, as follows:

queue size = 10ms / 0.5ms = 20

The arithmetic suggests that we bound the queue size for twenty elements to ensure that in
the worst case scenario an event can be enqueued and processed within 10 ms. To explore
back pressure deeper, we encourage you to read the following blog post by Martin
Thompson at h t t p : / / m e c h a n i c a l - s y m p a t h y . b l o g s p o t . c o m / 2 0 1 2 / 0 5 / a p p l y - b a c k - p
r e s s u r e - w h e n - o v e r l o a d e d . h t m l. Martin is an authority on high-performance software
development, and this particular blog post was an invaluable learning source for back
pressure.

Applying load-control policies
Back pressure is a strategy that works well when the message producer respects consumers
that operate at different rates and does not penalize slow consumers. Particularly when
dealing with third-party systems, there are situations where applying back pressure to force
the producer to slow down will not be well received. In these scenarios, we need to consider
additional strategies that improve the capacity of our systems without requiring algorithmic
improvements to our business logic.

The authors have worked in the real-time bidding (RTB) space where a
bidding system participates in auctions to bid on opportunities to display
advertisements. In this industry, there is low tolerance for bidding systems
that are unable to cope with the configured auction rate. Failure to
respond to a high percentage of auctions with a bidding decision (either
bid or no-bid) in a timely manner results in the bidding system being
penalty-boxed. While in the penalty box, the bidding systems received a
reduced auction rate. Bidding systems that remain in the penalty box for
extended periods of time may be disallowed from participating in any
auctions until their performance improves.

http://mechanical-sympathy.blogspot.com/2012/05/apply-back-pressure-when-overloaded.html
http://mechanical-sympathy.blogspot.com/2012/05/apply-back-pressure-when-overloaded.html
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Let's revisit a scenario that we considered when describing back pressure to motivate our
discussion. The precondition to apply back pressure is reaching the capacity of a queue.
When a queue is filled, our first strategy blocks further additions until there is room
available. Another option that we can investigate is to discard the event because the system
is saturated. Discarding the event requires extra domain knowledge to understand the
semantics of what it means to abruptly terminate processing. In the trading system domain,
the trading strategy is only required to send back a response when a bid or an offer is made.
The trading strategy is not required to send back a response when it does not decide to
make either a bid or an offer. For the trading system domain, discarding an event simply
means halting processing. In other domains, such as RTB, discarding an event implies
halting processing and responding with a message indicating that there will not be a bid
placed in this auction.

Additionally, it is relevant that that each event is a snapshot of the best bid and offer. In
contrast to the snapshot, imagine if instead of BboUpdated, the trading strategy received
discrete events for changes in the best bid and offer. This is analogous to the state-based
versus operation-based CRDT operations that we explored. Discarding an event would
mean having partial information until a subsequent event is received. In this scenario, it is
important to work with domain experts and product owners to determine if and for how
long operating with partial information is acceptable.

Introducing load-control policies is another shift in thinking when working on high
performance systems. Like the introduction of back pressure, this is another opportunity to
reconsider assumptions that are made along the way to improve performance. Our
lunchtime discussion with Dave provided great insight into a load-control policy that we
can apply. Dave stated that he believes latent BboUpdated events cause more harm than
good for trading strategy profitability. There are two assumptions we can challenge:

All events must be processed
An event being processed must complete processing

We can challenge these assumptions because Dave also indicated that MVT trades only
high-volume tickers. If a BBO update is discarded, Dave is confident that a new BBO update
is sure to follow quickly. Let's take a deeper look at how these policies can be defined.

Rejecting work
Rejecting work is not about rejecting sprint tasks, sorry! When we discuss work in this
context, the term refers to processing effort. In the case of the benchmarked trading system,
the work in hand is processing a new BboUpdated event. Although we have not dived into
the code yet, we do know from previous benchmarking work that there is a queue used to
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accept the BboUpdated events from the network for application-level processing. This
queue is the entry point into the application, and it represents the first application-level
opportunity to reject the event due to capacity constraints.

From our earlier domain investigation, we learned that to reject a request, it can simply be
dropped on the floor without response. A trading strategy is only required to respond when
it wishes to trade. This means that the policy of rejecting work can be implemented by
dropping the request on the floor when the queue is at capacity.

By inspecting the trading system source code, we see that the architecture is quite
barebones. At start-up, a LinkedBlockingQueue is created to buffer the BboUpdated
events, and a consumer thread is started to consume from the queue. The following snippet
shows this logic:

val queue = new LinkedBlockingQueue[(MessageSentTimestamp, BboUpdated)](20)
    val eventThread = new Thread(new Runnable {
      def run(): Unit = while (true) {
        Option(queue.poll(5, TimeUnit.SECONDS)) match {
          case Some((ts, e)) => // process event
          case None => // no event found
        }
      }
    })
    eventThread.setDaemon(true)
    eventThread.start()

As per our earlier work, we see that the work queue is sized with twenty elements to ensure
a maximum processing latency of 10 ms. After the queue is instantiated, the consumer
thread is created and started. The processing logic is omitted from this snippet, but we
observe that the sole purpose of this thread is to consume events as they become available.
The logic to add work to the queue is trivial. This snippet assumes a
MessageSentTimestamp and a BboUpdated event are in lexical scope with the names, ts
and e, respectively:

queue.put((ts, e))

Our exploration of back pressure application indicated that put is a blocking call. As our
intent is now to discard work,  put is no longer a viable strategy. Instead, we can make use
of offer. As per the API documentation, offer returns a boolean value, indicating
whether or not the element was added to the queue. When the queue is full, it returns false.
These are exactly the semantics that we wish to enforce. We can modify this snippet
accordingly:

queue.offer((ts, e)) match {
  case true => // event enqueued
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  case false => // event discarded
}

The pattern matching in the preceding snippet provides a good entry
point to introduce application metrics for introspection and transparency.
For example, it is likely an interesting business metric to track how many
events a trading system discards over time. This information may also be
useful to the data science team for offline analysis in order to determine
interesting patterns between discarded events and profitability. Whenever
you encounter state changes, it is worth considering whether a metric
should be recorded or whether an event should be emitted. Take a
moment to consider state changes in your application. Are you making
state changes available for introspection to nontechnical team members?

Performing a benchmark with 12,000 events per second and 30 trials, totaling 360,000 events
processed, yields the following result:

Metric 12,000 EPS with queue size = 20

50th (median) latency 0.0 ms

75th latency 0.0 ms

99th latency 3.0 ms

99.9th latency 11.0 ms

100th (maximum) latency 45.0 ms

Mean latency 0.1 ms

Events processed as percentage of total events 31.49%

This table introduces two rows to record the observed mean latency and the percentage of
events processed out of the 360,000 that are provided. This row is important because the
system now rejects events, which is an example of trading throughput for latency
improvements. The latency profile looks great in comparison to the first benchmarking
attempt at 12,000 events per second. The maximum latency is four times larger than our
desired maximum latency. This suggests that our performance model is optimistic. The
higher maximum latency can be attributed to an unlucky garbage collection pause in
combination with wrongly estimating the actual processing latency. Even so, the maximum
latency is two orders of magnitude lower than the maximum latency that was observed
during the first benchmarking trial. We also observe that 99.9% of requests have a latency
less than or equal to 11 ms, which is within 10% of our stated maximum latency goal.
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While the latency profile looks excellent, the same cannot be said about the throughput.
Due to our new load-control policy, only approximately 30% of the provided events were
processed. When an event is processed, it is processed quickly, but unfortunately events are
discarded two-thirds of the time. Another takeaway from performance tuning with load-
control policies is that you will likely require multiple iterations to properly tune a policy
for the right balance between trading throughput for latency and vice-versa. Reviewing the
results of the benchmark, you note the mean observed latency is 0.1 ms. As a next step, you
choose to calibrate the queue size according to the mean latency. By tuning according to the
mean latency, you are implying that you are willing to introduce latency in exchange for
improved throughput. Performing the arithmetic reveals the new queue size:

queue size = maximum total processing latency / maximum processing time =
10ms / 0.1ms = 100

After re-running the benchmark with the new queue size, you observe the following results:

Metric 12,000 EPS with queue size = 100

50th (median) latency 3.0 ms

75th latency 5.0 ms

99th latency 19.0 ms

99.9th latency 43.0 ms

100th (maximum) latency 163.0 ms

Mean latency 3.9 ms

Events processed as percentage of total events 92.69%

As expected, the latency profile lost ground when compared to the trial with a queue size of
20. Except for the maximum latency, each percentile experienced at least a doubling in
latency. The good news from this experiment is that the tail latencies did not experience
exponential growth. The throughput picture is dramatically changed as well. We observe
more than a doubling in throughput, yielding nearly 93% of all events processed. The mean
latency is 39 times larger than the previously recorded 0.1 ms mean latency. For
comparative purposes, the mean reflects the significant increase in median and 75th

percentile latencies.

As a final test, out of curiosity, you try doubling the throughput rate while retaining a
queue size of 100 elements. Will the trading system crash and burn, will it process all the
requests, or will it do something different? Running the benchmark produces the following
results:



Architecting for Performance

[ 244 ]

Metric 24,000 EPS with queue size = 100

50th (median) latency 7.0 ms

75th latency 8.0 ms

99th latency 23.0 ms

99.9th latency 55.0 ms

100th (maximum) latency 72.0 ms

Mean latency 8.4 ms

Events processed as percentage of total events 44.58%

The good news is that the trading system did not crash and burn. It withstood receiving
double the throughput that previously caused second delays with a latency profile
qualitatively similar to the same trial at 12,000 events per second. This suggests that the
work rejection policy has made the trading system significantly more robust to high
volumes of incoming events.

The tradeoff for improved durability and acceptable processing latencies at higher volumes
is lower throughput. These experiments revealed the value of bounding queue sizes, which
we learned about when studying how to apply back pressure along with the value of
rejecting work. After implementing the load-control policy and only tuning queue size, we
are able to produce dramatically different results. There is definitely room for further
analysis and tuning. Further analysis should involve product owners to weigh the
throughput versus latency tradeoffs. It is important to remember that although the load
control policy's implementation relies on knowledge of highly technical topics, the benefit
should be measured in terms of business value.

Interrupting expensive processing
A second idea that we can explore is to halt processing before it completes. This is a
powerful technique to ensure processing cycles are not spent on work that is already stale.
Consider a request that is taken from the queue and undergoes partial processing before
being interrupted by a garbage collection cycle. If the garbage collection cycle takes more
than a couple of milliseconds, the event is now stale and will likely harm trading strategy
profitability. Worse, all subsequent events in the queue are also now more likely to be stale
as well.

To address this shortcoming, we can apply a technique that is analogous to rejecting work
by imposing latency limits throughout processing. By carrying a timestamp that indicates
when processing was started, it is possible to evaluate a computation's latency at discrete
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points in time. Let's consider a manufactured example to illustrate the idea. Consider the
following processing pipeline, which runs arbitrary business logic for an event after
journaling the event and updating metrics:

def pipeline(ts: MessageSentTimestamp, e: Event): Unit = {
    val enriched = enrichEvent(e)
    journalEvent(enriched)
    performPreTradeBalanceChecks(enriched)
    runBusinessLogic(enriched)
  }
}

To avoid processing latent events, we may write logic similar to the following:

def pipeline(ts: MessageSentTimestamp, e: Event): Unit = {
    if (!hasEventProcessingExpiryExpired(ts)) {
      val enriched = enrichEvent(e)
      if (!hasEventProcessingExpiryExpired(ts)) journalEvent(enriched)
      if (!hasEventProcessingExpiryExpired(ts))
performPreTradeBalanceChecks(enriched)
      if (!hasEventProcessingExpiryExpired(ts)) runBusinessLogic(enriched)
    }
  }
}

In this snippet, a hasEventProcessingExpiryExpired method is introduced to branch
processing, which is based on time. The implementation of this method is omitted, but you
can imagine that system time is queried and compared to a known and allowed processing
duration (for example, 5 ms). While this approach accomplishes our goal of interrupting
latent event processing, the code is now cluttered with multiple concerns. Even in this
trivial example, it becomes more challenging to follow the sequence of processing steps.

The pain point with this code is that the business logic is intertwined with the cross-cutting
concern of interrupting latent processing. One way to improve the readability of this code is
to separate the description of what is being accomplished from how this description is
executed. There is a construct in functional programming, known as the free monad that
can help us do exactly this. Let's take a deeper look at the free monad to see how we can use
it to improve the trading strategy's performance.

Free monads
Monads and their mathematical underpinnings in the subject of category theory are dense
subjects deserving a dedicated exploration. As your sprint ends tomorrow and you want to
deliver improved trading strategy performance, we instead provide a practitioner's
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perspective on free monads to show how you can use them to address a real-world
problem. To demonstrate the power of applying free monads to our problem, we start by
showing the end result and work backwards to develop an intuition about how free
monads work. To begin, let's consider the sequence of processing steps that are required for
a trading strategy to process a BboUpdated event once picked up from the work queue:

    val enriched = enrichEvent(bboEvent)
    journalEvent(enriched)
    performPreTradeBalanceChecks(enriched)
    val decision = strategy.makeTradingDecision(enriched)
    decision.foreach(sendTradingDecision)

There are three steps that happen before the trading strategy makes a trading decision. If
the trading decision is to submit a bid or an offer, the decision is sent to the exchange.
strategy is an implementation of the TradingStrategy trait, which looks like the
following:

trait TradingStrategy {
  def makeTradingDecision(e: BboUpdated): Option[Either[Bid, Offer]]
}

Next, let's look at how we can translate this processing sequence into the free monad and
also add in early termination logic.

Describing a program
To build our new version of the trading strategy pipeline, we use the Scalaz-provided free
monad implementation, scalaz.Free. The end result of our efforts to use the free monad
in conjunction with a domain-specific language (DSL) for simpler construction looks like
the following:

val pipeline = for {
    enriched <- StartWith(enrichEvent) within (8 millis) orElse (e =>
      enrichmentFailure(e.ticker))
    _ <- Step(journalEvent(enriched)) within (9 millis) orElse
      tradeAuthorizationFailure
    _ <- Step(performPreTradeBalanceChecks(enriched)) within (10 millis)
      orElse metricRecordingFailure
    decision <- MakeTradingDecision(enriched)
  } yield decision
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Recall that our first attempt at implementing short-circuiting logic involved a series of if-
statements. Instead of if-statements, the free monad-based snippet shows that the
processing pipeline can now be defined as a for-comprehension. This approach removes the
branching statements, making it simpler to understand what is happening. Without seeing
how the DSL is made, you likely can already infer what this pipeline will do. For example,
you likely inferred that if journalEvent takes more than 10 ms to execute, then the
processing is halted and neither performPreTradeBalanceChecks
nor MakeTradingDecision will be invoked.

The construction of the pipeline is only one half of the story. Underlying the
implementation of this for-comprehension is the free monad. Creating a free monad
involves two parts:

Building a description of a program
Writing an interpreter to execute the description

The for-comprehension represents our description of a program. It is a description of how
to process the BboUpdated events that also defines execution delay constraints. To execute
this description, we must build an interpreter.

Building an interpreter
Our interpreter looks like the following:

  def runWithFoldInterpreter(
    recordProcessingLatency: ProcessingLatencyMs => Unit,
    strategy: TradingStrategy,
    ts: MessageSentTimestamp,
    e: BboUpdated): Unit = {
    val (_, decision) = pipeline.free.foldRun(
      PipelineState(ts, strategy, e)) {
      case (state, StartProcessing(whenActive, whenExpired, limitMs)) =>
        state -> (hasProcessingTimeExpired(state.ts, limitMs) match {
          case true => whenExpired(e)
          case false => whenActive(e)
        })
      case (state, Timed(whenActive, whenExpired, limitMs)) =>
        state -> (hasProcessingTimeExpired(state.ts, limitMs) match {
          case true => whenExpired()
          case false => whenActive()
        })
      case (state, TradingDecision(runStrategy)) =>
        state -> runStrategy(state.strategy)
    }
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    decision.fold(logFailure, {
      case Some(order) =>
        sendTradingDecision(order)
        recordProcessingLatency(ProcessingLatencyMs(
          System.currentTimeMillis() - ts.value))
      case None =>
        recordProcessingLatency(ProcessingLatencyMs(
          System.currentTimeMillis() - ts.value))
    })
  }

The foldRun method is a method that is provided by Free to execute the description of the
program that we wrote. Analogous to the signature of foldLeft, foldRun accepts a value
representing an initial state, a curried function that accepts the current state, and the next
processing step from our processing pipeline. The next processing step is represented as an
ADT named Thunk with the following members:

sealed trait Thunk[A]
case class Timed[A](
  whenActive: () => A,
  whenExpired: () => A,
  limit: LimitMs) extends Thunk[A]
case class StartProcessing[A](
  whenActive: BboUpdated => A,
  whenExpired: BboUpdated => A,
  limit: LimitMs) extends Thunk[A]
case class TradingDecision[A](
  makeDecision: TradingStrategy => A) extends Thunk[A]

The Thunk algebra defines the possible operations that can be transcribed into the free
monad. The pipeline that we previously showed is constructed by composing together
combinations of the Thunk members. This pipeline hides the construction behind the DSL to
eliminate verbosity and to improve readability. The following table maps each processing
step to its associated Thunk:

Step DSL Thunk

StartWith StartProcessing

Step Timed

MakeTradingDecision TradingDecision

Returning to the curried foldRun function, we see that the interpreter pattern matches to
determine which Thunk is the next processing step. These pattern match statements are
how the interpreter applies the behavior that is described by our program's
description. StartProcessing and Timed use system time to determine which method to



Architecting for Performance

[ 249 ]

execute, based on the provided millisecond expiry (LimitMs). StartProcessing
and TradingDecision require states from the outside world to support execution.
For StartProcessing, the BboUpdated event from the work queue must be supplied, and
for TradingDecision, a Strategy must be provided to yield a trading decision.

The return value of foldRun is a tuple of the accumulated state, which is discarded in the
snippet, and the return value of interpreting the free monad. The return value of executing
the sequence of Thunks that is defined by pipeline is \/[BboProcessingFailure,
Option[Either[Bid,Offer]]]. The return value is a disjunction to account for failure
scenarios, which can occur as part of the business logic or because the processing expiry
expired. These failures are represented with an ADT of type BboProcessingFailure. The
right side of the disjunction matches the return type of TradingStrategy, indicating that
completing all steps in pipeline yields a trading decision. The final step is to fold over the
trading decision to record processing latency when the pipeline was completed (that is,
a \/- was returned) and to conditionally send the order to the exchange.

At this juncture, the intuition that you should have developed is that we have separated the
description of what we would like to have happen from how it happens. The free monad
allows us to do this by first creating a description of our program, and then secondly,
building an interpreter to execute the instructions that are provided by the description. As a
concrete example, our program description in pipeline is not bogged down with
providing a strategy for how to implement early termination. Instead, it only describes that
certain steps in the processing sequence are subject to time constraints. The interpreter
provided to foldRun enforces this constraint using system time. Having built a functioning
version of the trading strategy pipeline, let's benchmark again to see what effect our
changes had.

Benchmarking the new trading strategy pipeline
Running the benchmark at 12,000 and 24,000 events per second using the new trading
strategy pipeline yields the following results. The results columns show two values per
row. The value before the slash is the result from running with the new implementation that
provides early termination. The value after the slash is the copied over result from running
without the early termination for comparative purposes:

Metric 12,000 EPS with queue size
= 100

24,000 EPS with queue size
= 100

50th (median) latency 1.0 ms / 3.0 ms 6.0 ms / 7.0 ms

75th latency 3.0 ms / 5.0 ms 7.0 ms / 8.0 ms
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99th latency 7.0 ms / 19.0 ms 8.0 ms / 23.0 ms

99.9th latency 10.0 ms / 44.0 ms 16.0 ms / 55.0 ms

100th (maximum) latency 197.0 ms / 163.0 ms 26.0 ms / 72.0 ms

Mean latency 2.0 ms / 3.9 ms 6.0 ms / 8.4 ms

Events processed as percentage of
total events

90.43% / 92.69% 36.62% / 44.58%

From a latency perspective, early termination appears to be a clear win. Excluding
maximum latency, early termination yielded lower latencies at each percentile. For
example, at 12,000 events per second, half of all requests are processed in one-third of the
time, a mere millisecond, as compared to the median when processing is not interrupted. At
12,000 events per second, the observed maximum latency increases, which is likely
indicative of garbage collection pauses after the early termination checks. There are two
possible improvements to make to our implementation:

Check the processing duration after invoking
performPreTradeBalanceChecks before the TradingStrategy is executed
Check the processing duration after the trading decision is created

In both scenarios, processing could be interrupted if the latency exceeds a threshold. It is
straightforward to see that these two steps of the processing require attention to reduce the
maximum latency because of the clear separation of concerns provided by our free monad
implementation. Consider how much more challenging it would be to reason about
execution with the pipeline and early termination logic intertwined.

From a throughput perspective, we see a reduction in throughput in both trials. The
throughput drop arises from the latent events that are discarded. Here, we again see the
tradeoff between throughput and latency. We sacrificed throughput for a better latency
profile. Arguably, it is a worthy tradeoff because the higher throughput included stale
events, which are more likely to yield trading losses.

A Task interpreter
Our efforts so far have yielded a significantly improved latency profile while sacrificing
throughput. What if we could have the best of both worlds? An improved latency profile
with higher throughput would be ideal but seems to be out of reach. One strategy for
improved throughput is to introduce concurrency. Perhaps, we can make the trading
strategy execution concurrent to take advantage of hardware with multiple cores. Before
diving in, you ping Gary, your colleague who helped you discover the lineage of the order
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book implementations. You double-check with Gary to confirm that MVT strategies are
thread-safe. He responds with a thumbs up emoji, which gives us the green light to
parallelize execution of trading strategies.

In our exploration of the free monad thus far, we have seen the relationship between the
program description and the interpreter. The program description, which is represented
with the Thunk ADT, is agnostic to the interpreter. This statement represents the essence of
the free monad and is best stated by Adam Warski in his excellent free monad blog post at h
t t p s : / / s o f t w a r e m i l l . c o m / f r e e - m o n a d s /. The semantics of the term “free” in free
monad is that the monad is free to be interpreted in any way. We will see this idea in
practice by demonstrating that we can transform our existing interpreter to a Task
interpreter. To do this, we must map Thunk to Task. Scalaz provides a trait to express this
mapping, called NaturalTransformation, with a type alias of ~>. The following snippet
shows how to map from Thunk to Task via a NaturalTransformation:

  private def thunkToTask(ps: PipelineState): Thunk ~> Task =
    new (Thunk ~> Task) {
    def apply[B](t: Thunk[B]): Task[B] = t match {
      case StartProcessing(whenActive, whenExpired,
        limitMs) => Task.suspend(
        hasProcessingTimeExpired(ps.ts, limitMs) match {
          case true => Task.now(whenExpired(ps.event))
          case false => Task.now(whenActive(ps.event))
        })
      case Timed(whenActive, whenExpired, limitMs) => Task.suspend(
        hasProcessingTimeExpired(ps.ts, limitMs) match {
          case true => Task.now(whenExpired())
          case false => Task.now(whenActive())
        })
      case TradingDecision(runStrategy) =>
        Task.fork(Task.now(runStrategy(ps.strategy)))
    }
  }

The trait defines one method to be implemented that is provided a Thunk and returns
a Task. As with our previous interpreter within foldRun, the interpreter requires the same
state to provide the BboUpdated event, MessageSentTimestamp, and TradingStrategy.
We use pattern matching to handle the mapping of each ADT member. Note the usage
of Task.suspend, which has the following signature:

def suspend[A](a: => Task[A]): Task[A]

https://softwaremill.com/free-monads/
https://softwaremill.com/free-monads/
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In contrast to Task.now, suspend defers evaluation of the argument. This is necessary
because the interpreter has the side-effect of checking the system clock when
invoking hasProcessingTimeExpired. Using suspend defers the call to the system clock
until the Task is run instead of executing at Task construction time.

A second interesting implementation note is the usage of Task.fork when
translating TradingDecision. Here is the introduction of concurrency to the trading
strategy pipeline. With our transformation complete, the remaining step is to run the
interpreter. Fortunately, Free provides a method analogous to foldRun that accepts
a NaturalTransformation named foldMap. The following snippet shows how the
existing Thunk pipeline can be executed using Task:

pipeline.free.foldMap(thunkToTask(PipelineState(ts, strategy, event)))
      .unsafePerformAsync {
        case -\/(ex) => logException(ex)
        case \/-(\/-(decision)) =>
          decision.foreach(sendTradingDecision)
          recordProcessingLatency(ProcessingLatencyMs(
            System.currentTimeMillis() - ts.value))
        case \/-(-\/(failure)) => logFailure(failure)
      }

Invoking foldMap applies the transformation, yielding a Task. The Task is executed
asynchronously via unsafePerformAsync. Let's run a benchmark at 24,000 events per
second with our new implementation and compare the results against the foldRun
interpreter:

Metric 24,000 EPS with queue size = 100

50th (median) latency 0.0 ms / 6.0 ms

75th latency 0.0 ms / 7.0 ms

99th latency 4.0 ms / 8.0 ms

99.9th latency 13.0 ms / 16.0 ms

100th (maximum) latency 178.0 ms / 26.0 ms

Mean latency 0.13 ms / 6.0 ms

Events processed as percentage of total events 96.60 % / 36.62%
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Running the Task interpreter on a computer with four cores yields a substantive difference
in latency and performance. From a throughput perspective, nearly all events can be
processed, in contrast to the 36% processing rate previously. The throughput improvement
is indicative of the extra capacity gained by use of Task.fork, which is providing runtime
parallelism. We also observe a significant reduction in lower percentile latencies, which can
also be attributed to the use of Task.fork on a multicore machine. Interestingly, the higher
percentile latencies remain quite similar. As we previously noted, this is because we are still
not defending against latent events at the end of the processing pipeline. The takeaway
from this benchmark is that judicious usage of Task yields double the throughput with an
improved latency profile. This is an exciting result to have achieved by treating the trading
strategy as a black box and only changing how the system interacts with the trading
strategy.

Exploring free monads further
Our exploration into free monads has deliberately avoided a deep dive into monads and
instead focused on showing you the practical results from using this approach. With free
monads, we have shown you that we can separate the description of a program from its
execution. This allowed us to cleanly introduce logic to interrupt the processing of latent
events. We also added concurrency to the processing pipeline without affecting its
construction by writing a Task interpreter. The core business logic remains pure while
retaining excellent runtime characteristics. Here, we see the salient point about the free
monad. The description of our program is a value and the interpreter is responsible for
handling side-effects.

At this point, you can see the benefits of applying this technique, but you are still in the
dark about the underlying mechanisms. A full treatment of monads is beyond the scope of
our exploration. By studying the source code that is associated with these examples and
exploring other learning sources, you will gain a deeper understanding of how to apply this
technique in your own systems. We recommend reading Adam Warski's aforementioned
blog post in-depth and reviewing the presentation linked from another free monad example
built by Ken Scrambler that is available at h t t p s : / / g i t h u b . c o m / k e n b o t / f r e e. To get a
deeper understanding of monads, we encourage you to read, Functional Programming in
Scala by Paul Chiusano and Rúnar Bjarnason.

https://github.com/kenbot/free
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Summary
In this chapter, we focused on high-performance system design in a more language-agnostic
context. We introduced distributed architectures and explained how they can help scale a
platform. We presented some of the challenges that such a paradigm involves, and we
focused on solving the problem of shared state inside a cluster. We used CRDTs to
implement efficient and performant synchronization among the nodes of a cluster. Using
these data types, we were able to simplify our architecture and avoid creating a bottleneck
by eliminating the need for a standalone service that is dedicated to storing the shared state.
We also kept the latency low by avoiding remote calls on the critical path.

In the second part of this chapter, we analyzed how queues impact latency, and how we can
apply load control policies to control latency. By benchmarking the trading strategy
pipeline, we discovered the importance of applying back pressure and bounding queue
sizes in order to reason about maximum latency. Unbounded queues will eventually lead to
disastrous production performance. The formal name for the study of queues is a branch of
mathematics known as queueing theory. Queueing theory, like monads, is a topic that
deserves a more formal treatment. We focused on using empirical observations to drive
improvements. Studying queueing theory will provide you with a stronger theoretical
background and the ability to build models for system performance.

We extended the policy of rejecting work to interrupting work that is taking too long. In
doing so, we explored a new functional programming technique in the form of the free
monad. The free monad allowed us to maintain clean business logic describing what the
pipeline does without focusing on how the pipeline accomplishes its goals. This separation
of concerns enabled us to also add concurrency to the pipeline without complicating the
pipeline description. The principles that we discussed enable you to write high-throughput
and low-latency systems that remain robust when the system is at capacity, while retaining
an emphasis on functional design.
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