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Preface
Not a single day passes by that we do not hear about Big Data in the news media, 
technical conferences, and even coffee shops. The ever-increasing amount of data 
collected in process monitoring, research, or simple human behavior becomes 
valuable only if you extract knowledge from it. Machine learning is the essential  
tool to mine data for gold (knowledge).

This book covers the "what", "why", and "how" of machine learning:

•	 What are the objectives and the mathematical foundation of machine learning?
•	 Why is Scala the ideal programming language to implement machine 

learning algorithms?
•	 How can you apply machine learning to solve real-world problems?

Throughout this book, machine learning algorithms are described with diagrams, 
mathematical formulation, and documented snippets of Scala code, allowing you  
to understand these key concepts in your own unique way.

What this book covers
Chapter 1, Getting Started, introduces the basic concepts of statistical analysis, 
classification, regression, prediction, clustering, and optimization. This chapter 
covers the Scala languages features and libraries, followed by the implementation  
of a simple application.

Chapter 2, Hello World!, describes a typical workflow for classification, the concept of 
bias/variance trade-off, and validation using the Scala dependency injection applied 
to the technical analysis of financial markets.
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Chapter 3, Data Preprocessing, covers time series analyses and leverages Scala to 
implement data preprocessing and smoothing techniques such as moving averages, 
discrete Fourier transform, and the Kalman recursive filter.

Chapter 4, Unsupervised Learning, focuses on the implementation of some of the most 
widely used clustering techniques, such as K-means, the expectation-maximization, 
and the principal component analysis as a dimension reduction method.

Chapter 5, Naïve Bayes Classifiers, introduces probabilistic graphical models, and then 
describes the implementation of the Naïve Bayes and the multivariate Bernoulli 
classifiers in the context of text mining.

Chapter 6, Regression and Regularization, covers a typical implementation of the linear 
and least squares regression, the ridge regression as a regularization technique, and 
finally, the logistic regression.

Chapter 7, Sequential Data Models, introduces the Markov processes followed by a full 
implementation of the hidden Markov model, and conditional random fields applied 
to pattern recognition in financial market data.

Chapter 8, Kernel Models and Support Vector Machines, covers the concept of kernel 
functions with implementation of support vector machine classification and 
regression, followed by the application of the one-class SVM to anomaly detection.

Chapter 9, Artificial Neural Networks, describes feed-forward neural networks followed 
by a full implementation of the multilayer perceptron classifier.

Chapter 10, Genetic Algorithms, covers the basics of evolutionary computing and the 
implementation of the different components of a multipurpose genetic algorithm.

Chapter 11, Reinforcement Learning, introduces the concept of reinforcement learning 
with an implementation of the Q-learning algorithm followed by a template to build 
a learning classifier system.

Chapter 12, Scalable Frameworks, covers some of the artifacts and frameworks to create 
scalable applications for machine learning such as Scala parallel collections, Akka, 
and the Apache Spark framework.

Appendix A, Basic Concepts, covers the Scala constructs used throughout the book, 
elements of linear algebra, and an introduction to investment and trading strategies.

Appendix B, References, provides a chapter-wise list of references for [source entry]  
in the respective chapters. This appendix is available as an online chapter at 
https://www.packtpub.com/sites/default/files/downloads/8742OS_
AppendixB_References.pdf.
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Short test applications using financial data illustrate the large variety of predictive, 
regression, and classification models.

The interdependencies between chapters are kept to a minimum. You can easily 
delve into any chapter once you complete Chapter 1, Getting Started, and Chapter 2, 
Hello World!.

What you need for this book
A decent command of the Scala programming language is a prerequisite. Reading 
through a mathematical formulation, conveniently defined in an information box,  
is optional. However, some basic knowledge of mathematics and statistics might  
be helpful to understand the inner workings of some algorithms.

The book uses the following libraries:

•	 Scala 2.10.3 or higher
•	 Java JDK 1.7.0_45 or 1.8.0_25
•	 SBT 0.13 or higher
•	 JFreeChart 1.0.1
•	 Apache Commons Math library 3.3 (Chapter 3, Data Preprocessing, Chapter 4, 

Unsupervised Learning, and Chapter 6, Regression and Regularization)
•	 Indian Institute of Technology Bombay CRF 0.2 (Chapter 7, Sequential  

Data Models)
•	 LIBSVM 0.1.6 (Chapter 8, Kernel Models and Support Vector Machines)
•	 Akka 2.2.4 or higher (or Typesafe activator 1.2.10 or higher) (Chapter 12, 

Scalable Frameworks)
•	 Apache Spark 1.0.2 or higher (Chapter 12, Scalable Frameworks)

Understanding the mathematical formulation of a 
model is optional.

Who this book is for
This book is for software developers with a background in Scala programming who 
want to learn how to create, validate, and apply machine learning algorithms.

The book is also beneficial to data scientists who want to explore functional 
programming or improve the scalability of their existing applications using Scala.
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This book is designed as a tutorial with comparative hands-on exercises using 
technical analysis of financial markets.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"Finally, the environment variables JAVA_HOME, PATH, and CLASSPATH have to be 
updated accordingly."

A block of code is set as follows:

[default]
val lsp = builder.model(lrJacobian)
                 .weight(wMatrix) 
                 .target(labels)

When we wish to draw your attention to a particular part of a code block,  
the relevant lines or items are set in bold:

[default]
val lsp = builder.model(lrJacobian)
                 .weight(wMatrix)
                  .target(labels)

The source code block is described using a reference number embedded as a  
code comment:

[default]
val lsp = builder.model(lrJacobian)  //1
                 .weight(wMatrix)
                  .target(labels)

The reference number is used in the chapter as follows: "The model instance is 
initialized with the Jacobian matrix, lrJacobian (line 1)."

Any command-line input or output is written as follows:

sbt/sbt assembly



Preface

[ 5 ]

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "The loss 
function is then known as the hinge loss."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Mathematical formulas (optional to read) appear in a 
box like this

For the sake of readability, the elements of the Scala code that are not essential to  
the understanding of an algorithm such as class, variable, and method qualifiers  
and validation of arguments, exceptions, or logging are omitted. The convention  
for code snippets is detailed in the Format of code snippets section in Appendix A,  
Basic Concepts.

You will be provided with in-text citation of papers, conference, books, and 
instructional videos throughout the book. The sources are listed in the the  
Appendix B, References using in the following format:

[In-text citation]

For example, in the chapter, you will find an instance as follows:

This time around RSS increases with λ  before reaching a maximum for λ  > 60. This 
behavior is consistent with other findings [6:12].

The respective [source entry] is mentioned in Appendix B, References, as follows:

[6:12] Model selection and assessment H. Bravo, R. Irizarry, 2010, available at http://
www.cbcb.umd.edu/~hcorrada/PracticalML/pdf/lectures/selection.pdf.
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Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it  
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you 
purchased this book elsewhere, you can visit http://www.packtpub.com/support 
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
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Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.





Getting Started
It is critical for any computer scientist to understand the different classes of machine 
learning algorithms and be able to select the ones that are relevant to the domain of 
their expertise and dataset. However, the application of these algorithms represents 
a small fraction of the overall effort needed to extract an accurate and performing 
model from input data. A common data mining workflow consists of the following 
sequential steps:

1.	 Loading the data.
2.	 Preprocessing, analyzing, and filtering the input data.
3.	 Discovering patterns, affinities, clusters, and classes.
4.	 Selecting the model features and the appropriate machine learning 

algorithm(s).
5.	 Refining and validating the model.
6.	 Improving the computational performance of the implementation.

As we will emphasize throughout this book, each stage of the process is critical to 
build the right model.

This first chapter introduces you to the taxonomy of machine learning algorithms, 
the tools and frameworks used in the book, and a simple application of logistic 
regression to get your feet wet.
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Mathematical notation for the curious
Each chapter contains a small section dedicated to the formulation of the algorithms 
for those interested in the mathematical concepts behind the science and art of 
machine learning. These sections are optional and defined within a tip box. For 
example, the mathematical expression of the mean and the variance of a variable  
X mentioned in a tip box will be as follows:

Mean value of a variable X = {x} is defined as:

The variance of a variable X = {x} is defined as:

Why machine learning?
The explosion in the number of digital devices generates an ever-increasing amount 
of data. The best analogy I can find to describe the need, desire, and urgency to 
extract knowledge from large datasets is the process of extracting a precious metal 
from a mine, and in some cases, extracting blood from a stone.

Knowledge is quite often defined as a model that can be constantly updated or 
tweaked as new data comes into play. Models are obviously domain-specific ranging 
from credit risk assessment, face recognition, maximization of quality of service, 
classification of pathological symptoms of disease, optimization of computer networks, 
and security intrusion detection, to customers' online behavior and purchase history.

Machine learning problems are categorized as classification, prediction, optimization, 
and regression.

Classification
The purpose of classification is to extract knowledge from historical data. For 
instance, a classifier can be built to identify a disease from a set of symptoms. The 
scientist collects information regarding the body temperature (continuous variable), 
congestion (discrete variables HIGH, MEDIUM, and LOW), and the actual diagnostic 
(flu). This dataset is used to create a model such as IF temperature > 102 AND 
congestion = HIGH THEN patient has the flu (probability 0.72), which 
doctors can use in their diagnostic.
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Prediction
Once the model is extracted and validated against the past data, it can be used to 
draw inference from the future data. A doctor collects symptoms from a patient,  
such as body temperature and nasal congestion, and anticipates the state of  
his/her health.

Optimization
Some global optimization problems are intractable using traditional linear and  
non-linear optimization methods. Machine learning techniques improve the chances 
that the optimization method converges toward a solution (intelligent search). You 
can imagine that fighting the spread of a new virus requires optimizing a process 
that may evolve over time as more symptoms and cases are uncovered.

Regression
Regression is a classification technique that is particularly suitable for a continuous 
model. Linear (least square), polynomial, and logistic regressions are among the 
most commonly used techniques to fit a parametric model, or function, y= f (xj), to a 
dataset. Regression is sometimes regarded as a specialized case of classification for 
which the output variables are continuous instead of categorical.

Why Scala?
Like most functional languages, Scala provides developers and scientists with a 
toolbox to implement iterative computations that can be easily woven dynamically 
into a coherent dataflow. To some extent, Scala can be regarded as an extension of 
the popular MapReduce model for distributed computation of large amounts of data. 
Among the capabilities of the language, the following features are deemed essential 
to machine learning and statistical analysis.

Abstraction
Monoids and monads are important concepts in functional programming.  
Monads are derived from the category and group theory allowing developers to 
create a high-level abstraction as illustrated in Twitter's Algebird (https://github.
com/twitter/algebird) or Google's Breeze Scala (https://github.com/dlwh/
breeze) libraries.

A monoid defines a binary operation op on a dataset T with the property of closure, 
identity operation, and associativity.
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Let's consider the + operation is defined for a set T using the following  
monoidal representation:

trait Monoid[T] {
  def zero: T 
  def op(a: T, b: T): c 
}

Monoids are associative operations. For instance, if ts1, ts2, and ts3 are three 
time series, then the property ts1 + (ts2 + ts3) = (ts1 + ts2) + ts2 is true. 
The associativity of a monoid operator is critical in regards to parallelization of 
computational workflows.

Monads are structures that can be seen either as containers by programmers or as  
a generalization of Monoids. The collections bundled with the Scala standard library 
(list, map, and so on) are constructed as monads [1:1]. Monads provide the ability  
for those collections to perform the following functions:

1.	 Create the collection.
2.	 Transform the elements of the collection.
3.	 Flatten nested collections.

A common categorical representation of a monad in Scala is a trait, Monad, 
parameterized with a container type M:

trait Monad[M[_]] {
  def apply[T])(a: T): M[T] 
  def flatMap[T, U](m: M[T])(f: T=>M[U]): M[U] 
}

Monads allow those collections or containers to be chained to generate a workflow. 
This property is applicable to any scientific computation [1:2].

Scalability
As seen previously, monoids and monads enable parallelization and chaining of 
data processing functions by leveraging the Scala higher-order methods. In terms 
of implementation, Actors are the core elements that make Scala scalable. Actors act 
as coroutines, managing the underlying threads pool. Actors communicate through 
passing asynchronous messages. A distributed computing Scala framework such 
as Akka and Spark extends the capabilities of the Scala standard library to support 
computation on very large datasets. Akka and Spark are described in detail in the 
last chapter of this book [1:3].
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In a nutshell, a workflow is implemented as a sequence of activities or computational 
tasks. Those tasks consist of high-order Scala methods such as flatMap, map, fold, 
reduce, collect, join, or filter applied to a large collection of observations. Scala 
allows these observations to be partitioned by executing those tasks through a cluster 
of actors. Scala also supports message dispatching and routing of messages between 
local and remote actors. The engineers can decide to execute a workflow either locally 
or distributed across CPU cores and servers with no code or very little code changes.

Deployment of a workflow as a distributed computation

In this diagram, a controller, that is, the master node, manages the sequence of 
tasks 1 to 4 similar to a scheduler. These tasks are actually executed over multiple 
worker nodes that are implemented by the Scala actors. The master node exchanges 
messages with the workers to manage the state of the execution of the workflow 
as well as its reliability. High availability of these tasks is implemented through a 
hierarchy of supervising actors.

Configurability
Scala supports dependency injection using a combination of abstract variables, 
self-referenced composition, and stackable traits. One of the most commonly used 
dependency injection patterns, the cake pattern, is used throughout this book to 
create dynamic computation workflows and plots.
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Maintainability
Scala embeds Domain Specific Languages (DSL) natively. DSLs are syntactic layers 
built on top of Scala native libraries. DSLs allow software developers to abstract 
computation in terms that are easily understood by scientists. The most notorious 
application of DSLs is the definition of the emulation of the syntax used in the 
MATLAB program, which data scientists are familiar with.

Computation on demand
Lazy methods and values allow developers to execute functions and allocate 
computing resources on demand. The Spark framework relies on lazy variables  
and methods to chain Resilient Distributed Datasets (RDD).

Model categorization
A model can be predictive, descriptive, or adaptive.

Predictive models discover patterns in historical data and extract fundamental 
trends and relationships between factors. They are used to predict and classify  
future events or observations. Predictive analytics is used in a variety of fields  
such as marketing, insurance, and pharmaceuticals. Predictive models are created 
through supervised learning using a preselected training set.

Descriptive models attempt to find unusual patterns or affinities in data by grouping 
observations into clusters with similar properties. These models define the first level 
in knowledge discovery. They are generated through unsupervised learning.

A third category of models, known as adaptive modeling, is generated through 
reinforcement learning. Reinforcement learning consists of one or several  
decision-making agents that recommend and possibly execute actions in  
the attempt of solving a problem, optimizing an objective function, or  
resolving constraints.
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Taxonomy of machine learning 
algorithms
The purpose of machine learning is to teach computers to execute tasks without 
human intervention. An increasing number of applications such as genomics, social 
networking, advertising, or risk analysis generate a very large amount of data that 
can be analyzed or mined to extract knowledge or provide insight into a process, 
a customer, or an organization. Ultimately, machine learning algorithms consist 
of identifying and validating models to optimize a performance criterion using 
historical, present, and future data [1:4].

Data mining is the process of extracting or identifying patterns in a dataset.

Unsupervised learning
The goal of unsupervised learning is to discover patterns of regularities and 
irregularities in a set of observations. The process known as density estimation 
in statistics is broken down into two categories: discovery of data clusters and 
discovery of latent factors. The methodology consists of processing input data to 
understand patterns similar to the natural learning process in infants or animals. 
Unsupervised learning does not require labeled data, and therefore, is easy to 
implement and execute because no expertise is needed to validate an output. 
However, it is possible to label the output of a clustering algorithm and use it for 
future classification.

Clustering
The purpose of data clustering is to partition a collection of data into a number of 
clusters or data segments. Practically, a clustering algorithm is used to organize 
observations into clusters by minimizing the observations within a cluster and 
maximizing the observations between clusters. A clustering algorithm consists  
of the following steps:

1.	 Creating a model by making an assumption on the input data.
2.	 Selecting the objective function or goal of the clustering.
3.	 Evaluating one or more algorithms to optimize the objective function.

Data clustering is also known as data segmentation or data partitioning.
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Dimension reduction
Dimension reduction techniques aim at finding the smallest but most relevant set 
of features that models dataset reliability. There are many reasons for reducing the 
number of features or parameters in a model, from avoiding overfitting to reducing 
computation costs.

There are many ways to classify the different techniques used to extract knowledge 
from data using unsupervised learning. The following taxonomy breaks down these 
techniques according to their purpose, although the list is far for being exhaustive, as 
shown in the following diagram:

Supervised learning
The best analogy for supervised learning is function approximation or curve fitting. 
In its simplest form, supervised learning attempts to extract a relation or function f 
x → y from a training set {x, y}. Supervised learning is far more accurate and reliable 
than any other learning strategy. However, a domain expert may be required to label 
(tag) data as a training set for certain types of problems.

Supervised machine learning algorithms can be broken into two categories:

•	 Generative models
•	 Discriminative models

Generative models
In order to simplify the description of statistics formulas, we adopt the following 
simplification: the probability of an event X is the same as the probability of the 
discrete random variable X to have a value x, p(X) = p(X=x). The notation of joint 
probability (resp. conditional probability) becomes p(X, Y) = p(X=x, Y=y) (resp. 
p(X|Y)=p(X=x | Y=y).
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Generative models attempt to fit a joint probability distribution, p(X,Y), of two events 
(or random variables), X and Y, representing two sets of observed and hidden (latent) 
variables x and y. Discriminative models learn the conditional probability p(Y|X) of an 
event or random variable Y of hidden variables y, given an event or random variable 
X of observed variables x. Generative models are commonly introduced through the 
Bayes' rule. The conditional probability of an event Y, given an event X, is computed 
as the product of the conditional probability of the event X, given the event Y, and the 
probability of the event X normalized by the probability of event Y [1:5].

Join probability (if X and Y are independent):

Conditional probability:

The Bayes' rule:

The Bayes' rule is the foundation of the Naïve Bayes classifier, which is the topic of 
Chapter 5, Naïve Bayes Classifiers.

Discriminative models
Contrary to generative models, discriminative models compute the conditional 
probability p(Y|X) directly, using the same algorithm for training and classification.

Generative and discriminative models have their respective advantages and 
drawbacks. Novice data scientists learn to match the appropriate algorithm to each 
problem through experimentation. Here is a brief guideline describing which type of 
models makes sense according to the objective or criteria of the project:

Objective Generative models Discriminative models
Accuracy Highly dependent on the 

training set.
Probability estimates tend to be 
more accurate.

Modeling 
requirements

There is a need to model both 
observed and hidden variables, 
which requires a significant 
amount of training.

The quality of the training set 
does not have to be as rigorous 
as for generative models.
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Objective Generative models Discriminative models
Computation cost This is usually low. For 

example, any graphical method 
derived from the Bayes' rule 
has low overhead.

Most algorithms rely on 
optimization of a convex 
that introduces significant 
performance overhead.

Constraints These models assume some 
degree of independence among 
the model features.

Most discriminative algorithms 
accommodate dependencies 
between features.

We can further refine the taxonomy of supervised learning algorithms by segregating 
between sequential and random variables for generative models and breaking down 
discriminative methods as applied to continuous processes (regression) and discrete 
processes (classification):

Reinforcement learning
Reinforcement learning is not as well understood as supervised and unsupervised 
learning outside the realms of robotics or game strategy. However, since the 90s, 
genetic-algorithms-based classifiers have become increasingly popular to solve 
problems that require collaboration with a domain expert. For some types of 
applications, reinforcement learning algorithms output a set of recommended 
actions for the adaptive system to execute. In its simplest form, these algorithms 
compute or estimate the best course of action. Most complex systems based on 
reinforcement learning establish and update policies that can be vetoed by an expert. 
The foremost challenge developers of reinforcement learning systems face is that the 
recommended action or policy may depend on partially observable states and how to 
deal with uncertainty.
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Genetic algorithms are not usually considered part of the reinforcement learning 
toolbox. However, advanced models such as learning classifier systems use genetic 
algorithms to classify and reward the rules and policies.

As with the two previous learning strategies, reinforcement learning models can be 
categorized as Markovian or evolutionary:

This is a brief overview of machine learning algorithms with a suggested taxonomy. 
There are almost as many ways to introduce machine learning as there are data and 
computer scientists. We encourage you to browse through the list of references at the 
end of the book and find the documentation appropriate to your level of interest and 
understanding.

Tools and frameworks
Before getting your hands dirty, you need to download and deploy a minimum set 
of tools and libraries so as not to reinvent the wheel. A few key components have to 
be installed in order to compile and run the source code described throughout the 
book. We focus on open source and commonly available libraries, although you are 
invited to experiment with equivalent tools of your choice. The learning curve for the 
frameworks described here is minimal.

Java
The code described in the book has been tested with JDK 1.7.0_45 and JDK 1.8.0_25 
on Windows x64 and MacOS X x64 . You need to install the Java Development Kit if 
you have not already done so. Finally, the environment variables JAVA_HOME, PATH, 
and CLASSPATH have to be updated accordingly.
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Scala
The code has been tested with Scala 2.10.4. We recommend using Scala version 
2.10.3 or higher and SBT 0.13 or higher. Let's assume that Scala runtime (REPL) 
and libraries have been properly installed and environment variables SCALA_HOME 
and PATH have been updated. The description and installation instructions of the 
Scala plugin for Eclipse are available at http://scala-ide.org/docs/user/
gettingstarted.html.

You can also download the Scala plugin for Intellij IDEA from the JetBrains website 
at http://confluence.jetbrains.com/display/SCA/.

The ubiquitous simple build tool (sbt) will be our primary building engine.  
The syntax of the build file sbt/build.sbt conforms to version 0.13, and is  
used to compile and assemble the source code presented throughout this book.

Apache Commons Math
Apache Commons Math is a Java library for numerical processing, algebra, statistics, 
and optimization [1:6].

Description
This is a lightweight library that provides developers with a foundation of small, 
ready-to-use Java classes that can be easily weaved into a machine learning problem. 
The examples used throughout the book require version 3.3 or higher.

The main components of Apache Commons Math are:

•	 Functions, differentiation, and integral and ordinary differential equations
•	 Statistics distribution
•	 Linear and nonlinear optimization
•	 Dense and Sparse vectors and matrices
•	 Curve fitting, correlation, and regression

For more information, visit http://commons.apache.org/proper/commons-math.

Licensing
We need Apache Public License 2.0; the terms are available at http://www.apache.
org/licenses/LICENSE-2.0.
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Installation
The installation and deployment of the Commons Math library are quite simple:

1.	 Go to the download page, http://commons.apache.org/proper/commons-
math/download_math.cgi.

2.	 Download the latest .jar files in the Binaries section, commons-math3-3.3-
bin.zip (for version 3.3, for instance).

3.	 Unzip and install the .jar files.
4.	 Add commons-math3-3.3.jar to classpath as follows:

°° For Mac OS X, use the command export CLASSPATH=$CLASSPATH:/
Commons_Math_path/commons-math3-3.3.jar

°° For Windows, navigate to System property | Advanced system 
settings | Advanced | Environment variables…, then edit the  
entry of the CLASSPATH variable

5.	 Add the commons-math3-3.3.jar file to your IDE environment if needed 
(that is, for Eclipse, navigate to Project | Properties | Java Build Path | 
Libraries | Add External JARs).

You can also download commons-math3-3.3-src.zip from the Source section.

JFreeChart
JFreeChart is an open source chart and plotting Java library, widely used in the Java 
programmer community. It was originally created by David Gilbert [1:7].

Description
The library supports a variety of configurable plots and charts (scatter, dial, pie, area, 
bar, box and whisker, stacked, and 3D). We use JFreeChart to display the output 
of data processing and algorithms throughout the book, but you are encouraged to 
explore this great library on your own, as time permits.

Licensing
It is distributed under the terms of the GNU Lesser General Public License (LGPL), 
which permits its use in proprietary applications.
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Installation
To install and deploy JFreeChart, perform the following steps:

1.	 Visit http://www.jfree.org/jfreechart.
2.	 Download the latest version from Source Forge at http://sourceforge.

net/projects/jfreechart/files.
3.	 Unzip and install the .jar file.
4.	 Add jfreechart-1.0.17.jar (for version 1.0.17) to classpath as follows:

°° For Mac OS, update the classpath by using export 
CLASSPATH=$CLASSPATH:/JFreeChart_path/ jfreechart-1.0.17.
jar

°° For Windows, go to System property | Advanced system settings | 
Advanced | Environment variables… and then edit the entry of the 
CLASSPATH variable

5.	 Add the jfreechart-1.0.17.jar file to your IDE environment, if needed.

Other libraries and frameworks
Libraries and tools that are specific to a single chapter are introduced along with 
the topic. Scalable frameworks are presented in the last chapter along with the 
instructions to download them. Libraries related to the conditional random fields 
and support vector machines are described in the respective chapters.

Why not use Scala algebra and numerical libraries
Libraries such as Breeze, ScalaNLP, and Algebird are great Scala 
frameworks for linear algebra, numerical analysis, and machine 
learning. They provide even the most seasoned Scala programmer 
with a high-quality layer of abstraction. However, this book is 
designed as a tutorial that allows developers to write algorithms 
from the ground up using simple common Java libraries [1:8].

Source code
The Scala programming language is used to implement and evaluate the machine 
learning techniques presented in this book. Only a subset of the source code used 
to implement the techniques are presented in the book. The formal implementation 
of these algorithms is available on the website of Packt Publishing (http://www.
packtpub.com).
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Downloading the example code
You can download the example code files for all Packt books you 
have purchased from your account at http://www.packtpub.com. 
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed 
directly to you.

Context versus view bounds
Most Scala classes discussed in the book are parameterized with the type  
associated to the discrete/categorical value (Int) or continuous value (Double). 
Context bounds would require that any type used by the client code has Int or 
Double as upper bounds:

class MyClassInt[T <: Int]
class MyClassFloat[T <: Double]

Such a design introduces constraints on the client to inherit from simple types and to 
deal with covariance and contravariance for container types [1:9].

For this book, view bounds are used instead of context bounds only where they 
require an implicit conversion to the parameterized type to be defined:

Class MyClassFloat[T <% Double]
implicit def T2Double(t : T): Double

Presentation
For the sake of readability of the implementation of algorithms, all nonessential code 
such as error checking, comments, exceptions, or imports are omitted. The following 
code elements are discarded in the code snippet presented in the book:

•	 Code comments
•	 Validation of class parameters and method arguments:

class BaumWelchEM(val lambda: HMMLambda ...) {
   require( lambda != null, "Lambda model is undefined")

•	 Exceptions and an exception handler:
   try { .. }
   catch {
      case e: ArrayIndexOutOfBoundsException  =>println(e.
toString)
    }
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•	 Nonessential annotation:
   @inline def mean = ..

•	 Logging and debugging code:
       m_logger.debug( …)

•	 Private and nonessential methods

Primitives and implicits
The algorithms presented in this book share the same primitive types, generic 
operators, and implicit conversions.

Primitive types
For the sake of readability of the code, the following primitive types will be used:

type XY = (Double, Double)
type XYTSeries = Array[(Double, Double)]
type DMatrix[T] = Array[Array[T]]
type DVector[T] = Array[T]  
type DblMatrix = DMatrix[Double]
type DblVector = Array[Double]

The types have the behavior (methods) of their primitive counterpart (array). 
However, adding a new functionality to vectors, matrices, and time series requires 
classes of their own right. These classes will be introduced in the next chapter.

Type conversions
Implicit conversion is an important feature of the Scala programming language 
because it allows developers to specify a type conversion for an entire library  
in a single place. Here are a few of the implicit type conversions used throughout  
the book:

implicit def int2Double(n: Int): Double = n.toDouble
implicit def vectorT2DblVector[T <% Double](vt: DVector[T]): DblVector 
= vt.map( t => t.toDouble)
implicit def double2DblVector(x: Double): DblVector = Array[Double](x)
implicit def dblPair2DbLVector(x: (Double, Double)): DblVector = 
Array[Double](x._1,x._2)
implicit def dblPairs2DblRows(x: (Double, Double)): DblMatrix = 
Array[Array[Double]](Array[Double](x._1, x._2))
...
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Library-specific conversion
The conversion between the primitive type listed here and 
types introduced in a particular library (such as Apache 
Commons Math) is declared in future chapters the first 
time those libraries are used.

Operators
Lastly, some operations are applied by multiple machine learning or preprocessing 
algorithms. They need to be defined implicitly. The operation on a pair of a vector of 
arbitrary type and vector of Double is defined as follows:

def Op[T <% Double](v: DVector[T], w: DblVector, op: (T, Double) => 
Double): DblVector = 
   v.zipWithIndex.map(x => op(x._1, w(x._2)))

It is also convenient to define the following operators that are included in the Scala 
standard library:

implicit def /(v: DblVector, n: Int):DblVector = v.map( x => x/n)
implicit def /(m: DblMatrix, col: Int, z: Double): DblMatrix = { (0 
until m(n).size).foreach(i => m(n)(i) /= z)  }

We won't have to redefine the types, conversions, and operators from now on.

Immutability
It is usually a good idea to reduce the number of states of an object. Method 
invocation transitions an object from one state to another. The larger the number  
of methods or states, the more cumbersome the testing process becomes.

There is no point in creating a model that is not defined (trained). Therefore, making 
the training of a model as part of the constructor of the class it implements makes a 
lot of sense. Therefore, the only public methods of a machine learning algorithm are:

•	 Classification or prediction
•	 Validation
•	 Retrieval of model parameters (weights, latent variables, hidden states, and 

so on), if needed

www.allitebooks.com
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Performance of Scala iterators
The evaluation of the performance of Scala high-order iterative methods is beyond 
the scope of this book. However, it is important to be aware of the trade-off of  
each method.

The for loop construct is to be avoided as a counting iterator except if it is used  
in conjunction with yield. It is designed to implement the for-comprehension 
monad (map-flatMap). The source code presented in this book uses the while  
and foreach constructs.

Scala reducer methods reduce and fold are also frequently used for their efficiency.

Let's kick the tires
This final section introduces the key elements of the training and classification 
workflow. A test case using a simple logistic regression is used to illustrate each  
step of the computational workflow.

Overview of computational workflows
In its simplest form, a computational workflow to perform runtime processing of a 
dataset is composed of the following stages:

1.	 Loading the dataset from files, databases, or any streaming devices.
2.	 Splitting the dataset for parallel data processing.
3.	 Preprocessing data using filtering techniques, analysis of variance, and 

applying penalty and normalization functions whenever necessary.
4.	 Applying the model, either a set of clusters or classes to classify new data.
5.	 Assessing the quality of the model.

A similar sequence of tasks is used to extract a model from a training dataset:

1.	 Loading the dataset from files, databases, or any streaming devices.
2.	 Splitting the dataset for parallel data processing.
3.	 Applying filtering techniques, analysis of variance, and penalty and 

normalization functions to the raw dataset whenever necessary.
4.	 Selecting the training, testing, and validation set from the cleansed input data.
5.	 Extracting key features, establishing affinity between a similar group of 

observations using clustering techniques or supervised learning algorithms.
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6.	 Reducing the number of features to a manageable set of attributes to avoid 
overfitting the training set.

7.	 Validating the model and tuning the model by iterating steps 5, 6, and 7 until 
the error meets criteria.

8.	 Storing the model into the file or database to be loaded for runtime 
processing of new observations.

Data clustering and data classification can be performed independent of each other 
or as part of a workflow that uses clustering techniques as a preprocessing stage 
of the training phase of a supervised learning algorithm. Data clustering does 
not require a model to be extracted from a training set, while classification can be 
performed only if a model has been built from the training set. The following image 
gives an overview of training and classification:

A generic data flow for training and running a model

This diagram is an overview of a typical data mining processing pipeline.  
The first phase consists of extracting the model through clustering or training  
of a supervised learning algorithm. The model is then validated against test data,  
for which the source is the same as the training set but with different observations. 
Once the model is created and validated, it can be used to classify real-time data 
or predict future behavior. In reality, real-world workflows are more complex 
and require being dynamically configurable to allow experimentation of different 
models. Several alternative classifiers can be used to perform a regression and 
different filtering algorithms are applied against input data depending of the  
latent noise in the raw data.
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Writing a simple workflow
This book relies on financial data to experiment with a different learning strategy. 
The objective of the exercise is to build a model that can discriminate between 
volatile and nonvolatile trading sessions. For this first example, we select a simplified 
version of the logistic regression as our classifier as we treat a stock-price-volume 
action as a continuous or pseudo-continuous process.

Logistic regression
Logistic regression is treated in depth in Chapter 6, Regression 
and Regularization. The model treated in this example is a simple 
binary classifier using logistic regression for two-dimensional 
observations.

The classification of trading sessions according to their volatility is as follows:

•	 Select a dataset
•	 Load the dataset
•	 Preprocess the dataset
•	 Display data
•	 Create the model through training
•	 Classify new data

Selecting a dataset
Throughout the book, we will rely on financial data to evaluate and discuss the merit 
of different data processing and machine learning methods. In this example, the data 
is extracted from Yahoo! Finances using the CSV format with the following fields:

•	 Date
•	 Price at open
•	 Highest price in session
•	 Lowest price in session
•	 Price at session close
•	 Volume
•	 Adjust price at session close

Let's create a simple program that loads the content of the file, executes some simple 
preprocessing functions, and creates a simple model. We selected the CSCO stock 
price between January 1, 2012 and December 1, 2013 as our data input.
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Let's consider two variables, price and volume, as illustrated by the following 
screenshot. The top graph displays the variation of the price of Cisco stock over time 
and the bottom bar chart represents the daily trading volume on Cisco stock over time:

Price-Volume action for the Cisco stock

Loading the dataset
The first step is loading the dataset from a local file. Typically, large datasets are 
loaded from a database or distributed filesystem such as Hadoop Distributed File 
System (HDFS), as shown here:

def load(fileName: String): Option[XYTSeries] = {
  val src =  Source.fromFile(fileName)
  val fields = src.getLines.map( _.split(CSV_DELIM)).toArray //1
  val cols = fields.drop(1) //2
  val data = transform(cols)
  src.close //3
  Some(data)
}

The transform method will be described in the next section.

The data file is extracted through an invocation of the Source.fromFile static 
method, and then the fields are extracted through a map (line 1). The header  
(first) row is removed with a call to drop (line 2).

Data extraction
The Source.fromFile.getLines.map invocation pipeline 
method returns an iterator, which needs to be converted into an 
array to store the information into memory.
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The file has to be closed to avoid leaking of the file handle (line 3).

Code readability
A long pipeline of Scala high-order methods make the code and 
underlying code quite difficult to read. It is recommended to break 
down long chains of method calls. The following code is an example 
of a long chain of method calls:

val cols = Source.fromFile.getLines.map( 
_.split(CSV_DELIM).toArray.drop(1)

We can break down such method calls into several steps as follows:
val lines = Source.fromFile.getLines
val fields = lines.map(_.split(CSV_DELIM).toArray
val cols = fields.drop(1)

We strongly encourage you to consult the excellent guide Effective 
Scala, written by Marius Eriksen from Twitter. This is definitively a 
must read for any Scala developer [1:10].

Preprocessing the dataset
The next step is to normalize the data in the range [-0.5, 0.5] to be trained by the 
logistic binary classifier. It is time to introduce a non-sense statistics class.

Basic statistics
We select the computation of mean and standard deviation of the two time series as 
the first step of the preprocessing phase. The computation of these statistics can be 
implemented by the reduce methods reduceLeft and foldLeft:

val mean = price.reduceLeft( _ + _ )/price.size
val s2 = price.foldLeft(0.0)((s,x) =>s+(x-mean)*(x-mean))
val stdDev = Math.sqrt(s2/(price.size-1) )

However, this implementation has one major drawback: the dataset (price in this 
example) has to be traversed for each method (mean, stdDev, min, max, and so on).

One of the solutions is to create a class that computes the counters and the statistics 
on demand using, once again, the lazy values:

class Stats[T <% Double](private values: DVector[T]) {
   class _Stats(var minValue: Double, var maxValue: Double, var sum: 
Double, var sumSqr: Double) 
val stats = {
  val _stats = new _Stats(Double.MaxValue, Double.MinValue, 0.0, 0.0)
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  values.foreach(x => {
    if(x < _stats.minValue) x else _stats.minValue
    if(x > _stats.maxValue) x else _stats.maxValue 
    _stats.sum + x
    _stats.sumSqr + x*x
  })
  _stats
}
 
lazy val mean = _stats.sum/values.size
lazy val variance = (_stats.sumSqr - mean*mean*values.size)/(values.
size-1)
lazy val stdDev = if(variance < ZERO_EPS) ZERO_EPS else Math.
sqrt(variance)
lazy val min = _stats.minValue
lazy val max = _stats.mazValue
}

We made the statistics object generic by using the view bounds T <% Double,  
which assumes a conversion from type T to Double. By defining the statistics as tuple 
counters (minimum value, maximum value, sum of values, and sum of square values) 
and folding these values into a statistics object, we limit the number of invocations of 
the foldLeft reducer method to 1, and therefore, avoid the recomputation of these 
statistics for the existing dataset each time new data is added.

The code illustrates the use and benefit of lazy values in Scala. The mean is computed 
only if and when needed.

Normalization and Gauss distribution
Statistics are usually used to normalize data into a probability value [0, 1] as required 
by most classification or clustering algorithms. It is logical to add the normalization 
method to the Stats class, as we have already extracted the min and max values:

def normalize: DblVector = {
  val range = max – min;  values.map(x => (x - min)/range)
}

The same approach is used to compute the multivariate normal distribution:

def gauss: DblVector = 
   values.map(x =>{
      val y=x-mean
      INV_SQRT_2PI/stdDev*Math.exp(-0.5*y*y/stdDev)}) 
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The price action chart has a very interesting characteristic. At a closer look, a 
sudden change in price and increase in volume occurs about every three months 
or so. Experienced investors will undoubtedly recognize that those price-volume 
patterns are related to the release of quarterly earnings of Cisco. Such regular but 
unpredictable patterns can be a source of concern or opportunity if risk can be 
managed. The strong reaction of the stock price to the release of corporate earnings 
may scare some long-term investors while enticing day traders.

The following graph visualizes the potential correlation between sudden price 
change (volatility) and heavy trading volume:

Correlation price-volume action for the Cisco stock

Let's try to correlate the volatility of the stock price with volume. For the sake of this 
exercise, we define the volatility as the maximum variation of the stock price within 
each trading session: the relative difference between the highest price during the 
trading session and the lowest price during the session.

The YahooFinancials enumeration extracts historical stock prices and session 
volume from a CSV file. For example, the volatility is extracted from the CSV  
fields of each line in the CSV file as follows:

object YahooFinancials extends Enumeration {
   type YahooFinancials = Value
   val DATE, OPEN, HIGH, LOW, CLOSE, VOLUME, ADJ_CLOSE = Value
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   val volatility = (fs: Array[String]) =>fs(HIGH.id).toDouble-fs(LOW.
id).toDouble
   …
}

The transform method uses the YahooFinancials enumeration to generate the 
input data for the model:

def transform(cols: Array[Array[String]]): XYTSeries = {
  val volatility = Stats[Double](cols.map(YahooFinancials.
volatility)).normalize
  val volume =  Stats[Double](cols.map(YahooFinancials.volume) 
).normalize
  volatility.zip(volume)
}

The volatility and volume data is normalized using the Stats.normalize method 
defined earlier.

Plotting data
Although  charting is not the primary goal of this book, we thought that you will 
benefit from a brief introduction to JFreeChart. The skeleton code to generate a 
scatter plot is rather simple. The most relevant code is the transformation of the 
XYTSeries into graphical JFreeChart's XYSeries:

val xLegend = "Session Volatility"
val yLegend = "Session Volume"
def display(xy: XYTSeries, w: Int, h : Int): Unit  = {
   val series = new XYSeries("CSCO 2012-2013 Stock")
   xy.foreach( x => series.add( x._1,x._2))
     val seriesCollection = new XYSeriesCollection
     seriesCollection.addSeries(series)
    … // plot rendering code
     val chart = ChartFactory.createScatterPlot(xLegend, xLegend, 
yLegend, seriesCollection, PlotOrientation.VERTICAL, true, false, 
false)
     createFrame("Logistic Regression", chart)
  }
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Visualization
The JFreeChart library is introduced as a robust charting tool. The 
visualization of the results of a computation is beyond the scope of 
this book. The code related to plots and charts is omitted from the 
book in order to keep the code snippets concise and dedicated to 
machine learning. In a few occasions, output data is formatted as a 
CSV file to be simply imported into a spreadsheet.

Here is an example of a plot using the ScatterPlot.display method:

val plot = new ScatterPlot(("CSCO 2012-2013", "Session High - Low", 
"Session Volume"), new BlackPlotTheme)
plot.display(volatility_vol.filter( _._1 < 0.5), 250, 340)

Scatter plot of volatility and volume for the Cisco stock

There is a level of correlation between session volume and session volatility. We can 
use this information to classify trading sessions by their volatility.

Creating a model (learning)
The objective of the training is to build a model that can discriminate between 
volatile and nonvolatile trading sessions. For the sake of the exercise, session 
volatility has been defined as session price high and session price low coupled  
with heavy trading volume, which constitute the two parameters of the model.
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Logistic regression is commonly used in statistics inference. The following 
implementation of the binary logistic regression classifier exposes a single method, 
classify, to comply with our desire to reduce the complexity and life cycle of 
objects. The model parameters, weights, are computed during training when the 
LogBinRegression class/model is instantiated. As mentioned earlier, the sections  
of the code nonessential to the understanding of the algorithm are omitted:

class LogBinRegression(val labels: DVector[(XY, Double)], val 
maxIters: Int, val eta: Double, val eps: Double) {
  val dim = 3
  val weights = train
      
  def classify(xy: XY): Option[(Boolean, Double)] = {
    if(weights != None) {
       val likelihood = sigmoid(w(0) + xy._1*w(1) + xy._2*w(2))
       Some(likelihood > 0.5, likelihood)
    }
    else None
  }

The training method, train, consists of iterating through the computation of the 
weight using a simple descent gradient. The method computes the weights and 
returns an option, so the model is either trained and ready for runtime classification 
or nonexistent (None):

def train: Option[DblVector] = {
  val w = Array.fill(dim)( x=> Random.nextDouble-1.0) 
    
  Range(0, maxIters).find(_ => {
     val deltaW = labels.foldLeft(Array.fill(dim)(0.0))((dw, lbl) => {  
       val y = sigmoid(w(0) + w(1)*lbl._1._1 +  w(2)*lbl._1._2)
       dw.map(dx => dx + (lbl._2 - y)*(lbl._1._1 + lbl._1._2))
    })
    val nextW = Array.fill(dim)(0.0)
                     .zipWithIndex
                     .map(nw => w(nw._2)+eta*deltaW(nw._2))
    val diff = Math.abs(nextW.sum - w.sum)
    nextW.copyToArray(w);  diff < eps
  }) match {
    case Some(iters) => Some(w)
    case None => { … }
  }
}
def sigmoid(x: Double):Double = 1.0/(1.0 + Math.exp(-x))
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The iteration is encapsulated in the Scala find method that exists if the algorithm 
converges (diff < eps). The model parameters, weights, are set to None if the 
maximum number of iterations is reached.

The training method, train, iterates across the set of observations by computing 
the gradient between the predicted and observed values. In our simplistic approach, 
the gradient is computed as a linear function of the sigmoid of the sum of the 
product of the weight and training observations. As for any optimization problem, 
the initialization of the solution vector, weights, is critical. We choose to initialize 
the weight with random values, although in practice, you would use a more 
deterministic approach to initialize the model parameters.

In order to train the model, we need to label data. The process consists of tagging 
every trading session as volatile and non volatile according to the observations 
(relative session volatility and session volume). The labeling process is usually quite 
cumbersome; therefore, let's generate the label automatically. A trading session is 
considered volatile if a volatility and volume are both greater than 60 percent of the 
maximum relative volatility and volume:

val labels = volatilityVol.zip(volatilityVol.map(x =>if( x._1>0.3 && 
x._2>0.3) 1.0 else 0.0))

Automated labeling
Although quite convenient, automated creation of training labels 
is not without risk because it may mislabel singular observations. 
This technique is used in this test for convenience but it is not 
recommended unless a domain expert reviews the labels manually.

The model is created (trained) by a simple instantiation of the logistic binary classifier:

val logit = new LogBinRegression(labels, 300, 0.00005, 0.02)

The training run is configured with a maximum of 300 iterations, a gradient slope of 
0.00005, and convergence criteria of 0.02.

Classify the data
Finally, the model can be tested with a new fresh dataset, not related to the  
training set:

Date,Open,High,Low,Close,Volume,Adj Close
3/9/2011,14.78,15.08,14.20,14.91,4.79E+08,14.88
11/17/2009,10.78,10.90,10.62,10.84,3901987,10.85
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It is just a matter of executing the classification method (exceptions, conditions on 
method arguments, and returned values are omitted):

val testData = load("resources/data/chap1/CSCO2.csv")
logit.classify(testData(0)) match {
  case Some(topCategory) => Display.show(topCategory)
  case None => { … }
}   
logit.classify(testData(1)) match {
  case Some(topCategory) => Display.show(topCategory)
  case None => { … }
}

The result of the classification is (true,0.516) for the first sample and 
(false,0.1180) for the second sample.

Validation
The simple classification, in this test case, is provided for illustrating 
the runtime application of the model. It does not constitute a 
validation of the model by any stretch of imagination. The next 
chapter digs into validation metrics and methodology.

Summary
We hope you enjoyed this introduction to machine learning and how to leverage your 
existing skills in Scala programming to create a simple regression program to predict 
stock price/volume action. Here are the highlights of this introductory chapter:

•	 From monadic composition and high-order collection methods for  
parallelization to configurability to reusability patterns, Scala is the  
perfect fit to implement and leverage data mining and machine learning 
algorithms for large-scale projects

•	 There are many steps to create and apply a machine learning model
•	 The implementation of the logistic binary classifier presented as part of the 

test case is simple enough to encourage you to learn how to write and apply 
more advanced machine learning algorithms

To the delight of Scala programming aficionados, the next chapter will dig deeper 
into building a flexible workflow by leveraging traits and dependency injection.





Hello World!
In the first chapter, you were acquainted with some rudimentary concepts regarding 
data processing, clustering, and classification. This chapter is dedicated to the 
creation and maintenance of a flexible end-to-end workflow to train and classify 
data. The first section of the chapter introduces a data-centric (functional) approach 
to create number-crunching applications.

You will learn how to:

•	 Apply the concept of monadic design to create dynamic workflows
•	 Leverage some of Scala's advanced functional features, such as dependency 

injection, to build portable computational workflows
•	 Take into account the bias-variance trade-off in selecting a model
•	 Overcome overfitting in modeling
•	 Break down data into training, test, and validation sets
•	 Implement model validation in Scala using precision, recall, and F score

Modeling
Data is the lifeline of any scientist, and the selection of data providers is critical in 
developing or evaluating any statistical inference or machine learning algorithm.

A model by any other name
We briefly introduced the concept of a model in the Model categorization section in 
Chapter 1, Getting Started.
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What constitutes a model? Wikipedia provides a reasonably good definition of a 
model as understood by scientists [2:1]:

A scientific model seeks to represent empirical objects, phenomena, and physical 
processes in a logical and objective way.

…

Models that are rendered in software allow scientists to leverage computational 
power to simulate, visualize, manipulate and gain intuition about the entity, 
phenomenon, or process being represented.

In statistics and the probabilistic theory, a model describes data that one might 
observe from a system to express any form of uncertainty and noise. A model  
allows us to infer rules, make predictions, and learn from data.

A model is composed of features, also known as attributes or variables, and a set of 
relation between those features. For instance, the model represented by the function 
f(x, y) = x.sin(2y) has two features, x and y, and a relation, f. These two features are 
assumed to be independent. If the model is subject to a constraint such as f(x, y) < 20, 
then the conditional independence is no longer valid.

An astute Scala programmer would associate a model to a monoid for which the set 
is a group of observations and the operator is the function implementing the model. 
If it walks like a monoid and quacks like a monoid, then it is a monoid.

Models come in a variety of shapes and forms:

•	 Parametric: This consists of functions and equations (for example,  
y = sin(2t + w))

•	 Differential: This consists of ordinary and partial differential equations  
(for example, dy = 2x.dx)

•	 Probabilistic: This consists of probability distributions (for example,  
p (x|c) = exp (k.logx – x)/x!)

•	 Graphical: This consists of graphs that abstract out the conditional 
independence between variables (for example, p(x,y|c) = p(x|c).p(y|c))

•	 Directed graphs: This consists of temporal and spatial relationships (for 
example, a scheduler)

•	 Numerical method: This consists of finite elements and methods such as 
Newton-Raphson

•	 Chemistry: This consists of formula and components (for example, H2O,  
Fe + C12 = FeC13, and so on)
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•	 Taxonomy: This consists of a semantic definition and relationship of concepts 
(for example, APG/Eudicots/Rosids/Huaceae/Malvales)

•	 Grammar and lexicon: This consists of a syntactic representation of 
documents (for example, Scala programming language)

•	 Inference logic: This consists of a distribution pattern such as IF (stock 
vol > 1.5 * average) AND rsi > 80 THEN…

Model versus design
The confusion between model and design is quite common in Computer Science, 
the reason being that these terms have different meanings for different people 
depending on the subject. The following metaphors should help with your 
understanding of these two concepts:

•	 Modeling: This is describing something you know. A model makes the 
assumption, which becomes an assertion if proven correct (for example,  
the US population, p, increases by 1.2 percent a year, dp/dt= 1.012).

•	 Designing: This is manipulating representation for things you don't know. 
Designing can be seen as the exploration phase of modeling (for example, 
what are the features that contribute to the growth of the US population? 
Birth rate? Immigration? Economic conditions? Social policies?).

Selecting a model's features
The selection of a model's features is the process of discovering and documenting 
the minimum set of variables required to build the model. Scientists make the 
assumption that data contains many redundant or irrelevant features. Redundant 
features do not provide information already given by the selected features, and 
irrelevant features provide no useful information.

Selecting features consists of two consecutive steps:

1.	 Searching for new feature subsets.
2.	 Evaluating these feature subsets using a scoring mechanism.

The process of evaluating each possible subset of features to find the one that 
maximizes the objective function or minimizes the error rate is computationally 
intractable for large datasets. A model with n features requires 2n-1 evaluations.
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Extracting features
An observation is a set of indirect measurements of hidden, also known as 
latent, variables, which may be noisy or contain a high degree of correlation and 
redundancies. Using raw observations in a classification task would very likely 
produce inaccurate classes. Using all features from the observation also incurs  
a high computation cost.

The purpose of extracting features is to reduce the number of variables or dimensions 
of the model by eliminating redundant or irrelevant features. The features are extracted 
by transforming the original set of observations into a smaller set at the risk of losing 
some vital information embedded in the original set.

Designing a workflow
A data scientist has many options in selecting and implementing a classification or 
clustering algorithm.

Firstly, a mathematical or statistical model is to be selected to extract knowledge 
from the raw input data or the output of a data upstream transformation. The 
selection of the model is constrained by the following parameters:

•	 Business requirements such as accuracy of results
•	 Availability of training data and algorithms
•	 Access to a domain or subject-matter expert

Secondly, the engineer has to select a computational and deployment framework 
suitable for the amount of data to be processed. The computational context is to  
be defined by the following parameters:

•	 Available resources such as machines, CPU, memory, or I/O bandwidth
•	 Implementation strategy such as iterative versus recursive computation  

or caching
•	 Requirements for the responsiveness of the overall process such as duration 

of computation or display of intermediate results
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The following diagram illustrates the selection process to define the data 
transformation for each computation in the workflow:

Linear regression
Naive Bayes

SVM, HMM, CRF, ...

Concurrent maps
Hadoop/HDFS

In-memory databases
Akka,Spark

NoSQL, Streaming
Relational database

Model prameters

Code

Algorithm

weights=(0.783, 0.219, 0.498)

new LogBinRegression(label, n, eta, eps)

Logistic regression

Learning

Select a computational
framework

Select a statistical or
mathemathical model

Business requirements
Quality of labels
Data completeness
Nature of problem
Available expertise
Numerical libraries
....

Application Response time
Available memory, storage
Network bandwidth
Licensing constraints
Available servers, CPU cores
Redundancy
....

Observations
Labels
Context
....

Statistical and computation modeling for machine-learning applications

Domain expertise, data science, and software engineering
A domain or subject-matter expert is a person with authoritative 
or credited expertise in a particular area or topic. A chemist is an 
expert in the domain of chemistry and possibly related fields.
A data scientist solves problems related to data in a variety of fields 
such as biological sciences, health care, marketing, or finances. 
Data and text mining, signal processing, statistical analysis, and 
modeling using machine learning algorithms are some of the 
activities performed by a data scientist.
A software developer performs all the tasks related to creation of 
software applications, including analysis, design, coding, testing, 
and deployment.

The parameters of a data transformation may need to be reconfigured according to 
the output of the upstream data transformation. Scala's higher-order functions are 
particularly suitable for implementing configurable data transformations.



Hello World!

[ 44 ]

The computational framework
The objective is to create a framework flexible and reusable enough to accommodate 
different workflows and support all types of machine learning algorithms from 
preprocessing, data smoothing, and classification to validation.

Scala provides us with a rich toolbox that includes monadic design, design patterns, 
and dependency injections using traits. The following diagram describes the three 
levels of complexity for creating the framework:

Dependancy Injection (Cake pattern)

Pipe Operator

Monadic Data Transformation

Hierarchical design of a monadic workflow

The first step is to define a trait and a method that describes the transformation of 
data by a computation unit (element of the workflow).

The pipe operator
Data transformation is the foundation of any workflow for processing and classifying 
a dataset, training and validating a model, and displaying results.

The objective is to define a symbolic representation of the transformation of different 
types of data without exposing the internal state of the algorithm implementing the 
data transformation. The pipe operator is used as the signature of a data transformation:

trait PipeOperator[-T, +U] {
  def |> (data: T): Option[U]
}

F# reference
The notation |> as the signature of the transform or pipe operator 
is borrowed from the F# language [2:2]. The data transformation 
indeed implements a function, and therefore, has the same variance 
signature as Function[-T, +R] of Scala.
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The |> operator transforms a data of the type T into a data of the type U and returns 
an option to handle internal errors and exceptions.

Advanced Scala idioms
The next two sections introduce a monadic representation of the 
data transformation and one implementation of the dependency 
injection to create a dynamic workflow as an alternative to the 
delimited continuation pattern. Although these topics may interest 
advanced Scala developers, they are not required to understand 
any of the techniques or procedures described in this book.

Monadic data transformation
The next step is to create a monadic design to implement the pipe operator. Let's 
use a monadic design to wrap _fct, a data transformation function (also known as 
operator), with the most commonly used Scala higher-order methods:

class _FCT[+T](val _fct: T) {
  def map[U](c: T => U): _FCT[U] = new _FCT[U]( c(_fct))
  def flatMap[U](f: T =>_FCT[U]): _FCT[U] = f(_fct)
  def filter(p: T =>Boolean): _FCT[T] = if( p(_fct) ) new _FCT[T](_
fct) else zeroFCT(_fct)
  def reduceLeft[U](f: (U,T) => U)(implicit c: T=> U): U = f(c(_fct), 
_fct)
  def foldLeft[U](zero: U)(f: (U, T) => U)(implicit c: T=> U): U =  
f(c(_fct), _fct)
  def foreach(p: T => Unit): Unit = p(_fct)
}

The methods of the _FCT class represent a subset of the traditional Scala higher 
methods for collections [2:3]. The _FCT class is to be used internally. Arguments  
are validated by subclasses or containers.

Finally, the Transform class takes a PipeOperator instance as an argument and 
automatically invokes its operator:

class Transform[-T, +U](val op: PipeOperator[T, U]) extends _
FCT[Function[T, Option[U]]](op.|>) {
  def |>(data: T): Option[U] = _fct(data)
}
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You may wonder about the reason behind the monadic representation of a data 
transformation, Transform. You can create any algorithm by just implementing the 
PipeOperator trait, after all. The reason is that Transform has a richer protocol 
(methods) and enables developers to create a complex workflow as an alternative to 
the delimited continuation. The following code snippet illustrates a generic function 
composition or data transformation composition using the monadic approach:

val op = new PipeOperator[Int, Double] {
def |> (n: Int):Option[Double] =Some(Math.sin(n.toDouble)) 
}
def g(f: Int =>Option[Double]): (Int=> Long) = { 
  (n: Int) => {    
    f(n) match {
        case Some(x) => x.toLong
      case None => -1L
    }
  }
}
val gof = new Transform[Int,Double](op).map(g(_))

This code extends op, an existing transformation, with another function, g. As stated 
in the Presentation section under Source code in Chapter 1, Getting Started, code related 
to exceptions, error checking, and validation of arguments is omitted (refer tothe 
Format of code snippets section in Appendix A, Basic Concepts.

Dependency injection
This section presents the key constructs behind the Cake pattern. A workflow 
composed of configurable data transformations requires a dynamic modularization 
(substitution) of the different stages of the workflow. The Cake pattern is an advanced 
class composition pattern that uses mix-in traits to meet the demands of a configurable 
computation workflow. It is also known as stackable modification traits [2:4].

This is not an in-depth analysis of the stackable trait injection and self-reference in 
Scala. There are few interesting articles on dependencies injection that are worth a 
look [2:5].

Java relies on packages tightly coupled with the directory structure and prefix to 
modularize the code base. Scala provides developers with a flexible and reusable 
approach to create and organize modules: traits. Traits can be nested, mixed with 
classes, stacked, and inherited.
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Dependency injection is a fancy name for a reverse look up and binding to 
dependencies. Let's consider a simple application that requires data preprocessing, 
classification, and validation. A simple implementation using traits looks like this:

val myApp = new Classification with Validation with PreProcessing { 
val filter = .. }

If, at a later stage, you need to use an unsupervised clustering algorithm instead of a 
classifier, then the application has to be rewired:

val myApp = new Clustering with Validation with PreProcessing { val 
filter = ..  }

This approach results in code duplication and lack of flexibility. Moreover, the 
filter class member needs to be redefined for each new class in the composition 
of the application. The problem arises when there is a dependency between traits 
used in the composition of the application. Let's consider the case for which the filter 
depends on the validation methodology.

Mixins linearization [2:6]
The linearization or invocation of methods between mixins 
follows a right-to-left pattern:

•	 Trait B extends A
•	 Trait C extends A
•	 Class M extends N with C with B

The Scala compiler implements the linearization as follows:
M =>B => C => A => N

Although you can define filter as an abstract value, it still has to be redefined each 
time a new validation type is introduced. The solution is to use the self type in the 
definition of the newly composed PreProcessingWithValidation trait:

trait PreProcessiongWithValidation extends PreProcessing {
   self: Validation =>
     val filter = ..
}

The application can then be simply composed as:

val myApp = new Classification with PreProcessingWithValidation {
   val validation: Validation
}
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Overriding val with def
It is advantageous to override the declaration of a value with a definition 
of a method with the same signature. Contrary to a value that locks the 
implementation of the value, a method can return a different value for 
each invocation:

  trait PreProcessor { val validation = … }
  trait MyValidator extends Validator { def validation 
= … }

In Scala, a value declaration can be overridden by the method definition, 
not vice versa.

Let's adapt and generalize this pattern to construct a boilerplate template in order to 
create dynamic computational workflows.

The first step is to generate different modules to encapsulate different types of  
data transformation.

Workflow modules
The data transformation defined by the PipeOperator instance is dynamically 
injected into the module by initializing the abstract value. Let's define three 
parameterized modules representing the preprocessing, processing, and  
post-processing stages of a workflow:

trait PreprocModule[-T, +U] { val preProc: PipeOperator[T, U] }
trait ProcModule[-T, +U] { val proc: PipeOperator[T, U] }
trait PostprocModule[-T, +U] { val postProc: PipeOperator[T, U] }

The modules (traits) contain only a single abstract value. One characteristic of the 
Cake pattern is to enforce strict modularity by initializing the abstract values with 
the type encapsulated in the module, as follows:

trait ProcModule[-T, +U] {
   val proc: PipeOperator [T, U]
   class Classification[-T, +U] extends PipeOperator [T,U] { }
}

One of the objectives in building the framework is allowing developers to create data 
transformation (inherited from PipeOperator) independently from any workflow. 
Under these constraints, strict modularity is not an option.



Chapter 2

[ 49 ]

Scala traits versus Java packages
There is a major difference between Scala and Java in terms of 
modularity. Java packages constrain developers into following a 
strict syntax requirement; for instance, the source file has the same 
name as the class it contains. Scala modules based on stackable traits 
are far more flexible.

The workflow factory
The next step is to write the different modules into a workflow. This is achieved 
by using the self reference to the stack of the three traits defined in the previous 
paragraph. Here is an implementation of the said self reference:

class WorkFlow[T, U, V, W] {
  self: PreprocModule[T,U] with ProcModule[U,V] with 
PostprocModule[V,W] =>
    def |> (data: T): Option[W] = {
       preProc |> data match {
         case Some(input) => {
          proc |> input match {
            case Some(output) => postProc |> output
            case None => { …  } 
          }
        }
        case None => { … }   
      }
   }
}

Quite simple indeed! If you need only two modules, you can either create a workflow 
with a stack of two traits or initialize the third with the PipeOperator identity:

def identity[T] = new PipeOperator[T,T] {
   override def |> (data:T): Option[T] = Some(data) 
}

Let's test the wiring with the following simple data transformations:

class Sampler(val samples: Int) extends PipeOperator[Double => Double, 
DblVector] {
   override def |> (f: Double => Double): Option[DblVector] =
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      Some(Array.tabulate(samples)(n => f(n.toDouble/samples)) )
}

class Normalizer extends PipeOperator[DblVector, DblVector] {
   override def |> (data: DblVector): Option[DblVector] = 
     Some(Stats[Double](data).normalize)
}

class Reducer extends PipeOperator[DblVector, Int] {
  override def |> (data: DblVector): Option[Int] = 
      Range(0, data.size) find(data(_) == 1.0)
}

The first operator, Sampler, samples a function, f, with a frequency 1/samples over  
the interval [0, 1]. The second operator, Normalizer, normalizes the data over the 
range [0, 1] using the Stats class introduced in the Basic statistics section in Chapter 1,  
Getting Started. The last operator, Reducer, extracts the index of the large sample 
(value 1.0) using the Scala collection method, find.

A picture is worth a thousand words; the following UML class diagram illustrates 
the workflow factory design pattern:

PipeOperator

Sampler Normalizer Reducer

PreprocModule

ProcModule

PostprocModule Workflow

preProc

proc

postProc

Finally, the workflow is instantiated by dynamically initializing the abstract values, 
preProc, proc, and postProc, with a transformation of the type PipeOperator as 
long as the signature (input and output types) matches the parameterized types 
defined in each module (lines marked as 1):

val dataflow = new Workflow[Double => Double, DblVector, DblVector, 
Int] 
             with PreprocModule[Double => Double, DblVector] 
               with ProcModule[DblVector, DblVector] 
                 with PostprocModule[DblVector, Int] {
  
  val preProc: PipeOperator[Double => Double,DblVector] = new 
Sampler(100) //1
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  val proc: PipeOperator[DblVector,DblVector]= new Normalizer //1
  val postProc: PipeOperator[DblVector,Int] = new Reducer//1
}
dataflow |> ((x: Double) => Math.log(x+1.0)+Random.nextDouble) match {
  case Some(index) => …

Scala's strong type checking catches any inconsistent data types at compilation  
time. It reduces the development cycle because runtime errors are more difficult  
to track down.

Examples of workflow components
It is difficult to build an example of workflow using classes and algorithms 
introduced later in the book. The modularization of the preprocessing and clustering 
stages is briefly described here to illustrate the encapsulation of algorithms described 
throughout the book within a workflow.

The preprocessing module
The following examples of a workflow module use the time series class, XTSeries, 
which is used throughout the book:

class XTSeries[T](label: String, arr: Array[T])

The XTSeries class takes an identifier, a label, and an array of parameterized values, 
arr, as parameters, and is formally described in Chapter 3, Data Preprocessing.

The preprocessing algorithms such as moving average or discrete Fourier filters  
are encapsulated into a preprocessing module using a combination of abstract  
value and inheritance:

trait PreprocessingModule[T] {
  val preprocessor: Preprocessing[T]  //1

  abstract class Preprocessing[T] {  //2
     def execute(xt: XTSeries[T]): Unit
  }
  
  abstract class MovingAverage[T] extends Preprocessing[T] with 
PipeOperator[XTSeries[T], XTSeries[Double]]  { //3
    override def execute(xt: XTSeries[T]): Unit = this |> xt match {
       case Some(filteredData) => …
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       case None => …
    }
  }

  class SimpleMovingAverage[@specialized(Double) T <% Double](period: 
Int)(implicit num: Numeric[T]) extends MovingAverage[T] {
override def |> (xt: XTSeries[T]): Option[XTSeries[Double]] = 
…
  }
class DFTFir[T <% Double](g: Double=>Double) extends Preprocessing[T] 
extends PreProcessing[T] with PipeOperator[XTSeries[T], 
XTSeries[Double]]  {
  override def execute(xt: XTSeries[T]): Unit = this |> xt match {
       case Some(filteredData) => …
       case None => …
    }
  override def |> (xt: XTSeries[T]) : Option[XTSeries[Double]]
  }
}

The preprocessing module, PreprocessingModule, defines preprocessor, an abstract 
value, that is initialized at runtime (line 1). The PreProcessing class is defined as 
a high-level abstract class with a generic execution function: execute (line 2). The 
preprocessing algorithms; filtering techniques moving average, MovingAverage; and 
discrete Fourier, DFTFir in this case, are defined as a class hierarchy with the base 
type PreProcessing. Each filtering class also implements PipeOperator so it can be 
weaved into a simpler data transformation workflow (line 3).

The preprocessing algorithms are described in the next chapter.

The clustering module
The encapsulation of clustering techniques is the second example of a module for 
dependency-injection-based workflow:

trait ClusteringModule[T] { 
  type EMOutput = List[(Double, DblVector, DblVector)]
  val clustering: Clustering[T] 
  
  abstract class Clustering[T] {
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    def execute(xt: XTSeries[Array[T]]): Unit 
  }
  
  class KMeans[T <% Double](K: Int, maxIters: Int, distance: 
(DblVector, Array[T]) => Double)(implicit order: Ordering[T], m: 
Manifest[T]) extends Clustering[T] with PipeOperator[XTSeries[Array
[T]], List[Cluster[T]]] { 
    
    override def |> (xt: XTSeries[Array[T]]): Option[List[Cluster[T]]] 

    override def execute(xt: XTSeries[Array[T]]): Unit = this |> xt 
match {
      case Some(clusters) => …
      case None => …
    }
  }
  
  class MultivariateEM[T <% Double](K: Int) extends Clustering[T] with 
PipeOperator[XTSeries[Array[T]], EMOutput] {
  override def |> (xt: XTSeries[Array[T]]): Option[EMOutput] = 
    override def execute(xt: XTSeries[Array[T]]): Unit = this |> xt 
match {
       case Some(emOutput) => …
       case None => …
    }
  }
}

The ClusteringModule clustering module defines an abstract value, clustering, 
which is initialized at runtime (line 1). The two clustering algorithms, KMeans and 
Expectation-Maximization, MultivariateEM, inherits the Clustering base class.  
The clustering technique can be used in:

•	 A dependency-injection-based workflow by overriding execute
•	 A simpler data transformation flow by overriding PipeOperator (|>)

The clustering techniques are described in Chapter 4, Unsupervised Learning.
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Dependency-injection-based workflow versus data transformation
The data transformation PipeOperator trades flexibility for simplicity. 
The design proposed for preprocessing and clustering techniques allows 
you to use both approaches. The techniques presented in the book 
implement the basic data transformation, PipeOperator, in order to 
keep the implementation of these techniques as simple as possible.

Assessing a model
Evaluating a model is an essential part of the workflow. There is no point in creating 
the most sophisticated model if you do not have the tools to assess its quality. The 
validation process consists of defining some quantitative reliability criteria, setting 
a strategy such as an N-Fold cross-validation scheme, and selecting the appropriate 
labeled data.

Validation
The purpose of this section is to create a Scala class to be used in future chapters for 
validating models. For starters, the validation process relies on a set of metrics to 
quantify the fitness of a model generated through training.

Key metrics
Let's consider a simple classification model with two classes defined as positive  
(with respect to negative) represented with Black (with respect to White) color  
in the following diagram. Data scientists use the following terminology:

•	 True positives (TP): These are observations that are correctly labeled as 
belonging to the positive class (white dots on a dark background)

•	 True negatives (TN): These are observations that are correctly labeled as 
belonging to the negative class (black dots on a light background)

•	 False positives (FP): These are observations incorrectly labeled as belonging 
to the positive class (white dots on a dark background)



Chapter 2

[ 55 ]

•	 False negatives (FN): These are observations incorrectly labeled as belonging 
to the negative class (black dots on a light background)

False negatives (FN)

True positives(TP)

True negatives (TN)

Flase positives (FP)

Categorization of validation results

This simplistic representation can be extended to classification problems that involve 
more than two classes. For instance, false positives are defined as observations 
incorrectly labeled that belong to any class other than the correct one. These four 
factors are used for evaluating accuracy, precision, recall, and F and G measures:

•	 Accuracy: Represented as ac, this is the percentage of observations  
correctly classified.

•	 Precision: Represented as p, this is the percentage of observations correctly 
classified as positive in the group that the classifier has declared positive.

•	 Recall: Represented as r, this is the percentage of observations labeled as 
positive that are correctly classified.

•	 F-Measure or F-score F1: This is the score of a test's accuracy that strikes a 
balance between precision and recall. It is computed as the harmonic mean  
of the precision and recall with values ranging between 0 (worst score) and  
1 (best score).

•	 G-measure: Represented as G, this is similar to the F-measure but is 
computed as the geometric mean of precision p and recall r.

TP+TN TP TPac p r
TP+TN+FP+FN TP+FP TP+FN

= = =

21 prF G pr
p r

= =
+
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Implementation
Let's implement the validation formula using the same trait-based modular design 
used in creating the preprocessor and classifier modules. The Validation trait 
defines the signature for the validation of a classification model: the computation  
of the F1 statistics and the precision-recall pair:

trait Validation {
  def f1: Double
  def precisionRecall: (Double, Double)
}

Let's provide a default implementation of the Validation trait of the F1Validation 
class. In the tradition of Scala programming, the class is immutable; it computes  
the counters for TP, TN, FP, and FN when the class is instantiated. The class takes  
two parameters:

•	 The array of actual versus expected class: actualExpected
•	 The target class for true positive observations: tpClass

class F1Validation(actualExpected: Array[(Int, Int)], tpClass: 
Int) extends Validation {
  val counts = actualExpected.foldLeft(new Counter[Label])((cnt, 
oSeries) => cnt + classify(oSeries._1, oSeries._2))

  lazy val accuracy = {
    val num = counts(TP) + counts(TN)
    num.toDouble/counts.foldLeft(0)( (s,kv)  => s + kv._2)
  }
 
  lazy val precision = counts(TP).toDouble/(counts(TP) + 
counts(FP)) 
  lazy val recall = counts(TP).toDouble/(counts(TP) + 
counters(FN))

  override def f1: Double  = 2.0*precision*recall/(precision + 
recall)

  override def precisionRecall: (Double, Double) = (precision, 
recall)

  def classify(actual: Int, expected: Int): Label = {
     if(actual == expected) { if(actual == tpClass) TP else TN }
     else { if (actual == tpClass) FP else FN }
   }
}
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The precision and recall variables are defined as lazy so they are computed only 
once, when they are either accessed for the first time or the f1 and precisionRecall 
functions are invoked. The class is independent of the selected machine learning 
algorithm, the training, the labeling process, and the type of observations.

Contrary to Java, which defines an enumerator as a class of types, Scala requires 
enumerators to be singletons that inherit the functionality of the Enumeration class:

object Label extends Enumeration {
  type Label = Value
  val TP, TN, FP, FN = Value
}

K-fold cross-validation
It is quite common that the labeled dataset used for both training and validation is 
not large enough. The solution is to break the original labeled dataset into K data 
groups. The data scientist creates K training-validation datasets by selecting one 
of the groups as a validation set then combining all other remaining groups into a 
training set as illustrated in the next diagram. The process is known as the K-fold 
cross validation [2:7].

S1 S2 S3 SK

S1 S2 S4 SK

S3

...S4

...
Training

Validation

The third segment is used as validation data and all other dataset segments except S3 
are combined into a single training set. This process is applied to each segment of the 
original labeled dataset.
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Bias-variance decomposition
There is an obvious challenge in creating a model that fits both the training set and 
subsequent observations to be classified during the validation phase.

If the model tightly fits the observations selected for training, there is a high 
probability that new observations may not be correctly classified. This is usually  
the case when the model is complex. This model is characterized as having a  
low bias with a high variance. Such a scenario can be attributed to the fact that  
the scientist is overly confident that the observations he or she selected for training  
are representative to the real world.

The probability of a new observation being classified as belonging to a positive class 
increases as the selected model fits loosely the training set. In this case, the model is 
characterized as having a high bias with a low variance.

The mathematical definition for the bias, variance, and mean squared error (MSE) of 
the distribution are defined by the following formulas:

Variance and bias for a true model, θ:

$ $ %( ) $( ) $ $( )2
:var E E bias estimateθ θ θ θ θ θ θ θ  = − = −   

Mean square error:

$( ) $( )2MSE var biasθ θ= +

Let's illustrate the concept of bias, variance, and mean square error with an example. 
At this stage, most of the machines learning techniques have not been introduced 
yet. Therefore, the example will emulate a multiple models fEst: Double => Double 
generated from non-overlapping training sets.

These models are evaluated against a test/validation datasets that are emulated by a 
model, emul. The BiasVarianceEmulator emulator class takes the emulator function 
and the size of the nValues validation test as parameters. It merely implements the 
formula to compute the bias and variance for each of the fEst models:

class BiasVarianceEmulator[T <% Double](emul: Double => Double, 
nValues: Int) {
    
  def fit(fEst: List[Double => Double]): Option[XYTSeries] = {
     val rf = Range(0, fEst.size)
     val meanFEst = Array.tabulate(nValues)( x =>  
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         rf.foldLeft(0.0)((s, n) => s+fEst(n)(x))/fEst.size) // 1

     val r = Range(0, nValues)
     Some(fEst.map(fe => {
        r.foldLeft(0.0, 0.0)((s, x) => { 
          val diff = (fe(x) - meanFEst(x))/ fEst.size   // 2
          (s._1 + diff*diff, s._2 + Math.abs(fe(x)-emul(x)))} )
     }).toArray)
  }
}

The fit method computes the variance and bias for each of the fEst models 
generated from training. First, the mean of all the models are computed (line 1),  
and then used in the computation of the variance and bias. The method returns  
a tuple (variance, bias) for each of the fEst model.

Let's apply the emulator to three nonlinear regression models evaluated against 
validation data:

2
sin

20, 0.0003. 0.18 1
5 5

x
xy y x x and y x

  
    = = + = +

 
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The client code for the emulator consists of defining the emul emulator function, 
and a list, fEst, of three models defined as tuples of (function, descriptor) of 
type (Double=>Double, String). The fit method is call on the model functions 
extracted through a map, as shown in the following code:

val emul = (x: Double) => 0.2*x*(1.0 + Math.sin(x*0.05))
val fEst = List[(Double=>Double, String)] (
  ((x: Double) => 0.2*x, "y=x/5"),
  ((x: Double) => 0.0003*x*x + 0.18*x, "y=3e-4.x^2-0.18x"),
  ((x: Double) =>0.2*x*(1+Math.sin(x*0.05),
                "y=x(1+sin(x/20))/5"))
val emulator = new BiasVarianceEmulator[Double](emul, 200)
emulator.fit(fEst.map( _._1)) match {
  case Some(varBias) => show(varBias)
  case None => …
}
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The JFreeChart library is used to display the test dataset and the three model functions.

Fitting models to dataset

The variance-bias trade-off is illustrated in the following scatter chart using the 
absolute value of the bias:
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The more complex the function, the lower the bias is. It is usually, but not always 
related to, a high variance. The most complex function y=x (1+sin(x/20))/5 has by far 
the highest variance and the lowest bias. The more complex model matches fairly 
well with the training dataset. As expected, the mean square error reflects the ability 
of each of the three models to fit the test data.

Mean square error bar chart

The low bias of the complex model reflects in its ability to predict new observations 
correctly. Its MSE is therefore low, as expected.

Complex models with low bias and high variance are known as overfitting. Models 
with high bias and low variance are characterized as underfitting.

Overfitting
The methodology presented in the example can be applied to any classification and 
regression model. The list of models with low variance includes constant function 
and models independent of the training set. High degree polynomial, complex 
functions, and deep neural networks have high variance. Linear regression applied 
to linear data has a low bias, while linear regression applied to nonlinear data has a 
higher bias [2:8]
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Overfitting affects all aspects of the modeling process negatively, for example:

•	 It is a sure sign of an overly complex model, which is difficult to debug and 
consumes computation resources

•	 It makes the model representing minor fluctuations and noise
•	 It may discover irrelevant relationships between observed and latent features
•	 It has poor predictive performance

However, there are well-proven solutions to reduce overfitting [2:9]:

•	 Increasing the size of the training set whenever possible
•	 Reducing noise in labeled and input data through filtering
•	 Decreasing the number of features using techniques such as principal 

components analysis
•	 Modeling observable and latent noised using filtering techniques such as 

Kalman or autoregressive models
•	 Reducing inductive bias in a training set by applying cross-validation
•	 Penalizing extreme values for some of the model's features using 

regularization techniques

Summary
In this chapter, we established the framework for the different data processing units 
that will be introduced in this book. There is a very good reason why the topics of 
model validation and overfitting are explored early on in this book. There is no point 
in building models and selecting algorithms if we do not have a methodology to 
evaluate their relative merits.

In this chapter, you were introduced to:

•	 The versatility and cleanness of the Cake pattern in Scala as an effective 
scaffolding tool for data processing

•	 The concept of pipe operator for data conversion
•	 A robust methodology to validate machine learning models
•	 The challenge in fitting models to both training and real-world data

The next chapter will address the problem of overfitting by penalizing outliers, 
modeling, and eliminating noise in data.



Data Preprocessing
Real-world data is usually noisy and inconsistent with missing observations.  
No classification, regression, or clustering model can extract relevant information 
from unprocessed data.

Data preprocessing consists of cleaning, filtering, transforming, and normalizing 
raw observations using statistics in order to correlate features or groups of features, 
identify trends and model, and filter out noise. The purpose of cleansing raw data  
is twofold:

•	 Extract some basic knowledge from raw datasets
•	 Evaluate the quality of data and generate clean datasets for unsupervised or 

supervised learning

You should not underestimate the power of traditional statistical analysis methods to 
infer and classify information from textual or unstructured data.

In this chapter, you will learn how to:

•	 Apply commonly used moving average techniques to detect long-term 
trends in a time series

•	 Identify market and sector cycles using discrete Fourier series
•	 Leverage the Kalman filter to extract the state of a dynamic system from 

incomplete and noisy observations

Time series
The overwhelming majority of examples used to illustrate the different machine 
algorithms in this book process time series or sequential, ordered, or unordered data.
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Each library has its own container type to manipulate datasets. The challenge is 
to define all possible conversions between types from different libraries needed to 
implement a large variety of machine learning models. Such a strategy may result in a 
combinatorial explosion of implicit conversion. A solution consists of creating a generic 
class to manage conversion from and to any type used by a third-party library.

Scala.collection.JavaConversions _
Scala provides a standard package to convert collection types from 
Scala to Java and vice versa.

The generic data transformation, DT, can be used to transform any XTSeries time series:

class DT[T,U] extends PipeOperator[XTSeries[T], XTSeries[U]] {
  override def |> : PartialFunction[XTSeries[T], XTSeries[U]]
}

Let's consider the simple case of using a Java library, the Apache Commons Math 
framework, and JFreeChart for visualization, and define a parameterized time series 
class, XTSeries[T]. The \> data transformation converts a time series of values 
of type T, XTSeries[T], into a time series of values of type U, XTSeries[U]. The 
following diagram provides an overview of type conversion in data transformation:
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Let's create the XTSeries class. As a container, the class should be an implementation 
of the Scala higher-order collections functions such as map, foreach, or zip. The class 
should support at least conversion to DblVector and DblMatrix types introduced in 
the first chapter.

Here is a partial implementation of the XTSeries class. Comments, exceptions, 
argument validations, and debugging code are omitted in the code:

class XTSeries[T](label: String, arr: Array[T]) { // 1
  def apply(n: Int): T = arr.apply(n)

  @implicitNotFound("Undefined conversion to DblVector") // 2
  def toDblVector(implicit f: T=>Double):DblVector =arr.map(f(_))

  @implicitNotFound("Undefined conversion to DblMatrix") // 2
  def toDblMatrix(implicit fv: T => DblVector): DblMatrix = arr.map( 
fv( _ ) )

  def + (n: Int, t: T)(implicit f: (T,T) => T): T = f(arr(n), t)

  def head: T = arr.head  //3
  def drop(n: Int):XTSeries[T] = XTSeries(label,arr.drop(n))
  def map[U: ClassTag](f: T => U): XTSeries[U] = XTSeries[U](label, 
arr.map( x =>f(x)))
  def foreach( f: T => Unit) = arr.foreach(f) //3
  def sortWith(lt: (T,T)=>Boolean):XTSeries[T] = XTSeries[T](label, 
arr.sortWith(lt))
  def max(implicit cmp: Ordering[T]): T = arr.max //4
def min(implicit cmp: Ordering[T]): T = arr.min
…
}

The class takes an optional label and an invariant array of the parameterized type 
T. The annotation @specialized (line 1) instructs the compiler to generate two 
versions of the class:

•	 A generic XTSeries[T] class that exploits all the implicit conversions 
required to perform operations on time series of a generic type

•	 An optimized XTSeries[Double] class that bypasses the conversion and 
offers the client code with a faster implementation
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The conversion to DblVector (resp. DblMatrix) relies on the implicit conversion 
of elements to type Double (resp. DblVector) (line 2). The @implicitNotFound 
annotation instructs the compiler to omit an error if no implicit conversion is 
detected. The conversion methods are used to implement the implicit conversion 
introduced in the previous section. These methods are defined in the singleton 
org.scalaml.core.Types.CommonsMath library. The following code shows the 
implementation of the conversion methods:

object Types {
   object CommonMath {
     implicit def series2DblVector[T](xt: XTSeries[T])(implicit f: 
T=>Double):DblVector = xt.toDblVector(f)
     implicit def series2DblMatrix[T](xt: XTSeries[T])(implicit f: 
T=>DblVector): DblMatrix = xt.toDblMatrix(f)
   …
}

This code snippet exposes a subset of the Scala higher-order collections methods  
(line 3) applied to the time series. The computation of the minimum and maximum 
values in the time series required that the cmp ordering/compare method be defined 
for the elements of the type T (line 4).

Let's put our versatile XTSeries class to use in creating a basic preprocessing data 
transformation starting with the ubiquitous moving average techniques.

Moving averages
Moving averages provide data analysts and scientists with a basic predictive model. 
Despite its simplicity, the moving average method is widely used in the technical 
analysis of financial markets to define a dynamic level of support and resistance for 
the price of a given security.

Let's consider a time series xt= x(t) and a function f(xt-p, xt-1) that reduces 
the last p observations into a value or average. The prediction or 
estimation of the observation at t+1 is defined by the following formula:

( )1 ,...,t t p tx f x x+ −=%

Here, f is an average reducing function from the previous p data points.
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The simple moving average
Simple moving average, a smoothing method, is the simplest form of the moving 
averages algorithms [3:1]. The simple moving average of period p estimates the value 
at time t by computing the average value of the previous p observations using the 
following formula:

The simple moving average of a time series {xt} with a period p is 
computed as the average of the last p observations:

1 t

t j
j t p

x x
p = −

= ∑%

The computation is implemented iteratively using the following 
formula (1):
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Here, tx%  is the estimate or simple moving average value at time t.

Let's build a class hierarchy of moving average algorithms, with the abstract 
parameterized class MovingAverage[T <% Double] as its root. We use the generic 
time series class, XTSeries[T], introduced in the first section and the generic pipe 
operator, |>, introduced in the previous chapter:

abstract class MovingAverage[T <% Double] extends 
PipeOperator[XTSeries[T], XTSeries[Double]]

The pipe operator for the SimpleMovingAverage class implements the iterative 
formula (1) for the computation of the simple moving average. The override 
keyword is omitted:

class SimpleMovingAverage[@specialized(Double) T <% Double](val 
period: Int)(implicit num: Numeric[T]) extends MovingAverage[T] {
   
  def |> : PartialFunction[XTSeries[T], XTSeries[Double]] {
    case xt: XTSeries[T] if(xt != null && xt.size > 0) => {

      val slider = xt.take(data.size-period)
                      .zip(data.drop(period)) //1
      val a0 = xt.take(period).toArray.sum/period //2
      var a: Double = a0
      val z = Array[Array[Double]]( 
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       Array.fill(period)(0.0), a, slider.map(x => {
                                     a += (x._2 - x._1)/period
                                     a}) 

    ).flatten //3
    XTSeries[Double](z)
  }

The class is parameterized for the type of elements of the input time series. After all, 
we do not have control over the source of the input data. The type for the elements of 
the output time series is Double.

The class has a type T and is specialized for the Double type for faster processing. 
The implicitly defined num: Numeric[T] is required by the arithmetic operators  
sum and / (line 2).

The implementation has a few interesting elements. First, the set of observations 
is duplicated and the index in the clone is shifted by p observations before being 
zipped with the original to the array of a pair of values: slider (line 1):

Moving averages

X X X ..... X X ................X0 1 2 p-1 p n-1

X X X ..... X ................X0 1 2 p-1 n-1

0 0 ...   .  .0  ap ...  .. a ...   ..  ai n

Sliding pairs

The sliding algorithm to compute moving averages

The average value is initialized with the average of the first p data points. The first 
p values of the trends are initialized as an array of p zero values. It is concatenated 
with the first average value and the array containing the remaining average values. 
Finally, the array of three arrays is flattened (flatten) into a single array containing 
the average values (line 3).

The weighted moving average
The weighted moving average method is an extension of the simple moving average 
by computing the weighted average of the last p observations [3:2]. The weights αj  
are assigned to each of the last p data points xj, and are normalized by the sum of  
the weights.
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The weighted moving average of a series {xt} with a period p and a 
normalized weights distribution {αj} is given by the following formula (2):

1
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= − =
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Here, tx%  is the estimate or simple moving average value at time t.

The implementation of the WeightedMovingAverage class requires the computation 
of the last p data points. There is no simple iterative formula to compute the 
weighted moving average at time t+1 using the moving average at time t:

class WeightedMovingAverage[@specialized(Double) T <% Double](val 
weights: DblVector) extends MovingAverage[T]  {
  def |> : PartialFunction[XTSeries[T], XTSeries[Double]] = {
    case xt: XTSeries[T] if(xt != null && xt.size > 1) => {
     val smoothed =  Range(weights.size, xt.size).map(i => {
        xt.toArray.slice(i- weights.size , i)
                  .zip(weights)
                  .foldLeft(0.0)((s, x) => s + x._1*x._2) }) //1
     XTSeries[Double](Array.fill(weights.size)(0.0) ++ smoothed) //2
   }
}

As with the simple moving average, the array of the initial p moving average  
with the value 0 is concatenated (line 2) with the first moving average value  
and the remaining weighted moving average computed using a map (line 1). The 
period for the weighted moving average is implicitly defined as weights.size.

The exponential moving average
The exponential moving average is widely used in financial analysis and marketing 
surveys because it favors the latest values. The older the value, the less impact it has 
on the moving average value at time t [3:3].

The exponential moving average on a series {xt} and a smoothing 
factor α  is computed by the following iterative formula:

( ) 1 01 0; 0t t tx x x t x if tα α−= − + ∀ > =% %

Here, x%  is the value of the exponential average at t.
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The implementation of the ExpMovingAverage class is rather simple. There are two 
constructors, one for a user-defined smoothing factor and one for the Nyquist period, 
p, used to compute the smoothing factor alpha = 2/(p+1):

class ExpMovingAverage[@specialized(Double) T <% Double](val alpha: 
Double) extends MovingAverage[T]  {
  def |> : PartialFunction[XTSeries[T], XTSeries[Double]] = {
    case xt: XTSeries[T] if(xt != null && xt.size > 1) => {
      val alpha_1 = 1-alpha
      var y: Double = data(0)
      xt.map( x => {
        val z = x*alpha + y*alpha_1; y=z; z })
    }
  }
}

The version of the constructor that uses the Nyquist period p is implemented using 
the Scala apply method:

def apply[T <% Double](nyquist: Int): ExpMovingAverage[T] = new 
ExpMovingAverage[T](2/( nyquist + 1))

Let's compare the results generated from these three moving averages methods 
with the original price. We use a data source (with respect to sink), DataSource 
(with respect to DataSink) to load the historical daily closing stock price of Bank 
of America (BAC). The DataSource and DataSink classes are defined in the Data 
extraction section in Appendix A, Basic Concepts. The comparison of results can be 
done using the following code:

val p_2 = p >>1
val w = Array.tabulate(p)(n =>if(n==p_2) 1.0 else 1.0/(Math.
abs(n-p_2)+1)) //1
val weights = w map { _ / w.sum } //2

val src = DataSource("resources/data/chap3/BAC.csv, false)//3

val price = src |> YahooFinancials.adjClose  //4 
val sMvAve = SimpleMovingAverage(p)  
val wMvAve = WeightedMovingAverage(weights)
val eMvAve = ExpMovingAverage(p)

val results = price :: sMvAve.|>(price) :: wMvAve.|>(price)  ::  
eMvAve.|>(price)  :: List[XTSeries[Double]]() //5
Val outFile = "output/chap3/mvaverage" + p.toString + ".csv"
DataSink[Double]( outFile) |> results //6
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The coefficients for the weighted moving average are generated (line 1) and 
normalized (line 2). The trading data regarding the ticker symbol, BAC, is extracted 
from the Yahoo! finances CSV file (line 3), YahooFinancials, using the adjClose 
extractor (line 4). The smoothed data generated by each of the moving average 
techniques are concatenated into a list of time series (line 5). Finally, the content is 
formatted and dumped into a file, outFile, using a DataSink instance (line 6).

The weighted moving average method relies on a symmetric distribution of 
normalized weights computed by a function passed as an argument of the generic 
tabulate method. Note that the original price time series is generated if a specific 
moving average cannot be computed. The following graph is an example of a 
symmetric filter for weighted moving averages:

The three moving average techniques are applied to the price of the stock of Bank 
of America (BAC) over 200 trading days. Both the simple and weighted moving 
average uses a period of 11 trading days. The exponential moving average method 
uses a scaling factor of 2/(11+1) = 0.1667.

11-day moving averages of the historical stock price of Bank of America
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The three techniques filter the noise out of the original historical price time series. 
The exponential moving average reacts to a sudden price fluctuation despite the fact 
that the smoothing factor is low. If you increase the period to 51 trading days or two 
calendar months, the simple and weighted moving averages generate a smoothed  
time series compared to the exponential moving average with a smoothing factor  
of 2/(p+1)= 0.038.

51-day moving averages of the historical stock price of Bank of America 

You are invited to experiment further with different smooth factors and weight 
distributions. You will be able to confirm the following basic rule: as the period of 
the moving average increases, noise with decreasing frequencies is eliminated. In 
other words, the window of allowed frequencies is shrinking. The moving average 
acts as a low-band filter that allows only lower frequencies. Fine-tuning the period or 
smoothing factor is time consuming. Spectral analysis, or more specifically, Fourier 
analysis, transforms the time series into a sequence of frequencies, which is a time 
series in the frequency domain.
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Fourier analysis
The purpose of spectral density estimation is to measure the amplitude of a signal 
or a time series according to its frequency [3:4]. The spectral density is estimated by 
detecting periodicities in the dataset. A scientist can better understand a signal or 
time series by analyzing its harmonics.

The spectral theory
Spectral analysis for time series should not be confused with 
spectral theory, a subset of linear algebra that studies Eigenfunctions 
on Hilbert and Banach spaces. Harmonic and Fourier analyses are 
regarded as a subset of spectral theory.

The fast Fourier transform (FFT) is the most commonly used frequency analysis 
algorithm [3:5]. Let's explore the concept behind the discrete Fourier series and 
the Fourier transform as well as their benefits as applied to financial markets. The 
Fourier analysis approximates any generic function as the sum of trigonometric 
functions, sine and cosine. The decomposition in a basic trigonometric function is 
known as a Fourier transform [3:6].

Discrete Fourier transform (DFT)
A time series {xk} can be represented as a discrete real-time domain function f, x=f(t). 
In the 18th century, Jean Baptiste Joseph Fourier demonstrated that any continuous 
periodic function f could be represented as a linear combination of sine and cosine 
functions. The discrete Fourier transform (DFT) is a linear transformation that 
converts a time series into a list of coefficients of a finite combination of complex or 
real trigonometric functions, ordered by their frequencies.

The frequency ω of each trigonometric function defines one of the harmonics of the 
signal. The space that represents signal amplitude versus frequency of the signal is 
known as the frequency domain. The generic DFT transforms a time series into a 
sequence of frequencies defined as complex numbers ω = a + j.φ (j2= -1), for which a 
is the amplitude of the frequency and φ is the phase.
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This section is dedicated to the real DFT that converts a time series into an ordered 
sequence of frequencies with real values.

Real discrete Fourier transform
A periodic function f can be represented as an infinite combination of sine 
and cosine functions:
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The Fourier cosine transform of a function f is defined as:
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The discrete real cosine series of a function f(-x) = f(x) is defined as:
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The Fourier sine transform of a function is defined as:
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The discrete real sine series of a function f(-x) = f(x) is defined as:
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The computation of the Fourier trigonometric series is time consuming with an 
asymptotic time complexity of O(n2). Several attempts have been made to make the 
computation as effective as possible. The most common numerical algorithm used to 
compute the Fourier series is the fast Fourier transform created by J. W. Cooley and 
J. Tukey [3:7]. The algorithm, called Radix-2, recursively breaks down the Fourier 
transform for a time series of N data points into any combination of N1 and N2 sized 
segments such as N = N1 N2. Ultimately, the discrete Fourier transform is applied to 
the deepest-nested segments.

The Cooley-Tukey algorithm
I encourage you to implement the Radix-2 Cooley-Tukey algorithm in 
Scala using a tail recursion.



Chapter 3

[ 75 ]

The Radix-2 implementation requires that the number of data points is N=2n for  
even functions (sine) and N = 2n+1 for cosine. There are two approaches to meet  
this constraint:

•	 Reduce the actual number of points to the next lower radix, 2n < N
•	 Extend the original time series by padding it with 0 to the next higher radix, 

N < 2n+1

Padding the original time series is the preferred option because it does not affect the 
original set of observations.

Let's define a base class, DTransform[T], for all the fast Fourier transforms, 
parameterized with a view bounded to the Double type (Double, Float,  
and so on). The first step is to implement the padding method, common  
to all the Fourier transforms:

trait DTransform[T] extends PipeOperator[XTSeries[T], 
XTSeries[Double]] {
  def padSize(xtSz: Int, even: Boolean=true): Int = {
     val sz = if( even ) xtSz else xtSz-1
     if( (sz & (sz-1)) == 0) 0
     else {
        var bitPos = 0
        do {
        bitPos += 1
        } while( (sz >> bitPos) > 0)
        (if(even) (1<<bitPos) else (1<<bitPos)+1) - xtSz
     }
  }
   
  def pad(xt: XTSeries[T], even: Boolean=true)
           (implicit f: T => Double): DblVector = {
     val newSize = padSize(xt.size, even)
     val arr: DblVector = xt
     if( newSize > 0) arr ++ Array.fill(newSize)(0.0)  else arr
  }
}

The while loop
Scala developers prefer Scala higher-order methods on collection 
to implement iterative computation. However, nothing prevents 
you from using a traditional while loop if either readability or 
performance is an issue.

www.allitebooks.com

http://www.allitebooks.org
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The fast implementation of the padding method, pad, consists of detecting the 
number of observations, N, which is a power of 2 using the bit operator & by 
evaluating whether N & (N-1) is null. The next highest radix is extracted by 
computing the number of bits shift in N. The code illustrates the effective use of 
implicit conversion to make the code readable. The arr: DblVector = series 
conversion triggers a conversion defined in the XTSeries companion object.

The next step is to write the DFT class for the real discrete transforms, sine and cosine, 
by subclassing DTransform. The purpose of the class is to select the appropriate 
Fourier series, pad the time series to the next power of 2 if necessary, and invoke 
the FastSineTransformer and FastCosineTransformer classes of the Apache 
Commons Math library [3:8] introduced in the first chapter:

class DFT[@specialized(Double) T<%Double] extends DTransform[T] {
  def |> : PartialFunction[XTSeries[T], XTSeries[Double]] = {
    case xt: XTSeries[T] if(xt != null && xt.length > 0) => 
      XTSeries[Double](fwrd(xt)._2)
  }
  def fwrd(xt:XTSeries[T]): (RealTransformer, DblVector)= {
     val rdt = if(Math.abs(xt.head) < DFT_EPS) 
     new FastSineTransformer(DstNormalization.STANDARD_DST_I)
     else new FastCosineTransformer(DctNormalization.STANDARD_DCT_I)
   
     (rdt, rdt.transform( pad(xt,xt.head==0.0),TransformType.FORWARD))
   }
}

The discrete Fourier sine series requires that the first value of the time series is 0.0. 
This implementation automates the selection of the appropriate series by evaluating 
series.head. This example uses the standard formulation of the cosine and sine 
transformation, defined by the DctNormalization.STANDARD_DCT_I argument.  
The orthogonal normalization, which normalizes the frequency by a factor of  
1/sqrt(2(N-1), where N is the size of the time series, generates a cleaner frequency 
spectrum for a higher computation cost.

@specialized
The @specialized(Double) annotation is used to instruct the 
Scala compiler to generate a specialized and more efficient version of 
the class for the type Double. The drawback of specialization is the 
duplication of byte code as the specialized version coexists with the 
parameterized classes [3:9].
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In order to illustrate the different concepts behind DFTs, let's consider the case of a 
time series generated by a sequence h of sinusoidal functions:

val _T= 1.0/1024
val h = (x:Double) =>2.0*Math.cos(2.0*Math.PI*_T*x) +  
Math.cos(5.0*Math.PI*_T*x) + Math.cos(15.0*Math.PI*_T*x)/3

As the signal is synthetically created, we can select the size of the time series to avoid 
padding. The first value in the time series is not null, so the number of observations 
is 2n+1. The data generated by the function h is plotted as follows:

Example of the sinusoidal time series

Let's extract the frequencies spectrum for the time series generated by the function h. 
The data points are created by tabulating the function h. The frequencies spectrum  
is computed with a simple invocation of the pipe operator on the instance of the  
DFT class:

val rawOut = "output/chap3/raw.csv"
val smoothedOut = "output/chap3/smoothed.csv"
val values = Array.tabulate(1025)(x =>h(x/1025))
DataSink[Double](rawOut) |> values //1

val smoothed = DFT[Double] |> XTSeries[Double](values) //2
DataSink[Double]("output/chap3/smoothed.csv") |> smoothed
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The first data sink (the type DataSink) stores the original time series into a CSV file 
(line 1). The DFT instance extracts the frequencies spectrum and formats it as time 
series (line 2). Finally, a second sink saves it into another CSV file.

Data sinks and spreadsheets
In this particular case, the results of the discrete Fourier 
transform are dumped into a CSV file so that it can be loaded 
into a spreadsheet. Some spreadsheets support a set of filtering 
techniques that can be used to validate the result of the example.
A simpler alternative would be to use JFreeChart.

The spectrum of the time series, plotted for the first 32 points, clearly shows three 
frequencies at k=2, 5, and 15. This is expected because the original signal is composed 
of three sinusoidal functions. The amplitude of these frequencies are 1024/1, 1024/2, 
and 1024/6, respectively. The following plot represents the first 32 harmonics for the 
time series:

Frequency spectrum for a three-frequency sinusoidal

The next step is to use the frequencies spectrum to create a low-pass filter using DFT. 
There are many algorithms to implement a low or pass band filter in the time domain 
from autoregressive models to the Butterworth algorithm. However, the fast Fourier 
transform is still a very popular technique to smooth signals and extract trends.
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Big Data
A DFT for a large time series can be very computation intensive. 
One option is to treat the time series as a continuous signal and 
sample it using the Nyquist frequency. The Nyquist frequency is 
half of the sampling rate of a continuous signal.

DFT-based filtering
The purpose of this section is to introduce, describe, and implement a noise filtering 
mechanism that leverages the discrete Fourier transform. The idea is quite simple: 
the forward and inverse Fourier transforms are used sequentially to convert the 
time series from the time domain to the frequency domain and back. The only input 
you need to supply is a function G that modifies the sequence of frequencies. This 
operation is known as the convolution of the filter G and the frequencies spectrum. 
A convolution is similar to an inner product of two time series in the frequencies 
domain. Mathematically, the convolution is defined as follows:

Convolution
The convolution of two functions f and g is defined as:
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DFT convolution
One important property of the Fourier transform is that convolution 
of two signals is implemented as the inner product of their relative 
spectrums:
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Let's apply the property to the discrete Fourier transform. If a time 
series {xi} has a frequency spectrum { }fω  and a filter f in a frequency 
domain defined as { }gω , then the convolution is defined as:
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Let's apply the convolution to our filtering problem. The filtering algorithm using the 
discrete Fourier transform consists of five steps:

1.	 Pad the time series to enable the discrete sine or cosine transform.
2.	 Generate the ordered sequence of frequencies using the forward transform.
3.	 Select the filter function g in the frequency domain and a cutoff frequency.
4.	 Convolute the sequence of frequency with the filter function g.
5.	 Generate the filtered signal in the time domain by applying the inverse DFT 

transform to the convoluted frequencies.

Forward

Fourier

Transform

( ) ( ) ( )F* F .G¥ = ¥ ¥

( )G ¥

( )f t ( )F ¥ ( )f * t

Filter

Inverse

Fourier

Transform

Raw timeseries Filtered timeseries

w w w w

w

Diagram of a discrete Fourier filter

The most commonly used low-pass filters are known as the sinc and sinc2 
functions, defined as a rectangular function and a triangular function, respectively. 
The simplest low-pass filter is implemented by a sinc function that returns 1 for 
frequencies below a cutoff frequency, fC, and 0 if the frequency is higher:

def sinc(f: Double, fC: Double): Double = if(Math.abs(f) < fC) 1.0 
else 0.0
def sinc2(f: Double, fC: Double): Double = if(f*f < fC) 1.0 else 0.0

The filtering computation is implemented as a data transformation (pipe operator 
|>). The DFTFir class inherits from the DFT class in order to reuse the fwrd forward 
transform function. As usual, exception and validation code is omitted. The 
frequency domain function g is an attribute of the filter. The g function takes the 
frequency cutoff value fC as the second argument. The two filters sinc and sinc2 
defined in the previous section are examples of filtering functions.

class DFTFir[T <% Double](val g: (Double, Double) =>Double, val fC; 
Double) extends DFT[T]

The pipe operator implements the filtering functionality:

def |> : PartialFunction[XTSeries[T], XTSeries[Double]] = {
  case xt: XTSeries[T] if(xt != null && xt.size > 2) => {
    val spectrum = fwrd(xt) //1
    val cutOff = fC*spectrum._2.size
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    val filtered = spectrum._2.zipWithIndex.map(x => x._1*g(x._2,  
      cutOff)) //2
    XTSeries[Double](spectrum._1.transform(filtered, TransformType.
INVERSE)) //3
}

The filtering process follows three steps:

1.	 Computation of the discrete Fourier forward transformation  
(sine or cosine), fwrd.

2.	 Apply the filter function through a Scala map method.
3.	 Apply the inverse transform on the frequencies.

Let's evaluate the impact of the cutoff values on the filtered data. The implementation 
of the test program consists of invoking the DFT filter pipe operator and writing 
results into a CSV file. The code reuses the generation function h introduced in the 
previous paragraph:

val price = src |> YahooFinancials.adjClose  
val filter = new DFTFir[Double](sinc, 4.0)
val filteredPrice = filter |> price

Filtering out the noise is accomplished by selecting the cutoff value between any of 
the three harmonics with the respective frequencies of 2, 5, and 15. The original and 
the two filtered time series are plotted on the following graph:

Plotting of the discrete Fourier filter-based smoothing

As you would expect, the low-pass filter with a cutoff value of 12 removes the noise 
with the highest frequencies. The filter (with the cutoff value 4) cancels out the 
second harmonic (low-frequency noise), leaving out only the main trend cycle.
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Detection of market cycles
Using the discrete Fourier transform to generate the frequencies spectrum of a 
periodical time series is easy. However, what about real-world signals such as  
the time series representing the historical price of a stock?

The purpose of the next exercise is to detect, if any, the long term cycle(s) of the 
overall stock market by applying the discrete Fourier transform to the quote of the 
S&P 500 index between January 1, 2009, and December 31, 2013, as illustrated in the 
following graph:

Historical S&P 500 index prices

The first step is to apply the DFT to extract a spectrum for the S&P 500 historical 
prices, as shown in the following graph, with the first 32 harmonics:

Frequencies spectrum for historical S&P index
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The frequency domain chart highlights some interesting characteristics regarding the 
S&P 500 historical prices:

•	 Both positive and negative amplitudes are present, as you would expect 
in a time series with complex values. The cosine series contributes to the 
positive amplitudes while the sine series affects both positive and negative 
amplitudes, (cos(x+π) = sin(x)).

•	 The decay of the amplitude along the frequencies is steep enough to warrant 
further analysis beyond the first harmonic, which represents the main trend. 
The next step is to apply a pass-band filter technique to the S&P 500 historical 
data in order to identify short-term trends with lower periodicity.

A low-pass filter is limited to reduce or cancel out the noise in the raw data. In this 
case, a passband filter using a range or window of frequencies is appropriate to 
isolate the frequency or the group of frequencies that characterize a specific cycle. 
The sinc function introduced in the previous section to implement a low-band filter 
is modified to enforce the passband within a window, [w1, w2], as follows:

def sinc(f: Double, w: (Double, Double)): Double = if(Math.abs(f) > 
w._1 && Math.abs(f) < w._2) 1.0 else 0.0

Let's define a DFT-based pass-band filter with a window of width 4, w=(i, i +4), with 
i ranging between 2 and 20. Applying the window [4, 8] isolates the impact of the 
second harmonic on the price curve. As we eliminate the main upward trend with 
frequencies less than 4, all filtered data varies within a short range relative to the 
main trend. The following graph shows output of this filter:

The output of a pass-band DFT filter range 4-8 on the historical S&P index
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In this case, we filter the S&P 500 index around the third group of harmonics with 
frequencies ranging from 18 to 22; the signal is converted into a familiar sinusoidal 
function, as shown here:

The output of a pass-band DFT filter range 18-22 on the historical S&P index

There is a possible rational explanation for the shape of the S&P 500 data filtered by 
a passband with a frequency of 20, as illustrated in the previous plot; the S&P 500 
historical data plot shows that the frequency of the fluctuation in the middle of the 
uptrend (trading sessions 620 to 770) increases significantly. This phenomenon can 
be explained by the fact that the S&P 500 index reaches a resistance level around the 
trading session 545 when the existing uptrend breaks. A tug-of-war starts between 
the bulls, betting the market nudges higher, and the bears, who are expecting a 
correction. The back and forth between the traders ends when the S&P 500 index 
breaks through its resistance and resumes a strong uptrend characterized by a high 
amplitude and low frequency, as shown in the following graph:



Chapter 3

[ 85 ]

One of the limitations of using the Fourier transform to clean up data is that it requires 
the data scientist to extract the frequencies spectrum and modify the filter on a regular 
basis, as he or she is never sure that the most recent batch of data does not introduce 
noise with a different frequency. The Kalman filter addresses this limitation.

The Kalman filter
The Kalman filter is a mathematical model that provides an accurate and recursive 
computation approach to estimate the previous states and predict the future states of 
a process for which some variables may be unknown. R. E. Kalman introduced it in 
the early 60s to model dynamics systems and predict trajectory in aerospace [3:10]. 
Today, the Kalman filter is used to discover a relationship between two observed 
variables that may or may not be associated with other hidden variables. In this 
respect, the Kalman filter shares some similarities with the Hidden Markov models 
(HMM) described in Chapter 6, Regression and Regularization [3:11].

The Kalman filter is used as:

•	 A predictor of the next data point from the current observation
•	 A filter that weeds out noise by processing the last two observations
•	 A smoother that computes trends from a history of observations

Smoothing versus filtering
Smoothing is an operation that removes high-frequency fluctuations 
from a time series or signal. Filtering consists of selecting a range of 
frequencies to process the data. In this regard, smoothing is somewhat 
similar to low-pass filtering. The only difference is that a low-pass 
filter is usually implemented through linear methods.

Conceptually, the Kalman filter estimates the state of a system from noisy 
observations. The Kalman filter has two characteristics:

•	 Recursive: A new state is predicted and corrected using the input of a 
previous state

•	 Optimal: This is an optimal estimator because it minimizes the mean square 
error of the estimated parameters (against actual values)
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The Kalman filter is one of the stochastic models that are used in adaptive  
control [3:12].

Kalman and nonlinear systems
The Kalman filter estimates the internal state of a linear dynamic 
system. However, it can be extended to a model nonlinear-state 
space using linear or quadratic approximation functions. These 
filters are known as, you guessed it, extended Kalman filters (EKF), 
the theory of which is beyond the scope of this book.

The following section is dedicated to discrete Kalman filters for linear systems, as 
applied to financial engineering. A continuous signal can be converted to a time 
series using the Nyquist frequency.

The state space estimation
The Kalman filter model consists of two core elements of a dynamic system—a 
process that generates data and a measurement that collects data. These elements are 
referred to as the state space model. Mathematically speaking, the state space model 
consists of two equations:

•	 Transition equation: This describes the dynamics of the system including the 
unobserved variables

•	 Measurement equation: This describes the relationship between the 
observed and unobserved variables

The transition equation
Let's consider a system with a linear state xt of n variables and a control input vector 
ut. The prediction of the state at time t is computed by a linear stochastic equation:

1t t t t t tx A x B u w−= ⋅ + ⋅ +

•	 A is the square matrix of dimension n that represents the transition from  
state x at t-1 to state x at t. The matrix is intrinsic to the dynamic system 
under consideration.

•	 B is an n by n matrix that describes the control input model (external action 
on the system or model). It is applied to the control vector u.

•	 w represents the noise generated by the system or from a probabilistic point 
of view, the uncertainty on the model. It is known as the process white noise.
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The control input vector represents the external input (or control) to the state of the 
system. Most systems, including our financial example later in this chapter, have no 
external input to the state of the model.

White and Gaussian noise
A white noise is a Gaussian noise, following a normal 
distribution with zero mean.

The measurement equation
The measurement of m values zt of the state of the system is defined by the  
following equation:

t t t tz H x v= ⋅ +

•	 H is a matrix m by n that models the dependency of the measurement to the 
state of the system.

•	 v is the white noise introduced by the measuring devices. Similar to the 
process noise, v follows a Gaussian distribution with zero mean and a 
variance R, known as the measurement noise covariance.

The recursive algorithm
The set of equations for the discrete Kalman filter are implemented as recursive 
computation with two distinct steps:

•	 The algorithm uses the transition equations to estimate the next observation
•	 The estimation is created with the actual measurement for this observation

The recursion is visualized in the following diagram:

Prediction

Estimate the internal
state of the system

Correction

Compute the internal
state of the system

Measurement

State

An overview diagram of the recursive Kalman algorithm
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Let's illustrate the prediction and correction phases in the context of filtering 
financial data, in a manner similar to the moving average and Fourier transform. 
The objective is to extract the trend and the transitory component of the yield of the 
10-year Treasury bond. The Kalman filter is particularly suitable for the analysis of 
interest rates for two reasons:

•	 Yields are the results of multiple factors, some of which are not  
directly observable

•	 Yields are influenced by the policy of the Federal Reserve that can be easily 
modeled by the control matrix

The 10-year Treasury bond has a higher trading volume than bonds with longer 
maturity, making trends in interest rates a bit more reliable [3:13].

Applying the Kalman filter to clean raw data requires you to define a model that 
encompasses both observed and non-observed states. In the case of the trend analysis, 
we can safely create our model with a two-variable state: the current yield xt and the 
previous yield xt-1.

State in dynamic systems
The term "state" refers to the state of the dynamic system under 
consideration. This is a different term for observation, data, or 
value vector. A state or observation is a set of values, one for 
each variable of the model.

This implementation of the Kalman filter uses the Apache Commons Math library, 
which defines and manipulates specific types. The first step is to define the implicit 
type conversion required to interface with the KalmanFilter class:

type DblMatrix = Array[Array[Double]]
type DblVector = Array[Double]
implicit def double2RealMatrix(x: DblMatrix): RealMatrix = new 
Array2DRowRealMatrix(x)
implicit def double2RealRow(x: DblVector): RealMatrix = new 
Array2DRowRealMatrix(x)
implicit def double2RealVector(x: DblVector): RealVector = new 
ArrayRealVector(x)

The implicit type conversion has to be defined in the scope of the client code.
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The Kalman model assumes that process and measurement noise follow a Gaussian 
distribution, also known as white noise. For the sake of maintainability, the generation 
or simulation of the white noise is encapsulated in the QRNoise class with qr as the 
tuple of scale factors for the process noise matrix Q and the measurement noise R. The 
two create methods execute the user-defined noise function white:

class QRNoise(qr: XY, white: Double=> Double) {
  def q = white(qr._1) 
  def r = white(qr._2) 
  def noisyQ = Array[Double](q,q)
  def noisyR = Array[Double](r,r)
}

The easiest approach to manage the matrices and vectors used in the recursion is to 
define them as parameters of the main class, DKalman:

class DKalman(A:DblMatrix, B:DblMatrix, H:DblMatrix, P:DblMatrix)
(implicit val qrNoise: QRNoise) extends PipeOperator[XY,XY] {

  val Q =  new DblMatrix(A.size).map(_ => Array.fill(A.size)(qrNoise.
qr.1))  

  var x: RealVector = _
  var filter: KalmanFilter =_
}

The matrix used in the prediction and correction phase is defined as an argument 
of the DKalman class. The matrices for the covariance of the process noise Q and the 
measurement noise R are also initialized during the instantiation of the Kalman filter 
class. The key elements of the filter are now in place and it's time to implement the 
prediction-correction cycle portion of the Kalman algorithm.

Prediction
The prediction phase consists of estimating the x state (yield of the bond) using the 
transition equation. We assume that the Federal Reserve has no material effect on  
the interest rates, making control input matrix B null. The transition equation can  
be easily resolved using simple operations on matrices.

11 12

1 1 1 121 22

ˆ ˆ 0 0
ˆ ˆ 0 0
t t t t

t t t t

x x u wa a
x x u wa a− − − −

          
= ⋅ + ⋅ +          

         
Visualization of the transition equation of the Kalman filter
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The purpose of this exercise is to evaluate the impact of the different parameters of 
the transition matrix A in terms of smoothing.

The control input matrix B
In this example, the control matrix B is null because there is no known 
deterministic external action on the yield of the 10-year Treasury bond. 
However, the yield can be affected by unknown parameters that we 
represent as hidden variables. The matrix B would be used to model 
the decision of the Federal Reserve regarding asset purchases and 
federal fund rates.

The mathematics behind the Kalman filter presented as reference to its 
implementation in Scala use the same notation for matrices and vectors. It is 
absolutely not a prerequisite to understand the Kalman filter and its implementation 
in the next section. If you have a natural inclination toward linear algebra, the 
following note describes the two equations for the prediction step.

The prediction step
The prediction of the state at time t+1 is computed by extrapolating the 
state estimate:

'
1ˆ ˆt t t t tx A x B u−= ⋅ + ⋅

•	 A is the square matrix of dimension n that represents the 
transition from state x at t-1 to state x at time t.

•	 'ˆtx  is the predicted state of the system based on the current state 
and the model A

•	 B is the vector of n dimension that describes the input to the state
The mean square error matrix P, which is to be minimized, is updated 
through the following formula:

'
1

T
t t t t tP A P A Q−= ⋅ ⋅ +

•	 AT is the transpose of the state transition matrix.
•	 Q is the process white noise described as a Gaussian distribution 

with a zero mean and a variance Q, known as the noise 
covariance.

The state transition matrix is implemented using the matrix and vector classes 
included in the Apache Commons Math library. The types of matrices and  
vectors are automatically converted into RealMatrix and RealVector classes.  
The implementation of the equation is as follows:

x = A.operate(x).add(qrNoise.noisyQ)
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The new state is predicted (or estimated), and then used as an input to the  
correction step.

Correction
The second and last step of the recursive Kalman algorithm is the correction of the 
estimated yield of the 10-year Treasury bond with the actual yield. In this example, 
the white noise of the measurement is negligible. The measurement equation is 
simple because the state is represented by the current and previous yield, and their 
measurement z:

11 12

1 1 121 22

ˆ
ˆ

t t t

t t t

z x vh h
z x vh h− − −

      
= ⋅ +      
      

Visualization of the measurement equation of the Kalman filter

The sequence of mathematical equations of the correction phase consists of updating 
the estimation of the state x using the actual values z, computing the Kalman gain K, 
and estimating the matrix of the error covariance P.

Correction step
The state of the system x is estimated from the actual measurement 
z through the following formula:

( )' ' 'ˆ ˆ ˆ ˆt t t t t t t t t tx x K z H x r z H x= + − ⋅ = − ⋅
•	 r is the residual between the predicted measurement and the 

actual measured values
•	 K is the Kalman gain for the correction factor Kr

The Kalman gain is computed using the estimated error covariance 
matrix '

tP :

( ) 1' 'T T
t t t t t t tK P H H P H R

−
= ⋅ ⋅ ⋅ +

•	 HT is the matrix transpose of H
Finally, the estimate of the error covariance matrix '

tP  is corrected to 
the value Pt through the following formula:

( )' '
t d t t tP I K H P= − ⋅ ⋅

•	 Id is the identity matrix.
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Kalman smoothing
It is time to put our knowledge of the transition and measurement equations to the 
test. The Apache Commons Library defines two classes, DefaultProcessModel and 
DefaultMeasurementModel, to encapsulate the components of the matrices and 
vectors. The historical values for the yield of the 10-year Treasury bond is loaded 
through the DataSource method and mapped to the smoothed series that is the 
output of the filter.

def |> : PartialFunction[XTSeries[XY], XTSeries[XY]] = {
   case xt: XTSeries[XY] if(xt.size> 0) => xt.map( y => {
      initialize(Array[Double](y._1, y._2)) //1
      val nState = newState  //2
      (nState(0), nState(1)) }) //3
   …

The data transformation for the Kalman filter initializes the process and 
measurement model for each data point (line 1), updates the state using the 
transition and correction equations iteratively (line 2), and returns the filtered  
series (line 3).

Exception handling
The code to catch and process exceptions thrown by the Apache 
Commons Math library is omitted as the standard practice in the 
book. As far as the execution of the Kalman filter is concerned, the 
following exceptions have to be handled:

•	 NonSquareMatrixException
•	 DimensionMismatchException
•	 MatrixDimensionMismatchException

The model is a 2-step lag smoothing algorithm using a single smoothing factor α 
with a state, St:

St = {xt+1, xt} with xt+1 = α.xt + (1- α).xt-1 and xt = xt

Following the Scala standard to return errors to the client code, the exceptions 
thrown by the Commons Math API are caught and processed through the 
Option monad. The iterative prediction and correction of the smoothed yields is 
implemented by the newState method. The method iterates through four steps:

1.	 Filter an estimate of the state x at time t.
2.	 The new state is computed using the transition equation.
3.	 The measured value z of the state is computed using the measurement equation.
4.	 The original estimate x is corrected with the measured value.
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The newState method is defined as follows:

val PROCESS_NOISE_Q = 0.03
val PROCESS_NOISE_R = 0.1
val MEASUREMENT_NOISE = 0.4

def newState: DblVector = {
  Range(0, maxIters) foreach( _ => { 
    filter.predict  //1
    val w = qrNoise.create(PROCESS_NOISE_Q, PROCESS_NOISE_R)
    x = A.operate(x).add(qrNoise.noisyQ) //2
    val v = qrNoise.create(MEASUREMENT_NOISE)
    val z = H.operate(x).add(qrNoise.noisyR) //3
    filter.correct(z) // 4
  })
  filter.getStateEstimation
}

The PROCESS_NOISE factor (with respect to MEASUREMENT_NOISE) used in the  
creation of the process noise w and measurement noise v are somewhat arbitrary. 
Their purpose is to simulate the white noise for the model. The newState method 
returns the filtered state as a DblVector instance for this particular state.

The exit condition
In the code snippet for the newState method, the iteration for 
specific data points exits when the maximum number of iterations 
is reached. A more elaborate implementation consists of either 
evaluating the matrix P at each iteration or estimation converged 
within a predefined range.

Experimentation
The objective is to smoothen the yield of the 10-year Treasury bond and quantify the 
impact of the elements of the state-transition matrix A on the smoothing process. The 
state equation updates the values of the state [xt, xt-1] using the previous state [xt-1, xt-2], 
where x represents the yield at time t. This is accomplished by shifting the values of 
the original time series {x0, ... xn} by 1 using the drop method, X1={x1, … xn}, creating 
a copy of the original time series without the last element X2={x0, … xn-1} and zipping 
X1 and X2. The resulting sequence of pair {(xk, xk-1)} is processed by the Kalman 
algorithm, as shown in the following code:

implicit val qrNoise = QRNoise((0.2, 0.4), (m: Double) => m* (new 
Random(System.currentTimeMillis)).nextGaussian) //1
val A: DblMatrix = ((0.9, 0.0), (0.0, 0.1))
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val B: DblMatrix = (0.0, 0.0) 
val H: DblMatrix  = (1.0, 1.0)
val P0: DblMatrix = ((0.4, 0.5), (0.4, 0.5))
val x0: DblVector = (175.0, 175.0)

val dKalman = new DKalman(A, B, H, P0) //2
val output = "output/chap3/kalman.csv"
val zt_1 = zSeries.drop(1)
val zt = zSeries.take(zSeries.size-1)
val filtered = dKalman |> XTSeries[(Double, Double)](zt_1.zip(zt)) //3
DataSink[Double](output) |> filtered.map(_._1) //4

The process and measurement noise qrNoise is implicitly initialized with the 
respective factors, 0.2 and 0.4 (line 1). The Kalman filter is initialized with the 
prediction-correction equation matrices A, B, H, and P0, and the initial state x

0
 (line 2). 

A time series {(xi, xi-p)}i is generated by zipping two copies of the historical 10 Treasury 
bond yield series, with the second one being shifted by p data. The Kalman filter is 
applied to the time series of tuples and the result is dumped into an output file using  
a DataSink instance (line 4)

The test is performed over a period of one year, and the results are plotted using a 
basis point or 100th of a percentage. The quality of the output is evaluated using two 
different values for the state transition matrix A: [0, 8, 0.2, 1.0, 0.0] and [0,5, 0.5, 1.0, 0.0].

Modeling state transition and noise
The state transition and the noise related to the process have to be 
selected carefully. The resolution of the state equations relies on 
the QR decomposition, which requires a non-negative definite 
matrix. The implementation in the Apache common library throws a 
NonPositiveDefiniteMatrixException if the principle is violated.
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The smoothed yield is plotted along the raw data as follows:

The output of the Kalman filter for the 10-year Treasury bond historical prices

Clearly, the yield time series has been smoothed. However, the amplitude of 
the underlying trend is significantly higher than any of the noise or the spikes. 
Consequently, the Kalman filter has a limited impact. Let's analyze the data for a 
shorter period during which the noise is the strongest, between the 190th and the 
275th trading days.

The output of the Kalman filter for the 10-year Treasury bond prices 0.8-0.2
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The high frequency noise has been significantly reduced without cancelling  
the actual spikes. The distribution 0.8-0.2 takes into consideration the previous  
state and favors the predicted value. Contrarily, a run with a state transition matrix 
A [0.2, 0.8, 0.0, 1.0] that favors the latest measurement will preserve the noise, as seen 
in the following graph:

The output of the Kalman filter for the 10-year Treasury bond price 0.2-0.8

The Kalman filter is a very useful and powerful tool in understanding the 
distribution of the noise between the process and observation. Contrary to the  
low or pass-band filters based on the fast Fourier transform, the Kalman filter  
does not require computation of the frequencies spectrum or assume the range  
of frequencies of the noise.

However, the linear Kalman filter has its limitations:

•	 The noise generated by both the process and the measurement has to 
be Gaussian. Processes with non-Gaussian noise can be modeled with 
techniques such as a Gaussian Sum filter or adaptive Gaussian mixture [3:14].

•	 It requires that the underlying process is linear. Researchers have been able 
to formulate extensions to the Kalman filter, known as the extended Kalman 
filter (EKF) to filter signals from non-linear dynamic systems, at the cost of 
significant computational complexity.
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Alternative preprocessing techniques
For the sake of space and your time, this chapter introduced and applied three 
filtering and smoothing classes of algorithms. Moving averages, Fourier series, and 
the Kalman filter are far from being the only techniques used in cleaning raw data. 
The alternative techniques can be classified into two categories:

•	 Autoregressive models that encompass autoregressive moving average 
(ARMA), autoregressive integrated moving average (ARIMA), generalized 
autoregressive conditional heteroskedasticity (GARCH), and Box-Jenkins 
that relies on some form of autocorrelation function

•	 Curve-fitting algorithms that include the polynomial and geometric fit  
with the ordinary least squares method, non-linear least squares using  
the Levenberg-Marquardt optimizer, and probability distribution fitting

Summary
This completes the overview of the most commonly used data filtering and 
smoothing techniques. There are other types of data preprocessing algorithms such 
as normalization, analysis, and reduction of variance; the identification of missing 
values is also essential to avoid the garbage-in garbage-out conundrum that plagues 
so many projects that use machine learning for regression or classification.

Scala can be effectively used to make the code understandable and avoid cluttering 
methods with unnecessary arguments.

The three techniques presented in this chapter, from the simplest moving averages 
and Fourier transform to the more elaborate Kalman filter, go a long way in setting 
up data for the next concepts introduced in the next chapter—unsupervised learning 
and more specifically, clustering.





Unsupervised Learning
Labeling a set of observations for classification or regression can be a daunting task, 
especially in the case of a large feature set. In some cases, labeled observations are 
either not available or not possible to create. In an attempt to extract some hidden 
association or structures from observations, the data scientist relies on unsupervised 
learning techniques to detect patterns or similarity in data.

The goal of unsupervised learning is to discover patterns of regularities and 
irregularities in a set of observations. These techniques are also applied in reducing 
the solution space or feature set similarly to the divide-and-conquer approach 
commonly used in Computer Science.

There are numerous unsupervised algorithms; some are more appropriate to handle 
dependent features while others generate more relevant groups in the case of hidden 
features [4:1]. In this chapter, you will learn three of the most common unsupervised 
learning algorithms:

•	 K-means: Clustering observed features
•	 Expectation-maximization (EM): Clustering observed and latent features
•	 Principal components analysis (PCA): Reducing the dimension of the model

Any of these algorithms can be applied to technical analysis or fundamental analysis. 
Fundamental analysis of financial ratios and technical analysis of price movements 
are described in the Technical analysis section under Finances 101 in Appendix A,  
Basic Concepts. The K-means algorithm is fully implemented in Scala while 
expectation-maximization and principal components analysis leverage the  
Apache Commons Math library.
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Clustering
Problems involving a large number of features for large datasets become quickly 
intractable, and it is quite difficult to evaluate the independence between features. 
Any computation that requires some level of optimization and, at a minimum, 
computation of first order derivatives requires a significant amount of computing 
power to manipulate high-dimension matrices. As with many engineering fields, a 
divide-and-conquer approach to classifying very large datasets is quite effective. The 
objective is to reduce continuous, infinite, or very large datasets into a small group of 
observations that share some common attributes.

Visualization of data clustering

This approach is known as vector quantization. Vector quantization is a method that 
divides a set of observations into groups of similar size. The main benefit of vector 
quantization is that the analysis using a representative of each group is far simpler 
than an analysis of the entire dataset [4:2].

Clustering, also known as cluster analysis, is a form of vector quantization that 
relies on a concept of distance or similarity to generate groups known as clusters.

Learning vector quantization (LVQ)
Vector quantization should not be confused with learning vector 
quantization. Learning vector quantization is a special case of artificial 
neural networks that relies on a winner-take-all learning strategy to 
compress signals, images, or videos.
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This chapter introduces two of the most commonly applied clustering algorithms:

•	 K-means, which is used for quantitative types and minimizes the total error 
(known as the reconstruction error) given the number of clusters and the 
distance formula.

•	 Expectation-maximization (EM), which is a two-step probabilistic  
approach that maximizes the likelihood estimates of a set of parameters.  
EM is particularly suitable to handle missing data.

K-means clustering
K-means is a popular iterative clustering algorithm. The representative of each 
cluster is computed as the center of the cluster, known as the centroid. The  
similarity between observations within a single cluster relies on the concept  
of distance between observations.

Measuring similarity
There are many ways to measure the similarity between observations. The most 
appropriate measure has to be intuitive and avoid computational complexity.  
This section reviews three similarity measures:

•	 The Manhattan distance
•	 The Euclidean distance
•	 Cosine of value observations

The Manhattan distance is defined by the absolute distance between two variables or 
vectors, {xi} and {yi}, of the same size:

( , ) | |i id x y x y= −∑
The implementation is generic enough to compute the distance between two arrays 
of elements of different types as long as an implicit conversion between each of these 
types to Double values is already defined, as shown here:

def manhattan[T <% Double, U <% Double](x: Array[T], y: Array[U]): 
Double = (x, y).zipped.foldLeft(0.0)((s, t) => s + Math.abs(t._1 - 
t._2))
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The ubiquitous Euclidean distance is defined as the square of the distance between 
two vectors, {xi} and {yi}, of the same size:

2( , ) ( )i id x y x y= −∑
def euclidean[T <% Double, U <% Double](x: Array[T], y: Array[U]): 
Double =  Math.sqrt((x, y).zipped.foldLeft(0.0)((s, t) => { val d = 
t._1 - t._2; s + d*d} ))

The cosine distance is defined as the cosine of an angle between two vectors, {xi} and 
{yi}, of the same size:

2 2 1/2( , )
( )

i i

i i

x y
d x y

x y
= ∑
∑ ∑

In this implementation, the computation of the dot product and the norms for each 
dataset is done simultaneously using the tuple within the fold method:

def cosine[T <% Double, U <% Double](x: Array[T], y: Array[U]): Double 
= {
  val zeros = (0.0, 0.0, 0.0)
  val norms = (x, y).zipped.foldLeft(zeros)((s, t) => 
     (s._1 + t._1*t._2, s._2 + t._1*t._1, s._3 + t._2*t._2))
  norms._1/Math.sqrt(norms._2*norms._3)
}

Performance of zip
The scalar product of two vectors is one of the most common 
operations. It is tempting to implement the dot product using the 
generic zip method:

def dot (x:Array[Double], y:Array[Double]): 
Array[Double] = 

    x.zip(y).map( x => f(x._1, x._2) )

An functional alternative is to use the Tuple2.
zipped method.
def dot(x:Array[Double], y:Array[Double]): 
Array[Double] = (x, y).zipped map ( _ * _)

If readability is not a primary issue, you can always implement the 
dot method with a while loop.
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Overview of the K-means algorithm
The main advantage of the K-means algorithm (and the reason for its popularity) is 
its simplicity [4:3].

Let's consider K clusters {Ck} with means {mk}. The K-means algorithm is 
indeed an optimization problem, the objective of which is to minimize 
the reconstruction or the total error defined as the total sum of distance.

1
min ( , )

k
i k

K

i kC x C
d x m

∈
∑ ∑

The steps of the iterative algorithm are:

1.	 Initialize the centroids or means mk of the K clusters.
2.	 Assign observations to the nearest cluster given mk.
3.	 Iterate until no observations are reassigned to a cluster:

°° Compute centroids mk that minimize the total error reconstruction for 
the current assignment

°° Reassign the observations given the new centroids mk

Step 1 – cluster configuration
The configuration of the K clusters consists of defining the following parameters for 
the K-means algorithm: number of K clusters, the distance metrics, the maximum 
number of iterations, and the initial value of the cluster's centroid.

Defining clusters
The first step is to define a cluster. A cluster is defined by the following parameters:

•	 Centroid: center
•	 The indices of the observations that belong to this cluster: members

The following code shows the definition of a cluster:

class Cluster[T <% Double](val center: DblVector) {
  val members = new ListBuffer[Int]

The cluster is responsible for managing its members (data points) at any point of  
the iterative computation of the K-means algorithm. It is assumed that a cluster  
will never contain the same data points twice.
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The constructor of the Cluster class is implemented by the apply method in  
the companion object (for convenience, refer to the Class constructor template  
section in Appendix A, Basic Concepts):

object Cluster {
  def apply[T <% Double](c:DblVector):Cluster[T] = new Cluster[T](c)
}

At a minimum, a cluster should be able to manage its membership of observations, 
update its center, and compute the variance or standard deviation of all its member 
observations:

def += (n:Int): Unit = members.append(n)
def moveCenter(xt: XTSeries[Array[T]): Cluster[T] ={
   val sums = members.map(xt(_).map(_.toDouble)).toList
                     .transpose
                     .map( _.sum)
  Cluster[T](sums.map( _ / members.size).toArray)
}

def stdDev(xt: XTSeries[Array[T]], distance: (DblVector, Array[T]) => 
Double): Double = {
   Stats[Double](members.map(xt( _))
             .map( distance(center, _)).toArray).stdDev
}

The three important methods that define the behavior of a cluster instance are  
as follows:

•	 +=: Add a member (index of an observation in the original time series).
•	 moveCenter: Create a new cluster with the existing members and a new 

centroid computed as the mean of all the observations contained in the cluster.
•	 stdDev: Compute the standard deviation (or density) of all the observations 

contained in the cluster relative to its center. The distance between each 
member and the centroid is extracted through a map, and then folded to 
generate the statistics. The function to compute the distance between the 
center and an observation is an argument of the method. The default  
distance is Euclidean.
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Cluster selection
There are different ways to select the most appropriate cluster 
when reassigning an observation (updating its membership). 
In this implementation, we will select the cluster with the 
larger spread or lowest density. An alternative is to select the 
cluster with the largest membership.

Defining K-means
Let's declare the K-means algorithm class, KMeans, with its public methods.

The KMeans class takes the number of clusters, K, and the maximum number of 
iterations, maxIters, as parameters. The implicit conversion of type T to a Double 
is specified by the T <% Double view bound. The Ordering class has to be passed 
implicitly as a parameter because it is required by the sortWith method in the 
initialize and maxBy methods. The Manifest method is required to preserve the 
type erasure for Array[T] in the JVM:

class KMeans[T <% Double](K: Int, maxIters: Int, distance: 
(DblVector,Array[T]) => Double)(implicit order: Ordering[T], 
m: Manifest[T]) extends PipeOperator[XTSeries[Array[T]], 
List[Cluster[T]]] {
  def |> : PartialFunction[XTSeries[Array[T]], List[Cluster[T]]]
  def initialize(xt:XTSeries[Array[T]]): List[Cluster[T]]

As with other data processing units, the extraction of K-means clusters is 
encapsulated by the pipe operator |>, so clustering can be integrated into a workflow 
using dependency injection described in the Dependency injection section in Chapter 2, 
Hello World!. The initialization of the centroids of each of the K clusters is performed 
by the private initialize method.

Initializing clusters
The initialization of the cluster centroids is important to ensure fast convergence of 
K-means. Solutions range from the simple random generation of centroids to the 
application of genetic algorithms to evaluate the fitness of centroid candidates. We 
selected an efficient and fast initialization algorithm developed by M. Agha and W. 
Ashour [4:4].
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The steps of the initialization are as follows:

1.	 Compute the standard deviation of the set of observations.
2.	 Select the dimension k {xk,0, xk,1 … xk,n} with maximum standard deviation.
3.	 Rank the observations by their increasing value of standard deviation for the 

dimension k.
4.	 Divide the ranked observations set equally into K sets {Sm}.
5.	 Find the median values, size (Sm)/2.
6.	 Use the corresponding observations as centroids.

The initialization algorithm is implemented by the private initialize method:

  def initialize(xt:XTSeries[Array[T]]): List[Cluster[T]]={
   val stats = statistics(xt) //1
   val maxSDevDim = Range(0,stats.size).maxBy (stats( _ ).stdDev)//2
   val rankedObs = xt.zipWithIndex
                     .map(x=> (x._1(maxSDevDim), x._2)) //2
                     .sortWith( _._1  < _._1) //3
   val halfSegSize = ((rankedObs.size>>1)/K).floor.toInt //4
   val centroids = rankedObs.filter(isContained( _, halfSegSize, 
rankedObs.size) ).map(n => xt(n._2)) //6
   Range(0, K).foldLeft(List[Cluster[T]]())((xs, i) => Cluster[T]
(centroids(i)) :: xs) //7
}

Let's deconstruct the implementation of the Agha-Ashour algorithm in the 
initialize method.

The statistics function is applied to the input time series to extract the standard 
deviation for each dimension in the observations set (line 1). The dimension with 
the maxSDevDim maximum variance or standard deviation is computed by using the 
maxBy method on a Stats instance (line 2). Then, the observations are ranked by the 
increasing value of the standard deviation, rankedObs (line 3).

The ordered sequence of observations is then broken into xt.size/K segments (line 
4) and the indices of the centroids are selected as the midpoint (or median) 
observations of those segments using the filtering condition, isContained:

def isContained(t: (T,Int), hSz: Int, dim: Int): Boolean = 
    ((t._2 % hSz == 0) && (t._2 %(hSz<<1) != 0)
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The indices of the centroid in the time series are converted to actual observations 
using a map method (line 6). Finally, the list of clusters is generated using a fold 
(foldLeft) method on the range of cluster indices (0, K-1) (line 7).

Step 2 – cluster assignment
The second step in the K-means algorithm is the assignment of the observations 
to the clusters for which the centroids have been initialized in step 1. This feat is 
accomplished by the private assignToClusters method:

def assignToClusters(xt: XTSeries[Array[T]], clusters: 
List[Cluster[T]], membership: Array[Int]): Int = {
  xt.toArray
    .zipWithIndex
    .filter(x => { //1
       val nearestCluster = getNearestCluster(clusters, x._1)//2
       val reassigned = nearestCluster != membership(x._2) 
       clusters(nearestCluster) += x._2 //3
       membership(x._2) = nearestCluster //4
       reassigned
     }).size
}

The core of the assignment of observations to each cluster is the filter on the time 
series (line 1). The filter computes the index of the closest cluster and checks whether 
the observation is to be reassigned (line 2). The observation at the index x._2 is 
added to the nearest cluster, clusters(nearestCluster) (line 3). The current 
membership of the observations is then updated (line 4).

The cluster closest to an observation data is computed by the getNearestCluster 
method as follows:

def getNearestCluster(clusters: List[Cluster[T]], x:Array[T]): Int={
  clusters.zipWithIndex..foldLeft((Double.MaxValue,0))((p,c) => { 
      val measure = distance(c._1.center, x)
      if(measure < p._1) (measure, c._2) else p
   })._2

A fold is used to extract from the list of clusters the cluster that is closest to the 
observation x using the distance metric defined in the K-means constructor.
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Step 3 – iterative reconstruction
The final step is to implement the iterative computation of the reconstruction error. 
In this implementation, the iteration terminates when no more observations are 
reassigned to different clusters. As with other data processing units, the extraction  
of K-means clusters is encapsulated by the pipe operator |>, so that clustering  
can be integrated into a workflow using dependency injection described in the 
Dependency Injection section in Chapter 2, Hello World!.

The generation of the K clusters is executed by the data transformation |>:

def |> :PartialFunction[XTSeries[Array[T]], List[Cluster[T]]] = {
  case xt: XTSeries[Array[T]] if(xt.size>2 && xt(0).size>0) => {
    val clusters = initialize(xt)  //1

    if( clusters.isEmpty) List.empty
    else  {
      val membership = Array.fill(xt.size)(0)
      val reassigned = assignToClusters(xt,clusters,membership)//2
      var newClusters: List[Cluster[T]] = List.empty
      Range(0, maxIters).find( _ => {
        newClusters = clusters.map( c => {
          if( c.size > 0) c.moveCenter(xt, dimension(xt)) 
          else clusters.filter( _.size > 0)
                       .maxBy( _.stdDev(xt, distance))
        }) //3
        assignToClusters(xt, newClusters, membership) == 0
      }) match {
        case Some(index) => newClusters
        case None => { … }
    } //4
  }
}

As described in the algorithm overview section, the main method initializes the 
membership for all the observations (line 1), creates and initializes the clusters, and 
assigns the observations to clusters using the assignToClusters method (line 2). 
The iteration updates the content of each cluster using the moveCenter method, by 
assigning new observations to the cluster with the highest standard deviation (line 3). 
The iterative loop exits when no more reassignment is needed (line 4).
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K-means algorithm exit condition
In some rare instances, the algorithm may reassign the same few 
observations between clusters, preventing its convergence toward a 
solution in a reasonable time. Therefore, it is recommended to add a 
maximum number of iterations as an exit condition. If K-means does 
not converge with the maximum number of iterations, then the cluster 
centroids need to be reinitialized and the iterative process needs to be 
executed once again.

The companion object for KMeans implements the apply constructor and the 
computation of the stdDev standard deviation for each cluster. The default 
constructor uses the Euclidean distance:

def apply[T <% Double](K: Int, maxIters: Int)(implicit order: 
Ordering[T], m: Manifest[T]): KMeans[T] = new KMeans[T](K, maxIters, 
euclidean)
def stdDev[T](c: List[Cluster[T]], xt: XTSeries[Array[T]]): 
List[Double] =  c.map( _.stdDev(xt))

The stdDev method computes the standard deviation of the distances between each 
data point that belongs to a c cluster and its centroid.

Centroid versus mean
The terms centroid and mean refer to the same entity: the center of 
a cluster. This chapter uses these two terms interchangeably.

Note that ordering a trait and Manifest have to be provided in the apply 
constructor because there is no guarantee that such capabilities are provided  
in runtime by the client code. 

Curse of dimensionality
A model with a significant number of features (high dimensions) requires a larger 
number of observations in order to extract robust clusters. K-means clustering with 
very small datasets, of size less than 50, produces models with high bias and a 
limited number of clusters that are affected by the order of observations [4:5]. I have 
been using the following simple empirical rule of thumb for a training set of size n, 
expected K clusters, and N features: n < K.N.
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Dimensionality versus size of training set
The issue with the dimensionality of models versus the number of 
observations is not specific to unsupervised learning algorithms. All 
supervised learning techniques face the same challenge to set up a 
viable training plan.

Whichever empirical rule you follow, such a restriction is particularly an issue 
for analyzing stocks using historical quotes. Let's consider our examples of using 
technical analysis to categorize stocks according to their price behavior over a period 
of 1 year (or approximately 250 trading days). The dimension of the problem is 250 
(250 daily closing prices). The number of stocks (observations) would have exceeded 
several hundred!

IBM price day 1, price day 2, ..., price day 250

GE price day 1, price day 2, ..., price day 250

GM price day 1, price day 2, ..., price day 250

Features

Observations

Price model for K-means clustering

There are options to get around this limitation and shrink the number of 
observations; among them are:

•	 Sampling the trading data without losing a significant amount of information 
from the raw data, assuming the distribution of observations follows a 
known probability density function.

•	 Smoothing the data to remove the noise as seen in Chapter 3, Data 
Preprocessing, assuming the noise is Gaussian. In our test, a smoothing 
technique will remove the price outliers for each stock and therefore reduce 
the number of features (trading session). This approach differs from the 
sampling approach because it does not require an assumption that the 
dataset follows a known density function. On the other hand, the reduction 
of features will be less significant.

These approaches are workaround solutions at best, used for the sake of this tutorial, 
but they are not recommended for actual commercial analytical applications. The 
principal component analysis introduced in the last section of this chapter is one of 
the most reliable dimension reduction techniques.
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Experiment
The objective is to extract clusters from a set of stock price actions during a period 
of time between January 1 and Dec 31, 2013 as features. For this test, 127 stocks are 
randomly selected from the S&P 500 list. The following chart visualizes the behavior 
of the normalized price of a subset of these 127 stocks:

Price action of stocks used in K-means clustering

The key is to select the appropriate features prior to clustering and the time window 
to operate on. It would make sense to consider the entire historical price over the 
252 trading days as a feature. However, the number of observations (stocks) is too 
limited to use the entire price range. The (SAMPLES = 50) observations are the stock 
closing price for each trading session between the 80th and 130th days. The adjusted 
daily closing prices are normalized using the minimum and maximum values.

First, let's create a simple function to execute the K-means algorithm:

Val MAX_ITERS = 150
def run(K: Int, obs: DblMatrix): Unit = {
  val kmeans = KMeans[Double](K, MAX_ITERS) //1

  val clusters = kmeans |> XTSeries[DblVector](obs) //2
  clusters.foreach( _.center.foreach( show( _ ))) //3
  clusters.map( _.stdDev(XTSeries[DblVector](obs, euclidean))).
foreach( show( _ )  )  //4
}
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The KMeans class is first initialized with a number of clusters, K, and a maximum 
number of iterations, MAX_ITERS (line 1). These two parameters are domain and 
problem specific. The clustering algorithm is executed (line 2) returning a list 
of clusters. The clusters' centroid information is then displayed (line 3) and the 
standard deviation is computed for each of the clusters for a given number of 
clusters, K, and observations, obs (line 4).

Let's load the data from CSV files using the DataSource class (refer to the Data 
extraction section in Appendix A, Basic Concepts):

final val path = "resources/data/chap4/"
val extractor = YahooFinancials.adjClose :: List[Array[String] 
=>Double]() // 5
def symbols = DataSource.listSymbols(path)  //6
        
final val START = 80
final val SAMPLES = 50
val normalize=true
val prices = symbols.map(s =>DataSource(s,path,normalize) |> 
extractor)  //7
prices.find(_.isEmpty) match {  //8
  case Some(noPrice) = { … }
  case None => {
    val values = prices. map(x => x(0))
                        .map(_.drop(START).take(SAMPLES))
    args.map(_.toInt) foreach( run(_, values)) //9
  }
}

As mentioned earlier, the cluster analysis applies to the closing price in the range 
between the 80th and 130th trading day. The extractor is defined to extract the adjusted 
closing price for a stock whose price information is retrieved from YahooFinancials 
(line 5). The list of stock symbols is used to extract price information from CSV files 
located at the path (line 6). For instance, the ticker symbol for General Electric Corp. 
is GE and the trading data is located in GE.csv.

The 50 daily prices for each stock are extracted by an instance of DataSource (line 
7). The run method introduced earlier is invoked either for each stock or as soon as 
K-means fails through an exit condition in the find method (line 8). The normalized 
data values.toArray for the specific time window is extracted by the combination 
of calls to drop and take Scala array methods (line 9).
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The first test run is executed with K=3 clusters. The mean (or centroid) vector for 
each cluster is plotted as follows:

Chart of means of clusters using K-means K=3

The means vectors of the three clusters are quite distinctive. The top and bottom means 
1 and 2 in the chart have the respective standard deviation of 0.34 and 0.27 and share a 
very similar pattern. The difference between the elements of the 1 and 2 cluster mean 
vectors is almost constant: 0.37. The cluster with a mean vector 3 represents the group 
of stocks that behave like the stocks in cluster 2 at the beginning of the time period, and 
behave like the stocks in cluster 1 towards the end of the time period.
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This behavior can be easily explained by the fact that the time window or trading 
period, the 80th to 130th trading day, correspond to the shift in the monetary policy  
of the federal reserve in regard to the quantitative easing program. Here is the list  
of stocks for each of the clusters whose centroid values are displayed on the chart:

Cluster List of stocks

Cluster 1
AET, AHS, BBBY, BRCM, C, CB, CL, CLX, COH, CVX, CYH, DE, DG, DHI, 
DO, DUK, EA, EBAY, EXC, EXP, FE, GLW, GPS, IBM, JCP, JNJ, JWN, K, KF, 
KMI, KO, KRFT, LEN, LINC, LRCX, MSFT, NVMI, THC, XRT

Cluster 2
AA, AAPL, ADBE, ADSK, AFAM, AMZN, AU, BHI, BTU, CAT, CCL, 
CCMP, COP, CSC, CU, DOW, EMR, ENTG, ETFC, FCX, FDX, FFIV, FISV, 
FLIR, FLR, FLS, FTR, GLD, GRMN, GT, JCI, QCOM, QQQ, SIL, SLV, SLW

Cluster 3

ADM, ADP, AXP, BA, BBT, BEN, BK, BSX, CA, CBS, CCE, CELG, CHK, CI, 
CME, CMG, CSCO, CVS, DAL, DD, DNB, EMC, EXPE, F, FDO, FITB, FMC, 
GCI, GE, GM, GME, GS, HCA, JNPR, JPM, KLAC, LH, LLL, LM, LMT, LNC, 
LO, MKSI, MU, NEM, TRW, TXN, UNH, WDC, XLF, XLNX, ZNGA

Let's evaluate the impact of the number of clusters K on the characteristics of  
each cluster.

Tuning the number of clusters
We repeat the previous test on the 127 stocks and the same time window with the 
number of clusters varying from 2 to 15.

The mean (or centroid) vector for each cluster is plotted as follows for K = 2:

Chart of means of clusters using K-means K=2
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The chart of the results of the K-means algorithms with 2 clusters shows that the 
mean vector for the cluster labeled 2 is similar to the mean vector labeled 3 on 
the chart with K = 3 clusters. However, the cluster with the mean vector 1 reflects 
somewhat the aggregation or summation of the mean vectors for the clusters 1 and 3 
in the chart K =3. The aggregation effect explains why the standard deviation for the 
cluster 1, 0.55, is twice as much as the standard deviation for the cluster 2, 0.28.

The mean (or centroid) vector for each cluster is plotted as follows for K = 5:

Chart of means of clusters using K-means K=5

In this chart, we can assess that the clusters 1 (with the highest mean), 2 (with the 
lowest mean), and 3 are very similar to the clusters with the same labels in the chart 
for K =3. The cluster with the mean vector 4 contains stocks whose behaviors are 
quite similar to those in cluster 3, but in the opposite direction. In other words, the 
stocks in cluster 3 and 4 reacted in opposite ways following the announcement of the 
change in the monetary policy.
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In the tests with high values of K, the distinction between the different clusters 
becomes murky, as shown in the following chart for K = 10:

Chart of means of clusters using K-means K=10

The means for clusters 1, 2, and 3 seen in the first chart for the case K = 3 are still 
visible. It is fair to assume that these are very likely the most reliable clusters.  
These clusters happened to have a low standard deviation or high density.

Let's define the density of a cluster Cj with a centroid cj as the inverse of the 
Euclidean distance between all members of each cluster and its mean (or centroid):

2(C ) 1 ( )
j

j jx C
d x c

∈
= −∑
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The density of the cluster is plotted against the number of clusters with K = 1 to 13:

Bar chart of the average cluster density for K = 1 to 13

As expected, the average density of each cluster increases as K increases. From this 
experiment, we can draw the simple conclusion that the density of each cluster does 
not significantly increase in the test runs for K =5 and beyond. You may observe that 
the density does not always increase as the number of clusters increases (K = 6 to  
K = 11). The anomaly can be explained by the following three factors:

•	 The original data is noisy
•	 The model is somewhat dependent on the initialization of the centroids
•	 The exit condition is too loose

Validation
There are several methodologies to validate the output of a K-means algorithm 
from purity to mutual information [4:6]. One effective way to validate the output of 
a clustering algorithm is to label each cluster and run those clusters through a new 
batch of labeled observations. For example, if during one of these tests you find that 
one of the clusters CC contains most of the commodity-related stocks, then you can 
select another commodity-related stock, SC, which is not part of the first batch, and 
run the entire clustering algorithm again. If SC is contained in CC, then the clustering 
has performed as expected. If this is the case, you should run a new set of stocks, 
some of which are commodity related, and measure the number of true positives, true 
negatives, false positives, and false negatives. The precision, recall, and F1 measures 
introduced in the Assessing a model section of Chapter 2, Hello World!, confirms whether 
the tuning parameters and labels you selected for your cluster are indeed correct.
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Validation
The quality of the clusters, as measured by the F1 statistics, depends 
on the labeling of the cluster and the rule (that is, label a cluster with 
the industry with the highest relative percentage of stocks in the 
cluster) used to assign a label. This process is very subjective. The 
only sure way to validate a validation methodology is to evaluate 
several labeling schemes and select the one that generates the highest 
F1 statistics.

We reviewed some of the tuning parameters that impact the quality of the results of 
the K-means clustering. They are as follows:

•	 Initial selection of centroid
•	 Number of K clusters

In some cases, the similarity criterion (that is, Euclidean distance versus cosine value) 
can have an impact on the cleanness or density of the clusters.

The final and important consideration is the computational complexity of the 
K-means algorithm. The previous sections of the chapter described some of the 
performance issues with K-means and possible remedies.

Despite its many benefits, the K-means algorithm does not handle missing data  
or unobserved features very well. Features that depend on each other indirectly  
may in fact depend on a common hidden (also known as latent) variable. The  
expectation-maximization algorithm described in the next section addresses  
some of these limitations.

Expectation-maximization (EM) algorithm
The expectation-maximization algorithm was originally introduced to estimate the 
maximum likelihood in the case of incomplete data [4:7]. It is an iterative method to 
compute the model features that maximize the likely estimate for observed values, 
taking into account unobserved values.

The iterative algorithm consists of computing:

•	 The expectation, E, of the maximum likelihood for the observed data by 
inferring the latent values (E-step)

•	 The model features that maximize the expectation E (M-step)
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The expectation-maximization algorithm is applied to solve clustering problems by 
assuming that each latent variable follows a Normal or Gaussian distribution. This 
is similar to the K-means algorithm for which the distance of each data point to the 
center of each cluster follows a Gaussian distribution [4:8]. Therefore, a set of latent 
variables is a mixture of Gaussian distributions.

Gaussian mixture model
Latent variables Z can be visualized as the behavior (or symptoms) of a model 
(observed) X for which Z are the root causes of the behavior:

Z1 Z2 Z3

X1 X2

Visualization of observed and latent features

The latent values Z follow a Gaussian distribution. For the statisticians among us, the 
mathematics of a mixture model is described in the following information box.

The mixture model

If {xi} is a set of observed features associated with latent features {zk}, the 
probability for the feature xi given zk has a value j:

( | )i kp x Z j=

The probability p is called the base distribution. If we extend to the entire 
model, θ= {xi, zk}, the conditional probability is defined as follows:

1
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The most widely used mixture model is the Gaussian mixture model 
that represents the base distribution p as a Normal distribution and the 
conditional probability as a weighted Normal multivariate distribution:
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EM overview
As far as the implementation is concerned, the expectation-maximization algorithm 
can be broken down into three stages:

1.	 The computation of the log likelihood for the model features given some 
latent variables (LL).

2.	 The computation of the expectation of the log likelihood at iteration t (E-step).
3.	 The maximization of the expectation at iteration t (M-step).

Log likelihood

•	 LL: Let's consider a set of observed variables X={xi} and latent 
variables Z={zi}. The log likelihood for X for given Z is:

( ) ( )log , |i jL p x zθ θ=∑
•	 E-step: The expectation for the model variable θ at iteration t is 

computed as:

( ) ( ), | , t
tQ E L Xθ θ θ θ =  

•	 M-step: The function Q is maximized for the model features θ as:

( )1 argmax ,t tQ
θ

θ θ θ+ =

A formal, detailed, but short mathematical formulation of the EM algorithm can be 
found in S. Borman's tutorial [4:9].

Implementation
Let's implement the three steps (LL, E-step, and M step) in Scala. The internal 
calculations of the EM algorithm are a bit complex and overwhelming. You may 
not benefit much from the details of a specific implementation such as computation 
of the eigenvalues of the covariance matrix of the expectation of the log likelihood. 
This implementation hides some complexities by using the Apache Commons Math 
library package [4:10].
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Inner workings of EM
You may want to download the source code for the implementation of 
the EM algorithm in the Apache Commons Math library if you need to 
understand the condition for which an exception is thrown.

First, let's define convenient internal types:

type EM = MultivariateNormalMixtureExpectationMaximization
type EMOutput = List[(Double, DblVector, DblVector)]
import scala.collections.JavaConversions._ //1

The constructor of the MultivariateEM class uses the standard template for machine 
learning algorithm classes:

•	 Parameterized view bound type
•	 Implementation of EM as a data transformation by extending PipeOperator

Here is an implementation of the constructor of MultivariateEM:

class MultivariateEM[T <% Double](K: Int) extends PipeOperator[XTSerie
s[Array[T]], EMOutput]

The Apache Commons Math Java implementation of the EM uses Java container 
classes that need to be explicitly converted to Scala collections. Those conversions  
are defined in the JavaConversions package (line 1).

The implementation of the EM algorithm in the data transformation |> operator uses 
the Apache Commons Math MultivariateNormalMixture class for the Gaussian 
mixture model and the MultivariateNormalMixtureExpectationMaximization 
class for the EM algorithm:

def |> : PartialFunction[XTSeries[Array[T]], EMOutput] = {
 case xt: XTSeries[Array[T]] if(xt.size>0 && dimension(xt)>0) =>{
   val data: DblMatrix = xt  //2
   val multivariateEM = new EM(data)
   val est = MultivariateNormalMixtureExpectationMaximization
             .estimate(data, K)
   multivariateEM.fit(est) //3

   val newMixture = multivariateEM.getFittedModel //4
   val components = newMixture.getComponents.toList //5
   components.map(p => (p.getKey.toDouble, p.getValue.getMeans, 
p.getValue.getStandardDeviations)  ))//6
….
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Let's look at the main |> method of the MultivariateEM wrapper class. The first step 
is to convert the time series into a primitive matrix of Double with observations and 
historical quotes as rows and the stock symbols as columns (line 2).

The initial mixture of Gaussian distributions can be provided by the user or can 
be extracted from the dataset as an estimate (line 3). The getFittedModel model 
triggers the M-step (line 4).

The Apache library uses Java primitives that need to be converted to Scala types 
using the package import scala.collection.JavaConversions. An instance 
of java.util.List is converted to scala.collection.immutable.List using 
toList, which invokes the asScalaIterator method of WrapAsScala, one of the 
base traits of JavaConversions (line 5).

The <Double, MultivariateNormalDistribution> key-value pair, returned by 
the call to getFittedModel by the Apache math method, is to be converted to a tuple 
containing the mean and standard deviation for each cluster (line 6).

Third-party library exceptions

Scala does not enforce the declaration of exceptions as part of the 
signature of a method. Therefore, there is no guarantee that all 
types of exceptions will be caught locally. This problem occurs 
when exceptions are thrown from a third-party library in two 
scenarios:

•	 The documentation of the API does not list all the types of 
exceptions

•	 The library is updated and a new type of exception is 
added to a method

One easy workaround is to leverage the Scala exception-handling 
mechanism:

  Try {
       ..
  } match {
      case Success(results) => …
      case Failure(exception)  => ...
  }
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Testing
Let's apply the MultivariateEM class to the clustering of the same 127 stocks used in 
evaluating the K-means algorithm.

As discussed in the paragraph related to the curse of dimensionality, the number 
of stocks (127) to analyze restricts the number of observations to be used by the EM 
algorithm. A simple option is to filter out some of the noise of the stocks and apply a 
basic sampling method. The maximum sampling rate is restricted by the frequencies 
in the spectrum of noises of different types in the historical price of every stock.

Filtering and sampling

The preprocessing of the data using a combination of a simple 
moving average and fixed interval sampling prior to clustering is very 
rudimentary in this example. For instance, we cannot assume that the 
historical quotes of all the stocks share the same noise characteristics. 
The noise pattern in the quotation of momentum and heavily traded 
stocks is certainly different from blue-chip securities with a strong 
ownership, and  these stocks are held by large mutual funds.

The sampling rate should take into account the spectrum of frequency 
of the noise. It should be set as at least twice the frequency of the noise 
with the lowest frequency.

The object of the test is to evaluate the impact of the sampling rate, samplingRate, 
and the number K of clusters used in the EM algorithm:

val extractor = YahooFinancials.adjClose :: List[Array[String] 
=>Double]() //1

val period = 8
val samplingRate = 10
val smAv = SimpleMovingAverage[Double](period) //2
val obs = DataSource.listSymbols(path).map(sym => { //3
  val xs = DataSource(sym, path, true) |> extractor //2
  val values : XTSeries[Double] = XTSeries.|>(xs)).head //4
  val filtered = smAv |> values
  filtered.zipWithIndex //5
          .drop(period+1).toArray //6
          .filter( _._2%samplingRate==0)
          .map( _._1)
})
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The first step is to extract the historical quotes for all the stocks using the same 
extractor as in the K-means test case (line 1).

The symbols of the stocks under consideration are extracted from the name of the 
files in the path directory. The historical data is contained in the CSV file named 
path/STOCK_NAME.csv (line 3). An implicit conversion is triggered by an assignment 
of values of the type XTSeries[Double] (line 4). The simple moving average 
algorithm zeroed out the first period values in the smoothed data, filtered (line 5). 
Those null values have to be dropped before applying the sampling (line 6).

The first test is to execute the EM algorithm with K=3 clusters and a sampling period 
of 10 on data smoothed by a simple moving average with a period of 8:

MultivariateEM[Double](K) |> XTSeries[DblVector](obs) foreach (…)

The driver prints the key (line 3), the mean (coordinates of the centroid vector) (line 
4), and the standard deviation for each component (cluster).

The sampling of historical prices of the 127 stocks between January 1, 2013 and 
December 31, 2013 with a frequency of 0.1 hertz produces 24 data points. The 
following chart displays the mean or centroid of each of the 3 clusters:

Chart of the normalized means per cluster using EM K=3
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The mean vectors of clusters 2 and 3 have similar patterns, which may suggest  
that 2 components or clusters could provide a first insight into the similarity within 
groups of stocks. The following is a chart of the normalized standard deviation per 
cluster using EM K = 3:

Chart of the normalized standard deviation per cluster using EM K=3

The distribution of the standard deviation along the mean vector of each cluster can 
be explained by the fact that the price of stocks from a couple of industries went 
down in synergy, while others went up as a semihomogenous group following the 
announcement from the Federal Reserve that the monthly quantity of bonds purchased 
as part of the quantitative easing program would be reduced in the near future.

Relation to K-means
You may wonder what is the relation between EM and K-means as 
both techniques address the same problem. The K-means algorithm 
assigns each observation uniquely to one and only one cluster. The 
EM algorithm assigns an observation based on posterior probability. 
K-means is a special case of the EM for Gaussian mixtures [4:11].
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Online EM
Online learning is a powerful strategy for training a clustering model when dealing 
with very large datasets. This strategy has regained interest from scientists lately. 
The description of online EM is beyond the scope of this tutorial. However, you may 
need to know that there are several algorithms available for online EM if you ever 
have to deal with large datasets: batch EM, stepwise EM, incremental EM, and 
Monte Carlo EM [4:12].

Dimension reduction
Without prior knowledge of the data domain, data scientists include all possible 
features in their first attempt to create a classification, prediction, or regression 
model. After all, making assumptions is a poor and dangerous approach to reduce 
the search space. It is not uncommon for a model to use hundreds of features, adding 
complexity and significant computation costs to build and validate the model.

Noise-filtering techniques reduce the sensitivity of the model to features that  
are associated with sporadic behavior. However, these noise-related features  
are not known prior to the training phase, and therefore, cannot be discarded.  
As a consequence, training of the model becomes a very cumbersome and  
time-consuming task.

Overfitting is another hurdle that can arise from a large feature set. A training set of 
limited size does not allow you to create a model with a large number of features.

Dimension reduction techniques alleviate these problems by detecting features that 
have little influence on the overall model behavior.

There are three approaches to reduce the number of features in a model:

•	 Statistical analysis solutions such as ANOVA for smaller feature sets
•	 Regularization and shrinking techniques, which are introduced in Chapter 6, 

Regression and Regularization
•	 Algorithms that maximize the variance of the dataset by transforming the 

covariance matrix

The next section introduces one of the most commonly used algorithms of the third 
category—principal component analysis.
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Principal components analysis (PCA)
The purpose of principal components analysis is to transform the original set of 
features into a new set of ordered features by decreasing the order of variance. The 
original observations are transformed into a set of variables with a lower degree of 
correlation. Let's consider a model with two features {x, y} and a set of observations 
{xi, yi} plotted on the following chart:

Visualization of principal components for a 2-dimension model

The features x and y are converted into two variables X and Y (that is rotation) to 
more appropriately match the distribution of observations. The variable with the 
highest variance is known as the first principal component. The variable with the  
nth highest variance is known as the nth principal component.
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Algorithm
I highly recommend the tutorial from Lindsay Smith [4:13] that describes the PCA 
algorithm in a very concrete and simple way using a 2-dimension model.

PCA and covariance matrix

The covariance of two features X and Y with the observations set {xi, yi} 
is defined as:

( ) ( )( )1,
1 i icov X Y x x y y

n
= − −

− ∑
Here, x  and y  are the respective mean values for the observations x 
and y.

The covariance is computed from the zScore of each observation:

( ) /i ix x x σ= −

For a model with n features, xi, the covariance matrix is defined as:
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The transformation of x to X consists of computing the eigenvalues of 
the covariance matrix:

( )' ,T T
i jW W cov X X and X W x∑ = Σ = =

The eigenvalues are ranked by their decreasing order of variance and 
the cumulative variance for each eigenvalue is computed. Finally, 
the m top eigenvalues for which the cumulative of variance exceeds 
a predefined threshold (percentage of the trace of the matrix) are the 
principal components or reduced feature set.
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The algorithm is implemented in five steps:

1.	 Compute the zScore for the observations by standardizing the mean and 
standard deviation.

2.	 Compute the covariance matrix Σ for the original set of observations.
3.	 Compute the new covariance matrix Σ' for the observations with the 

transformed features by extracting the eigenvalues and eigenvectors.
4.	 Convert the matrix to rank eigenvalues by decreasing the order of variance. 

The ordered eigenvalues are the principal components.
5.	 Select the principal components for which the total sum of variance exceeds a 

threshold by as a percentage of the trace of the new covariance matrix.

The extraction of principal components by diagonalization of the covariance matrix 
Σ is visualized in the following diagram. The color used to represent the covariance 
value varies from white (lowest value) to black (highest value):

Visualization of the extraction of eigenvalues in PCA

The eigenvalues (variance of X) are ranked by the decreasing order of their values. 
The PCA algorithm succeeds when the cumulative value of the last eigenvalues  
(the right-bottom section of the diagonal matrix) becomes insignificant.

Implementation
PCA can be easily implemented by using the Apache Commons Math library 
methods that compute the eigenvalues and eigenvectors. Once again, the main 
routine is implemented as a pipe operator so that it can be used in a generic 
workflow as defined in the The Pipe Operator section under Designing a workflow  
in Chapter 2, Hello World!.

import types.ScalaMl._, types.CommonMath._, //2

def |> : PartialFunction[XTSeries[Array[T]], (DblMatrix, DblVector)]={ 
  case xt: XTSeries[Array[T]] if(xt !=null && xt.size>1) => {
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   zScoring(xt) match {//1
   case Some(obs) => {
    val covariance = new Covariance(obs).getCovarianceMatrix //3
    val transf = new EigenDecomposition(covariance)
    val eigVectors = transf.getV  //4
    val eigValues = new ArrayRealVector(transf.getRealEigenvalues)
    val cov = obs.multiply(eigVectors).getData
    (cov, eigValues.toArray) //5
…

PCA requires that the original set of observations is standardized using the 
z-score transformation. It is implemented using the XTSeries.zScoring function 
introduced in the Normalization and Gauss distribution section in Chapter 1, Getting 
Started (line 1).

The assignment forces the implicit conversion of a time series of features of the type 
T into a matrix of the type Double. The implicit conversions between Scala primitives 
and ScalaMl types such as DblMatrix (resp. between Apache Commons Math types 
and Scala Ml) are defined in Types.ScalamMl, as mentioned in the Type conversions 
section in Chapter 1, Getting Started (resp. Types.CommontMath in the Time series 
section in Chapter 3, Data Preprocessing) (line 2). The covariance matrix is computed 
based on the zScore created from the original observations (line 3). The eigenvectors, 
eigVectors, are computed using the getV method in the Apache Commons Math 
EigenDecomposition class. The eigenvalues, eigValues, are extracted as principal 
components (line 4).

Finally, the data transformation returns the tuple (covariance matrix, array of 
eigenvalues) (line 5).

Test case
Let's apply the PCA algorithm to extract a subset of the features that represents 
some of the financial metrics ratios of 34 S&P 500 companies. The metrics under 
consideration are:

•	 Trailing Price-to-Earnings ratio (PE)
•	 Price-to-Sale ratio (PS)
•	 Price-to-Book ratio (PB)
•	 Return on Equity (ROE)
•	 Operation Margin (OM)

The financial metrics are described in the Terminology section under Finances 101 in 
Appendix A, Basic Concepts.
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The input data is specified with the following format as a tuple: the ticker symbol 
and an array of five financial ratios, PE, PS, PB, ROE, and OM:

val data = Array[(String, DblVector)] (
  // Ticker              PE     PS     PB   ROE    OM
  ("QCOM", Array[Double](20.8, 5.32, 3.65, 17.65,29.2)),
  ("IBM",  Array[Double](13, 1.22, 12.2, 88.1,19.9)), 
   …
)

The client code that executes the PCA algorithm is defined simply as follows:

val pca = new PCA[Double]  //1
val input = data.map( _._2.take(3))
val cov = pca |> XTSeries[DblVector](input) //2
Display.show(toString(cov), logger)  //3

Once the PCA class is instantiated (line 1), the eigenvalues and covariance matrix, 
cov, are computed (line 2), and then displayed using the utility singleton Display 
that formats messages and appends to the logger (line 3).

Evaluation
The first test on the 34 financial ratios uses a model that has five dimensions.  
As expected, the algorithm produces a list of five ordered eigenvalues.

2.5321, 1.0350, 0.7438, 0.5218, 0.3284

Let's plot the relative value of the eigenvalues (that is, relative importance of each 
feature) on a bar chart:

Distribution of eigenvalues in PCA for 5 dimensions
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The chart shows that 3 out of 5 features account for 85 percent of total variance  
(trace of the transformed covariance matrix). I invite you to experiment with 
different combinations of these features. The selection of a subset of the existing 
features is as simple as applying Scala's take or drop methods:

Val numFeatures = 4
val ts = XTSeries[DblVector](data.map(_._2.take(numFeatures)))

Let's plot the cumulative eigenvalues for the three different model configurations:

•	 Five features: PE, PS, PB, ROE, and OM
•	 Four features: PE, PS, PB, and ROE
•	 Three features: PE, PS, and PB

Distribution of eigenvalues in PCA for 3, 4, and 5 features

The chart displays the cumulative value of eigenvalues that are the variance of the 
transformed features Xi. If we apply a threshold of 90 percent to the cumulative 
variance, then the number of principal components for each test model is as follows:

•	 {PE, PS, PB}: 2
•	 {PE, PS, PB, ROE}:3
•	 {PE, PS, PB, ROE, OM}: 3

In conclusion, the PCA algorithm reduced the dimension of the model by 33 percent 
for the 3-feature model, 25 percent for the 4-feature model, and 40 percent for the 
5-feature model for a threshold of 90 percent.
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Cross-validation of PCA
Like any other unsupervised learning technique, the resulting principal 
components have to be validated through a one or K-fold cross-validation 
using a regression estimator such as partial least square regression 
(PLSR) or the predicted residual error sum of squares (PRESS). For 
those not afraid of statistics, I recommend Fast Cross-validation in Robust 
PCA by S. Engelen and M. Hubert [4:14]. You need to be aware, however, 
that the implementation of these regression estimators is not simple.

The principal components can be validated through a 1-fold or K-fold cross-validation, 
by performing some type of regression estimators or EM on the same dataset. The 
validation of the PCA is beyond the scope and space allocated to this chapter.

Principal components analysis is a special case of the more general factor analysis. 
The later class of algorithm does not require the transformation of the covariance 
matrix to be orthogonal.

Other dimension reduction techniques
Although quite popular, the principal components analysis is far from being the 
only dimension reduction method. Here are some alternative techniques, listed 
as reference: factor analysis, principal factor analysis, maximum likelihood factor 
analysis, independent component analysis (ICA), Random projection, nonlinear 
PCA, nonlinear ICA, Kohonen's self-organizing maps, neural networks, and 
multidimensional scaling, just to name a few [4:15].

Performance considerations
The three unsupervised learning techniques share the same limitation—a high 
computational complexity.

K-means
The K-means has the computational complexity of O(iKnm), where i is the number of 
iterations, K the number of clusters, n the number of observations, and m the number 
of features. The algorithm can be improved through the use of other techniques by 
using the following techniques:

•	 Reducing the average number of iterations by seeding the centroid using an 
algorithm such as initialization by ranking the variance of the initial cluster 
as described at the beginning of this chapter.
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•	 Using a parallel implementation of K-means and leveraging a large-scale 
framework such as Hadoop or Spark.

•	 Reducing the number of outliers and possible features by filtering out the 
noise with a smoothing algorithm such as a discrete Fourier transform or a 
Kalman filter.

•	 Decreasing the dimensions of the model by following a two-step process: a 
first pass with a smaller number of clusters K and/or a loose exit condition 
regarding the reassignment of data points. The data points close to each 
centroid are aggregated into a single observation. A second pass is then run 
on a smaller set of observations.

EM
The computational complexity of the expectation-maximization algorithm for each 
iteration (E + M steps) is O(m2n), where m is the number of hidden or latent variables 
and n is the number of observations.

A partial list of suggested performance improvement includes:

•	 Filtering of raw data to remove noise and outliers
•	 Using a sparse matrix on a large feature set to reduce the complexity of the 

covariance matrix, if possible
•	 Applying the Gaussian mixture model (GMM) wherever possible: the 

assumption of Gaussian distribution simplifies the computation of the  
log likelihood

•	 Using a parallel data processing framework such as Apache Hadoop or Spark 
as explained in the Apache Spark section in Chapter 12, Scalable Frameworks

•	 Using a kernel method to reduce the estimate of covariance in the E-step

PCA
The computational complexity of the extraction of the principal components is O(m2n 
+ n3), where m is the number of features and n the number of observations. The first 
term represents the computational complexity for computing the covariance matrix. 
The last term reflects the computational complexity of the eigenvalue decomposition.
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The list of potential performance improvements or alternative solutions for  
PCA includes:

•	 Assuming that the variance is Gaussian
•	 Using a sparse matrix to compute eigenvalues for problems with large 

feature sets and missing data
•	 Investigating alternatives to PCA to reduce the dimension of a model such 

as the discrete Fourier transform (DFT) or singular value decomposition 
(SVD) [4:16]

•	 Using the PCA in conjunction with EM (a research)
•	 Deploying a dataset on a parallel data processing framework such as Apache 

Spark or Hadoop as explained in the Apache Spark section in Chapter 12, 
Scalable Frameworks

Summary
This completes the overview of three of the most commonly used unsupervised 
learning techniques:

•	 K-means for clustering fully observed features of a model with  
reasonable dimensions

•	 Expectation-maximization for clustering a combination of observed and 
latent features

•	 Principal components analysis to transform and extract the most critical 
features in terms of variance

The key point to remember is that unsupervised learning techniques are used:

•	 By themselves to extract structures and associations from  
unlabelled observations

•	 As a preprocessing stage to supervised learning in reducing the number  
of features prior to the training phase

In the next chapter, we will address the second use case, and cover supervised 
learning techniques starting with generative models.





Naïve Bayes Classifiers
This chapter introduces the most common and simple generative classifiers—Naïve 
Bayes. As a reminder, generative classifiers are supervised learning algorithms 
that attempt to fit a joint probability distribution, p(X,Y), of two events X and Y, 
representing two sets of observed and hidden (or latent) variables, x and y.

In this chapter, you will learn, and hopefully appreciate, the simplicity of the Naïve 
Bayes technique through a concrete example. Then, you will build a Naïve Bayes 
classifier to predict stock price movement, given some prior technical indicators  
in the analysis of financial markets.

Finally, you will apply Naïve Bayes to text mining by predicting stock prices,  
using financial news feed and press releases.

Probabilistic graphical models
Let's start with a refresher course in basic statistics.

Given two events or observations, X and Y, the joint probability of X and Y  
is defined as ( ) ( ),p X Y p X Y= ∩ . If the observations X and Y are not related, an 
assumption known as conditional independence, then p(X,Y) = p(X).p(Y). The 
conditional probability of event Y, given X, is defined as p(Y|X)=p(X,Y)/p(X).

These two definitions are quite simple. However, probabilistic reasoning can be 
difficult to read in the case of large numbers of variables and sequences of conditional 
probabilities. As a picture is worth a thousand words, researchers introduced graphical 
models to describe a probabilistic relation between random variables [5:1].

There are two categories of graphs, and therefore, graphical models:

•	 Directed graphs such as Bayesian networks
•	 Undirected graphs such as conditional random fields (refer to the Conditional 

random fields section in Chapter 7, Sequential Data Models)
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Directed graphical models are directed acyclic graphs that have been introduced to:

•	 Provide a simple way to visualize a probabilistic model
•	 Describe the conditional dependence (or independence) between variables
•	 Represent statistical inference in terms of graphical manipulation

A Bayesian network is a directed graphical model defining a join probability over a 
set of variables [5:2].

The two join probabilities, p(X,Y) and p(X,Y,Z), can be graphically modeled using 
Bayesian networks, as follows:
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Examples of probabilistic graphical models

The conditional probability p(Y|X) is represented by an arrow directed from the 
output (or symptoms) Y to the input (or cause) X. Elaborate models can be described 
as a large directed graph between variables.

Metaphor for graphical models
From a software engineering perspective, graphical models 
visualize probabilistic equations the same way the UML class 
diagram visualizes object-oriented source code.

Here is an example of a real-world Bayesian network; the functioning of a  
smoke detector:

1.	 A fire may generate smoke.
2.	 Smoke may trigger an alarm.
3.	 A depleted battery may trigger an alarm.
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4.	 The alarm may alert the homeowner.
5.	 The alarm may alert the fire department.

Alarm

Smoke

Battery

Fire

Home

owner

Fire

dept

A Bayesian network for smoke detectors

This representation may be a bit counterintuitive, as the vertices are directed from 
the symptoms (or output) to the cause (or input). Directed graphical models are  
used in many different models, besides Bayesian networks [5:3].

Plate models
There are several alternate representations of probabilistic models, 
besides the directed acyclic graph, such as the plate model commonly 
used for the latent Dirichlet allocation (LDA) [5:4].

The Naïve Bayes models are probabilistic models based on the Bayes's theorem 
under the assumption of features independence, as mentioned in the Generative 
models section in Chapter 1, Getting Started.

Naïve Bayes classifiers
This conditional independence between X features is an essential requirement for the 
Naïve Bayes classifier. It also restricts its applicability. The Naïve Bayes classification 
is better understood through simple, concrete examples [5:5].

Introducing the multinomial Naïve Bayes
Let's consider the problem of how to predict change in interest rates. The first step is 
to list the factors that potentially may trigger or cause an increase or decrease in the 
interest rates. For the sake of illustrating Naïve Bayes, we will select the consumer 
price index (CPI), change in the Federal fund rate (FDF) and the gross domestic  
product (GDP) as a first set of features. The terminology is described in the 
Terminology section under Finances 101 in Appendix A, Basic Concepts.
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The use case is to predict direction of the change in the yield of the 1-year Treasury 
bill (1yTB), taking into account the change in the current CPI, FDF, and GDP.  
The objective is, therefore, to create a predictive model using a combination  
of these three features.

It is assumed that there is no available financial investment expert who can supply 
rules or policies to predict interest rates. Therefore, the model depends highly on the 
historical data. Intuitively, if one feature is always increasing when the yield of the 
1-year Treasury bill increases, then we can conclude that there is a strong correlation 
of causal relationship between the features and the output variation in interest rates.

Change in

1yTB

Output

(labeled data)

Change in

GDP

Change in

FDF

Change in

CPI

Model features

The Naïve Bayes model for predicting the change in the yield of the 1-year T-bill

The correlation (or cause-effect relationship) is derived from historical data. The 
methodology consists of counting the number of times each feature either increases 
(UP) or decreases (DOWN), and recording the corresponding output (or labeled 
data), as illustrated in the following table:

ID GDP FDF CPI 1yTB
1 UP DOWN UP UP
2 UP UP UP UP
3 DOWN UP DOWN DOWN
4 UP DOWN DOWN DOWN
…
256 DOWN DOWN UP DOWN
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First, let's tabulate the number of occurrence of each change {UP, DOWN} for the 
three features and the output value (the 1-year Treasury bill):

Number GDP FDF CPI 1yTB
UP 169 184 175 159
DOWN 97 72 81 97
Total 256 256 256 256
UP/Total 0.66 0.72 0.68 0.625

Next, let's compute the number of positive directions for each of the features when 
the yield 1-year Treasury bill increases (159 occurrences):

Number GDP Fed funds CPI
UP 110 136 127
DOWN 49 23 32
Total 159 159 159
UP/Total 0.69 0.85 0.80

For this table, we conclude that the yield of the 1-year Treasury bill increases when 
the GDP is increasing (69 percent of the time), the rate of the Federal funds increases 
(85 percent of the time) and the CPI increases (80 percent of the time).

Let's formalize the Naïve Bayes model before turning these findings into a 
probabilistic model.

Formalism
Let's start by clarifying the terminology used in the Bayesian model:

•	 Class prior probability or class prior is the probability of a class
•	 Likelihood is the probability of an observation given a class, also known as 

the probability of the predictor given a class
•	 Evidence is the probability of observations occurring, also known as the 

prior probability of the predictor
•	 Posterior probability is the probability of an observation x being in a  

given class

No model can be simpler! The log likelihood, log(p(x|C), is commonly used instead 
of the likelihood, p(x|C), (probability of an observation given a class) in order to 
reduce the impact of the features y that have a low likelihood, p(y|C).
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The objective of the Naïve Bayes classification of a new observation, is to compute 
the class that has the higher log likelihood. The mathematical notation for the Naïve 
Bayes model is also straightforward.

The posterior probability, ( )|jp C x :

( ) ( ) ( )
( )

|
| j j

j

p x C p C
p C x

p x
⋅

=

•	 x = {xi} (0, n-1), with a set of n features
•	 {Cj}, a set of classes with their class prior p(Cj)
•	 ( )p x , the evidence of new observation
•	 p(x| Cj), the likelihood for each feature

Posterior probability, ( )|jp C x , with conditional independence:
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•	 xi are independent and the probabilities are normalized 
for evidence p(x) = 1

Log-likelihood:
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Naïve Bayes classification:

( )( )C argmax log |m jj
p C x=

This particular use case has a major drawback—the GDP statistics are provided 
quarterly, while the CPI data is made available once a month and a change in the 
FDF rate is rather infrequent.

The frequentist perspective
The ability to compute the posteriori probability depends on the formulation of the 
likelihood using historical data. A simple solution is to count the occurrences of 
observations for each class and compute the frequency.

Let's consider the first example that predicts the direction of change in the yield of 
the 1-year Treasury bill given changes in the GDP, FDF, and CPI.
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The results are expressed with simple probabilistic formulas and a directed  
graphical model:

P(GDP=UP|1yTB=UP) = 110/159
P(1yTB=UP) = num occurrences (1yTB=UP)/total num of 
occurrences=159/256
p(1yTB=UP|GDP=UP,FDF=UP,CPI=UP) = p(GDP=UP|1yTB=UP) x
                                  p(FDF=UP|1yTB=UP) x
                                  p(CPI=UP|1yTB=UP) x
                                  p(1yTB=UP) = 0.69 x 0.85 x  
                                    0.80 x 0.625

1yTB=UP

GDP=UP

P=0.69

FD=UP

P=0.85

CPI=UP

P=0.80

The Bayesian network for the prediction of the change of the yield of the 1-year Treasury bill

Overfitting
The Naïve Bayes model is not immune to overfitting, in case the 
number of observations is not large enough relative to the number 
of features. One approach to address this problem is to perform a 
feature selection, using the mutual information exclusion [5:6].

This problem is not a good candidate for a Bayesian classification for two reasons:

•	 The training set is not large enough to compute accurate prior probabilities 
and generate a stable model; decades of quarterly GDP data is needed to 
train and validate the model

•	 The features have different rates of change, which predominately favor the 
feature with the highest frequency; in this case, the CPI

Let's select another use case for which a large historical data set is available and can 
be automatically labeled.
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The predictive model
The predictive model is the second use case that consists of predicting the direction 
of the closing price of a stock, pr(t+1) = {UP, DOWN}, at trading day t+1, given the 
history of its direction of the price, volume, and volatility for the previous t days, 
pr(i),i=1,t. The features volume and volatility have been already used in the Creating 
a model (learning) section under Let's kick the tires in Chapter 1, Getting Started.

Therefore, the three features under consideration are:

•	 The closing price, pr(t), of the last trading session, t, is above or below the 
average closing price over the n previous trading days, [t-n, t]

•	 The volume of the last trading day, vl(t), is above or below the average 
volume of the n previous trading days

•	 The volatility on the last trading day, vt(t), is above or below the average 
volatility of the previous n trading days

The directed graphic model can be expressed using one output variable (price at 
session t+1 is greater than price at session t) and three features: price condition (1), 
volume condition (2), and volatility condition (3).

Output

(labeled data)

Price condition Volatility condition Volume condition

l

A Bayesian model for predicting the future direction of the stock price

This model works under the assumption that there is at least one observation, and 
ideally few observations for each feature and for each labeled output.
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The zero-frequency problem
It is possible that the training set does not contain any data actually observed for a 
feature for a specific label or class. In this case, the mean is 0/N = 0, and therefore, the 
likelihood is null, making classification unfeasible. The case for which there are only 
few observations for a feature in a given class is also an issue, as it skews the likelihood.

There are a couple of correcting or smoothing formulas for unobserved features 
or features with a low number of occurrences that address this issue, such as the 
Laplace and Lidstone smoothing formula.

The smoothing factor for counters
Laplace smoothing of the mean k/N out of N observations 
of features of dimension n:

1'µ +
=

+
k
N n

Lidstone smoothing with a factor α :

' αµ
α
+

=
+ ⋅
k
N n

The two formulas are commonly used in natural language processing applications, 
for which occurrence of a specific word or tag is a feature [5:7].

Implementation
I think it is time to write some Scala code and toy around with Naïve Bayes.  
Let's start with an overview of the software components.

Software design
Our implementation of the Naïve Bayes classifier uses the following components:

•	 A generic model, NaiveBayesModel, of the type Model, which is initialized 
through training during the instantiation of the class.

•	 A model for the binomial classification, BinNaiveBayesModel, which 
subclasses NaiveBayesModel. The model consists of a density function of  
the type Density, and a pair of positive and negative Likelihood instances.

•	 A model for the multinomial classification MultiNaiveBayesModel.
•	 The predictive or classification routine is implemented as a data 

transformation extending the PipeOperator trait.
•	 The NaiveBayes classifier class has two parameters: a smoothing function 

such as Laplace and a labeled training set of the XTSeries type.
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The principle of software architecture applied to the implementation of classifiers is 
described in the Design template for classifiers section in Appendix A, Basic Concepts.

The key software components of the Naïve Bayes classifier are described in the 
following UML class diagram:

NaiveBayes

density

smoothing
xt

model

PipeOperator Model

NaiveBayesModel

Double XTSeries Multi BayesModelNaive

Likelihood

Density

Bin BayesModelNaive

1

2+

1

1 1

1 likelihoodSet

The UML class diagram for the Naïve Bayes classifier

Training
The objective of the training phase is to build a model consisting of the likelihood for 
each feature and the class prior. The likelihood for a feature is identified as:

•	 The number of occurrences k of this features for N > k observations in case of 
binary features or counters

•	 The mean value for all the observations for this features in the case of 
numeric or continuous features

It is assumed for the sake of this test case that the features, technical analysis 
indicators price, volume, and volatility are conditionally independent. This 
assumption is not actually correct.

Conditional dependency
Recent models, known as Hidden Naïve Bayes (HNB), relax the 
restrictions on the independence between features. The HNB 
algorithm uses conditional mutual information to describe the 
interdependency between some of the features [5:8].
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Let's write the code to train the multinomial Naïve Bayes. The first step is to define 
the likelihood for each feature using historical data. The Likelihood class has the 
following attributes:

•	 The label for the observation, label
•	 An array of tuple Laplace or Lidstone smoothed mean and standard 

deviation, muSigma
•	 The prior class prior that computes p(c)

As with any code snippet presented in this book, the validation of class parameters and 
method arguments are omitted in order to keep the code readable. The Likelihood 
class is defined as follows:

type Density = (Double*) => Double //1
type XYTSeries = Array[(Double, Double)]
val MINLOGARG = 1e-32
val MINLOGVALUE = -MINLOGARG
class Likelihood[T <% Double](val label: Int, val muSigma: XYTSeries, 
prior: Double) { //2
  def score(obs: Array[T], density: Density): Double =
    (obs, muSigma).zipped
                    .foldLeft(0.0)((post, xms) => {
                     val mean = xms._2._1
                     val stdDev = xms._2._2
                     val _obs = xms._1
       val prob = density(mean, stdDev, _obs)
       post + Math.log(if(prob< MINLOGARG) MINLOGVALUE else prob)
  }) + Math.log(prior) //3

}

The functions of the Density type compute the probability density for the values of 
a feature (line 1). The method takes an undefined number of arguments: the mean, 
the standard deviation, and the input value for the Gaussian distribution, the mean 
and input value {0, 1} for the Bernoulli distribution. The default probability density 
function is the normal distribution implemented by Stats.gauss.
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The parameterized, view-bounded class, Likelihood, has two purposes:

•	 Define the model extracted from training (likelihood for each feature and the 
class prior) in the constructor (line 2)

•	 Compute the score of a new observation as part of the classification process 
score (line 3). The computation of the log of the likelihood uses a density 
method of the type Density, which is an argument of the score method. As 
seen in the next section, the density can be either a Gaussian or a Bernoulli 
distribution. The score method uses the Scala's zipped method to merge the 
observation values with the labeled output.

The next step is to define the BinNaiveBayesModel model for a two-class 
classification scheme. The two-class model consists of the two Likelihood instances: 
positives for the label UP (value==1) and negatives for the label DOWN (value== 
0). In order to make the model generic, we created NaiveBayesModel, an abstract 
class that can be extended as needed to support both the Binomial and Multinomial 
Naïve Bayes models, as follows:

abstract class NaiveBayesModel [T <% Double](density: Density) {
  def classify(values: DblVector): Int
}
class BinNaiveBayesModel [T <% Double](positives: Likelihood, 
negatives: Likelihood, density: Density) extends NaiveBayesModel [T]( 
density) {
  override def classify(x: Array[T]): Int =
    if (positives.score(x,density) > negatives.score(x,density)) 1
    else 0
}

The classification is executed by the classify method called by the |> operator in 
the Naïve Bayes classifier. It returns 1 for the class containing the positive cases and 
0 for the negative.

Model validation
The parameters of the Naïve Bayes model (likelihood) are computed 
through training and the model value is instantiated regardless of 
whether the model is actually validated in this example. A commercial 
application would require the model to be validated using a 
methodology such as the K-fold validation and F1 measure. (Refer to 
the Design template for classifiers section in Appendix A, Basic Concepts.)
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The multinomial Naïve Bayes model, defined by the MultiNaiveBayesModel class is 
very similar to the BinNaiveBayesModel class:

class MultiNaiveBayesModel[T <% Double](likelihoodXs: 
List[Likelihood[T]], density: Density) extends NaiveBayesModel[T]
(density) {
  override def classify(x: Array[T]): Int = 
    likelihoodXs.sortWith( (p1,p2) => p1.score(x, density) > 
p2.score(x, density)).head.label
}

The multinomial Naïve Bayes model differs from the binomial version in the 
following ways:

•	 The likelihood is defined as a list, likelihoodXs (one likelihood per class)
•	 The runtime classification sorts the class by the log likelihood (sortWith), 

selects the class with the highest score, and returns the class ID

Finally, the Naïve Bayes classifier is implemented by the NaiveBayes class. It 
implements the training and runtime classification using the Naïve Bayes formula. 
Any supervised learning model needs to be validated. In order to force the developer 
to define a validation for any new supervised learning technique, the class inherits 
from the Supervised trait that declares the validation method, validate:

trait Supervised[T] {
  def validate(xt: XTSeries[(Array[T],Int)], tpClass:Int): Double
}

The validate method takes a labeled time series xt as an array of tuples 
(observation, class label) and the tpClass index that contains the true positives  
(that is, increase in the stock price) outcome. The method returns an F1-measure.

Besides inheriting the Supervised trait, the NaiveBayes class inherits the 
PipeOperator trait so that it can be integrated into a generic workflow as  
one of the computation units.

The attributes of the multinomial Naïve Bayes are as follows:

•	 The smoothing formula (Laplace, Lidstone, and so on): smoothing
•	 The labeled training set defined as a time series: xt
•	 The probability density function: density
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The NaiveBayes class is defined as follows:

Class NaiveBayes[T <% Double](smoothing: Double, xt: 
XTSeries[(Array[T], Int)], density: Density) extends PipeOperator[XTSe
ries[Array[T]], Array[Int]] with Supervised[T] {

  val model = BinNaiveBayesModel[T](train(1),train(0),density) //1
  def train(label:Int)(implicit f: Array[T] => DblVector): 
Likelihood[T] = {  //2
    val xi = xt.toArray
    val values= xi.filter( _._2 == label).map(x => f(x._1) )
    val dim = xi(0)._1.size
    val vt = XTSeries[DblVector](values.toArray) //3
    val muStdDev = statistics(vt).map(stat => 
               (stat.lidstoneMean(smoothing, dim), stat.stdDev))
     Likelihood(label, muStdDev, values.size.toDouble/xi.size) //4
  }
  …

The classifier uses the binomial Naïve Bayes model, BinNaiveBayesModel (line 1).  
The training process is implemented in the constructor by invoking the private 
train method (line 2). The method relies on an implicit conversion, f: Array[T] 
=> DblVector, because of the Array type erasure. The main reason for this is to hide 
the details of the model and its training from the client code. We cannot assume that 
the user of the model is the same person as the creator of the model.

Training and class instantiation
There are several benefits of allowing the instantiation of the Naïve 
Bayes mode only once when it is trained. It prevents the client code from 
invoking the algorithm on an untrained or partially trained model, and it 
reduces the number of states of the model (untrained and trained). It is an 
elegant way to hide the details of the training of the model from the user.

The train method takes the labeled observations (observations or label) as input. 
The vt time series is extracted (line 3) and the likelihoods are calculated by counting 
the positive and negative labels, computing the mean, corrected with the Lidstone 
smoothing formula (line 4). The lidstoneMean method and standard deviation, 
stdDev, use the statistics method of the XTSeries singleton instance.

The NaiveBayes class also defined the runtime classification method |> and the  
F1-validation methods. Both methods are described in the next section.
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Handling missing data
Naïve Bayes has a no-nonsense approach to handling missing data. 
You just ignore the attribute in the observations for which the value 
is missing. In this case, the prior for this particular attribute for these 
observations is not computed. This workaround is obviously made 
possible because of the conditional independence between features.

Classification
The likelihood and class prior that have been computed through training is used for 
validating the model and classifying new observations.

The score represents the log of likelihood estimate (or the posterior probability), 
which is computed as the summation of the log of the Gaussian distribution using 
the mean and standard deviation, extracted from the training phase and the log of  
the likelihood class.

The Naïve Bayes classification using Gaussian distribution is illustrated using two 
classes, C1 and C2, and a model with two features (x and y):

C
1

C
2

Gaussian distribution

of feature x

Gaussian distribution

of feature y

y

x

Illustration of the Gaussian Naive Bayes using a 2-dimensional model

The Gaussian mixture is particularly suited for modeling datasets for which 
the features have large sets of discrete values or are continuous variables. The 
conditional probabilities for the feature x is described by the normal probability 
density function [5:9].
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Naïve Bayes classification using Gaussian density
For a Lidstone or Laplace smoothed mean µ' and a standard deviation σ, 
the log likelihood of a posterior probability is defined as:
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In this example, we used the Gaussian distribution as our probability density 
function as defined in the Stats object, which was introduced in Chapter 2, Hello 
World!. The implementation of the computation of the Gaussian probability density 
is quite simple, shown as follows:

object Stats {
  final val INV_SQRT_2PI = 1.0/Math.sqrt(2.0*Math.PI)
  def gauss(mu: Double, sigma: Double, x:Double) : Double = {
    val y = x - mu
    INV_SQRT_2PI/sigma * Math.exp(-0.5*y*y/sigma*sigma)
  }
  def gauss(x: Double*): Double = gauss(x(0), x(1), x(2))
  …
  }

The second version of the Gaussian density is required to handle the Density type: 
(Double, Double, Double) => Double.

Finally, the classification method is implemented as the pipe operator |> of the 
NaiveBayes class. The classification model and the density function are provided  
at runtime as attributes of the class:

def |> : PartialFunction[XTSeries[Array[T]], Array[Int]] = {
  case xt: XTSeries[Array[T]] if(xt != null && xt.size > 0 && model != 
None) => xt.toArray.map( model.classify( _))}

Labeling
The most critical element in the training of a supervised learning algorithm is the 
creation of labeled data. Fortunately, in this case, the label (or expected class) can 
be automatically generated. The objective is to predict the direction of the price of 
a stock for the next trading day, taking into account the average price, volume, and 
volatility over the last n days.
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The first step is to extract the average price, volume, and volatility for each  
stock during the period of Jan 1, 2000 and Dec 31, 2014 with daily and weekly  
closing prices. Let's use the simple moving average to compute these averages  
for the [t-n, t] window.

First, the extractor function extracts the closing, high, and low prices, and volume 
for each trading day, using the toDouble and % operators described in the Data 
extraction and Data sources section in Appendix A, Basic Concepts, as follows:

val extractor = toDouble(CLOSE)  //stock closing price
               :: ratio(HIGH, LOW) //volatility (HIGH-LOW)/HIGH
               :: toDouble(VOLUME)  //daily stock trading volume
               ::List[Array[String] =>Double]()

Secondly, the data source extractor outputs the four statistics for each stock (line 
1) for which the average for a window period is computed (line 3) using a simple 
moving average mv (line 2):

val xs = DataSource(symbol, path, true) |> extractor //1
val mv = SimpleMovingAverage(period)  //2
    
val ratios = xs.map(x => { //3
   val xt =  mv get x,toArray 
   val zValues = x.drop(period).zip(xt.drop(period))
   zValues.map(z => if(z._1 > z._2) 1 else 0).toArray  //4
})
var prev = xs(0)(period)
val label = xs(0).drop(period+1).map( x => { //5
   val y = if( x > prev) 1 else 0
   prev = x; y
}).toArray
ratios.transpose.take(label.size).zip(label)  //6

The Scala's drop method is used to shift the time series to compute the average of the 
three variables: price, toDouble(CLOSE); volume, toDouble(VOLUME); and volatility, 
ratio(HIGH, LOW) (line 4). The labeled data, direction of the price action for the 
next trading day, is added to the three ratios (line 5). Finally, the array is transposed 
to extract the list of tuples (list of UP/DOWN values for each feature and price 
direction for next trading day/labeled data) (line 6).
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The labeled data extracted from the input CSV file is used in the training and 
validation of the time series using the Naïve Bayes classifier:

val trainValidRatio = 0.8
val period = 10

val labels = XTSeries[(Array[Int], Int)](input.map(x =>
                                (x._1.toArray, x._2)).toArray) //7
val numObsToTrain  = (trainValidRatio*labels.size).floor.toInt //8
val nb = NaiveBayes[Int](labels.take(numObsToTrain)) //9
validate(labels.drop(numObsForTrains+1), nb) //10

The original labeled dataset, labels, is split between training and validation labeled 
data (line 7) using the trainValidRatio ratio (line 8). The NaiveBayes constructor 
initializes the model through training (line 9). Finally, the validate method returns 
the F1 measure for the validation test (line 10).

Results
The next chart plots the value of the F1 measure of the predictor of the direction of 
the IBM stock using price, volume, and volatility over the previous n trading days, 
with n varying from 1 to 12 trading days:

A graph of the F1-measure for the validation of the Naïve Bayes model
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The preceding chart illustrates the impact of the value of the averaging period 
(number of trading days) on the quality of the multinomial Naïve Bayesian 
prediction, using the value of stock price, volatility, and volume relative to their 
average over the averaging period.

From this experiment, we conclude that:

•	 The prediction of the stock movement using the average price, volume, and 
volatility is not very good. The F1 measure for the models using weekly (with 
respect to daily) closing prices varies between 0.68 and 0.74 (with respect to 
0.56 and 0.66).

•	 The prediction using weekly closing prices is more accurate than the 
prediction using the daily closing prices. In this particular example, the 
distribution of the weekly closing prices is more reflective of an intermediate 
term trend than the distribution of daily prices.

•	 The prediction is somewhat independent of the period used to average  
the features.

Multivariate Bernoulli classification
The previous example uses the Gaussian distribution for features that are essentially 
binary, {UP=1, DOWN=0}, to represent the change in value. The mean value is 
computed as the ratio of the number of observations for which xi = UP over the total 
number of observations.

As stated in the first section, the Gaussian distribution is more appropriate for either 
continuous features or binary features for very large labeled datasets. The example is 
the perfect candidate for the Bernoulli model.

Model
The Bernoulli model differs from Naïve Bayes classifier in that it penalizes the 
features x, which do not have any observations; the Naïve Bayes classifier ignores 
them [5:10].

The Bernoulli mixture model
For a feature function fi, with fi = 1 if the feature is observed, and a value 
of 0 if the feature is not observed:
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Implementation
The implementation of the Bernoulli model consists of modifying the Likelihood.
score scoring function by using the Bernoulli density defined in the Stats object:

object Stats {
  def bernoulli(mean: Double, p: Int): Double = mean*p + 
(1-mean)*(1-p)
  def bernoulli(x: Double*): Double = bernoulli(x(0), x(1).toInt)
…

The first version of the Bernoulli algorithm is the direct implementation of the 
mathematical formula. The second version uses the signature of the Density  
(Double*) => Double type.

The mean value is the same as in the Gaussian version. The binary feature is 
implemented as an Int type with the value UP =1 (with respect to DOWN= 0) for the 
upward (with respect to downward) direction of the financial technical indicator.

Naïve Bayes and text mining
The multinomial Naïve Bayes classifier is particularly suited for text mining.  
Naïve Bayes is used to classify the following entities:

•	 E-mails as legitimate versus spam
•	 Business news stories
•	 Movie reviews and scoring
•	 Technical papers as per field of expertise

This third use case consists of predicting the direction of a stock, Tesla Motors Inc, 
(ticker symbol: TSLA) give the financial news. The features are the frequency of 
occurrence of some specific terms related to the stock. It is unclear how fast the 
investor or trader reacts to the news and influence, if any, of the value of a stock. 
Therefore, the delayed response time, as depicted in the following chart, should  
be a feature of the proposed model:
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The feature market response delay would play a role in the training, only if the 
variance of the observations is significant. The distribution of the frequencies of the 
delay in the market response to any newsworthy articles regarding TSLA shows that 
the stock prices react within the same day in 82 percent of the case, as seen here:

The frequency peak for a market response delay of 1.75 days can be explained by the 
fact that some news are released over the weekend and investors have to wait till the 
following Monday to impact the stock price. The second challenge is to assign any 
shift of stock price to a specific news release, taking into account that some news can 
be redundant and simultaneous.



Naïve Bayes Classifiers

[ 158 ]

Therefore, the model features for predicting the stock price, prt+1, are the relative 
frequency, fi, of occurrence of a term Ti within a time window [t-n, t], where t and n 
are trading days.

The following graphical model formally describes the causal relation or conditional 
dependency of the direction of the stock price between two consecutive trading 
sessions t and t+1, given the relative frequency of appearance of some terms in  
the media:
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The Bayesian model for the prediction of stock movement given financial news

For this exercise, the observation sets are the corpus of news feeds and articles 
released by the most prominent financial news organizations, such as Bloomberg 
or CNBC. The first step is to devise a methodology to extract and select the most 
relevant terms associated with a specific stock.

Basics of information retrieval
A full discussion of information retrieval and text mining is beyond the scope of this 
book [5:11]. For the sake of simplicity, the model will rely on a very simple model for 
extracting relevant terms and computing their relative frequency. The following 10-
step sequence of actions describe one of numerous methodologies to extract the most 
relevant terms from a corpus:

1.	 Create or extract the timestamp for each news article.
2.	 Extract the title, paragraph, and sentences of each article using a  

Markovian classifier.
3.	 Extract the terms from each sentence using regular expressions.
4.	 Correct terms for typos using a dictionary and metric such as the  

Levenstein distance.
5.	 Remove the nonstop words.
6.	 Perform stemming and lemmatization.
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7.	 Extract bags of words and generate a list of n-grams (as a sequence of n terms).
8.	 Apply a tagging model build using a maximum entropy or conditional 

random field to extract nouns and adjectives (such as NN, NNP, and so on).
9.	 Match the terms against a dictionary that supports senses, hyponyms, and 

synonyms, such as WordNet.
10.	 Disambiguate word sense using DBpedia [5:12].

Text extraction from the web
The methodology discussed in this section does not include 
the process of searching and extracting news and articles 
from the Web that requires additional steps such as searching, 
crawling, and scraping [5:13].

Implementation
Let's apply the text mining methodology template to predict the direction of a stock, 
given the financial news. The algorithm relies on a sequence of 8 simple steps:

1.	 Extracting all news with a reference to a specific stock or company in the 
news feed.

2.	 Extracting the timestamp or date of the article using a regular expression.
3.	 Grouping all the news articles related to the stock for a specific date t into a 

document Dt.
4.	 Ordering the documents Dt as per the timestamp.
5.	 Extracting the terms {Ti,D} from each sentence of the document Dt and 

ranking them by their relative frequency.
6.	 Aggregating the terms {Tt,i} for all the documents sharing the same release 

date t.
7.	 Computing the relative frequency, rtf, of each term, {Tt,i}, for the date t, as the 

ratio of number of its occurrences in all the articles released at t to the total 
number of its occurrences of the term in the entire corpus.

8.	 Normalizing the relative frequency for the average number of articles per 
date, nrtf.
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The relative term frequency for term ti with nia occurrences in 
article a released on the date Dt is given as:
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Extraction of terms
First, let's define the features set for the financial terms as the NewsArticles class 
parameterized for the date type T. For the sake of simplicity, the type of date value is 
explicitly viewbounded to Long. The NewsArticles class is a container of the news 
articles and press releases relevant to a specific stock. At its core, a news article is 
defined by its release or publication, and the list of tuple of terms and their relative 
frequency. The NewsArticles class is defined as follows:

@implicitNotFound("NewsArticles. Ordering not explicitly defined")
class NewsArticles[T <% Long](implicit val order: Ordering[T]) {
   val articles = new HashMap[T, Map[String, Double]]
   …
}

The @implicitNotFound annotation
I recommend using the implicitNotFound annotation for 
every implicit class and method parameter. A declaration 
may be obvious to one software developer but not obvious to 
another developer.

The NewsArticles class uses the mutable HashMap data structure to manage the set 
of articles. An article is defined by:

•	 Its release date (type T)
•	 Its map of tuples {term contained in the article, relative frequency (or weight) of the 

term}, wTerms

The weight of a term is computed as the ratio of the number of occurrences of this 
term in the article, to the total number of occurrences in the entire corpus of articles 
related to the stock.
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The implicit Ordering class parameter is required for sorting.

The map articles is populated with the overloaded operator +=:

def += (date: T, wTerms: Map[String, Double]): Unit = { //1
  def merge(m1: Map[String, Double], m2: Map[String, Double]): 
Map[String, Double] = { //2
    (m1.keySet ++ m2.keySet).foldLeft(new HashMap[String, Double])((m, 
x) => {
       var wt = 0.0
       if(m1.contains(x)) wt += m1(x)
       if(m2.contains(x)) wt += m2(x)
       m.put(x, wt)
       m 
    }).toMap
  }
  articles.put(date, if( articles.contains(date))  
    merge(articles(date), wTerms) else wTerms) //3
}

The += method adds new sets (mutable hash map) of pairs (terms, relative 
frequency), wTerms, released at a specific date, to the existing map of news articles 
(line 1). The terms related to different articles from the same date are merged using 
the local merge function (line 2). Finally, the list of key-value pairs (term, frequency) 
is ordered by their timestamp of the type T.

The second method, toOrderedArray, consists of ordering the articles per their 
release date:

def toOrderedArray: Array[(T, Map[String, Double])] = articles.
toArray.sortWith( _._1 < _._1)

Scoring of terms
The scoring of the terms is actually performed by the TermsScore class, 
parameterized by date and the score method:

class TermsScore[T <% Long](toDate: String =>T, toWords: String => 
Array[String], lexicon: Map[String, String])(implicit val order: 
Ordering[T]) {
   def score(corpus: Corpus): Option[NewsArticles[T]]
}
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The TermsScore class parameterized for the type of release date has three parameters:

•	 A toDate function to extract the date from each news article. The function can 
be implemented as a regular expression or a group of regular expressions.

•	 A toWords function to extract the nonstop terms from the content of the 
article. The function can be quite elaborate, as described in the previous 
section. It may require creating classifiers to extract sentences, n-grams,  
and tags.

•	 A lexicon function that simulates the lemmatization and stemming of the 
most common terms. The lexicon function is implemented as a map that 
attaches a semantic equivalent to each term as a poor man's lemmatization. 
For example, "China", "Chinese", and "Shanghai" are semantically associated 
to the term "China".

The type for date T is view bounded by the Long type because it is assumed that any 
date can be potentially converted into time in milliseconds. The Ordering[T] class is 
provided as an implicit attribute to order the news articles as per their release date.

The relative frequency of a term t is computed arbitrarily, as the ratio of the number 
of occurrences of t for a specific date to the total number of terms.

Let's look at the scoring method:

type Corpus = (String, String, String) //1
def score(corpus: Corpus): Option[NewsArticles[T]] = {  //2
  val docs = rank(corpus)

  val cnts = docs.map(doc => (doc._1,count(doc._3)) )//3
  val totals = cnts
                  .map(_._2)  //4
                  .foldLeft(Counter[String])((s,cnt)=>s ++ cnt) 
  val articles = NewsArticles[T]
  cnts.foreach(cnt =>articles +=(cnt._1,(cnt._2/totals).toMap))
  articles
  …

The score method processes the training set or corpus of the news articles related to 
a stock and returns a set of NewsArticles instances.

The corpus type (line 1) defines the three essential components of a news article: 
a timestamp, a title, and a body or content. The rank method (line 2) extracts the 
release date from each news article and orders them as per increasing date.
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The frequency of terms is computed for each document or group of news articles 
associated with a date (line 3) using the count method. The count method matches 
each term extracted from the news article to the entries of the lexicon map. The 
counters of the Counter: Map[String, Int] type collect the number of occurrences 
of each term. The next instruction (line 4) aggregates the counts for the entire corpus 
that is used to compute the relative frequencies (line 5).

The rank method uses a sequence of Scala methods map and sortWith to order the 
articles as per date (line 6):

def rank(corpus: Corpus): Option[CorpusType[T]] = {
   corpus.map(doc => (toDate(doc._1.trim), doc._2, doc._3)))
         .sortWith( _._1 < _._1)  //6
}

The scoring method is protected by a Scala exception handler (line 7). Finally, the 
count method matches a term with an entry in the lexicon and updates the count  
if a match is found (line 8):

def count(term: String): Counter[String] = 
  toWords(term).foldLeft(new Counter[String])((cnt, w) => 
    if( lexicon.contains(w)) cnt + lexicon(w)  //8
    else cnt  
  )

Testing
For testing purpose, let's select the news articles mentioning Tesla Motors and its 
ticker symbol TSLA over a period of two months.

Retrieving textual information
First, you need to define the three parameters of the scoring TermsScore class: 
toDate, toWords, and lexicon.

The private toDate method converts a string into a date defined as a Long data type:

def toDate(date: String): Long = {
  val idx1 = date.indexOf(".")
  val idx2 = date.lastIndexOf(".")
  if(idx1 != -1 && idx2 != -1) 
    (date.substring(0, idx1) + date.substring(idx1+1, idx2)).toLong
  else -1L
}
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The toWords method uses simple regular expressions, regExpr, to replace  
any punctuation into a . character (line 1), used as a word delimiter (line 2).  
All words shorter than three characters are discounted (line 3):

def toWords(txt: String): Array[String] = {
  val regExpr = "['|,|.|?|!|:|\"]"  
  txt.trim.toLowerCase
          .replace(regExpr,"&@") //1
          .split("&@")  //2
          .filter(_.length > 2) //3
}

Finally, the lexicon contains the terms that need to be monitored. In this particular 
period of time, the news media were looking for any announcement regarding Tesla 
Motors' foray into the Chinese market, issues with the batteries, and any plan to 
deploy electrical vehicle charger stations. The set of terms regarding these issues is 
limited, and therefore, the lexicon can be built manually:

val LEXICON = Map[String, String](
  "tesla"->"Tesla","tsla"->"TSLA","china"->"China","chinese"-> 
"China", ....) 

The semantic analysis
This example uses a very primitive semantic map (lexicon) for the 
sake of illustrating the benefits and inner workings of the multinomial 
Naïve Bayes algorithm. Commercial applications involving sentiment 
analysis or topic analysis require a deeper understanding of semantic 
associations and extraction of topics using advanced generative models, 
such as the latent Dirichlet allocation.

The client code to train and validate the model executes the entire workflow,  
from extracting and scoring the news articles and press releases to generating  
the normalized labeled data and computing the F1 measure.

The output (or labeled data) TSLA_QUOTES consists of the stock price for Tesla Motors:

val TSLA_QUOTES = Array[Double](250.56, 254.84, … )
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The first step is to load and clean all the articles (corpus) defined in the pathname 
directory (line 1). This task is performed by the DocumentsSource class (described  
in the Extraction of documents section under Scala programming in Appendix A,  
Basic Concepts):

val corpus: Corpus = DocumentsSource(pathName) |> {  //1
val ts = new TermsScore[Long](toDate, toWords, LEXICON)
ts.score(corpus) match { //2
  case Some(terms) => {
    var prevQ = 0.0
    val diff = TSLA_QUOTES.map( q => {
       val delta = if(q > prevQ) 1 else 0
       prevQ = q; delta
    })
    val columns = LEXICON.values.foldLeft(new HashSet[String])((hs, 
key) => {hs.add(key); hs}).toArray
    val fqLabels = terms.toOrderedArray  //3
                        .zip(diff)  //4
                        .map( x => (x._1._2, x._2))
                        .map(lbl =>(columns  //5
                        .map(f =>if( lbl._1.contains(f) ) lbl._1(f)  
                                 else 0.0), lbl._2))
    val xt = XTSeries[(Array[Double], Int)](fqLabels)
    val nb = NaiveBayes[Double](xt)  //6
    ….

Next, the TermsScore.score method extracts and scores the more relevant terms 
from the corpus, using the normalized relative frequency defined in steps 7 and 8  
of the information retrieval process (line 2). The terms are then ordered by date  
(line 3) and zipped with the labels (direction of the next trading day's stock price) 
(line 4). The lexicon is used to generate the final labeled observations (features = terms 
relative frequency, label= direction of stock price) (line 5). Finally, the model is built by 
invoking the NaiveBayes.apply constructor (line 6), which consists of running the 
algorithm through the training set.
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Evaluation
The following chart describes the frequency of occurrences of some of the terms 
related to either Tesla Motors or its stock ticker TSLA:

Plot of the relative frequency of a partial list of stock-related terms

The next chart plots the labeled data, which is the direction of the stock price for the 
day following the press release(s) or news article(s):

Plot of the stock price and movement for Tesla Motors stock



Chapter 5

[ 167 ]

This chart displays the historical price of the stock TSLA with the direction (UP or 
DOWN). The classification of 15 percent of the labeled data selected for validation has 
an F1 measure of 0.71. You need to keep in mind that no preprocessing or clustering 
was performed to isolate the most relevant features/keywords. The keywords were 
selected according the frequency of their occurrence in the financial news.

It is fair to assume that some of the keywords have a more significant impact on 
the direction of the stock price than others. One simple but interesting exercise is to 
record the value of the F1 score for a validation for which only the observations that 
have a high number of occurrences of a specific keyword are used, as shown here:

Bar chart representing predominant keywords in predicting TSLA stock movement

The bar chart shows that the terms China, representing all the mentions of the 
activities of Tesla Motors in China, and Charger, which covers all the references to 
the charging stations, have a significant positive impact on the direction of the stock 
with a probability averaging 75 percent. The terms under the category Risk have a 
negative impact on the direction of the stock with a probability of 68 percent, or a 
positive impact of the direction of the stock with a probability of 32 percent. Within 
the remaining eight categories, 72 percent of them were unusable as a predictor of 
the direction of the stock price.

This approach can be used for selecting features as an alternative to mutual 
information for using more elaborate classifiers. However, it should not be regarded 
as the primary methodology for the features selection, but instead as a by-product 
of the Naïve Bayes in case a very small number of features (less than 10 percent) are 
predominant in the model. This result can always be validated by computing the 
principal components, for which the normalized cumulative variance (eigenvalues) 
of the most predominant features is 90 percent or more.
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Pros and cons
The examples selected in this chapter do not do justice to the versatility and accuracy 
of the Naïve Bayes family of classifiers.

Naïve Bayes classifiers are simple and robust generative classifiers that rely on prior 
conditional probabilities to extract a model from a training dataset. The Naïve Bayes 
has its benefits, as mentioned here:

•	 Simple implementation and easy to parallelize
•	 Very low computational complexity: O((n+c)*m), where m is the number of 

features, C the number of classes, and n the number of observations
•	 Handles missing data
•	 Supports incremental updates, insertions, and deletions

However, Naïve Bayes is not a silver bullet. It has the following disadvantages:

•	 The assumption of the independence of features is not practical in the  
real world

•	 It requires a large training set to achieve reasonable accuracy
•	 It contains a zero-frequency problem for counters

Summary
There is a reason why the Naïve Bayes model is the first supervised learning 
technique you learned: it is simple and robust. As a matter of fact, this is the first 
technique that should come to mind when you are considering creating a model 
from a labeled dataset, as long as the features are conditionally independent.

This chapter also introduced you to the basics of text mining as an application of 
Naïve Bayes.

Despite all its benefits, the Naïve Bayes classifier assumes that the features are 
conditionally independent, a limitation that cannot be always overcome. In the 
case of document classification, Naïve Bayes assumes incorrectly that terms 
are semantically independent: the two entities' age and date of birth are highly 
correlated. The discriminative classifiers described in the next few chapters  
attempt to address some of the Naïve Bayes's disadvantages [5:14].

However, this chapter does not address temporal dependencies, sequence of events, 
or conditional dependencies between observed and hidden features. These types of 
dependencies necessitate a different approach to modeling that is the subject of the 
next chapter.



Regression and 
Regularization

In the first chapter, we briefly introduced the binary logistic regression (binomial 
logistic regression for a single variable) as our first test case. The purpose was to 
illustrate the concept of discriminative classification. There are many more regression 
models, starting with the ubiquitous ordinary least-square linear regression and the 
logistic regression [6:1].

The purpose of regression is to minimize a loss function, with the residual sum 
of squares (RSS) being one that is commonly used. The problem of overfitting 
described in the Overfitting section of Chapter 2, Hello World!, can be addressed by 
adding a penalty term to the loss function. The penalty term is an element of the 
larger concept of regularization.

The first section of this chapter will describe and implement the linear least-squares 
regression. The second section will introduce the concept of regularization with an 
implementation of the Ridge regression.

Finally, the logistic regression will be revisited in detail from the perspective of a 
classification model.

Linear regression
Linear regression is by far the most widely used, or at least the most commonly 
known, regression method. The terminology is usually associated with the concept of 
fitting a model to data. Linear regression can be implemented using the least squares 
method. Practically, the least squares method entails the minimization of the sum of 
the squares of the error between the observed data and the actual model.
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The least squares problems fall into two categories:

•	 Ordinary least squares
•	 Nonlinear least squares

One-variate linear regression
Let's start with the simplest form of linear regression, which is the single variable 
regression, in order to introduce the terms and concepts behind linear regression.  
In its simplest interpretation, the one-variate linear regression consists of fitting a  
line to a set of data points {x, y}.

Single variable linear regression is given by the following formula:
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Here, w1 is the slope, w0 is the intercept, f is the linear function that 
minimizes the RSS, and (xj, yj) is a set of n observations.

The RSS is also known as the sum of squared errors (SSE). The mean squared error 
(MSE) for n observations is defined as the ratio RSS/n.

Terminology
The terminology used in the scientific literature regarding regression 
is a bit confusing at times. Regression weights are also known as 
regression coefficients or regression parameters. The weights are 
referred to as w in formulas and the source code throughout the 
chapter, although β is also used in reference books.

Implementation
Let's create a parameterized class SingleLinearRegression[T] to implement 
the formula described in the previous section. The class implements the data 
transformation PipeOperator (refer to the Design template for classifiers section  
in Appendix A, Basic Concepts).

class SingleLinearRegression[T <% Double](xt: XTSeries[(T, T)])
(implicit g: Double => T) extends PipeOperator[Double, T] {
  type XY = (Double, Double)
  …
}
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Model instantiation
The model parameters are computed through training and the value 
model is instantiated regardless of whether the model is actually 
validated. A commercial application requires the model to be validated 
using a methodology such as the K-fold validation. (Refer to the Design 
template for classifiers section Appendix A, Basic Concepts.)

The application code must provide an implicit conversion g from Double to the 
class type parameter, T. The training generates the model defined as the regression 
weights, the tuple (slope, intercept), in the case of single variable linear regression:

val model: Option[XY] = {
  val data = xt.toArray
               .map(x => Array[Double](x._1, x._2))  //1
  val regr = new SimpleRegression(true)  
  regr.addData(data)  //2
  Some((regr.getSlope, regr.getIntercept))  //3
}

The tuple of regression weights or coefficients for the model are computed using 
the SimpleRegression class from the stats.regression package of the Apache 
Commons Math library. The time series is converted to a matrix of double values, 
data (line 1), which is used to initialize the instance of SimpleRegression (line 2). The 
model is initialized with the slope and intercept computed during the training (line 3).

private vs. private[this]
A private value or variable can be accessed only by all the instances 
of a class. A value declared private[this] can be manipulated 
only by this instance. For example, the value model can be accessed 
only by this instance of SingleLinearRegression.

Test case
For our first test case, we compute the single variate linear regression of the price of 
the copper ETF (the ticker symbol: CU) over a period of 6 months (January 1, 2013 to 
June 30, 2013):

val price = DataSource(path, false, true, 1) |> adjClose //1
val xy = price.zipWithIndex
              .map(x => (x._2.toDouble, x._1.toDouble)) //2

val linRegr = SingleLinearRegression(xy) //3
val w1 = linRegr.slope
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val w0 = linRegr.intercept
if( w1 != None ) //4
  Display.show(lsErr(xy.toArray, w1.get, w0.get), logger)
…

The closing price for the CU ETF is extracted from a CSV file (line 1) using a 
DataSource instance (refer to the Data extraction section Appendix A, Basic Concepts). 
The 2-dimension time series is generated by converting the indexes of the time series 
into the x values using the zipWithIndex Scala method (line 2). The regression 
model, linRegr, is trained during instantiation of the SingleLinearRegression 
class (line 3). Once the model is created successfully, the least squared error lsErr  
of the predicted values and the actual values is computed, as follows:

def lsErr(xyt: Array[XY], w1: Double, w0: Double): Double = 
  Math.sqrt(xyt.foldLeft(0.0)((err, xy) => {
     val diff = xy._2 – w1*xy._1 – w0; err + diff*diff
  })/xyt.size)

The original stock price and the linear regression equation are plotted in the 
following chart:

Single variable linear regression – Copper ETF daily price

Although the single variable linear regression is convenient, it is limited to scalar 
time series. Let's consider the case of multiple variables.
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Ordinary least squares (OLS) regression
The ordinary least squares regression computes the parameters w of a linear 
function, y = f(x0, x2 … xd), by minimizing the residual sum of squares. The 
optimization problem is solved by performing vector and matrix operations 
(transposition, inversion, and substitution).

Minimization of the loss function is given by the following formula:
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where wj:0,D is the D regression (or model) parameters (or weights), 
(xi, yi)i:0,n-1 is n observations of vector x and output value y, and f is 
the linear multivariate function, y = f(x0, x1, …,xd, ..).

There are several methodologies to minimize the residual sum of squares (RSS) for a 
linear regression:

•	 Resolution of the set of n equations with d variables (weights) using the 
QR decomposition of the n by d matrix representing the time series of n 
observations of vector of d dimension (d features) with n > d [6:2]

•	 Singular value decomposition on the observations-features matrix, in the 
case where the dimension d exceeds the number of observations n [6:3]

•	 Gradient descent [6:4]
•	 Stochastic gradient descent [6:5]

An overview of these matrix decompositions and optimization techniques can  
be found in the Linear algebra and Summary of optimization techniques sections in 
Appendix A, Basic Concepts.

The QR decomposition generates the smallest relative error MSE for the most 
common least squares problem. The technique is used in our implementation  
of the least squares regression.

Design
The following implementation of the least squares regression leverages the Apache 
Commons Math library implementation of the ordinary least squares regression [6:6].
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Let's create a class, MultiLinearRegression, which inherits the implementation 
of the ordinary least square computation of the Apache Commons Math library 
OLSMultipleLinearRegression. The class is defined as a data transformation 
implementing the PipeOperator, as follows:

class MultiLinearRegression[T <% Double](xt: XTSeries[Array[T]], 
y: DblVector) extends OLSMultipleLinearRegression with 
PipeOperator[Array[T], Double]

The parameterized class takes the following two parameters:

•	 The time series of the variables vector xt (input matrix)
•	 The labeled output values, y, used in training

The model for the linear regression is defined by its weights (or parameters) and its 
residual sum of squares, rss. The RSS is included in the model because it provides 
the client code with important information regarding the accuracy of the underlying 
technique used to minimize the loss function:

case class RegressionModel(val weights: DblVector, val rss: Double)

The relationship between the different components of the least squares regression is 
described in the following UML class diagram:

Implementation
The training is performed during the instantiation of the class MultiLinearRegression 
(refer to the Design template for classifiers section in Appendix A, Basic Concepts):

val model: Option[RegressionModel] = {
   newSampleData(labels, xt.toDblMatrix) //1
   val weights = estimateRegressionParameters
   val wRss =(weights, calculateResidualSumOfSquares) //2
   Some(RegressionModel(wRss._1, wRss._2))
}



Chapter 6

[ 175 ]

The least squares algorithm is initialized with the feature observations, 
xt, and the target data, labels, using the newSampleData method of 
OLSMultipleLinearRegression (line 1).

The model weights are retrieved using estimateRegressionParameters (similarly, 
rss using calculateResidualSumOfSquares) (line 2).

Exception handling
Wrapping up invocation of methods in a third party with a Scala 
exception handler matters for a couple of reasons: it makes debugging 
easier by segregating your code from the third party and it allows your 
code to recover from the exception by re-executing the same function with 
alternative third-party library methods, whenever possible.

The predictive algorithm for the ordinary least squares regression is implemented by 
the data transformation |>. The method predicts the output value given model and 
an input value x:

def |> : PartialFunction[Feature, Double] = {
  case x: Feature if(model!=None && x.size==model.get.size-1) =>{
    val w = model.get.weights
    x.zip(w.drop(1)).foldLeft(w(0))((s, z) => s + z._1*z._2))
  }
}

The predictive value is computed by zipping the weight w
1
 to w

n
 with the input vector 

x and then folding the zipped array.

Test case 1 – trending
Trending consists of extracting the long-term movement in a time series. Trend lines can be 
identified using a multivariate least squares regression. The objective of this first test 
is to evaluate the filtering capability of the ordinary least squares regression.
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The regression is performed on the relative price variation of the Copper ETF (ticker 
symbol: CU). The selected features are volatility and volume, and the label or target 
variable is the price change between two consecutive trading sessions y. The volume, 
volatility, and price variation for CU between January 1, 2013 and June 30, 2013 are 
plotted in the following chart:

Chart for price variation, volatility, and trading volume for Copper ETF

Let's write the client code to compute the multivariate linear regression, price change 
= w0 + volatility.w1 + volume.w2: 

val path = "resources/data/chap6/CU.csv"
val src = DataSource(path, true, true, 1) //2
val price = (src |> YahooFinancials.adjClose).toArray  //1
val volatility = src |> YahooFinancials.volatility  //1
val volume = src |> YahooFinancials.volume  //1

val deltaPrice = price.drop(1)
                       .zip(price.take(price.size -1))
                       .map(z => z._1 - z._2) )  //3
val data = volatility.zip(volume)
                     .map(z => Array[Double](z._1, z._2))
val features = XTSeries[DblVector](data.dropRight(1)) //4
val regression = MultiLinearRegression[Double](features, deltaPrice) 
//5
regression.weights match {
  case Some(w) => Display.show(w, logger)
 …
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The daily session adjusted closing price, the session volatility, and the session 
volume for the CU ETF is extracted from a CSV file (line 1) using the DataSource 
transformation (line 2). The array, priceChange, which is the daily price change 
between two consecutive trading sessions is computed by duplicating, shifting,  
and zipping the session closing prices (line 3). The features are computed by  
zipping volatility and the volume time series (line 4). The regression model is  
trained by instantiating the MultiLinearRegression class (line 5) and the  
model weights are displayed using an auxiliary display method (to the logger  
or standard output) (line 6).

The original price change time series and the data predicted by the regression are 
plotted in the following chart:

Price variation and the least squares regression for copper ETF according to volatility and volume

The least squares regression model is defined by the linear function for the 
estimation of price variation as follows:

price(t+1)-price(t) = -0.01 + 0.014 volatility – 0.0042.volume

The estimated price change (the dotted line in the preceding chart) represents 
the long term trend from which the noise is filtered out. In other words, the least 
squares regression operates as a simple low-pass filter as an alternative to some of 
the filtering techniques such as discrete Fourier transform or the Kalman filter for 
dynamic systems (refer to Chapter 3, Data Preprocessing) [6:7].
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Although trend detection is an interesting application of the least squares regression, 
the method has limited filtering capabilities for time series [6:8]:

•	 It is sensitive to outliers
•	 It put a greater weight to the first and last few observations that need to  

be discarded
•	 As a deterministic method, it does not support noise analysis (distribution, 

frequencies, and so on)

Test case 2 – features selection
The second test case is related to features selection. The objective is to discover which 
subset of initial features generates the most accurate regression model, that is, the 
model with the smallest residual sum of squares (RSS) on the training set.

Let's consider an initial set of D features {xi}. The objective is to estimate the subset of 
features {xi

d} that are the most relevant to the set of observations using a least squares 
regression. Each subset of features is associated to an fj(x|wj) model:

Model 0

Model 1

Model 2

Original set of features

4

... ...

The OLS can be used to select the model parameters w if the original set of features  
is small. Performing the regression of each subset of a large original features set is 
not practical.

The features selection can be expressed mathematically as follows:
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Let's consider the following four financial time series over the period from January 1, 
2009 to December 31, 2013:

•	 The exchange rate of Chinese Yuan to US Dollar
•	 The S&P 500 index
•	 The spot price of gold
•	 The 10-year treasury bond price

The problem is to estimate which combination of the three variables S&P 500 index, 
gold price, and 10-year treasury bond price is the most correlated to the exchange 
rate of the Yuan. For practical reasons, we use the Exchange Trade Funds CYN as the 
proxy for the Yuan/US dollar exchange rate (similarly, SPY, GLD, and TLT for S&P 
500 index, the spot price of gold, and the 10-year treasury bond price respectively).

Automation of features extraction
The code in this section implements an ad hoc extraction of features 
with an arbitrary fixed set of models. The process can be easily 
automated with an optimizer (gradient descent, genetic algorithm, 
and so on) using 1/RSS as the objective function to be maximized.

The number of models to evaluate is relatively small, so an ad hoc approach  
to compute the RSS for each combination is acceptable. Have a look at the  
following graph:

Graph of the Chinese Yuan exchange rate, gold, 10-year treasury bond price, and S&P 500 index
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The getRss method implements the computation of the RSS value given a set of 
observations xt and labeled values y:

def getRss(xt: XTSeries[DblVector], y: DblVector): String = {
  val regression = MultiLinearRegression[Double](xt, y) //1
  val buf = new StringBuilder
  regression.weights.get
            .zipWithIndex  //2
            .foreach(w => {
                if(w._2 == 0) buf.append(w._1)
                else buf.append(s" + ${w._1}.x${w._2}") //3
  buf.append(s"RSS: ${(regression.rss.get}").toString
}

The getRss method merely trains the model by instantiating the multilinear 
regression class (line 1), indexes the array of weights (line 2), and creates a text 
representation of the linear regression equation (line 3).

Once the regression model is trained during the instantiation of the 
MultiLinearRegression class, the coefficients of the regression weights and 
the RSS value are printed. The rss method is invoked for any combination of the 
variables ETF, GLD, SPY, and TLT against the label CNY:

val symbols = Array[String]("CNY", "GLD", "SPY", "TLT")
val smoothingPeriod = 16
val movAvg = SimpleMovingAverage[Double](smoothingPeriod)  //4

val input= symbols.map(s=>DataSource(path+s+".csv",true,true, 1))
                  .map( _ |> YahooFinancials.adjClose ) //5
                  .map(x=> movAvg |> XTSeries[Double](x))
val features = input.drop(1)
val featuresList = List[(String, DblMatrix)](
  ("CNY=f(SPY,GLD,TLT)", features.map( _.toArray).transpose),//6
  ("CNY=f(GLD,TLT)", features.drop(1).map( _.toArray).transpose),
   …
}
featuresList.foreach(x => Display.show(x._1 +   
    getRss(XTSeries[DblVector](x._2), input(0)), logger)) //7

The dataset is large (1,260 trading sessions) and noisy enough to warrant filtering using 
a simple moving average with a period of 16 trading sessions, movAvg (line 4). The time 
series are extracted from CSV files using the DataSource class, then smoothed using  
a sequence of Array.map invocations (line 5). The first map extracts the content of  
the files associated to the stock ticker symbol, assuming that the names of the files  
are formatted as path/symbol.csv.
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For the sake of simplicity, the option type returned by the pipe operator is not validated.

The first model using the three variables SPY, GLD, and TLT is created by transposing 
them by the xt.size matrix (line 6). The RSS value is computed by invoking the rss 
method (line 7). The second model using two variables, SPY and TLT, is created by 
filtering out the GLD time series. The process is repeated for all other models. Have a 
look at the following screenshot:

The output results clearly show that the three variable regression CNY=f(SPY, GLD, 
TLT) is the most accurate or fittest model for the CNY time series, followed by CNY 
=f(SPY, TLT). Therefore, the feature selection process generates the features set, 
{SPY, GLD, TLT}.
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Let's plot the model against the raw data:

Ordinary least regression on the Chinese Yuan ETF (CNY)

The regression model smoothed the original CNY time series. It weeded out all but the 
most significant price variation.

However, the RSS does not always provide an accurate visualization of the fitness 
of the regression model. The fitness of the regression model is commonly assessed 
using r2 statistics. The r2 value is a number that indicates how well data fits a 
statistical model.

RSS and r2 statistics are related by the following formulae:
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The implementation of the computation of the r2 statistics is fairly simple. For each 
model fj, the rssSum method computes the tuple {rss, sum of predicted values}:

def rssSum(xt: XTSeries[DblVector], y: DblVector): XY = {
   val regression = MultiLinearRegression[Double](xt, y)
(regression.rss.get, 
   xt.toArray.zip(y).foldLeft(0.0)(s,x) =>
   val d = (x._2 - (regression |>  x._1))
   s + d*d
})
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Finally, the process is repeated for each model and the sum of the predicted values 
for each model is summed (line 8), averaged (line 9), and then used in the r2 formula 
(line 10):

var xsRss = new ListBuffer[Double]()
val tss = featuresList.foldLeft(0.0)((s, x) => { //8
  val _tss = rssSum(XTSeries[DblVector](x._2), input(0))
  xsRss.append(_tss._1)
  s + _tss._2 //9
})/xsRss.size
xsRss.map( 1.0 - _/tss) //10

The graph plotting the r2 value for each model confirms that the three features model 
is the most accurate:

General linear regression
The concept of linear regression is not restricted to polynomial 
fitting models such as y = w0 + w1.x + w2.x2 + …+ wnxn. Regression 
models can also be defined as a linear combination of basis 
functions as ϕj: y = w0 + w1.ϕ1(x) + w2ϕ2(x) + … + wn.ϕn(x) [6:9].
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Regularization
The ordinary least squares method for finding the regression parameters is a specific 
case of the maximum likelihood. Therefore, regression models are subject to the same 
challenge in terms of overfitting as any other discriminative model. You are already 
aware that regularization is used to reduce model complexity and avoid overfitting 
as stated in the Overfitting section of Chapter 2, Hello World!.

Ln roughness penalty
Regularization consists of adding a penalty function J(w) to the loss function (or 
RSS in the case of a regressive classifier) in order to prevent the model parameters 
(or weights) from reaching high values. A model that fits a training set very well 
tends to have many features variable with relatively large weights. This process is 
known as shrinkage. Practically, shrinkage involves adding a function with model 
parameters as an argument to the loss function:

( )( ) ( )
1 2

0

ˆ arg min |
d

n

i iw i
w y f x w J wλ

−

=

 = − + 
 
∑

The penalty function is completely independent from the training set {x,y}. The 
penalty term is usually expressed as a power to the function of the norm of the 
model parameters (or weights), w

d
. For a model of D dimensions, the generic  

Lp-norm is defined as follows:
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Notation
Regularization applies to parameters or weights associated 
to an observation. In order to be consistent with our notation, 
w0 being the intercept value, the regularization applies to the 
parameters w1,…, wd.

The two most commonly used penalty functions for regularization are L1 and L2.
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Regularization in machine learning
The regularization technique is not specific to the linear or logistic 
regression. Any algorithm that minimizes the residual sum of 
squares, such as a support vector machine or feed-forward neural 
network, can be regularized by adding a roughness penalty 
function to the RSS.

The L1 regularization applied to the linear regression is known as the Lasso 
regularization. The Ridge regression is a linear regression that uses the L2 
regularization penalty.

You may wonder which regularization makes sense for a given training set. In 
a nutshell, L2 and L1 regularization differ in terms of computation efficiency, 
estimation, and features selection: [6:10] [6:11]

•	 Model estimation: L1 generates a sparser estimation of the regression 
parameters than L2. For a large nonsparse dataset, L2 has a smaller  
estimation error than L1.

•	 Feature selection: L1 is more effective in reducing the regression weights  
for features with high value than L2. Therefore, L1 is a reliable features 
selection tool.

•	 Overfitting: Both L1 and L2 reduce the impact of overfitting. However, L1 has 
a significant advantage in overcoming overfitting (or excessive complexity of 
a model); for the same reason, it is more appropriate for selecting features.

•	 Computation: L2 is conducive to a more efficient computation model. The 
summation of the loss function and the L2 penalty, w2, is a continuous and 
differentiable function for which the first and second derivative can be 
computed (convex minimization). The L1 term is the summation of |wi|  
and therefore not differentiable.

Terminology
The ridge regression is sometimes called the penalized least 
squares regression. The L2 regularization is also known as 
the weight decay.

Let's implement the ridge regression, and then evaluate the impact of the L2-norm 
penalty factor.
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The ridge regression
The ridge regression is a multivariate linear regression with an L2-norm penalty term:
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The computation of the ridge regression parameters requires the resolution of a 
system of linear equations similar to the linear regression.

The matrix representation of the ridge regression closed form is 
as follows:
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I is the identity matrix and uses the QR decomposition:
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Implementation
The implementation of the ridge regression adds the L2 regularization term to the 
multiple linear regression computation of the Apache Commons Math library.

The methods of RidgeRegression have the same signature as their ordinary least 
squares counterparts. However, the class has to inherit the abstract base class, 
AbstractMultipleLinearRegression, in the Apache Commons Math library  
and override the generation of the QR decomposition to include the penalty term:

class RidgeRegression[T <% Double](xt: XTSeries[Array[T]], y: 
DblVector, lambda: Double) extends AbstractMultipleLinearRegression  
with PipeOperator[Array[T], Double] {
   var qr: QRDecomposition = _
   val model: Option[RegressionModel] = …
   …
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Besides the input time series xt and the labels y, the ridge regression requires the 
lambda factor of the L2 penalty term. The instantiation of the class trains the model. 
The steps to create the ridge regression models are as follows:

1.	 Extract the Q and R matrices for the input values, newXSampleData (line 1).
2.	 Compute the weights using calculateBeta defined in the base class (line 2).
3.	 Return the tuple regression weights, calculateBeta, and the residuals, 

calculateResiduals.

Consider the following code:

val model: Option[(DblVector, Double)] = {
  this.newXSampleData(xt.toDblMatrix)  //1
  newYSampleData(y)
  val _rss = calculateResiduals.toArray.map(x => x*x).sum
  val wRss = (calculateBeta.toArray, _rss) //2
  Some(RegressionModel(wRss._1, wRss._2))
  }

The QR decomposition in the base class, AbstractMultipleLinearRegression, 
does not include the penalty term (line 3); the identity matrix with the lambda factor 
in the diagonal has to be added to the matrix to be decomposed (line 4):

override protected def newXSampleData(x: DblMatrix): Unit =  {
  super.newXSampleData(x)   //3
  val xtx: RealMatrix = getX
  val nFeatures = xt(0).size
  Range(0, nFeatures)
     .foreach(i =>xtx.setEntry(i,i,xtx.getEntry(i,i)+lambda)) //4
  qr = new QRDecomposition(xtx)
}

The regression weights are computed by resolving the system of linear equations using 
substitution on the Q.R matrices. It overrides calculateBeta from the base class:

override protected def calculateBeta: RealVector = 
    qr.getSolver().solve(getY())
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The test case
The objective of the test case is to identify the impact of the L2 penalization on the 
RSS value and then compare the predicted values with the original values.

Let's consider the first test case related to the regression on the daily price variation of 
the Copper ETF (symbol: CU) using the stock daily volatility and volume as features. 
The implementation of the extraction of observations is identical to that of the least 
squares regression:

val lambda = 0.5
val src = DataSource(path, true, true, 1)
val price = src |> YahooFinancials.adjClose
val volatility = src |> YahooFinancials.volatility 
val volume = src |> YahooFinancials.volume //1
val deltaPrice = XTSeries[Double](price.drop(1)
                               .zip(price.take(_price.size -1))
                               .map( z => z._1 - z._2)) //2
val data =  volatility.zip(volume)
                      .map(z => Array[Double](z._1, z._2)) //3
val features = XTSeries[DblVector](data.dropRight(1))
val regression = new RidgeRegression[Double](features, deltaPrice, 
lambda) //4
regression.rss match {
  case Some(rss) => Display.show(rss, logger)
…

The observed data, that is, the ETF daily price and the features (volatility 
and volume) are extracted from the src source (line 1). The daily price change 
deltaPrice is computed using a combination of Scala take and drop methods (line 
2). The features vector is created by zipping volatility and volume (line 3). The 
model is created by instantiating the RidgeRegression class (line 4). The RSS value, 
rss, is finally displayed (line 5).
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The RSS value, rss, is plotted for different values of lambda less than 1.0, as shown 
in the following chart:

Graph of RSS versus Lambda for Copper ETF

The residual sum of squares decreases as λ increases. The curve seems to be  
reaching for a minimum around λ = 1. The case of λ = 0 corresponds to the  
least squares regression.

Next, let's plot the RSS value for λ varying between 1 and 100:

Graph of RSS versus large-value Lambda for Copper ETF
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This time around, the value of RSS increases with λ before reaching a maximum 
of λ > 60. This behavior is consistent with other findings [6:12]. As λ increases, the 
overfitting gets more expensive and therefore, the RSS value increases.

The regression weights can be simply outputted as follows:

regression.weights.get

Let's plot the predicted price variation of the Copper ETF using the ridge regression 
with different values of lambda (λ):

The graph of ridge regression on Copper ETF price variation with variable lambda

The original price variation of the Copper ETF, Δ = price(t+1)-price(t), is plotted  
as λ = 0. The predicted values for λ = 0.8 is very similar to the original data. The 
predicted values for λ = 2 follow the pattern of the original data with a reduction  
of large variations (peaks and troves). The predicted values for λ = 5 correspond to  
a smoothed dataset. The pattern of the original data is preserved but the magnitude 
of the price variation is significantly reduced.

The logistic regression, briefly introduced in the Let's kick the tires section of Chapter 1, 
Getting Started, is the next logical regression model to discuss. The logistic regression 
relies on optimization methods. Let's go through a short refreshment course in 
optimization before diving into the logistic regression.
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Numerical optimization
This section briefly introduces the different optimization algorithms that can 
be applied to minimize the loss function, with or without a penalty term. These 
algorithms are described in greater detail in the Summary of optimization techniques 
section in Appendix A, Basic Concepts.

First, let's define the least squares problem. The minimization of the loss function 
consists of nullifying the first order derivatives, which in turn generates a system of 
D equations (also known as gradient equations), D being the number of regression 
weights (parameters). The weights are iteratively computed by solving the system of 
equations using a numerical optimization algorithm.

The definition of the least squares-based loss function is as follows:
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The generation of gradient equations with a Jacobian J matrix (refer to 
the Jacobian and Hessian matrices section in Appendix A, Basic Concepts) 
after minimization of the loss function L is described as follows:
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Iterative approximation using the Taylor series is described as follows:
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Normal equations using the matrix notation and the Jacobian  matrix is 
described as follows:
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The logistic regression is a nonlinear function. Therefore, it requires the nonlinear 
minimization of the sum of least squares. The optimization algorithms for the 
nonlinear least squares problems can be divided into the following two categories:

•	 Newton (or 2nd order techniques): These algorithms calculate the second 
order derivatives (the Hessian matrix) to compute the regression weights 
that nullify the gradient. The two most common algorithms in this category 
are the Gauss-Newton and the Levenberg-Marquardt methods (refer to the 
Nonlinear least squares minimization section in Appendix A, Basic Concepts). Both 
algorithms are included in the Apache Commons Math library.

•	 Quasi-Newton (or 1st order techniques): First order algorithms do not 
compute but estimate the second order derivatives of the least squares 
residuals from the Jacobian matrix. These methods can minimize any  
real-valued functions, not just the least squares summation. This  
category of algorithms includes the Davidon-Fletcher-Powell and the 
Broyden-Fletcher-Goldfarb-Shannon methods (refer to the Quasi-Newton 
algorithms section in Appendix A, Basic Concepts).

The logistic regression
Despite its name, the logistic regression is a classifier. As a matter of fact, the logistic 
regression is one of the most used discriminative learning techniques because of its 
simplicity and its ability to leverage a large variety of optimization algorithms. The 
technique is used to quantify the relationship between an observed target variable y 
and a set of variables x that it depends on. Once the model is created (trained), it is 
used to classify real-time data.

A logistic regression can be either binomial (two classes) or multinomial (three and 
more classes). In a binomial classification, the observed outcome is defined as {true, 
false}, {0, 1}, or {-1, +1}.

The logit function
The conditional probability in a linear regression model is a linear function of its 
weights [6:13]. The logistic regression model addresses the nonlinear regression 
problem by defining the logarithm of the conditional probability as a linear function 
of its parameters.
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First, let's introduce the logistic function and its derivative, which are defined  
as follows:
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Have a look at the following graph:

The graph of the logistic function and its derivative

The remainder of this section is dedicated to the application of the multivariate 
logistic regression to a binary classification (two classes).

Binomial classification
The logistic regression is popular for several reasons; some are as follows:

•	 It is available with most statistical software packages and open source libraries
•	 Its S-shape describes the combined effect of several explanatory variables
•	 Its range of values [0, 1] is intuitive from a probabilistic perspective
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Let's consider the classification problem using two classes. As discussed in the 
Validation section of Chapter 2, Hello World!, even the best classifier produces false 
positives and false negatives. The training procedure for a binomial classification is 
illustrated in the following diagram:

Hyperplane

Class 2

Class 1

Illustration of the binomial classification for a 2-dimension dataset

The purpose of the training is to compute the hyperplane that separates the 
observations into two categories or classes. Mathematically speaking, a hyperplane 
in an n-dimensional space (number of features) is a subspace of n-1 dimensions. The 
separating hyperplane of a three-dimension space is a curved surface. The separating 
hyperplane of a two-dimension problem (plane) is a line. In our preceding example, 
the hyperplane segregates/separates a training set into two very distinct classes (or 
groups), class 1 and class 2, in an attempt to reduce the overlap (false positive and 
false negative).

The equation of the hyperplane is defined as the logistic function of the dot product of the 
regression parameters (or weights) and features.

The logistic function accentuates the difference between the two groups of training 
observations, separated by the hyperplane. It pushes the observations away from  
the separating hyperplane towards either of the classes.
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In the case of two classes, c1 and c2 with their respective probabilities, p(C=c1| 
X=xi|w) = p(xi|w) and p(C=c2 |X= xi|w) = 1- p(xi|w), where w is the model 
parameters set or weights in the case of the logistic regression, the following 
functions can be defined:

The log likelihood:
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Conditional probabilities using the logit function:
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The log likelihood for the binomial logistic regression:
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First order derivative for the log likelihood:
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Let's implement the logistic regression without a penalty term using the Apache 
Commons Math library. The library contains several least squares optimizers, 
allowing you to specify the minimizing algorithm, optimizer, for the loss function 
in the logistic regression class LogisticRegression:

class LogisticRegression[T <% Double](xt: XTSeries[Array[T]], 
labels: Array[Int], optimizer: LogisticRegressionOptimizer) extends 
PipeOperator[Array[T], Int]{
  val model: Option[RegressionModel] = { … }
  …
}
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The parameters of the logistic regression class are the multivariate time series (features) 
xt, the target or labeled data, labels, and the optimizer algorithm used to minimize 
the loss function or residual sum of squares. In the case of the binomial logistic 
regression, labels are assigned the values of 1 for one class and 0 for the other.

The purpose of the training is to determine the regression coefficient, model._1, 
which minimizes the loss function. The residual sum of squares (RSS) is computed 
as model._2.

Target values
There is no specific rule to assign the two values to the observed 
data for the binomial logistic regression: {-1, +1}, {0, 1}, or {false, 
true}. The values pair {0, 1} is convenient because it allows the 
developer to reuse the code for multinomial logistic regression 
using normalized class values.

For convenience, the definition and the configuration of the optimizer are 
encapsulated in the LogisticRegressionOptimizer class.

Software design
The implementation of the logistic regression uses the following components:

•	 RegressionModel of the Model type, which is initialized through training 
during the instantiation of the classifier. We reuse the RegressionModel  
type introduced in the Linear regression section.

•	 The predictive or classification routine is implemented as a data 
transformation |> extending the PipeOperator trait.

•	 The logistic regression class, LogisticRegression, has three parameters: the 
least squares optimizer of the type LogisticRegresssionOptimizer (used 
in training), a features set XTSeries, and a label vector DblVector.
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The key software components of the logistic regression are described in the following 
UML class diagram:

The UML class diagram for the logistic regression

The training workflow
Our implementation of the training of the logistic regression model leverages either 
the Gauss-Newton or the Levenberg-Marquardt nonlinear least squares optimizers, 
(refer to the Nonlinear least squares minimization section in Appendix A, Basic Concepts) 
packaged with the Apache Commons Math library.

The training of the logistic regression is performed by the train method:

val model: Option[RegressionModel] = train

Handling exceptions from the Apache Commons Math library
The training of the logistic regression using the Apache Commons 
Math library requires handling ConvergenceException, 
DimensionMismatchException, TooManyEvaluationsException, 
TooManyIterationsException, and MathRuntimeException. 
Debugging is greatly facilitated by understanding the context of these 
exceptions in the Apache library source code.
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The implementation of the training method, train, relies on the following five steps:

1.	 Select and configure the least squares optimizer.
2.	 Define the logit function and its Jacobian.
3.	 Specify the convergence and exit criteria.
4.	 Compute the residuals using the least squares problem builder.
5.	 Run the optimizer.

The workflow and the Apache Commons Math classes used in the training of the 
logistic regression are visualized by the following flow diagram:

1.Configure Least Squares minimizer

LogisticRegressionOptimizer

2.Define logit & its Jacobian

MultivariateJacobianFunction

3.Define the exit conditions

ConvergenceChe kerc

4.Build least squares problem

LeastSquaresBuilder

5.Execute minimization
iterates

optimizer

labels

Xt

model

The workflow for training the logistic regression using Apache Commons Math

The first four steps are required by the Apache Commons Math library to initialize 
the configuration of the logistic regression prior to the minimization of the loss 
function. Let's start with the configuration of the least squares optimizer.

Configuring the least squares optimizer
In this step, you have to specify the algorithm to minimize the residual of the sum of 
squares. The LogisticRegressionOptimizer class is responsible for configuring the 
optimizer. The class has the following two purposes:

•	 Encapsulating the configuration parameters for the optimizer
•	 Invoking the LeastSquaresOptimizer interface defined in the Apache 

Commons Math library
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Consider the following code:

class LogisticRegressionOptimizer(maxIters: Int, maxEvals: Int,eps: 
Double, lsOptimizer: LeastSquaresOptimizer){
  def optimize(lsProblem: LeastSquaresProblem): Optimum = lsOptimizer.
optimize(lsProblem)
}}

The configuration of the logistic regression optimizer is defined using the maximum 
number of iterations (maxIters), the maximum number of evaluations (maxEval) 
for the logistic function and its derivative, the convergence criteria (eps) on the 
residual sum of squares, and the instance of the least squares problem (org.apache.
commons.math3.fitting.leastsquares.LeastSquaresProblem).

Computing the Jacobian matrix
The next step consists of computing the value of the logistic function and its first 
order partial derivatives with respect to the weights by overriding the value method 
of the fitting.leastsquares.MultivariateJacobianFunction interface:

final val initWeight = 0.5
val weights0 = Array.fill(xt(0) +1)(initWeight) //1

val lrJacobian = new MultivariateJacobianFunction {
  override def value(w:RealVector):Pair[RealVector,RealMatrix] ={
    val _w = w.toArray
    val gradient = xt.toArray
                     .map( g => {  //2
         val expn = g.zip(_w.drop(1))
                   .foldLeft(_w(0))((s,z) => s + z._1*z._2)
       val logIt = 1.0/(1.0 + Math.exp(-expn)) //3
       (logIt, logIt *(1- logIt))  //4
    })
   
   val jacobian = Array.ofDim[Double](xt.size, weights0.size)//5
   xt.toArray.zipWithIndex.foreach(xi => {  //6
      val df: Double = gradient(xi._2)._2
      Range(0, xi._1.size).foreach(j => 
                            jacobian(xi._2)(j+1) = xi._1(j)*df)
      jacobian(xi._2)(0) = 1.0  //7
   })
   (new ArrayRealVector(gradient.map(_._1)), 
       new Array2DRowRealMatrix(jacobian))  //8
  }
}

The regression weights, weights0, are initialized with the arbitrary value of 0.5.
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The value method uses the primitives types RealVector, RealMatrix, 
ArrayRealVector, and Array2DRowRealMatrix defined in the org.apache.
commons.math3.linear Apache Commons Math package.

It takes the regression weight, w, and computes the gradient (line 2) of the logistic 
function for each data point and returns the value of logit (line 3) and its derivative 
(line 4) as a tuple. The Jacobian matrix is created (line 5), and then initialized with 
logit and its derivative (line 6). The first element of each column of the Jacobian 
matrix is set to 1.0 to take into account the intercept (line 7). Finally, the vector of the 
logit values for each observation and the Jacobian matrix are returned (line 8) as a 
tuple to comply with the return type of the function value.

Defining the exit conditions
The third step defines the exit condition for the optimizer. It is accomplished by 
overriding the converged method of the parameterized org.apache.commons.
math3.optim.ConvergenceChecker interface:

val exitCheck = new ConvergenceChecker[PointVectorValuePair] {
   override def converged(iteration: Int, prev: PointVectorValuePair,  
      current:PointVectorValuePair): Boolean =  {
     val delta = prev.getValue
                     .zip(current.getValue)
                     .foldLeft(0.0)((s, z) =>{ 
                         val d = z._1 - z._2
                         s + diff*diff
                      })
   Math.sqrt(delta)<optimizer.eps && iteration>=optimizer.maxIters
  }
}

This implementation computes the convergence or exit condition as follows:

•	 Either the L2-norm of the difference between the weights of the current 
iteration and the weights of the previous iteration, delta, is smaller  
than the convergence criteria, eps

•	 Or the iteration exceeds the maximum number of iterations that  
maxIters allowed
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Defining the least squares problem
The Apache Commons Math least squares optimizer package requires all the 
input to the nonlinear least squares minimizer to be defined as an instance of 
LeastSquareProblem generated by the factory LeastSquareBuilder class:

val builder = new LeastSquaresBuilder
val diagWeights0 = Array.fill(xt.size)(1.0) //1
val wMatrix = MatrixUtils.createRealDiagonalMatrix(diagWeights0)
val lsp = builder.model(lrJacobian)  //2
                 .weight(wMatrix) 
                 .target(labels)  //7
                 .checkerPair(exitCheck) //5
                 .maxEvaluations(optimizer.maxEvals) //3
                 .start(weights0) //6
                 .maxIterations(optimizer.maxIters) //4
                 .build

The diagonal elements of the weights matrix are initialized to 1.0 (line 1). Besides 
the initialization of the model with the Jacobian matrix, lrJacobian (line 2), the 
maximum number of evaluations (line 3), maximum number of iterations (line 4), 
and the exit condition (line 5) are also initialized.

The regression weights are initialized as 0.5 (weights0) (line 6). Finally, the labeled 
or target values are initialized (line 7).

Minimizing the loss function
The training is executed with a simple call to the least squares minimizer, lsp:

val optimum = optimizer.optimize(lsp)
(optimum.getPoint.toArray, optimum.getRMS)

The regression coefficients (or weights) and the residuals mean square (RMS) are 
returned by invoking the getPoint method on the optimum class of the Apache 
Commons Math library.
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Test
Let's test our implementation of the binomial multivariate logistic regression using 
the example of the Copper ETF price variation versus volatility and volume, used 
in the previous two sections. The only difference is that we need to define the target 
values as 0 if the ETF price decreases between two consecutive trading sessions, and 
1 otherwise. Therefore, the deltaPrice vector used in the linear and ridge regression 
is to be modified to support the binary outcome:

val deltaPrice = prices.drop(1).zip(prices).dropRight(1))  
.map(p => if(p._1>p._2) 1 else 0)

Executing the test case is just a matter of instantiating the LogisticRegression class 
with the appropriate configuration parameters. The implementation reuses the code 
already defined for the least squares and ridge regression to load data from CSV files 
(src, price, volatility, and volume) and normalize the observations:

val MAXITERS = 80; val MAXEVALS = 1000; val EPS = 1e-4

val lsOptimizer = LogisticRegressionOptimizer(MAXITERS, MAXEVALS, EPS, 
new LevenbergMarquardtOptimizer)
val xt = XTSeries[DblVector](features)
val regression = new LogisticRegression[Double](xt, deltaPrice, 
lsOptimizer)
val rms = regression.rms.get
val weights = regression.weights.get

In this example, the Levenberg-Marquardt algorithm is used to minimize the  
loss function.

Levenberg-Marquardt parameters
The driver code uses the LevenbergMarquardtOptimizer 
with the default tuning parameters configuration to keep the 
implementation simple. However, the algorithm has a few important 
parameters, such as relative tolerance for cost and matrix inversion, 
that are worth tuning for commercial applications (refer to the 
Levenberg-Marquardt section in Appendix A, Basic Concepts).

The execution of the test produces the following results:

•	 Residual mean square is 0.497
•	 Weights are -0.124 for intercept, 0.453 for ETF volatility, and -0.121 for  

ETF volume

The last step is the classification of the real-time data.
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Classification
As mention earlier and despite its name, the binomial logistic regression is a binary 
classifier. The classification method is implemented as a data transformation by 
overriding the pipe operator:

type Feature = Array[T]
final val MARGIN = 0.01
def |> : PartialFunction[Feature, Int] = { //1
  case x: Feature if(model!=None && model.get.size-1==x.size) =>{
    val w = _model.get.weights
    val dot = x.zip(w.drop(1))
               .foldLeft(w(0))((s,xw) => s + xw._1*xw._2)//2
   if(logit(dot) > 0.5 + MARGIN) 1 else 0 //3
  }
}

The classification method, |>, checks if the number of model parameters (weights) 
is equal to the number of features plus 1 (line 1) and throws an exception if the test 
fails. The dot product of the weights and the features is computed using a fold. 
Finally, the method returns 1 (class 1, which signifies that the price variation of the 
ETF is positive) if the value of the sigmoid is greater than 0.5. It returns 0 otherwise 
(class 2, which signifies that the price variation of the ETF is negative) (line 3).

Class identification
The class that the new data x belongs to is determined by the 
logit(dot) > 0.5 test, where dot is the product of the features 
and the regression weights (w0+w1.volatility + w2.volume). This 
test is equivalent to dot > 0.0. You may find either condition in 
the literature.

Let's apply the classification to the original training set, features, to validate our 
model (weights):

val predicted = features.map(x => regression |> x)
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The direction of the price variation of the Copper ETF, price(t+1) – price(t), is 
compared to the direction predicted by the logistic regression. The result is plotted 
with the success value if the positive or negative direction is correctly classified, 
otherwise, it is plotted with the failure value:

The logistic regression was able to classify 78 out of 121 trading sessions  
(65 percent accuracy).

Now, let's use the logistic regression to predict the positive price variation for the 
Copper ETF, given its volatility and trading volume. This trading or investment 
strategy is known as being long on the market. This use case ignores the trading 
sessions for which the price was either flat or declined:

The logistic regression was able to correctly predict the positive price variation for  
58 out of 64 trading sessions (90.6 percent accuracy). What is the difference between 
the first and second test cases?
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In the first case, the separating hyperplane equation, w0 + w1.volatility + 
w2.volume, is used to segregate both the features generating either positive or 
negative price variation. The overall accuracy of the classification is negatively 
impacted by the overlap of the features from the two classes.

In the second case, the classifier has to consider only the observations located on one 
side of the hyperplane equation, without taking into account the false negatives.

Impact of rounding errors
Under some circumstances, the generation of the rounding errors 
during the computation of the Jacobian matrix has an impact 
on the accuracy of the separating hyperplane equation: w0 + 
w1.volatility + w2.volume. This negatively impacts the 
prediction of both the positive and negative price variation.

The accuracy of the binary classifier can be further improved by considering the 
positive variation of price as price(t+1) – price(t) > EPS.

Validation methodology
The validation set is generated by randomly selecting data points 
from the original labeled set. A formal validation requires the 
use of a K-fold validation methodology to compute the recall, 
precision, and F1 measure for the logistic regression model.

Summary
This concludes the description and implementation of linear and logistic regression 
and the concept of regularization to reduce overfitting. Your first analytical projects 
using machine learning will (or did) likely involve a regression model of some type. 
Regression models, along with the Naïve Bayes classification, are the most understood 
techniques for those without a deep knowledge of statistics or machine learning.

At the completion of this chapter, you hopefully have a grasp on the following:

•	 The concept of linear and nonlinear least squares-based optimization
•	 The implementation of ordinary least square regression as well as  

logistic regression
•	 The impact of regularization with an implementation of the Ridge regression
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The logistic regression is also the foundation of the conditional random fields 
introduced in the next chapter and artificial neural networks in Chapter 9,  
Artificial Neural Networks.

Contrary to the Naïve Bayes models (refer to Chapter 5, Naïve Bayes Classifiers), the 
least squares or logistic regression does not impose the condition that the features 
have to be independent. However, the regression models do not take into account  
the sequential nature of a time series such as asset pricing. The next chapter, Chapter 7,  
Sequential Data Models, describes two classifiers that take into account the time 
dependency in a time series.



Sequential Data Models
The universe of Markov models is vast and encompasses computational concepts 
such as the Markov decision process, discrete Markov, Markov chain Monte Carlo 
for Bayesian networks, and hidden Markov models.

Markov processes, and more specifically, the hidden Markov model (HMM), are 
commonly used in speech recognition, language translation, text classification, 
document tagging, and data compression and decoding.

The first section of this chapter introduces and describes the hidden Markov model 
with the full implementation of the three canonical forms of the hidden Markov model 
using Scala. This section details the different dynamic programming techniques used 
in the evaluation, decoding, and training of the hidden Markov model. The design of 
the classifier follows the same pattern as the logistic and linear regression.

The second and last section of the chapter is dedicated to a discriminative (labels 
conditional to observation) alternative to the hidden Markov model: conditional 
random fields. The open source CRF Java library authored by Sunita Sarawagi from 
the Indian Institute of Technology, Bombay, is used to create a predictive model 
using conditional random fields [7:1].

Markov decision processes
This first section also describes the basic concepts you need to know in order to 
understand, develop, and apply the hidden Markov model. The foundation of  
the Markovian universe is the concept known as the Markov property.
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The Markov property
The Markov property is a characteristic of a stochastic process where the conditional 
probability distribution of a future state depends on the current state and not on its 
past states. In this case, the transition between the states occurs at a discrete time, 
and the Markov property is known as the discrete Markov chain.

The first-order discrete Markov chain
The following example is taken from Introduction to Machine Learning by  
E. Alpaydin [7:2].

Let's consider the following use case. N balls of different colors are hidden in N 
boxes (one each). The balls can have only three colors {Blue, Red, and Green}. The 
experimenter draws the balls one by one. The state of the discovery process is 
defined by the color of latest ball drawn from one of the boxes: S0 = Blue, S1 = Red, 
and S2 = Green.

Let {π0, π1, π2} be the initial probabilities for having an initial set of color in each  
of the boxes.

Let qt denote the color of the ball drawn at the time t. The probability of drawing  
a ball of color Sk at the time k after drawing a ball of the color Sj at the time j is 
defined as p(qt= Sk| qt-1= Sj) = ajk. The probability to draw a red ball in the first attempt 
is p(qt0= S1) = π1. The probability to draw a blue ball in the second attempt is p(q0= S1) 
p(q1= S0|q0= S1) = π1 a10. The process is repeated to create a sequence of the state {St} = 
{Red, Blue, Blue, Green, …} with the following probability:

p(q0= S1).p(q1= S0|q0= S1).p(q2= S0|q1= S0).p(q3= S2|q2= S0)… = π1.a10.a00.a02…

The sequence of states/colors can be represented as follows:

Box
0

Box
1

Box
2

Box
3

1 a10 1 1a00a10 a10a00a02 1

red blueblue blue green . . .

p p p p

Illustration of the ball and boxes example
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Let's estimate the probabilities p using historical data (learning phase):

1.	 The estimation of the probability to draw a red ball (S1) in the first attempt is 
π1, which is computed as the number of sequences starting with S1 (red) / total 
number of balls.

2.	 The estimation of the probability of retrieving a blue ball in the second 
attempt is a10, the number of sequences for which a blue ball is drawn after a  
red ball / total number of sequences, and so on.

Nth-order Markov
The Markov property is popular mainly because of its simplicity. 
As you will discover while studying the Hidden Markov model, 
having a state solely dependent on the previous state allows us to 
apply efficient dynamic programming techniques. However, some 
problems require dependencies between more than two states. 
These models are known as Markov random fields.

Although the discrete Markov process can be applied to trial and error types 
of applications, its applicability is limited to solving problems for which the 
observations do not depend on hidden states. Hidden Markov models are a 
commonly applied technique to meet such a challenge.

The hidden Markov model (HMM)
The hidden Markov model has numerous applications related to speech recognition, 
face identification (biometrics), and pattern recognition in pictures and video [7:3].

A hidden Markov model consists of a Markov process (also known as a Markov chain) 
for observations with a discrete time. The main difference with the Markov processes 
is that the states are not observable. A new observation is emitted with a probability 
known as the emission probability each time the state of the system or model changes.

There are now two sources of randomness:

•	 Transition between states
•	 Emission of an observation when a state is given
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Let's reuse the boxes and balls example. If the boxes are hidden states (non-observable), 
then the user draws the balls whose color is not visible. The emission probability is the 
probability bik =p(ot= colork| qt=Si) to retrieve a ball of the color k from a hidden box I, as 
described in the following diagram:

bk0
bml bmi bnj

Box
1

aji

Box
0

BoxjBoxi

Hidden boxes (states)
a10

Observed colors

Color
m

Color
k

Color
m

Color
n

The hidden Markov model for the balls and boxes example

In this example, we do not assume that all the boxes contain balls of different colors. 
We cannot make any assumptions on the order as defined by the transition aij. The 
HMM does not assume that the number of colors (observations) is identical to the 
number of boxes (states).

Time invariance
Contrary to the Kalman filter, for example, the hidden Markov model 
requires that the transition elements, aji, are independent of time. This 
property is known as stationary or homogeneous restriction.

It must be kept in mind that the observations, in this case the color of the balls, are 
the only tangible data available to the experimenter. From this example, we can 
conclude that a formal HMM has three components:

•	 A set of observations
•	 A sequence of hidden states
•	 A model that maximizes the joint probability of the observations and hidden 

states, known as the Lambda model
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A Lambda model, λ, is composed of initial probabilities π, the probabilities of state 
transitions as defined by the matrix A, and the probabilities of states emitting one or 
more observations:

A=a
ki

B=bji

Observations Oj

-model=( ,A,B)States S
i

Visualization of the HMM key components

This diagram illustrates that, given a sequence of observations, HMM tackles three 
problems known as canonical forms:

•	 CF1—evaluation: Evaluate the probability of a given sequence of 
observations Ot, given a model λ = (π, A, B)

•	 CF2—training: Identify (or learn) a model λ = (π, A, B) given a set of 
observations O

•	 CF3—decoding: Estimate the state sequence Q with the highest probability to 
generate a given set of observations O and a model λ

The solution to these three problems uses dynamic programming techniques. 
However, we need to clarify the notations prior to diving into the mathematical 
foundation of the hidden Markov model.

Notation
One of the challenges of describing the hidden Markov model is the mathematical 
notation that sometimes differs from author to author. From now on, we will use  
the following notation:

Description Formulation
N The number of hidden states
S A finite set of N hidden states S = {S0, S1, … SN-1}
M The number of observation symbols 
qt The state at time or step t
Q Time sequence of states Q = {q0, q1, … qn-1} = Q0:n-1

T The number of observations
ot The observation at time t
O A finite sequence of T observations O = {o0, o1, … oT-1} = O0:T-1



Sequential Data Models

[ 212 ]

Description Formulation
A The state transition probability matrix aji = p(qt+1=Si| qt=Sj)
B The emission probability matrix bjk = p(ot=Ok| qt=Sj)
π The initial state probability vector πi = p(q0=Sj)
λ The hidden Markov model λ = (π, A, B)

Variance in notation
Some authors use the symbol z to represent the hidden states 
instead of q and x to represent the observations O.

For convenience, let's simplify the notation of the sequence of observations and states 
using the following condensed form: p(O0:T, qt| λ) = p(O0, O1, … OT, qt| λ). It is quite 
common to visualize a hidden Markov model with a lattice of states and observations 
similar to our description of the boxes and balls examples, as shown here:

transition aji

observations

emission bki
bmj

q
t+1

=S
j

q
t i=S

ot+1=Omot=Ok

The formal HMM-directed graph

The state Si is observed as Ok at time t, before being transitioned to the state Sj 
observed as Om at the time t+1. The first step in the creation of our HMM is the 
definition of the class that implements the lambda model λ = (π, A, B) [7:4].

The lambda model
The three canonical forms of the hidden Markov model rely heavily on manipulation 
and operations on matrices and vectors. For convenience, let's define an HMMConfig 
class that contains the dimensions used in the HMM:

class HMMConfig(val _T: Int, val _N: Int, val _M: Int) extends Config
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The input parameters for the class are:

•	 _T: The number of observations
•	 _N: The number of hidden states
•	 _M: The number of observation symbols or features

Consistency with mathematical notation
The implementation uses _T (with respect to _N, _M) to represent 
programmatically the number of observations T (with respect to hidden 
states N and features M). As a general rule, the implementation reuses 
the mathematical symbols as much as possible. Although the practice 
does not always make the code elegant, it improves its readability.

The HMMConfig companion object defines the operations on ranges of index of matrix 
rows and columns. The foreach, foldLeft, and maxBy methods are regularly used 
in each of the three canonical forms:

object HMMConfig {
   def foreach(i: Int, f: Int => Unit): Unit = Range(0, i).foreach(f)
   def foldLeft(i: Int, f: (Double, Int) => Double, zero:Double) = 
Range(0, i).foldLeft(zero)(f)
   def maxBy(i: Int, f: Int => Double): Int = Range(0,i).maxBy(f)
   …
}

Notation
The λ model in HMM should not be confused with the 
regularization factor discussed in the Ln roughness penalty 
section in Chapter 6, Regression and Regularization.

As mentioned earlier, the lambda model is defined as a tuple of the transition 
probability matrix A, emission probability matrix B, and the initial probability π. It 
is easily implemented as a case class, HMMLambda, using the Matrix class defined in 
the Matrix class section in Appendix A, Basic Concepts. The simplest constructor for the 
HMMLambda class is invoked in the case where the state-transition probability matrix, 
the emission probability matrix, and the initial states are known, as shown here:

class HMMLambda(val A: Matrix[Double], val B: Matrix[Double], var pi: 
DblVector, val numObs: Int) {
  def getT: Int = numObs
  def getN: Int = A.nRows
  def getM: Int = B.nCols
  val d1 = numObs -1
…
}
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The implementation reflects the mathematical notation, with pi being the initial 
state probability, A the state transition matrix, and B the emission matrix. The 
numObs value is the number of observations in the sequence. The getT, getN, and 
getM methods are used to keep the implementation consistent with the initial 
configuration, HMMConfig. The section related to the training of HMM introduces  
a different constructor for HMMLambda using the configuration as a parameter.

The initial probabilities are unknown, and therefore, initialized with a random 
generator of values [0, 1].

Normalization
Input states and observations data may have to be normalized and 
converted to probabilities before initializing the matrices A and B.

The two other components of the HMM are the sequence of observations and the 
sequence of hidden states.

HMM execution state
The canonical forms of the HMM are implemented through dynamic programming 
techniques. These techniques rely on variables that define the state of the execution 
of the HMM for any of the canonical forms:

•	 Alpha (the forward variable): The probability of observing the first t < 
T observations for a specific state at Si for the observation t, αt(i) = p(O0:t, 
qt=Si|λ)

•	 Beta (the backward variable): The probability of observing the remainder of 
the sequence qt for a specific state βt(i) =p(Ot+1:T-1|qt=Si,λ)

•	 Gamma: The probability of being in a specific state given a sequence of 
observations and a model γt(i) =p(qt=Si|O0:T-1, λ)

•	 Delta: The sequence to have the highest probability path for the first i 
observations defined for a specific test δt(i)

•	 Qstar: The optimum sequence q* of states Q0:T-1

•	 DiGamma: The probability of being in a specific state at t and another  
defined state at t+1 given the sequence of observations and the model  
γt(i,j) =p(qt=Si,qt+1=Sj|O0:T-1, λ)
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Each of the parameters is described in the section related to each canonical form. Let's 
create a class HMMState that encapsulates the variables used in the implementation of 
the three canonical cases.

For convenience, all the parameters related to the three canonical cases and listed in 
the previous notation section are encapsulated into a single outer class, HMMState:

class HMMState(lambda: HMMLambda, maxIters:Int) extends Config {
  val delta = Matrix[Double]( lambda.getT, lambda.get N)  // δt(i)

  object QStar { … } //q*
  object DiGamma { … } // γt(i, j)
  object Gamma { … }  // γt(i)
}

Once again, we use the same notation as for the configuration of the HMM; lambda.
getT, being the number of observations, and lambda.getN, the number of hidden 
states. The HMM state parameters have self-descriptive names that strictly follow 
the notation introduced earlier. The λ  model, the HMM state, and the sequence of 
observations are all the elements needed to implement the three canonical cases.

The Gamma and DiGamma singletons are used and described in the evaluation 
canonical form. The DiGamma singleton is described as part of the Viterbi algorithm  
to extract the sequence of states with the highest probability given a λ  model and a 
set of observations.

The execution of any of the three canonical forms relies on dynamic programming 
techniques (refer to the Overview of dynamic programming section in Appendix A,  
Basic Concepts) [7:5]. The simplest of the dynamic programming techniques is  
a single traversal of the observations/state chain.

Therefore, it makes sense to define a base class, HMMModel, that has all the algorithms 
that manipulate the λ  model, lambda, and the observed states, obs:

abstract class HMMModel(lambda: HMMLambda, obs: Array[Int])
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The list of dynamic-programming-related algorithms used in any of the three canonical 
forms is visualized through the class hierarchy of our implementation of the HMM:

obs

config

lambda

state

A B pi

form
lambda

1
1

1

1

1

1 1

1 1

Model Config PipeOperator

Array[Int] HMMModel

HMMConfig HMM

BaumWelchEM VirtebiPath Pass

Matrix MatrixBetaAlpha

HMMLambda HMMForm

DblVector

Scala classes' hierarchy for HMM (UML class diagram)

Each class is described as needed in the description of the three canonical forms 
of HMM. It is time to dive into the implementation details of each of the canonical 
forms, starting with the evaluation.

Evaluation (CF-1)
The objective is to compute the probability (or likelihood) of the observed sequence 
Ot given a λ  model. A dynamic programming technique is used to break down the 
probability of the sequence of observations into two probabilities:

( ) ( ) ( )0: 1 0:t 1: 1| | |λ α λ λ− + −⋅T t Tp O p O p O

The likelihood is computed by marginalizing over all the hidden states [7:6]{Si}:
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If we use the notation introduced in the previous chapter for alpha and beta variables, 
the probability for the observed sequence Ot given a λ  model can be expressed as:

( ) ( ) ( )0: 1 |T t t
i

p O i iλ α β− = ⋅∑

The product of the probabilities α and β can potentially underflow. Therefore, it is 
recommended to use the log of the probabilities instead of the probabilities.

Alpha class (the forward variable)
The computation of the probability of observing a specific sequence given a sequence 
of hidden states and a λ  model relies on a two-pass algorithm. The alpha algorithm 
consists of the following steps:

1.	 Compute the initial alpha value [M1]. The value is then normalized by the 
sum of alpha values across all the hidden states [M2].

2.	 Compute the alpha value iteratively for the time 0 to time t, then normalize 
by the sum of alpha values for all states [M3].

3.	 The final step is the computation of the log of the probability of observing the 
sequence [M4].

Performance consideration
A direct computation of the probability of observing a specific 
sequence requires 2TN2 multiplications. The iterative alpha and 
beta classes reduce the number of multiplications to N2T.

For those with some inclination toward mathematics, computation of the alpha 
matrix is defined in the following information box. Each formula has an identifier 
[Mx], which is referenced in the Scala source code implementing it.
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Alpha-class (forward variable)
•	 M1: Initialization:

( ) ( )0 0i ii b Oα π= ⋅

•	 M2: Normalization of initial values:
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•	 M3: Normalized summation:
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•	 M4: Probability of observing a sequence given a lambda model 
and states:
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Let's look at the implementation of the alpha class in Scala, using the referenced 
number of the mathematical expressions of the alpha class. The alpha and beta 
values have to be normalized [M3], and therefore, we define a base class, Pass,  
for the alpha and beta algorithms that implements the normalization:

class Pass(_lambda: HMMLambda, _obs: Array[Int]) extends HMMModel(_
lambda, _obs) {  //1
   var alphaBeta: Matrix[Double] = _
   val ct = Array.fill(lambda.getT)(0.0) //2

   def normalize(t: Int): Unit = {
     ct.update(t, foldLeft(lambda.getN, (s, n) => s + alphaBeta(t, 
n))) //3
     alphaBeta /= (t, ct(t))
   }
}

As with any algorithm used in the hidden Markov model, the Pass base class of the 
alpha and beta classes is a composition of the attributes of the model (HMMLambda), the 
computation parameters (HMMParams), and the sequence of observations obs (line 1). 
The alphaBeta matrix represents either the alpha or beta matrix manipulated in the 
subclasses (line 2). The scale factor, ct, is computed as the summation of the alpha or 
beta row matrix over all the states using a fold (line 3).
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Computation efficiency
Scala's reduce, fold, and foreach methods are far more 
efficient iterators than the for loop. You need to keep in mind that 
the main purpose of the for loop in Scala is the monadic chaining 
of map and flatMap operations.

The computation of the alpha variable in the Alpha class follows the same 
computation flow as defined in the mathematical expression:

class Alpha(lambda: HMMLambda, obs: Array[Int]) extends Pass(lambda, 
obs)

The alpha value is initialized [M1] (line 4), then normalized [M2] using the current 
sequence order (line 5). The value of alpha is then updated [M3] by summation of 
the previous alpha value at t-1 and the transition from the state j to the state i (line 6), 
as shown here:

Import HMMConfig._
val alpha = { 
  alphaBeta = lambda.initAlpha(obs) //4
  normalize(0)  //5
  sumUp //6
}

def sumUp: Double = { //[M2]
  foreach(lambda.getT, t => {
    updateAlpha(t) //7
    normalize(t) //8
  })
  foldLeft(lambda.getN, (s, k) => s + alphaBeta(lambda.dim_1, k))
}

def updateAlpha(t: Int): Unit = 
  HMMConfig.foreach(lambda.getN, i => 
    alphaBeta += (t,i,lambda.alpha(alphaBeta(t-1,i),i,obs(t))) 
   )
}

The value of alpha is updated by the updateAlpha method (line 7) before 
normalization (line 8). The implementation that relies on the fold method  
is omitted, but can be easily written.
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Finally, the computation of the logarithm of the probability to observe a specific 
sequence, given the sequence of states and a predefined λ  model, [M4] can be 
performed by the following code (line 9):

def logProb: Double = foldLeft(lambda.getT, (s, t)
                    => s + Math.log(ct(t)), Math.log(alpha))//9

The method computes the logarithm of the probability instead of the probability 
itself. The summation of the logarithm of probabilities is less likely to cause an 
underflow than the product of probabilities.

Beta class (the backward variable)
The recursive computation of beta values is similar to the Alpha class except that the 
iteration executes backward on the sequence of states.

The implementation of Beta is similar to the alpha class:

1.	 Compute [M5] and normalize [M6] the value of beta at t=0 across states.
2.	 Compute and normalize iteratively the beta at the time T-1 to t updated from 

its value at t+1 [M7].

Beta class (the backward variable)
•	 M5: Initialization of beta: βT-1(t)=1
•	 M6: Normalization of initial beta values:

( ) ( ) ( )
1

1 1 1
0

ˆ /
N

T T T
j

i i jβ β β
−

− − −
=

= ∑
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The definition of the class for the Beta class is identical to the Alpha class:

class Beta(lambdaB: HMMLambda, _obs: Array[Int]) extends Pass(lambdaB, 
_obs)

The implementation of the Beta class is similar to the Alpha class with computation 
(line 1) and normalization (line 2) of beta at t=0. As expected, the summation routine 
sumUp (line 3) is implemented as updating and normalizing beta at the time t, as 
shown here:

val complete = { //4
   alphaBeta = Matrix[Double](lambda.getT, lambda.getN)
   alphaBeta += (lambda.dim_1, 1.0) //1
   normalize(lambda.dim_1)  //2
   sumUp; true
}

def sumUp: Unit = //3
  (lambda.getT-2 to 0 by -1).foreach( t =>{
    updateBeta(t)
    normalize(t) 
})

def updateBeta(t: Int): Unit =
  foreach(lambda.config.getN, i => { 
    alphaBeta += (t, i, lambda.beta(alphaBeta(t+1, i), i, obs(t+1)))
})

The recursive method updates and normalizes the beta matrix by traversing the 
sequence of observations backward from before the last observation to the first. 
Contrary to the Alpha class, the Beta class does not generate an output value. 
Therefore, we need to flag the state of the class using a ready Boolean value,  
which is set to true if the instantiation succeeds and false otherwise.
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Constructors
The alpha and beta values are computed within the constructors 
of their respective class, so no public or protected method needs 
to verify if these values are already computed. The design pattern 
reduces the complexity of implementation by ensuring that a class 
instance has only one state: computation completed.

What is the value of a model if it cannot be created? The next canonical form CF2 
leverages dynamic programming and recursive functions to extract the λ  model.

Training (CF-2)
The objective of this canonical form is to extract the λ  model given a set of 
observations and a sequence of states. It is similar to the training of a classifier. 
The simple dependency of a current state on the previous state enables an 
implementation using an iterative procedure, known as the Baum-Welch  
estimator or expectation-maximization (EM).

Baum-Welch estimator (EM)
At its core, the algorithm has three steps and an iterative method, similar to the 
evaluation canonical form:

1.	 Compute the probability π (the gamma value at t=0) [M9].
2.	 Compute and normalize the state's transition probabilities matrix A [M10].
3.	 Compute and normalize the matrix of emission probabilities B [M11].
4.	 Repeat steps 2 and 3 until the change of likelihood is insignificant.

The algorithm uses the digamma and summation gamma variables defined in the 
HMMConfig class.
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The Baum-Welch algorithm
•	 M8: Joint probability of the state qi at t and qj at t+1:
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•	 M9: The initial probabilities vector:
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•	 M10: Update of the transition probabilities matrix:
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•	 M11: Update of the emission probabilities matrix :
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The Baum-Welch algorithm requires the following three inputs:

•	 The λ  model, _lambda, initialized with random values uniformly distributed
•	 The current state of the training, state
•	 The labeled observed data, _obsIdx
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The implementation of the Baum-Welch algorithm illustrates the elegance and 
conciseness of the Scala programming language. The constructor requires a fourth 
parameter to describe the minimum rate of change of the estimate of the likelihood 
between iterative calls, as shown in the following code snippet:

class BaumWelchEM config: HMMConfig, obs: Array[Int], numIters: 
Int,eps: Double) extends HMMModel(HMMLambda(config), obs) {
  val state = HMMState(lambda, numIters)
}

The λ  model has to be initialized with the configuration parameters (number of 
observations, number of states, and number of symbols). The matrices A and B and 
the initial state probabilities pi are initialized with a uniform random generator  
[0, 1], Matrix.fillRandom, as shown here:

object HMMLambda {
  def apply(config: HMMConfig): HMMLambda = {
    val A = Matrix[Double](config._N)
    A.fillRandom(0.0)
    val B = Matrix[Double](config._N, config._M)
    B.fillRandom(0.0)
    val pi = Array.fill(config._N)(Random.nextDouble)
    new HMMLambda(A, B, pi, config._T)
   }

The maximum likelihood, maxLikelihood, is computed as part of the constructor to 
ensure a consistent state:

var likelihood = frwrdBckwrdLattice
Range(0, state.maxIters) find( _ => {
   lambda.estimate(state, obs)   //1
   val _likelihood = frwrdBckwrdLattice  //2
   val diff = likelihood - _likelihood  //3
   likelihood = _likelihood
   diff < eps  //4
}) match {
   case Some(index) => maxLikelihood
…

The computation of the likelihood requires the estimation of the transition matrix A 
and emission matrix B (line 1). The training process iterates by traversing the lattice 
forward and backward until the likelihood reaches a local or global maximum. The 
λ  model is updated using the estimate method (line 1). The method computes the 
likelihood of the sequence of states (line 2) and then compares it with the likelihood 
computed in the previous iteration (line 3). The method exits if the difference between 
two consecutive likelihood values meets the convergence criteria eps (line 4).
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The estimate method of the HMMLambda class updates the λ  model (A, B, and pi):

def estimate(state: HMMState, obsIdx: Array[Int]): Unit = {
  pi = Array.tabulate(config._N)(i => state.Gamma(0, i) )
  HMMConfig.foreach(config._N, i => {
     
  var denominator = state.Gamma.fold(dim_1, i)
  HMMConfig.foreach(config._N, k => 
     A += (i, k, state.DiGamma.fold(dim_1, i, k)/denominator)
  )
  denominator = state.Gamma.fold(config._T, i)
  HMMConfig.foreach(config._N, k => B += (i, k, state.Gamma.
fold(config._T, i, k, obsIdx)/denominator))
})

The core of the Baum-Welch expectation maximization is the iterative forward and 
backward update of the lattice of states and observations between time t and t+1.  
The lattice-based iterative computation is illustrated in the following diagram:
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Visualization of HMM graph lattice for the Baum-Welch algorithm

The iteration across the lattice is implemented by the frwrdBckwrdLattice method 
(line 2). The lattice is traversed ahead using the Alpha instance class (line 1), and 
backward using the Beta instance class (line 2):

def frwrdBckwrdLattice: Double  = {
   val _alpha = Alpha(lambda, obs).alpha //1
   val _beta = Beta(lambda, obs) //2
   val a = _alpha.alphaBeta
   val b = _beta.alphaBeta
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   Gamma.update(a, b)  //3
   DiGamma.update(a, b, A, B, obs) //4
   _alpha.alpha
}

The method returns the alpha coefficient and computes the new values for the Gamma 
(line 3) vector and DiGamma (line 4) matrix. These HMMState methods are omitted for 
the sake of clarity.

Decoding (CF-3)
This last canonical form consists of extracting the most likely sequence of states {qt} 
given a set of observations Ot and a λ  model. Solving this problem requires, once 
again, a recursive algorithm.

The Viterbi algorithm
The extraction of the best state sequence (the sequence of state that has the highest 
probability) is very time consuming. An alternative consists of applying a dynamic 
programming technique to find the best sequence {qt} through iteration. The 
algorithm is known as the Viterbi algorithm. Given a sequence of states {qt} and 
sequence of observations {oj}, the probability δt(i) for any sequence to have the 
highest probability path for the first T observations is defined for the state Si [7:7].

The Viterbi algorithm
M12: Definition of delta function:
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The constructor of the Viterbi algorithm, ViterbiPath, is similar to the algorithms 
of the first two canonical forms, and therefore, inherits HMMInference. The purpose 
of the Viterbi algorithm is to compute the optimum sequence given a set of 
observations and a λ  model by maximizing the delta, maxDelta:

class ViterbiPath(_lambda: HMMLambda, _state: HMMState, _obs: 
Array[Int]) extends HMMInference(_lambda, _state, _obs) {
  val maxDelta = recurse(lambda.getT, 0)
  …
}

The recursive method that implements [M14] and [M15] steps is invoked by  
the constructor:

def recurse(t: Int, j: Int): Double = {
  var maxDelta = initial((t, j)) //1
  if( maxDelta == -1.0) {
    if(t != obs.size) {
        maxDelta = maxBy(lambda.getN, //2 [M14]
           s => recurse(t-1, s)* lambda.A(s, j)* lambda.B(j, obs(t)) 
         )
       val idx =maxBy(lambda.getT, i =>recurse(t-1 ,i)*lambda.A(i,j))  
//3 [M14]

       state.psi += (t, j, idx) //4
       state.delta += (t, j, maxDelta) //5
     }
     else {  //6
       maxDelta = 0.0  
       val index =maxBy(lambda.getN, i => {
          val delta = recurse(t-1 ,i)
          if( delta > maxDelta) maxDelta = delta
          delta
       })
       state.QStar.update(t, index) //7
     }
   }
   maxDelta
}
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Once initialized (line 1), the maximum value of delta, maxDelta, is computed 
recursively by applying the formula [M14] at each state, s, using Scala's maxBy method 
(line 2). Next, the index of the column of the transition matrix A corresponding to the 
maximum of delta is computed (line 3). The last step is to update the matrix psi (line 
4) (with respect to delta (line 5)). Once the step t reaches the maximum number of 
observation labels (line 6), the optimum sequence of states q* is computed [M15] (line 7). 
Ancillary methods are omitted.

This implementation of the decoding form of the hidden Markov model completes 
the description of the hidden Markov model and its implementation in Scala. Now, 
let's put this knowledge into practice.

Putting it all together
The main class HMM implements the three canonical forms. A view bound to an  
array of integers is used to parameterize the HMM class. We assume that a time  
series of continuous or pseudocontinuous values is converted (or categorized)  
into discrete symbol values.

The @specialized annotation ensures that the byte code is generated for the 
Array[Int] primitive without executing the conversion implicitly declared by the 
bound view. The HMM can be potentially used as part of a computation workflow, 
and therefore, has to implement the pipe operator (PipeOperator).

There are two different constructors for the HMM class. The first constructor uses the λ  
model as input (evaluation (CF1) and decoding (CF3)):

class HMM[@specialized T <% Array[Int]](lambda: HMMLambda, form: 
HMMForm, maxIters: Int) (implicit f: DblVector => T) extends 
PipeOperator[T, HMMPredictor] {
  val state = HMMState(lambda, maxIters)
….
}

The HMMForm enumerator is used to specify the canonical form of the HMM solution:

object HMMForm extends Enumeration {
type HMMForm = Value
val EVALUATION,DECODING = Value
}
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The conversion of DblVector to a type T is required only if the evaluation and 
decoding canonical form uses actual observation values as argument. The f function is 
then used to discretize the double values into a sequence of index of the observations.

The HMMPredictor type consists of a tuple log probability (or likelihood) of 
observations and index of sequence of observations:

type HMMPredictor = (Double, Array[Int])

The HMM has three canonical forms instead of the two forms of most classifiers.

The second canonical form, training, is implemented by defining a second 
constructor for the HMM class, as follows:

object HMM {
  def apply[T <% Array[Int]](config: HMMConfig, obs: Array[Int],  
  form: HMMForm, maxIters: Int, eps: Double)
                     (implicit f: DblVector => T): HMM[T] = {
    val baumWelchEM = new BaumWelchEM(config, obs, maxIters, eps)
    new HMM[T](baumWelchEM.lambda, form, maxIters)
  }
}

The decode (with respect to evaluate) method implements the third (with respect 
to the first) canonical form of HMM. Both methods take a sequence of indices for 
observations as an argument.

  def decode(obsIdx: Array[Int]): HMMPredictor = (ViterbiPath(lambda, 
state, obsIdx).maxDelta, state.QStar())
  def evaluate(obsIdx: Array[Int]): HMMPredictor = (-Alpha(lambda, 
obsIdx).logProb, obsIdx)
}

The data transformation |> encapsulates the evaluation and decoding forms in 
order to preserve its meaning. The observation, obs, is automatically converted 
into a sequence of indices to each observation (line 1) by the DblVector => T 
discretization function, which is an implicit parameter of the HMM class.

def |> : PartialFunction[DblVector, HMMPredictor] = {
  case obs: DblVector if(obs != null && obs.size > 2) => {
    form match {
      case EVALUATION => evaluate(obs)  //1
      case DECODING => decode(obs)  //1
    }
… 
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Normalized probabilities input
You need to make sure that the input probabilities for the λ  model for 
evaluation and decoding canonical forms are normalized—the sum of 
the probabilities of all the states for the π vector and A and B matrices are 
equal to 1. This validation code is omitted in the example code.

Test case
Our test case is to train an HMM to predict the sentiment of investors as measured 
by the weekly sentiment survey of the members of the American Association of 
Individual Investors (AAII) [7:8]. The goal is to compute the transition probabilities 
matrix A, the emission probabilities matrix B, and the steady state probability 
distribution π, given the observations and hidden states (training canonical form).

We assume that the change in investor sentiments is independent of time, as required 
by the hidden Markov model.

The AAII sentiment survey grades the bullishness on the market in terms of percentage:

The weekly AAII market sentiment (reproduced by courtesy from AAII)

The sentiment of investors is known as a contrarian indicator of the future direction 
of the stock market. Refer to the Terminology section in Appendix A, Basic Concepts.

Let's select the ratio of percentage of investors that are bullish over the percentage of 
investors that are bearish. The ratio is then normalized. The following table lists this:

Time Bullish Bearish Neutral Ratio Normalized ratio
t0 0.38 0.15 0.47 2.53 1.0
t1 0.41 0.25 0.34 1.68 0.53
t2 0.25 0.35 0.40 0.71 0.0
….
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The sequence of non-normalized observations (ratio of bullish sentiment over bearish 
sentiment) is defined in a CSV file as follows:

final val OBS_PATH = "resources/data/chap7/obs.csv"

final val NUM_SYMBOLS = 6
final val NUM_STATES = 5
final val EPS = 1e-3
final val MAX_ITERS = 250
  

val srcObs =  Source.fromFile(OBS_PATH)
val obs = srcObs.getLines.map(_.toDouble)).toSeq //1
val config = new HMMConfig(obs.size, NUM_STATES, NUM_SYMBOLS)
val min = obs.min
val delta = obs.max - min
val obsSeq = obs.map( x => (x - min)/delta) //2
                .map(x =>(x*NUM_SYMBOLS).floor.toInt) //3
HMM[Array[Int]](config,obsSeq,EVALUATION,MAX_ITERS,EPS) match {
  case Some( hmm) => //4 
     Display.show(s"Lambda: ${hmm.getModel.toString}", logger)
   …
}

The sequence of observations is loaded from the CSV file (line 1) before  
being normalized (line 2). The discretization converts the normalized bullish 
sentiment/bearish sentiment ratio in six levels (integers) [0,-5] (line 3). The 
instantiation of the HMM class for the ratio levels (Array[Int]) generates the  
λ  model (A, B, and pi) (line 4).

The following is a state-transition matrix:

A 1 2 3 4 5
1 0.090 0.026 0.056 0.046 0.150
2 0.094 0.123 0.074 0.058 0.0
3 0.093 0.169 0.087 0.061 0.056
4 0.033 0.342 0.017 0.031 0.147
5 0.386 0.47 0.314 0.541 0.271
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The emission matrix is as follows:

B 1 2 3 4 5 6
1 0.203 0.313 0.511 0.722 0.264 0.307
2 0.149 0.729 0.258 0.389 0.324 0.471
3 0.305 0.617 0.427 0.596 0.189 0.186
4 0.207 0.312 0.351 0.653 0.358 0.442
5 0.674 0.520 0.248 0.294 0.259 0.03

The hidden Markov model for time series 
analysis
The evaluation form of the hidden Markov model is very suitable for filtering data 
for discrete states. Contrary to time series filters such as the Kalman filter introduced 
in the The Kalman filter section in Chapter 3, Data Preprocessing, HMM requires data 
to be somewhat stationary in order to create a reliable model. However, the hidden 
Markov model overcomes some of the limitations of analytical time series analysis. 
Filters and smoothing techniques assume that the noise (frequency mean, variance, 
and covariance) is known and usually follows a Gaussian distribution. The hidden 
Markov model does not have such a restriction. Moreover, moving averaging 
techniques, discrete Fourier transforms, and generic Kalman filters require the states 
to be continuous with linear dependencies, although the extended Kalman filter can 
approximate nonlinear states.

Conditional random fields
The conditional random field (CRF) is a discriminative machine learning algorithm 
introduced by John Lafferty, Andrew McCallum, and Fernando Pereira [7:9] at the 
turn of the century as an alternative to the HMM. The algorithm was originally 
developed to assign labels to a set of observation sequences as found.

Let's consider a concrete example to understand the conditional relation between the 
observations and the label data.
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Introduction to CRF
Let's consider the problem of detecting a foul during a soccer game using a 
combination of video and audio. The objective is to assist the referee and analyze 
the behavior of the players to determine whether an action on the field is dangerous 
(red card), inappropriate (yellow card), in doubt to be replayed, or legitimate. The 
following image is an example of segmentation of a video frame for image processing:

The analysis of the video consists of segmenting each video frame and extracting 
image features such as colors or edges [7:10]. A simple segmentation scheme 
consists of breaking down each video frame into tiles or groups of pixels indexed by 
their coordinates on the screen. A time sequence is then created for each tile Sij, as 
represented in the following image:
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The image segment Sij is one of the labels that are associated with multiple 
observations. The same features extraction process applies to the audio associated with 
the video. The relation between the video/image segment and the hidden state of the 
altercation between the soccer players is illustrated by the following model graph:

Y0 Y1 Yn-2 Yn-1

Features

X={color, texture, edge, ...}

Sequences of labels (type of interaction)

Y= {legitimate, in-doubt, inappropriate, dangerous}

Undirected graph representation of CRF for soccer infraction detection

Conditional random fields (CRFs) are discriminative models that can be regarded 
as a structured output extension of the logistic regression. CRFs address the problem 
of labeling a sequence of data such as assigning a tag to each word in a sentence. 
The objective is to estimate the correlation among the output (observed) values Y 
conditional on the input values (features) X.

The correlation between the output and input values is described as a graph  
(also known as a graph-structured CRF). A good example of graph-structured CRF  
are cliques. Cliques are sets of connected nodes in a graph for which each vertex  
has an edge connecting it to every other vertex in the clique.

Such models are complex and their implementation is challenging. Most real-world 
problems related to time series or ordered sequences of data can be solved as a 
correlation between a linear sequence of observations and a linear sequence of input 
data much like HMM. Such a model is known as the linear chain structured graph 
CRF or linear chain CRF for short.

Example non-linear CRF

time time

Linear chain CRF

Y0 Y1 Y2

X0 X1 X2

Y0 Y1 Y2

X0 X1 X2
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One main advantage of the linear chain CRF is that the maximum likelihood, p(Y|X, 
w), can be estimated using dynamic programming techniques such as the Viterbi 
algorithm used in the HMM. From now on, the section focuses exclusively on the 
linear chain CRF to stay consistent with the HMM described in the previous section.

Linear chain CRF
Let's consider a random variable X={xi}0:n-1 representing n observations and a random 
variable Y representing a corresponding sequence of labels Y={yj}0:n-1. The hidden 
Markov model estimates the joint probability p(X,Y) as any generative model 
requires the enumeration of all the sequences of observations. 

If each element of Y, yj obeys the first order of the Markov property, then (Y, X) is a 
CRF. The likelihood is defined as a conditional probability p(Y|X, w), where w is the 
model parameters vector.

Observation dependencies
The purpose of CRF models is to estimate the maximum 
likelihood of p(Y|X, w). Therefore, independence between 
observations X is not required.

A graphical model is a probabilistic model for which a graph denotes the conditional 
independence between random variables (vertices). The conditional and joint 
probabilities of random variables are represented as edges. The graph for generic 
conditional random fields can indeed be complex. The most common and simplistic 
graph is the linear chain CRF.

A first order linear chain conditional random field can be visualized as an undirected 
graphical model, which illustrates the conditional probability of a label Yj given a set 
of observations X:

Observed features

Labeled sequence

p(Y |X)0

p(Y |X)1

p(Y |X)n-1

X={x }j

Y0 Y1 Yn-2 Yn-1

Linear, conditional, random field undirected graph
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The Markov property simplifies the conditional probabilities of Y, given X, by 
considering only the neighbor labels p(Y1|X, Yj j ≠1) = p(Y1|X, Y0, Y2) and p(Yi|X, Yj j 
≠i) = p(Yi|X, Yi-1, Yi+1).

The conditional random fields introduce a new set of entities and a new terminology:

•	 Potential functions (fi): These are strictly positive, real value functions that 
represent a set of constraints on the configurations of random variables. They 
do not have any obvious probabilistic interpretation.

•	 Identity potential functions: These are potential functions I(x, t) that take  
1 if the condition on the feature x at time t is true, and 0 otherwise.

•	 Transition feature functions: Simply known as feature functions, ti, are 
potential functions that take a sequence of features {Xi}, the previous label 
Yt-1, the current label Yt, and an index i. The transition feature function 
outputs a real value function. In a text analysis, a transition feature function 
would be defined by a sentence as a sequence of observed features, the 
previous word, the current word, and a position of a word in a sentence. Each 
transition feature function is assigned a weight that is similar to the weights 
or parameters in the logistic regression. Transition feature functions play 
a similar role as the state transition factors aij in HMM but without a direct 
probabilistic interpretation.

•	 State feature functions sj are potential functions that take the sequence of 
features {Xi}, the current label Yi, and the index i. They play a similar role  
as the emission factors in the HMM.

A CRF defines the log probability of a particular label sequence Y, given a sequence 
of observations X as the normalized product of the transition feature and state 
feature functions. In other words, the likelihood of a particular sequence Y,  
given the observed features X, is a logistic regression.

The mathematical notation to compute the conditional probabilities in the case of a 
first order linear chain CRF is described in the following information box. 
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CRF conditional distribution
•	 The log probability of a label's sequence y, given an 

observation x:
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•	 Transition feature functions with I(a) = 1 if a true, 0 otherwise:
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•	 Using the notation:
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•	 Conditional distribution of labels y, given x, using the Markov 
property:
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The weights wj are sometimes referred as λ  in scientific papers, which may confuse 
the reader. W is used to avoid any confusion with the λ  regularization factor.

Now, let's get acquainted with the conditional random fields algorithm and its 
implementation by Sunita Sarawagi.

CRF and text analytics
Most of the examples used to demonstrate the capabilities of conditional random 
fields are related to text mining, intrusion detection, or bioinformatics. Although 
these applications have a great commercial merit, they are not suitable as an 
introductory test case because they usually require a lengthy description of the 
model and the training process.
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The feature functions model
For our example, we will select a simple problem: how to collect and aggregate  
an analyst's recommendation on any given stock from different sources with 
different formats.

Analysts at brokerage firms and investment funds routinely publish the list  
of recommendations or rating for any stock. These analysts used different  
rating schemes from buy/hold/sell; A, B, C rating; and stars rating to market 
perform/neutral/market underperform. For this example, the rating is normalized 
as follows:

•	 0 for a strong sell, (or F or 1 star rating)
•	 1 for sell (D, 2 stars, marker underperform)
•	 2 for neutral (C, hold, 3 stars, market perform, and so on)
•	 3 for buy (B, 4 stars, market overperform, and so on)
•	 4 from strong buy (A, 5 stars, highly recommended, and so on)

Here is an example of recommendations by stock analysts:

Macquarie upgraded AUY from Neutral to Outperform rating

Raymond James initiates Ainsworth Lumber as Outperform

BMO Capital Markets upgrades Bear Creek Mining to Outperform

Goldman Sachs adds IBM to its conviction list

The objective is to extract the name of the financial institution that publishes the 
recommendation or rating, the stock rated, the previous rating, if available, and  
the new rating. The output can be inserted into a database for further trend analysis, 
prediction, or simply the creation of reports.

Scope of the application
Ratings from analysts are updated every day through different protocols 
(feed, emails, blogs, web pages, and so on). The data has to be extracted 
from HTML, JSON, plain text, or XML format before being processed. In 
this exercise, we assume that the input has already been converted into 
plain text (ASCII) using a regular expression or another classifier.
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The first step is to define the labels Y representing the categories or semantics  
of the rating. A segment or sequence is defined as a recommendation sentence.  
After reviewing the different recommendations, we are able to specify the following 
seven labels:

•	 Source of the recommendation (Goldman Sachs and so on)
•	 Action (upgrades, initiates, and so on)
•	 Stock (either the company name or the stock ticker symbol)
•	 From (optional keyword)
•	 Rating (optional previous rating)
•	 To
•	 Rating (new rating for the stock)

The training set is generated from the raw data by tagging the different components  
of the recommendation. The first (or initiate) rating for a stock does not have the fields 
4 and 5 defined.

For example:

Citigroup // Y(0) = 1
upgraded // Y(1)
Macys // Y(2)
from // Y(3)
Buy // Y(4)
to // Y(5)
Strong Buy //Y(6) = 7

Tagging
Tagging a word may have a different meaning depending on the 
context. In natural language processing (NLP), tagging refers to the 
process of assigning an attribute (adjective, pronoun, verb, proper 
name, and so on) to a word in a sentence [7:11].



Sequential Data Models

[ 240 ]

A training sequence can be visualized with the following undirected graph:

upgradedCitigroup Macys from Buy to Strong Buy

Source Action Stock From Rating To Rating

Y0 Y1 Y2 Y3 Y4 Y5 Y6

X0 X1 X2 X3 X4 X5 X6

Labels

Observations

An example of a recommendation as a CRF training sequence

You may wonder why we need to tag the "From" and "To" labels in the creation of 
the training set. The reason is that these keywords may not always be stated and/or 
their positions in the recommendation differ from one source to another.

Software design
The implementation of the conditional random fields follows the design template  
for classifier, as explained in the Design template for classifiers section in Appendix A, 
Basic Concepts.

Its key components are as follows:

•	 A CrfModel model of the type Model is initialized through training during 
the instantiation of the classifier.

•	 The predictive or classification routine is implemented as a data 
transformation that implements the PipeOperator trait.

•	 The conditional random field classifier, Crf, has four parameters: the number 
of labels (or number of features), nLabels; configuration of type CrfConfig; 
the sequence of delimiters of the type CrfSeqDelimiter; and the labeled (or 
tagged) observations taggedObs.

•	 The CrfRecommendation class is required by the CRF library to implement 
the DataSequence interface. The class is used to recommend (or estimate) the 
next label.

•	 CrfSeqIter implements the DataIter iteration interface to traverse the 
labeled data sequence during training, as required by the CRF library.
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The key software components of the conditional random fields are described in the 
following UML class diagram:

CrfRecommendation Crf CrfModel

CrfConfig String CrfSeqDelimiter CrfSeqlter

DblVector

Config DataSequence PipeOperator Model Datalter

model

config
taggedObs delims weights

1 1

11

delims

111

UML class diagram for the conditional random fields

The DataSequence and DataIter interfaces are grayed out to indicate that these are 
defined in the IITB's CRF Java library.

Implementation
The test case uses the IITB's CRF Java implementation from the Indian Institute of 
Technology at Bombay by Sunita Sarawagi. The JAR files can be downloaded from 
Source Forge (http://sourceforge.net/projects/crf/).

The library is available as JAR files and source code. Some of the functionality, 
such as the selection of a training algorithm, is not available through the API. The 
components (JAR files) of the library are as follows:

•	 CRF for the implementation of the CRF algorithm
•	 LBFGS for limited-memory Broyden-Fletcher-Goldfarb-Shanno nonlinear 

optimization of convex functions (used in training)
•	 CERN Colt library for manipulation of a matrix
•	 GNU generic hash container for indexing

The training of the conditional random field for sequences requires defining a few 
key interfaces:

•	 DataSequence to specify the mechanism to access observations and labels for 
training and test data

•	 DataIter to iterate through the sequence of data created using the 
DataSequence interface

•	 FeatureGenerator to aggregate all the features types

These interfaces have default implementations bundled in the CRF Java library [7:12].
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The scope of the IITB CRF Java library evaluation
The CRF library has been evaluated with three simple text 
analytics test cases. Although the library is certainly robust enough 
to illustrate the internal workings of the CRF, I cannot vouch for 
its scalability or applicability in other fields of interest such as 
bioinformatics or process control.

Building the training set
The first step is to implement the structure of the training sequence, which 
implements the DataIter interface. The training file consists of a pair of files:

•	 Raw recommendations (such as Raymond James upgrades Gentiva Health 
Services from Underperform to Market perform)

•	 Tagged recommendations (such as Raymond James [1] upgrades [2] Gentiva 
Health Services [3], from [4] Underperform [5] to [6] Market perform [7])

Let's define the model for the CRF classifier. As mentioned earlier, the model for the 
CRF is similar to the logistic regression model and consists of the weights parameter:

class CrfModel(val weights: DblVector) extends Model

The tagged recommendations file requires a delimiter class, CrfSeqDelimiter.  
It delineates the sequence of observations using the following parameters:

•	 obsDelim is a regular expression to break down data input into a sequence  
of observations

•	 labelsDelim generates a sequence of labels from the data input
•	 trainingDelim generates a sequence of training tuples from the training set

The CrfSeqDelimiter class is defined as follows:

class CrfSeqDelimiter(val obsDelim: String, val labelsDelim: String, 
val trainingDelim:String)

The main purpose of the IITB CRF Java library's DataIter interface is to define 
the methods to iterate through a sequence of data, tags, or observations. The three 
methods are as follows:

•	 hasNext tests if the sequence has another entry
•	 next returns the next data or entry in the sequence and increments the 

iterator cursor
•	 startScan initializes the DataIter iterator
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The CrfSeqIter sequence iterator uses the iitb.segment.DataCruncher class to 
read a training set from a file (a file with tagged words):

class CrfSeqIter(val nLabels: Int, val input: String, val delim: 
SeqDelimiter) extends DataIter {
   lazy val trainData = DataCruncher.readTagged(nLabels, input, input, 
delim.obsDelim, delim.labelsDelim, delim.trainingDelim, new labelMap)
   
   override def hasNext: Boolean = trainData.hasNext
   override def next: DataSequence = trainData.next
   override def startScan: Unit = trainData.startScan
}

The trainData training set is initialized only once when any of the DataIter 
overridden methods is invoked. The class is merely an adapter to the generation  
of the training set.

Generating tags
The second step consists of selecting the mechanism and class to generate the 
features observations. The extraction of the features from any data set requires 
implementation of the FeatureGenerator interface in order to access all the  
features observations from any kind of features.

Our problem is a simple linear tagging of data sequences (recommendations 
from analysts). Therefore, we can use the iitb.Model.FeatureGenImpl default 
implementation. Our tagging class, TaggingGenerator makes FeatureGenImpl 
as a subclass and specifies the model specification as a CompleteModel. The IITB 
CRF library supports both linear chain model of CompleteModel with a single edge 
iterator and the nested chain CRF model of the type NestedModel with a nested 
edge iterator. The complete model does not make any assumption regarding the 
independence between labels Y:

val addFeature = true
class TaggingGenerator (val nLabels: Int) extends FeatureGenImpl(new 
CompleteModel(nLabels),nLabels,addFeature)

The class is defined within the scope of the Crf class and does not have to be exposed 
to the client code. The last parameter of FeatureGenImpl, addFeature, is set as true 
to allow the tags of dictionary to be built iteratively during the training.
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Extracting data sequences
The CrfTrainingSet class implements the DataSequence interface. It is used to 
access all the raw analyst's recommendations and rating regarding stocks. The class 
needs to implement the following methods:

•	 set_y to assign a label index to a position k
•	 y to retrieve a label y at position y
•	 x to retrieve an observed feature vector at position k
•	 length to retrieve the number of entries in the sequence

The CrfTrainingSet class can be implemented as follows:

class CrfTrainingSet(val nLabels: Int, val entry: String, val delim: 
String) extends DataSequence {
    val words = entry.split(delim)
    val map = new Array[Int](nLabels)
   
    override def set_y(k: Int, label: Int): Unit = map(k) = label
    override def y(k: Int): Int = map(k)
    override def length: Int = words.size
    override def x(k: Int): Object = words(k)
}

The class takes an analyst's recommendation regarding a stock, entry, as an input 
and breaks it down into words, using the delimiter or regular expression, delim.

CRF control parameters
The execution of the CRF algorithm is controlled by a wide variety of configuration 
parameters. For the sake of simplicity, we use the default configuration parameters, 
CrfConfig, to control the execution of the learning algorithm, with the exception of 
the following four variables:

•	 Initialization of the weights, w0, using either a predefined or a random value 
between 0 and 1 (default 0)

•	 Maximum number of iterations used in the computation of the weights 
during the learning phase maxIters (default 50)

•	 The scaling factor lamdba for the L2 penalty function, used to reduce 
observations with a high value (default 1.0)

•	 Convergence criteria, eps, used in computing the optimum values for the 
weights wj (default 1e-4)
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Advanced configuration
The CRF model of the iitb library is highly configurable. It allows 
developers to specify a state-label undirected graph with any combination 
of flat and nested dependencies between states. The source code includes 
several training algorithms such as the exponential gradient.

The test case does not assume any dependence between states:

class CrfConfig(w0: Double, maxIters: Int, lambda: Double, eps: 
Double) extends Config

Putting it all together
The objective of the training is to compute the weights wj that maximize the 
conditional log-likelihood without the L2 penalty function.

Conditional log-likelihood for a linear chain CRF training set, 

( ){ }0: 1
,i i n

D x y
−

=  is given as follows:

�

Learning: Maximization of loss function and L2 penalty is given 
as follows:

�

Maximizing the log-likelihood function � is equivalent to minimizing the loss  
with L2 penalty. The function is convex, and therefore, any variant gradient  
descent (greedy) algorithm can be applied iteratively.

The Crf class implements the learning, train, and classification methods. Like 
any other classifiers, Crf implements the PipeOperator trait; so, the classification 
can be included in a workflow. The class also implements the Supervised trait to 
force the developer to define a validation routine for the CRF:

class Crf(nLabels: Int, config: CrfConfig, delims: SeqDelimiter, 
taggedObs: String) extends PipeOperator[String, Double] with 
Supervised[String] {
  val features = new TaggingGenerator(nLabels) //1
  lazy val crf = new CRF(nLabels, features, config.params) //2
  val model: Option[CrfModel] = {
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    features.train(seqIter) //3
    Some(new CrfModel(crf.train(seqIter))) //4
}
…

The computation of the CRF weights during training uses either methods defined in 
IITB's CRF library or methods described in the previous sections.

Once the features have been extracted from the data sequence input file (line 1), the 
CRF algorithm is instantiated (line 2) with the number of labels, extracted features, 
and the configuration. The model is trained using the iterator for features seqIter 
(line 3), and then returns a CrfModel instance (vector of weights) (line 4) if training 
succeeds, None otherwise.

The predictive method implements the data transformation operator, |>. It takes a 
new observation (analyst's recommendation on a stock) and returns the maximum 
likelihood, as shown here:

def |> : PartialFunction[String, Double] = {
  case obs: String if(obs.length > 1 && model != None) => {
    val dataSeq = new CrfTrainingSet(nLabels,obs,delims.obsDelim)
    crf.apply(dataSeq)
  }
}

The data transformation implements the Viterbi algorithm to extract the best sequence 
of labels for a newly observed recommendation, obs. It invokes the apply method of 
the iitb.crf.CRF class. The code to validate the arguments/parameters of the class 
and methods are omitted along with the exception handler for the sake of readability.

Tests
The client code to execute the test consists of defining the number of labels (tags for 
recommendation), the L2 penalty factor, LAMBDA, and the delimiting string:

val LAMBDA = 0.5; val EPS = 1e-3
val NLABELS = 9; val MAX_ITERS = 100; val W0 = 0.7
val PATH = "resources/data/chap7/rating"

val config = CrfConfig(W0, MAX_ITERS, LAMBDA, EPS)
val delimiters = CrfSeqDelimiter(",\t/ -():.;'?#`&_", "//", "\n")

Crf(NLABELS, config, delimiters, PATH).weights match {
  case Some(weights) => weights
  case None => { … }
}
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For these tests, the initial value for the weights (with respect to the maximum number 
of iterations for the maximization of the log likelihood, and the convergence criteria) 
are set to 0.7 (with respect to 100 and 1e-3). The delimiters for labels sequence, observed 
features sequence, and the training set are customized for the format of input data files, 
rating.raw and rating.tagged.

The training convergence profile
The first training run discovered 136 features from 34 analyst's stock recommendations. 
The algorithm converged after 21 iterations. The value of the log of the likelihood for 
each of those iterations is plotted to illustrate the convergence toward a solution of 
optimum w:

Visualization of the log conditional probability of CRF during training

The training phase converges fairly quickly toward a solution. It can be explained 
by the fact that there is little variation in the six-field format of the analyst's 
recommendations. A loose or free-style format would have required a larger  
number of iterations during training to converge.

Impact of the size of the training set
The second test evaluates the impact of the size of the training set on the convergence 
of the training algorithm. It consists of computing the difference Δw of the model 
parameters (weights) between two consecutive iterations {wi}t+1 and {wi}t:
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The test is run on 163 randomly chosen recommendations using the same model but 
with two different training sets:

•	 34 analyst stock recommendations
•	 55 stock recommendations

The larger training set is a super set of the 34 recommendations set. The following 
graph illustrates the comparison of features generated with 34 and 55 CRF training 
sequences:

The disparity between the test runs using two different size of training set is very 
small. This can be easily explained by the fact that there is a small variation in the 
format between the analyst's recommendations.

Impact of the L2 regularization factor
The third test evaluates the impact of the L2 regularization penalty on the convergence 
toward the optimum weights/features. The test is similar to the first test with different 
value of λ . The following charts plot log [p(Y|X, w)] for different values of λ  = 1/σ2 
(02, 0.5, and 0.8):
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Impact of the L2 penalty on convergence of the CRF training algorithm

The log of the conditional probability decreases or the conditional probability 
increases with the number of iterations. The lower the L2 regularization factor,  
the higher the conditional probability.

The variation of the analysts' recommendations within the training set is fairly small, 
which limits the risk of overfitting. A free-style recommendation format would have 
been more sensitive to overfitting.

Comparing CRF and HMM
The cost/benefit analysis of discriminative models relative to generative models applies 
to the comparison of the conditional random field with the hidden Markov model.

Contrary to the hidden Markov model, the conditional random field does not 
require the observations to be independent (conditional probability). The conditional 
random field can be regarded as a generalization of the HMM by extending the 
transition probabilities to arbitrary feature functions that can depend on the input 
sequence. HMM assumes the transition probabilities matrix to be constant.

HMM learns the transition probabilities aij on its own by providing more training 
data. The HMM can be regarded as a special case of CRF where the probabilities 
used in the state transition are constant.
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Performance consideration
The time complexity for decoding and evaluating canonical forms of the hidden 
Markov model for N states and T observations is O(N2T). The training of HMM  
using the Baum-Welch algorithm is O(N2TM), where M is the number of iterations.

There are several options to improve the performance of HMM:

•	 Avoid multiplication by 0 in the emission probabilities matrix by using 
sparse matrices or keeping tab of the null entries

•	 Try to train HMM on a relevant subset of the training data, particularly in the 
case of tagging

The training of the linear chain conditional random fields is implemented using  
the same dynamic programming techniques as HMM implementation (Viterbi, 
forward-backward passes). Its time complexity for training T data sequence, N 
labels y, and M weights/features λ  is O(MTN2). The time complexity of the training 
of a CRF can be reduced by distributing the computation of the log likelihood and 
gradient over multiple nodes [7:13].

Summary
In this chapter, we had a closer look at modeling sequences of observations with 
hidden states with the two most commonly used algorithms:

•	 Generative hidden Markov model (HMM) to maximize p(X,Y)
•	 Discriminative conditional random field (CRF) to maximize log p(Y|X)

HMM is a special form of Bayes Network and requires the observations to be 
independent. Under these circumstances, the HMM is fairly easy to estimate,  
which is not the case for CRF.

You learned how to implement three dynamic programming techniques, Viterbi, 
Baum-Welch, and alpha/beta algorithms in Scala. These algorithms are routinely 
used to solve optimization problems and should be an essential component of your 
algorithmic toolbox.



Kernel Models and Support 
Vector Machines

This chapter introduces kernel functions, binary support vectors classifiers, one-class 
support vector machines for anomaly detection, and support vector regression.

In the Binomial classification section of Chapter 6, Regression and Regularization, you 
learned the concept of hyperplanes used to segregate observations from the training 
set and estimate the linear decision boundary. The logistic regression has at least one 
limitation: it requires that the datasets are linearly separated using a defined function 
(sigmoid). This limitation is especially an issue for high-dimension problems (large 
number of features that are highly nonlinearly dependent). Support vector machines 
(SVMs) overcome this limitation by estimating the optimal separating hyperplane 
using kernel functions.

In this chapter, you will discover the following topics:

•	 The impact of some of the SVM configuration parameters and the kernel 
method on the accuracy of the classification

•	 How to apply the binary support vector classifier to estimate the risk for a 
public company to curtail or eliminate its dividend

•	 How the support vector regression compares to the linear regression

Support vector machines are formulated as a convex optimization problem. Therefore, 
the mathematical foundation of these algorithms is described for reference.
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Kernel functions
Every machine learning model introduced in this book so far assumes that 
observations are represented by a feature vector of a fixed size. However, some 
real-world applications such as text mining or genomics do not lend themselves 
to this restriction. The critical element of the process of classification is to define a 
similarity or a distance between two observations. Kernel functions allow developers 
to compute the similarity between observations without the need to encode them in 
feature vectors [8:1].

Overview
The concept of kernel methods may be a bit odd at first to a novice. It is usually 
better understood by using a concrete example. Let's consider the example of the 
classification of proteins. Proteins have different lengths and composition, but it  
does not prevent scientists from classifying them [8:2].

Proteins:
Proteins are polymers of amino acids joined together by peptide bonds. 
They are composed of a carbon atom bonded to a hydrogen atom, 
another amino acid, or a carboxyl group.

A protein is represented using a traditional molecular notation to which biochemists 
are familiar. Geneticists describe proteins in terms of a sequence of characters known 
as the protein sequence annotation. The sequence annotation encodes the structure 
and composition of the protein. The following picture illustrates the molecular (left) 
and encoded (right) representation of a protein:

Sequence annotation of a protein
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The classification and the clustering of a set of proteins require the definition of a 
similarity factor or distance used to evaluate and compare the proteins. For example, 
the similarity between three proteins can be defined as a normalized dot product of 
their sequence annotation:

Similarity between the sequence annotations of three proteins

You do not have to represent the entire sequence annotation of the proteins as a 
feature vector in order to establish that they belong to the same class. You only need 
to compare each element of each sequence, one by one, and compute the similarity. 
For the same reason, the estimation of the similarity does not require the two 
proteins to have the same length.

In this example, we do not have to assign a numerical value to each element of the 
annotation. Let's represent an element of the protein annotation as its character c 
and position p (for example: K, 4). The dot product of the two protein annotations x 
and x' of the respective lengths n and n' can be defined as the number of identical 
elements (character and position) between the two annotations divided by the 
maximum length between the two annotations:
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The computation of the similarity for the three proteins produces the result as 
sim(x,x')=6/12 = 0.50, sim(x,x'')=3/13 =0.23, sim(x',x'')= 4/13= 0.31.

Another similar aspect is that the similarity of two identical annotations is 1.0 and 
the similarity of two completely different annotations is 0.0.



Kernel Models and Support Vector Machines

[ 254 ]

Visualization of similarity:
It is usually more convenient to use a radial representation to 
visualize the similarity between features, as in the example of 
proteins' annotations. The distance d(x,x') = 1/sim(x,x') is visualized 
as the angle or cosine between two features. The cosine metric is 
commonly used in text mining.

In this example, the similarity is known as a kernel function in the space of the 
sequence annotation of proteins.

Common discriminative kernels
Although the measure of similarity is very useful to understand the concept  
of a kernel function, kernels have a broader definition. A kernel K(x, x') is a 
symmetric, non-negative real function that takes two real arguments (values  
of two features). There are many different types of kernel functions, among  
which the most common are:

•	 The linear kernel (dot product): This is useful in the case of very  
high-dimensional data where problems can be expressed as a linear 
combination of the original features

•	 The polynomial kernel: This extends the linear kernel for a combination of 
features that are not completely linear

•	 The radial basis function (RBF): This is the most commonly applied kernel. 
It is appropriate where the labeled or target data is noisy and requires some 
level of regularization

•	 The sigmoid kernel: This is used in conjunction with neural networks
•	 The laplacian kernel: This is a variant of RBF with a higher regularization 

impact on training data
•	 The log kernel: This is used in image processing

RBF terminology
In this presentation and the library used in its implementation, 
the radial basis function is a synonym to the Gaussian kernel 
function. However, RBF also refers to the family of exponential 
kernel functions that encompasses Gaussian, Laplacian, and 
exponential functions.
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The simple linear model for regression consists of the dot product of the regression 
parameters (weights) and the input data (refer to the Ordinary least squares (OLS) 
regression section of Chapter 6, Regression and Regularization).

The model is in fact the linear combination of weights and linear combination of 
inputs. The concept can be extended by defining a general regression model as the 
linear combination of nonlinear functions, known as basis functions:
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The most commonly used basis functions are the power and Gaussian functions. 
The kernel function is described as the dot product of the two vectors of the basis 
function φ(x).φ(x') of two features vector x and x'. A partial list of kernel methods is 
as follows:

The generic kernel:
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The linear kernel:
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The polynomial kernel with the slope γ, degree n, and constant c:
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The sigmoid kernel with the slope γ and constant c:

( ) ( ), ' tanh ' 0, 0TK x x x x c cγ γ= + > ≤

The radial basis function kernel with the slope γ:

( )
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The laplacian kernel with the slope γ:

( ) ', ' 0x xK x x e γ γ− −= >

The log kernel with the degree n:

( ) ( ), ' log 1 ' nK x x x x= − + −
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The list of discriminative kernel functions described earlier is just a subset of the 
kernel methods universe. Other types of kernels include:

•	 Probabilistic kernels: These are kernels derived from generative models. 
Probabilistic models such as Gaussian processes can be used as a kernel 
function [8:3].

•	 Smoothing kernels: This is the nonparametric formulation, averaging 
density with the nearest neighbor observations [8:4].

•	 Reproducible Kernel Hilbert Spaces: This is the dot product of finite or 
infinite basis functions [8:5].

The kernel functions play a very important role in support vector machines for 
nonlinear problems.

The support vector machine (SVM)
A support vector machine (SVM) is a linear discriminative classifier that attempts 
to maximize the margin between classes during training. This approach is similar to 
the definition of a hyperplane through the training of the logistic regression (refer to 
the Binomial classification section of Chapter 6, Regularization and Regression). The main 
difference is that the support vector machine computes the optimum separating 
hyperplane between groups or classes of observations. The hyperplane is indeed the 
equation that represents the model generated through training.

The quality of the SVM depends on the distance, known as margin, between the 
different classes of observations. The accuracy of the classifier increases as the 
margin increases.

The linear SVM
First, let's apply the support vector machine to extract a linear model (classifier or 
regression) for a labeled set of observations. There are two scenarios for defining a 
linear model. The labeled observations are as follows:

•	 Naturally segregated in the features space (the separable case)
•	 Intermingled with overlap (the nonseparable case)

It is easy to understand the concept of an optimal separating hyperplane in cases the 
observations are naturally segregated.
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The separable case (hard margin)
The concept of separating a training set of observations with a hyperplane is better 
explained with a 2-dimensional (x, y) set of observations with two classes, C1 and C2. 
The label y has the value -1 or +1.

The equation for the separating hyperplane is defined by the linear equation,  
y=w.xT+w0, which sits in the midpoint between the boundary data points for class 
C1 (H1: w.xT + w0 + 1=0) and class C2 (H2: w.xT + w0 - 1). The planes H1 and H2 are the 
support vectors:

Support vector machine – separable case

In the separable case, the support vectors fully segregate the observations into two 
distinct classes. The margin between the two support vectors is the same for all the 
observations and is known as the hard margin.

Support vectors equation w is represented as:

( )0 1T
iy w x w i+ ≥ ∀

Hard margin optimization problem is given by:

( )0,
min 1

2o

T
T

iw w

w w subject to y w x w i
 

+ ≥ ∀ 
 
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The nonseparable case (soft margin)
In the nonseparable case, the support vectors cannot completely segregate 
observations through training. They merely become linear functions that penalize 
the few observations or outliers that are located outside (or beyond) their respective 
support vector, H1 or H2. The penalty variable ξ, also known as the slack variable, 
increases if the outlier is further away from the support vector:

A support vector machine – the nonseparable case

The observations that belong to the appropriate (or own) class do not have to be 
penalized. The condition is similar to the hard margin, which means that the slack 
ξ is null. Observations that belong to the class but located beyond its support vector 
are penalized; the slack ξ increases as the observations get closer to the support 
vector of the other class and beyond. The margin is then known as a soft margin 
because the separating hyperplane is enforced through a slack variable.

Optimization of the soft-margin for a linear SVM with C formulation:

( )

1

, 0

0

min
2

0, 1

T n

iw i

T
i i

w w c

y w x w i

ξ
ξ

ξ ξ

−

=

 
+ 

 

≥ + ≥ − ∀

∑

C is the penalty (or inversed regularization) factor.
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You may wonder how the minimization of the margin error is related to the loss 
function and the penalization factor introduced for the ridge regression (refer to the 
Numerical optimization section of Chapter 6, Regularization and Regression). The second 
factor in the formula corresponds to the ubiquitous loss function. You will certainly 
recognize the first term as the L2 regularization penalty with λ=1/2C.

The problem can be reformulated as the minimization of a function known as the 
primal problem [8:6].

Primal problem formulation of the support vector classifier:

( )
0

1

0,w 0
min 1

2

T n
T

i i iw i

w w c L L y w x w
−

=

 
+ = − + 

 
∑

The C penalty factor can be thought of as the inverse of the L2 regularization factor. 
The loss function L is then known as the hinge loss. The formulation of the margin 
using the C penalty (or cost) parameter is known as the C-SVM formulation. C-SVM 
is sometimes called the C-Epsilon SVM formulation for the nonseparable case.

The υ-SVM (or Nu-SVM) is an alternative formulation to the C-SVM. The 
formulation is more descriptive than C-SVM; υ represents the upper bound of 
the training observations that are poorly classified and the lower bound of the 
observations on the support vectors [8:7].

υ-SVM formulation of a linear SVM:

( )

1

, , 0

0
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2

0,

T n

iw p i

T
i i i

w w p
un

y w x w p i

ξ
ξ

ξ ξ

−

=

 
− 

 

≥ + ≥ − ∀

∑

Here, ρ is a margin factor used as a optimization variable.

The C-SVM formulation is used throughout the chapters for the binary, one class 
support vector classifier as well as the support vector regression.

Sequential Minimal Optimization
The optimization problem consists of the minimization of a quadratic 
objective function (w2) subject to N linear constraints, N being the number 
of observations. The time complexity of the algorithm is O(N3). A more 
efficient algorithm, known as Sequential Minimal Optimization (SMO) 
has been introduced to reduce the time complexity to O(N2).
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The nonlinear SVM
So far, it has been assumed that the separating hyperplane, and therefore, the 
support vectors, are linear functions. Unfortunately, such assumptions are not 
always correct in the real world.

Max-margin classification
Support vector machines are known as large or maximum margin classifiers. 
The objective is to maximize the margin between the support vectors with hard 
constraints for separable (similarly, soft constraints with slack variables for 
nonseparable) cases.

The model parameters {wi} are rescaled during optimization to guarantee that  
the margin is at least 1. Such algorithms are known as maximum (or large)  
margin classifiers.

The problem of fitting a nonlinear model into the labeled observations using support 
vectors is not an easy task. A better alternative consists of mapping the problem to 
a new, higher dimensional space using a nonlinear transformation. The nonlinear 
separating hyperplane becomes a linear plane in the new space, as illustrated in the 
following diagram:

Illustration of the Kernel trick in an SVM

The nonlinear SVM is implemented using a basis function, ϕ(x). The formulation 
of the nonlinear C-SVM is very similar to the linear case. The only difference is the 
constraint along the support vector, using the basis function, φ:

( )( )0 1 0T
i i iy w x w iφ ξ ξ+ ≥ − ≥ ∀
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The minimization of wT.ϕ(x) in the preceding equation requires the computation of 
the inner product ϕ(x)T.ϕ(x). The inner product of the basis functions is implemented 
using one of the kernel functions introduced in the first section. The optimization of 
the preceding convex problem computes the optimal hyperplane w* as the kernelized 
linear combination of the training samples, y.ϕ(x), and Lagrange multipliers. This 
formulation of the optimization problem is known as the SVM dual problem. The 
description of the dual problem is mentioned as a reference and is well beyond the 
scope of this book [8:8 ].

Optimal hyperplane for the SVM dual problem:

( )
1

*

0

n

i i i
i

w y xα φ
−

=
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Hard margin formulation for the SVM dual problem:
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The kernel trick
The transformation (x,x') => K(x,x') maps a nonlinear problem into a linear problem 
in a higher dimensional space. It is known as the kernel trick.

Let's consider, for example, the polynomial kernel defined in the first section with a 
degree d=2 and coefficient of C0=1 in a two-dimension space. The polynomial kernel 
function on two vectors, x=[x1, x2] and z=[x'1, x'2], is decomposed into a linear function 
in a dimension 6 space:

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

2 2' ' ' ' ' '
1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 3 3

2
2 2 1 3 2 4 1

, ' 1 '

1 2 2 2

' ' '

1, 2 , 2 ,

TK x x x x

x x x x x x x x x x x x

x x x x x x

x x x x x x x

φ φ φ φ φ φ

φ φ φ φ

= +

= + + + + +

= ⋅ + ⋅ + ⋅ +

= = = =

L

L



Kernel Models and Support Vector Machines

[ 262 ]

Support vector classifier (SVC)
Support vector machines can be applied to classification, anomalies detection, and 
regression problems. Let's dive into the support vector classifiers first.

The binary SVC
The first classifier to be evaluated is the binary (2-class) support vector classifier.  
The implementation uses the LIBSVM library created by Chih-Chung Chang and 
Chih-Jen Lin from the National Taiwan University [8:9].

LIBSVM
The library was originally written in C and ported to Java. It can be downloaded 
from http://www.csie.ntu.edu.tw/~cjlin/libsvm as a .zip or tar.gzip file. 
The library includes the following classifier modes:

•	 Support vector classifiers (C-SVC, υ-SVC, and one-class SVC)
•	 Support vector regression (υ-SVR and ε-SVR)
•	 RBF, linear, sigmoid, polynomial, and precomputed kernels

LIBSVM has the distinct advantage of using Sequential Minimal Optimization 
(SMO), which reduces the time complexity of a training of n observations to O(n2). 
LIBSVM documentation covers both the theory and implementation of hard and soft 
margins and is available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/
guide.pdf.

Why LIBSVM?
There are alternatives to the LIBSVM library for learning and 
experimenting with SVM. David Soergel from the University of 
Berkeley refactored and optimized the Java version [8:10]. Thorsten 
Joachims' SVMLight [8:11] Spark/MLlib 1.0 includes two Scala 
implementations of SVM using resilient distributed datasets (refer to 
the Apache Spark section of Chapter 12, Scalable Frameworks). However, 
LIBSVM is the most commonly used SVM library.

The implementation of the different support vector classifiers and the support vector 
regression in LIBSVM is broken down into the following five Java classes:

•	 svm_model: This defines the parameters of the model created during training
•	 svm_node: This models the element of the sparse matrix Q, used in the 

maximization of the margins
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•	 svm_parameters: This contains the different models for support vector 
classifiers and regressions, the five kernels supported in LIBSVM with  
their parameters, and the weights vectors used in cross-validation

•	 svm_problem: This configures the input to any of the SVM algorithm (number 
of observations, input vector data x as a matrix, and the vector of labels y)

•	 svm: This implements algorithms used in training, classification, and regression

The library also includes template programs for training, prediction, and 
normalization of datasets.

The LIBSVM Java code
The Java version of LIBSVM is a direct port of the original C code. 
It does not support generic types and is not easily configurable 
(the code uses switch statements instead of polymorphism). For 
all its limitations, LIBSVM is a fairly well-tested and robust Java 
library for SVM.

Let's create a Scala wrapper to the LIBSVM library to improve its flexibility and ease 
of use.

Software design
The implementation of the support vector machine algorithm uses the design 
template for classifiers (refer to the Design template for classifier section in Appendix A, 
Basic Concepts).

The key components of the implementation of an SVM are as follows:

•	 A model SVMModel of the type Model, which is initialized through training 
during the instantiation of the classifier. The model class is an adapter to the 
svm_model structure defined in LIBSVM.

•	 A predictive or classification routine is implemented as a data transformation 
extending the PipeOperator trait.

•	 The support vector machine class SVM has three parameters: the configuration 
wrapper of the type SVMConfig, the features/time series of the type 
XTSeries, and the target or labeled values DblVector.

•	 The configuration (the type SVMConfig) consists of three distinct elements: 
SVMExecution that defines the execution parameters such as maximum 
number of iterations or convergence criteria, SVMKernel that specifies the 
kernel function used during training, and SVMFormulation that defines  
the formula (C, epsilon, or nu) used to compute a nonseparable case for  
the support vector classifier and regression.
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The key software components of the support vector machine are described in the 
following UML class diagram:

Configuration parameters
LIBSVM exposes a large number of parameters for the configuration and execution 
of any of the SVM algorithms. Any SVM algorithm is configured with three 
categories of parameters, which are as follows:

•	 Formulation (or type) of the SVM algorithms (multiclass classifier, one-class 
classifier, regression, and so on) using the SVMFormulation class

•	 The kernel function used in the algorithm (the RBF kernel, Sigmoid kernel, 
and so on) using the SVMKernel class

•	 Training and execution parameters (convergence criteria, number of folds for 
cross-validation, and so on) using the SVMExecution class

SVM Formulation
The instantiation of the configuration consists of initializing the LIBSVM parameter, 
param, by the SVM type, kernel, and the execution context selected by the user.

Each of the SVM parameters case class extends the generic trait, SVMConfigItem:

trait SVMConfigItem { def update(param: svm_parameter): Unit }

The classes inherited from SVMConfigItem are responsible for updating the list of 
the SVM parameters, svm_parameter, defined in LIBSVM. The update method 
encapsulates the configuration of the LIBSVM.
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The formulation of the SVM algorithm is defined by classes implementing the 
SVMFormulation trait:

sealed trait SVMFormulation extends SVMConfigItem {
  def update(param: svm_parameter): Unit 
}

The list of formulation for the SVM (C, nu, and eps for regression) is completely 
defined and known. Therefore, the hierarchy should not be altered and the 
SVMFormulation trait has to be declared sealed. Here is an example of the SVM 
formulation class, CSVCFormulation, which defines the C-SVM model:

class CSVCFormulation (c: Double) extends SVMFormulation {
  override def update(param: svm_parameter): Unit = {
     param.svm_type = svm_parameter.C_SVC
     param.C = c
  }
}

The other SVM formulation classes, NuSVCFormulation, OneSVCFormulation,  
and SVRFormulation, implement the υ-SVM, 1-SVM, and ε-SVM respectively  
for regression models.

The SVM kernel function
Next, you need to specify the kernel functions by defining and implementing the 
SVMKernel trait:

sealed trait SVMKernel extends SVMConfigItem {
   def update(param: svm_parameter): Unit
}

Once again, there are a limited number of kernel functions supported in LIBSVM. 
Therefore, the hierarchy of kernel functions is sealed. The following code snippet 
configures the radius basis function kernel, RbfKernel, as an example of definition 
of the kernel definition class:

class RbfKernel(gamma: Double) extends SVMKernel {
  override def update(param: svm_parameter): Unit = {
    param.kernel_type = svm_parameter.RBF
    param.gamma = gamma
…
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The fact that the LIBSVM Java byte code library is not very extensible does not 
prevent you from defining a new kernel function in the LIBSVM source code.  
For example, the Laplacian kernel can be added with the following steps:

1.	 Create a new kernel type in svm_parameter, such as svm_parameter.
LAPLACE = 5.

2.	 Add the kernel function name to kernel_type_table in the svm class.
3.	 Add kernel_type != svm_parameter.LAPLACE to the svm_check_

parameter method.
4.	 Add the implementation of the kernel function for two values in svm.

kernel_function (java code):
case svm_parameter.LAPLACE:
   double sum = 0.0;
   for(int k = 0; k < x[i].length; k++) {
      final double diff = x[i][k].value - x[j][k].value;
      sum += diff*diff;
   }
   return Math.exp(-gamma*Math.sqrt(sum));

5.	 Add the implementation of the Laplace kernel function in the svm.k_function 
method by modifying the existing implementation of RBF (distanceSqr).

6.	 Rebuild the libsvm.jar file

SVM execution
The SVMExecution class defines the configuration parameters for the execution  
of the training of the model, namely, the convergence factor, eps for the optimizer, 
the size of the cache cacheSize, and the number of folds, nFolds used during  
cross-validation:

class SVMExecution(cacheSize: Int, eps: Double, nFolds: Int) extends 
SVMConfigItem {
  override def update(param: svm_parameter): Unit = {
    param.cache_size = cacheSize
    param.eps = eps
  }
}

The cross-validation is performed only if the nFolds value is greater than 1.
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SVM implementation
We are finally ready to create the configuration class, SVMConfig, which hides and 
manages all of the different configuration parameters:

class SVMConfig(formula: SVMFormulation, kernel: SVMKernel,exec: 
SVMExecution) {
   val param = new svm_parameter
   formula.update(param)
   kernel.update(param)
   exec.update(param)
}

The instantiation of SVMConfig initialized the internal LIBSVM list of configuration 
parameters through a sequence of update calls.

Next, let's implement the first support vector classifier for the two-class problems. 
As with any other data transformation, the parameterized class SVM implements the 
PipeOperator, as follows:

class SVM[T <% Double](config: SVMConfig, xt: XTSeries[Array[T]], 
labels: DblVector) extends PipeOperator[Array[T], Double] {
  type Feature = Array[T]
  type SVMNodes = Array[Array[svm_node]]

This class has the same parameters as other classifiers presented in the previous 
chapters: a configuration, config, an input time series, xt, and labeled data, labels. 
The types are added for convenience. The internal types, Feature and SVMNodes, are 
added for convenience.

The LIBSVIM type, svm_node, is the indexed value of an element of the feature 
vector in a particular observation:

public class svm_node implements java.io.Serializable {
   public int index;
   public double value;
}

The type SVMNodes defined in the scope of SVM class is the representation of  
a two-dimensional array of features vector elements by observations. The next 
step is to implement the training procedure. The training is executed during the 
instantiation of the SVM class. The SVM model, SVMModel, is defined as a tuple or  
pair (svmmodel, accuracy) with the following:

•	 The svmmodel is the model defined in LIBSVM
•	 accuracy computed during an N-folds cross-validation if the number of 

folds, nFolds, has been set as one of the parameters of SVMExecution
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Consider the following code:

class SVMModel(val svmmodel: svm_model, val accuracy: Double) extends 
Model

The instantiation of SVC is hidden from the client code. It is executed during the 
instantiation of the class, so a client code does not have to be aware of the LIBSVM 
types. Consider the following code:

val model: Option[SVMModel] = {
  val problem = new svm_problem  //1
  problem.l = xt.size;
  problem.y = labels  
  problem.x = new SVMNodes(xt.size)

  val dim = dimension(xt)
  xt.zipWithIndex.foreach( xt_i => {  //2
     val svm_col = new Array[svm_node](dim)
     xt_i._1.zipWithIndex
            .foreach(xi =>  {
                val node = new svm_node
                node.index= xi._2
                node.value = xi._1  
                svm_col(xi._2) = node 
             })
     problem.x(xt_i._2) = svm_col
   })
  Some(svm.svm_train(problem, config.param, accuracy(problem))//3
}

The first step in the creation of the model is to define the SVM problem, problem, 
in the context of LIBSVM (line 1): length of the time series, labeled data, and input 
observations. The time series has to be converted into the LIBSVM internal class, 
svm_nodes (line 2), to complete the initialization of the problem. The Scala method, 
zipWithIndex, is used to access the index of each observation (time series entry). 
Finally, the model and the computed accuracy are returned as a tuple (line 3) after 
processing by the svm_train training method.
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The accuracy is the ratio of true positive plus the true negative over the size of the 
test sample (refer to the Key metrics section of Chapter 2, Hello World!). It is computed 
through cross-validation only if the number of folds is initialized in the SVMExecution 
configuration class as greater than 1. Practically, the accuracy is computed by 
invoking the cross-validation method, svm_cross_validation, in the LIBSVM 
package, and then computing the ratio of the number of predicted values that match 
the labels over the total number of observations. Here is the essential part of the 
implementation of accuracy(problem: svm_problem):

val target = new Array[Double](labels.size)
svm.svm_cross_validation(problem, config.param, config.exec.nFolds, 
target)
val rawAccuracy = target.zip(labels)
                  .filter(z => Math.abs(z._1-z._2) < config.eps)
rawAccuracy.size.toDouble/labels.size

The Scala filter weeds out the observations that were poorly predicted.  
This minimalist implementation is good enough to start exploring the support  
vector classifier.

C-penalty and margin
The first evaluation consists of understanding the impact of the penalty factor C to 
the margin in the generation of the classes. Let's implement the computation of the 
margin. The margin is defined as 2/||w|| and implemented as a method of the SVC 
class, as follows:

def margin: Option[Double] = model match {
  case Some(m) => {
     val wNorm = m.svmmodel.sv_coef(0) 
                .foldLeft(0.0)((s, r) => s + r*r)  //1
     if(wNorm < config.eps) None
     else Some(2.0/Math.sqrt(wNorm)) //2
  }
  …
}

The first instruction (line 1) computes the sum of the squares, wNorm, of the residuals 
r = y – f(x|w). The margin (line 2) is ultimately computed if the sum of squares is 
significant enough to avoid rounding errors.
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The margin is evaluated using an artificially generated time series and labeled data. 
First, we define the method to evaluate the margin for a specific value of the penalty 
(inversed regularization) factor C:

def evalMargin(observations: DblMatrix, labels: DblVector, c: Double): 
Unit = {
  val config = SVMConfig(CSVCFormulation(c), RbfKernel(GAMMA)) //3
  val xt = XTSeries[DblVector](observations)
  val svc = SVM[Double](config, xt, labels)
  svc.margin match {
case Some(margin) => Display.show("Margin $margin", logger)
…

This test uses the default execution parameters, cache_size= 25000 and eps=1e-15. 
Therefore, the 3rd value of SVMConfig, exec, is not specified in the SVMConfig.
apply constructor (line 3).The method is invoked iteratively to evaluate the impact 
of the penalty factor on the margin extracted from the training of the model. The test 
uses a synthetic time series to highlight the relation between C and the margin. The 
synthetic time series consists of the following two training sets of an equal size, N:

•	 First training set: data points generated as y = x(1 + r/5) for the label 1, r 
being a randomly generated number over the range [0,1]

•	 Second training set: randomly generated data point y = r for the label of -1

Consider the following code:

def generate: (DblMatrix, DblVector) = {
   val z  = Array.tabulate(N)(i =>
      Array[Double](i, i*(1.0 + 0.2*Random.nextDouble))
   ) ++
   Array.tabulate(N)(i =>Array[Double](i, i*Random.nextDouble))
   (z, Array.fill(N)(1.0) ++ Array.fill(N)(-1.0))
}

The evalMargin method is executed for a predefined value of gamma and the value 
C ranging from 0 to 5:

val gamma =0.8; val N = 100
val values = generate
Range(0, 50).foreach(i =>evalMargin(values._1, values._2, i*0.1))
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val vs. final val
There is a difference between a val and a final val. A nonfinal value 
can be overridden in a subclass. Overriding a final value produces a 
compiler error, as follows:

class A {val x = 5; final val y = 8 }
class B extends A {
   override val x = 9 // OK
   override val y = 10 // Error

}

The following chart illustrates the relation between the penalty, or cost factor, C and 
the margin:

The margin value versus C-penalty for an SVC

As expected, the value of the margin decreases as the penalty term C increases. The 
C penalty factor is related to the L2 regularization factor λ as C ~ 1/λ. A model with 
a large value of C has a high variance and a low bias, while a small value of C will 
produce lower variance and a higher bias.

Optimizing C-penalty
The optimal value for C is usually evaluated through cross-validation, 
by varying C in incremental powers of 2: 2n, 2n+1 … [8:12].



Kernel Models and Support Vector Machines

[ 272 ]

Kernel evaluation
The next test consists of comparing the impact of the kernel function on the accuracy 
of the prediction. Once again, a synthetic time series is generated to highlight the 
contribution of each kernel.

First, the prediction method for the SVM class is implemented by overriding the pipe 
operator data transformation, |>:

def |> : PartialFunction[Feature, Double] =  {
   case x: Feature if(x != null && x.size==dimension(xt) && model  
     != None && model.get.accuracy >= 0.0) =>
     svm.svm_predict(model.get.svmmodel, toNodes(x))
}

The prediction model relies on the svm_predict LIBSVM to compute the output 
value. It takes two parameters: svmmodel and an array of svm_nodes (line 1). The 
conversion of a feature from the type DblVector to an array of the svm_nodes 
LIBSVM is performed by the toNodes method:

def toNodes(x: Feature): Array[svm_node] =  
  x.zipWithIndex
   .foldLeft(new ArrayBuffer[svm_node])((xs, f) => {  //2
      val node = new svm_node
      node.index = f._2
      node.value = f._1
      xs.append(node)
      xs
  }).toArray

A fold is used to construct the array of svm_nodes from the feature vector, x. The 
nodes (elements of the sparse matrix of the svm_node LIBSVM) are generated from 
the new observation x (line 1). The model extracted from the training of the model 
(instantiation of SVM) and the sparse matrix nodes are the input to the LIBSVM 
predictor, svm_predict (line 2).

The predictor is used by the test code for evaluating the different kernel functions. 
Let's create a method to evaluate and compare these kernel functions. All we need  
is the following:

•	 A training set, observations, by features of the type DblMatrix
•	 A test set, test, of the type DblMatrix
•	 A set of labels for the training set, taking the value 0 or 1
•	 A kernel function kF
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Consider the following code:

def evalKernel(features: DblMatrix, test: DblMatrix, labels: 
DblVector, kF: SVMKernel): Double = {
  val config = SVMConfig(new CSVCFormulation(C), kF) //3
  val xt = XTSeries[DblVector](features)
  val svc = SVM[Double](config, xt, labels) //4
  val successes = test.zip(labels)
                      .count(tl => {
                         Try((svc |> tl._1) == tl._2)
                         match { case Success(n) => true 
                                 case Failure(e) => false }
                       })
  successes.toDouble/test.size //6
}

The support vector classifier, svc, is configured with the default execution parameters 
and the C-formulation (line 3), and trained (instantiated) with the observed features, 
xt and the output, labels (line 4).

Once trained, svc is used to predict the value for a test sample extracted from 
the original dataset (line 5). Finally, the number of successful test observations is 
counted and the accuracy is computed as the ratio of the successful prediction over 
the size of the test sample (line 6).

In order to compare the different kernels, let's generate three datasets of the  
size 2N for a binomial classification using the following random generator,  
y = variance*x – mean:

def genData(variance: Double, mean: Double): DblMatrix = 
  val adjVariance1 = variance*Random.nextDouble - mean
  val adjVariance2 = variance*Random.nextDouble - mean
  Array.fill(N)(Array[Double]( adjVariance, adjVariance2))
}

A training set is then created as the aggregate of two classes of data points:

•	 Random data points (x,y) with variance a and mean 1-b with label 0.0
•	 Random data points with variance a and mean b-1 with label 1.0

Consider the following code

val trainingSet = genData(a,b) ++ genData(a,1-b)
val labels = Array.fill(N)(0.0) ++ Array.fill(N)(1.0)
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The parameters a and b are selected from two groups of training data points with 
various degree of separation to illustrate the separating hyperplane.

The following chart describes the high margin; the first training set generated with 
the parameters a = 0.6 and b = 0.3 illustrates the highly separable classes with a 
clean and distinct hyperplane:

The following chart describes the medium margin; the parameters a = 0.8 and  
b = 0.3 generate two groups of observations with some overlap:



Chapter 8

[ 275 ]

The following chart describes the low margin; the two groups of observations in this 
last training are generated with a = 1.4 and b = 0.3 and show a significant overlap:

The test set is generated in a similar fashion as the training set, as they are extracted 
from the same data source:

val EPS = 0.0001; val C = 1.0; val GAMMA = 0.8
val N = 100; val COEF0 = 0.5; val DEGREE = 2

val a = 1.4; val b = 0.3  //3 sets of values
val trainSet = genData(a, b) ++ genData(a, 1-b)
val testSet = genData(a, b) ++ genData(a, 1-b)
val labels = Array.fill(N)(0.0) ++ Array.fill(N)(1.0)

val result =
  evalKernel(trainSet,testSet, labels, RbfKernel(GAMMA)) ::
  evalKernel(trainSet,testSet, labels, SigmoidKernel(GAMMA)) ::
  evalKernel(trainSet,testSet, labels, LinearKernel) ::
  evalKernel(trainSet,testSet, labels, PolynomialKernel(GAMMA, COEF0, 
DEGREE)) :: List[Double]()

The value of the kernel function parameters are arbitrary selected from text books. 
The evalKernel method defined earlier is applied to the three training sets: high 
margin (a = 1.4), medium margin (a = 0.8), and low margin (a = 0.6) with  
each of the four kernels (RBF, sigmoid, linear, and polynomial).
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The accuracy is assessed by counting the number of observations correctly classified 
for all of the classes for each invocation of the predictor, |>:

Comparative chart of kernel functions

Although the different kernel functions do not differ in terms of the impact on the 
accuracy of the classifier, you can observe that the RBF and polynomial kernels 
produce slightly more accurate results. As expected, the accuracy decreases as 
the margin decreases. A decreasing margin is a sign that the cases are not easily 
separable, affecting the accuracy of the classifier:
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Test case design
The test to compare the different kernel methods is highly 
dependent on the distribution or mixture of data in the training 
and test sets. The synthetic generation of data in this test case is 
used for the purpose of illustrating the margin between classes of 
observations. Real-world datasets may produce different results.

In summary, there are four steps in creating a SVC-based model:

1.	 Select a features set.
2.	 Select the C-penalty (inverse regularization).
3.	 Select the kernel function.
4.	 Tune the kernel parameters.

As mentioned earlier, this test case relies on synthetic data to illustrate the concept  
of margin and compare kernel methods. Let's use the support vector classifier for  
a real-world financial application.

Application to risk analysis
The purpose of the test case is to evaluate the risk for a company to curtail or 
eliminate its quarterly or yearly dividend. The features selected are financial  
metrics relevant to a company's ability to generate cash flow and pay out its 
dividends over the long term.

Features and labels
We need to select any subset of the following financial technical analysis metrics 
(refer to the Terminology section in Appendix A, Basic Concepts):

•	 Relative change in stock prices over the last 12 months
•	 Long-term debt-equity ratio
•	 Dividend coverage ratio
•	 Annual dividend yield
•	 Operating profit margin
•	 Short interest (ratio of shares shorted over the float)
•	 Cash per share-share price ratio
•	 Earnings per share trend
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The earnings trend has the following values:

•	 -2, if earnings per share decline by more than 15 percent over the last  
12 months

•	 -1, if earnings per share decline between 5 percent and 15 percent
•	 0, if earning per share is maintained within 5 percent
•	 +1, if earnings per share increase between 5 percent and 15 percent
•	 +2, if earnings per share increase by more than 15 percent

The features are normalized with values 0 and 1.

The labeled output, dividend changes, is categorized as follows:

•	 -1, if dividend is cut by more than 5 percent
•	 0, if dividend is maintained within 5 percent
•	 +1, if dividend is increased by more than 5 percent

Let's combine two of these three labels {-1, 0, 1} to generate two classes for the  
binary SVC:

•	 Class C1 = stable or decreasing dividends and class C2 = increasing dividends; 
represented by dividendsA

•	 Class C1 = decreasing dividends and class C2 = stable or increasing dividends; 
represented by dividendsB

The different tests are performed with a fixed set of configuration parameters C and 
GAMMA and a 2-fold validation configuration:

val path = "resources/data/chap8/dividendsA.csv"
val C = 1.0; val GAMMA = 0.5; val EPS = 1e-3; val NFOLDS = 2

val extractor = relPriceChange :: debtToEquity :: dividendCoverage  
             :: cashPerShareToPrice :: epsTrend :: dividendTrend  
             :: List[Array[String] =>Double]()  //1
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The components of the extractor are functions that convert a set of fields in the input 
.csv file into double floating point values:

val xs = DataSource(path, true, false, 1) |> extractor
val config = SVMConfig(new CSVCFormulation(C), 
                       RbfKernel(GAMMA), 
                       SVMExecution(EPS, NFOLDS))
val features = XTSeries.transpose(xs.take(xs.size-1))//2
val svc = SVM[Double](config, features, xs.last)

svc.accuracy match { //3
  case Some(acc) => Display.show(s"Accuracy: $acc", logger)
  case None => { … }
}

The different fields are extracted from the dividendsA.csv file using the DataSource 
extractor with a filter (line 1). The purpose of the test A is to create a separating 
hyperplane (the predictive model) for dividendsA, that is, companies that cut or 
maintained their dividends and the companies that increased their dividends. The last 
field in the extractor is the labeled output. The observed features time series is created 
from all the fields extracted from the .csv file except the last. The time series has to 
be transposed to use the format required by LIBSVM (line 2). Once the support vector 
classifier is created, you can retrieve the accuracy of the cross-validation (line 3).

LIBSVM scaling
LIBSVM supports feature normalization known as scaling, prior 
to training. The main advantage of scaling is to avoid attributes 
in greater numeric ranges dominating those in smaller numeric 
ranges. Another advantage is to avoid numerical difficulties 
during the calculation. In our examples, we use the normalization 
of the time series, XTSeries.normalize. Therefore, the scaling 
flag in LIBSVM is disabled.
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The test is repeated with a different set of features and consists of comparing the 
accuracy of the support vector classifier for different features sets. The features 
sets are selected from the content of the .csv file by assembling the extractor with 
different configurations, as follows:

val extractor =  … :: dividendTrend :: List[Array[String] =>Double]()

The test demonstrates that the selection of the proper features set is the most critical 
step in applying the support vector machine, and any other model for that matter, 
to classification problems. In this particular case, the accuracy is also affected by the 
small size of the training set. The increase in the number of features also reduces the 
contribution of each specific feature to the loss function.

N-fold cross-validation
The cross-validation in this test example uses only 2 folds because 
the number of observations is small, and you want to make sure 
that any class contains at least a few observations.
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The same process is repeated for the test B whose purpose is to classify companies 
with decreasing dividends and companies with stable or increasing dividends, as 
shown in the following graph:

The difference in terms of accuracy of prediction between the first three features 
set and the last two features set in the preceding graph is more pronounced in test 
A than test B. In both tests, the feature eps (earning per share) trend improves the 
accuracy of the classification. It is a particularly good predictor for companies with 
increasing dividends.

The problem of predicting the distribution (or not) dividends can be restated as 
evaluating the risk of a company to dramatically reduce its dividends.

What about the risk a company entails to eliminate its dividend altogether? Such 
a scenario is rare, and those cases are actually outliers. A one-class support vector 
classifier can be used to detect outliers or anomalies [8:13].
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Anomaly detection with one-class SVC
The design of the one-class SVC is an extension of the binary SVC. The main 
difference is that a single class contains most of the baseline (or normal) observations 
and the other class is replaced by a reference point known as the SVC origin. The 
outliers (or abnormal) observations reside beyond (or outside) the support vector of 
the single class:

Illustration of the one-class SVC

The outlier observations have a labeled value of -1, while the remaining training  
sets are labeled +1. In order to create a relevant test, we add four more companies 
that have drastically cut their dividends (ticker symbols WLT, RGS, MDC, NOK,  
and GM). The dataset includes the stock prices and financial metrics recorded prior 
to the cut in dividends.

The implementation of this test case is very similar to the binary SVC driver code, 
except for the following:

•	 The classifier uses the Nu-SVM formulation, OneSVFormulation
•	 The labeled data is generated by assigning -1 to companies that have 

eliminated their dividend and +1 for all other companies

The test is executed against the dataset resources/data/chap8/dividends2.csv. 
First, we need to define the formulation for the one-class SVM:

class OneSVCFormulation(nu: Double) extends SVMFormulation {
  override def update(param: svm_parameter): Unit = {
     param.svm_type = svm_parameter.ONE_CLASS
     param.nu = nu
  }
}
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The test code is similar to the execution code for the binary SVC. The only difference 
is the definition of the output labels; -1 for companies eliminating dividends and +1 
for all other companies:

val NU = 0.2; val GAMMA = 0.5; val NFOLDS = 2
val path = "resources/data/chap8/dividends2.csv"

val xs = DataSource(path, true, false, 1) |> extractor
val config = SVMConfig(new OneSVCFormulation(NU),
                           RbfKernel(GAMMA), 
                           SVMExecution(EPS, NFOLDS))
val features = XTSeries.transpose(xs.dropRight(1))
val svc = SVM[Double](config, features, xs.last.map( filter (_)))
svc.accuracy match {
  case Some(acc) => Display.show("Accuracy: $acc", logger)
  case None => { … }
}

The test is executed with the following features: relPriceChange, debtToEquity, 
dividendCoverage, cashPerShareToPrice, and epsTrend.

The model is generated with the accuracy of 0.821. This level of accuracy should not 
be a surprise; the outliers (companies that completely eliminated their dividends) are 
added to the original dividend .csv file. These outliers differ significantly from the 
baseline observations (companies who have reduced, maintained, or increased their 
dividend) in the original input file.

Where the labeled observations are available, the one-class support vector machine is 
an excellent alternative to clustering techniques.

Definition of anomaly
The results generated by a one-class support vector classifier depend 
heavily on the subjective definition of an outlier. The test case 
assumes that the companies that eliminate their dividends have 
unique characteristics that set them apart, and are different even from 
companies who have cut, maintained, or increased their dividend. 
There is no guarantee that this assumption is indeed always valid.
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Support vector regression (SVR)
Most of the applications using support vector machines are related to classification. 
However, the same technique can be applied to regression problems. Luckily, as 
with classification, LIBSVM supports two formulations for support vector regression:

•	 ∈-VR (sometimes called C-SVR)
•	 υ-SVR

For the sake of consistency with the two previous cases, the following test uses the ∈ 
(or C) formulation of the support vector regression.

Overview
The SVR introduces the concept of error insensitive zone and insensitive error, ε. 
The insensitive zone defines a range of values around the predictive values, y(x).  
The penalization component C does not affect the data point {xi,yi} that belongs to 
the insensitive zone [8:14].

The following diagram illustrates the concept of an error insensitive zone, using a 
single variable feature x and an output y. In the case of a single variable feature, the 
error insensitive zone is a band of width 2ε. Ε is known as the insensitive error. The 
insensitive error plays a similar role to the margin in the SVC.
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For the mathematically inclined, the maximization of the margin for nonlinear 
models introduces a pair of slack variables. As you may remember, the C-support 
vector classifiers use a single slack variable. The preceding diagram illustrates the 
minimization formula.
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Here, ε is the insensitive error function.
The ε-SVR regression equation:
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Let's reuse the SVM class to evaluate the capability of the SVR, compared to  
the linear regression (refer to the Ordinary least squares (OLS) regression section  
of Chapter 6, Regression and Regularization).

SVR versus linear regression
This test consists of reusing the example on single-variate linear regression (refer to 
the One-variate linear regression section of Chapter 6, Regression and Regularization). The 
purpose is to compare the output of the linear regression with the output of the SVR 
for predicting the value of a stock price or an index. We select the S&P 500 exchange 
traded fund, SPY, which is a proxy for the S&P 500 index.

The model consists of the following:

•	 One labeled output: SPY-adjusted daily closing price
•	 One single variable feature set: the index of the trading session (or index of 

the values SPY)

The implementation follows a familiar pattern:

1.	 Define the configuration parameters for the SVR (the C cost/penalty function, 
GAMMA coefficient for the RBF kernel, EPS for the convergence criteria, and 
EPSILON for the regression insensitive error).

2.	 Extract the labeled data (the SPY price) from the data source (DataSource), 
which is the Yahoo financials CSV-formatted data file.
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3.	 Create the linear Regression, SingleLinearRegression, with the index 
of the trading session as the single variable feature and the SPY-adjusted 
closing price as the labeled output.

4.	 Create the observations as a time series of indexes, xt
5.	 Instantiate the SVR with the index of trading session as features, and the SPY 

adjusted closing price as the labeled output
6.	 Run the prediction methods for both SVR and the linear regression and 

compare the results of the linear regression and SVR
val path = "resources/data/chap8/SPY.csv"
val C = 1; val GAMMA = 0.8; val EPS = 1e-3; val EPSILON = 0.1 //1

val price = DataSource(path, false, true, 1) |> adjClose //2
val priceIdx = price.zipWithIndex
                    .map(x => (x._1.toDouble, x._2.toDouble))
val linRg = SingleLinearRegression(priceIdx) //3
val config = SVMConfig(new SVRFormulation(C, EPSILON), 
RbfKernel(GAMMA)) //3
val labels = price.toArray

val xt = XTSeries[DblVector](
              Array.tabulate(labels.size)(Array[Double](_))) //4
val svr = SVM[Double](config, xt, labels) //5
collect(svr, linRg, price) //6

The collect method invokes the predictive method for the support vector 
regression (line 7) and the linear regression model (line 8), and then buffers  
the results along with the original observation, price (line 9).

def collect(svr: SVM_Double, 
            lin: SingleLinearRegression[Double], 
            price: DblVector): Array[XYTSeries] = {

  val collector = Array.fill(3)(new ArrayBuffer[XY]
  Range(1, price.size-2).foldLeft(collector)( (xs, n) => {
      xs(0).append((n, (svr |> n.toDouble).get)) //7
      xs(1).append((n, (lin |> n).get)) //8
      xs(2).append((n, price(n))) //9
      xs
  }).map( _.toArray)
}

The types XY=(Double, Double) and XYTSeries=Array[(Double, Double)] have 
already been defined in the Primitive types section of Chapter 1, Getting Started.
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The results are displayed in the following graph, generated using the JFreeChart 
library. The code to plot the data is omitted because it is not essential to the 
understanding of the application.

Comparative plot linear regression and SVR

The support vector regression provides a more accurate prediction than the linear 
regression model. You can also observe that the L2 regularization term of the SVR 
penalizes the data points (the SPY price) with a high deviation from the mean of  
the price. A lower value of C will increase the L2-norm penalty factor as λ =1/C.

SVR and L2 regularization
You are invited to run the use case with a different value of C 
to quantify the impact of the L2 regularization on the predictive 
values of the SVR.

There is no need to compare SVR with the logistic regression as the logistic 
regression is a classifier. However, SVM is related to the logistic regression;  
the hinge loss in SVM is similar to the loss in the logistic regression [8:15].
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Performance considerations
You may have already observed that the training of a support vector regression 
model on a large data set is time consuming. The performance of the support 
vector machine depends on the type of optimizer (for example, sequential minimal 
optimization) selected to maximize the margin during training.

•	 A linear model (SVM without kernel) has an asymptotic time complexity 
O(N) for training N labeled observations.

•	 Nonlinear models rely on kernel methods formulated as a quadratic 
programming problem with an asymptotic time complexity of O(N3)

•	 An algorithm that uses sequential minimal optimization techniques  
such as index caching or elimination of null values (as in LIBSVM), has  
an asymptotic time complexity of O(N2) with the worst case scenario 
(quadratic optimization) of O(N3)

•	 Sparse problems for very large training sets (N > 10,000) also have an 
asymptotic time of O(N2)

The time and space complexity of the kernelized support vector machine has been 
receiving a great deal of attention [8:16] [8:17].

Summary
This concludes our investigation of kernel and support vector machines. Support 
vector machines have become a robust alternative to logistic regression and neural 
networks for extracting discriminative models from large training sets.

Apart from the unavoidable references to the mathematical foundation of maximum 
margin classifiers such as SVM, you should have developed a basic understanding 
of the power and complexity of the tuning and configuration parameters of the 
different variants of SVM.

As with other discriminative models, the selection of the optimization method for 
SVMs has a critical impact not only on the quality of the model, but also on the 
performance (time complexity) of the training and cross-validation process.

The next chapter will describe the third most commonly used discriminative 
supervised model—artificial neural networks.



Artificial Neural Networks
The popularity of neural networks surged in the 90s. They were seen as the silver 
bullet to a vast number of problems. At its core, a neural network is a nonlinear 
statistical model that leverages the logistic regression to create a nonlinear distributed 
model. The concept of artificial neural networks is rooted in biology, with the desire 
to simulate key functions of the brain and replicate its structure in terms of neurons, 
activation, and synapses.

In this chapter, you will move beyond the hype and learn:

•	 The concept and elements of the multilayer perceptron (MLP)
•	 How to train a neural network using error backpropagation
•	 The evaluation and tuning of MLP configuration parameters
•	 Full Scala implementation of the MLP classifier
•	 How to apply MLP to extract correlation models for currency exchange rates

Feed-forward neural networks (FFNN)
The idea behind artificial neural networks was to build mathematical and 
computational models of the natural neural network in the brain. After all, the brain is 
a very powerful information processing engine that surpasses computers in domains 
such as learning, inductive reasoning, prediction and vision, and speech recognition.
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The Biological background
In biology, a neural network is composed of groups of neurons interconnected 
though synapses [9:1], as shown in the following image:

Neuroscientists have been especially interested in understanding how the billions of 
neurons in the brain can interact to provide human beings with parallel processing 
capabilities. The 60s saw a new field of study emerging, known as connectionism. 
Connectionism marries cognitive psychology, artificial intelligence, and neuroscience. 
The goal was to create a model for mental phenomena. Although there are many forms 
of connectionism, the neural network models have become the most popular and the 
most taught of all connectionism models [9:2].

Biological neurons communicate through electrical charges known as stimuli.  
This network of neurons can be represented as a simple schematic, as follows:

Connection

Neuron

layer

Synapse



Chapter 9

[ 291 ]

This representation categorizes groups of neurons as layers. The terminology used 
to describe the natural neural networks has a corresponding nomenclature for the 
artificial neural network.

The biological neural network The artificial neuron network
Axon Connection
Dendrite Connection
Synapse Weight
Potential Weighted sum
Threshold Bias weight
Signal, Stimulus Activation
Group of neurons Layer of neurons

In the biological world, stimuli do not propagate in any specific direction  
between neurons. An artificial neural network can have the same degree of  
freedom. The artificial neural networks most commonly used by data scientists,  
have a predefined direction: from the input layer to output layers. These neural 
networks are known as FFNN.

The mathematical background
In the previous chapter, you learned that support vector machines have the ability to 
formulate the training of a model as a nonlinear optimization for which the objective 
function is convex. A convex objective function is fairly straightforward to implement. 
The drawback is that the kernelization of the SVM may result in a large number of 
basis functions (or model dimensions). Refer to the The Kernel trick section under The 
support vector machine (SVM) in Chapter 8, Kernel Models and Support Vector Machines.

One solution is to reduce the number of basis functions through parameterization, so 
these functions can adapt to different training sets. Such an approach can be modeled 
as a FFNN, known as the multilayer perceptron [9:3].
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The linear regression can be visualized as a simple connectivity model using neurons 
and synapses, as follows:

.

.

.

+1

X1

X2

Xn

W0

W1

W2

Wn

Y

A two-layer neural network

The feature x0=+1 is known as the bias input (or bias element), which corresponds to 
the intercept in the classic linear regression.

As with support vector machines, linear regression is appropriate for observations 
that can be linearly separable. The real world is usually driven by a nonlinear 
phenomena. Therefore, the logistic regression is naturally used to compute the 
output of the perceptron. For a set of input variable x = {xi}0,n and the weights 
w={wi}1,n, the output y is computed as:
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An FFNN can be regarded as a stack of layers of logistic regression with the output 
layer as a linear regression.

The value of the variables in each hidden layer is computed as the sigmoid of the dot 
product of the connection weights and the output of the previous layer. Although 
interesting, the theory behind artificial neural networks is beyond the scope of this 
book [9:4].
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The multilayer perceptron (MLP)
The perceptron is a basic processing element that performs binary classification by 
mapping a scalar or vector to a binary (or XOR) value {true, false} or {-1, +1}. The 
original perceptron algorithm was defined as a single layer of neurons for which each 
value xi of the feature vector is processed in parallel and generates a single output y. 
The perceptron was later extended to encompass the concept of an activation function.

The single layer perceptrons are limited to process a single linear combination 
of weights and input values. Scientists found out that adding intermediate 
layers between the input and output layers enable them to solve more complex 
classification problems. These intermediate layers are known as hidden layers 
because they interface only with other perceptrons. Hidden nodes can be accessed 
only through the input layer.

From now on, we will use a three-layered perceptron to investigate and illustrate the 
properties of neural networks, as shown here:
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zm

+1

X1

X2

Xn

...

...
...

Input layer

Hidden layer

Output layer

y0

y1
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wij

vij
Synapse

Bias

Neuron

A three-layered perceptron

The three-layered perceptron requires two sets of weights: wij to process the output 
of the input layer to the hidden layer and vij between the hidden layer and the output 
layer. The intercept value w0, in both linear and logistic regression, is represented 
with +1 in the visualization of the neural network (w0.1 + w1.x1+w2.x2+ …).
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FFNN with no hidden layer
A FFNN without a hidden layer is similar to a linear statistical 
model. The only transformation or connection between the 
input and output layer is actually a linear regression. A linear 
regression is a more efficient alternative to the FFNN without 
a hidden layer.

The description of the MLP components and their implementations rely on the 
following stages:

1.	 Overview of the software design.
2.	 Description of the MLP model components.
3.	 Implementation of the four-step training cycle.
4.	 Definition and implementation of the training strategy and the  

resulting classifier.

Terminology
Artificial neural networks encompass a large variety of learning 
algorithms, the multilayer perceptron being one of them. Perceptrons 
are indeed components of a neural network organized as input, 
output, and hidden layers. This chapter is dedicated to the multilayer 
perceptron with hidden layers. The terms "neural network" and 
"multilayer perceptron" are used interchangeably.

The activation function
The perceptron is represented as a linear combination of weights, wi, and input 
values, xi, processed by the output unit activation function h, as shown here:
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The output activation function h has to be continuous and differentiable for a range 
of value of the weights. It takes different forms depending on the problems to be 
solved, as mentioned here:

•	 Identity for the output layer of the binary classification or regression problem
•	 Sigmoid, σ , for hidden layers
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•	 Softmax for the multinomial classification
•	 Hyperbolic tangent, tanh, for classification using zero mean

The Softmax formula is described in the next section.

The network architecture
The output layer and hidden layers have a computational capability (dot product of 
weights, inputs, and activation functions). The input layer does not transform data. 
An n-layer neural network is a network with n computational layers. Its architecture 
consists of the following components:

•	 1 input layer
•	 (n-1) hidden layer
•	 1 output layer

A fully connected neural network has all its input nodes connected to hidden layer 
neurons. Networks are characterized as partially connected neural networks if one 
or more of their input variables are not processed. This chapter deals with a fully 
connected neural network.

Partially connected networks
Partially connected networks are not as complex as they seem. 
They can be generated from fully connected networks by 
setting some of the weights to zero.

The structure of the output layer is highly dependent on the type of problems 
(regression or classification) you need to solve, also known as the objective of the 
neural network. The type of problem at hand defines the number of output nodes 
[9:5], for example:

•	 A one-variate regression has one output node whose value is a real  
number [0, 1]

•	 A multivariate regression with n variables has n real output nodes
•	 A binary classification has one binary output node {0, 1} or {-1, +1}
•	 A multinomial or K-class classification has K binary output nodes
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Software design
The implementation of the MLP classifier follows the same pattern as previous 
classifiers (refer to the Design template for classifiers section in Appendix A, Basic Concepts):

•	 A model MLPModel of the type Model is initialized through training  
during the initialization of the classifier. The model is composed of a  
layer of neurons of the type MLPLayer, connected by synapses of the  
type MLPSynapse contained by a connector of the type MLPConnection.

•	 All of the configuration parameters are encapsulated into a single 
configuration class, MLPConfig.

•	 The predictive or classification routine is implemented as a data 
transformation, extending the PipeOperator trait.

•	 The multilayer perceptron class, MLP, takes three parameters: configuration 
instance, a features set or time series of the XTSeries class, and a labeled 
dataset of the type DblMatrix.

The software components of the multilayer perceptron are described in the following 
UML class diagram:

MLPObjective PipeOperator Model
Array[Int]

MLPRegression MLPBinClassifier MLPMultiClassifier

MLPSynapse

MLPConnection

MLPLayer

Config

MLPConfig XTSeries DblMatrix

MLP MLPModel

topology

layers

connections

synapses

model

config xt
labels

objective

1

1 1 1

1
1

1

1

1+

1

1+

1+

A UML class diagram for the multilayer perceptron

The class diagram is a convenient navigation map to understand the role and relation 
of the Scala classes used to build an MLP. Let's start with the implementation of the 
MLP model and its components.
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Model definition
The purpose of the model is to completely define the network architecture. It is 
implemented by the MLPModel parameterized class, which is responsible for creating 
and managing the different components of the network, layers, and connections as 
well as the topology.

Let's establish a simple naming convention for the layers of neurons as follows:

•	 The input layer, inLayer, consists of nInputs neurons
•	 A hidden layer, hidLayer, has nHiddens neurons
•	 The output layer, outLayer, has nOutputs neurons

The instantiation of the class requires a minimum set of three parameters:

class MLPModel[T <% Double](config: MLPConfig, nInputs: Int, nOutputs: 
Int) extends Model {
   val layers: Array[MLPLayer]
   val connections: Array[MLPConnection]
   val topology: Array[Int]
}

Besides the config configuration, the model class has two parameters: the number 
of input features, {x}, nInputs; and the number of output values, {y}, nOutputs. 
These three parameters are all you need to initialize the topology of the network.  
A model has the following attributes:

•	 Multiple layers of the type MLPLayers
•	 Multiple connections of the type MLPConnection
•	 A topology array that wires these layers and connections

The topology is defined as an array of number of nodes per layer, starting with the 
input nodes. The array indices follow the forward path within the network. The size 
of the input layer is automatically generated from the observations as the size of the 
features vector. The size of the output layer is automatically extracted from the size 
of the output vector:

val topology = Array[Int](nInputs) ++ config.hidLayers ++ 
                                          Array[Int](nOutputs)

The sequence of hidden layers, hidLayers, is defined as an array of number of 
neurons (or nodes) per hidden layers:

val hidLayers: Array[Int]
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This is an attribute of the MLPConfiguration class described in the next section.  
For instance, the topology of a neural network with three input variables, one  
output variable, and two hidden layers of three neurons each is specified as 
Array[Int](4, 3, 3, 1).

The following diagram visualizes the interaction between the different components 
of a model: MLPLayer, MLPConnection, and MLPSynapse:

MLPConnection
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Components of the MLP model

Layers
First, let's start with the definition of the layer class, MLPLayer, which is completely 
specified by its position in the network and the number of nodes it contains:

class MLPLayer(val id: Int, val len: Int) {
   val output = new DblVector(len) //1
   val delta = new DblVector(len) //2
...output.update(0, 1.0) //3

The id parameter is the order of the layer (0 for input, 1 for the first hidden 
layer,…, n-1 for the output layer) in the network. The len value is the number of 
elements or nodes, including the bias element, in this layer. The output vector for 
the layer (line 1) is an uninitialized vector of values updated during the forward 
propagation, except for the first value (bias element), which is set to 1 (line 3). The 
delta vector associated to the output vector (line 2) is updated through the error 
backpropagation algorithm, described in the next section.

The output values, except the bias element, is initialized using the set method:

def set(x: DblVector): Unit = x.copyToArray(output,1)
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Synapses
A synapse is defined as a pair of real values:

•	 The weight of the connection from the neuron i of the previous layer to the 
neuron j, wij

•	 The weights adjustment (or gradient of weights), ∆wij

Its type is defined as MLPSynapse, as shown here:

type MLPSynapse = (Double, Double)

Connections
A connection between two consecutive layers implements the matrix of synapses, the 
(wij, ∆wij) pairs. The MLPConnection instance is created with the following parameters:

•	 Configuration parameters, config
•	 The source layer, sometimes known as the ingress layer, src
•	 The destination (or egress) layer, dst

The MLPConnection class is defined as follows:

class MLPConnection(config: MLPConfig, src: MLPLayer, dst: MLPLayer)

The last step in the initialization of the MLP algorithm is the selection of the initial 
(usually random) values of the weights (synapse). The following code snippet 
initializes the weights for non-bias neurons as random values in the range [0, beta] 
with beta <= 1.0.

The weight for the bias is obviously defined as w0=+1, and its weight adjustment is 
initialized as ∆w0 = 0, as shown here:

Val beta = 0.1
val synapses = Array.tabulate(dst.len)(n => 
   if(n > 0) Array.fill(src.len)((beta*Random.nextDouble, 0.0))
   else Array.fill(src.len)((1.0, 0.0))
)

Random initialization of weights
The range [0, beta] of initial random values is domain specific. Some 
problems require a very small range, less than 1e-3, while others use the 
probability space [0, 1]. The initial values impact the number of epochs 
required to converge toward an optimal set of weights. [9:6]
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Once the topology, synapses, layers, and connections of the MLP algorithm are 
defined, the initialization of the MLPModel model is straightforward:

val layers = topology.zipWithIndex
                     .map(t => MLPLayer(t._2, t._1+1))
val connections = Range(0, layers.size-1).map(n =>
    new MLPConnection(config, layers(n), layers(n+1))).toArray

The layers are created by traversing the network topology and instantiating each 
layer with its proper index and number of elements. The connections are instantiated 
by selecting two consecutive layers of index n (with respect to n+1) as source (with 
respect to destination).

Encapsulation and the model factory
The model components: connections, layers, and synapses are 
implemented as top-level classes for clarity sake. However, there is 
no need for the model to expose its inner workings to the client code. 
These components should be declared as an inner class to the model.
Moreover, the model is responsible for creating its topology. A factory 
design pattern would be perfectly appropriate to instantiate an 
MLPModel instance dynamically [9:7].

Once initialized, the MLP model is ready to be trained using a combination of 
forward propagation, output error back propagation, and iterative adjustment  
of weights and gradients of weights.

Training cycle/epoch
The training of the model processes the training observations multiple times.  
A training cycle or iteration is known as an epoch. The five steps of the training  
cycle are as follows:

1.	 Forward propagation of the input value for a specific epoch.
2.	 Compute the sum of squared errors.
3.	 Backpropagation of the output error.
4.	 Recomputation of the synapse weight and gradient of weight.
5.	 Evaluate the convergence criteria and exit if criteria is met
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The computation of the network weights during training could use the difference 
between labeled data and actual output for each layer. But this solution is not feasible, 
because the output of the hidden layers is unknown. The solution is to propagate the 
error on the output values backward through the hidden layers. This approach is not 
that different than the beta (or backward) pass in the hidden Markov model, covered 
in the Beta class (the backward variable) section in Chapter 7, Sequential Data Models.

The error at the output layer for p neurons can be computed in either of the  
following ways:

•	 Sum of the squared of errors (SSE): Calculated for each output, yk

•	 Mean squared error (MSE): Calculated as MSE= SSE/p

We select the sum of the squared errors to initialize the error back-propagation 
algorithm.

Step 1 – input forward propagation
As mentioned earlier, the output values of a hidden layer are computed as a logistic 
function (the activation function) of the dot product of the weights wij and the input 
values xi.

In the following diagram, the MLP algorithm computes the linear product of the 
weights wij and input xi for the hidden layer. The product is then processed by the 
activation function σ  (sigmoid or hyperbolic tangent). The output values zj are then 
combined with the weights vij of the output layer. The output layer doesn't have an 
activation function.
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The mathematical formulation of the output of a neuron j is defined as a composition 
of the activation function and the dot product of the weights wij and input values xi.
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Computation of the output y for the output layer:
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As seen in the network architecture section, the output values for the multinomial 
(or multiclass) classification with more than two classes are normalized using an 
exponential function (softmax).

The computational model
The computation of the output values y from the input x is known as the input 
forward propagation. For the sake of simplicity, we represent the forward propagation 
between layers with the following block diagram. Such a representation will be quite 
convenient for the design and implementation of the MLP.

forwardPropagation

Input

x
1:n

Connection

w
ij

Hidden

z
1:m

Connection

v
ij

Output

y
1:p

connectionForwardPropagation

A computation model of input forward propagation

This diagram illustrates a computational model for the input forward propagation, 
as the programmatic relation between the source and destination layers and their 
connectivity. The input x is propagated forward through each connection.

The connectionForwardPropagation method computes the dot product of the 
weights and the input values, and applies the activation function in the case of hidden 
layers, for each connection. Therefore, it is a member of the MLPConnection class.

The forward propagation of input values across the entire network is managed by 
the MLP algorithm itself.
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The forward propagation of the input value is used in the classification or 
prediction y =f(x). It depends on the value weights wij and vij that need to be 
estimated through training. As you may have guessed, the weights define the 
model of a neural network similar to the regression models. Let's look at the 
connectionForwardPropagation method of the MLPConnection class:

def connectionForwardPropagation: Unit = {
  val synps= synapses.drop(1)
  val _output = synps.map(x => { //1
      val sum = x.zip(src.output)
                  .foldLeft(0.0)((s, xy) => s + xy._1._1*xy._2)
      if(!isOutLayer) config.activation(sum) //2
      else sum
  })
  val out = if(isOutLayer) mlpObjective(_output) else _output //3
  out.copyToArray(dst.output, 1)     
}

The first step is to compute the linear dot product of the _output output of 
the current source layer, src, for this connection, and the weights, w (line 1). 
The activation method, the implementation of which is described in the next 
paragraph, is applied to the dot product, dot (line 2). If the destination layer of the 
connection is the output layer, then the output values are processed according to the 
mlpObjective objective of the algorithm (line 3).

Objective
In the The network architecture section, you learned that the structure of the output 
layer depends on the type of problems that need to be resolved, or objective of the 
algorithm. Let's encapsulate the different objectives (binary, multiclass classifiers, 
and regression) into an MLPObjective hierarchy (nested in MLP companion object) 
and the transformation of the output values, y, using a simple apply method:

trait MLPObjective { def apply(y: DblVector): DblVector }

The output of the apply method is used to compute the sum of squared errors 
during training, after the forward propagation of features. The binary (2 class) 
classifier requires a single output without any transformation because the values  
are either 0 or 1.

class MLPBinClassifier extends MLPObjective {
  override def apply(y: DblVector): DblVector = output
}
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The MLPMultiClassifier multiclass classifier objective class used the softmax 
method to boost the output with the highest value, as shown here:

class MLPMultiClassifier extends MLPObjective {
   override def apply(y:DblVector):DblVector = softmax(y.drop(1))
   def softmax(y: DblVector): DblVector = { …}
}

The softmax method is applied to the actual output value, not the bias. Therefore, 
the first node y(0)=+1 has to be dropped before applying the softmax normalization.

Softmax
In case of a classification problem with K classes (K > 2), the output has to be 
converted into a probability [0, 1]. For problems that require a large number of 
classes, there is a need to boost the output yk with the highest value (or probability). 
This process is known as the exponential normalization or softmax [9:8].

Softmax formula for multinomial (K > 2) classification is as follows:
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Here is the simple implementation of the softmax method of the 
MLPMultiClassifier class:

def softmax(y: DblVector): DblVector = {
   val softmaxValues = new DblVector(y.size)
   val expY = y.map( Math.exp(_))//1
   val expYSum = expY.sum
   expY.map( _ /expYSum).copyToArray(softmaxValues, 1) //2
   softmaxValues
}

First, the output values are transformed to exponential, expY (line 1). The exponentially 
transformed outputs are then normalized by their sum, expYSum, to generate the array 
of softmaxValues output (line 2). Once again, you do not have to update the bias 
element y(0).

The second step in the training phase is the back propagation of the output error.
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Step 2 – sum of squared errors
Once the input features are propagated across the neural network, the sum of 
squared errors, sse, for the output layer of the MPLayer type is computed at  
each epoch, as follows:

def sse(labels: DblVector): Double = {
   var _sse = 0.0
   output.drop(1)  //1
        .zipWithIndex
        .foreach(on => {
     val err = labels(on._2) - on._1  //2
     delta.update(on._2+1, on._1* (1.0- on._1)*err) //3
     _sse += err*err
  })
  _sse*0.5  //4
}

As expected, the computation of the sum of squared errors requires the labeled 
values, labels, and the objective method as arguments. The vector output values, 
output, stripped of the bias node (line 1) is used to compute the difference, err, 
between the label and the actual output (line 2). The delta value (line 3), described 
in the next section, is used in the back-propagation algorithm to adjust the weights 
of the output and hidden layers. Note that the sum of squares, _sse, is divided by 2 
(line 4), so its derivative is err.

Step 3 – error backpropagation
The error backpropagation is an algorithm that estimates the error for the hidden 
layer in order to compute the change in weights of the network. It takes the sum of 
squared errors on the output as input.

Terminology
Some authors refer to the backpropagation as a training methodology 
for an MLP, which applies the gradient descent to the output error 
defined as either the sum of squared errors, or the mean squared error. 
In this chapter, we keep the narrower definition of backpropagation as 
the backward computation of the sum of squared errors.
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Error propagation
The objective of the training of a perceptron is to minimize the sum of squared 
errors at the output layer. The error kε  for each output neuron, yk, is computed as the 
difference between a predicted output value and label output value. This approach 
does not work for the hidden layers zj because the label value is unknown.
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The partial derivative of the sum of squared output error over each weight of the 
output layer is computed as the composition of the derivative of the square function, 
and the derivative of the dot product of weights and the input z.

Derivative of the output SSE over the weighs of the output layer:
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As mentioned earlier, the computation of the partial derivative of the sum of squared 
error over the weights of the hidden layer is a bit tricky. Fortunately, the partial 
derivative can be broken down into the following three pieces using the output layer 
values and the output of the hidden layer:

•	 Derivative of sum of squared error ε  over the output value yk

•	 Derivative of the output value yk over the hidden value zj knowing that the 
derivative of a sigmoid σ  is σ (1 - σ )

•	 Derivative of the output of the hidden layer zj over the weights wij
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Derivative of error over the weights of the hidden layer:
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The computational model
The computational model for the error backpropagation algorithm is very similar to 
the forward propagation of the input. The main difference is that the propagation 
of the derivative delta δ  is performed from the output layer to the input layer. The 
following diagram illustrates the computational model of the backpropagation in the 
case of two hidden layers zs and zt:
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The connectionBackPropagation method propagates the error back to the previous 
layer. It is a member of the MLPConnection class. The backpropagation of the output 
error across the entire network is managed by the MLP class.

It implements the two set of equations where synapses (j)(i)._1 are the weights 
wji, dst.delta is the vector of error derivative in the destination or next layer, and 
src.delta is the error derivative on the outputs in the source (or antecedent) layer, 
as shown here:

def connectionBackpropagation: Unit =  
  Range(1, src.len).foreach(i => {
    val dot = Range(1, dst.len).foldLeft(0.0)((s, j) => 
                         s + synapses(j)(i)._1*dst.delta(j)) //1
    src.delta(i) = src.output(i)*(1.0 - src.output(i))*dot//2
})

The dot product of the synapse weights and the errors of the destination layers  
(line 1) is used to compute the delta on the source (or previous layer) layers (line 2).
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Step 4 – synapse/weights adjustment
The connection weights ∆v and ∆w are adjusted by computing the sum of the 
derivative of the error, over the weights scaled with a learning factor. The gradient  
of weights are then used to compute the error of the output of the source layer [9:9].

Momentum factor for gradient descent
The simplest algorithm to update the weights is the gradient descent [9:10].

The gradient descent is a very simple and robust algorithm. However, it is  
slower in converging toward a global minimum than the conjugate gradient or  
the quasi-Newton method (refer to the Summary of optimization techniques section  
in Appendix A, Basic Concepts).

There are several methods available to speed up the convergence of the gradient 
descent toward a minimum: momentum factor and adaptive learning coefficient [9:11].

Large variations of the weights (or large value of the gradient of weights) cause 
the gradient descent to require more training iteration in order to converge. This 
is particularly true for a training strategy known as online training. The training 
strategies are discussed in the next section. The momentum factor α  is used for  
the remaining section of the chapter.

The computation of neural network weights using gradient 
descent is as follows:
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The computation of neural network weights using gradient 
descent method with momentum coefficient α  is as follows:
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The basic gradient descent algorithm is selected by setting the momentum factor α  
to zero.
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Implementation
The fourth step of the training phase is to adjust each connection's synapses  
(w, ∆w). This task is performed by the connectionUpdate method of the 
MLPConnection class:

def connectionUpdate: Unit =  
  Range(1, dst.len).foreach(i => {  
    val delta = dst.delta(i) //1

    Range(0, src.len).foreach(j => { 
       val _output = src.output(j) //2
       val oldSynapse = synapses(i)(j)
       val grad = config.eta*delta*_output //3
       val deltaWeight = grad + config.alpha* oldSynapse._2 //4
       synapses(i)(j) = (oldSynapse._1 + deltaWeight, grad) //5
    })
  })

The connectionUpdate method computes the error of each destination neuron (line 1).  
The _output output of each neuron source (line 2) is used in the computation of the 
grad gradient (line 3). The weight is then adjusted for a momentum (line 4) as per the 
mathematical formulation. Finally, the synapses for source and destination layers are 
updated (line 5).

The adjustable learning rate
The computation of the new weights of a connection for 
each new epoch can be further improved by making the 
learning adjustable.

Step 5 – convergence criteria
The convergence criterion consists of evaluating the sum of squared errors against a 
predetermined threshold eps. It is common to normalize the sum of squared errors 
by the number of observations.

Configuration
The MLPConfig configuration of the multilayer perceptron consists of the definition 
of the network configuration with hidden layers, the learning parameters, the 
training parameters, and the activation function:

Class MLPConfig(val alpha: Double, val eta: Double, val hidLayers: 
Array[Int], val numEpochs: Int,val eps: Double,val activation: 
Double=>Double) extends Config
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For the sake of readability, the name of the configuration parameters matches the 
symbols defined in the mathematical formulation:

•	 alpha: This is the momentum factor.
•	 eta: This is the learning rate (fixed or adaptive).
•	 hidLayers: This is an array of size of hidden layers (for example, two hidden 

layers of two and four elements are specified as Array[Int](2,4)).
•	 numEpochs: This is the maximum number of epochs allowed for training the 

neural network.
•	 eps: This is the convergence criteria used as an exit condition for the training 

of the neural network, error < eps.
•	 activation: This is the activation function used for nonlinear regression 

applied to hidden layers. The default function is the sigmoid.

Putting all together
The five steps of the training cycle have been implemented for each connection or 
matrix of synapses (weights, gradient of weights). The management of the cycle is 
performed by the algorithm defined by the MLP class, as shown here:

class MLP[T <% Double](config: MLPConfig, xt: XTSeries[Array[T]], 
labels: DblMatrix)(implicit val mlpObjective: MLP.MLPObjective) 
extends PipeOperator[Array[T], DblVector] {
   val model: Option[MLPModel]
   def |> : PartialFunction[Array[T], DblVector]
}

The MLP algorithm takes the following parameters:

•	 config: The configuration of the algorithm
•	 xt: The time series of features used to train the model
•	 labels: The labeled output values for training purpose
•	 mlpObjective: The implicit objective of the algorithm (a type of problem)
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The five steps of the training cycle or epoch is summarized in the following diagram:
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Let's apply the five steps of a training epoch in a trainEpoch method of the 
MLPModel class using a simple the foreach Scala iterator, as shown here:

def trainEpoch(x: DblVector, y: DblVector): Double = {
   inLayer.set(x)

   connections.foreach( _.connectionForwardPropagation) //1
   val _sse = sse(y) //2
   val bckIterator = connections.reverseIterator 
   bckIterator.foreach( _.connectionBackpropagation) //3
   connections.foreach( _.connectionUpdate) //4
  _sse
}

You can certainly recognize the first four stages of the training cycle: forward 
propagation of the input, x (line 1), computation of the sum of squared errors,  
_sse (line 2), the back propagation of the error (line 3), and the recomputation  
of the weight and gradient of weight associated with each synapse (line 4).
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Training strategies and classification
Once the training cycle or epoch is defined, it is merely a matter of defining and 
implementing a strategy to create a model using a sequence of data or time series.

Online versus batch training
One important remaining issue is finding a strategy to conduct the training of time 
series, as ordered sequences of data. There are two strategies to create an MLP model 
for time series:

•	 Batch training: The entire time series is processed at once as a single input to 
the neural network. The weights (synapses) are updated at each epoch using 
the sum of squared errors on the output of the time series. The training exits 
once the sum of the squared errors meets the convergence criteria.

•	 Online training: The observations are fed to the neural network one at a time. 
Once the time series has been processed, the total of the sum of the squared 
error (sse) for the time series for all the observations are computed. If the exit 
condition is not met, the observations are reprocessed by the network.

Observations

Time series

Epoch

Batch training Online training

Time series

Exit

condition

Epoch

An illustration on online and batch training

An online training is faster than batch training because the convergence criterion has 
to be met for each data point, possibly resulting in a smaller number of epochs [9:12]. 
Techniques such as the momentum factor, which is described earlier, or any adaptive 
learning scheme improve the performance of the online training process further.

The online training strategy is applied to a financial time series for the remainder of 
this chapter.
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Regularization
There are two approaches to find the most appropriate network architecture for a 
given classification or regression problem; they are:

•	 Destructive tuning: Starting with a large network, then removing nodes, 
synapses, and hidden layers that have no impact on the sum of squared errors

•	 Constructive tuning: Starting with a small network, then incrementally adding 
the nodes, synapses, and hidden layers that reduce the output error

The destructive tuning strategy removes the synapses by zeroing out their weights. 
This is commonly accomplished by using regularization.

You have seen that regularization is a powerful technique to address overfitting 
in the case of the linear and logistic regression in the The ridge regression section in 
Chapter 6, Regression and Regularization. Neural networks can benefit from adding a 
regularization term to the sum of squared errors. The larger the regularization factor 
is, the more likely some weights will be reduced to zero, thus reducing the scale of 
the network [9:13].

Model instantiation
The model instance is created (trained) during the instantiation of the multilayer 
perceptron. The model is created by iterating the training cycle over all the data 
points of the time series xt, and through multiple epochs until the total sum of 
squared errors is smaller than the threshold eps, as in the following code:

var converged = false
val model: Option[MLPModel] = {
   val _model = new MLPModel(config, xt(0).size, labels(0).size)
(mlpObjective)  //1
   val errScale = 1.0/(labels(0).size*xt.size)  //4

   converged = Range(0, config.numEpochs).find( _ => {
     xt.toArray.zip(labels)
               .foldLeft(0.0)((s, xtlbl) => 
                   s + _model.trainEpoch(xtlbl._1, xtlbl._2) //2
                )*errScale < config.eps  //3
   }) != None
   _model
}
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The model is first initialized (line 1). The first four stages of the MLP training cycle 
are executed by the MLPModel.trainEpoch method described in the previous 
section (line 2). The method returns the sum of squared errors for each observation 
in the time series. The sum of squared errors for the observations are summed, then 
evaluated against the convergence criterion, eps (line 3). The sum of squared errors is 
normalized for the size of the time series and the size of the output vector (line 5). The 
implementation uses the Scala method, find, to exit from the iterative loop before the 
maximum number of epochs, config.numEpochs, is reached.

The exit condition
In this implementation a flag, converged, is set to indicate that the 
execution of the training has not converged before the maximum 
number of epochs has been reached; however, the model is still 
instantiated nevertheless. It allows the client code to evaluate the 
pattern of the sum of squared errors in regard to a local minimum.

Once the model is created during the instantiation of the multilayer perceptron, it is 
available to predict the class of a new observation.

Prediction
The prediction method of the MLPModel class, getOutput, takes a new observation 
(feature vector) as argument and returns the output by using the forward 
propagation algorithm:

def getOutput(x: DblVector): DblVector = {
  inLayer.set(x)
  connections.foreach( _.connectionForwardPropagation)
  outLayer.output
}

The classification method is implemented as the data transformation |>. It returns 
the predicted value, normalized as a probability if the model was successfully 
trained; None, otherwise:

def |> : PartialFunction[Array[T], DblVector] = {
  case x: Array[T] if(model!=None && x.size == dimension(xt)) =>
    model.get.getOutput(x))
}

Our MLP class is now ready to tackle some classification challenges.
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Evaluation
Before applying our multilayer perceptron to understand fluctuations in the currency 
market exchanges, let's get acquainted with some of the key learning parameters 
introduced in the first section.

Impact of learning rate
The purpose of the first exercise is to evaluate the impact of the learning rate, η , on 
the convergence of the training epoch, as measured by the sum of the squared errors 
of all output variables. The observations x (with respect to the labeled output, y) are 
synthetically generated using several noisy patterns: functions f1, f2, and noise,  
as follows:

val noise = () => NOISE_RATIO*Random.nextDouble
val f1 = (x: Double) => x*(1.0 + noise())
val f2 = (x: Double) => x*x*(1.0 + noise())
   
def vec1(x: Double): DblVector = Array[Double](f1(x), noise(), f2(x), 
noise())
def vec2(x: Double): DblVector = Array[Double](noise(), noise())
val x = XTSeries[DblVector](Array.tabulate(TEST_SIZE)(vec1(_)))
val y = XTSeries[DblVector](Array.tabulate(TEST_SIZE)(vec2(_)))

The x and y values are normalized [0, 1]. The test is run with a sample of size  
TEST_SIZE data points over a maximum of 250 epochs, a single hidden layer of  
five neurons with no softmax transformation and the following MLP parameters:

val NUM_EPOCHS = 250; val EPS = 1.0e-4
val HIDDENLAYER = Array[Int](5)
val ALPHA = 0.9; val TEST_SIZE = 40

val features = XTSeries.normalize(x).get
val labels = XTSeries.normalize(y).get.toArray
val config = MLPConfig(ALPHA, _eta, SIZE_HIDDEN_LAYER, NUM_EPOCHS, 
EPS)

implicit val mlpObjective = new MLP.MLPBinClassifier
val mlp = MLP[Double](config, features, labels)
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The objective of the algorithm, mlpObjective, has to be implicitly defined prior to 
the instantiation of the MLP class.

The test is performed with a different learning rate, eta. For clarity's sake, the graph 
displays the sum of squared errors for the first 22 epochs.

Impact of the learning rate on the MLP training

The chart illustrates that the MLP model training converges a lot faster with a larger 
value of learning rate. You need to keep in mind, however, that a very steep learning 
rate may lock the training process into a local minimum for the sum of squared 
errors generating weights with lesser accuracy. The same configuration parameters 
are used to evaluate the impact of the momentum factor on the convergence of the 
gradient descent algorithm.

Impact of the momentum factor
Let's quantify the impact of the momentum factor, α , on the convergence of the 
training process toward an optimal model (synapse weights). The total sum of 
squared errors for the entire time series is plotted for the first five epochs in the 
following graph:
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Impact of the momentum factor on the MLP training

The graph shows that the rate the sum of squared errors declines as the momentum 
factor increases. In other words, the momentum factor has a positive although limited 
impact on the convergence of the gradient descent.

Let's apply our newfound knowledge regarding neural networks and the classification 
of variables, that impact the exchange rate of certain currency.

Test case
Neural networks have been used in financial applications from risk management in 
mortgage applications and hedging strategies for commodities pricing, to predictive 
modeling of the financial markets [9:14].

The objective of the test case is to understand the correlation factors between the 
exchange rate of some currencies, the spot price of gold and the S&P 500 index.  
For this exercise, we will use the following exchange-traded funds (ETFs) as  
proxies for exchange rate of currencies:

•	 FXA: Rate of an Australian dollar in US dollar
•	 FXB: Rate of a British pound in US dollar
•	 FXE: Rate of an Euro in US dollar
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•	 FXC: Rate of a Canadian dollar in US dollar
•	 FXF: Rate of a Swiss franc in US dollar
•	 FXY: Rate of a Japanese yen in US dollar
•	 CYB: Rate of a Chinese yuan in US dollar
•	 SPY: S&P 500 index
•	 GLD: The price of gold in US dollar

Practically, the problem to solve is to extract one or more regressive models that link 
one ETFs y with a basket of other ETFs {xi} y=f(xi). For example, is there a relation 
between the exchange rate of the Japanese yen (FXY) and a combination of the spot 
price for gold (GLD), exchange rate of the Euro in US dollar (FXE) and the exchange 
rate of the Australian dollar in US dollar (FXA), and so on? If so, the regression f will 
be defined as FXY = f (GLD, FXE, FXA).

The following two charts visualize the fluctuation between currencies over  
a period of two and a half years. The first chart displays an initial group of 
potentially correlated ETFs:

An example of correlated currency-based ETFs
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The second chart displays another group of currency-related ETFs that shares 
a similar price action behavior. Neural networks do not provide any analytical 
representation of their internal reasoning; therefore, a visual correlation can be 
extremely useful to novice engineers in validating their models.

An example of correlated currency-based ETFs

A very simple approach for finding any correlation between the movement of the 
currency exchange rates and the gold spot price, is to select one ticker symbol as the 
target and a subset of other currency-based ETFs as features.

Let's consider the following problem: finding the correlation between the price  
of FXE and a range of currencies FXB, CYB, FXA, and FXC, as illustrated in the 
following diagram:

Ticker symbolsGLD FXE FXY FXB CYB FXA SPY FXF FXC

FXE FXB CYB FXA FXF

target Features

Indexed study

The mechanism to generate features from ticker symbols

Implementation
The first step is to define the configuration parameter for the MLP classifier,  
is as follows:

val path = "resources/data/chap9/"
val ALPHA = 0.5; val ETA = 0.03
val NUM_EPOCHS = 250; val EPS = 1.0e-6
var hidLayers = Array[Int](7, 7)  //1

var config = MLPConfig(ALPHA, ETA, hidLayers, NUM_EPOCHS, EPS)
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Besides the learning parameters, the network is initialized with two configurations:

•	 One hidden layer with four nodes
•	 Two hidden layers of four neurons each (line 1)

Next, let's create the search space of the prices of all the ETFs used in the analysis:

val symbols = Array[String]("FXE", "FXA", "SPY", "GLD", "FXB", "FXF", 
"FXC", "FXY", "CYB") //2

The closing prices of all the ETFs over a period of three years are extracted from the 
Google Financial tables, using the GoogleFinancials extractor (line 3) for a basket 
of ETFs (line 2):

val prices = symbols.map(s =>DataSource(s"$path$s.csv",true))
                    .map( _ |> GoogleFinancials.close) //3
                    .map( _.toArray)

The next step consists of implementing the mechanism to extract the target and the 
features from a basket of ETFs, or studies introduced in the previous paragraph. Let's 
consider the following study as the list of ETF ticker symbols (line 4):

val study = Array[String]("FXE", "FXF", "FXB", "CYB") //4

The first element of the study, FXE, is the labeled output; the remaining three 
elements are observed features. For this study, the network architecture has three 
input variables {FXF, FXB, CYB} and one output variable FXE:

val obs = study.map(s =>index.get(s).get).map( prices( _ )) //5
val features = obs.drop(1).transpose //6
val target = Array[DblVector](obs(0)).transpose  //7

The set of observations is built using an index (line 5). By convention, the first 
observation is selected as the label data and the remaining studies as the features for 
training. As the observations are loaded as an array of time series, the time features 
of series is computed through transpose (line 6). The single output variable, 
target, has to be converted into a matrix before transposition (line 7).

Ultimately, the model is built through instantiation of the MLP class:

val THRESHOLD = 0.08
implicit val mlpObjective = new MLP. MLPBinClassifier
val mlp = MLP[Double](config, features, target)
mlp.accuracy(THRESHOLD)
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The objective type, mlpObjective, is implicitly defined as an MLP binary classifier, 
MLPBinClassifier. The square root of the sum of squares of the difference between 
the predicted output generated by the MLP and the target value is computed  
and compared to a predefined threshold. The accuracy value is computed as  
the percentage of data points, whose prediction matches the target value within  
a range < THRESHOLD:

val nCorrects = xt.toArray.zip(labels).foldLeft(0)((s, xtl) => {
   val output = model.get.getOutput(xtl._1) //8
   val _sse = xtl._2.zip(output.drop(1))
                    .foldLeft(0.0)((err,tp) => { 
                       val diff= tp._1 - tp._2
                       err + diff*diff
                    }) //9
   val error = Math.sqrt(_sse)/(output.size-1) //10
   if(error < threshold) s + 1
   else s
})
nCorrects.toDouble/xt.size

The implementation of the computation of the accuracy, as in the previous code 
snippet, retrieves the values of the output layer (line 8). The error value (line 10) 
is computed as the square root of the sum of squared errors, _sse (line 9). Finally, a 
prediction is considered correct if it is equal to the labeled output, within the margin 
error, threshold.

Models evaluation
The test consists of evaluating six different models to determine which ones provide 
the most reliable correlation. It is critical to ensure that the result is somewhat 
independent of the architecture of the neural network. Different architectures are 
evaluated as part of the test.

The following charts compare the models for two architectures:

•	 Two hidden layers with four nodes each
•	 Three hidden layers with eight (with respect to five and six) nodes
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This first chart visualizes the accuracy of the six regression models with an 
architecture consisting of a variable number of inputs [2, 7], one output variable, and 
two hidden layers of four nodes each. The features (ETF symbols) are listed on the 
left-hand side of the arrow => along the y-axis. The symbol on the right-hand side of 
the arrow is the expected output value:

Accuracy of MLP with two hidden layers of four nodes each

The next chart displays the accuracy of the six regression models for an architecture 
with three hidden layers of eight, five, and six nodes, respectively:

Accuracy of MLP with three hidden layers with 8, 5, and 6 nodes, respectively

The two network architectures shared a lot of similarity: in both cases, the most 
accurate regression models are as follows:

•	 FXE = f (FXA, SPY, GLD, FXB, FXF, FXD, FXY, CYB)
•	 FXE = g (FXC, GLD, FXA, FXY, FXB)
•	 FXE = h (FXF, FXB, CYB)

On the other hand, the prediction the Canadian dollar to US dollar's exchange rate 
(FXC) using the exchange rate for the Japanese yen (FXY) and the Australian dollar 
(FXA) is poor with both configuration.
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The empirical evaluation
These empirical tests use a simple accuracy metric. A formal 
comparison of the regression models would systematically analyze 
every combination of input and output variables. The evaluation 
would also compute the precision, the recall, and the F1 score for each 
of those models (refer to the Key metrics section under Validation in the 
Assessing a model section in Chapter 2, Hello World!.

Impact of hidden layers architecture
The next test consists of evaluating the impact of the hidden layer(s) of configuration 
on the accuracy of three models: (FXF, FXB, CYB => FXE), (FCX, GLD, FXA =>FXY), 
and (FXC, GLD, FXA, FXY, FXB => FXE). For this test, the accuracy is computed by 
selecting a subset of the training data as a test sample, for the sake of convenience. 
The objective of the test is to compare different network architectures using some 
metrics, not to estimate the absolute accuracy of each model.

The four network configurations are as follows:

•	 A single hidden layer with four nodes
•	 Two hidden layers with four nodes each
•	 Two hidden layers with seven nodes each
•	 Three hidden layer with eight, five, and six nodes

Impact of hidden layers architecture on the MLP accuracy
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The complex neural network architecture with two or more hidden layers generates 
weights with similar accuracy. The four-node single hidden layer architecture 
generates the highest accuracy. The computation of the accuracy using a formal 
cross-validation technique would generate a lower accuracy number.

Finally, we look at the impact of the complexity of the network on the duration of the 
training, as in the following graph:

Impact of hidden layers architecture on duration of training

Not surprisingly, the time complexity increases significantly with the number of 
hidden layers and number of nodes.

Benefits and limitations
The advantages and disadvantages of neural networks depend on which other 
machine learning methods they are compared to. However, neural-network-based 
classifiers, particularly the multilayer perceptron using error backpropagation, have 
some obvious advantages, such as:

•	 The mathematical foundation of a neural network does not require expertise 
in dynamic programming or linear algebra, beyond the basic gradient 
descent algorithm.

•	 A neural network can perform tasks that a linear algorithm cannot.



Chapter 9

[ 325 ]

•	 MLP is usually reliable for highly dynamic and nonlinear processes. 
Contrary to the support vector machines, they do not require us to  
increase the problem dimension through kernelization.

•	 MLP does not make any assumption on linearity, variable independence,  
or normality.

•	 The execution of training of the MLP lends itself to concurrent processing 
quite well for online training. In most architecture, the algorithm can 
continue even if a node in the network fails.

However, as with any machine learning algorithm, neural networks have their 
detractors. Among the most documented limitations are as follows:

•	 MLP models are black boxes for which the association between features and 
classes may not be easily described.

•	 MLP requires a lengthy training process, especially using the batch strategy. 
For example, a two-layer network has a time complexity (number of 
multiplications) of O(n.m.p.N.e) for n input variables, m hidden neurons, 
p output values, N observations, and e epochs. It is not uncommon that a 
solution emerges after thousands of epochs. The online training strategy 
using momentum factor tends to converge faster and require a smaller 
number of epochs than the batch process.

•	 Tuning the configuration parameters, such as learning rate, selection of the 
activation method, application of softmax transformation, or momentum 
factor, can turn into a lengthy process.

•	 Estimating the minimum size of the training set to get accurate results is  
not obvious.

•	 A neural network cannot be incrementally retrained. Any new labeled data 
requires an entirely new training cycle.
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Summary
This concludes not only the journey inside the multilayer perceptron, but also the 
introduction of the supervised learning algorithms. In this chapter, you learned:

•	 The components and architecture of a neural networks
•	 The stages of the training cycle of a backpropagation multilayer perceptron
•	 How to implement an MLP from the ground up in Scala
•	 The numerous configuration parameters and options to use MLP as a 

classifier and regression
•	 To evaluate the impact of the learning rate and the gradient descent 

momentum factor on the convergence of the sum of squared errors  
during training

•	 How to apply a multilayer perceptron to the financial analysis of the 
fluctuation of currencies

The next chapter will introduce the concept of genetic algorithms with a full 
implementation in Scala. Although, strictly speaking, genetic algorithms do not 
belong to the family of machine learning algorithms, they play a crucial role in the 
optimization of nonlinear, nondifferentiable problems and the selection of strong 
classifiers within ensembles.



Genetic Algorithms
This chapter introduces the concept of evolutionary computing. Algorithms derived 
from the theory of evolution are particularly efficient in solving large combinatorial 
or NP problems. Evolutionary computing has been pioneered by John Holland 
[10:1] and David Goldberg [10:2]. Their findings should be of interest to anyone 
eager to learn about the foundation of genetic algorithms (GA) and artificial life.

This chapter covers the following topics:

•	 The origin of evolutionary computing
•	 The theoretical foundation of genetic algorithms
•	 Advantages and limitations of genetic algorithms

From a practical perspective, you will learn how to:

•	 Apply genetic algorithms to leverage technical analysis of market price and 
volume movement to predict future returns

•	 Evaluate or estimate the search space
•	 Encode solutions in the binary format using either hierarchical or  

flat addressing
•	 Tune some of the genetic operators
•	 Create and evaluate fitness functions

Evolution
The theory of evolution, enunciated by Charles Darwin, describes the morphological 
adaptation of living organisms [10:3].
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The origin
The Darwinian process consists of optimizing the morphology of organisms to adapt 
to the harshest environments—hydrodynamic optimization for fishes, aerodynamic 
for birds, or stealth skills for predators. The following diagram shows a gene:

The population of organisms varies over time. The number of individuals within 
a population changes, sometimes dramatically. These variations are usually 
associated with the abundance or lack of predators and prey as well as the changing 
environment. Only the fittest organisms within the population can survive over time 
by adapting quickly to sudden changes in living environments and new constraints.

NP problems
NP stands for nondeterministic polynomial time. The NP problems concept relates 
to the theory of computation and more precisely, time and space complexity. The 
categories of NP problems are as follows:

•	 P-problems (or P decision problems): For these problems, the resolution  
on a deterministic Turing machine (computer) takes a deterministic 
polynomial time.

•	 NP problems: These problems can be resolved in a polynomial time on 
nondeterministic machines.

•	 NP-complete problems: These are NP-hard problems that are reduced to NP 
problems for which the solution takes a deterministic polynomial time. These 
types of problems may be difficult to solve but their solution can be validated.
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•	 NP-hard problems: These problems have solutions that may not be found in 
polynomial time.

Computational complexity

NP-hard

NP-complete

NP

P

Problems such as the traveling salesman, floor shop scheduling, the computation of 
a graph K-minimum spanning tree, map coloring, or cyclic ordering have a search 
execution time that is a nondeterministic polynomial, ranging from n! to 2n for a 
population of n elements [10:4].

NP problems cannot always be solved using analytical methods because of the 
computation overhead—even in the case of a model, it relies on differentiable 
functions. Genetic algorithms were invented by John Holland in the 1970s, and  
they derived their properties from the Theory of Evolution of Darwin to tackle  
NP and NP-complete problems.

Evolutionary computing
A living organism consists of cells that contain identical chromosomes. Chromosomes 
are strands of DNA and serve as a model for the whole organism. A chromosome 
consists of genes that are blocks of DNA and encode a specific protein.

Recombination (or crossover) is the first stage of reproduction. Genes from parents 
generate the whole new chromosome (offspring) that can be mutated. During 
mutation, one or more elements, also known as individual bases of the DNA strand 
or chromosomes, are changed. These changes are mainly caused by errors that occur 
when the genes from parents are being passed on to their offspring. The success of an 
organism in its life measures its fitness [10:5].

Genetic algorithms use reproduction to evolve a solution for a problem that is similar 
to unsupervised learning, for which a class or clusters are identified through an 
iterative or optimization methodology.
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Genetic algorithms and machine learning
The practical purpose of a genetic algorithm as an optimization technique is to solve 
problems by finding the most relevant or fittest solution among a set or group of 
solutions. Genetic algorithms have many applications in machine learning, as follows:

•	 Discrete model parameters: Genetic algorithms are particularly effective in 
finding the set of discrete parameters that maximizes the log likelihood. For 
example, the colorization of a black and white movie relies on a large but 
finite set of transformations from shades of grey to the RGB color scheme. 
The search space is composed of the different transformations and the 
objective function is the quality of the colorized version of the movie.

•	 Reinforcement learning: Systems that select the most appropriate rules  
or policies to match a given data set rely on genetic algorithms to evolve 
the set of rules over time. The search space or population is the set of 
candidate rules, and the objective function is the credit or reward for an 
action triggered by these rules (refer to the Introduction section of Chapter 11, 
Reinforcement Learning).

•	 Neural network architecture: A genetic algorithm drives the evaluation of 
different configurations of networks. The search space consists of different 
combinations of hidden layers and the size of those layers. The fitness or 
objective function is the sum of the squared errors.

•	 Ensemble learning [10:6]: A genetic algorithm can weed out the weak learners 
among a set of classifiers in order to improve the quality of the prediction.

Genetic algorithm components
Genetic algorithms have the following three components:

•	 Genetic encoding (and decoding): This is the conversion of a solution 
candidate and its components into the binary format (an array of bits  
or a string of 0 and 1 characters)

•	 Genetic operations: This is the application of a set of operators to extract the 
best (most genetically fit) candidates (chromosomes)

•	 Genetic fitness function: This is the evaluation of the fittest candidate using 
an objective function

Encodings and the fitness function are problem dependent. Genetic operators are not.
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Encodings
Let's consider the optimization problem in machine learning that consists of 
maximizing the log likelihood or minimizing the loss function. The goal is to 
compute the parameters or weights, w={wi}, that minimize or maximize a function 
f(w). In the case of a nonlinear model, variables may depend on other variables, 
which make the optimization problem particularly challenging.

Value encoding
The genetic algorithm manipulates variables as bits or bit strings. The conversion 
of a variable into a bit string is known as encoding. In the case where the variable is 
continuous, the conversion is known as discretization. Each type of variable has a 
unique encoding scheme, as follows:

•	 Boolean values are easily encoded with 1 bit: 0 for false and 1 for true.
•	 Continuous variables are discretized in a fashion similar to the conversion of 

an analog to a digital signal. Let's consider the function with a maximum max 
(similarly min for minimum) over a range of values, encoded with n=16 bits:

The step size of the discretization is computed as:

step
max-min=

2n

The step size of the discretization of the sine y = sin(x) in 16 bits is 1.524e-5.
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•	 Discrete or categorical variables are a bit more challenging to encode to bits. At 
a minimum, all the discrete values have to be accounted for. However, there is 
no guarantee that the number of variables will coincide with the bits boundary:

In this case, the next exponent, n+1, defined the minimum number of bits 
required to represent the set of values: n = log2(m).toInt + 1. A discrete 
variable with 19 values requires 5 bits. The remaining bits are set to an 
arbitrary value (0, NaN,…) depending on the problem. This procedure is 
known as padding.

Encoding is as much art as it is science. For each encoding function, you need a 
decoding function to convert the bits representation back to actual values.

Predicate encoding
A predicate for a variable x is a relation defined as x operator [target], for instance,  
unit cost < [9$], temperature = [82F], or Movie rating is [3 stars].

The simplest encoding scheme for predicates is as follows:

•	 Variables are encoded as category or type (for example, temperature, 
barometric pressure, and so on) because there is a finite number of  
variables in any model

•	 Operators are encoded as discrete type
•	 Values are encoded as either discrete or continuous values

Encoding format for predicates
There are many approaches for encoding a predicate in a bits 
string. For instance, the format {operator, left-operand, right-operand} 
is useful because it allows you to encode a binary tree. The entire 
rule, IF predicate THEN action, can be encoded with the action being 
represented as a discrete or categorical value.
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Solution encoding
The solution encoding approach describes the solution to a problem as an unordered 
sequence of predicates. Let's consider the following rule:

IF {Gold price rises to [1316$/ounce]} AND 
   {US$/Yen rate is [104]}).
THEN {S&P 500 index is [UP]}

In this example, the search space is defined by two levels:

•	 Boolean operators (for example, AND) and predicates
•	 Each predicate is defined as a tuple {variable, operator, target value}

The tree representation for the search space is shown in the following diagram:

The bits string representation is decoded back to its original format for  
further computation:
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The encoding scheme
There are two approaches to encode such a candidate solution or chain of predicates:

•	 Flat coding of a chromosome
•	 Hierarchical coding of a chromosome as a composition of genes

Flat encoding
The flat encoding approach consists of encoding the set of predicates into a single 
chromosome (bits string) representing a specific solution candidate to the optimization 
problem. The identity of the predicates is not preserved:

An overview of flat addressing

A genetic operator manipulates the bits of the chromosome regardless of whether the 
bits refer to a particular predicate:

Chromosome encoding with flat addressing

Hierarchical encoding
In this configuration, the characteristic of each predicate is preserved during the 
encoding process. Each predicate is converted into a gene represented by a bit string. 
The genes are aggregated to form the chromosome. An extra field is added to the 
bits string or chromosome for the selection of the gene. This extra field consists of the 
index or the address of the gene:
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An overview of hierarchical addressing

A generic operator selects the predicate it needs to manipulate first. Once the target 
gene is selected, the operator updates the bits string associated to the gene, as follows:

A chromosome with hierarchical addressing

The next step is to define the genetic operators that manipulate or update the bits 
string representing either a chromosome or individual genes.

Genetic operators
The implementation of the reproduction cycle attempts to replicate the natural 
reproduction process [10:7]. The reproduction cycle that controls the population  
of chromosomes consists of three genetic operators:

•	 Selection: This operator ranks chromosomes according to a fitness function 
or criteria. It eliminates the weakest or less-fit chromosomes and controls the 
population growth.

•	 Crossover: This operator pairs chromosomes to generate offspring 
chromosomes. These offspring chromosomes are added to the population 
along with their parent chromosomes.

•	 Mutation: This operator introduces minor alteration in the genetic code  
(bits string representation) to prevent the successive reproduction cycles 
from electing the same fittest chromosome. In optimization terms, this 
operator reduces the risk of the genetic algorithm converging quickly 
towards a local maximum or minimum.
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Transposition operator
Some implementations of genetic algorithms use a fourth operator, 
genetic transposition, in case the fitness function cannot be very 
well defined and the initial population is very large. Although 
additional genetic operators could potentially reduce the odds of 
finding a local maximum or minimum, the inability to describe 
the fitness criteria or the search space is a sure sign that a genetic 
algorithm may not be the most suitable tool.

The following diagram gives an overview of the genetic algorithm workflow:

Initialization
The initialization of the search space (a set of potential solutions 
to a problem) in any optimization procedure is challenging, and 
genetic algorithms are no exception. In the absence of bias or 
heuristics, the reproduction initializes the population with randomly 
generated chromosomes. However, it is worth the effort to extract the 
characteristics of a population. Any well-founded bias introduced during 
initialization facilitates the convergence of the reproduction process.

Each of these genetic operators has at least one configurable parameter that has to be 
estimated and/or tuned. Moreover, you will likely need to experiment with different 
fitness functions and encoding schemes in order to increase your odds of finding a 
fittest solution (or chromosome).

Selection
The purpose of the genetic selection phase is to evaluate, rank, and weed out the 
chromosomes (that is, the solution candidates) that are not a good fit for the problem. 
The selection procedure relies on a fitness function to score and rank candidate 
solutions through their chromosomal representation. It is a common practice to 
constrain the growth of the population of chromosomes by setting a limit to the size 
of the population.



Chapter 10

[ 337 ]

There are several methodologies to implement the selection process from scaled 
relative fitness, Holland roulette wheel, and tournament selection to rank-based 
selection [10:8].

Relative fitness degradation
As the initial population of chromosomes evolves, the chromosomes 
tend to get more and more similar to each other. This phenomenon is 
a healthy sign that the population is actually converging. However, 
for some problems, you may need to scale or magnify the relative 
fitness to preserve a meaningful difference in the fitness score 
between the chromosomes [10:9].

The following implementation relies on rank-based selection using either a fitness or 
unfitness function to score chromosomes.

The selection process consists of the following steps:

1.	 Apply the fitness/unfitness function to each chromosome j in  
the population, fj

2.	 Compute the total fitness/unfitness score for the entire population, ∑fj

3.	 Normalize the fitness/unfitness score of each chromosome by the sum of the 
fitness/unfitness scores of all the chromosomes, fj = fi/Σfj

4.	 Sort the chromosomes by their descending fitness score or ascending 
unfitness score

5.	 Compute the cumulative fitness/unfitness score for each chromosome,  
j fj = fj + ∑fk

6.	 Generate the selection probability (for the rank-based formula) as a random 
value, p ε [0,1]

7.	 Eliminate the chromosome, k, having a low fitness score fk < p or high 
unfitness cost, fk > p

8.	 Reduce the size of the population further if it exceeds the maximum allowed 
number of chromosomes.

Natural selection
You should not be surprised by the need to control the size 
of population of chromosomes. After all, nature does not 
allow any species to grow beyond a certain point in order 
to avoid depleting natural resources. The predator-prey 
process modeled by the Lotka-Volterra equation [10:10] 
keeps the population of each species in check.
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Crossover
The purpose of the genetic crossover is to expand the current population of 
chromosomes in order to intensify the competition among the solution candidates. 
The crossover phase consists of reprogramming chromosomes from one generation to 
the next. There are many different variations of crossover techniques. The algorithm 
for the evolution of the population of chromosomes is independent of the crossover 
technique. Therefore, the case study uses the simpler one-point crossover. The 
crossover swaps sections of the two-parent chromosomes to produce two offspring 
chromosomes, as illustrated in the following diagram:

A chromosome's crossover

An important element in the crossover phase is the selection and pairing of parent 
chromosomes. There are different approaches for selecting and pairing the parent 
chromosomes that are the most suitable for reproduction:

•	 Selecting only the n fittest chromosomes for reproduction
•	 Pairing chromosomes ordered by their fitness (or unfitness) value
•	 Pairing the fittest chromosome with the least-fit chromosome, the second 

fittest chromosome with the second least-fit chromosome, and so on

It is a common practice to rely on a specific optimization problem to select the most 
appropriate selection method as it is highly domain dependent.

The crossover phase that uses hierarchical addressing as the encoding scheme 
consists of the following steps:

1.	 Extract pairs of chromosomes from the population.
2.	 Generate a random probability p ϵ [0,1].
3.	 Compute the index ri of the gene for which the crossover is applied  

as ri = p.num_genes, where num_genes are the number of genes in  
a chromosome.
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4.	 Compute the index of the bit in the selected gene for which the crossover is 
applied as xi=p.gene_length, where gene_length is the number of bits in the gene.

5.	 Generate two offspring chromosomes by interchanging strands  
between parents.

6.	 Add the two offspring chromosomes to the population.

Preserving parent chromosomes
You may wonder why the parents are not removed from 
the population once the offspring chromosomes are created. 
This is because there is no guarantee that any of the offspring 
chromosomes are a better fit.

Mutation
The objective of genetic mutation is preventing the reproduction cycle from 
converging towards a local optimum by introducing a pseudo-random alteration 
to the genetic material. The mutation procedure inserts a small variation in 
a chromosome to maintain some level of diversity between generations. The 
methodology consists of flipping one bit in the bits string representation of the 
chromosome, as illustrated in the following diagram:

The chromosome mutation

The mutation is the simplest of the three phases in the reproduction process. In the 
case of hierarchical addressing, the steps are as follows:

1.	 Select the chromosome to be mutated.
2.	 Generate a random probability p ϵ[0,1].
3.	 Compute the index mi of the gene to be mutated using the formula  

mi = p.num_genes.
4.	 Compute the index of the bit in the gene to be mutated xi=p.genes_length.
5.	 Perform a flip XOR operation on the selected bit.
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The tuning issue
The tuning of a genetic algorithm can be a daunting task. 
A plan including a systematic design experiment for 
measuring the impact of the encoding, fitness function, 
crossover, and mutation ratio is necessary to avoid lengthy 
evaluation and self-doubt.

Fitness score
The fitness function is the centerpiece of the selection process. There are three 
categories of fitness functions:

•	 The fixed fitness function: In this function, the computation of the fitness 
value does not vary during the reproduction process

•	 The evolutionary fitness function: In this function, the computation of the 
fitness value morphs between each selection according to predefined criteria

•	 An approximate fitness function: In this function, the fitness value cannot be 
computed directly using an analytical formula [10:11]

Our implementation of the genetic algorithm uses a fixed fitness function.

Implementation
As mentioned earlier, the genetic operators are independent of the problem to be 
solved. Let's implement all the components of the reproduction cycle. The fitness 
function and the encoding scheme are highly domain specific.

In accordance with the principles of object-oriented programming, the software 
architecture defines the genetic operators using a top-down approach: starting  
with the population, then each chromosome, down to each gene.

Software design
The implementation of the genetic algorithm uses a design that is similar to  
the template for classifiers (refer to the Design template for classifier section in  
Appendix A, Basic Concepts).

The key components of the implementation of the genetic algorithm are as follows:

•	 The Population class defines the current set of solution candidates  
or chromosomes.
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•	 The GASolver class implements the GA solver and has two components: a 
configuration object of the type GAConfig and the initial population. This 
class defines a data transformation by implementing the PipeOperator trait.

•	 The configuration class GAConfig consists of the GA execution and 
reproduction configuration parameters.

•	 The reproduction (of the type Reproduction) controls the reproduction cycle 
between consecutive generations of chromosomes through the mate method.

The following UML class diagram describes the relation between the different 
components of the genetic algorithm:

Reproduction Chromosome[T]=>()

Operator

Double

PopulationGAConfig

GASolver
Chromosome

Gene

Config PipeOperator Model

mate

score

code

op

value

config
population chromosomes

1

1+

1

1 1

1 1

1 1

1

1
1

1+

UML class diagram of genetic algorithm components

Let's start by defining the key classes that control the genetic algorithm.

Key components
The parameterized class Population (with the subtype Gene) contains the set or  
pool of chromosomes. A population contains chromosomes that are a sequence  
or list of element of the type inherited from Gene. A Pool is a mutable array in 
order to avoid excessive duplication of the Chromosome instances associated with 
immutable collections.

A case for mutability
It is a good Scala programming practice to stay away from mutable 
collections. However, in this case, the number of chromosomes can 
be very large. Most implementations of genetic algorithms update the 
population potentially three times per reproduction cycle, generating 
a large number of objects and taxing the Java garbage collector.
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The Population class takes two parameters:

•	 limit: This is the maximum size of the population
•	 chromosomes: This is the pool of chromosomes defining the current population

A reproduction cycle executes the following sequence of three genetic operators on 
a population: select for selection across all the chromosomes of the population, +- 
for crossover of all the chromosomes, and ^ for the mutation of each chromosome. 
Consider the following code:

type Pool[T <: Gene] = ArrayBuffer[Chromosome[T]]
class Population[T <: Gene](limit: Int, val chromosomes: Pool[T]) {
   def select(score: Chromosome[T] => Unit, cutOff: Double)
   def +- (xOver: Double)
   def ^ (mu: Double)
   …

The limit value specifies the maximum size of the population during optimization. 
It defines the hard limit or constraints on the population growth.

The chromosome is the second level of containment in the genotype hierarchy.  
The Chromosome class takes a list of genes as parameter (code). The signature of the 
crossover and mutation methods, +- and ^, are similar to their implementation in the 
Population class except for the fact that the crossover and mutable parameters are 
passed as indices relative to the list of genes and each gene. The section dedicated to 
the genetic crossover describes the GeneticIndices class:

class Chromosome[T <: Gene](val code: List[T]) {
  var unfitness: Double = 1e+5*(1 + Random.nextDouble)
  def +- (that: Chromosome[T], idx: GeneticIndices): 
(Chromosome[T],Chromosome[T]) 
  def ^ (idx: GeneticIndices): Chromosome[T] 
  …

The algorithm assigns the fitting score an unfitness value in this implementation 
to enable the ranking of the population and ultimately the selection of the fittest 
chromosomes.

Fitness vs. unfitness
The machine learning algorithms used the loss function or 
its variant as an objective function to be minimized. This 
implementation of the GA uses unfitness scores to be consistent 
with the concept of minimization of cost, loss, or penalty function.
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Finally, the reproduction process executes the genetic operators on each gene:

class Gene(val id: String, val target: Double, op: Operator)(implicit 
discr: Discretization) {
   val bits: BitSet
   …
   def +- (index: Int, that: Gene): Gene
   def ^ (index: Int): Unit
}

The Gene class takes four parameters:

•	 id: This is the identifier of the gene. It is usually the name of the variable 
represented by the gene.

•	 target: This is the target value or threshold to be converted or discretized 
into a bit string.

•	 op: This is the operator that is applied to the target value.
•	 discr: This is the discretization class that converts a double value to an 

integer to be converted into bits and vice versa.

The discretization is implemented as a case class:

case class Discretization(toInt: Double => Int,toDouble: Int => 
Double) {
  def this(R: Int) = 
         this((x: Double) => (x*R).floor.toInt, (n: Int) => n/R)
}

The first function, toInt, converts a real value to an integer and toDouble 
converts the integer back to a real value. The discretization and inverse functions 
are encapsulated into a class to reduce the risk of inconsistency between the two 
opposite conversion functions.

The instantiation of a gene converts the predicate representation into a bit string (bits 
of the type java.util.BitSet) using the discretization function Discretization.
toInt. The bit string is decoded by the decode method of the Gene companion object.

The Operator trait defines the signature of any operator. Each domain-specific 
problem requires a unique set of operations: Boolean, numeric, or string manipulation:

trait Operator {
  def id: Int
  def apply(id: Int): Operator
}
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The preceding operator has two methods: an identifier id and an apply method that 
converts an index to an operator.

Selection
The first genetic operator of the reproduction cycle is the selection process. The 
select method of the Population class implements the steps of the selection  
phase to the population of chromosomes in the most efficient manner, as follows:

def select(score: Chromosome[T] => Unit, cutOff: Double) = {
  val cumul = chromosomes.foldLeft(0.0)((s,x) =>{
            score(xy); s + xy.unfitness} ) //1
  chromosomes foreach( _ /= cumul) //2
  val newChromosomes = chromosomes.sortWith(_.unfitness < _.unfitness) 
//3

  val cutOffSize = (cutOff*newChromosomes.size).floor.toInt //4
  val newPopSize = if(limit<cutOffSize) limit else cutOffSize //5
  chromosomes.clear //6
  chromosomes ++= newChromosomes.take(newPopSize) //7
}

The select method computes the cumulative sum of an unfitness value, cumul, 
for the entire population (line 1). It normalizes the unfitness of each chromosome 
(line 2), orders the population by decreasing value (line 3), and applies a soft limit 
function on population growth, cutOff (line 4). The next step reduces the size of 
the population to the lowest of the two limits: the hard limit, limit, or the soft limit, 
cutOffSize (line 5). Finally, the current population is cleared (line 6) and updated 
with the next generation (line 7).

Even population size
The next phase in the reproduction cycle is the crossover, which 
requires the pairing of parent chromosomes. It makes sense to 
pad the population so that its size is an even integer.

The scoring function score takes a chromosome as parameter and updates its 
unfitness value for this chromosome.
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Controlling population growth
The natural selection process controls or manages the growth of the population of 
species. The genetic algorithm uses two mechanisms:

•	 The absolute maximum size of the population (hard limit).
•	 The incentive to reduce the population as the optimization progresses  

(soft limit). This incentive (or penalty) on the population growth is defined 
by the cutOff value used during selection (the select method).

The cutoff value is computed through a user-defined function, softLimit, of the 
type Int => Double, provided as a configuration parameter (softLimit(cycle: 
Int) => a.cycle +b).

GA configuration
The four configurations and tuning parameters required by the genetic  
algorithm are:

•	 xover: This is the crossover ratio (or probability) and has a value  
in the interval [0, 1].

•	 mu: This is the mutation ratio with a value in the interval [0, 1].
•	 maxCycles: This is the maximum number of reproduction cycles.
•	 softLimit: This is the soft constraint on the population growth. The constraint 

function takes the number of iterations as argument and returns the maximum 
number of chromosomes allowed in the population.

Consider the following code:

class GAConfig(val xover: Double,val mu: Double,val maxCycles: Int,val 
softLimit: Int => Double) extends Config

Crossover
As mentioned earlier, the genetic crossover operator couples two chromosomes to 
generate two offspring chromosomes that compete with all the other chromosomes 
in the population, including their own parents, in the selection phase of the next 
reproduction cycle.
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Population
We use the notation +- as the implementation of the crossover operator in Scala. There 
are several options to select pairs of chromosomes for crossover. This implementation 
ranks the chromosomes by their fitness value and then divides the population into two 
halves. Finally, it pairs the chromosomes of identical rank from each half as illustrated 
in the following diagram:

Pairing of chromosomes within a population prior to crossover

The crossover implementation, +-, selects the parent chromosome candidates for 
crossover using the pairing scheme described earlier. Consider the following code:

def +- (xOver: Double): Unit = {
  if( size > 1) {
    val mid = size>>1
    val bottom = chromosomes.slice(mid, size)  //1
    val gIdx = geneticIndices(xOver)  //5
    val offSprings = chromosomes.take(mid)
                         .zip(bottom) //2
                         .map(p => p._1 +-(p._2, gIdx))
                         .unzip //3
    chromosomes ++= offSprings._1 ++ offSprings._2 //4
  }
}

This method splits the population into two subpopulations of equal size (line 1) 
and applies the Scala zip method (line 2) to generate the set of pairs of offspring 
chromosomes (line 3). The crossover operator, +-, is applied to each chromosome 
pair to produce an array of pairs of offspring. Finally, the crossover method adds 
offspring chromosomes to the existing population (line 4). The crossover value, 
xOver, is a probability randomly generated over the interval [config.xOver, 1].
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The geneticIndices method (line 5) computes the relative indices of the crossover 
bit in the chromosomes and genes:

case class GeneticIndices(val chOpIdx: Int, val geneOpIdx: Int)
def geneticIndices(prob: Double): GeneticIndices = {
   var idx = (prob*chromosomeSize).floor.toInt
   val chIdx = if(idx==0) 1
      else if(idx == chromosomeSize) chromosomeSize-1 else idx
   
   idx = (prob*geneSize).floor.toInt
   val gIdx = if(idx == 0) 1
     else if(idx == geneSize) geneSize-1 else idx
   GeneticIndices(chIdx, gIdx)
}

The GeneticIndices case class defines two indices of the bit whenever a crossover or 
a mutation occurs. The first index, chOpIdx, is the absolute index of the bit affected by 
the genetic operation in the chromosome. The second index, geneOpIdx, is the index 
of the bit within the gene subjected to crossover or mutation. The geneticIndices 
method of the Population class computes the two indices from a randomly generated 
value, prob, selected over the interval [config.xover, 1] for crossover and 
[config.mu, 1] for mutation.

Chromosomes
First, we need to define the Chromosome class, which takes a list of genes, code  
(for genetic code), as the parameter:

class Chromosome[T <: Gene](val code: List[T])

The implementation of the crossover for a pair of chromosomes using hierarchical 
encoding follows two steps:

•	 Find the gene on each chromosome that corresponds to the crossover index, 
gIdx.chOpIdx, and then swap the remaining genes

•	 Split and splice the gene crossover at xoverIdx

Consider the following code:

def +-(that: Chromosome[T], gIdx: GeneticIndices): (Chromosome[T], 
Chromosome[T]) = {
  val xoverIdx = gIdx.chOpIdx  //6
  val xGenes = spliceGene(gIdx, that.code(xoverIdx) ) //7
  
  val offSprng1 = code.slice(0, xoverIdx) ::: xGenes._1 :: that.code.
drop(xoverIdx+1) //8
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  val offSprng2 = that.code.slice(0, xoverIdx) ::: xGenes._2 :: code.
drop(xoverIdx+1)
  (Chromosome[T](offSprng1), Chromosome[T](offSprng2)//9
}

The crossover method computes the index of the bit that defines the crossover 
(xoverIdx) in each parent chromosome (line 6). The genes this.code(xoverIdx) 
and that.code(xoverIdx) are swapped and spliced by the spliceGene method  
to generate a spliced gene (line 7).

def spliceGene(gIdx: GeneticIndices, thatCode: T): (T, T) = {
  ((this.code(gIdx.chOpIdx) +- (thatCode, gIdx)), 
   (thatCode +- (code(gIdx.chOpIdx), gIdx)) )
}

The offspring chromosomes are gathered by collating the first xOverIdx genes of the 
parent chromosome, the crossover gene, and the remaining genes of the other parent 
(line 8). The method returns the pair of offspring chromosomes (line 9).

Genes
The crossover is applied to a gene through the +-method of the Gene class. The 
exchange of bits between the two genes this and that uses the BitSet Java class  
to rearrange the bits after the permutation:

def +- (that: Gene, idx: GeneticIndices): Gene = {
  val clonedBits = cloneBits(bits)  //10

  Range(gIdx.geneOpIdx, bits.size).foreach(n => 
    if( that.bits.get(n) ) clonedBits.set(n) 
    else clonedBits.clear(n) 
) //11

  val valOp = decode(clonedBits) //12
  Gene(id, valOp._1, valOp._2)
}

The bits of the gene are cloned (line 10) and then spliced by exchanging their bits 
along the crossover point xOverIdx (line 11). The cloneBits function duplicates 
a bit string, which is then converted into a (target value, operator) tuple using the 
decode method (line 12). We omit these two methods because they are not critical  
to the understanding of the algorithm.
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Mutation
The mutation of the population uses the same algorithmic approach as the  
crossover operation.

Population
The mutation operator ^ invokes the same operator for all the chromosomes in the 
population and then adds the mutated chromosomes to the existing population, 
so that they can compete with the original chromosomes. We use the notation ^ to 
define the mutation operator to remind the reader that the mutation is implemented 
by flipping one bit:

def ^ (mu: Double): Unit = 
  chromosomes ++= chromosomes.map(_ ^ geneticIndices(mu))

The mutation parameter mu is used to compute the absolute index of the mutating 
gene, geneticIndices(mu).

Chromosomes
The implementation of the mutation operator ^ on a chromosome consists of 
mutating the gene of the index gIdx.chOpIdx (line 1) and then updating the list of 
genes in the chromosome (line 2). The method returns a new chromosome (line 3) 
that will compete with the original chromosome:

def ^ (gIdx: GeneticIndices): Chromosome[T] = { //1
  val mutated = code(gIdx.chOpIdx) ^ gIdx 
  val xs = Range(0, code.size).map(i =>
    if(i==gIdx.chOpIdx) mutated  else code(i)).toList //2
  Chromosome[T](xs) //3
}

Genes
Finally, the mutation operator flips (XOR) the bit at the index gIdx.geneOpIdx:

def ^ (gIdx: GeneticIndices): Gene = {
  val clonedBits = cloneBits(bits) //4
  clonedBits.flip(idx.geneOpIdx)  //5

  val valOp = decode(clonedBits)  //6
  Gene(id, valOp._1, valOp._2) //7
}
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The ^ method mutates the cloned bit string, clonedBits (line 4) by flipping the bit at 
the index gIdx.geneOpIdx (line 5). It decodes and converts the mutated bit string by 
converting it into a (target value, operator) tuple (line 6). The last step creates a new 
gene from the target-operator tuple (line 7).

The reproduction cycle
Let's wrap the reproduction cycle into a Reproduction class that uses the scoring 
function score:

class Reproduction[T <: Gene](score: Chromosome[T] => Unit)

The reproduction function, mate, implements the sequence or workflow of the three 
genetic operators: select for the selection, +- (xover) for the crossover, and ^ (mu) 
for the mutation:

def mate(population: Population[T], config: GAConfig, cycle: Int): 
Boolean = population.size match {
  case 0 | 1 | 2=> false
  case _ => {
    population.select(score, config.softLimit(cycle))
    population +- (1.0 - Random.nextDouble*config.xover)
    population ^ (1.0 - Random.nextDouble*config.mu)
    true
  }
}

This method returns true if the size of the population is larger than 2. The last 
element of the puzzle is the exit condition. There are two options for estimating  
that the reproducing cycle is converging:

•	 Greedy: In this approach, the objective is to evaluate whether the n fittest 
chromosomes have not changed in the last m reproduction cycles

•	 Loss function: This approach is similar to the convergence criteria for the 
training of supervised learning

A simple exit condition describes the state, of the type GAState, of the genetic 
algorithm at each reproduction cycle:

def converge(population: Population[T], cycle: Int): GAState = {
  if(population == null) GA_FAILED
  else if(iters >= config.cycles) 
          GA_NO_CONVERGENCE(s"failed after $cycle cycles")
  …
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Let's define the state of the genetic algorithm as a case class of the super  
type GAState:

sealed abstract class GAState(val description: String)
case class GA_FAILED(val _description: String) extends GAState(_
description)
object GA_RUNNING extends GAState("Running")
case class GA_NO_CONVERGENCE(val _desc: String) extends GAState(_desc)
…

The last class GASolver manages the reproduction cycle and evaluates the exit 
condition or the convergence criteria:

class GASolver[T <: Gene](config: GAConfig, score: Chromosome[T] 
=>Unit) extends PipeOperator[Population[T], Population[T]] {
   var state: GAState = GA_NOT_RUNNING

This class implements the data transformation |>, which transforms a population to 
another one, given a configuration, config and a scoring method, score, as follows:

def |> : PartialFunction[Population[T], Population[T]] = {
  case population: Population[T] if(population.size > 1) => {
    val reproduction = Reproduction[T](score)
    state = GA_RUNNING
 
    Range(0, config.maxCycles).find(n => {  //1
      reproduction.mate(population, config, n) match { //2
         case true => converge(population, n) != GA_RUNNING  //3
         case false => { …. }
      }
    }) match {
       case Some(n) => population
     …

The reproduction cycle is controlled by the find function (line 1) that tests whether 
an error occurs during the reproduction, mate (line 2), before the convergence 
criteria (line 3) are applied.

GA for trading strategies
Let's apply our fresh expertise in genetic algorithms to evaluate different strategies to 
trade securities using trading signals. Knowledge in trading strategies is not required 
to understand the implementation of a GA. However, you may want to get familiar 
with the foundation and terminology of technical analysis of securities and financial 
markets, described briefly in the Technical analysis section in Appendix A, Basic Concepts.
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The problem is to find the best trading strategy to predict the increase or decrease of the 
price of a security given a set of trading signals. A trading strategy is defined as a set of 
trading signals tsj that are triggered or fired when a variable x= {xj}, derived from 
financial metrics such as the price of the security or the daily or weekly trading 
volume, either exceeds or equals or is below a predefined target value, αj (refer to  
the Trading signals and strategy section in Appendix A, Basic Concepts).

The number of variables that can be derived from price and volume can be very 
large. Even the most seasoned financial professionals face two challenges:

•	 Selecting a minimal set of trading signals that are relevant to a given data  
set (minimize a cost or unfitness function)

•	 Tuning those trading signals with heuristics derived from personal 
experience and expertise

Alternative to GA
The problem described earlier can certainly be solved using 
one of the machine learning algorithms introduced in the 
previous chapters. It is just a matter of defining a training set 
and formulating the problem as minimizing the loss function 
between the predictor and the training score.

The following table lists the trading classes with their counter part in the  
'genetic world':

Generic classes Corresponding securities trading classes
Operator SOperator

Gene Signal

Chromosome Strategy

Population StrategiesFactory

Definition of trading strategies
A chromosome is the genetic encoding of a trading strategy. A factory class, 
StrategyFactory, assembles the components of a trading strategy: operators, 
unfitness function and signals.
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Trading operators
Let's extend the Operator trait with the SOperator class to define the operations 
we need to trigger the signals. The SOperator instance has a single parameter: its 
identifier, _id. The class overrides the id () method to retrieve the ID (similarly, the 
class overrides the apply method to convert an ID into an SOperator instance):

class SOperator(val _id: Int) extends Operator {
  override def id: Int = _id
  override def apply(idx: Int): SOperator = new SOperator(idx)
}

The operators used by trading signals are the logical operators:  <, >, and =,  
as follows:

object LESS_THAN extends SOperator(1)
object GREATER_THAN extends SOperator(2)
…

Each operator is associated with a scoring function by the map operatorFuncMap. 
The function computes the unfitness of the signal against a real value or a time series:

val operatorFuncMap = Map[Operator, (Double, Double) =>Double](
  LESS_THAN -> ((x: Double, target: Double) => target - x),
  GREATER_THAN -> ((x: Double, target: Double) => x -target),
  … )

The select method of Population computes the unfitness value of a signal by 
quantifying the truthfulness of the predicate. For instance, the unfitness value for 
a trading signal, x > 10, is penalized as 5 – 10 = -5 for x = 5 and credited as 14 – 10 
= 4 if x = 14. In this regard, the unfitness value is similar to the cost or loss in a 
discriminative machine learning algorithm.

The cost/unfitness function
Let's consider the following trading strategy defined as a set of two signals to predict 
the sudden relative decrease Δp of the price of a security:

•	 Relative volume vm with a condition vm < α
•	 Relative volatility vl with the condition vl > β
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Have a look at the following graphs:

As the goal is to model a sudden crash in stock price, we should reward the trading 
strategies that predict the steep decrease in the stock price and penalize the strategies 
that work well only with a small decrease or increase in stock price. For the case of 
the trading strategy with two signals, relative volume vm and relative volatility vl, 
n trading sessions, the cost or unfitness function C, and given a relative variation of 
stock price and a penalization w = -Δp:
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Trading signals
Let's subclass the Gene class to define the trading signal:

class Signal(_id: String, _target: Double, _op: Operator,xt: 
DblVector, weights: DblVector)(implicit discr: Discretization) extends 
Gene(_id, _target, _op) 

The Signal class takes the identifier for the feature, the target value, an operator 
op, the time series xt of the type DblVector, and the weights associated to each data 
point of the time series xt. The main purpose of the Signal class is to compute its 
score. The chromosome updates its unfitness by summing the score or weighted 
score of the signals it contains.

The score of the trading signal is simply the summation of the penalty or truthfulness 
of the signal for each entry of the time series, ts:

def score: Double = sumScore(operatorFuncMap.get(op).get)
def sumScore(f: (Double, Double) => Double): Double = xt.foldLeft(0.0)
((s, x) => s + f(x, target))
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Trading strategies
A trading strategy is an unordered list of trading signals. It makes sense to create  
a factory class to generate the trading strategies. The StrategyFactory class  
creates strategies of the type List[Signal] from an existing pool of signals of  
the subtype Gene:

strategy
StrategyFactoryList[Signal] Signal

Gene

+=

The StrategyFactory class has two arguments: the number of signals, nSignals, in 
a trading strategy and the implicit discretization instance:

class StrategyFactory(nSignals: Int)(implicit discr: Discretization){
  val signals  = new ListBuffer[Signal]
  lazy val strategies: Pool[Signal] 
   …

The += method adds the trading signals to the factor. The StrategyFactory class 
generates all possible sequences of signals as trading strategies. The += method takes 
five arguments: the identifier (id), target, operation (op) to qualify the class as a 
Gene, the times series xt for scoring the signals, and the weights associated to the 
overall cost function:

def += (id: String, target: Double, op: Operator, xt: 
XTSeries[Double], weights: DblVector): Unit =
     signals.append(Signal(id, target, op, xt.toArray, weights) )

The StrategyFactory class defines strategies as lazy values to avoid 
unnecessary regeneration of the pool on demand:

lazy val strategies: Pool[Signal] = {
  implicit val ordered = Signal.orderedSignals //7

  val xss = new Pool[Signal] //1
  val treeSet = new TreeSet[Signal] ++= signals.toList //2
  val subsetsIterator = treeSet.subsets(nSignals) //3
  while( subsetsIterator.hasNext) { //4
     val subset = subsetsIterator.next
     val signalList: List[Signal] = subset.toList //5
     xss.append(Chromosome[Signal](signalList)) //6
  } xss
}
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The implementation of the strategies value creates Pool (line 1) by converting the 
list of signals to a treeset (line 2). It breaks down the tree set into unique subtrees 
of nSignals nodes each (line 3). It instantiates a subsetsIterator iterator (line 3) 
to traverse the sequence of subtrees (line 4) and converts them into a list (line 5) as 
arguments of the new chromosome (trading strategy) (line 6). The procedure to order 
the signals, orderedSignals, in the tree set has to be implicitly defined (line 7):

val orderedSignals = Ordering.by((signal: Signal) => signal.id)

Signal encoding
The encoding of trading predicates is the most critical element of the genetic 
algorithm. In our example, we encode a predicate as a tuple (target value, operator). 
Let's consider  the simple predicate volatility > 0.62. The discretization converts the 
value 0.62 into 32 bits for the instance and a 2-bit representation for the operator:

Encoding price volatility as a gene

IEEE-732 encoding
The threshold value for predicates is converted into an integer 
(the type Int or Long). The IEEE-732 binary representation 
of floating point values makes the bit addressing required 
to apply genetic operators quite challenging. A simple 
conversion consists of the following:

encoding e: (x: Double) => (x*100000).toInt
decoding d: (x: Int) => x*1e-5

All values are normalized; so, there is no risk of overflowing 
the 32-bit representation.
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Test case
The goal is to evaluate which trading strategy was the most relevant (fittest) during 
the crash of the stock market in fall 2008. Let's consider the stock price of one of the 
financial institutions, Goldman Sachs, as a proxy of the sudden market decline:

Goldman-Sachs fall 2008

Besides the variation of the price of the stock between two consecutive trading 
sessions (deltaPrice), the model uses the following parameters:

•	 deltaVolume: This is the relative variation of the volume between two 
consecutive trading sessions

•	 deltaVolatility: This is the relative variation of volatility between two 
consecutive trading sessions

•	 relVolatility: This is the relative volatility within a trading session
•	 relCloseOpen: This is the relative difference of the stock opening and  

closing price
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The execution of the genetic algorithm requires the following steps:

1.	 Extraction of model parameters or variables.
2.	 Generation of the initial population of trading strategies.
3.	 Setting up the GA configuration parameters with the maximum number of 

reproduction cycles allowed, the crossover and mutation ratio, and the soft 
limit function for population growth.

4.	 Instantiating the GA algorithm with the scoring/unfitness function.
5.	 Extracting the fittest trading strategy that can best explain the sharp decline 

in the price of Goldman Sachs stocks.

Data extraction
The first step is to extract the model parameters as illustrated for the variation of the 
stock price between two consecutive trading sessions:

val path = "resources/data/chap10/GS.csv"
val src = DataSource(path, false, true, 1)
val price = src |> YahooFinancials.adjClose
val deltaPrice = price.drop(1)
                      .zip(price.dropRight(1))
                      .map(p => (1.0 – p._2/p._1))

The extraction of relative variation in volume and volatility is similar to the extraction 
of the relative variation of the stock price.

Initial population
The next step consists of generating the initial population of strategies that compete 
to become relevant to the decline of the price of stocks of Goldman Sachs. The factory 
is initialized with a set of signals:

val NUM_SIGNALS_PER_STRATEGY = 3
val factory = new StrategyFactory(NUM_SIGNALS_PER_STRATEGY)
factory += ("Delta_volume", 1.1, GREATER_THAN, deltaVolume, 
deltaPrice)
factory +=  ("Rel_volatility", 1.3, GREATER_THAN, relVolatility.
drop(1), deltaPrice)
…

The test code generates population by retrieving the pool of strategies:

val limit = factory.strategies.size // 1 <<4
val population = Population[Signal](limit, factory.strategies)
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The maximum size of the population (hard limit) is arbitrarily set as 16 times the 
number of the initial trading strategies (line 1).

At this stage, we need to instantiate a Discretization instance:

val R=1024.0
implicit val digitize = new Discretization(R)

Configuration
The four configuration parameters for the GA are the maximum number of 
reproduction cycles (MAX_CYCLES) allowed in the execution, the crossover (XOVER), 
the mutation ratio (MU), and the soft limit function (softLimit) to control the 
population growth:

val XOVER = 0.2; val MU = 0.6; val MAX_CYCLES = 250
val CUTOFF_SLOPE = -0.003; val CUTOFF_INTERCEPT = 1.003

val softLimit = (n: Int) => CUTOFF_SLOPE*n + CUTOFF_INTERCEPT
val config = GAConfig(XOVER, MUTATE, MAX_NUM_ITERS, softLimit)

The soft limit is implemented as a linearly decreasing function of the number of 
cycles (n) to retrain the growth of the population as the execution of the genetic 
algorithm progresses.

GA instantiation
Let's implement the chromosome scoring function using the formula introduced 
in the cost/unfitness section. The trading strategy/chromosome scoring function 
sums up the score for each gene and updates it:

val scoring = (chr: Chromosome[Signal]) =>  {
  val signals: List[Gene] = chr.code
  chr.unfitness = signals.foldLeft(0.0)((s, x) => s + x.score)
}

The configuration config and the scoring function, scoring, are all you need to 
create and execute the solver gaSolver:

val gaSolver = GASolver[Signal](config, scoring)
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GA execution
The execution of the genetic algorithm transforms an initial population to a very 
small group of the NFITS fittest trading strategies:

val NFITS = 2
val best = gaSolver |> population
best.fittest(NFITS)
    .getOrElse(ArrayBuffer.empty)
    .foreach(ch => Display.show(s"Best: ${ch.toString(" ")}", logger))
   …

Tests
The cost function C and the unfitness score of each trading strategy are weighted for 
the rate of decline of the price of the Goldman Sachs stock. Let's run two tests:

•	 Evaluation of the genetic algorithm with an unweighted score function
•	 Evaluation of the configuration of the genetic algorithm with the  

weighted score

The unweighted score
The test uses three different sets of crossover and mutation ratios: (0.6, 0.2), (0.3, 0.1), 
and (0.2, 0.6). The best trading strategy for each scenario are as follows:

•	 0.6-0.2: For this, Delta_volume > 1.10, Rel_close-Open > 0.75, and  
Rel_volatility > 0.97 with average chromosome unfitness = 0.025

•	 0.3-0.1: For this, Delta_volatility > 0.9, Rel_close-Open < 0.8, and  
Rel_volatility > 1.77 with unfitness = 0.100

•	 0.2-0.6: For this, Delta_volatility > 0.9 Delta_volume > 33.09, and  
Rel_volatility > 1.09 with unfitness = 0.099

The fittest trading strategy for each case does not differ much from the initial 
population for one or several of the following reasons:

•	 The initial guess for the trading signals was good
•	 The size of the initial population is too small to generate genetic diversity
•	 The test does not take into account the rate of decline of the stock price
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Let's examine the behavior of the genetic algorithm during execution. We are 
particularly interested in the convergence of the average chromosome unfitness 
score. The average chromosome unfitness is the ratio of the total unfitness score for 
the population over the size of the population: Have a look at the following graph:

The GA converges quite quickly and then stabilizes. The size of the population 
increases through crossover and mutation operations until it reaches the maximum 
of 256 trading strategies. The soft limit or constraint on the population size kicks in 
after 23 trading cycles. The test is run again with a different values of crossover and 
mutation ratio, as shown in the following graph:

The profile of the execution of the genetic algorithm is not overly affected by the 
different values of crossover and mutation ratios. The chromosome unfitness score 
for the high crossover ratio, 0.6, oscillates as the execution progresses. In some cases, 
the unfitness score between chromosomes is so small that the GA recycles the same 
few trading strategies.
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The quick decline in the unfitness of the chromosomes is consistent with the fact that 
some of the fittest strategies were part of the initial population. It should, however, 
raise some concerns that the GA locked on a local minimum early on.

The weighted score
The execution of a test that is similar to the previous one with the weighted unfitness 
scoring formula produces some interesting results, as shown in the following graph:

The profile for the size of the population is similar to the test using unweighted 
unfitness. However, the average chromosome unfitness does not stabilize as the 
optimization goes on until the size of the population is reduced by the soft limit 
function. This phenomenon is confirmed by running the test using different 
configurations, as shown in the following graph:
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The weighting function adds the rate of decline of the stock price into the scoring 
of the unfitness. The formula to compute the cost/unfitness of a trading strategy is 
not a linear function; its complexity increases the odds of the genetic algorithm not 
converging properly, which is confirmed with extra runs with different values of the 
crossover and mutation ratios.

The possible solutions to the convergence problem are as follows:

•	 Make the weighting function additive (less complex)
•	 Increase the size and diversity of the initial population

Advantages and risks of genetic 
algorithms
It should be clear by now that genetic algorithms provide scientists with a powerful 
toolbox with which to optimize problems that:

•	 Are poorly understood.
•	 May have more than one good enough solutions.
•	 Have discrete, discontinuous, and non-differentiable functions.
•	 Can be easily integrated with the rules engine and knowledge bases (for 

example, learning classifiers systems).
•	 Do not require deep domain knowledge. The genetic algorithm generates 

new solution candidates through genetic operators. The initial population 
does not have to contain the fittest solution.

•	 Do not require knowledge of numerical methods such as the Newton-
Raphson, conjugate gradient, or BFGS as optimization techniques, which 
frighten those with little inclination for mathematics.

However, evolutionary computation is not suitable for problems for which:

•	 A fitness function cannot be clearly defined
•	 Finding the global minimum or maximum is essential to the problem
•	 The execution time has to be predictable
•	 The solution has to be provided in real time or pseudo-real time
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Summary
Are you hooked on evolutionary computation, genetic algorithms in particular, and 
their benefits, limitations as well as some of the common pitfalls? If the answer is 
yes, then you may find learning classifier systems, introduced in the next chapter, 
fascinating. This chapter dealt with the following topics:

•	 Key concepts in evolutionary computing
•	 The key components and operators of genetic operators
•	 The pitfalls in defining a fitness or unfitness score using a financial trading 

strategy as a backdrop
•	 The challenge of encoding predicates in the case of trading strategies
•	 Advantages and risks of genetic algorithms
•	 The process for building a genetic algorithm forecasting tool from the  

bottom up

The genetic algorithm is an important element of a special class of reinforcement 
learning introduced in the Learning classifier systems section of the next chapter.



Reinforcement Learning
This chapter presents the concept of reinforcement learning, which is widely 
used in gaming and robotics. The second part of this chapter is dedicated to 
learning classifier systems, which combine reinforcement learning techniques with 
evolutionary computing introduced in the previous chapter. Learning classifiers 
are an interesting breed of algorithms that are not commonly included in literature 
dedicated to machine learning. I highly recommend you to read the seminal book on 
reinforcement learning by R. Sutton and A. Barto [11:1] if you are interested to know 
about the origin, purpose, and scientific foundation of reinforcement learning.

In this chapter, you will learn the following:

•	 Basic concepts behind reinforcement learning
•	 Detailed implementation of the Q-learning algorithm
•	 A simple approach to manage and balance an investment portfolio using 

reinforcement learning
•	 An introduction to learning classifier systems
•	 A simple implementation of extended learning classifiers

The section on learning classifier systems (LCS) is mainly informative and does not 
include a test case.

Introduction
The need of an alternative to traditional learning techniques arose with the design of 
the first autonomous systems.
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The problem
Autonomous systems are semi-independent systems that perform tasks with a high 
degree of autonomy. Autonomous systems touch every facet of our life, from robots 
and self-driving cars to drones. Autonomous devices react to the environment in 
which they operate. The reaction or action requires the knowledge of not only the 
current state of the environment but also the previous state(s).

Autonomous systems have specific characteristics that challenge traditional 
methodologies of machine learning, as listed here:

•	 Autonomous systems have poorly defined domain knowledge because of the 
sheer number of possible combinations of states.

•	 Traditional non-sequential supervised learning is not a practical option 
because of the following:

°° Training consumes significant computational resources, which are 
not always available on small autonomous devices

°° Some learning algorithms are not suitable for real-time prediction
°° The models do not capture the sequential nature of the data feed

•	 Sequential data models such as hidden Markov models require training 
sets to compute the emission and state transition matrices (as explained 
in the The hidden Markov model (HMM) section in Chapter 7, Sequential Data 
Models), which are not always available. However, a reinforcement learning 
algorithm benefits from a hidden Markov model in case some of the states 
are unknown. These algorithms are known as behavioral hidden Markov 
models [11:2].

•	 Genetic algorithms are an option if the search space can be constrained 
heuristically. However, genetic algorithms have unpredictable response  
time, which makes them impractical for real-time processing.

A solution – Q-learning
Reinforcement learning is an algorithmic approach to understanding and ultimately 
automating goal-based decision-making. Reinforcement learning is also known 
as control learning. It differs from both supervised and unsupervised learning 
techniques from the knowledge acquisition standpoint: autonomous, automated 
systems or devices learn from direct, real-time interaction with their environment. 
There are numerous practical applications of reinforcement learning from robotics, 
navigation agents, drones, adaptive process control, game playing, and online 
learning, to schedule and routing problems.
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Terminology
Reinforcement learning introduces a new terminology as listed here, quite different 
from that of older machine learning techniques:

•	 Environment: The environment is any system that has states and 
mechanisms to transition between states. For example, the environment  
for a robot is the landscape or facility it operates in.

•	 Agent: The agent is an automated system that interacts with the environment.
•	 State: The state of the environment or system is the set of variables or 

features that fully describe the environment.
•	 Goal or absorbing state or terminal state: A goal state is the state that 

provides a higher discounted cumulative rewards than any other state.  
It is a constraint on the training process that prevents the best policy from 
being dependent on the initial state.

•	 Action: An action defines the transition between states. The agent is 
responsible for performing or at least recommending an action. Upon 
execution of the action, the agent collects a reward or punishment from  
the environment.

•	 Policy: The policy defines the action to be selected and executed for any state 
of the environment.

•	 Best policy. This is the policy generated through training. It defines the 
model in Q-learning and is constantly updated with any new episode.

•	 Reward: A reward quantifies the positive or negative interaction of the  
agent with the environment. Rewards are essentially the training set for  
the learning engine.

•	 Episode: This defines the number of steps necessary to reach the goal state 
from an initial state. Episodes are also known as trials.

•	 Horizon: The horizon is the number of future steps or actions used in the 
maximization of the reward. The horizon can be infinite, in which case the 
future rewards are discounted in order for the value of the policy to converge.
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Concept
The key component in reinforcement learning is a decision-making agent that 
reacts to its environment by selecting and executing the best course of actions and 
being rewarded or penalized for it [11:3]. You can visualize these agents as robots 
navigating through an unfamiliar terrain or a maze. Robots use reinforcement 
learning as part of their reasoning process after all. The following diagram gives  
the overview architecture of the reinforcement learning agent:

2. Compute best

course of action(s)
Learning agent

1. Retrieve state

3. Perform action

4. Get reward

Environment

The agent collects the state of the environment, selects, and then executes the most 
appropriate action. The environment responds to the action by changing its state and 
rewarding or punishing the agent for the action.

The four steps of an episode or learning cycle are as follows:

1.	 The learning agent either retrieves or is notified of a new state of  
the environment.

2.	 The agent evaluates and selects the action that may provide the  
highest reward.

3.	 The agent executes the action.
4.	 The agent collects the reward or penalty and applies it to calibrate the 

learning algorithm.

Reinforcement versus supervision
The training process in reinforcement learning rewards features 
that maximize a value or return. Supervised learning rewards 
features that meet a predefined labeled value. Supervised learning 
can be regarded as forced learning.

The action of the agent modifies the state of the system, which in turn notifies the agent 
of the new operational condition. Although not every action will trigger a change in 
the state of the environment, the agent collects the reward or penalty nevertheless. At 
its core, the agent has to design and execute a sequence of actions to reach its goal. This 
sequence of actions is modeled using the ubiquitous Markov decision process (refer to 
the Markov decision processes section in Chapter 7, Sequential Data Models.)
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Dummy actions
It is important to design the agent so that actions may not 
automatically trigger a new state of the environment. It is easy to 
think about a scenario in which the agent triggers an action just to 
evaluate its reward without affecting the environment significantly. 
A good metaphor for such a scenario is the rollback of the action. 
However, not all environments support such a dummy action, and the 
agent may have to run Monte-Carlo simulations to try out an action.

Value of policy
Reinforcement learning is particularly suited to problems for which long-term 
rewards can be balanced against short-term rewards. A policy enforces the trade-off 
between short-term and long-term rewards. It guides the behavior of the agent by 
mapping the state of the environment to its actions. Each policy is evaluated through 
a variable known as the value of policy.

Intuitively, the value of a policy is the sum of all the rewards collected as a result 
of the sequence of actions taken by the agent. In practice, an action over the policy 
farther in the future obviously has a lesser impact than the next action from state St 
to state St+1. In other words, the impact of future actions on the current state has to be 
discounted by a factor, known as the discount coefficient for future rewards < 1.

State transition matrix
The state transition matrix has have been introduced 
in the The hidden Markov model section in Chapter 7, 
Sequential Data Models.

The optimum policy, π *, is the agent's sequence of actions that maximizes the future 
reward discounted to the current time.

The following table introduces the mathematical notation of each component of 
reinforcement learning:

Notation Description
S = {si} States of the environment
A = {ai} Actions on the environment
Πt = p(at|st) Policy (or strategy) of the agent
Vπ(st) Value of the policy at the state
pt =p(st+1|st,at) State transition probabilities from state st to state st+1
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Notation Description
rt= p(rt+1|st,st+1,at) Reward of an action at for a state st

Rt Expected discounted long term return
γ Coefficient to discount the future rewards

The purpose is to compute the maximum expected reward, Rt, from any starting 
state, sk, as the sum of all discounted rewards to reach the current state, st. The value 
Vπ  of a policy π  at state st is the maximum expected reward Rt given the state st.

The value of a policy π at state st with reward rj in 
previous state sj:

( ) { }

1
0

| s

k
t t k

k

t t t

R r

V s E Rπ

γ
+∞

+ +
=

=

=

∑

Bellman optimality equations
The problem of finding the optimal policies is indeed a nonlinear optimization 
problem whose solution is iterative (dynamic programming). The expression of 
the value function Vπ  of a policy π  can be formulated using the Markovian state 
transition probabilities pt.

Value of state st using the transition probability
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V*(st) is the optimal value of state st across all the policies. The equations are known 
as the Bellman optimality equations.

The curse of dimensionality
The number of states for a high-dimension problem (large-feature  
vector) becomes quickly insolvable. A workaround is to approximate 
the value function and reduce the number of states by sampling. The 
application test case introduces a very simple approximation function.

If the environment model, state, action, and rewards, as well as transition between 
states, are completely defined, the reinforcement learning technique is known as 
model-based learning. In this case, there is no need to explore a new sequence of 
actions or state transitions. Model-based learning is similar to playing a board game 
in which all combinations of steps necessary to win are completely known.

However, most practical applications using sequential data do not have a complete, 
definitive model. Learning techniques that do not depend on a fully defined and 
available model are known as model-free techniques. These techniques require 
exploration to find the best policy for any given state. The remaining sections in this 
chapter deal with model-free learning techniques, and more specifically the temporal 
difference algorithm.

Temporal difference for model-free learning
Temporal difference is a model-free learning technique that samples the 
environment. It is a commonly used approach to solve the Bellman equations 
iteratively. The absence of a model requires a discovery or exploration of the 
environment. The simplest form of exploration is to use the value of the next state 
and the reward defined from the action to update the value of the current state, as 
described in the following diagram:

Action

AdjustV*(s )t

V(s )t
Action

V(s )t+1 V(s )t+2
t+1ata

Illustration of the temporal difference algorithm
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The iterative feedback loop used to adjust the value action on the state plays a role 
similar to back propagation of errors in artificial neural networks or minimization of 
the loss function in supervised learning. The adjustment algorithm has to:

•	 Discount the estimate value of the next state using the discount rate γ
•	 Strike a balance between the impacts of the current state and the next state on 

updating the value at time t using the learning rate α

The iterative formulation of the first Bellman equation predicts Vπ (st), the value 
function of state st from the value function of the next state st+1. The difference 
between the predicted value and the actual value is known as the temporal 
difference error abbreviated as δ t.

Formula for tabular temporal difference:
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An alternative to evaluating a policy using the value of the state, Vπ (st), is to use the 
value of taking an action on a state st known as the value of action (or action-value) 

 (st, at).

Value of action at state st
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There are two methods to implement the temporal difference algorithm:

•	 On-policy: This is the value for the next best action that uses the policy
•	 Off-policy: This is the value for the next best action that does not use the policy

Let's consider the temporal difference algorithm using an off-policy method and its 
most commonly used implementation: Q-learning.

Action-value iterative update
Q-learning is a model-free learning technique using an off-policy method. It 
optimizes the action-selection policy by learning an action-value function. Like 
any machine learning technique that relies on convex optimization, the Q-learning 
algorithm iterates through actions and states using the quality function, as described 
in the following mathematical formulation.
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The algorithm predicts and discounts the optimum value of action, max{Qt}, for the 
current state st and action at on the environment to transition to state st+1.

Similar to genetic algorithms that reuse the population of chromosomes in the 
previous reproduction cycle to produce offspring, the Q-learning technique strikes  
a balance between the new value of the quality function Qt+1 and the old value Qt 
using the learning rate, α . Q-learning applies temporal difference techniques to  
the Bellman equation for an off-policy methodology.

Q-learning action-value updating formula:
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A value 1 for the learning rate α  discards the previous state, while a value 0 discards 
learning. A value 1 for the discount rate γ  uses long-term rewards only, while a 
value 0 uses the short-term reward only.

Q-learning estimates the cumulative reward discounted for future actions.

Q-learning as reinforcement learning
Q-learning qualifies as a reinforcement learning technique 
because it does not strictly require labeled data and training. 
Moreover, the Q-value does not have to be a continuous, 
differentiable function.

Let's apply our hard-earned knowledge of reinforcement learning to management 
and optimization of a portfolio of exchange-traded funds.

Implementation
Let us implement the Q-learning algorithm in Scala.

Software design
The key components of the implementation of the Q-learning algorithm are  
as follows:

•	 The QLearning class implements training and prediction methods. It  
defines a data transformation by implementing the PipeOperator trait.  
The constructor has three arguments: a configuration of type QLConfig,  
a search space of type QLSpace, and a mutable policy of type QLPolicy.
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•	 The QLSpace class has two components: a sequence of states of type QLState 
and the ID of one or more goal states within the sequence.

•	 A state, QLState, contains a sequence of QLAction instances used in its 
transition to another state.

•	 The model of type QLModel is generated through training. It contains the best 
policy and the accuracy for a model.

The following diagram shows the flow of the Q-learning algorithm:
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States and actions
The QLAction class specifies the transition of one state with ID from to another state 
with ID to, as shown here:

class QLAction[T <% Double](val from: Int, val to: Int)

Actions have a Q value (or action-value), a reward, and a probability. The 
implementation defines these three values in three separate matrices: Q for  
the action values, R for rewards, and P for probabilities, in order to stay  
consistent with the mathematical formulation.

A state of type QLState is fully defined by its ID, the list of actions to transition 
to some other states, and a property prop of parameterized type, as shown in the 
following code:

class QLState[T](val id: Int, val actions: List[QLAction[T]=List.
empty, val prop: T])
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The state might not have any actions. This is usually the case of the goal or absorbing 
state. In this case, the list is empty. The parameterized prop property is a placeholder 
for any information, heuristic about the state, or any action performed by the state.

The next step consists of creating the graph or search space.

Search space
The search space is the container responsible for any sequence of states. The QLSpace 
class takes the following parameters:

•	 The sequence of all the possible states
•	 The ID of one or several states that have been selected as goals

Why multiple goals?
There is absolutely no requirement that a state space 
must have a single goal. You can describe a solution to a 
problem as reaching a threshold or meeting one of several 
conditions. Each condition can be defined as a state goal.

The QLSpace class can be implemented as follows:

class QLSpace[T](states: Seq[QLState[T]], goals: Array[Int]) {
   val statesMap = states.map(st => (st.id, st)).toMap //1
   val goalStates = new HashSet[Int]() ++ goals //2
  
   def maxQ(state: QLState[T], policy: QLPolicy[T]): Double //3
   def init(r: Random) = states(r.nextInt(states.size-1)) //4
   def nextStates(st: QLState[T]): List[QLState[T]] //5
   …
}

The instantiation of the QLSpace class generates a map, statesMap, to retrieve the 
state using its id (line 1) and the set of goals, goalStates (line 2). Furthermore, 
the maxQ method computes the maximum action-value, maxQ, for a state given a 
policy (line 3), the init method selects an initial state for training episodes (line 4), 
and finally, the nextStates method retrieves the list of states resulting from the 
execution of all the actions associated to the st state (line 5).
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The search space is actually created by the instance factory defined in the QLSpace 
companion object, as shown here:

def apply[T](numStates: Int, goals: Array[Int], features: Set[T], 
neighbors: (Int, Int) => List[Int]): QLSpace[T] = {
  val states = features
               .zipWithIndex
               .map(x => {
                  val actions = neighbors(x._2, numStates)
                                .map(j => QLAction[T](x._2,j))
                                .filter(x._2 != _.to)
                   QLState[T](x._2, actions, x._1
               })
  new QLSpace[T](states.toArray, goals)
}

The apply method creates a list of states using the features set as input. Each 
state creates its list of actions. The user-defined function, neighbors, constrains 
the number of actions assigned to each state. The test case describes a very simple 
implementation of the neighbors function, which is defined in the configuration.

Policy and action-value
Each action has an action-value, a reward, and a potentially probability. The 
probability variable is introduced to model simply the hindrance or adverse 
condition for an action to be executed. If the action does not have any external 
constraint, the probability is 1. If the action is not allowed, the probability is 0.

Dissociating policy from states
The action and states are the edges and vertices of the search space 
or search graph. The policy defined by the action-value, rewards, 
and probabilities is completely dissociated from the graph. The 
Q-learning algorithm initializes the reward matrix and updates the 
action-value matrix independently of the structure of the graph.

The QLData class is a container for three variables: reward, probability, and value 
for the Q-value, as shown here:

class QLData(var reward: Double = 1.0, var probability: Double = 1.0 
var value: Double = 0.0) { 
   def estimate: Double = value*probability
}
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The estimate method adjusts the Q-value, value, with the probability to reflect any 
external condition that can impede the action.

Mutable data
You might wonder why the QLData class uses variables instead of 
values as recommended by the best Scala coding practices [11:4]. 
An instance of an immutable class would be created for each action 
or state transition. The training of the Q-learning model entails 
iterating across several episodes, each episode being defined as 
a multiple iteration. For instance, the training of a model with 
400 states for 10 episodes of 100 iterations can potentially create 
160 million instances of QLData. Although not quite elegant, 
mutability reduces the load on the JVM garbage collector.

Next, let us create a simple schema or class, QLInput, to initialize the reward and 
probability associated with each action as follows:

class QLInput(val from: Int, val to: Int, val reward: Double =1.0, val 
probability: Double =1.0)

The first two arguments are the identifiers for the source state, from, and target state, 
to, for this specific action. The last two arguments are the reward, collected at the 
completion of the action, and its probability. There is no need to provide an entire 
matrix. Actions have a reward of 1 and a probability of 1 by default. You only need 
to create an input for actions that have either a higher reward or a lower probability.

The number of states and a sequence of input define the policy of type QLPolicy. It 
is merely a data container, as shown here:

class QLPolicy[T](numStates: Int, input: Array[QLInput]) {
  val qlData = {
     val data = Array.tabulate(numStates)(v => 
                           Array.fill(numStates)(new QLData[T]))
     input.foreach(i => {
        data(i.from)(i.to).reward = i.reward //1
        data(i.from)(i.to).probability = i.probability //2
     })
     data
  }
  …
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The constructor initializes the qlData matrix of type QLData with the input data, 
reward (line 1) and probability (line 2). The QLPolicy class defines the methods of 
the element in the reward (line 3), probability, and Q-learning action-value (line 4) 
matrices as follows:

def R(from: Int, to: Int): Double = qlData(from)(to).reward  //3
def Q(from: Int, to: Int): Double = qlData(from)(to).value  //4

The Q-learning training
The QLearning class encapsulates the Q-learning algorithm, and more specifically 
the action-value updating equation. It implements PipeOperator to the prediction 
used as a transformation between states, as shown here:

class QLearning[T](config: QLConfig, qlSpace: QLSpace[T],qlPolicy: 
QLPolicy[T])  extends PipeOperator[QLState[T], QLState[T]]

The constructor takes the following parameters:

•	 Configuration of the algorithm, config
•	 Search space, qlSpace
•	 Policy, qlPolicy

The model is generated or trained during the instantiation of the class (refer to the 
Design template for classifier section in Appendix A, Basic Concepts.)

The configuration defines the learning rate, alpha; the discount rate, gamma the 
maximum number of states (or length) of an episode, episodeLength; the number 
of episodes used in training, numEpisodes; the minimum coverage of the state 
transition/actions during training to select the best policy, minCoverage; and the 
search constraint function, neighbors, as shown here:

class QLConfig(val alpha: Double, val gamma: Double, val 
episodeLength: Int, val numEpisodes: Int, val minCoverage: Double, val 
neighbors: (Int, Int) => List[Int]) extends Config

Let us look at the computation of the best policy during training. First, we need to 
define a model class, QLModel, with the best policy and its state-transition coverage 
of training as parameters:

class QLModel[T](val bestPolicy: QLPolicy[T], val coverage:Double)
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The creation of model consists of executing multiple episodes to extract the best policy. 
Each episode starts with a randomly selected state, as shown in the following code:

val model: Option[QLModel[T]] = {
  val r = new Random(System.currentTimeMillis) //1
  val rg = Range(0, config.numEpisodes)
  val cnt =rg.foldLeft(0)((s, _) => s+(if(train(r)) 1 else 0))//2
  
  val accuracy = cnt.toDouble/config.numEpisodes
  if( accuracy > config.minCoverage )
     Some(new QLModel[T](qlPolicy, coverage)) //3
  else None
}

The model initialization code creates a random number generator (line 1), and 
iterates the generation of the best policy starting from a randomly selected state 
config.numEpisodes times (line 2). The transition coverage is computed as the 
percentage of times the search ends with the goal state (line 3). The initialization 
succeeds only if the accuracy exceeds a threshold value, config.minCoverage, 
specified in the configuration.

Quality of the model
The implementation uses the coverage to measure the quality of 
the model or best policy. The F1 measure (refer to the Assessing 
a model section in Chapter 2, Hello World!), is not appropriate 
because there are no false positives.

The train method does the heavy lifting at each episode. It triggers the search by 
selecting the initial state using a random generator r with a new seed, as shown in 
the following code:

def train(r: Random): Boolean =  {
   r.setSeed(System.currentTimeMillis*Random.nextInt)
   qlSpace.isGoal(search((qlSpace.init(r), 0))._1)
}

The implementation of search for the goal state(s) from any random states is a 
textbook implementation of the Scala tail recursion.
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Tail recursion to the rescue
Tail recursion is a very effective construct to apply an operation to every item of a 
collection [11:5]. It optimizes the management of the function stack frame during 
the recursion. The annotation triggers a validation of the condition necessary for the 
compiler to optimize the function calls, as shown here:

@scala.annotation.tailrec
def search(st: (QLState[T], Int)): (QLState[T], Int) = {
  val states = qlSpace.nextStates(st._1) //1

  if( states.isEmpty || st._2 >= config.episodeLength ) st //2
  else {
    val state = states.maxBy(s => qlPolicy.R(st._1.id,s.id ))//3
 
    if( qlSpace.isGoal(state) ) (state, st._2) //4
    else {
      val r = qlPolicy.R(st._1.id, state.id)
      val q = qlPolicy.Q(st._1.id, state)  //5
      val nq = q + config.alpha*(r + config.gamma * 
                           qlSpace.maxQ(state, qlPolicy) - q)//6
      qlPolicy.setQ(st._1.id, state.id, nq) //7
      search((state, st._2))
    }
  }
}

Let us dive into the implementation for the Q action-value updating equation. The 
recursion uses the tuple (state, iteration number in the episode) as argument. First, 
the recursion invokes the nextStates method of QLSpace to retrieve all the states 
associated with the current state, st, through its actions, as shown here:

def nextStates(st: QLState[T]): List[QLState[T]] = 
    st.actions.map(ac => statesMap.get(ac.to).get )

The search completes and returns the current state if either the length of the episode 
(maximum number of states visited) is reached or the goal is reached or there is no 
further state to transition to (line 2). Otherwise the recursion computes the state to 
which the transition generates the higher reward R from the current policy (line 3). 
The recursion returns the state with the highest reward if it is one of the goal states 
(line 4). The method retrieves the current q action value and r reward matrices from 
the policy, and then applies the equation to update the action-value (line 6). The 
method updates the action-value Q with the new value nq (line 7).
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The action-value updating equation requires the computation of the maximum 
action-value associated with the current state, which is performed by the maxQ 
method of the QLSpace class:

def maxQ(state: QLState[T], policy: QLPolicy[T]): Double = {
   val best = states.filter( _ != state)
                    .maxBy(st => policy.EQ(state.id, st.id))
   policy.EQ(state.id, best.id)
}

Reachable goal
The algorithm does not require the goal state to be reached for every 
episode. After all, there is no guarantee that the goal will be reached 
from any randomly selected state. It is a constraint on the algorithm 
to follow a positive gradient of the rewards when transitioning 
between states within an episode. The goal of the training is to 
compute the best possible policy or sequence of states from any given 
initial state. You are responsible for validating the model or best 
policy extracted from the training set, independent from the fact that 
the goal state is reached for every episode.

Prediction
The last functionality of the QLearning class is the prediction using the model 
created during training. The method predicts a state from an existing state.

def |> : PartialFunction[QLState[T], QLState[T]] = {
  case state: QLState[T] if(state != null && model != None)  
      => nextState(state, 0)._1
}

The data transformation |> computes the best outcome, nextState, given a state 
using another tail recursion, as follows:

@scala.annotation.tailrec
def nextState(st: (QLState[T], Int)): (QLState[T], Int) =  {
   val states = qlSpace.nextStates(st._1)
  
   if( states.isEmpty || st._2 >= config.episodeLength)  st
   else nextState( (states.maxBy(s =>
               model.get.bestPolicy.R(st._1.id, s.id)), st._2+1))
}
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The prediction ends when no more states are available or the maximum number of 
iterations within the episode is exceeded. You can define a more sophisticated exit 
condition. The challenge is that there is no explicit error or loss variable/function 
that can be used except the temporal difference error. The prediction returns either 
the best possible state, or None if the model cannot be created during training.

Option trading using Q-learning
The Q-learning algorithm is used in many financial and market trading applications 
[11:6]. Let us consider the problem of computing the best strategy to trade certain 
types of options given some market conditions and trading data.

The Chicago Board Options Exchange (CBOE) offers an excellent online tutorial 
on options [11:7]. An option is a contract giving the buyer the right but not the 
obligation to buy or sell an underlying asset at a specific price on or before a certain 
date (refer to the Options trading section under Finances 101 in Appendix A, Basic 
Concepts.) There are several option pricing models, the Black-Scholes stochastic 
partial differential equations being the most recognized [11:8].

The purpose of the exercise is to predict the price of an option on a security for N 
days in the future according to the current set of observed features derived from the 
time to expiration, price of the security, and volatility. Let's focus on the call options 
of a given security, IBM. The following chart plots the daily price of IBM stock and 
its derivative call option for May 2014 with a strike price of $190:

The price of an option depends on the following parameters:

•	 Time to expiration of the option (time decay)
•	 The price of the underlying security
•	 The volatility of returns of the underlying asset
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Pricing model usually does not take into account the variation in trading volume of 
the underlying security. So it would be quite interesting to include it in our model. 
Let us define the state of an option using the following four normalized features:

•	 Time decay: This is the time to expiration once normalized over [0, 1].
•	 Relative volatility: This is the relative variation of the price of the underlying 

security within a trading session. It is different from the more complex 
volatility of returns defined in the Black-Scholes model, for example.

•	 Volatility relative to volume: This is the relative volatility of the price of the 
security adjusted for its trading volume.

•	 Relative difference between the current price and strike price: This measures 
the ratio of the difference between price and strike price to the strike price.

The following graph shows the four normalized features for IBM option strategy:

The implementation of the option trading strategy using Q-learning consists of the 
following steps:

1.	 Describing the property of an option
2.	 Defining the function approximation
3.	 Specifying the constraints on the state transition

Option property
Let us select N =2 as the number of days in the future for our prediction. Any  
longer-term prediction is quite unreliable because it falls outside the constraint  
of the discrete Markov model. Therefore, the price of the option two days in the 
future is the value of the reward—profit or loss.
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The OptionProperty class encapsulates the four attributes of an option as follows:

class OptionProperty(timeToExp: Double, relVolatility: Double, 
volatilityByVol: Double, relPriceToStrike: Double) {
   val toArray = Array[Double](timeToExp, relVolatility, 
volatilityByVol, relPriceToStrike)
}

Modular design
The implementation avoids subclassing the QLState class to 
define the features of our option pricing model. The state of the 
option is a parameterized prop parameter for the state class.

Option model
The OptionModel class is a container and a factory for the properties of the option. 
It creates the list of option properties, propsList, by accessing the data source of the 
four features introduced earlier. It takes the following parameters:

•	 The symbol of the security.
•	 The strike price for the option, strikePrice.
•	 The source of data, src.
•	 The minimum time decay or time to expiration, minTDecay. Out-of-the-money 

options expire worthless and in-the-money options have very different price 
behavior as they get closer to the expiration date (refer to the Options trading 
section in Appendix A, Basic Concepts). Therefore, the last minTDecay trading 
sessions prior to the expiration date are not used in the training of the model.

•	 The number of steps (or buckets), nSteps, used in approximating the values 
of each feature. For instance, an approximation of four steps creates four 
buckets [0, 25], [25, 50], ]50, 75], and [75, 100].

The implementation of the OptionModel class is as follows:

class OptionModel(symbol: String, strikePrice: Double, src: 
DataSource, minExpT: Int, nSteps: Int) {

val propsList = {
  val volatility = normalize((src |> relVolatility).get.toArray
  val rVolByVol = normalize((src |> volatilityByVol).get.toArray
  val priceToStrike = normalize(price.map(p => 1.0-strikePrice/p)
   
  volatility.zipWithIndex  //1
            .foldLeft(List[OptionProperty]())((xs, e) => {
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      val normDecay = (e._2+minExpT).toDouble/(price.size+minExpT) //2
      new OptionProperty(normDecay, e._1, volByVol(e._2),priceToStrik
e(e._2)) :: xs
  }).drop(2).reverse
}

The factory uses the zipWithIndex Scala method to model the index of the trading 
sessions (line 1). All feature values are normalized over the interval [0, 1], including 
the time decay (or time to expiration) of the normDecay option (line 2).

Function approximation
The four properties of the option are continuous values, normalized as a probability 
[0, 1]. The states in the Q-learning algorithm are discrete and require a discretization 
or categorization known as a function approximation, although a function 
approximation scheme can be quite elaborate [11:9]. Let us settle for a simple linear 
categorization as illustrated in the following diagram:

Option property (2,0,1,0)

Normalized

value

Bucket

timeToEXP relVolatility volatilityByVol relPriceToStrike

1

0

The function approximation defines the number of states. In this example, a function 
approximation that converts a normalized value into three intervals or buckets 
generates 34 = 81 states or potentially 38-34 = 6480 actions! The maximum number 
of states for l buckets function approximation and n features is ln with a maximum 
number of l2n-ln actions.

Function approximation guidelines
The design of the function to approximate the state of options has to 
address the following two conflicting requirements:

•	 Accuracy demands a fine-grained approximation
•	 Limited computation resources restrict the number of states, 

and therefore, level of approximation
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The approximate method of the OptionModel class converts the normalized value of 
each option property of features into an array of bucket indices. It returns a map of 
profit and loss for each bucket keyed on the array of bucket indices, as shown in the 
following code:

def approximate(y: DblVector): Map[Array[Int], Double] = {
  val mapper = new HashMap[Int, Array[Int]]  //1

  val acc = new NumericAccumulator  //2
  propsList.map( _.toArray)
           .map( toArrayInt( _ ))  //3
           .map(ar => {
               val enc = encode(ar)  //4
               mapper.put(enc, ar)
               enc })
           .zip(y)  
           .foldLeft(acc)((acc,t) => {acc += (t._1,t._2);acc})//5
  acc.map(kv => (kv._1, kv._2._2/kv._2._1)) //6
     .map(kv => (mapper(kv._1), kv._2)).toMap
}

The method creates a mapper instance to index the array of buckets (line 1). An 
accumulator, acc, of type NumericAccumulator extends Map[Int, (Int, Double)] 
and computes the tuple (number of occurrences of features on each buckets, the sum 
of increase or decrease of the option price) (line 2). The toArrayInt method converts 
the value of each option property (timeToExp, relVolatility, and so on) into the 
index of the appropriate bucket (line 3). The array of indices is then encoded (line 
4) to generate the id or index of a state. The method updates the accumulator with 
the number of occurrences and the total profit and loss for a trading session for the 
option (line 5). It finally computes the reward on each action by averaging the profit 
and loss on each bucket (line 6).

def toArrayInt(feature: DblVector): Array[Int] = 
     feature.map(x => (nSteps*x).floor.toInt)

Constrained state-transition
Each state is potentially connected to any other state through actions. There are two 
methodologies to reduce search space or number of actions/transitions:

•	 Static constraint defines the actions/transition when the model is instantiated. 
The state transition map is fixed for the entire life cycle of the model.
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•	 Dynamic constraint relies on the probability of an action to prevent or hinder 
state transitions.

States

S1

Sn-1

States

Sn-1S0

S0

S1

Actions

The implementation of the static constraint avoids the unnecessary creation of a large 
number of QLAction object at the expense of the inability to modify the search space 
during training. The test case uses the static constraint as defined in the neighbors 
function passed as a parameter of the QLSpace class:

val RADIUS = 4
val neighbors = (idx: Int, numStates: Int) => {
        
 def getProximity(idx: Int, radius: Int): List[Int] = {
    val idx_max = if(idx + radius >= numStates) numStates-1 else idx+ 
radius
    val idx_min = if(idx < radius) 0 else idx - radius
    Range(idx_min, idx_max+1).filter( _ != idx)
      .foldLeft(List[Int]())((xs, n) => n :: xs)
  }
  getProximity(idx, RADIUS).toList
}

The neighbors function restrains the number of actions to up to RADIUS*2 states, 
depending on the ID, idx, of the state. The function is implemented as a closure: it 
requires the value numStates to be defined within the function or in its outer scope.

Putting it all together
The final piece of the puzzle is the code that configures and executes the Q-learning 
algorithm on one or several options on a security, IBM:

val stockPricePath = "resources/data/chap11/IBM.csv"
val optionPricePath = "resources/data/chap11/IBM_O.csv"
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val MIN_TIME_EXP = 6; val APPROX_STEP = 3; val NUM_FEATURES = 4
val ALPHA = 0.4; val DISCOUNT = 0.6; val NUM_EPISODES = 202520

val src = DataSource(stockPricePath, false, false, 1) //1
val ibmOption = new OptionModel("IBM", 190.0, src, MIN_TIME_EXP, 
APPROX_STEP) //2
 
DataSource(optionPricePath, false, false, 1) extract match  {
case Some(v) => initializeModel (ibmOption, v)
…
}

The client code instantiates the option model, ibmOption, for the IBM stock  
(line 1). It invokes the initializeModel method once the historical price of 
the option is downloaded through the appropriate data source (line 2). The 
initializeModel method does all the work as shown in the following code:

def initializeModel(ibmOption: OptionModel, oPrice: DblVector): 
QLearning[Array[Int]] {
   val fMap = ibmOption.approximate(oPrice) //3
   val input = new ArrayBuffer[QLInput]

   val profits = fMap.values.zipWithIndex
   profits.foreach(v1 => 
     profits.foreach( v2 => 
       input.append(new QLInput(v1._2, v2._2, v2._1-v1._1))))//4
      
   val goal = input.maxBy( _.reward).to
   val config = new QLConfig(ALPHA, DISCOUNT, EPISODE_LEN, NUM_
EPISODES, MIN_ACCURACY, getNeighbors)
   QLearning[Array[Int]](config, fMap , goal, input.toArray, fMap.
keySet)
}

The initializeModel method generates the approximation map, fMap (line 3), 
which contains the profit and loss for each state. Next, the method initializes the 
input to the policy by computing the reward as the difference of the profit/loss of 
the source v1 and the destination v2 of each action (line 4). The goal is initialized as 
the action with the highest reward (line 5). The last step is the instantiation of the 
QLearning class that executes the training.
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The anti-goal state
The goal state is the state with the highest assigned reward. 
It is a heuristic to reward a strategy for good performance. 
However, it is conceivable and possible to define an anti-goal 
state with the highest assigned penalty or the lowest assigned 
reward to guide the search away from some condition.

Evaluation
Besides the function approximation, the size of the training set has an impact on the 
number of states. A well-distributed or large training set provides at least one value for 
each bucket created by the approximation. In this case, the training set is quite small 
and only 34 out of 81 buckets have actual values. As result, the number of states is 34.

The initialization of the Q-learning model generates the following reward matrix:

The graph visualizes the distribution of the rewards computed from the profit and 
loss of the option. The xy plane represents the actions between states. The states' 
IDs are listed on x and y axes. The z-axis measures the actual value of the reward 
associated with each action.

The reward reflects the fluctuation in the price of the option. The price of an option 
has a higher volatility than the price of the underlying security.
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The xy reward matrix R is rather highly distributed. Therefore, we select a small 
value for the learning rate, 0.4, to reduce the impact of the previous state on the  
new state. The value for the discount rate, 0.6, accommodates the fact that the 
number of states is limited. There is no reason to compute the future discounted 
reward using a long sequence of states. The training of the policies generates the 
following action-value matrix Q of 34 states by 34 states after the first episode:

The distribution of the action-values between states at the end of the first episode 
reflects the distribution of the reward across state-to-state action. The first episode 
consists of a sequence of nine states from an initial randomly selected state to  
the goal state. The action-value map is compared with the map generated after  
20 episodes in the following graph:
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The action-value map at the end of the last episode shows some clear patterns. Most 
of the rewarding actions transition from a large number of states (X-axis) to a smaller 
number of states (Y-axis). The chart illustrates the following issues with the small 
training sample:

•	 The small size of the training set forces us to use an approximate 
representation of each feature. The purpose is to increase the odds that most 
buckets have at least one data point.

•	 However, a loose function approximation tends to group quite different 
states into the same bucket.

•	 The bucket with a very low number can potentially mischaracterize one 
property or feature of a state.

Pros and cons of reinforcement learning
Reinforcement learning algorithms are ideal for the following problems:

•	 Online learning
•	 The training data is small or non-existent
•	 A model is non-existent or poorly defined
•	 Computation resources are limited

However, these techniques perform poorly in the following cases:

•	 The search space (number of possible actions) is large causing the maintenance 
of the states, action graph, and rewards matrix become challenging

•	 The execution is not always predictable in terms of scalability and performance

Learning classifier systems
J. Holland introduced the concept of learning classifier systems (LCS) more than 30 
years ago as an extension to evolutionary computing [11:10]:

Learning classifier systems are a kind of rule-based system with general 
mechanisms for processing rules in parallel, for adaptive generation of new rules, 
and for testing the effectiveness of new rules.

However, the concept started to get the attention of computer scientists only a few 
years ago, with the introduction of several variants of the original concept, including 
extended learning classifier systems (XCS). Learning classifier systems are interesting 
because they combine rules, reinforcement learning, and genetic algorithms.
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Disclaimer
The implementation of the extended learning classifier is 
presented for informational purposes only. Validating XCS 
against a known and labeled population of rules is a very 
significant endeavor. The source code snippet is presented only 
to illustrate the different components of the XCS algorithm.

Introduction to LCS
Learning classifier systems merge the concepts of reinforcement learning, rule-based 
policies, and evolutionary computing. This unique class of learning algorithms 
represents the merger of the following research fields [11:11]:

•	 Reinforcement learning
•	 Genetic algorithms and evolutionary computing
•	 Supervised learning
•	 Rule-based knowledge encoding

Rules

Evolutionary

Computing

Reinforcement

Learning

Supervised

Learning

Machine Learning

Learning Classifier Systems

Diagram of the scientific disciplines required for learning classifier systems

Learning classifier systems are an example of complex adaptive systems. A learning 
classifier system has the following four components:

•	 A population of classifiers or rules that evolves over time. In some cases, 
a domain expert creates a primitive set of rules (core knowledge). In other 
cases, the rules are randomly generated prior to the execution of the learning 
classifier system.
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•	 A genetic algorithm-based discovery engine that generates new classifiers 
or rules from the existing population. This component is also known as the 
rules discovery module. The rules rely on the same pattern of evolution 
of organisms introduced in the previous chapter. The rules are encoded as 
strings or bit strings to represent a condition (predicate) and action.

•	 A performance or evaluation function that measures the positive or negative 
impact of the actions from the fittest classifiers or policies.

•	 A reinforcement learning component that rewards or punishes the classifiers 
that contribute to the action, as seen in the previous section. The rules that 
contribute to an action that improves the performance of the system are 
rewarded, while those that degrade the performance of the system are 
punished. This component is also known as the credit assignment module.

Why LCS
Learning classifier systems are particularly appropriate to problems in which the 
environment is constantly changing, and are the combination of learning strategy 
and an evolutionary approach to build and maintain a knowledge base [11:12].

Supervised learning methods alone can be effective on large datasets, but they 
require either a significant amount of labeled data or a reduced set of features  
to avoid overfitting. Such constraints may not be practical in the case of  
ever-changing environments.

The last 20 years have seen the introduction of many variants of learning classifier 
systems that belong to the following two categories:

•	 Systems for which accuracy is computed from the correct predictions and 
that apply the discovery to a subset of those correct classes. They incorporate 
elements of supervised learning to constrain the population of classifiers. 
These systems are known to follow the Pittsburgh approach.

•	 Systems that explore all the classifiers and apply rule accuracy in the genetic 
selection of the rules. Each individual classifier is a rule. These systems are 
known to follow the Michigan approach.

The rest of this section is dedicated to the second type of learning classifiers—more 
specifically extended learning classifier systems. In a context of LCS, the term 
classifier refers to the predicate or rule generated by the system. From this point on, 
the term "rule" replaces the term classifier to avoid confusion with the more common 
definition of classification.
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Terminology
Each domain of research has its own terminology and LCS is no exception.  
The terminology of LCS consists of the following terms:

•	 Environment: Environment variables in the context of reinforcement learning.
•	 Agent: An agent used in reinforcement learning.
•	 Predicate: A clause or fact using the format: variable- operator- value,  

and usually implemented as (operator, variable value); for example, 
Temperature- exceeds - 87F or ('Temperature', 87F), Hard drive – failed or  
('Status hard drive', FAILED), and so on. It is encoded as a gene in order  
to be processed by the genetic algorithm.

•	 Compound predicate: Composition of several predicates and Boolean logic 
operators, which is usually implemented as a logical tree (for example, 
((predicate1 AND predicate2) OR predicate3 is implemented as OR (AND 
(predicated 1, predicate 2), predicate3). It uses a chromosome representation.

•	 Action: A mechanism that alters the environment by modifying the value  
of one or several of its parameters using a format (type of action, target),  
for example, change thermostat settings, replace hard drive, and so on.

•	 Rule: A formal first-order logic formula using the format IF compound 
predicate THEN sequence of action, for example, IF gold price < $1140 THEN  
sell stock of oil and gas producing companies.

•	 Classifier: A rule in the context of an LCS.
•	 Rule fitness or score: This is identical to the definition of the fitness or score 

in the genetic algorithm. In the context of an LCS, it is the probability of a 
rule to be invoked and fired in response of change in environment.

•	 Sensors: Environment variables monitored by agent, for example, 
temperature and hard drive status.

•	 Input data stream: Flow of data generated by sensors. It is usually associated 
with online training.

•	 Rule matching: Mechanism to match a predicate or compound predicate 
with a sensor.

•	 Covering: The process of creating new rules to match a new condition 
(sensor) in the environment. It generates the rules by either using a random 
generator or mutating existing rules.

•	 Predictor: An algorithm to find the action with the maximum number of 
occurrences within a set of matching rules.
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Extended learning classifier systems (XCS)
Similar to reinforcement learning, the XCS algorithm has an exploration phase and 
an exploitation phase. The exploitation process consists of leveraging the existing 
rules to influence the target environment in a profitable or rewarding manner.
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Exploitation component of the XCS algorithm

The following list describes each numbered block:

•	 1: Sensors acquire new data or events from the system.
•	 2: Rules for which the condition matches the input event are searched and 

extracted from the current population.
•	 3: A new rule is created if no match is found in the existing population.  

This process is known as covering.
•	 4: The chosen rules are ranked by their fitness values, and the rules with  

the highest predicted outcome are used to trigger the action.

The purpose of exploration components is to increase the rule base as a population  
of the chromosomes that encode these rules.
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The following list describes each numbered block of the block diagram:

•	 5: Once the action is performed, the system rewards the rules for which the 
action has been executed. The reinforcement learning module assigns credit 
to these rules.

•	 6: Rewards are used to update the rule fitness, applying evolutionary 
constraints to the existing population.

•	 7: The genetic algorithm updates the existing population of classifiers/rules 
using operators such as crossover and mutation.

XCS components
This section describes the key classes of the XCS. The implementation leverages  
the existing design of the genetic algorithm and the reinforcement learning.  
It is easier to understand the inner workings of the XCS algorithm with a  
concrete application.

Application to portfolio management
Portfolio management and trading have benefited from the application of extended 
learning classifiers [11:13]. The use case is the management of a portfolio of 
exchange-traded funds (ETFs) in an ever-changing financial environment. Contrary 
to stocks, exchange traded funds are representative of an industry-specific group of 
stocks or the financial market at large. Therefore, the price of these ETFs is affected 
by the following macroeconomic changes:

•	 Gross domestic product
•	 Inflation
•	 Geopolitical events
•	 Interest rates

Let's select the value of the 10-year Treasury yield as a proxy for the macroeconomic 
conditions, for the sake of simplicity.
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The portfolio has to be constantly adjusted in response to any specific change in the 
environment or market condition that affects the total value of the portfolio, and can 
be done referring to the following table:

XCS component Portfolio management
Environment Portfolio of securities defined by its composition, total value, 

and the yield of the 10-year Treasury bond
Action Change in the composition of the portfolio
Reward Profit and loss of the total value of the portfolio
Input data stream Feed of stock and bond price quotation
Sensor Trading information regarding securities in the portfolio such 

as price, volume, volatility, or yield, and the yield on the-10 
year Treasury bond

Predicate Change in composition of the portfolio
Action Rebalancing a portfolio by buying and selling securities
Rule Association of trading data with the rebalancing of a portfolio

The first step is to create an initial set of rules regarding the portfolio. This initial set 
can be created randomly, much like the initial population of a genetic algorithm, or 
be defined by a domain expert.

The XCS initial population
Rules or classifiers are defined and/or refined through evolution. 
Therefore, there is no absolute requirement for the domain expert 
to set up a comprehensive knowledge base. In fact, rules can be 
randomly generated at the start of the training phase. However, 
seeding the XCS initial population with a few relevant rules 
improves the odds of having the algorithm converge quickly.

The reader is invited to initialize the population of rules with as many relevant  
and financially sound trading rules as possible. Over time, the execution of the  
XCS algorithm will confirm whether or not the initial rules are indeed appropriate. 
The following diagram describes the application of the XCS algorithm to the 
composition of a portfolio of ETFs, such as VWO, TLT, IWC, and so on, with the 
following components:

•	 The population of trading rules
•	 An algorithm to match rules and compute the prediction
•	 An algorithm to extract the actions sets
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•	 The Q-learning module to assign credit or reward to the selected rules
•	 The genetic algorithm to evolve the population of rules

Overview of XCS algorithm to optimize portfolio allocation

The agent responds to the change in the allocation of ETFs in the portfolio by 
matching one of the existing rules.

Let's build the XCS agent from the ground.

XCS core data
There are three types of data that are manipulated by the XCS agent:

•	 Signal: This is the trading signal
•	 XcsAction: This is the action on the environment
•	 XcsSensor: This is the sensor or data from the environment

The XcsAction class was introduced for the evaluation of the genetic algorithm 
in the Trading signals section in Chapter 10, Genetic Algorithms. The agent creates, 
modifies, and deletes actions. It makes sense to define these actions as mutable  
genes, as follows:

class XcsAction(val sensorid: String, val target: Double)(implicit val 
discr: Discretization) extends Gene(sensorid, target, EQUAL)
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The XcsAction class has the identifier of the sensor, sensorId, and the target value 
as parameters. For example, the action to increase the number of shares of ETF, VWO 
in the portfolio to 80 is defines as follows:

Val vwoTo80 = new XcsAction("VWO", 80.0)

The only type of action allowed in this scheme is setting a value using the EQUAL 
operator. You can create actions that support other operators, such as += used to 
increase an existing value. These operators need to implement the operator trait, 
explained in the Trading operators section in Chapter 10, Genetic Algorithms.

A discretization instance has to be implicitly defined in order to encode the  
target value.

Finally, the XcsSensor class encapsulates the sensorId identifier for the variable 
and value of the sensor, as shown here:

case class XcsSensor(val sensorId: String, val value: Double)
val new10ytb = new XcsSensor("10yTBYield", 2.76)

Setters and getters
In this simplistic scenario, the sensors retrieve a new value 
from an environment variable. The action sets a new value to 
an environment variable. You can think of a sensor as a get 
method of an environment class and an action as a set method 
with variable/sensor ID and value as arguments.

XCS rules
The next step consists of defining a rule as a pair of two genes: a signal and an action, 
as shown in the following code:

class XcsRule(val signal: Signal, val action: XcsAction)

The rule: r1: IF(yield 10-year TB > 2.84%) THEN reduce VWO shares to 240 is 
implemented as follows:

val signal = new Signal("10ytb", 2.84, GREATER_THAN)
val action = new XcsAction("vwo", 240)
val r1 = new XcsRule(signal, action)
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The agent encodes the rule as a chromosome using 2 bits to represent the operator 
and 32 bits for values, as shown in the following diagram:

10010...1010 01 001110...0110

0 32

>

34 65

2.85 vwo 240rl

In this implementation, there is no need to encode the type of action as the agent uses 
only one type of action—set. A complex action requires encoding of its type.

Knowledge encoding
This example uses very simple rules with a single predicate 
as the condition. Real-world domain knowledge is usually 
encoded using complex rules with multiple clauses. It is 
highly recommended that you break down complex rules 
into multiple basic rules of classifiers.

Matching a rule to a new sensor consists of matching the sensor to the signal. 
The algorithm matches the new new10ytb sensor against the signal in the current 
population of s10ytb1 and s10ytb2 rules that uses the same sensor or variable 
10ytb, as follows:

val new10ytb = new XcsSensor("10ytb", 2.76)

val s10ytb1 = Signal("10ytb", 2.5, GREATER_THAN)
val s10ytb2 = Signal("10ytb", 2.2, LESS_THAN)

val r23: XcsRule(s10ytb1, act12)
val r34: XcsRule(s10ytb2, act17)
…

In this case, the agent selects the rule r23 but not r34 in the existing population. The 
agent then adds the act12 action to the list of possible actions. The agent lists all the 
rules that match the sensor: r23, r11, and r46, as shown in the following code:

val r23: XcsRule(s10yTB1, act12)
val r11: XcsRule(s10yTB6, act6)
val r46: XcsRule(s10yTB7, act12)



Chapter 11

[ 401 ]

The action with the most references, act12, is executed. The Q-learning algorithm 
computes the reward from the profit or loss incurred by the portfolio following the 
execution of the selected rules r23 and r46. The agent uses the reward to adjust the 
fitness of r23 and r46, before the genetic selection in the next reproduction cycle. 
These two rules will reach and stay in the top tier of the rules in the population, until 
either a new genetic rule modified through crossover and mutation or a rule created 
through covering, triggers a more rewarding action on the environment.

Covering
The purpose of the covering phase is to generate new rules if no rule matches the 
input or sensor. The cover method of an XcsCover singleton generates a new 
XcsRule instance given a sensor and an existing set of actions, as shown here:

def cover(sensor: XcsSensor, actions: List[XcsAction]) (implicit 
discr: Discretization): List[XcsRule] = {
  actions.foldLeft(List[XcsRule]()) ((xs, act) => {
    val rIdx = Random.nextInt(Signal.numOperators)
    val signal = new Signal(sensor.id, sensor.value, new 
SOperator(rIdx))
    new XcsRule(signal, XcsAction(act, Random)) :: xs
  })
}

You might wonder why the cover method uses a set of actions as arguments knowing 
that covering consists of creating new actions. The method mutates (operator ^) an 
existing action to create a new one instead of using a random generator. This is one of 
the advantages of defining an action as a gene. The mutation is executed by one of the 
constructors of XcsAction, as follows:

def apply(action: XcsAction, r: Random): XcsAction = 
    (action ^ r.nextInt(XCSACTION_SIZE))

The index of the operator type, rIdx, is a random value in the interval [0, 3] because 
a signal uses four types of operators: None, >, <, and =.

Example of implementation
The Xcs class has the following purposes:

•	 gaSolver: This is the selection and generation of genetically modified rules
•	 qlLearner: This is the rewarding and scoring the rules
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•	 Xcs: These are the rules for matching, covering, and generation of action
class Xcs(config: XcsConfig, population: Population[Signal], 
score: Chromosome[Signal]=> Unit, input: Array[QLInput]) extends 
PipeOperator[XcsSensor, List[XcsAction]] {

   val gaSolver = GASolver[Signal](config.gaConfig, score)   
   val featuresSet: Set[Chromosome[Signal]]  = population.
chromosomes.toSet
   val qLearner = QLearning[Chromosome[Signal]](config.qlConfig, 
computeNumStates(input), extractGoals(input), input, featuresSet)
   …
}

The XCS algorithm is initialized with a configuration, config, an initial set of rules, 
population, a fitness function, score, and an input to the Q-learning policy generate 
reward matrix for qlLearner. The goals and number of states are extracted from the 
input to the policy of the Q-learning algorithm.

In this implementation, the generic algorithm, gaSolver, is mutable. It is instantiated 
along with the Xcs container class. The Q-learning algorithm uses the same design, 
as any classifier, as immutable. The model of Q-learning is the best possible policy to 
reward rules. Any changes in the number of states or the rewarding scheme require a 
new instance of the learner.

Benefits and limitation of learning  
classifier systems
Learning classifier systems and XCS in particular, hold many promises, which are  
as follows:

•	 They allow non-scientists and domain experts to describe the knowledge 
using familiar Boolean constructs and inferences such as predicates and rules

•	 They provide analysts with an overview of the knowledge base and its 
coverage by distinguishing between the need for exploration and exploitation 
of the knowledge base
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However, the scientific community has been slow to recognize the merits of these 
techniques. The wider adoption of learning classifier systems is hindered by the 
following factors:

•	 Sheer complexity of the configuration of the algorithm because of the large 
number of parameters for exploration and exploitation.

•	 Lack of a unified theory to validate the concept of evolutionary policies or 
rules. After all, these algorithms are the merger of standalone techniques. 
The accuracy and performance of the execution of LCSes depend on each 
component as well as the interaction between components.

•	 An execution that is not always predictable in terms of scalability  
and performance.

•	 Too many variants of LCS.

Summary
Reinforcement learning algorithms are sometimes overlooked by the software 
engineering community. Let's hope that this chapter provides adequate answers  
to the following questions:

•	 What is reinforcement learning?
•	 What are the different the different types of algorithms that qualify as 

reinforcement learning?
•	 How can we implement the Q-learning algorithm in Scala?
•	 How can we apply Q-learning to the optimization of option trading?
•	 What are the pros and cons of using reinforcement learning?
•	 What are learning classifier systems?
•	 What are the key components of the XCS algorithm?
•	 What are the potentials and limitations of learning classifier systems?

This concludes the introduction of the last category of learning techniques. The  
ever-increasing amount of data that surrounds us requires data processing and 
machine learning algorithms to be highly scalable. This is the subject of the next  
and the final chapter.





Scalable Frameworks
The advent of social networking, interactive media, and deep analysis has caused 
the amount of data processed daily to skyrocket. For data scientists, it's no longer 
just a matter of finding the most appropriate and accurate algorithm to mine data; 
it is also about leveraging multi-core CPU architectures and distributed computing 
frameworks to solve problems in a timely fashion. After all, how valuable is a data 
mining application if the model does not scale?

There are many options available to Scala developers to build classification and 
regression applications for very large datasets. This chapter covers the Scala parallel 
collections, Actor model, Akka framework, and Apache Spark in-memory clusters. 
The following are the topics addressed in this chapter:

•	 Introduction to Scala parallel collections
•	 Evaluation of performance of a parallel collection on multicore CPU
•	 The actor model and reactive systems.
•	 Clustered and reliable distributed computing using Akka
•	 Design of computational workflow using Akka routers
•	 Introduction to Apache Spark clustering and its design principles
•	 Using Spark MLlib for clustering
•	 Relative performance tuning and evaluation of Spark
•	 Benefits and limitations of the Apache Spark framework
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Overview
The support for distributing and concurrent processing is provided by different 
stacked frameworks and libraries. Scala concurrent and parallel collections classes 
leverage the threading capabilities of the Java virtual machine. Akka.io implements 
a reliable action model originally introduced as part of the Scala standard library. 
The Akka framework supports remote actors, routing, and load balancing protocol; 
dispatchers, clusters, events, and configurable mailboxes management; and support 
for different transport modes, supervisory strategies and typed actors. Apache 
Spark's resilient distributed datasets with advanced serialization, caching, and 
partitioning capabilities leverage Scala and Akka libraries.

The following stack representation illustrates the interdependencies between 
frameworks:

Partitioner, Accumulator: org.apache.spark
Broadcast: org.apache.spark.broadcast
Resilient datasets: org.apache.spark.rdd
Caching: org.apache.spark
Listeners: org.apache.spark.scheduler._
Serialization: org.apache.spark.serializer

Spark

Scheduler: scala.actors.scheduler
Concurrency: scala.concurrent
Parallel collections: scala.collection.parallel

Scala

Threads, executors: java.util.concurrent*

Actors, Supervisors: akka.actors._
Remote actors: akka.remote
Type actors: akka.actors._
Mailbox management: akka.mailbox._
Clusters: akka.cluster._
Dispatchers: akka.dispatch
Events management: akka.event._
Routing, Broadcast: akka.routing
Persistency: akka.persistence._

Akka

Stack representation of Scalable frameworks using Scala

Each layer adds a new functionality to the previous one to increase scalability. 
The Java virtual machine runs as a process within a single host. Scala concurrent 
classes support effective deployment of an application by leveraging multicore CPU 
capabilities without the need to write multithreaded applications. Akka extends 
the Actor paradigm to clusters with advanced messaging and routing options. 
Finally, Apache Spark leverages Scala higher-order collection methods and the Akka 
implementation of the Actor model to provide large-scale data processing systems 
with better performance and reliability, through its resilient distributed datasets and 
in-memory persistency.
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Scala
The Scala standard library offers a rich set of tools, such as parallel collections and 
concurrent classes to scale number-crunching applications. Although these tools are 
very effective in processing medium-sized datasets, they are unfortunately quite 
often discarded by developers in favor of more elaborate frameworks.

Controlling object creation
Although code optimization and memory management is beyond the scope of 
this chapter, it is worthwhile to remember that a few simple steps can be taken to 
improve the scalability of an application. One of the most frustrating challenges in 
using Scala to process large datasets is the creation of a large number of objects and 
the load on the garbage collector.

A partial list of remedial actions is as follows: 

•	 Limiting unnecessary duplication of objects in an iterated function by using a 
mutable instance

•	 Using lazy values and Stream classes to create objects as needed
•	 Leveraging efficient collections such as bloom filters or skip lists
•	 Running javap to decipher the generation of byte code by the JVM

Parallel collections
The Scala standard library includes parallelized collections, whose purpose is to 
shield developers from the intricacies of concurrent thread execution and race 
condition. Parallel collections are a very convenient approach to encapsulate 
concurrency constructs to a higher level of abstraction [12:1].

There are two ways to create parallel collections in Scala:

•	 Converting an existing collection into a parallel collection of the same 
semantic using the par method, for example, List[T].par: ParSeq[T], 
Array[T].par: ParArray[T], Map[K,V].par: ParMap[K,V], and so on

•	 Using the collections classes from the collection.parallel, parallel.
immutable, or parallel.mutable packages, for example, ParArray, ParMap, 
ParSeq, ParVector, and so on
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Processing a parallel collection
A parallel collection does lend itself to concurrent processing until a pool of threads 
and a tasks scheduler are assigned to it. Fortunately, Scala parallel and concurrent 
packages provide developers with a powerful toolbox to map partitions or segments 
of collection to tasks running on different CPU cores. The components are as follows:

•	 TaskSupport: This trait inherits the generic Tasks trait. It is responsible for 
scheduling the operation on the parallel collection. There are three concrete 
implementations of TaskSupport.

•	 ThreadPoolTaskSupport: This uses the threads pool in an older version of  
the JVM.

•	 ExecutionContextTaskSupport: This uses ExecutorService, which 
delegates the management of tasks to either a thread pool or the 
ForkJoinTasks pool.

•	 ForkJoinTaskSupport: This uses the fork-join pools of type java.util.
concurrent.FortJoinPool introduced in Java SDK 1.6. In Java, a fork-join 
pool is an instance of ExecutorService that attempts to run not only the 
current task but also any of its subtasks. It executes the ForkJoinTask  
instances that are lightweight threads.

The following example implements the generation of random exponential value 
using a parallel vector and ForkJoinTaskSupport:

val rand = new ParVector[Float]
Range(0, MAX).foreach(n =>rand.updated(n, n*Random.nextFloat))//1
rand.tasksupport = new ForkJoinTaskSupport(new ForkJoinPool(16))
val randExp = vec.map( Math.exp(_) )//2

The parallel vector of random probabilities, rand, is created and initialized by the 
main task (line 1), but the conversion to a vector of exponential value, randExp,  
is executed by a pool of 16 concurrent tasks (line 2).

Preserving order of elements
Operations that traverse a parallel collection using an iterator 
preserve the original order of the element of the collection. 
Iterator-less methods such as foreach or map do not 
guarantee that the order of the elements that are processed 
will be preserved.
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Benchmark framework

Scala library benchmark
The Scala standard library has a trait, testing.Benchmark, 
for testing using the command line [12:2]. All you need to do 
is to insert your function or code in the run method:

object test with Benchmark { def run { /* fill 
the blank /* }

The main purpose of parallel collections is to improve the performance of execution 
through concurrency. First, let us create a parameterized class, Benchmark, to evaluate 
the performance of operations on a parallel array, v, relative to an array, u, as follows:

class ParArrayBenchmark[U](u: Array[U], v: ParArray[U], times:Int)

Next, you need to create a method, timing, that computes the ratio of the duration of 
a given operation on a parallel collection over the duration of the same operation on 
a single threaded collection, as shown here:

def timing(g: Int => Unit ): Long = {
  var startTime = System.currentTimeMillis
  Range(0, times).foreach(g)
  System.currentTimeMillis - startTime
}

This method measures the time it takes to process a user-defined function,  
g, times times.

Let's compare the parallelized and default array on the map and reduce methods  
of Benchmark as follows

def map(f: U => U)(nTasks: Int): Unit = {
   val pool = new ForkJoinPool(nTasks)
   v.tasksupport = new ForkJoinTaskSupport(pool)
   val duration = timing(_ => u.map(f)).toDouble  //3
   val ratio = timing( _ => v.map(f))/duration  //4
   Display.show(s"$nTasks, $ratio", logger)
}
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The user has to define the mapping function, f, and the number of concurrent tasks, 
nTasks, available to execute a map transformation on the array u (line 3) and its 
parallelized counterpart v (line 4). The reduce method follows the same design as 
shown in the following code:

def reduce(f: (U,U) => U)(nTasks: Int): Unit = {
  val pool = new ForkJoinPool(nTasks)
  v.tasksupport = new ForkJoinTaskSuppor(pool)
  val duration = timing(_ => u.reduceLeft(f)).toDouble
  val ratio = timing( _ => v.reduceLeft(f) )/duration
  Display.show(s"$nTasks, $ratio", logger)
}

The same template can be used for other higher Scala methods, such as filter.  
The absolute timing of each operation is completely dependent on the environment. 
It is far more useful to record the ratio of the duration of execution of operation on 
the parallelized array, over the single thread array.

The benchmark class, ParMapBenchmark, used to evaluate ParHashMap is similar to 
the benchmark for ParArray, as shown in the following code:

class ParMapBenchmark[U](val u: Map[Int, U], val v: ParMap[Int, U], 
times: Int)

For example, the filter method of ParMapBenchmark evaluates the performance of 
the parallel map v relative to single threaded map u. It applies the filtering condition 
to the values of each map as follows:

def filter(f: U => Boolean)(nTasks: Int): Unit = {
  val pool = new ForkJoinPool(nTasks)
  v.tasksupport = new ForkJoinTaskSupport(pool)
  val duration = timing(_ => u.filter(e => f(e._2))).toDouble
  val ratio = timing( _ => v.filter(e => f(e._2)))/duration
  Display.show(s"$nTasks, $ratio", logger)
}

Performance evaluation
The first performance test consists of creating a single-threaded and a parallel array 
of random values and executing the evaluation methods, map and reduce, on using 
an increasing number of tasks, as follows:

val sz = 1000000
val data = Array.fill(sz)(Random.nextDouble)
val pData = ParArray.fill(sz)(Random.nextDouble)
val times: Int = 50
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val bench1 = new ParArrayBenchmark[Double](data, pData, times)
val mapper = (x: Double) => Math.sin(x*0.01) + Math.exp(-x)
Range(1, 16).foreach(n => bench1.map(mapper)(n))
val reducer = (x: Double, y: Double) => x+y
Range(1, 16).foreach(n => bench1.reduce(reducer)(n))

The following graph shows the output of the performance test:

The test executes the mapper and reducer functions 1 million times on an 8-core  
CPU with 8 GB of available memory on JVM.

The results are not surprising in the following respects:

•	 The reducer doesn't take advantage of the parallelism of the array. The 
reduction of ParArray has a small overhead in the single-task scenario  
and then matches the performance of Array.

•	 The performance of the map function benefits from the parallelization of the 
array. The performance levels off when the number of tasks allocated equals 
or exceeds the number of CPU core.

The second test consists of comparing the behavior of two parallel collections, 
ParArray and ParHashMap, on two methods, map and filter, using a configuration 
identical to the first test as follows:

val sz = 1000000
val mData = new HashMap[Int, Double]
Range(0, sz).foreach(n => mData.put(n, Random.nextDouble)) //1
val mParData = new ParHashMap[Int, Double]
Range(0, sz).foreach(n => mParData.put(n, Random.nextDouble))
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val bench2 = new ParMapBenchmark[Double](mData, mParData, times)
Range(1, 16).foreach(n => bench2.map(mapper)(n)) //2
val filterer = (x: Double) => (x > 0.8)
Range(1, 16).foreach(n => bench2.filter(filterer)(n)) //3

The test initializes a HashMap instance and its parallel counter ParHashMap with 1 
million random values (line 1). The benchmark, bench2, processes all the elements  
of these hash maps with the mapper instance introduced in the first test (line 2) and  
a filtering function, filterer (line 3), with 16 tasks. The output is as shown here:

The impact of the parallelization of collections is very similar across methods and 
across collections. It's important to notice that the performance of the parallel 
collections levels off at around four times the single thread collections for five 
concurrent tasks and above. Core parking is partially responsible for this behavior. 
Core parking disables a few CPU cores in an effort to conserve power, and in the 
case of singe application, consumes almost all CPU cycles.

Further performance evaluation
The purpose of the performance test was to highlight the benefits 
of using Scala parallel collections. You should experiment further 
with collections other than ParArray and ParHashMap and other 
higher-order methods to confirm the pattern.

Clearly, a four-times increase in performance is nothing to complain about. That 
being said, parallel collections are limited to single host deployment. If you cannot 
live with such a restriction and still need a scalable solution, the Actor model 
provides a blueprint for highly distributed applications.
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Scalability with Actors
Traditional multithreaded applications rely on accessing data located in shared 
memory. The mechanism relies on synchronization monitors such as locks, mutexes, 
or semaphores to avoid deadlocks and inconsistent mutable states. Even for the  
most experienced software engineer, debugging multithreaded applications is not  
a simple endeavor.

The second problem with shared memory threads in Java is the high computation 
overhead caused by continuous context switches. Context switching consists of 
saving the current stack frame delimited by the base and stack pointers into the  
heap memory and loading another stack frame.

These restrictions and complexities can be avoided by using a concurrency model 
that relies on the following key principles:

•	 Immutable data structures
•	 Asynchronous communication

The Actor model
The Actor model, originally introduced in the Erlang programming language, 
addresses these issues [12:3]. The purpose of using the Actor model is twofold:

•	 It distributes the computation over as many cores and servers as possible
•	 It reduces or eliminates race conditions and deadlocks which are very 

prevalent in Java development

The model consists of the following components:

•	 Independent processing units known as Actors. Actors communicate by 
exchanging messages asynchronously instead of sharing states.

•	 Immutable messages are sent to queues, known as mailboxes, before being 
processed by each actor one at a time.

Actor A Actor B

Mailbox

MailboxMessage

Representation of messaging between actors
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There are two message-passing mechanisms:

•	 Fire-and-forget or tell: Sends the immutable message asynchronously to  
the target or receiving actor, and returns immediately without blocking.  
The syntax is as follows:
targetActorRef ! message

•	 Send-and-receive or ask: Sends a message asynchronously, but returns  
a Future instance that defines the expected reply from the target actor
val future = targetActorRef ? message 

The generic construct for the Actor message handler is somewhat similar to the 
Runnable.run() method in Java, as shown in the following code:

while( true ){
  receive { case msg1: MsgType => handler }
}

The receive keyword is in fact a partial function of type PartialFunction[Any, 
Unit] [12:4]. The purpose is to avoid forcing developers to handle all possible 
message types. The Actor consuming messages may very well run on a separate 
component or even application, than the Actor producing these messages. It not 
always easy to anticipate the type of messages an Actor has to process in a future 
version of an application.

A message whose type is not matched is merely ignored. There is no need to throw 
an exception from within the Actor's routine. Implementations of the Actor model 
strive to avoid the overhead of context switching and creation of threads [12:5].

I/O blocking operations
Although it is highly recommended not to use Actors for 
blocking operations such as I/O, there are circumstances that 
require the sender to wait for a response. The reader needs to 
be mindful that blocking an underlying thread inside the Actor 
might starve other Actors from CPU cycles. It is recommended 
to either configure the runtime system to use a large thread pool, 
or to allow the thread pool to be resized by setting the actors.
enableForkJoin property as false.
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Partitioning
A dataset is defined as a Scala collection, for example, List, Map, and so on. 
Concurrent processing requires the following steps:

1.	 Breaking down a dataset into multiple subdatasets.
2.	 Processing each dataset independently and concurrently.
3.	 Aggregating all the resulting datasets.

These steps are defined through a monad associated with a collection in the 
Abstraction section under Why Scala? in Chapter 1, Getting Started.

1.	 The apply method creates the subcollection or partitions for the first step, for 
example, def apply[T](a: T): List[T].

2.	 A map-like operation defines the second stage. The last step relies on the 
monoidal associativity of the Scala collection, for example, def ++ (a: 
List[T], b: List[T](: List[T] = a ++ b.

3.	 The aggregation, such as reduce, fold, sum, and so on, consists of flattening 
all the subresults into a single output, for example, val xs: List(…) = 
List(List(..), List(..)).flatten.

The methods that can be parallelized are map, flatMap, filter, find, and filterNot. 
The methods that cannot be completely parallelized are reduce, fold, sum, combine, 
aggregate, groupBy, and sortWith.

Beyond actors – reactive programming
The Actor model is an example of the reactive programming paradigm. The concept 
is that functions and methods are executed in response to events or exceptions. 
Reactive programming combines concurrency with event-based systems [12:6].

Advanced functional reactive programming constructs rely on composable futures 
and continuation-passing style (CPS). An example of a Scala reactive library can be 
found at https://github.com/ingoem/scala-react.

Akka
The Akka framework extends the original Actor model in Scala by adding extraction 
capabilities such as support for typed Actor, message dispatching, routing, load 
balancing, and partitioning, as well as supervision and configurability [12:7].

The Akka framework can be downloaded from the www.akka.io website, or through 
the Typesafe Activator at http://www.typesafe.com/platform.



Scalable Frameworks

[ 416 ]

Akka simplifies the implementation of Actor by encapsulating some of the details of 
Scala Actor in the akka.actor.Actor and akka.actor.ActorSystem classes.

The three methods you want to override are as follows:

•	 preStart: This is an optional method, invoked to initialize all the necessary 
resources such as file or database connection before the Actor is executed

•	 receive: This method defines the Actor's behavior and returns a partial 
function of type PartialFunction[Any, Unit]

•	 postStop: This is an optional method to clean up resources such as releasing 
memory, closing database connections, and socket or file handles

Typed versus untyped actors
Untyped actors can process messages of any type. If the type 
of the message is not matched by the receiving actor, it is 
discarded. Untyped actors can be regarded as contract-less 
actors. They are the default actors in Scala.
Typed actors are similar to Java remote interfaces. They 
respond to a method invocation. The invocation is declared 
publicly, but the execution is delegated asynchronously to 
the private instance of the target actor [12:8].

Akka offers a variety of functionalities to deploy concurrent applications. Let us create 
a generic template for a master Actor and worker Actors to transform a dataset using 
any preprocessing or classification algorithm inherited from the PipeOperator trait, as 
explained in the The pipe operator section under Designing a workflow in Chapter 2, Hello 
World!. The master Actor manages the worker actors in one of the following ways:

•	 Individual actors
•	 Clusters through a router or a dispatcher

The router is a very simple example of Actor supervision. Supervision strategies  
in Akka are an essential component to make the application fault-tolerant [12:9].  
A supervisor Actor manages the operations, availability, and life cycle of its children, 
known as subordinates. The supervision among actors is organized as a hierarchy. 
Supervision strategies are categorized as follows:

•	 One-for-one strategy: This is the default strategy. In case of a failure of one 
of the subordinates, the supervisor executes a recovery, restart, or resume 
action for that subordinate only.

•	 All-for-one strategy: The supervisor executes a recovery or remedial action 
on all its subordinates in case one of the Actors fails.
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Master-workers
The first model to evaluate is the traditional master-slaves or master-workers 
design for computation workflow. In this design, the worker Actors are initialized 
and managed by the master Actor which is responsible for controlling the iterative 
process, state, and termination condition of the algorithm. The orchestration of the 
distributed tasks is performed through message passing.

The design principle
It is highly recommended that you segregate the implementation 
of the computation or domain-specific logic from the actual 
implementation of the worker and master Actors.

Messages exchange
The first step in implementing the master-worker design is to define the different 
classes of messages exchanged between the master and each worker, to control 
the execution of the iterative procedure. The implementation of the master-worker 
design is as follows:

type DblSeries = XTSeries[Double]

sealed abstract class Message(val id: Int)
case class Start(i: Int =0) extends Message(i) //1
case class Activate(i: Int, xt: DblSeries extends Message(i) //2
case class Completed(i: Int, xt: DblSeries) extends Message(i) //3

Let's define the messages that control the execution of the algorithm. We need at 
least the following message types or case classes:

1.	 Start is sent by the client code to the master to start the computation.
2.	 Activate is sent by the master to the workers to activate the computation.  

This message contains the time series, xt, to be processed by the worker Actors.
3.	 Completed is sent by each worker back to sender. It contains the variance of 

the data in the group.
4.	 The master stops a worker using a PoisonPill message. The different 

approaches to terminate an actor are described in the The Master actor section.
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The hierarchy of the Message class is sealed to prevent third-party developers from 
adding another message type. The worker responds to the activate message by 
executing a data transformation of type inherited from PipeOperator. The messages 
exchanged between master and worker actors are shown in the following diagram:

PipeOperator.I>

PipeOperator.I>

PipeOperator.I>

Worker 1

Worker 2
MasterStart

Worker N

Terminate/PoisonPill

Activate

Complete

Messages as case classes
The actor retrieves the messages queued in its mailbox by 
managing each message instance (copy, matching, and so 
on). Therefore, the message type has to be defined as a case 
class. Otherwise, the developer will have to override the 
equals and hashCode methods.

Worker actors
The worker actors are responsible for transforming each partition created by the 
master Actor, as follows:

class Worker(id: Int, fct: PipeOperator[DblSeries, DblSeries]) extends 
Actor { //1
  override def receive = {
    case msg: Activate => {
          msg.sender ! Completed(msg.id+id, transform(msg.xt)) //2
          context.stop(self)
    }
    case _ => Display.show("Unknown message", logger)
  }
  def transform(xt: DblSeries): DblSeries =  fct |> 
}

The Worker class constructor takes the fct data transformation as an argument  
(line 1). The worker launches the processing or transformation of the msg.xt data 
upon arrival of the Activate message (line 2). It returns the Completed message  
to the master once the data transformation, transform, is completed.

The design principle
It is highly recommended that you segregate the implementation 
of the computation or domain-specific logic from the actual 
implementation of the worker and master Actors.
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The workflow controller
In the Scalability section in Chapter 1, Getting Started, we introduced the concepts 
of workflow and controller, to manage the training and classification process as 
a sequence of transformation on time series. Let's define an abstract class for all 
controller actors, Controller, with the following three key parameters:

•	 A time series, xt, to be a process
•	 A data transformation, fct, of type PipeOperator
•	 A partitioning method, partitioner, to break down a time series for 

concurrent processing

The Controller class can be defined as follows:

abstract class Controller(val xt: DblSeries, val  fct: 
PipeOperator[DblSeries, DblSeries],val partitioner: Partitioner) 
extends Actor

The workflow controller is responsible for splitting the time series into several 
partitions and assigning each partition to a dedicated worker Actor. A helper class, 
Partitioner, implements the partitioning of the dataset as follows:

class Partitioner(val numPartitions: Int) {
  def split(xt: DblSeries): Array[Int] = {
    val sz = (xt.size.toDouble/numPartitions).floor.toInt
    val indices = Array.tabulate(numPartitions)(i=>(i+1)*sz)
    indices.update(numPartitions -1, xt.size)
    indices
  }
}

The split method breaks down a time series, xt, into numPartitions partitions, 
and returns the index of each partition relative to the original time series.

The master Actor
Let's define a master Actor class, Master. The three methods to override are  
as follows:

•	 preStart is a method invoked to initialize all the necessary resources such as 
file or database connection before the actor executes

•	 receive is a partial function that dequeues and processes the messages from 
the mail box

•	 postStop cleans up resources such as releasing memory and closing 
database connections, sockets, or file handles
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The Master class can be defined as follows:

abstract class Master(xt: DblSeries, fct: PipeOperator[DblSeries, 
DblSeries], partitioner: Partitioner) extends Controller(xt,fct, 
partitioner) {
  val workers = List.tabulate(partitioner.numPartitions)(n => 
               context.actorOf(Props(new Worker(n, fct)))) //4
  val aggregator = new ListBuffer[DblVector]  //5

  override def preStart: Unit = {} //6
  override def postStop: Unit = {} //7
  override def receive

The Master class has the following parameters:

•	 xt: This is the time series to transform
•	 fct: This is the transformation function 
•	 partitioner: This is the instance of time series partitioning

The worker actors are created through the actorOf factory method of the 
ActorSystem context (line 4). A list buffer, aggregator, collects and reduces 
the results from each worker (line 5). The preStart method implements any 
initialization required to process the messages (line 6). The postStop method 
releases all the resources allocated to process the messages (line 7).

The receive message handler processes only two types of messages: Start from the 
client code and Completed from the workers, as shown in the following code:

override def receive = {
   case Start => split //8
   case msg: Completed => { //10
     if(aggregator.size >= partitioner.numPartitions-1) { //12
       aggregate //14
       //13  workers.foreach( _ ! PoisonPill)
       context.stop(self) //15
     }
     aggregator.append(msg.xt.toArray) //11
   }
}

def aggregate: Seq[Double]

def split: Unit = {
   val partIdx = partitioner.split(xt)
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   workers.zip(partIdx).foreach(w => 
     w._1 ! Activate(0, xt.slice(w._2-partIdx(0), w._2))) //9
  }

The Start message triggers the split of the input time series into partitions (line 
8), which are then dispatched to each worker with the Activate message (line 9). 
Each worker sends a Completed message back to master upon the completion of 
their task (line 10). The master aggregates the results from the each worker (line 11). 
Once every worker has completed its task (line 12), the master terminates all the 
workers, through a PoisonPill message in case the worker actors do not terminate 
themselves (line 13). The master aggregate the results (line 14) before it terminates 
itself through a request to its context to stop it (line 15).

The aggregate method can be defined as a parameter either of the Master class or of 
one of its subclasses.

The previous code snippet uses two different approaches to terminate an actor. There 
are four different methods of shutting down an actor, as mentioned here:

•	 actorSystem.shutdown: This method is used by the client to shut down the 
parent actor system

•	 actor ! PoisonPill: This method is used by the client to send a poison pill 
message to the actor

•	 context.stop(self): This method is used by the Actor to shut itself down 
within its context

•	 context.stop(childActorRef): This method is used by the Actor to shut 
itself down through its reference

Master with routing
The previous design makes sense only if each worker has a unique characteristic 
that requires direct communication with the master. This is not the case in most 
applications. The communication and internal management of the worker can be 
delegated to a router. The implementation of the master routing capabilities is very 
similar to the previous design, as shown in the following code:

abstract class MasterWithRouter(xt: DblSeries, fct: 
PipeOperator[DblSeries, DblSeries], partitioner: Partitioner) extends 
Controller(xt, fct, partitioner) {
   val router = context.actorOf(Props(new Worker(0, fct))
      .withRouter(RoundRobinPool(partitioner.numPartitions, 
                  supervisorStrategy = this.supervisorStrategy)))  
 …
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The only difference is that the context.actorOf factory creates an extra actor, 
router, along with the workers. This particular implementation relies on  
round-robin assignment of the message by the router to each worker. Akka  
supports several routing mechanisms that select a random actor, or the actor  
with the smallest mailbox, or the first to respond to a broadcast, and so on.

Routing supervision
The router actor is a parent of the worker actors. It is by 
design a supervisor of the worker actors, which are its 
children actors. Therefore, the router is responsible for the 
life cycle of the worker actors which includes their creation, 
restarting, and termination.

The implementation of the receive message handler is almost identical to the 
message handler in the master without routing capabilities, except that the 
partitioning (line 1) is delegated to the router instead of being applied to each 
individual worker, as follows:

override def receive = {
  case msg: Start => split
  case msg: Completed => {
     if(aggregator.size >= partitioner.numPartitions-1) {
          aggregate
          context.stop(self)    //2
     }
     aggregator.append(msg.xt.toarray)
 }
} 
def split: Unit = {
   val indices = partitioner.split(xt)
   indices.foreach(n => 
       router ! Activate(xt.slice(n - indices(0), n))) //1
}

The supervising router terminates itself automatically once all its child actors are 
terminated (line 2).

Distributed discrete Fourier transform
Let's select the discrete Fourier transform (DFT) on a time series, xt, as our data 
transformation. We discussed it in the Discrete Fourier transform (DFT) section in 
Chapter 3, Data Preprocessing. The testing code is exactly the same, whether the  
master has routing capabilities or not.
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First, let's define a master controller, DFTMaster, dedicated to the execution of the 
distributed discrete Fourier transform, as follows:

class DFTMaster(xt: XTSeries[Double], partitioner: Partitioner) 
extends Master(xt, DFT[Double], partitioner) {
  override def aggregate: Seq[Double] = 
        aggregator.transpose.map( _.sum).toSeq
}

The aggregate method aggregates or reduces the results of the discrete Fourier 
transform (frequencies distribution) from each worker. In the case of the discrete 
Fourier transform, the aggregate method transposes the list of frequencies 
distribution then summed the amplitude for each frequency, as shown here:

val NUM_WORKERS = 4
val NUM_DATAPOINTS = 1000000
val h = (x:Double) =>2.0*Math.cos(Math.PI*0.005*x) + 
                         Math.cos(Math.PI*0.05*x) + 
                     0.5*Math.cos(Math.PI*0.2*x) +
                     0.3* Random.nextDouble  //1
val xt = XTSeries[Double](Array.tabulate(NUM_DATAPOINTS)(h(_)))
val partitioner = new Partitioner(NUM_WORKERS) //2
   
implicit val actorSystem = ActorSystem("system") //3
val master = actorSystem.actorOf(Props(new DFTMaster(xt, 
partitioner)), "DFTMaster") //4
master ! Start  //5
Thread.sleep(15000)
actorSystem.shutdown //6

The input time series is synthetically generated by the noisy function, h (line 1). 
The function h has three distinct harmonics, 0.005, 0.05, and 0.2, so the results of 
the transformation can be easily validated. A partitioner instance is created for 
NUM_WORKERS worker Actors (line 2). The Actor system, ActorSystem, is instantiated 
(line 3) and the master Actor is generated through the Akka ActorSytem.actorOf 
factory. The main program sends a Start message to the master to trigger the 
distributed computation of the discrete Fourier transform. The main program has 
to sleep for a period of time long enough to allow the master to complete its task. 
Finally, the main program shuts down the actor system (line 6).
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Actor instantiation
Although the scala.actor.Actor class can be instantiated 
using the constructor, akka.actor.Actor is instantiated 
using a context, ActorSystem; a factory, actorOf; and 
a configuration object, Props. This second approach has 
several benefits, including decoupling the deployment of the 
actor from its functionality and enforcing a default supervisor 
or parent for the Actor, in this case ActorSystem.

The following sequential diagram illustrates the message exchange between the main 
program, master, and worker Actors:

Worker

transform

msg: Completed(id, results)

context.stop(self)

aggregate

msg: Activate(id,partition)

Master.main

Start

context.stop(self)

Sequential diagram for the normalization of cross-validation groups

The purpose of the test is to evaluate the performance of the computation of the 
discrete Fourier transform using the Akka framework relative to the original 
implementation, without actors. As with the Scala parallel collections, the absolute 
timing for the transformation depends on the host and the configuration, as shown  
in the following graph:



Chapter 12

[ 425 ]

The single-threaded version of the discrete Fourier transform is significantly faster 
than the implementation using the Akka master-worker model with a single worker 
actor. The cost of partitioning and the aggregating (or reducing) the results adds a 
significant overhead to execution of the Fourier transform. However, the master-
worker model is far more efficient with three or more worker actors.

Limitations
The master-worker implementation has a few problems:

•	 In the message handler of the master Actor, there is no guarantee that the 
poison pill will be consumed by all the workers before the master stops.

•	 The main program has to sleep for a period of time long enough to allow the 
master and workers to complete their tasks. There is no guarantee that the 
computation will be completed when the main program awakes.

•	 There is no mechanism to handle failure in delivering or processing messages.

The culprit is the exclusive use of the fire-and-forget mechanism to exchange  
data between master and workers. The send-and-receive protocol and futures  
are remedies to these problems.

Futures
A future is an object, more specifically a monad, used to retrieve the results of 
concurrent operations, in a non-blocking fashion. The concept is very similar to a 
callback supplied to a worker, which invokes it when the task is completed. Futures 
hold a value that might or might not become available in the future when a task is 
completed, successful or not [12:10].

There are two options to retrieve results from futures:

•	 Blocking execution using scala.concurrent.Await
•	 Callback functions, onComplete, onSuccess, and onFailure

Which future?
A Scala environment provides developers with two different 
Future classes: scala.actor.Future and scala.
concurrent.Future. The actor.Future class is used to write 
continuation-passing style workflows in which the current actor 
is blocked until the value of the future is available. Instances of 
type scala.concurrent.Future used in this chapter are the 
equivalent of java.concurrent.Future in Scala.
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The Actor life cycle
Let's reimplement the normalization of cross-validation groups by their variance, 
which we introduced in the previous section, using futures to support concurrency. 
The first step is to import the appropriate classes for execution of the main actor and 
futures, as follows:

import akka.actor.{Actor, ActorSystem, ActorRef, Props}
import akka.util.Timeout
import scala.concurrent.{Await, Future} 

The Actor classes are provided by the package akka.actor, instead of the scala.
actor._ package because of Akka's extended actor model. The future-related classes, 
Future and Await, are imported from the scala.concurrent package, which is 
similar to the java.concurrent package. The akka.util.Timeout class is used to 
specify the maximum duration the actor has to wait for the completion of the futures.

There are two options for a parent actor or the main program to manage the futures 
it creates:

•	 Blocking: The parent actor or main program stops execution until all futures 
have completed their tasks.

•	 Callback: The parent actor or the main program initiates the futures during 
execution. The future tasks are performed concurrently with the parent actor, 
that is then notified when each future task is completed.

Blocking on futures
The following design consists of blocking the actor that launches the futures until 
all the futures have been completed, either returning with a result or throwing 
an exception. Let's modify the master Actor into a class, TransformFutures, that 
manages futures instead of workers or routing actors, as follows:

abstract class TransformFutures(xt: DblSeries, 
    fct: PipeOperator[DblSeries, DblSeries], 
    partitioner: Partitioner)(implicit timeout: TimeOut) 
  extends Controller(xt,fct, partitioner) { //1

  override def receive = {
    case Start => compute(transform) //2
    case _ => Display.error("Message not recognized", logger)
  }
  def aggregate(results: Array[DblSeries]): Seq[Double]
…
}
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The TransformFutures class requires the same parameters as the Master actor: a 
time series, xt; a data transformation, fct; and partitioner. The timeout parameter 
is an implicit argument of the Await.result method, and therefore, needs to be 
declared as an argument (line 1). The only message, Start, triggers the computation 
of the data transformation of each future, and then the aggregation of the results  
(line 2). The transform and compute methods have the same semantics as those in 
the master-workers design.

The generic message handler
You may have read or even written examples of actors that have 
generic case _ => handlers in the message loop for debugging 
purposes. The message loop takes a partial function as argument. 
Therefore, no error or exception is thrown in case the message 
type is not recognized. There is no need for such a handler aside 
from one for debugging purposes. Message types should inherit 
from a sealed abstract class or a sealed trait in order to prevent a 
new message type from being added by mistake.

Let's have a look at the transform method. Its main purpose is to instantiate, launch, 
and return an array of futures responsible for the transformation of the partitions, as 
shown in the following code:

def transform: Array[Future[DblSeries]] = {   
  val partIdx = partitioner.split(xt)
  val partitions = partIdx.map(n => 
     XTSeries[Double](xt.slice(n - partIdx(0), n).toArray)) //3

  val futures = new Array[Future[DblSeries]](partIdx.size) //4
  partitions.zipWithIndex.foreach(pi => {
     futures(pi._2) = Future[DblSeries] { fct |> pi._1 } 
  })
  futures
}

First, the transform method splits the input time series into several partitions  
(line 3), similar to the master Actor in the previous section. An array of futures  
(one future per partition) is created (line 4). Each future executes the data 
transformation, fct, to the partition assigned to the future (line 5) as the  
worker Actor did in the previous section.
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The compute method has the same purpose as the aggregate method in the 
master-workers design. The execution of the Actor is blocked until the Await class 
method (line 6) scala.concurrent.Await.result returns the result of each future 
computation. In the case of the discrete Fourier transform, the list of frequencies is 
transposed before the amplitude of each frequency is summed (7), as follows:

def compute(futures: Array[Future[DblSeries]]): Seq[Double] = {
  val results = futures.map(Await.result(_, timeout.duration))
  aggregate(results)
}

The following sequential diagram illustrates the blocking design and the activities 
performed by the Actor and the futures:

main
Transform

Futures

Future

[DblSeries]

split

fct.|>
Await.result

aggregate

Future

[DblSeries]

fct.|>

Start

transform

Sequential diagram for actor blocking on future results

Handling future callbacks
Callbacks are an excellent alternative to having the actor blocks on futures, as they 
can simultaneously execute other functions concurrently with the future execution.

There are two simple ways to implement the callback function:

•	 Future.onComplete

•	 Future.onSuccess and Future.onFailure

The onComplete callback function takes a function of type Try[T] => U as argument 
with an implicit reference to the execution context, as shown in the following code:

val f: Future[T] = future { executeSomeTask }
f onComplete {
  case Success(s) => { … }
  case Failure(e) => { … }
}
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You can surely recognize the {Try, Success, Failure} monad.

An alternative implementation is to invoke the onSuccess and onFailure methods 
that use partial functions as arguments to implement the callbacks, as follows:

f onFailure { case e: Exception => { … } }
f onSuccess { case t => { … } }

The only difference between blocking one future data transformation and handling 
callbacks is the implementation of the compute method or reducer. The class 
definition, message handler, and initialization of futures are identical, as shown  
in the following code:

def compute(futures: Array[Future[DblSeries]]): Seq[Double] = {
  val aggregation = new ArrayBuffer[DblSeries]
  futures.foreach(f => { 
    f onSuccess {  //1
      case data: DblSeries => aggregation.append(data)
    }
    f onFailure { //2
      case e: Exception => aggregation.append(XTSeries.empty)
    }
  })
  if( aggregation.find( _.isEmpty) == None) //3
     aggregate(aggregation.toArray)//4
  else Seq.empty
}

Each future calls the master Actor back with either the result of the data 
transformation, the onSuccess message (line 1), or an exception, the OnFailure 
message (line 2). If every future succeeds (line 3), the values of every frequency for 
all the partitions are summed (line 4). The following sequential diagram illustrates 
the handling of the callback in the master Actor:
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Transform

Futures

Future

[DblSeries]

split

fct.|>
Other tasks

aggregate

Future

[DblSeries]

fct.|>

Start

transform

onSuccess
onFailure

Sequential diagram for actor handling future result with Callbacks



Scalable Frameworks

[ 430 ]

Execution context

The Futures method requires that the execution context 
be implicitly provided by the developer. There are three 
different ways to define the execution context:

•	 Import the context:
import ExecutionContext.Implicits.global

•	 Create an instance of the context within the actor  
(or actor context):
implicit val ec = ExecutionContext.
fromExecutorService( … )

•	 Define the context when instantiating the future:
val f= Future[T] ={  } (ec)

Putting all together
Let's reuse the discrete Fourier transform. The client code uses the same synthetically 
created time series as with the master-worker test model.

The first step is to create a transform future for the discrete Fourier transform, 
DFTTransformFuture, as follows:

class DFTTransformFutures(xt: DblSeries, partitioner: Partitioner)
(implicit timeout: Timeout) 
        extends TransformFutures(xt, DFT[Double], partitioner)  {

  override def aggregate(xt: Array[DblSeries]): Seq[Double] = 
    xt.map(_.toArray).transpose.map(_.sum).toSeq
}

The only purpose of the DFTTransformFuture class is to define the aggregation 
method, aggregate, for the discrete Fourier transform, as follows:

import akka.pattern.ask
val duration = Duration(10000, "millis")
implicit val timeout = new Timeout(duration)
implicit val actorSystem = ActorSystem("system")

val xt = XTSeries[Double](Array.tabulate(NUM_DATAPOINTS)(h(_)))
val partitioner = new Partitioner(NUM_WORKERS)
   
val master = actorSystem.actorOf(Props(new DFTTransformFutures(xt, 
partitioner)), "DFTTransform")  //1
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val future = master ? Start //2
Await.result(future, timeout.duration) //3
actorSystem.shutdown //4

The master Actor is initialized as of the TransformFutures type with the input time 
series, xt; discrete Fourier transform, DFT; and partitioner as arguments (line 1).  
The program creates a future instance, by sending (ask) the Start message to 
master. The program blocks until the completion of the future (line 3), and then  
shuts down the Akka actor system (line 4).

Apache Spark
Apache Spark is a fast and general-purpose cluster computing system, initially 
developed as AMPLab / UC Berkley as part of the Berkeley Data Analytics Stack 
(BDAS), http://en.wikipedia.org/wiki/UC_Berkeley. It provides high-level 
APIs for the following programming languages that make large, concurrent parallel 
jobs easy to write and deploy [12:11]:

•	 Scala: http://spark.apache.org/docs/latest/api/scala/index.html
•	 Java: http://spark.apache.org/docs/latest/api/java/index.html
•	 Python: http://spark.apache.org/docs/latest/api/python/index.html

Link to latest information
The URLs as any reference to Apache Spark may change 
in future versions.

The core element of Spark is Resilient Distributed Dataset (RDD), which is a 
collection of elements partitioned across the nodes of a cluster and/or CPU cores of 
servers. An RDD can be created from a local data structure such as list, array, or hash 
table, from the local file system or the Hadoop Distributed File System (HDFS).

The operations on an RDD in Spark are very similar to the Scala higher-order 
methods. These operations are performed concurrently over each partition. 
Operations on RDD can be classified as follows:

•	 Transformation: This operation converts, manipulates, and filters the 
elements of an RDD on each partition

•	 Action: This operation aggregates, collects, or reduces the elements of the 
RDD from all partitions

An RDD can persist, be serialized, and be cached for future computation.
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Spark is written in Scala and built on top of Akka libraries. Spark relies on the 
following mechanisms to distribute and partition RDDs:

•	 Hadoop/HDFS for the distributed and replicated files system
•	 Mesos for management of cluster and shared pool of data nodes

The Spark ecosystem can be represented as stacks of technology and framework,  
as seen in the following diagram:

Spark-based applications

MLlib

MLBase
Graphx Streaming SparkSQL

Spark framework/RDD

Akka framework

Scala standard library

Hadoop HDFS

Mesos cluster manager

JVM

Operating System

Spark framework ecosystem

The Spark ecosystem has grown to support some machine-learning algorithms out of 
the box, MLlib; a SQL-like interface to manipulate datasets with relational operators, 
SparkSQL; a library for distributed graphs, GraphX; and a streaming library [12:12].

Why Spark
The authors of Spark attempt to address the limitations of Hadoop in terms of 
performance and real-time processing by implementing in-memory iterative 
computing, which is critical to most discriminative machine-learning algorithms. 
Numerous benchmark tests have been performed and published to evaluate the 
performance improvement of Spark relative to Hadoop. In the case of iterative 
algorithms, the time per iteration can be reduced by a ratio of 1:10 or more.

Spark provides a large array of prebuilt transforms and actions that go well beyond 
the basic map-reduce paradigm. Those methods on RDDs are a natural extension of 
the Scala collections, making code migration seamless for Scala developers.
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Finally, Apache Spark supports fault-tolerant operations by allowing RDDs to persist 
both in memory and in the filesystems. Persistency enables automatic recovery 
from node failures. The resiliency of Spark relies on the supervisory strategy of 
the underlying Akka actors, the persistency of their mailboxes, and the replication 
schemes of HDFS.

Design principles
The performance of Spark relies on four core design principles [12:13]:

•	 In-memory persistency
•	 Laziness in scheduling tasks
•	 Transform and actions applied to RDDs
•	 Implementation of shared variables

In-memory persistency
The developer can decide to persist and/or cache an RDD for future usage. An RDD 
may persist in memory only or on disk only—in memory if available, or on disk 
otherwise as deserialized or serialized Java objects. For instance, an RDD, rdd,  
can be cached through serialization through a simple statement, as shown in the 
following code:

rdd.persist(StorageLevel.MEMORY_ONLY_SER).cache

Kryo serialization
Java serialization through the Serializable interface is 
notoriously slow. Fortunately, the Spark framework allows the 
developer to specify a more efficient serialization mechanism such 
as the Kryo library.

Laziness
Scala supports lazy values natively. The left side of the assignment, which can either 
be a value, object reference, or method, is performed once, that is, the first time it is 
invoked, as shown in the following code:

class Pipeline {
  lazy val x = { println("x"); 1.5}
  lazy val m = { println("m"); 3}
  val n = { println("n"); 6}
  def f = (m <<1)
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  def g(j: Int) = Math.pow(x, j)
}
val pipeline = new Pipeline  //1
…
pipeline.g(pipeline.f)  //2

The order of the variables printed is n, m, and then x. The instantiation of the 
Pipeline class initializes n but not m or x. At a later stage, the g method is called, 
which in turn invokes the f method. The f method initializes the value m it needs, 
then g initializes x to compute its power to m<<1.

Spark applies the same principle to RDDs by executing the transformation only 
when an action is performed. In other words, Spark postpones memory allocation, 
parallelization, and computation until the driver code gets the result through the 
execution of an action. The cascading effect of invoking all these transformations 
backwards is performed by the direct acyclic graph scheduler.

Transforms and Actions
Spark is implemented in Scala, so you should not be too surprised that the most 
relevant Scala higher methods on collections are supported in Spark. The first table 
describes the transformation methods using Spark, as well as their counterparts in 
the Scala standard library. We use the (K, V) notation for (key, value) pairs.

Spark Scala Description
map(f) map(f) Transforms an RDD by executing the f function on 

each element of the collection.
filter(f) filter(f) Transforms an RDD by selecting the element for 

which the f function returns true.
flatMap(f) flatMap(f) Transforms an RDD by mapping each element to a 

sequence of output items.
mapPartitions(f) Executes the map method separately on each 

partition.
sample Samples a fraction of the data with or without a 

replacement using a random generator.
groupByKey groupBy Called on (K,V) to generate a new (K, Seq(V)) RDD.
union union Creates a new RDD as union of this RDD and the 

argument.
distinct distinct Eliminates duplicate elements from this RDD.
reduceByKey(f) reduce Aggregates or reduces the value corresponding to 

each key using the f function.
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Spark Scala Description
sortByKey sortWith Reorganizes (K,V) in an RDD by the ascending, 

descending, or otherwise specified order of the 
keys, K.

join Joins an RDD (K,V) with an RDD (K,W) to generate 
a new RDD (K, (V,W)).

coGroup Implements a join operation but generates an RDD 
(K, Seq(V), Seq(W)).

Action methods trigger the collection or the reduction of the datasets from all 
partitions back to the driver, as listed here:

Spark Scala Description
reduce(f) reduce(f) Aggregates all the elements of the RDD across all the 

partitions and returns a Scala object to the driver.
collect collect Collects and returns all the elements of the RDD 

across all the partitions as a list in the driver.
count count Returns the number of elements in the RDD to the 

driver.
first head Returns the first element of the RDD to the driver.
take(n) take(n) Returns the first n elements of the RDD to the driver 

.
takeSample Returns an array of random elements from the RDD 

back to the driver.
saveAsTextFile Writes the elements of the RDD as a text file in either 

the local files system or HDFS.
countByKey Generates a (K, Int) RDD with the original keys, K, 

and the count of values for each key.
foreach foreach Executes a T=> Unit function on each elements of the 

RDD.

Scala methods such as fold, find, drop, flatten, min, max, and sum are not 
currently implemented in Spark. Other Scala methods such as zip have to be  
used carefully, as there is no guarantee that the order of the two collections in  
zip is maintained between partitions.
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Shared variables
In a perfect world, variables are immutable and local to each partition to avoid 
race conditions. However, there are circumstances where variables have to be 
shared without breaking the immutability provided by Spark. To this extent, Spark 
duplicates shared variables and copies them to each partition of the dataset. Spark 
supports the following types of shared variables:

•	 Broadcast values: These values encapsulate and forward data to all  
the partitions

•	 Accumulator variables: These variables act as summations or reference counters

The four design principles can be summarized in the following diagram:

Spark Driver

Spark Partitions

Data nodes

Data

4. computation

1. parallelize

3. action

(reducer)

5. parallelize

6. broadcast

7. action

2. transform (mapper)

RDD

Data

Data

Data

RDD

RDD

RDD

Variable

Interaction between Spark driver and RDDs

The preceding diagram illustrates the most common interaction between the Spark 
driver and its workers, as listed in the following steps:

1.	 The input data, residing in either memory as a Scala collection or HDFS as  
a text file, is parallelized and partitioned into an RDD

2.	 A transformation function is applied on each element of the dataset across all 
the partitions

3.	 An action is performed to reduce and collect the data back to the driver
4.	 The data is processed locally within the driver
5.	 A second parallelization is performed to distribute computation through  

the RDDs
6.	 A variable is broadcast to all the partitions as an external parameter of the 

last RDD transformation
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7.	 Finally, the last action aggregates and collects the final result back in  
the driver

If you look closely, the management of datasets and RDDs by the Spark driver is not 
very different from that by Akka master and worker actors of futures.

Experimenting with Spark
Spark's in-memory computation for iterative computing makes it an excellent 
candidate to distribute the training of machine learning models, implemented 
with dynamic programming or optimization algorithms. Spark runs on Windows, 
Linux, and Mac OS operating systems. It can be deployed either in local mode for a 
single host, or master mode for a distributed environment. The version of the Spark 
framework used is 1.1.

Scala- and Java SE-compatible versions
At the time of writing, the version of Spark 1.0.0 required Java 
1.7+ and Scala 2.10.2 or 2.10.3. Spark 1.1 is compatible with 
both Java 1.7 and 1.8 and Scala 2.10.4 and 2.11.1.

Deploying Spark
The easiest way to learn Spark is to deploy a localhost in standalone mode. You can 
either deploy a precompiled version of Spark from the website, or build the JAR files 
using the simple build tool (sbt) or maven [12:14] as follows:

1.	 Go to the download page at http://spark.apache.org/downloads.html.
2.	 Choose a package type (Hadoop distribution). The Spark framework relies 

on HDFS to run in cluster mode; therefore, you need to select a distribution 
of Hadoop, or an open source distribution, MapR or Cloudera.

3.	 Download and decompress the package.
4.	 If you are interested in the latest functionality added to the framework, check 

out the newest source code at https://github.com/apache/spark.git.
5.	 Next, you need to build, or assemble, the Apache Spark libraries from the 

top-level directory using either Maven or sbt:
°° Maven: Set the following maven options to support build, 

deployment, and execution:
MAVEN_OPTS="-Xmx4g -XX:MaxPermSize=512M 
-XX:ReservedCodeCacheSize=512m"

mvn –DskipTests clean package
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°° Simple build tool: Use the following command:
sbt/sbt assembly

Installation instructions
The directory and name of artifacts used in Spark will undoubtedly 
change over time. Please refer to the documentation and installation 
guide for the latest version of Spark.

Using Spark shell
Use any of the following methods to use the Spark shell:

•	 The shell is an easy way to get your feet wet with Spark-resilient distributed 
datasets (RDD). To launch the shell locally, execute ./bin/spark-shell –
master local[8] to execute the shell on an 8-core localhost.

•	 To launch a Spark application locally, connect with the shell and execute the 
following command line:
./bin/spark-submit --class application_class --master local[4] 
--executor-memory 12G  --jars myApplication.jar –class myApp.class

The command launches the application, myApplication,  with the main 
method, myApp.main, on a 4-core CPU local host, and 12 GB of memory.

•	 To launch the same Spark application remotely, connect with the shell 
execute the following command line:
./bin/spark-submit --class application_class --master 
spark://162.198.11.201:7077 –total-executor-cores 80  --executor-
memory 12G  --jars myApplication.jar –class myApp.class

Partial screenshot of Spark shell
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Potential pitfalls with Spark shell
Depending on your environment, you might need to disable 
logging information into the console by reconfiguring conf/
log4j.properties. The Spark shell might also conflict with the 
declaration of classpath in the profile or the environment variables 
list. In this case, it has to be replaced by ADD_JARS as environment 
variable as ADD_JARS = path1/jar1, path2/jar2.

MLlib
MLlib is a scalable machine learning library built on top of Spark. As of version 1.0, 
the library is a work in progress.

The main components of the library are as follows:

•	 Classification algorithms, including logistic regression, Naïve Bayes, and 
support vector machines

•	 Clustering limited to K-means in version 1.0
•	 L1 and L1 regularization 
•	 Optimization techniques such as gradient descent, logistic gradient and 

stochastic gradient descent, and L-BFGS.
•	 Linear algebra such as singular value decomposition
•	 Data generator for K-means, logistic regression, and support vector machines

The machine learning bytecode is conveniently included in the Spark assembly JAR 
file built with the simple build tool.

RDD generation
The transformation and actions are performed on RDDs. Therefore, the first step is 
to create a mechanism to facilitate the generation of RDDs from a time series. Let's 
create an RDDSource singleton with a convert method that transforms a time series, 
xt, into an RDD, as shown here:

def convert(xt: XTSeries[DblVector], rddConfig: RDDConfig)(implicit 
sc: SparkContext): RDD[DblVector] = {
  val rdd: = sc.parallelize(xt.toArray
                              .map(new DenseVector( _ ))) //1
  rdd.persist(rddConfig.persist) //2
  if( rddConfig.cache)  rdd.cache  //3
  rdd
}



Scalable Frameworks

[ 440 ]

The last parameter, rddConfig, specifies the configuration for the RDD. In this 
example, the configuration of the RDD consists of enabling/disabling cache and 
selecting the persistency model, as follows:

case class RDDConfig(val cache: Boolean, val persist: StorageLevel)

It is fair to assume that SparkContext has already been implicitly defined in a 
manner quite similar to ActorSystem in the Akka framework.

The generation of the RDD is performed in the following steps:

1.	 Create an RDD by using the parallelize method of the context and converting 
into a vector (SparseVector or DenseVector) (line 1)

2.	 Specify the persistency model or the storage level if the default level needs to 
be overridden for the RDD (line 2)

3.	 Specify whether the RDD has to persist in memory (line 3)

Alternative for the creation of an RDD
An RDD can be generated from data loaded from either 
the local filesystems or HDFS using the SparkContext.
textFile method that returns an RDD of string.

Once the RDD is created, it can be used as an input for any algorithm defined as a 
sequence of transformation and actions. Let's experiment with the implementation of 
the K-means algorithm in Spark/MLlib.

K-means using Spark
The first step is to create a SparkKMeansConfig class to define the configuration of 
the Apache Spark K-means algorithm, as follows:

class SparkKMeansConfig(K: Int, maxIters: Int, numRuns: Int =1) {
  val kmeans: KMeans = {
     val kmeans = new KMeans
     kmeans.setK(K) //4
     kmeans.setMaxIterations(maxIters)  //5
     kmeans.setRuns(numRuns) //6
     kmeans
  }
}
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The minimum set of initialization parameters for MLlib K-means algorithm is  
as follows:

•	 Number of clusters, K (line 4)
•	 Maximum number iterations for the reconstruction of the total error, 

maxIters (line 5)
•	 The number of training runs, numRuns (line 6)

The SparkKMeans class wraps the Spark KMeans into a data transformation of type 
PipeOperator so that it can be used in a computation workflow. The class follows 
the design template for classifier as explained in the Design template for classifiers 
section in Appendix A, Basic Concepts.

class SparkKMeans(config: SparkKMeansConfig, rddConfig: RDDConfig, xt: 
XTSeries[DblVector])(implicit sc: SparkContext) 
   extends PipeOperator[DblVector, Int] {
  val model = config.kmeans.run(RDDSource.convert(xt, rddConfig))
  …
}

The constructor takes three arguments: the Apache Spark KMeans configuration, 
config; the RDD configuration, rddConfig; and the input time series to clustering, 
xt. The generation of model merely consists of converting the time series xt into an 
RDD using rddConfig and invoking MLlib KMeans.run. Once created, the clusters 
(KMeansModel) are available for predicting new observation, obs, as follows:

def |> : PartialFunction[DblVector, Int] = {
  case x: DblVector if(x!= null && x.size>0 && model != null) =>
    model.predict(new DenseVector(x))
}

The prediction method, |>, returns the index of the cluster of observations.

Finally, let's write a simple client program to exercise the SparkKMeans model using 
the trading volume of each trading session, and the volatility of the price of the stock 
during the session:

val K = 8; val MAXITERS = 100; val NRUNS = 16
val PATH = "resources/data/chap12/CSCO.csv"
val CACHE = true
val extractors = List[Array[String] => Double](
   YahooFinancials.volatility, YahooFinancials.volume) //7
)
val input = DataSource(PATH, true) |> extractors //8

val volatilityVol = input(0).zip(input(1)) //9
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                             .map(x => Array[Double](x._1, x._2))
   
implicit val sc = new SparkContext("Local","SparkKMeans") //10
val config = new SparkKMeansConfig(K, MAXITERS, NRUNS)
val rddConfig = RDDConfig(CACHE , StorageLevel.MEMORY_ONLY)
val xt = XTSeries[DblVector](volatilityVol)

val sparkKMeans = SparkKMeans(config, rddConfig, xt) //11
val obs = Array[Double](0.23, 0.67)
val clusterId = sparkKMeans |> obs//12
Display.show(s"cluster = $clusterId", logger) 

The first step is to define the variable to be extracted from the CSV file (line 7). The 
spark context is created (line 10) once the volatility and volume are extracted (line 8) 
and zipped (line 9). The K-means wrapper, sparkKMeans, is initialized (line 11). The 
final step consists of correctly predicting the cluster for a new observation (line 12).

Performance evaluation
Let's execute the normalization of the cross-validation group on an 8-core CPU 
machine with 32 GB of RAM. The data is partitioned with a ratio of two partitions 
per CPU core.

Meaningful performance test
The scalability test should be performed with a large number of 
data points (normalized volatility, normalized volume), in excess 
of 1 million in order to be meaningful.

The actual values of the data points have no bearing on the overall performance of 
the Spark cluster.

Tuning parameters
The performance of a Spark application depends greatly on the configuration 
parameters. Selecting the appropriate value for those configuration parameters in 
Spark can be overwhelming—there are 54 configuration parameters as of the last 
count. Fortunately, the majority of those parameters have relevant default values. 
However, there are few parameters that deserve your attention, including:

•	 Number of cores available to execute transformation and actions on RDDs: 
config.cores.max.
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•	 Memory available for the execution of the transformation and actions spark.
executor.memory. Setting the value as 60 percent of the maximum JVM heap 
is a generally a good compromise.

•	 Number of concurrent tasks to use across all the partitions for shuffle-related 
operations, they use key such as reduceByKey: spark.default.parallelism. 
The recommended formula is parallelism = total number of cores x 2. The value 
of the parameter can be overridden with the spark.reduceby.partitions 
parameter for specific RDD reducers.

•	 Flag to compress serialized RDD partition for MEMORY_ONLY_SER: spark.
rdd.compress. The purpose is to reduce memory footprints at the cost of 
extra CPU cycles.

•	 Maximum size of message containing the results of an action sent to the 
spark.akka.frameSize driver. This value has to be increased if a collection 
may potentially generate a large size array.

•	 Flag to compress large size broadcasted spark.broadcast.compress 
variables. It is usually recommended.

Tests
The purpose of the test is to evaluate how the execution time is related to the size  
of the training set. The test executes K-means from MLlib library on the volatility 
and trading session volume on Bank of America (BAC) stock over the following 
periods: 3 months, 6 months, 12 months, 24 months, 48 months, 60 month, 72 month, 
96 months, and 120 months.

The following configuration is used to perform the training of the K-means: 10 
clusters, 30 maximum iterations, and 3 runs. The test is run on a single host with 
8-CPU cores and 32 GB RAM.

The test was conducted with the following values of parameters:

•	 StorageLevel = MEMORY_ONLY

•	 spark.executor.memory=12G

•	 spark.default.parallelism = 48

•	 spark.akka.frameSize = 20

•	 spark.broadcast.compress=true

•	 No serialization
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The first step after executing a test for a specific dataset is to log in to the Spark 
monitoring console at http://host_name:4040/stages:

Average duration of K-means clustering versus size of trading data in months

Obviously, each environment produces somewhat different performance results,  
but confirms that the time complexity of the Spark K-means is a linear function  
of the training set.

Evaluation in distributed environment
A Spark deployment on multiple hosts would add latency 
of the TCP communication to the overall execution time. 
The latency is related to the collection of the results of the 
clustering back to the Spark driver, which is negligible and 
independent of the size of the training set.

Performance considerations
This test barely scratches the surface of the capabilities of Apache Spark. The 
following are the lessons learned from personal experience in order to avoid the 
most common performance pitfalls when deploying Spark 1.1:

•	 Get acquainted with the most common Spark configuration parameters 
regarding partitioning, storage level, and serialization.

•	 Avoid serializing complex or nested objects unless you use an effective Java 
serialization library such as Kryo.

•	 Look into defining your own partitioning function to reduce large key-value 
pair datasets. The convenience of reduceByKey has its price. The ratio of 
number of partitions to number of cores has an impact on the performance of 
a reducer using key.
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•	 Avoid unnecessary actions such as collect, count, or lookup. An action 
reduces the data residing in the RDD partitions, and then forwards it to the 
Spark driver. The Spark driver (or master) program runs on a single JVM 
with limited resources.

•	 Relies on shared or broadcast variables whenever necessary. Broadcast 
variables, for instance, improve the performance of operations on multiple 
datasets with very different sizes. Let us consider the common case of joining 
two datasets of very different sizes. Broadcasting the smaller dataset to each 
partition of the RDD of the larger dataset is far more efficient than converting 
the smaller dataset into an RDD and executing a join operation between the 
two datasets.

•	 Use an accumulator variable for summation as it is faster than using a reduce 
action on an RDD.

Pros and cons
An increasing number of organizations are adopting Spark as their distributed data 
processing platform for real-time, or pseudo real-time operations. There are several 
reasons for the fast adoption of Spark:

•	 Supported by a large and dedicated community of developers [12:15]
•	 In-memory persistency is ideal for iterative computation found in machine 

learning and statistical inference algorithms
•	 Excellent performance and scalability that can be extended with the 

Streaming module
•	 Apache Spark leverages Scala functional capabilities and a large number of 

open source Java libraries
•	 Spark can leverage the Mesos cluster manager, which reduces the complexity 

of defining fault-tolerance and load balancing between worker nodes
•	 Spark is to be integrated with commercial Hadoop vendors such as Cloudera

However, no platform is perfect and Spark is no exception. The most common 
complaints or concerns regarding Spark are:

•	 Creating a Spark application can be intimidating for a developer with no 
prior knowledge of functional programming.

•	 The integration with the database has been somewhat lagging, relying 
heavily on Hive. The Spark development team has started to address  
these limitations with the introduction of SparkSQL.
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0xdata Sparkling Water
Sparkling water is an initiative to integrate 0xdata H2O with Spark and complement 
MLlib [12:16]. H2O from 0xdata is a very fast, open source, in-memory platform 
for machine learning for very large datasets, http://0xdata.com/product/. The 
framework is worth mentioning for the following reasons:

•	 It has a Scala API
•	 It is fully dedicated to machine learning and predictive analytics
•	 It leverages both the frame data representation of H2O and in-memory 

clustering of Spark

H2O has an extensive implementation of the generalized linear model and gradient 
boosted classification, among other goodies. Its data representation consists of 
hierarchical data frames. A data frame is a container of vectors potentially shared 
with other frames. Each vector is composed of data chunks, which themselves are 
containers of data elements [12:17]. At the time of writing, Sparkling Water is in  
beta version.

Summary
This completes the introduction of the most common scalable frameworks built 
using Scala. It is quite challenging to describe frameworks such as Akka and Spark, 
as well as new computing models such as Actors, Futures, and RDDs, in a few pages. 
This chapter should be regarded as an invitation to further explore the capabilities of 
those frameworks in both a single host and a large deployment environment.

In this last chapter, we learned:

•	 The benefits of asynchronous concurrency
•	 The essentials of the actor model, composing futures with blocking or 

callback modes
•	 How to implement a simple Akka cluster to squeeze performance of 

distributed applications
•	 The ease and blazing performance of Spark's resilient distributed datasets 

and the in-memory persistency approach



Basic Concepts
Machine learning algorithms make significant use of linear algebra and optimization 
techniques. Describing the concepts and the implementation of linear algebra, calculus, 
and optimization algorithms in detail would have added significant complexity to the 
book and distracted the reader from the essence of machine learning.

This appendix lists a set of basic elements of linear algebra and optimization 
mentioned throughout the book. It also summarizes the coding practices that have 
been covered, and acquaints the reader with basic knowledge of financial analysis.

Scala programming
The following is a partial list of coding practices and design techniques used 
throughout the book.

List of libraries
The libraries directory contains the JAR files related to the third-party libraries or 
frameworks used in this book. Not all libraries are needed for every chapter. The list 
is as follows:

•	 Apache Commons Math 3.3 in Chapter 3, Data Preprocessing; Chapter 4, 
Unsupervised Learning; and Chapter 6, Regression and Regularization

•	 JFChart 1.0.1 in Chapter 1, Getting Started; Chapter 2, Hello World!; Chapter 5, 
Naïve Bayes Classifiers; and Chapter 9, Artificial Neural Networks

•	 Iitb CRF 0.2 (including L-BFGS and Colt libraries) in Chapter 7, Sequential  
Data Models

•	 LIBSVM 0.1.6 in Chapter 8, Kernel Models and Support Vector Machines
•	 Akka framework 2.2.4 in Chapter 12, Scalable Frameworks
•	 Apache Spark/MLlib 1.1 in Chapter 12, Scalable Frameworks
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Note for Spark developers
The Scala library and compiler JAR files bundled with the assembly 
JAR file of Apache Spark contain a version of the Scala standard 
library and compiler JAR file that may conflict with an existing 
Scala library (for example, Eclipse default ScalaIDE library).

Format of code snippets
For the sake of readability of the implementation of algorithms, all non-essential 
pieces of code such as error checking, comments, exceptions, or imports have been 
omitted. The following code elements have been discarded in the code snippets presented in 
the book:

•	 Comments:
// The MathRuntime exception has to be caught here!

•	 Validation of class parameters and method arguments:
class BaumWelchEM(val lambda: HMMLambda ...) {
require( lambda != null, "Lambda model is undefined")

•	 Class qualifiers such as final, private, and so on:
final protected class MLP[T <% Double] …

•	 Method qualifiers and access controls (final, private, and so on):
final def inputLayer: MLPLayer
private def recurse: Unit =

•	 Java-style exceptions:
try { … }
catch { case e: ArrayIndexOutOfBoundsException  => … }
if (y < EPS)
   throw new IllegalStateException( … )

•	 Scala-style exceptions:
Try(process(args)) match {
   case Success(results) => …
   case Failure(e) => …
}

•	 Non-essential annotations:
@inline def mean = { … }
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•	 Logging and debugging code:
m_logger.debug( …)
Console.println( … )

•	 Auxiliary methods not essential to the understanding of an algorithm

Encapsulation
One important objective while creating an API is reducing access to supporting or 
helper classes. There are two options to encapsulate helper classes, as follows:

•	 Package scope: In this, the supporting classes are first-level classes with 
protected access

•	 Class or object scope: In this, the supported classes are nested in the  
main class

The algorithms presented in this book follow the first encapsulation pattern.

Class constructor template
The constructors of a class are defined in the companion object using apply and the 
class has package scope (protected):

protected class MyClass[T](val x: X, val y: Y,…) { … } 
object MyClass {
  def apply[T](x: X, y:Y, ..): MyClass[T] = new MyClass(x,y,..)
  final val y0 = ..
  def apply[T](x: , ..): MyClass[T] = new MyClass(x, y0, …)
}

For example, the configuration of the support vector machine classifier is defined  
as follows:

protected class SVMConfig(val formulation: SVMFormulation, val kernel: 
SVMKernel, val svmExec: SVMExecution) extends Config 

Its constructors are defined as follows:

object SVMConfig {
   val DEFAULT_CACHE = 25000
   val DEFAULT_EPS = 1e-15
   …
   def apply(svmType: SVMFormulation, kernel: SVMKernel, svmExec: 
SVMExecution): SVMConfig = new SVMConfig(svmType, kernel, svmExec)
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   def apply(svmType: SVMFormulation, kernel: SVMKernel): SVMConfig 
= new SVMConfig(svmType, kernel, new SVMExecution(DEFAULT_CACHE, 
DEFAULT_EPS, -1))
}

Companion objects versus case classes
In the preceding example, the constructors are explicitly defined in the companion 
object. Although the invocation of the constructor is very similar to the instantiation 
of case classes, there is a major difference—the Scala compiler generates several 
methods to manipulate an instance as regular data (equals, copy, hash, and so on).

Case classes should be reserved for single-state data objects, that is, objects with  
no methods.

Enumerations versus case classes
It is not uncommon to read or hear discussions regarding the relative merit of 
enumerations and pattern matching with case classes in Scala [A:1]. As a very 
general guideline, enumeration values can be regarded as lightweight case  
classes or case classes can be considered as heavyweight enumeration values.

Let's take an example of a Scala enumeration that consists of evaluating the uniform 
distribution of scala.util.Random:

object MyEnum extends Enumeration {
  type TMyEnum = Value
  val A, B, C = Value
}

import MyEnum._
val counters = Array.fill(MyEnum.maxId+1)(0)
Range(0, 1000).foreach( _ => Random.nextInt(10) match {
  case 3 => counters(A.id) += 1
  …
  case _ => { }
})

The previous pattern matching is very similar to the switch statement of Java.
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Let's consider the following example of pattern matching using case classes that 
selects a mathematical formula according to the input:

package MyPackage {
  sealed abstract class MyEnum(val level: Int)
  case class A extends MyEnum(3) { def f =(x:Double) => 23*x}
  …
}

import MyPackage._
def compute(myEnum: MyEnum, x: Double): Double = myEnum match {
   case a: A => a.f(x)
   …
}

The previous pattern matching is performed using the default equals method, whose 
byte code is automatically set for each case class. This approach is far more flexible 
than simple enumeration, at the cost of extra computation cycles.

The advantages of using enumerations over case classes are as follows:

•	 Enumerations involve less code for a single attribute comparison
•	 Enumerations are more readable, especially for Java developers

The advantages of using case classes are as follows:

•	 Case classes are data objects and support more attributes than  
enumeration IDs

•	 Pattern matching is optimized for sealed classes as the Scala compiler is 
aware of the number of cases

In a nutshell, you should use enumeration for single value constants and case  
classes to match data objects.

Overloading
Contrary to C++, Scala does not actually overload operators. Here is the meaning  
of the operators used in code snippets:

•	 +=: This adds an element to a collection or container.
•	 +: This sums two elements of the same type.
•	 |>: This transforms a collection of data. It is also known as pipe operator.  

The type of output collections and elements can be different from that of  
the input.
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Design template for classifiers
The machine learning algorithms described in this book use the following  
design pattern:

•	 A model instance that implements the Model trait is created through training 
during the initialization of the classifier

•	 All configuration parameters are encapsulated into a single configuration 
class inheriting the Config trait

•	 The predictive or classification routine is implemented as a data 
transformation extending the PipeOperator trait

•	 The classifier takes at least three parameters: configuration instance,  
a features set or time series, and a labeled dataset

Have a look at the following diagram:

XComponent2

XComponent1

Config Model

XModelX

XConfig XTSeries DblVector

PipeOperator

model

config xt labels
1

1+

1 1

1

1+

1 1

1

A generic UML class diagram for classifiers

For example, the key components of the support vector machine package are  
as follows:

final protected class SVM[T <% Double](val config: SVMConfig, val xt: 
XTSeries[Array[T]], val labels: DblVector) 
           extends PipeOperator[Array[T], Double] {
  val model: Option[SVMModel] = { … }
  override def |> (x: Feature): Option[Double] = { prediction }
  …
}

final protected class SVMConfig(val formulation: SVMFormulation, val 
kernel: SVMKernel, val svmExec: SVMExecution) extends Config
protected class SVMModel(val params: (svm_model, Double)) extends 
Model



Appendix A

[ 453 ]

The two data inputs required to train a model are the configuration of the classifier 
(config) and the training set (xt and labels). Once trained and validated, the 
model is available for prediction or classification.

This design has the main advantage of reducing the life cycle of the classifier;  
a model is either defined, available for classification, or is not created.

Implementation considerations
The validation phase is omitted in most of the practical 
examples throughout this book for the sake of readability.

Data extraction
A CSV file is the most common format used to store historical financial data. It is the 
default format used to import data throughout this book:

type Fields = Array[String]
class DataSource(pathName: String, 
                normalize: Boolean, 
                reverseOrder: Boolean,
                headerLines: Int = 1, 
                srcFilter: Option[Fields=>Boolean]) 
  extends PipeOperator[List[Fields =>Double], List[DblVector]]

The parameters for the DataSource class are as follows:

•	 pathName: This is the relative pathname of a data file to be loaded if the 
argument is a file, or the directory containing multiple input data files. Most 
of the files are CSV files.

•	 normalize: This is a flag to specify if the data has to be normalized  
over [0, 1].

•	 reverseOrder: This is a flag to specify whether the order of the data in the 
file has to be reversed—for example, time series—if its value is true.

•	 headerLines: This specifies the number of lines for column headers  
and comments.

•	 srcFilter: This is a filter or condition for some of the row fields to skip the 
data set, for example, missing data or incorrect format.
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The most important method of DataSource is the following data transformation 
from a file to a typed time series (XTSeries[T]) implemented as the pipe operator 
method. The method takes the extractor from a row of literal values to Double 
floating-point values:

def |> : PartialFunction[List[Fields=>Double],List[DblVector]] ={
  case extr: List[Fields=>Double] if(extr!=null && extr.size>0)=> 
   load match {   //1
    case Some(data) => {
      if( normalize)  // 2
        extr.map(t=>Stats[Double](data._2.map(t(_))) //3
                                         .normalize) //4
      else extr.map(t => data._2.map(t(_)))
    }
    …
}

The data is loaded from the file and converted into a list of vectors using the 
extractor, extr (line 1). The data is normalized if required (line 2) by converting  
each literal to a floating point value and a Stats object is created (line 3). Finally,  
the Stats instance normalizes the sequence of floating-point values (line 4).

A second data transformation consists of transforming a single literal per row to 
create a time series of single variables:

def |> (extr: Fields => Double): Option[XTSeries[Double]]

Data sources
The examples in this book rely on three different sources of financial data using  
CSV format:

•	 YahooFinancials for Yahoo schema for historical stock and ETF price
•	 GoogleFinancials for Google schema for historical stock and ETF price
•	 Fundamentals for fundamental financial analysis ratio (CSV file)

Let's illustrate the extraction from a data source using YahooFinancials as  
an example:

object YahooFinancials extends Enumeration {
   type YahooFinancials = Value
   val DATE, OPEN, HIGH, LOW, CLOSE, VOLUME, ADJ_CLOSE = Value
   val adjClose = ((s: Fields) => s(ADJ_CLOSE.id).toDouble)
   …
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   def toDouble(v: Value): Fields => Double = 
               (s: Fields) => s(v.id).toDouble
   
   def vol: Fields => Double = (s: Fields) => {
     s(HIGH.id).toDouble/s(LOW.id).toDouble -1.0) * s(VOLUME.id).
toDouble)
  }
   …
}

Let's look at an example of application of a DataSource transformation: loading 
historical stock data from the Google finance website. The data is downloaded 
as a CSV-formatted file. The first step is to specify the column name using an 
enumeration singleton, YahooFinancials:

object GoogleFinancials extends Enumeration {
   type GoogleFinancials = Value
   val DATE, OPEN, HIGH, LOW, CLOSE, VOLUME = Value
   val close = ((s: Fields) => s(CLOSE.id).toDouble)//5
   …
}

Each column is associated with an extractor function (line 5). Consider the  
following code:

val symbols = Array[String]("CSCO", ...)  //6
val prices = symbols
            .map(s => DataSource(path+s+".csv",true,true,1))//7
            .map( _ |> YahooFinancials.close ) //8

The list of stocks for which the historical data has to be downloaded is defined as 
an array of symbols (line 6). Each symbol is associated with a CSV file (for example, 
CSCO is associated with resources/CSCO.csv) (line 7). Finally, the YahooFinancials 
extractor for the close price is invoked (line 8).

Extraction of documents
The DocumentsSource class is responsible for extracting the date, title, and content 
of a list of text documents or text files. This class does not support HTML documents:

class DocumentsSource(val pathName: String)
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The extraction of terms is performed by the data transformation |>, as follows:

def |> : Corpus = {
  filesList.map( fName => {
    val src = Source.fromFile(pathName + fName) //1
    val fieldIter = src.getLines //2

    val date = nextField(fieldIter)
    val title = nextField (fieldIter)
    val content = fieldIter.foldLeft(new StringBuilder)((b, str) 
                          => b.append(str.trim)) //3
    src.close //4
    if(date == None || title == None)
       throw new IllegalStateException( … )  //6
    (date.get, title.get, content.toString) //5
  })
}

This method loads the text files for each filename in the list, filesList (line 1).  
It gets a reference to the document lines iterator, fieldIter (line 2). The iterator is 
used to extract (line 3) and return the tuple (document date, document title, document 
content) (line 5) once the file handle is closed (line 4). An IllegalStateException 
is thrown and caught if the text file is malformed. The nextField method moves the 
iterator forward to the next non-null line:

def nextField(iter: Iterator[String]): Option[String] = 
   iter.find(s=> (s != null && s.length > 1)

Matrix class
Some discriminative learning models require operations performed on rows and 
columns of the matrix. The parameterized Matrix class facilitates the read/write 
operations on columns and rows:

class Matrix[@specialized(Double, Int) T: ClassTag](val nRows: Int, 
val nCols: Int, val data:Array[T])(implicit f: T => Double){
   def apply(i: Int, j: Int): T = data(i*nCols+j)
   def cols(i: Int): Array[T] = { 
      (i until data.size by nCols)
            .map(data(_)).toArray
   }
   ...
   def += (i: Int, j : Int, t: T): Unit = data(i*nCols +j) = t
   def += (iRow: Int, t: T): Unit = {
     val i = iRow*nCols



Appendix A

[ 457 ]

     Range(0, nCols).foreach(k => data(i + k) =t)
   }
   def /= (iRow: Int, t: T)(implicit g: Double => T): Unit =  {
     val i = iRow*nCols
     Range(0, nCols).foreach(k => data(i + k) /= t)
   }
}

The apply method returns an element. Similarly, the cols method returns a column. 
The write methods consist of updating an element or a column of elements (+=) with a 
value and dividing the elements of a column by a value (/=). The matrix is specialized 
with the type Double in order to generate a dedicated byte code for this type.

The generation of the transpose matrix is performed by the transpose method.  
It is an alternative to the Scala methods Array.transpose and List.transpose:

def transpose: Matrix[T] = {
  val m = Matrix[T](nCols, nRows)
  Range(0, nRows).foreach(i => {
    val col = i*nCols
    Range(0, nCols).foreach(j => m += (j, i, data(col+j)))
  })
  m
}

The constructors of the Matrix class are defined by its companion object:

def apply[T: ClassTag](nR: Int, nC: Int, data: Array[T])
        (implicit f: T => Double): Matrix[T] = 
           new Matrix(nRows, nCols, data)

Mathematics
This section describes very briefly some of the mathematical concepts used in  
this book.

Linear algebra
Many algorithms used in machine learning such as minimization of a convex  
loss function, principal component analysis, or least squares regression invariably 
involve manipulation and transformation of matrices. There are many good books  
on the subject, from the inexpensive [A:2] to the sophisticated [A:3].
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QR Decomposition
QR decomposition (or QR factorization) is the decomposition of a matrix A into a 
product of an orthogonal matrix Q and upper triangular matrix R. So, A=QR and 
QTQ=I [A:4].

The decomposition is unique if A is a real, square, and invertible matrix. In the case 
of a rectangle matrix A, m by n with m > n, the decomposition is implemented as 
the dot product of two vectors of matrix A = [Q1, Q2].[R1, R2]T, where Q1 is an m by n 
matrix, Q2 is an m by n matrix, R1 is an n by n upper triangular matrix, and R2 is an m 
by n null matrix.

QR decomposition is a reliable method of solving a large system of linear equations 
in which the number of equations (rows) exceeds the number of variables (columns). 
Its asymptotic computational time complexity for a training set of m dimensions and  
n observations is O(mn2-n3/3).

It is used to minimize the loss function for ordinary least squares regression (refer to the 
Ordinary least squares (OLS) regression section of Chapter 6, Regression and Regularization).

LU factorization
LU factorization is a technique used to solve a matrix equation A.x = b where A 
is a non-singular matrix and x and b are two vectors. The technique consists of 
decomposing the original matrix A as the product of simple matrices A = A1A2…An.  
It is of two types as follows:

•	 Basic LU factorization: This defines A as the product of a unit lower 
triangular matrix L and a upper triangular matrix U. So, A = LU.

•	 LU factorization with pivot: This defines A as the product of a permutation 
matrix P, a unit lower triangular matrix L, and an upper triangular matrix U. 
So, A = PLU.

LDL decomposition
LDL decomposition for real matrices defines a real positive matrix A as the product 
of a lower unit triangular matrix L, a diagonal matrix D, and the transposed matrix of 
L, that is LT. So, A = LDLT.

Cholesky factorization
The Cholesky factorization or Cholesky decomposition of real matrices is a special 
case of LU factorization [A:4]. It decomposes a positive definite matrix A into a 
product of a lower triangular matrix L and its conjugate transpose LT. So, A = LLT.
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The asymptotic computational time complexity for the Cholesky factorization is 
O(mn2), where m is the number of features (model parameters) and n is the number 
of observations. Cholesky factorization is used in the linear least squares Kalman 
filter (refer to the The recursive algorithm section of Chapter 3, Data Preprocessing.

Singular value decomposition
The singular value decomposition (SVD) of real matrices defines an m by n real 
matrix A as the product of an m square real unitary matrix U, an m by n rectangular 
diagonal matrix Σ, and the transpose VT matrix of a real matrix. So, A=UΣVT.

The columns of the matrices U and V are the orthogonal bases and the value of  
the diagonal matrix Σ is a singular value [A:4]. The asymptotic computational time 
complexity for the singular value decomposition for n observations and m features  
is O(mn2-n3). Singular value decomposition is used to minimize the total least squares 
and solve homogeneous linear equations.

Eigenvalue decomposition
The Eigen decomposition of a real square matrix A is the canonical factorization  
as Ax = λx.

λ is the eigenvalue (scalar) corresponding to the vector x. The n by n matrix A is 
then defined as A = QDQT. Q is the square matrix that contains the eigenvectors 
and D is the diagonal matrix whose elements are the eigenvalues associated to the 
eigenvectors [A:5], [A:6]. Eigen decomposition is used in Principal Components 
Analysis (refer to the Principal components analysis (PCA) section of Chapter 4, 
Unsupervised Learning).

Algebraic and numerical libraries
There are many more open source algebraic libraries available to developers as  
APIs besides Apache Commons Math, which is used in Chapter 3, Data preprocessing; 
Chapter 5, Naïve Bayes Classifiers, and Chapter 6, Regression and Regularization, and 
Apache Spark/MLlib used in Chapter 12, Scalable Frameworks. They are as follows:

•	 jBlas 1.2.3 (Java) created by Mikio Braun under the BSD revised license. 
This library provides Java and Scala developers a high-level Java interface to 
BLAS and LAPACK. It is available at https://github.com/mikiobraun/
jblas.

•	 Colt 1.2.0 (Java) is a high-performance scientific library developed at CERN 
under the European Organization for Nuclear Research license. It is available 
at http://acs.lbl.gov/ACSSoftware/colt/.
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•	 AlgeBird 2.10 (Scala) developed at Twitter under Apache Public License 2.0. 
It defines concepts of abstract linear algebra using monoids and monads. 
This library is an excellent example of high-level functional programming 
using Scala. It is available at https://github.com/twitter/algebird.

•	 Breeze 0.8 (Scala) is a numerical processing library using Apache Public 
License 2.0 originally created by David Hall. It is a component of the 
ScalaNLP suite of machine learning and numerical computing libraries,  
and it is available at http://www.scalanlp.org/.

The Apache Spark/MLlib framework bundles jBlas, Colt, and Breeze. The Iitb 
framework for conditional random fields uses Colt linear algebra components.

Alternative to Java/Scala libraries
If your application or project needs a high-performance 
numerical processing tool under limited resources (CPU, RAM 
memory, and so on), and if portability is not a constraint, then 
using a C- or C++-compiled library is an excellent alternative. 
The binary functions can be accessed through the Java Native 
Interface (JNI).

First order predicate logic
Propositional logic is the formulation of axioms or propositions. There are several 
formal representations of propositions:

•	 Noun-VERB-Adjective: "Variance of the stock price EXCEEDS 0.76"  
or "Minimization of the loss function DOES NOT converge"

•	 Entity-value = Boolean: " Variance of the stock price GREATER+THAN  
0.76 = true" or "Minimization of the loss function converge = false"

•	 Variable op value: "Variance_stock_price > 0.76" or  
"Minimization_loss_function != converge"

Propositional logic is subject to the rules of Boolean calculus. Let's consider three 
propositions P, Q, and R and three Boolean operators NOT, AND, OR. So the 
following rules apply:

•	 NOT (NOT P) = P

•	 P AND false = false, P AND true = P, P OR false = P, P OR true 
= P

•	 P AND Q = Q AND P, P OR Q = Q OR P

•	 P AND (Q AND R) = (P AND Q) AND R
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First-order predicate logic, also known as first-order predicate calculus, is the 
quantification of propositional logic [A:7]. The most common formulations of  
the first order logic are as follows:

•	 IF P THEN action rules
•	 Existential operators

First order logic is used to describe the classifiers in learning classifier systems. Refer 
to the XCS rules section of Chapter 11, Reinforcement Learning for more information.

Jacobian and Hessian matrices
Let's consider a function with n variables xi and m outputs yj such that  
f: { xi } -> {yj =fj(x)}.

The Jacobian matrix [A:8] is the matrix of the first order partial derivatives of the 
output values of a continuous, differential function:
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The Hessian matrix is the square matrix of the second order of partial derivatives of 
a continuous, twice differentiable function:
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Summary of optimization techniques
The same comments regarding linear algebra algorithms apply to optimization. 
Treating such techniques in depth would have rendered the book impractical. 
However, optimization is critical to the efficiency and, to a lesser extent, the  
accuracy of the machine learning algorithms. Some basic knowledge in this  
field goes a long way to build practical solutions for large data sets.

Gradient descent methods

Steepest descent
The steepest descent (or gradient descent) method is one of the simplest techniques 
used to find a local minimum of any continuous, differentiable function F or the 
global minimum of any defined, differentiable, and convex function [A:9]. The value 
of a vector or data point xt+1 at the iteration t + 1 is computed from the previous value 
xt using the gradient 

D

F of function F and the slope γ:

The steepest gradient algorithm is used for solving systems of non-linear equations 
and minimization of the loss function in the logistic regression (refer to the Numerical 
optimization section of Chapter 6, Regression and Regularization), in support vector 
classifiers (refer to the The nonlinear SVM section of Chapter 8, Kernel Models and 
Support Vector Machines), and in multilayer perceptrons (refer to the The multilayer 
perceptron (MLP) section of Chapter 9, Artificial Neural Networks).

Conjugate gradient
The conjugate gradient solves unconstrained optimization problems and systems of 
linear equations. It is an alternative to the LU factorization for positive, definite, and 
symmetric square matrices. The solution x* to the equation Ax = b is expanded as the 
weighted summation of n basis orthogonal directions pi (or conjugate directions):

1
*

0
; 0

n

i i i j
i

Ax b p x b p pα
−

=

= → = ⋅ =∑

The solution x* is extracted by computing the ith conjugate vector pi and then 
computing the coefficients αi.
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Stochastic gradient descent
The stochastic gradient method is a variant of the steepest descent method that 
minimizes the convex function by defining the objective function F as the sum of 
differentiable, basis functions fi:

( ) ( ) ( )
1 1
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− −

+
= =

= = − ∇∑ ∑
n n

i t t i
i i

F x f x x x f x

The solution xt+1 at iteration t+1 is computed from the value xt at iteration t, the step 
size (or learning rate) α, and the sum of the gradient of the basis functions [A:10].  
The stochastic gradient descent is usually faster than other gradient descent or  
quasi-Newton methods in converging towards a solution for convex functions.  
The stochastic gradient descent method is used in logistic regression, support  
vector machines, and back-propagation neural networks.

Stochastic gradient is particularly suitable for discriminative models with large 
datasets [A:11]. Spark/MLlib makes extensive use of the stochastic gradient method.

Quasi-Newton algorithms
Quasi-Newton algorithms are variations of Newton's method of finding the value 
of a vector or data point that maximizes or minimizes a function F whose first order 
derivative is null [A:12].

Newton's method is a well-known and simple optimization method used to find the 
solution to equations F(x) = 0 for which F is continuous and differentiable up to the 
second order. It relies on the Taylor series expansion to approximate the function F 
with a quadratic approximation on the variable ∆x = xt+1-xt, to compute the value at 
the next iteration using the first order F' and second order F" derivatives:

( ) ( ) ( ) ( ) ( )
( )1

'
' . "

"
t

t t t t t
t

F x
F x x F x F x x F x x x

F x++ ∆ − ≈ ∆ + → = −

Contrary to Newton's method, quasi-Newton methods do not require that the  
second order derivative, Hessian matrix of the objective function be computed.  
It just has to be approximated [A:13]. There are several approaches to approximate 
the computation of the Hessian matrix.
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BFGS
The Broyden-Fletcher-Goldfarb-Shanno (BGFS) method is a quasi-Newton iterative 
numerical method to solve unconstrained nonlinear problems. The Hessian matrix 
Ht+1 at an iteration t+1 is approximated using the value of the previous iteration t as 
Ht+1=Ht + Ut + Vt applied to the Newton equation for the direction pt:

( ) 1,t t t t t t tH p F x x x pα+= −∇ = +

The BFGS method is used in minimization of the cost function for the conditional 
random field, and L1 and L2 regression.

L-BFGS
The performance of the BFGS algorithm can be improved by caching the 
intermediate computation in memory in order to approximate the Hessian  
matrix. The obvious drawback is that the memory becomes a limiting factor  
in the scalability of the optimizer.

The Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm or L-BFGS is 
a variant of BFGS that uses a minimum amount of computer RAM. The algorithm 
maintains the last m incremental updates of the values ∆xt and the gradient ∆Gt at 
iteration t, and then computes those values for the next step t+1:

It is supported by the Apache Commons Math 3.3 and above, Apache Spark/MLlib 1.0 
and above, Colt 1.0 and above, and Iiitb CRF libraries. L-BFGS is used in minimization 
of the loss function in conditional random fields. For more information, refer to the 
Conditional random fields section of Chapter 7, Sequential Data Models.

Nonlinear least squares minimization
Let's consider the classic minimization of the least squares of a nonlinear function  
y = F(x, w) with wi parameters for observations {y, xi}. The objective is to minimize  
the sum of the squares of residuals ri:

L
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Gauss-Newton
The Gauss-Newton technique is a generalization of Newton's method. The technique 
solves nonlinear least squares by updating the parameters wt+1 at iteration t+1 using 
the first order derivative, or Jacobian:

( ) ( )
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The Gauss-Newton algorithm is used in logistic regression. For more information, 
refer to the The logistic regression section of Chapter 6, Regression and Regularization.

Levenberg-Marquardt
The Levenberg-Marquardt algorithm is an alternative to the Gauss-Newton technique 
for solving nonlinear least squares and curve fitting problems. The method consists 
of adding the gradient or Jacobian terms to the residuals ri to approximate the least 
squares error:

The Levenberg-Marquardt algorithm is used in the training of logistic regression.  
For more information, refer to the The logistic regression section of Chapter 6, Regression 
and Regularization.

Lagrange multipliers
The Lagrange multipliers methodology is an optimization technique to find the local 
optima of a multivariate function, subject to equality constraints [A:14]. The problem 
is stated as maximize f(x) subject to g(x) = c, where c is a constant and x is a variable or 
features vector.
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This methodology introduces a new variable λ to integrate the constraint g into 
a function, known as the Lagrange function �(x, λ). Let's note 

D

�, which is the 
gradient of � over the variables xi and λ. The Lagrange multipliers are computed  
by maximizing �:

�

� �
�

�

An example is as follows:

Lagrange multipliers are used in minimizing the loss function in the non-separable 
case of linear support vector machines. For more information, refer to The nonseparable 
case (soft margin) section of Chapter 8, Kernel Models and Support Vector Machines.

Overview of dynamic programming
The purpose of dynamic programming is to break down an optimization problem 
into a sequence of steps known as substructures [A:15]. There are two types of 
problems for which dynamic programming is suitable.

The solution of a global optimization problem can be broken down into optimal 
solutions for its subproblems. The solutions of the subproblems are known as 
optimal substructures. Greedy algorithms or the computation of the minimum 
span of a graph are examples of decomposition into optimal substructures. Such 
algorithms can be implemented either recursively or iteratively.

The solution of the global problem is applied recursively to the subproblems if the 
number of subproblems is small. This approach is known as dynamic programming 
using overlapping substructures. Forward-backward passes on hidden Markov 
models, the Viterbi algorithm (refer to the The Viterbi algorithm section of Chapter 7, 
Sequential Data Models), or the back-propagation of error in a multilayer perceptron 
(refer to the Step 3 – error backpropagation section of Chapter 9, Artificial Neural 
Networks) are good examples of overlapping substructures.



Appendix A

[ 467 ]

The mathematical formulation of dynamic programming solutions is specific to the 
problem it attempts to solve. Dynamic programming techniques are also commonly 
used in mathematical puzzles such as the Tower of Hanoi.

Finances 101
The exercises presented throughout this book are related to historical financial  
data and require the reader to have some basic understanding of financial markets 
and reports.

Fundamental analysis
Fundamental analysis is a set of techniques to evaluate a security—stock, bond, 
currency, or commodity—that entails attempting to measure its intrinsic value 
by examination related to both macro and micro, financial and economy reports. 
Fundamental analysis is usually applied to estimate the optimal price of a stock 
using a variety of financial ratios.

Numerous financial metrics are used throughout this book. Here are the definitions 
of the most commonly used metrics [A:16]:

•	 Earnings per share (EPS): This is the ratio of net earnings to the number of 
outstanding shares.

•	 Price/Earnings ratio (PE): This is the ratio of the market price per share to 
earnings per share.

•	 Price/Sales ratio (PS): This is the ratio of market price per share over gross 
sales or revenue.

•	 Price/Book value ratio (PB): This is the ratio of market price per share over 
total balance sheet value per share.

•	 Price to Earnings/Growth (PEG): This is the ratio of price/earnings per share 
(PE) over annual growth of earnings per share.

•	 Operating income: This is the difference between the operating revenue and 
operating expenses.

•	 Net sales: This is the difference between the revenue or gross sales and cost 
of goods or cost of sales.

•	 Operating profit margin: This is the ratio of the operating income over  
net sales.

•	 Net profit margin: This is the ratio of net profit over net sales (or net revenue).
•	 Short interest: This is the quantity of shares sold short and not yet covered.
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•	 Short interest ratio: This is the ratio of the short interest over total number of 
shares floated.

•	 Cash per share: This is the ratio of the value of cash per share over market 
price per share.

•	 Pay-out ratio: This is the percentage of the primary/basic earnings per share 
excluding extraordinary items paid to common stockholders in the form of 
cash dividends.

•	 Annual dividend yield: This is the ratio of sum of dividends paid during the 
previous 12-month rolling period, over the current stock price. Regular and 
extra dividends are included.

•	 Dividend coverage ratio: This is the ratio of income available to common 
stockholders, excluding extraordinary items, for the most recent trailing 
twelve months, to gross dividends paid to common shareholders, expressed 
as percent.

•	 Gross Domestic Product (GDP): This is the aggregate measure of the 
economic output of a country. It actually measures the sum of value added 
by the production of goods and delivery of services.

•	 consumer price index (CPI): This is an indicator that measures the change in 
the price of an arbitrary basket of goods and services used by the Bureau of 
Labor Statistics to evaluate the inflationary trend.

•	 Federal Fund rate: This is the interest rate at which banks trade balances held 
at the Federal Reserve. The balances are called Federal Funds.

Technical analysis
Technical analysis is a methodology used to forecast the direction of the price of any given 
security through the study of past market information derived from price and volume. In 
simpler terms, it is the study of price activity and price patterns in order to identify 
trade opportunities [A:17]. The price of a stock, commodity, bond, or financial future 
reflects all the information publicly known about that asset as processed by the 
market participants.

Terminology
•	 Bearish or bearish position: A bear position attempts to profit by betting that 

the prices of the security will fall.
•	 Bullish or bullish position: A bull position attempts to profit by betting that 

the price of the security will rise.
•	 Long position: This is the same as bullish.
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•	 Neutral position: A neutral position attempts to profit by betting the price of 
the security will not change significantly.

•	 Oscillator: An oscillator is a technical indicator that measures the price 
momentum of a security using some statistical formulae.

•	 Overbought: A security is overbought when its price rises too fast as 
measured by one or several trading signals or indicators.

•	 Oversold: A security is oversold when its price drops too fast as measured 
by one or several trading signals or indicators.

•	 Relative strength index (RSI): The RSI is an oscillator that computes the 
average of number of trading sessions for which the closing price is higher 
than the opening price over the average of number of trading sessions 
for which the closing price is lower than the opening price. The value is 
normalized over [0, 1] or [0, 100%].

•	 Resistance: A resistance level is the upper limit of the price range of a 
security. The price falls back as soon as it reaches the resistance level.

•	 Short position: This is the same as bearish.
•	 Support: A support level is the lower limit of the price range of a security 

over a period of time. The price bounces back as soon as it reaches the 
support level.

•	 Technical indicator: A technical indicator is a variable derived from the price 
of a security and possibly its trading volume.

•	 Trading range: The trading range for a security over a period of time is the 
difference between the highest and lowest price for this period of time.

•	 Trading signal: A signal is triggered when a technical indicator reaches a 
predefined value, upwards or downwards.

•	 Volatility: This is the variance or standard deviation of the price of a security 
over a period of time.

Trading signals and strategy
The purpose is to create a set variable x, derived from price and volume; x = f (price, 
volume) then generate predicates, x op c, where op is a Boolean operator, such as >  
or =. The op operator compares the value of x to a predetermined threshold c.
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Let's consider one of the most common technical indicators derived from price: the 
relative strength index RSI, or the normalized RSI; nRSI, whose formulation is provided 
here for reference:

The RSI for a period of T sessions, with opening price po, and 
closing price pc is given by:
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A trading signal is a predicate using a technical indicator nRSI(t) < 0.2. In trading 
terminology, a signal is emitted for any time period, t, for which the predicate is true. 
Have a look at the following graph:

Traders do not usually rely on a single trading signal to make a rational decision.

As an example, if G is the price of gold, I10 is the current rate of the 10-year Treasury 
bond, and RSIsp500 is the relative strength index of the S&P 500 index, then we 
can conclude that the increase in the exchange rate of the US$ to the Japanese Yen 
maximizes for the trading strategy: {G < $1170 and I10 > 3.9% and RSIsp500 > 0.6 and 
RSIsp500 < 0.8}.
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Price patterns
Technical analysis assumes that historical prices contain some recurring albeit noisy 
patterns that can be discovered using the statistical method. The most common 
patterns used in the book are the trend, support, and resistance levels [A:18], as 
illustrated in the following chart:

Illustration of trend, support, and resistance levels in technical analysis

Options trading
An option is a contract that gives the buyer the right but not the obligation to buy or 
sell a security at a specific price on or before a certain date [A:19].

The two types of options are calls and puts:

•	 A call gives the holder the right to buy a security at a certain price within a 
specific period of time. Buyers of calls expect that the price of the security 
will increase substantially over the strike price before the option expires.

•	 A put option gives the holder the right to sell a security at a certain price 
within a specific period of time. Buyers of puts expect that the price of the 
stock will fall below the strike price before the option expires.
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Let's consider a call option contract on 100 shares at a strike price of $ 23 for a total 
cost of $ 270 ($ 2.7 per option). The maximum loss the holder of the call can incur 
is the loss of premium or $270 when the option expires. However, the profit can be 
potentially almost unlimited. If the price of the security reaches $ 36 when the call 
option expires, the owner will have a profit of ($ 36 - $ 23)*100 - $ 270 = $ 1030. The 
return on investment is 1030/270 = 380 percent. Buying and then selling the stock 
would have generated a return on investment of 36/24 - 1= 50 percent. This example 
is simple and does not take into account transaction fee or margin cost [A:20]. Have a 
look at the following graph:

.

Financial data sources
There are numerous sources of financial data available to experiment with machine 
learning and validation models [A:21].

•	 Yahoo finances (stocks, ETFs, and indices) available at  
http://finance.yahoo.com

•	 Google finances (stocks, ETFs, and indices) available at  
https://www.google.com/finance

•	 NASDAQ (stocks, ETFs, and indices) available at http://www.nasdaq.com
•	 European Central Bank (European bonds and notes) available at  

http://www.ecb.int

•	 TrueFx (forex) available at http://www.truefx.com
•	 Quandl (economics and financials statistics) available at  

http://www.quantl.com

•	 Dartmouth University (portfolio and simulation) available at  
http://mba.tuck.dartmouth.edu
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Suggested online courses
•	 Practical Machine Learning. J. Leek, R. Peng, B. Caffo. Johns Hopkins 

University, available at https://www.coursera.org/jhu
•	 Probabilistic Graphical Models. D. Koller. Stanford University, available at 

https://www.coursera.org/course/pgm

•	 Machine Learning. A. Ng. Stanford University, available at  
https://www.coursera.org/course/ml
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limitations  85
used, for detecting market cycles  82-85

DFT-based filtering  79-81
DFT convolution  79
dimension reduction

about  16, 126
other techniques  133
PCA  127

directed graphical models  138
discount coefficient for future rewards  369
discrete Fourier transform. See  DFT
discrete Markov chain  208
discrete model parameters  330
discretization  331
discriminative models

about  17, 18
versus generative models  17

dividend coverage ratio  468
documents

extracting  455, 456
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DocumentsSource class  455, 456
domain  43
Domain Specific Languages (DSL)  14
dynamic programming

about  466
overview  466

E
earnings per share (EPS)  467
eigenvalue

about  459
decomposition  459

EM
about  99, 118, 119
considerations  134
filtering  123
GMM  119
implementation  120-122
online EM  126
overview  120
performance considerations  134
relating, with K-means  125
sampling  123
testing  123-125
third-party library exceptions  122

encapsulation
about  449
class scope  449
object scope  449
package scope  449

ensemble learning  330
enumerations

advantages  451
versus case classes  450, 451

epoch  300
Erlang programming language  413
error backpropagation, MLP training cycle

about  305
computational model  307
error propagation  306

error insensitive zone  284
evaluation (CF-1), HMM

about  216, 217
Alpha class (forward variable)  217-219

Beta class (backward variable)  220, 221
constructors  222

evidence  141
evolution

about  327
evolutionary computing  329
NP problems  328, 329
origin  328

evolutionary computing  327, 329
exception handling  175
exchange-traded funds (ETFs)

about  317
CYB  318
FXA  317
FXB  317
FXC  318
FXE  317
FXF  318
FXY  318
GLD  318
SPY  318

execution state, HMM  214-216
expectation-maximization. See  EM
experimentation, recursive algorithm  93-96
exploitation phase, XCS  395
exploration phase, XCS  395
exponential moving average  69-72
exponential normalization. See  softmax
extended Kalman filter (EKF)  96
extended learning classifier systems. See  XCS

F
fast Fourier transform (FFT)  73
feature functions. See  transition feature 

functions
features, model

attributes  40
extracting  42
selecting  41
variables  40

features, Scala
abstraction  11, 12
computation on-demand  14
configurability  13
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maintainability  14
scalability  12, 13

Federal fund rate (FDF)  139
feed-forward neural networks (FFNN)

about  289
biological background  290, 291
mathematical background  291, 292
without hidden layers  294

filtering
versus smoothing  85

final val
versus val  271

finances 101
about  467
financial data sources  472
fundamental analysis  467
options, trading  471, 472
technical analysis  468

first-order discrete Markov chain  208, 209
first-order predicate logic  461
fitness function

about  330, 340
approximate fitness function  340
evolutionary fitness function  340
fixed fitness function  340
versus unfitness  342

flat encoding approach  334
fork-join pool  408
Fourier analysis

about  73
DFT  73-79
DFT-based filtering  79-81

Fourier transform  73
frequency domain  73
fully connected neural network  295
function approximation

about  385, 386
guidelines  385

fundamental analysis  467
futures

about  425
Actor life cycle  426
blocking  426-428
callbacks, handling  428-430
implementing  430, 431

G
GA

about  327
advantages  363
configuration  345
implementation  340
machine learning  330
risks  363
trading strategies  351, 352

GA implementation
about  340
configuration  345
crossover  345
key components  341-343
mutation  349
population growth, controlling  345
reproduction cycle  350, 351
selection  344
software design  340, 341

GA, applications
discrete model parameters  330
ensemble learning  330
neural network architecture  330
reinforcement learning  330

GA, components
genetic decoding  330
genetic encoding  330
genetic fitness function  330
genetic operations  330

Gaussian mixture  151
Gaussian mixture model (GMM)  134
Gaussian noise  87
Gaussian probability density  152
Gauss-Newton technique  465
Gene class

discr parameter  343
id parameter  343
op parameter  343
target parameter  343

generalized autoregressive conditional 
heteroskedasticity (GARCH)  97

generative models
about  16
versus discriminative models  17
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generic message handler  427
genes  329
genetic algorithms. See  GA
genetic decoding  330
genetic encoding

about  330
predicate encoding  332
solution encoding  333
value encoding  331, 332

genetic operators
about  335, 336
crossover  335, 338
mutation  335, 339
selection  335-337

gradient descent methods
about  462
conjugate gradient method  462
steepest descent method  462
stochastic gradient method  463

graph structured CRF  234
GraphX  432
gross domestic product (GDP)  139, 468

H
Hadoop Distributed File System (HDFS)  29
hard margin  257
Hessian matrix  461
hidden layers  293
hidden Markov model. See  HMM
Hidden Naïve Bayes (HNB)  146
hierarchical encoding  334, 335
hinge loss  259
HMM

about  207-209
comparing, with CRF  249
components  210
decoding (CF-3)  211, 226
evaluation (CF-1)  211-217
execution state  214-216
implementation  228-230
lambda model  212-214
notation  211, 212
performance consideration  250
stationary or homogeneous restriction  210

test case  230, 231
time series analysis  232
training (CF-2)  211, 222

hyperplane  194

I
IEEE-732 encoding  356
implicit conversion, Scala  24
incremental EM  126
input forward propagation, MLP training 

cycle
about  301, 302
computational model  302
objective  303, 304
softmax  304

installation, Apache Commons Math  21
I/O blocking operations  414

J
Jacobian matrix  461
Java  19
Java Native Interface (JNI)  460
Java packages

versus Scala traits  49
jBlas 1.2.3  459
JFreeChart

about  21
installation  22
licensing  21
URL  22

joint probability distribution  137

K
Kalman filter

about  85
characteristics  85
exception handling  92
recursive algorithm  87-89
state space estimation  86
usage  85

Kalman smoothing, recursive  
algorithm  92, 93
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kernel functions
about  252
common discriminative kernels  254-256
evaluating  272-277
overview  252-254

kernel functions, types
laplacian kernel  254
linear kernel  254
log kernel  254
polynomial kernel  254
probabilistic kernels  256
RBF  254
reproducible Kernel Hilbert Spaces  256
sigmoid kernel  254
smoothing kernels  256

kernel trick  261
K-fold cross-validation  57
K-means

about  101
advantage  103
cluster assignment  107
cluster configuration  103
clusters, tuning  114-117
considerations, K-means  133, 134
dimensionality issue, of models  109, 110
exit condition  109
experiment  111-114
iterative reconstruction  108, 109
overview  103
performance considerations  133, 134
relating, with EM  125
similarity, measuring  101, 102
using  440-442
validation  117, 118

Kryo serialization  433

L
L1 regularization

versus L2 regularization  185
L2 regularization

versus L1 regularization  185
labeled data  54
Lagrange multipliers  261, 465
lambda model  212-214

laplacian kernel  254
Lasso regularization  185
latent Dirichlet allocation (LDA)  139
LCS

about  365, 391
benefits  393
complex adaptive systems  392
components  392
limitation  402, 403
XCS  395, 396

LCS, categories
Michigan approach  393
Pittsburgh approach  393

LCS, terminology
action  394
agent  394
classifier  394
compound predicate  394
covering  394
environment  394
input data stream  394
predicate  394
predictor  394
rule  394
rule fitness or score  394
rule matching  394
sensors  394

LDL decomposition  458
learning classifier systems. See  LCS
learning vector quantization (LVQ)  100
least squares problem  191
Levenberg-Marquardt algorithm  465
Levenberg-Marquardt parameters  202
lexicon function  162
libraries

about  22
Algebird  22
Breeze  22
ScalaNLP  22

LIBSVM
about  262
benefits  262
Java code  263
scaling  279
URL  262
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LIBSVM, Java classes
svm  263
svm_model  262
svm_node  262
svm_parameters  263
svm_problem  263

likelihood  141
Limited memory Broyden-Fletcher- 

Goldfarb-Shanno (L-BFGS)  
algorithm  464

linear algebra
about  457
algebraic libraries  459
Cholesky factorization  458
eigenvalue decomposition  459
LDL decomposition  458
LU factorization  458
QR decomposition  458
singular value decomposition (SVD)  459

linear chain CRF (linear chain structured 
graph CRF)

about  234-237
advantages  235

linear Kalman filter
limitations  96

linear kernel  254
linear regression

about  169
OLS regression  173
one-variate linear regression  170
versus SVR  285-287

linear SVM
about  256
nonseparable case (soft margin)  258, 259
separable case (hard margin)  257

Ln roughness penalty  184, 185
logistic regression

about  192
binomial classification  193-196
classification  203-205
errors, rounding  205
logit function  192, 193
software design  196
training workflow  197, 198
validation methodology  205

logit function  192, 193
log kernel  254
Lotka-Volterra equation  337
Lp-norm  184
LU factorization

about  458
basic LU factorization  458
LU factorization with pivot  458

M
machine learning

about  10, 330
regularization  185

machine learning algorithms
reinforcement learning  18, 19
supervised learning  16
taxonomy  15
unsupervised learning  15

machine learning, problems
classification  10
optimization  11
prediction  11
regression  11

Markov decision process
about  207
first-order discrete Markov chain  208, 209

Markov property  207
Markov random fields  209
master-workers (master-slaves)

about  417
design principle  417
DFT  422-425
limitations  425
master Actor  419-421
master routing, implementing  421
messages exchange  417, 418
worker actors  418
workflow controller  419

mathematical concepts
about  457
dynamic programming  466
first-order predicate logic  461
Hessian matrix  461
Jacobian matrix  461
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linear algebra  457
optimization techniques, summary  462

mathematical notation  10
Matrix class  456, 457
max-margin classification  260, 261
mean

versus centroid  109
mean squared error (MSE)  170, 301
measurement equation  86, 87
message-passing mechanisms, Actor model

fire-and-forget (tell)  414
send-and-receive (ask)  414

Michigan approach  393
MLlib

about  432, 439
components  439

MLP
about  289-294
activation function  294
classification  312
evaluation  315
model  297
network architecture  295
software design  296
training cycle  300
training strategies  312

MLP algorithm, parameters
config  310
labels  310
mlpObjective  310
xt  310

MLPConfig configuration, parameters
activation  310
alpha  310
eps  310
eta  310
hidLayers  310
numEpochs  310

MLP, evaluation
impact of learning rate  315, 316
impact of momentum factor  316, 317
test case  317-319

model
about  14, 39-41
adaptive model  14

assessing  54
bias-variance decomposition  58-61
descriptive model  14
instantiation  171
overfitting  61
predictive model  14
validation  54
versus design  41

model, forms
chemistry  40
differential  40
directed graphs  40
grammar  41
graphical  40
inference logic
lexicon  41
numerical method  40
parametric  40
probabilistic  40
taxonomy  41

modeling  41
model, MLP

about  297
connections  299, 300
layers  298
synapses  299

monadic data transformation  45, 46
monads  11, 12
monoids  11, 12
Monte Carlo EM  126
moving averages

about  66
exponential moving average  69-72
simple moving average  67, 68
weighted moving average  68, 69

multilayer perceptron. See  MLP
multinomial Naïve Bayes model

about  139, 141
attributes  149
formalism  141, 142
frequentist perspective  142, 143
missing data, handling  151
NaiveBayes class  150
predictive model  144
zero-frequency problem  145
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multivariate Bernoulli classification
about  155
implementation  156
model  155

mutation implementation
about  335, 339, 349
chromosomes  349
genes  349
population  349

N
Naïve Bayes

about  139
applying, to text mining  156-158
benefits  168
disadvantages  168
mathematical notation  142
testing  163
using  156

Naïve Bayes classification
Gaussian density, using  152

Naïve Bayes classifiers
about  139
implementing  145
multinomial Naïve Bayes  139
UML class diagram  146

Naïve Bayes classifiers, implementing
about  145
classification  151, 152
labeling  152-154
results  154, 155
software design  145, 146
training phase  146-150

natural language processing (NLP)  239
net profit margin  467
net sales  467
network architecture, MLP  295
neural networks

about  289
advantages  324, 325
limitations  325

newState method
about  92
exit condition  93

N-fold cross-validation  280
nonlinear least squares minimization

about  464
Gauss-Newton technique  465
Levenberg-Marquardt algorithm  465

nonlinear SVM
about  260
kernel trick  261
max-margin classification  260, 261

notation, HMM
about  211, 212
variance  212

NP problems
about  327-329
NP-complete problems  328
NP-hard problems  329
P-problems  328

numerical optimization
about  191, 192
Newton (2nd order techniques)  192
Quasi-Newton (1st order techniques)  192

O
object creation

controlling  407
observation  42
OLS regression

about  173
design  173, 174
features selection test case  178-183
implementation  174
trending test case  175-177

one-class SVC
used, for anomaly detection  282, 283

one-variate linear regression
about  170
implementation  170, 171
test case  171, 172

online training  312
operating income  467
operating profit margin  467
operators, Scala  25
optimal substructures  466
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optimization techniques
gradient descent methods  462
Lagrange multipliers  465
nonlinear least squares minimization  464
Quasi-Newton algorithms  463
summary  462

OptionModel class
implementing  384

OptionProperty class
implementing  383

option trading, with Q-learning
about  382, 383, 471, 472
constrained state-transition  386, 387
defining  383
function approximation  385, 386
implementing  387, 388
normalized features  383
OptionModel class, implementing  384
OptionProperty class, implementing  383

ordinary least squares regression. See  OLS 
regression

output unit activation function  294
overfitting

about  61, 143
solutions  62

overlapping substructures  466
overload operators

+  451
+=  451
|>  451
about  451

P
padding  332
parallel collections, Scala

about  407
benchmark framework  409, 410
creating  407
performance evaluation  410-412
processing  408

parent chromosomes
preserving  339

partially connected neural networks  295
pay-out ratio  468

PCA
about  99
algorithm  128, 129
considerations  134
cross-validation  133
evaluation  131-133
implementation  129
performance considerations  134
purpose  127
test case  130

penalized least squares regression. See  
ridge regression

penalty term  169
Pittsburgh approach  393
polynomial kernel  254
Population class

chromosomes parameter  342
limit parameter  342

population growth
controlling  345

portfolio management
with XCS  396-398

posterior probability  141
predicates

encoding format  332
prediction phase, recursive algorithm  89, 90
predictive model  14, 144
prestart method  416
price/book value ratio (PB)  467
price/earnings ratio (PE)  467
price patterns  471
price/sales ratio (PS)  467
price to earnings/growth (PEG)  467
primal problem  259
primitive types, Scala  24
principal components analysis. See  PCA
private value

versus private[this] value  171
probabilistic graphical models  137
probabilistic kernels  256
probabilistic reasoning  137
propositional logic  460
proteins  252
protein sequence annotation  252
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Q
Q-learning

about  366
actions, implementing  374, 375
action-value, implementing  376, 377
evaluation  389-391
implementation  373
key components, implementing  373, 374
model quality, measuring  379
policy, implementing  376, 377
prediction  381
search space, implementing  375, 376
software design  373, 374
states, implementing  374, 375
tail recursion  380, 381
training  378, 379
used, for option trading  382, 383

QR decomposition  94, 458
Quasi-Newton algorithms

about  463
Broyden-Fletcher-Goldfarb-Shanno (BGFS) 

method  464
L-BFGS  464

R
r2 statistics  182
radial basis function (RBF)

about  254
terminology  254

RDD
generating  439, 440

RDD, operations
action  431
transformation  431

real-world Bayesian network
example  138

receive method  416
recombination  329
recursive algorithm

about  87-89
correction  91
experimentation  93-96
Kalman smoothing  92, 93

prediction  89, 90
regression weights  170
regularization

about  169, 184
Ln roughness penalty  184, 185
notation  184
ridge regression  186

reinforcement learning
about  14, 18, 19, 330, 365
Bellman optimality equations  370, 371
concept  368
pros and cons  391
Q-learning  366, 372, 373
temporal difference  371, 372
value-action iterative update  372, 373
value of policy  369, 370
versus supervised learning  368

reinforcement learning, terminology
absorbing state  367
action  367
agent  367
best policy  367
environment  367
episode  367
goal state  367
horizon  367
policy  367
reward  367
state  367
terminal state  367

reproducible Kernel Hilbert Spaces  256
reproduction cycle

implementation  350, 351
residual sum of squares (RSS)

about  169, 196
minimization techniques  173

Resilient Distributed Datasets (RDD)  14
ridge regression

about  169, 186
implementation  186, 187
test case  188-190

risk analysis, binary SVC
features  277-281
labels  277-281
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router  416
rules discovery module  393
rules, XCS

defining  399-401

S
Scala

about  11, 20, 407
object creation, controlling  407
parallel collections  407
used, for building scalable frameworks  406

Scala plugin
for Eclipse, URL  20
for Intellij IDEA, URL  20

Scala programming
about  447
class constructor template  449
code snippet format  448
companion objects, versus case classes  450
data extraction  453, 454
data sources  454, 455
design template, for classifiers  452, 453
documents, extracting  455, 456
encapsulation  449
enumerations, versus case classes  450, 451
libraries directory  447
Matrix class  456
overload operators  451

Scala traits
versus Java packages  49

scheme, genetic encoding
flat encoding  334
hierarchical encoding  334, 335

score method  162
selection

about  335-337
implementation  344

Sequential Minimal  
Optimization (SMO)  259, 262

shared variables
about  436, 437
accumulator variables  436
broadcast values  436

short interest  467

short interest ratio  468
shrinkage  184
sigmoid kernel  254
signal encoding  356
simple build tool (sbt)  437
simple moving average  67, 68
singular value decomposition (SVD)  135
skip lists  407
smoothing

versus filtering  85
smoothing factor for counters  145
smoothing kernels  256
softmax  304
software design, MLP  296
software developer  43
solution encoding approach  333
source code, Scala

about  22, 23
context bound  23
immutability  25
implicit conversion  24, 25
iterator performance, evaluating  26
operators  25
presentation  23, 24
primitive types  24
view bound  23

Spark. See  Apache Spark
Spark/MLlib 1.0  262
Spark shell

pitfalls  439
using  438

SparkSQL  432
spectral analysis  73
spectral density estimation  73
spreadsheets

using  78
state, dynamic systems  88
state space estimation

about  86
measurement equation  86, 87
transition equation  86, 87

stdDev() method  104
steepest descent method  462
stimuli  290
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stochastic gradient method  463
Stream classes  407
subject-matter expert  43
subordinates  416
substructures  466
sum of squared errors (SSE)  170
supervised learning

about  16
autonomous systems, design problem  366
discriminative models  17, 18
generative models  16
versus reinforcement learning  368

support vector classifier (SVC)
about  262
binary SVC  262
one-class SVC  282, 283

support vector machines (SVM)
about  251, 256
components  263
configuration parameters  264
implementation  267-269
linear SVM  256
nonlinear SVM  260
performance considerations  288

support vector regression (SVR)
about  284
overview  284, 285
versus linear regression  285-287

SVC origin  282
SVM dual problem  261
SVMLight  262
synapse/weights adjustment, MLP training 

cycle
about  308
gradient descent  308
implementation  309

T
tagging model  159
technical analysis

about  468
price patterns  471

technical analysis, terminology
bearish position  468

bullish position  468
long position  468
neutral position  469
oscillator  469
overbought  469
oversold  469
relative strength index (RSI)  469
resistance  469
short position  469
support  469
technical indicator  469
trading range  469
trading signals  469
volatility  469

temporal difference
about  371, 372
exploration  371
off-policy implementation  372
on-policy implementation  372

TermsScore class
about  162
lexicon function  162
toDate function  162
toWords function  162

TermsScore.score method  165
test case, MLP

about  317-319
hidden layers architecture impact  323, 324
implementation  319-321
models evaluation  321, 322

test case, trading strategies
about  357, 358
configuration  359
data extraction  358
evaluation  360
GA execution  360
GA instantiation  359
initial population, generating  358, 359
unweighted score, evaluating  360, 361
weighted score, evaluating  362, 363

testing, Naïve Bayes
about  163
evaluation  166, 167
textual information, retrieving  163, 165
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text mining
about  156
extraction of terms  160, 161
implementing  159
Naïve Bayes, applying to  156-158
scoring of terms  161-163

time series
about  63, 64
analysis, with HMM  232
implementation  65, 66

toDate function  162
tools

about  19
Apache Commons Math  20
Java  19
JFreeChart  21
Scala  20

toOrderedArray method  161
toWords function  162
trading operators  353
trading signals  354
trading strategies, GA

about  351-355
cost/unfitness function  353, 354
defining  353
signal encoding  356
test case  357, 358
trading operators  353
trading signals  354

training cycle, MLP
about  300
configuration  309
convergence criteria  309
error backpropagation  305
implementation  310, 311
input forward propagation  301, 302
sum of squared errors  305
synapse/weights adjustment  308

training strategies, MLP
batch training  312
model instantiation  313, 314
online training  312

prediction  314
regularization  313

training workflow
exit conditions, defining  200
Jacobian matrix, computing  199
least squares optimizer, configuring  198
least squares problem, defining  201
loss function, minimizing  201
testing  202

train method  150
transformation methods, Apache Spark

coGroup  435
distinct  434
filter(f)  434
flatMap(f)  434
groupByKey  434
join  435
map(f)  434
mapPartitions(f)  434
reduceByKey(f)  434
sample  434
sortByKey  435
union  434

transition equation  86
transition feature functions  236
transposition operator  336
tuning, GA  340
typed actors

versus untyped actors  416

U
underfitting  61
unsupervised learning

about  15
clustering  15
dimension reduction  16
EM  99
goal  99
K-means  99
PCA  99

untyped actors
versus typed actors  416
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V
val

versus final val  271
validation, model

implementation  56, 57
key metrics  54, 55
K-fold cross-validation  57

value encoding  331, 332
value of policy  369, 370
variables, HMM execution state

Alpha  214
Beta  214
Delta  214
DiGamma  214
Gamma  214
Qstar  214

variance  58
vector quantization  100
view bound

about  23
versus context bound  23

Viterbi algorithm  226-228

W
weighted moving average  68, 69
while loop  75
WordNet  159
workflow

computational framework  44

dependency injection  46-48
designing  42, 43
example  51
modules  48
monadic data transformation  45, 46
pipe operator  44
workflow factory  49-51

workflow, example
clustering module  52, 53
preprocessing module  51, 52

workflow factory  49-51

X
XCS

about  395, 396
components  396
core data  398, 399
covering  401
example  401
exploitation phase  395
exploration phase  395
rules, defining  399-401
used, for portfolio management  396-398

Z
zero-frequency problem  145
zip method  102
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