
www.allitebooks.com

http://www.allitebooks.org

Scala for Machine Learning

Leverage Scala and Machine Learning to construct and
study systems that can learn from data

Patrick R. Nicolas

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Scala for Machine Learning

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2014

Production reference: 1121214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-874-2

www.packtpub.com

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Patrick R. Nicolas

Reviewers
Subhajit Datta

Rui Gonçalves

Patricia Hoffman, PhD

Md Zahidul Islam

Commissioning Editor
Owen Roberts

Acquisition Editor
Owen Roberts

Content Development Editor
Mohammed Fahad

Technical Editors
Madhuri Das

Taabish Khan

Copy Editors
Janbal Dharmaraj

Vikrant Phadkay

Project Coordinator
Danuta Jones

Proofreaders
Simran Bhogal

Maria Gould

Paul Hindle

Elinor Perry-Smith

Chris Smith

Indexer
Mariammal Chettiyar

Graphics
Sheetal Aute

Valentina D'silva

Disha Haria

Abhinash Sahu

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Patrick R. Nicolas is a lead R&D engineer at Dell in Santa Clara, California.
He has 25 years of experience in software engineering and building large-scale
applications in C++, Java, and Scala, and has held several managerial positions.
His interests include real-time analytics, modeling, and optimization.

Special thanks to the Packt Publishing team: Mohammed Fahad for
his patience and encouragement, Owen Roberts for the opportunity,
and the reviewers for their guidance and dedication.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Subhajit Datta is a passionate software developer.

He did his Bachelor of Engineering in Information Technology (BE in IT) from Indian
Institute of Engineering Science and Technology, Shibpur (IIEST, Shibpur), formerly
known as Bengal Engineering and Science University, Shibpur.

He completed his Master of Technology in Computer Science and Engineering
(MTech CSE) from Indian Institute of Technology Bombay (IIT Bombay); his
thesis focused on topics in natural language processing.

He has experience working in the investment banking domain and web application
domain, and is a polyglot having worked on Java, Scala, Python, Unix shell scripting,
VBScript, JavaScript, C#.Net, and PHP. He is interested in learning and applying
new and different technologies.

He believes that choosing the right programming language, tool, and framework for
the problem at hand is more important than trying to fit all problems in one technology.

He also has experience working in the Waterfall and Agile processes. He is excited
about the Agile software development processes.

Rui Gonçalves is an all-round, hardworking, and dedicated software engineer.
He is an enthusiast of software architecture, programming paradigms, algorithms,
and data structures with the ambition of developing products and services that
have a great impact on society.

He currently works at ShiftForward, where he is a software engineer in the online
advertising field. He is focused on designing and implementing highly efficient,
concurrent, and scalable systems as well as machine learning solutions. In order
to achieve this, he uses Scala as the main development language of these systems
on a day-to-day basis.

www.allitebooks.com

http://www.allitebooks.org

Patricia Hoffman, PhD, is a consultant at iCube Consulting Service Inc., with
over 25 years of experience in modeling and simulation, of which the last six years
concentrated on machine learning and data mining technologies. Her software
development experience ranges from modeling stochastic partial differential equations
to image processing. She is currently an adjunct faculty member at International
Technical University, teaching machine learning courses. She also teaches machine
learning and data mining at the University of California, Santa Cruz—Silicon Valley
Campus. She was Chair of Association for Computing Machinery of the Data Mining
Special Interest Group for the San Francisco Bay area for 5 years, organizing monthly
lectures and five data mining conferences with over 350 participants.

Patricia has a long list of significant accomplishments. She developed the architecture
and software development plan for a collaborative recommendation system
while consulting as a data mining expert for Quantum Capital. While consulting
for Revolution Analytics, she developed training materials for interfacing the R
statistical language with IBM's Netezza data warehouse appliance.

She has also set up the systems used for communication and software development
along with technical coordination for GTECH, a medical device start-up.

She has also technically directed, produced, and managed operations concepts
and architecture analysis for hardware, software, and firmware. She has performed
risk assessments and has written qualification letters, proposals, system specs, and
interface control documents. Also, she has coordinated with subcontractors, associate
contractors, and various Lockheed departments to produce analysis, documents,
technology demonstrations, and integrated systems. She was the Chief Systems
Engineer for a $12 million image processing workstation development, and had
scored 100 percent from the customer.

The various contributions of Patricia to the publications field are as follows:

•	 A unified view on the rotational symmetry of equilibria of nematic polymers, dipolar
nematic polymers, and polymers in higher dimensional space, Communications in
Mathematical Sciences, Volume 6, 949-974

•	 She worked as a technical editor on the book Machine Learning in Action, Peter
Harrington, Manning Publications Co.

•	 A Distributed Architecture for the C3 I (Command, Control, Communications,
and Intelligence) Collection Management Expert System, with Allen Rude,
AIC Lockheed

•	 A book review of computer-supported cooperative work, ACM/SIGCHI
Bulletin, Volume 21, Issue 2, pages 125-128, ISSN:0736-6906, 1989

www.allitebooks.com

http://www.allitebooks.org

Md Zahidul Islam is a software developer working for HSI Health and lives in
Concord, California, with his wife.

He has a passion for functional programming, machine learning, and working
with data. He is currently working with Scala, Apache Spark, MLlib, Ruby on Rails,
ElasticSearch, MongoDB, and Backbone.js. Earlier in his career, he worked with C#,
ASP.NET, and everything around the .NET ecosystem.

I would like to thank my wife, Sandra, who lovingly supports me in
everything I do. I'd also like to thank Packt Publishing and its staff
for the opportunity to contribute to this book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

To Jennifer, for her kindness and support throughout this long journey.

Table of Contents
Preface	 1
Chapter 1: Getting Started	 9

Mathematical notation for the curious	 10
Why machine learning?	 10
Classification	 10
Prediction	 11
Optimization	 11
Regression	 11

Why Scala?	 11
Abstraction	 11
Scalability	 12
Configurability	 13
Maintainability	 14
Computation on demand	 14

Model categorization	 14
Taxonomy of machine learning algorithms	 15
Unsupervised learning	 15
Clustering	 15
Dimension reduction	 16

Supervised learning	 16
Generative models	 16
Discriminative models	 17

Reinforcement learning	 18
Tools and frameworks	 19
Java	 19
Scala	 20
Apache Commons Math	 20
Description	 20

Table of Contents

[ii]

Licensing	 20
Installation	 21

JFreeChart	 21
Description	 21
Licensing	 21
Installation	 22

Other libraries and frameworks	 22
Source code	 22
Context versus view bounds	 23
Presentation	 23
Primitives and implicits	 24
Primitive types	 24
Type conversions	 24
Operators	 25

Immutability	 25
Performance of Scala iterators	 26

Let's kick the tires	 26
Overview of computational workflows	 26
Writing a simple workflow	 28
Selecting a dataset	 28
Loading the dataset	 29
Preprocessing the dataset	 30
Creating a model (learning)	 34
Classify the data	 36

Summary	 37
Chapter 2: Hello World!	 39

Modeling	 39
A model by any other name	 39
Model versus design	 41
Selecting a model's features	 41
Extracting features	 42

Designing a workflow	 42
The computational framework	 44
The pipe operator	 44
Monadic data transformation	 45
Dependency injection	 46
Workflow modules	 48
The workflow factory	 49
Examples of workflow components	 51
The preprocessing module	 51
The clustering module	 52

Table of Contents

[iii]

Assessing a model	 54
Validation	 54
Key metrics	 54
Implementation	 56

K-fold cross-validation	 57
Bias-variance decomposition	 58
Overfitting	 61

Summary	 62
Chapter 3: Data Preprocessing	 63

Time series	 63
Moving averages	 66
The simple moving average	 67
The weighted moving average	 68
The exponential moving average	 69

Fourier analysis	 73
Discrete Fourier transform (DFT)	 73
DFT-based filtering	 79
Detection of market cycles	 82

The Kalman filter	 85
The state space estimation	 86
The transition equation	 86
The measurement equation	 87

The recursive algorithm	 87
Prediction	 89
Correction	 91
Kalman smoothing	 92
Experimentation	 93

Alternative preprocessing techniques	 97
Summary	 97

Chapter 4: Unsupervised Learning	 99
Clustering	 100
K-means clustering	 101
Measuring similarity	 101
Overview of the K-means algorithm	 103
Step 1 – cluster configuration	 103
Step 2 – cluster assignment	 107
Step 3 – iterative reconstruction	 108
Curse of dimensionality	 109
Experiment	 111
Tuning the number of clusters	 114
Validation	 117

Table of Contents

[iv]

Expectation-maximization (EM) algorithm	 118
Gaussian mixture model	 119
EM overview	 120
Implementation	 120
Testing	 123
Online EM	 126

Dimension reduction	 126
Principal components analysis (PCA)	 127
Algorithm	 128
Implementation	 129
Test case	 130
Evaluation	 131

Other dimension reduction techniques	 133
Performance considerations	 133
K-means	 133
EM	 134
PCA	 134

Summary	 135
Chapter 5: Naïve Bayes Classifiers	 137

Probabilistic graphical models	 137
Naïve Bayes classifiers	 139
Introducing the multinomial Naïve Bayes	 139
Formalism	 141
The frequentist perspective	 142
The predictive model	 144
The zero-frequency problem	 145

Implementation	 145
Software design	 145
Training	 146
Classification	 151
Labeling	 152
Results	 154

Multivariate Bernoulli classification	 155
Model	 155
Implementation	 156

Naïve Bayes and text mining	 156
Basics of information retrieval	 158
Implementation	 159
Extraction of terms	 160
Scoring of terms	 161

Testing	 163
Retrieving textual information	 163
Evaluation	 166

Table of Contents

[v]

Pros and cons	 168
Summary	 168

Chapter 6: Regression and Regularization	 169
Linear regression	 169
One-variate linear regression	 170
Implementation	 170
Test case	 171

Ordinary least squares (OLS) regression	 173
Design	 173
Implementation	 174
Test case 1 – trending	 175
Test case 2 – features selection	 178

Regularization	 184
Ln roughness penalty	 184
The ridge regression	 186
Implementation	 186
The test case	 188

Numerical optimization	 191
The logistic regression	 192
The logit function	 192
Binomial classification	 193
Software design	 196
The training workflow	 197
Configuring the least squares optimizer	 198
Computing the Jacobian matrix	 199
Defining the exit conditions	 200
Defining the least squares problem	 201
Minimizing the loss function	 201
Test	 202

Classification	 203
Summary	 205

Chapter 7: Sequential Data Models	 207
Markov decision processes	 207
The Markov property	 208
The first-order discrete Markov chain	 208

The hidden Markov model (HMM)	 209
Notation	 211
The lambda model	 212
HMM execution state	 214
Evaluation (CF-1)	 216
Alpha class (the forward variable)	 217
Beta class (the backward variable)	 220

Table of Contents

[vi]

Training (CF-2)	 222
Baum-Welch estimator (EM)	 222

Decoding (CF-3)	 226
The Viterbi algorithm	 226

Putting it all together	 228
Test case	 230
The hidden Markov model for time series analysis	 232

Conditional random fields	 232
Introduction to CRF	 233
Linear chain CRF	 235

CRF and text analytics	 237
The feature functions model	 238
Software design	 240
Implementation	 241
Building the training set	 242
Generating tags	 243
Extracting data sequences	 244
CRF control parameters	 244
Putting it all together	 245

Tests	 246
The training convergence profile	 247
Impact of the size of the training set	 247
Impact of the L2 regularization factor	 248

Comparing CRF and HMM	 249
Performance consideration	 250
Summary	 250

Chapter 8: Kernel Models and Support Vector Machines	 251
Kernel functions	 252
Overview	 252
Common discriminative kernels	 254

The support vector machine (SVM)	 256
The linear SVM	 256
The separable case (hard margin)	 257
The nonseparable case (soft margin)	 258

The nonlinear SVM	 260
Max-margin classification	 260
The kernel trick	 261

Support vector classifier (SVC)	 262
The binary SVC	 262
LIBSVM	 262
Software design	 263
Configuration parameters	 264
SVM implementation	 267

Table of Contents

[vii]

C-penalty and margin	 269
Kernel evaluation	 272
Application to risk analysis	 277

Anomaly detection with one-class SVC	 282
Support vector regression (SVR)	 284
Overview	 284
SVR versus linear regression	 285

Performance considerations	 288
Summary	 288

Chapter 9: Artificial Neural Networks	 289
Feed-forward neural networks (FFNN)	 289
The Biological background	 290
The mathematical background	 291

The multilayer perceptron (MLP)	 293
The activation function	 294
The network architecture	 295
Software design	 296
Model definition	 297
Layers	 298
Synapses	 299
Connections	 299

Training cycle/epoch	 300
Step 1 – input forward propagation	 301
Step 2 – sum of squared errors	 305
Step 3 – error backpropagation	 305
Step 4 – synapse/weights adjustment	 308
Step 5 – convergence criteria	 309
Configuration	 309
Putting all together	 310

Training strategies and classification	 312
Online versus batch training	 312
Regularization	 313
Model instantiation	 313
Prediction	 314

Evaluation	 315
Impact of learning rate	 315
Impact of the momentum factor	 316
Test case	 317
Implementation	 319
Models evaluation	 321
Impact of hidden layers architecture	 323

Benefits and limitations	 324
Summary	 326

Table of Contents

[viii]

Chapter 10: Genetic Algorithms	 327
Evolution	 327
The origin	 328
NP problems	 328
Evolutionary computing	 329

Genetic algorithms and machine learning	 330
Genetic algorithm components	 330
Encodings	 331
Value encoding	 331
Predicate encoding	 332
Solution encoding	 333
The encoding scheme	 334

Genetic operators	 335
Selection	 336
Crossover	 338
Mutation	 339

Fitness score	 340
Implementation	 340
Software design	 340
Key components	 341
Selection	 344
Controlling population growth	 345
GA configuration	 345
Crossover	 345
Population	 346
Chromosomes	 347
Genes	 348

Mutation	 349
Population	 349
Chromosomes	 349
Genes	 349

The reproduction cycle	 350
GA for trading strategies	 351
Definition of trading strategies	 352
Trading operators	 353
The cost/unfitness function	 353
Trading signals	 354
Trading strategies	 355
Signal encoding	 356

Test case	 357
Data extraction	 358
Initial population	 358
Configuration	 359
GA instantiation	 359

Table of Contents

[ix]

GA execution	 360
Tests	 360

Advantages and risks of genetic algorithms	 363
Summary	 364

Chapter 11: Reinforcement Learning	 365
Introduction	 365
The problem	 366
A solution – Q-learning	 366
Terminology	 367
Concept	 368
Value of policy	 369
Bellman optimality equations	 370
Temporal difference for model-free learning	 371
Action-value iterative update	 372

Implementation	 373
Software design	 373
States and actions	 374
Search space	 375
Policy and action-value	 376
The Q-learning training	 378
Tail recursion to the rescue	 380
Prediction	 381

Option trading using Q-learning	 382
Option property	 383
Option model	 384
Function approximation	 385
Constrained state-transition	 386
Putting it all together	 387

Evaluation	 389
Pros and cons of reinforcement learning	 391

Learning classifier systems	 391
Introduction to LCS	 392
Why LCS	 393
Terminology	 394
Extended learning classifier systems (XCS)	 395
XCS components	 396
Application to portfolio management	 396
XCS core data	 398
XCS rules	 399
Covering	 401
Example of implementation	 401

Benefits and limitation of learning classifier systems	 402
Summary	 403

Table of Contents

[x]

Chapter 12: Scalable Frameworks	 405
Overview	 406
Scala	 407
Controlling object creation	 407
Parallel collections	 407
Processing a parallel collection	 408
Benchmark framework	 409
Performance evaluation	 410

Scalability with Actors	 413
The Actor model	 413
Partitioning	 415
Beyond actors – reactive programming	 415

Akka	 415
Master-workers	 417
Messages exchange	 417
Worker actors	 418
The workflow controller	 419
The master Actor	 419
Master with routing	 421
Distributed discrete Fourier transform	 422
Limitations	 425

Futures	 425
The Actor life cycle	 426
Blocking on futures	 426
Handling future callbacks	 428
Putting all together	 430

Apache Spark	 431
Why Spark	 432
Design principles	 433
In-memory persistency	 433
Laziness	 433
Transforms and Actions	 434
Shared variables	 436

Experimenting with Spark	 437
Deploying Spark	 437
Using Spark shell	 438
MLlib	 439
RDD generation	 439
K-means using Spark	 440

Performance evaluation	 442
Tuning parameters	 442
Tests	 443
Performance considerations	 444

Pros and cons	 445
0xdata Sparkling Water	 446

Summary	 446

Table of Contents

[xi]

Appendix A: Basic Concepts	 447
Scala programming	 447
List of libraries	 447
Format of code snippets	 448
Encapsulation	 449
Class constructor template	 449
Companion objects versus case classes	 450
Enumerations versus case classes	 450
Overloading	 451
Design template for classifiers	 452
Data extraction	 453
Data sources	 454
Extraction of documents	 455
Matrix class	 456

Mathematics	 457
Linear algebra	 457
QR Decomposition	 458
LU factorization	 458
LDL decomposition	 458
Cholesky factorization	 458
Singular value decomposition	 459
Eigenvalue decomposition	 459
Algebraic and numerical libraries	 459

First order predicate logic	 460
Jacobian and Hessian matrices	 461
Summary of optimization techniques	 462
Gradient descent methods	 462
Quasi-Newton algorithms	 463
Nonlinear least squares minimization	 464
Lagrange multipliers	 465

Overview of dynamic programming	 466
Finances 101	 467
Fundamental analysis	 467
Technical analysis	 468
Terminology	 468
Trading signals and strategy	 469
Price patterns	 471

Options trading	 471
Financial data sources	 472

Suggested online courses	 473
References	 473

Index	 475

Preface
Not a single day passes by that we do not hear about Big Data in the news media,
technical conferences, and even coffee shops. The ever-increasing amount of data
collected in process monitoring, research, or simple human behavior becomes
valuable only if you extract knowledge from it. Machine learning is the essential
tool to mine data for gold (knowledge).

This book covers the "what", "why", and "how" of machine learning:

•	 What are the objectives and the mathematical foundation of machine learning?
•	 Why is Scala the ideal programming language to implement machine

learning algorithms?
•	 How can you apply machine learning to solve real-world problems?

Throughout this book, machine learning algorithms are described with diagrams,
mathematical formulation, and documented snippets of Scala code, allowing you
to understand these key concepts in your own unique way.

What this book covers
Chapter 1, Getting Started, introduces the basic concepts of statistical analysis,
classification, regression, prediction, clustering, and optimization. This chapter
covers the Scala languages features and libraries, followed by the implementation
of a simple application.

Chapter 2, Hello World!, describes a typical workflow for classification, the concept of
bias/variance trade-off, and validation using the Scala dependency injection applied
to the technical analysis of financial markets.

Preface

[2]

Chapter 3, Data Preprocessing, covers time series analyses and leverages Scala to
implement data preprocessing and smoothing techniques such as moving averages,
discrete Fourier transform, and the Kalman recursive filter.

Chapter 4, Unsupervised Learning, focuses on the implementation of some of the most
widely used clustering techniques, such as K-means, the expectation-maximization,
and the principal component analysis as a dimension reduction method.

Chapter 5, Naïve Bayes Classifiers, introduces probabilistic graphical models, and then
describes the implementation of the Naïve Bayes and the multivariate Bernoulli
classifiers in the context of text mining.

Chapter 6, Regression and Regularization, covers a typical implementation of the linear
and least squares regression, the ridge regression as a regularization technique, and
finally, the logistic regression.

Chapter 7, Sequential Data Models, introduces the Markov processes followed by a full
implementation of the hidden Markov model, and conditional random fields applied
to pattern recognition in financial market data.

Chapter 8, Kernel Models and Support Vector Machines, covers the concept of kernel
functions with implementation of support vector machine classification and
regression, followed by the application of the one-class SVM to anomaly detection.

Chapter 9, Artificial Neural Networks, describes feed-forward neural networks followed
by a full implementation of the multilayer perceptron classifier.

Chapter 10, Genetic Algorithms, covers the basics of evolutionary computing and the
implementation of the different components of a multipurpose genetic algorithm.

Chapter 11, Reinforcement Learning, introduces the concept of reinforcement learning
with an implementation of the Q-learning algorithm followed by a template to build
a learning classifier system.

Chapter 12, Scalable Frameworks, covers some of the artifacts and frameworks to create
scalable applications for machine learning such as Scala parallel collections, Akka,
and the Apache Spark framework.

Appendix A, Basic Concepts, covers the Scala constructs used throughout the book,
elements of linear algebra, and an introduction to investment and trading strategies.

Appendix B, References, provides a chapter-wise list of references for [source entry]
in the respective chapters. This appendix is available as an online chapter at
https://www.packtpub.com/sites/default/files/downloads/8742OS_
AppendixB_References.pdf.

Preface

[3]

Short test applications using financial data illustrate the large variety of predictive,
regression, and classification models.

The interdependencies between chapters are kept to a minimum. You can easily
delve into any chapter once you complete Chapter 1, Getting Started, and Chapter 2,
Hello World!.

What you need for this book
A decent command of the Scala programming language is a prerequisite. Reading
through a mathematical formulation, conveniently defined in an information box,
is optional. However, some basic knowledge of mathematics and statistics might
be helpful to understand the inner workings of some algorithms.

The book uses the following libraries:

•	 Scala 2.10.3 or higher
•	 Java JDK 1.7.0_45 or 1.8.0_25
•	 SBT 0.13 or higher
•	 JFreeChart 1.0.1
•	 Apache Commons Math library 3.3 (Chapter 3, Data Preprocessing, Chapter 4,

Unsupervised Learning, and Chapter 6, Regression and Regularization)
•	 Indian Institute of Technology Bombay CRF 0.2 (Chapter 7, Sequential

Data Models)
•	 LIBSVM 0.1.6 (Chapter 8, Kernel Models and Support Vector Machines)
•	 Akka 2.2.4 or higher (or Typesafe activator 1.2.10 or higher) (Chapter 12,

Scalable Frameworks)
•	 Apache Spark 1.0.2 or higher (Chapter 12, Scalable Frameworks)

Understanding the mathematical formulation of a
model is optional.

Who this book is for
This book is for software developers with a background in Scala programming who
want to learn how to create, validate, and apply machine learning algorithms.

The book is also beneficial to data scientists who want to explore functional
programming or improve the scalability of their existing applications using Scala.

Preface

[4]

This book is designed as a tutorial with comparative hands-on exercises using
technical analysis of financial markets.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Finally, the environment variables JAVA_HOME, PATH, and CLASSPATH have to be
updated accordingly."

A block of code is set as follows:

[default]
val lsp = builder.model(lrJacobian)
 .weight(wMatrix)
 .target(labels)

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

[default]
val lsp = builder.model(lrJacobian)
 .weight(wMatrix)
 .target(labels)

The source code block is described using a reference number embedded as a
code comment:

[default]
val lsp = builder.model(lrJacobian) //1
 .weight(wMatrix)
 .target(labels)

The reference number is used in the chapter as follows: "The model instance is
initialized with the Jacobian matrix, lrJacobian (line 1)."

Any command-line input or output is written as follows:

sbt/sbt assembly

Preface

[5]

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "The loss
function is then known as the hinge loss."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Mathematical formulas (optional to read) appear in a
box like this

For the sake of readability, the elements of the Scala code that are not essential to
the understanding of an algorithm such as class, variable, and method qualifiers
and validation of arguments, exceptions, or logging are omitted. The convention
for code snippets is detailed in the Format of code snippets section in Appendix A,
Basic Concepts.

You will be provided with in-text citation of papers, conference, books, and
instructional videos throughout the book. The sources are listed in the the
Appendix B, References using in the following format:

[In-text citation]

For example, in the chapter, you will find an instance as follows:

This time around RSS increases with λ before reaching a maximum for λ > 60. This
behavior is consistent with other findings [6:12].

The respective [source entry] is mentioned in Appendix B, References, as follows:

[6:12] Model selection and assessment H. Bravo, R. Irizarry, 2010, available at http://
www.cbcb.umd.edu/~hcorrada/PracticalML/pdf/lectures/selection.pdf.

www.allitebooks.com

http://www.allitebooks.org

Preface

[6]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Preface

[7]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

Getting Started
It is critical for any computer scientist to understand the different classes of machine
learning algorithms and be able to select the ones that are relevant to the domain of
their expertise and dataset. However, the application of these algorithms represents
a small fraction of the overall effort needed to extract an accurate and performing
model from input data. A common data mining workflow consists of the following
sequential steps:

1.	 Loading the data.
2.	 Preprocessing, analyzing, and filtering the input data.
3.	 Discovering patterns, affinities, clusters, and classes.
4.	 Selecting the model features and the appropriate machine learning

algorithm(s).
5.	 Refining and validating the model.
6.	 Improving the computational performance of the implementation.

As we will emphasize throughout this book, each stage of the process is critical to
build the right model.

This first chapter introduces you to the taxonomy of machine learning algorithms,
the tools and frameworks used in the book, and a simple application of logistic
regression to get your feet wet.

Getting Started

[10]

Mathematical notation for the curious
Each chapter contains a small section dedicated to the formulation of the algorithms
for those interested in the mathematical concepts behind the science and art of
machine learning. These sections are optional and defined within a tip box. For
example, the mathematical expression of the mean and the variance of a variable
X mentioned in a tip box will be as follows:

Mean value of a variable X = {x} is defined as:

The variance of a variable X = {x} is defined as:

Why machine learning?
The explosion in the number of digital devices generates an ever-increasing amount
of data. The best analogy I can find to describe the need, desire, and urgency to
extract knowledge from large datasets is the process of extracting a precious metal
from a mine, and in some cases, extracting blood from a stone.

Knowledge is quite often defined as a model that can be constantly updated or
tweaked as new data comes into play. Models are obviously domain-specific ranging
from credit risk assessment, face recognition, maximization of quality of service,
classification of pathological symptoms of disease, optimization of computer networks,
and security intrusion detection, to customers' online behavior and purchase history.

Machine learning problems are categorized as classification, prediction, optimization,
and regression.

Classification
The purpose of classification is to extract knowledge from historical data. For
instance, a classifier can be built to identify a disease from a set of symptoms. The
scientist collects information regarding the body temperature (continuous variable),
congestion (discrete variables HIGH, MEDIUM, and LOW), and the actual diagnostic
(flu). This dataset is used to create a model such as IF temperature > 102 AND
congestion = HIGH THEN patient has the flu (probability 0.72), which
doctors can use in their diagnostic.

Chapter 1

[11]

Prediction
Once the model is extracted and validated against the past data, it can be used to
draw inference from the future data. A doctor collects symptoms from a patient,
such as body temperature and nasal congestion, and anticipates the state of
his/her health.

Optimization
Some global optimization problems are intractable using traditional linear and
non-linear optimization methods. Machine learning techniques improve the chances
that the optimization method converges toward a solution (intelligent search). You
can imagine that fighting the spread of a new virus requires optimizing a process
that may evolve over time as more symptoms and cases are uncovered.

Regression
Regression is a classification technique that is particularly suitable for a continuous
model. Linear (least square), polynomial, and logistic regressions are among the
most commonly used techniques to fit a parametric model, or function, y= f (xj), to a
dataset. Regression is sometimes regarded as a specialized case of classification for
which the output variables are continuous instead of categorical.

Why Scala?
Like most functional languages, Scala provides developers and scientists with a
toolbox to implement iterative computations that can be easily woven dynamically
into a coherent dataflow. To some extent, Scala can be regarded as an extension of
the popular MapReduce model for distributed computation of large amounts of data.
Among the capabilities of the language, the following features are deemed essential
to machine learning and statistical analysis.

Abstraction
Monoids and monads are important concepts in functional programming.
Monads are derived from the category and group theory allowing developers to
create a high-level abstraction as illustrated in Twitter's Algebird (https://github.
com/twitter/algebird) or Google's Breeze Scala (https://github.com/dlwh/
breeze) libraries.

A monoid defines a binary operation op on a dataset T with the property of closure,
identity operation, and associativity.

Getting Started

[12]

Let's consider the + operation is defined for a set T using the following
monoidal representation:

trait Monoid[T] {
 def zero: T
 def op(a: T, b: T): c
}

Monoids are associative operations. For instance, if ts1, ts2, and ts3 are three
time series, then the property ts1 + (ts2 + ts3) = (ts1 + ts2) + ts2 is true.
The associativity of a monoid operator is critical in regards to parallelization of
computational workflows.

Monads are structures that can be seen either as containers by programmers or as
a generalization of Monoids. The collections bundled with the Scala standard library
(list, map, and so on) are constructed as monads [1:1]. Monads provide the ability
for those collections to perform the following functions:

1.	 Create the collection.
2.	 Transform the elements of the collection.
3.	 Flatten nested collections.

A common categorical representation of a monad in Scala is a trait, Monad,
parameterized with a container type M:

trait Monad[M[_]] {
 def apply[T])(a: T): M[T]
 def flatMap[T, U](m: M[T])(f: T=>M[U]): M[U]
}

Monads allow those collections or containers to be chained to generate a workflow.
This property is applicable to any scientific computation [1:2].

Scalability
As seen previously, monoids and monads enable parallelization and chaining of
data processing functions by leveraging the Scala higher-order methods. In terms
of implementation, Actors are the core elements that make Scala scalable. Actors act
as coroutines, managing the underlying threads pool. Actors communicate through
passing asynchronous messages. A distributed computing Scala framework such
as Akka and Spark extends the capabilities of the Scala standard library to support
computation on very large datasets. Akka and Spark are described in detail in the
last chapter of this book [1:3].

Chapter 1

[13]

In a nutshell, a workflow is implemented as a sequence of activities or computational
tasks. Those tasks consist of high-order Scala methods such as flatMap, map, fold,
reduce, collect, join, or filter applied to a large collection of observations. Scala
allows these observations to be partitioned by executing those tasks through a cluster
of actors. Scala also supports message dispatching and routing of messages between
local and remote actors. The engineers can decide to execute a workflow either locally
or distributed across CPU cores and servers with no code or very little code changes.

Deployment of a workflow as a distributed computation

In this diagram, a controller, that is, the master node, manages the sequence of
tasks 1 to 4 similar to a scheduler. These tasks are actually executed over multiple
worker nodes that are implemented by the Scala actors. The master node exchanges
messages with the workers to manage the state of the execution of the workflow
as well as its reliability. High availability of these tasks is implemented through a
hierarchy of supervising actors.

Configurability
Scala supports dependency injection using a combination of abstract variables,
self-referenced composition, and stackable traits. One of the most commonly used
dependency injection patterns, the cake pattern, is used throughout this book to
create dynamic computation workflows and plots.

Getting Started

[14]

Maintainability
Scala embeds Domain Specific Languages (DSL) natively. DSLs are syntactic layers
built on top of Scala native libraries. DSLs allow software developers to abstract
computation in terms that are easily understood by scientists. The most notorious
application of DSLs is the definition of the emulation of the syntax used in the
MATLAB program, which data scientists are familiar with.

Computation on demand
Lazy methods and values allow developers to execute functions and allocate
computing resources on demand. The Spark framework relies on lazy variables
and methods to chain Resilient Distributed Datasets (RDD).

Model categorization
A model can be predictive, descriptive, or adaptive.

Predictive models discover patterns in historical data and extract fundamental
trends and relationships between factors. They are used to predict and classify
future events or observations. Predictive analytics is used in a variety of fields
such as marketing, insurance, and pharmaceuticals. Predictive models are created
through supervised learning using a preselected training set.

Descriptive models attempt to find unusual patterns or affinities in data by grouping
observations into clusters with similar properties. These models define the first level
in knowledge discovery. They are generated through unsupervised learning.

A third category of models, known as adaptive modeling, is generated through
reinforcement learning. Reinforcement learning consists of one or several
decision-making agents that recommend and possibly execute actions in
the attempt of solving a problem, optimizing an objective function, or
resolving constraints.

Chapter 1

[15]

Taxonomy of machine learning
algorithms
The purpose of machine learning is to teach computers to execute tasks without
human intervention. An increasing number of applications such as genomics, social
networking, advertising, or risk analysis generate a very large amount of data that
can be analyzed or mined to extract knowledge or provide insight into a process,
a customer, or an organization. Ultimately, machine learning algorithms consist
of identifying and validating models to optimize a performance criterion using
historical, present, and future data [1:4].

Data mining is the process of extracting or identifying patterns in a dataset.

Unsupervised learning
The goal of unsupervised learning is to discover patterns of regularities and
irregularities in a set of observations. The process known as density estimation
in statistics is broken down into two categories: discovery of data clusters and
discovery of latent factors. The methodology consists of processing input data to
understand patterns similar to the natural learning process in infants or animals.
Unsupervised learning does not require labeled data, and therefore, is easy to
implement and execute because no expertise is needed to validate an output.
However, it is possible to label the output of a clustering algorithm and use it for
future classification.

Clustering
The purpose of data clustering is to partition a collection of data into a number of
clusters or data segments. Practically, a clustering algorithm is used to organize
observations into clusters by minimizing the observations within a cluster and
maximizing the observations between clusters. A clustering algorithm consists
of the following steps:

1.	 Creating a model by making an assumption on the input data.
2.	 Selecting the objective function or goal of the clustering.
3.	 Evaluating one or more algorithms to optimize the objective function.

Data clustering is also known as data segmentation or data partitioning.

Getting Started

[16]

Dimension reduction
Dimension reduction techniques aim at finding the smallest but most relevant set
of features that models dataset reliability. There are many reasons for reducing the
number of features or parameters in a model, from avoiding overfitting to reducing
computation costs.

There are many ways to classify the different techniques used to extract knowledge
from data using unsupervised learning. The following taxonomy breaks down these
techniques according to their purpose, although the list is far for being exhaustive, as
shown in the following diagram:

Supervised learning
The best analogy for supervised learning is function approximation or curve fitting.
In its simplest form, supervised learning attempts to extract a relation or function f
x → y from a training set {x, y}. Supervised learning is far more accurate and reliable
than any other learning strategy. However, a domain expert may be required to label
(tag) data as a training set for certain types of problems.

Supervised machine learning algorithms can be broken into two categories:

•	 Generative models
•	 Discriminative models

Generative models
In order to simplify the description of statistics formulas, we adopt the following
simplification: the probability of an event X is the same as the probability of the
discrete random variable X to have a value x, p(X) = p(X=x). The notation of joint
probability (resp. conditional probability) becomes p(X, Y) = p(X=x, Y=y) (resp.
p(X|Y)=p(X=x | Y=y).

Chapter 1

[17]

Generative models attempt to fit a joint probability distribution, p(X,Y), of two events
(or random variables), X and Y, representing two sets of observed and hidden (latent)
variables x and y. Discriminative models learn the conditional probability p(Y|X) of an
event or random variable Y of hidden variables y, given an event or random variable
X of observed variables x. Generative models are commonly introduced through the
Bayes' rule. The conditional probability of an event Y, given an event X, is computed
as the product of the conditional probability of the event X, given the event Y, and the
probability of the event X normalized by the probability of event Y [1:5].

Join probability (if X and Y are independent):

Conditional probability:

The Bayes' rule:

The Bayes' rule is the foundation of the Naïve Bayes classifier, which is the topic of
Chapter 5, Naïve Bayes Classifiers.

Discriminative models
Contrary to generative models, discriminative models compute the conditional
probability p(Y|X) directly, using the same algorithm for training and classification.

Generative and discriminative models have their respective advantages and
drawbacks. Novice data scientists learn to match the appropriate algorithm to each
problem through experimentation. Here is a brief guideline describing which type of
models makes sense according to the objective or criteria of the project:

Objective Generative models Discriminative models
Accuracy Highly dependent on the

training set.
Probability estimates tend to be
more accurate.

Modeling
requirements

There is a need to model both
observed and hidden variables,
which requires a significant
amount of training.

The quality of the training set
does not have to be as rigorous
as for generative models.

Getting Started

[18]

Objective Generative models Discriminative models
Computation cost This is usually low. For

example, any graphical method
derived from the Bayes' rule
has low overhead.

Most algorithms rely on
optimization of a convex
that introduces significant
performance overhead.

Constraints These models assume some
degree of independence among
the model features.

Most discriminative algorithms
accommodate dependencies
between features.

We can further refine the taxonomy of supervised learning algorithms by segregating
between sequential and random variables for generative models and breaking down
discriminative methods as applied to continuous processes (regression) and discrete
processes (classification):

Reinforcement learning
Reinforcement learning is not as well understood as supervised and unsupervised
learning outside the realms of robotics or game strategy. However, since the 90s,
genetic-algorithms-based classifiers have become increasingly popular to solve
problems that require collaboration with a domain expert. For some types of
applications, reinforcement learning algorithms output a set of recommended
actions for the adaptive system to execute. In its simplest form, these algorithms
compute or estimate the best course of action. Most complex systems based on
reinforcement learning establish and update policies that can be vetoed by an expert.
The foremost challenge developers of reinforcement learning systems face is that the
recommended action or policy may depend on partially observable states and how to
deal with uncertainty.

Chapter 1

[19]

Genetic algorithms are not usually considered part of the reinforcement learning
toolbox. However, advanced models such as learning classifier systems use genetic
algorithms to classify and reward the rules and policies.

As with the two previous learning strategies, reinforcement learning models can be
categorized as Markovian or evolutionary:

This is a brief overview of machine learning algorithms with a suggested taxonomy.
There are almost as many ways to introduce machine learning as there are data and
computer scientists. We encourage you to browse through the list of references at the
end of the book and find the documentation appropriate to your level of interest and
understanding.

Tools and frameworks
Before getting your hands dirty, you need to download and deploy a minimum set
of tools and libraries so as not to reinvent the wheel. A few key components have to
be installed in order to compile and run the source code described throughout the
book. We focus on open source and commonly available libraries, although you are
invited to experiment with equivalent tools of your choice. The learning curve for the
frameworks described here is minimal.

Java
The code described in the book has been tested with JDK 1.7.0_45 and JDK 1.8.0_25
on Windows x64 and MacOS X x64 . You need to install the Java Development Kit if
you have not already done so. Finally, the environment variables JAVA_HOME, PATH,
and CLASSPATH have to be updated accordingly.

Getting Started

[20]

Scala
The code has been tested with Scala 2.10.4. We recommend using Scala version
2.10.3 or higher and SBT 0.13 or higher. Let's assume that Scala runtime (REPL)
and libraries have been properly installed and environment variables SCALA_HOME
and PATH have been updated. The description and installation instructions of the
Scala plugin for Eclipse are available at http://scala-ide.org/docs/user/
gettingstarted.html.

You can also download the Scala plugin for Intellij IDEA from the JetBrains website
at http://confluence.jetbrains.com/display/SCA/.

The ubiquitous simple build tool (sbt) will be our primary building engine.
The syntax of the build file sbt/build.sbt conforms to version 0.13, and is
used to compile and assemble the source code presented throughout this book.

Apache Commons Math
Apache Commons Math is a Java library for numerical processing, algebra, statistics,
and optimization [1:6].

Description
This is a lightweight library that provides developers with a foundation of small,
ready-to-use Java classes that can be easily weaved into a machine learning problem.
The examples used throughout the book require version 3.3 or higher.

The main components of Apache Commons Math are:

•	 Functions, differentiation, and integral and ordinary differential equations
•	 Statistics distribution
•	 Linear and nonlinear optimization
•	 Dense and Sparse vectors and matrices
•	 Curve fitting, correlation, and regression

For more information, visit http://commons.apache.org/proper/commons-math.

Licensing
We need Apache Public License 2.0; the terms are available at http://www.apache.
org/licenses/LICENSE-2.0.

Chapter 1

[21]

Installation
The installation and deployment of the Commons Math library are quite simple:

1.	 Go to the download page, http://commons.apache.org/proper/commons-
math/download_math.cgi.

2.	 Download the latest .jar files in the Binaries section, commons-math3-3.3-
bin.zip (for version 3.3, for instance).

3.	 Unzip and install the .jar files.
4.	 Add commons-math3-3.3.jar to classpath as follows:

°° For Mac OS X, use the command export CLASSPATH=$CLASSPATH:/
Commons_Math_path/commons-math3-3.3.jar

°° For Windows, navigate to System property | Advanced system
settings | Advanced | Environment variables…, then edit the
entry of the CLASSPATH variable

5.	 Add the commons-math3-3.3.jar file to your IDE environment if needed
(that is, for Eclipse, navigate to Project | Properties | Java Build Path |
Libraries | Add External JARs).

You can also download commons-math3-3.3-src.zip from the Source section.

JFreeChart
JFreeChart is an open source chart and plotting Java library, widely used in the Java
programmer community. It was originally created by David Gilbert [1:7].

Description
The library supports a variety of configurable plots and charts (scatter, dial, pie, area,
bar, box and whisker, stacked, and 3D). We use JFreeChart to display the output
of data processing and algorithms throughout the book, but you are encouraged to
explore this great library on your own, as time permits.

Licensing
It is distributed under the terms of the GNU Lesser General Public License (LGPL),
which permits its use in proprietary applications.

Getting Started

[22]

Installation
To install and deploy JFreeChart, perform the following steps:

1.	 Visit http://www.jfree.org/jfreechart.
2.	 Download the latest version from Source Forge at http://sourceforge.

net/projects/jfreechart/files.
3.	 Unzip and install the .jar file.
4.	 Add jfreechart-1.0.17.jar (for version 1.0.17) to classpath as follows:

°° For Mac OS, update the classpath by using export
CLASSPATH=$CLASSPATH:/JFreeChart_path/ jfreechart-1.0.17.
jar

°° For Windows, go to System property | Advanced system settings |
Advanced | Environment variables… and then edit the entry of the
CLASSPATH variable

5.	 Add the jfreechart-1.0.17.jar file to your IDE environment, if needed.

Other libraries and frameworks
Libraries and tools that are specific to a single chapter are introduced along with
the topic. Scalable frameworks are presented in the last chapter along with the
instructions to download them. Libraries related to the conditional random fields
and support vector machines are described in the respective chapters.

Why not use Scala algebra and numerical libraries
Libraries such as Breeze, ScalaNLP, and Algebird are great Scala
frameworks for linear algebra, numerical analysis, and machine
learning. They provide even the most seasoned Scala programmer
with a high-quality layer of abstraction. However, this book is
designed as a tutorial that allows developers to write algorithms
from the ground up using simple common Java libraries [1:8].

Source code
The Scala programming language is used to implement and evaluate the machine
learning techniques presented in this book. Only a subset of the source code used
to implement the techniques are presented in the book. The formal implementation
of these algorithms is available on the website of Packt Publishing (http://www.
packtpub.com).

Chapter 1

[23]

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

Context versus view bounds
Most Scala classes discussed in the book are parameterized with the type
associated to the discrete/categorical value (Int) or continuous value (Double).
Context bounds would require that any type used by the client code has Int or
Double as upper bounds:

class MyClassInt[T <: Int]
class MyClassFloat[T <: Double]

Such a design introduces constraints on the client to inherit from simple types and to
deal with covariance and contravariance for container types [1:9].

For this book, view bounds are used instead of context bounds only where they
require an implicit conversion to the parameterized type to be defined:

Class MyClassFloat[T <% Double]
implicit def T2Double(t : T): Double

Presentation
For the sake of readability of the implementation of algorithms, all nonessential code
such as error checking, comments, exceptions, or imports are omitted. The following
code elements are discarded in the code snippet presented in the book:

•	 Code comments
•	 Validation of class parameters and method arguments:

class BaumWelchEM(val lambda: HMMLambda ...) {
 require(lambda != null, "Lambda model is undefined")

•	 Exceptions and an exception handler:
 try { .. }
 catch {
 case e: ArrayIndexOutOfBoundsException =>println(e.
toString)
 }

Getting Started

[24]

•	 Nonessential annotation:
 @inline def mean = ..

•	 Logging and debugging code:
 m_logger.debug(…)

•	 Private and nonessential methods

Primitives and implicits
The algorithms presented in this book share the same primitive types, generic
operators, and implicit conversions.

Primitive types
For the sake of readability of the code, the following primitive types will be used:

type XY = (Double, Double)
type XYTSeries = Array[(Double, Double)]
type DMatrix[T] = Array[Array[T]]
type DVector[T] = Array[T]
type DblMatrix = DMatrix[Double]
type DblVector = Array[Double]

The types have the behavior (methods) of their primitive counterpart (array).
However, adding a new functionality to vectors, matrices, and time series requires
classes of their own right. These classes will be introduced in the next chapter.

Type conversions
Implicit conversion is an important feature of the Scala programming language
because it allows developers to specify a type conversion for an entire library
in a single place. Here are a few of the implicit type conversions used throughout
the book:

implicit def int2Double(n: Int): Double = n.toDouble
implicit def vectorT2DblVector[T <% Double](vt: DVector[T]): DblVector
= vt.map(t => t.toDouble)
implicit def double2DblVector(x: Double): DblVector = Array[Double](x)
implicit def dblPair2DbLVector(x: (Double, Double)): DblVector =
Array[Double](x._1,x._2)
implicit def dblPairs2DblRows(x: (Double, Double)): DblMatrix =
Array[Array[Double]](Array[Double](x._1, x._2))
...

Chapter 1

[25]

Library-specific conversion
The conversion between the primitive type listed here and
types introduced in a particular library (such as Apache
Commons Math) is declared in future chapters the first
time those libraries are used.

Operators
Lastly, some operations are applied by multiple machine learning or preprocessing
algorithms. They need to be defined implicitly. The operation on a pair of a vector of
arbitrary type and vector of Double is defined as follows:

def Op[T <% Double](v: DVector[T], w: DblVector, op: (T, Double) =>
Double): DblVector =
 v.zipWithIndex.map(x => op(x._1, w(x._2)))

It is also convenient to define the following operators that are included in the Scala
standard library:

implicit def /(v: DblVector, n: Int):DblVector = v.map(x => x/n)
implicit def /(m: DblMatrix, col: Int, z: Double): DblMatrix = { (0
until m(n).size).foreach(i => m(n)(i) /= z) }

We won't have to redefine the types, conversions, and operators from now on.

Immutability
It is usually a good idea to reduce the number of states of an object. Method
invocation transitions an object from one state to another. The larger the number
of methods or states, the more cumbersome the testing process becomes.

There is no point in creating a model that is not defined (trained). Therefore, making
the training of a model as part of the constructor of the class it implements makes a
lot of sense. Therefore, the only public methods of a machine learning algorithm are:

•	 Classification or prediction
•	 Validation
•	 Retrieval of model parameters (weights, latent variables, hidden states, and

so on), if needed

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[26]

Performance of Scala iterators
The evaluation of the performance of Scala high-order iterative methods is beyond
the scope of this book. However, it is important to be aware of the trade-off of
each method.

The for loop construct is to be avoided as a counting iterator except if it is used
in conjunction with yield. It is designed to implement the for-comprehension
monad (map-flatMap). The source code presented in this book uses the while
and foreach constructs.

Scala reducer methods reduce and fold are also frequently used for their efficiency.

Let's kick the tires
This final section introduces the key elements of the training and classification
workflow. A test case using a simple logistic regression is used to illustrate each
step of the computational workflow.

Overview of computational workflows
In its simplest form, a computational workflow to perform runtime processing of a
dataset is composed of the following stages:

1.	 Loading the dataset from files, databases, or any streaming devices.
2.	 Splitting the dataset for parallel data processing.
3.	 Preprocessing data using filtering techniques, analysis of variance, and

applying penalty and normalization functions whenever necessary.
4.	 Applying the model, either a set of clusters or classes to classify new data.
5.	 Assessing the quality of the model.

A similar sequence of tasks is used to extract a model from a training dataset:

1.	 Loading the dataset from files, databases, or any streaming devices.
2.	 Splitting the dataset for parallel data processing.
3.	 Applying filtering techniques, analysis of variance, and penalty and

normalization functions to the raw dataset whenever necessary.
4.	 Selecting the training, testing, and validation set from the cleansed input data.
5.	 Extracting key features, establishing affinity between a similar group of

observations using clustering techniques or supervised learning algorithms.

Chapter 1

[27]

6.	 Reducing the number of features to a manageable set of attributes to avoid
overfitting the training set.

7.	 Validating the model and tuning the model by iterating steps 5, 6, and 7 until
the error meets criteria.

8.	 Storing the model into the file or database to be loaded for runtime
processing of new observations.

Data clustering and data classification can be performed independent of each other
or as part of a workflow that uses clustering techniques as a preprocessing stage
of the training phase of a supervised learning algorithm. Data clustering does
not require a model to be extracted from a training set, while classification can be
performed only if a model has been built from the training set. The following image
gives an overview of training and classification:

A generic data flow for training and running a model

This diagram is an overview of a typical data mining processing pipeline.
The first phase consists of extracting the model through clustering or training
of a supervised learning algorithm. The model is then validated against test data,
for which the source is the same as the training set but with different observations.
Once the model is created and validated, it can be used to classify real-time data
or predict future behavior. In reality, real-world workflows are more complex
and require being dynamically configurable to allow experimentation of different
models. Several alternative classifiers can be used to perform a regression and
different filtering algorithms are applied against input data depending of the
latent noise in the raw data.

Getting Started

[28]

Writing a simple workflow
This book relies on financial data to experiment with a different learning strategy.
The objective of the exercise is to build a model that can discriminate between
volatile and nonvolatile trading sessions. For this first example, we select a simplified
version of the logistic regression as our classifier as we treat a stock-price-volume
action as a continuous or pseudo-continuous process.

Logistic regression
Logistic regression is treated in depth in Chapter 6, Regression
and Regularization. The model treated in this example is a simple
binary classifier using logistic regression for two-dimensional
observations.

The classification of trading sessions according to their volatility is as follows:

•	 Select a dataset
•	 Load the dataset
•	 Preprocess the dataset
•	 Display data
•	 Create the model through training
•	 Classify new data

Selecting a dataset
Throughout the book, we will rely on financial data to evaluate and discuss the merit
of different data processing and machine learning methods. In this example, the data
is extracted from Yahoo! Finances using the CSV format with the following fields:

•	 Date
•	 Price at open
•	 Highest price in session
•	 Lowest price in session
•	 Price at session close
•	 Volume
•	 Adjust price at session close

Let's create a simple program that loads the content of the file, executes some simple
preprocessing functions, and creates a simple model. We selected the CSCO stock
price between January 1, 2012 and December 1, 2013 as our data input.

Chapter 1

[29]

Let's consider two variables, price and volume, as illustrated by the following
screenshot. The top graph displays the variation of the price of Cisco stock over time
and the bottom bar chart represents the daily trading volume on Cisco stock over time:

Price-Volume action for the Cisco stock

Loading the dataset
The first step is loading the dataset from a local file. Typically, large datasets are
loaded from a database or distributed filesystem such as Hadoop Distributed File
System (HDFS), as shown here:

def load(fileName: String): Option[XYTSeries] = {
 val src = Source.fromFile(fileName)
 val fields = src.getLines.map(_.split(CSV_DELIM)).toArray //1
 val cols = fields.drop(1) //2
 val data = transform(cols)
 src.close //3
 Some(data)
}

The transform method will be described in the next section.

The data file is extracted through an invocation of the Source.fromFile static
method, and then the fields are extracted through a map (line 1). The header
(first) row is removed with a call to drop (line 2).

Data extraction
The Source.fromFile.getLines.map invocation pipeline
method returns an iterator, which needs to be converted into an
array to store the information into memory.

Getting Started

[30]

The file has to be closed to avoid leaking of the file handle (line 3).

Code readability
A long pipeline of Scala high-order methods make the code and
underlying code quite difficult to read. It is recommended to break
down long chains of method calls. The following code is an example
of a long chain of method calls:

val cols = Source.fromFile.getLines.map(
_.split(CSV_DELIM).toArray.drop(1)

We can break down such method calls into several steps as follows:
val lines = Source.fromFile.getLines
val fields = lines.map(_.split(CSV_DELIM).toArray
val cols = fields.drop(1)

We strongly encourage you to consult the excellent guide Effective
Scala, written by Marius Eriksen from Twitter. This is definitively a
must read for any Scala developer [1:10].

Preprocessing the dataset
The next step is to normalize the data in the range [-0.5, 0.5] to be trained by the
logistic binary classifier. It is time to introduce a non-sense statistics class.

Basic statistics
We select the computation of mean and standard deviation of the two time series as
the first step of the preprocessing phase. The computation of these statistics can be
implemented by the reduce methods reduceLeft and foldLeft:

val mean = price.reduceLeft(_ + _)/price.size
val s2 = price.foldLeft(0.0)((s,x) =>s+(x-mean)*(x-mean))
val stdDev = Math.sqrt(s2/(price.size-1))

However, this implementation has one major drawback: the dataset (price in this
example) has to be traversed for each method (mean, stdDev, min, max, and so on).

One of the solutions is to create a class that computes the counters and the statistics
on demand using, once again, the lazy values:

class Stats[T <% Double](private values: DVector[T]) {
 class _Stats(var minValue: Double, var maxValue: Double, var sum:
Double, var sumSqr: Double)
val stats = {
 val _stats = new _Stats(Double.MaxValue, Double.MinValue, 0.0, 0.0)

Chapter 1

[31]

 values.foreach(x => {
 if(x < _stats.minValue) x else _stats.minValue
 if(x > _stats.maxValue) x else _stats.maxValue
 _stats.sum + x
 _stats.sumSqr + x*x
 })
 _stats
}

lazy val mean = _stats.sum/values.size
lazy val variance = (_stats.sumSqr - mean*mean*values.size)/(values.
size-1)
lazy val stdDev = if(variance < ZERO_EPS) ZERO_EPS else Math.
sqrt(variance)
lazy val min = _stats.minValue
lazy val max = _stats.mazValue
}

We made the statistics object generic by using the view bounds T <% Double,
which assumes a conversion from type T to Double. By defining the statistics as tuple
counters (minimum value, maximum value, sum of values, and sum of square values)
and folding these values into a statistics object, we limit the number of invocations of
the foldLeft reducer method to 1, and therefore, avoid the recomputation of these
statistics for the existing dataset each time new data is added.

The code illustrates the use and benefit of lazy values in Scala. The mean is computed
only if and when needed.

Normalization and Gauss distribution
Statistics are usually used to normalize data into a probability value [0, 1] as required
by most classification or clustering algorithms. It is logical to add the normalization
method to the Stats class, as we have already extracted the min and max values:

def normalize: DblVector = {
 val range = max – min; values.map(x => (x - min)/range)
}

The same approach is used to compute the multivariate normal distribution:

def gauss: DblVector =
 values.map(x =>{
 val y=x-mean
 INV_SQRT_2PI/stdDev*Math.exp(-0.5*y*y/stdDev)})

Getting Started

[32]

The price action chart has a very interesting characteristic. At a closer look, a
sudden change in price and increase in volume occurs about every three months
or so. Experienced investors will undoubtedly recognize that those price-volume
patterns are related to the release of quarterly earnings of Cisco. Such regular but
unpredictable patterns can be a source of concern or opportunity if risk can be
managed. The strong reaction of the stock price to the release of corporate earnings
may scare some long-term investors while enticing day traders.

The following graph visualizes the potential correlation between sudden price
change (volatility) and heavy trading volume:

Correlation price-volume action for the Cisco stock

Let's try to correlate the volatility of the stock price with volume. For the sake of this
exercise, we define the volatility as the maximum variation of the stock price within
each trading session: the relative difference between the highest price during the
trading session and the lowest price during the session.

The YahooFinancials enumeration extracts historical stock prices and session
volume from a CSV file. For example, the volatility is extracted from the CSV
fields of each line in the CSV file as follows:

object YahooFinancials extends Enumeration {
 type YahooFinancials = Value
 val DATE, OPEN, HIGH, LOW, CLOSE, VOLUME, ADJ_CLOSE = Value

Chapter 1

[33]

 val volatility = (fs: Array[String]) =>fs(HIGH.id).toDouble-fs(LOW.
id).toDouble
 …
}

The transform method uses the YahooFinancials enumeration to generate the
input data for the model:

def transform(cols: Array[Array[String]]): XYTSeries = {
 val volatility = Stats[Double](cols.map(YahooFinancials.
volatility)).normalize
 val volume = Stats[Double](cols.map(YahooFinancials.volume)
).normalize
 volatility.zip(volume)
}

The volatility and volume data is normalized using the Stats.normalize method
defined earlier.

Plotting data
Although charting is not the primary goal of this book, we thought that you will
benefit from a brief introduction to JFreeChart. The skeleton code to generate a
scatter plot is rather simple. The most relevant code is the transformation of the
XYTSeries into graphical JFreeChart's XYSeries:

val xLegend = "Session Volatility"
val yLegend = "Session Volume"
def display(xy: XYTSeries, w: Int, h : Int): Unit = {
 val series = new XYSeries("CSCO 2012-2013 Stock")
 xy.foreach(x => series.add(x._1,x._2))
 val seriesCollection = new XYSeriesCollection
 seriesCollection.addSeries(series)
 … // plot rendering code
 val chart = ChartFactory.createScatterPlot(xLegend, xLegend,
yLegend, seriesCollection, PlotOrientation.VERTICAL, true, false,
false)
 createFrame("Logistic Regression", chart)
 }

Getting Started

[34]

Visualization
The JFreeChart library is introduced as a robust charting tool. The
visualization of the results of a computation is beyond the scope of
this book. The code related to plots and charts is omitted from the
book in order to keep the code snippets concise and dedicated to
machine learning. In a few occasions, output data is formatted as a
CSV file to be simply imported into a spreadsheet.

Here is an example of a plot using the ScatterPlot.display method:

val plot = new ScatterPlot(("CSCO 2012-2013", "Session High - Low",
"Session Volume"), new BlackPlotTheme)
plot.display(volatility_vol.filter(_._1 < 0.5), 250, 340)

Scatter plot of volatility and volume for the Cisco stock

There is a level of correlation between session volume and session volatility. We can
use this information to classify trading sessions by their volatility.

Creating a model (learning)
The objective of the training is to build a model that can discriminate between
volatile and nonvolatile trading sessions. For the sake of the exercise, session
volatility has been defined as session price high and session price low coupled
with heavy trading volume, which constitute the two parameters of the model.

Chapter 1

[35]

Logistic regression is commonly used in statistics inference. The following
implementation of the binary logistic regression classifier exposes a single method,
classify, to comply with our desire to reduce the complexity and life cycle of
objects. The model parameters, weights, are computed during training when the
LogBinRegression class/model is instantiated. As mentioned earlier, the sections
of the code nonessential to the understanding of the algorithm are omitted:

class LogBinRegression(val labels: DVector[(XY, Double)], val
maxIters: Int, val eta: Double, val eps: Double) {
 val dim = 3
 val weights = train

 def classify(xy: XY): Option[(Boolean, Double)] = {
 if(weights != None) {
 val likelihood = sigmoid(w(0) + xy._1*w(1) + xy._2*w(2))
 Some(likelihood > 0.5, likelihood)
 }
 else None
 }

The training method, train, consists of iterating through the computation of the
weight using a simple descent gradient. The method computes the weights and
returns an option, so the model is either trained and ready for runtime classification
or nonexistent (None):

def train: Option[DblVector] = {
 val w = Array.fill(dim)(x=> Random.nextDouble-1.0)

 Range(0, maxIters).find(_ => {
 val deltaW = labels.foldLeft(Array.fill(dim)(0.0))((dw, lbl) => {
 val y = sigmoid(w(0) + w(1)*lbl._1._1 + w(2)*lbl._1._2)
 dw.map(dx => dx + (lbl._2 - y)*(lbl._1._1 + lbl._1._2))
 })
 val nextW = Array.fill(dim)(0.0)
 .zipWithIndex
 .map(nw => w(nw._2)+eta*deltaW(nw._2))
 val diff = Math.abs(nextW.sum - w.sum)
 nextW.copyToArray(w); diff < eps
 }) match {
 case Some(iters) => Some(w)
 case None => { … }
 }
}
def sigmoid(x: Double):Double = 1.0/(1.0 + Math.exp(-x))

Getting Started

[36]

The iteration is encapsulated in the Scala find method that exists if the algorithm
converges (diff < eps). The model parameters, weights, are set to None if the
maximum number of iterations is reached.

The training method, train, iterates across the set of observations by computing
the gradient between the predicted and observed values. In our simplistic approach,
the gradient is computed as a linear function of the sigmoid of the sum of the
product of the weight and training observations. As for any optimization problem,
the initialization of the solution vector, weights, is critical. We choose to initialize
the weight with random values, although in practice, you would use a more
deterministic approach to initialize the model parameters.

In order to train the model, we need to label data. The process consists of tagging
every trading session as volatile and non volatile according to the observations
(relative session volatility and session volume). The labeling process is usually quite
cumbersome; therefore, let's generate the label automatically. A trading session is
considered volatile if a volatility and volume are both greater than 60 percent of the
maximum relative volatility and volume:

val labels = volatilityVol.zip(volatilityVol.map(x =>if(x._1>0.3 &&
x._2>0.3) 1.0 else 0.0))

Automated labeling
Although quite convenient, automated creation of training labels
is not without risk because it may mislabel singular observations.
This technique is used in this test for convenience but it is not
recommended unless a domain expert reviews the labels manually.

The model is created (trained) by a simple instantiation of the logistic binary classifier:

val logit = new LogBinRegression(labels, 300, 0.00005, 0.02)

The training run is configured with a maximum of 300 iterations, a gradient slope of
0.00005, and convergence criteria of 0.02.

Classify the data
Finally, the model can be tested with a new fresh dataset, not related to the
training set:

Date,Open,High,Low,Close,Volume,Adj Close
3/9/2011,14.78,15.08,14.20,14.91,4.79E+08,14.88
11/17/2009,10.78,10.90,10.62,10.84,3901987,10.85

Chapter 1

[37]

It is just a matter of executing the classification method (exceptions, conditions on
method arguments, and returned values are omitted):

val testData = load("resources/data/chap1/CSCO2.csv")
logit.classify(testData(0)) match {
 case Some(topCategory) => Display.show(topCategory)
 case None => { … }
}
logit.classify(testData(1)) match {
 case Some(topCategory) => Display.show(topCategory)
 case None => { … }
}

The result of the classification is (true,0.516) for the first sample and
(false,0.1180) for the second sample.

Validation
The simple classification, in this test case, is provided for illustrating
the runtime application of the model. It does not constitute a
validation of the model by any stretch of imagination. The next
chapter digs into validation metrics and methodology.

Summary
We hope you enjoyed this introduction to machine learning and how to leverage your
existing skills in Scala programming to create a simple regression program to predict
stock price/volume action. Here are the highlights of this introductory chapter:

•	 From monadic composition and high-order collection methods for
parallelization to configurability to reusability patterns, Scala is the
perfect fit to implement and leverage data mining and machine learning
algorithms for large-scale projects

•	 There are many steps to create and apply a machine learning model
•	 The implementation of the logistic binary classifier presented as part of the

test case is simple enough to encourage you to learn how to write and apply
more advanced machine learning algorithms

To the delight of Scala programming aficionados, the next chapter will dig deeper
into building a flexible workflow by leveraging traits and dependency injection.

Hello World!
In the first chapter, you were acquainted with some rudimentary concepts regarding
data processing, clustering, and classification. This chapter is dedicated to the
creation and maintenance of a flexible end-to-end workflow to train and classify
data. The first section of the chapter introduces a data-centric (functional) approach
to create number-crunching applications.

You will learn how to:

•	 Apply the concept of monadic design to create dynamic workflows
•	 Leverage some of Scala's advanced functional features, such as dependency

injection, to build portable computational workflows
•	 Take into account the bias-variance trade-off in selecting a model
•	 Overcome overfitting in modeling
•	 Break down data into training, test, and validation sets
•	 Implement model validation in Scala using precision, recall, and F score

Modeling
Data is the lifeline of any scientist, and the selection of data providers is critical in
developing or evaluating any statistical inference or machine learning algorithm.

A model by any other name
We briefly introduced the concept of a model in the Model categorization section in
Chapter 1, Getting Started.

Hello World!

[40]

What constitutes a model? Wikipedia provides a reasonably good definition of a
model as understood by scientists [2:1]:

A scientific model seeks to represent empirical objects, phenomena, and physical
processes in a logical and objective way.

…

Models that are rendered in software allow scientists to leverage computational
power to simulate, visualize, manipulate and gain intuition about the entity,
phenomenon, or process being represented.

In statistics and the probabilistic theory, a model describes data that one might
observe from a system to express any form of uncertainty and noise. A model
allows us to infer rules, make predictions, and learn from data.

A model is composed of features, also known as attributes or variables, and a set of
relation between those features. For instance, the model represented by the function
f(x, y) = x.sin(2y) has two features, x and y, and a relation, f. These two features are
assumed to be independent. If the model is subject to a constraint such as f(x, y) < 20,
then the conditional independence is no longer valid.

An astute Scala programmer would associate a model to a monoid for which the set
is a group of observations and the operator is the function implementing the model.
If it walks like a monoid and quacks like a monoid, then it is a monoid.

Models come in a variety of shapes and forms:

•	 Parametric: This consists of functions and equations (for example,
y = sin(2t + w))

•	 Differential: This consists of ordinary and partial differential equations
(for example, dy = 2x.dx)

•	 Probabilistic: This consists of probability distributions (for example,
p (x|c) = exp (k.logx – x)/x!)

•	 Graphical: This consists of graphs that abstract out the conditional
independence between variables (for example, p(x,y|c) = p(x|c).p(y|c))

•	 Directed graphs: This consists of temporal and spatial relationships (for
example, a scheduler)

•	 Numerical method: This consists of finite elements and methods such as
Newton-Raphson

•	 Chemistry: This consists of formula and components (for example, H2O,
Fe + C12 = FeC13, and so on)

Chapter 2

[41]

•	 Taxonomy: This consists of a semantic definition and relationship of concepts
(for example, APG/Eudicots/Rosids/Huaceae/Malvales)

•	 Grammar and lexicon: This consists of a syntactic representation of
documents (for example, Scala programming language)

•	 Inference logic: This consists of a distribution pattern such as IF (stock
vol > 1.5 * average) AND rsi > 80 THEN…

Model versus design
The confusion between model and design is quite common in Computer Science,
the reason being that these terms have different meanings for different people
depending on the subject. The following metaphors should help with your
understanding of these two concepts:

•	 Modeling: This is describing something you know. A model makes the
assumption, which becomes an assertion if proven correct (for example,
the US population, p, increases by 1.2 percent a year, dp/dt= 1.012).

•	 Designing: This is manipulating representation for things you don't know.
Designing can be seen as the exploration phase of modeling (for example,
what are the features that contribute to the growth of the US population?
Birth rate? Immigration? Economic conditions? Social policies?).

Selecting a model's features
The selection of a model's features is the process of discovering and documenting
the minimum set of variables required to build the model. Scientists make the
assumption that data contains many redundant or irrelevant features. Redundant
features do not provide information already given by the selected features, and
irrelevant features provide no useful information.

Selecting features consists of two consecutive steps:

1.	 Searching for new feature subsets.
2.	 Evaluating these feature subsets using a scoring mechanism.

The process of evaluating each possible subset of features to find the one that
maximizes the objective function or minimizes the error rate is computationally
intractable for large datasets. A model with n features requires 2n-1 evaluations.

Hello World!

[42]

Extracting features
An observation is a set of indirect measurements of hidden, also known as
latent, variables, which may be noisy or contain a high degree of correlation and
redundancies. Using raw observations in a classification task would very likely
produce inaccurate classes. Using all features from the observation also incurs
a high computation cost.

The purpose of extracting features is to reduce the number of variables or dimensions
of the model by eliminating redundant or irrelevant features. The features are extracted
by transforming the original set of observations into a smaller set at the risk of losing
some vital information embedded in the original set.

Designing a workflow
A data scientist has many options in selecting and implementing a classification or
clustering algorithm.

Firstly, a mathematical or statistical model is to be selected to extract knowledge
from the raw input data or the output of a data upstream transformation. The
selection of the model is constrained by the following parameters:

•	 Business requirements such as accuracy of results
•	 Availability of training data and algorithms
•	 Access to a domain or subject-matter expert

Secondly, the engineer has to select a computational and deployment framework
suitable for the amount of data to be processed. The computational context is to
be defined by the following parameters:

•	 Available resources such as machines, CPU, memory, or I/O bandwidth
•	 Implementation strategy such as iterative versus recursive computation

or caching
•	 Requirements for the responsiveness of the overall process such as duration

of computation or display of intermediate results

Chapter 2

[43]

The following diagram illustrates the selection process to define the data
transformation for each computation in the workflow:

Linear regression
Naive Bayes

SVM, HMM, CRF, ...

Concurrent maps
Hadoop/HDFS

In-memory databases
Akka,Spark

NoSQL, Streaming
Relational database

Model prameters

Code

Algorithm

weights=(0.783, 0.219, 0.498)

new LogBinRegression(label, n, eta, eps)

Logistic regression

Learning

Select a computational
framework

Select a statistical or
mathemathical model

Business requirements
Quality of labels
Data completeness
Nature of problem
Available expertise
Numerical libraries
....

Application Response time
Available memory, storage
Network bandwidth
Licensing constraints
Available servers, CPU cores
Redundancy
....

Observations
Labels
Context
....

Statistical and computation modeling for machine-learning applications

Domain expertise, data science, and software engineering
A domain or subject-matter expert is a person with authoritative
or credited expertise in a particular area or topic. A chemist is an
expert in the domain of chemistry and possibly related fields.
A data scientist solves problems related to data in a variety of fields
such as biological sciences, health care, marketing, or finances.
Data and text mining, signal processing, statistical analysis, and
modeling using machine learning algorithms are some of the
activities performed by a data scientist.
A software developer performs all the tasks related to creation of
software applications, including analysis, design, coding, testing,
and deployment.

The parameters of a data transformation may need to be reconfigured according to
the output of the upstream data transformation. Scala's higher-order functions are
particularly suitable for implementing configurable data transformations.

Hello World!

[44]

The computational framework
The objective is to create a framework flexible and reusable enough to accommodate
different workflows and support all types of machine learning algorithms from
preprocessing, data smoothing, and classification to validation.

Scala provides us with a rich toolbox that includes monadic design, design patterns,
and dependency injections using traits. The following diagram describes the three
levels of complexity for creating the framework:

Dependancy Injection (Cake pattern)

Pipe Operator

Monadic Data Transformation

Hierarchical design of a monadic workflow

The first step is to define a trait and a method that describes the transformation of
data by a computation unit (element of the workflow).

The pipe operator
Data transformation is the foundation of any workflow for processing and classifying
a dataset, training and validating a model, and displaying results.

The objective is to define a symbolic representation of the transformation of different
types of data without exposing the internal state of the algorithm implementing the
data transformation. The pipe operator is used as the signature of a data transformation:

trait PipeOperator[-T, +U] {
 def |> (data: T): Option[U]
}

F# reference
The notation |> as the signature of the transform or pipe operator
is borrowed from the F# language [2:2]. The data transformation
indeed implements a function, and therefore, has the same variance
signature as Function[-T, +R] of Scala.

Chapter 2

[45]

The |> operator transforms a data of the type T into a data of the type U and returns
an option to handle internal errors and exceptions.

Advanced Scala idioms
The next two sections introduce a monadic representation of the
data transformation and one implementation of the dependency
injection to create a dynamic workflow as an alternative to the
delimited continuation pattern. Although these topics may interest
advanced Scala developers, they are not required to understand
any of the techniques or procedures described in this book.

Monadic data transformation
The next step is to create a monadic design to implement the pipe operator. Let's
use a monadic design to wrap _fct, a data transformation function (also known as
operator), with the most commonly used Scala higher-order methods:

class _FCT[+T](val _fct: T) {
 def map[U](c: T => U): _FCT[U] = new _FCT[U](c(_fct))
 def flatMap[U](f: T =>_FCT[U]): _FCT[U] = f(_fct)
 def filter(p: T =>Boolean): _FCT[T] = if(p(_fct)) new _FCT[T](_
fct) else zeroFCT(_fct)
 def reduceLeft[U](f: (U,T) => U)(implicit c: T=> U): U = f(c(_fct),
_fct)
 def foldLeft[U](zero: U)(f: (U, T) => U)(implicit c: T=> U): U =
f(c(_fct), _fct)
 def foreach(p: T => Unit): Unit = p(_fct)
}

The methods of the _FCT class represent a subset of the traditional Scala higher
methods for collections [2:3]. The _FCT class is to be used internally. Arguments
are validated by subclasses or containers.

Finally, the Transform class takes a PipeOperator instance as an argument and
automatically invokes its operator:

class Transform[-T, +U](val op: PipeOperator[T, U]) extends _
FCT[Function[T, Option[U]]](op.|>) {
 def |>(data: T): Option[U] = _fct(data)
}

Hello World!

[46]

You may wonder about the reason behind the monadic representation of a data
transformation, Transform. You can create any algorithm by just implementing the
PipeOperator trait, after all. The reason is that Transform has a richer protocol
(methods) and enables developers to create a complex workflow as an alternative to
the delimited continuation. The following code snippet illustrates a generic function
composition or data transformation composition using the monadic approach:

val op = new PipeOperator[Int, Double] {
def |> (n: Int):Option[Double] =Some(Math.sin(n.toDouble))
}
def g(f: Int =>Option[Double]): (Int=> Long) = {
 (n: Int) => {
 f(n) match {
 case Some(x) => x.toLong
 case None => -1L
 }
 }
}
val gof = new Transform[Int,Double](op).map(g(_))

This code extends op, an existing transformation, with another function, g. As stated
in the Presentation section under Source code in Chapter 1, Getting Started, code related
to exceptions, error checking, and validation of arguments is omitted (refer tothe
Format of code snippets section in Appendix A, Basic Concepts.

Dependency injection
This section presents the key constructs behind the Cake pattern. A workflow
composed of configurable data transformations requires a dynamic modularization
(substitution) of the different stages of the workflow. The Cake pattern is an advanced
class composition pattern that uses mix-in traits to meet the demands of a configurable
computation workflow. It is also known as stackable modification traits [2:4].

This is not an in-depth analysis of the stackable trait injection and self-reference in
Scala. There are few interesting articles on dependencies injection that are worth a
look [2:5].

Java relies on packages tightly coupled with the directory structure and prefix to
modularize the code base. Scala provides developers with a flexible and reusable
approach to create and organize modules: traits. Traits can be nested, mixed with
classes, stacked, and inherited.

Chapter 2

[47]

Dependency injection is a fancy name for a reverse look up and binding to
dependencies. Let's consider a simple application that requires data preprocessing,
classification, and validation. A simple implementation using traits looks like this:

val myApp = new Classification with Validation with PreProcessing {
val filter = .. }

If, at a later stage, you need to use an unsupervised clustering algorithm instead of a
classifier, then the application has to be rewired:

val myApp = new Clustering with Validation with PreProcessing { val
filter = .. }

This approach results in code duplication and lack of flexibility. Moreover, the
filter class member needs to be redefined for each new class in the composition
of the application. The problem arises when there is a dependency between traits
used in the composition of the application. Let's consider the case for which the filter
depends on the validation methodology.

Mixins linearization [2:6]
The linearization or invocation of methods between mixins
follows a right-to-left pattern:

•	 Trait B extends A
•	 Trait C extends A
•	 Class M extends N with C with B

The Scala compiler implements the linearization as follows:
M =>B => C => A => N

Although you can define filter as an abstract value, it still has to be redefined each
time a new validation type is introduced. The solution is to use the self type in the
definition of the newly composed PreProcessingWithValidation trait:

trait PreProcessiongWithValidation extends PreProcessing {
 self: Validation =>
 val filter = ..
}

The application can then be simply composed as:

val myApp = new Classification with PreProcessingWithValidation {
 val validation: Validation
}

Hello World!

[48]

Overriding val with def
It is advantageous to override the declaration of a value with a definition
of a method with the same signature. Contrary to a value that locks the
implementation of the value, a method can return a different value for
each invocation:

 trait PreProcessor { val validation = … }
 trait MyValidator extends Validator { def validation
= … }

In Scala, a value declaration can be overridden by the method definition,
not vice versa.

Let's adapt and generalize this pattern to construct a boilerplate template in order to
create dynamic computational workflows.

The first step is to generate different modules to encapsulate different types of
data transformation.

Workflow modules
The data transformation defined by the PipeOperator instance is dynamically
injected into the module by initializing the abstract value. Let's define three
parameterized modules representing the preprocessing, processing, and
post-processing stages of a workflow:

trait PreprocModule[-T, +U] { val preProc: PipeOperator[T, U] }
trait ProcModule[-T, +U] { val proc: PipeOperator[T, U] }
trait PostprocModule[-T, +U] { val postProc: PipeOperator[T, U] }

The modules (traits) contain only a single abstract value. One characteristic of the
Cake pattern is to enforce strict modularity by initializing the abstract values with
the type encapsulated in the module, as follows:

trait ProcModule[-T, +U] {
 val proc: PipeOperator [T, U]
 class Classification[-T, +U] extends PipeOperator [T,U] { }
}

One of the objectives in building the framework is allowing developers to create data
transformation (inherited from PipeOperator) independently from any workflow.
Under these constraints, strict modularity is not an option.

Chapter 2

[49]

Scala traits versus Java packages
There is a major difference between Scala and Java in terms of
modularity. Java packages constrain developers into following a
strict syntax requirement; for instance, the source file has the same
name as the class it contains. Scala modules based on stackable traits
are far more flexible.

The workflow factory
The next step is to write the different modules into a workflow. This is achieved
by using the self reference to the stack of the three traits defined in the previous
paragraph. Here is an implementation of the said self reference:

class WorkFlow[T, U, V, W] {
 self: PreprocModule[T,U] with ProcModule[U,V] with
PostprocModule[V,W] =>
 def |> (data: T): Option[W] = {
 preProc |> data match {
 case Some(input) => {
 proc |> input match {
 case Some(output) => postProc |> output
 case None => { … }
 }
 }
 case None => { … }
 }
 }
}

Quite simple indeed! If you need only two modules, you can either create a workflow
with a stack of two traits or initialize the third with the PipeOperator identity:

def identity[T] = new PipeOperator[T,T] {
 override def |> (data:T): Option[T] = Some(data)
}

Let's test the wiring with the following simple data transformations:

class Sampler(val samples: Int) extends PipeOperator[Double => Double,
DblVector] {
 override def |> (f: Double => Double): Option[DblVector] =

Hello World!

[50]

 Some(Array.tabulate(samples)(n => f(n.toDouble/samples)))
}

class Normalizer extends PipeOperator[DblVector, DblVector] {
 override def |> (data: DblVector): Option[DblVector] =
 Some(Stats[Double](data).normalize)
}

class Reducer extends PipeOperator[DblVector, Int] {
 override def |> (data: DblVector): Option[Int] =
 Range(0, data.size) find(data(_) == 1.0)
}

The first operator, Sampler, samples a function, f, with a frequency 1/samples over
the interval [0, 1]. The second operator, Normalizer, normalizes the data over the
range [0, 1] using the Stats class introduced in the Basic statistics section in Chapter 1,
Getting Started. The last operator, Reducer, extracts the index of the large sample
(value 1.0) using the Scala collection method, find.

A picture is worth a thousand words; the following UML class diagram illustrates
the workflow factory design pattern:

PipeOperator

Sampler Normalizer Reducer

PreprocModule

ProcModule

PostprocModule Workflow

preProc

proc

postProc

Finally, the workflow is instantiated by dynamically initializing the abstract values,
preProc, proc, and postProc, with a transformation of the type PipeOperator as
long as the signature (input and output types) matches the parameterized types
defined in each module (lines marked as 1):

val dataflow = new Workflow[Double => Double, DblVector, DblVector,
Int]
 with PreprocModule[Double => Double, DblVector]
 with ProcModule[DblVector, DblVector]
 with PostprocModule[DblVector, Int] {

 val preProc: PipeOperator[Double => Double,DblVector] = new
Sampler(100) //1

Chapter 2

[51]

 val proc: PipeOperator[DblVector,DblVector]= new Normalizer //1
 val postProc: PipeOperator[DblVector,Int] = new Reducer//1
}
dataflow |> ((x: Double) => Math.log(x+1.0)+Random.nextDouble) match {
 case Some(index) => …

Scala's strong type checking catches any inconsistent data types at compilation
time. It reduces the development cycle because runtime errors are more difficult
to track down.

Examples of workflow components
It is difficult to build an example of workflow using classes and algorithms
introduced later in the book. The modularization of the preprocessing and clustering
stages is briefly described here to illustrate the encapsulation of algorithms described
throughout the book within a workflow.

The preprocessing module
The following examples of a workflow module use the time series class, XTSeries,
which is used throughout the book:

class XTSeries[T](label: String, arr: Array[T])

The XTSeries class takes an identifier, a label, and an array of parameterized values,
arr, as parameters, and is formally described in Chapter 3, Data Preprocessing.

The preprocessing algorithms such as moving average or discrete Fourier filters
are encapsulated into a preprocessing module using a combination of abstract
value and inheritance:

trait PreprocessingModule[T] {
 val preprocessor: Preprocessing[T] //1

 abstract class Preprocessing[T] { //2
 def execute(xt: XTSeries[T]): Unit
 }

 abstract class MovingAverage[T] extends Preprocessing[T] with
PipeOperator[XTSeries[T], XTSeries[Double]] { //3
 override def execute(xt: XTSeries[T]): Unit = this |> xt match {
 case Some(filteredData) => …

Hello World!

[52]

 case None => …
 }
 }

 class SimpleMovingAverage[@specialized(Double) T <% Double](period:
Int)(implicit num: Numeric[T]) extends MovingAverage[T] {
override def |> (xt: XTSeries[T]): Option[XTSeries[Double]] =
…
 }
class DFTFir[T <% Double](g: Double=>Double) extends Preprocessing[T]
extends PreProcessing[T] with PipeOperator[XTSeries[T],
XTSeries[Double]] {
 override def execute(xt: XTSeries[T]): Unit = this |> xt match {
 case Some(filteredData) => …
 case None => …
 }
 override def |> (xt: XTSeries[T]) : Option[XTSeries[Double]]
 }
}

The preprocessing module, PreprocessingModule, defines preprocessor, an abstract
value, that is initialized at runtime (line 1). The PreProcessing class is defined as
a high-level abstract class with a generic execution function: execute (line 2). The
preprocessing algorithms; filtering techniques moving average, MovingAverage; and
discrete Fourier, DFTFir in this case, are defined as a class hierarchy with the base
type PreProcessing. Each filtering class also implements PipeOperator so it can be
weaved into a simpler data transformation workflow (line 3).

The preprocessing algorithms are described in the next chapter.

The clustering module
The encapsulation of clustering techniques is the second example of a module for
dependency-injection-based workflow:

trait ClusteringModule[T] {
 type EMOutput = List[(Double, DblVector, DblVector)]
 val clustering: Clustering[T]

 abstract class Clustering[T] {

Chapter 2

[53]

 def execute(xt: XTSeries[Array[T]]): Unit
 }

 class KMeans[T <% Double](K: Int, maxIters: Int, distance:
(DblVector, Array[T]) => Double)(implicit order: Ordering[T], m:
Manifest[T]) extends Clustering[T] with PipeOperator[XTSeries[Array
[T]], List[Cluster[T]]] {

 override def |> (xt: XTSeries[Array[T]]): Option[List[Cluster[T]]]

 override def execute(xt: XTSeries[Array[T]]): Unit = this |> xt
match {
 case Some(clusters) => …
 case None => …
 }
 }

 class MultivariateEM[T <% Double](K: Int) extends Clustering[T] with
PipeOperator[XTSeries[Array[T]], EMOutput] {
 override def |> (xt: XTSeries[Array[T]]): Option[EMOutput] =
 override def execute(xt: XTSeries[Array[T]]): Unit = this |> xt
match {
 case Some(emOutput) => …
 case None => …
 }
 }
}

The ClusteringModule clustering module defines an abstract value, clustering,
which is initialized at runtime (line 1). The two clustering algorithms, KMeans and
Expectation-Maximization, MultivariateEM, inherits the Clustering base class.
The clustering technique can be used in:

•	 A dependency-injection-based workflow by overriding execute
•	 A simpler data transformation flow by overriding PipeOperator (|>)

The clustering techniques are described in Chapter 4, Unsupervised Learning.

Hello World!

[54]

Dependency-injection-based workflow versus data transformation
The data transformation PipeOperator trades flexibility for simplicity.
The design proposed for preprocessing and clustering techniques allows
you to use both approaches. The techniques presented in the book
implement the basic data transformation, PipeOperator, in order to
keep the implementation of these techniques as simple as possible.

Assessing a model
Evaluating a model is an essential part of the workflow. There is no point in creating
the most sophisticated model if you do not have the tools to assess its quality. The
validation process consists of defining some quantitative reliability criteria, setting
a strategy such as an N-Fold cross-validation scheme, and selecting the appropriate
labeled data.

Validation
The purpose of this section is to create a Scala class to be used in future chapters for
validating models. For starters, the validation process relies on a set of metrics to
quantify the fitness of a model generated through training.

Key metrics
Let's consider a simple classification model with two classes defined as positive
(with respect to negative) represented with Black (with respect to White) color
in the following diagram. Data scientists use the following terminology:

•	 True positives (TP): These are observations that are correctly labeled as
belonging to the positive class (white dots on a dark background)

•	 True negatives (TN): These are observations that are correctly labeled as
belonging to the negative class (black dots on a light background)

•	 False positives (FP): These are observations incorrectly labeled as belonging
to the positive class (white dots on a dark background)

Chapter 2

[55]

•	 False negatives (FN): These are observations incorrectly labeled as belonging
to the negative class (black dots on a light background)

False negatives (FN)

True positives(TP)

True negatives (TN)

Flase positives (FP)

Categorization of validation results

This simplistic representation can be extended to classification problems that involve
more than two classes. For instance, false positives are defined as observations
incorrectly labeled that belong to any class other than the correct one. These four
factors are used for evaluating accuracy, precision, recall, and F and G measures:

•	 Accuracy: Represented as ac, this is the percentage of observations
correctly classified.

•	 Precision: Represented as p, this is the percentage of observations correctly
classified as positive in the group that the classifier has declared positive.

•	 Recall: Represented as r, this is the percentage of observations labeled as
positive that are correctly classified.

•	 F-Measure or F-score F1: This is the score of a test's accuracy that strikes a
balance between precision and recall. It is computed as the harmonic mean
of the precision and recall with values ranging between 0 (worst score) and
1 (best score).

•	 G-measure: Represented as G, this is similar to the F-measure but is
computed as the geometric mean of precision p and recall r.

TP+TN TP TPac p r
TP+TN+FP+FN TP+FP TP+FN

= = =

21 prF G pr
p r

= =
+

Hello World!

[56]

Implementation
Let's implement the validation formula using the same trait-based modular design
used in creating the preprocessor and classifier modules. The Validation trait
defines the signature for the validation of a classification model: the computation
of the F1 statistics and the precision-recall pair:

trait Validation {
 def f1: Double
 def precisionRecall: (Double, Double)
}

Let's provide a default implementation of the Validation trait of the F1Validation
class. In the tradition of Scala programming, the class is immutable; it computes
the counters for TP, TN, FP, and FN when the class is instantiated. The class takes
two parameters:

•	 The array of actual versus expected class: actualExpected
•	 The target class for true positive observations: tpClass

class F1Validation(actualExpected: Array[(Int, Int)], tpClass:
Int) extends Validation {
 val counts = actualExpected.foldLeft(new Counter[Label])((cnt,
oSeries) => cnt + classify(oSeries._1, oSeries._2))

 lazy val accuracy = {
 val num = counts(TP) + counts(TN)
 num.toDouble/counts.foldLeft(0)((s,kv) => s + kv._2)
 }

 lazy val precision = counts(TP).toDouble/(counts(TP) +
counts(FP))
 lazy val recall = counts(TP).toDouble/(counts(TP) +
counters(FN))

 override def f1: Double = 2.0*precision*recall/(precision +
recall)

 override def precisionRecall: (Double, Double) = (precision,
recall)

 def classify(actual: Int, expected: Int): Label = {
 if(actual == expected) { if(actual == tpClass) TP else TN }
 else { if (actual == tpClass) FP else FN }
 }
}

Chapter 2

[57]

The precision and recall variables are defined as lazy so they are computed only
once, when they are either accessed for the first time or the f1 and precisionRecall
functions are invoked. The class is independent of the selected machine learning
algorithm, the training, the labeling process, and the type of observations.

Contrary to Java, which defines an enumerator as a class of types, Scala requires
enumerators to be singletons that inherit the functionality of the Enumeration class:

object Label extends Enumeration {
 type Label = Value
 val TP, TN, FP, FN = Value
}

K-fold cross-validation
It is quite common that the labeled dataset used for both training and validation is
not large enough. The solution is to break the original labeled dataset into K data
groups. The data scientist creates K training-validation datasets by selecting one
of the groups as a validation set then combining all other remaining groups into a
training set as illustrated in the next diagram. The process is known as the K-fold
cross validation [2:7].

S1 S2 S3 SK

S1 S2 S4 SK

S3

...S4

...
Training

Validation

The third segment is used as validation data and all other dataset segments except S3
are combined into a single training set. This process is applied to each segment of the
original labeled dataset.

Hello World!

[58]

Bias-variance decomposition
There is an obvious challenge in creating a model that fits both the training set and
subsequent observations to be classified during the validation phase.

If the model tightly fits the observations selected for training, there is a high
probability that new observations may not be correctly classified. This is usually
the case when the model is complex. This model is characterized as having a
low bias with a high variance. Such a scenario can be attributed to the fact that
the scientist is overly confident that the observations he or she selected for training
are representative to the real world.

The probability of a new observation being classified as belonging to a positive class
increases as the selected model fits loosely the training set. In this case, the model is
characterized as having a high bias with a low variance.

The mathematical definition for the bias, variance, and mean squared error (MSE) of
the distribution are defined by the following formulas:

Variance and bias for a true model, θ:

$ $ %() $() $ $()2
:var E E bias estimateθ θ θ θ θ θ θ θ  = − = −   

Mean square error:

$() $()2MSE var biasθ θ= +

Let's illustrate the concept of bias, variance, and mean square error with an example.
At this stage, most of the machines learning techniques have not been introduced
yet. Therefore, the example will emulate a multiple models fEst: Double => Double
generated from non-overlapping training sets.

These models are evaluated against a test/validation datasets that are emulated by a
model, emul. The BiasVarianceEmulator emulator class takes the emulator function
and the size of the nValues validation test as parameters. It merely implements the
formula to compute the bias and variance for each of the fEst models:

class BiasVarianceEmulator[T <% Double](emul: Double => Double,
nValues: Int) {

 def fit(fEst: List[Double => Double]): Option[XYTSeries] = {
 val rf = Range(0, fEst.size)
 val meanFEst = Array.tabulate(nValues)(x =>

Chapter 2

[59]

 rf.foldLeft(0.0)((s, n) => s+fEst(n)(x))/fEst.size) // 1

 val r = Range(0, nValues)
 Some(fEst.map(fe => {
 r.foldLeft(0.0, 0.0)((s, x) => {
 val diff = (fe(x) - meanFEst(x))/ fEst.size // 2
 (s._1 + diff*diff, s._2 + Math.abs(fe(x)-emul(x)))})
 }).toArray)
 }
}

The fit method computes the variance and bias for each of the fEst models
generated from training. First, the mean of all the models are computed (line 1),
and then used in the computation of the variance and bias. The method returns
a tuple (variance, bias) for each of the fEst model.

Let's apply the emulator to three nonlinear regression models evaluated against
validation data:

2
sin

20, 0.0003. 0.18 1
5 5

x
xy y x x and y x

  
    = = + = +

 
 
 

The client code for the emulator consists of defining the emul emulator function,
and a list, fEst, of three models defined as tuples of (function, descriptor) of
type (Double=>Double, String). The fit method is call on the model functions
extracted through a map, as shown in the following code:

val emul = (x: Double) => 0.2*x*(1.0 + Math.sin(x*0.05))
val fEst = List[(Double=>Double, String)] (
 ((x: Double) => 0.2*x, "y=x/5"),
 ((x: Double) => 0.0003*x*x + 0.18*x, "y=3e-4.x^2-0.18x"),
 ((x: Double) =>0.2*x*(1+Math.sin(x*0.05),
 "y=x(1+sin(x/20))/5"))
val emulator = new BiasVarianceEmulator[Double](emul, 200)
emulator.fit(fEst.map(_._1)) match {
 case Some(varBias) => show(varBias)
 case None => …
}

Hello World!

[60]

The JFreeChart library is used to display the test dataset and the three model functions.

Fitting models to dataset

The variance-bias trade-off is illustrated in the following scatter chart using the
absolute value of the bias:

Chapter 2

[61]

The more complex the function, the lower the bias is. It is usually, but not always
related to, a high variance. The most complex function y=x (1+sin(x/20))/5 has by far
the highest variance and the lowest bias. The more complex model matches fairly
well with the training dataset. As expected, the mean square error reflects the ability
of each of the three models to fit the test data.

Mean square error bar chart

The low bias of the complex model reflects in its ability to predict new observations
correctly. Its MSE is therefore low, as expected.

Complex models with low bias and high variance are known as overfitting. Models
with high bias and low variance are characterized as underfitting.

Overfitting
The methodology presented in the example can be applied to any classification and
regression model. The list of models with low variance includes constant function
and models independent of the training set. High degree polynomial, complex
functions, and deep neural networks have high variance. Linear regression applied
to linear data has a low bias, while linear regression applied to nonlinear data has a
higher bias [2:8]

Hello World!

[62]

Overfitting affects all aspects of the modeling process negatively, for example:

•	 It is a sure sign of an overly complex model, which is difficult to debug and
consumes computation resources

•	 It makes the model representing minor fluctuations and noise
•	 It may discover irrelevant relationships between observed and latent features
•	 It has poor predictive performance

However, there are well-proven solutions to reduce overfitting [2:9]:

•	 Increasing the size of the training set whenever possible
•	 Reducing noise in labeled and input data through filtering
•	 Decreasing the number of features using techniques such as principal

components analysis
•	 Modeling observable and latent noised using filtering techniques such as

Kalman or autoregressive models
•	 Reducing inductive bias in a training set by applying cross-validation
•	 Penalizing extreme values for some of the model's features using

regularization techniques

Summary
In this chapter, we established the framework for the different data processing units
that will be introduced in this book. There is a very good reason why the topics of
model validation and overfitting are explored early on in this book. There is no point
in building models and selecting algorithms if we do not have a methodology to
evaluate their relative merits.

In this chapter, you were introduced to:

•	 The versatility and cleanness of the Cake pattern in Scala as an effective
scaffolding tool for data processing

•	 The concept of pipe operator for data conversion
•	 A robust methodology to validate machine learning models
•	 The challenge in fitting models to both training and real-world data

The next chapter will address the problem of overfitting by penalizing outliers,
modeling, and eliminating noise in data.

Data Preprocessing
Real-world data is usually noisy and inconsistent with missing observations.
No classification, regression, or clustering model can extract relevant information
from unprocessed data.

Data preprocessing consists of cleaning, filtering, transforming, and normalizing
raw observations using statistics in order to correlate features or groups of features,
identify trends and model, and filter out noise. The purpose of cleansing raw data
is twofold:

•	 Extract some basic knowledge from raw datasets
•	 Evaluate the quality of data and generate clean datasets for unsupervised or

supervised learning

You should not underestimate the power of traditional statistical analysis methods to
infer and classify information from textual or unstructured data.

In this chapter, you will learn how to:

•	 Apply commonly used moving average techniques to detect long-term
trends in a time series

•	 Identify market and sector cycles using discrete Fourier series
•	 Leverage the Kalman filter to extract the state of a dynamic system from

incomplete and noisy observations

Time series
The overwhelming majority of examples used to illustrate the different machine
algorithms in this book process time series or sequential, ordered, or unordered data.

Data Preprocessing

[64]

Each library has its own container type to manipulate datasets. The challenge is
to define all possible conversions between types from different libraries needed to
implement a large variety of machine learning models. Such a strategy may result in a
combinatorial explosion of implicit conversion. A solution consists of creating a generic
class to manage conversion from and to any type used by a third-party library.

Scala.collection.JavaConversions _
Scala provides a standard package to convert collection types from
Scala to Java and vice versa.

The generic data transformation, DT, can be used to transform any XTSeries time series:

class DT[T,U] extends PipeOperator[XTSeries[T], XTSeries[U]] {
 override def |> : PartialFunction[XTSeries[T], XTSeries[U]]
}

Let's consider the simple case of using a Java library, the Apache Commons Math
framework, and JFreeChart for visualization, and define a parameterized time series
class, XTSeries[T]. The \> data transformation converts a time series of values
of type T, XTSeries[T], into a time series of values of type U, XTSeries[U]. The
following diagram provides an overview of type conversion in data transformation:

Array2DRowRealMatrix

int[]

double[]

int[]

double[]

java

scala

org.apache.commons.math3

List[T]

Vector[T]

Array[T]

RealMatrix

RealVector

DblVector

DblMatrix

org.scalaml.core.Types

Values

KeyedValues
org.jfree.data

DblVector

DblMatrix

RealMatrix

RealVector

ArrayrealVector

List[U]

Vector[U]

Array[U]XTSeries[U]

XTSeries[T]

Transform
|>

Chapter 3

[65]

Let's create the XTSeries class. As a container, the class should be an implementation
of the Scala higher-order collections functions such as map, foreach, or zip. The class
should support at least conversion to DblVector and DblMatrix types introduced in
the first chapter.

Here is a partial implementation of the XTSeries class. Comments, exceptions,
argument validations, and debugging code are omitted in the code:

class XTSeries[T](label: String, arr: Array[T]) { // 1
 def apply(n: Int): T = arr.apply(n)

 @implicitNotFound("Undefined conversion to DblVector") // 2
 def toDblVector(implicit f: T=>Double):DblVector =arr.map(f(_))

 @implicitNotFound("Undefined conversion to DblMatrix") // 2
 def toDblMatrix(implicit fv: T => DblVector): DblMatrix = arr.map(
fv(_))

 def + (n: Int, t: T)(implicit f: (T,T) => T): T = f(arr(n), t)

 def head: T = arr.head //3
 def drop(n: Int):XTSeries[T] = XTSeries(label,arr.drop(n))
 def map[U: ClassTag](f: T => U): XTSeries[U] = XTSeries[U](label,
arr.map(x =>f(x)))
 def foreach(f: T => Unit) = arr.foreach(f) //3
 def sortWith(lt: (T,T)=>Boolean):XTSeries[T] = XTSeries[T](label,
arr.sortWith(lt))
 def max(implicit cmp: Ordering[T]): T = arr.max //4
def min(implicit cmp: Ordering[T]): T = arr.min
…
}

The class takes an optional label and an invariant array of the parameterized type
T. The annotation @specialized (line 1) instructs the compiler to generate two
versions of the class:

•	 A generic XTSeries[T] class that exploits all the implicit conversions
required to perform operations on time series of a generic type

•	 An optimized XTSeries[Double] class that bypasses the conversion and
offers the client code with a faster implementation

Data Preprocessing

[66]

The conversion to DblVector (resp. DblMatrix) relies on the implicit conversion
of elements to type Double (resp. DblVector) (line 2). The @implicitNotFound
annotation instructs the compiler to omit an error if no implicit conversion is
detected. The conversion methods are used to implement the implicit conversion
introduced in the previous section. These methods are defined in the singleton
org.scalaml.core.Types.CommonsMath library. The following code shows the
implementation of the conversion methods:

object Types {
 object CommonMath {
 implicit def series2DblVector[T](xt: XTSeries[T])(implicit f:
T=>Double):DblVector = xt.toDblVector(f)
 implicit def series2DblMatrix[T](xt: XTSeries[T])(implicit f:
T=>DblVector): DblMatrix = xt.toDblMatrix(f)
 …
}

This code snippet exposes a subset of the Scala higher-order collections methods
(line 3) applied to the time series. The computation of the minimum and maximum
values in the time series required that the cmp ordering/compare method be defined
for the elements of the type T (line 4).

Let's put our versatile XTSeries class to use in creating a basic preprocessing data
transformation starting with the ubiquitous moving average techniques.

Moving averages
Moving averages provide data analysts and scientists with a basic predictive model.
Despite its simplicity, the moving average method is widely used in the technical
analysis of financial markets to define a dynamic level of support and resistance for
the price of a given security.

Let's consider a time series xt= x(t) and a function f(xt-p, xt-1) that reduces
the last p observations into a value or average. The prediction or
estimation of the observation at t+1 is defined by the following formula:

()1 ,...,t t p tx f x x+ −=%

Here, f is an average reducing function from the previous p data points.

Chapter 3

[67]

The simple moving average
Simple moving average, a smoothing method, is the simplest form of the moving
averages algorithms [3:1]. The simple moving average of period p estimates the value
at time t by computing the average value of the previous p observations using the
following formula:

The simple moving average of a time series {xt} with a period p is
computed as the average of the last p observations:

1 t

t j
j t p

x x
p = −

= ∑%

The computation is implemented iteratively using the following
formula (1):

1 ;0t t p
t t

x x
x x t p t p

p
−

−

−
= + ∀ ≥ ∀ ≤% %

Here, tx% is the estimate or simple moving average value at time t.

Let's build a class hierarchy of moving average algorithms, with the abstract
parameterized class MovingAverage[T <% Double] as its root. We use the generic
time series class, XTSeries[T], introduced in the first section and the generic pipe
operator, |>, introduced in the previous chapter:

abstract class MovingAverage[T <% Double] extends
PipeOperator[XTSeries[T], XTSeries[Double]]

The pipe operator for the SimpleMovingAverage class implements the iterative
formula (1) for the computation of the simple moving average. The override
keyword is omitted:

class SimpleMovingAverage[@specialized(Double) T <% Double](val
period: Int)(implicit num: Numeric[T]) extends MovingAverage[T] {

 def |> : PartialFunction[XTSeries[T], XTSeries[Double]] {
 case xt: XTSeries[T] if(xt != null && xt.size > 0) => {

 val slider = xt.take(data.size-period)
 .zip(data.drop(period)) //1
 val a0 = xt.take(period).toArray.sum/period //2
 var a: Double = a0
 val z = Array[Array[Double]](

Data Preprocessing

[68]

 Array.fill(period)(0.0), a, slider.map(x => {
 a += (x._2 - x._1)/period
 a})

).flatten //3
 XTSeries[Double](z)
 }

The class is parameterized for the type of elements of the input time series. After all,
we do not have control over the source of the input data. The type for the elements of
the output time series is Double.

The class has a type T and is specialized for the Double type for faster processing.
The implicitly defined num: Numeric[T] is required by the arithmetic operators
sum and / (line 2).

The implementation has a few interesting elements. First, the set of observations
is duplicated and the index in the clone is shifted by p observations before being
zipped with the original to the array of a pair of values: slider (line 1):

Moving averages

X X X X XX0 1 2 p-1 p n-1

X X X XX0 1 2 p-1 n-1

0 00 ap a ai n

Sliding pairs

The sliding algorithm to compute moving averages

The average value is initialized with the average of the first p data points. The first
p values of the trends are initialized as an array of p zero values. It is concatenated
with the first average value and the array containing the remaining average values.
Finally, the array of three arrays is flattened (flatten) into a single array containing
the average values (line 3).

The weighted moving average
The weighted moving average method is an extension of the simple moving average
by computing the weighted average of the last p observations [3:2]. The weights αj
are assigned to each of the last p data points xj, and are normalized by the sum of
the weights.

Chapter 3

[69]

The weighted moving average of a series {xt} with a period p and a
normalized weights distribution {αj} is given by the following formula (2):

1

;
0

1 1
pt

t j p j j
j t p j

x x
p

α α
−

−
= − =

= =∑ ∑%

Here, tx% is the estimate or simple moving average value at time t.

The implementation of the WeightedMovingAverage class requires the computation
of the last p data points. There is no simple iterative formula to compute the
weighted moving average at time t+1 using the moving average at time t:

class WeightedMovingAverage[@specialized(Double) T <% Double](val
weights: DblVector) extends MovingAverage[T] {
 def |> : PartialFunction[XTSeries[T], XTSeries[Double]] = {
 case xt: XTSeries[T] if(xt != null && xt.size > 1) => {
 val smoothed = Range(weights.size, xt.size).map(i => {
 xt.toArray.slice(i- weights.size , i)
 .zip(weights)
 .foldLeft(0.0)((s, x) => s + x._1*x._2) }) //1
 XTSeries[Double](Array.fill(weights.size)(0.0) ++ smoothed) //2
 }
}

As with the simple moving average, the array of the initial p moving average
with the value 0 is concatenated (line 2) with the first moving average value
and the remaining weighted moving average computed using a map (line 1). The
period for the weighted moving average is implicitly defined as weights.size.

The exponential moving average
The exponential moving average is widely used in financial analysis and marketing
surveys because it favors the latest values. The older the value, the less impact it has
on the moving average value at time t [3:3].

The exponential moving average on a series {xt} and a smoothing
factor α is computed by the following iterative formula:

() 1 01 0; 0t t tx x x t x if tα α−= − + ∀ > =% %

Here, x% is the value of the exponential average at t.

Data Preprocessing

[70]

The implementation of the ExpMovingAverage class is rather simple. There are two
constructors, one for a user-defined smoothing factor and one for the Nyquist period,
p, used to compute the smoothing factor alpha = 2/(p+1):

class ExpMovingAverage[@specialized(Double) T <% Double](val alpha:
Double) extends MovingAverage[T] {
 def |> : PartialFunction[XTSeries[T], XTSeries[Double]] = {
 case xt: XTSeries[T] if(xt != null && xt.size > 1) => {
 val alpha_1 = 1-alpha
 var y: Double = data(0)
 xt.map(x => {
 val z = x*alpha + y*alpha_1; y=z; z })
 }
 }
}

The version of the constructor that uses the Nyquist period p is implemented using
the Scala apply method:

def apply[T <% Double](nyquist: Int): ExpMovingAverage[T] = new
ExpMovingAverage[T](2/(nyquist + 1))

Let's compare the results generated from these three moving averages methods
with the original price. We use a data source (with respect to sink), DataSource
(with respect to DataSink) to load the historical daily closing stock price of Bank
of America (BAC). The DataSource and DataSink classes are defined in the Data
extraction section in Appendix A, Basic Concepts. The comparison of results can be
done using the following code:

val p_2 = p >>1
val w = Array.tabulate(p)(n =>if(n==p_2) 1.0 else 1.0/(Math.
abs(n-p_2)+1)) //1
val weights = w map { _ / w.sum } //2

val src = DataSource("resources/data/chap3/BAC.csv, false)//3

val price = src |> YahooFinancials.adjClose //4
val sMvAve = SimpleMovingAverage(p)
val wMvAve = WeightedMovingAverage(weights)
val eMvAve = ExpMovingAverage(p)

val results = price :: sMvAve.|>(price) :: wMvAve.|>(price) ::
eMvAve.|>(price) :: List[XTSeries[Double]]() //5
Val outFile = "output/chap3/mvaverage" + p.toString + ".csv"
DataSink[Double](outFile) |> results //6

Chapter 3

[71]

The coefficients for the weighted moving average are generated (line 1) and
normalized (line 2). The trading data regarding the ticker symbol, BAC, is extracted
from the Yahoo! finances CSV file (line 3), YahooFinancials, using the adjClose
extractor (line 4). The smoothed data generated by each of the moving average
techniques are concatenated into a list of time series (line 5). Finally, the content is
formatted and dumped into a file, outFile, using a DataSink instance (line 6).

The weighted moving average method relies on a symmetric distribution of
normalized weights computed by a function passed as an argument of the generic
tabulate method. Note that the original price time series is generated if a specific
moving average cannot be computed. The following graph is an example of a
symmetric filter for weighted moving averages:

The three moving average techniques are applied to the price of the stock of Bank
of America (BAC) over 200 trading days. Both the simple and weighted moving
average uses a period of 11 trading days. The exponential moving average method
uses a scaling factor of 2/(11+1) = 0.1667.

11-day moving averages of the historical stock price of Bank of America

Data Preprocessing

[72]

The three techniques filter the noise out of the original historical price time series.
The exponential moving average reacts to a sudden price fluctuation despite the fact
that the smoothing factor is low. If you increase the period to 51 trading days or two
calendar months, the simple and weighted moving averages generate a smoothed
time series compared to the exponential moving average with a smoothing factor
of 2/(p+1)= 0.038.

51-day moving averages of the historical stock price of Bank of America

You are invited to experiment further with different smooth factors and weight
distributions. You will be able to confirm the following basic rule: as the period of
the moving average increases, noise with decreasing frequencies is eliminated. In
other words, the window of allowed frequencies is shrinking. The moving average
acts as a low-band filter that allows only lower frequencies. Fine-tuning the period or
smoothing factor is time consuming. Spectral analysis, or more specifically, Fourier
analysis, transforms the time series into a sequence of frequencies, which is a time
series in the frequency domain.

Chapter 3

[73]

Fourier analysis
The purpose of spectral density estimation is to measure the amplitude of a signal
or a time series according to its frequency [3:4]. The spectral density is estimated by
detecting periodicities in the dataset. A scientist can better understand a signal or
time series by analyzing its harmonics.

The spectral theory
Spectral analysis for time series should not be confused with
spectral theory, a subset of linear algebra that studies Eigenfunctions
on Hilbert and Banach spaces. Harmonic and Fourier analyses are
regarded as a subset of spectral theory.

The fast Fourier transform (FFT) is the most commonly used frequency analysis
algorithm [3:5]. Let's explore the concept behind the discrete Fourier series and
the Fourier transform as well as their benefits as applied to financial markets. The
Fourier analysis approximates any generic function as the sum of trigonometric
functions, sine and cosine. The decomposition in a basic trigonometric function is
known as a Fourier transform [3:6].

Discrete Fourier transform (DFT)
A time series {xk} can be represented as a discrete real-time domain function f, x=f(t).
In the 18th century, Jean Baptiste Joseph Fourier demonstrated that any continuous
periodic function f could be represented as a linear combination of sine and cosine
functions. The discrete Fourier transform (DFT) is a linear transformation that
converts a time series into a list of coefficients of a finite combination of complex or
real trigonometric functions, ordered by their frequencies.

The frequency ω of each trigonometric function defines one of the harmonics of the
signal. The space that represents signal amplitude versus frequency of the signal is
known as the frequency domain. The generic DFT transforms a time series into a
sequence of frequencies defined as complex numbers ω = a + j.φ (j2= -1), for which a
is the amplitude of the frequency and φ is the phase.

Data Preprocessing

[74]

This section is dedicated to the real DFT that converts a time series into an ordered
sequence of frequencies with real values.

Real discrete Fourier transform
A periodic function f can be represented as an infinite combination of sine
and cosine functions:

() () ()
1 1

cos sin
2
o

k k
af t a nx b nx

∞ ∞

= + =∑ ∑
The Fourier cosine transform of a function f is defined as:

() () (), cos 2π
∞

−∞

= ∫cF f k kx f x dx

The discrete real cosine series of a function f(-x) = f(x) is defined as:

() () () () ()
2 3

0

1 0

2cos cos .
2

N

k k
k

af x f x a kx wherea f t kt dt
π

π

−

=

= − = + =∑ ∫
The Fourier sine transform of a function is defined as:

() () (), sin 2π
∞

−∞

= ∫sF f k kx f x dx

The discrete real sine series of a function f(-x) = f(x) is defined as:

() () () () ()
2 3

1 0

2sin sin .
N

k k
k

f x f x b kx whereb f t kt dt
π

π

−

=

= − = =∑ ∫

The computation of the Fourier trigonometric series is time consuming with an
asymptotic time complexity of O(n2). Several attempts have been made to make the
computation as effective as possible. The most common numerical algorithm used to
compute the Fourier series is the fast Fourier transform created by J. W. Cooley and
J. Tukey [3:7]. The algorithm, called Radix-2, recursively breaks down the Fourier
transform for a time series of N data points into any combination of N1 and N2 sized
segments such as N = N1 N2. Ultimately, the discrete Fourier transform is applied to
the deepest-nested segments.

The Cooley-Tukey algorithm
I encourage you to implement the Radix-2 Cooley-Tukey algorithm in
Scala using a tail recursion.

Chapter 3

[75]

The Radix-2 implementation requires that the number of data points is N=2n for
even functions (sine) and N = 2n+1 for cosine. There are two approaches to meet
this constraint:

•	 Reduce the actual number of points to the next lower radix, 2n < N
•	 Extend the original time series by padding it with 0 to the next higher radix,

N < 2n+1

Padding the original time series is the preferred option because it does not affect the
original set of observations.

Let's define a base class, DTransform[T], for all the fast Fourier transforms,
parameterized with a view bounded to the Double type (Double, Float,
and so on). The first step is to implement the padding method, common
to all the Fourier transforms:

trait DTransform[T] extends PipeOperator[XTSeries[T],
XTSeries[Double]] {
 def padSize(xtSz: Int, even: Boolean=true): Int = {
 val sz = if(even) xtSz else xtSz-1
 if((sz & (sz-1)) == 0) 0
 else {
 var bitPos = 0
 do {
 bitPos += 1
 } while((sz >> bitPos) > 0)
 (if(even) (1<<bitPos) else (1<<bitPos)+1) - xtSz
 }
 }

 def pad(xt: XTSeries[T], even: Boolean=true)
 (implicit f: T => Double): DblVector = {
 val newSize = padSize(xt.size, even)
 val arr: DblVector = xt
 if(newSize > 0) arr ++ Array.fill(newSize)(0.0) else arr
 }
}

The while loop
Scala developers prefer Scala higher-order methods on collection
to implement iterative computation. However, nothing prevents
you from using a traditional while loop if either readability or
performance is an issue.

www.allitebooks.com

http://www.allitebooks.org

Data Preprocessing

[76]

The fast implementation of the padding method, pad, consists of detecting the
number of observations, N, which is a power of 2 using the bit operator & by
evaluating whether N & (N-1) is null. The next highest radix is extracted by
computing the number of bits shift in N. The code illustrates the effective use of
implicit conversion to make the code readable. The arr: DblVector = series
conversion triggers a conversion defined in the XTSeries companion object.

The next step is to write the DFT class for the real discrete transforms, sine and cosine,
by subclassing DTransform. The purpose of the class is to select the appropriate
Fourier series, pad the time series to the next power of 2 if necessary, and invoke
the FastSineTransformer and FastCosineTransformer classes of the Apache
Commons Math library [3:8] introduced in the first chapter:

class DFT[@specialized(Double) T<%Double] extends DTransform[T] {
 def |> : PartialFunction[XTSeries[T], XTSeries[Double]] = {
 case xt: XTSeries[T] if(xt != null && xt.length > 0) =>
 XTSeries[Double](fwrd(xt)._2)
 }
 def fwrd(xt:XTSeries[T]): (RealTransformer, DblVector)= {
 val rdt = if(Math.abs(xt.head) < DFT_EPS)
 new FastSineTransformer(DstNormalization.STANDARD_DST_I)
 else new FastCosineTransformer(DctNormalization.STANDARD_DCT_I)

 (rdt, rdt.transform(pad(xt,xt.head==0.0),TransformType.FORWARD))
 }
}

The discrete Fourier sine series requires that the first value of the time series is 0.0.
This implementation automates the selection of the appropriate series by evaluating
series.head. This example uses the standard formulation of the cosine and sine
transformation, defined by the DctNormalization.STANDARD_DCT_I argument.
The orthogonal normalization, which normalizes the frequency by a factor of
1/sqrt(2(N-1), where N is the size of the time series, generates a cleaner frequency
spectrum for a higher computation cost.

@specialized
The @specialized(Double) annotation is used to instruct the
Scala compiler to generate a specialized and more efficient version of
the class for the type Double. The drawback of specialization is the
duplication of byte code as the specialized version coexists with the
parameterized classes [3:9].

Chapter 3

[77]

In order to illustrate the different concepts behind DFTs, let's consider the case of a
time series generated by a sequence h of sinusoidal functions:

val _T= 1.0/1024
val h = (x:Double) =>2.0*Math.cos(2.0*Math.PI*_T*x) +
Math.cos(5.0*Math.PI*_T*x) + Math.cos(15.0*Math.PI*_T*x)/3

As the signal is synthetically created, we can select the size of the time series to avoid
padding. The first value in the time series is not null, so the number of observations
is 2n+1. The data generated by the function h is plotted as follows:

Example of the sinusoidal time series

Let's extract the frequencies spectrum for the time series generated by the function h.
The data points are created by tabulating the function h. The frequencies spectrum
is computed with a simple invocation of the pipe operator on the instance of the
DFT class:

val rawOut = "output/chap3/raw.csv"
val smoothedOut = "output/chap3/smoothed.csv"
val values = Array.tabulate(1025)(x =>h(x/1025))
DataSink[Double](rawOut) |> values //1

val smoothed = DFT[Double] |> XTSeries[Double](values) //2
DataSink[Double]("output/chap3/smoothed.csv") |> smoothed

Data Preprocessing

[78]

The first data sink (the type DataSink) stores the original time series into a CSV file
(line 1). The DFT instance extracts the frequencies spectrum and formats it as time
series (line 2). Finally, a second sink saves it into another CSV file.

Data sinks and spreadsheets
In this particular case, the results of the discrete Fourier
transform are dumped into a CSV file so that it can be loaded
into a spreadsheet. Some spreadsheets support a set of filtering
techniques that can be used to validate the result of the example.
A simpler alternative would be to use JFreeChart.

The spectrum of the time series, plotted for the first 32 points, clearly shows three
frequencies at k=2, 5, and 15. This is expected because the original signal is composed
of three sinusoidal functions. The amplitude of these frequencies are 1024/1, 1024/2,
and 1024/6, respectively. The following plot represents the first 32 harmonics for the
time series:

Frequency spectrum for a three-frequency sinusoidal

The next step is to use the frequencies spectrum to create a low-pass filter using DFT.
There are many algorithms to implement a low or pass band filter in the time domain
from autoregressive models to the Butterworth algorithm. However, the fast Fourier
transform is still a very popular technique to smooth signals and extract trends.

Chapter 3

[79]

Big Data
A DFT for a large time series can be very computation intensive.
One option is to treat the time series as a continuous signal and
sample it using the Nyquist frequency. The Nyquist frequency is
half of the sampling rate of a continuous signal.

DFT-based filtering
The purpose of this section is to introduce, describe, and implement a noise filtering
mechanism that leverages the discrete Fourier transform. The idea is quite simple:
the forward and inverse Fourier transforms are used sequentially to convert the
time series from the time domain to the frequency domain and back. The only input
you need to supply is a function G that modifies the sequence of frequencies. This
operation is known as the convolution of the filter G and the frequencies spectrum.
A convolution is similar to an inner product of two time series in the frequencies
domain. Mathematically, the convolution is defined as follows:

Convolution
The convolution of two functions f and g is defined as:

() (), .f g f t g x t dt
∞

−∞

< >= −∫
DFT convolution
One important property of the Fourier transform is that convolution
of two signals is implemented as the inner product of their relative
spectrums:

() () ()F f g F f F g∗ =
Let's apply the property to the discrete Fourier transform. If a time
series {xi} has a frequency spectrum { }fω and a filter f in a frequency
domain defined as { }gω , then the convolution is defined as:

()
1

, ,
0

N

x j f k jF f g ω ω
−

−∗ =∑

Data Preprocessing

[80]

Let's apply the convolution to our filtering problem. The filtering algorithm using the
discrete Fourier transform consists of five steps:

1.	 Pad the time series to enable the discrete sine or cosine transform.
2.	 Generate the ordered sequence of frequencies using the forward transform.
3.	 Select the filter function g in the frequency domain and a cutoff frequency.
4.	 Convolute the sequence of frequency with the filter function g.
5.	 Generate the filtered signal in the time domain by applying the inverse DFT

transform to the convoluted frequencies.

Forward

Fourier

Transform

() () ()F* F .G¥ = ¥ ¥

()G ¥

()f t ()F ¥ ()f * t

Filter

Inverse

Fourier

Transform

Raw timeseries Filtered timeseries

w w w w

w

Diagram of a discrete Fourier filter

The most commonly used low-pass filters are known as the sinc and sinc2
functions, defined as a rectangular function and a triangular function, respectively.
The simplest low-pass filter is implemented by a sinc function that returns 1 for
frequencies below a cutoff frequency, fC, and 0 if the frequency is higher:

def sinc(f: Double, fC: Double): Double = if(Math.abs(f) < fC) 1.0
else 0.0
def sinc2(f: Double, fC: Double): Double = if(f*f < fC) 1.0 else 0.0

The filtering computation is implemented as a data transformation (pipe operator
|>). The DFTFir class inherits from the DFT class in order to reuse the fwrd forward
transform function. As usual, exception and validation code is omitted. The
frequency domain function g is an attribute of the filter. The g function takes the
frequency cutoff value fC as the second argument. The two filters sinc and sinc2
defined in the previous section are examples of filtering functions.

class DFTFir[T <% Double](val g: (Double, Double) =>Double, val fC;
Double) extends DFT[T]

The pipe operator implements the filtering functionality:

def |> : PartialFunction[XTSeries[T], XTSeries[Double]] = {
 case xt: XTSeries[T] if(xt != null && xt.size > 2) => {
 val spectrum = fwrd(xt) //1
 val cutOff = fC*spectrum._2.size

Chapter 3

[81]

 val filtered = spectrum._2.zipWithIndex.map(x => x._1*g(x._2,
 cutOff)) //2
 XTSeries[Double](spectrum._1.transform(filtered, TransformType.
INVERSE)) //3
}

The filtering process follows three steps:

1.	 Computation of the discrete Fourier forward transformation
(sine or cosine), fwrd.

2.	 Apply the filter function through a Scala map method.
3.	 Apply the inverse transform on the frequencies.

Let's evaluate the impact of the cutoff values on the filtered data. The implementation
of the test program consists of invoking the DFT filter pipe operator and writing
results into a CSV file. The code reuses the generation function h introduced in the
previous paragraph:

val price = src |> YahooFinancials.adjClose
val filter = new DFTFir[Double](sinc, 4.0)
val filteredPrice = filter |> price

Filtering out the noise is accomplished by selecting the cutoff value between any of
the three harmonics with the respective frequencies of 2, 5, and 15. The original and
the two filtered time series are plotted on the following graph:

Plotting of the discrete Fourier filter-based smoothing

As you would expect, the low-pass filter with a cutoff value of 12 removes the noise
with the highest frequencies. The filter (with the cutoff value 4) cancels out the
second harmonic (low-frequency noise), leaving out only the main trend cycle.

Data Preprocessing

[82]

Detection of market cycles
Using the discrete Fourier transform to generate the frequencies spectrum of a
periodical time series is easy. However, what about real-world signals such as
the time series representing the historical price of a stock?

The purpose of the next exercise is to detect, if any, the long term cycle(s) of the
overall stock market by applying the discrete Fourier transform to the quote of the
S&P 500 index between January 1, 2009, and December 31, 2013, as illustrated in the
following graph:

Historical S&P 500 index prices

The first step is to apply the DFT to extract a spectrum for the S&P 500 historical
prices, as shown in the following graph, with the first 32 harmonics:

Frequencies spectrum for historical S&P index

Chapter 3

[83]

The frequency domain chart highlights some interesting characteristics regarding the
S&P 500 historical prices:

•	 Both positive and negative amplitudes are present, as you would expect
in a time series with complex values. The cosine series contributes to the
positive amplitudes while the sine series affects both positive and negative
amplitudes, (cos(x+π) = sin(x)).

•	 The decay of the amplitude along the frequencies is steep enough to warrant
further analysis beyond the first harmonic, which represents the main trend.
The next step is to apply a pass-band filter technique to the S&P 500 historical
data in order to identify short-term trends with lower periodicity.

A low-pass filter is limited to reduce or cancel out the noise in the raw data. In this
case, a passband filter using a range or window of frequencies is appropriate to
isolate the frequency or the group of frequencies that characterize a specific cycle.
The sinc function introduced in the previous section to implement a low-band filter
is modified to enforce the passband within a window, [w1, w2], as follows:

def sinc(f: Double, w: (Double, Double)): Double = if(Math.abs(f) >
w._1 && Math.abs(f) < w._2) 1.0 else 0.0

Let's define a DFT-based pass-band filter with a window of width 4, w=(i, i +4), with
i ranging between 2 and 20. Applying the window [4, 8] isolates the impact of the
second harmonic on the price curve. As we eliminate the main upward trend with
frequencies less than 4, all filtered data varies within a short range relative to the
main trend. The following graph shows output of this filter:

The output of a pass-band DFT filter range 4-8 on the historical S&P index

Data Preprocessing

[84]

In this case, we filter the S&P 500 index around the third group of harmonics with
frequencies ranging from 18 to 22; the signal is converted into a familiar sinusoidal
function, as shown here:

The output of a pass-band DFT filter range 18-22 on the historical S&P index

There is a possible rational explanation for the shape of the S&P 500 data filtered by
a passband with a frequency of 20, as illustrated in the previous plot; the S&P 500
historical data plot shows that the frequency of the fluctuation in the middle of the
uptrend (trading sessions 620 to 770) increases significantly. This phenomenon can
be explained by the fact that the S&P 500 index reaches a resistance level around the
trading session 545 when the existing uptrend breaks. A tug-of-war starts between
the bulls, betting the market nudges higher, and the bears, who are expecting a
correction. The back and forth between the traders ends when the S&P 500 index
breaks through its resistance and resumes a strong uptrend characterized by a high
amplitude and low frequency, as shown in the following graph:

Chapter 3

[85]

One of the limitations of using the Fourier transform to clean up data is that it requires
the data scientist to extract the frequencies spectrum and modify the filter on a regular
basis, as he or she is never sure that the most recent batch of data does not introduce
noise with a different frequency. The Kalman filter addresses this limitation.

The Kalman filter
The Kalman filter is a mathematical model that provides an accurate and recursive
computation approach to estimate the previous states and predict the future states of
a process for which some variables may be unknown. R. E. Kalman introduced it in
the early 60s to model dynamics systems and predict trajectory in aerospace [3:10].
Today, the Kalman filter is used to discover a relationship between two observed
variables that may or may not be associated with other hidden variables. In this
respect, the Kalman filter shares some similarities with the Hidden Markov models
(HMM) described in Chapter 6, Regression and Regularization [3:11].

The Kalman filter is used as:

•	 A predictor of the next data point from the current observation
•	 A filter that weeds out noise by processing the last two observations
•	 A smoother that computes trends from a history of observations

Smoothing versus filtering
Smoothing is an operation that removes high-frequency fluctuations
from a time series or signal. Filtering consists of selecting a range of
frequencies to process the data. In this regard, smoothing is somewhat
similar to low-pass filtering. The only difference is that a low-pass
filter is usually implemented through linear methods.

Conceptually, the Kalman filter estimates the state of a system from noisy
observations. The Kalman filter has two characteristics:

•	 Recursive: A new state is predicted and corrected using the input of a
previous state

•	 Optimal: This is an optimal estimator because it minimizes the mean square
error of the estimated parameters (against actual values)

Data Preprocessing

[86]

The Kalman filter is one of the stochastic models that are used in adaptive
control [3:12].

Kalman and nonlinear systems
The Kalman filter estimates the internal state of a linear dynamic
system. However, it can be extended to a model nonlinear-state
space using linear or quadratic approximation functions. These
filters are known as, you guessed it, extended Kalman filters (EKF),
the theory of which is beyond the scope of this book.

The following section is dedicated to discrete Kalman filters for linear systems, as
applied to financial engineering. A continuous signal can be converted to a time
series using the Nyquist frequency.

The state space estimation
The Kalman filter model consists of two core elements of a dynamic system—a
process that generates data and a measurement that collects data. These elements are
referred to as the state space model. Mathematically speaking, the state space model
consists of two equations:

•	 Transition equation: This describes the dynamics of the system including the
unobserved variables

•	 Measurement equation: This describes the relationship between the
observed and unobserved variables

The transition equation
Let's consider a system with a linear state xt of n variables and a control input vector
ut. The prediction of the state at time t is computed by a linear stochastic equation:

1t t t t t tx A x B u w−= ⋅ + ⋅ +

•	 A is the square matrix of dimension n that represents the transition from
state x at t-1 to state x at t. The matrix is intrinsic to the dynamic system
under consideration.

•	 B is an n by n matrix that describes the control input model (external action
on the system or model). It is applied to the control vector u.

•	 w represents the noise generated by the system or from a probabilistic point
of view, the uncertainty on the model. It is known as the process white noise.

Chapter 3

[87]

The control input vector represents the external input (or control) to the state of the
system. Most systems, including our financial example later in this chapter, have no
external input to the state of the model.

White and Gaussian noise
A white noise is a Gaussian noise, following a normal
distribution with zero mean.

The measurement equation
The measurement of m values zt of the state of the system is defined by the
following equation:

t t t tz H x v= ⋅ +

•	 H is a matrix m by n that models the dependency of the measurement to the
state of the system.

•	 v is the white noise introduced by the measuring devices. Similar to the
process noise, v follows a Gaussian distribution with zero mean and a
variance R, known as the measurement noise covariance.

The recursive algorithm
The set of equations for the discrete Kalman filter are implemented as recursive
computation with two distinct steps:

•	 The algorithm uses the transition equations to estimate the next observation
•	 The estimation is created with the actual measurement for this observation

The recursion is visualized in the following diagram:

Prediction

Estimate the internal
state of the system

Correction

Compute the internal
state of the system

Measurement

State

An overview diagram of the recursive Kalman algorithm

Data Preprocessing

[88]

Let's illustrate the prediction and correction phases in the context of filtering
financial data, in a manner similar to the moving average and Fourier transform.
The objective is to extract the trend and the transitory component of the yield of the
10-year Treasury bond. The Kalman filter is particularly suitable for the analysis of
interest rates for two reasons:

•	 Yields are the results of multiple factors, some of which are not
directly observable

•	 Yields are influenced by the policy of the Federal Reserve that can be easily
modeled by the control matrix

The 10-year Treasury bond has a higher trading volume than bonds with longer
maturity, making trends in interest rates a bit more reliable [3:13].

Applying the Kalman filter to clean raw data requires you to define a model that
encompasses both observed and non-observed states. In the case of the trend analysis,
we can safely create our model with a two-variable state: the current yield xt and the
previous yield xt-1.

State in dynamic systems
The term "state" refers to the state of the dynamic system under
consideration. This is a different term for observation, data, or
value vector. A state or observation is a set of values, one for
each variable of the model.

This implementation of the Kalman filter uses the Apache Commons Math library,
which defines and manipulates specific types. The first step is to define the implicit
type conversion required to interface with the KalmanFilter class:

type DblMatrix = Array[Array[Double]]
type DblVector = Array[Double]
implicit def double2RealMatrix(x: DblMatrix): RealMatrix = new
Array2DRowRealMatrix(x)
implicit def double2RealRow(x: DblVector): RealMatrix = new
Array2DRowRealMatrix(x)
implicit def double2RealVector(x: DblVector): RealVector = new
ArrayRealVector(x)

The implicit type conversion has to be defined in the scope of the client code.

Chapter 3

[89]

The Kalman model assumes that process and measurement noise follow a Gaussian
distribution, also known as white noise. For the sake of maintainability, the generation
or simulation of the white noise is encapsulated in the QRNoise class with qr as the
tuple of scale factors for the process noise matrix Q and the measurement noise R. The
two create methods execute the user-defined noise function white:

class QRNoise(qr: XY, white: Double=> Double) {
 def q = white(qr._1)
 def r = white(qr._2)
 def noisyQ = Array[Double](q,q)
 def noisyR = Array[Double](r,r)
}

The easiest approach to manage the matrices and vectors used in the recursion is to
define them as parameters of the main class, DKalman:

class DKalman(A:DblMatrix, B:DblMatrix, H:DblMatrix, P:DblMatrix)
(implicit val qrNoise: QRNoise) extends PipeOperator[XY,XY] {

 val Q = new DblMatrix(A.size).map(_ => Array.fill(A.size)(qrNoise.
qr.1))

 var x: RealVector = _
 var filter: KalmanFilter =_
}

The matrix used in the prediction and correction phase is defined as an argument
of the DKalman class. The matrices for the covariance of the process noise Q and the
measurement noise R are also initialized during the instantiation of the Kalman filter
class. The key elements of the filter are now in place and it's time to implement the
prediction-correction cycle portion of the Kalman algorithm.

Prediction
The prediction phase consists of estimating the x state (yield of the bond) using the
transition equation. We assume that the Federal Reserve has no material effect on
the interest rates, making control input matrix B null. The transition equation can
be easily resolved using simple operations on matrices.

11 12

1 1 1 121 22

ˆ ˆ 0 0
ˆ ˆ 0 0
t t t t

t t t t

x x u wa a
x x u wa a− − − −

          
= ⋅ + ⋅ +          

         
Visualization of the transition equation of the Kalman filter

Data Preprocessing

[90]

The purpose of this exercise is to evaluate the impact of the different parameters of
the transition matrix A in terms of smoothing.

The control input matrix B
In this example, the control matrix B is null because there is no known
deterministic external action on the yield of the 10-year Treasury bond.
However, the yield can be affected by unknown parameters that we
represent as hidden variables. The matrix B would be used to model
the decision of the Federal Reserve regarding asset purchases and
federal fund rates.

The mathematics behind the Kalman filter presented as reference to its
implementation in Scala use the same notation for matrices and vectors. It is
absolutely not a prerequisite to understand the Kalman filter and its implementation
in the next section. If you have a natural inclination toward linear algebra, the
following note describes the two equations for the prediction step.

The prediction step
The prediction of the state at time t+1 is computed by extrapolating the
state estimate:

'
1ˆ ˆt t t t tx A x B u−= ⋅ + ⋅

•	 A is the square matrix of dimension n that represents the
transition from state x at t-1 to state x at time t.

•	 'ˆtx is the predicted state of the system based on the current state
and the model A

•	 B is the vector of n dimension that describes the input to the state
The mean square error matrix P, which is to be minimized, is updated
through the following formula:

'
1

T
t t t t tP A P A Q−= ⋅ ⋅ +

•	 AT is the transpose of the state transition matrix.
•	 Q is the process white noise described as a Gaussian distribution

with a zero mean and a variance Q, known as the noise
covariance.

The state transition matrix is implemented using the matrix and vector classes
included in the Apache Commons Math library. The types of matrices and
vectors are automatically converted into RealMatrix and RealVector classes.
The implementation of the equation is as follows:

x = A.operate(x).add(qrNoise.noisyQ)

Chapter 3

[91]

The new state is predicted (or estimated), and then used as an input to the
correction step.

Correction
The second and last step of the recursive Kalman algorithm is the correction of the
estimated yield of the 10-year Treasury bond with the actual yield. In this example,
the white noise of the measurement is negligible. The measurement equation is
simple because the state is represented by the current and previous yield, and their
measurement z:

11 12

1 1 121 22

ˆ
ˆ

t t t

t t t

z x vh h
z x vh h− − −

      
= ⋅ +      
      

Visualization of the measurement equation of the Kalman filter

The sequence of mathematical equations of the correction phase consists of updating
the estimation of the state x using the actual values z, computing the Kalman gain K,
and estimating the matrix of the error covariance P.

Correction step
The state of the system x is estimated from the actual measurement
z through the following formula:

()' ' 'ˆ ˆ ˆ ˆt t t t t t t t t tx x K z H x r z H x= + − ⋅ = − ⋅
•	 r is the residual between the predicted measurement and the

actual measured values
•	 K is the Kalman gain for the correction factor Kr

The Kalman gain is computed using the estimated error covariance
matrix '

tP :

() 1' 'T T
t t t t t t tK P H H P H R

−
= ⋅ ⋅ ⋅ +

•	 HT is the matrix transpose of H
Finally, the estimate of the error covariance matrix '

tP is corrected to
the value Pt through the following formula:

()' '
t d t t tP I K H P= − ⋅ ⋅

•	 Id is the identity matrix.

Data Preprocessing

[92]

Kalman smoothing
It is time to put our knowledge of the transition and measurement equations to the
test. The Apache Commons Library defines two classes, DefaultProcessModel and
DefaultMeasurementModel, to encapsulate the components of the matrices and
vectors. The historical values for the yield of the 10-year Treasury bond is loaded
through the DataSource method and mapped to the smoothed series that is the
output of the filter.

def |> : PartialFunction[XTSeries[XY], XTSeries[XY]] = {
 case xt: XTSeries[XY] if(xt.size> 0) => xt.map(y => {
 initialize(Array[Double](y._1, y._2)) //1
 val nState = newState //2
 (nState(0), nState(1)) }) //3
 …

The data transformation for the Kalman filter initializes the process and
measurement model for each data point (line 1), updates the state using the
transition and correction equations iteratively (line 2), and returns the filtered
series (line 3).

Exception handling
The code to catch and process exceptions thrown by the Apache
Commons Math library is omitted as the standard practice in the
book. As far as the execution of the Kalman filter is concerned, the
following exceptions have to be handled:

•	 NonSquareMatrixException
•	 DimensionMismatchException
•	 MatrixDimensionMismatchException

The model is a 2-step lag smoothing algorithm using a single smoothing factor α
with a state, St:

St = {xt+1, xt} with xt+1 = α.xt + (1- α).xt-1 and xt = xt

Following the Scala standard to return errors to the client code, the exceptions
thrown by the Commons Math API are caught and processed through the
Option monad. The iterative prediction and correction of the smoothed yields is
implemented by the newState method. The method iterates through four steps:

1.	 Filter an estimate of the state x at time t.
2.	 The new state is computed using the transition equation.
3.	 The measured value z of the state is computed using the measurement equation.
4.	 The original estimate x is corrected with the measured value.

Chapter 3

[93]

The newState method is defined as follows:

val PROCESS_NOISE_Q = 0.03
val PROCESS_NOISE_R = 0.1
val MEASUREMENT_NOISE = 0.4

def newState: DblVector = {
 Range(0, maxIters) foreach(_ => {
 filter.predict //1
 val w = qrNoise.create(PROCESS_NOISE_Q, PROCESS_NOISE_R)
 x = A.operate(x).add(qrNoise.noisyQ) //2
 val v = qrNoise.create(MEASUREMENT_NOISE)
 val z = H.operate(x).add(qrNoise.noisyR) //3
 filter.correct(z) // 4
 })
 filter.getStateEstimation
}

The PROCESS_NOISE factor (with respect to MEASUREMENT_NOISE) used in the
creation of the process noise w and measurement noise v are somewhat arbitrary.
Their purpose is to simulate the white noise for the model. The newState method
returns the filtered state as a DblVector instance for this particular state.

The exit condition
In the code snippet for the newState method, the iteration for
specific data points exits when the maximum number of iterations
is reached. A more elaborate implementation consists of either
evaluating the matrix P at each iteration or estimation converged
within a predefined range.

Experimentation
The objective is to smoothen the yield of the 10-year Treasury bond and quantify the
impact of the elements of the state-transition matrix A on the smoothing process. The
state equation updates the values of the state [xt, xt-1] using the previous state [xt-1, xt-2],
where x represents the yield at time t. This is accomplished by shifting the values of
the original time series {x0, ... xn} by 1 using the drop method, X1={x1, … xn}, creating
a copy of the original time series without the last element X2={x0, … xn-1} and zipping
X1 and X2. The resulting sequence of pair {(xk, xk-1)} is processed by the Kalman
algorithm, as shown in the following code:

implicit val qrNoise = QRNoise((0.2, 0.4), (m: Double) => m* (new
Random(System.currentTimeMillis)).nextGaussian) //1
val A: DblMatrix = ((0.9, 0.0), (0.0, 0.1))

Data Preprocessing

[94]

val B: DblMatrix = (0.0, 0.0)
val H: DblMatrix = (1.0, 1.0)
val P0: DblMatrix = ((0.4, 0.5), (0.4, 0.5))
val x0: DblVector = (175.0, 175.0)

val dKalman = new DKalman(A, B, H, P0) //2
val output = "output/chap3/kalman.csv"
val zt_1 = zSeries.drop(1)
val zt = zSeries.take(zSeries.size-1)
val filtered = dKalman |> XTSeries[(Double, Double)](zt_1.zip(zt)) //3
DataSink[Double](output) |> filtered.map(_._1) //4

The process and measurement noise qrNoise is implicitly initialized with the
respective factors, 0.2 and 0.4 (line 1). The Kalman filter is initialized with the
prediction-correction equation matrices A, B, H, and P0, and the initial state x

0
 (line 2).

A time series {(xi, xi-p)}i is generated by zipping two copies of the historical 10 Treasury
bond yield series, with the second one being shifted by p data. The Kalman filter is
applied to the time series of tuples and the result is dumped into an output file using
a DataSink instance (line 4)

The test is performed over a period of one year, and the results are plotted using a
basis point or 100th of a percentage. The quality of the output is evaluated using two
different values for the state transition matrix A: [0, 8, 0.2, 1.0, 0.0] and [0,5, 0.5, 1.0, 0.0].

Modeling state transition and noise
The state transition and the noise related to the process have to be
selected carefully. The resolution of the state equations relies on
the QR decomposition, which requires a non-negative definite
matrix. The implementation in the Apache common library throws a
NonPositiveDefiniteMatrixException if the principle is violated.

Chapter 3

[95]

The smoothed yield is plotted along the raw data as follows:

The output of the Kalman filter for the 10-year Treasury bond historical prices

Clearly, the yield time series has been smoothed. However, the amplitude of
the underlying trend is significantly higher than any of the noise or the spikes.
Consequently, the Kalman filter has a limited impact. Let's analyze the data for a
shorter period during which the noise is the strongest, between the 190th and the
275th trading days.

The output of the Kalman filter for the 10-year Treasury bond prices 0.8-0.2

Data Preprocessing

[96]

The high frequency noise has been significantly reduced without cancelling
the actual spikes. The distribution 0.8-0.2 takes into consideration the previous
state and favors the predicted value. Contrarily, a run with a state transition matrix
A [0.2, 0.8, 0.0, 1.0] that favors the latest measurement will preserve the noise, as seen
in the following graph:

The output of the Kalman filter for the 10-year Treasury bond price 0.2-0.8

The Kalman filter is a very useful and powerful tool in understanding the
distribution of the noise between the process and observation. Contrary to the
low or pass-band filters based on the fast Fourier transform, the Kalman filter
does not require computation of the frequencies spectrum or assume the range
of frequencies of the noise.

However, the linear Kalman filter has its limitations:

•	 The noise generated by both the process and the measurement has to
be Gaussian. Processes with non-Gaussian noise can be modeled with
techniques such as a Gaussian Sum filter or adaptive Gaussian mixture [3:14].

•	 It requires that the underlying process is linear. Researchers have been able
to formulate extensions to the Kalman filter, known as the extended Kalman
filter (EKF) to filter signals from non-linear dynamic systems, at the cost of
significant computational complexity.

Chapter 3

[97]

Alternative preprocessing techniques
For the sake of space and your time, this chapter introduced and applied three
filtering and smoothing classes of algorithms. Moving averages, Fourier series, and
the Kalman filter are far from being the only techniques used in cleaning raw data.
The alternative techniques can be classified into two categories:

•	 Autoregressive models that encompass autoregressive moving average
(ARMA), autoregressive integrated moving average (ARIMA), generalized
autoregressive conditional heteroskedasticity (GARCH), and Box-Jenkins
that relies on some form of autocorrelation function

•	 Curve-fitting algorithms that include the polynomial and geometric fit
with the ordinary least squares method, non-linear least squares using
the Levenberg-Marquardt optimizer, and probability distribution fitting

Summary
This completes the overview of the most commonly used data filtering and
smoothing techniques. There are other types of data preprocessing algorithms such
as normalization, analysis, and reduction of variance; the identification of missing
values is also essential to avoid the garbage-in garbage-out conundrum that plagues
so many projects that use machine learning for regression or classification.

Scala can be effectively used to make the code understandable and avoid cluttering
methods with unnecessary arguments.

The three techniques presented in this chapter, from the simplest moving averages
and Fourier transform to the more elaborate Kalman filter, go a long way in setting
up data for the next concepts introduced in the next chapter—unsupervised learning
and more specifically, clustering.

Unsupervised Learning
Labeling a set of observations for classification or regression can be a daunting task,
especially in the case of a large feature set. In some cases, labeled observations are
either not available or not possible to create. In an attempt to extract some hidden
association or structures from observations, the data scientist relies on unsupervised
learning techniques to detect patterns or similarity in data.

The goal of unsupervised learning is to discover patterns of regularities and
irregularities in a set of observations. These techniques are also applied in reducing
the solution space or feature set similarly to the divide-and-conquer approach
commonly used in Computer Science.

There are numerous unsupervised algorithms; some are more appropriate to handle
dependent features while others generate more relevant groups in the case of hidden
features [4:1]. In this chapter, you will learn three of the most common unsupervised
learning algorithms:

•	 K-means: Clustering observed features
•	 Expectation-maximization (EM): Clustering observed and latent features
•	 Principal components analysis (PCA): Reducing the dimension of the model

Any of these algorithms can be applied to technical analysis or fundamental analysis.
Fundamental analysis of financial ratios and technical analysis of price movements
are described in the Technical analysis section under Finances 101 in Appendix A,
Basic Concepts. The K-means algorithm is fully implemented in Scala while
expectation-maximization and principal components analysis leverage the
Apache Commons Math library.

Unsupervised Learning

[100]

Clustering
Problems involving a large number of features for large datasets become quickly
intractable, and it is quite difficult to evaluate the independence between features.
Any computation that requires some level of optimization and, at a minimum,
computation of first order derivatives requires a significant amount of computing
power to manipulate high-dimension matrices. As with many engineering fields, a
divide-and-conquer approach to classifying very large datasets is quite effective. The
objective is to reduce continuous, infinite, or very large datasets into a small group of
observations that share some common attributes.

Visualization of data clustering

This approach is known as vector quantization. Vector quantization is a method that
divides a set of observations into groups of similar size. The main benefit of vector
quantization is that the analysis using a representative of each group is far simpler
than an analysis of the entire dataset [4:2].

Clustering, also known as cluster analysis, is a form of vector quantization that
relies on a concept of distance or similarity to generate groups known as clusters.

Learning vector quantization (LVQ)
Vector quantization should not be confused with learning vector
quantization. Learning vector quantization is a special case of artificial
neural networks that relies on a winner-take-all learning strategy to
compress signals, images, or videos.

Chapter 4

[101]

This chapter introduces two of the most commonly applied clustering algorithms:

•	 K-means, which is used for quantitative types and minimizes the total error
(known as the reconstruction error) given the number of clusters and the
distance formula.

•	 Expectation-maximization (EM), which is a two-step probabilistic
approach that maximizes the likelihood estimates of a set of parameters.
EM is particularly suitable to handle missing data.

K-means clustering
K-means is a popular iterative clustering algorithm. The representative of each
cluster is computed as the center of the cluster, known as the centroid. The
similarity between observations within a single cluster relies on the concept
of distance between observations.

Measuring similarity
There are many ways to measure the similarity between observations. The most
appropriate measure has to be intuitive and avoid computational complexity.
This section reviews three similarity measures:

•	 The Manhattan distance
•	 The Euclidean distance
•	 Cosine of value observations

The Manhattan distance is defined by the absolute distance between two variables or
vectors, {xi} and {yi}, of the same size:

(,) | |i id x y x y= −∑
The implementation is generic enough to compute the distance between two arrays
of elements of different types as long as an implicit conversion between each of these
types to Double values is already defined, as shown here:

def manhattan[T <% Double, U <% Double](x: Array[T], y: Array[U]):
Double = (x, y).zipped.foldLeft(0.0)((s, t) => s + Math.abs(t._1 -
t._2))

Unsupervised Learning

[102]

The ubiquitous Euclidean distance is defined as the square of the distance between
two vectors, {xi} and {yi}, of the same size:

2(,) ()i id x y x y= −∑
def euclidean[T <% Double, U <% Double](x: Array[T], y: Array[U]):
Double = Math.sqrt((x, y).zipped.foldLeft(0.0)((s, t) => { val d =
t._1 - t._2; s + d*d}))

The cosine distance is defined as the cosine of an angle between two vectors, {xi} and
{yi}, of the same size:

2 2 1/2(,)
()

i i

i i

x y
d x y

x y
= ∑
∑ ∑

In this implementation, the computation of the dot product and the norms for each
dataset is done simultaneously using the tuple within the fold method:

def cosine[T <% Double, U <% Double](x: Array[T], y: Array[U]): Double
= {
 val zeros = (0.0, 0.0, 0.0)
 val norms = (x, y).zipped.foldLeft(zeros)((s, t) =>
 (s._1 + t._1*t._2, s._2 + t._1*t._1, s._3 + t._2*t._2))
 norms._1/Math.sqrt(norms._2*norms._3)
}

Performance of zip
The scalar product of two vectors is one of the most common
operations. It is tempting to implement the dot product using the
generic zip method:

def dot (x:Array[Double], y:Array[Double]):
Array[Double] =

 x.zip(y).map(x => f(x._1, x._2))

An functional alternative is to use the Tuple2.
zipped method.
def dot(x:Array[Double], y:Array[Double]):
Array[Double] = (x, y).zipped map (_ * _)

If readability is not a primary issue, you can always implement the
dot method with a while loop.

Chapter 4

[103]

Overview of the K-means algorithm
The main advantage of the K-means algorithm (and the reason for its popularity) is
its simplicity [4:3].

Let's consider K clusters {Ck} with means {mk}. The K-means algorithm is
indeed an optimization problem, the objective of which is to minimize
the reconstruction or the total error defined as the total sum of distance.

1
min (,)

k
i k

K

i kC x C
d x m

∈
∑ ∑

The steps of the iterative algorithm are:

1.	 Initialize the centroids or means mk of the K clusters.
2.	 Assign observations to the nearest cluster given mk.
3.	 Iterate until no observations are reassigned to a cluster:

°° Compute centroids mk that minimize the total error reconstruction for
the current assignment

°° Reassign the observations given the new centroids mk

Step 1 – cluster configuration
The configuration of the K clusters consists of defining the following parameters for
the K-means algorithm: number of K clusters, the distance metrics, the maximum
number of iterations, and the initial value of the cluster's centroid.

Defining clusters
The first step is to define a cluster. A cluster is defined by the following parameters:

•	 Centroid: center
•	 The indices of the observations that belong to this cluster: members

The following code shows the definition of a cluster:

class Cluster[T <% Double](val center: DblVector) {
 val members = new ListBuffer[Int]

The cluster is responsible for managing its members (data points) at any point of
the iterative computation of the K-means algorithm. It is assumed that a cluster
will never contain the same data points twice.

Unsupervised Learning

[104]

The constructor of the Cluster class is implemented by the apply method in
the companion object (for convenience, refer to the Class constructor template
section in Appendix A, Basic Concepts):

object Cluster {
 def apply[T <% Double](c:DblVector):Cluster[T] = new Cluster[T](c)
}

At a minimum, a cluster should be able to manage its membership of observations,
update its center, and compute the variance or standard deviation of all its member
observations:

def += (n:Int): Unit = members.append(n)
def moveCenter(xt: XTSeries[Array[T]): Cluster[T] ={
 val sums = members.map(xt(_).map(_.toDouble)).toList
 .transpose
 .map(_.sum)
 Cluster[T](sums.map(_ / members.size).toArray)
}

def stdDev(xt: XTSeries[Array[T]], distance: (DblVector, Array[T]) =>
Double): Double = {
 Stats[Double](members.map(xt(_))
 .map(distance(center, _)).toArray).stdDev
}

The three important methods that define the behavior of a cluster instance are
as follows:

•	 +=: Add a member (index of an observation in the original time series).
•	 moveCenter: Create a new cluster with the existing members and a new

centroid computed as the mean of all the observations contained in the cluster.
•	 stdDev: Compute the standard deviation (or density) of all the observations

contained in the cluster relative to its center. The distance between each
member and the centroid is extracted through a map, and then folded to
generate the statistics. The function to compute the distance between the
center and an observation is an argument of the method. The default
distance is Euclidean.

Chapter 4

[105]

Cluster selection
There are different ways to select the most appropriate cluster
when reassigning an observation (updating its membership).
In this implementation, we will select the cluster with the
larger spread or lowest density. An alternative is to select the
cluster with the largest membership.

Defining K-means
Let's declare the K-means algorithm class, KMeans, with its public methods.

The KMeans class takes the number of clusters, K, and the maximum number of
iterations, maxIters, as parameters. The implicit conversion of type T to a Double
is specified by the T <% Double view bound. The Ordering class has to be passed
implicitly as a parameter because it is required by the sortWith method in the
initialize and maxBy methods. The Manifest method is required to preserve the
type erasure for Array[T] in the JVM:

class KMeans[T <% Double](K: Int, maxIters: Int, distance:
(DblVector,Array[T]) => Double)(implicit order: Ordering[T],
m: Manifest[T]) extends PipeOperator[XTSeries[Array[T]],
List[Cluster[T]]] {
 def |> : PartialFunction[XTSeries[Array[T]], List[Cluster[T]]]
 def initialize(xt:XTSeries[Array[T]]): List[Cluster[T]]

As with other data processing units, the extraction of K-means clusters is
encapsulated by the pipe operator |>, so clustering can be integrated into a workflow
using dependency injection described in the Dependency injection section in Chapter 2,
Hello World!. The initialization of the centroids of each of the K clusters is performed
by the private initialize method.

Initializing clusters
The initialization of the cluster centroids is important to ensure fast convergence of
K-means. Solutions range from the simple random generation of centroids to the
application of genetic algorithms to evaluate the fitness of centroid candidates. We
selected an efficient and fast initialization algorithm developed by M. Agha and W.
Ashour [4:4].

Unsupervised Learning

[106]

The steps of the initialization are as follows:

1.	 Compute the standard deviation of the set of observations.
2.	 Select the dimension k {xk,0, xk,1 … xk,n} with maximum standard deviation.
3.	 Rank the observations by their increasing value of standard deviation for the

dimension k.
4.	 Divide the ranked observations set equally into K sets {Sm}.
5.	 Find the median values, size (Sm)/2.
6.	 Use the corresponding observations as centroids.

The initialization algorithm is implemented by the private initialize method:

 def initialize(xt:XTSeries[Array[T]]): List[Cluster[T]]={
 val stats = statistics(xt) //1
 val maxSDevDim = Range(0,stats.size).maxBy (stats(_).stdDev)//2
 val rankedObs = xt.zipWithIndex
 .map(x=> (x._1(maxSDevDim), x._2)) //2
 .sortWith(_._1 < _._1) //3
 val halfSegSize = ((rankedObs.size>>1)/K).floor.toInt //4
 val centroids = rankedObs.filter(isContained(_, halfSegSize,
rankedObs.size)).map(n => xt(n._2)) //6
 Range(0, K).foldLeft(List[Cluster[T]]())((xs, i) => Cluster[T]
(centroids(i)) :: xs) //7
}

Let's deconstruct the implementation of the Agha-Ashour algorithm in the
initialize method.

The statistics function is applied to the input time series to extract the standard
deviation for each dimension in the observations set (line 1). The dimension with
the maxSDevDim maximum variance or standard deviation is computed by using the
maxBy method on a Stats instance (line 2). Then, the observations are ranked by the
increasing value of the standard deviation, rankedObs (line 3).

The ordered sequence of observations is then broken into xt.size/K segments (line
4) and the indices of the centroids are selected as the midpoint (or median)
observations of those segments using the filtering condition, isContained:

def isContained(t: (T,Int), hSz: Int, dim: Int): Boolean =
 ((t._2 % hSz == 0) && (t._2 %(hSz<<1) != 0)

Chapter 4

[107]

The indices of the centroid in the time series are converted to actual observations
using a map method (line 6). Finally, the list of clusters is generated using a fold
(foldLeft) method on the range of cluster indices (0, K-1) (line 7).

Step 2 – cluster assignment
The second step in the K-means algorithm is the assignment of the observations
to the clusters for which the centroids have been initialized in step 1. This feat is
accomplished by the private assignToClusters method:

def assignToClusters(xt: XTSeries[Array[T]], clusters:
List[Cluster[T]], membership: Array[Int]): Int = {
 xt.toArray
 .zipWithIndex
 .filter(x => { //1
 val nearestCluster = getNearestCluster(clusters, x._1)//2
 val reassigned = nearestCluster != membership(x._2)
 clusters(nearestCluster) += x._2 //3
 membership(x._2) = nearestCluster //4
 reassigned
 }).size
}

The core of the assignment of observations to each cluster is the filter on the time
series (line 1). The filter computes the index of the closest cluster and checks whether
the observation is to be reassigned (line 2). The observation at the index x._2 is
added to the nearest cluster, clusters(nearestCluster) (line 3). The current
membership of the observations is then updated (line 4).

The cluster closest to an observation data is computed by the getNearestCluster
method as follows:

def getNearestCluster(clusters: List[Cluster[T]], x:Array[T]): Int={
 clusters.zipWithIndex..foldLeft((Double.MaxValue,0))((p,c) => {
 val measure = distance(c._1.center, x)
 if(measure < p._1) (measure, c._2) else p
 })._2

A fold is used to extract from the list of clusters the cluster that is closest to the
observation x using the distance metric defined in the K-means constructor.

Unsupervised Learning

[108]

Step 3 – iterative reconstruction
The final step is to implement the iterative computation of the reconstruction error.
In this implementation, the iteration terminates when no more observations are
reassigned to different clusters. As with other data processing units, the extraction
of K-means clusters is encapsulated by the pipe operator |>, so that clustering
can be integrated into a workflow using dependency injection described in the
Dependency Injection section in Chapter 2, Hello World!.

The generation of the K clusters is executed by the data transformation |>:

def |> :PartialFunction[XTSeries[Array[T]], List[Cluster[T]]] = {
 case xt: XTSeries[Array[T]] if(xt.size>2 && xt(0).size>0) => {
 val clusters = initialize(xt) //1

 if(clusters.isEmpty) List.empty
 else {
 val membership = Array.fill(xt.size)(0)
 val reassigned = assignToClusters(xt,clusters,membership)//2
 var newClusters: List[Cluster[T]] = List.empty
 Range(0, maxIters).find(_ => {
 newClusters = clusters.map(c => {
 if(c.size > 0) c.moveCenter(xt, dimension(xt))
 else clusters.filter(_.size > 0)
 .maxBy(_.stdDev(xt, distance))
 }) //3
 assignToClusters(xt, newClusters, membership) == 0
 }) match {
 case Some(index) => newClusters
 case None => { … }
 } //4
 }
}

As described in the algorithm overview section, the main method initializes the
membership for all the observations (line 1), creates and initializes the clusters, and
assigns the observations to clusters using the assignToClusters method (line 2).
The iteration updates the content of each cluster using the moveCenter method, by
assigning new observations to the cluster with the highest standard deviation (line 3).
The iterative loop exits when no more reassignment is needed (line 4).

Chapter 4

[109]

K-means algorithm exit condition
In some rare instances, the algorithm may reassign the same few
observations between clusters, preventing its convergence toward a
solution in a reasonable time. Therefore, it is recommended to add a
maximum number of iterations as an exit condition. If K-means does
not converge with the maximum number of iterations, then the cluster
centroids need to be reinitialized and the iterative process needs to be
executed once again.

The companion object for KMeans implements the apply constructor and the
computation of the stdDev standard deviation for each cluster. The default
constructor uses the Euclidean distance:

def apply[T <% Double](K: Int, maxIters: Int)(implicit order:
Ordering[T], m: Manifest[T]): KMeans[T] = new KMeans[T](K, maxIters,
euclidean)
def stdDev[T](c: List[Cluster[T]], xt: XTSeries[Array[T]]):
List[Double] = c.map(_.stdDev(xt))

The stdDev method computes the standard deviation of the distances between each
data point that belongs to a c cluster and its centroid.

Centroid versus mean
The terms centroid and mean refer to the same entity: the center of
a cluster. This chapter uses these two terms interchangeably.

Note that ordering a trait and Manifest have to be provided in the apply
constructor because there is no guarantee that such capabilities are provided
in runtime by the client code.

Curse of dimensionality
A model with a significant number of features (high dimensions) requires a larger
number of observations in order to extract robust clusters. K-means clustering with
very small datasets, of size less than 50, produces models with high bias and a
limited number of clusters that are affected by the order of observations [4:5]. I have
been using the following simple empirical rule of thumb for a training set of size n,
expected K clusters, and N features: n < K.N.

Unsupervised Learning

[110]

Dimensionality versus size of training set
The issue with the dimensionality of models versus the number of
observations is not specific to unsupervised learning algorithms. All
supervised learning techniques face the same challenge to set up a
viable training plan.

Whichever empirical rule you follow, such a restriction is particularly an issue
for analyzing stocks using historical quotes. Let's consider our examples of using
technical analysis to categorize stocks according to their price behavior over a period
of 1 year (or approximately 250 trading days). The dimension of the problem is 250
(250 daily closing prices). The number of stocks (observations) would have exceeded
several hundred!

IBM price day 1, price day 2, ..., price day 250

GE price day 1, price day 2, ..., price day 250

GM price day 1, price day 2, ..., price day 250

Features

Observations

Price model for K-means clustering

There are options to get around this limitation and shrink the number of
observations; among them are:

•	 Sampling the trading data without losing a significant amount of information
from the raw data, assuming the distribution of observations follows a
known probability density function.

•	 Smoothing the data to remove the noise as seen in Chapter 3, Data
Preprocessing, assuming the noise is Gaussian. In our test, a smoothing
technique will remove the price outliers for each stock and therefore reduce
the number of features (trading session). This approach differs from the
sampling approach because it does not require an assumption that the
dataset follows a known density function. On the other hand, the reduction
of features will be less significant.

These approaches are workaround solutions at best, used for the sake of this tutorial,
but they are not recommended for actual commercial analytical applications. The
principal component analysis introduced in the last section of this chapter is one of
the most reliable dimension reduction techniques.

Chapter 4

[111]

Experiment
The objective is to extract clusters from a set of stock price actions during a period
of time between January 1 and Dec 31, 2013 as features. For this test, 127 stocks are
randomly selected from the S&P 500 list. The following chart visualizes the behavior
of the normalized price of a subset of these 127 stocks:

Price action of stocks used in K-means clustering

The key is to select the appropriate features prior to clustering and the time window
to operate on. It would make sense to consider the entire historical price over the
252 trading days as a feature. However, the number of observations (stocks) is too
limited to use the entire price range. The (SAMPLES = 50) observations are the stock
closing price for each trading session between the 80th and 130th days. The adjusted
daily closing prices are normalized using the minimum and maximum values.

First, let's create a simple function to execute the K-means algorithm:

Val MAX_ITERS = 150
def run(K: Int, obs: DblMatrix): Unit = {
 val kmeans = KMeans[Double](K, MAX_ITERS) //1

 val clusters = kmeans |> XTSeries[DblVector](obs) //2
 clusters.foreach(_.center.foreach(show(_))) //3
 clusters.map(_.stdDev(XTSeries[DblVector](obs, euclidean))).
foreach(show(_)) //4
}

Unsupervised Learning

[112]

The KMeans class is first initialized with a number of clusters, K, and a maximum
number of iterations, MAX_ITERS (line 1). These two parameters are domain and
problem specific. The clustering algorithm is executed (line 2) returning a list
of clusters. The clusters' centroid information is then displayed (line 3) and the
standard deviation is computed for each of the clusters for a given number of
clusters, K, and observations, obs (line 4).

Let's load the data from CSV files using the DataSource class (refer to the Data
extraction section in Appendix A, Basic Concepts):

final val path = "resources/data/chap4/"
val extractor = YahooFinancials.adjClose :: List[Array[String]
=>Double]() // 5
def symbols = DataSource.listSymbols(path) //6

final val START = 80
final val SAMPLES = 50
val normalize=true
val prices = symbols.map(s =>DataSource(s,path,normalize) |>
extractor) //7
prices.find(_.isEmpty) match { //8
 case Some(noPrice) = { … }
 case None => {
 val values = prices. map(x => x(0))
 .map(_.drop(START).take(SAMPLES))
 args.map(_.toInt) foreach(run(_, values)) //9
 }
}

As mentioned earlier, the cluster analysis applies to the closing price in the range
between the 80th and 130th trading day. The extractor is defined to extract the adjusted
closing price for a stock whose price information is retrieved from YahooFinancials
(line 5). The list of stock symbols is used to extract price information from CSV files
located at the path (line 6). For instance, the ticker symbol for General Electric Corp.
is GE and the trading data is located in GE.csv.

The 50 daily prices for each stock are extracted by an instance of DataSource (line
7). The run method introduced earlier is invoked either for each stock or as soon as
K-means fails through an exit condition in the find method (line 8). The normalized
data values.toArray for the specific time window is extracted by the combination
of calls to drop and take Scala array methods (line 9).

Chapter 4

[113]

The first test run is executed with K=3 clusters. The mean (or centroid) vector for
each cluster is plotted as follows:

Chart of means of clusters using K-means K=3

The means vectors of the three clusters are quite distinctive. The top and bottom means
1 and 2 in the chart have the respective standard deviation of 0.34 and 0.27 and share a
very similar pattern. The difference between the elements of the 1 and 2 cluster mean
vectors is almost constant: 0.37. The cluster with a mean vector 3 represents the group
of stocks that behave like the stocks in cluster 2 at the beginning of the time period, and
behave like the stocks in cluster 1 towards the end of the time period.

Unsupervised Learning

[114]

This behavior can be easily explained by the fact that the time window or trading
period, the 80th to 130th trading day, correspond to the shift in the monetary policy
of the federal reserve in regard to the quantitative easing program. Here is the list
of stocks for each of the clusters whose centroid values are displayed on the chart:

Cluster List of stocks

Cluster 1
AET, AHS, BBBY, BRCM, C, CB, CL, CLX, COH, CVX, CYH, DE, DG, DHI,
DO, DUK, EA, EBAY, EXC, EXP, FE, GLW, GPS, IBM, JCP, JNJ, JWN, K, KF,
KMI, KO, KRFT, LEN, LINC, LRCX, MSFT, NVMI, THC, XRT

Cluster 2
AA, AAPL, ADBE, ADSK, AFAM, AMZN, AU, BHI, BTU, CAT, CCL,
CCMP, COP, CSC, CU, DOW, EMR, ENTG, ETFC, FCX, FDX, FFIV, FISV,
FLIR, FLR, FLS, FTR, GLD, GRMN, GT, JCI, QCOM, QQQ, SIL, SLV, SLW

Cluster 3

ADM, ADP, AXP, BA, BBT, BEN, BK, BSX, CA, CBS, CCE, CELG, CHK, CI,
CME, CMG, CSCO, CVS, DAL, DD, DNB, EMC, EXPE, F, FDO, FITB, FMC,
GCI, GE, GM, GME, GS, HCA, JNPR, JPM, KLAC, LH, LLL, LM, LMT, LNC,
LO, MKSI, MU, NEM, TRW, TXN, UNH, WDC, XLF, XLNX, ZNGA

Let's evaluate the impact of the number of clusters K on the characteristics of
each cluster.

Tuning the number of clusters
We repeat the previous test on the 127 stocks and the same time window with the
number of clusters varying from 2 to 15.

The mean (or centroid) vector for each cluster is plotted as follows for K = 2:

Chart of means of clusters using K-means K=2

Chapter 4

[115]

The chart of the results of the K-means algorithms with 2 clusters shows that the
mean vector for the cluster labeled 2 is similar to the mean vector labeled 3 on
the chart with K = 3 clusters. However, the cluster with the mean vector 1 reflects
somewhat the aggregation or summation of the mean vectors for the clusters 1 and 3
in the chart K =3. The aggregation effect explains why the standard deviation for the
cluster 1, 0.55, is twice as much as the standard deviation for the cluster 2, 0.28.

The mean (or centroid) vector for each cluster is plotted as follows for K = 5:

Chart of means of clusters using K-means K=5

In this chart, we can assess that the clusters 1 (with the highest mean), 2 (with the
lowest mean), and 3 are very similar to the clusters with the same labels in the chart
for K =3. The cluster with the mean vector 4 contains stocks whose behaviors are
quite similar to those in cluster 3, but in the opposite direction. In other words, the
stocks in cluster 3 and 4 reacted in opposite ways following the announcement of the
change in the monetary policy.

Unsupervised Learning

[116]

In the tests with high values of K, the distinction between the different clusters
becomes murky, as shown in the following chart for K = 10:

Chart of means of clusters using K-means K=10

The means for clusters 1, 2, and 3 seen in the first chart for the case K = 3 are still
visible. It is fair to assume that these are very likely the most reliable clusters.
These clusters happened to have a low standard deviation or high density.

Let's define the density of a cluster Cj with a centroid cj as the inverse of the
Euclidean distance between all members of each cluster and its mean (or centroid):

2(C) 1 ()
j

j jx C
d x c

∈
= −∑

Chapter 4

[117]

The density of the cluster is plotted against the number of clusters with K = 1 to 13:

Bar chart of the average cluster density for K = 1 to 13

As expected, the average density of each cluster increases as K increases. From this
experiment, we can draw the simple conclusion that the density of each cluster does
not significantly increase in the test runs for K =5 and beyond. You may observe that
the density does not always increase as the number of clusters increases (K = 6 to
K = 11). The anomaly can be explained by the following three factors:

•	 The original data is noisy
•	 The model is somewhat dependent on the initialization of the centroids
•	 The exit condition is too loose

Validation
There are several methodologies to validate the output of a K-means algorithm
from purity to mutual information [4:6]. One effective way to validate the output of
a clustering algorithm is to label each cluster and run those clusters through a new
batch of labeled observations. For example, if during one of these tests you find that
one of the clusters CC contains most of the commodity-related stocks, then you can
select another commodity-related stock, SC, which is not part of the first batch, and
run the entire clustering algorithm again. If SC is contained in CC, then the clustering
has performed as expected. If this is the case, you should run a new set of stocks,
some of which are commodity related, and measure the number of true positives, true
negatives, false positives, and false negatives. The precision, recall, and F1 measures
introduced in the Assessing a model section of Chapter 2, Hello World!, confirms whether
the tuning parameters and labels you selected for your cluster are indeed correct.

Unsupervised Learning

[118]

Validation
The quality of the clusters, as measured by the F1 statistics, depends
on the labeling of the cluster and the rule (that is, label a cluster with
the industry with the highest relative percentage of stocks in the
cluster) used to assign a label. This process is very subjective. The
only sure way to validate a validation methodology is to evaluate
several labeling schemes and select the one that generates the highest
F1 statistics.

We reviewed some of the tuning parameters that impact the quality of the results of
the K-means clustering. They are as follows:

•	 Initial selection of centroid
•	 Number of K clusters

In some cases, the similarity criterion (that is, Euclidean distance versus cosine value)
can have an impact on the cleanness or density of the clusters.

The final and important consideration is the computational complexity of the
K-means algorithm. The previous sections of the chapter described some of the
performance issues with K-means and possible remedies.

Despite its many benefits, the K-means algorithm does not handle missing data
or unobserved features very well. Features that depend on each other indirectly
may in fact depend on a common hidden (also known as latent) variable. The
expectation-maximization algorithm described in the next section addresses
some of these limitations.

Expectation-maximization (EM) algorithm
The expectation-maximization algorithm was originally introduced to estimate the
maximum likelihood in the case of incomplete data [4:7]. It is an iterative method to
compute the model features that maximize the likely estimate for observed values,
taking into account unobserved values.

The iterative algorithm consists of computing:

•	 The expectation, E, of the maximum likelihood for the observed data by
inferring the latent values (E-step)

•	 The model features that maximize the expectation E (M-step)

Chapter 4

[119]

The expectation-maximization algorithm is applied to solve clustering problems by
assuming that each latent variable follows a Normal or Gaussian distribution. This
is similar to the K-means algorithm for which the distance of each data point to the
center of each cluster follows a Gaussian distribution [4:8]. Therefore, a set of latent
variables is a mixture of Gaussian distributions.

Gaussian mixture model
Latent variables Z can be visualized as the behavior (or symptoms) of a model
(observed) X for which Z are the root causes of the behavior:

Z1 Z2 Z3

X1 X2

Visualization of observed and latent features

The latent values Z follow a Gaussian distribution. For the statisticians among us, the
mathematics of a mixture model is described in the following information box.

The mixture model

If {xi} is a set of observed features associated with latent features {zk}, the
probability for the feature xi given zk has a value j:

(|)i kp x Z j=

The probability p is called the base distribution. If we extend to the entire
model, θ= {xi, zk}, the conditional probability is defined as follows:

1
(|) (|)

J

i j i k
j

p x p x Z jθ π
=

= =∑

The most widely used mixture model is the Gaussian mixture model
that represents the base distribution p as a Normal distribution and the
conditional probability as a weighted Normal multivariate distribution:

() () ()1

/21

1|
2

J T

i j i j j i jdj j

p x e x xθ π µ µ
π

− −

=

= − ∑ −
∑

∑

Unsupervised Learning

[120]

EM overview
As far as the implementation is concerned, the expectation-maximization algorithm
can be broken down into three stages:

1.	 The computation of the log likelihood for the model features given some
latent variables (LL).

2.	 The computation of the expectation of the log likelihood at iteration t (E-step).
3.	 The maximization of the expectation at iteration t (M-step).

Log likelihood

•	 LL: Let's consider a set of observed variables X={xi} and latent
variables Z={zi}. The log likelihood for X for given Z is:

() ()log , |i jL p x zθ θ=∑
•	 E-step: The expectation for the model variable θ at iteration t is

computed as:

() (), | , t
tQ E L Xθ θ θ θ =  

•	 M-step: The function Q is maximized for the model features θ as:

()1 argmax ,t tQ
θ

θ θ θ+ =

A formal, detailed, but short mathematical formulation of the EM algorithm can be
found in S. Borman's tutorial [4:9].

Implementation
Let's implement the three steps (LL, E-step, and M step) in Scala. The internal
calculations of the EM algorithm are a bit complex and overwhelming. You may
not benefit much from the details of a specific implementation such as computation
of the eigenvalues of the covariance matrix of the expectation of the log likelihood.
This implementation hides some complexities by using the Apache Commons Math
library package [4:10].

Chapter 4

[121]

Inner workings of EM
You may want to download the source code for the implementation of
the EM algorithm in the Apache Commons Math library if you need to
understand the condition for which an exception is thrown.

First, let's define convenient internal types:

type EM = MultivariateNormalMixtureExpectationMaximization
type EMOutput = List[(Double, DblVector, DblVector)]
import scala.collections.JavaConversions._ //1

The constructor of the MultivariateEM class uses the standard template for machine
learning algorithm classes:

•	 Parameterized view bound type
•	 Implementation of EM as a data transformation by extending PipeOperator

Here is an implementation of the constructor of MultivariateEM:

class MultivariateEM[T <% Double](K: Int) extends PipeOperator[XTSerie
s[Array[T]], EMOutput]

The Apache Commons Math Java implementation of the EM uses Java container
classes that need to be explicitly converted to Scala collections. Those conversions
are defined in the JavaConversions package (line 1).

The implementation of the EM algorithm in the data transformation |> operator uses
the Apache Commons Math MultivariateNormalMixture class for the Gaussian
mixture model and the MultivariateNormalMixtureExpectationMaximization
class for the EM algorithm:

def |> : PartialFunction[XTSeries[Array[T]], EMOutput] = {
 case xt: XTSeries[Array[T]] if(xt.size>0 && dimension(xt)>0) =>{
 val data: DblMatrix = xt //2
 val multivariateEM = new EM(data)
 val est = MultivariateNormalMixtureExpectationMaximization
 .estimate(data, K)
 multivariateEM.fit(est) //3

 val newMixture = multivariateEM.getFittedModel //4
 val components = newMixture.getComponents.toList //5
 components.map(p => (p.getKey.toDouble, p.getValue.getMeans,
p.getValue.getStandardDeviations)))//6
….

Unsupervised Learning

[122]

Let's look at the main |> method of the MultivariateEM wrapper class. The first step
is to convert the time series into a primitive matrix of Double with observations and
historical quotes as rows and the stock symbols as columns (line 2).

The initial mixture of Gaussian distributions can be provided by the user or can
be extracted from the dataset as an estimate (line 3). The getFittedModel model
triggers the M-step (line 4).

The Apache library uses Java primitives that need to be converted to Scala types
using the package import scala.collection.JavaConversions. An instance
of java.util.List is converted to scala.collection.immutable.List using
toList, which invokes the asScalaIterator method of WrapAsScala, one of the
base traits of JavaConversions (line 5).

The <Double, MultivariateNormalDistribution> key-value pair, returned by
the call to getFittedModel by the Apache math method, is to be converted to a tuple
containing the mean and standard deviation for each cluster (line 6).

Third-party library exceptions

Scala does not enforce the declaration of exceptions as part of the
signature of a method. Therefore, there is no guarantee that all
types of exceptions will be caught locally. This problem occurs
when exceptions are thrown from a third-party library in two
scenarios:

•	 The documentation of the API does not list all the types of
exceptions

•	 The library is updated and a new type of exception is
added to a method

One easy workaround is to leverage the Scala exception-handling
mechanism:

 Try {
 ..
 } match {
 case Success(results) => …
 case Failure(exception) => ...
 }

Chapter 4

[123]

Testing
Let's apply the MultivariateEM class to the clustering of the same 127 stocks used in
evaluating the K-means algorithm.

As discussed in the paragraph related to the curse of dimensionality, the number
of stocks (127) to analyze restricts the number of observations to be used by the EM
algorithm. A simple option is to filter out some of the noise of the stocks and apply a
basic sampling method. The maximum sampling rate is restricted by the frequencies
in the spectrum of noises of different types in the historical price of every stock.

Filtering and sampling

The preprocessing of the data using a combination of a simple
moving average and fixed interval sampling prior to clustering is very
rudimentary in this example. For instance, we cannot assume that the
historical quotes of all the stocks share the same noise characteristics.
The noise pattern in the quotation of momentum and heavily traded
stocks is certainly different from blue-chip securities with a strong
ownership, and these stocks are held by large mutual funds.

The sampling rate should take into account the spectrum of frequency
of the noise. It should be set as at least twice the frequency of the noise
with the lowest frequency.

The object of the test is to evaluate the impact of the sampling rate, samplingRate,
and the number K of clusters used in the EM algorithm:

val extractor = YahooFinancials.adjClose :: List[Array[String]
=>Double]() //1

val period = 8
val samplingRate = 10
val smAv = SimpleMovingAverage[Double](period) //2
val obs = DataSource.listSymbols(path).map(sym => { //3
 val xs = DataSource(sym, path, true) |> extractor //2
 val values : XTSeries[Double] = XTSeries.|>(xs)).head //4
 val filtered = smAv |> values
 filtered.zipWithIndex //5
 .drop(period+1).toArray //6
 .filter(_._2%samplingRate==0)
 .map(_._1)
})

Unsupervised Learning

[124]

The first step is to extract the historical quotes for all the stocks using the same
extractor as in the K-means test case (line 1).

The symbols of the stocks under consideration are extracted from the name of the
files in the path directory. The historical data is contained in the CSV file named
path/STOCK_NAME.csv (line 3). An implicit conversion is triggered by an assignment
of values of the type XTSeries[Double] (line 4). The simple moving average
algorithm zeroed out the first period values in the smoothed data, filtered (line 5).
Those null values have to be dropped before applying the sampling (line 6).

The first test is to execute the EM algorithm with K=3 clusters and a sampling period
of 10 on data smoothed by a simple moving average with a period of 8:

MultivariateEM[Double](K) |> XTSeries[DblVector](obs) foreach (…)

The driver prints the key (line 3), the mean (coordinates of the centroid vector) (line
4), and the standard deviation for each component (cluster).

The sampling of historical prices of the 127 stocks between January 1, 2013 and
December 31, 2013 with a frequency of 0.1 hertz produces 24 data points. The
following chart displays the mean or centroid of each of the 3 clusters:

Chart of the normalized means per cluster using EM K=3

Chapter 4

[125]

The mean vectors of clusters 2 and 3 have similar patterns, which may suggest
that 2 components or clusters could provide a first insight into the similarity within
groups of stocks. The following is a chart of the normalized standard deviation per
cluster using EM K = 3:

Chart of the normalized standard deviation per cluster using EM K=3

The distribution of the standard deviation along the mean vector of each cluster can
be explained by the fact that the price of stocks from a couple of industries went
down in synergy, while others went up as a semihomogenous group following the
announcement from the Federal Reserve that the monthly quantity of bonds purchased
as part of the quantitative easing program would be reduced in the near future.

Relation to K-means
You may wonder what is the relation between EM and K-means as
both techniques address the same problem. The K-means algorithm
assigns each observation uniquely to one and only one cluster. The
EM algorithm assigns an observation based on posterior probability.
K-means is a special case of the EM for Gaussian mixtures [4:11].

Unsupervised Learning

[126]

Online EM
Online learning is a powerful strategy for training a clustering model when dealing
with very large datasets. This strategy has regained interest from scientists lately.
The description of online EM is beyond the scope of this tutorial. However, you may
need to know that there are several algorithms available for online EM if you ever
have to deal with large datasets: batch EM, stepwise EM, incremental EM, and
Monte Carlo EM [4:12].

Dimension reduction
Without prior knowledge of the data domain, data scientists include all possible
features in their first attempt to create a classification, prediction, or regression
model. After all, making assumptions is a poor and dangerous approach to reduce
the search space. It is not uncommon for a model to use hundreds of features, adding
complexity and significant computation costs to build and validate the model.

Noise-filtering techniques reduce the sensitivity of the model to features that
are associated with sporadic behavior. However, these noise-related features
are not known prior to the training phase, and therefore, cannot be discarded.
As a consequence, training of the model becomes a very cumbersome and
time-consuming task.

Overfitting is another hurdle that can arise from a large feature set. A training set of
limited size does not allow you to create a model with a large number of features.

Dimension reduction techniques alleviate these problems by detecting features that
have little influence on the overall model behavior.

There are three approaches to reduce the number of features in a model:

•	 Statistical analysis solutions such as ANOVA for smaller feature sets
•	 Regularization and shrinking techniques, which are introduced in Chapter 6,

Regression and Regularization
•	 Algorithms that maximize the variance of the dataset by transforming the

covariance matrix

The next section introduces one of the most commonly used algorithms of the third
category—principal component analysis.

Chapter 4

[127]

Principal components analysis (PCA)
The purpose of principal components analysis is to transform the original set of
features into a new set of ordered features by decreasing the order of variance. The
original observations are transformed into a set of variables with a lower degree of
correlation. Let's consider a model with two features {x, y} and a set of observations
{xi, yi} plotted on the following chart:

Visualization of principal components for a 2-dimension model

The features x and y are converted into two variables X and Y (that is rotation) to
more appropriately match the distribution of observations. The variable with the
highest variance is known as the first principal component. The variable with the
nth highest variance is known as the nth principal component.

Unsupervised Learning

[128]

Algorithm
I highly recommend the tutorial from Lindsay Smith [4:13] that describes the PCA
algorithm in a very concrete and simple way using a 2-dimension model.

PCA and covariance matrix

The covariance of two features X and Y with the observations set {xi, yi}
is defined as:

() ()()1,
1 i icov X Y x x y y

n
= − −

− ∑
Here, x and y are the respective mean values for the observations x
and y.

The covariance is computed from the zScore of each observation:

() /i ix x x σ= −

For a model with n features, xi, the covariance matrix is defined as:

() ()
()

() ()

0 0 0 1

1 0 1 1

cov , cov ,

cov ,

cov , cov ,

n

i j

n n n

x x x x

x x

x x x x

−

− − −

 
 

=  
 
 

∑
L

M M

K

The transformation of x to X consists of computing the eigenvalues of
the covariance matrix:

()' ,T T
i jW W cov X X and X W x∑ = Σ = =

The eigenvalues are ranked by their decreasing order of variance and
the cumulative variance for each eigenvalue is computed. Finally,
the m top eigenvalues for which the cumulative of variance exceeds
a predefined threshold (percentage of the trace of the matrix) are the
principal components or reduced feature set.

() ()
1

1: | ,
m

i k k
k

Z X m cov x x Tr cov
=

 = >∈⋅ 
 

∑

Chapter 4

[129]

The algorithm is implemented in five steps:

1.	 Compute the zScore for the observations by standardizing the mean and
standard deviation.

2.	 Compute the covariance matrix Σ for the original set of observations.
3.	 Compute the new covariance matrix Σ' for the observations with the

transformed features by extracting the eigenvalues and eigenvectors.
4.	 Convert the matrix to rank eigenvalues by decreasing the order of variance.

The ordered eigenvalues are the principal components.
5.	 Select the principal components for which the total sum of variance exceeds a

threshold by as a percentage of the trace of the new covariance matrix.

The extraction of principal components by diagonalization of the covariance matrix
Σ is visualized in the following diagram. The color used to represent the covariance
value varies from white (lowest value) to black (highest value):

Visualization of the extraction of eigenvalues in PCA

The eigenvalues (variance of X) are ranked by the decreasing order of their values.
The PCA algorithm succeeds when the cumulative value of the last eigenvalues
(the right-bottom section of the diagonal matrix) becomes insignificant.

Implementation
PCA can be easily implemented by using the Apache Commons Math library
methods that compute the eigenvalues and eigenvectors. Once again, the main
routine is implemented as a pipe operator so that it can be used in a generic
workflow as defined in the The Pipe Operator section under Designing a workflow
in Chapter 2, Hello World!.

import types.ScalaMl._, types.CommonMath._, //2

def |> : PartialFunction[XTSeries[Array[T]], (DblMatrix, DblVector)]={
 case xt: XTSeries[Array[T]] if(xt !=null && xt.size>1) => {

Unsupervised Learning

[130]

 zScoring(xt) match {//1
 case Some(obs) => {
 val covariance = new Covariance(obs).getCovarianceMatrix //3
 val transf = new EigenDecomposition(covariance)
 val eigVectors = transf.getV //4
 val eigValues = new ArrayRealVector(transf.getRealEigenvalues)
 val cov = obs.multiply(eigVectors).getData
 (cov, eigValues.toArray) //5
…

PCA requires that the original set of observations is standardized using the
z-score transformation. It is implemented using the XTSeries.zScoring function
introduced in the Normalization and Gauss distribution section in Chapter 1, Getting
Started (line 1).

The assignment forces the implicit conversion of a time series of features of the type
T into a matrix of the type Double. The implicit conversions between Scala primitives
and ScalaMl types such as DblMatrix (resp. between Apache Commons Math types
and Scala Ml) are defined in Types.ScalamMl, as mentioned in the Type conversions
section in Chapter 1, Getting Started (resp. Types.CommontMath in the Time series
section in Chapter 3, Data Preprocessing) (line 2). The covariance matrix is computed
based on the zScore created from the original observations (line 3). The eigenvectors,
eigVectors, are computed using the getV method in the Apache Commons Math
EigenDecomposition class. The eigenvalues, eigValues, are extracted as principal
components (line 4).

Finally, the data transformation returns the tuple (covariance matrix, array of
eigenvalues) (line 5).

Test case
Let's apply the PCA algorithm to extract a subset of the features that represents
some of the financial metrics ratios of 34 S&P 500 companies. The metrics under
consideration are:

•	 Trailing Price-to-Earnings ratio (PE)
•	 Price-to-Sale ratio (PS)
•	 Price-to-Book ratio (PB)
•	 Return on Equity (ROE)
•	 Operation Margin (OM)

The financial metrics are described in the Terminology section under Finances 101 in
Appendix A, Basic Concepts.

Chapter 4

[131]

The input data is specified with the following format as a tuple: the ticker symbol
and an array of five financial ratios, PE, PS, PB, ROE, and OM:

val data = Array[(String, DblVector)] (
 // Ticker PE PS PB ROE OM
 ("QCOM", Array[Double](20.8, 5.32, 3.65, 17.65,29.2)),
 ("IBM", Array[Double](13, 1.22, 12.2, 88.1,19.9)),
 …
)

The client code that executes the PCA algorithm is defined simply as follows:

val pca = new PCA[Double] //1
val input = data.map(_._2.take(3))
val cov = pca |> XTSeries[DblVector](input) //2
Display.show(toString(cov), logger) //3

Once the PCA class is instantiated (line 1), the eigenvalues and covariance matrix,
cov, are computed (line 2), and then displayed using the utility singleton Display
that formats messages and appends to the logger (line 3).

Evaluation
The first test on the 34 financial ratios uses a model that has five dimensions.
As expected, the algorithm produces a list of five ordered eigenvalues.

2.5321, 1.0350, 0.7438, 0.5218, 0.3284

Let's plot the relative value of the eigenvalues (that is, relative importance of each
feature) on a bar chart:

Distribution of eigenvalues in PCA for 5 dimensions

Unsupervised Learning

[132]

The chart shows that 3 out of 5 features account for 85 percent of total variance
(trace of the transformed covariance matrix). I invite you to experiment with
different combinations of these features. The selection of a subset of the existing
features is as simple as applying Scala's take or drop methods:

Val numFeatures = 4
val ts = XTSeries[DblVector](data.map(_._2.take(numFeatures)))

Let's plot the cumulative eigenvalues for the three different model configurations:

•	 Five features: PE, PS, PB, ROE, and OM
•	 Four features: PE, PS, PB, and ROE
•	 Three features: PE, PS, and PB

Distribution of eigenvalues in PCA for 3, 4, and 5 features

The chart displays the cumulative value of eigenvalues that are the variance of the
transformed features Xi. If we apply a threshold of 90 percent to the cumulative
variance, then the number of principal components for each test model is as follows:

•	 {PE, PS, PB}: 2
•	 {PE, PS, PB, ROE}:3
•	 {PE, PS, PB, ROE, OM}: 3

In conclusion, the PCA algorithm reduced the dimension of the model by 33 percent
for the 3-feature model, 25 percent for the 4-feature model, and 40 percent for the
5-feature model for a threshold of 90 percent.

Chapter 4

[133]

Cross-validation of PCA
Like any other unsupervised learning technique, the resulting principal
components have to be validated through a one or K-fold cross-validation
using a regression estimator such as partial least square regression
(PLSR) or the predicted residual error sum of squares (PRESS). For
those not afraid of statistics, I recommend Fast Cross-validation in Robust
PCA by S. Engelen and M. Hubert [4:14]. You need to be aware, however,
that the implementation of these regression estimators is not simple.

The principal components can be validated through a 1-fold or K-fold cross-validation,
by performing some type of regression estimators or EM on the same dataset. The
validation of the PCA is beyond the scope and space allocated to this chapter.

Principal components analysis is a special case of the more general factor analysis.
The later class of algorithm does not require the transformation of the covariance
matrix to be orthogonal.

Other dimension reduction techniques
Although quite popular, the principal components analysis is far from being the
only dimension reduction method. Here are some alternative techniques, listed
as reference: factor analysis, principal factor analysis, maximum likelihood factor
analysis, independent component analysis (ICA), Random projection, nonlinear
PCA, nonlinear ICA, Kohonen's self-organizing maps, neural networks, and
multidimensional scaling, just to name a few [4:15].

Performance considerations
The three unsupervised learning techniques share the same limitation—a high
computational complexity.

K-means
The K-means has the computational complexity of O(iKnm), where i is the number of
iterations, K the number of clusters, n the number of observations, and m the number
of features. The algorithm can be improved through the use of other techniques by
using the following techniques:

•	 Reducing the average number of iterations by seeding the centroid using an
algorithm such as initialization by ranking the variance of the initial cluster
as described at the beginning of this chapter.

Unsupervised Learning

[134]

•	 Using a parallel implementation of K-means and leveraging a large-scale
framework such as Hadoop or Spark.

•	 Reducing the number of outliers and possible features by filtering out the
noise with a smoothing algorithm such as a discrete Fourier transform or a
Kalman filter.

•	 Decreasing the dimensions of the model by following a two-step process: a
first pass with a smaller number of clusters K and/or a loose exit condition
regarding the reassignment of data points. The data points close to each
centroid are aggregated into a single observation. A second pass is then run
on a smaller set of observations.

EM
The computational complexity of the expectation-maximization algorithm for each
iteration (E + M steps) is O(m2n), where m is the number of hidden or latent variables
and n is the number of observations.

A partial list of suggested performance improvement includes:

•	 Filtering of raw data to remove noise and outliers
•	 Using a sparse matrix on a large feature set to reduce the complexity of the

covariance matrix, if possible
•	 Applying the Gaussian mixture model (GMM) wherever possible: the

assumption of Gaussian distribution simplifies the computation of the
log likelihood

•	 Using a parallel data processing framework such as Apache Hadoop or Spark
as explained in the Apache Spark section in Chapter 12, Scalable Frameworks

•	 Using a kernel method to reduce the estimate of covariance in the E-step

PCA
The computational complexity of the extraction of the principal components is O(m2n
+ n3), where m is the number of features and n the number of observations. The first
term represents the computational complexity for computing the covariance matrix.
The last term reflects the computational complexity of the eigenvalue decomposition.

Chapter 4

[135]

The list of potential performance improvements or alternative solutions for
PCA includes:

•	 Assuming that the variance is Gaussian
•	 Using a sparse matrix to compute eigenvalues for problems with large

feature sets and missing data
•	 Investigating alternatives to PCA to reduce the dimension of a model such

as the discrete Fourier transform (DFT) or singular value decomposition
(SVD) [4:16]

•	 Using the PCA in conjunction with EM (a research)
•	 Deploying a dataset on a parallel data processing framework such as Apache

Spark or Hadoop as explained in the Apache Spark section in Chapter 12,
Scalable Frameworks

Summary
This completes the overview of three of the most commonly used unsupervised
learning techniques:

•	 K-means for clustering fully observed features of a model with
reasonable dimensions

•	 Expectation-maximization for clustering a combination of observed and
latent features

•	 Principal components analysis to transform and extract the most critical
features in terms of variance

The key point to remember is that unsupervised learning techniques are used:

•	 By themselves to extract structures and associations from
unlabelled observations

•	 As a preprocessing stage to supervised learning in reducing the number
of features prior to the training phase

In the next chapter, we will address the second use case, and cover supervised
learning techniques starting with generative models.

Naïve Bayes Classifiers
This chapter introduces the most common and simple generative classifiers—Naïve
Bayes. As a reminder, generative classifiers are supervised learning algorithms
that attempt to fit a joint probability distribution, p(X,Y), of two events X and Y,
representing two sets of observed and hidden (or latent) variables, x and y.

In this chapter, you will learn, and hopefully appreciate, the simplicity of the Naïve
Bayes technique through a concrete example. Then, you will build a Naïve Bayes
classifier to predict stock price movement, given some prior technical indicators
in the analysis of financial markets.

Finally, you will apply Naïve Bayes to text mining by predicting stock prices,
using financial news feed and press releases.

Probabilistic graphical models
Let's start with a refresher course in basic statistics.

Given two events or observations, X and Y, the joint probability of X and Y
is defined as () (),p X Y p X Y= ∩ . If the observations X and Y are not related, an
assumption known as conditional independence, then p(X,Y) = p(X).p(Y). The
conditional probability of event Y, given X, is defined as p(Y|X)=p(X,Y)/p(X).

These two definitions are quite simple. However, probabilistic reasoning can be
difficult to read in the case of large numbers of variables and sequences of conditional
probabilities. As a picture is worth a thousand words, researchers introduced graphical
models to describe a probabilistic relation between random variables [5:1].

There are two categories of graphs, and therefore, graphical models:

•	 Directed graphs such as Bayesian networks
•	 Undirected graphs such as conditional random fields (refer to the Conditional

random fields section in Chapter 7, Sequential Data Models)

Naïve Bayes Classifiers

[138]

Directed graphical models are directed acyclic graphs that have been introduced to:

•	 Provide a simple way to visualize a probabilistic model
•	 Describe the conditional dependence (or independence) between variables
•	 Represent statistical inference in terms of graphical manipulation

A Bayesian network is a directed graphical model defining a join probability over a
set of variables [5:2].

The two join probabilities, p(X,Y) and p(X,Y,Z), can be graphically modeled using
Bayesian networks, as follows:

X Y

YX

Z

p X
Yp

p p p p

p

p p

p p pX X X

X X

X

X X X XY Y Y

Y

YY

Z

Z Z

X

Examples of probabilistic graphical models

The conditional probability p(Y|X) is represented by an arrow directed from the
output (or symptoms) Y to the input (or cause) X. Elaborate models can be described
as a large directed graph between variables.

Metaphor for graphical models
From a software engineering perspective, graphical models
visualize probabilistic equations the same way the UML class
diagram visualizes object-oriented source code.

Here is an example of a real-world Bayesian network; the functioning of a
smoke detector:

1.	 A fire may generate smoke.
2.	 Smoke may trigger an alarm.
3.	 A depleted battery may trigger an alarm.

Chapter 5

[139]

4.	 The alarm may alert the homeowner.
5.	 The alarm may alert the fire department.

Alarm

Smoke

Battery

Fire

Home

owner

Fire

dept

A Bayesian network for smoke detectors

This representation may be a bit counterintuitive, as the vertices are directed from
the symptoms (or output) to the cause (or input). Directed graphical models are
used in many different models, besides Bayesian networks [5:3].

Plate models
There are several alternate representations of probabilistic models,
besides the directed acyclic graph, such as the plate model commonly
used for the latent Dirichlet allocation (LDA) [5:4].

The Naïve Bayes models are probabilistic models based on the Bayes's theorem
under the assumption of features independence, as mentioned in the Generative
models section in Chapter 1, Getting Started.

Naïve Bayes classifiers
This conditional independence between X features is an essential requirement for the
Naïve Bayes classifier. It also restricts its applicability. The Naïve Bayes classification
is better understood through simple, concrete examples [5:5].

Introducing the multinomial Naïve Bayes
Let's consider the problem of how to predict change in interest rates. The first step is
to list the factors that potentially may trigger or cause an increase or decrease in the
interest rates. For the sake of illustrating Naïve Bayes, we will select the consumer
price index (CPI), change in the Federal fund rate (FDF) and the gross domestic
product (GDP) as a first set of features. The terminology is described in the
Terminology section under Finances 101 in Appendix A, Basic Concepts.

Naïve Bayes Classifiers

[140]

The use case is to predict direction of the change in the yield of the 1-year Treasury
bill (1yTB), taking into account the change in the current CPI, FDF, and GDP.
The objective is, therefore, to create a predictive model using a combination
of these three features.

It is assumed that there is no available financial investment expert who can supply
rules or policies to predict interest rates. Therefore, the model depends highly on the
historical data. Intuitively, if one feature is always increasing when the yield of the
1-year Treasury bill increases, then we can conclude that there is a strong correlation
of causal relationship between the features and the output variation in interest rates.

Change in

1yTB

Output

(labeled data)

Change in

GDP

Change in

FDF

Change in

CPI

Model features

The Naïve Bayes model for predicting the change in the yield of the 1-year T-bill

The correlation (or cause-effect relationship) is derived from historical data. The
methodology consists of counting the number of times each feature either increases
(UP) or decreases (DOWN), and recording the corresponding output (or labeled
data), as illustrated in the following table:

ID GDP FDF CPI 1yTB
1 UP DOWN UP UP
2 UP UP UP UP
3 DOWN UP DOWN DOWN
4 UP DOWN DOWN DOWN
…
256 DOWN DOWN UP DOWN

Chapter 5

[141]

First, let's tabulate the number of occurrence of each change {UP, DOWN} for the
three features and the output value (the 1-year Treasury bill):

Number GDP FDF CPI 1yTB
UP 169 184 175 159
DOWN 97 72 81 97
Total 256 256 256 256
UP/Total 0.66 0.72 0.68 0.625

Next, let's compute the number of positive directions for each of the features when
the yield 1-year Treasury bill increases (159 occurrences):

Number GDP Fed funds CPI
UP 110 136 127
DOWN 49 23 32
Total 159 159 159
UP/Total 0.69 0.85 0.80

For this table, we conclude that the yield of the 1-year Treasury bill increases when
the GDP is increasing (69 percent of the time), the rate of the Federal funds increases
(85 percent of the time) and the CPI increases (80 percent of the time).

Let's formalize the Naïve Bayes model before turning these findings into a
probabilistic model.

Formalism
Let's start by clarifying the terminology used in the Bayesian model:

•	 Class prior probability or class prior is the probability of a class
•	 Likelihood is the probability of an observation given a class, also known as

the probability of the predictor given a class
•	 Evidence is the probability of observations occurring, also known as the

prior probability of the predictor
•	 Posterior probability is the probability of an observation x being in a

given class

No model can be simpler! The log likelihood, log(p(x|C), is commonly used instead
of the likelihood, p(x|C), (probability of an observation given a class) in order to
reduce the impact of the features y that have a low likelihood, p(y|C).

Naïve Bayes Classifiers

[142]

The objective of the Naïve Bayes classification of a new observation, is to compute
the class that has the higher log likelihood. The mathematical notation for the Naïve
Bayes model is also straightforward.

The posterior probability, ()|jp C x :

() () ()
()

|
| j j

j

p x C p C
p C x

p x
⋅

=

•	 x = {xi} (0, n-1), with a set of n features
•	 {Cj}, a set of classes with their class prior p(Cj)
•	 ()p x , the evidence of new observation
•	 p(x| Cj), the likelihood for each feature

Posterior probability, ()|jp C x , with conditional independence:

() () ()
1

0

| |
−

=

= ⋅∏
n

j j j j
i

p C x p x C p C

•	 xi are independent and the probabilities are normalized
for evidence p(x) = 1

Log-likelihood:

() () ()
1

0
log | log | log

n

j i j j
i

p C x p x C p C
−

=

= +∑

Naïve Bayes classification:

()()C argmax log |m jj
p C x=

This particular use case has a major drawback—the GDP statistics are provided
quarterly, while the CPI data is made available once a month and a change in the
FDF rate is rather infrequent.

The frequentist perspective
The ability to compute the posteriori probability depends on the formulation of the
likelihood using historical data. A simple solution is to count the occurrences of
observations for each class and compute the frequency.

Let's consider the first example that predicts the direction of change in the yield of
the 1-year Treasury bill given changes in the GDP, FDF, and CPI.

Chapter 5

[143]

The results are expressed with simple probabilistic formulas and a directed
graphical model:

P(GDP=UP|1yTB=UP) = 110/159
P(1yTB=UP) = num occurrences (1yTB=UP)/total num of
occurrences=159/256
p(1yTB=UP|GDP=UP,FDF=UP,CPI=UP) = p(GDP=UP|1yTB=UP) x
 p(FDF=UP|1yTB=UP) x
 p(CPI=UP|1yTB=UP) x
 p(1yTB=UP) = 0.69 x 0.85 x
 0.80 x 0.625

1yTB=UP

GDP=UP

P=0.69

FD=UP

P=0.85

CPI=UP

P=0.80

The Bayesian network for the prediction of the change of the yield of the 1-year Treasury bill

Overfitting
The Naïve Bayes model is not immune to overfitting, in case the
number of observations is not large enough relative to the number
of features. One approach to address this problem is to perform a
feature selection, using the mutual information exclusion [5:6].

This problem is not a good candidate for a Bayesian classification for two reasons:

•	 The training set is not large enough to compute accurate prior probabilities
and generate a stable model; decades of quarterly GDP data is needed to
train and validate the model

•	 The features have different rates of change, which predominately favor the
feature with the highest frequency; in this case, the CPI

Let's select another use case for which a large historical data set is available and can
be automatically labeled.

Naïve Bayes Classifiers

[144]

The predictive model
The predictive model is the second use case that consists of predicting the direction
of the closing price of a stock, pr(t+1) = {UP, DOWN}, at trading day t+1, given the
history of its direction of the price, volume, and volatility for the previous t days,
pr(i),i=1,t. The features volume and volatility have been already used in the Creating
a model (learning) section under Let's kick the tires in Chapter 1, Getting Started.

Therefore, the three features under consideration are:

•	 The closing price, pr(t), of the last trading session, t, is above or below the
average closing price over the n previous trading days, [t-n, t]

•	 The volume of the last trading day, vl(t), is above or below the average
volume of the n previous trading days

•	 The volatility on the last trading day, vt(t), is above or below the average
volatility of the previous n trading days

The directed graphic model can be expressed using one output variable (price at
session t+1 is greater than price at session t) and three features: price condition (1),
volume condition (2), and volatility condition (3).

Output

(labeled data)

Price condition Volatility condition Volume condition

l

A Bayesian model for predicting the future direction of the stock price

This model works under the assumption that there is at least one observation, and
ideally few observations for each feature and for each labeled output.

Chapter 5

[145]

The zero-frequency problem
It is possible that the training set does not contain any data actually observed for a
feature for a specific label or class. In this case, the mean is 0/N = 0, and therefore, the
likelihood is null, making classification unfeasible. The case for which there are only
few observations for a feature in a given class is also an issue, as it skews the likelihood.

There are a couple of correcting or smoothing formulas for unobserved features
or features with a low number of occurrences that address this issue, such as the
Laplace and Lidstone smoothing formula.

The smoothing factor for counters
Laplace smoothing of the mean k/N out of N observations
of features of dimension n:

1'µ +
=

+
k
N n

Lidstone smoothing with a factor α :

' αµ
α
+

=
+ ⋅
k
N n

The two formulas are commonly used in natural language processing applications,
for which occurrence of a specific word or tag is a feature [5:7].

Implementation
I think it is time to write some Scala code and toy around with Naïve Bayes.
Let's start with an overview of the software components.

Software design
Our implementation of the Naïve Bayes classifier uses the following components:

•	 A generic model, NaiveBayesModel, of the type Model, which is initialized
through training during the instantiation of the class.

•	 A model for the binomial classification, BinNaiveBayesModel, which
subclasses NaiveBayesModel. The model consists of a density function of
the type Density, and a pair of positive and negative Likelihood instances.

•	 A model for the multinomial classification MultiNaiveBayesModel.
•	 The predictive or classification routine is implemented as a data

transformation extending the PipeOperator trait.
•	 The NaiveBayes classifier class has two parameters: a smoothing function

such as Laplace and a labeled training set of the XTSeries type.

Naïve Bayes Classifiers

[146]

The principle of software architecture applied to the implementation of classifiers is
described in the Design template for classifiers section in Appendix A, Basic Concepts.

The key software components of the Naïve Bayes classifier are described in the
following UML class diagram:

NaiveBayes

density

smoothing
xt

model

PipeOperator Model

NaiveBayesModel

Double XTSeries Multi BayesModelNaive

Likelihood

Density

Bin BayesModelNaive

1

2+

1

1 1

1 likelihoodSet

The UML class diagram for the Naïve Bayes classifier

Training
The objective of the training phase is to build a model consisting of the likelihood for
each feature and the class prior. The likelihood for a feature is identified as:

•	 The number of occurrences k of this features for N > k observations in case of
binary features or counters

•	 The mean value for all the observations for this features in the case of
numeric or continuous features

It is assumed for the sake of this test case that the features, technical analysis
indicators price, volume, and volatility are conditionally independent. This
assumption is not actually correct.

Conditional dependency
Recent models, known as Hidden Naïve Bayes (HNB), relax the
restrictions on the independence between features. The HNB
algorithm uses conditional mutual information to describe the
interdependency between some of the features [5:8].

Chapter 5

[147]

Let's write the code to train the multinomial Naïve Bayes. The first step is to define
the likelihood for each feature using historical data. The Likelihood class has the
following attributes:

•	 The label for the observation, label
•	 An array of tuple Laplace or Lidstone smoothed mean and standard

deviation, muSigma
•	 The prior class prior that computes p(c)

As with any code snippet presented in this book, the validation of class parameters and
method arguments are omitted in order to keep the code readable. The Likelihood
class is defined as follows:

type Density = (Double*) => Double //1
type XYTSeries = Array[(Double, Double)]
val MINLOGARG = 1e-32
val MINLOGVALUE = -MINLOGARG
class Likelihood[T <% Double](val label: Int, val muSigma: XYTSeries,
prior: Double) { //2
 def score(obs: Array[T], density: Density): Double =
 (obs, muSigma).zipped
 .foldLeft(0.0)((post, xms) => {
 val mean = xms._2._1
 val stdDev = xms._2._2
 val _obs = xms._1
 val prob = density(mean, stdDev, _obs)
 post + Math.log(if(prob< MINLOGARG) MINLOGVALUE else prob)
 }) + Math.log(prior) //3

}

The functions of the Density type compute the probability density for the values of
a feature (line 1). The method takes an undefined number of arguments: the mean,
the standard deviation, and the input value for the Gaussian distribution, the mean
and input value {0, 1} for the Bernoulli distribution. The default probability density
function is the normal distribution implemented by Stats.gauss.

Naïve Bayes Classifiers

[148]

The parameterized, view-bounded class, Likelihood, has two purposes:

•	 Define the model extracted from training (likelihood for each feature and the
class prior) in the constructor (line 2)

•	 Compute the score of a new observation as part of the classification process
score (line 3). The computation of the log of the likelihood uses a density
method of the type Density, which is an argument of the score method. As
seen in the next section, the density can be either a Gaussian or a Bernoulli
distribution. The score method uses the Scala's zipped method to merge the
observation values with the labeled output.

The next step is to define the BinNaiveBayesModel model for a two-class
classification scheme. The two-class model consists of the two Likelihood instances:
positives for the label UP (value==1) and negatives for the label DOWN (value==
0). In order to make the model generic, we created NaiveBayesModel, an abstract
class that can be extended as needed to support both the Binomial and Multinomial
Naïve Bayes models, as follows:

abstract class NaiveBayesModel [T <% Double](density: Density) {
 def classify(values: DblVector): Int
}
class BinNaiveBayesModel [T <% Double](positives: Likelihood,
negatives: Likelihood, density: Density) extends NaiveBayesModel [T](
density) {
 override def classify(x: Array[T]): Int =
 if (positives.score(x,density) > negatives.score(x,density)) 1
 else 0
}

The classification is executed by the classify method called by the |> operator in
the Naïve Bayes classifier. It returns 1 for the class containing the positive cases and
0 for the negative.

Model validation
The parameters of the Naïve Bayes model (likelihood) are computed
through training and the model value is instantiated regardless of
whether the model is actually validated in this example. A commercial
application would require the model to be validated using a
methodology such as the K-fold validation and F1 measure. (Refer to
the Design template for classifiers section in Appendix A, Basic Concepts.)

Chapter 5

[149]

The multinomial Naïve Bayes model, defined by the MultiNaiveBayesModel class is
very similar to the BinNaiveBayesModel class:

class MultiNaiveBayesModel[T <% Double](likelihoodXs:
List[Likelihood[T]], density: Density) extends NaiveBayesModel[T]
(density) {
 override def classify(x: Array[T]): Int =
 likelihoodXs.sortWith((p1,p2) => p1.score(x, density) >
p2.score(x, density)).head.label
}

The multinomial Naïve Bayes model differs from the binomial version in the
following ways:

•	 The likelihood is defined as a list, likelihoodXs (one likelihood per class)
•	 The runtime classification sorts the class by the log likelihood (sortWith),

selects the class with the highest score, and returns the class ID

Finally, the Naïve Bayes classifier is implemented by the NaiveBayes class. It
implements the training and runtime classification using the Naïve Bayes formula.
Any supervised learning model needs to be validated. In order to force the developer
to define a validation for any new supervised learning technique, the class inherits
from the Supervised trait that declares the validation method, validate:

trait Supervised[T] {
 def validate(xt: XTSeries[(Array[T],Int)], tpClass:Int): Double
}

The validate method takes a labeled time series xt as an array of tuples
(observation, class label) and the tpClass index that contains the true positives
(that is, increase in the stock price) outcome. The method returns an F1-measure.

Besides inheriting the Supervised trait, the NaiveBayes class inherits the
PipeOperator trait so that it can be integrated into a generic workflow as
one of the computation units.

The attributes of the multinomial Naïve Bayes are as follows:

•	 The smoothing formula (Laplace, Lidstone, and so on): smoothing
•	 The labeled training set defined as a time series: xt
•	 The probability density function: density

Naïve Bayes Classifiers

[150]

The NaiveBayes class is defined as follows:

Class NaiveBayes[T <% Double](smoothing: Double, xt:
XTSeries[(Array[T], Int)], density: Density) extends PipeOperator[XTSe
ries[Array[T]], Array[Int]] with Supervised[T] {

 val model = BinNaiveBayesModel[T](train(1),train(0),density) //1
 def train(label:Int)(implicit f: Array[T] => DblVector):
Likelihood[T] = { //2
 val xi = xt.toArray
 val values= xi.filter(_._2 == label).map(x => f(x._1))
 val dim = xi(0)._1.size
 val vt = XTSeries[DblVector](values.toArray) //3
 val muStdDev = statistics(vt).map(stat =>
 (stat.lidstoneMean(smoothing, dim), stat.stdDev))
 Likelihood(label, muStdDev, values.size.toDouble/xi.size) //4
 }
 …

The classifier uses the binomial Naïve Bayes model, BinNaiveBayesModel (line 1).
The training process is implemented in the constructor by invoking the private
train method (line 2). The method relies on an implicit conversion, f: Array[T]
=> DblVector, because of the Array type erasure. The main reason for this is to hide
the details of the model and its training from the client code. We cannot assume that
the user of the model is the same person as the creator of the model.

Training and class instantiation
There are several benefits of allowing the instantiation of the Naïve
Bayes mode only once when it is trained. It prevents the client code from
invoking the algorithm on an untrained or partially trained model, and it
reduces the number of states of the model (untrained and trained). It is an
elegant way to hide the details of the training of the model from the user.

The train method takes the labeled observations (observations or label) as input.
The vt time series is extracted (line 3) and the likelihoods are calculated by counting
the positive and negative labels, computing the mean, corrected with the Lidstone
smoothing formula (line 4). The lidstoneMean method and standard deviation,
stdDev, use the statistics method of the XTSeries singleton instance.

The NaiveBayes class also defined the runtime classification method |> and the
F1-validation methods. Both methods are described in the next section.

Chapter 5

[151]

Handling missing data
Naïve Bayes has a no-nonsense approach to handling missing data.
You just ignore the attribute in the observations for which the value
is missing. In this case, the prior for this particular attribute for these
observations is not computed. This workaround is obviously made
possible because of the conditional independence between features.

Classification
The likelihood and class prior that have been computed through training is used for
validating the model and classifying new observations.

The score represents the log of likelihood estimate (or the posterior probability),
which is computed as the summation of the log of the Gaussian distribution using
the mean and standard deviation, extracted from the training phase and the log of
the likelihood class.

The Naïve Bayes classification using Gaussian distribution is illustrated using two
classes, C1 and C2, and a model with two features (x and y):

C
1

C
2

Gaussian distribution

of feature x

Gaussian distribution

of feature y

y

x

Illustration of the Gaussian Naive Bayes using a 2-dimensional model

The Gaussian mixture is particularly suited for modeling datasets for which
the features have large sets of discrete values or are continuous variables. The
conditional probabilities for the feature x is described by the normal probability
density function [5:9].

Naïve Bayes Classifiers

[152]

Naïve Bayes classification using Gaussian density
For a Lidstone or Laplace smoothed mean µ' and a standard deviation σ,
the log likelihood of a posterior probability is defined as:

() () ()
2

1

2
0

'1log | log log
22

N
j

j j
i

x
p C x e p C

µ

σπσ

−

=

 − − = − +
 
 

∑

In this example, we used the Gaussian distribution as our probability density
function as defined in the Stats object, which was introduced in Chapter 2, Hello
World!. The implementation of the computation of the Gaussian probability density
is quite simple, shown as follows:

object Stats {
 final val INV_SQRT_2PI = 1.0/Math.sqrt(2.0*Math.PI)
 def gauss(mu: Double, sigma: Double, x:Double) : Double = {
 val y = x - mu
 INV_SQRT_2PI/sigma * Math.exp(-0.5*y*y/sigma*sigma)
 }
 def gauss(x: Double*): Double = gauss(x(0), x(1), x(2))
 …
 }

The second version of the Gaussian density is required to handle the Density type:
(Double, Double, Double) => Double.

Finally, the classification method is implemented as the pipe operator |> of the
NaiveBayes class. The classification model and the density function are provided
at runtime as attributes of the class:

def |> : PartialFunction[XTSeries[Array[T]], Array[Int]] = {
 case xt: XTSeries[Array[T]] if(xt != null && xt.size > 0 && model !=
None) => xt.toArray.map(model.classify(_))}

Labeling
The most critical element in the training of a supervised learning algorithm is the
creation of labeled data. Fortunately, in this case, the label (or expected class) can
be automatically generated. The objective is to predict the direction of the price of
a stock for the next trading day, taking into account the average price, volume, and
volatility over the last n days.

Chapter 5

[153]

The first step is to extract the average price, volume, and volatility for each
stock during the period of Jan 1, 2000 and Dec 31, 2014 with daily and weekly
closing prices. Let's use the simple moving average to compute these averages
for the [t-n, t] window.

First, the extractor function extracts the closing, high, and low prices, and volume
for each trading day, using the toDouble and % operators described in the Data
extraction and Data sources section in Appendix A, Basic Concepts, as follows:

val extractor = toDouble(CLOSE) //stock closing price
 :: ratio(HIGH, LOW) //volatility (HIGH-LOW)/HIGH
 :: toDouble(VOLUME) //daily stock trading volume
 ::List[Array[String] =>Double]()

Secondly, the data source extractor outputs the four statistics for each stock (line
1) for which the average for a window period is computed (line 3) using a simple
moving average mv (line 2):

val xs = DataSource(symbol, path, true) |> extractor //1
val mv = SimpleMovingAverage(period) //2

val ratios = xs.map(x => { //3
 val xt = mv get x,toArray
 val zValues = x.drop(period).zip(xt.drop(period))
 zValues.map(z => if(z._1 > z._2) 1 else 0).toArray //4
})
var prev = xs(0)(period)
val label = xs(0).drop(period+1).map(x => { //5
 val y = if(x > prev) 1 else 0
 prev = x; y
}).toArray
ratios.transpose.take(label.size).zip(label) //6

The Scala's drop method is used to shift the time series to compute the average of the
three variables: price, toDouble(CLOSE); volume, toDouble(VOLUME); and volatility,
ratio(HIGH, LOW) (line 4). The labeled data, direction of the price action for the
next trading day, is added to the three ratios (line 5). Finally, the array is transposed
to extract the list of tuples (list of UP/DOWN values for each feature and price
direction for next trading day/labeled data) (line 6).

Naïve Bayes Classifiers

[154]

The labeled data extracted from the input CSV file is used in the training and
validation of the time series using the Naïve Bayes classifier:

val trainValidRatio = 0.8
val period = 10

val labels = XTSeries[(Array[Int], Int)](input.map(x =>
 (x._1.toArray, x._2)).toArray) //7
val numObsToTrain = (trainValidRatio*labels.size).floor.toInt //8
val nb = NaiveBayes[Int](labels.take(numObsToTrain)) //9
validate(labels.drop(numObsForTrains+1), nb) //10

The original labeled dataset, labels, is split between training and validation labeled
data (line 7) using the trainValidRatio ratio (line 8). The NaiveBayes constructor
initializes the model through training (line 9). Finally, the validate method returns
the F1 measure for the validation test (line 10).

Results
The next chart plots the value of the F1 measure of the predictor of the direction of
the IBM stock using price, volume, and volatility over the previous n trading days,
with n varying from 1 to 12 trading days:

A graph of the F1-measure for the validation of the Naïve Bayes model

Chapter 5

[155]

The preceding chart illustrates the impact of the value of the averaging period
(number of trading days) on the quality of the multinomial Naïve Bayesian
prediction, using the value of stock price, volatility, and volume relative to their
average over the averaging period.

From this experiment, we conclude that:

•	 The prediction of the stock movement using the average price, volume, and
volatility is not very good. The F1 measure for the models using weekly (with
respect to daily) closing prices varies between 0.68 and 0.74 (with respect to
0.56 and 0.66).

•	 The prediction using weekly closing prices is more accurate than the
prediction using the daily closing prices. In this particular example, the
distribution of the weekly closing prices is more reflective of an intermediate
term trend than the distribution of daily prices.

•	 The prediction is somewhat independent of the period used to average
the features.

Multivariate Bernoulli classification
The previous example uses the Gaussian distribution for features that are essentially
binary, {UP=1, DOWN=0}, to represent the change in value. The mean value is
computed as the ratio of the number of observations for which xi = UP over the total
number of observations.

As stated in the first section, the Gaussian distribution is more appropriate for either
continuous features or binary features for very large labeled datasets. The example is
the perfect candidate for the Bernoulli model.

Model
The Bernoulli model differs from Naïve Bayes classifier in that it penalizes the
features x, which do not have any observations; the Naïve Bayes classifier ignores
them [5:10].

The Bernoulli mixture model
For a feature function fi, with fi = 1 if the feature is observed, and a value
of 0 if the feature is not observed:

() () () ()()()
1

0

| | 1 1 |
−

=

= ⋅ + − −∏
n

i j k k j k k j
k

p f C f p x C f p x C

Naïve Bayes Classifiers

[156]

Implementation
The implementation of the Bernoulli model consists of modifying the Likelihood.
score scoring function by using the Bernoulli density defined in the Stats object:

object Stats {
 def bernoulli(mean: Double, p: Int): Double = mean*p +
(1-mean)*(1-p)
 def bernoulli(x: Double*): Double = bernoulli(x(0), x(1).toInt)
…

The first version of the Bernoulli algorithm is the direct implementation of the
mathematical formula. The second version uses the signature of the Density
(Double*) => Double type.

The mean value is the same as in the Gaussian version. The binary feature is
implemented as an Int type with the value UP =1 (with respect to DOWN= 0) for the
upward (with respect to downward) direction of the financial technical indicator.

Naïve Bayes and text mining
The multinomial Naïve Bayes classifier is particularly suited for text mining.
Naïve Bayes is used to classify the following entities:

•	 E-mails as legitimate versus spam
•	 Business news stories
•	 Movie reviews and scoring
•	 Technical papers as per field of expertise

This third use case consists of predicting the direction of a stock, Tesla Motors Inc,
(ticker symbol: TSLA) give the financial news. The features are the frequency of
occurrence of some specific terms related to the stock. It is unclear how fast the
investor or trader reacts to the news and influence, if any, of the value of a stock.
Therefore, the delayed response time, as depicted in the following chart, should
be a feature of the proposed model:

Chapter 5

[157]

The feature market response delay would play a role in the training, only if the
variance of the observations is significant. The distribution of the frequencies of the
delay in the market response to any newsworthy articles regarding TSLA shows that
the stock prices react within the same day in 82 percent of the case, as seen here:

The frequency peak for a market response delay of 1.75 days can be explained by the
fact that some news are released over the weekend and investors have to wait till the
following Monday to impact the stock price. The second challenge is to assign any
shift of stock price to a specific news release, taking into account that some news can
be redundant and simultaneous.

Naïve Bayes Classifiers

[158]

Therefore, the model features for predicting the stock price, prt+1, are the relative
frequency, fi, of occurrence of a term Ti within a time window [t-n, t], where t and n
are trading days.

The following graphical model formally describes the causal relation or conditional
dependency of the direction of the stock price between two consecutive trading
sessions t and t+1, given the relative frequency of appearance of some terms in
the media:

Relative

frequency

of term T
0

Output

(labelled data)

Relative

frequency

of term T
j

pr prt t+1 >

St
t n- 0f t()

S f t0()

St
t n i- f t()

S f ti() S f tj()

St
t-n jf t()

The Bayesian model for the prediction of stock movement given financial news

For this exercise, the observation sets are the corpus of news feeds and articles
released by the most prominent financial news organizations, such as Bloomberg
or CNBC. The first step is to devise a methodology to extract and select the most
relevant terms associated with a specific stock.

Basics of information retrieval
A full discussion of information retrieval and text mining is beyond the scope of this
book [5:11]. For the sake of simplicity, the model will rely on a very simple model for
extracting relevant terms and computing their relative frequency. The following 10-
step sequence of actions describe one of numerous methodologies to extract the most
relevant terms from a corpus:

1.	 Create or extract the timestamp for each news article.
2.	 Extract the title, paragraph, and sentences of each article using a

Markovian classifier.
3.	 Extract the terms from each sentence using regular expressions.
4.	 Correct terms for typos using a dictionary and metric such as the

Levenstein distance.
5.	 Remove the nonstop words.
6.	 Perform stemming and lemmatization.

Chapter 5

[159]

7.	 Extract bags of words and generate a list of n-grams (as a sequence of n terms).
8.	 Apply a tagging model build using a maximum entropy or conditional

random field to extract nouns and adjectives (such as NN, NNP, and so on).
9.	 Match the terms against a dictionary that supports senses, hyponyms, and

synonyms, such as WordNet.
10.	 Disambiguate word sense using DBpedia [5:12].

Text extraction from the web
The methodology discussed in this section does not include
the process of searching and extracting news and articles
from the Web that requires additional steps such as searching,
crawling, and scraping [5:13].

Implementation
Let's apply the text mining methodology template to predict the direction of a stock,
given the financial news. The algorithm relies on a sequence of 8 simple steps:

1.	 Extracting all news with a reference to a specific stock or company in the
news feed.

2.	 Extracting the timestamp or date of the article using a regular expression.
3.	 Grouping all the news articles related to the stock for a specific date t into a

document Dt.
4.	 Ordering the documents Dt as per the timestamp.
5.	 Extracting the terms {Ti,D} from each sentence of the document Dt and

ranking them by their relative frequency.
6.	 Aggregating the terms {Tt,i} for all the documents sharing the same release

date t.
7.	 Computing the relative frequency, rtf, of each term, {Tt,i}, for the date t, as the

ratio of number of its occurrences in all the articles released at t to the total
number of its occurrences of the term in the entire corpus.

8.	 Normalizing the relative frequency for the average number of articles per
date, nrtf.

Naïve Bayes Classifiers

[160]

The relative term frequency for term ti with nia occurrences in
article a released on the date Dt is given as:

()
a

a Dt i
i a

a Corpus i

nntrf t
n

∈

∈

∑
=
∑

The relative term frequency normalized by the average number
of articles per day, Na/D is given as:

() ()
/
i

i

rtf t
ntrf t

Na D
=

Extraction of terms
First, let's define the features set for the financial terms as the NewsArticles class
parameterized for the date type T. For the sake of simplicity, the type of date value is
explicitly viewbounded to Long. The NewsArticles class is a container of the news
articles and press releases relevant to a specific stock. At its core, a news article is
defined by its release or publication, and the list of tuple of terms and their relative
frequency. The NewsArticles class is defined as follows:

@implicitNotFound("NewsArticles. Ordering not explicitly defined")
class NewsArticles[T <% Long](implicit val order: Ordering[T]) {
 val articles = new HashMap[T, Map[String, Double]]
 …
}

The @implicitNotFound annotation
I recommend using the implicitNotFound annotation for
every implicit class and method parameter. A declaration
may be obvious to one software developer but not obvious to
another developer.

The NewsArticles class uses the mutable HashMap data structure to manage the set
of articles. An article is defined by:

•	 Its release date (type T)
•	 Its map of tuples {term contained in the article, relative frequency (or weight) of the

term}, wTerms

The weight of a term is computed as the ratio of the number of occurrences of this
term in the article, to the total number of occurrences in the entire corpus of articles
related to the stock.

Chapter 5

[161]

The implicit Ordering class parameter is required for sorting.

The map articles is populated with the overloaded operator +=:

def += (date: T, wTerms: Map[String, Double]): Unit = { //1
 def merge(m1: Map[String, Double], m2: Map[String, Double]):
Map[String, Double] = { //2
 (m1.keySet ++ m2.keySet).foldLeft(new HashMap[String, Double])((m,
x) => {
 var wt = 0.0
 if(m1.contains(x)) wt += m1(x)
 if(m2.contains(x)) wt += m2(x)
 m.put(x, wt)
 m
 }).toMap
 }
 articles.put(date, if(articles.contains(date))
 merge(articles(date), wTerms) else wTerms) //3
}

The += method adds new sets (mutable hash map) of pairs (terms, relative
frequency), wTerms, released at a specific date, to the existing map of news articles
(line 1). The terms related to different articles from the same date are merged using
the local merge function (line 2). Finally, the list of key-value pairs (term, frequency)
is ordered by their timestamp of the type T.

The second method, toOrderedArray, consists of ordering the articles per their
release date:

def toOrderedArray: Array[(T, Map[String, Double])] = articles.
toArray.sortWith(_._1 < _._1)

Scoring of terms
The scoring of the terms is actually performed by the TermsScore class,
parameterized by date and the score method:

class TermsScore[T <% Long](toDate: String =>T, toWords: String =>
Array[String], lexicon: Map[String, String])(implicit val order:
Ordering[T]) {
 def score(corpus: Corpus): Option[NewsArticles[T]]
}

Naïve Bayes Classifiers

[162]

The TermsScore class parameterized for the type of release date has three parameters:

•	 A toDate function to extract the date from each news article. The function can
be implemented as a regular expression or a group of regular expressions.

•	 A toWords function to extract the nonstop terms from the content of the
article. The function can be quite elaborate, as described in the previous
section. It may require creating classifiers to extract sentences, n-grams,
and tags.

•	 A lexicon function that simulates the lemmatization and stemming of the
most common terms. The lexicon function is implemented as a map that
attaches a semantic equivalent to each term as a poor man's lemmatization.
For example, "China", "Chinese", and "Shanghai" are semantically associated
to the term "China".

The type for date T is view bounded by the Long type because it is assumed that any
date can be potentially converted into time in milliseconds. The Ordering[T] class is
provided as an implicit attribute to order the news articles as per their release date.

The relative frequency of a term t is computed arbitrarily, as the ratio of the number
of occurrences of t for a specific date to the total number of terms.

Let's look at the scoring method:

type Corpus = (String, String, String) //1
def score(corpus: Corpus): Option[NewsArticles[T]] = { //2
 val docs = rank(corpus)

 val cnts = docs.map(doc => (doc._1,count(doc._3)))//3
 val totals = cnts
 .map(_._2) //4
 .foldLeft(Counter[String])((s,cnt)=>s ++ cnt)
 val articles = NewsArticles[T]
 cnts.foreach(cnt =>articles +=(cnt._1,(cnt._2/totals).toMap))
 articles
 …

The score method processes the training set or corpus of the news articles related to
a stock and returns a set of NewsArticles instances.

The corpus type (line 1) defines the three essential components of a news article:
a timestamp, a title, and a body or content. The rank method (line 2) extracts the
release date from each news article and orders them as per increasing date.

Chapter 5

[163]

The frequency of terms is computed for each document or group of news articles
associated with a date (line 3) using the count method. The count method matches
each term extracted from the news article to the entries of the lexicon map. The
counters of the Counter: Map[String, Int] type collect the number of occurrences
of each term. The next instruction (line 4) aggregates the counts for the entire corpus
that is used to compute the relative frequencies (line 5).

The rank method uses a sequence of Scala methods map and sortWith to order the
articles as per date (line 6):

def rank(corpus: Corpus): Option[CorpusType[T]] = {
 corpus.map(doc => (toDate(doc._1.trim), doc._2, doc._3)))
 .sortWith(_._1 < _._1) //6
}

The scoring method is protected by a Scala exception handler (line 7). Finally, the
count method matches a term with an entry in the lexicon and updates the count
if a match is found (line 8):

def count(term: String): Counter[String] =
 toWords(term).foldLeft(new Counter[String])((cnt, w) =>
 if(lexicon.contains(w)) cnt + lexicon(w) //8
 else cnt
)

Testing
For testing purpose, let's select the news articles mentioning Tesla Motors and its
ticker symbol TSLA over a period of two months.

Retrieving textual information
First, you need to define the three parameters of the scoring TermsScore class:
toDate, toWords, and lexicon.

The private toDate method converts a string into a date defined as a Long data type:

def toDate(date: String): Long = {
 val idx1 = date.indexOf(".")
 val idx2 = date.lastIndexOf(".")
 if(idx1 != -1 && idx2 != -1)
 (date.substring(0, idx1) + date.substring(idx1+1, idx2)).toLong
 else -1L
}

Naïve Bayes Classifiers

[164]

The toWords method uses simple regular expressions, regExpr, to replace
any punctuation into a . character (line 1), used as a word delimiter (line 2).
All words shorter than three characters are discounted (line 3):

def toWords(txt: String): Array[String] = {
 val regExpr = "['|,|.|?|!|:|\"]"
 txt.trim.toLowerCase
 .replace(regExpr,"&@") //1
 .split("&@") //2
 .filter(_.length > 2) //3
}

Finally, the lexicon contains the terms that need to be monitored. In this particular
period of time, the news media were looking for any announcement regarding Tesla
Motors' foray into the Chinese market, issues with the batteries, and any plan to
deploy electrical vehicle charger stations. The set of terms regarding these issues is
limited, and therefore, the lexicon can be built manually:

val LEXICON = Map[String, String](
 "tesla"->"Tesla","tsla"->"TSLA","china"->"China","chinese"->
"China",)

The semantic analysis
This example uses a very primitive semantic map (lexicon) for the
sake of illustrating the benefits and inner workings of the multinomial
Naïve Bayes algorithm. Commercial applications involving sentiment
analysis or topic analysis require a deeper understanding of semantic
associations and extraction of topics using advanced generative models,
such as the latent Dirichlet allocation.

The client code to train and validate the model executes the entire workflow,
from extracting and scoring the news articles and press releases to generating
the normalized labeled data and computing the F1 measure.

The output (or labeled data) TSLA_QUOTES consists of the stock price for Tesla Motors:

val TSLA_QUOTES = Array[Double](250.56, 254.84, …)

Chapter 5

[165]

The first step is to load and clean all the articles (corpus) defined in the pathname
directory (line 1). This task is performed by the DocumentsSource class (described
in the Extraction of documents section under Scala programming in Appendix A,
Basic Concepts):

val corpus: Corpus = DocumentsSource(pathName) |> { //1
val ts = new TermsScore[Long](toDate, toWords, LEXICON)
ts.score(corpus) match { //2
 case Some(terms) => {
 var prevQ = 0.0
 val diff = TSLA_QUOTES.map(q => {
 val delta = if(q > prevQ) 1 else 0
 prevQ = q; delta
 })
 val columns = LEXICON.values.foldLeft(new HashSet[String])((hs,
key) => {hs.add(key); hs}).toArray
 val fqLabels = terms.toOrderedArray //3
 .zip(diff) //4
 .map(x => (x._1._2, x._2))
 .map(lbl =>(columns //5
 .map(f =>if(lbl._1.contains(f)) lbl._1(f)
 else 0.0), lbl._2))
 val xt = XTSeries[(Array[Double], Int)](fqLabels)
 val nb = NaiveBayes[Double](xt) //6
 ….

Next, the TermsScore.score method extracts and scores the more relevant terms
from the corpus, using the normalized relative frequency defined in steps 7 and 8
of the information retrieval process (line 2). The terms are then ordered by date
(line 3) and zipped with the labels (direction of the next trading day's stock price)
(line 4). The lexicon is used to generate the final labeled observations (features = terms
relative frequency, label= direction of stock price) (line 5). Finally, the model is built by
invoking the NaiveBayes.apply constructor (line 6), which consists of running the
algorithm through the training set.

Naïve Bayes Classifiers

[166]

Evaluation
The following chart describes the frequency of occurrences of some of the terms
related to either Tesla Motors or its stock ticker TSLA:

Plot of the relative frequency of a partial list of stock-related terms

The next chart plots the labeled data, which is the direction of the stock price for the
day following the press release(s) or news article(s):

Plot of the stock price and movement for Tesla Motors stock

Chapter 5

[167]

This chart displays the historical price of the stock TSLA with the direction (UP or
DOWN). The classification of 15 percent of the labeled data selected for validation has
an F1 measure of 0.71. You need to keep in mind that no preprocessing or clustering
was performed to isolate the most relevant features/keywords. The keywords were
selected according the frequency of their occurrence in the financial news.

It is fair to assume that some of the keywords have a more significant impact on
the direction of the stock price than others. One simple but interesting exercise is to
record the value of the F1 score for a validation for which only the observations that
have a high number of occurrences of a specific keyword are used, as shown here:

Bar chart representing predominant keywords in predicting TSLA stock movement

The bar chart shows that the terms China, representing all the mentions of the
activities of Tesla Motors in China, and Charger, which covers all the references to
the charging stations, have a significant positive impact on the direction of the stock
with a probability averaging 75 percent. The terms under the category Risk have a
negative impact on the direction of the stock with a probability of 68 percent, or a
positive impact of the direction of the stock with a probability of 32 percent. Within
the remaining eight categories, 72 percent of them were unusable as a predictor of
the direction of the stock price.

This approach can be used for selecting features as an alternative to mutual
information for using more elaborate classifiers. However, it should not be regarded
as the primary methodology for the features selection, but instead as a by-product
of the Naïve Bayes in case a very small number of features (less than 10 percent) are
predominant in the model. This result can always be validated by computing the
principal components, for which the normalized cumulative variance (eigenvalues)
of the most predominant features is 90 percent or more.

Naïve Bayes Classifiers

[168]

Pros and cons
The examples selected in this chapter do not do justice to the versatility and accuracy
of the Naïve Bayes family of classifiers.

Naïve Bayes classifiers are simple and robust generative classifiers that rely on prior
conditional probabilities to extract a model from a training dataset. The Naïve Bayes
has its benefits, as mentioned here:

•	 Simple implementation and easy to parallelize
•	 Very low computational complexity: O((n+c)*m), where m is the number of

features, C the number of classes, and n the number of observations
•	 Handles missing data
•	 Supports incremental updates, insertions, and deletions

However, Naïve Bayes is not a silver bullet. It has the following disadvantages:

•	 The assumption of the independence of features is not practical in the
real world

•	 It requires a large training set to achieve reasonable accuracy
•	 It contains a zero-frequency problem for counters

Summary
There is a reason why the Naïve Bayes model is the first supervised learning
technique you learned: it is simple and robust. As a matter of fact, this is the first
technique that should come to mind when you are considering creating a model
from a labeled dataset, as long as the features are conditionally independent.

This chapter also introduced you to the basics of text mining as an application of
Naïve Bayes.

Despite all its benefits, the Naïve Bayes classifier assumes that the features are
conditionally independent, a limitation that cannot be always overcome. In the
case of document classification, Naïve Bayes assumes incorrectly that terms
are semantically independent: the two entities' age and date of birth are highly
correlated. The discriminative classifiers described in the next few chapters
attempt to address some of the Naïve Bayes's disadvantages [5:14].

However, this chapter does not address temporal dependencies, sequence of events,
or conditional dependencies between observed and hidden features. These types of
dependencies necessitate a different approach to modeling that is the subject of the
next chapter.

Regression and
Regularization

In the first chapter, we briefly introduced the binary logistic regression (binomial
logistic regression for a single variable) as our first test case. The purpose was to
illustrate the concept of discriminative classification. There are many more regression
models, starting with the ubiquitous ordinary least-square linear regression and the
logistic regression [6:1].

The purpose of regression is to minimize a loss function, with the residual sum
of squares (RSS) being one that is commonly used. The problem of overfitting
described in the Overfitting section of Chapter 2, Hello World!, can be addressed by
adding a penalty term to the loss function. The penalty term is an element of the
larger concept of regularization.

The first section of this chapter will describe and implement the linear least-squares
regression. The second section will introduce the concept of regularization with an
implementation of the Ridge regression.

Finally, the logistic regression will be revisited in detail from the perspective of a
classification model.

Linear regression
Linear regression is by far the most widely used, or at least the most commonly
known, regression method. The terminology is usually associated with the concept of
fitting a model to data. Linear regression can be implemented using the least squares
method. Practically, the least squares method entails the minimization of the sum of
the squares of the error between the observed data and the actual model.

Regression and Regularization

[170]

The least squares problems fall into two categories:

•	 Ordinary least squares
•	 Nonlinear least squares

One-variate linear regression
Let's start with the simplest form of linear regression, which is the single variable
regression, in order to introduce the terms and concepts behind linear regression.
In its simplest interpretation, the one-variate linear regression consists of fitting a
line to a set of data points {x, y}.

Single variable linear regression is given by the following formula:

()() ()
21

0 1, 0

ˆ argmin | |
n

j jw r j
w y f x w f x w w w x

−

=

= − = + ⋅∑
Here, w1 is the slope, w0 is the intercept, f is the linear function that
minimizes the RSS, and (xj, yj) is a set of n observations.

The RSS is also known as the sum of squared errors (SSE). The mean squared error
(MSE) for n observations is defined as the ratio RSS/n.

Terminology
The terminology used in the scientific literature regarding regression
is a bit confusing at times. Regression weights are also known as
regression coefficients or regression parameters. The weights are
referred to as w in formulas and the source code throughout the
chapter, although β is also used in reference books.

Implementation
Let's create a parameterized class SingleLinearRegression[T] to implement
the formula described in the previous section. The class implements the data
transformation PipeOperator (refer to the Design template for classifiers section
in Appendix A, Basic Concepts).

class SingleLinearRegression[T <% Double](xt: XTSeries[(T, T)])
(implicit g: Double => T) extends PipeOperator[Double, T] {
 type XY = (Double, Double)
 …
}

Chapter 6

[171]

Model instantiation
The model parameters are computed through training and the value
model is instantiated regardless of whether the model is actually
validated. A commercial application requires the model to be validated
using a methodology such as the K-fold validation. (Refer to the Design
template for classifiers section Appendix A, Basic Concepts.)

The application code must provide an implicit conversion g from Double to the
class type parameter, T. The training generates the model defined as the regression
weights, the tuple (slope, intercept), in the case of single variable linear regression:

val model: Option[XY] = {
 val data = xt.toArray
 .map(x => Array[Double](x._1, x._2)) //1
 val regr = new SimpleRegression(true)
 regr.addData(data) //2
 Some((regr.getSlope, regr.getIntercept)) //3
}

The tuple of regression weights or coefficients for the model are computed using
the SimpleRegression class from the stats.regression package of the Apache
Commons Math library. The time series is converted to a matrix of double values,
data (line 1), which is used to initialize the instance of SimpleRegression (line 2). The
model is initialized with the slope and intercept computed during the training (line 3).

private vs. private[this]
A private value or variable can be accessed only by all the instances
of a class. A value declared private[this] can be manipulated
only by this instance. For example, the value model can be accessed
only by this instance of SingleLinearRegression.

Test case
For our first test case, we compute the single variate linear regression of the price of
the copper ETF (the ticker symbol: CU) over a period of 6 months (January 1, 2013 to
June 30, 2013):

val price = DataSource(path, false, true, 1) |> adjClose //1
val xy = price.zipWithIndex
 .map(x => (x._2.toDouble, x._1.toDouble)) //2

val linRegr = SingleLinearRegression(xy) //3
val w1 = linRegr.slope

Regression and Regularization

[172]

val w0 = linRegr.intercept
if(w1 != None) //4
 Display.show(lsErr(xy.toArray, w1.get, w0.get), logger)
…

The closing price for the CU ETF is extracted from a CSV file (line 1) using a
DataSource instance (refer to the Data extraction section Appendix A, Basic Concepts).
The 2-dimension time series is generated by converting the indexes of the time series
into the x values using the zipWithIndex Scala method (line 2). The regression
model, linRegr, is trained during instantiation of the SingleLinearRegression
class (line 3). Once the model is created successfully, the least squared error lsErr
of the predicted values and the actual values is computed, as follows:

def lsErr(xyt: Array[XY], w1: Double, w0: Double): Double =
 Math.sqrt(xyt.foldLeft(0.0)((err, xy) => {
 val diff = xy._2 – w1*xy._1 – w0; err + diff*diff
 })/xyt.size)

The original stock price and the linear regression equation are plotted in the
following chart:

Single variable linear regression – Copper ETF daily price

Although the single variable linear regression is convenient, it is limited to scalar
time series. Let's consider the case of multiple variables.

Chapter 6

[173]

Ordinary least squares (OLS) regression
The ordinary least squares regression computes the parameters w of a linear
function, y = f(x0, x2 … xd), by minimizing the residual sum of squares. The
optimization problem is solved by performing vector and matrix operations
(transposition, inversion, and substitution).

Minimization of the loss function is given by the following formula:

()() ()
21 1

0 1

ˆ argmin | |
n D

j j d dw i d
w y f x w f x w w x

− −

= =

= − =∑ ∑
where wj:0,D is the D regression (or model) parameters (or weights),
(xi, yi)i:0,n-1 is n observations of vector x and output value y, and f is
the linear multivariate function, y = f(x0, x1, …,xd, ..).

There are several methodologies to minimize the residual sum of squares (RSS) for a
linear regression:

•	 Resolution of the set of n equations with d variables (weights) using the
QR decomposition of the n by d matrix representing the time series of n
observations of vector of d dimension (d features) with n > d [6:2]

•	 Singular value decomposition on the observations-features matrix, in the
case where the dimension d exceeds the number of observations n [6:3]

•	 Gradient descent [6:4]
•	 Stochastic gradient descent [6:5]

An overview of these matrix decompositions and optimization techniques can
be found in the Linear algebra and Summary of optimization techniques sections in
Appendix A, Basic Concepts.

The QR decomposition generates the smallest relative error MSE for the most
common least squares problem. The technique is used in our implementation
of the least squares regression.

Design
The following implementation of the least squares regression leverages the Apache
Commons Math library implementation of the ordinary least squares regression [6:6].

Regression and Regularization

[174]

Let's create a class, MultiLinearRegression, which inherits the implementation
of the ordinary least square computation of the Apache Commons Math library
OLSMultipleLinearRegression. The class is defined as a data transformation
implementing the PipeOperator, as follows:

class MultiLinearRegression[T <% Double](xt: XTSeries[Array[T]],
y: DblVector) extends OLSMultipleLinearRegression with
PipeOperator[Array[T], Double]

The parameterized class takes the following two parameters:

•	 The time series of the variables vector xt (input matrix)
•	 The labeled output values, y, used in training

The model for the linear regression is defined by its weights (or parameters) and its
residual sum of squares, rss. The RSS is included in the model because it provides
the client code with important information regarding the accuracy of the underlying
technique used to minimize the loss function:

case class RegressionModel(val weights: DblVector, val rss: Double)

The relationship between the different components of the least squares regression is
described in the following UML class diagram:

Implementation
The training is performed during the instantiation of the class MultiLinearRegression
(refer to the Design template for classifiers section in Appendix A, Basic Concepts):

val model: Option[RegressionModel] = {
 newSampleData(labels, xt.toDblMatrix) //1
 val weights = estimateRegressionParameters
 val wRss =(weights, calculateResidualSumOfSquares) //2
 Some(RegressionModel(wRss._1, wRss._2))
}

Chapter 6

[175]

The least squares algorithm is initialized with the feature observations,
xt, and the target data, labels, using the newSampleData method of
OLSMultipleLinearRegression (line 1).

The model weights are retrieved using estimateRegressionParameters (similarly,
rss using calculateResidualSumOfSquares) (line 2).

Exception handling
Wrapping up invocation of methods in a third party with a Scala
exception handler matters for a couple of reasons: it makes debugging
easier by segregating your code from the third party and it allows your
code to recover from the exception by re-executing the same function with
alternative third-party library methods, whenever possible.

The predictive algorithm for the ordinary least squares regression is implemented by
the data transformation |>. The method predicts the output value given model and
an input value x:

def |> : PartialFunction[Feature, Double] = {
 case x: Feature if(model!=None && x.size==model.get.size-1) =>{
 val w = model.get.weights
 x.zip(w.drop(1)).foldLeft(w(0))((s, z) => s + z._1*z._2))
 }
}

The predictive value is computed by zipping the weight w
1
 to w

n
 with the input vector

x and then folding the zipped array.

Test case 1 – trending
Trending consists of extracting the long-term movement in a time series. Trend lines can be
identified using a multivariate least squares regression. The objective of this first test
is to evaluate the filtering capability of the ordinary least squares regression.

Regression and Regularization

[176]

The regression is performed on the relative price variation of the Copper ETF (ticker
symbol: CU). The selected features are volatility and volume, and the label or target
variable is the price change between two consecutive trading sessions y. The volume,
volatility, and price variation for CU between January 1, 2013 and June 30, 2013 are
plotted in the following chart:

Chart for price variation, volatility, and trading volume for Copper ETF

Let's write the client code to compute the multivariate linear regression, price change
= w0 + volatility.w1 + volume.w2:

val path = "resources/data/chap6/CU.csv"
val src = DataSource(path, true, true, 1) //2
val price = (src |> YahooFinancials.adjClose).toArray //1
val volatility = src |> YahooFinancials.volatility //1
val volume = src |> YahooFinancials.volume //1

val deltaPrice = price.drop(1)
 .zip(price.take(price.size -1))
 .map(z => z._1 - z._2)) //3
val data = volatility.zip(volume)
 .map(z => Array[Double](z._1, z._2))
val features = XTSeries[DblVector](data.dropRight(1)) //4
val regression = MultiLinearRegression[Double](features, deltaPrice)
//5
regression.weights match {
 case Some(w) => Display.show(w, logger)
 …

Chapter 6

[177]

The daily session adjusted closing price, the session volatility, and the session
volume for the CU ETF is extracted from a CSV file (line 1) using the DataSource
transformation (line 2). The array, priceChange, which is the daily price change
between two consecutive trading sessions is computed by duplicating, shifting,
and zipping the session closing prices (line 3). The features are computed by
zipping volatility and the volume time series (line 4). The regression model is
trained by instantiating the MultiLinearRegression class (line 5) and the
model weights are displayed using an auxiliary display method (to the logger
or standard output) (line 6).

The original price change time series and the data predicted by the regression are
plotted in the following chart:

Price variation and the least squares regression for copper ETF according to volatility and volume

The least squares regression model is defined by the linear function for the
estimation of price variation as follows:

price(t+1)-price(t) = -0.01 + 0.014 volatility – 0.0042.volume

The estimated price change (the dotted line in the preceding chart) represents
the long term trend from which the noise is filtered out. In other words, the least
squares regression operates as a simple low-pass filter as an alternative to some of
the filtering techniques such as discrete Fourier transform or the Kalman filter for
dynamic systems (refer to Chapter 3, Data Preprocessing) [6:7].

Regression and Regularization

[178]

Although trend detection is an interesting application of the least squares regression,
the method has limited filtering capabilities for time series [6:8]:

•	 It is sensitive to outliers
•	 It put a greater weight to the first and last few observations that need to

be discarded
•	 As a deterministic method, it does not support noise analysis (distribution,

frequencies, and so on)

Test case 2 – features selection
The second test case is related to features selection. The objective is to discover which
subset of initial features generates the most accurate regression model, that is, the
model with the smallest residual sum of squares (RSS) on the training set.

Let's consider an initial set of D features {xi}. The objective is to estimate the subset of
features {xi

d} that are the most relevant to the set of observations using a least squares
regression. Each subset of features is associated to an fj(x|wj) model:

Model 0

Model 1

Model 2

Original set of features

4

... ...

The OLS can be used to select the model parameters w if the original set of features
is small. Performing the regression of each subset of a large original features set is
not practical.

The features selection can be expressed mathematically as follows:

()() ()
2 11

0
0 1

argmin | |
j

j

Dn

j j j jd df i d
f y f x w f x w w w x

−−

= =

  = − = + 
  
∑ ∑

(

Chapter 6

[179]

Let's consider the following four financial time series over the period from January 1,
2009 to December 31, 2013:

•	 The exchange rate of Chinese Yuan to US Dollar
•	 The S&P 500 index
•	 The spot price of gold
•	 The 10-year treasury bond price

The problem is to estimate which combination of the three variables S&P 500 index,
gold price, and 10-year treasury bond price is the most correlated to the exchange
rate of the Yuan. For practical reasons, we use the Exchange Trade Funds CYN as the
proxy for the Yuan/US dollar exchange rate (similarly, SPY, GLD, and TLT for S&P
500 index, the spot price of gold, and the 10-year treasury bond price respectively).

Automation of features extraction
The code in this section implements an ad hoc extraction of features
with an arbitrary fixed set of models. The process can be easily
automated with an optimizer (gradient descent, genetic algorithm,
and so on) using 1/RSS as the objective function to be maximized.

The number of models to evaluate is relatively small, so an ad hoc approach
to compute the RSS for each combination is acceptable. Have a look at the
following graph:

Graph of the Chinese Yuan exchange rate, gold, 10-year treasury bond price, and S&P 500 index

Regression and Regularization

[180]

The getRss method implements the computation of the RSS value given a set of
observations xt and labeled values y:

def getRss(xt: XTSeries[DblVector], y: DblVector): String = {
 val regression = MultiLinearRegression[Double](xt, y) //1
 val buf = new StringBuilder
 regression.weights.get
 .zipWithIndex //2
 .foreach(w => {
 if(w._2 == 0) buf.append(w._1)
 else buf.append(s" + ${w._1}.x${w._2}") //3
 buf.append(s"RSS: ${(regression.rss.get}").toString
}

The getRss method merely trains the model by instantiating the multilinear
regression class (line 1), indexes the array of weights (line 2), and creates a text
representation of the linear regression equation (line 3).

Once the regression model is trained during the instantiation of the
MultiLinearRegression class, the coefficients of the regression weights and
the RSS value are printed. The rss method is invoked for any combination of the
variables ETF, GLD, SPY, and TLT against the label CNY:

val symbols = Array[String]("CNY", "GLD", "SPY", "TLT")
val smoothingPeriod = 16
val movAvg = SimpleMovingAverage[Double](smoothingPeriod) //4

val input= symbols.map(s=>DataSource(path+s+".csv",true,true, 1))
 .map(_ |> YahooFinancials.adjClose) //5
 .map(x=> movAvg |> XTSeries[Double](x))
val features = input.drop(1)
val featuresList = List[(String, DblMatrix)](
 ("CNY=f(SPY,GLD,TLT)", features.map(_.toArray).transpose),//6
 ("CNY=f(GLD,TLT)", features.drop(1).map(_.toArray).transpose),
 …
}
featuresList.foreach(x => Display.show(x._1 +
 getRss(XTSeries[DblVector](x._2), input(0)), logger)) //7

The dataset is large (1,260 trading sessions) and noisy enough to warrant filtering using
a simple moving average with a period of 16 trading sessions, movAvg (line 4). The time
series are extracted from CSV files using the DataSource class, then smoothed using
a sequence of Array.map invocations (line 5). The first map extracts the content of
the files associated to the stock ticker symbol, assuming that the names of the files
are formatted as path/symbol.csv.

Chapter 6

[181]

For the sake of simplicity, the option type returned by the pipe operator is not validated.

The first model using the three variables SPY, GLD, and TLT is created by transposing
them by the xt.size matrix (line 6). The RSS value is computed by invoking the rss
method (line 7). The second model using two variables, SPY and TLT, is created by
filtering out the GLD time series. The process is repeated for all other models. Have a
look at the following screenshot:

The output results clearly show that the three variable regression CNY=f(SPY, GLD,
TLT) is the most accurate or fittest model for the CNY time series, followed by CNY
=f(SPY, TLT). Therefore, the feature selection process generates the features set,
{SPY, GLD, TLT}.

Regression and Regularization

[182]

Let's plot the model against the raw data:

Ordinary least regression on the Chinese Yuan ETF (CNY)

The regression model smoothed the original CNY time series. It weeded out all but the
most significant price variation.

However, the RSS does not always provide an accurate visualization of the fitness
of the regression model. The fitness of the regression model is commonly assessed
using r2 statistics. The r2 value is a number that indicates how well data fits a
statistical model.

RSS and r2 statistics are related by the following formulae:

()()
21

2

0
1 |

n

j j
i f

RSSr TSS y f x w f f
TSS

−

=

= − = − =∑ ∑

The implementation of the computation of the r2 statistics is fairly simple. For each
model fj, the rssSum method computes the tuple {rss, sum of predicted values}:

def rssSum(xt: XTSeries[DblVector], y: DblVector): XY = {
 val regression = MultiLinearRegression[Double](xt, y)
(regression.rss.get,
 xt.toArray.zip(y).foldLeft(0.0)(s,x) =>
 val d = (x._2 - (regression |> x._1))
 s + d*d
})

Chapter 6

[183]

Finally, the process is repeated for each model and the sum of the predicted values
for each model is summed (line 8), averaged (line 9), and then used in the r2 formula
(line 10):

var xsRss = new ListBuffer[Double]()
val tss = featuresList.foldLeft(0.0)((s, x) => { //8
 val _tss = rssSum(XTSeries[DblVector](x._2), input(0))
 xsRss.append(_tss._1)
 s + _tss._2 //9
})/xsRss.size
xsRss.map(1.0 - _/tss) //10

The graph plotting the r2 value for each model confirms that the three features model
is the most accurate:

General linear regression
The concept of linear regression is not restricted to polynomial
fitting models such as y = w0 + w1.x + w2.x2 + …+ wnxn. Regression
models can also be defined as a linear combination of basis
functions as ϕj: y = w0 + w1.ϕ1(x) + w2ϕ2(x) + … + wn.ϕn(x) [6:9].

Regression and Regularization

[184]

Regularization
The ordinary least squares method for finding the regression parameters is a specific
case of the maximum likelihood. Therefore, regression models are subject to the same
challenge in terms of overfitting as any other discriminative model. You are already
aware that regularization is used to reduce model complexity and avoid overfitting
as stated in the Overfitting section of Chapter 2, Hello World!.

Ln roughness penalty
Regularization consists of adding a penalty function J(w) to the loss function (or
RSS in the case of a regressive classifier) in order to prevent the model parameters
(or weights) from reaching high values. A model that fits a training set very well
tends to have many features variable with relatively large weights. This process is
known as shrinkage. Practically, shrinkage involves adding a function with model
parameters as an argument to the loss function:

()() ()
1 2

0

ˆ arg min |
d

n

i iw i
w y f x w J wλ

−

=

 = − + 
 
∑

The penalty function is completely independent from the training set {x,y}. The
penalty term is usually expressed as a power to the function of the norm of the
model parameters (or weights), w

d
. For a model of D dimensions, the generic

Lp-norm is defined as follows:

()
/1

1

q pD
q p

pq dp
d

J w w w
−

=

 = =   
∑

Notation
Regularization applies to parameters or weights associated
to an observation. In order to be consistent with our notation,
w0 being the intercept value, the regularization applies to the
parameters w1,…, wd.

The two most commonly used penalty functions for regularization are L1 and L2.

Chapter 6

[185]

Regularization in machine learning
The regularization technique is not specific to the linear or logistic
regression. Any algorithm that minimizes the residual sum of
squares, such as a support vector machine or feed-forward neural
network, can be regularized by adding a roughness penalty
function to the RSS.

The L1 regularization applied to the linear regression is known as the Lasso
regularization. The Ridge regression is a linear regression that uses the L2
regularization penalty.

You may wonder which regularization makes sense for a given training set. In
a nutshell, L2 and L1 regularization differ in terms of computation efficiency,
estimation, and features selection: [6:10] [6:11]

•	 Model estimation: L1 generates a sparser estimation of the regression
parameters than L2. For a large nonsparse dataset, L2 has a smaller
estimation error than L1.

•	 Feature selection: L1 is more effective in reducing the regression weights
for features with high value than L2. Therefore, L1 is a reliable features
selection tool.

•	 Overfitting: Both L1 and L2 reduce the impact of overfitting. However, L1 has
a significant advantage in overcoming overfitting (or excessive complexity of
a model); for the same reason, it is more appropriate for selecting features.

•	 Computation: L2 is conducive to a more efficient computation model. The
summation of the loss function and the L2 penalty, w2, is a continuous and
differentiable function for which the first and second derivative can be
computed (convex minimization). The L1 term is the summation of |wi|
and therefore not differentiable.

Terminology
The ridge regression is sometimes called the penalized least
squares regression. The L2 regularization is also known as
the weight decay.

Let's implement the ridge regression, and then evaluate the impact of the L2-norm
penalty factor.

Regression and Regularization

[186]

The ridge regression
The ridge regression is a multivariate linear regression with an L2-norm penalty term:

()
21

2 2 2
0 2 2

0 1

ˆ arg min
d

n D
T

Ridge dw j d
w y w w x w w wλ

−

= =

= − − + =∑ ∑

The computation of the ridge regression parameters requires the resolution of a
system of linear equations similar to the linear regression.

The matrix representation of the ridge regression closed form is
as follows:

() ˆ.T T
RidgeX X I w X yλ− =

I is the identity matrix and uses the QR decomposition:

()
1

.
0 0

T T
Ridge y

R R
X X I Q w Qλ

−
 

− =  
 

Implementation
The implementation of the ridge regression adds the L2 regularization term to the
multiple linear regression computation of the Apache Commons Math library.

The methods of RidgeRegression have the same signature as their ordinary least
squares counterparts. However, the class has to inherit the abstract base class,
AbstractMultipleLinearRegression, in the Apache Commons Math library
and override the generation of the QR decomposition to include the penalty term:

class RidgeRegression[T <% Double](xt: XTSeries[Array[T]], y:
DblVector, lambda: Double) extends AbstractMultipleLinearRegression
with PipeOperator[Array[T], Double] {
 var qr: QRDecomposition = _
 val model: Option[RegressionModel] = …
 …

Chapter 6

[187]

Besides the input time series xt and the labels y, the ridge regression requires the
lambda factor of the L2 penalty term. The instantiation of the class trains the model.
The steps to create the ridge regression models are as follows:

1.	 Extract the Q and R matrices for the input values, newXSampleData (line 1).
2.	 Compute the weights using calculateBeta defined in the base class (line 2).
3.	 Return the tuple regression weights, calculateBeta, and the residuals,

calculateResiduals.

Consider the following code:

val model: Option[(DblVector, Double)] = {
 this.newXSampleData(xt.toDblMatrix) //1
 newYSampleData(y)
 val _rss = calculateResiduals.toArray.map(x => x*x).sum
 val wRss = (calculateBeta.toArray, _rss) //2
 Some(RegressionModel(wRss._1, wRss._2))
 }

The QR decomposition in the base class, AbstractMultipleLinearRegression,
does not include the penalty term (line 3); the identity matrix with the lambda factor
in the diagonal has to be added to the matrix to be decomposed (line 4):

override protected def newXSampleData(x: DblMatrix): Unit = {
 super.newXSampleData(x) //3
 val xtx: RealMatrix = getX
 val nFeatures = xt(0).size
 Range(0, nFeatures)
 .foreach(i =>xtx.setEntry(i,i,xtx.getEntry(i,i)+lambda)) //4
 qr = new QRDecomposition(xtx)
}

The regression weights are computed by resolving the system of linear equations using
substitution on the Q.R matrices. It overrides calculateBeta from the base class:

override protected def calculateBeta: RealVector =
 qr.getSolver().solve(getY())

Regression and Regularization

[188]

The test case
The objective of the test case is to identify the impact of the L2 penalization on the
RSS value and then compare the predicted values with the original values.

Let's consider the first test case related to the regression on the daily price variation of
the Copper ETF (symbol: CU) using the stock daily volatility and volume as features.
The implementation of the extraction of observations is identical to that of the least
squares regression:

val lambda = 0.5
val src = DataSource(path, true, true, 1)
val price = src |> YahooFinancials.adjClose
val volatility = src |> YahooFinancials.volatility
val volume = src |> YahooFinancials.volume //1
val deltaPrice = XTSeries[Double](price.drop(1)
 .zip(price.take(_price.size -1))
 .map(z => z._1 - z._2)) //2
val data = volatility.zip(volume)
 .map(z => Array[Double](z._1, z._2)) //3
val features = XTSeries[DblVector](data.dropRight(1))
val regression = new RidgeRegression[Double](features, deltaPrice,
lambda) //4
regression.rss match {
 case Some(rss) => Display.show(rss, logger)
…

The observed data, that is, the ETF daily price and the features (volatility
and volume) are extracted from the src source (line 1). The daily price change
deltaPrice is computed using a combination of Scala take and drop methods (line
2). The features vector is created by zipping volatility and volume (line 3). The
model is created by instantiating the RidgeRegression class (line 4). The RSS value,
rss, is finally displayed (line 5).

Chapter 6

[189]

The RSS value, rss, is plotted for different values of lambda less than 1.0, as shown
in the following chart:

Graph of RSS versus Lambda for Copper ETF

The residual sum of squares decreases as λ increases. The curve seems to be
reaching for a minimum around λ = 1. The case of λ = 0 corresponds to the
least squares regression.

Next, let's plot the RSS value for λ varying between 1 and 100:

Graph of RSS versus large-value Lambda for Copper ETF

Regression and Regularization

[190]

This time around, the value of RSS increases with λ before reaching a maximum
of λ > 60. This behavior is consistent with other findings [6:12]. As λ increases, the
overfitting gets more expensive and therefore, the RSS value increases.

The regression weights can be simply outputted as follows:

regression.weights.get

Let's plot the predicted price variation of the Copper ETF using the ridge regression
with different values of lambda (λ):

The graph of ridge regression on Copper ETF price variation with variable lambda

The original price variation of the Copper ETF, Δ = price(t+1)-price(t), is plotted
as λ = 0. The predicted values for λ = 0.8 is very similar to the original data. The
predicted values for λ = 2 follow the pattern of the original data with a reduction
of large variations (peaks and troves). The predicted values for λ = 5 correspond to
a smoothed dataset. The pattern of the original data is preserved but the magnitude
of the price variation is significantly reduced.

The logistic regression, briefly introduced in the Let's kick the tires section of Chapter 1,
Getting Started, is the next logical regression model to discuss. The logistic regression
relies on optimization methods. Let's go through a short refreshment course in
optimization before diving into the logistic regression.

Chapter 6

[191]

Numerical optimization
This section briefly introduces the different optimization algorithms that can
be applied to minimize the loss function, with or without a penalty term. These
algorithms are described in greater detail in the Summary of optimization techniques
section in Appendix A, Basic Concepts.

First, let's define the least squares problem. The minimization of the loss function
consists of nullifying the first order derivatives, which in turn generates a system of
D equations (also known as gradient equations), D being the number of regression
weights (parameters). The weights are iteratively computed by solving the system of
equations using a numerical optimization algorithm.

The definition of the least squares-based loss function is as follows:

() () ()
1

0
|

n

i i i
i

L w r w y f x w
−

=

= = −∑
The generation of gradient equations with a Jacobian J matrix (refer to
the Jacobian and Hessian matrices section in Appendix A, Basic Concepts)
after minimization of the loss function L is described as follows:

() () ()1

0
0

n
i

i id id
i d

r w
r w J J w

w

−

=

∂
= = −

∂∑

Iterative approximation using the Taylor series is described as follows:

() ()()
()() ()()

1

0

|
| | ~

d

k
D ik k

i i
jd w

f x w
f x w ff x w w w

−

=

∂
− −

∂∑

Normal equations using the matrix notation and the Jacobian matrix is
described as follows:

() () ()() () ()()1 1k k k kT T
i iJ J w w J y y+ +− = −

Regression and Regularization

[192]

The logistic regression is a nonlinear function. Therefore, it requires the nonlinear
minimization of the sum of least squares. The optimization algorithms for the
nonlinear least squares problems can be divided into the following two categories:

•	 Newton (or 2nd order techniques): These algorithms calculate the second
order derivatives (the Hessian matrix) to compute the regression weights
that nullify the gradient. The two most common algorithms in this category
are the Gauss-Newton and the Levenberg-Marquardt methods (refer to the
Nonlinear least squares minimization section in Appendix A, Basic Concepts). Both
algorithms are included in the Apache Commons Math library.

•	 Quasi-Newton (or 1st order techniques): First order algorithms do not
compute but estimate the second order derivatives of the least squares
residuals from the Jacobian matrix. These methods can minimize any
real-valued functions, not just the least squares summation. This
category of algorithms includes the Davidon-Fletcher-Powell and the
Broyden-Fletcher-Goldfarb-Shannon methods (refer to the Quasi-Newton
algorithms section in Appendix A, Basic Concepts).

The logistic regression
Despite its name, the logistic regression is a classifier. As a matter of fact, the logistic
regression is one of the most used discriminative learning techniques because of its
simplicity and its ability to leverage a large variety of optimization algorithms. The
technique is used to quantify the relationship between an observed target variable y
and a set of variables x that it depends on. Once the model is created (trained), it is
used to classify real-time data.

A logistic regression can be either binomial (two classes) or multinomial (three and
more classes). In a binomial classification, the observed outcome is defined as {true,
false}, {0, 1}, or {-1, +1}.

The logit function
The conditional probability in a linear regression model is a linear function of its
weights [6:13]. The logistic regression model addresses the nonlinear regression
problem by defining the logarithm of the conditional probability as a linear function
of its parameters.

Chapter 6

[193]

First, let's introduce the logistic function and its derivative, which are defined
as follows:

() () () ()()1 1
1 x

dff x f x f x
dxe−

= = −
−

Have a look at the following graph:

The graph of the logistic function and its derivative

The remainder of this section is dedicated to the application of the multivariate
logistic regression to a binary classification (two classes).

Binomial classification
The logistic regression is popular for several reasons; some are as follows:

•	 It is available with most statistical software packages and open source libraries
•	 Its S-shape describes the combined effect of several explanatory variables
•	 Its range of values [0, 1] is intuitive from a probabilistic perspective

Regression and Regularization

[194]

Let's consider the classification problem using two classes. As discussed in the
Validation section of Chapter 2, Hello World!, even the best classifier produces false
positives and false negatives. The training procedure for a binomial classification is
illustrated in the following diagram:

Hyperplane

Class 2

Class 1

Illustration of the binomial classification for a 2-dimension dataset

The purpose of the training is to compute the hyperplane that separates the
observations into two categories or classes. Mathematically speaking, a hyperplane
in an n-dimensional space (number of features) is a subspace of n-1 dimensions. The
separating hyperplane of a three-dimension space is a curved surface. The separating
hyperplane of a two-dimension problem (plane) is a line. In our preceding example,
the hyperplane segregates/separates a training set into two very distinct classes (or
groups), class 1 and class 2, in an attempt to reduce the overlap (false positive and
false negative).

The equation of the hyperplane is defined as the logistic function of the dot product of the
regression parameters (or weights) and features.

The logistic function accentuates the difference between the two groups of training
observations, separated by the hyperplane. It pushes the observations away from
the separating hyperplane towards either of the classes.

Chapter 6

[195]

In the case of two classes, c1 and c2 with their respective probabilities, p(C=c1|
X=xi|w) = p(xi|w) and p(C=c2 |X= xi|w) = 1- p(xi|w), where w is the model
parameters set or weights in the case of the logistic regression, the following
functions can be defined:

The log likelihood:

() ()
1

0
log |

N

i
i

L w p x w
−

=

=∑
Conditional probabilities using the logit function:

[] ()1 21, , |
1

T

T

w x
T

d w x

ex x x x p x w
e

= =
+

L

The log likelihood for the binomial logistic regression:

() () { }
1

0
log 1 0,1

T
i

N
w xT

i i
i

L w y w x e y
−

=

= − + ∈∑
First order derivative for the log likelihood:

() ()()
1

0
|

N

ij i i
ij

L w
x y p x w

w

−

=

∂
= −

∂ ∑

Let's implement the logistic regression without a penalty term using the Apache
Commons Math library. The library contains several least squares optimizers,
allowing you to specify the minimizing algorithm, optimizer, for the loss function
in the logistic regression class LogisticRegression:

class LogisticRegression[T <% Double](xt: XTSeries[Array[T]],
labels: Array[Int], optimizer: LogisticRegressionOptimizer) extends
PipeOperator[Array[T], Int]{
 val model: Option[RegressionModel] = { … }
 …
}

Regression and Regularization

[196]

The parameters of the logistic regression class are the multivariate time series (features)
xt, the target or labeled data, labels, and the optimizer algorithm used to minimize
the loss function or residual sum of squares. In the case of the binomial logistic
regression, labels are assigned the values of 1 for one class and 0 for the other.

The purpose of the training is to determine the regression coefficient, model._1,
which minimizes the loss function. The residual sum of squares (RSS) is computed
as model._2.

Target values
There is no specific rule to assign the two values to the observed
data for the binomial logistic regression: {-1, +1}, {0, 1}, or {false,
true}. The values pair {0, 1} is convenient because it allows the
developer to reuse the code for multinomial logistic regression
using normalized class values.

For convenience, the definition and the configuration of the optimizer are
encapsulated in the LogisticRegressionOptimizer class.

Software design
The implementation of the logistic regression uses the following components:

•	 RegressionModel of the Model type, which is initialized through training
during the instantiation of the classifier. We reuse the RegressionModel
type introduced in the Linear regression section.

•	 The predictive or classification routine is implemented as a data
transformation |> extending the PipeOperator trait.

•	 The logistic regression class, LogisticRegression, has three parameters: the
least squares optimizer of the type LogisticRegresssionOptimizer (used
in training), a features set XTSeries, and a label vector DblVector.

Chapter 6

[197]

The key software components of the logistic regression are described in the following
UML class diagram:

The UML class diagram for the logistic regression

The training workflow
Our implementation of the training of the logistic regression model leverages either
the Gauss-Newton or the Levenberg-Marquardt nonlinear least squares optimizers,
(refer to the Nonlinear least squares minimization section in Appendix A, Basic Concepts)
packaged with the Apache Commons Math library.

The training of the logistic regression is performed by the train method:

val model: Option[RegressionModel] = train

Handling exceptions from the Apache Commons Math library
The training of the logistic regression using the Apache Commons
Math library requires handling ConvergenceException,
DimensionMismatchException, TooManyEvaluationsException,
TooManyIterationsException, and MathRuntimeException.
Debugging is greatly facilitated by understanding the context of these
exceptions in the Apache library source code.

Regression and Regularization

[198]

The implementation of the training method, train, relies on the following five steps:

1.	 Select and configure the least squares optimizer.
2.	 Define the logit function and its Jacobian.
3.	 Specify the convergence and exit criteria.
4.	 Compute the residuals using the least squares problem builder.
5.	 Run the optimizer.

The workflow and the Apache Commons Math classes used in the training of the
logistic regression are visualized by the following flow diagram:

1.Configure Least Squares minimizer

LogisticRegressionOptimizer

2.Define logit & its Jacobian

MultivariateJacobianFunction

3.Define the exit conditions

ConvergenceChe kerc

4.Build least squares problem

LeastSquaresBuilder

5.Execute minimization
iterates

optimizer

labels

Xt

model

The workflow for training the logistic regression using Apache Commons Math

The first four steps are required by the Apache Commons Math library to initialize
the configuration of the logistic regression prior to the minimization of the loss
function. Let's start with the configuration of the least squares optimizer.

Configuring the least squares optimizer
In this step, you have to specify the algorithm to minimize the residual of the sum of
squares. The LogisticRegressionOptimizer class is responsible for configuring the
optimizer. The class has the following two purposes:

•	 Encapsulating the configuration parameters for the optimizer
•	 Invoking the LeastSquaresOptimizer interface defined in the Apache

Commons Math library

Chapter 6

[199]

Consider the following code:

class LogisticRegressionOptimizer(maxIters: Int, maxEvals: Int,eps:
Double, lsOptimizer: LeastSquaresOptimizer){
 def optimize(lsProblem: LeastSquaresProblem): Optimum = lsOptimizer.
optimize(lsProblem)
}}

The configuration of the logistic regression optimizer is defined using the maximum
number of iterations (maxIters), the maximum number of evaluations (maxEval)
for the logistic function and its derivative, the convergence criteria (eps) on the
residual sum of squares, and the instance of the least squares problem (org.apache.
commons.math3.fitting.leastsquares.LeastSquaresProblem).

Computing the Jacobian matrix
The next step consists of computing the value of the logistic function and its first
order partial derivatives with respect to the weights by overriding the value method
of the fitting.leastsquares.MultivariateJacobianFunction interface:

final val initWeight = 0.5
val weights0 = Array.fill(xt(0) +1)(initWeight) //1

val lrJacobian = new MultivariateJacobianFunction {
 override def value(w:RealVector):Pair[RealVector,RealMatrix] ={
 val _w = w.toArray
 val gradient = xt.toArray
 .map(g => { //2
 val expn = g.zip(_w.drop(1))
 .foldLeft(_w(0))((s,z) => s + z._1*z._2)
 val logIt = 1.0/(1.0 + Math.exp(-expn)) //3
 (logIt, logIt *(1- logIt)) //4
 })

 val jacobian = Array.ofDim[Double](xt.size, weights0.size)//5
 xt.toArray.zipWithIndex.foreach(xi => { //6
 val df: Double = gradient(xi._2)._2
 Range(0, xi._1.size).foreach(j =>
 jacobian(xi._2)(j+1) = xi._1(j)*df)
 jacobian(xi._2)(0) = 1.0 //7
 })
 (new ArrayRealVector(gradient.map(_._1)),
 new Array2DRowRealMatrix(jacobian)) //8
 }
}

The regression weights, weights0, are initialized with the arbitrary value of 0.5.

Regression and Regularization

[200]

The value method uses the primitives types RealVector, RealMatrix,
ArrayRealVector, and Array2DRowRealMatrix defined in the org.apache.
commons.math3.linear Apache Commons Math package.

It takes the regression weight, w, and computes the gradient (line 2) of the logistic
function for each data point and returns the value of logit (line 3) and its derivative
(line 4) as a tuple. The Jacobian matrix is created (line 5), and then initialized with
logit and its derivative (line 6). The first element of each column of the Jacobian
matrix is set to 1.0 to take into account the intercept (line 7). Finally, the vector of the
logit values for each observation and the Jacobian matrix are returned (line 8) as a
tuple to comply with the return type of the function value.

Defining the exit conditions
The third step defines the exit condition for the optimizer. It is accomplished by
overriding the converged method of the parameterized org.apache.commons.
math3.optim.ConvergenceChecker interface:

val exitCheck = new ConvergenceChecker[PointVectorValuePair] {
 override def converged(iteration: Int, prev: PointVectorValuePair,
 current:PointVectorValuePair): Boolean = {
 val delta = prev.getValue
 .zip(current.getValue)
 .foldLeft(0.0)((s, z) =>{
 val d = z._1 - z._2
 s + diff*diff
 })
 Math.sqrt(delta)<optimizer.eps && iteration>=optimizer.maxIters
 }
}

This implementation computes the convergence or exit condition as follows:

•	 Either the L2-norm of the difference between the weights of the current
iteration and the weights of the previous iteration, delta, is smaller
than the convergence criteria, eps

•	 Or the iteration exceeds the maximum number of iterations that
maxIters allowed

Chapter 6

[201]

Defining the least squares problem
The Apache Commons Math least squares optimizer package requires all the
input to the nonlinear least squares minimizer to be defined as an instance of
LeastSquareProblem generated by the factory LeastSquareBuilder class:

val builder = new LeastSquaresBuilder
val diagWeights0 = Array.fill(xt.size)(1.0) //1
val wMatrix = MatrixUtils.createRealDiagonalMatrix(diagWeights0)
val lsp = builder.model(lrJacobian) //2
 .weight(wMatrix)
 .target(labels) //7
 .checkerPair(exitCheck) //5
 .maxEvaluations(optimizer.maxEvals) //3
 .start(weights0) //6
 .maxIterations(optimizer.maxIters) //4
 .build

The diagonal elements of the weights matrix are initialized to 1.0 (line 1). Besides
the initialization of the model with the Jacobian matrix, lrJacobian (line 2), the
maximum number of evaluations (line 3), maximum number of iterations (line 4),
and the exit condition (line 5) are also initialized.

The regression weights are initialized as 0.5 (weights0) (line 6). Finally, the labeled
or target values are initialized (line 7).

Minimizing the loss function
The training is executed with a simple call to the least squares minimizer, lsp:

val optimum = optimizer.optimize(lsp)
(optimum.getPoint.toArray, optimum.getRMS)

The regression coefficients (or weights) and the residuals mean square (RMS) are
returned by invoking the getPoint method on the optimum class of the Apache
Commons Math library.

Regression and Regularization

[202]

Test
Let's test our implementation of the binomial multivariate logistic regression using
the example of the Copper ETF price variation versus volatility and volume, used
in the previous two sections. The only difference is that we need to define the target
values as 0 if the ETF price decreases between two consecutive trading sessions, and
1 otherwise. Therefore, the deltaPrice vector used in the linear and ridge regression
is to be modified to support the binary outcome:

val deltaPrice = prices.drop(1).zip(prices).dropRight(1))
.map(p => if(p._1>p._2) 1 else 0)

Executing the test case is just a matter of instantiating the LogisticRegression class
with the appropriate configuration parameters. The implementation reuses the code
already defined for the least squares and ridge regression to load data from CSV files
(src, price, volatility, and volume) and normalize the observations:

val MAXITERS = 80; val MAXEVALS = 1000; val EPS = 1e-4

val lsOptimizer = LogisticRegressionOptimizer(MAXITERS, MAXEVALS, EPS,
new LevenbergMarquardtOptimizer)
val xt = XTSeries[DblVector](features)
val regression = new LogisticRegression[Double](xt, deltaPrice,
lsOptimizer)
val rms = regression.rms.get
val weights = regression.weights.get

In this example, the Levenberg-Marquardt algorithm is used to minimize the
loss function.

Levenberg-Marquardt parameters
The driver code uses the LevenbergMarquardtOptimizer
with the default tuning parameters configuration to keep the
implementation simple. However, the algorithm has a few important
parameters, such as relative tolerance for cost and matrix inversion,
that are worth tuning for commercial applications (refer to the
Levenberg-Marquardt section in Appendix A, Basic Concepts).

The execution of the test produces the following results:

•	 Residual mean square is 0.497
•	 Weights are -0.124 for intercept, 0.453 for ETF volatility, and -0.121 for

ETF volume

The last step is the classification of the real-time data.

Chapter 6

[203]

Classification
As mention earlier and despite its name, the binomial logistic regression is a binary
classifier. The classification method is implemented as a data transformation by
overriding the pipe operator:

type Feature = Array[T]
final val MARGIN = 0.01
def |> : PartialFunction[Feature, Int] = { //1
 case x: Feature if(model!=None && model.get.size-1==x.size) =>{
 val w = _model.get.weights
 val dot = x.zip(w.drop(1))
 .foldLeft(w(0))((s,xw) => s + xw._1*xw._2)//2
 if(logit(dot) > 0.5 + MARGIN) 1 else 0 //3
 }
}

The classification method, |>, checks if the number of model parameters (weights)
is equal to the number of features plus 1 (line 1) and throws an exception if the test
fails. The dot product of the weights and the features is computed using a fold.
Finally, the method returns 1 (class 1, which signifies that the price variation of the
ETF is positive) if the value of the sigmoid is greater than 0.5. It returns 0 otherwise
(class 2, which signifies that the price variation of the ETF is negative) (line 3).

Class identification
The class that the new data x belongs to is determined by the
logit(dot) > 0.5 test, where dot is the product of the features
and the regression weights (w0+w1.volatility + w2.volume). This
test is equivalent to dot > 0.0. You may find either condition in
the literature.

Let's apply the classification to the original training set, features, to validate our
model (weights):

val predicted = features.map(x => regression |> x)

Regression and Regularization

[204]

The direction of the price variation of the Copper ETF, price(t+1) – price(t), is
compared to the direction predicted by the logistic regression. The result is plotted
with the success value if the positive or negative direction is correctly classified,
otherwise, it is plotted with the failure value:

The logistic regression was able to classify 78 out of 121 trading sessions
(65 percent accuracy).

Now, let's use the logistic regression to predict the positive price variation for the
Copper ETF, given its volatility and trading volume. This trading or investment
strategy is known as being long on the market. This use case ignores the trading
sessions for which the price was either flat or declined:

The logistic regression was able to correctly predict the positive price variation for
58 out of 64 trading sessions (90.6 percent accuracy). What is the difference between
the first and second test cases?

Chapter 6

[205]

In the first case, the separating hyperplane equation, w0 + w1.volatility +
w2.volume, is used to segregate both the features generating either positive or
negative price variation. The overall accuracy of the classification is negatively
impacted by the overlap of the features from the two classes.

In the second case, the classifier has to consider only the observations located on one
side of the hyperplane equation, without taking into account the false negatives.

Impact of rounding errors
Under some circumstances, the generation of the rounding errors
during the computation of the Jacobian matrix has an impact
on the accuracy of the separating hyperplane equation: w0 +
w1.volatility + w2.volume. This negatively impacts the
prediction of both the positive and negative price variation.

The accuracy of the binary classifier can be further improved by considering the
positive variation of price as price(t+1) – price(t) > EPS.

Validation methodology
The validation set is generated by randomly selecting data points
from the original labeled set. A formal validation requires the
use of a K-fold validation methodology to compute the recall,
precision, and F1 measure for the logistic regression model.

Summary
This concludes the description and implementation of linear and logistic regression
and the concept of regularization to reduce overfitting. Your first analytical projects
using machine learning will (or did) likely involve a regression model of some type.
Regression models, along with the Naïve Bayes classification, are the most understood
techniques for those without a deep knowledge of statistics or machine learning.

At the completion of this chapter, you hopefully have a grasp on the following:

•	 The concept of linear and nonlinear least squares-based optimization
•	 The implementation of ordinary least square regression as well as

logistic regression
•	 The impact of regularization with an implementation of the Ridge regression

Regression and Regularization

[206]

The logistic regression is also the foundation of the conditional random fields
introduced in the next chapter and artificial neural networks in Chapter 9,
Artificial Neural Networks.

Contrary to the Naïve Bayes models (refer to Chapter 5, Naïve Bayes Classifiers), the
least squares or logistic regression does not impose the condition that the features
have to be independent. However, the regression models do not take into account
the sequential nature of a time series such as asset pricing. The next chapter, Chapter 7,
Sequential Data Models, describes two classifiers that take into account the time
dependency in a time series.

Sequential Data Models
The universe of Markov models is vast and encompasses computational concepts
such as the Markov decision process, discrete Markov, Markov chain Monte Carlo
for Bayesian networks, and hidden Markov models.

Markov processes, and more specifically, the hidden Markov model (HMM), are
commonly used in speech recognition, language translation, text classification,
document tagging, and data compression and decoding.

The first section of this chapter introduces and describes the hidden Markov model
with the full implementation of the three canonical forms of the hidden Markov model
using Scala. This section details the different dynamic programming techniques used
in the evaluation, decoding, and training of the hidden Markov model. The design of
the classifier follows the same pattern as the logistic and linear regression.

The second and last section of the chapter is dedicated to a discriminative (labels
conditional to observation) alternative to the hidden Markov model: conditional
random fields. The open source CRF Java library authored by Sunita Sarawagi from
the Indian Institute of Technology, Bombay, is used to create a predictive model
using conditional random fields [7:1].

Markov decision processes
This first section also describes the basic concepts you need to know in order to
understand, develop, and apply the hidden Markov model. The foundation of
the Markovian universe is the concept known as the Markov property.

Sequential Data Models

[208]

The Markov property
The Markov property is a characteristic of a stochastic process where the conditional
probability distribution of a future state depends on the current state and not on its
past states. In this case, the transition between the states occurs at a discrete time,
and the Markov property is known as the discrete Markov chain.

The first-order discrete Markov chain
The following example is taken from Introduction to Machine Learning by
E. Alpaydin [7:2].

Let's consider the following use case. N balls of different colors are hidden in N
boxes (one each). The balls can have only three colors {Blue, Red, and Green}. The
experimenter draws the balls one by one. The state of the discovery process is
defined by the color of latest ball drawn from one of the boxes: S0 = Blue, S1 = Red,
and S2 = Green.

Let {π0, π1, π2} be the initial probabilities for having an initial set of color in each
of the boxes.

Let qt denote the color of the ball drawn at the time t. The probability of drawing
a ball of color Sk at the time k after drawing a ball of the color Sj at the time j is
defined as p(qt= Sk| qt-1= Sj) = ajk. The probability to draw a red ball in the first attempt
is p(qt0= S1) = π1. The probability to draw a blue ball in the second attempt is p(q0= S1)
p(q1= S0|q0= S1) = π1 a10. The process is repeated to create a sequence of the state {St} =
{Red, Blue, Blue, Green, …} with the following probability:

p(q0= S1).p(q1= S0|q0= S1).p(q2= S0|q1= S0).p(q3= S2|q2= S0)… = π1.a10.a00.a02…

The sequence of states/colors can be represented as follows:

Box
0

Box
1

Box
2

Box
3

1 a10 1 1a00a10 a10a00a02 1

red blueblue blue green . . .

p p p p

Illustration of the ball and boxes example

Chapter 7

[209]

Let's estimate the probabilities p using historical data (learning phase):

1.	 The estimation of the probability to draw a red ball (S1) in the first attempt is
π1, which is computed as the number of sequences starting with S1 (red) / total
number of balls.

2.	 The estimation of the probability of retrieving a blue ball in the second
attempt is a10, the number of sequences for which a blue ball is drawn after a
red ball / total number of sequences, and so on.

Nth-order Markov
The Markov property is popular mainly because of its simplicity.
As you will discover while studying the Hidden Markov model,
having a state solely dependent on the previous state allows us to
apply efficient dynamic programming techniques. However, some
problems require dependencies between more than two states.
These models are known as Markov random fields.

Although the discrete Markov process can be applied to trial and error types
of applications, its applicability is limited to solving problems for which the
observations do not depend on hidden states. Hidden Markov models are a
commonly applied technique to meet such a challenge.

The hidden Markov model (HMM)
The hidden Markov model has numerous applications related to speech recognition,
face identification (biometrics), and pattern recognition in pictures and video [7:3].

A hidden Markov model consists of a Markov process (also known as a Markov chain)
for observations with a discrete time. The main difference with the Markov processes
is that the states are not observable. A new observation is emitted with a probability
known as the emission probability each time the state of the system or model changes.

There are now two sources of randomness:

•	 Transition between states
•	 Emission of an observation when a state is given

Sequential Data Models

[210]

Let's reuse the boxes and balls example. If the boxes are hidden states (non-observable),
then the user draws the balls whose color is not visible. The emission probability is the
probability bik =p(ot= colork| qt=Si) to retrieve a ball of the color k from a hidden box I, as
described in the following diagram:

bk0
bml bmi bnj

Box
1

aji

Box
0

BoxjBoxi

Hidden boxes (states)
a10

Observed colors

Color
m

Color
k

Color
m

Color
n

The hidden Markov model for the balls and boxes example

In this example, we do not assume that all the boxes contain balls of different colors.
We cannot make any assumptions on the order as defined by the transition aij. The
HMM does not assume that the number of colors (observations) is identical to the
number of boxes (states).

Time invariance
Contrary to the Kalman filter, for example, the hidden Markov model
requires that the transition elements, aji, are independent of time. This
property is known as stationary or homogeneous restriction.

It must be kept in mind that the observations, in this case the color of the balls, are
the only tangible data available to the experimenter. From this example, we can
conclude that a formal HMM has three components:

•	 A set of observations
•	 A sequence of hidden states
•	 A model that maximizes the joint probability of the observations and hidden

states, known as the Lambda model

Chapter 7

[211]

A Lambda model, λ, is composed of initial probabilities π, the probabilities of state
transitions as defined by the matrix A, and the probabilities of states emitting one or
more observations:

A=a
ki

B=bji

Observations Oj

-model=(,A,B)States S
i

Visualization of the HMM key components

This diagram illustrates that, given a sequence of observations, HMM tackles three
problems known as canonical forms:

•	 CF1—evaluation: Evaluate the probability of a given sequence of
observations Ot, given a model λ = (π, A, B)

•	 CF2—training: Identify (or learn) a model λ = (π, A, B) given a set of
observations O

•	 CF3—decoding: Estimate the state sequence Q with the highest probability to
generate a given set of observations O and a model λ

The solution to these three problems uses dynamic programming techniques.
However, we need to clarify the notations prior to diving into the mathematical
foundation of the hidden Markov model.

Notation
One of the challenges of describing the hidden Markov model is the mathematical
notation that sometimes differs from author to author. From now on, we will use
the following notation:

Description Formulation
N The number of hidden states
S A finite set of N hidden states S = {S0, S1, … SN-1}
M The number of observation symbols
qt The state at time or step t
Q Time sequence of states Q = {q0, q1, … qn-1} = Q0:n-1

T The number of observations
ot The observation at time t
O A finite sequence of T observations O = {o0, o1, … oT-1} = O0:T-1

Sequential Data Models

[212]

Description Formulation
A The state transition probability matrix aji = p(qt+1=Si| qt=Sj)
B The emission probability matrix bjk = p(ot=Ok| qt=Sj)
π The initial state probability vector πi = p(q0=Sj)
λ The hidden Markov model λ = (π, A, B)

Variance in notation
Some authors use the symbol z to represent the hidden states
instead of q and x to represent the observations O.

For convenience, let's simplify the notation of the sequence of observations and states
using the following condensed form: p(O0:T, qt| λ) = p(O0, O1, … OT, qt| λ). It is quite
common to visualize a hidden Markov model with a lattice of states and observations
similar to our description of the boxes and balls examples, as shown here:

transition aji

observations

emission bki
bmj

q
t+1

=S
j

q
t i=S

ot+1=Omot=Ok

The formal HMM-directed graph

The state Si is observed as Ok at time t, before being transitioned to the state Sj
observed as Om at the time t+1. The first step in the creation of our HMM is the
definition of the class that implements the lambda model λ = (π, A, B) [7:4].

The lambda model
The three canonical forms of the hidden Markov model rely heavily on manipulation
and operations on matrices and vectors. For convenience, let's define an HMMConfig
class that contains the dimensions used in the HMM:

class HMMConfig(val _T: Int, val _N: Int, val _M: Int) extends Config

Chapter 7

[213]

The input parameters for the class are:

•	 _T: The number of observations
•	 _N: The number of hidden states
•	 _M: The number of observation symbols or features

Consistency with mathematical notation
The implementation uses _T (with respect to _N, _M) to represent
programmatically the number of observations T (with respect to hidden
states N and features M). As a general rule, the implementation reuses
the mathematical symbols as much as possible. Although the practice
does not always make the code elegant, it improves its readability.

The HMMConfig companion object defines the operations on ranges of index of matrix
rows and columns. The foreach, foldLeft, and maxBy methods are regularly used
in each of the three canonical forms:

object HMMConfig {
 def foreach(i: Int, f: Int => Unit): Unit = Range(0, i).foreach(f)
 def foldLeft(i: Int, f: (Double, Int) => Double, zero:Double) =
Range(0, i).foldLeft(zero)(f)
 def maxBy(i: Int, f: Int => Double): Int = Range(0,i).maxBy(f)
 …
}

Notation
The λ model in HMM should not be confused with the
regularization factor discussed in the Ln roughness penalty
section in Chapter 6, Regression and Regularization.

As mentioned earlier, the lambda model is defined as a tuple of the transition
probability matrix A, emission probability matrix B, and the initial probability π. It
is easily implemented as a case class, HMMLambda, using the Matrix class defined in
the Matrix class section in Appendix A, Basic Concepts. The simplest constructor for the
HMMLambda class is invoked in the case where the state-transition probability matrix,
the emission probability matrix, and the initial states are known, as shown here:

class HMMLambda(val A: Matrix[Double], val B: Matrix[Double], var pi:
DblVector, val numObs: Int) {
 def getT: Int = numObs
 def getN: Int = A.nRows
 def getM: Int = B.nCols
 val d1 = numObs -1
…
}

Sequential Data Models

[214]

The implementation reflects the mathematical notation, with pi being the initial
state probability, A the state transition matrix, and B the emission matrix. The
numObs value is the number of observations in the sequence. The getT, getN, and
getM methods are used to keep the implementation consistent with the initial
configuration, HMMConfig. The section related to the training of HMM introduces
a different constructor for HMMLambda using the configuration as a parameter.

The initial probabilities are unknown, and therefore, initialized with a random
generator of values [0, 1].

Normalization
Input states and observations data may have to be normalized and
converted to probabilities before initializing the matrices A and B.

The two other components of the HMM are the sequence of observations and the
sequence of hidden states.

HMM execution state
The canonical forms of the HMM are implemented through dynamic programming
techniques. These techniques rely on variables that define the state of the execution
of the HMM for any of the canonical forms:

•	 Alpha (the forward variable): The probability of observing the first t <
T observations for a specific state at Si for the observation t, αt(i) = p(O0:t,
qt=Si|λ)

•	 Beta (the backward variable): The probability of observing the remainder of
the sequence qt for a specific state βt(i) =p(Ot+1:T-1|qt=Si,λ)

•	 Gamma: The probability of being in a specific state given a sequence of
observations and a model γt(i) =p(qt=Si|O0:T-1, λ)

•	 Delta: The sequence to have the highest probability path for the first i
observations defined for a specific test δt(i)

•	 Qstar: The optimum sequence q* of states Q0:T-1

•	 DiGamma: The probability of being in a specific state at t and another
defined state at t+1 given the sequence of observations and the model
γt(i,j) =p(qt=Si,qt+1=Sj|O0:T-1, λ)

Chapter 7

[215]

Each of the parameters is described in the section related to each canonical form. Let's
create a class HMMState that encapsulates the variables used in the implementation of
the three canonical cases.

For convenience, all the parameters related to the three canonical cases and listed in
the previous notation section are encapsulated into a single outer class, HMMState:

class HMMState(lambda: HMMLambda, maxIters:Int) extends Config {
 val delta = Matrix[Double](lambda.getT, lambda.get N) // δt(i)

 object QStar { … } //q*
 object DiGamma { … } // γt(i, j)
 object Gamma { … } // γt(i)
}

Once again, we use the same notation as for the configuration of the HMM; lambda.
getT, being the number of observations, and lambda.getN, the number of hidden
states. The HMM state parameters have self-descriptive names that strictly follow
the notation introduced earlier. The λ model, the HMM state, and the sequence of
observations are all the elements needed to implement the three canonical cases.

The Gamma and DiGamma singletons are used and described in the evaluation
canonical form. The DiGamma singleton is described as part of the Viterbi algorithm
to extract the sequence of states with the highest probability given a λ model and a
set of observations.

The execution of any of the three canonical forms relies on dynamic programming
techniques (refer to the Overview of dynamic programming section in Appendix A,
Basic Concepts) [7:5]. The simplest of the dynamic programming techniques is
a single traversal of the observations/state chain.

Therefore, it makes sense to define a base class, HMMModel, that has all the algorithms
that manipulate the λ model, lambda, and the observed states, obs:

abstract class HMMModel(lambda: HMMLambda, obs: Array[Int])

Sequential Data Models

[216]

The list of dynamic-programming-related algorithms used in any of the three canonical
forms is visualized through the class hierarchy of our implementation of the HMM:

obs

config

lambda

state

A B pi

form
lambda

1
1

1

1

1

1 1

1 1

Model Config PipeOperator

Array[Int] HMMModel

HMMConfig HMM

BaumWelchEM VirtebiPath Pass

Matrix MatrixBetaAlpha

HMMLambda HMMForm

DblVector

Scala classes' hierarchy for HMM (UML class diagram)

Each class is described as needed in the description of the three canonical forms
of HMM. It is time to dive into the implementation details of each of the canonical
forms, starting with the evaluation.

Evaluation (CF-1)
The objective is to compute the probability (or likelihood) of the observed sequence
Ot given a λ model. A dynamic programming technique is used to break down the
probability of the sequence of observations into two probabilities:

() () ()0: 1 0:t 1: 1| | |λ α λ λ− + −⋅T t Tp O p O p O

The likelihood is computed by marginalizing over all the hidden states [7:6]{Si}:

() ()
1

0: 1 0: 1
0

| ,q S |
N

T T t i
i

p O p Oλ λ
−

− −
=

= =∑

Chapter 7

[217]

If we use the notation introduced in the previous chapter for alpha and beta variables,
the probability for the observed sequence Ot given a λ model can be expressed as:

() () ()0: 1 |T t t
i

p O i iλ α β− = ⋅∑

The product of the probabilities α and β can potentially underflow. Therefore, it is
recommended to use the log of the probabilities instead of the probabilities.

Alpha class (the forward variable)
The computation of the probability of observing a specific sequence given a sequence
of hidden states and a λ model relies on a two-pass algorithm. The alpha algorithm
consists of the following steps:

1.	 Compute the initial alpha value [M1]. The value is then normalized by the
sum of alpha values across all the hidden states [M2].

2.	 Compute the alpha value iteratively for the time 0 to time t, then normalize
by the sum of alpha values for all states [M3].

3.	 The final step is the computation of the log of the probability of observing the
sequence [M4].

Performance consideration
A direct computation of the probability of observing a specific
sequence requires 2TN2 multiplications. The iterative alpha and
beta classes reduce the number of multiplications to N2T.

For those with some inclination toward mathematics, computation of the alpha
matrix is defined in the following information box. Each formula has an identifier
[Mx], which is referenced in the Scala source code implementing it.

Sequential Data Models

[218]

Alpha-class (forward variable)
•	 M1: Initialization:

() ()0 0i ii b Oα π= ⋅

•	 M2: Normalization of initial values:

() () ()
1

0 0 0
0

ˆ /
N

j
i i iα α α

−

=

= ∑

•	 M3: Normalized summation:

() () () () () ()
1 1

1
0 0

ˆ1/
N N

t t ji i t t t t t t
j i

i j a b O c i i i cα α α α α
− −

−
= =

= = = ⋅∑ ∑

•	 M4: Probability of observing a sequence given a lambda model
and states:

() ()
1

1
0 0

1log | log
ˆ

T

N
j i t

p O
i

λ
α

−

−
= =

 
= −   ∑ 
∑

Let's look at the implementation of the alpha class in Scala, using the referenced
number of the mathematical expressions of the alpha class. The alpha and beta
values have to be normalized [M3], and therefore, we define a base class, Pass,
for the alpha and beta algorithms that implements the normalization:

class Pass(_lambda: HMMLambda, _obs: Array[Int]) extends HMMModel(_
lambda, _obs) { //1
 var alphaBeta: Matrix[Double] = _
 val ct = Array.fill(lambda.getT)(0.0) //2

 def normalize(t: Int): Unit = {
 ct.update(t, foldLeft(lambda.getN, (s, n) => s + alphaBeta(t,
n))) //3
 alphaBeta /= (t, ct(t))
 }
}

As with any algorithm used in the hidden Markov model, the Pass base class of the
alpha and beta classes is a composition of the attributes of the model (HMMLambda), the
computation parameters (HMMParams), and the sequence of observations obs (line 1).
The alphaBeta matrix represents either the alpha or beta matrix manipulated in the
subclasses (line 2). The scale factor, ct, is computed as the summation of the alpha or
beta row matrix over all the states using a fold (line 3).

Chapter 7

[219]

Computation efficiency
Scala's reduce, fold, and foreach methods are far more
efficient iterators than the for loop. You need to keep in mind that
the main purpose of the for loop in Scala is the monadic chaining
of map and flatMap operations.

The computation of the alpha variable in the Alpha class follows the same
computation flow as defined in the mathematical expression:

class Alpha(lambda: HMMLambda, obs: Array[Int]) extends Pass(lambda,
obs)

The alpha value is initialized [M1] (line 4), then normalized [M2] using the current
sequence order (line 5). The value of alpha is then updated [M3] by summation of
the previous alpha value at t-1 and the transition from the state j to the state i (line 6),
as shown here:

Import HMMConfig._
val alpha = {
 alphaBeta = lambda.initAlpha(obs) //4
 normalize(0) //5
 sumUp //6
}

def sumUp: Double = { //[M2]
 foreach(lambda.getT, t => {
 updateAlpha(t) //7
 normalize(t) //8
 })
 foldLeft(lambda.getN, (s, k) => s + alphaBeta(lambda.dim_1, k))
}

def updateAlpha(t: Int): Unit =
 HMMConfig.foreach(lambda.getN, i =>
 alphaBeta += (t,i,lambda.alpha(alphaBeta(t-1,i),i,obs(t)))
)
}

The value of alpha is updated by the updateAlpha method (line 7) before
normalization (line 8). The implementation that relies on the fold method
is omitted, but can be easily written.

Sequential Data Models

[220]

Finally, the computation of the logarithm of the probability to observe a specific
sequence, given the sequence of states and a predefined λ model, [M4] can be
performed by the following code (line 9):

def logProb: Double = foldLeft(lambda.getT, (s, t)
 => s + Math.log(ct(t)), Math.log(alpha))//9

The method computes the logarithm of the probability instead of the probability
itself. The summation of the logarithm of probabilities is less likely to cause an
underflow than the product of probabilities.

Beta class (the backward variable)
The recursive computation of beta values is similar to the Alpha class except that the
iteration executes backward on the sequence of states.

The implementation of Beta is similar to the alpha class:

1.	 Compute [M5] and normalize [M6] the value of beta at t=0 across states.
2.	 Compute and normalize iteratively the beta at the time T-1 to t updated from

its value at t+1 [M7].

Beta class (the backward variable)
•	 M5: Initialization of beta: βT-1(t)=1
•	 M6: Normalization of initial beta values:

() () ()
1

1 1 1
0

ˆ /
N

T T T
j

i i jβ β β
−

− − −
=

= ∑

•	 M7: Normalized summation of beta:

() () () () () ()
1 1

1 1
0 0

ˆ1/
N N

t t ij j t t t t t t
j j

i j a b O c j i i cβ β β β β
− −

+ +
= =

= ⋅ ⋅ = = ⋅∑ ∑

Chapter 7

[221]

The definition of the class for the Beta class is identical to the Alpha class:

class Beta(lambdaB: HMMLambda, _obs: Array[Int]) extends Pass(lambdaB,
_obs)

The implementation of the Beta class is similar to the Alpha class with computation
(line 1) and normalization (line 2) of beta at t=0. As expected, the summation routine
sumUp (line 3) is implemented as updating and normalizing beta at the time t, as
shown here:

val complete = { //4
 alphaBeta = Matrix[Double](lambda.getT, lambda.getN)
 alphaBeta += (lambda.dim_1, 1.0) //1
 normalize(lambda.dim_1) //2
 sumUp; true
}

def sumUp: Unit = //3
 (lambda.getT-2 to 0 by -1).foreach(t =>{
 updateBeta(t)
 normalize(t)
})

def updateBeta(t: Int): Unit =
 foreach(lambda.config.getN, i => {
 alphaBeta += (t, i, lambda.beta(alphaBeta(t+1, i), i, obs(t+1)))
})

The recursive method updates and normalizes the beta matrix by traversing the
sequence of observations backward from before the last observation to the first.
Contrary to the Alpha class, the Beta class does not generate an output value.
Therefore, we need to flag the state of the class using a ready Boolean value,
which is set to true if the instantiation succeeds and false otherwise.

Sequential Data Models

[222]

Constructors
The alpha and beta values are computed within the constructors
of their respective class, so no public or protected method needs
to verify if these values are already computed. The design pattern
reduces the complexity of implementation by ensuring that a class
instance has only one state: computation completed.

What is the value of a model if it cannot be created? The next canonical form CF2
leverages dynamic programming and recursive functions to extract the λ model.

Training (CF-2)
The objective of this canonical form is to extract the λ model given a set of
observations and a sequence of states. It is similar to the training of a classifier.
The simple dependency of a current state on the previous state enables an
implementation using an iterative procedure, known as the Baum-Welch
estimator or expectation-maximization (EM).

Baum-Welch estimator (EM)
At its core, the algorithm has three steps and an iterative method, similar to the
evaluation canonical form:

1.	 Compute the probability π (the gamma value at t=0) [M9].
2.	 Compute and normalize the state's transition probabilities matrix A [M10].
3.	 Compute and normalize the matrix of emission probabilities B [M11].
4.	 Repeat steps 2 and 3 until the change of likelihood is insignificant.

The algorithm uses the digamma and summation gamma variables defined in the
HMMConfig class.

Chapter 7

[223]

The Baum-Welch algorithm
•	 M8: Joint probability of the state qi at t and qj at t+1:

() ()1, , | 0,t t i t ji j p q S q Sγ λ+= = =

() () () ()
() ()
1 1

1

0

, t ij j t t
t N

t tj

i a b O j
i j

i i

α β
γ

α β
+ +

−

=

=
∑

•	 M9: The initial probabilities vector:

() () ()
1

0
0

ˆ ,
N

i t t
j

i i i jπ γ γ γ
−

=

= =∑

•	 M10: Update of the transition probabilities matrix:

()()
()

1

0
1

0

,
ˆ

T
tt

ij T
tt

i j
a

i

γ

γ

−

=
−

=

= ∑
∑

•	 M11: Update of the emission probabilities matrix :

()
()

0

0
1

0

ˆ
j

tt
ij T

tt

i
b

i

γ

γ
=
−

=

= ∑
∑

The Baum-Welch algorithm requires the following three inputs:

•	 The λ model, _lambda, initialized with random values uniformly distributed
•	 The current state of the training, state
•	 The labeled observed data, _obsIdx

Sequential Data Models

[224]

The implementation of the Baum-Welch algorithm illustrates the elegance and
conciseness of the Scala programming language. The constructor requires a fourth
parameter to describe the minimum rate of change of the estimate of the likelihood
between iterative calls, as shown in the following code snippet:

class BaumWelchEM config: HMMConfig, obs: Array[Int], numIters:
Int,eps: Double) extends HMMModel(HMMLambda(config), obs) {
 val state = HMMState(lambda, numIters)
}

The λ model has to be initialized with the configuration parameters (number of
observations, number of states, and number of symbols). The matrices A and B and
the initial state probabilities pi are initialized with a uniform random generator
[0, 1], Matrix.fillRandom, as shown here:

object HMMLambda {
 def apply(config: HMMConfig): HMMLambda = {
 val A = Matrix[Double](config._N)
 A.fillRandom(0.0)
 val B = Matrix[Double](config._N, config._M)
 B.fillRandom(0.0)
 val pi = Array.fill(config._N)(Random.nextDouble)
 new HMMLambda(A, B, pi, config._T)
 }

The maximum likelihood, maxLikelihood, is computed as part of the constructor to
ensure a consistent state:

var likelihood = frwrdBckwrdLattice
Range(0, state.maxIters) find(_ => {
 lambda.estimate(state, obs) //1
 val _likelihood = frwrdBckwrdLattice //2
 val diff = likelihood - _likelihood //3
 likelihood = _likelihood
 diff < eps //4
}) match {
 case Some(index) => maxLikelihood
…

The computation of the likelihood requires the estimation of the transition matrix A
and emission matrix B (line 1). The training process iterates by traversing the lattice
forward and backward until the likelihood reaches a local or global maximum. The
λ model is updated using the estimate method (line 1). The method computes the
likelihood of the sequence of states (line 2) and then compares it with the likelihood
computed in the previous iteration (line 3). The method exits if the difference between
two consecutive likelihood values meets the convergence criteria eps (line 4).

Chapter 7

[225]

The estimate method of the HMMLambda class updates the λ model (A, B, and pi):

def estimate(state: HMMState, obsIdx: Array[Int]): Unit = {
 pi = Array.tabulate(config._N)(i => state.Gamma(0, i))
 HMMConfig.foreach(config._N, i => {

 var denominator = state.Gamma.fold(dim_1, i)
 HMMConfig.foreach(config._N, k =>
 A += (i, k, state.DiGamma.fold(dim_1, i, k)/denominator)
)
 denominator = state.Gamma.fold(config._T, i)
 HMMConfig.foreach(config._N, k => B += (i, k, state.Gamma.
fold(config._T, i, k, obsIdx)/denominator))
})

The core of the Baum-Welch expectation maximization is the iterative forward and
backward update of the lattice of states and observations between time t and t+1.
The lattice-based iterative computation is illustrated in the following diagram:

p
i

p
N-1

p
0

t=0 t=1 t-1 t

O
0

O
1

O
t

a
0,0

a
0,0

q
0

q
i

q
N-1

q
0

q
i

q
N-1

q
0

q
i

q
N-1

q
0

q
i

q
N-1

a
N-1, N-1

b
N-1, 1

a
N-1, N-1

b
N-1, 1

Visualization of HMM graph lattice for the Baum-Welch algorithm

The iteration across the lattice is implemented by the frwrdBckwrdLattice method
(line 2). The lattice is traversed ahead using the Alpha instance class (line 1), and
backward using the Beta instance class (line 2):

def frwrdBckwrdLattice: Double = {
 val _alpha = Alpha(lambda, obs).alpha //1
 val _beta = Beta(lambda, obs) //2
 val a = _alpha.alphaBeta
 val b = _beta.alphaBeta

Sequential Data Models

[226]

 Gamma.update(a, b) //3
 DiGamma.update(a, b, A, B, obs) //4
 _alpha.alpha
}

The method returns the alpha coefficient and computes the new values for the Gamma
(line 3) vector and DiGamma (line 4) matrix. These HMMState methods are omitted for
the sake of clarity.

Decoding (CF-3)
This last canonical form consists of extracting the most likely sequence of states {qt}
given a set of observations Ot and a λ model. Solving this problem requires, once
again, a recursive algorithm.

The Viterbi algorithm
The extraction of the best state sequence (the sequence of state that has the highest
probability) is very time consuming. An alternative consists of applying a dynamic
programming technique to find the best sequence {qt} through iteration. The
algorithm is known as the Viterbi algorithm. Given a sequence of states {qt} and
sequence of observations {oj}, the probability δt(i) for any sequence to have the
highest probability path for the first T observations is defined for the state Si [7:7].

The Viterbi algorithm
M12: Definition of delta function:

()
{ }

()0:T 1 0: 1: 0, 1
max , |t i Tqj T

i p q S Oδ λ− −−
= =

M13: Initialization of delta:

() () ()0 0 0 0i ii b O i iδ π ψ= = ∀

M14: Recursive computation of delta:

() () ()() () ()()1 1max argmaxt t ij j t t t iji i
i i a b O i i aδ δ ψ δ− −= ⋅ ⋅ = ⋅

M15: Computation of the optimum state sequence Q:

() ()1 1 argmaxt t t t Ti
q q q iψ δ∗ ∗ ∗

+ += =

Chapter 7

[227]

The constructor of the Viterbi algorithm, ViterbiPath, is similar to the algorithms
of the first two canonical forms, and therefore, inherits HMMInference. The purpose
of the Viterbi algorithm is to compute the optimum sequence given a set of
observations and a λ model by maximizing the delta, maxDelta:

class ViterbiPath(_lambda: HMMLambda, _state: HMMState, _obs:
Array[Int]) extends HMMInference(_lambda, _state, _obs) {
 val maxDelta = recurse(lambda.getT, 0)
 …
}

The recursive method that implements [M14] and [M15] steps is invoked by
the constructor:

def recurse(t: Int, j: Int): Double = {
 var maxDelta = initial((t, j)) //1
 if(maxDelta == -1.0) {
 if(t != obs.size) {
 maxDelta = maxBy(lambda.getN, //2 [M14]
 s => recurse(t-1, s)* lambda.A(s, j)* lambda.B(j, obs(t))
)
 val idx =maxBy(lambda.getT, i =>recurse(t-1 ,i)*lambda.A(i,j))
//3 [M14]

 state.psi += (t, j, idx) //4
 state.delta += (t, j, maxDelta) //5
 }
 else { //6
 maxDelta = 0.0
 val index =maxBy(lambda.getN, i => {
 val delta = recurse(t-1 ,i)
 if(delta > maxDelta) maxDelta = delta
 delta
 })
 state.QStar.update(t, index) //7
 }
 }
 maxDelta
}

Sequential Data Models

[228]

Once initialized (line 1), the maximum value of delta, maxDelta, is computed
recursively by applying the formula [M14] at each state, s, using Scala's maxBy method
(line 2). Next, the index of the column of the transition matrix A corresponding to the
maximum of delta is computed (line 3). The last step is to update the matrix psi (line
4) (with respect to delta (line 5)). Once the step t reaches the maximum number of
observation labels (line 6), the optimum sequence of states q* is computed [M15] (line 7).
Ancillary methods are omitted.

This implementation of the decoding form of the hidden Markov model completes
the description of the hidden Markov model and its implementation in Scala. Now,
let's put this knowledge into practice.

Putting it all together
The main class HMM implements the three canonical forms. A view bound to an
array of integers is used to parameterize the HMM class. We assume that a time
series of continuous or pseudocontinuous values is converted (or categorized)
into discrete symbol values.

The @specialized annotation ensures that the byte code is generated for the
Array[Int] primitive without executing the conversion implicitly declared by the
bound view. The HMM can be potentially used as part of a computation workflow,
and therefore, has to implement the pipe operator (PipeOperator).

There are two different constructors for the HMM class. The first constructor uses the λ
model as input (evaluation (CF1) and decoding (CF3)):

class HMM[@specialized T <% Array[Int]](lambda: HMMLambda, form:
HMMForm, maxIters: Int) (implicit f: DblVector => T) extends
PipeOperator[T, HMMPredictor] {
 val state = HMMState(lambda, maxIters)
….
}

The HMMForm enumerator is used to specify the canonical form of the HMM solution:

object HMMForm extends Enumeration {
type HMMForm = Value
val EVALUATION,DECODING = Value
}

Chapter 7

[229]

The conversion of DblVector to a type T is required only if the evaluation and
decoding canonical form uses actual observation values as argument. The f function is
then used to discretize the double values into a sequence of index of the observations.

The HMMPredictor type consists of a tuple log probability (or likelihood) of
observations and index of sequence of observations:

type HMMPredictor = (Double, Array[Int])

The HMM has three canonical forms instead of the two forms of most classifiers.

The second canonical form, training, is implemented by defining a second
constructor for the HMM class, as follows:

object HMM {
 def apply[T <% Array[Int]](config: HMMConfig, obs: Array[Int],
 form: HMMForm, maxIters: Int, eps: Double)
 (implicit f: DblVector => T): HMM[T] = {
 val baumWelchEM = new BaumWelchEM(config, obs, maxIters, eps)
 new HMM[T](baumWelchEM.lambda, form, maxIters)
 }
}

The decode (with respect to evaluate) method implements the third (with respect
to the first) canonical form of HMM. Both methods take a sequence of indices for
observations as an argument.

 def decode(obsIdx: Array[Int]): HMMPredictor = (ViterbiPath(lambda,
state, obsIdx).maxDelta, state.QStar())
 def evaluate(obsIdx: Array[Int]): HMMPredictor = (-Alpha(lambda,
obsIdx).logProb, obsIdx)
}

The data transformation |> encapsulates the evaluation and decoding forms in
order to preserve its meaning. The observation, obs, is automatically converted
into a sequence of indices to each observation (line 1) by the DblVector => T
discretization function, which is an implicit parameter of the HMM class.

def |> : PartialFunction[DblVector, HMMPredictor] = {
 case obs: DblVector if(obs != null && obs.size > 2) => {
 form match {
 case EVALUATION => evaluate(obs) //1
 case DECODING => decode(obs) //1
 }
…

Sequential Data Models

[230]

Normalized probabilities input
You need to make sure that the input probabilities for the λ model for
evaluation and decoding canonical forms are normalized—the sum of
the probabilities of all the states for the π vector and A and B matrices are
equal to 1. This validation code is omitted in the example code.

Test case
Our test case is to train an HMM to predict the sentiment of investors as measured
by the weekly sentiment survey of the members of the American Association of
Individual Investors (AAII) [7:8]. The goal is to compute the transition probabilities
matrix A, the emission probabilities matrix B, and the steady state probability
distribution π, given the observations and hidden states (training canonical form).

We assume that the change in investor sentiments is independent of time, as required
by the hidden Markov model.

The AAII sentiment survey grades the bullishness on the market in terms of percentage:

The weekly AAII market sentiment (reproduced by courtesy from AAII)

The sentiment of investors is known as a contrarian indicator of the future direction
of the stock market. Refer to the Terminology section in Appendix A, Basic Concepts.

Let's select the ratio of percentage of investors that are bullish over the percentage of
investors that are bearish. The ratio is then normalized. The following table lists this:

Time Bullish Bearish Neutral Ratio Normalized ratio
t0 0.38 0.15 0.47 2.53 1.0
t1 0.41 0.25 0.34 1.68 0.53
t2 0.25 0.35 0.40 0.71 0.0
….

Chapter 7

[231]

The sequence of non-normalized observations (ratio of bullish sentiment over bearish
sentiment) is defined in a CSV file as follows:

final val OBS_PATH = "resources/data/chap7/obs.csv"

final val NUM_SYMBOLS = 6
final val NUM_STATES = 5
final val EPS = 1e-3
final val MAX_ITERS = 250

val srcObs = Source.fromFile(OBS_PATH)
val obs = srcObs.getLines.map(_.toDouble)).toSeq //1
val config = new HMMConfig(obs.size, NUM_STATES, NUM_SYMBOLS)
val min = obs.min
val delta = obs.max - min
val obsSeq = obs.map(x => (x - min)/delta) //2
 .map(x =>(x*NUM_SYMBOLS).floor.toInt) //3
HMM[Array[Int]](config,obsSeq,EVALUATION,MAX_ITERS,EPS) match {
 case Some(hmm) => //4
 Display.show(s"Lambda: ${hmm.getModel.toString}", logger)
 …
}

The sequence of observations is loaded from the CSV file (line 1) before
being normalized (line 2). The discretization converts the normalized bullish
sentiment/bearish sentiment ratio in six levels (integers) [0,-5] (line 3). The
instantiation of the HMM class for the ratio levels (Array[Int]) generates the
λ model (A, B, and pi) (line 4).

The following is a state-transition matrix:

A 1 2 3 4 5
1 0.090 0.026 0.056 0.046 0.150
2 0.094 0.123 0.074 0.058 0.0
3 0.093 0.169 0.087 0.061 0.056
4 0.033 0.342 0.017 0.031 0.147
5 0.386 0.47 0.314 0.541 0.271

Sequential Data Models

[232]

The emission matrix is as follows:

B 1 2 3 4 5 6
1 0.203 0.313 0.511 0.722 0.264 0.307
2 0.149 0.729 0.258 0.389 0.324 0.471
3 0.305 0.617 0.427 0.596 0.189 0.186
4 0.207 0.312 0.351 0.653 0.358 0.442
5 0.674 0.520 0.248 0.294 0.259 0.03

The hidden Markov model for time series
analysis
The evaluation form of the hidden Markov model is very suitable for filtering data
for discrete states. Contrary to time series filters such as the Kalman filter introduced
in the The Kalman filter section in Chapter 3, Data Preprocessing, HMM requires data
to be somewhat stationary in order to create a reliable model. However, the hidden
Markov model overcomes some of the limitations of analytical time series analysis.
Filters and smoothing techniques assume that the noise (frequency mean, variance,
and covariance) is known and usually follows a Gaussian distribution. The hidden
Markov model does not have such a restriction. Moreover, moving averaging
techniques, discrete Fourier transforms, and generic Kalman filters require the states
to be continuous with linear dependencies, although the extended Kalman filter can
approximate nonlinear states.

Conditional random fields
The conditional random field (CRF) is a discriminative machine learning algorithm
introduced by John Lafferty, Andrew McCallum, and Fernando Pereira [7:9] at the
turn of the century as an alternative to the HMM. The algorithm was originally
developed to assign labels to a set of observation sequences as found.

Let's consider a concrete example to understand the conditional relation between the
observations and the label data.

Chapter 7

[233]

Introduction to CRF
Let's consider the problem of detecting a foul during a soccer game using a
combination of video and audio. The objective is to assist the referee and analyze
the behavior of the players to determine whether an action on the field is dangerous
(red card), inappropriate (yellow card), in doubt to be replayed, or legitimate. The
following image is an example of segmentation of a video frame for image processing:

The analysis of the video consists of segmenting each video frame and extracting
image features such as colors or edges [7:10]. A simple segmentation scheme
consists of breaking down each video frame into tiles or groups of pixels indexed by
their coordinates on the screen. A time sequence is then created for each tile Sij, as
represented in the following image:

0 1 2 3 t

S
ij
0 S

ij
3 S

ij
t

Sequential Data Models

[234]

The image segment Sij is one of the labels that are associated with multiple
observations. The same features extraction process applies to the audio associated with
the video. The relation between the video/image segment and the hidden state of the
altercation between the soccer players is illustrated by the following model graph:

Y0 Y1 Yn-2 Yn-1

Features

X={color, texture, edge, ...}

Sequences of labels (type of interaction)

Y= {legitimate, in-doubt, inappropriate, dangerous}

Undirected graph representation of CRF for soccer infraction detection

Conditional random fields (CRFs) are discriminative models that can be regarded
as a structured output extension of the logistic regression. CRFs address the problem
of labeling a sequence of data such as assigning a tag to each word in a sentence.
The objective is to estimate the correlation among the output (observed) values Y
conditional on the input values (features) X.

The correlation between the output and input values is described as a graph
(also known as a graph-structured CRF). A good example of graph-structured CRF
are cliques. Cliques are sets of connected nodes in a graph for which each vertex
has an edge connecting it to every other vertex in the clique.

Such models are complex and their implementation is challenging. Most real-world
problems related to time series or ordered sequences of data can be solved as a
correlation between a linear sequence of observations and a linear sequence of input
data much like HMM. Such a model is known as the linear chain structured graph
CRF or linear chain CRF for short.

Example non-linear CRF

time time

Linear chain CRF

Y0 Y1 Y2

X0 X1 X2

Y0 Y1 Y2

X0 X1 X2

Chapter 7

[235]

One main advantage of the linear chain CRF is that the maximum likelihood, p(Y|X,
w), can be estimated using dynamic programming techniques such as the Viterbi
algorithm used in the HMM. From now on, the section focuses exclusively on the
linear chain CRF to stay consistent with the HMM described in the previous section.

Linear chain CRF
Let's consider a random variable X={xi}0:n-1 representing n observations and a random
variable Y representing a corresponding sequence of labels Y={yj}0:n-1. The hidden
Markov model estimates the joint probability p(X,Y) as any generative model
requires the enumeration of all the sequences of observations.

If each element of Y, yj obeys the first order of the Markov property, then (Y, X) is a
CRF. The likelihood is defined as a conditional probability p(Y|X, w), where w is the
model parameters vector.

Observation dependencies
The purpose of CRF models is to estimate the maximum
likelihood of p(Y|X, w). Therefore, independence between
observations X is not required.

A graphical model is a probabilistic model for which a graph denotes the conditional
independence between random variables (vertices). The conditional and joint
probabilities of random variables are represented as edges. The graph for generic
conditional random fields can indeed be complex. The most common and simplistic
graph is the linear chain CRF.

A first order linear chain conditional random field can be visualized as an undirected
graphical model, which illustrates the conditional probability of a label Yj given a set
of observations X:

Observed features

Labeled sequence

p(Y |X)0

p(Y |X)1

p(Y |X)n-1

X={x }j

Y0 Y1 Yn-2 Yn-1

Linear, conditional, random field undirected graph

Sequential Data Models

[236]

The Markov property simplifies the conditional probabilities of Y, given X, by
considering only the neighbor labels p(Y1|X, Yj j ≠1) = p(Y1|X, Y0, Y2) and p(Yi|X, Yj j
≠i) = p(Yi|X, Yi-1, Yi+1).

The conditional random fields introduce a new set of entities and a new terminology:

•	 Potential functions (fi): These are strictly positive, real value functions that
represent a set of constraints on the configurations of random variables. They
do not have any obvious probabilistic interpretation.

•	 Identity potential functions: These are potential functions I(x, t) that take
1 if the condition on the feature x at time t is true, and 0 otherwise.

•	 Transition feature functions: Simply known as feature functions, ti, are
potential functions that take a sequence of features {Xi}, the previous label
Yt-1, the current label Yt, and an index i. The transition feature function
outputs a real value function. In a text analysis, a transition feature function
would be defined by a sentence as a sequence of observed features, the
previous word, the current word, and a position of a word in a sentence. Each
transition feature function is assigned a weight that is similar to the weights
or parameters in the logistic regression. Transition feature functions play
a similar role as the state transition factors aij in HMM but without a direct
probabilistic interpretation.

•	 State feature functions sj are potential functions that take the sequence of
features {Xi}, the current label Yi, and the index i. They play a similar role
as the emission factors in the HMM.

A CRF defines the log probability of a particular label sequence Y, given a sequence
of observations X as the normalized product of the transition feature and state
feature functions. In other words, the likelihood of a particular sequence Y,
given the observed features X, is a logistic regression.

The mathematical notation to compute the conditional probabilities in the case of a
first order linear chain CRF is described in the following information box.

Chapter 7

[237]

CRF conditional distribution
•	 The log probability of a label's sequence y, given an

observation x:

() () ()
1 1

1 1
0 0

log , , , , x, i , x, i
K K

i i i c i i i i j j i
i j

f y y x i w w t y y s yµ
− −

− −
= =

= + +∑ ∑
•	 Transition feature functions with I(a) = 1 if a true, 0 otherwise:

() () () ()1 1 1 2, , , i I I I 0i i i i it y y x y l y l x− −= = ⋅ = ⋅ =

•	 Using the notation:

() () () ()
1 1

1
0 0

, , , log | , , y
K K

i j j j j j
j j

F y x f y y x i p y x w F xλ α
− −

−
= =

=∑ ∑

•	 Conditional distribution of labels y, given x, using the Markov
property:

() ()
() () ()

1

0
1 1,y

0 0

1| , , y
−

=
− −

= =

∑= =∑∑
K

j jj
N Kw F x

j j
i j

p y x w e z x w F x
Z x

The weights wj are sometimes referred as λ in scientific papers, which may confuse
the reader. W is used to avoid any confusion with the λ regularization factor.

Now, let's get acquainted with the conditional random fields algorithm and its
implementation by Sunita Sarawagi.

CRF and text analytics
Most of the examples used to demonstrate the capabilities of conditional random
fields are related to text mining, intrusion detection, or bioinformatics. Although
these applications have a great commercial merit, they are not suitable as an
introductory test case because they usually require a lengthy description of the
model and the training process.

Sequential Data Models

[238]

The feature functions model
For our example, we will select a simple problem: how to collect and aggregate
an analyst's recommendation on any given stock from different sources with
different formats.

Analysts at brokerage firms and investment funds routinely publish the list
of recommendations or rating for any stock. These analysts used different
rating schemes from buy/hold/sell; A, B, C rating; and stars rating to market
perform/neutral/market underperform. For this example, the rating is normalized
as follows:

•	 0 for a strong sell, (or F or 1 star rating)
•	 1 for sell (D, 2 stars, marker underperform)
•	 2 for neutral (C, hold, 3 stars, market perform, and so on)
•	 3 for buy (B, 4 stars, market overperform, and so on)
•	 4 from strong buy (A, 5 stars, highly recommended, and so on)

Here is an example of recommendations by stock analysts:

Macquarie upgraded AUY from Neutral to Outperform rating

Raymond James initiates Ainsworth Lumber as Outperform

BMO Capital Markets upgrades Bear Creek Mining to Outperform

Goldman Sachs adds IBM to its conviction list

The objective is to extract the name of the financial institution that publishes the
recommendation or rating, the stock rated, the previous rating, if available, and
the new rating. The output can be inserted into a database for further trend analysis,
prediction, or simply the creation of reports.

Scope of the application
Ratings from analysts are updated every day through different protocols
(feed, emails, blogs, web pages, and so on). The data has to be extracted
from HTML, JSON, plain text, or XML format before being processed. In
this exercise, we assume that the input has already been converted into
plain text (ASCII) using a regular expression or another classifier.

Chapter 7

[239]

The first step is to define the labels Y representing the categories or semantics
of the rating. A segment or sequence is defined as a recommendation sentence.
After reviewing the different recommendations, we are able to specify the following
seven labels:

•	 Source of the recommendation (Goldman Sachs and so on)
•	 Action (upgrades, initiates, and so on)
•	 Stock (either the company name or the stock ticker symbol)
•	 From (optional keyword)
•	 Rating (optional previous rating)
•	 To
•	 Rating (new rating for the stock)

The training set is generated from the raw data by tagging the different components
of the recommendation. The first (or initiate) rating for a stock does not have the fields
4 and 5 defined.

For example:

Citigroup // Y(0) = 1
upgraded // Y(1)
Macys // Y(2)
from // Y(3)
Buy // Y(4)
to // Y(5)
Strong Buy //Y(6) = 7

Tagging
Tagging a word may have a different meaning depending on the
context. In natural language processing (NLP), tagging refers to the
process of assigning an attribute (adjective, pronoun, verb, proper
name, and so on) to a word in a sentence [7:11].

Sequential Data Models

[240]

A training sequence can be visualized with the following undirected graph:

upgradedCitigroup Macys from Buy to Strong Buy

Source Action Stock From Rating To Rating

Y0 Y1 Y2 Y3 Y4 Y5 Y6

X0 X1 X2 X3 X4 X5 X6

Labels

Observations

An example of a recommendation as a CRF training sequence

You may wonder why we need to tag the "From" and "To" labels in the creation of
the training set. The reason is that these keywords may not always be stated and/or
their positions in the recommendation differ from one source to another.

Software design
The implementation of the conditional random fields follows the design template
for classifier, as explained in the Design template for classifiers section in Appendix A,
Basic Concepts.

Its key components are as follows:

•	 A CrfModel model of the type Model is initialized through training during
the instantiation of the classifier.

•	 The predictive or classification routine is implemented as a data
transformation that implements the PipeOperator trait.

•	 The conditional random field classifier, Crf, has four parameters: the number
of labels (or number of features), nLabels; configuration of type CrfConfig;
the sequence of delimiters of the type CrfSeqDelimiter; and the labeled (or
tagged) observations taggedObs.

•	 The CrfRecommendation class is required by the CRF library to implement
the DataSequence interface. The class is used to recommend (or estimate) the
next label.

•	 CrfSeqIter implements the DataIter iteration interface to traverse the
labeled data sequence during training, as required by the CRF library.

Chapter 7

[241]

The key software components of the conditional random fields are described in the
following UML class diagram:

CrfRecommendation Crf CrfModel

CrfConfig String CrfSeqDelimiter CrfSeqlter

DblVector

Config DataSequence PipeOperator Model Datalter

model

config
taggedObs delims weights

1 1

11

delims

111

UML class diagram for the conditional random fields

The DataSequence and DataIter interfaces are grayed out to indicate that these are
defined in the IITB's CRF Java library.

Implementation
The test case uses the IITB's CRF Java implementation from the Indian Institute of
Technology at Bombay by Sunita Sarawagi. The JAR files can be downloaded from
Source Forge (http://sourceforge.net/projects/crf/).

The library is available as JAR files and source code. Some of the functionality,
such as the selection of a training algorithm, is not available through the API. The
components (JAR files) of the library are as follows:

•	 CRF for the implementation of the CRF algorithm
•	 LBFGS for limited-memory Broyden-Fletcher-Goldfarb-Shanno nonlinear

optimization of convex functions (used in training)
•	 CERN Colt library for manipulation of a matrix
•	 GNU generic hash container for indexing

The training of the conditional random field for sequences requires defining a few
key interfaces:

•	 DataSequence to specify the mechanism to access observations and labels for
training and test data

•	 DataIter to iterate through the sequence of data created using the
DataSequence interface

•	 FeatureGenerator to aggregate all the features types

These interfaces have default implementations bundled in the CRF Java library [7:12].

Sequential Data Models

[242]

The scope of the IITB CRF Java library evaluation
The CRF library has been evaluated with three simple text
analytics test cases. Although the library is certainly robust enough
to illustrate the internal workings of the CRF, I cannot vouch for
its scalability or applicability in other fields of interest such as
bioinformatics or process control.

Building the training set
The first step is to implement the structure of the training sequence, which
implements the DataIter interface. The training file consists of a pair of files:

•	 Raw recommendations (such as Raymond James upgrades Gentiva Health
Services from Underperform to Market perform)

•	 Tagged recommendations (such as Raymond James [1] upgrades [2] Gentiva
Health Services [3], from [4] Underperform [5] to [6] Market perform [7])

Let's define the model for the CRF classifier. As mentioned earlier, the model for the
CRF is similar to the logistic regression model and consists of the weights parameter:

class CrfModel(val weights: DblVector) extends Model

The tagged recommendations file requires a delimiter class, CrfSeqDelimiter.
It delineates the sequence of observations using the following parameters:

•	 obsDelim is a regular expression to break down data input into a sequence
of observations

•	 labelsDelim generates a sequence of labels from the data input
•	 trainingDelim generates a sequence of training tuples from the training set

The CrfSeqDelimiter class is defined as follows:

class CrfSeqDelimiter(val obsDelim: String, val labelsDelim: String,
val trainingDelim:String)

The main purpose of the IITB CRF Java library's DataIter interface is to define
the methods to iterate through a sequence of data, tags, or observations. The three
methods are as follows:

•	 hasNext tests if the sequence has another entry
•	 next returns the next data or entry in the sequence and increments the

iterator cursor
•	 startScan initializes the DataIter iterator

Chapter 7

[243]

The CrfSeqIter sequence iterator uses the iitb.segment.DataCruncher class to
read a training set from a file (a file with tagged words):

class CrfSeqIter(val nLabels: Int, val input: String, val delim:
SeqDelimiter) extends DataIter {
 lazy val trainData = DataCruncher.readTagged(nLabels, input, input,
delim.obsDelim, delim.labelsDelim, delim.trainingDelim, new labelMap)

 override def hasNext: Boolean = trainData.hasNext
 override def next: DataSequence = trainData.next
 override def startScan: Unit = trainData.startScan
}

The trainData training set is initialized only once when any of the DataIter
overridden methods is invoked. The class is merely an adapter to the generation
of the training set.

Generating tags
The second step consists of selecting the mechanism and class to generate the
features observations. The extraction of the features from any data set requires
implementation of the FeatureGenerator interface in order to access all the
features observations from any kind of features.

Our problem is a simple linear tagging of data sequences (recommendations
from analysts). Therefore, we can use the iitb.Model.FeatureGenImpl default
implementation. Our tagging class, TaggingGenerator makes FeatureGenImpl
as a subclass and specifies the model specification as a CompleteModel. The IITB
CRF library supports both linear chain model of CompleteModel with a single edge
iterator and the nested chain CRF model of the type NestedModel with a nested
edge iterator. The complete model does not make any assumption regarding the
independence between labels Y:

val addFeature = true
class TaggingGenerator (val nLabels: Int) extends FeatureGenImpl(new
CompleteModel(nLabels),nLabels,addFeature)

The class is defined within the scope of the Crf class and does not have to be exposed
to the client code. The last parameter of FeatureGenImpl, addFeature, is set as true
to allow the tags of dictionary to be built iteratively during the training.

Sequential Data Models

[244]

Extracting data sequences
The CrfTrainingSet class implements the DataSequence interface. It is used to
access all the raw analyst's recommendations and rating regarding stocks. The class
needs to implement the following methods:

•	 set_y to assign a label index to a position k
•	 y to retrieve a label y at position y
•	 x to retrieve an observed feature vector at position k
•	 length to retrieve the number of entries in the sequence

The CrfTrainingSet class can be implemented as follows:

class CrfTrainingSet(val nLabels: Int, val entry: String, val delim:
String) extends DataSequence {
 val words = entry.split(delim)
 val map = new Array[Int](nLabels)

 override def set_y(k: Int, label: Int): Unit = map(k) = label
 override def y(k: Int): Int = map(k)
 override def length: Int = words.size
 override def x(k: Int): Object = words(k)
}

The class takes an analyst's recommendation regarding a stock, entry, as an input
and breaks it down into words, using the delimiter or regular expression, delim.

CRF control parameters
The execution of the CRF algorithm is controlled by a wide variety of configuration
parameters. For the sake of simplicity, we use the default configuration parameters,
CrfConfig, to control the execution of the learning algorithm, with the exception of
the following four variables:

•	 Initialization of the weights, w0, using either a predefined or a random value
between 0 and 1 (default 0)

•	 Maximum number of iterations used in the computation of the weights
during the learning phase maxIters (default 50)

•	 The scaling factor lamdba for the L2 penalty function, used to reduce
observations with a high value (default 1.0)

•	 Convergence criteria, eps, used in computing the optimum values for the
weights wj (default 1e-4)

Chapter 7

[245]

Advanced configuration
The CRF model of the iitb library is highly configurable. It allows
developers to specify a state-label undirected graph with any combination
of flat and nested dependencies between states. The source code includes
several training algorithms such as the exponential gradient.

The test case does not assume any dependence between states:

class CrfConfig(w0: Double, maxIters: Int, lambda: Double, eps:
Double) extends Config

Putting it all together
The objective of the training is to compute the weights wj that maximize the
conditional log-likelihood without the L2 penalty function.

Conditional log-likelihood for a linear chain CRF training set,

(){ }0: 1
,i i n

D x y
−

= is given as follows:

�

Learning: Maximization of loss function and L2 penalty is given
as follows:

�

Maximizing the log-likelihood function � is equivalent to minimizing the loss
with L2 penalty. The function is convex, and therefore, any variant gradient
descent (greedy) algorithm can be applied iteratively.

The Crf class implements the learning, train, and classification methods. Like
any other classifiers, Crf implements the PipeOperator trait; so, the classification
can be included in a workflow. The class also implements the Supervised trait to
force the developer to define a validation routine for the CRF:

class Crf(nLabels: Int, config: CrfConfig, delims: SeqDelimiter,
taggedObs: String) extends PipeOperator[String, Double] with
Supervised[String] {
 val features = new TaggingGenerator(nLabels) //1
 lazy val crf = new CRF(nLabels, features, config.params) //2
 val model: Option[CrfModel] = {

Sequential Data Models

[246]

 features.train(seqIter) //3
 Some(new CrfModel(crf.train(seqIter))) //4
}
…

The computation of the CRF weights during training uses either methods defined in
IITB's CRF library or methods described in the previous sections.

Once the features have been extracted from the data sequence input file (line 1), the
CRF algorithm is instantiated (line 2) with the number of labels, extracted features,
and the configuration. The model is trained using the iterator for features seqIter
(line 3), and then returns a CrfModel instance (vector of weights) (line 4) if training
succeeds, None otherwise.

The predictive method implements the data transformation operator, |>. It takes a
new observation (analyst's recommendation on a stock) and returns the maximum
likelihood, as shown here:

def |> : PartialFunction[String, Double] = {
 case obs: String if(obs.length > 1 && model != None) => {
 val dataSeq = new CrfTrainingSet(nLabels,obs,delims.obsDelim)
 crf.apply(dataSeq)
 }
}

The data transformation implements the Viterbi algorithm to extract the best sequence
of labels for a newly observed recommendation, obs. It invokes the apply method of
the iitb.crf.CRF class. The code to validate the arguments/parameters of the class
and methods are omitted along with the exception handler for the sake of readability.

Tests
The client code to execute the test consists of defining the number of labels (tags for
recommendation), the L2 penalty factor, LAMBDA, and the delimiting string:

val LAMBDA = 0.5; val EPS = 1e-3
val NLABELS = 9; val MAX_ITERS = 100; val W0 = 0.7
val PATH = "resources/data/chap7/rating"

val config = CrfConfig(W0, MAX_ITERS, LAMBDA, EPS)
val delimiters = CrfSeqDelimiter(",\t/ -():.;'?#`&_", "//", "\n")

Crf(NLABELS, config, delimiters, PATH).weights match {
 case Some(weights) => weights
 case None => { … }
}

Chapter 7

[247]

For these tests, the initial value for the weights (with respect to the maximum number
of iterations for the maximization of the log likelihood, and the convergence criteria)
are set to 0.7 (with respect to 100 and 1e-3). The delimiters for labels sequence, observed
features sequence, and the training set are customized for the format of input data files,
rating.raw and rating.tagged.

The training convergence profile
The first training run discovered 136 features from 34 analyst's stock recommendations.
The algorithm converged after 21 iterations. The value of the log of the likelihood for
each of those iterations is plotted to illustrate the convergence toward a solution of
optimum w:

Visualization of the log conditional probability of CRF during training

The training phase converges fairly quickly toward a solution. It can be explained
by the fact that there is little variation in the six-field format of the analyst's
recommendations. A loose or free-style format would have required a larger
number of iterations during training to converge.

Impact of the size of the training set
The second test evaluates the impact of the size of the training set on the convergence
of the training algorithm. It consists of computing the difference Δw of the model
parameters (weights) between two consecutive iterations {wi}t+1 and {wi}t:

()
1

1

0

D
t t
i i

i
w w w

−
+

=

= −∑�

Sequential Data Models

[248]

The test is run on 163 randomly chosen recommendations using the same model but
with two different training sets:

•	 34 analyst stock recommendations
•	 55 stock recommendations

The larger training set is a super set of the 34 recommendations set. The following
graph illustrates the comparison of features generated with 34 and 55 CRF training
sequences:

The disparity between the test runs using two different size of training set is very
small. This can be easily explained by the fact that there is a small variation in the
format between the analyst's recommendations.

Impact of the L2 regularization factor
The third test evaluates the impact of the L2 regularization penalty on the convergence
toward the optimum weights/features. The test is similar to the first test with different
value of λ . The following charts plot log [p(Y|X, w)] for different values of λ = 1/σ2
(02, 0.5, and 0.8):

Chapter 7

[249]

Impact of the L2 penalty on convergence of the CRF training algorithm

The log of the conditional probability decreases or the conditional probability
increases with the number of iterations. The lower the L2 regularization factor,
the higher the conditional probability.

The variation of the analysts' recommendations within the training set is fairly small,
which limits the risk of overfitting. A free-style recommendation format would have
been more sensitive to overfitting.

Comparing CRF and HMM
The cost/benefit analysis of discriminative models relative to generative models applies
to the comparison of the conditional random field with the hidden Markov model.

Contrary to the hidden Markov model, the conditional random field does not
require the observations to be independent (conditional probability). The conditional
random field can be regarded as a generalization of the HMM by extending the
transition probabilities to arbitrary feature functions that can depend on the input
sequence. HMM assumes the transition probabilities matrix to be constant.

HMM learns the transition probabilities aij on its own by providing more training
data. The HMM can be regarded as a special case of CRF where the probabilities
used in the state transition are constant.

Sequential Data Models

[250]

Performance consideration
The time complexity for decoding and evaluating canonical forms of the hidden
Markov model for N states and T observations is O(N2T). The training of HMM
using the Baum-Welch algorithm is O(N2TM), where M is the number of iterations.

There are several options to improve the performance of HMM:

•	 Avoid multiplication by 0 in the emission probabilities matrix by using
sparse matrices or keeping tab of the null entries

•	 Try to train HMM on a relevant subset of the training data, particularly in the
case of tagging

The training of the linear chain conditional random fields is implemented using
the same dynamic programming techniques as HMM implementation (Viterbi,
forward-backward passes). Its time complexity for training T data sequence, N
labels y, and M weights/features λ is O(MTN2). The time complexity of the training
of a CRF can be reduced by distributing the computation of the log likelihood and
gradient over multiple nodes [7:13].

Summary
In this chapter, we had a closer look at modeling sequences of observations with
hidden states with the two most commonly used algorithms:

•	 Generative hidden Markov model (HMM) to maximize p(X,Y)
•	 Discriminative conditional random field (CRF) to maximize log p(Y|X)

HMM is a special form of Bayes Network and requires the observations to be
independent. Under these circumstances, the HMM is fairly easy to estimate,
which is not the case for CRF.

You learned how to implement three dynamic programming techniques, Viterbi,
Baum-Welch, and alpha/beta algorithms in Scala. These algorithms are routinely
used to solve optimization problems and should be an essential component of your
algorithmic toolbox.

Kernel Models and Support
Vector Machines

This chapter introduces kernel functions, binary support vectors classifiers, one-class
support vector machines for anomaly detection, and support vector regression.

In the Binomial classification section of Chapter 6, Regression and Regularization, you
learned the concept of hyperplanes used to segregate observations from the training
set and estimate the linear decision boundary. The logistic regression has at least one
limitation: it requires that the datasets are linearly separated using a defined function
(sigmoid). This limitation is especially an issue for high-dimension problems (large
number of features that are highly nonlinearly dependent). Support vector machines
(SVMs) overcome this limitation by estimating the optimal separating hyperplane
using kernel functions.

In this chapter, you will discover the following topics:

•	 The impact of some of the SVM configuration parameters and the kernel
method on the accuracy of the classification

•	 How to apply the binary support vector classifier to estimate the risk for a
public company to curtail or eliminate its dividend

•	 How the support vector regression compares to the linear regression

Support vector machines are formulated as a convex optimization problem. Therefore,
the mathematical foundation of these algorithms is described for reference.

Kernel Models and Support Vector Machines

[252]

Kernel functions
Every machine learning model introduced in this book so far assumes that
observations are represented by a feature vector of a fixed size. However, some
real-world applications such as text mining or genomics do not lend themselves
to this restriction. The critical element of the process of classification is to define a
similarity or a distance between two observations. Kernel functions allow developers
to compute the similarity between observations without the need to encode them in
feature vectors [8:1].

Overview
The concept of kernel methods may be a bit odd at first to a novice. It is usually
better understood by using a concrete example. Let's consider the example of the
classification of proteins. Proteins have different lengths and composition, but it
does not prevent scientists from classifying them [8:2].

Proteins:
Proteins are polymers of amino acids joined together by peptide bonds.
They are composed of a carbon atom bonded to a hydrogen atom,
another amino acid, or a carboxyl group.

A protein is represented using a traditional molecular notation to which biochemists
are familiar. Geneticists describe proteins in terms of a sequence of characters known
as the protein sequence annotation. The sequence annotation encodes the structure
and composition of the protein. The following picture illustrates the molecular (left)
and encoded (right) representation of a protein:

Sequence annotation of a protein

Chapter 8

[253]

The classification and the clustering of a set of proteins require the definition of a
similarity factor or distance used to evaluate and compare the proteins. For example,
the similarity between three proteins can be defined as a normalized dot product of
their sequence annotation:

Similarity between the sequence annotations of three proteins

You do not have to represent the entire sequence annotation of the proteins as a
feature vector in order to establish that they belong to the same class. You only need
to compare each element of each sequence, one by one, and compute the similarity.
For the same reason, the estimation of the similarity does not require the two
proteins to have the same length.

In this example, we do not have to assign a numerical value to each element of the
annotation. Let's represent an element of the protein annotation as its character c
and position p (for example: K, 4). The dot product of the two protein annotations x
and x' of the respective lengths n and n' can be defined as the number of identical
elements (character and position) between the two annotations divided by the
maximum length between the two annotations:

() () () ()' ' '
1

1' ' ' max , '
mx

cp c p
i

sim x x c c p p mx n n
mx =

= = ∩ = =∑

The computation of the similarity for the three proteins produces the result as
sim(x,x')=6/12 = 0.50, sim(x,x'')=3/13 =0.23, sim(x',x'')= 4/13= 0.31.

Another similar aspect is that the similarity of two identical annotations is 1.0 and
the similarity of two completely different annotations is 0.0.

Kernel Models and Support Vector Machines

[254]

Visualization of similarity:
It is usually more convenient to use a radial representation to
visualize the similarity between features, as in the example of
proteins' annotations. The distance d(x,x') = 1/sim(x,x') is visualized
as the angle or cosine between two features. The cosine metric is
commonly used in text mining.

In this example, the similarity is known as a kernel function in the space of the
sequence annotation of proteins.

Common discriminative kernels
Although the measure of similarity is very useful to understand the concept
of a kernel function, kernels have a broader definition. A kernel K(x, x') is a
symmetric, non-negative real function that takes two real arguments (values
of two features). There are many different types of kernel functions, among
which the most common are:

•	 The linear kernel (dot product): This is useful in the case of very
high-dimensional data where problems can be expressed as a linear
combination of the original features

•	 The polynomial kernel: This extends the linear kernel for a combination of
features that are not completely linear

•	 The radial basis function (RBF): This is the most commonly applied kernel.
It is appropriate where the labeled or target data is noisy and requires some
level of regularization

•	 The sigmoid kernel: This is used in conjunction with neural networks
•	 The laplacian kernel: This is a variant of RBF with a higher regularization

impact on training data
•	 The log kernel: This is used in image processing

RBF terminology
In this presentation and the library used in its implementation,
the radial basis function is a synonym to the Gaussian kernel
function. However, RBF also refers to the family of exponential
kernel functions that encompasses Gaussian, Laplacian, and
exponential functions.

Chapter 8

[255]

The simple linear model for regression consists of the dot product of the regression
parameters (weights) and the input data (refer to the Ordinary least squares (OLS)
regression section of Chapter 6, Regression and Regularization).

The model is in fact the linear combination of weights and linear combination of
inputs. The concept can be extended by defining a general regression model as the
linear combination of nonlinear functions, known as basis functions:

() ()0
1

| : R R
D

d d d
d

f x w w w xφ φ
=

= + →∑

The most commonly used basis functions are the power and Gaussian functions.
The kernel function is described as the dot product of the two vectors of the basis
function φ(x).φ(x') of two features vector x and x'. A partial list of kernel methods is
as follows:

The generic kernel:

() () () () ()
1

, ' ' '
D

d d
d

K x x x x x xφ φ φ φ
=

= ⋅ =∑

The linear kernel:

()
1

, ' ' '
D

T
i i

d
K x x x x x x

=

= = ⋅∑
The polynomial kernel with the slope γ, degree n, and constant c:

() (), ' ' 0, 0
nTK x x x x c cγ γ= + > ≤

The sigmoid kernel with the slope γ and constant c:

() (), ' tanh ' 0, 0TK x x x x c cγ γ= + > ≤

The radial basis function kernel with the slope γ:

()
2', ' 0x xK x x e γ γ− −= >

The laplacian kernel with the slope γ:

() ', ' 0x xK x x e γ γ− −= >

The log kernel with the degree n:

() (), ' log 1 ' nK x x x x= − + −

Kernel Models and Support Vector Machines

[256]

The list of discriminative kernel functions described earlier is just a subset of the
kernel methods universe. Other types of kernels include:

•	 Probabilistic kernels: These are kernels derived from generative models.
Probabilistic models such as Gaussian processes can be used as a kernel
function [8:3].

•	 Smoothing kernels: This is the nonparametric formulation, averaging
density with the nearest neighbor observations [8:4].

•	 Reproducible Kernel Hilbert Spaces: This is the dot product of finite or
infinite basis functions [8:5].

The kernel functions play a very important role in support vector machines for
nonlinear problems.

The support vector machine (SVM)
A support vector machine (SVM) is a linear discriminative classifier that attempts
to maximize the margin between classes during training. This approach is similar to
the definition of a hyperplane through the training of the logistic regression (refer to
the Binomial classification section of Chapter 6, Regularization and Regression). The main
difference is that the support vector machine computes the optimum separating
hyperplane between groups or classes of observations. The hyperplane is indeed the
equation that represents the model generated through training.

The quality of the SVM depends on the distance, known as margin, between the
different classes of observations. The accuracy of the classifier increases as the
margin increases.

The linear SVM
First, let's apply the support vector machine to extract a linear model (classifier or
regression) for a labeled set of observations. There are two scenarios for defining a
linear model. The labeled observations are as follows:

•	 Naturally segregated in the features space (the separable case)
•	 Intermingled with overlap (the nonseparable case)

It is easy to understand the concept of an optimal separating hyperplane in cases the
observations are naturally segregated.

Chapter 8

[257]

The separable case (hard margin)
The concept of separating a training set of observations with a hyperplane is better
explained with a 2-dimensional (x, y) set of observations with two classes, C1 and C2.
The label y has the value -1 or +1.

The equation for the separating hyperplane is defined by the linear equation,
y=w.xT+w0, which sits in the midpoint between the boundary data points for class
C1 (H1: w.xT + w0 + 1=0) and class C2 (H2: w.xT + w0 - 1). The planes H1 and H2 are the
support vectors:

Support vector machine – separable case

In the separable case, the support vectors fully segregate the observations into two
distinct classes. The margin between the two support vectors is the same for all the
observations and is known as the hard margin.

Support vectors equation w is represented as:

()0 1T
iy w x w i+ ≥ ∀

Hard margin optimization problem is given by:

()0,
min 1

2o

T
T

iw w

w w subject to y w x w i
 

+ ≥ ∀ 
 

Kernel Models and Support Vector Machines

[258]

The nonseparable case (soft margin)
In the nonseparable case, the support vectors cannot completely segregate
observations through training. They merely become linear functions that penalize
the few observations or outliers that are located outside (or beyond) their respective
support vector, H1 or H2. The penalty variable ξ, also known as the slack variable,
increases if the outlier is further away from the support vector:

A support vector machine – the nonseparable case

The observations that belong to the appropriate (or own) class do not have to be
penalized. The condition is similar to the hard margin, which means that the slack
ξ is null. Observations that belong to the class but located beyond its support vector
are penalized; the slack ξ increases as the observations get closer to the support
vector of the other class and beyond. The margin is then known as a soft margin
because the separating hyperplane is enforced through a slack variable.

Optimization of the soft-margin for a linear SVM with C formulation:

()

1

, 0

0

min
2

0, 1

T n

iw i

T
i i

w w c

y w x w i

ξ
ξ

ξ ξ

−

=

 
+ 

 

≥ + ≥ − ∀

∑

C is the penalty (or inversed regularization) factor.

Chapter 8

[259]

You may wonder how the minimization of the margin error is related to the loss
function and the penalization factor introduced for the ridge regression (refer to the
Numerical optimization section of Chapter 6, Regularization and Regression). The second
factor in the formula corresponds to the ubiquitous loss function. You will certainly
recognize the first term as the L2 regularization penalty with λ=1/2C.

The problem can be reformulated as the minimization of a function known as the
primal problem [8:6].

Primal problem formulation of the support vector classifier:

()
0

1

0,w 0
min 1

2

T n
T

i i iw i

w w c L L y w x w
−

=

 
+ = − + 

 
∑

The C penalty factor can be thought of as the inverse of the L2 regularization factor.
The loss function L is then known as the hinge loss. The formulation of the margin
using the C penalty (or cost) parameter is known as the C-SVM formulation. C-SVM
is sometimes called the C-Epsilon SVM formulation for the nonseparable case.

The υ-SVM (or Nu-SVM) is an alternative formulation to the C-SVM. The
formulation is more descriptive than C-SVM; υ represents the upper bound of
the training observations that are poorly classified and the lower bound of the
observations on the support vectors [8:7].

υ-SVM formulation of a linear SVM:

()

1

, , 0

0

1min
2

0,

T n

iw p i

T
i i i

w w p
un

y w x w p i

ξ
ξ

ξ ξ

−

=

 
− 

 

≥ + ≥ − ∀

∑

Here, ρ is a margin factor used as a optimization variable.

The C-SVM formulation is used throughout the chapters for the binary, one class
support vector classifier as well as the support vector regression.

Sequential Minimal Optimization
The optimization problem consists of the minimization of a quadratic
objective function (w2) subject to N linear constraints, N being the number
of observations. The time complexity of the algorithm is O(N3). A more
efficient algorithm, known as Sequential Minimal Optimization (SMO)
has been introduced to reduce the time complexity to O(N2).

Kernel Models and Support Vector Machines

[260]

The nonlinear SVM
So far, it has been assumed that the separating hyperplane, and therefore, the
support vectors, are linear functions. Unfortunately, such assumptions are not
always correct in the real world.

Max-margin classification
Support vector machines are known as large or maximum margin classifiers.
The objective is to maximize the margin between the support vectors with hard
constraints for separable (similarly, soft constraints with slack variables for
nonseparable) cases.

The model parameters {wi} are rescaled during optimization to guarantee that
the margin is at least 1. Such algorithms are known as maximum (or large)
margin classifiers.

The problem of fitting a nonlinear model into the labeled observations using support
vectors is not an easy task. A better alternative consists of mapping the problem to
a new, higher dimensional space using a nonlinear transformation. The nonlinear
separating hyperplane becomes a linear plane in the new space, as illustrated in the
following diagram:

Illustration of the Kernel trick in an SVM

The nonlinear SVM is implemented using a basis function, ϕ(x). The formulation
of the nonlinear C-SVM is very similar to the linear case. The only difference is the
constraint along the support vector, using the basis function, φ:

()()0 1 0T
i i iy w x w iφ ξ ξ+ ≥ − ≥ ∀

Chapter 8

[261]

The minimization of wT.ϕ(x) in the preceding equation requires the computation of
the inner product ϕ(x)T.ϕ(x). The inner product of the basis functions is implemented
using one of the kernel functions introduced in the first section. The optimization of
the preceding convex problem computes the optimal hyperplane w* as the kernelized
linear combination of the training samples, y.ϕ(x), and Lagrange multipliers. This
formulation of the optimization problem is known as the SVM dual problem. The
description of the dual problem is mentioned as a reference and is well beyond the
scope of this book [8:8].

Optimal hyperplane for the SVM dual problem:

()
1

*

0

n

i i i
i

w y xα φ
−

=

=∑
Hard margin formulation for the SVM dual problem:

()() ()

() () ()

1

0 0
0

,

, 1
n

T
i i i i i

i

i i

y w x w y y K x x w

K x x x x i

φ α

φ φ

−

=

 ⋅ + = + ≥ 
 

= ∀

∑

The kernel trick
The transformation (x,x') => K(x,x') maps a nonlinear problem into a linear problem
in a higher dimensional space. It is known as the kernel trick.

Let's consider, for example, the polynomial kernel defined in the first section with a
degree d=2 and coefficient of C0=1 in a two-dimension space. The polynomial kernel
function on two vectors, x=[x1, x2] and z=[x'1, x'2], is decomposed into a linear function
in a dimension 6 space:

() ()
() ()

() () () () () ()
() () () ()

2

2 2' ' ' ' ' '
1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 3 3

2
2 2 1 3 2 4 1

, ' 1 '

1 2 2 2

' ' '

1, 2 , 2 ,

TK x x x x

x x x x x x x x x x x x

x x x x x x

x x x x x x x

φ φ φ φ φ φ

φ φ φ φ

= +

= + + + + +

= ⋅ + ⋅ + ⋅ +

= = = =

L

L

Kernel Models and Support Vector Machines

[262]

Support vector classifier (SVC)
Support vector machines can be applied to classification, anomalies detection, and
regression problems. Let's dive into the support vector classifiers first.

The binary SVC
The first classifier to be evaluated is the binary (2-class) support vector classifier.
The implementation uses the LIBSVM library created by Chih-Chung Chang and
Chih-Jen Lin from the National Taiwan University [8:9].

LIBSVM
The library was originally written in C and ported to Java. It can be downloaded
from http://www.csie.ntu.edu.tw/~cjlin/libsvm as a .zip or tar.gzip file.
The library includes the following classifier modes:

•	 Support vector classifiers (C-SVC, υ-SVC, and one-class SVC)
•	 Support vector regression (υ-SVR and ε-SVR)
•	 RBF, linear, sigmoid, polynomial, and precomputed kernels

LIBSVM has the distinct advantage of using Sequential Minimal Optimization
(SMO), which reduces the time complexity of a training of n observations to O(n2).
LIBSVM documentation covers both the theory and implementation of hard and soft
margins and is available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/
guide.pdf.

Why LIBSVM?
There are alternatives to the LIBSVM library for learning and
experimenting with SVM. David Soergel from the University of
Berkeley refactored and optimized the Java version [8:10]. Thorsten
Joachims' SVMLight [8:11] Spark/MLlib 1.0 includes two Scala
implementations of SVM using resilient distributed datasets (refer to
the Apache Spark section of Chapter 12, Scalable Frameworks). However,
LIBSVM is the most commonly used SVM library.

The implementation of the different support vector classifiers and the support vector
regression in LIBSVM is broken down into the following five Java classes:

•	 svm_model: This defines the parameters of the model created during training
•	 svm_node: This models the element of the sparse matrix Q, used in the

maximization of the margins

Chapter 8

[263]

•	 svm_parameters: This contains the different models for support vector
classifiers and regressions, the five kernels supported in LIBSVM with
their parameters, and the weights vectors used in cross-validation

•	 svm_problem: This configures the input to any of the SVM algorithm (number
of observations, input vector data x as a matrix, and the vector of labels y)

•	 svm: This implements algorithms used in training, classification, and regression

The library also includes template programs for training, prediction, and
normalization of datasets.

The LIBSVM Java code
The Java version of LIBSVM is a direct port of the original C code.
It does not support generic types and is not easily configurable
(the code uses switch statements instead of polymorphism). For
all its limitations, LIBSVM is a fairly well-tested and robust Java
library for SVM.

Let's create a Scala wrapper to the LIBSVM library to improve its flexibility and ease
of use.

Software design
The implementation of the support vector machine algorithm uses the design
template for classifiers (refer to the Design template for classifier section in Appendix A,
Basic Concepts).

The key components of the implementation of an SVM are as follows:

•	 A model SVMModel of the type Model, which is initialized through training
during the instantiation of the classifier. The model class is an adapter to the
svm_model structure defined in LIBSVM.

•	 A predictive or classification routine is implemented as a data transformation
extending the PipeOperator trait.

•	 The support vector machine class SVM has three parameters: the configuration
wrapper of the type SVMConfig, the features/time series of the type
XTSeries, and the target or labeled values DblVector.

•	 The configuration (the type SVMConfig) consists of three distinct elements:
SVMExecution that defines the execution parameters such as maximum
number of iterations or convergence criteria, SVMKernel that specifies the
kernel function used during training, and SVMFormulation that defines
the formula (C, epsilon, or nu) used to compute a nonseparable case for
the support vector classifier and regression.

Kernel Models and Support Vector Machines

[264]

The key software components of the support vector machine are described in the
following UML class diagram:

Configuration parameters
LIBSVM exposes a large number of parameters for the configuration and execution
of any of the SVM algorithms. Any SVM algorithm is configured with three
categories of parameters, which are as follows:

•	 Formulation (or type) of the SVM algorithms (multiclass classifier, one-class
classifier, regression, and so on) using the SVMFormulation class

•	 The kernel function used in the algorithm (the RBF kernel, Sigmoid kernel,
and so on) using the SVMKernel class

•	 Training and execution parameters (convergence criteria, number of folds for
cross-validation, and so on) using the SVMExecution class

SVM Formulation
The instantiation of the configuration consists of initializing the LIBSVM parameter,
param, by the SVM type, kernel, and the execution context selected by the user.

Each of the SVM parameters case class extends the generic trait, SVMConfigItem:

trait SVMConfigItem { def update(param: svm_parameter): Unit }

The classes inherited from SVMConfigItem are responsible for updating the list of
the SVM parameters, svm_parameter, defined in LIBSVM. The update method
encapsulates the configuration of the LIBSVM.

Chapter 8

[265]

The formulation of the SVM algorithm is defined by classes implementing the
SVMFormulation trait:

sealed trait SVMFormulation extends SVMConfigItem {
 def update(param: svm_parameter): Unit
}

The list of formulation for the SVM (C, nu, and eps for regression) is completely
defined and known. Therefore, the hierarchy should not be altered and the
SVMFormulation trait has to be declared sealed. Here is an example of the SVM
formulation class, CSVCFormulation, which defines the C-SVM model:

class CSVCFormulation (c: Double) extends SVMFormulation {
 override def update(param: svm_parameter): Unit = {
 param.svm_type = svm_parameter.C_SVC
 param.C = c
 }
}

The other SVM formulation classes, NuSVCFormulation, OneSVCFormulation,
and SVRFormulation, implement the υ-SVM, 1-SVM, and ε-SVM respectively
for regression models.

The SVM kernel function
Next, you need to specify the kernel functions by defining and implementing the
SVMKernel trait:

sealed trait SVMKernel extends SVMConfigItem {
 def update(param: svm_parameter): Unit
}

Once again, there are a limited number of kernel functions supported in LIBSVM.
Therefore, the hierarchy of kernel functions is sealed. The following code snippet
configures the radius basis function kernel, RbfKernel, as an example of definition
of the kernel definition class:

class RbfKernel(gamma: Double) extends SVMKernel {
 override def update(param: svm_parameter): Unit = {
 param.kernel_type = svm_parameter.RBF
 param.gamma = gamma
…

Kernel Models and Support Vector Machines

[266]

The fact that the LIBSVM Java byte code library is not very extensible does not
prevent you from defining a new kernel function in the LIBSVM source code.
For example, the Laplacian kernel can be added with the following steps:

1.	 Create a new kernel type in svm_parameter, such as svm_parameter.
LAPLACE = 5.

2.	 Add the kernel function name to kernel_type_table in the svm class.
3.	 Add kernel_type != svm_parameter.LAPLACE to the svm_check_

parameter method.
4.	 Add the implementation of the kernel function for two values in svm.

kernel_function (java code):
case svm_parameter.LAPLACE:
 double sum = 0.0;
 for(int k = 0; k < x[i].length; k++) {
 final double diff = x[i][k].value - x[j][k].value;
 sum += diff*diff;
 }
 return Math.exp(-gamma*Math.sqrt(sum));

5.	 Add the implementation of the Laplace kernel function in the svm.k_function
method by modifying the existing implementation of RBF (distanceSqr).

6.	 Rebuild the libsvm.jar file

SVM execution
The SVMExecution class defines the configuration parameters for the execution
of the training of the model, namely, the convergence factor, eps for the optimizer,
the size of the cache cacheSize, and the number of folds, nFolds used during
cross-validation:

class SVMExecution(cacheSize: Int, eps: Double, nFolds: Int) extends
SVMConfigItem {
 override def update(param: svm_parameter): Unit = {
 param.cache_size = cacheSize
 param.eps = eps
 }
}

The cross-validation is performed only if the nFolds value is greater than 1.

Chapter 8

[267]

SVM implementation
We are finally ready to create the configuration class, SVMConfig, which hides and
manages all of the different configuration parameters:

class SVMConfig(formula: SVMFormulation, kernel: SVMKernel,exec:
SVMExecution) {
 val param = new svm_parameter
 formula.update(param)
 kernel.update(param)
 exec.update(param)
}

The instantiation of SVMConfig initialized the internal LIBSVM list of configuration
parameters through a sequence of update calls.

Next, let's implement the first support vector classifier for the two-class problems.
As with any other data transformation, the parameterized class SVM implements the
PipeOperator, as follows:

class SVM[T <% Double](config: SVMConfig, xt: XTSeries[Array[T]],
labels: DblVector) extends PipeOperator[Array[T], Double] {
 type Feature = Array[T]
 type SVMNodes = Array[Array[svm_node]]

This class has the same parameters as other classifiers presented in the previous
chapters: a configuration, config, an input time series, xt, and labeled data, labels.
The types are added for convenience. The internal types, Feature and SVMNodes, are
added for convenience.

The LIBSVIM type, svm_node, is the indexed value of an element of the feature
vector in a particular observation:

public class svm_node implements java.io.Serializable {
 public int index;
 public double value;
}

The type SVMNodes defined in the scope of SVM class is the representation of
a two-dimensional array of features vector elements by observations. The next
step is to implement the training procedure. The training is executed during the
instantiation of the SVM class. The SVM model, SVMModel, is defined as a tuple or
pair (svmmodel, accuracy) with the following:

•	 The svmmodel is the model defined in LIBSVM
•	 accuracy computed during an N-folds cross-validation if the number of

folds, nFolds, has been set as one of the parameters of SVMExecution

Kernel Models and Support Vector Machines

[268]

Consider the following code:

class SVMModel(val svmmodel: svm_model, val accuracy: Double) extends
Model

The instantiation of SVC is hidden from the client code. It is executed during the
instantiation of the class, so a client code does not have to be aware of the LIBSVM
types. Consider the following code:

val model: Option[SVMModel] = {
 val problem = new svm_problem //1
 problem.l = xt.size;
 problem.y = labels
 problem.x = new SVMNodes(xt.size)

 val dim = dimension(xt)
 xt.zipWithIndex.foreach(xt_i => { //2
 val svm_col = new Array[svm_node](dim)
 xt_i._1.zipWithIndex
 .foreach(xi => {
 val node = new svm_node
 node.index= xi._2
 node.value = xi._1
 svm_col(xi._2) = node
 })
 problem.x(xt_i._2) = svm_col
 })
 Some(svm.svm_train(problem, config.param, accuracy(problem))//3
}

The first step in the creation of the model is to define the SVM problem, problem,
in the context of LIBSVM (line 1): length of the time series, labeled data, and input
observations. The time series has to be converted into the LIBSVM internal class,
svm_nodes (line 2), to complete the initialization of the problem. The Scala method,
zipWithIndex, is used to access the index of each observation (time series entry).
Finally, the model and the computed accuracy are returned as a tuple (line 3) after
processing by the svm_train training method.

Chapter 8

[269]

The accuracy is the ratio of true positive plus the true negative over the size of the
test sample (refer to the Key metrics section of Chapter 2, Hello World!). It is computed
through cross-validation only if the number of folds is initialized in the SVMExecution
configuration class as greater than 1. Practically, the accuracy is computed by
invoking the cross-validation method, svm_cross_validation, in the LIBSVM
package, and then computing the ratio of the number of predicted values that match
the labels over the total number of observations. Here is the essential part of the
implementation of accuracy(problem: svm_problem):

val target = new Array[Double](labels.size)
svm.svm_cross_validation(problem, config.param, config.exec.nFolds,
target)
val rawAccuracy = target.zip(labels)
 .filter(z => Math.abs(z._1-z._2) < config.eps)
rawAccuracy.size.toDouble/labels.size

The Scala filter weeds out the observations that were poorly predicted.
This minimalist implementation is good enough to start exploring the support
vector classifier.

C-penalty and margin
The first evaluation consists of understanding the impact of the penalty factor C to
the margin in the generation of the classes. Let's implement the computation of the
margin. The margin is defined as 2/||w|| and implemented as a method of the SVC
class, as follows:

def margin: Option[Double] = model match {
 case Some(m) => {
 val wNorm = m.svmmodel.sv_coef(0)
 .foldLeft(0.0)((s, r) => s + r*r) //1
 if(wNorm < config.eps) None
 else Some(2.0/Math.sqrt(wNorm)) //2
 }
 …
}

The first instruction (line 1) computes the sum of the squares, wNorm, of the residuals
r = y – f(x|w). The margin (line 2) is ultimately computed if the sum of squares is
significant enough to avoid rounding errors.

Kernel Models and Support Vector Machines

[270]

The margin is evaluated using an artificially generated time series and labeled data.
First, we define the method to evaluate the margin for a specific value of the penalty
(inversed regularization) factor C:

def evalMargin(observations: DblMatrix, labels: DblVector, c: Double):
Unit = {
 val config = SVMConfig(CSVCFormulation(c), RbfKernel(GAMMA)) //3
 val xt = XTSeries[DblVector](observations)
 val svc = SVM[Double](config, xt, labels)
 svc.margin match {
case Some(margin) => Display.show("Margin $margin", logger)
…

This test uses the default execution parameters, cache_size= 25000 and eps=1e-15.
Therefore, the 3rd value of SVMConfig, exec, is not specified in the SVMConfig.
apply constructor (line 3).The method is invoked iteratively to evaluate the impact
of the penalty factor on the margin extracted from the training of the model. The test
uses a synthetic time series to highlight the relation between C and the margin. The
synthetic time series consists of the following two training sets of an equal size, N:

•	 First training set: data points generated as y = x(1 + r/5) for the label 1, r
being a randomly generated number over the range [0,1]

•	 Second training set: randomly generated data point y = r for the label of -1

Consider the following code:

def generate: (DblMatrix, DblVector) = {
 val z = Array.tabulate(N)(i =>
 Array[Double](i, i*(1.0 + 0.2*Random.nextDouble))
) ++
 Array.tabulate(N)(i =>Array[Double](i, i*Random.nextDouble))
 (z, Array.fill(N)(1.0) ++ Array.fill(N)(-1.0))
}

The evalMargin method is executed for a predefined value of gamma and the value
C ranging from 0 to 5:

val gamma =0.8; val N = 100
val values = generate
Range(0, 50).foreach(i =>evalMargin(values._1, values._2, i*0.1))

Chapter 8

[271]

val vs. final val
There is a difference between a val and a final val. A nonfinal value
can be overridden in a subclass. Overriding a final value produces a
compiler error, as follows:

class A {val x = 5; final val y = 8 }
class B extends A {
 override val x = 9 // OK
 override val y = 10 // Error

}

The following chart illustrates the relation between the penalty, or cost factor, C and
the margin:

The margin value versus C-penalty for an SVC

As expected, the value of the margin decreases as the penalty term C increases. The
C penalty factor is related to the L2 regularization factor λ as C ~ 1/λ. A model with
a large value of C has a high variance and a low bias, while a small value of C will
produce lower variance and a higher bias.

Optimizing C-penalty
The optimal value for C is usually evaluated through cross-validation,
by varying C in incremental powers of 2: 2n, 2n+1 … [8:12].

Kernel Models and Support Vector Machines

[272]

Kernel evaluation
The next test consists of comparing the impact of the kernel function on the accuracy
of the prediction. Once again, a synthetic time series is generated to highlight the
contribution of each kernel.

First, the prediction method for the SVM class is implemented by overriding the pipe
operator data transformation, |>:

def |> : PartialFunction[Feature, Double] = {
 case x: Feature if(x != null && x.size==dimension(xt) && model
 != None && model.get.accuracy >= 0.0) =>
 svm.svm_predict(model.get.svmmodel, toNodes(x))
}

The prediction model relies on the svm_predict LIBSVM to compute the output
value. It takes two parameters: svmmodel and an array of svm_nodes (line 1). The
conversion of a feature from the type DblVector to an array of the svm_nodes
LIBSVM is performed by the toNodes method:

def toNodes(x: Feature): Array[svm_node] =
 x.zipWithIndex
 .foldLeft(new ArrayBuffer[svm_node])((xs, f) => { //2
 val node = new svm_node
 node.index = f._2
 node.value = f._1
 xs.append(node)
 xs
 }).toArray

A fold is used to construct the array of svm_nodes from the feature vector, x. The
nodes (elements of the sparse matrix of the svm_node LIBSVM) are generated from
the new observation x (line 1). The model extracted from the training of the model
(instantiation of SVM) and the sparse matrix nodes are the input to the LIBSVM
predictor, svm_predict (line 2).

The predictor is used by the test code for evaluating the different kernel functions.
Let's create a method to evaluate and compare these kernel functions. All we need
is the following:

•	 A training set, observations, by features of the type DblMatrix
•	 A test set, test, of the type DblMatrix
•	 A set of labels for the training set, taking the value 0 or 1
•	 A kernel function kF

Chapter 8

[273]

Consider the following code:

def evalKernel(features: DblMatrix, test: DblMatrix, labels:
DblVector, kF: SVMKernel): Double = {
 val config = SVMConfig(new CSVCFormulation(C), kF) //3
 val xt = XTSeries[DblVector](features)
 val svc = SVM[Double](config, xt, labels) //4
 val successes = test.zip(labels)
 .count(tl => {
 Try((svc |> tl._1) == tl._2)
 match { case Success(n) => true
 case Failure(e) => false }
 })
 successes.toDouble/test.size //6
}

The support vector classifier, svc, is configured with the default execution parameters
and the C-formulation (line 3), and trained (instantiated) with the observed features,
xt and the output, labels (line 4).

Once trained, svc is used to predict the value for a test sample extracted from
the original dataset (line 5). Finally, the number of successful test observations is
counted and the accuracy is computed as the ratio of the successful prediction over
the size of the test sample (line 6).

In order to compare the different kernels, let's generate three datasets of the
size 2N for a binomial classification using the following random generator,
y = variance*x – mean:

def genData(variance: Double, mean: Double): DblMatrix =
 val adjVariance1 = variance*Random.nextDouble - mean
 val adjVariance2 = variance*Random.nextDouble - mean
 Array.fill(N)(Array[Double](adjVariance, adjVariance2))
}

A training set is then created as the aggregate of two classes of data points:

•	 Random data points (x,y) with variance a and mean 1-b with label 0.0
•	 Random data points with variance a and mean b-1 with label 1.0

Consider the following code

val trainingSet = genData(a,b) ++ genData(a,1-b)
val labels = Array.fill(N)(0.0) ++ Array.fill(N)(1.0)

Kernel Models and Support Vector Machines

[274]

The parameters a and b are selected from two groups of training data points with
various degree of separation to illustrate the separating hyperplane.

The following chart describes the high margin; the first training set generated with
the parameters a = 0.6 and b = 0.3 illustrates the highly separable classes with a
clean and distinct hyperplane:

The following chart describes the medium margin; the parameters a = 0.8 and
b = 0.3 generate two groups of observations with some overlap:

Chapter 8

[275]

The following chart describes the low margin; the two groups of observations in this
last training are generated with a = 1.4 and b = 0.3 and show a significant overlap:

The test set is generated in a similar fashion as the training set, as they are extracted
from the same data source:

val EPS = 0.0001; val C = 1.0; val GAMMA = 0.8
val N = 100; val COEF0 = 0.5; val DEGREE = 2

val a = 1.4; val b = 0.3 //3 sets of values
val trainSet = genData(a, b) ++ genData(a, 1-b)
val testSet = genData(a, b) ++ genData(a, 1-b)
val labels = Array.fill(N)(0.0) ++ Array.fill(N)(1.0)

val result =
 evalKernel(trainSet,testSet, labels, RbfKernel(GAMMA)) ::
 evalKernel(trainSet,testSet, labels, SigmoidKernel(GAMMA)) ::
 evalKernel(trainSet,testSet, labels, LinearKernel) ::
 evalKernel(trainSet,testSet, labels, PolynomialKernel(GAMMA, COEF0,
DEGREE)) :: List[Double]()

The value of the kernel function parameters are arbitrary selected from text books.
The evalKernel method defined earlier is applied to the three training sets: high
margin (a = 1.4), medium margin (a = 0.8), and low margin (a = 0.6) with
each of the four kernels (RBF, sigmoid, linear, and polynomial).

Kernel Models and Support Vector Machines

[276]

The accuracy is assessed by counting the number of observations correctly classified
for all of the classes for each invocation of the predictor, |>:

Comparative chart of kernel functions

Although the different kernel functions do not differ in terms of the impact on the
accuracy of the classifier, you can observe that the RBF and polynomial kernels
produce slightly more accurate results. As expected, the accuracy decreases as
the margin decreases. A decreasing margin is a sign that the cases are not easily
separable, affecting the accuracy of the classifier:

Chapter 8

[277]

Test case design
The test to compare the different kernel methods is highly
dependent on the distribution or mixture of data in the training
and test sets. The synthetic generation of data in this test case is
used for the purpose of illustrating the margin between classes of
observations. Real-world datasets may produce different results.

In summary, there are four steps in creating a SVC-based model:

1.	 Select a features set.
2.	 Select the C-penalty (inverse regularization).
3.	 Select the kernel function.
4.	 Tune the kernel parameters.

As mentioned earlier, this test case relies on synthetic data to illustrate the concept
of margin and compare kernel methods. Let's use the support vector classifier for
a real-world financial application.

Application to risk analysis
The purpose of the test case is to evaluate the risk for a company to curtail or
eliminate its quarterly or yearly dividend. The features selected are financial
metrics relevant to a company's ability to generate cash flow and pay out its
dividends over the long term.

Features and labels
We need to select any subset of the following financial technical analysis metrics
(refer to the Terminology section in Appendix A, Basic Concepts):

•	 Relative change in stock prices over the last 12 months
•	 Long-term debt-equity ratio
•	 Dividend coverage ratio
•	 Annual dividend yield
•	 Operating profit margin
•	 Short interest (ratio of shares shorted over the float)
•	 Cash per share-share price ratio
•	 Earnings per share trend

Kernel Models and Support Vector Machines

[278]

The earnings trend has the following values:

•	 -2, if earnings per share decline by more than 15 percent over the last
12 months

•	 -1, if earnings per share decline between 5 percent and 15 percent
•	 0, if earning per share is maintained within 5 percent
•	 +1, if earnings per share increase between 5 percent and 15 percent
•	 +2, if earnings per share increase by more than 15 percent

The features are normalized with values 0 and 1.

The labeled output, dividend changes, is categorized as follows:

•	 -1, if dividend is cut by more than 5 percent
•	 0, if dividend is maintained within 5 percent
•	 +1, if dividend is increased by more than 5 percent

Let's combine two of these three labels {-1, 0, 1} to generate two classes for the
binary SVC:

•	 Class C1 = stable or decreasing dividends and class C2 = increasing dividends;
represented by dividendsA

•	 Class C1 = decreasing dividends and class C2 = stable or increasing dividends;
represented by dividendsB

The different tests are performed with a fixed set of configuration parameters C and
GAMMA and a 2-fold validation configuration:

val path = "resources/data/chap8/dividendsA.csv"
val C = 1.0; val GAMMA = 0.5; val EPS = 1e-3; val NFOLDS = 2

val extractor = relPriceChange :: debtToEquity :: dividendCoverage
 :: cashPerShareToPrice :: epsTrend :: dividendTrend
 :: List[Array[String] =>Double]() //1

Chapter 8

[279]

The components of the extractor are functions that convert a set of fields in the input
.csv file into double floating point values:

val xs = DataSource(path, true, false, 1) |> extractor
val config = SVMConfig(new CSVCFormulation(C),
 RbfKernel(GAMMA),
 SVMExecution(EPS, NFOLDS))
val features = XTSeries.transpose(xs.take(xs.size-1))//2
val svc = SVM[Double](config, features, xs.last)

svc.accuracy match { //3
 case Some(acc) => Display.show(s"Accuracy: $acc", logger)
 case None => { … }
}

The different fields are extracted from the dividendsA.csv file using the DataSource
extractor with a filter (line 1). The purpose of the test A is to create a separating
hyperplane (the predictive model) for dividendsA, that is, companies that cut or
maintained their dividends and the companies that increased their dividends. The last
field in the extractor is the labeled output. The observed features time series is created
from all the fields extracted from the .csv file except the last. The time series has to
be transposed to use the format required by LIBSVM (line 2). Once the support vector
classifier is created, you can retrieve the accuracy of the cross-validation (line 3).

LIBSVM scaling
LIBSVM supports feature normalization known as scaling, prior
to training. The main advantage of scaling is to avoid attributes
in greater numeric ranges dominating those in smaller numeric
ranges. Another advantage is to avoid numerical difficulties
during the calculation. In our examples, we use the normalization
of the time series, XTSeries.normalize. Therefore, the scaling
flag in LIBSVM is disabled.

Kernel Models and Support Vector Machines

[280]

The test is repeated with a different set of features and consists of comparing the
accuracy of the support vector classifier for different features sets. The features
sets are selected from the content of the .csv file by assembling the extractor with
different configurations, as follows:

val extractor = … :: dividendTrend :: List[Array[String] =>Double]()

The test demonstrates that the selection of the proper features set is the most critical
step in applying the support vector machine, and any other model for that matter,
to classification problems. In this particular case, the accuracy is also affected by the
small size of the training set. The increase in the number of features also reduces the
contribution of each specific feature to the loss function.

N-fold cross-validation
The cross-validation in this test example uses only 2 folds because
the number of observations is small, and you want to make sure
that any class contains at least a few observations.

Chapter 8

[281]

The same process is repeated for the test B whose purpose is to classify companies
with decreasing dividends and companies with stable or increasing dividends, as
shown in the following graph:

The difference in terms of accuracy of prediction between the first three features
set and the last two features set in the preceding graph is more pronounced in test
A than test B. In both tests, the feature eps (earning per share) trend improves the
accuracy of the classification. It is a particularly good predictor for companies with
increasing dividends.

The problem of predicting the distribution (or not) dividends can be restated as
evaluating the risk of a company to dramatically reduce its dividends.

What about the risk a company entails to eliminate its dividend altogether? Such
a scenario is rare, and those cases are actually outliers. A one-class support vector
classifier can be used to detect outliers or anomalies [8:13].

Kernel Models and Support Vector Machines

[282]

Anomaly detection with one-class SVC
The design of the one-class SVC is an extension of the binary SVC. The main
difference is that a single class contains most of the baseline (or normal) observations
and the other class is replaced by a reference point known as the SVC origin. The
outliers (or abnormal) observations reside beyond (or outside) the support vector of
the single class:

Illustration of the one-class SVC

The outlier observations have a labeled value of -1, while the remaining training
sets are labeled +1. In order to create a relevant test, we add four more companies
that have drastically cut their dividends (ticker symbols WLT, RGS, MDC, NOK,
and GM). The dataset includes the stock prices and financial metrics recorded prior
to the cut in dividends.

The implementation of this test case is very similar to the binary SVC driver code,
except for the following:

•	 The classifier uses the Nu-SVM formulation, OneSVFormulation
•	 The labeled data is generated by assigning -1 to companies that have

eliminated their dividend and +1 for all other companies

The test is executed against the dataset resources/data/chap8/dividends2.csv.
First, we need to define the formulation for the one-class SVM:

class OneSVCFormulation(nu: Double) extends SVMFormulation {
 override def update(param: svm_parameter): Unit = {
 param.svm_type = svm_parameter.ONE_CLASS
 param.nu = nu
 }
}

Chapter 8

[283]

The test code is similar to the execution code for the binary SVC. The only difference
is the definition of the output labels; -1 for companies eliminating dividends and +1
for all other companies:

val NU = 0.2; val GAMMA = 0.5; val NFOLDS = 2
val path = "resources/data/chap8/dividends2.csv"

val xs = DataSource(path, true, false, 1) |> extractor
val config = SVMConfig(new OneSVCFormulation(NU),
 RbfKernel(GAMMA),
 SVMExecution(EPS, NFOLDS))
val features = XTSeries.transpose(xs.dropRight(1))
val svc = SVM[Double](config, features, xs.last.map(filter (_)))
svc.accuracy match {
 case Some(acc) => Display.show("Accuracy: $acc", logger)
 case None => { … }
}

The test is executed with the following features: relPriceChange, debtToEquity,
dividendCoverage, cashPerShareToPrice, and epsTrend.

The model is generated with the accuracy of 0.821. This level of accuracy should not
be a surprise; the outliers (companies that completely eliminated their dividends) are
added to the original dividend .csv file. These outliers differ significantly from the
baseline observations (companies who have reduced, maintained, or increased their
dividend) in the original input file.

Where the labeled observations are available, the one-class support vector machine is
an excellent alternative to clustering techniques.

Definition of anomaly
The results generated by a one-class support vector classifier depend
heavily on the subjective definition of an outlier. The test case
assumes that the companies that eliminate their dividends have
unique characteristics that set them apart, and are different even from
companies who have cut, maintained, or increased their dividend.
There is no guarantee that this assumption is indeed always valid.

Kernel Models and Support Vector Machines

[284]

Support vector regression (SVR)
Most of the applications using support vector machines are related to classification.
However, the same technique can be applied to regression problems. Luckily, as
with classification, LIBSVM supports two formulations for support vector regression:

•	 ∈-VR (sometimes called C-SVR)
•	 υ-SVR

For the sake of consistency with the two previous cases, the following test uses the ∈
(or C) formulation of the support vector regression.

Overview
The SVR introduces the concept of error insensitive zone and insensitive error, ε.
The insensitive zone defines a range of values around the predictive values, y(x).
The penalization component C does not affect the data point {xi,yi} that belongs to
the insensitive zone [8:14].

The following diagram illustrates the concept of an error insensitive zone, using a
single variable feature x and an output y. In the case of a single variable feature, the
error insensitive zone is a band of width 2ε. Ε is known as the insensitive error. The
insensitive error plays a similar role to the margin in the SVC.

Chapter 8

[285]

For the mathematically inclined, the maximization of the margin for nonlinear
models introduces a pair of slack variables. As you may remember, the C-support
vector classifiers use a single slack variable. The preceding diagram illustrates the
minimization formula.

ε SVR:

()

()

*

1
*

, , 0

*
0

min
2i

T n

i iw i

T
i i i i

w w c

w x w y i

ξ ξ
ξ ξ

ξ φ ε ξ

−

=

 
+ + 

 
−∈− ≤ + − ≤ + ∀

∑

Here, ε is the insensitive error function.
The ε-SVR regression equation:

() ()
1

0
0

ˆ ˆ,
n

i i
i

y x K x x wα
−

=

= +∑

Let's reuse the SVM class to evaluate the capability of the SVR, compared to
the linear regression (refer to the Ordinary least squares (OLS) regression section
of Chapter 6, Regression and Regularization).

SVR versus linear regression
This test consists of reusing the example on single-variate linear regression (refer to
the One-variate linear regression section of Chapter 6, Regression and Regularization). The
purpose is to compare the output of the linear regression with the output of the SVR
for predicting the value of a stock price or an index. We select the S&P 500 exchange
traded fund, SPY, which is a proxy for the S&P 500 index.

The model consists of the following:

•	 One labeled output: SPY-adjusted daily closing price
•	 One single variable feature set: the index of the trading session (or index of

the values SPY)

The implementation follows a familiar pattern:

1.	 Define the configuration parameters for the SVR (the C cost/penalty function,
GAMMA coefficient for the RBF kernel, EPS for the convergence criteria, and
EPSILON for the regression insensitive error).

2.	 Extract the labeled data (the SPY price) from the data source (DataSource),
which is the Yahoo financials CSV-formatted data file.

Kernel Models and Support Vector Machines

[286]

3.	 Create the linear Regression, SingleLinearRegression, with the index
of the trading session as the single variable feature and the SPY-adjusted
closing price as the labeled output.

4.	 Create the observations as a time series of indexes, xt
5.	 Instantiate the SVR with the index of trading session as features, and the SPY

adjusted closing price as the labeled output
6.	 Run the prediction methods for both SVR and the linear regression and

compare the results of the linear regression and SVR
val path = "resources/data/chap8/SPY.csv"
val C = 1; val GAMMA = 0.8; val EPS = 1e-3; val EPSILON = 0.1 //1

val price = DataSource(path, false, true, 1) |> adjClose //2
val priceIdx = price.zipWithIndex
 .map(x => (x._1.toDouble, x._2.toDouble))
val linRg = SingleLinearRegression(priceIdx) //3
val config = SVMConfig(new SVRFormulation(C, EPSILON),
RbfKernel(GAMMA)) //3
val labels = price.toArray

val xt = XTSeries[DblVector](
 Array.tabulate(labels.size)(Array[Double](_))) //4
val svr = SVM[Double](config, xt, labels) //5
collect(svr, linRg, price) //6

The collect method invokes the predictive method for the support vector
regression (line 7) and the linear regression model (line 8), and then buffers
the results along with the original observation, price (line 9).

def collect(svr: SVM_Double,
 lin: SingleLinearRegression[Double],
 price: DblVector): Array[XYTSeries] = {

 val collector = Array.fill(3)(new ArrayBuffer[XY]
 Range(1, price.size-2).foldLeft(collector)((xs, n) => {
 xs(0).append((n, (svr |> n.toDouble).get)) //7
 xs(1).append((n, (lin |> n).get)) //8
 xs(2).append((n, price(n))) //9
 xs
 }).map(_.toArray)
}

The types XY=(Double, Double) and XYTSeries=Array[(Double, Double)] have
already been defined in the Primitive types section of Chapter 1, Getting Started.

Chapter 8

[287]

The results are displayed in the following graph, generated using the JFreeChart
library. The code to plot the data is omitted because it is not essential to the
understanding of the application.

Comparative plot linear regression and SVR

The support vector regression provides a more accurate prediction than the linear
regression model. You can also observe that the L2 regularization term of the SVR
penalizes the data points (the SPY price) with a high deviation from the mean of
the price. A lower value of C will increase the L2-norm penalty factor as λ =1/C.

SVR and L2 regularization
You are invited to run the use case with a different value of C
to quantify the impact of the L2 regularization on the predictive
values of the SVR.

There is no need to compare SVR with the logistic regression as the logistic
regression is a classifier. However, SVM is related to the logistic regression;
the hinge loss in SVM is similar to the loss in the logistic regression [8:15].

Kernel Models and Support Vector Machines

[288]

Performance considerations
You may have already observed that the training of a support vector regression
model on a large data set is time consuming. The performance of the support
vector machine depends on the type of optimizer (for example, sequential minimal
optimization) selected to maximize the margin during training.

•	 A linear model (SVM without kernel) has an asymptotic time complexity
O(N) for training N labeled observations.

•	 Nonlinear models rely on kernel methods formulated as a quadratic
programming problem with an asymptotic time complexity of O(N3)

•	 An algorithm that uses sequential minimal optimization techniques
such as index caching or elimination of null values (as in LIBSVM), has
an asymptotic time complexity of O(N2) with the worst case scenario
(quadratic optimization) of O(N3)

•	 Sparse problems for very large training sets (N > 10,000) also have an
asymptotic time of O(N2)

The time and space complexity of the kernelized support vector machine has been
receiving a great deal of attention [8:16] [8:17].

Summary
This concludes our investigation of kernel and support vector machines. Support
vector machines have become a robust alternative to logistic regression and neural
networks for extracting discriminative models from large training sets.

Apart from the unavoidable references to the mathematical foundation of maximum
margin classifiers such as SVM, you should have developed a basic understanding
of the power and complexity of the tuning and configuration parameters of the
different variants of SVM.

As with other discriminative models, the selection of the optimization method for
SVMs has a critical impact not only on the quality of the model, but also on the
performance (time complexity) of the training and cross-validation process.

The next chapter will describe the third most commonly used discriminative
supervised model—artificial neural networks.

Artificial Neural Networks
The popularity of neural networks surged in the 90s. They were seen as the silver
bullet to a vast number of problems. At its core, a neural network is a nonlinear
statistical model that leverages the logistic regression to create a nonlinear distributed
model. The concept of artificial neural networks is rooted in biology, with the desire
to simulate key functions of the brain and replicate its structure in terms of neurons,
activation, and synapses.

In this chapter, you will move beyond the hype and learn:

•	 The concept and elements of the multilayer perceptron (MLP)
•	 How to train a neural network using error backpropagation
•	 The evaluation and tuning of MLP configuration parameters
•	 Full Scala implementation of the MLP classifier
•	 How to apply MLP to extract correlation models for currency exchange rates

Feed-forward neural networks (FFNN)
The idea behind artificial neural networks was to build mathematical and
computational models of the natural neural network in the brain. After all, the brain is
a very powerful information processing engine that surpasses computers in domains
such as learning, inductive reasoning, prediction and vision, and speech recognition.

Artificial Neural Networks

[290]

The Biological background
In biology, a neural network is composed of groups of neurons interconnected
though synapses [9:1], as shown in the following image:

Neuroscientists have been especially interested in understanding how the billions of
neurons in the brain can interact to provide human beings with parallel processing
capabilities. The 60s saw a new field of study emerging, known as connectionism.
Connectionism marries cognitive psychology, artificial intelligence, and neuroscience.
The goal was to create a model for mental phenomena. Although there are many forms
of connectionism, the neural network models have become the most popular and the
most taught of all connectionism models [9:2].

Biological neurons communicate through electrical charges known as stimuli.
This network of neurons can be represented as a simple schematic, as follows:

Connection

Neuron

layer

Synapse

Chapter 9

[291]

This representation categorizes groups of neurons as layers. The terminology used
to describe the natural neural networks has a corresponding nomenclature for the
artificial neural network.

The biological neural network The artificial neuron network
Axon Connection
Dendrite Connection
Synapse Weight
Potential Weighted sum
Threshold Bias weight
Signal, Stimulus Activation
Group of neurons Layer of neurons

In the biological world, stimuli do not propagate in any specific direction
between neurons. An artificial neural network can have the same degree of
freedom. The artificial neural networks most commonly used by data scientists,
have a predefined direction: from the input layer to output layers. These neural
networks are known as FFNN.

The mathematical background
In the previous chapter, you learned that support vector machines have the ability to
formulate the training of a model as a nonlinear optimization for which the objective
function is convex. A convex objective function is fairly straightforward to implement.
The drawback is that the kernelization of the SVM may result in a large number of
basis functions (or model dimensions). Refer to the The Kernel trick section under The
support vector machine (SVM) in Chapter 8, Kernel Models and Support Vector Machines.

One solution is to reduce the number of basis functions through parameterization, so
these functions can adapt to different training sets. Such an approach can be modeled
as a FFNN, known as the multilayer perceptron [9:3].

Artificial Neural Networks

[292]

The linear regression can be visualized as a simple connectivity model using neurons
and synapses, as follows:

.

.

.

+1

X1

X2

Xn

W0

W1

W2

Wn

Y

A two-layer neural network

The feature x0=+1 is known as the bias input (or bias element), which corresponds to
the intercept in the classic linear regression.

As with support vector machines, linear regression is appropriate for observations
that can be linearly separable. The real world is usually driven by a nonlinear
phenomena. Therefore, the logistic regression is naturally used to compute the
output of the perceptron. For a set of input variable x = {xi}0,n and the weights
w={wi}1,n, the output y is computed as:

() ()0
0

1

1
T

T
w w x

y w w x
e

σ
− +

= + =
+

An FFNN can be regarded as a stack of layers of logistic regression with the output
layer as a linear regression.

The value of the variables in each hidden layer is computed as the sigmoid of the dot
product of the connection weights and the output of the previous layer. Although
interesting, the theory behind artificial neural networks is beyond the scope of this
book [9:4].

Chapter 9

[293]

The multilayer perceptron (MLP)
The perceptron is a basic processing element that performs binary classification by
mapping a scalar or vector to a binary (or XOR) value {true, false} or {-1, +1}. The
original perceptron algorithm was defined as a single layer of neurons for which each
value xi of the feature vector is processed in parallel and generates a single output y.
The perceptron was later extended to encompass the concept of an activation function.

The single layer perceptrons are limited to process a single linear combination
of weights and input values. Scientists found out that adding intermediate
layers between the input and output layers enable them to solve more complex
classification problems. These intermediate layers are known as hidden layers
because they interface only with other perceptrons. Hidden nodes can be accessed
only through the input layer.

From now on, we will use a three-layered perceptron to investigate and illustrate the
properties of neural networks, as shown here:

+1

z1

zm

+1

X1

X2

Xn

...

...
...

Input layer

Hidden layer

Output layer

y0

y1

yp

wij

vij
Synapse

Bias

Neuron

A three-layered perceptron

The three-layered perceptron requires two sets of weights: wij to process the output
of the input layer to the hidden layer and vij between the hidden layer and the output
layer. The intercept value w0, in both linear and logistic regression, is represented
with +1 in the visualization of the neural network (w0.1 + w1.x1+w2.x2+ …).

Artificial Neural Networks

[294]

FFNN with no hidden layer
A FFNN without a hidden layer is similar to a linear statistical
model. The only transformation or connection between the
input and output layer is actually a linear regression. A linear
regression is a more efficient alternative to the FFNN without
a hidden layer.

The description of the MLP components and their implementations rely on the
following stages:

1.	 Overview of the software design.
2.	 Description of the MLP model components.
3.	 Implementation of the four-step training cycle.
4.	 Definition and implementation of the training strategy and the

resulting classifier.

Terminology
Artificial neural networks encompass a large variety of learning
algorithms, the multilayer perceptron being one of them. Perceptrons
are indeed components of a neural network organized as input,
output, and hidden layers. This chapter is dedicated to the multilayer
perceptron with hidden layers. The terms "neural network" and
"multilayer perceptron" are used interchangeably.

The activation function
The perceptron is represented as a linear combination of weights, wi, and input
values, xi, processed by the output unit activation function h, as shown here:

$ ()0 0
1

n
T

i i
i

y h w w x h w w x
=

 = + = + 
 

∑

The output activation function h has to be continuous and differentiable for a range
of value of the weights. It takes different forms depending on the problems to be
solved, as mentioned here:

•	 Identity for the output layer of the binary classification or regression problem
•	 Sigmoid, σ , for hidden layers

Chapter 9

[295]

•	 Softmax for the multinomial classification
•	 Hyperbolic tangent, tanh, for classification using zero mean

The Softmax formula is described in the next section.

The network architecture
The output layer and hidden layers have a computational capability (dot product of
weights, inputs, and activation functions). The input layer does not transform data.
An n-layer neural network is a network with n computational layers. Its architecture
consists of the following components:

•	 1 input layer
•	 (n-1) hidden layer
•	 1 output layer

A fully connected neural network has all its input nodes connected to hidden layer
neurons. Networks are characterized as partially connected neural networks if one
or more of their input variables are not processed. This chapter deals with a fully
connected neural network.

Partially connected networks
Partially connected networks are not as complex as they seem.
They can be generated from fully connected networks by
setting some of the weights to zero.

The structure of the output layer is highly dependent on the type of problems
(regression or classification) you need to solve, also known as the objective of the
neural network. The type of problem at hand defines the number of output nodes
[9:5], for example:

•	 A one-variate regression has one output node whose value is a real
number [0, 1]

•	 A multivariate regression with n variables has n real output nodes
•	 A binary classification has one binary output node {0, 1} or {-1, +1}
•	 A multinomial or K-class classification has K binary output nodes

Artificial Neural Networks

[296]

Software design
The implementation of the MLP classifier follows the same pattern as previous
classifiers (refer to the Design template for classifiers section in Appendix A, Basic Concepts):

•	 A model MLPModel of the type Model is initialized through training
during the initialization of the classifier. The model is composed of a
layer of neurons of the type MLPLayer, connected by synapses of the
type MLPSynapse contained by a connector of the type MLPConnection.

•	 All of the configuration parameters are encapsulated into a single
configuration class, MLPConfig.

•	 The predictive or classification routine is implemented as a data
transformation, extending the PipeOperator trait.

•	 The multilayer perceptron class, MLP, takes three parameters: configuration
instance, a features set or time series of the XTSeries class, and a labeled
dataset of the type DblMatrix.

The software components of the multilayer perceptron are described in the following
UML class diagram:

MLPObjective PipeOperator Model
Array[Int]

MLPRegression MLPBinClassifier MLPMultiClassifier

MLPSynapse

MLPConnection

MLPLayer

Config

MLPConfig XTSeries DblMatrix

MLP MLPModel

topology

layers

connections

synapses

model

config xt
labels

objective

1

1 1 1

1
1

1

1

1+

1

1+

1+

A UML class diagram for the multilayer perceptron

The class diagram is a convenient navigation map to understand the role and relation
of the Scala classes used to build an MLP. Let's start with the implementation of the
MLP model and its components.

Chapter 9

[297]

Model definition
The purpose of the model is to completely define the network architecture. It is
implemented by the MLPModel parameterized class, which is responsible for creating
and managing the different components of the network, layers, and connections as
well as the topology.

Let's establish a simple naming convention for the layers of neurons as follows:

•	 The input layer, inLayer, consists of nInputs neurons
•	 A hidden layer, hidLayer, has nHiddens neurons
•	 The output layer, outLayer, has nOutputs neurons

The instantiation of the class requires a minimum set of three parameters:

class MLPModel[T <% Double](config: MLPConfig, nInputs: Int, nOutputs:
Int) extends Model {
 val layers: Array[MLPLayer]
 val connections: Array[MLPConnection]
 val topology: Array[Int]
}

Besides the config configuration, the model class has two parameters: the number
of input features, {x}, nInputs; and the number of output values, {y}, nOutputs.
These three parameters are all you need to initialize the topology of the network.
A model has the following attributes:

•	 Multiple layers of the type MLPLayers
•	 Multiple connections of the type MLPConnection
•	 A topology array that wires these layers and connections

The topology is defined as an array of number of nodes per layer, starting with the
input nodes. The array indices follow the forward path within the network. The size
of the input layer is automatically generated from the observations as the size of the
features vector. The size of the output layer is automatically extracted from the size
of the output vector:

val topology = Array[Int](nInputs) ++ config.hidLayers ++
 Array[Int](nOutputs)

The sequence of hidden layers, hidLayers, is defined as an array of number of
neurons (or nodes) per hidden layers:

val hidLayers: Array[Int]

Artificial Neural Networks

[298]

This is an attribute of the MLPConfiguration class described in the next section.
For instance, the topology of a neural network with three input variables, one
output variable, and two hidden layers of three neurons each is specified as
Array[Int](4, 3, 3, 1).

The following diagram visualizes the interaction between the different components
of a model: MLPLayer, MLPConnection, and MLPSynapse:

MLPConnection

Bias element

MLPLayer

source

Bias element

MLPLayer

destination

+1

x
1

x
2

x
n

+1

z
1

z
m

...

...

MLPSynapse

(w (w))
ij ij

D

Components of the MLP model

Layers
First, let's start with the definition of the layer class, MLPLayer, which is completely
specified by its position in the network and the number of nodes it contains:

class MLPLayer(val id: Int, val len: Int) {
 val output = new DblVector(len) //1
 val delta = new DblVector(len) //2
...output.update(0, 1.0) //3

The id parameter is the order of the layer (0 for input, 1 for the first hidden
layer,…, n-1 for the output layer) in the network. The len value is the number of
elements or nodes, including the bias element, in this layer. The output vector for
the layer (line 1) is an uninitialized vector of values updated during the forward
propagation, except for the first value (bias element), which is set to 1 (line 3). The
delta vector associated to the output vector (line 2) is updated through the error
backpropagation algorithm, described in the next section.

The output values, except the bias element, is initialized using the set method:

def set(x: DblVector): Unit = x.copyToArray(output,1)

Chapter 9

[299]

Synapses
A synapse is defined as a pair of real values:

•	 The weight of the connection from the neuron i of the previous layer to the
neuron j, wij

•	 The weights adjustment (or gradient of weights), ∆wij

Its type is defined as MLPSynapse, as shown here:

type MLPSynapse = (Double, Double)

Connections
A connection between two consecutive layers implements the matrix of synapses, the
(wij, ∆wij) pairs. The MLPConnection instance is created with the following parameters:

•	 Configuration parameters, config
•	 The source layer, sometimes known as the ingress layer, src
•	 The destination (or egress) layer, dst

The MLPConnection class is defined as follows:

class MLPConnection(config: MLPConfig, src: MLPLayer, dst: MLPLayer)

The last step in the initialization of the MLP algorithm is the selection of the initial
(usually random) values of the weights (synapse). The following code snippet
initializes the weights for non-bias neurons as random values in the range [0, beta]
with beta <= 1.0.

The weight for the bias is obviously defined as w0=+1, and its weight adjustment is
initialized as ∆w0 = 0, as shown here:

Val beta = 0.1
val synapses = Array.tabulate(dst.len)(n =>
 if(n > 0) Array.fill(src.len)((beta*Random.nextDouble, 0.0))
 else Array.fill(src.len)((1.0, 0.0))
)

Random initialization of weights
The range [0, beta] of initial random values is domain specific. Some
problems require a very small range, less than 1e-3, while others use the
probability space [0, 1]. The initial values impact the number of epochs
required to converge toward an optimal set of weights. [9:6]

Artificial Neural Networks

[300]

Once the topology, synapses, layers, and connections of the MLP algorithm are
defined, the initialization of the MLPModel model is straightforward:

val layers = topology.zipWithIndex
 .map(t => MLPLayer(t._2, t._1+1))
val connections = Range(0, layers.size-1).map(n =>
 new MLPConnection(config, layers(n), layers(n+1))).toArray

The layers are created by traversing the network topology and instantiating each
layer with its proper index and number of elements. The connections are instantiated
by selecting two consecutive layers of index n (with respect to n+1) as source (with
respect to destination).

Encapsulation and the model factory
The model components: connections, layers, and synapses are
implemented as top-level classes for clarity sake. However, there is
no need for the model to expose its inner workings to the client code.
These components should be declared as an inner class to the model.
Moreover, the model is responsible for creating its topology. A factory
design pattern would be perfectly appropriate to instantiate an
MLPModel instance dynamically [9:7].

Once initialized, the MLP model is ready to be trained using a combination of
forward propagation, output error back propagation, and iterative adjustment
of weights and gradients of weights.

Training cycle/epoch
The training of the model processes the training observations multiple times.
A training cycle or iteration is known as an epoch. The five steps of the training
cycle are as follows:

1.	 Forward propagation of the input value for a specific epoch.
2.	 Compute the sum of squared errors.
3.	 Backpropagation of the output error.
4.	 Recomputation of the synapse weight and gradient of weight.
5.	 Evaluate the convergence criteria and exit if criteria is met

Chapter 9

[301]

The computation of the network weights during training could use the difference
between labeled data and actual output for each layer. But this solution is not feasible,
because the output of the hidden layers is unknown. The solution is to propagate the
error on the output values backward through the hidden layers. This approach is not
that different than the beta (or backward) pass in the hidden Markov model, covered
in the Beta class (the backward variable) section in Chapter 7, Sequential Data Models.

The error at the output layer for p neurons can be computed in either of the
following ways:

•	 Sum of the squared of errors (SSE): Calculated for each output, yk

•	 Mean squared error (MSE): Calculated as MSE= SSE/p

We select the sum of the squared errors to initialize the error back-propagation
algorithm.

Step 1 – input forward propagation
As mentioned earlier, the output values of a hidden layer are computed as a logistic
function (the activation function) of the dot product of the weights wij and the input
values xi.

In the following diagram, the MLP algorithm computes the linear product of the
weights wij and input xi for the hidden layer. The product is then processed by the
activation function σ (sigmoid or hyperbolic tangent). The output values zj are then
combined with the weights vij of the output layer. The output layer doesn't have an
activation function.

Predicted Predicted

Hidden layer Output layer

s

+1

x1

xn

+1

zj

zm

Zj

..
.

..
..
.W

0j

W
1j

W
nj

V
0k

Y
k

V
jk

W
mk

The mathematical formulation of the output of a neuron j is defined as a composition
of the activation function and the dot product of the weights wij and input values xi.

Artificial Neural Networks

[302]

Computation of the output y for the output layer:

$
0

1

m

kj jk
j

y v v z
=

= +∑
Estimation of the output values for binary classification with
an activation function σ :

0 1
0

1

1

1
n

ij ii

n

j ij i w w xi
z w w x

e
σ

=
− −

=

 = + =  ∑  +
∑$

As seen in the network architecture section, the output values for the multinomial
(or multiclass) classification with more than two classes are normalized using an
exponential function (softmax).

The computational model
The computation of the output values y from the input x is known as the input
forward propagation. For the sake of simplicity, we represent the forward propagation
between layers with the following block diagram. Such a representation will be quite
convenient for the design and implementation of the MLP.

forwardPropagation

Input

x
1:n

Connection

w
ij

Hidden

z
1:m

Connection

v
ij

Output

y
1:p

connectionForwardPropagation

A computation model of input forward propagation

This diagram illustrates a computational model for the input forward propagation,
as the programmatic relation between the source and destination layers and their
connectivity. The input x is propagated forward through each connection.

The connectionForwardPropagation method computes the dot product of the
weights and the input values, and applies the activation function in the case of hidden
layers, for each connection. Therefore, it is a member of the MLPConnection class.

The forward propagation of input values across the entire network is managed by
the MLP algorithm itself.

Chapter 9

[303]

The forward propagation of the input value is used in the classification or
prediction y =f(x). It depends on the value weights wij and vij that need to be
estimated through training. As you may have guessed, the weights define the
model of a neural network similar to the regression models. Let's look at the
connectionForwardPropagation method of the MLPConnection class:

def connectionForwardPropagation: Unit = {
 val synps= synapses.drop(1)
 val _output = synps.map(x => { //1
 val sum = x.zip(src.output)
 .foldLeft(0.0)((s, xy) => s + xy._1._1*xy._2)
 if(!isOutLayer) config.activation(sum) //2
 else sum
 })
 val out = if(isOutLayer) mlpObjective(_output) else _output //3
 out.copyToArray(dst.output, 1)
}

The first step is to compute the linear dot product of the _output output of
the current source layer, src, for this connection, and the weights, w (line 1).
The activation method, the implementation of which is described in the next
paragraph, is applied to the dot product, dot (line 2). If the destination layer of the
connection is the output layer, then the output values are processed according to the
mlpObjective objective of the algorithm (line 3).

Objective
In the The network architecture section, you learned that the structure of the output
layer depends on the type of problems that need to be resolved, or objective of the
algorithm. Let's encapsulate the different objectives (binary, multiclass classifiers,
and regression) into an MLPObjective hierarchy (nested in MLP companion object)
and the transformation of the output values, y, using a simple apply method:

trait MLPObjective { def apply(y: DblVector): DblVector }

The output of the apply method is used to compute the sum of squared errors
during training, after the forward propagation of features. The binary (2 class)
classifier requires a single output without any transformation because the values
are either 0 or 1.

class MLPBinClassifier extends MLPObjective {
 override def apply(y: DblVector): DblVector = output
}

Artificial Neural Networks

[304]

The MLPMultiClassifier multiclass classifier objective class used the softmax
method to boost the output with the highest value, as shown here:

class MLPMultiClassifier extends MLPObjective {
 override def apply(y:DblVector):DblVector = softmax(y.drop(1))
 def softmax(y: DblVector): DblVector = { …}
}

The softmax method is applied to the actual output value, not the bias. Therefore,
the first node y(0)=+1 has to be dropped before applying the softmax normalization.

Softmax
In case of a classification problem with K classes (K > 2), the output has to be
converted into a probability [0, 1]. For problems that require a large number of
classes, there is a need to boost the output yk with the highest value (or probability).
This process is known as the exponential normalization or softmax [9:8].

Softmax formula for multinomial (K > 2) classification is as follows:

$
$

$

k

i

y

k y
i

ey
e

−

−
=
∑

Here is the simple implementation of the softmax method of the
MLPMultiClassifier class:

def softmax(y: DblVector): DblVector = {
 val softmaxValues = new DblVector(y.size)
 val expY = y.map(Math.exp(_))//1
 val expYSum = expY.sum
 expY.map(_ /expYSum).copyToArray(softmaxValues, 1) //2
 softmaxValues
}

First, the output values are transformed to exponential, expY (line 1). The exponentially
transformed outputs are then normalized by their sum, expYSum, to generate the array
of softmaxValues output (line 2). Once again, you do not have to update the bias
element y(0).

The second step in the training phase is the back propagation of the output error.

Chapter 9

[305]

Step 2 – sum of squared errors
Once the input features are propagated across the neural network, the sum of
squared errors, sse, for the output layer of the MPLayer type is computed at
each epoch, as follows:

def sse(labels: DblVector): Double = {
 var _sse = 0.0
 output.drop(1) //1
 .zipWithIndex
 .foreach(on => {
 val err = labels(on._2) - on._1 //2
 delta.update(on._2+1, on._1* (1.0- on._1)*err) //3
 _sse += err*err
 })
 _sse*0.5 //4
}

As expected, the computation of the sum of squared errors requires the labeled
values, labels, and the objective method as arguments. The vector output values,
output, stripped of the bias node (line 1) is used to compute the difference, err,
between the label and the actual output (line 2). The delta value (line 3), described
in the next section, is used in the back-propagation algorithm to adjust the weights
of the output and hidden layers. Note that the sum of squares, _sse, is divided by 2
(line 4), so its derivative is err.

Step 3 – error backpropagation
The error backpropagation is an algorithm that estimates the error for the hidden
layer in order to compute the change in weights of the network. It takes the sum of
squared errors on the output as input.

Terminology
Some authors refer to the backpropagation as a training methodology
for an MLP, which applies the gradient descent to the output error
defined as either the sum of squared errors, or the mean squared error.
In this chapter, we keep the narrower definition of backpropagation as
the backward computation of the sum of squared errors.

Artificial Neural Networks

[306]

Error propagation
The objective of the training of a perceptron is to minimize the sum of squared
errors at the output layer. The error kε for each output neuron, yk, is computed as the
difference between a predicted output value and label output value. This approach
does not work for the hidden layers zj because the label value is unknown.

Predicted Predicted

Hidden layer Output layer

s

+1

x1

xn

+1

zj

zm

Zj

..
.

W
0j

W
1j

W
nj

V
0k

y
k

V
jk

Vmk..
.

y
k

Dw
ij

Dv
jk

Expected

The partial derivative of the sum of squared output error over each weight of the
output layer is computed as the composition of the derivative of the square function,
and the derivative of the dot product of weights and the input z.

Derivative of the output SSE over the weighs of the output layer:

0

2

1

1

ˆ

1
2

T
k k k k

p

k
k

m

jk
jk

y y y v v z

z
v

ε

ε ε

ε ε

=

=

= − = − −

=

∂
= −

∂

∑

∑

As mentioned earlier, the computation of the partial derivative of the sum of squared
error over the weights of the hidden layer is a bit tricky. Fortunately, the partial
derivative can be broken down into the following three pieces using the output layer
values and the output of the hidden layer:

•	 Derivative of sum of squared error ε over the output value yk

•	 Derivative of the output value yk over the hidden value zj knowing that the
derivative of a sigmoid σ is σ (1 - σ)

•	 Derivative of the output of the hidden layer zj over the weights wij

Chapter 9

[307]

Derivative of error over the weights of the hidden layer:

()
1 1

1

p p
jk

j j
k kij k j ij

j k j j

zy x
w y z w

z z

ε ε δ

δ ε

= =

∂∂∂ ∂
= = −

∂ ∂ ∂ ∂

= −

∑ ∑

The computational model
The computational model for the error backpropagation algorithm is very similar to
the forward propagation of the input. The main difference is that the propagation
of the derivative delta δ is performed from the output layer to the input layer. The
following diagram illustrates the computational model of the backpropagation in the
case of two hidden layers zs and zt:

backPropagation

Connection

wt
ij

Hidden

zt
1:m

t
jd

Connection

vjk

Output

y1:p e

connectionBackPropagation

Hidden

zs
1:m

s
jd

The connectionBackPropagation method propagates the error back to the previous
layer. It is a member of the MLPConnection class. The backpropagation of the output
error across the entire network is managed by the MLP class.

It implements the two set of equations where synapses (j)(i)._1 are the weights
wji, dst.delta is the vector of error derivative in the destination or next layer, and
src.delta is the error derivative on the outputs in the source (or antecedent) layer,
as shown here:

def connectionBackpropagation: Unit =
 Range(1, src.len).foreach(i => {
 val dot = Range(1, dst.len).foldLeft(0.0)((s, j) =>
 s + synapses(j)(i)._1*dst.delta(j)) //1
 src.delta(i) = src.output(i)*(1.0 - src.output(i))*dot//2
})

The dot product of the synapse weights and the errors of the destination layers
(line 1) is used to compute the delta on the source (or previous layer) layers (line 2).

Artificial Neural Networks

[308]

Step 4 – synapse/weights adjustment
The connection weights ∆v and ∆w are adjusted by computing the sum of the
derivative of the error, over the weights scaled with a learning factor. The gradient
of weights are then used to compute the error of the output of the source layer [9:9].

Momentum factor for gradient descent
The simplest algorithm to update the weights is the gradient descent [9:10].

The gradient descent is a very simple and robust algorithm. However, it is
slower in converging toward a global minimum than the conjugate gradient or
the quasi-Newton method (refer to the Summary of optimization techniques section
in Appendix A, Basic Concepts).

There are several methods available to speed up the convergence of the gradient
descent toward a minimum: momentum factor and adaptive learning coefficient [9:11].

Large variations of the weights (or large value of the gradient of weights) cause
the gradient descent to require more training iteration in order to converge. This
is particularly true for a training strategy known as online training. The training
strategies are discussed in the next section. The momentum factor α is used for
the remaining section of the chapter.

The computation of neural network weights using gradient
descent is as follows:

() ()
()

1
t

t t j
ij ij

ij

w w
w
ε

η+ ∂
= −

∂

The computation of neural network weights using gradient
descent method with momentum coefficient α is as follows:

() ()
()

()1
t

t t j t
ij ij ij

ij

w w w
w
ε

η α+ ∂
= − + ∆

∂

The basic gradient descent algorithm is selected by setting the momentum factor α
to zero.

Chapter 9

[309]

Implementation
The fourth step of the training phase is to adjust each connection's synapses
(w, ∆w). This task is performed by the connectionUpdate method of the
MLPConnection class:

def connectionUpdate: Unit =
 Range(1, dst.len).foreach(i => {
 val delta = dst.delta(i) //1

 Range(0, src.len).foreach(j => {
 val _output = src.output(j) //2
 val oldSynapse = synapses(i)(j)
 val grad = config.eta*delta*_output //3
 val deltaWeight = grad + config.alpha* oldSynapse._2 //4
 synapses(i)(j) = (oldSynapse._1 + deltaWeight, grad) //5
 })
 })

The connectionUpdate method computes the error of each destination neuron (line 1).
The _output output of each neuron source (line 2) is used in the computation of the
grad gradient (line 3). The weight is then adjusted for a momentum (line 4) as per the
mathematical formulation. Finally, the synapses for source and destination layers are
updated (line 5).

The adjustable learning rate
The computation of the new weights of a connection for
each new epoch can be further improved by making the
learning adjustable.

Step 5 – convergence criteria
The convergence criterion consists of evaluating the sum of squared errors against a
predetermined threshold eps. It is common to normalize the sum of squared errors
by the number of observations.

Configuration
The MLPConfig configuration of the multilayer perceptron consists of the definition
of the network configuration with hidden layers, the learning parameters, the
training parameters, and the activation function:

Class MLPConfig(val alpha: Double, val eta: Double, val hidLayers:
Array[Int], val numEpochs: Int,val eps: Double,val activation:
Double=>Double) extends Config

Artificial Neural Networks

[310]

For the sake of readability, the name of the configuration parameters matches the
symbols defined in the mathematical formulation:

•	 alpha: This is the momentum factor.
•	 eta: This is the learning rate (fixed or adaptive).
•	 hidLayers: This is an array of size of hidden layers (for example, two hidden

layers of two and four elements are specified as Array[Int](2,4)).
•	 numEpochs: This is the maximum number of epochs allowed for training the

neural network.
•	 eps: This is the convergence criteria used as an exit condition for the training

of the neural network, error < eps.
•	 activation: This is the activation function used for nonlinear regression

applied to hidden layers. The default function is the sigmoid.

Putting all together
The five steps of the training cycle have been implemented for each connection or
matrix of synapses (weights, gradient of weights). The management of the cycle is
performed by the algorithm defined by the MLP class, as shown here:

class MLP[T <% Double](config: MLPConfig, xt: XTSeries[Array[T]],
labels: DblMatrix)(implicit val mlpObjective: MLP.MLPObjective)
extends PipeOperator[Array[T], DblVector] {
 val model: Option[MLPModel]
 def |> : PartialFunction[Array[T], DblVector]
}

The MLP algorithm takes the following parameters:

•	 config: The configuration of the algorithm
•	 xt: The time series of features used to train the model
•	 labels: The labeled output values for training purpose
•	 mlpObjective: The implicit objective of the algorithm (a type of problem)

Chapter 9

[311]

The five steps of the training cycle or epoch is summarized in the following diagram:

w =w -
w

+ w
() ()

()

()t+1

ij

t

ij
ij

t

j t

ij
h

e

aD

sse

if (sse < eps)

Sum of squared errors

Backpropagation

Weights adjustment

Exit condition

dd e

x z y Forward propagation

Dw
ij

Dv
jk

weights
Yes No

epoch t

epoch t+1

6

6

Let's apply the five steps of a training epoch in a trainEpoch method of the
MLPModel class using a simple the foreach Scala iterator, as shown here:

def trainEpoch(x: DblVector, y: DblVector): Double = {
 inLayer.set(x)

 connections.foreach(_.connectionForwardPropagation) //1
 val _sse = sse(y) //2
 val bckIterator = connections.reverseIterator
 bckIterator.foreach(_.connectionBackpropagation) //3
 connections.foreach(_.connectionUpdate) //4
 _sse
}

You can certainly recognize the first four stages of the training cycle: forward
propagation of the input, x (line 1), computation of the sum of squared errors,
_sse (line 2), the back propagation of the error (line 3), and the recomputation
of the weight and gradient of weight associated with each synapse (line 4).

Artificial Neural Networks

[312]

Training strategies and classification
Once the training cycle or epoch is defined, it is merely a matter of defining and
implementing a strategy to create a model using a sequence of data or time series.

Online versus batch training
One important remaining issue is finding a strategy to conduct the training of time
series, as ordered sequences of data. There are two strategies to create an MLP model
for time series:

•	 Batch training: The entire time series is processed at once as a single input to
the neural network. The weights (synapses) are updated at each epoch using
the sum of squared errors on the output of the time series. The training exits
once the sum of the squared errors meets the convergence criteria.

•	 Online training: The observations are fed to the neural network one at a time.
Once the time series has been processed, the total of the sum of the squared
error (sse) for the time series for all the observations are computed. If the exit
condition is not met, the observations are reprocessed by the network.

Observations

Time series

Epoch

Batch training Online training

Time series

Exit

condition

Epoch

An illustration on online and batch training

An online training is faster than batch training because the convergence criterion has
to be met for each data point, possibly resulting in a smaller number of epochs [9:12].
Techniques such as the momentum factor, which is described earlier, or any adaptive
learning scheme improve the performance of the online training process further.

The online training strategy is applied to a financial time series for the remainder of
this chapter.

Chapter 9

[313]

Regularization
There are two approaches to find the most appropriate network architecture for a
given classification or regression problem; they are:

•	 Destructive tuning: Starting with a large network, then removing nodes,
synapses, and hidden layers that have no impact on the sum of squared errors

•	 Constructive tuning: Starting with a small network, then incrementally adding
the nodes, synapses, and hidden layers that reduce the output error

The destructive tuning strategy removes the synapses by zeroing out their weights.
This is commonly accomplished by using regularization.

You have seen that regularization is a powerful technique to address overfitting
in the case of the linear and logistic regression in the The ridge regression section in
Chapter 6, Regression and Regularization. Neural networks can benefit from adding a
regularization term to the sum of squared errors. The larger the regularization factor
is, the more likely some weights will be reduced to zero, thus reducing the scale of
the network [9:13].

Model instantiation
The model instance is created (trained) during the instantiation of the multilayer
perceptron. The model is created by iterating the training cycle over all the data
points of the time series xt, and through multiple epochs until the total sum of
squared errors is smaller than the threshold eps, as in the following code:

var converged = false
val model: Option[MLPModel] = {
 val _model = new MLPModel(config, xt(0).size, labels(0).size)
(mlpObjective) //1
 val errScale = 1.0/(labels(0).size*xt.size) //4

 converged = Range(0, config.numEpochs).find(_ => {
 xt.toArray.zip(labels)
 .foldLeft(0.0)((s, xtlbl) =>
 s + _model.trainEpoch(xtlbl._1, xtlbl._2) //2
)*errScale < config.eps //3
 }) != None
 _model
}

Artificial Neural Networks

[314]

The model is first initialized (line 1). The first four stages of the MLP training cycle
are executed by the MLPModel.trainEpoch method described in the previous
section (line 2). The method returns the sum of squared errors for each observation
in the time series. The sum of squared errors for the observations are summed, then
evaluated against the convergence criterion, eps (line 3). The sum of squared errors is
normalized for the size of the time series and the size of the output vector (line 5). The
implementation uses the Scala method, find, to exit from the iterative loop before the
maximum number of epochs, config.numEpochs, is reached.

The exit condition
In this implementation a flag, converged, is set to indicate that the
execution of the training has not converged before the maximum
number of epochs has been reached; however, the model is still
instantiated nevertheless. It allows the client code to evaluate the
pattern of the sum of squared errors in regard to a local minimum.

Once the model is created during the instantiation of the multilayer perceptron, it is
available to predict the class of a new observation.

Prediction
The prediction method of the MLPModel class, getOutput, takes a new observation
(feature vector) as argument and returns the output by using the forward
propagation algorithm:

def getOutput(x: DblVector): DblVector = {
 inLayer.set(x)
 connections.foreach(_.connectionForwardPropagation)
 outLayer.output
}

The classification method is implemented as the data transformation |>. It returns
the predicted value, normalized as a probability if the model was successfully
trained; None, otherwise:

def |> : PartialFunction[Array[T], DblVector] = {
 case x: Array[T] if(model!=None && x.size == dimension(xt)) =>
 model.get.getOutput(x))
}

Our MLP class is now ready to tackle some classification challenges.

Chapter 9

[315]

Evaluation
Before applying our multilayer perceptron to understand fluctuations in the currency
market exchanges, let's get acquainted with some of the key learning parameters
introduced in the first section.

Impact of learning rate
The purpose of the first exercise is to evaluate the impact of the learning rate, η , on
the convergence of the training epoch, as measured by the sum of the squared errors
of all output variables. The observations x (with respect to the labeled output, y) are
synthetically generated using several noisy patterns: functions f1, f2, and noise,
as follows:

val noise = () => NOISE_RATIO*Random.nextDouble
val f1 = (x: Double) => x*(1.0 + noise())
val f2 = (x: Double) => x*x*(1.0 + noise())

def vec1(x: Double): DblVector = Array[Double](f1(x), noise(), f2(x),
noise())
def vec2(x: Double): DblVector = Array[Double](noise(), noise())
val x = XTSeries[DblVector](Array.tabulate(TEST_SIZE)(vec1(_)))
val y = XTSeries[DblVector](Array.tabulate(TEST_SIZE)(vec2(_)))

The x and y values are normalized [0, 1]. The test is run with a sample of size
TEST_SIZE data points over a maximum of 250 epochs, a single hidden layer of
five neurons with no softmax transformation and the following MLP parameters:

val NUM_EPOCHS = 250; val EPS = 1.0e-4
val HIDDENLAYER = Array[Int](5)
val ALPHA = 0.9; val TEST_SIZE = 40

val features = XTSeries.normalize(x).get
val labels = XTSeries.normalize(y).get.toArray
val config = MLPConfig(ALPHA, _eta, SIZE_HIDDEN_LAYER, NUM_EPOCHS,
EPS)

implicit val mlpObjective = new MLP.MLPBinClassifier
val mlp = MLP[Double](config, features, labels)

Artificial Neural Networks

[316]

The objective of the algorithm, mlpObjective, has to be implicitly defined prior to
the instantiation of the MLP class.

The test is performed with a different learning rate, eta. For clarity's sake, the graph
displays the sum of squared errors for the first 22 epochs.

Impact of the learning rate on the MLP training

The chart illustrates that the MLP model training converges a lot faster with a larger
value of learning rate. You need to keep in mind, however, that a very steep learning
rate may lock the training process into a local minimum for the sum of squared
errors generating weights with lesser accuracy. The same configuration parameters
are used to evaluate the impact of the momentum factor on the convergence of the
gradient descent algorithm.

Impact of the momentum factor
Let's quantify the impact of the momentum factor, α , on the convergence of the
training process toward an optimal model (synapse weights). The total sum of
squared errors for the entire time series is plotted for the first five epochs in the
following graph:

Chapter 9

[317]

Impact of the momentum factor on the MLP training

The graph shows that the rate the sum of squared errors declines as the momentum
factor increases. In other words, the momentum factor has a positive although limited
impact on the convergence of the gradient descent.

Let's apply our newfound knowledge regarding neural networks and the classification
of variables, that impact the exchange rate of certain currency.

Test case
Neural networks have been used in financial applications from risk management in
mortgage applications and hedging strategies for commodities pricing, to predictive
modeling of the financial markets [9:14].

The objective of the test case is to understand the correlation factors between the
exchange rate of some currencies, the spot price of gold and the S&P 500 index.
For this exercise, we will use the following exchange-traded funds (ETFs) as
proxies for exchange rate of currencies:

•	 FXA: Rate of an Australian dollar in US dollar
•	 FXB: Rate of a British pound in US dollar
•	 FXE: Rate of an Euro in US dollar

Artificial Neural Networks

[318]

•	 FXC: Rate of a Canadian dollar in US dollar
•	 FXF: Rate of a Swiss franc in US dollar
•	 FXY: Rate of a Japanese yen in US dollar
•	 CYB: Rate of a Chinese yuan in US dollar
•	 SPY: S&P 500 index
•	 GLD: The price of gold in US dollar

Practically, the problem to solve is to extract one or more regressive models that link
one ETFs y with a basket of other ETFs {xi} y=f(xi). For example, is there a relation
between the exchange rate of the Japanese yen (FXY) and a combination of the spot
price for gold (GLD), exchange rate of the Euro in US dollar (FXE) and the exchange
rate of the Australian dollar in US dollar (FXA), and so on? If so, the regression f will
be defined as FXY = f (GLD, FXE, FXA).

The following two charts visualize the fluctuation between currencies over
a period of two and a half years. The first chart displays an initial group of
potentially correlated ETFs:

An example of correlated currency-based ETFs

Chapter 9

[319]

The second chart displays another group of currency-related ETFs that shares
a similar price action behavior. Neural networks do not provide any analytical
representation of their internal reasoning; therefore, a visual correlation can be
extremely useful to novice engineers in validating their models.

An example of correlated currency-based ETFs

A very simple approach for finding any correlation between the movement of the
currency exchange rates and the gold spot price, is to select one ticker symbol as the
target and a subset of other currency-based ETFs as features.

Let's consider the following problem: finding the correlation between the price
of FXE and a range of currencies FXB, CYB, FXA, and FXC, as illustrated in the
following diagram:

Ticker symbolsGLD FXE FXY FXB CYB FXA SPY FXF FXC

FXE FXB CYB FXA FXF

target Features

Indexed study

The mechanism to generate features from ticker symbols

Implementation
The first step is to define the configuration parameter for the MLP classifier,
is as follows:

val path = "resources/data/chap9/"
val ALPHA = 0.5; val ETA = 0.03
val NUM_EPOCHS = 250; val EPS = 1.0e-6
var hidLayers = Array[Int](7, 7) //1

var config = MLPConfig(ALPHA, ETA, hidLayers, NUM_EPOCHS, EPS)

Artificial Neural Networks

[320]

Besides the learning parameters, the network is initialized with two configurations:

•	 One hidden layer with four nodes
•	 Two hidden layers of four neurons each (line 1)

Next, let's create the search space of the prices of all the ETFs used in the analysis:

val symbols = Array[String]("FXE", "FXA", "SPY", "GLD", "FXB", "FXF",
"FXC", "FXY", "CYB") //2

The closing prices of all the ETFs over a period of three years are extracted from the
Google Financial tables, using the GoogleFinancials extractor (line 3) for a basket
of ETFs (line 2):

val prices = symbols.map(s =>DataSource(s"$path$s.csv",true))
 .map(_ |> GoogleFinancials.close) //3
 .map(_.toArray)

The next step consists of implementing the mechanism to extract the target and the
features from a basket of ETFs, or studies introduced in the previous paragraph. Let's
consider the following study as the list of ETF ticker symbols (line 4):

val study = Array[String]("FXE", "FXF", "FXB", "CYB") //4

The first element of the study, FXE, is the labeled output; the remaining three
elements are observed features. For this study, the network architecture has three
input variables {FXF, FXB, CYB} and one output variable FXE:

val obs = study.map(s =>index.get(s).get).map(prices(_)) //5
val features = obs.drop(1).transpose //6
val target = Array[DblVector](obs(0)).transpose //7

The set of observations is built using an index (line 5). By convention, the first
observation is selected as the label data and the remaining studies as the features for
training. As the observations are loaded as an array of time series, the time features
of series is computed through transpose (line 6). The single output variable,
target, has to be converted into a matrix before transposition (line 7).

Ultimately, the model is built through instantiation of the MLP class:

val THRESHOLD = 0.08
implicit val mlpObjective = new MLP. MLPBinClassifier
val mlp = MLP[Double](config, features, target)
mlp.accuracy(THRESHOLD)

Chapter 9

[321]

The objective type, mlpObjective, is implicitly defined as an MLP binary classifier,
MLPBinClassifier. The square root of the sum of squares of the difference between
the predicted output generated by the MLP and the target value is computed
and compared to a predefined threshold. The accuracy value is computed as
the percentage of data points, whose prediction matches the target value within
a range < THRESHOLD:

val nCorrects = xt.toArray.zip(labels).foldLeft(0)((s, xtl) => {
 val output = model.get.getOutput(xtl._1) //8
 val _sse = xtl._2.zip(output.drop(1))
 .foldLeft(0.0)((err,tp) => {
 val diff= tp._1 - tp._2
 err + diff*diff
 }) //9
 val error = Math.sqrt(_sse)/(output.size-1) //10
 if(error < threshold) s + 1
 else s
})
nCorrects.toDouble/xt.size

The implementation of the computation of the accuracy, as in the previous code
snippet, retrieves the values of the output layer (line 8). The error value (line 10)
is computed as the square root of the sum of squared errors, _sse (line 9). Finally, a
prediction is considered correct if it is equal to the labeled output, within the margin
error, threshold.

Models evaluation
The test consists of evaluating six different models to determine which ones provide
the most reliable correlation. It is critical to ensure that the result is somewhat
independent of the architecture of the neural network. Different architectures are
evaluated as part of the test.

The following charts compare the models for two architectures:

•	 Two hidden layers with four nodes each
•	 Three hidden layers with eight (with respect to five and six) nodes

Artificial Neural Networks

[322]

This first chart visualizes the accuracy of the six regression models with an
architecture consisting of a variable number of inputs [2, 7], one output variable, and
two hidden layers of four nodes each. The features (ETF symbols) are listed on the
left-hand side of the arrow => along the y-axis. The symbol on the right-hand side of
the arrow is the expected output value:

Accuracy of MLP with two hidden layers of four nodes each

The next chart displays the accuracy of the six regression models for an architecture
with three hidden layers of eight, five, and six nodes, respectively:

Accuracy of MLP with three hidden layers with 8, 5, and 6 nodes, respectively

The two network architectures shared a lot of similarity: in both cases, the most
accurate regression models are as follows:

•	 FXE = f (FXA, SPY, GLD, FXB, FXF, FXD, FXY, CYB)
•	 FXE = g (FXC, GLD, FXA, FXY, FXB)
•	 FXE = h (FXF, FXB, CYB)

On the other hand, the prediction the Canadian dollar to US dollar's exchange rate
(FXC) using the exchange rate for the Japanese yen (FXY) and the Australian dollar
(FXA) is poor with both configuration.

Chapter 9

[323]

The empirical evaluation
These empirical tests use a simple accuracy metric. A formal
comparison of the regression models would systematically analyze
every combination of input and output variables. The evaluation
would also compute the precision, the recall, and the F1 score for each
of those models (refer to the Key metrics section under Validation in the
Assessing a model section in Chapter 2, Hello World!.

Impact of hidden layers architecture
The next test consists of evaluating the impact of the hidden layer(s) of configuration
on the accuracy of three models: (FXF, FXB, CYB => FXE), (FCX, GLD, FXA =>FXY),
and (FXC, GLD, FXA, FXY, FXB => FXE). For this test, the accuracy is computed by
selecting a subset of the training data as a test sample, for the sake of convenience.
The objective of the test is to compare different network architectures using some
metrics, not to estimate the absolute accuracy of each model.

The four network configurations are as follows:

•	 A single hidden layer with four nodes
•	 Two hidden layers with four nodes each
•	 Two hidden layers with seven nodes each
•	 Three hidden layer with eight, five, and six nodes

Impact of hidden layers architecture on the MLP accuracy

Artificial Neural Networks

[324]

The complex neural network architecture with two or more hidden layers generates
weights with similar accuracy. The four-node single hidden layer architecture
generates the highest accuracy. The computation of the accuracy using a formal
cross-validation technique would generate a lower accuracy number.

Finally, we look at the impact of the complexity of the network on the duration of the
training, as in the following graph:

Impact of hidden layers architecture on duration of training

Not surprisingly, the time complexity increases significantly with the number of
hidden layers and number of nodes.

Benefits and limitations
The advantages and disadvantages of neural networks depend on which other
machine learning methods they are compared to. However, neural-network-based
classifiers, particularly the multilayer perceptron using error backpropagation, have
some obvious advantages, such as:

•	 The mathematical foundation of a neural network does not require expertise
in dynamic programming or linear algebra, beyond the basic gradient
descent algorithm.

•	 A neural network can perform tasks that a linear algorithm cannot.

Chapter 9

[325]

•	 MLP is usually reliable for highly dynamic and nonlinear processes.
Contrary to the support vector machines, they do not require us to
increase the problem dimension through kernelization.

•	 MLP does not make any assumption on linearity, variable independence,
or normality.

•	 The execution of training of the MLP lends itself to concurrent processing
quite well for online training. In most architecture, the algorithm can
continue even if a node in the network fails.

However, as with any machine learning algorithm, neural networks have their
detractors. Among the most documented limitations are as follows:

•	 MLP models are black boxes for which the association between features and
classes may not be easily described.

•	 MLP requires a lengthy training process, especially using the batch strategy.
For example, a two-layer network has a time complexity (number of
multiplications) of O(n.m.p.N.e) for n input variables, m hidden neurons,
p output values, N observations, and e epochs. It is not uncommon that a
solution emerges after thousands of epochs. The online training strategy
using momentum factor tends to converge faster and require a smaller
number of epochs than the batch process.

•	 Tuning the configuration parameters, such as learning rate, selection of the
activation method, application of softmax transformation, or momentum
factor, can turn into a lengthy process.

•	 Estimating the minimum size of the training set to get accurate results is
not obvious.

•	 A neural network cannot be incrementally retrained. Any new labeled data
requires an entirely new training cycle.

Artificial Neural Networks

[326]

Summary
This concludes not only the journey inside the multilayer perceptron, but also the
introduction of the supervised learning algorithms. In this chapter, you learned:

•	 The components and architecture of a neural networks
•	 The stages of the training cycle of a backpropagation multilayer perceptron
•	 How to implement an MLP from the ground up in Scala
•	 The numerous configuration parameters and options to use MLP as a

classifier and regression
•	 To evaluate the impact of the learning rate and the gradient descent

momentum factor on the convergence of the sum of squared errors
during training

•	 How to apply a multilayer perceptron to the financial analysis of the
fluctuation of currencies

The next chapter will introduce the concept of genetic algorithms with a full
implementation in Scala. Although, strictly speaking, genetic algorithms do not
belong to the family of machine learning algorithms, they play a crucial role in the
optimization of nonlinear, nondifferentiable problems and the selection of strong
classifiers within ensembles.

Genetic Algorithms
This chapter introduces the concept of evolutionary computing. Algorithms derived
from the theory of evolution are particularly efficient in solving large combinatorial
or NP problems. Evolutionary computing has been pioneered by John Holland
[10:1] and David Goldberg [10:2]. Their findings should be of interest to anyone
eager to learn about the foundation of genetic algorithms (GA) and artificial life.

This chapter covers the following topics:

•	 The origin of evolutionary computing
•	 The theoretical foundation of genetic algorithms
•	 Advantages and limitations of genetic algorithms

From a practical perspective, you will learn how to:

•	 Apply genetic algorithms to leverage technical analysis of market price and
volume movement to predict future returns

•	 Evaluate or estimate the search space
•	 Encode solutions in the binary format using either hierarchical or

flat addressing
•	 Tune some of the genetic operators
•	 Create and evaluate fitness functions

Evolution
The theory of evolution, enunciated by Charles Darwin, describes the morphological
adaptation of living organisms [10:3].

Genetic Algorithms

[328]

The origin
The Darwinian process consists of optimizing the morphology of organisms to adapt
to the harshest environments—hydrodynamic optimization for fishes, aerodynamic
for birds, or stealth skills for predators. The following diagram shows a gene:

The population of organisms varies over time. The number of individuals within
a population changes, sometimes dramatically. These variations are usually
associated with the abundance or lack of predators and prey as well as the changing
environment. Only the fittest organisms within the population can survive over time
by adapting quickly to sudden changes in living environments and new constraints.

NP problems
NP stands for nondeterministic polynomial time. The NP problems concept relates
to the theory of computation and more precisely, time and space complexity. The
categories of NP problems are as follows:

•	 P-problems (or P decision problems): For these problems, the resolution
on a deterministic Turing machine (computer) takes a deterministic
polynomial time.

•	 NP problems: These problems can be resolved in a polynomial time on
nondeterministic machines.

•	 NP-complete problems: These are NP-hard problems that are reduced to NP
problems for which the solution takes a deterministic polynomial time. These
types of problems may be difficult to solve but their solution can be validated.

Chapter 10

[329]

•	 NP-hard problems: These problems have solutions that may not be found in
polynomial time.

Computational complexity

NP-hard

NP-complete

NP

P

Problems such as the traveling salesman, floor shop scheduling, the computation of
a graph K-minimum spanning tree, map coloring, or cyclic ordering have a search
execution time that is a nondeterministic polynomial, ranging from n! to 2n for a
population of n elements [10:4].

NP problems cannot always be solved using analytical methods because of the
computation overhead—even in the case of a model, it relies on differentiable
functions. Genetic algorithms were invented by John Holland in the 1970s, and
they derived their properties from the Theory of Evolution of Darwin to tackle
NP and NP-complete problems.

Evolutionary computing
A living organism consists of cells that contain identical chromosomes. Chromosomes
are strands of DNA and serve as a model for the whole organism. A chromosome
consists of genes that are blocks of DNA and encode a specific protein.

Recombination (or crossover) is the first stage of reproduction. Genes from parents
generate the whole new chromosome (offspring) that can be mutated. During
mutation, one or more elements, also known as individual bases of the DNA strand
or chromosomes, are changed. These changes are mainly caused by errors that occur
when the genes from parents are being passed on to their offspring. The success of an
organism in its life measures its fitness [10:5].

Genetic algorithms use reproduction to evolve a solution for a problem that is similar
to unsupervised learning, for which a class or clusters are identified through an
iterative or optimization methodology.

Genetic Algorithms

[330]

Genetic algorithms and machine learning
The practical purpose of a genetic algorithm as an optimization technique is to solve
problems by finding the most relevant or fittest solution among a set or group of
solutions. Genetic algorithms have many applications in machine learning, as follows:

•	 Discrete model parameters: Genetic algorithms are particularly effective in
finding the set of discrete parameters that maximizes the log likelihood. For
example, the colorization of a black and white movie relies on a large but
finite set of transformations from shades of grey to the RGB color scheme.
The search space is composed of the different transformations and the
objective function is the quality of the colorized version of the movie.

•	 Reinforcement learning: Systems that select the most appropriate rules
or policies to match a given data set rely on genetic algorithms to evolve
the set of rules over time. The search space or population is the set of
candidate rules, and the objective function is the credit or reward for an
action triggered by these rules (refer to the Introduction section of Chapter 11,
Reinforcement Learning).

•	 Neural network architecture: A genetic algorithm drives the evaluation of
different configurations of networks. The search space consists of different
combinations of hidden layers and the size of those layers. The fitness or
objective function is the sum of the squared errors.

•	 Ensemble learning [10:6]: A genetic algorithm can weed out the weak learners
among a set of classifiers in order to improve the quality of the prediction.

Genetic algorithm components
Genetic algorithms have the following three components:

•	 Genetic encoding (and decoding): This is the conversion of a solution
candidate and its components into the binary format (an array of bits
or a string of 0 and 1 characters)

•	 Genetic operations: This is the application of a set of operators to extract the
best (most genetically fit) candidates (chromosomes)

•	 Genetic fitness function: This is the evaluation of the fittest candidate using
an objective function

Encodings and the fitness function are problem dependent. Genetic operators are not.

Chapter 10

[331]

Encodings
Let's consider the optimization problem in machine learning that consists of
maximizing the log likelihood or minimizing the loss function. The goal is to
compute the parameters or weights, w={wi}, that minimize or maximize a function
f(w). In the case of a nonlinear model, variables may depend on other variables,
which make the optimization problem particularly challenging.

Value encoding
The genetic algorithm manipulates variables as bits or bit strings. The conversion
of a variable into a bit string is known as encoding. In the case where the variable is
continuous, the conversion is known as discretization. Each type of variable has a
unique encoding scheme, as follows:

•	 Boolean values are easily encoded with 1 bit: 0 for false and 1 for true.
•	 Continuous variables are discretized in a fashion similar to the conversion of

an analog to a digital signal. Let's consider the function with a maximum max
(similarly min for minimum) over a range of values, encoded with n=16 bits:

The step size of the discretization is computed as:

step
max-min=

2n

The step size of the discretization of the sine y = sin(x) in 16 bits is 1.524e-5.

Genetic Algorithms

[332]

•	 Discrete or categorical variables are a bit more challenging to encode to bits. At
a minimum, all the discrete values have to be accounted for. However, there is
no guarantee that the number of variables will coincide with the bits boundary:

In this case, the next exponent, n+1, defined the minimum number of bits
required to represent the set of values: n = log2(m).toInt + 1. A discrete
variable with 19 values requires 5 bits. The remaining bits are set to an
arbitrary value (0, NaN,…) depending on the problem. This procedure is
known as padding.

Encoding is as much art as it is science. For each encoding function, you need a
decoding function to convert the bits representation back to actual values.

Predicate encoding
A predicate for a variable x is a relation defined as x operator [target], for instance,
unit cost < [9$], temperature = [82F], or Movie rating is [3 stars].

The simplest encoding scheme for predicates is as follows:

•	 Variables are encoded as category or type (for example, temperature,
barometric pressure, and so on) because there is a finite number of
variables in any model

•	 Operators are encoded as discrete type
•	 Values are encoded as either discrete or continuous values

Encoding format for predicates
There are many approaches for encoding a predicate in a bits
string. For instance, the format {operator, left-operand, right-operand}
is useful because it allows you to encode a binary tree. The entire
rule, IF predicate THEN action, can be encoded with the action being
represented as a discrete or categorical value.

Chapter 10

[333]

Solution encoding
The solution encoding approach describes the solution to a problem as an unordered
sequence of predicates. Let's consider the following rule:

IF {Gold price rises to [1316$/ounce]} AND
 {US$/Yen rate is [104]}).
THEN {S&P 500 index is [UP]}

In this example, the search space is defined by two levels:

•	 Boolean operators (for example, AND) and predicates
•	 Each predicate is defined as a tuple {variable, operator, target value}

The tree representation for the search space is shown in the following diagram:

The bits string representation is decoded back to its original format for
further computation:

Genetic Algorithms

[334]

The encoding scheme
There are two approaches to encode such a candidate solution or chain of predicates:

•	 Flat coding of a chromosome
•	 Hierarchical coding of a chromosome as a composition of genes

Flat encoding
The flat encoding approach consists of encoding the set of predicates into a single
chromosome (bits string) representing a specific solution candidate to the optimization
problem. The identity of the predicates is not preserved:

An overview of flat addressing

A genetic operator manipulates the bits of the chromosome regardless of whether the
bits refer to a particular predicate:

Chromosome encoding with flat addressing

Hierarchical encoding
In this configuration, the characteristic of each predicate is preserved during the
encoding process. Each predicate is converted into a gene represented by a bit string.
The genes are aggregated to form the chromosome. An extra field is added to the
bits string or chromosome for the selection of the gene. This extra field consists of the
index or the address of the gene:

Chapter 10

[335]

An overview of hierarchical addressing

A generic operator selects the predicate it needs to manipulate first. Once the target
gene is selected, the operator updates the bits string associated to the gene, as follows:

A chromosome with hierarchical addressing

The next step is to define the genetic operators that manipulate or update the bits
string representing either a chromosome or individual genes.

Genetic operators
The implementation of the reproduction cycle attempts to replicate the natural
reproduction process [10:7]. The reproduction cycle that controls the population
of chromosomes consists of three genetic operators:

•	 Selection: This operator ranks chromosomes according to a fitness function
or criteria. It eliminates the weakest or less-fit chromosomes and controls the
population growth.

•	 Crossover: This operator pairs chromosomes to generate offspring
chromosomes. These offspring chromosomes are added to the population
along with their parent chromosomes.

•	 Mutation: This operator introduces minor alteration in the genetic code
(bits string representation) to prevent the successive reproduction cycles
from electing the same fittest chromosome. In optimization terms, this
operator reduces the risk of the genetic algorithm converging quickly
towards a local maximum or minimum.

Genetic Algorithms

[336]

Transposition operator
Some implementations of genetic algorithms use a fourth operator,
genetic transposition, in case the fitness function cannot be very
well defined and the initial population is very large. Although
additional genetic operators could potentially reduce the odds of
finding a local maximum or minimum, the inability to describe
the fitness criteria or the search space is a sure sign that a genetic
algorithm may not be the most suitable tool.

The following diagram gives an overview of the genetic algorithm workflow:

Initialization
The initialization of the search space (a set of potential solutions
to a problem) in any optimization procedure is challenging, and
genetic algorithms are no exception. In the absence of bias or
heuristics, the reproduction initializes the population with randomly
generated chromosomes. However, it is worth the effort to extract the
characteristics of a population. Any well-founded bias introduced during
initialization facilitates the convergence of the reproduction process.

Each of these genetic operators has at least one configurable parameter that has to be
estimated and/or tuned. Moreover, you will likely need to experiment with different
fitness functions and encoding schemes in order to increase your odds of finding a
fittest solution (or chromosome).

Selection
The purpose of the genetic selection phase is to evaluate, rank, and weed out the
chromosomes (that is, the solution candidates) that are not a good fit for the problem.
The selection procedure relies on a fitness function to score and rank candidate
solutions through their chromosomal representation. It is a common practice to
constrain the growth of the population of chromosomes by setting a limit to the size
of the population.

Chapter 10

[337]

There are several methodologies to implement the selection process from scaled
relative fitness, Holland roulette wheel, and tournament selection to rank-based
selection [10:8].

Relative fitness degradation
As the initial population of chromosomes evolves, the chromosomes
tend to get more and more similar to each other. This phenomenon is
a healthy sign that the population is actually converging. However,
for some problems, you may need to scale or magnify the relative
fitness to preserve a meaningful difference in the fitness score
between the chromosomes [10:9].

The following implementation relies on rank-based selection using either a fitness or
unfitness function to score chromosomes.

The selection process consists of the following steps:

1.	 Apply the fitness/unfitness function to each chromosome j in
the population, fj

2.	 Compute the total fitness/unfitness score for the entire population, ∑fj

3.	 Normalize the fitness/unfitness score of each chromosome by the sum of the
fitness/unfitness scores of all the chromosomes, fj = fi/Σfj

4.	 Sort the chromosomes by their descending fitness score or ascending
unfitness score

5.	 Compute the cumulative fitness/unfitness score for each chromosome,
j fj = fj + ∑fk

6.	 Generate the selection probability (for the rank-based formula) as a random
value, p ε [0,1]

7.	 Eliminate the chromosome, k, having a low fitness score fk < p or high
unfitness cost, fk > p

8.	 Reduce the size of the population further if it exceeds the maximum allowed
number of chromosomes.

Natural selection
You should not be surprised by the need to control the size
of population of chromosomes. After all, nature does not
allow any species to grow beyond a certain point in order
to avoid depleting natural resources. The predator-prey
process modeled by the Lotka-Volterra equation [10:10]
keeps the population of each species in check.

Genetic Algorithms

[338]

Crossover
The purpose of the genetic crossover is to expand the current population of
chromosomes in order to intensify the competition among the solution candidates.
The crossover phase consists of reprogramming chromosomes from one generation to
the next. There are many different variations of crossover techniques. The algorithm
for the evolution of the population of chromosomes is independent of the crossover
technique. Therefore, the case study uses the simpler one-point crossover. The
crossover swaps sections of the two-parent chromosomes to produce two offspring
chromosomes, as illustrated in the following diagram:

A chromosome's crossover

An important element in the crossover phase is the selection and pairing of parent
chromosomes. There are different approaches for selecting and pairing the parent
chromosomes that are the most suitable for reproduction:

•	 Selecting only the n fittest chromosomes for reproduction
•	 Pairing chromosomes ordered by their fitness (or unfitness) value
•	 Pairing the fittest chromosome with the least-fit chromosome, the second

fittest chromosome with the second least-fit chromosome, and so on

It is a common practice to rely on a specific optimization problem to select the most
appropriate selection method as it is highly domain dependent.

The crossover phase that uses hierarchical addressing as the encoding scheme
consists of the following steps:

1.	 Extract pairs of chromosomes from the population.
2.	 Generate a random probability p ϵ [0,1].
3.	 Compute the index ri of the gene for which the crossover is applied

as ri = p.num_genes, where num_genes are the number of genes in
a chromosome.

Chapter 10

[339]

4.	 Compute the index of the bit in the selected gene for which the crossover is
applied as xi=p.gene_length, where gene_length is the number of bits in the gene.

5.	 Generate two offspring chromosomes by interchanging strands
between parents.

6.	 Add the two offspring chromosomes to the population.

Preserving parent chromosomes
You may wonder why the parents are not removed from
the population once the offspring chromosomes are created.
This is because there is no guarantee that any of the offspring
chromosomes are a better fit.

Mutation
The objective of genetic mutation is preventing the reproduction cycle from
converging towards a local optimum by introducing a pseudo-random alteration
to the genetic material. The mutation procedure inserts a small variation in
a chromosome to maintain some level of diversity between generations. The
methodology consists of flipping one bit in the bits string representation of the
chromosome, as illustrated in the following diagram:

The chromosome mutation

The mutation is the simplest of the three phases in the reproduction process. In the
case of hierarchical addressing, the steps are as follows:

1.	 Select the chromosome to be mutated.
2.	 Generate a random probability p ϵ[0,1].
3.	 Compute the index mi of the gene to be mutated using the formula

mi = p.num_genes.
4.	 Compute the index of the bit in the gene to be mutated xi=p.genes_length.
5.	 Perform a flip XOR operation on the selected bit.

Genetic Algorithms

[340]

The tuning issue
The tuning of a genetic algorithm can be a daunting task.
A plan including a systematic design experiment for
measuring the impact of the encoding, fitness function,
crossover, and mutation ratio is necessary to avoid lengthy
evaluation and self-doubt.

Fitness score
The fitness function is the centerpiece of the selection process. There are three
categories of fitness functions:

•	 The fixed fitness function: In this function, the computation of the fitness
value does not vary during the reproduction process

•	 The evolutionary fitness function: In this function, the computation of the
fitness value morphs between each selection according to predefined criteria

•	 An approximate fitness function: In this function, the fitness value cannot be
computed directly using an analytical formula [10:11]

Our implementation of the genetic algorithm uses a fixed fitness function.

Implementation
As mentioned earlier, the genetic operators are independent of the problem to be
solved. Let's implement all the components of the reproduction cycle. The fitness
function and the encoding scheme are highly domain specific.

In accordance with the principles of object-oriented programming, the software
architecture defines the genetic operators using a top-down approach: starting
with the population, then each chromosome, down to each gene.

Software design
The implementation of the genetic algorithm uses a design that is similar to
the template for classifiers (refer to the Design template for classifier section in
Appendix A, Basic Concepts).

The key components of the implementation of the genetic algorithm are as follows:

•	 The Population class defines the current set of solution candidates
or chromosomes.

Chapter 10

[341]

•	 The GASolver class implements the GA solver and has two components: a
configuration object of the type GAConfig and the initial population. This
class defines a data transformation by implementing the PipeOperator trait.

•	 The configuration class GAConfig consists of the GA execution and
reproduction configuration parameters.

•	 The reproduction (of the type Reproduction) controls the reproduction cycle
between consecutive generations of chromosomes through the mate method.

The following UML class diagram describes the relation between the different
components of the genetic algorithm:

Reproduction Chromosome[T]=>()

Operator

Double

PopulationGAConfig

GASolver
Chromosome

Gene

Config PipeOperator Model

mate

score

code

op

value

config
population chromosomes

1

1+

1

1 1

1 1

1 1

1

1
1

1+

UML class diagram of genetic algorithm components

Let's start by defining the key classes that control the genetic algorithm.

Key components
The parameterized class Population (with the subtype Gene) contains the set or
pool of chromosomes. A population contains chromosomes that are a sequence
or list of element of the type inherited from Gene. A Pool is a mutable array in
order to avoid excessive duplication of the Chromosome instances associated with
immutable collections.

A case for mutability
It is a good Scala programming practice to stay away from mutable
collections. However, in this case, the number of chromosomes can
be very large. Most implementations of genetic algorithms update the
population potentially three times per reproduction cycle, generating
a large number of objects and taxing the Java garbage collector.

Genetic Algorithms

[342]

The Population class takes two parameters:

•	 limit: This is the maximum size of the population
•	 chromosomes: This is the pool of chromosomes defining the current population

A reproduction cycle executes the following sequence of three genetic operators on
a population: select for selection across all the chromosomes of the population, +-
for crossover of all the chromosomes, and ^ for the mutation of each chromosome.
Consider the following code:

type Pool[T <: Gene] = ArrayBuffer[Chromosome[T]]
class Population[T <: Gene](limit: Int, val chromosomes: Pool[T]) {
 def select(score: Chromosome[T] => Unit, cutOff: Double)
 def +- (xOver: Double)
 def ^ (mu: Double)
 …

The limit value specifies the maximum size of the population during optimization.
It defines the hard limit or constraints on the population growth.

The chromosome is the second level of containment in the genotype hierarchy.
The Chromosome class takes a list of genes as parameter (code). The signature of the
crossover and mutation methods, +- and ^, are similar to their implementation in the
Population class except for the fact that the crossover and mutable parameters are
passed as indices relative to the list of genes and each gene. The section dedicated to
the genetic crossover describes the GeneticIndices class:

class Chromosome[T <: Gene](val code: List[T]) {
 var unfitness: Double = 1e+5*(1 + Random.nextDouble)
 def +- (that: Chromosome[T], idx: GeneticIndices):
(Chromosome[T],Chromosome[T])
 def ^ (idx: GeneticIndices): Chromosome[T]
 …

The algorithm assigns the fitting score an unfitness value in this implementation
to enable the ranking of the population and ultimately the selection of the fittest
chromosomes.

Fitness vs. unfitness
The machine learning algorithms used the loss function or
its variant as an objective function to be minimized. This
implementation of the GA uses unfitness scores to be consistent
with the concept of minimization of cost, loss, or penalty function.

Chapter 10

[343]

Finally, the reproduction process executes the genetic operators on each gene:

class Gene(val id: String, val target: Double, op: Operator)(implicit
discr: Discretization) {
 val bits: BitSet
 …
 def +- (index: Int, that: Gene): Gene
 def ^ (index: Int): Unit
}

The Gene class takes four parameters:

•	 id: This is the identifier of the gene. It is usually the name of the variable
represented by the gene.

•	 target: This is the target value or threshold to be converted or discretized
into a bit string.

•	 op: This is the operator that is applied to the target value.
•	 discr: This is the discretization class that converts a double value to an

integer to be converted into bits and vice versa.

The discretization is implemented as a case class:

case class Discretization(toInt: Double => Int,toDouble: Int =>
Double) {
 def this(R: Int) =
 this((x: Double) => (x*R).floor.toInt, (n: Int) => n/R)
}

The first function, toInt, converts a real value to an integer and toDouble
converts the integer back to a real value. The discretization and inverse functions
are encapsulated into a class to reduce the risk of inconsistency between the two
opposite conversion functions.

The instantiation of a gene converts the predicate representation into a bit string (bits
of the type java.util.BitSet) using the discretization function Discretization.
toInt. The bit string is decoded by the decode method of the Gene companion object.

The Operator trait defines the signature of any operator. Each domain-specific
problem requires a unique set of operations: Boolean, numeric, or string manipulation:

trait Operator {
 def id: Int
 def apply(id: Int): Operator
}

Genetic Algorithms

[344]

The preceding operator has two methods: an identifier id and an apply method that
converts an index to an operator.

Selection
The first genetic operator of the reproduction cycle is the selection process. The
select method of the Population class implements the steps of the selection
phase to the population of chromosomes in the most efficient manner, as follows:

def select(score: Chromosome[T] => Unit, cutOff: Double) = {
 val cumul = chromosomes.foldLeft(0.0)((s,x) =>{
 score(xy); s + xy.unfitness}) //1
 chromosomes foreach(_ /= cumul) //2
 val newChromosomes = chromosomes.sortWith(_.unfitness < _.unfitness)
//3

 val cutOffSize = (cutOff*newChromosomes.size).floor.toInt //4
 val newPopSize = if(limit<cutOffSize) limit else cutOffSize //5
 chromosomes.clear //6
 chromosomes ++= newChromosomes.take(newPopSize) //7
}

The select method computes the cumulative sum of an unfitness value, cumul,
for the entire population (line 1). It normalizes the unfitness of each chromosome
(line 2), orders the population by decreasing value (line 3), and applies a soft limit
function on population growth, cutOff (line 4). The next step reduces the size of
the population to the lowest of the two limits: the hard limit, limit, or the soft limit,
cutOffSize (line 5). Finally, the current population is cleared (line 6) and updated
with the next generation (line 7).

Even population size
The next phase in the reproduction cycle is the crossover, which
requires the pairing of parent chromosomes. It makes sense to
pad the population so that its size is an even integer.

The scoring function score takes a chromosome as parameter and updates its
unfitness value for this chromosome.

Chapter 10

[345]

Controlling population growth
The natural selection process controls or manages the growth of the population of
species. The genetic algorithm uses two mechanisms:

•	 The absolute maximum size of the population (hard limit).
•	 The incentive to reduce the population as the optimization progresses

(soft limit). This incentive (or penalty) on the population growth is defined
by the cutOff value used during selection (the select method).

The cutoff value is computed through a user-defined function, softLimit, of the
type Int => Double, provided as a configuration parameter (softLimit(cycle:
Int) => a.cycle +b).

GA configuration
The four configurations and tuning parameters required by the genetic
algorithm are:

•	 xover: This is the crossover ratio (or probability) and has a value
in the interval [0, 1].

•	 mu: This is the mutation ratio with a value in the interval [0, 1].
•	 maxCycles: This is the maximum number of reproduction cycles.
•	 softLimit: This is the soft constraint on the population growth. The constraint

function takes the number of iterations as argument and returns the maximum
number of chromosomes allowed in the population.

Consider the following code:

class GAConfig(val xover: Double,val mu: Double,val maxCycles: Int,val
softLimit: Int => Double) extends Config

Crossover
As mentioned earlier, the genetic crossover operator couples two chromosomes to
generate two offspring chromosomes that compete with all the other chromosomes
in the population, including their own parents, in the selection phase of the next
reproduction cycle.

Genetic Algorithms

[346]

Population
We use the notation +- as the implementation of the crossover operator in Scala. There
are several options to select pairs of chromosomes for crossover. This implementation
ranks the chromosomes by their fitness value and then divides the population into two
halves. Finally, it pairs the chromosomes of identical rank from each half as illustrated
in the following diagram:

Pairing of chromosomes within a population prior to crossover

The crossover implementation, +-, selects the parent chromosome candidates for
crossover using the pairing scheme described earlier. Consider the following code:

def +- (xOver: Double): Unit = {
 if(size > 1) {
 val mid = size>>1
 val bottom = chromosomes.slice(mid, size) //1
 val gIdx = geneticIndices(xOver) //5
 val offSprings = chromosomes.take(mid)
 .zip(bottom) //2
 .map(p => p._1 +-(p._2, gIdx))
 .unzip //3
 chromosomes ++= offSprings._1 ++ offSprings._2 //4
 }
}

This method splits the population into two subpopulations of equal size (line 1)
and applies the Scala zip method (line 2) to generate the set of pairs of offspring
chromosomes (line 3). The crossover operator, +-, is applied to each chromosome
pair to produce an array of pairs of offspring. Finally, the crossover method adds
offspring chromosomes to the existing population (line 4). The crossover value,
xOver, is a probability randomly generated over the interval [config.xOver, 1].

Chapter 10

[347]

The geneticIndices method (line 5) computes the relative indices of the crossover
bit in the chromosomes and genes:

case class GeneticIndices(val chOpIdx: Int, val geneOpIdx: Int)
def geneticIndices(prob: Double): GeneticIndices = {
 var idx = (prob*chromosomeSize).floor.toInt
 val chIdx = if(idx==0) 1
 else if(idx == chromosomeSize) chromosomeSize-1 else idx

 idx = (prob*geneSize).floor.toInt
 val gIdx = if(idx == 0) 1
 else if(idx == geneSize) geneSize-1 else idx
 GeneticIndices(chIdx, gIdx)
}

The GeneticIndices case class defines two indices of the bit whenever a crossover or
a mutation occurs. The first index, chOpIdx, is the absolute index of the bit affected by
the genetic operation in the chromosome. The second index, geneOpIdx, is the index
of the bit within the gene subjected to crossover or mutation. The geneticIndices
method of the Population class computes the two indices from a randomly generated
value, prob, selected over the interval [config.xover, 1] for crossover and
[config.mu, 1] for mutation.

Chromosomes
First, we need to define the Chromosome class, which takes a list of genes, code
(for genetic code), as the parameter:

class Chromosome[T <: Gene](val code: List[T])

The implementation of the crossover for a pair of chromosomes using hierarchical
encoding follows two steps:

•	 Find the gene on each chromosome that corresponds to the crossover index,
gIdx.chOpIdx, and then swap the remaining genes

•	 Split and splice the gene crossover at xoverIdx

Consider the following code:

def +-(that: Chromosome[T], gIdx: GeneticIndices): (Chromosome[T],
Chromosome[T]) = {
 val xoverIdx = gIdx.chOpIdx //6
 val xGenes = spliceGene(gIdx, that.code(xoverIdx)) //7

 val offSprng1 = code.slice(0, xoverIdx) ::: xGenes._1 :: that.code.
drop(xoverIdx+1) //8

Genetic Algorithms

[348]

 val offSprng2 = that.code.slice(0, xoverIdx) ::: xGenes._2 :: code.
drop(xoverIdx+1)
 (Chromosome[T](offSprng1), Chromosome[T](offSprng2)//9
}

The crossover method computes the index of the bit that defines the crossover
(xoverIdx) in each parent chromosome (line 6). The genes this.code(xoverIdx)
and that.code(xoverIdx) are swapped and spliced by the spliceGene method
to generate a spliced gene (line 7).

def spliceGene(gIdx: GeneticIndices, thatCode: T): (T, T) = {
 ((this.code(gIdx.chOpIdx) +- (thatCode, gIdx)),
 (thatCode +- (code(gIdx.chOpIdx), gIdx)))
}

The offspring chromosomes are gathered by collating the first xOverIdx genes of the
parent chromosome, the crossover gene, and the remaining genes of the other parent
(line 8). The method returns the pair of offspring chromosomes (line 9).

Genes
The crossover is applied to a gene through the +-method of the Gene class. The
exchange of bits between the two genes this and that uses the BitSet Java class
to rearrange the bits after the permutation:

def +- (that: Gene, idx: GeneticIndices): Gene = {
 val clonedBits = cloneBits(bits) //10

 Range(gIdx.geneOpIdx, bits.size).foreach(n =>
 if(that.bits.get(n)) clonedBits.set(n)
 else clonedBits.clear(n)
) //11

 val valOp = decode(clonedBits) //12
 Gene(id, valOp._1, valOp._2)
}

The bits of the gene are cloned (line 10) and then spliced by exchanging their bits
along the crossover point xOverIdx (line 11). The cloneBits function duplicates
a bit string, which is then converted into a (target value, operator) tuple using the
decode method (line 12). We omit these two methods because they are not critical
to the understanding of the algorithm.

Chapter 10

[349]

Mutation
The mutation of the population uses the same algorithmic approach as the
crossover operation.

Population
The mutation operator ^ invokes the same operator for all the chromosomes in the
population and then adds the mutated chromosomes to the existing population,
so that they can compete with the original chromosomes. We use the notation ^ to
define the mutation operator to remind the reader that the mutation is implemented
by flipping one bit:

def ^ (mu: Double): Unit =
 chromosomes ++= chromosomes.map(_ ^ geneticIndices(mu))

The mutation parameter mu is used to compute the absolute index of the mutating
gene, geneticIndices(mu).

Chromosomes
The implementation of the mutation operator ^ on a chromosome consists of
mutating the gene of the index gIdx.chOpIdx (line 1) and then updating the list of
genes in the chromosome (line 2). The method returns a new chromosome (line 3)
that will compete with the original chromosome:

def ^ (gIdx: GeneticIndices): Chromosome[T] = { //1
 val mutated = code(gIdx.chOpIdx) ^ gIdx
 val xs = Range(0, code.size).map(i =>
 if(i==gIdx.chOpIdx) mutated else code(i)).toList //2
 Chromosome[T](xs) //3
}

Genes
Finally, the mutation operator flips (XOR) the bit at the index gIdx.geneOpIdx:

def ^ (gIdx: GeneticIndices): Gene = {
 val clonedBits = cloneBits(bits) //4
 clonedBits.flip(idx.geneOpIdx) //5

 val valOp = decode(clonedBits) //6
 Gene(id, valOp._1, valOp._2) //7
}

Genetic Algorithms

[350]

The ^ method mutates the cloned bit string, clonedBits (line 4) by flipping the bit at
the index gIdx.geneOpIdx (line 5). It decodes and converts the mutated bit string by
converting it into a (target value, operator) tuple (line 6). The last step creates a new
gene from the target-operator tuple (line 7).

The reproduction cycle
Let's wrap the reproduction cycle into a Reproduction class that uses the scoring
function score:

class Reproduction[T <: Gene](score: Chromosome[T] => Unit)

The reproduction function, mate, implements the sequence or workflow of the three
genetic operators: select for the selection, +- (xover) for the crossover, and ^ (mu)
for the mutation:

def mate(population: Population[T], config: GAConfig, cycle: Int):
Boolean = population.size match {
 case 0 | 1 | 2=> false
 case _ => {
 population.select(score, config.softLimit(cycle))
 population +- (1.0 - Random.nextDouble*config.xover)
 population ^ (1.0 - Random.nextDouble*config.mu)
 true
 }
}

This method returns true if the size of the population is larger than 2. The last
element of the puzzle is the exit condition. There are two options for estimating
that the reproducing cycle is converging:

•	 Greedy: In this approach, the objective is to evaluate whether the n fittest
chromosomes have not changed in the last m reproduction cycles

•	 Loss function: This approach is similar to the convergence criteria for the
training of supervised learning

A simple exit condition describes the state, of the type GAState, of the genetic
algorithm at each reproduction cycle:

def converge(population: Population[T], cycle: Int): GAState = {
 if(population == null) GA_FAILED
 else if(iters >= config.cycles)
 GA_NO_CONVERGENCE(s"failed after $cycle cycles")
 …

Chapter 10

[351]

Let's define the state of the genetic algorithm as a case class of the super
type GAState:

sealed abstract class GAState(val description: String)
case class GA_FAILED(val _description: String) extends GAState(_
description)
object GA_RUNNING extends GAState("Running")
case class GA_NO_CONVERGENCE(val _desc: String) extends GAState(_desc)
…

The last class GASolver manages the reproduction cycle and evaluates the exit
condition or the convergence criteria:

class GASolver[T <: Gene](config: GAConfig, score: Chromosome[T]
=>Unit) extends PipeOperator[Population[T], Population[T]] {
 var state: GAState = GA_NOT_RUNNING

This class implements the data transformation |>, which transforms a population to
another one, given a configuration, config and a scoring method, score, as follows:

def |> : PartialFunction[Population[T], Population[T]] = {
 case population: Population[T] if(population.size > 1) => {
 val reproduction = Reproduction[T](score)
 state = GA_RUNNING

 Range(0, config.maxCycles).find(n => { //1
 reproduction.mate(population, config, n) match { //2
 case true => converge(population, n) != GA_RUNNING //3
 case false => { …. }
 }
 }) match {
 case Some(n) => population
 …

The reproduction cycle is controlled by the find function (line 1) that tests whether
an error occurs during the reproduction, mate (line 2), before the convergence
criteria (line 3) are applied.

GA for trading strategies
Let's apply our fresh expertise in genetic algorithms to evaluate different strategies to
trade securities using trading signals. Knowledge in trading strategies is not required
to understand the implementation of a GA. However, you may want to get familiar
with the foundation and terminology of technical analysis of securities and financial
markets, described briefly in the Technical analysis section in Appendix A, Basic Concepts.

Genetic Algorithms

[352]

The problem is to find the best trading strategy to predict the increase or decrease of the
price of a security given a set of trading signals. A trading strategy is defined as a set of
trading signals tsj that are triggered or fired when a variable x= {xj}, derived from
financial metrics such as the price of the security or the daily or weekly trading
volume, either exceeds or equals or is below a predefined target value, αj (refer to
the Trading signals and strategy section in Appendix A, Basic Concepts).

The number of variables that can be derived from price and volume can be very
large. Even the most seasoned financial professionals face two challenges:

•	 Selecting a minimal set of trading signals that are relevant to a given data
set (minimize a cost or unfitness function)

•	 Tuning those trading signals with heuristics derived from personal
experience and expertise

Alternative to GA
The problem described earlier can certainly be solved using
one of the machine learning algorithms introduced in the
previous chapters. It is just a matter of defining a training set
and formulating the problem as minimizing the loss function
between the predictor and the training score.

The following table lists the trading classes with their counter part in the
'genetic world':

Generic classes Corresponding securities trading classes
Operator SOperator

Gene Signal

Chromosome Strategy

Population StrategiesFactory

Definition of trading strategies
A chromosome is the genetic encoding of a trading strategy. A factory class,
StrategyFactory, assembles the components of a trading strategy: operators,
unfitness function and signals.

Chapter 10

[353]

Trading operators
Let's extend the Operator trait with the SOperator class to define the operations
we need to trigger the signals. The SOperator instance has a single parameter: its
identifier, _id. The class overrides the id () method to retrieve the ID (similarly, the
class overrides the apply method to convert an ID into an SOperator instance):

class SOperator(val _id: Int) extends Operator {
 override def id: Int = _id
 override def apply(idx: Int): SOperator = new SOperator(idx)
}

The operators used by trading signals are the logical operators: <, >, and =,
as follows:

object LESS_THAN extends SOperator(1)
object GREATER_THAN extends SOperator(2)
…

Each operator is associated with a scoring function by the map operatorFuncMap.
The function computes the unfitness of the signal against a real value or a time series:

val operatorFuncMap = Map[Operator, (Double, Double) =>Double](
 LESS_THAN -> ((x: Double, target: Double) => target - x),
 GREATER_THAN -> ((x: Double, target: Double) => x -target),
 …)

The select method of Population computes the unfitness value of a signal by
quantifying the truthfulness of the predicate. For instance, the unfitness value for
a trading signal, x > 10, is penalized as 5 – 10 = -5 for x = 5 and credited as 14 – 10
= 4 if x = 14. In this regard, the unfitness value is similar to the cost or loss in a
discriminative machine learning algorithm.

The cost/unfitness function
Let's consider the following trading strategy defined as a set of two signals to predict
the sudden relative decrease Δp of the price of a security:

•	 Relative volume vm with a condition vm < α
•	 Relative volatility vl with the condition vl > β

Genetic Algorithms

[354]

Have a look at the following graphs:

As the goal is to model a sudden crash in stock price, we should reward the trading
strategies that predict the steep decrease in the stock price and penalize the strategies
that work well only with a small decrease or increase in stock price. For the case of
the trading strategy with two signals, relative volume vm and relative volatility vl,
n trading sessions, the cost or unfitness function C, and given a relative variation of
stock price and a penalization w = -Δp:

() () ()
1

0
, , | ,

t t
n

m l m l
t t t t

t

w p

C p v v v w v wα β α β
−

=

= −∆

= − + −∑

Trading signals
Let's subclass the Gene class to define the trading signal:

class Signal(_id: String, _target: Double, _op: Operator,xt:
DblVector, weights: DblVector)(implicit discr: Discretization) extends
Gene(_id, _target, _op)

The Signal class takes the identifier for the feature, the target value, an operator
op, the time series xt of the type DblVector, and the weights associated to each data
point of the time series xt. The main purpose of the Signal class is to compute its
score. The chromosome updates its unfitness by summing the score or weighted
score of the signals it contains.

The score of the trading signal is simply the summation of the penalty or truthfulness
of the signal for each entry of the time series, ts:

def score: Double = sumScore(operatorFuncMap.get(op).get)
def sumScore(f: (Double, Double) => Double): Double = xt.foldLeft(0.0)
((s, x) => s + f(x, target))

Chapter 10

[355]

Trading strategies
A trading strategy is an unordered list of trading signals. It makes sense to create
a factory class to generate the trading strategies. The StrategyFactory class
creates strategies of the type List[Signal] from an existing pool of signals of
the subtype Gene:

strategy
StrategyFactoryList[Signal] Signal

Gene

+=

The StrategyFactory class has two arguments: the number of signals, nSignals, in
a trading strategy and the implicit discretization instance:

class StrategyFactory(nSignals: Int)(implicit discr: Discretization){
 val signals = new ListBuffer[Signal]
 lazy val strategies: Pool[Signal]
 …

The += method adds the trading signals to the factor. The StrategyFactory class
generates all possible sequences of signals as trading strategies. The += method takes
five arguments: the identifier (id), target, operation (op) to qualify the class as a
Gene, the times series xt for scoring the signals, and the weights associated to the
overall cost function:

def += (id: String, target: Double, op: Operator, xt:
XTSeries[Double], weights: DblVector): Unit =
 signals.append(Signal(id, target, op, xt.toArray, weights))

The StrategyFactory class defines strategies as lazy values to avoid
unnecessary regeneration of the pool on demand:

lazy val strategies: Pool[Signal] = {
 implicit val ordered = Signal.orderedSignals //7

 val xss = new Pool[Signal] //1
 val treeSet = new TreeSet[Signal] ++= signals.toList //2
 val subsetsIterator = treeSet.subsets(nSignals) //3
 while(subsetsIterator.hasNext) { //4
 val subset = subsetsIterator.next
 val signalList: List[Signal] = subset.toList //5
 xss.append(Chromosome[Signal](signalList)) //6
 } xss
}

Genetic Algorithms

[356]

The implementation of the strategies value creates Pool (line 1) by converting the
list of signals to a treeset (line 2). It breaks down the tree set into unique subtrees
of nSignals nodes each (line 3). It instantiates a subsetsIterator iterator (line 3)
to traverse the sequence of subtrees (line 4) and converts them into a list (line 5) as
arguments of the new chromosome (trading strategy) (line 6). The procedure to order
the signals, orderedSignals, in the tree set has to be implicitly defined (line 7):

val orderedSignals = Ordering.by((signal: Signal) => signal.id)

Signal encoding
The encoding of trading predicates is the most critical element of the genetic
algorithm. In our example, we encode a predicate as a tuple (target value, operator).
Let's consider the simple predicate volatility > 0.62. The discretization converts the
value 0.62 into 32 bits for the instance and a 2-bit representation for the operator:

Encoding price volatility as a gene

IEEE-732 encoding
The threshold value for predicates is converted into an integer
(the type Int or Long). The IEEE-732 binary representation
of floating point values makes the bit addressing required
to apply genetic operators quite challenging. A simple
conversion consists of the following:

encoding e: (x: Double) => (x*100000).toInt
decoding d: (x: Int) => x*1e-5

All values are normalized; so, there is no risk of overflowing
the 32-bit representation.

Chapter 10

[357]

Test case
The goal is to evaluate which trading strategy was the most relevant (fittest) during
the crash of the stock market in fall 2008. Let's consider the stock price of one of the
financial institutions, Goldman Sachs, as a proxy of the sudden market decline:

Goldman-Sachs fall 2008

Besides the variation of the price of the stock between two consecutive trading
sessions (deltaPrice), the model uses the following parameters:

•	 deltaVolume: This is the relative variation of the volume between two
consecutive trading sessions

•	 deltaVolatility: This is the relative variation of volatility between two
consecutive trading sessions

•	 relVolatility: This is the relative volatility within a trading session
•	 relCloseOpen: This is the relative difference of the stock opening and

closing price

Genetic Algorithms

[358]

The execution of the genetic algorithm requires the following steps:

1.	 Extraction of model parameters or variables.
2.	 Generation of the initial population of trading strategies.
3.	 Setting up the GA configuration parameters with the maximum number of

reproduction cycles allowed, the crossover and mutation ratio, and the soft
limit function for population growth.

4.	 Instantiating the GA algorithm with the scoring/unfitness function.
5.	 Extracting the fittest trading strategy that can best explain the sharp decline

in the price of Goldman Sachs stocks.

Data extraction
The first step is to extract the model parameters as illustrated for the variation of the
stock price between two consecutive trading sessions:

val path = "resources/data/chap10/GS.csv"
val src = DataSource(path, false, true, 1)
val price = src |> YahooFinancials.adjClose
val deltaPrice = price.drop(1)
 .zip(price.dropRight(1))
 .map(p => (1.0 – p._2/p._1))

The extraction of relative variation in volume and volatility is similar to the extraction
of the relative variation of the stock price.

Initial population
The next step consists of generating the initial population of strategies that compete
to become relevant to the decline of the price of stocks of Goldman Sachs. The factory
is initialized with a set of signals:

val NUM_SIGNALS_PER_STRATEGY = 3
val factory = new StrategyFactory(NUM_SIGNALS_PER_STRATEGY)
factory += ("Delta_volume", 1.1, GREATER_THAN, deltaVolume,
deltaPrice)
factory += ("Rel_volatility", 1.3, GREATER_THAN, relVolatility.
drop(1), deltaPrice)
…

The test code generates population by retrieving the pool of strategies:

val limit = factory.strategies.size // 1 <<4
val population = Population[Signal](limit, factory.strategies)

Chapter 10

[359]

The maximum size of the population (hard limit) is arbitrarily set as 16 times the
number of the initial trading strategies (line 1).

At this stage, we need to instantiate a Discretization instance:

val R=1024.0
implicit val digitize = new Discretization(R)

Configuration
The four configuration parameters for the GA are the maximum number of
reproduction cycles (MAX_CYCLES) allowed in the execution, the crossover (XOVER),
the mutation ratio (MU), and the soft limit function (softLimit) to control the
population growth:

val XOVER = 0.2; val MU = 0.6; val MAX_CYCLES = 250
val CUTOFF_SLOPE = -0.003; val CUTOFF_INTERCEPT = 1.003

val softLimit = (n: Int) => CUTOFF_SLOPE*n + CUTOFF_INTERCEPT
val config = GAConfig(XOVER, MUTATE, MAX_NUM_ITERS, softLimit)

The soft limit is implemented as a linearly decreasing function of the number of
cycles (n) to retrain the growth of the population as the execution of the genetic
algorithm progresses.

GA instantiation
Let's implement the chromosome scoring function using the formula introduced
in the cost/unfitness section. The trading strategy/chromosome scoring function
sums up the score for each gene and updates it:

val scoring = (chr: Chromosome[Signal]) => {
 val signals: List[Gene] = chr.code
 chr.unfitness = signals.foldLeft(0.0)((s, x) => s + x.score)
}

The configuration config and the scoring function, scoring, are all you need to
create and execute the solver gaSolver:

val gaSolver = GASolver[Signal](config, scoring)

Genetic Algorithms

[360]

GA execution
The execution of the genetic algorithm transforms an initial population to a very
small group of the NFITS fittest trading strategies:

val NFITS = 2
val best = gaSolver |> population
best.fittest(NFITS)
 .getOrElse(ArrayBuffer.empty)
 .foreach(ch => Display.show(s"Best: ${ch.toString(" ")}", logger))
 …

Tests
The cost function C and the unfitness score of each trading strategy are weighted for
the rate of decline of the price of the Goldman Sachs stock. Let's run two tests:

•	 Evaluation of the genetic algorithm with an unweighted score function
•	 Evaluation of the configuration of the genetic algorithm with the

weighted score

The unweighted score
The test uses three different sets of crossover and mutation ratios: (0.6, 0.2), (0.3, 0.1),
and (0.2, 0.6). The best trading strategy for each scenario are as follows:

•	 0.6-0.2: For this, Delta_volume > 1.10, Rel_close-Open > 0.75, and
Rel_volatility > 0.97 with average chromosome unfitness = 0.025

•	 0.3-0.1: For this, Delta_volatility > 0.9, Rel_close-Open < 0.8, and
Rel_volatility > 1.77 with unfitness = 0.100

•	 0.2-0.6: For this, Delta_volatility > 0.9 Delta_volume > 33.09, and
Rel_volatility > 1.09 with unfitness = 0.099

The fittest trading strategy for each case does not differ much from the initial
population for one or several of the following reasons:

•	 The initial guess for the trading signals was good
•	 The size of the initial population is too small to generate genetic diversity
•	 The test does not take into account the rate of decline of the stock price

Chapter 10

[361]

Let's examine the behavior of the genetic algorithm during execution. We are
particularly interested in the convergence of the average chromosome unfitness
score. The average chromosome unfitness is the ratio of the total unfitness score for
the population over the size of the population: Have a look at the following graph:

The GA converges quite quickly and then stabilizes. The size of the population
increases through crossover and mutation operations until it reaches the maximum
of 256 trading strategies. The soft limit or constraint on the population size kicks in
after 23 trading cycles. The test is run again with a different values of crossover and
mutation ratio, as shown in the following graph:

The profile of the execution of the genetic algorithm is not overly affected by the
different values of crossover and mutation ratios. The chromosome unfitness score
for the high crossover ratio, 0.6, oscillates as the execution progresses. In some cases,
the unfitness score between chromosomes is so small that the GA recycles the same
few trading strategies.

Genetic Algorithms

[362]

The quick decline in the unfitness of the chromosomes is consistent with the fact that
some of the fittest strategies were part of the initial population. It should, however,
raise some concerns that the GA locked on a local minimum early on.

The weighted score
The execution of a test that is similar to the previous one with the weighted unfitness
scoring formula produces some interesting results, as shown in the following graph:

The profile for the size of the population is similar to the test using unweighted
unfitness. However, the average chromosome unfitness does not stabilize as the
optimization goes on until the size of the population is reduced by the soft limit
function. This phenomenon is confirmed by running the test using different
configurations, as shown in the following graph:

Chapter 10

[363]

The weighting function adds the rate of decline of the stock price into the scoring
of the unfitness. The formula to compute the cost/unfitness of a trading strategy is
not a linear function; its complexity increases the odds of the genetic algorithm not
converging properly, which is confirmed with extra runs with different values of the
crossover and mutation ratios.

The possible solutions to the convergence problem are as follows:

•	 Make the weighting function additive (less complex)
•	 Increase the size and diversity of the initial population

Advantages and risks of genetic
algorithms
It should be clear by now that genetic algorithms provide scientists with a powerful
toolbox with which to optimize problems that:

•	 Are poorly understood.
•	 May have more than one good enough solutions.
•	 Have discrete, discontinuous, and non-differentiable functions.
•	 Can be easily integrated with the rules engine and knowledge bases (for

example, learning classifiers systems).
•	 Do not require deep domain knowledge. The genetic algorithm generates

new solution candidates through genetic operators. The initial population
does not have to contain the fittest solution.

•	 Do not require knowledge of numerical methods such as the Newton-
Raphson, conjugate gradient, or BFGS as optimization techniques, which
frighten those with little inclination for mathematics.

However, evolutionary computation is not suitable for problems for which:

•	 A fitness function cannot be clearly defined
•	 Finding the global minimum or maximum is essential to the problem
•	 The execution time has to be predictable
•	 The solution has to be provided in real time or pseudo-real time

Genetic Algorithms

[364]

Summary
Are you hooked on evolutionary computation, genetic algorithms in particular, and
their benefits, limitations as well as some of the common pitfalls? If the answer is
yes, then you may find learning classifier systems, introduced in the next chapter,
fascinating. This chapter dealt with the following topics:

•	 Key concepts in evolutionary computing
•	 The key components and operators of genetic operators
•	 The pitfalls in defining a fitness or unfitness score using a financial trading

strategy as a backdrop
•	 The challenge of encoding predicates in the case of trading strategies
•	 Advantages and risks of genetic algorithms
•	 The process for building a genetic algorithm forecasting tool from the

bottom up

The genetic algorithm is an important element of a special class of reinforcement
learning introduced in the Learning classifier systems section of the next chapter.

Reinforcement Learning
This chapter presents the concept of reinforcement learning, which is widely
used in gaming and robotics. The second part of this chapter is dedicated to
learning classifier systems, which combine reinforcement learning techniques with
evolutionary computing introduced in the previous chapter. Learning classifiers
are an interesting breed of algorithms that are not commonly included in literature
dedicated to machine learning. I highly recommend you to read the seminal book on
reinforcement learning by R. Sutton and A. Barto [11:1] if you are interested to know
about the origin, purpose, and scientific foundation of reinforcement learning.

In this chapter, you will learn the following:

•	 Basic concepts behind reinforcement learning
•	 Detailed implementation of the Q-learning algorithm
•	 A simple approach to manage and balance an investment portfolio using

reinforcement learning
•	 An introduction to learning classifier systems
•	 A simple implementation of extended learning classifiers

The section on learning classifier systems (LCS) is mainly informative and does not
include a test case.

Introduction
The need of an alternative to traditional learning techniques arose with the design of
the first autonomous systems.

Reinforcement Learning

[366]

The problem
Autonomous systems are semi-independent systems that perform tasks with a high
degree of autonomy. Autonomous systems touch every facet of our life, from robots
and self-driving cars to drones. Autonomous devices react to the environment in
which they operate. The reaction or action requires the knowledge of not only the
current state of the environment but also the previous state(s).

Autonomous systems have specific characteristics that challenge traditional
methodologies of machine learning, as listed here:

•	 Autonomous systems have poorly defined domain knowledge because of the
sheer number of possible combinations of states.

•	 Traditional non-sequential supervised learning is not a practical option
because of the following:

°° Training consumes significant computational resources, which are
not always available on small autonomous devices

°° Some learning algorithms are not suitable for real-time prediction
°° The models do not capture the sequential nature of the data feed

•	 Sequential data models such as hidden Markov models require training
sets to compute the emission and state transition matrices (as explained
in the The hidden Markov model (HMM) section in Chapter 7, Sequential Data
Models), which are not always available. However, a reinforcement learning
algorithm benefits from a hidden Markov model in case some of the states
are unknown. These algorithms are known as behavioral hidden Markov
models [11:2].

•	 Genetic algorithms are an option if the search space can be constrained
heuristically. However, genetic algorithms have unpredictable response
time, which makes them impractical for real-time processing.

A solution – Q-learning
Reinforcement learning is an algorithmic approach to understanding and ultimately
automating goal-based decision-making. Reinforcement learning is also known
as control learning. It differs from both supervised and unsupervised learning
techniques from the knowledge acquisition standpoint: autonomous, automated
systems or devices learn from direct, real-time interaction with their environment.
There are numerous practical applications of reinforcement learning from robotics,
navigation agents, drones, adaptive process control, game playing, and online
learning, to schedule and routing problems.

Chapter 11

[367]

Terminology
Reinforcement learning introduces a new terminology as listed here, quite different
from that of older machine learning techniques:

•	 Environment: The environment is any system that has states and
mechanisms to transition between states. For example, the environment
for a robot is the landscape or facility it operates in.

•	 Agent: The agent is an automated system that interacts with the environment.
•	 State: The state of the environment or system is the set of variables or

features that fully describe the environment.
•	 Goal or absorbing state or terminal state: A goal state is the state that

provides a higher discounted cumulative rewards than any other state.
It is a constraint on the training process that prevents the best policy from
being dependent on the initial state.

•	 Action: An action defines the transition between states. The agent is
responsible for performing or at least recommending an action. Upon
execution of the action, the agent collects a reward or punishment from
the environment.

•	 Policy: The policy defines the action to be selected and executed for any state
of the environment.

•	 Best policy. This is the policy generated through training. It defines the
model in Q-learning and is constantly updated with any new episode.

•	 Reward: A reward quantifies the positive or negative interaction of the
agent with the environment. Rewards are essentially the training set for
the learning engine.

•	 Episode: This defines the number of steps necessary to reach the goal state
from an initial state. Episodes are also known as trials.

•	 Horizon: The horizon is the number of future steps or actions used in the
maximization of the reward. The horizon can be infinite, in which case the
future rewards are discounted in order for the value of the policy to converge.

Reinforcement Learning

[368]

Concept
The key component in reinforcement learning is a decision-making agent that
reacts to its environment by selecting and executing the best course of actions and
being rewarded or penalized for it [11:3]. You can visualize these agents as robots
navigating through an unfamiliar terrain or a maze. Robots use reinforcement
learning as part of their reasoning process after all. The following diagram gives
the overview architecture of the reinforcement learning agent:

2. Compute best

course of action(s)
Learning agent

1. Retrieve state

3. Perform action

4. Get reward

Environment

The agent collects the state of the environment, selects, and then executes the most
appropriate action. The environment responds to the action by changing its state and
rewarding or punishing the agent for the action.

The four steps of an episode or learning cycle are as follows:

1.	 The learning agent either retrieves or is notified of a new state of
the environment.

2.	 The agent evaluates and selects the action that may provide the
highest reward.

3.	 The agent executes the action.
4.	 The agent collects the reward or penalty and applies it to calibrate the

learning algorithm.

Reinforcement versus supervision
The training process in reinforcement learning rewards features
that maximize a value or return. Supervised learning rewards
features that meet a predefined labeled value. Supervised learning
can be regarded as forced learning.

The action of the agent modifies the state of the system, which in turn notifies the agent
of the new operational condition. Although not every action will trigger a change in
the state of the environment, the agent collects the reward or penalty nevertheless. At
its core, the agent has to design and execute a sequence of actions to reach its goal. This
sequence of actions is modeled using the ubiquitous Markov decision process (refer to
the Markov decision processes section in Chapter 7, Sequential Data Models.)

Chapter 11

[369]

Dummy actions
It is important to design the agent so that actions may not
automatically trigger a new state of the environment. It is easy to
think about a scenario in which the agent triggers an action just to
evaluate its reward without affecting the environment significantly.
A good metaphor for such a scenario is the rollback of the action.
However, not all environments support such a dummy action, and the
agent may have to run Monte-Carlo simulations to try out an action.

Value of policy
Reinforcement learning is particularly suited to problems for which long-term
rewards can be balanced against short-term rewards. A policy enforces the trade-off
between short-term and long-term rewards. It guides the behavior of the agent by
mapping the state of the environment to its actions. Each policy is evaluated through
a variable known as the value of policy.

Intuitively, the value of a policy is the sum of all the rewards collected as a result
of the sequence of actions taken by the agent. In practice, an action over the policy
farther in the future obviously has a lesser impact than the next action from state St
to state St+1. In other words, the impact of future actions on the current state has to be
discounted by a factor, known as the discount coefficient for future rewards < 1.

State transition matrix
The state transition matrix has have been introduced
in the The hidden Markov model section in Chapter 7,
Sequential Data Models.

The optimum policy, π *, is the agent's sequence of actions that maximizes the future
reward discounted to the current time.

The following table introduces the mathematical notation of each component of
reinforcement learning:

Notation Description
S = {si} States of the environment
A = {ai} Actions on the environment
Πt = p(at|st) Policy (or strategy) of the agent
Vπ(st) Value of the policy at the state
pt =p(st+1|st,at) State transition probabilities from state st to state st+1

Reinforcement Learning

[370]

Notation Description
rt= p(rt+1|st,st+1,at) Reward of an action at for a state st

Rt Expected discounted long term return
γ Coefficient to discount the future rewards

The purpose is to compute the maximum expected reward, Rt, from any starting
state, sk, as the sum of all discounted rewards to reach the current state, st. The value
Vπ of a policy π at state st is the maximum expected reward Rt given the state st.

The value of a policy π at state st with reward rj in
previous state sj:

() { }

1
0

| s

k
t t k

k

t t t

R r

V s E Rπ

γ
+∞

+ +
=

=

=

∑

Bellman optimality equations
The problem of finding the optimal policies is indeed a nonlinear optimization
problem whose solution is iterative (dynamic programming). The expression of
the value function Vπ of a policy π can be formulated using the Markovian state
transition probabilities pt.

Value of state st using the transition probability

() ()(){ }
() ()max

t t k k k
a A k

t t

V s p r V s

V s V s

π π

π

π

π γ
∈

∗

= + ⋅

=

∑ ∑

Chapter 11

[371]

V*(st) is the optimal value of state st across all the policies. The equations are known
as the Bellman optimality equations.

The curse of dimensionality
The number of states for a high-dimension problem (large-feature
vector) becomes quickly insolvable. A workaround is to approximate
the value function and reduce the number of states by sampling. The
application test case introduces a very simple approximation function.

If the environment model, state, action, and rewards, as well as transition between
states, are completely defined, the reinforcement learning technique is known as
model-based learning. In this case, there is no need to explore a new sequence of
actions or state transitions. Model-based learning is similar to playing a board game
in which all combinations of steps necessary to win are completely known.

However, most practical applications using sequential data do not have a complete,
definitive model. Learning techniques that do not depend on a fully defined and
available model are known as model-free techniques. These techniques require
exploration to find the best policy for any given state. The remaining sections in this
chapter deal with model-free learning techniques, and more specifically the temporal
difference algorithm.

Temporal difference for model-free learning
Temporal difference is a model-free learning technique that samples the
environment. It is a commonly used approach to solve the Bellman equations
iteratively. The absence of a model requires a discovery or exploration of the
environment. The simplest form of exploration is to use the value of the next state
and the reward defined from the action to update the value of the current state, as
described in the following diagram:

Action

AdjustV*(s)t

V(s)t
Action

V(s)t+1 V(s)t+2
t+1ata

Illustration of the temporal difference algorithm

Reinforcement Learning

[372]

The iterative feedback loop used to adjust the value action on the state plays a role
similar to back propagation of errors in artificial neural networks or minimization of
the loss function in supervised learning. The adjustment algorithm has to:

•	 Discount the estimate value of the next state using the discount rate γ
•	 Strike a balance between the impacts of the current state and the next state on

updating the value at time t using the learning rate α

The iterative formulation of the first Bellman equation predicts Vπ (st), the value
function of state st from the value function of the next state st+1. The difference
between the predicted value and the actual value is known as the temporal
difference error abbreviated as δ t.

Formula for tabular temporal difference:

() ()
() ()

1 1

ˆ
t t t t

t t t

r V s V s

V s V sπ π

δ γ

αδ
+ += + −

= +

An alternative to evaluating a policy using the value of the state, Vπ (st), is to use the
value of taking an action on a state st known as the value of action (or action-value)

 (st, at).

Value of action at state st

() (), | ,t t t t t tQ Q s a E R s aπ π= =

There are two methods to implement the temporal difference algorithm:

•	 On-policy: This is the value for the next best action that uses the policy
•	 Off-policy: This is the value for the next best action that does not use the policy

Let's consider the temporal difference algorithm using an off-policy method and its
most commonly used implementation: Q-learning.

Action-value iterative update
Q-learning is a model-free learning technique using an off-policy method. It
optimizes the action-selection policy by learning an action-value function. Like
any machine learning technique that relies on convex optimization, the Q-learning
algorithm iterates through actions and states using the quality function, as described
in the following mathematical formulation.

Chapter 11

[373]

The algorithm predicts and discounts the optimum value of action, max{Qt}, for the
current state st and action at on the environment to transition to state st+1.

Similar to genetic algorithms that reuse the population of chromosomes in the
previous reproduction cycle to produce offspring, the Q-learning technique strikes
a balance between the new value of the quality function Qt+1 and the old value Qt
using the learning rate, α . Q-learning applies temporal difference techniques to
the Bellman equation for an off-policy methodology.

Q-learning action-value updating formula:

()
1

1 1 1
ˆ max ,t t t t t ta
Q Q r Q s a Qπ π π πα γ

+
+ + +

 = + + −  

A value 1 for the learning rate α discards the previous state, while a value 0 discards
learning. A value 1 for the discount rate γ uses long-term rewards only, while a
value 0 uses the short-term reward only.

Q-learning estimates the cumulative reward discounted for future actions.

Q-learning as reinforcement learning
Q-learning qualifies as a reinforcement learning technique
because it does not strictly require labeled data and training.
Moreover, the Q-value does not have to be a continuous,
differentiable function.

Let's apply our hard-earned knowledge of reinforcement learning to management
and optimization of a portfolio of exchange-traded funds.

Implementation
Let us implement the Q-learning algorithm in Scala.

Software design
The key components of the implementation of the Q-learning algorithm are
as follows:

•	 The QLearning class implements training and prediction methods. It
defines a data transformation by implementing the PipeOperator trait.
The constructor has three arguments: a configuration of type QLConfig,
a search space of type QLSpace, and a mutable policy of type QLPolicy.

Reinforcement Learning

[374]

•	 The QLSpace class has two components: a sequence of states of type QLState
and the ID of one or more goal states within the sequence.

•	 A state, QLState, contains a sequence of QLAction instances used in its
transition to another state.

•	 The model of type QLModel is generated through training. It contains the best
policy and the accuracy for a model.

The following diagram shows the flow of the Q-learning algorithm:

Config PipeOperator Model

Qlearning
model

Double

QLConfig

Int
goallds states

QLState
actions

qlSpace

T

accuracy

1

1+

prop

config

qlPolicy

QLSpace QLPolicy

QLAction1+ 1+

1

1

1 1

1

1

1

1

1

1

QLModel

bestPolicy

States and actions
The QLAction class specifies the transition of one state with ID from to another state
with ID to, as shown here:

class QLAction[T <% Double](val from: Int, val to: Int)

Actions have a Q value (or action-value), a reward, and a probability. The
implementation defines these three values in three separate matrices: Q for
the action values, R for rewards, and P for probabilities, in order to stay
consistent with the mathematical formulation.

A state of type QLState is fully defined by its ID, the list of actions to transition
to some other states, and a property prop of parameterized type, as shown in the
following code:

class QLState[T](val id: Int, val actions: List[QLAction[T]=List.
empty, val prop: T])

Chapter 11

[375]

The state might not have any actions. This is usually the case of the goal or absorbing
state. In this case, the list is empty. The parameterized prop property is a placeholder
for any information, heuristic about the state, or any action performed by the state.

The next step consists of creating the graph or search space.

Search space
The search space is the container responsible for any sequence of states. The QLSpace
class takes the following parameters:

•	 The sequence of all the possible states
•	 The ID of one or several states that have been selected as goals

Why multiple goals?
There is absolutely no requirement that a state space
must have a single goal. You can describe a solution to a
problem as reaching a threshold or meeting one of several
conditions. Each condition can be defined as a state goal.

The QLSpace class can be implemented as follows:

class QLSpace[T](states: Seq[QLState[T]], goals: Array[Int]) {
 val statesMap = states.map(st => (st.id, st)).toMap //1
 val goalStates = new HashSet[Int]() ++ goals //2

 def maxQ(state: QLState[T], policy: QLPolicy[T]): Double //3
 def init(r: Random) = states(r.nextInt(states.size-1)) //4
 def nextStates(st: QLState[T]): List[QLState[T]] //5
 …
}

The instantiation of the QLSpace class generates a map, statesMap, to retrieve the
state using its id (line 1) and the set of goals, goalStates (line 2). Furthermore,
the maxQ method computes the maximum action-value, maxQ, for a state given a
policy (line 3), the init method selects an initial state for training episodes (line 4),
and finally, the nextStates method retrieves the list of states resulting from the
execution of all the actions associated to the st state (line 5).

Reinforcement Learning

[376]

The search space is actually created by the instance factory defined in the QLSpace
companion object, as shown here:

def apply[T](numStates: Int, goals: Array[Int], features: Set[T],
neighbors: (Int, Int) => List[Int]): QLSpace[T] = {
 val states = features
 .zipWithIndex
 .map(x => {
 val actions = neighbors(x._2, numStates)
 .map(j => QLAction[T](x._2,j))
 .filter(x._2 != _.to)
 QLState[T](x._2, actions, x._1
 })
 new QLSpace[T](states.toArray, goals)
}

The apply method creates a list of states using the features set as input. Each
state creates its list of actions. The user-defined function, neighbors, constrains
the number of actions assigned to each state. The test case describes a very simple
implementation of the neighbors function, which is defined in the configuration.

Policy and action-value
Each action has an action-value, a reward, and a potentially probability. The
probability variable is introduced to model simply the hindrance or adverse
condition for an action to be executed. If the action does not have any external
constraint, the probability is 1. If the action is not allowed, the probability is 0.

Dissociating policy from states
The action and states are the edges and vertices of the search space
or search graph. The policy defined by the action-value, rewards,
and probabilities is completely dissociated from the graph. The
Q-learning algorithm initializes the reward matrix and updates the
action-value matrix independently of the structure of the graph.

The QLData class is a container for three variables: reward, probability, and value
for the Q-value, as shown here:

class QLData(var reward: Double = 1.0, var probability: Double = 1.0
var value: Double = 0.0) {
 def estimate: Double = value*probability
}

Chapter 11

[377]

The estimate method adjusts the Q-value, value, with the probability to reflect any
external condition that can impede the action.

Mutable data
You might wonder why the QLData class uses variables instead of
values as recommended by the best Scala coding practices [11:4].
An instance of an immutable class would be created for each action
or state transition. The training of the Q-learning model entails
iterating across several episodes, each episode being defined as
a multiple iteration. For instance, the training of a model with
400 states for 10 episodes of 100 iterations can potentially create
160 million instances of QLData. Although not quite elegant,
mutability reduces the load on the JVM garbage collector.

Next, let us create a simple schema or class, QLInput, to initialize the reward and
probability associated with each action as follows:

class QLInput(val from: Int, val to: Int, val reward: Double =1.0, val
probability: Double =1.0)

The first two arguments are the identifiers for the source state, from, and target state,
to, for this specific action. The last two arguments are the reward, collected at the
completion of the action, and its probability. There is no need to provide an entire
matrix. Actions have a reward of 1 and a probability of 1 by default. You only need
to create an input for actions that have either a higher reward or a lower probability.

The number of states and a sequence of input define the policy of type QLPolicy. It
is merely a data container, as shown here:

class QLPolicy[T](numStates: Int, input: Array[QLInput]) {
 val qlData = {
 val data = Array.tabulate(numStates)(v =>
 Array.fill(numStates)(new QLData[T]))
 input.foreach(i => {
 data(i.from)(i.to).reward = i.reward //1
 data(i.from)(i.to).probability = i.probability //2
 })
 data
 }
 …

Reinforcement Learning

[378]

The constructor initializes the qlData matrix of type QLData with the input data,
reward (line 1) and probability (line 2). The QLPolicy class defines the methods of
the element in the reward (line 3), probability, and Q-learning action-value (line 4)
matrices as follows:

def R(from: Int, to: Int): Double = qlData(from)(to).reward //3
def Q(from: Int, to: Int): Double = qlData(from)(to).value //4

The Q-learning training
The QLearning class encapsulates the Q-learning algorithm, and more specifically
the action-value updating equation. It implements PipeOperator to the prediction
used as a transformation between states, as shown here:

class QLearning[T](config: QLConfig, qlSpace: QLSpace[T],qlPolicy:
QLPolicy[T]) extends PipeOperator[QLState[T], QLState[T]]

The constructor takes the following parameters:

•	 Configuration of the algorithm, config
•	 Search space, qlSpace
•	 Policy, qlPolicy

The model is generated or trained during the instantiation of the class (refer to the
Design template for classifier section in Appendix A, Basic Concepts.)

The configuration defines the learning rate, alpha; the discount rate, gamma the
maximum number of states (or length) of an episode, episodeLength; the number
of episodes used in training, numEpisodes; the minimum coverage of the state
transition/actions during training to select the best policy, minCoverage; and the
search constraint function, neighbors, as shown here:

class QLConfig(val alpha: Double, val gamma: Double, val
episodeLength: Int, val numEpisodes: Int, val minCoverage: Double, val
neighbors: (Int, Int) => List[Int]) extends Config

Let us look at the computation of the best policy during training. First, we need to
define a model class, QLModel, with the best policy and its state-transition coverage
of training as parameters:

class QLModel[T](val bestPolicy: QLPolicy[T], val coverage:Double)

Chapter 11

[379]

The creation of model consists of executing multiple episodes to extract the best policy.
Each episode starts with a randomly selected state, as shown in the following code:

val model: Option[QLModel[T]] = {
 val r = new Random(System.currentTimeMillis) //1
 val rg = Range(0, config.numEpisodes)
 val cnt =rg.foldLeft(0)((s, _) => s+(if(train(r)) 1 else 0))//2

 val accuracy = cnt.toDouble/config.numEpisodes
 if(accuracy > config.minCoverage)
 Some(new QLModel[T](qlPolicy, coverage)) //3
 else None
}

The model initialization code creates a random number generator (line 1), and
iterates the generation of the best policy starting from a randomly selected state
config.numEpisodes times (line 2). The transition coverage is computed as the
percentage of times the search ends with the goal state (line 3). The initialization
succeeds only if the accuracy exceeds a threshold value, config.minCoverage,
specified in the configuration.

Quality of the model
The implementation uses the coverage to measure the quality of
the model or best policy. The F1 measure (refer to the Assessing
a model section in Chapter 2, Hello World!), is not appropriate
because there are no false positives.

The train method does the heavy lifting at each episode. It triggers the search by
selecting the initial state using a random generator r with a new seed, as shown in
the following code:

def train(r: Random): Boolean = {
 r.setSeed(System.currentTimeMillis*Random.nextInt)
 qlSpace.isGoal(search((qlSpace.init(r), 0))._1)
}

The implementation of search for the goal state(s) from any random states is a
textbook implementation of the Scala tail recursion.

Reinforcement Learning

[380]

Tail recursion to the rescue
Tail recursion is a very effective construct to apply an operation to every item of a
collection [11:5]. It optimizes the management of the function stack frame during
the recursion. The annotation triggers a validation of the condition necessary for the
compiler to optimize the function calls, as shown here:

@scala.annotation.tailrec
def search(st: (QLState[T], Int)): (QLState[T], Int) = {
 val states = qlSpace.nextStates(st._1) //1

 if(states.isEmpty || st._2 >= config.episodeLength) st //2
 else {
 val state = states.maxBy(s => qlPolicy.R(st._1.id,s.id))//3

 if(qlSpace.isGoal(state)) (state, st._2) //4
 else {
 val r = qlPolicy.R(st._1.id, state.id)
 val q = qlPolicy.Q(st._1.id, state) //5
 val nq = q + config.alpha*(r + config.gamma *
 qlSpace.maxQ(state, qlPolicy) - q)//6
 qlPolicy.setQ(st._1.id, state.id, nq) //7
 search((state, st._2))
 }
 }
}

Let us dive into the implementation for the Q action-value updating equation. The
recursion uses the tuple (state, iteration number in the episode) as argument. First,
the recursion invokes the nextStates method of QLSpace to retrieve all the states
associated with the current state, st, through its actions, as shown here:

def nextStates(st: QLState[T]): List[QLState[T]] =
 st.actions.map(ac => statesMap.get(ac.to).get)

The search completes and returns the current state if either the length of the episode
(maximum number of states visited) is reached or the goal is reached or there is no
further state to transition to (line 2). Otherwise the recursion computes the state to
which the transition generates the higher reward R from the current policy (line 3).
The recursion returns the state with the highest reward if it is one of the goal states
(line 4). The method retrieves the current q action value and r reward matrices from
the policy, and then applies the equation to update the action-value (line 6). The
method updates the action-value Q with the new value nq (line 7).

Chapter 11

[381]

The action-value updating equation requires the computation of the maximum
action-value associated with the current state, which is performed by the maxQ
method of the QLSpace class:

def maxQ(state: QLState[T], policy: QLPolicy[T]): Double = {
 val best = states.filter(_ != state)
 .maxBy(st => policy.EQ(state.id, st.id))
 policy.EQ(state.id, best.id)
}

Reachable goal
The algorithm does not require the goal state to be reached for every
episode. After all, there is no guarantee that the goal will be reached
from any randomly selected state. It is a constraint on the algorithm
to follow a positive gradient of the rewards when transitioning
between states within an episode. The goal of the training is to
compute the best possible policy or sequence of states from any given
initial state. You are responsible for validating the model or best
policy extracted from the training set, independent from the fact that
the goal state is reached for every episode.

Prediction
The last functionality of the QLearning class is the prediction using the model
created during training. The method predicts a state from an existing state.

def |> : PartialFunction[QLState[T], QLState[T]] = {
 case state: QLState[T] if(state != null && model != None)
 => nextState(state, 0)._1
}

The data transformation |> computes the best outcome, nextState, given a state
using another tail recursion, as follows:

@scala.annotation.tailrec
def nextState(st: (QLState[T], Int)): (QLState[T], Int) = {
 val states = qlSpace.nextStates(st._1)

 if(states.isEmpty || st._2 >= config.episodeLength) st
 else nextState((states.maxBy(s =>
 model.get.bestPolicy.R(st._1.id, s.id)), st._2+1))
}

Reinforcement Learning

[382]

The prediction ends when no more states are available or the maximum number of
iterations within the episode is exceeded. You can define a more sophisticated exit
condition. The challenge is that there is no explicit error or loss variable/function
that can be used except the temporal difference error. The prediction returns either
the best possible state, or None if the model cannot be created during training.

Option trading using Q-learning
The Q-learning algorithm is used in many financial and market trading applications
[11:6]. Let us consider the problem of computing the best strategy to trade certain
types of options given some market conditions and trading data.

The Chicago Board Options Exchange (CBOE) offers an excellent online tutorial
on options [11:7]. An option is a contract giving the buyer the right but not the
obligation to buy or sell an underlying asset at a specific price on or before a certain
date (refer to the Options trading section under Finances 101 in Appendix A, Basic
Concepts.) There are several option pricing models, the Black-Scholes stochastic
partial differential equations being the most recognized [11:8].

The purpose of the exercise is to predict the price of an option on a security for N
days in the future according to the current set of observed features derived from the
time to expiration, price of the security, and volatility. Let's focus on the call options
of a given security, IBM. The following chart plots the daily price of IBM stock and
its derivative call option for May 2014 with a strike price of $190:

The price of an option depends on the following parameters:

•	 Time to expiration of the option (time decay)
•	 The price of the underlying security
•	 The volatility of returns of the underlying asset

Chapter 11

[383]

Pricing model usually does not take into account the variation in trading volume of
the underlying security. So it would be quite interesting to include it in our model.
Let us define the state of an option using the following four normalized features:

•	 Time decay: This is the time to expiration once normalized over [0, 1].
•	 Relative volatility: This is the relative variation of the price of the underlying

security within a trading session. It is different from the more complex
volatility of returns defined in the Black-Scholes model, for example.

•	 Volatility relative to volume: This is the relative volatility of the price of the
security adjusted for its trading volume.

•	 Relative difference between the current price and strike price: This measures
the ratio of the difference between price and strike price to the strike price.

The following graph shows the four normalized features for IBM option strategy:

The implementation of the option trading strategy using Q-learning consists of the
following steps:

1.	 Describing the property of an option
2.	 Defining the function approximation
3.	 Specifying the constraints on the state transition

Option property
Let us select N =2 as the number of days in the future for our prediction. Any
longer-term prediction is quite unreliable because it falls outside the constraint
of the discrete Markov model. Therefore, the price of the option two days in the
future is the value of the reward—profit or loss.

Reinforcement Learning

[384]

The OptionProperty class encapsulates the four attributes of an option as follows:

class OptionProperty(timeToExp: Double, relVolatility: Double,
volatilityByVol: Double, relPriceToStrike: Double) {
 val toArray = Array[Double](timeToExp, relVolatility,
volatilityByVol, relPriceToStrike)
}

Modular design
The implementation avoids subclassing the QLState class to
define the features of our option pricing model. The state of the
option is a parameterized prop parameter for the state class.

Option model
The OptionModel class is a container and a factory for the properties of the option.
It creates the list of option properties, propsList, by accessing the data source of the
four features introduced earlier. It takes the following parameters:

•	 The symbol of the security.
•	 The strike price for the option, strikePrice.
•	 The source of data, src.
•	 The minimum time decay or time to expiration, minTDecay. Out-of-the-money

options expire worthless and in-the-money options have very different price
behavior as they get closer to the expiration date (refer to the Options trading
section in Appendix A, Basic Concepts). Therefore, the last minTDecay trading
sessions prior to the expiration date are not used in the training of the model.

•	 The number of steps (or buckets), nSteps, used in approximating the values
of each feature. For instance, an approximation of four steps creates four
buckets [0, 25], [25, 50],]50, 75], and [75, 100].

The implementation of the OptionModel class is as follows:

class OptionModel(symbol: String, strikePrice: Double, src:
DataSource, minExpT: Int, nSteps: Int) {

val propsList = {
 val volatility = normalize((src |> relVolatility).get.toArray
 val rVolByVol = normalize((src |> volatilityByVol).get.toArray
 val priceToStrike = normalize(price.map(p => 1.0-strikePrice/p)

 volatility.zipWithIndex //1
 .foldLeft(List[OptionProperty]())((xs, e) => {

Chapter 11

[385]

 val normDecay = (e._2+minExpT).toDouble/(price.size+minExpT) //2
 new OptionProperty(normDecay, e._1, volByVol(e._2),priceToStrik
e(e._2)) :: xs
 }).drop(2).reverse
}

The factory uses the zipWithIndex Scala method to model the index of the trading
sessions (line 1). All feature values are normalized over the interval [0, 1], including
the time decay (or time to expiration) of the normDecay option (line 2).

Function approximation
The four properties of the option are continuous values, normalized as a probability
[0, 1]. The states in the Q-learning algorithm are discrete and require a discretization
or categorization known as a function approximation, although a function
approximation scheme can be quite elaborate [11:9]. Let us settle for a simple linear
categorization as illustrated in the following diagram:

Option property (2,0,1,0)

Normalized

value

Bucket

timeToEXP relVolatility volatilityByVol relPriceToStrike

1

0

The function approximation defines the number of states. In this example, a function
approximation that converts a normalized value into three intervals or buckets
generates 34 = 81 states or potentially 38-34 = 6480 actions! The maximum number
of states for l buckets function approximation and n features is ln with a maximum
number of l2n-ln actions.

Function approximation guidelines
The design of the function to approximate the state of options has to
address the following two conflicting requirements:

•	 Accuracy demands a fine-grained approximation
•	 Limited computation resources restrict the number of states,

and therefore, level of approximation

Reinforcement Learning

[386]

The approximate method of the OptionModel class converts the normalized value of
each option property of features into an array of bucket indices. It returns a map of
profit and loss for each bucket keyed on the array of bucket indices, as shown in the
following code:

def approximate(y: DblVector): Map[Array[Int], Double] = {
 val mapper = new HashMap[Int, Array[Int]] //1

 val acc = new NumericAccumulator //2
 propsList.map(_.toArray)
 .map(toArrayInt(_)) //3
 .map(ar => {
 val enc = encode(ar) //4
 mapper.put(enc, ar)
 enc })
 .zip(y)
 .foldLeft(acc)((acc,t) => {acc += (t._1,t._2);acc})//5
 acc.map(kv => (kv._1, kv._2._2/kv._2._1)) //6
 .map(kv => (mapper(kv._1), kv._2)).toMap
}

The method creates a mapper instance to index the array of buckets (line 1). An
accumulator, acc, of type NumericAccumulator extends Map[Int, (Int, Double)]
and computes the tuple (number of occurrences of features on each buckets, the sum
of increase or decrease of the option price) (line 2). The toArrayInt method converts
the value of each option property (timeToExp, relVolatility, and so on) into the
index of the appropriate bucket (line 3). The array of indices is then encoded (line
4) to generate the id or index of a state. The method updates the accumulator with
the number of occurrences and the total profit and loss for a trading session for the
option (line 5). It finally computes the reward on each action by averaging the profit
and loss on each bucket (line 6).

def toArrayInt(feature: DblVector): Array[Int] =
 feature.map(x => (nSteps*x).floor.toInt)

Constrained state-transition
Each state is potentially connected to any other state through actions. There are two
methodologies to reduce search space or number of actions/transitions:

•	 Static constraint defines the actions/transition when the model is instantiated.
The state transition map is fixed for the entire life cycle of the model.

Chapter 11

[387]

•	 Dynamic constraint relies on the probability of an action to prevent or hinder
state transitions.

States

S1

Sn-1

States

Sn-1S0

S0

S1

Actions

The implementation of the static constraint avoids the unnecessary creation of a large
number of QLAction object at the expense of the inability to modify the search space
during training. The test case uses the static constraint as defined in the neighbors
function passed as a parameter of the QLSpace class:

val RADIUS = 4
val neighbors = (idx: Int, numStates: Int) => {

 def getProximity(idx: Int, radius: Int): List[Int] = {
 val idx_max = if(idx + radius >= numStates) numStates-1 else idx+
radius
 val idx_min = if(idx < radius) 0 else idx - radius
 Range(idx_min, idx_max+1).filter(_ != idx)
 .foldLeft(List[Int]())((xs, n) => n :: xs)
 }
 getProximity(idx, RADIUS).toList
}

The neighbors function restrains the number of actions to up to RADIUS*2 states,
depending on the ID, idx, of the state. The function is implemented as a closure: it
requires the value numStates to be defined within the function or in its outer scope.

Putting it all together
The final piece of the puzzle is the code that configures and executes the Q-learning
algorithm on one or several options on a security, IBM:

val stockPricePath = "resources/data/chap11/IBM.csv"
val optionPricePath = "resources/data/chap11/IBM_O.csv"

Reinforcement Learning

[388]

val MIN_TIME_EXP = 6; val APPROX_STEP = 3; val NUM_FEATURES = 4
val ALPHA = 0.4; val DISCOUNT = 0.6; val NUM_EPISODES = 202520

val src = DataSource(stockPricePath, false, false, 1) //1
val ibmOption = new OptionModel("IBM", 190.0, src, MIN_TIME_EXP,
APPROX_STEP) //2

DataSource(optionPricePath, false, false, 1) extract match {
case Some(v) => initializeModel (ibmOption, v)
…
}

The client code instantiates the option model, ibmOption, for the IBM stock
(line 1). It invokes the initializeModel method once the historical price of
the option is downloaded through the appropriate data source (line 2). The
initializeModel method does all the work as shown in the following code:

def initializeModel(ibmOption: OptionModel, oPrice: DblVector):
QLearning[Array[Int]] {
 val fMap = ibmOption.approximate(oPrice) //3
 val input = new ArrayBuffer[QLInput]

 val profits = fMap.values.zipWithIndex
 profits.foreach(v1 =>
 profits.foreach(v2 =>
 input.append(new QLInput(v1._2, v2._2, v2._1-v1._1))))//4

 val goal = input.maxBy(_.reward).to
 val config = new QLConfig(ALPHA, DISCOUNT, EPISODE_LEN, NUM_
EPISODES, MIN_ACCURACY, getNeighbors)
 QLearning[Array[Int]](config, fMap , goal, input.toArray, fMap.
keySet)
}

The initializeModel method generates the approximation map, fMap (line 3),
which contains the profit and loss for each state. Next, the method initializes the
input to the policy by computing the reward as the difference of the profit/loss of
the source v1 and the destination v2 of each action (line 4). The goal is initialized as
the action with the highest reward (line 5). The last step is the instantiation of the
QLearning class that executes the training.

Chapter 11

[389]

The anti-goal state
The goal state is the state with the highest assigned reward.
It is a heuristic to reward a strategy for good performance.
However, it is conceivable and possible to define an anti-goal
state with the highest assigned penalty or the lowest assigned
reward to guide the search away from some condition.

Evaluation
Besides the function approximation, the size of the training set has an impact on the
number of states. A well-distributed or large training set provides at least one value for
each bucket created by the approximation. In this case, the training set is quite small
and only 34 out of 81 buckets have actual values. As result, the number of states is 34.

The initialization of the Q-learning model generates the following reward matrix:

The graph visualizes the distribution of the rewards computed from the profit and
loss of the option. The xy plane represents the actions between states. The states'
IDs are listed on x and y axes. The z-axis measures the actual value of the reward
associated with each action.

The reward reflects the fluctuation in the price of the option. The price of an option
has a higher volatility than the price of the underlying security.

Reinforcement Learning

[390]

The xy reward matrix R is rather highly distributed. Therefore, we select a small
value for the learning rate, 0.4, to reduce the impact of the previous state on the
new state. The value for the discount rate, 0.6, accommodates the fact that the
number of states is limited. There is no reason to compute the future discounted
reward using a long sequence of states. The training of the policies generates the
following action-value matrix Q of 34 states by 34 states after the first episode:

The distribution of the action-values between states at the end of the first episode
reflects the distribution of the reward across state-to-state action. The first episode
consists of a sequence of nine states from an initial randomly selected state to
the goal state. The action-value map is compared with the map generated after
20 episodes in the following graph:

Chapter 11

[391]

The action-value map at the end of the last episode shows some clear patterns. Most
of the rewarding actions transition from a large number of states (X-axis) to a smaller
number of states (Y-axis). The chart illustrates the following issues with the small
training sample:

•	 The small size of the training set forces us to use an approximate
representation of each feature. The purpose is to increase the odds that most
buckets have at least one data point.

•	 However, a loose function approximation tends to group quite different
states into the same bucket.

•	 The bucket with a very low number can potentially mischaracterize one
property or feature of a state.

Pros and cons of reinforcement learning
Reinforcement learning algorithms are ideal for the following problems:

•	 Online learning
•	 The training data is small or non-existent
•	 A model is non-existent or poorly defined
•	 Computation resources are limited

However, these techniques perform poorly in the following cases:

•	 The search space (number of possible actions) is large causing the maintenance
of the states, action graph, and rewards matrix become challenging

•	 The execution is not always predictable in terms of scalability and performance

Learning classifier systems
J. Holland introduced the concept of learning classifier systems (LCS) more than 30
years ago as an extension to evolutionary computing [11:10]:

Learning classifier systems are a kind of rule-based system with general
mechanisms for processing rules in parallel, for adaptive generation of new rules,
and for testing the effectiveness of new rules.

However, the concept started to get the attention of computer scientists only a few
years ago, with the introduction of several variants of the original concept, including
extended learning classifier systems (XCS). Learning classifier systems are interesting
because they combine rules, reinforcement learning, and genetic algorithms.

Reinforcement Learning

[392]

Disclaimer
The implementation of the extended learning classifier is
presented for informational purposes only. Validating XCS
against a known and labeled population of rules is a very
significant endeavor. The source code snippet is presented only
to illustrate the different components of the XCS algorithm.

Introduction to LCS
Learning classifier systems merge the concepts of reinforcement learning, rule-based
policies, and evolutionary computing. This unique class of learning algorithms
represents the merger of the following research fields [11:11]:

•	 Reinforcement learning
•	 Genetic algorithms and evolutionary computing
•	 Supervised learning
•	 Rule-based knowledge encoding

Rules

Evolutionary

Computing

Reinforcement

Learning

Supervised

Learning

Machine Learning

Learning Classifier Systems

Diagram of the scientific disciplines required for learning classifier systems

Learning classifier systems are an example of complex adaptive systems. A learning
classifier system has the following four components:

•	 A population of classifiers or rules that evolves over time. In some cases,
a domain expert creates a primitive set of rules (core knowledge). In other
cases, the rules are randomly generated prior to the execution of the learning
classifier system.

Chapter 11

[393]

•	 A genetic algorithm-based discovery engine that generates new classifiers
or rules from the existing population. This component is also known as the
rules discovery module. The rules rely on the same pattern of evolution
of organisms introduced in the previous chapter. The rules are encoded as
strings or bit strings to represent a condition (predicate) and action.

•	 A performance or evaluation function that measures the positive or negative
impact of the actions from the fittest classifiers or policies.

•	 A reinforcement learning component that rewards or punishes the classifiers
that contribute to the action, as seen in the previous section. The rules that
contribute to an action that improves the performance of the system are
rewarded, while those that degrade the performance of the system are
punished. This component is also known as the credit assignment module.

Why LCS
Learning classifier systems are particularly appropriate to problems in which the
environment is constantly changing, and are the combination of learning strategy
and an evolutionary approach to build and maintain a knowledge base [11:12].

Supervised learning methods alone can be effective on large datasets, but they
require either a significant amount of labeled data or a reduced set of features
to avoid overfitting. Such constraints may not be practical in the case of
ever-changing environments.

The last 20 years have seen the introduction of many variants of learning classifier
systems that belong to the following two categories:

•	 Systems for which accuracy is computed from the correct predictions and
that apply the discovery to a subset of those correct classes. They incorporate
elements of supervised learning to constrain the population of classifiers.
These systems are known to follow the Pittsburgh approach.

•	 Systems that explore all the classifiers and apply rule accuracy in the genetic
selection of the rules. Each individual classifier is a rule. These systems are
known to follow the Michigan approach.

The rest of this section is dedicated to the second type of learning classifiers—more
specifically extended learning classifier systems. In a context of LCS, the term
classifier refers to the predicate or rule generated by the system. From this point on,
the term "rule" replaces the term classifier to avoid confusion with the more common
definition of classification.

Reinforcement Learning

[394]

Terminology
Each domain of research has its own terminology and LCS is no exception.
The terminology of LCS consists of the following terms:

•	 Environment: Environment variables in the context of reinforcement learning.
•	 Agent: An agent used in reinforcement learning.
•	 Predicate: A clause or fact using the format: variable- operator- value,

and usually implemented as (operator, variable value); for example,
Temperature- exceeds - 87F or ('Temperature', 87F), Hard drive – failed or
('Status hard drive', FAILED), and so on. It is encoded as a gene in order
to be processed by the genetic algorithm.

•	 Compound predicate: Composition of several predicates and Boolean logic
operators, which is usually implemented as a logical tree (for example,
((predicate1 AND predicate2) OR predicate3 is implemented as OR (AND
(predicated 1, predicate 2), predicate3). It uses a chromosome representation.

•	 Action: A mechanism that alters the environment by modifying the value
of one or several of its parameters using a format (type of action, target),
for example, change thermostat settings, replace hard drive, and so on.

•	 Rule: A formal first-order logic formula using the format IF compound
predicate THEN sequence of action, for example, IF gold price < $1140 THEN
sell stock of oil and gas producing companies.

•	 Classifier: A rule in the context of an LCS.
•	 Rule fitness or score: This is identical to the definition of the fitness or score

in the genetic algorithm. In the context of an LCS, it is the probability of a
rule to be invoked and fired in response of change in environment.

•	 Sensors: Environment variables monitored by agent, for example,
temperature and hard drive status.

•	 Input data stream: Flow of data generated by sensors. It is usually associated
with online training.

•	 Rule matching: Mechanism to match a predicate or compound predicate
with a sensor.

•	 Covering: The process of creating new rules to match a new condition
(sensor) in the environment. It generates the rules by either using a random
generator or mutating existing rules.

•	 Predictor: An algorithm to find the action with the maximum number of
occurrences within a set of matching rules.

Chapter 11

[395]

Extended learning classifier systems (XCS)
Similar to reinforcement learning, the XCS algorithm has an exploration phase and
an exploitation phase. The exploitation process consists of leveraging the existing
rules to influence the target environment in a profitable or rewarding manner.

Reward

Update

Fitness

New rule

Feedback

Genetic

Algorithm

Evolution

Matching
Data

stream

Predictor

Environment
Rules

Sensor

Action

5

6

1

2

4

3

7

Exploitation component of the XCS algorithm

The following list describes each numbered block:

•	 1: Sensors acquire new data or events from the system.
•	 2: Rules for which the condition matches the input event are searched and

extracted from the current population.
•	 3: A new rule is created if no match is found in the existing population.

This process is known as covering.
•	 4: The chosen rules are ranked by their fitness values, and the rules with

the highest predicted outcome are used to trigger the action.

The purpose of exploration components is to increase the rule base as a population
of the chromosomes that encode these rules.

Reward

Updated

Fitness

New rule

Feedback

Genetic

Algorithm

Evolution

Matching
Data

stream

Predictor

Environment
Rules

Sensor

Action

5

6

1

2

4

3

7

Exploration components of the XCS algorithm

Reinforcement Learning

[396]

The following list describes each numbered block of the block diagram:

•	 5: Once the action is performed, the system rewards the rules for which the
action has been executed. The reinforcement learning module assigns credit
to these rules.

•	 6: Rewards are used to update the rule fitness, applying evolutionary
constraints to the existing population.

•	 7: The genetic algorithm updates the existing population of classifiers/rules
using operators such as crossover and mutation.

XCS components
This section describes the key classes of the XCS. The implementation leverages
the existing design of the genetic algorithm and the reinforcement learning.
It is easier to understand the inner workings of the XCS algorithm with a
concrete application.

Application to portfolio management
Portfolio management and trading have benefited from the application of extended
learning classifiers [11:13]. The use case is the management of a portfolio of
exchange-traded funds (ETFs) in an ever-changing financial environment. Contrary
to stocks, exchange traded funds are representative of an industry-specific group of
stocks or the financial market at large. Therefore, the price of these ETFs is affected
by the following macroeconomic changes:

•	 Gross domestic product
•	 Inflation
•	 Geopolitical events
•	 Interest rates

Let's select the value of the 10-year Treasury yield as a proxy for the macroeconomic
conditions, for the sake of simplicity.

Chapter 11

[397]

The portfolio has to be constantly adjusted in response to any specific change in the
environment or market condition that affects the total value of the portfolio, and can
be done referring to the following table:

XCS component Portfolio management
Environment Portfolio of securities defined by its composition, total value,

and the yield of the 10-year Treasury bond
Action Change in the composition of the portfolio
Reward Profit and loss of the total value of the portfolio
Input data stream Feed of stock and bond price quotation
Sensor Trading information regarding securities in the portfolio such

as price, volume, volatility, or yield, and the yield on the-10
year Treasury bond

Predicate Change in composition of the portfolio
Action Rebalancing a portfolio by buying and selling securities
Rule Association of trading data with the rebalancing of a portfolio

The first step is to create an initial set of rules regarding the portfolio. This initial set
can be created randomly, much like the initial population of a genetic algorithm, or
be defined by a domain expert.

The XCS initial population
Rules or classifiers are defined and/or refined through evolution.
Therefore, there is no absolute requirement for the domain expert
to set up a comprehensive knowledge base. In fact, rules can be
randomly generated at the start of the training phase. However,
seeding the XCS initial population with a few relevant rules
improves the odds of having the algorithm converge quickly.

The reader is invited to initialize the population of rules with as many relevant
and financially sound trading rules as possible. Over time, the execution of the
XCS algorithm will confirm whether or not the initial rules are indeed appropriate.
The following diagram describes the application of the XCS algorithm to the
composition of a portfolio of ETFs, such as VWO, TLT, IWC, and so on, with the
following components:

•	 The population of trading rules
•	 An algorithm to match rules and compute the prediction
•	 An algorithm to extract the actions sets

Reinforcement Learning

[398]

•	 The Q-learning module to assign credit or reward to the selected rules
•	 The genetic algorithm to evolve the population of rules

Overview of XCS algorithm to optimize portfolio allocation

The agent responds to the change in the allocation of ETFs in the portfolio by
matching one of the existing rules.

Let's build the XCS agent from the ground.

XCS core data
There are three types of data that are manipulated by the XCS agent:

•	 Signal: This is the trading signal
•	 XcsAction: This is the action on the environment
•	 XcsSensor: This is the sensor or data from the environment

The XcsAction class was introduced for the evaluation of the genetic algorithm
in the Trading signals section in Chapter 10, Genetic Algorithms. The agent creates,
modifies, and deletes actions. It makes sense to define these actions as mutable
genes, as follows:

class XcsAction(val sensorid: String, val target: Double)(implicit val
discr: Discretization) extends Gene(sensorid, target, EQUAL)

Chapter 11

[399]

The XcsAction class has the identifier of the sensor, sensorId, and the target value
as parameters. For example, the action to increase the number of shares of ETF, VWO
in the portfolio to 80 is defines as follows:

Val vwoTo80 = new XcsAction("VWO", 80.0)

The only type of action allowed in this scheme is setting a value using the EQUAL
operator. You can create actions that support other operators, such as += used to
increase an existing value. These operators need to implement the operator trait,
explained in the Trading operators section in Chapter 10, Genetic Algorithms.

A discretization instance has to be implicitly defined in order to encode the
target value.

Finally, the XcsSensor class encapsulates the sensorId identifier for the variable
and value of the sensor, as shown here:

case class XcsSensor(val sensorId: String, val value: Double)
val new10ytb = new XcsSensor("10yTBYield", 2.76)

Setters and getters
In this simplistic scenario, the sensors retrieve a new value
from an environment variable. The action sets a new value to
an environment variable. You can think of a sensor as a get
method of an environment class and an action as a set method
with variable/sensor ID and value as arguments.

XCS rules
The next step consists of defining a rule as a pair of two genes: a signal and an action,
as shown in the following code:

class XcsRule(val signal: Signal, val action: XcsAction)

The rule: r1: IF(yield 10-year TB > 2.84%) THEN reduce VWO shares to 240 is
implemented as follows:

val signal = new Signal("10ytb", 2.84, GREATER_THAN)
val action = new XcsAction("vwo", 240)
val r1 = new XcsRule(signal, action)

Reinforcement Learning

[400]

The agent encodes the rule as a chromosome using 2 bits to represent the operator
and 32 bits for values, as shown in the following diagram:

10010...1010 01 001110...0110

0 32

>

34 65

2.85 vwo 240rl

In this implementation, there is no need to encode the type of action as the agent uses
only one type of action—set. A complex action requires encoding of its type.

Knowledge encoding
This example uses very simple rules with a single predicate
as the condition. Real-world domain knowledge is usually
encoded using complex rules with multiple clauses. It is
highly recommended that you break down complex rules
into multiple basic rules of classifiers.

Matching a rule to a new sensor consists of matching the sensor to the signal.
The algorithm matches the new new10ytb sensor against the signal in the current
population of s10ytb1 and s10ytb2 rules that uses the same sensor or variable
10ytb, as follows:

val new10ytb = new XcsSensor("10ytb", 2.76)

val s10ytb1 = Signal("10ytb", 2.5, GREATER_THAN)
val s10ytb2 = Signal("10ytb", 2.2, LESS_THAN)

val r23: XcsRule(s10ytb1, act12)
val r34: XcsRule(s10ytb2, act17)
…

In this case, the agent selects the rule r23 but not r34 in the existing population. The
agent then adds the act12 action to the list of possible actions. The agent lists all the
rules that match the sensor: r23, r11, and r46, as shown in the following code:

val r23: XcsRule(s10yTB1, act12)
val r11: XcsRule(s10yTB6, act6)
val r46: XcsRule(s10yTB7, act12)

Chapter 11

[401]

The action with the most references, act12, is executed. The Q-learning algorithm
computes the reward from the profit or loss incurred by the portfolio following the
execution of the selected rules r23 and r46. The agent uses the reward to adjust the
fitness of r23 and r46, before the genetic selection in the next reproduction cycle.
These two rules will reach and stay in the top tier of the rules in the population, until
either a new genetic rule modified through crossover and mutation or a rule created
through covering, triggers a more rewarding action on the environment.

Covering
The purpose of the covering phase is to generate new rules if no rule matches the
input or sensor. The cover method of an XcsCover singleton generates a new
XcsRule instance given a sensor and an existing set of actions, as shown here:

def cover(sensor: XcsSensor, actions: List[XcsAction]) (implicit
discr: Discretization): List[XcsRule] = {
 actions.foldLeft(List[XcsRule]()) ((xs, act) => {
 val rIdx = Random.nextInt(Signal.numOperators)
 val signal = new Signal(sensor.id, sensor.value, new
SOperator(rIdx))
 new XcsRule(signal, XcsAction(act, Random)) :: xs
 })
}

You might wonder why the cover method uses a set of actions as arguments knowing
that covering consists of creating new actions. The method mutates (operator ^) an
existing action to create a new one instead of using a random generator. This is one of
the advantages of defining an action as a gene. The mutation is executed by one of the
constructors of XcsAction, as follows:

def apply(action: XcsAction, r: Random): XcsAction =
 (action ^ r.nextInt(XCSACTION_SIZE))

The index of the operator type, rIdx, is a random value in the interval [0, 3] because
a signal uses four types of operators: None, >, <, and =.

Example of implementation
The Xcs class has the following purposes:

•	 gaSolver: This is the selection and generation of genetically modified rules
•	 qlLearner: This is the rewarding and scoring the rules

Reinforcement Learning

[402]

•	 Xcs: These are the rules for matching, covering, and generation of action
class Xcs(config: XcsConfig, population: Population[Signal],
score: Chromosome[Signal]=> Unit, input: Array[QLInput]) extends
PipeOperator[XcsSensor, List[XcsAction]] {

 val gaSolver = GASolver[Signal](config.gaConfig, score)
 val featuresSet: Set[Chromosome[Signal]] = population.
chromosomes.toSet
 val qLearner = QLearning[Chromosome[Signal]](config.qlConfig,
computeNumStates(input), extractGoals(input), input, featuresSet)
 …
}

The XCS algorithm is initialized with a configuration, config, an initial set of rules,
population, a fitness function, score, and an input to the Q-learning policy generate
reward matrix for qlLearner. The goals and number of states are extracted from the
input to the policy of the Q-learning algorithm.

In this implementation, the generic algorithm, gaSolver, is mutable. It is instantiated
along with the Xcs container class. The Q-learning algorithm uses the same design,
as any classifier, as immutable. The model of Q-learning is the best possible policy to
reward rules. Any changes in the number of states or the rewarding scheme require a
new instance of the learner.

Benefits and limitation of learning
classifier systems
Learning classifier systems and XCS in particular, hold many promises, which are
as follows:

•	 They allow non-scientists and domain experts to describe the knowledge
using familiar Boolean constructs and inferences such as predicates and rules

•	 They provide analysts with an overview of the knowledge base and its
coverage by distinguishing between the need for exploration and exploitation
of the knowledge base

Chapter 11

[403]

However, the scientific community has been slow to recognize the merits of these
techniques. The wider adoption of learning classifier systems is hindered by the
following factors:

•	 Sheer complexity of the configuration of the algorithm because of the large
number of parameters for exploration and exploitation.

•	 Lack of a unified theory to validate the concept of evolutionary policies or
rules. After all, these algorithms are the merger of standalone techniques.
The accuracy and performance of the execution of LCSes depend on each
component as well as the interaction between components.

•	 An execution that is not always predictable in terms of scalability
and performance.

•	 Too many variants of LCS.

Summary
Reinforcement learning algorithms are sometimes overlooked by the software
engineering community. Let's hope that this chapter provides adequate answers
to the following questions:

•	 What is reinforcement learning?
•	 What are the different the different types of algorithms that qualify as

reinforcement learning?
•	 How can we implement the Q-learning algorithm in Scala?
•	 How can we apply Q-learning to the optimization of option trading?
•	 What are the pros and cons of using reinforcement learning?
•	 What are learning classifier systems?
•	 What are the key components of the XCS algorithm?
•	 What are the potentials and limitations of learning classifier systems?

This concludes the introduction of the last category of learning techniques. The
ever-increasing amount of data that surrounds us requires data processing and
machine learning algorithms to be highly scalable. This is the subject of the next
and the final chapter.

Scalable Frameworks
The advent of social networking, interactive media, and deep analysis has caused
the amount of data processed daily to skyrocket. For data scientists, it's no longer
just a matter of finding the most appropriate and accurate algorithm to mine data;
it is also about leveraging multi-core CPU architectures and distributed computing
frameworks to solve problems in a timely fashion. After all, how valuable is a data
mining application if the model does not scale?

There are many options available to Scala developers to build classification and
regression applications for very large datasets. This chapter covers the Scala parallel
collections, Actor model, Akka framework, and Apache Spark in-memory clusters.
The following are the topics addressed in this chapter:

•	 Introduction to Scala parallel collections
•	 Evaluation of performance of a parallel collection on multicore CPU
•	 The actor model and reactive systems.
•	 Clustered and reliable distributed computing using Akka
•	 Design of computational workflow using Akka routers
•	 Introduction to Apache Spark clustering and its design principles
•	 Using Spark MLlib for clustering
•	 Relative performance tuning and evaluation of Spark
•	 Benefits and limitations of the Apache Spark framework

Scalable Frameworks

[406]

Overview
The support for distributing and concurrent processing is provided by different
stacked frameworks and libraries. Scala concurrent and parallel collections classes
leverage the threading capabilities of the Java virtual machine. Akka.io implements
a reliable action model originally introduced as part of the Scala standard library.
The Akka framework supports remote actors, routing, and load balancing protocol;
dispatchers, clusters, events, and configurable mailboxes management; and support
for different transport modes, supervisory strategies and typed actors. Apache
Spark's resilient distributed datasets with advanced serialization, caching, and
partitioning capabilities leverage Scala and Akka libraries.

The following stack representation illustrates the interdependencies between
frameworks:

Partitioner, Accumulator: org.apache.spark
Broadcast: org.apache.spark.broadcast
Resilient datasets: org.apache.spark.rdd
Caching: org.apache.spark
Listeners: org.apache.spark.scheduler._
Serialization: org.apache.spark.serializer

Spark

Scheduler: scala.actors.scheduler
Concurrency: scala.concurrent
Parallel collections: scala.collection.parallel

Scala

Threads, executors: java.util.concurrent*

Actors, Supervisors: akka.actors._
Remote actors: akka.remote
Type actors: akka.actors._
Mailbox management: akka.mailbox._
Clusters: akka.cluster._
Dispatchers: akka.dispatch
Events management: akka.event._
Routing, Broadcast: akka.routing
Persistency: akka.persistence._

Akka

Stack representation of Scalable frameworks using Scala

Each layer adds a new functionality to the previous one to increase scalability.
The Java virtual machine runs as a process within a single host. Scala concurrent
classes support effective deployment of an application by leveraging multicore CPU
capabilities without the need to write multithreaded applications. Akka extends
the Actor paradigm to clusters with advanced messaging and routing options.
Finally, Apache Spark leverages Scala higher-order collection methods and the Akka
implementation of the Actor model to provide large-scale data processing systems
with better performance and reliability, through its resilient distributed datasets and
in-memory persistency.

Chapter 12

[407]

Scala
The Scala standard library offers a rich set of tools, such as parallel collections and
concurrent classes to scale number-crunching applications. Although these tools are
very effective in processing medium-sized datasets, they are unfortunately quite
often discarded by developers in favor of more elaborate frameworks.

Controlling object creation
Although code optimization and memory management is beyond the scope of
this chapter, it is worthwhile to remember that a few simple steps can be taken to
improve the scalability of an application. One of the most frustrating challenges in
using Scala to process large datasets is the creation of a large number of objects and
the load on the garbage collector.

A partial list of remedial actions is as follows:

•	 Limiting unnecessary duplication of objects in an iterated function by using a
mutable instance

•	 Using lazy values and Stream classes to create objects as needed
•	 Leveraging efficient collections such as bloom filters or skip lists
•	 Running javap to decipher the generation of byte code by the JVM

Parallel collections
The Scala standard library includes parallelized collections, whose purpose is to
shield developers from the intricacies of concurrent thread execution and race
condition. Parallel collections are a very convenient approach to encapsulate
concurrency constructs to a higher level of abstraction [12:1].

There are two ways to create parallel collections in Scala:

•	 Converting an existing collection into a parallel collection of the same
semantic using the par method, for example, List[T].par: ParSeq[T],
Array[T].par: ParArray[T], Map[K,V].par: ParMap[K,V], and so on

•	 Using the collections classes from the collection.parallel, parallel.
immutable, or parallel.mutable packages, for example, ParArray, ParMap,
ParSeq, ParVector, and so on

Scalable Frameworks

[408]

Processing a parallel collection
A parallel collection does lend itself to concurrent processing until a pool of threads
and a tasks scheduler are assigned to it. Fortunately, Scala parallel and concurrent
packages provide developers with a powerful toolbox to map partitions or segments
of collection to tasks running on different CPU cores. The components are as follows:

•	 TaskSupport: This trait inherits the generic Tasks trait. It is responsible for
scheduling the operation on the parallel collection. There are three concrete
implementations of TaskSupport.

•	 ThreadPoolTaskSupport: This uses the threads pool in an older version of
the JVM.

•	 ExecutionContextTaskSupport: This uses ExecutorService, which
delegates the management of tasks to either a thread pool or the
ForkJoinTasks pool.

•	 ForkJoinTaskSupport: This uses the fork-join pools of type java.util.
concurrent.FortJoinPool introduced in Java SDK 1.6. In Java, a fork-join
pool is an instance of ExecutorService that attempts to run not only the
current task but also any of its subtasks. It executes the ForkJoinTask
instances that are lightweight threads.

The following example implements the generation of random exponential value
using a parallel vector and ForkJoinTaskSupport:

val rand = new ParVector[Float]
Range(0, MAX).foreach(n =>rand.updated(n, n*Random.nextFloat))//1
rand.tasksupport = new ForkJoinTaskSupport(new ForkJoinPool(16))
val randExp = vec.map(Math.exp(_))//2

The parallel vector of random probabilities, rand, is created and initialized by the
main task (line 1), but the conversion to a vector of exponential value, randExp,
is executed by a pool of 16 concurrent tasks (line 2).

Preserving order of elements
Operations that traverse a parallel collection using an iterator
preserve the original order of the element of the collection.
Iterator-less methods such as foreach or map do not
guarantee that the order of the elements that are processed
will be preserved.

Chapter 12

[409]

Benchmark framework

Scala library benchmark
The Scala standard library has a trait, testing.Benchmark,
for testing using the command line [12:2]. All you need to do
is to insert your function or code in the run method:

object test with Benchmark { def run { /* fill
the blank /* }

The main purpose of parallel collections is to improve the performance of execution
through concurrency. First, let us create a parameterized class, Benchmark, to evaluate
the performance of operations on a parallel array, v, relative to an array, u, as follows:

class ParArrayBenchmark[U](u: Array[U], v: ParArray[U], times:Int)

Next, you need to create a method, timing, that computes the ratio of the duration of
a given operation on a parallel collection over the duration of the same operation on
a single threaded collection, as shown here:

def timing(g: Int => Unit): Long = {
 var startTime = System.currentTimeMillis
 Range(0, times).foreach(g)
 System.currentTimeMillis - startTime
}

This method measures the time it takes to process a user-defined function,
g, times times.

Let's compare the parallelized and default array on the map and reduce methods
of Benchmark as follows

def map(f: U => U)(nTasks: Int): Unit = {
 val pool = new ForkJoinPool(nTasks)
 v.tasksupport = new ForkJoinTaskSupport(pool)
 val duration = timing(_ => u.map(f)).toDouble //3
 val ratio = timing(_ => v.map(f))/duration //4
 Display.show(s"$nTasks, $ratio", logger)
}

Scalable Frameworks

[410]

The user has to define the mapping function, f, and the number of concurrent tasks,
nTasks, available to execute a map transformation on the array u (line 3) and its
parallelized counterpart v (line 4). The reduce method follows the same design as
shown in the following code:

def reduce(f: (U,U) => U)(nTasks: Int): Unit = {
 val pool = new ForkJoinPool(nTasks)
 v.tasksupport = new ForkJoinTaskSuppor(pool)
 val duration = timing(_ => u.reduceLeft(f)).toDouble
 val ratio = timing(_ => v.reduceLeft(f))/duration
 Display.show(s"$nTasks, $ratio", logger)
}

The same template can be used for other higher Scala methods, such as filter.
The absolute timing of each operation is completely dependent on the environment.
It is far more useful to record the ratio of the duration of execution of operation on
the parallelized array, over the single thread array.

The benchmark class, ParMapBenchmark, used to evaluate ParHashMap is similar to
the benchmark for ParArray, as shown in the following code:

class ParMapBenchmark[U](val u: Map[Int, U], val v: ParMap[Int, U],
times: Int)

For example, the filter method of ParMapBenchmark evaluates the performance of
the parallel map v relative to single threaded map u. It applies the filtering condition
to the values of each map as follows:

def filter(f: U => Boolean)(nTasks: Int): Unit = {
 val pool = new ForkJoinPool(nTasks)
 v.tasksupport = new ForkJoinTaskSupport(pool)
 val duration = timing(_ => u.filter(e => f(e._2))).toDouble
 val ratio = timing(_ => v.filter(e => f(e._2)))/duration
 Display.show(s"$nTasks, $ratio", logger)
}

Performance evaluation
The first performance test consists of creating a single-threaded and a parallel array
of random values and executing the evaluation methods, map and reduce, on using
an increasing number of tasks, as follows:

val sz = 1000000
val data = Array.fill(sz)(Random.nextDouble)
val pData = ParArray.fill(sz)(Random.nextDouble)
val times: Int = 50

Chapter 12

[411]

val bench1 = new ParArrayBenchmark[Double](data, pData, times)
val mapper = (x: Double) => Math.sin(x*0.01) + Math.exp(-x)
Range(1, 16).foreach(n => bench1.map(mapper)(n))
val reducer = (x: Double, y: Double) => x+y
Range(1, 16).foreach(n => bench1.reduce(reducer)(n))

The following graph shows the output of the performance test:

The test executes the mapper and reducer functions 1 million times on an 8-core
CPU with 8 GB of available memory on JVM.

The results are not surprising in the following respects:

•	 The reducer doesn't take advantage of the parallelism of the array. The
reduction of ParArray has a small overhead in the single-task scenario
and then matches the performance of Array.

•	 The performance of the map function benefits from the parallelization of the
array. The performance levels off when the number of tasks allocated equals
or exceeds the number of CPU core.

The second test consists of comparing the behavior of two parallel collections,
ParArray and ParHashMap, on two methods, map and filter, using a configuration
identical to the first test as follows:

val sz = 1000000
val mData = new HashMap[Int, Double]
Range(0, sz).foreach(n => mData.put(n, Random.nextDouble)) //1
val mParData = new ParHashMap[Int, Double]
Range(0, sz).foreach(n => mParData.put(n, Random.nextDouble))

Scalable Frameworks

[412]

val bench2 = new ParMapBenchmark[Double](mData, mParData, times)
Range(1, 16).foreach(n => bench2.map(mapper)(n)) //2
val filterer = (x: Double) => (x > 0.8)
Range(1, 16).foreach(n => bench2.filter(filterer)(n)) //3

The test initializes a HashMap instance and its parallel counter ParHashMap with 1
million random values (line 1). The benchmark, bench2, processes all the elements
of these hash maps with the mapper instance introduced in the first test (line 2) and
a filtering function, filterer (line 3), with 16 tasks. The output is as shown here:

The impact of the parallelization of collections is very similar across methods and
across collections. It's important to notice that the performance of the parallel
collections levels off at around four times the single thread collections for five
concurrent tasks and above. Core parking is partially responsible for this behavior.
Core parking disables a few CPU cores in an effort to conserve power, and in the
case of singe application, consumes almost all CPU cycles.

Further performance evaluation
The purpose of the performance test was to highlight the benefits
of using Scala parallel collections. You should experiment further
with collections other than ParArray and ParHashMap and other
higher-order methods to confirm the pattern.

Clearly, a four-times increase in performance is nothing to complain about. That
being said, parallel collections are limited to single host deployment. If you cannot
live with such a restriction and still need a scalable solution, the Actor model
provides a blueprint for highly distributed applications.

Chapter 12

[413]

Scalability with Actors
Traditional multithreaded applications rely on accessing data located in shared
memory. The mechanism relies on synchronization monitors such as locks, mutexes,
or semaphores to avoid deadlocks and inconsistent mutable states. Even for the
most experienced software engineer, debugging multithreaded applications is not
a simple endeavor.

The second problem with shared memory threads in Java is the high computation
overhead caused by continuous context switches. Context switching consists of
saving the current stack frame delimited by the base and stack pointers into the
heap memory and loading another stack frame.

These restrictions and complexities can be avoided by using a concurrency model
that relies on the following key principles:

•	 Immutable data structures
•	 Asynchronous communication

The Actor model
The Actor model, originally introduced in the Erlang programming language,
addresses these issues [12:3]. The purpose of using the Actor model is twofold:

•	 It distributes the computation over as many cores and servers as possible
•	 It reduces or eliminates race conditions and deadlocks which are very

prevalent in Java development

The model consists of the following components:

•	 Independent processing units known as Actors. Actors communicate by
exchanging messages asynchronously instead of sharing states.

•	 Immutable messages are sent to queues, known as mailboxes, before being
processed by each actor one at a time.

Actor A Actor B

Mailbox

MailboxMessage

Representation of messaging between actors

Scalable Frameworks

[414]

There are two message-passing mechanisms:

•	 Fire-and-forget or tell: Sends the immutable message asynchronously to
the target or receiving actor, and returns immediately without blocking.
The syntax is as follows:
targetActorRef ! message

•	 Send-and-receive or ask: Sends a message asynchronously, but returns
a Future instance that defines the expected reply from the target actor
val future = targetActorRef ? message

The generic construct for the Actor message handler is somewhat similar to the
Runnable.run() method in Java, as shown in the following code:

while(true){
 receive { case msg1: MsgType => handler }
}

The receive keyword is in fact a partial function of type PartialFunction[Any,
Unit] [12:4]. The purpose is to avoid forcing developers to handle all possible
message types. The Actor consuming messages may very well run on a separate
component or even application, than the Actor producing these messages. It not
always easy to anticipate the type of messages an Actor has to process in a future
version of an application.

A message whose type is not matched is merely ignored. There is no need to throw
an exception from within the Actor's routine. Implementations of the Actor model
strive to avoid the overhead of context switching and creation of threads [12:5].

I/O blocking operations
Although it is highly recommended not to use Actors for
blocking operations such as I/O, there are circumstances that
require the sender to wait for a response. The reader needs to
be mindful that blocking an underlying thread inside the Actor
might starve other Actors from CPU cycles. It is recommended
to either configure the runtime system to use a large thread pool,
or to allow the thread pool to be resized by setting the actors.
enableForkJoin property as false.

Chapter 12

[415]

Partitioning
A dataset is defined as a Scala collection, for example, List, Map, and so on.
Concurrent processing requires the following steps:

1.	 Breaking down a dataset into multiple subdatasets.
2.	 Processing each dataset independently and concurrently.
3.	 Aggregating all the resulting datasets.

These steps are defined through a monad associated with a collection in the
Abstraction section under Why Scala? in Chapter 1, Getting Started.

1.	 The apply method creates the subcollection or partitions for the first step, for
example, def apply[T](a: T): List[T].

2.	 A map-like operation defines the second stage. The last step relies on the
monoidal associativity of the Scala collection, for example, def ++ (a:
List[T], b: List[T](: List[T] = a ++ b.

3.	 The aggregation, such as reduce, fold, sum, and so on, consists of flattening
all the subresults into a single output, for example, val xs: List(…) =
List(List(..), List(..)).flatten.

The methods that can be parallelized are map, flatMap, filter, find, and filterNot.
The methods that cannot be completely parallelized are reduce, fold, sum, combine,
aggregate, groupBy, and sortWith.

Beyond actors – reactive programming
The Actor model is an example of the reactive programming paradigm. The concept
is that functions and methods are executed in response to events or exceptions.
Reactive programming combines concurrency with event-based systems [12:6].

Advanced functional reactive programming constructs rely on composable futures
and continuation-passing style (CPS). An example of a Scala reactive library can be
found at https://github.com/ingoem/scala-react.

Akka
The Akka framework extends the original Actor model in Scala by adding extraction
capabilities such as support for typed Actor, message dispatching, routing, load
balancing, and partitioning, as well as supervision and configurability [12:7].

The Akka framework can be downloaded from the www.akka.io website, or through
the Typesafe Activator at http://www.typesafe.com/platform.

Scalable Frameworks

[416]

Akka simplifies the implementation of Actor by encapsulating some of the details of
Scala Actor in the akka.actor.Actor and akka.actor.ActorSystem classes.

The three methods you want to override are as follows:

•	 preStart: This is an optional method, invoked to initialize all the necessary
resources such as file or database connection before the Actor is executed

•	 receive: This method defines the Actor's behavior and returns a partial
function of type PartialFunction[Any, Unit]

•	 postStop: This is an optional method to clean up resources such as releasing
memory, closing database connections, and socket or file handles

Typed versus untyped actors
Untyped actors can process messages of any type. If the type
of the message is not matched by the receiving actor, it is
discarded. Untyped actors can be regarded as contract-less
actors. They are the default actors in Scala.
Typed actors are similar to Java remote interfaces. They
respond to a method invocation. The invocation is declared
publicly, but the execution is delegated asynchronously to
the private instance of the target actor [12:8].

Akka offers a variety of functionalities to deploy concurrent applications. Let us create
a generic template for a master Actor and worker Actors to transform a dataset using
any preprocessing or classification algorithm inherited from the PipeOperator trait, as
explained in the The pipe operator section under Designing a workflow in Chapter 2, Hello
World!. The master Actor manages the worker actors in one of the following ways:

•	 Individual actors
•	 Clusters through a router or a dispatcher

The router is a very simple example of Actor supervision. Supervision strategies
in Akka are an essential component to make the application fault-tolerant [12:9].
A supervisor Actor manages the operations, availability, and life cycle of its children,
known as subordinates. The supervision among actors is organized as a hierarchy.
Supervision strategies are categorized as follows:

•	 One-for-one strategy: This is the default strategy. In case of a failure of one
of the subordinates, the supervisor executes a recovery, restart, or resume
action for that subordinate only.

•	 All-for-one strategy: The supervisor executes a recovery or remedial action
on all its subordinates in case one of the Actors fails.

Chapter 12

[417]

Master-workers
The first model to evaluate is the traditional master-slaves or master-workers
design for computation workflow. In this design, the worker Actors are initialized
and managed by the master Actor which is responsible for controlling the iterative
process, state, and termination condition of the algorithm. The orchestration of the
distributed tasks is performed through message passing.

The design principle
It is highly recommended that you segregate the implementation
of the computation or domain-specific logic from the actual
implementation of the worker and master Actors.

Messages exchange
The first step in implementing the master-worker design is to define the different
classes of messages exchanged between the master and each worker, to control
the execution of the iterative procedure. The implementation of the master-worker
design is as follows:

type DblSeries = XTSeries[Double]

sealed abstract class Message(val id: Int)
case class Start(i: Int =0) extends Message(i) //1
case class Activate(i: Int, xt: DblSeries extends Message(i) //2
case class Completed(i: Int, xt: DblSeries) extends Message(i) //3

Let's define the messages that control the execution of the algorithm. We need at
least the following message types or case classes:

1.	 Start is sent by the client code to the master to start the computation.
2.	 Activate is sent by the master to the workers to activate the computation.

This message contains the time series, xt, to be processed by the worker Actors.
3.	 Completed is sent by each worker back to sender. It contains the variance of

the data in the group.
4.	 The master stops a worker using a PoisonPill message. The different

approaches to terminate an actor are described in the The Master actor section.

Scalable Frameworks

[418]

The hierarchy of the Message class is sealed to prevent third-party developers from
adding another message type. The worker responds to the activate message by
executing a data transformation of type inherited from PipeOperator. The messages
exchanged between master and worker actors are shown in the following diagram:

PipeOperator.I>

PipeOperator.I>

PipeOperator.I>

Worker 1

Worker 2
MasterStart

Worker N

Terminate/PoisonPill

Activate

Complete

Messages as case classes
The actor retrieves the messages queued in its mailbox by
managing each message instance (copy, matching, and so
on). Therefore, the message type has to be defined as a case
class. Otherwise, the developer will have to override the
equals and hashCode methods.

Worker actors
The worker actors are responsible for transforming each partition created by the
master Actor, as follows:

class Worker(id: Int, fct: PipeOperator[DblSeries, DblSeries]) extends
Actor { //1
 override def receive = {
 case msg: Activate => {
 msg.sender ! Completed(msg.id+id, transform(msg.xt)) //2
 context.stop(self)
 }
 case _ => Display.show("Unknown message", logger)
 }
 def transform(xt: DblSeries): DblSeries = fct |>
}

The Worker class constructor takes the fct data transformation as an argument
(line 1). The worker launches the processing or transformation of the msg.xt data
upon arrival of the Activate message (line 2). It returns the Completed message
to the master once the data transformation, transform, is completed.

The design principle
It is highly recommended that you segregate the implementation
of the computation or domain-specific logic from the actual
implementation of the worker and master Actors.

Chapter 12

[419]

The workflow controller
In the Scalability section in Chapter 1, Getting Started, we introduced the concepts
of workflow and controller, to manage the training and classification process as
a sequence of transformation on time series. Let's define an abstract class for all
controller actors, Controller, with the following three key parameters:

•	 A time series, xt, to be a process
•	 A data transformation, fct, of type PipeOperator
•	 A partitioning method, partitioner, to break down a time series for

concurrent processing

The Controller class can be defined as follows:

abstract class Controller(val xt: DblSeries, val fct:
PipeOperator[DblSeries, DblSeries],val partitioner: Partitioner)
extends Actor

The workflow controller is responsible for splitting the time series into several
partitions and assigning each partition to a dedicated worker Actor. A helper class,
Partitioner, implements the partitioning of the dataset as follows:

class Partitioner(val numPartitions: Int) {
 def split(xt: DblSeries): Array[Int] = {
 val sz = (xt.size.toDouble/numPartitions).floor.toInt
 val indices = Array.tabulate(numPartitions)(i=>(i+1)*sz)
 indices.update(numPartitions -1, xt.size)
 indices
 }
}

The split method breaks down a time series, xt, into numPartitions partitions,
and returns the index of each partition relative to the original time series.

The master Actor
Let's define a master Actor class, Master. The three methods to override are
as follows:

•	 preStart is a method invoked to initialize all the necessary resources such as
file or database connection before the actor executes

•	 receive is a partial function that dequeues and processes the messages from
the mail box

•	 postStop cleans up resources such as releasing memory and closing
database connections, sockets, or file handles

Scalable Frameworks

[420]

The Master class can be defined as follows:

abstract class Master(xt: DblSeries, fct: PipeOperator[DblSeries,
DblSeries], partitioner: Partitioner) extends Controller(xt,fct,
partitioner) {
 val workers = List.tabulate(partitioner.numPartitions)(n =>
 context.actorOf(Props(new Worker(n, fct)))) //4
 val aggregator = new ListBuffer[DblVector] //5

 override def preStart: Unit = {} //6
 override def postStop: Unit = {} //7
 override def receive

The Master class has the following parameters:

•	 xt: This is the time series to transform
•	 fct: This is the transformation function
•	 partitioner: This is the instance of time series partitioning

The worker actors are created through the actorOf factory method of the
ActorSystem context (line 4). A list buffer, aggregator, collects and reduces
the results from each worker (line 5). The preStart method implements any
initialization required to process the messages (line 6). The postStop method
releases all the resources allocated to process the messages (line 7).

The receive message handler processes only two types of messages: Start from the
client code and Completed from the workers, as shown in the following code:

override def receive = {
 case Start => split //8
 case msg: Completed => { //10
 if(aggregator.size >= partitioner.numPartitions-1) { //12
 aggregate //14
 //13 workers.foreach(_ ! PoisonPill)
 context.stop(self) //15
 }
 aggregator.append(msg.xt.toArray) //11
 }
}

def aggregate: Seq[Double]

def split: Unit = {
 val partIdx = partitioner.split(xt)

Chapter 12

[421]

 workers.zip(partIdx).foreach(w =>
 w._1 ! Activate(0, xt.slice(w._2-partIdx(0), w._2))) //9
 }

The Start message triggers the split of the input time series into partitions (line
8), which are then dispatched to each worker with the Activate message (line 9).
Each worker sends a Completed message back to master upon the completion of
their task (line 10). The master aggregates the results from the each worker (line 11).
Once every worker has completed its task (line 12), the master terminates all the
workers, through a PoisonPill message in case the worker actors do not terminate
themselves (line 13). The master aggregate the results (line 14) before it terminates
itself through a request to its context to stop it (line 15).

The aggregate method can be defined as a parameter either of the Master class or of
one of its subclasses.

The previous code snippet uses two different approaches to terminate an actor. There
are four different methods of shutting down an actor, as mentioned here:

•	 actorSystem.shutdown: This method is used by the client to shut down the
parent actor system

•	 actor ! PoisonPill: This method is used by the client to send a poison pill
message to the actor

•	 context.stop(self): This method is used by the Actor to shut itself down
within its context

•	 context.stop(childActorRef): This method is used by the Actor to shut
itself down through its reference

Master with routing
The previous design makes sense only if each worker has a unique characteristic
that requires direct communication with the master. This is not the case in most
applications. The communication and internal management of the worker can be
delegated to a router. The implementation of the master routing capabilities is very
similar to the previous design, as shown in the following code:

abstract class MasterWithRouter(xt: DblSeries, fct:
PipeOperator[DblSeries, DblSeries], partitioner: Partitioner) extends
Controller(xt, fct, partitioner) {
 val router = context.actorOf(Props(new Worker(0, fct))
 .withRouter(RoundRobinPool(partitioner.numPartitions,
 supervisorStrategy = this.supervisorStrategy)))
 …

Scalable Frameworks

[422]

The only difference is that the context.actorOf factory creates an extra actor,
router, along with the workers. This particular implementation relies on
round-robin assignment of the message by the router to each worker. Akka
supports several routing mechanisms that select a random actor, or the actor
with the smallest mailbox, or the first to respond to a broadcast, and so on.

Routing supervision
The router actor is a parent of the worker actors. It is by
design a supervisor of the worker actors, which are its
children actors. Therefore, the router is responsible for the
life cycle of the worker actors which includes their creation,
restarting, and termination.

The implementation of the receive message handler is almost identical to the
message handler in the master without routing capabilities, except that the
partitioning (line 1) is delegated to the router instead of being applied to each
individual worker, as follows:

override def receive = {
 case msg: Start => split
 case msg: Completed => {
 if(aggregator.size >= partitioner.numPartitions-1) {
 aggregate
 context.stop(self) //2
 }
 aggregator.append(msg.xt.toarray)
 }
}
def split: Unit = {
 val indices = partitioner.split(xt)
 indices.foreach(n =>
 router ! Activate(xt.slice(n - indices(0), n))) //1
}

The supervising router terminates itself automatically once all its child actors are
terminated (line 2).

Distributed discrete Fourier transform
Let's select the discrete Fourier transform (DFT) on a time series, xt, as our data
transformation. We discussed it in the Discrete Fourier transform (DFT) section in
Chapter 3, Data Preprocessing. The testing code is exactly the same, whether the
master has routing capabilities or not.

Chapter 12

[423]

First, let's define a master controller, DFTMaster, dedicated to the execution of the
distributed discrete Fourier transform, as follows:

class DFTMaster(xt: XTSeries[Double], partitioner: Partitioner)
extends Master(xt, DFT[Double], partitioner) {
 override def aggregate: Seq[Double] =
 aggregator.transpose.map(_.sum).toSeq
}

The aggregate method aggregates or reduces the results of the discrete Fourier
transform (frequencies distribution) from each worker. In the case of the discrete
Fourier transform, the aggregate method transposes the list of frequencies
distribution then summed the amplitude for each frequency, as shown here:

val NUM_WORKERS = 4
val NUM_DATAPOINTS = 1000000
val h = (x:Double) =>2.0*Math.cos(Math.PI*0.005*x) +
 Math.cos(Math.PI*0.05*x) +
 0.5*Math.cos(Math.PI*0.2*x) +
 0.3* Random.nextDouble //1
val xt = XTSeries[Double](Array.tabulate(NUM_DATAPOINTS)(h(_)))
val partitioner = new Partitioner(NUM_WORKERS) //2

implicit val actorSystem = ActorSystem("system") //3
val master = actorSystem.actorOf(Props(new DFTMaster(xt,
partitioner)), "DFTMaster") //4
master ! Start //5
Thread.sleep(15000)
actorSystem.shutdown //6

The input time series is synthetically generated by the noisy function, h (line 1).
The function h has three distinct harmonics, 0.005, 0.05, and 0.2, so the results of
the transformation can be easily validated. A partitioner instance is created for
NUM_WORKERS worker Actors (line 2). The Actor system, ActorSystem, is instantiated
(line 3) and the master Actor is generated through the Akka ActorSytem.actorOf
factory. The main program sends a Start message to the master to trigger the
distributed computation of the discrete Fourier transform. The main program has
to sleep for a period of time long enough to allow the master to complete its task.
Finally, the main program shuts down the actor system (line 6).

Scalable Frameworks

[424]

Actor instantiation
Although the scala.actor.Actor class can be instantiated
using the constructor, akka.actor.Actor is instantiated
using a context, ActorSystem; a factory, actorOf; and
a configuration object, Props. This second approach has
several benefits, including decoupling the deployment of the
actor from its functionality and enforcing a default supervisor
or parent for the Actor, in this case ActorSystem.

The following sequential diagram illustrates the message exchange between the main
program, master, and worker Actors:

Worker

transform

msg: Completed(id, results)

context.stop(self)

aggregate

msg: Activate(id,partition)

Master.main

Start

context.stop(self)

Sequential diagram for the normalization of cross-validation groups

The purpose of the test is to evaluate the performance of the computation of the
discrete Fourier transform using the Akka framework relative to the original
implementation, without actors. As with the Scala parallel collections, the absolute
timing for the transformation depends on the host and the configuration, as shown
in the following graph:

Chapter 12

[425]

The single-threaded version of the discrete Fourier transform is significantly faster
than the implementation using the Akka master-worker model with a single worker
actor. The cost of partitioning and the aggregating (or reducing) the results adds a
significant overhead to execution of the Fourier transform. However, the master-
worker model is far more efficient with three or more worker actors.

Limitations
The master-worker implementation has a few problems:

•	 In the message handler of the master Actor, there is no guarantee that the
poison pill will be consumed by all the workers before the master stops.

•	 The main program has to sleep for a period of time long enough to allow the
master and workers to complete their tasks. There is no guarantee that the
computation will be completed when the main program awakes.

•	 There is no mechanism to handle failure in delivering or processing messages.

The culprit is the exclusive use of the fire-and-forget mechanism to exchange
data between master and workers. The send-and-receive protocol and futures
are remedies to these problems.

Futures
A future is an object, more specifically a monad, used to retrieve the results of
concurrent operations, in a non-blocking fashion. The concept is very similar to a
callback supplied to a worker, which invokes it when the task is completed. Futures
hold a value that might or might not become available in the future when a task is
completed, successful or not [12:10].

There are two options to retrieve results from futures:

•	 Blocking execution using scala.concurrent.Await
•	 Callback functions, onComplete, onSuccess, and onFailure

Which future?
A Scala environment provides developers with two different
Future classes: scala.actor.Future and scala.
concurrent.Future. The actor.Future class is used to write
continuation-passing style workflows in which the current actor
is blocked until the value of the future is available. Instances of
type scala.concurrent.Future used in this chapter are the
equivalent of java.concurrent.Future in Scala.

Scalable Frameworks

[426]

The Actor life cycle
Let's reimplement the normalization of cross-validation groups by their variance,
which we introduced in the previous section, using futures to support concurrency.
The first step is to import the appropriate classes for execution of the main actor and
futures, as follows:

import akka.actor.{Actor, ActorSystem, ActorRef, Props}
import akka.util.Timeout
import scala.concurrent.{Await, Future}

The Actor classes are provided by the package akka.actor, instead of the scala.
actor._ package because of Akka's extended actor model. The future-related classes,
Future and Await, are imported from the scala.concurrent package, which is
similar to the java.concurrent package. The akka.util.Timeout class is used to
specify the maximum duration the actor has to wait for the completion of the futures.

There are two options for a parent actor or the main program to manage the futures
it creates:

•	 Blocking: The parent actor or main program stops execution until all futures
have completed their tasks.

•	 Callback: The parent actor or the main program initiates the futures during
execution. The future tasks are performed concurrently with the parent actor,
that is then notified when each future task is completed.

Blocking on futures
The following design consists of blocking the actor that launches the futures until
all the futures have been completed, either returning with a result or throwing
an exception. Let's modify the master Actor into a class, TransformFutures, that
manages futures instead of workers or routing actors, as follows:

abstract class TransformFutures(xt: DblSeries,
 fct: PipeOperator[DblSeries, DblSeries],
 partitioner: Partitioner)(implicit timeout: TimeOut)
 extends Controller(xt,fct, partitioner) { //1

 override def receive = {
 case Start => compute(transform) //2
 case _ => Display.error("Message not recognized", logger)
 }
 def aggregate(results: Array[DblSeries]): Seq[Double]
…
}

Chapter 12

[427]

The TransformFutures class requires the same parameters as the Master actor: a
time series, xt; a data transformation, fct; and partitioner. The timeout parameter
is an implicit argument of the Await.result method, and therefore, needs to be
declared as an argument (line 1). The only message, Start, triggers the computation
of the data transformation of each future, and then the aggregation of the results
(line 2). The transform and compute methods have the same semantics as those in
the master-workers design.

The generic message handler
You may have read or even written examples of actors that have
generic case _ => handlers in the message loop for debugging
purposes. The message loop takes a partial function as argument.
Therefore, no error or exception is thrown in case the message
type is not recognized. There is no need for such a handler aside
from one for debugging purposes. Message types should inherit
from a sealed abstract class or a sealed trait in order to prevent a
new message type from being added by mistake.

Let's have a look at the transform method. Its main purpose is to instantiate, launch,
and return an array of futures responsible for the transformation of the partitions, as
shown in the following code:

def transform: Array[Future[DblSeries]] = {
 val partIdx = partitioner.split(xt)
 val partitions = partIdx.map(n =>
 XTSeries[Double](xt.slice(n - partIdx(0), n).toArray)) //3

 val futures = new Array[Future[DblSeries]](partIdx.size) //4
 partitions.zipWithIndex.foreach(pi => {
 futures(pi._2) = Future[DblSeries] { fct |> pi._1 }
 })
 futures
}

First, the transform method splits the input time series into several partitions
(line 3), similar to the master Actor in the previous section. An array of futures
(one future per partition) is created (line 4). Each future executes the data
transformation, fct, to the partition assigned to the future (line 5) as the
worker Actor did in the previous section.

Scalable Frameworks

[428]

The compute method has the same purpose as the aggregate method in the
master-workers design. The execution of the Actor is blocked until the Await class
method (line 6) scala.concurrent.Await.result returns the result of each future
computation. In the case of the discrete Fourier transform, the list of frequencies is
transposed before the amplitude of each frequency is summed (7), as follows:

def compute(futures: Array[Future[DblSeries]]): Seq[Double] = {
 val results = futures.map(Await.result(_, timeout.duration))
 aggregate(results)
}

The following sequential diagram illustrates the blocking design and the activities
performed by the Actor and the futures:

main
Transform

Futures

Future

[DblSeries]

split

fct.|>
Await.result

aggregate

Future

[DblSeries]

fct.|>

Start

transform

Sequential diagram for actor blocking on future results

Handling future callbacks
Callbacks are an excellent alternative to having the actor blocks on futures, as they
can simultaneously execute other functions concurrently with the future execution.

There are two simple ways to implement the callback function:

•	 Future.onComplete

•	 Future.onSuccess and Future.onFailure

The onComplete callback function takes a function of type Try[T] => U as argument
with an implicit reference to the execution context, as shown in the following code:

val f: Future[T] = future { executeSomeTask }
f onComplete {
 case Success(s) => { … }
 case Failure(e) => { … }
}

Chapter 12

[429]

You can surely recognize the {Try, Success, Failure} monad.

An alternative implementation is to invoke the onSuccess and onFailure methods
that use partial functions as arguments to implement the callbacks, as follows:

f onFailure { case e: Exception => { … } }
f onSuccess { case t => { … } }

The only difference between blocking one future data transformation and handling
callbacks is the implementation of the compute method or reducer. The class
definition, message handler, and initialization of futures are identical, as shown
in the following code:

def compute(futures: Array[Future[DblSeries]]): Seq[Double] = {
 val aggregation = new ArrayBuffer[DblSeries]
 futures.foreach(f => {
 f onSuccess { //1
 case data: DblSeries => aggregation.append(data)
 }
 f onFailure { //2
 case e: Exception => aggregation.append(XTSeries.empty)
 }
 })
 if(aggregation.find(_.isEmpty) == None) //3
 aggregate(aggregation.toArray)//4
 else Seq.empty
}

Each future calls the master Actor back with either the result of the data
transformation, the onSuccess message (line 1), or an exception, the OnFailure
message (line 2). If every future succeeds (line 3), the values of every frequency for
all the partitions are summed (line 4). The following sequential diagram illustrates
the handling of the callback in the master Actor:

main
Transform

Futures

Future

[DblSeries]

split

fct.|>
Other tasks

aggregate

Future

[DblSeries]

fct.|>

Start

transform

onSuccess
onFailure

Sequential diagram for actor handling future result with Callbacks

Scalable Frameworks

[430]

Execution context

The Futures method requires that the execution context
be implicitly provided by the developer. There are three
different ways to define the execution context:

•	 Import the context:
import ExecutionContext.Implicits.global

•	 Create an instance of the context within the actor
(or actor context):
implicit val ec = ExecutionContext.
fromExecutorService(…)

•	 Define the context when instantiating the future:
val f= Future[T] ={ } (ec)

Putting all together
Let's reuse the discrete Fourier transform. The client code uses the same synthetically
created time series as with the master-worker test model.

The first step is to create a transform future for the discrete Fourier transform,
DFTTransformFuture, as follows:

class DFTTransformFutures(xt: DblSeries, partitioner: Partitioner)
(implicit timeout: Timeout)
 extends TransformFutures(xt, DFT[Double], partitioner) {

 override def aggregate(xt: Array[DblSeries]): Seq[Double] =
 xt.map(_.toArray).transpose.map(_.sum).toSeq
}

The only purpose of the DFTTransformFuture class is to define the aggregation
method, aggregate, for the discrete Fourier transform, as follows:

import akka.pattern.ask
val duration = Duration(10000, "millis")
implicit val timeout = new Timeout(duration)
implicit val actorSystem = ActorSystem("system")

val xt = XTSeries[Double](Array.tabulate(NUM_DATAPOINTS)(h(_)))
val partitioner = new Partitioner(NUM_WORKERS)

val master = actorSystem.actorOf(Props(new DFTTransformFutures(xt,
partitioner)), "DFTTransform") //1

Chapter 12

[431]

val future = master ? Start //2
Await.result(future, timeout.duration) //3
actorSystem.shutdown //4

The master Actor is initialized as of the TransformFutures type with the input time
series, xt; discrete Fourier transform, DFT; and partitioner as arguments (line 1).
The program creates a future instance, by sending (ask) the Start message to
master. The program blocks until the completion of the future (line 3), and then
shuts down the Akka actor system (line 4).

Apache Spark
Apache Spark is a fast and general-purpose cluster computing system, initially
developed as AMPLab / UC Berkley as part of the Berkeley Data Analytics Stack
(BDAS), http://en.wikipedia.org/wiki/UC_Berkeley. It provides high-level
APIs for the following programming languages that make large, concurrent parallel
jobs easy to write and deploy [12:11]:

•	 Scala: http://spark.apache.org/docs/latest/api/scala/index.html
•	 Java: http://spark.apache.org/docs/latest/api/java/index.html
•	 Python: http://spark.apache.org/docs/latest/api/python/index.html

Link to latest information
The URLs as any reference to Apache Spark may change
in future versions.

The core element of Spark is Resilient Distributed Dataset (RDD), which is a
collection of elements partitioned across the nodes of a cluster and/or CPU cores of
servers. An RDD can be created from a local data structure such as list, array, or hash
table, from the local file system or the Hadoop Distributed File System (HDFS).

The operations on an RDD in Spark are very similar to the Scala higher-order
methods. These operations are performed concurrently over each partition.
Operations on RDD can be classified as follows:

•	 Transformation: This operation converts, manipulates, and filters the
elements of an RDD on each partition

•	 Action: This operation aggregates, collects, or reduces the elements of the
RDD from all partitions

An RDD can persist, be serialized, and be cached for future computation.

Scalable Frameworks

[432]

Spark is written in Scala and built on top of Akka libraries. Spark relies on the
following mechanisms to distribute and partition RDDs:

•	 Hadoop/HDFS for the distributed and replicated files system
•	 Mesos for management of cluster and shared pool of data nodes

The Spark ecosystem can be represented as stacks of technology and framework,
as seen in the following diagram:

Spark-based applications

MLlib

MLBase
Graphx Streaming SparkSQL

Spark framework/RDD

Akka framework

Scala standard library

Hadoop HDFS

Mesos cluster manager

JVM

Operating System

Spark framework ecosystem

The Spark ecosystem has grown to support some machine-learning algorithms out of
the box, MLlib; a SQL-like interface to manipulate datasets with relational operators,
SparkSQL; a library for distributed graphs, GraphX; and a streaming library [12:12].

Why Spark
The authors of Spark attempt to address the limitations of Hadoop in terms of
performance and real-time processing by implementing in-memory iterative
computing, which is critical to most discriminative machine-learning algorithms.
Numerous benchmark tests have been performed and published to evaluate the
performance improvement of Spark relative to Hadoop. In the case of iterative
algorithms, the time per iteration can be reduced by a ratio of 1:10 or more.

Spark provides a large array of prebuilt transforms and actions that go well beyond
the basic map-reduce paradigm. Those methods on RDDs are a natural extension of
the Scala collections, making code migration seamless for Scala developers.

Chapter 12

[433]

Finally, Apache Spark supports fault-tolerant operations by allowing RDDs to persist
both in memory and in the filesystems. Persistency enables automatic recovery
from node failures. The resiliency of Spark relies on the supervisory strategy of
the underlying Akka actors, the persistency of their mailboxes, and the replication
schemes of HDFS.

Design principles
The performance of Spark relies on four core design principles [12:13]:

•	 In-memory persistency
•	 Laziness in scheduling tasks
•	 Transform and actions applied to RDDs
•	 Implementation of shared variables

In-memory persistency
The developer can decide to persist and/or cache an RDD for future usage. An RDD
may persist in memory only or on disk only—in memory if available, or on disk
otherwise as deserialized or serialized Java objects. For instance, an RDD, rdd,
can be cached through serialization through a simple statement, as shown in the
following code:

rdd.persist(StorageLevel.MEMORY_ONLY_SER).cache

Kryo serialization
Java serialization through the Serializable interface is
notoriously slow. Fortunately, the Spark framework allows the
developer to specify a more efficient serialization mechanism such
as the Kryo library.

Laziness
Scala supports lazy values natively. The left side of the assignment, which can either
be a value, object reference, or method, is performed once, that is, the first time it is
invoked, as shown in the following code:

class Pipeline {
 lazy val x = { println("x"); 1.5}
 lazy val m = { println("m"); 3}
 val n = { println("n"); 6}
 def f = (m <<1)

Scalable Frameworks

[434]

 def g(j: Int) = Math.pow(x, j)
}
val pipeline = new Pipeline //1
…
pipeline.g(pipeline.f) //2

The order of the variables printed is n, m, and then x. The instantiation of the
Pipeline class initializes n but not m or x. At a later stage, the g method is called,
which in turn invokes the f method. The f method initializes the value m it needs,
then g initializes x to compute its power to m<<1.

Spark applies the same principle to RDDs by executing the transformation only
when an action is performed. In other words, Spark postpones memory allocation,
parallelization, and computation until the driver code gets the result through the
execution of an action. The cascading effect of invoking all these transformations
backwards is performed by the direct acyclic graph scheduler.

Transforms and Actions
Spark is implemented in Scala, so you should not be too surprised that the most
relevant Scala higher methods on collections are supported in Spark. The first table
describes the transformation methods using Spark, as well as their counterparts in
the Scala standard library. We use the (K, V) notation for (key, value) pairs.

Spark Scala Description
map(f) map(f) Transforms an RDD by executing the f function on

each element of the collection.
filter(f) filter(f) Transforms an RDD by selecting the element for

which the f function returns true.
flatMap(f) flatMap(f) Transforms an RDD by mapping each element to a

sequence of output items.
mapPartitions(f) Executes the map method separately on each

partition.
sample Samples a fraction of the data with or without a

replacement using a random generator.
groupByKey groupBy Called on (K,V) to generate a new (K, Seq(V)) RDD.
union union Creates a new RDD as union of this RDD and the

argument.
distinct distinct Eliminates duplicate elements from this RDD.
reduceByKey(f) reduce Aggregates or reduces the value corresponding to

each key using the f function.

Chapter 12

[435]

Spark Scala Description
sortByKey sortWith Reorganizes (K,V) in an RDD by the ascending,

descending, or otherwise specified order of the
keys, K.

join Joins an RDD (K,V) with an RDD (K,W) to generate
a new RDD (K, (V,W)).

coGroup Implements a join operation but generates an RDD
(K, Seq(V), Seq(W)).

Action methods trigger the collection or the reduction of the datasets from all
partitions back to the driver, as listed here:

Spark Scala Description
reduce(f) reduce(f) Aggregates all the elements of the RDD across all the

partitions and returns a Scala object to the driver.
collect collect Collects and returns all the elements of the RDD

across all the partitions as a list in the driver.
count count Returns the number of elements in the RDD to the

driver.
first head Returns the first element of the RDD to the driver.
take(n) take(n) Returns the first n elements of the RDD to the driver

.
takeSample Returns an array of random elements from the RDD

back to the driver.
saveAsTextFile Writes the elements of the RDD as a text file in either

the local files system or HDFS.
countByKey Generates a (K, Int) RDD with the original keys, K,

and the count of values for each key.
foreach foreach Executes a T=> Unit function on each elements of the

RDD.

Scala methods such as fold, find, drop, flatten, min, max, and sum are not
currently implemented in Spark. Other Scala methods such as zip have to be
used carefully, as there is no guarantee that the order of the two collections in
zip is maintained between partitions.

Scalable Frameworks

[436]

Shared variables
In a perfect world, variables are immutable and local to each partition to avoid
race conditions. However, there are circumstances where variables have to be
shared without breaking the immutability provided by Spark. To this extent, Spark
duplicates shared variables and copies them to each partition of the dataset. Spark
supports the following types of shared variables:

•	 Broadcast values: These values encapsulate and forward data to all
the partitions

•	 Accumulator variables: These variables act as summations or reference counters

The four design principles can be summarized in the following diagram:

Spark Driver

Spark Partitions

Data nodes

Data

4. computation

1. parallelize

3. action

(reducer)

5. parallelize

6. broadcast

7. action

2. transform (mapper)

RDD

Data

Data

Data

RDD

RDD

RDD

Variable

Interaction between Spark driver and RDDs

The preceding diagram illustrates the most common interaction between the Spark
driver and its workers, as listed in the following steps:

1.	 The input data, residing in either memory as a Scala collection or HDFS as
a text file, is parallelized and partitioned into an RDD

2.	 A transformation function is applied on each element of the dataset across all
the partitions

3.	 An action is performed to reduce and collect the data back to the driver
4.	 The data is processed locally within the driver
5.	 A second parallelization is performed to distribute computation through

the RDDs
6.	 A variable is broadcast to all the partitions as an external parameter of the

last RDD transformation

Chapter 12

[437]

7.	 Finally, the last action aggregates and collects the final result back in
the driver

If you look closely, the management of datasets and RDDs by the Spark driver is not
very different from that by Akka master and worker actors of futures.

Experimenting with Spark
Spark's in-memory computation for iterative computing makes it an excellent
candidate to distribute the training of machine learning models, implemented
with dynamic programming or optimization algorithms. Spark runs on Windows,
Linux, and Mac OS operating systems. It can be deployed either in local mode for a
single host, or master mode for a distributed environment. The version of the Spark
framework used is 1.1.

Scala- and Java SE-compatible versions
At the time of writing, the version of Spark 1.0.0 required Java
1.7+ and Scala 2.10.2 or 2.10.3. Spark 1.1 is compatible with
both Java 1.7 and 1.8 and Scala 2.10.4 and 2.11.1.

Deploying Spark
The easiest way to learn Spark is to deploy a localhost in standalone mode. You can
either deploy a precompiled version of Spark from the website, or build the JAR files
using the simple build tool (sbt) or maven [12:14] as follows:

1.	 Go to the download page at http://spark.apache.org/downloads.html.
2.	 Choose a package type (Hadoop distribution). The Spark framework relies

on HDFS to run in cluster mode; therefore, you need to select a distribution
of Hadoop, or an open source distribution, MapR or Cloudera.

3.	 Download and decompress the package.
4.	 If you are interested in the latest functionality added to the framework, check

out the newest source code at https://github.com/apache/spark.git.
5.	 Next, you need to build, or assemble, the Apache Spark libraries from the

top-level directory using either Maven or sbt:
°° Maven: Set the following maven options to support build,

deployment, and execution:
MAVEN_OPTS="-Xmx4g -XX:MaxPermSize=512M
-XX:ReservedCodeCacheSize=512m"

mvn –DskipTests clean package

Scalable Frameworks

[438]

°° Simple build tool: Use the following command:
sbt/sbt assembly

Installation instructions
The directory and name of artifacts used in Spark will undoubtedly
change over time. Please refer to the documentation and installation
guide for the latest version of Spark.

Using Spark shell
Use any of the following methods to use the Spark shell:

•	 The shell is an easy way to get your feet wet with Spark-resilient distributed
datasets (RDD). To launch the shell locally, execute ./bin/spark-shell –
master local[8] to execute the shell on an 8-core localhost.

•	 To launch a Spark application locally, connect with the shell and execute the
following command line:
./bin/spark-submit --class application_class --master local[4]
--executor-memory 12G --jars myApplication.jar –class myApp.class

The command launches the application, myApplication, with the main
method, myApp.main, on a 4-core CPU local host, and 12 GB of memory.

•	 To launch the same Spark application remotely, connect with the shell
execute the following command line:
./bin/spark-submit --class application_class --master
spark://162.198.11.201:7077 –total-executor-cores 80 --executor-
memory 12G --jars myApplication.jar –class myApp.class

Partial screenshot of Spark shell

Chapter 12

[439]

Potential pitfalls with Spark shell
Depending on your environment, you might need to disable
logging information into the console by reconfiguring conf/
log4j.properties. The Spark shell might also conflict with the
declaration of classpath in the profile or the environment variables
list. In this case, it has to be replaced by ADD_JARS as environment
variable as ADD_JARS = path1/jar1, path2/jar2.

MLlib
MLlib is a scalable machine learning library built on top of Spark. As of version 1.0,
the library is a work in progress.

The main components of the library are as follows:

•	 Classification algorithms, including logistic regression, Naïve Bayes, and
support vector machines

•	 Clustering limited to K-means in version 1.0
•	 L1 and L1 regularization
•	 Optimization techniques such as gradient descent, logistic gradient and

stochastic gradient descent, and L-BFGS.
•	 Linear algebra such as singular value decomposition
•	 Data generator for K-means, logistic regression, and support vector machines

The machine learning bytecode is conveniently included in the Spark assembly JAR
file built with the simple build tool.

RDD generation
The transformation and actions are performed on RDDs. Therefore, the first step is
to create a mechanism to facilitate the generation of RDDs from a time series. Let's
create an RDDSource singleton with a convert method that transforms a time series,
xt, into an RDD, as shown here:

def convert(xt: XTSeries[DblVector], rddConfig: RDDConfig)(implicit
sc: SparkContext): RDD[DblVector] = {
 val rdd: = sc.parallelize(xt.toArray
 .map(new DenseVector(_))) //1
 rdd.persist(rddConfig.persist) //2
 if(rddConfig.cache) rdd.cache //3
 rdd
}

Scalable Frameworks

[440]

The last parameter, rddConfig, specifies the configuration for the RDD. In this
example, the configuration of the RDD consists of enabling/disabling cache and
selecting the persistency model, as follows:

case class RDDConfig(val cache: Boolean, val persist: StorageLevel)

It is fair to assume that SparkContext has already been implicitly defined in a
manner quite similar to ActorSystem in the Akka framework.

The generation of the RDD is performed in the following steps:

1.	 Create an RDD by using the parallelize method of the context and converting
into a vector (SparseVector or DenseVector) (line 1)

2.	 Specify the persistency model or the storage level if the default level needs to
be overridden for the RDD (line 2)

3.	 Specify whether the RDD has to persist in memory (line 3)

Alternative for the creation of an RDD
An RDD can be generated from data loaded from either
the local filesystems or HDFS using the SparkContext.
textFile method that returns an RDD of string.

Once the RDD is created, it can be used as an input for any algorithm defined as a
sequence of transformation and actions. Let's experiment with the implementation of
the K-means algorithm in Spark/MLlib.

K-means using Spark
The first step is to create a SparkKMeansConfig class to define the configuration of
the Apache Spark K-means algorithm, as follows:

class SparkKMeansConfig(K: Int, maxIters: Int, numRuns: Int =1) {
 val kmeans: KMeans = {
 val kmeans = new KMeans
 kmeans.setK(K) //4
 kmeans.setMaxIterations(maxIters) //5
 kmeans.setRuns(numRuns) //6
 kmeans
 }
}

Chapter 12

[441]

The minimum set of initialization parameters for MLlib K-means algorithm is
as follows:

•	 Number of clusters, K (line 4)
•	 Maximum number iterations for the reconstruction of the total error,

maxIters (line 5)
•	 The number of training runs, numRuns (line 6)

The SparkKMeans class wraps the Spark KMeans into a data transformation of type
PipeOperator so that it can be used in a computation workflow. The class follows
the design template for classifier as explained in the Design template for classifiers
section in Appendix A, Basic Concepts.

class SparkKMeans(config: SparkKMeansConfig, rddConfig: RDDConfig, xt:
XTSeries[DblVector])(implicit sc: SparkContext)
 extends PipeOperator[DblVector, Int] {
 val model = config.kmeans.run(RDDSource.convert(xt, rddConfig))
 …
}

The constructor takes three arguments: the Apache Spark KMeans configuration,
config; the RDD configuration, rddConfig; and the input time series to clustering,
xt. The generation of model merely consists of converting the time series xt into an
RDD using rddConfig and invoking MLlib KMeans.run. Once created, the clusters
(KMeansModel) are available for predicting new observation, obs, as follows:

def |> : PartialFunction[DblVector, Int] = {
 case x: DblVector if(x!= null && x.size>0 && model != null) =>
 model.predict(new DenseVector(x))
}

The prediction method, |>, returns the index of the cluster of observations.

Finally, let's write a simple client program to exercise the SparkKMeans model using
the trading volume of each trading session, and the volatility of the price of the stock
during the session:

val K = 8; val MAXITERS = 100; val NRUNS = 16
val PATH = "resources/data/chap12/CSCO.csv"
val CACHE = true
val extractors = List[Array[String] => Double](
 YahooFinancials.volatility, YahooFinancials.volume) //7
)
val input = DataSource(PATH, true) |> extractors //8

val volatilityVol = input(0).zip(input(1)) //9

Scalable Frameworks

[442]

 .map(x => Array[Double](x._1, x._2))

implicit val sc = new SparkContext("Local","SparkKMeans") //10
val config = new SparkKMeansConfig(K, MAXITERS, NRUNS)
val rddConfig = RDDConfig(CACHE , StorageLevel.MEMORY_ONLY)
val xt = XTSeries[DblVector](volatilityVol)

val sparkKMeans = SparkKMeans(config, rddConfig, xt) //11
val obs = Array[Double](0.23, 0.67)
val clusterId = sparkKMeans |> obs//12
Display.show(s"cluster = $clusterId", logger)

The first step is to define the variable to be extracted from the CSV file (line 7). The
spark context is created (line 10) once the volatility and volume are extracted (line 8)
and zipped (line 9). The K-means wrapper, sparkKMeans, is initialized (line 11). The
final step consists of correctly predicting the cluster for a new observation (line 12).

Performance evaluation
Let's execute the normalization of the cross-validation group on an 8-core CPU
machine with 32 GB of RAM. The data is partitioned with a ratio of two partitions
per CPU core.

Meaningful performance test
The scalability test should be performed with a large number of
data points (normalized volatility, normalized volume), in excess
of 1 million in order to be meaningful.

The actual values of the data points have no bearing on the overall performance of
the Spark cluster.

Tuning parameters
The performance of a Spark application depends greatly on the configuration
parameters. Selecting the appropriate value for those configuration parameters in
Spark can be overwhelming—there are 54 configuration parameters as of the last
count. Fortunately, the majority of those parameters have relevant default values.
However, there are few parameters that deserve your attention, including:

•	 Number of cores available to execute transformation and actions on RDDs:
config.cores.max.

Chapter 12

[443]

•	 Memory available for the execution of the transformation and actions spark.
executor.memory. Setting the value as 60 percent of the maximum JVM heap
is a generally a good compromise.

•	 Number of concurrent tasks to use across all the partitions for shuffle-related
operations, they use key such as reduceByKey: spark.default.parallelism.
The recommended formula is parallelism = total number of cores x 2. The value
of the parameter can be overridden with the spark.reduceby.partitions
parameter for specific RDD reducers.

•	 Flag to compress serialized RDD partition for MEMORY_ONLY_SER: spark.
rdd.compress. The purpose is to reduce memory footprints at the cost of
extra CPU cycles.

•	 Maximum size of message containing the results of an action sent to the
spark.akka.frameSize driver. This value has to be increased if a collection
may potentially generate a large size array.

•	 Flag to compress large size broadcasted spark.broadcast.compress
variables. It is usually recommended.

Tests
The purpose of the test is to evaluate how the execution time is related to the size
of the training set. The test executes K-means from MLlib library on the volatility
and trading session volume on Bank of America (BAC) stock over the following
periods: 3 months, 6 months, 12 months, 24 months, 48 months, 60 month, 72 month,
96 months, and 120 months.

The following configuration is used to perform the training of the K-means: 10
clusters, 30 maximum iterations, and 3 runs. The test is run on a single host with
8-CPU cores and 32 GB RAM.

The test was conducted with the following values of parameters:

•	 StorageLevel = MEMORY_ONLY

•	 spark.executor.memory=12G

•	 spark.default.parallelism = 48

•	 spark.akka.frameSize = 20

•	 spark.broadcast.compress=true

•	 No serialization

Scalable Frameworks

[444]

The first step after executing a test for a specific dataset is to log in to the Spark
monitoring console at http://host_name:4040/stages:

Average duration of K-means clustering versus size of trading data in months

Obviously, each environment produces somewhat different performance results,
but confirms that the time complexity of the Spark K-means is a linear function
of the training set.

Evaluation in distributed environment
A Spark deployment on multiple hosts would add latency
of the TCP communication to the overall execution time.
The latency is related to the collection of the results of the
clustering back to the Spark driver, which is negligible and
independent of the size of the training set.

Performance considerations
This test barely scratches the surface of the capabilities of Apache Spark. The
following are the lessons learned from personal experience in order to avoid the
most common performance pitfalls when deploying Spark 1.1:

•	 Get acquainted with the most common Spark configuration parameters
regarding partitioning, storage level, and serialization.

•	 Avoid serializing complex or nested objects unless you use an effective Java
serialization library such as Kryo.

•	 Look into defining your own partitioning function to reduce large key-value
pair datasets. The convenience of reduceByKey has its price. The ratio of
number of partitions to number of cores has an impact on the performance of
a reducer using key.

Chapter 12

[445]

•	 Avoid unnecessary actions such as collect, count, or lookup. An action
reduces the data residing in the RDD partitions, and then forwards it to the
Spark driver. The Spark driver (or master) program runs on a single JVM
with limited resources.

•	 Relies on shared or broadcast variables whenever necessary. Broadcast
variables, for instance, improve the performance of operations on multiple
datasets with very different sizes. Let us consider the common case of joining
two datasets of very different sizes. Broadcasting the smaller dataset to each
partition of the RDD of the larger dataset is far more efficient than converting
the smaller dataset into an RDD and executing a join operation between the
two datasets.

•	 Use an accumulator variable for summation as it is faster than using a reduce
action on an RDD.

Pros and cons
An increasing number of organizations are adopting Spark as their distributed data
processing platform for real-time, or pseudo real-time operations. There are several
reasons for the fast adoption of Spark:

•	 Supported by a large and dedicated community of developers [12:15]
•	 In-memory persistency is ideal for iterative computation found in machine

learning and statistical inference algorithms
•	 Excellent performance and scalability that can be extended with the

Streaming module
•	 Apache Spark leverages Scala functional capabilities and a large number of

open source Java libraries
•	 Spark can leverage the Mesos cluster manager, which reduces the complexity

of defining fault-tolerance and load balancing between worker nodes
•	 Spark is to be integrated with commercial Hadoop vendors such as Cloudera

However, no platform is perfect and Spark is no exception. The most common
complaints or concerns regarding Spark are:

•	 Creating a Spark application can be intimidating for a developer with no
prior knowledge of functional programming.

•	 The integration with the database has been somewhat lagging, relying
heavily on Hive. The Spark development team has started to address
these limitations with the introduction of SparkSQL.

Scalable Frameworks

[446]

0xdata Sparkling Water
Sparkling water is an initiative to integrate 0xdata H2O with Spark and complement
MLlib [12:16]. H2O from 0xdata is a very fast, open source, in-memory platform
for machine learning for very large datasets, http://0xdata.com/product/. The
framework is worth mentioning for the following reasons:

•	 It has a Scala API
•	 It is fully dedicated to machine learning and predictive analytics
•	 It leverages both the frame data representation of H2O and in-memory

clustering of Spark

H2O has an extensive implementation of the generalized linear model and gradient
boosted classification, among other goodies. Its data representation consists of
hierarchical data frames. A data frame is a container of vectors potentially shared
with other frames. Each vector is composed of data chunks, which themselves are
containers of data elements [12:17]. At the time of writing, Sparkling Water is in
beta version.

Summary
This completes the introduction of the most common scalable frameworks built
using Scala. It is quite challenging to describe frameworks such as Akka and Spark,
as well as new computing models such as Actors, Futures, and RDDs, in a few pages.
This chapter should be regarded as an invitation to further explore the capabilities of
those frameworks in both a single host and a large deployment environment.

In this last chapter, we learned:

•	 The benefits of asynchronous concurrency
•	 The essentials of the actor model, composing futures with blocking or

callback modes
•	 How to implement a simple Akka cluster to squeeze performance of

distributed applications
•	 The ease and blazing performance of Spark's resilient distributed datasets

and the in-memory persistency approach

Basic Concepts
Machine learning algorithms make significant use of linear algebra and optimization
techniques. Describing the concepts and the implementation of linear algebra, calculus,
and optimization algorithms in detail would have added significant complexity to the
book and distracted the reader from the essence of machine learning.

This appendix lists a set of basic elements of linear algebra and optimization
mentioned throughout the book. It also summarizes the coding practices that have
been covered, and acquaints the reader with basic knowledge of financial analysis.

Scala programming
The following is a partial list of coding practices and design techniques used
throughout the book.

List of libraries
The libraries directory contains the JAR files related to the third-party libraries or
frameworks used in this book. Not all libraries are needed for every chapter. The list
is as follows:

•	 Apache Commons Math 3.3 in Chapter 3, Data Preprocessing; Chapter 4,
Unsupervised Learning; and Chapter 6, Regression and Regularization

•	 JFChart 1.0.1 in Chapter 1, Getting Started; Chapter 2, Hello World!; Chapter 5,
Naïve Bayes Classifiers; and Chapter 9, Artificial Neural Networks

•	 Iitb CRF 0.2 (including L-BFGS and Colt libraries) in Chapter 7, Sequential
Data Models

•	 LIBSVM 0.1.6 in Chapter 8, Kernel Models and Support Vector Machines
•	 Akka framework 2.2.4 in Chapter 12, Scalable Frameworks
•	 Apache Spark/MLlib 1.1 in Chapter 12, Scalable Frameworks

Basic Concepts

[448]

Note for Spark developers
The Scala library and compiler JAR files bundled with the assembly
JAR file of Apache Spark contain a version of the Scala standard
library and compiler JAR file that may conflict with an existing
Scala library (for example, Eclipse default ScalaIDE library).

Format of code snippets
For the sake of readability of the implementation of algorithms, all non-essential
pieces of code such as error checking, comments, exceptions, or imports have been
omitted. The following code elements have been discarded in the code snippets presented in
the book:

•	 Comments:
// The MathRuntime exception has to be caught here!

•	 Validation of class parameters and method arguments:
class BaumWelchEM(val lambda: HMMLambda ...) {
require(lambda != null, "Lambda model is undefined")

•	 Class qualifiers such as final, private, and so on:
final protected class MLP[T <% Double] …

•	 Method qualifiers and access controls (final, private, and so on):
final def inputLayer: MLPLayer
private def recurse: Unit =

•	 Java-style exceptions:
try { … }
catch { case e: ArrayIndexOutOfBoundsException => … }
if (y < EPS)
 throw new IllegalStateException(…)

•	 Scala-style exceptions:
Try(process(args)) match {
 case Success(results) => …
 case Failure(e) => …
}

•	 Non-essential annotations:
@inline def mean = { … }

Appendix A

[449]

•	 Logging and debugging code:
m_logger.debug(…)
Console.println(…)

•	 Auxiliary methods not essential to the understanding of an algorithm

Encapsulation
One important objective while creating an API is reducing access to supporting or
helper classes. There are two options to encapsulate helper classes, as follows:

•	 Package scope: In this, the supporting classes are first-level classes with
protected access

•	 Class or object scope: In this, the supported classes are nested in the
main class

The algorithms presented in this book follow the first encapsulation pattern.

Class constructor template
The constructors of a class are defined in the companion object using apply and the
class has package scope (protected):

protected class MyClass[T](val x: X, val y: Y,…) { … }
object MyClass {
 def apply[T](x: X, y:Y, ..): MyClass[T] = new MyClass(x,y,..)
 final val y0 = ..
 def apply[T](x: , ..): MyClass[T] = new MyClass(x, y0, …)
}

For example, the configuration of the support vector machine classifier is defined
as follows:

protected class SVMConfig(val formulation: SVMFormulation, val kernel:
SVMKernel, val svmExec: SVMExecution) extends Config

Its constructors are defined as follows:

object SVMConfig {
 val DEFAULT_CACHE = 25000
 val DEFAULT_EPS = 1e-15
 …
 def apply(svmType: SVMFormulation, kernel: SVMKernel, svmExec:
SVMExecution): SVMConfig = new SVMConfig(svmType, kernel, svmExec)

Basic Concepts

[450]

 def apply(svmType: SVMFormulation, kernel: SVMKernel): SVMConfig
= new SVMConfig(svmType, kernel, new SVMExecution(DEFAULT_CACHE,
DEFAULT_EPS, -1))
}

Companion objects versus case classes
In the preceding example, the constructors are explicitly defined in the companion
object. Although the invocation of the constructor is very similar to the instantiation
of case classes, there is a major difference—the Scala compiler generates several
methods to manipulate an instance as regular data (equals, copy, hash, and so on).

Case classes should be reserved for single-state data objects, that is, objects with
no methods.

Enumerations versus case classes
It is not uncommon to read or hear discussions regarding the relative merit of
enumerations and pattern matching with case classes in Scala [A:1]. As a very
general guideline, enumeration values can be regarded as lightweight case
classes or case classes can be considered as heavyweight enumeration values.

Let's take an example of a Scala enumeration that consists of evaluating the uniform
distribution of scala.util.Random:

object MyEnum extends Enumeration {
 type TMyEnum = Value
 val A, B, C = Value
}

import MyEnum._
val counters = Array.fill(MyEnum.maxId+1)(0)
Range(0, 1000).foreach(_ => Random.nextInt(10) match {
 case 3 => counters(A.id) += 1
 …
 case _ => { }
})

The previous pattern matching is very similar to the switch statement of Java.

Appendix A

[451]

Let's consider the following example of pattern matching using case classes that
selects a mathematical formula according to the input:

package MyPackage {
 sealed abstract class MyEnum(val level: Int)
 case class A extends MyEnum(3) { def f =(x:Double) => 23*x}
 …
}

import MyPackage._
def compute(myEnum: MyEnum, x: Double): Double = myEnum match {
 case a: A => a.f(x)
 …
}

The previous pattern matching is performed using the default equals method, whose
byte code is automatically set for each case class. This approach is far more flexible
than simple enumeration, at the cost of extra computation cycles.

The advantages of using enumerations over case classes are as follows:

•	 Enumerations involve less code for a single attribute comparison
•	 Enumerations are more readable, especially for Java developers

The advantages of using case classes are as follows:

•	 Case classes are data objects and support more attributes than
enumeration IDs

•	 Pattern matching is optimized for sealed classes as the Scala compiler is
aware of the number of cases

In a nutshell, you should use enumeration for single value constants and case
classes to match data objects.

Overloading
Contrary to C++, Scala does not actually overload operators. Here is the meaning
of the operators used in code snippets:

•	 +=: This adds an element to a collection or container.
•	 +: This sums two elements of the same type.
•	 |>: This transforms a collection of data. It is also known as pipe operator.

The type of output collections and elements can be different from that of
the input.

Basic Concepts

[452]

Design template for classifiers
The machine learning algorithms described in this book use the following
design pattern:

•	 A model instance that implements the Model trait is created through training
during the initialization of the classifier

•	 All configuration parameters are encapsulated into a single configuration
class inheriting the Config trait

•	 The predictive or classification routine is implemented as a data
transformation extending the PipeOperator trait

•	 The classifier takes at least three parameters: configuration instance,
a features set or time series, and a labeled dataset

Have a look at the following diagram:

XComponent2

XComponent1

Config Model

XModelX

XConfig XTSeries DblVector

PipeOperator

model

config xt labels
1

1+

1 1

1

1+

1 1

1

A generic UML class diagram for classifiers

For example, the key components of the support vector machine package are
as follows:

final protected class SVM[T <% Double](val config: SVMConfig, val xt:
XTSeries[Array[T]], val labels: DblVector)
 extends PipeOperator[Array[T], Double] {
 val model: Option[SVMModel] = { … }
 override def |> (x: Feature): Option[Double] = { prediction }
 …
}

final protected class SVMConfig(val formulation: SVMFormulation, val
kernel: SVMKernel, val svmExec: SVMExecution) extends Config
protected class SVMModel(val params: (svm_model, Double)) extends
Model

Appendix A

[453]

The two data inputs required to train a model are the configuration of the classifier
(config) and the training set (xt and labels). Once trained and validated, the
model is available for prediction or classification.

This design has the main advantage of reducing the life cycle of the classifier;
a model is either defined, available for classification, or is not created.

Implementation considerations
The validation phase is omitted in most of the practical
examples throughout this book for the sake of readability.

Data extraction
A CSV file is the most common format used to store historical financial data. It is the
default format used to import data throughout this book:

type Fields = Array[String]
class DataSource(pathName: String,
 normalize: Boolean,
 reverseOrder: Boolean,
 headerLines: Int = 1,
 srcFilter: Option[Fields=>Boolean])
 extends PipeOperator[List[Fields =>Double], List[DblVector]]

The parameters for the DataSource class are as follows:

•	 pathName: This is the relative pathname of a data file to be loaded if the
argument is a file, or the directory containing multiple input data files. Most
of the files are CSV files.

•	 normalize: This is a flag to specify if the data has to be normalized
over [0, 1].

•	 reverseOrder: This is a flag to specify whether the order of the data in the
file has to be reversed—for example, time series—if its value is true.

•	 headerLines: This specifies the number of lines for column headers
and comments.

•	 srcFilter: This is a filter or condition for some of the row fields to skip the
data set, for example, missing data or incorrect format.

Basic Concepts

[454]

The most important method of DataSource is the following data transformation
from a file to a typed time series (XTSeries[T]) implemented as the pipe operator
method. The method takes the extractor from a row of literal values to Double
floating-point values:

def |> : PartialFunction[List[Fields=>Double],List[DblVector]] ={
 case extr: List[Fields=>Double] if(extr!=null && extr.size>0)=>
 load match { //1
 case Some(data) => {
 if(normalize) // 2
 extr.map(t=>Stats[Double](data._2.map(t(_))) //3
 .normalize) //4
 else extr.map(t => data._2.map(t(_)))
 }
 …
}

The data is loaded from the file and converted into a list of vectors using the
extractor, extr (line 1). The data is normalized if required (line 2) by converting
each literal to a floating point value and a Stats object is created (line 3). Finally,
the Stats instance normalizes the sequence of floating-point values (line 4).

A second data transformation consists of transforming a single literal per row to
create a time series of single variables:

def |> (extr: Fields => Double): Option[XTSeries[Double]]

Data sources
The examples in this book rely on three different sources of financial data using
CSV format:

•	 YahooFinancials for Yahoo schema for historical stock and ETF price
•	 GoogleFinancials for Google schema for historical stock and ETF price
•	 Fundamentals for fundamental financial analysis ratio (CSV file)

Let's illustrate the extraction from a data source using YahooFinancials as
an example:

object YahooFinancials extends Enumeration {
 type YahooFinancials = Value
 val DATE, OPEN, HIGH, LOW, CLOSE, VOLUME, ADJ_CLOSE = Value
 val adjClose = ((s: Fields) => s(ADJ_CLOSE.id).toDouble)
 …

Appendix A

[455]

 def toDouble(v: Value): Fields => Double =
 (s: Fields) => s(v.id).toDouble

 def vol: Fields => Double = (s: Fields) => {
 s(HIGH.id).toDouble/s(LOW.id).toDouble -1.0) * s(VOLUME.id).
toDouble)
 }
 …
}

Let's look at an example of application of a DataSource transformation: loading
historical stock data from the Google finance website. The data is downloaded
as a CSV-formatted file. The first step is to specify the column name using an
enumeration singleton, YahooFinancials:

object GoogleFinancials extends Enumeration {
 type GoogleFinancials = Value
 val DATE, OPEN, HIGH, LOW, CLOSE, VOLUME = Value
 val close = ((s: Fields) => s(CLOSE.id).toDouble)//5
 …
}

Each column is associated with an extractor function (line 5). Consider the
following code:

val symbols = Array[String]("CSCO", ...) //6
val prices = symbols
 .map(s => DataSource(path+s+".csv",true,true,1))//7
 .map(_ |> YahooFinancials.close) //8

The list of stocks for which the historical data has to be downloaded is defined as
an array of symbols (line 6). Each symbol is associated with a CSV file (for example,
CSCO is associated with resources/CSCO.csv) (line 7). Finally, the YahooFinancials
extractor for the close price is invoked (line 8).

Extraction of documents
The DocumentsSource class is responsible for extracting the date, title, and content
of a list of text documents or text files. This class does not support HTML documents:

class DocumentsSource(val pathName: String)

Basic Concepts

[456]

The extraction of terms is performed by the data transformation |>, as follows:

def |> : Corpus = {
 filesList.map(fName => {
 val src = Source.fromFile(pathName + fName) //1
 val fieldIter = src.getLines //2

 val date = nextField(fieldIter)
 val title = nextField (fieldIter)
 val content = fieldIter.foldLeft(new StringBuilder)((b, str)
 => b.append(str.trim)) //3
 src.close //4
 if(date == None || title == None)
 throw new IllegalStateException(…) //6
 (date.get, title.get, content.toString) //5
 })
}

This method loads the text files for each filename in the list, filesList (line 1).
It gets a reference to the document lines iterator, fieldIter (line 2). The iterator is
used to extract (line 3) and return the tuple (document date, document title, document
content) (line 5) once the file handle is closed (line 4). An IllegalStateException
is thrown and caught if the text file is malformed. The nextField method moves the
iterator forward to the next non-null line:

def nextField(iter: Iterator[String]): Option[String] =
 iter.find(s=> (s != null && s.length > 1)

Matrix class
Some discriminative learning models require operations performed on rows and
columns of the matrix. The parameterized Matrix class facilitates the read/write
operations on columns and rows:

class Matrix[@specialized(Double, Int) T: ClassTag](val nRows: Int,
val nCols: Int, val data:Array[T])(implicit f: T => Double){
 def apply(i: Int, j: Int): T = data(i*nCols+j)
 def cols(i: Int): Array[T] = {
 (i until data.size by nCols)
 .map(data(_)).toArray
 }
 ...
 def += (i: Int, j : Int, t: T): Unit = data(i*nCols +j) = t
 def += (iRow: Int, t: T): Unit = {
 val i = iRow*nCols

Appendix A

[457]

 Range(0, nCols).foreach(k => data(i + k) =t)
 }
 def /= (iRow: Int, t: T)(implicit g: Double => T): Unit = {
 val i = iRow*nCols
 Range(0, nCols).foreach(k => data(i + k) /= t)
 }
}

The apply method returns an element. Similarly, the cols method returns a column.
The write methods consist of updating an element or a column of elements (+=) with a
value and dividing the elements of a column by a value (/=). The matrix is specialized
with the type Double in order to generate a dedicated byte code for this type.

The generation of the transpose matrix is performed by the transpose method.
It is an alternative to the Scala methods Array.transpose and List.transpose:

def transpose: Matrix[T] = {
 val m = Matrix[T](nCols, nRows)
 Range(0, nRows).foreach(i => {
 val col = i*nCols
 Range(0, nCols).foreach(j => m += (j, i, data(col+j)))
 })
 m
}

The constructors of the Matrix class are defined by its companion object:

def apply[T: ClassTag](nR: Int, nC: Int, data: Array[T])
 (implicit f: T => Double): Matrix[T] =
 new Matrix(nRows, nCols, data)

Mathematics
This section describes very briefly some of the mathematical concepts used in
this book.

Linear algebra
Many algorithms used in machine learning such as minimization of a convex
loss function, principal component analysis, or least squares regression invariably
involve manipulation and transformation of matrices. There are many good books
on the subject, from the inexpensive [A:2] to the sophisticated [A:3].

Basic Concepts

[458]

QR Decomposition
QR decomposition (or QR factorization) is the decomposition of a matrix A into a
product of an orthogonal matrix Q and upper triangular matrix R. So, A=QR and
QTQ=I [A:4].

The decomposition is unique if A is a real, square, and invertible matrix. In the case
of a rectangle matrix A, m by n with m > n, the decomposition is implemented as
the dot product of two vectors of matrix A = [Q1, Q2].[R1, R2]T, where Q1 is an m by n
matrix, Q2 is an m by n matrix, R1 is an n by n upper triangular matrix, and R2 is an m
by n null matrix.

QR decomposition is a reliable method of solving a large system of linear equations
in which the number of equations (rows) exceeds the number of variables (columns).
Its asymptotic computational time complexity for a training set of m dimensions and
n observations is O(mn2-n3/3).

It is used to minimize the loss function for ordinary least squares regression (refer to the
Ordinary least squares (OLS) regression section of Chapter 6, Regression and Regularization).

LU factorization
LU factorization is a technique used to solve a matrix equation A.x = b where A
is a non-singular matrix and x and b are two vectors. The technique consists of
decomposing the original matrix A as the product of simple matrices A = A1A2…An.
It is of two types as follows:

•	 Basic LU factorization: This defines A as the product of a unit lower
triangular matrix L and a upper triangular matrix U. So, A = LU.

•	 LU factorization with pivot: This defines A as the product of a permutation
matrix P, a unit lower triangular matrix L, and an upper triangular matrix U.
So, A = PLU.

LDL decomposition
LDL decomposition for real matrices defines a real positive matrix A as the product
of a lower unit triangular matrix L, a diagonal matrix D, and the transposed matrix of
L, that is LT. So, A = LDLT.

Cholesky factorization
The Cholesky factorization or Cholesky decomposition of real matrices is a special
case of LU factorization [A:4]. It decomposes a positive definite matrix A into a
product of a lower triangular matrix L and its conjugate transpose LT. So, A = LLT.

Appendix A

[459]

The asymptotic computational time complexity for the Cholesky factorization is
O(mn2), where m is the number of features (model parameters) and n is the number
of observations. Cholesky factorization is used in the linear least squares Kalman
filter (refer to the The recursive algorithm section of Chapter 3, Data Preprocessing.

Singular value decomposition
The singular value decomposition (SVD) of real matrices defines an m by n real
matrix A as the product of an m square real unitary matrix U, an m by n rectangular
diagonal matrix Σ, and the transpose VT matrix of a real matrix. So, A=UΣVT.

The columns of the matrices U and V are the orthogonal bases and the value of
the diagonal matrix Σ is a singular value [A:4]. The asymptotic computational time
complexity for the singular value decomposition for n observations and m features
is O(mn2-n3). Singular value decomposition is used to minimize the total least squares
and solve homogeneous linear equations.

Eigenvalue decomposition
The Eigen decomposition of a real square matrix A is the canonical factorization
as Ax = λx.

λ is the eigenvalue (scalar) corresponding to the vector x. The n by n matrix A is
then defined as A = QDQT. Q is the square matrix that contains the eigenvectors
and D is the diagonal matrix whose elements are the eigenvalues associated to the
eigenvectors [A:5], [A:6]. Eigen decomposition is used in Principal Components
Analysis (refer to the Principal components analysis (PCA) section of Chapter 4,
Unsupervised Learning).

Algebraic and numerical libraries
There are many more open source algebraic libraries available to developers as
APIs besides Apache Commons Math, which is used in Chapter 3, Data preprocessing;
Chapter 5, Naïve Bayes Classifiers, and Chapter 6, Regression and Regularization, and
Apache Spark/MLlib used in Chapter 12, Scalable Frameworks. They are as follows:

•	 jBlas 1.2.3 (Java) created by Mikio Braun under the BSD revised license.
This library provides Java and Scala developers a high-level Java interface to
BLAS and LAPACK. It is available at https://github.com/mikiobraun/
jblas.

•	 Colt 1.2.0 (Java) is a high-performance scientific library developed at CERN
under the European Organization for Nuclear Research license. It is available
at http://acs.lbl.gov/ACSSoftware/colt/.

Basic Concepts

[460]

•	 AlgeBird 2.10 (Scala) developed at Twitter under Apache Public License 2.0.
It defines concepts of abstract linear algebra using monoids and monads.
This library is an excellent example of high-level functional programming
using Scala. It is available at https://github.com/twitter/algebird.

•	 Breeze 0.8 (Scala) is a numerical processing library using Apache Public
License 2.0 originally created by David Hall. It is a component of the
ScalaNLP suite of machine learning and numerical computing libraries,
and it is available at http://www.scalanlp.org/.

The Apache Spark/MLlib framework bundles jBlas, Colt, and Breeze. The Iitb
framework for conditional random fields uses Colt linear algebra components.

Alternative to Java/Scala libraries
If your application or project needs a high-performance
numerical processing tool under limited resources (CPU, RAM
memory, and so on), and if portability is not a constraint, then
using a C- or C++-compiled library is an excellent alternative.
The binary functions can be accessed through the Java Native
Interface (JNI).

First order predicate logic
Propositional logic is the formulation of axioms or propositions. There are several
formal representations of propositions:

•	 Noun-VERB-Adjective: "Variance of the stock price EXCEEDS 0.76"
or "Minimization of the loss function DOES NOT converge"

•	 Entity-value = Boolean: " Variance of the stock price GREATER+THAN
0.76 = true" or "Minimization of the loss function converge = false"

•	 Variable op value: "Variance_stock_price > 0.76" or
"Minimization_loss_function != converge"

Propositional logic is subject to the rules of Boolean calculus. Let's consider three
propositions P, Q, and R and three Boolean operators NOT, AND, OR. So the
following rules apply:

•	 NOT (NOT P) = P

•	 P AND false = false, P AND true = P, P OR false = P, P OR true
= P

•	 P AND Q = Q AND P, P OR Q = Q OR P

•	 P AND (Q AND R) = (P AND Q) AND R

Appendix A

[461]

First-order predicate logic, also known as first-order predicate calculus, is the
quantification of propositional logic [A:7]. The most common formulations of
the first order logic are as follows:

•	 IF P THEN action rules
•	 Existential operators

First order logic is used to describe the classifiers in learning classifier systems. Refer
to the XCS rules section of Chapter 11, Reinforcement Learning for more information.

Jacobian and Hessian matrices
Let's consider a function with n variables xi and m outputs yj such that
f: { xi } -> {yj =fj(x)}.

The Jacobian matrix [A:8] is the matrix of the first order partial derivatives of the
output values of a continuous, differential function:

()

1 1

1

1

n

m m

n

f f
x x

J f
f f
x x

∂ ∂ 
 ∂ ∂ 

=  
 ∂ ∂ 
 ∂ ∂ 

L

M O M

L

The Hessian matrix is the square matrix of the second order of partial derivatives of
a continuous, twice differentiable function:

()

2 2

2
1 1

2 2

2
1

n

n n

f f
x x x

H f
f f

x x x

 ∂ ∂
 ∂ ∂ ∂ 
 =
 
∂ ∂ 

 ∂ ∂ ∂ 

L

M O M

L

An example is as follows:

() () ()2 2 2 2
, 2 ,

2
− −

−

  = + = − =     
y y

y

y x
f x y x y e J f xy x e H f

x e

Basic Concepts

[462]

Summary of optimization techniques
The same comments regarding linear algebra algorithms apply to optimization.
Treating such techniques in depth would have rendered the book impractical.
However, optimization is critical to the efficiency and, to a lesser extent, the
accuracy of the machine learning algorithms. Some basic knowledge in this
field goes a long way to build practical solutions for large data sets.

Gradient descent methods

Steepest descent
The steepest descent (or gradient descent) method is one of the simplest techniques
used to find a local minimum of any continuous, differentiable function F or the
global minimum of any defined, differentiable, and convex function [A:9]. The value
of a vector or data point xt+1 at the iteration t + 1 is computed from the previous value
xt using the gradient

D

F of function F and the slope γ:

The steepest gradient algorithm is used for solving systems of non-linear equations
and minimization of the loss function in the logistic regression (refer to the Numerical
optimization section of Chapter 6, Regression and Regularization), in support vector
classifiers (refer to the The nonlinear SVM section of Chapter 8, Kernel Models and
Support Vector Machines), and in multilayer perceptrons (refer to the The multilayer
perceptron (MLP) section of Chapter 9, Artificial Neural Networks).

Conjugate gradient
The conjugate gradient solves unconstrained optimization problems and systems of
linear equations. It is an alternative to the LU factorization for positive, definite, and
symmetric square matrices. The solution x* to the equation Ax = b is expanded as the
weighted summation of n basis orthogonal directions pi (or conjugate directions):

1
*

0
; 0

n

i i i j
i

Ax b p x b p pα
−

=

= → = ⋅ =∑

The solution x* is extracted by computing the ith conjugate vector pi and then
computing the coefficients αi.

Appendix A

[463]

Stochastic gradient descent
The stochastic gradient method is a variant of the steepest descent method that
minimizes the convex function by defining the objective function F as the sum of
differentiable, basis functions fi:

() () ()
1 1

1
0 0

, α
− −

+
= =

= = − ∇∑ ∑
n n

i t t i
i i

F x f x x x f x

The solution xt+1 at iteration t+1 is computed from the value xt at iteration t, the step
size (or learning rate) α, and the sum of the gradient of the basis functions [A:10].
The stochastic gradient descent is usually faster than other gradient descent or
quasi-Newton methods in converging towards a solution for convex functions.
The stochastic gradient descent method is used in logistic regression, support
vector machines, and back-propagation neural networks.

Stochastic gradient is particularly suitable for discriminative models with large
datasets [A:11]. Spark/MLlib makes extensive use of the stochastic gradient method.

Quasi-Newton algorithms
Quasi-Newton algorithms are variations of Newton's method of finding the value
of a vector or data point that maximizes or minimizes a function F whose first order
derivative is null [A:12].

Newton's method is a well-known and simple optimization method used to find the
solution to equations F(x) = 0 for which F is continuous and differentiable up to the
second order. It relies on the Taylor series expansion to approximate the function F
with a quadratic approximation on the variable ∆x = xt+1-xt, to compute the value at
the next iteration using the first order F' and second order F" derivatives:

() () () () ()
()1

'
' . "

"
t

t t t t t
t

F x
F x x F x F x x F x x x

F x++ ∆ − ≈ ∆ + → = −

Contrary to Newton's method, quasi-Newton methods do not require that the
second order derivative, Hessian matrix of the objective function be computed.
It just has to be approximated [A:13]. There are several approaches to approximate
the computation of the Hessian matrix.

Basic Concepts

[464]

BFGS
The Broyden-Fletcher-Goldfarb-Shanno (BGFS) method is a quasi-Newton iterative
numerical method to solve unconstrained nonlinear problems. The Hessian matrix
Ht+1 at an iteration t+1 is approximated using the value of the previous iteration t as
Ht+1=Ht + Ut + Vt applied to the Newton equation for the direction pt:

() 1,t t t t t t tH p F x x x pα+= −∇ = +

The BFGS method is used in minimization of the cost function for the conditional
random field, and L1 and L2 regression.

L-BFGS
The performance of the BFGS algorithm can be improved by caching the
intermediate computation in memory in order to approximate the Hessian
matrix. The obvious drawback is that the memory becomes a limiting factor
in the scalability of the optimizer.

The Limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm or L-BFGS is
a variant of BFGS that uses a minimum amount of computer RAM. The algorithm
maintains the last m incremental updates of the values ∆xt and the gradient ∆Gt at
iteration t, and then computes those values for the next step t+1:

It is supported by the Apache Commons Math 3.3 and above, Apache Spark/MLlib 1.0
and above, Colt 1.0 and above, and Iiitb CRF libraries. L-BFGS is used in minimization
of the loss function in conditional random fields. For more information, refer to the
Conditional random fields section of Chapter 7, Sequential Data Models.

Nonlinear least squares minimization
Let's consider the classic minimization of the least squares of a nonlinear function
y = F(x, w) with wi parameters for observations {y, xi}. The objective is to minimize
the sum of the squares of residuals ri:

L

Appendix A

[465]

Gauss-Newton
The Gauss-Newton technique is a generalization of Newton's method. The technique
solves nonlinear least squares by updating the parameters wt+1 at iteration t+1 using
the first order derivative, or Jacobian:

() ()
()

()()
1

1
i t

t t t
i ij

r w
w w r w

w

−

+

∂
= −

∂

The Gauss-Newton algorithm is used in logistic regression. For more information,
refer to the The logistic regression section of Chapter 6, Regression and Regularization.

Levenberg-Marquardt
The Levenberg-Marquardt algorithm is an alternative to the Gauss-Newton technique
for solving nonlinear least squares and curve fitting problems. The method consists
of adding the gradient or Jacobian terms to the residuals ri to approximate the least
squares error:

The Levenberg-Marquardt algorithm is used in the training of logistic regression.
For more information, refer to the The logistic regression section of Chapter 6, Regression
and Regularization.

Lagrange multipliers
The Lagrange multipliers methodology is an optimization technique to find the local
optima of a multivariate function, subject to equality constraints [A:14]. The problem
is stated as maximize f(x) subject to g(x) = c, where c is a constant and x is a variable or
features vector.

Basic Concepts

[466]

This methodology introduces a new variable λ to integrate the constraint g into
a function, known as the Lagrange function �(x, λ). Let's note

D

�, which is the
gradient of � over the variables xi and λ. The Lagrange multipliers are computed
by maximizing �:

�

� �
�

�

An example is as follows:

Lagrange multipliers are used in minimizing the loss function in the non-separable
case of linear support vector machines. For more information, refer to The nonseparable
case (soft margin) section of Chapter 8, Kernel Models and Support Vector Machines.

Overview of dynamic programming
The purpose of dynamic programming is to break down an optimization problem
into a sequence of steps known as substructures [A:15]. There are two types of
problems for which dynamic programming is suitable.

The solution of a global optimization problem can be broken down into optimal
solutions for its subproblems. The solutions of the subproblems are known as
optimal substructures. Greedy algorithms or the computation of the minimum
span of a graph are examples of decomposition into optimal substructures. Such
algorithms can be implemented either recursively or iteratively.

The solution of the global problem is applied recursively to the subproblems if the
number of subproblems is small. This approach is known as dynamic programming
using overlapping substructures. Forward-backward passes on hidden Markov
models, the Viterbi algorithm (refer to the The Viterbi algorithm section of Chapter 7,
Sequential Data Models), or the back-propagation of error in a multilayer perceptron
(refer to the Step 3 – error backpropagation section of Chapter 9, Artificial Neural
Networks) are good examples of overlapping substructures.

Appendix A

[467]

The mathematical formulation of dynamic programming solutions is specific to the
problem it attempts to solve. Dynamic programming techniques are also commonly
used in mathematical puzzles such as the Tower of Hanoi.

Finances 101
The exercises presented throughout this book are related to historical financial
data and require the reader to have some basic understanding of financial markets
and reports.

Fundamental analysis
Fundamental analysis is a set of techniques to evaluate a security—stock, bond,
currency, or commodity—that entails attempting to measure its intrinsic value
by examination related to both macro and micro, financial and economy reports.
Fundamental analysis is usually applied to estimate the optimal price of a stock
using a variety of financial ratios.

Numerous financial metrics are used throughout this book. Here are the definitions
of the most commonly used metrics [A:16]:

•	 Earnings per share (EPS): This is the ratio of net earnings to the number of
outstanding shares.

•	 Price/Earnings ratio (PE): This is the ratio of the market price per share to
earnings per share.

•	 Price/Sales ratio (PS): This is the ratio of market price per share over gross
sales or revenue.

•	 Price/Book value ratio (PB): This is the ratio of market price per share over
total balance sheet value per share.

•	 Price to Earnings/Growth (PEG): This is the ratio of price/earnings per share
(PE) over annual growth of earnings per share.

•	 Operating income: This is the difference between the operating revenue and
operating expenses.

•	 Net sales: This is the difference between the revenue or gross sales and cost
of goods or cost of sales.

•	 Operating profit margin: This is the ratio of the operating income over
net sales.

•	 Net profit margin: This is the ratio of net profit over net sales (or net revenue).
•	 Short interest: This is the quantity of shares sold short and not yet covered.

Basic Concepts

[468]

•	 Short interest ratio: This is the ratio of the short interest over total number of
shares floated.

•	 Cash per share: This is the ratio of the value of cash per share over market
price per share.

•	 Pay-out ratio: This is the percentage of the primary/basic earnings per share
excluding extraordinary items paid to common stockholders in the form of
cash dividends.

•	 Annual dividend yield: This is the ratio of sum of dividends paid during the
previous 12-month rolling period, over the current stock price. Regular and
extra dividends are included.

•	 Dividend coverage ratio: This is the ratio of income available to common
stockholders, excluding extraordinary items, for the most recent trailing
twelve months, to gross dividends paid to common shareholders, expressed
as percent.

•	 Gross Domestic Product (GDP): This is the aggregate measure of the
economic output of a country. It actually measures the sum of value added
by the production of goods and delivery of services.

•	 consumer price index (CPI): This is an indicator that measures the change in
the price of an arbitrary basket of goods and services used by the Bureau of
Labor Statistics to evaluate the inflationary trend.

•	 Federal Fund rate: This is the interest rate at which banks trade balances held
at the Federal Reserve. The balances are called Federal Funds.

Technical analysis
Technical analysis is a methodology used to forecast the direction of the price of any given
security through the study of past market information derived from price and volume. In
simpler terms, it is the study of price activity and price patterns in order to identify
trade opportunities [A:17]. The price of a stock, commodity, bond, or financial future
reflects all the information publicly known about that asset as processed by the
market participants.

Terminology
•	 Bearish or bearish position: A bear position attempts to profit by betting that

the prices of the security will fall.
•	 Bullish or bullish position: A bull position attempts to profit by betting that

the price of the security will rise.
•	 Long position: This is the same as bullish.

Appendix A

[469]

•	 Neutral position: A neutral position attempts to profit by betting the price of
the security will not change significantly.

•	 Oscillator: An oscillator is a technical indicator that measures the price
momentum of a security using some statistical formulae.

•	 Overbought: A security is overbought when its price rises too fast as
measured by one or several trading signals or indicators.

•	 Oversold: A security is oversold when its price drops too fast as measured
by one or several trading signals or indicators.

•	 Relative strength index (RSI): The RSI is an oscillator that computes the
average of number of trading sessions for which the closing price is higher
than the opening price over the average of number of trading sessions
for which the closing price is lower than the opening price. The value is
normalized over [0, 1] or [0, 100%].

•	 Resistance: A resistance level is the upper limit of the price range of a
security. The price falls back as soon as it reaches the resistance level.

•	 Short position: This is the same as bearish.
•	 Support: A support level is the lower limit of the price range of a security

over a period of time. The price bounces back as soon as it reaches the
support level.

•	 Technical indicator: A technical indicator is a variable derived from the price
of a security and possibly its trading volume.

•	 Trading range: The trading range for a security over a period of time is the
difference between the highest and lowest price for this period of time.

•	 Trading signal: A signal is triggered when a technical indicator reaches a
predefined value, upwards or downwards.

•	 Volatility: This is the variance or standard deviation of the price of a security
over a period of time.

Trading signals and strategy
The purpose is to create a set variable x, derived from price and volume; x = f (price,
volume) then generate predicates, x op c, where op is a Boolean operator, such as >
or =. The op operator compares the value of x to a predetermined threshold c.

Basic Concepts

[470]

Let's consider one of the most common technical indicators derived from price: the
relative strength index RSI, or the normalized RSI; nRSI, whose formulation is provided
here for reference:

The RSI for a period of T sessions, with opening price po, and
closing price pc is given by:

() ()()
1

0
0

100100 /100
1

T

T c
t

T T T
T

T

U p t p t

RSI nRSI RSIU
T U

−

=

= >

= − =
+

−

∑

A trading signal is a predicate using a technical indicator nRSI(t) < 0.2. In trading
terminology, a signal is emitted for any time period, t, for which the predicate is true.
Have a look at the following graph:

Traders do not usually rely on a single trading signal to make a rational decision.

As an example, if G is the price of gold, I10 is the current rate of the 10-year Treasury
bond, and RSIsp500 is the relative strength index of the S&P 500 index, then we
can conclude that the increase in the exchange rate of the US$ to the Japanese Yen
maximizes for the trading strategy: {G < $1170 and I10 > 3.9% and RSIsp500 > 0.6 and
RSIsp500 < 0.8}.

Appendix A

[471]

Price patterns
Technical analysis assumes that historical prices contain some recurring albeit noisy
patterns that can be discovered using the statistical method. The most common
patterns used in the book are the trend, support, and resistance levels [A:18], as
illustrated in the following chart:

Illustration of trend, support, and resistance levels in technical analysis

Options trading
An option is a contract that gives the buyer the right but not the obligation to buy or
sell a security at a specific price on or before a certain date [A:19].

The two types of options are calls and puts:

•	 A call gives the holder the right to buy a security at a certain price within a
specific period of time. Buyers of calls expect that the price of the security
will increase substantially over the strike price before the option expires.

•	 A put option gives the holder the right to sell a security at a certain price
within a specific period of time. Buyers of puts expect that the price of the
stock will fall below the strike price before the option expires.

Basic Concepts

[472]

Let's consider a call option contract on 100 shares at a strike price of $ 23 for a total
cost of $ 270 ($ 2.7 per option). The maximum loss the holder of the call can incur
is the loss of premium or $270 when the option expires. However, the profit can be
potentially almost unlimited. If the price of the security reaches $ 36 when the call
option expires, the owner will have a profit of ($ 36 - $ 23)*100 - $ 270 = $ 1030. The
return on investment is 1030/270 = 380 percent. Buying and then selling the stock
would have generated a return on investment of 36/24 - 1= 50 percent. This example
is simple and does not take into account transaction fee or margin cost [A:20]. Have a
look at the following graph:

.

Financial data sources
There are numerous sources of financial data available to experiment with machine
learning and validation models [A:21].

•	 Yahoo finances (stocks, ETFs, and indices) available at
http://finance.yahoo.com

•	 Google finances (stocks, ETFs, and indices) available at
https://www.google.com/finance

•	 NASDAQ (stocks, ETFs, and indices) available at http://www.nasdaq.com
•	 European Central Bank (European bonds and notes) available at

http://www.ecb.int

•	 TrueFx (forex) available at http://www.truefx.com
•	 Quandl (economics and financials statistics) available at

http://www.quantl.com

•	 Dartmouth University (portfolio and simulation) available at
http://mba.tuck.dartmouth.edu

Appendix A

[473]

Suggested online courses
•	 Practical Machine Learning. J. Leek, R. Peng, B. Caffo. Johns Hopkins

University, available at https://www.coursera.org/jhu
•	 Probabilistic Graphical Models. D. Koller. Stanford University, available at

https://www.coursera.org/course/pgm

•	 Machine Learning. A. Ng. Stanford University, available at
https://www.coursera.org/course/ml

References
•	 [A:1] Daily scala: Enumeration. J. Eichar. 2009, available at http://daily-

scala.blogspot.com/2009/08/enumerations.html

•	 [A:2] Matrices and Linear Transformations 2nd edition. C. Cullen. Dover Books
on Mathematics. 1990

•	 [A:3] Linear Algebra: A Modern Introduction. D Poole. BROOKS/COLE
CENGAGE Learning. 2010

•	 [A:4] Matrix decomposition for regression analysis. D. Bates. 2007, available
at http://www.stat.wisc.edu/courses/st849-bates/lectures/
Orthogonal.pdf

•	 [A:5] Eigenvalues and Eigenvectors of Symmetric Matrices. I. Mateev. 2013,
available at http://www.slideshare.net/vanchizzle/eigenvalues-and-
eigenvectors-of-symmetric-matrices

•	 [A:6] Linear Algebra Done Right 2nd edition (§5 Eigenvalues and Eigenvectors).
S Axler. Springer. 2000

•	 [A:7] First Order Predicate Logic. S. Kaushik. CSE India Institute of
Technology. Delhi, available at http://www.cse.iitd.ac.in/~saroj/LFP/
LFP_2013/L4.pdf

•	 [A:8] Matrix Recipes. J. Movellan. 2005, available at http://www.math.
vt.edu/people/dlr/m2k_svb11_hesian.pdf

•	 [A:9] Gradient descent. Wikipedia: the free encyclopedia. Wikimedia
foundation, available at http://en.wikipedia.org/wiki/Gradient_
descent

•	 [A:10] Large Scale Machine Learning: Stochastic Gradient Descent Convergence.
A. Ng. Stanford University, available at https://class.coursera.org/ml-
003/lecture/107

Basic Concepts

[474]

•	 [A:11] Large-Scala Machine Learning with Stochastic Gradient Descent. L
Bottou. 2010, available at http://leon.bottou.org/publications/pdf/
compstat-2010.pdf

•	 [A:12] Overview of Quasi-Newton optimization methods. Dept. Computer
Science. University of Washington, available at https://homes.
cs.washington.edu/~galen/files/quasi-newton-notes.pdf

•	 [A:13] Lecture 2-3: Gradient and Hessian of Multivariate Function. M.
Zibulevsky. 2013, available at http://www.youtube.com

•	 [A:14] Introduction to the Lagrange Multiplier. ediwm.com, video available at
http://www.noodle.com/learn/details/334954/introduction-to-the-
lagrange-multiplier

•	 [A:15] A brief introduction to Dynamic Programming (DP). A. Kasibhatla.
Nanocad Lab, available at http://nanocad.ee.ucla.edu/pub/Main/
SnippetTutorial/Amar_DP_Intro.pdf

•	 [A:16] Financial ratios. Wikipedia, available at http://en.wikipedia.org/
wiki/Financial_ratio

•	 [A:17] Getting started in Technical Analysis (§1 Charts: Forecasting Tool or
Folklore?). J Schwager. John Wiley & Sons. 1999

•	 [A:18] Getting started in Technical Analysis (§4 Trading Ranges, Support &
Resistance). J Schwager. John Wiley & Sons. 1999

•	 [A:19] Options: a personal seminar (§1 Options: An Introduction, What is an
Option). S. Fullman, New York Institute of Finance. Simon Schuster. 1992

•	 [A:20] Options: a personal seminar (§2 Purchasing Options). S. Fullman. New
York Institute of Finance. Simon Schuster. 1992

•	 [A:21] List of financial data feeds. Wikipedia, the free encyclopedia. Wikimedia
foundation, available at http://en.wikipedia.org/wiki/List_of_
financial_data_feeds

Index
Symbols
0xdata H2O 446
2-step lag smoothing algorithm 92
|> operator 45
@specialized annotation 76
υ-SVM 259

A
action methods, Apache Spark

collect 435
count 435
countByKey 435
first 435
foreach 435
reduce(f) 435
saveAsTextFile 435
take(n) 435
takeSample 435

activation function 294
Actor model

about 413, 414
components 413

actor ! PoisonPill method 421
Actors

about 12, 413
Actor model 413, 414
partitioning 415
reactive programming 415

actorSystem.shutdown method 421
adaptive model 14
aggregation effect 115
Akka

about 415, 416

futures 425
master-workers 417
URL 415

Akka, supervision strategies
all-for-one strategy 416
one-for-one strategy 416

Algebird
about 22
URL 11

AlgeBird 2.10 460
algebraic libraries

about 459
AlgeBird 2.10 460
Breeze 0.8 460
Colt 1.2.0 459
jBlas 1.2.3 459

alternative techniques, data preprocessing
autoregressive models 97
curve-fitting algorithms 97

American Association of Individual
Investors (AAII) 230

annual dividend yield 468
anti-goal state 389
Apache Commons Math

about 20
components 20
exception handling 197
installation 21
licensing 20
URL 20

Apache Public License 2.0
URL 20

Apache Spark
about 431, 432

[476]

benefits 432, 433
cons 445
deploying 437
design principles 433
experimenting 437
K-means 440-442
MLlib 439
performance evaluation 442
pros 445
RDD, generating 439, 440
Spark shell, using 438
URL 437

Apache Spark performance
considerations 444, 445
parameters, tuning 442
testing 443, 444

apply method 457
artificial neural networks 294
attributes 40
autonomous systems

about 366
characteristics 366

autoregressive integrated moving average
(ARIMA) 97

autoregressive models 97
autoregressive moving average (ARMA) 97

B
batch EM 126
batch training 312
Baum-Welch estimator (EM) 222-225
Bayesian network 138
behavioral hidden Markov models 366
Bellman optimality equations 370, 371
benchmark framework 409, 410
Berkeley Data Analytics Stack (BDAS) 431
Bernoulli model

about 155
implementation 156

bias 58
bias input 292
bias-variance decomposition 58-61
binary SVC

about 262

C-penalty 269-271
kernel functions, evaluating 272-277
LIBSVM 262, 263
margin 269-271
risk analysis 277
software design 263, 264
SVM implementation 267-269

binomial classification, logistic
regression 193-196

blocking, futures 426-428
bloom filters 407
Breeze 0.8 460
Broyden-Fletcher-Goldfarb-Shanno

(BGFS) method 464

C
cake pattern 13
callbacks, futures

handling 426-430
case classes

advantages 451
versus companion objects 450
versus enumerations 450, 451

cash per share 468
centroid

about 101
versus mean 109

characteristics, Kalman filter
optimal 85
recursive 85

Chicago Board Options
Exchange (CBOE) 382

chromosomes 329
class constructor template 449
classification model, evaluation factors

accuracy 55
F-measure 55
F-score F1 55
G-measure 55
precision 55
recall 55

classification model, terminology
false negatives (FN) 55
false positives (FP) 54

[477]

true negatives (TN) 54
true positives (TP) 54

class prior 141
class prior probability 141
clustering (cluster analysis) 15, 100, 101
clustering algorithms

EM 101
K-means 101

cluster, K-means
assignment 107
configuration 103
defining 103, 104
initializing 105, 106
iterative reconstruction 108, 109
K-means, defining 105
selecting 105
tuning 114-117

code snippets
format 448

Colt 1.2.0 459
common discriminative kernels 254-256
companion objects

versus case classes 450
components, parallel collections

ExecutionContextTaskSupport 408
ForkJoinTaskSupport 408
TaskSupport 408
ThreadPoolTaskSupport 408

components, reinforcement learning
mathematical notation 369

components, XCS
action 397
data 396
environment 397
input data stream 397
predicate 397
reward 397
rule 397
sensor 397

computational workflow
basic statistics, computing 30, 31
creating 28
data, classifying 36, 37
data, plotting 33, 34
dataset, loading 29, 30

dataset, preprocessing 30
dataset, selecting 28, 29
Gauss distribution 31, 32
model, creating 34-36
normalization 31, 32
overview 26, 27

conditional dependency 146
conditional independence 137
conditional random field. See CRF
configuration, GA

maxCycles 345
mu 345
softLimit 345
xover 345

configuration parameters, SVM
formulation 264
kernel function, specifying 265
SVMExecution class 266

conjugate gradient method 462
connectionism 290
constrained state-transition 386, 387
constructive tuning 313
consumer price index (CPI) 139
context bound

about 23
versus view bound 23

context.stop(childActorRef) method 421
context.stop(self) method 421
continuation-passing style (CPS) 415
control learning. See reinforcement learning
convex minimization 185
convolution 79
Cooley-Tukey algorithm 74
core parking 412
correction, recursive algorithm 91
cost/unfitness function 353, 354
count method 163
C-penalty, binary SVC 269-271
CRF

about 232
comparing, with HMM 249
example 233, 234
feature functions model 238-240
identity potential functions 236
implementation 241-246

[478]

potential functions (fi) 236
software design 240, 241
tests 246
text analytics 237
transition feature functions 236

CRF implementation
control parameters 244, 245
data sequences, extracting 244
tags, generating 243
training set, building 242, 243

CRF, tests
L2 regularization factor,

evaluating 248, 249
training convergence profile 247
training set size, evaluating 247, 248

crossover implementation
about 335-345
chromosomes 347, 348
genes 348
population 346, 347

C-SVM 259
curve-fitting algorithms 97

D
Darwinian process 328
data chunks 446
data elements 446
data extraction 453
data frames 446
data mining

workflow 9
data preprocessing

about 63
alternative techniques 97
purpose 63

data scientist 43
DataSource class

headerLines parameter 453
normalize parameter 453
pathName parameter 453
reverseOrder parameter 453
srcFilter parameter 453

data sources 454, 455

data, XCS
about 398, 399
Signal 398
XcsAction 398
XcsSensor 398

DBpedia 159
decision-making agent 368
decoding (CF-3), HMM

about 226
Viterbi algorithm 226-228

dependency injection 13, 46, 47
descriptive model 14
design

versus model 41
design principles, Apache Spark

action methods 434, 435
in-memory persistency 433
lazy values, using 433, 434
shared variables 436, 437
transformation methods 434

design template, for classifiers 452
destructive tuning 313
DFT

about 73, 78, 422, 425
limitations 85
used, for detecting market cycles 82-85

DFT-based filtering 79-81
DFT convolution 79
dimension reduction

about 16, 126
other techniques 133
PCA 127

directed graphical models 138
discount coefficient for future rewards 369
discrete Fourier transform. See DFT
discrete Markov chain 208
discrete model parameters 330
discretization 331
discriminative models

about 17, 18
versus generative models 17

dividend coverage ratio 468
documents

extracting 455, 456

[479]

DocumentsSource class 455, 456
domain 43
Domain Specific Languages (DSL) 14
dynamic programming

about 466
overview 466

E
earnings per share (EPS) 467
eigenvalue

about 459
decomposition 459

EM
about 99, 118, 119
considerations 134
filtering 123
GMM 119
implementation 120-122
online EM 126
overview 120
performance considerations 134
relating, with K-means 125
sampling 123
testing 123-125
third-party library exceptions 122

encapsulation
about 449
class scope 449
object scope 449
package scope 449

ensemble learning 330
enumerations

advantages 451
versus case classes 450, 451

epoch 300
Erlang programming language 413
error backpropagation, MLP training cycle

about 305
computational model 307
error propagation 306

error insensitive zone 284
evaluation (CF-1), HMM

about 216, 217
Alpha class (forward variable) 217-219

Beta class (backward variable) 220, 221
constructors 222

evidence 141
evolution

about 327
evolutionary computing 329
NP problems 328, 329
origin 328

evolutionary computing 327, 329
exception handling 175
exchange-traded funds (ETFs)

about 317
CYB 318
FXA 317
FXB 317
FXC 318
FXE 317
FXF 318
FXY 318
GLD 318
SPY 318

execution state, HMM 214-216
expectation-maximization. See EM
experimentation, recursive algorithm 93-96
exploitation phase, XCS 395
exploration phase, XCS 395
exponential moving average 69-72
exponential normalization. See softmax
extended Kalman filter (EKF) 96
extended learning classifier systems. See XCS

F
fast Fourier transform (FFT) 73
feature functions. See transition feature

functions
features, model

attributes 40
extracting 42
selecting 41
variables 40

features, Scala
abstraction 11, 12
computation on-demand 14
configurability 13

[480]

maintainability 14
scalability 12, 13

Federal fund rate (FDF) 139
feed-forward neural networks (FFNN)

about 289
biological background 290, 291
mathematical background 291, 292
without hidden layers 294

filtering
versus smoothing 85

final val
versus val 271

finances 101
about 467
financial data sources 472
fundamental analysis 467
options, trading 471, 472
technical analysis 468

first-order discrete Markov chain 208, 209
first-order predicate logic 461
fitness function

about 330, 340
approximate fitness function 340
evolutionary fitness function 340
fixed fitness function 340
versus unfitness 342

flat encoding approach 334
fork-join pool 408
Fourier analysis

about 73
DFT 73-79
DFT-based filtering 79-81

Fourier transform 73
frequency domain 73
fully connected neural network 295
function approximation

about 385, 386
guidelines 385

fundamental analysis 467
futures

about 425
Actor life cycle 426
blocking 426-428
callbacks, handling 428-430
implementing 430, 431

G
GA

about 327
advantages 363
configuration 345
implementation 340
machine learning 330
risks 363
trading strategies 351, 352

GA implementation
about 340
configuration 345
crossover 345
key components 341-343
mutation 349
population growth, controlling 345
reproduction cycle 350, 351
selection 344
software design 340, 341

GA, applications
discrete model parameters 330
ensemble learning 330
neural network architecture 330
reinforcement learning 330

GA, components
genetic decoding 330
genetic encoding 330
genetic fitness function 330
genetic operations 330

Gaussian mixture 151
Gaussian mixture model (GMM) 134
Gaussian noise 87
Gaussian probability density 152
Gauss-Newton technique 465
Gene class

discr parameter 343
id parameter 343
op parameter 343
target parameter 343

generalized autoregressive conditional
heteroskedasticity (GARCH) 97

generative models
about 16
versus discriminative models 17

[481]

generic message handler 427
genes 329
genetic algorithms. See GA
genetic decoding 330
genetic encoding

about 330
predicate encoding 332
solution encoding 333
value encoding 331, 332

genetic operators
about 335, 336
crossover 335, 338
mutation 335, 339
selection 335-337

gradient descent methods
about 462
conjugate gradient method 462
steepest descent method 462
stochastic gradient method 463

graph structured CRF 234
GraphX 432
gross domestic product (GDP) 139, 468

H
Hadoop Distributed File System (HDFS) 29
hard margin 257
Hessian matrix 461
hidden layers 293
hidden Markov model. See HMM
Hidden Naïve Bayes (HNB) 146
hierarchical encoding 334, 335
hinge loss 259
HMM

about 207-209
comparing, with CRF 249
components 210
decoding (CF-3) 211, 226
evaluation (CF-1) 211-217
execution state 214-216
implementation 228-230
lambda model 212-214
notation 211, 212
performance consideration 250
stationary or homogeneous restriction 210

test case 230, 231
time series analysis 232
training (CF-2) 211, 222

hyperplane 194

I
IEEE-732 encoding 356
implicit conversion, Scala 24
incremental EM 126
input forward propagation, MLP training

cycle
about 301, 302
computational model 302
objective 303, 304
softmax 304

installation, Apache Commons Math 21
I/O blocking operations 414

J
Jacobian matrix 461
Java 19
Java Native Interface (JNI) 460
Java packages

versus Scala traits 49
jBlas 1.2.3 459
JFreeChart

about 21
installation 22
licensing 21
URL 22

joint probability distribution 137

K
Kalman filter

about 85
characteristics 85
exception handling 92
recursive algorithm 87-89
state space estimation 86
usage 85

Kalman smoothing, recursive
algorithm 92, 93

[482]

kernel functions
about 252
common discriminative kernels 254-256
evaluating 272-277
overview 252-254

kernel functions, types
laplacian kernel 254
linear kernel 254
log kernel 254
polynomial kernel 254
probabilistic kernels 256
RBF 254
reproducible Kernel Hilbert Spaces 256
sigmoid kernel 254
smoothing kernels 256

kernel trick 261
K-fold cross-validation 57
K-means

about 101
advantage 103
cluster assignment 107
cluster configuration 103
clusters, tuning 114-117
considerations, K-means 133, 134
dimensionality issue, of models 109, 110
exit condition 109
experiment 111-114
iterative reconstruction 108, 109
overview 103
performance considerations 133, 134
relating, with EM 125
similarity, measuring 101, 102
using 440-442
validation 117, 118

Kryo serialization 433

L
L1 regularization

versus L2 regularization 185
L2 regularization

versus L1 regularization 185
labeled data 54
Lagrange multipliers 261, 465
lambda model 212-214

laplacian kernel 254
Lasso regularization 185
latent Dirichlet allocation (LDA) 139
LCS

about 365, 391
benefits 393
complex adaptive systems 392
components 392
limitation 402, 403
XCS 395, 396

LCS, categories
Michigan approach 393
Pittsburgh approach 393

LCS, terminology
action 394
agent 394
classifier 394
compound predicate 394
covering 394
environment 394
input data stream 394
predicate 394
predictor 394
rule 394
rule fitness or score 394
rule matching 394
sensors 394

LDL decomposition 458
learning classifier systems. See LCS
learning vector quantization (LVQ) 100
least squares problem 191
Levenberg-Marquardt algorithm 465
Levenberg-Marquardt parameters 202
lexicon function 162
libraries

about 22
Algebird 22
Breeze 22
ScalaNLP 22

LIBSVM
about 262
benefits 262
Java code 263
scaling 279
URL 262

[483]

LIBSVM, Java classes
svm 263
svm_model 262
svm_node 262
svm_parameters 263
svm_problem 263

likelihood 141
Limited memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS)
algorithm 464

linear algebra
about 457
algebraic libraries 459
Cholesky factorization 458
eigenvalue decomposition 459
LDL decomposition 458
LU factorization 458
QR decomposition 458
singular value decomposition (SVD) 459

linear chain CRF (linear chain structured
graph CRF)

about 234-237
advantages 235

linear Kalman filter
limitations 96

linear kernel 254
linear regression

about 169
OLS regression 173
one-variate linear regression 170
versus SVR 285-287

linear SVM
about 256
nonseparable case (soft margin) 258, 259
separable case (hard margin) 257

Ln roughness penalty 184, 185
logistic regression

about 192
binomial classification 193-196
classification 203-205
errors, rounding 205
logit function 192, 193
software design 196
training workflow 197, 198
validation methodology 205

logit function 192, 193
log kernel 254
Lotka-Volterra equation 337
Lp-norm 184
LU factorization

about 458
basic LU factorization 458
LU factorization with pivot 458

M
machine learning

about 10, 330
regularization 185

machine learning algorithms
reinforcement learning 18, 19
supervised learning 16
taxonomy 15
unsupervised learning 15

machine learning, problems
classification 10
optimization 11
prediction 11
regression 11

Markov decision process
about 207
first-order discrete Markov chain 208, 209

Markov property 207
Markov random fields 209
master-workers (master-slaves)

about 417
design principle 417
DFT 422-425
limitations 425
master Actor 419-421
master routing, implementing 421
messages exchange 417, 418
worker actors 418
workflow controller 419

mathematical concepts
about 457
dynamic programming 466
first-order predicate logic 461
Hessian matrix 461
Jacobian matrix 461

[484]

linear algebra 457
optimization techniques, summary 462

mathematical notation 10
Matrix class 456, 457
max-margin classification 260, 261
mean

versus centroid 109
mean squared error (MSE) 170, 301
measurement equation 86, 87
message-passing mechanisms, Actor model

fire-and-forget (tell) 414
send-and-receive (ask) 414

Michigan approach 393
MLlib

about 432, 439
components 439

MLP
about 289-294
activation function 294
classification 312
evaluation 315
model 297
network architecture 295
software design 296
training cycle 300
training strategies 312

MLP algorithm, parameters
config 310
labels 310
mlpObjective 310
xt 310

MLPConfig configuration, parameters
activation 310
alpha 310
eps 310
eta 310
hidLayers 310
numEpochs 310

MLP, evaluation
impact of learning rate 315, 316
impact of momentum factor 316, 317
test case 317-319

model
about 14, 39-41
adaptive model 14

assessing 54
bias-variance decomposition 58-61
descriptive model 14
instantiation 171
overfitting 61
predictive model 14
validation 54
versus design 41

model, forms
chemistry 40
differential 40
directed graphs 40
grammar 41
graphical 40
inference logic
lexicon 41
numerical method 40
parametric 40
probabilistic 40
taxonomy 41

modeling 41
model, MLP

about 297
connections 299, 300
layers 298
synapses 299

monadic data transformation 45, 46
monads 11, 12
monoids 11, 12
Monte Carlo EM 126
moving averages

about 66
exponential moving average 69-72
simple moving average 67, 68
weighted moving average 68, 69

multilayer perceptron. See MLP
multinomial Naïve Bayes model

about 139, 141
attributes 149
formalism 141, 142
frequentist perspective 142, 143
missing data, handling 151
NaiveBayes class 150
predictive model 144
zero-frequency problem 145

[485]

multivariate Bernoulli classification
about 155
implementation 156
model 155

mutation implementation
about 335, 339, 349
chromosomes 349
genes 349
population 349

N
Naïve Bayes

about 139
applying, to text mining 156-158
benefits 168
disadvantages 168
mathematical notation 142
testing 163
using 156

Naïve Bayes classification
Gaussian density, using 152

Naïve Bayes classifiers
about 139
implementing 145
multinomial Naïve Bayes 139
UML class diagram 146

Naïve Bayes classifiers, implementing
about 145
classification 151, 152
labeling 152-154
results 154, 155
software design 145, 146
training phase 146-150

natural language processing (NLP) 239
net profit margin 467
net sales 467
network architecture, MLP 295
neural networks

about 289
advantages 324, 325
limitations 325

newState method
about 92
exit condition 93

N-fold cross-validation 280
nonlinear least squares minimization

about 464
Gauss-Newton technique 465
Levenberg-Marquardt algorithm 465

nonlinear SVM
about 260
kernel trick 261
max-margin classification 260, 261

notation, HMM
about 211, 212
variance 212

NP problems
about 327-329
NP-complete problems 328
NP-hard problems 329
P-problems 328

numerical optimization
about 191, 192
Newton (2nd order techniques) 192
Quasi-Newton (1st order techniques) 192

O
object creation

controlling 407
observation 42
OLS regression

about 173
design 173, 174
features selection test case 178-183
implementation 174
trending test case 175-177

one-class SVC
used, for anomaly detection 282, 283

one-variate linear regression
about 170
implementation 170, 171
test case 171, 172

online training 312
operating income 467
operating profit margin 467
operators, Scala 25
optimal substructures 466

[486]

optimization techniques
gradient descent methods 462
Lagrange multipliers 465
nonlinear least squares minimization 464
Quasi-Newton algorithms 463
summary 462

OptionModel class
implementing 384

OptionProperty class
implementing 383

option trading, with Q-learning
about 382, 383, 471, 472
constrained state-transition 386, 387
defining 383
function approximation 385, 386
implementing 387, 388
normalized features 383
OptionModel class, implementing 384
OptionProperty class, implementing 383

ordinary least squares regression. See OLS
regression

output unit activation function 294
overfitting

about 61, 143
solutions 62

overlapping substructures 466
overload operators

+ 451
+= 451
|> 451
about 451

P
padding 332
parallel collections, Scala

about 407
benchmark framework 409, 410
creating 407
performance evaluation 410-412
processing 408

parent chromosomes
preserving 339

partially connected neural networks 295
pay-out ratio 468

PCA
about 99
algorithm 128, 129
considerations 134
cross-validation 133
evaluation 131-133
implementation 129
performance considerations 134
purpose 127
test case 130

penalized least squares regression. See
ridge regression

penalty term 169
Pittsburgh approach 393
polynomial kernel 254
Population class

chromosomes parameter 342
limit parameter 342

population growth
controlling 345

portfolio management
with XCS 396-398

posterior probability 141
predicates

encoding format 332
prediction phase, recursive algorithm 89, 90
predictive model 14, 144
prestart method 416
price/book value ratio (PB) 467
price/earnings ratio (PE) 467
price patterns 471
price/sales ratio (PS) 467
price to earnings/growth (PEG) 467
primal problem 259
primitive types, Scala 24
principal components analysis. See PCA
private value

versus private[this] value 171
probabilistic graphical models 137
probabilistic kernels 256
probabilistic reasoning 137
propositional logic 460
proteins 252
protein sequence annotation 252

[487]

Q
Q-learning

about 366
actions, implementing 374, 375
action-value, implementing 376, 377
evaluation 389-391
implementation 373
key components, implementing 373, 374
model quality, measuring 379
policy, implementing 376, 377
prediction 381
search space, implementing 375, 376
software design 373, 374
states, implementing 374, 375
tail recursion 380, 381
training 378, 379
used, for option trading 382, 383

QR decomposition 94, 458
Quasi-Newton algorithms

about 463
Broyden-Fletcher-Goldfarb-Shanno (BGFS)

method 464
L-BFGS 464

R
r2 statistics 182
radial basis function (RBF)

about 254
terminology 254

RDD
generating 439, 440

RDD, operations
action 431
transformation 431

real-world Bayesian network
example 138

receive method 416
recombination 329
recursive algorithm

about 87-89
correction 91
experimentation 93-96
Kalman smoothing 92, 93

prediction 89, 90
regression weights 170
regularization

about 169, 184
Ln roughness penalty 184, 185
notation 184
ridge regression 186

reinforcement learning
about 14, 18, 19, 330, 365
Bellman optimality equations 370, 371
concept 368
pros and cons 391
Q-learning 366, 372, 373
temporal difference 371, 372
value-action iterative update 372, 373
value of policy 369, 370
versus supervised learning 368

reinforcement learning, terminology
absorbing state 367
action 367
agent 367
best policy 367
environment 367
episode 367
goal state 367
horizon 367
policy 367
reward 367
state 367
terminal state 367

reproducible Kernel Hilbert Spaces 256
reproduction cycle

implementation 350, 351
residual sum of squares (RSS)

about 169, 196
minimization techniques 173

Resilient Distributed Datasets (RDD) 14
ridge regression

about 169, 186
implementation 186, 187
test case 188-190

risk analysis, binary SVC
features 277-281
labels 277-281

[488]

router 416
rules discovery module 393
rules, XCS

defining 399-401

S
Scala

about 11, 20, 407
object creation, controlling 407
parallel collections 407
used, for building scalable frameworks 406

Scala plugin
for Eclipse, URL 20
for Intellij IDEA, URL 20

Scala programming
about 447
class constructor template 449
code snippet format 448
companion objects, versus case classes 450
data extraction 453, 454
data sources 454, 455
design template, for classifiers 452, 453
documents, extracting 455, 456
encapsulation 449
enumerations, versus case classes 450, 451
libraries directory 447
Matrix class 456
overload operators 451

Scala traits
versus Java packages 49

scheme, genetic encoding
flat encoding 334
hierarchical encoding 334, 335

score method 162
selection

about 335-337
implementation 344

Sequential Minimal
Optimization (SMO) 259, 262

shared variables
about 436, 437
accumulator variables 436
broadcast values 436

short interest 467

short interest ratio 468
shrinkage 184
sigmoid kernel 254
signal encoding 356
simple build tool (sbt) 437
simple moving average 67, 68
singular value decomposition (SVD) 135
skip lists 407
smoothing

versus filtering 85
smoothing factor for counters 145
smoothing kernels 256
softmax 304
software design, MLP 296
software developer 43
solution encoding approach 333
source code, Scala

about 22, 23
context bound 23
immutability 25
implicit conversion 24, 25
iterator performance, evaluating 26
operators 25
presentation 23, 24
primitive types 24
view bound 23

Spark. See Apache Spark
Spark/MLlib 1.0 262
Spark shell

pitfalls 439
using 438

SparkSQL 432
spectral analysis 73
spectral density estimation 73
spreadsheets

using 78
state, dynamic systems 88
state space estimation

about 86
measurement equation 86, 87
transition equation 86, 87

stdDev() method 104
steepest descent method 462
stimuli 290

[489]

stochastic gradient method 463
Stream classes 407
subject-matter expert 43
subordinates 416
substructures 466
sum of squared errors (SSE) 170
supervised learning

about 16
autonomous systems, design problem 366
discriminative models 17, 18
generative models 16
versus reinforcement learning 368

support vector classifier (SVC)
about 262
binary SVC 262
one-class SVC 282, 283

support vector machines (SVM)
about 251, 256
components 263
configuration parameters 264
implementation 267-269
linear SVM 256
nonlinear SVM 260
performance considerations 288

support vector regression (SVR)
about 284
overview 284, 285
versus linear regression 285-287

SVC origin 282
SVM dual problem 261
SVMLight 262
synapse/weights adjustment, MLP training

cycle
about 308
gradient descent 308
implementation 309

T
tagging model 159
technical analysis

about 468
price patterns 471

technical analysis, terminology
bearish position 468

bullish position 468
long position 468
neutral position 469
oscillator 469
overbought 469
oversold 469
relative strength index (RSI) 469
resistance 469
short position 469
support 469
technical indicator 469
trading range 469
trading signals 469
volatility 469

temporal difference
about 371, 372
exploration 371
off-policy implementation 372
on-policy implementation 372

TermsScore class
about 162
lexicon function 162
toDate function 162
toWords function 162

TermsScore.score method 165
test case, MLP

about 317-319
hidden layers architecture impact 323, 324
implementation 319-321
models evaluation 321, 322

test case, trading strategies
about 357, 358
configuration 359
data extraction 358
evaluation 360
GA execution 360
GA instantiation 359
initial population, generating 358, 359
unweighted score, evaluating 360, 361
weighted score, evaluating 362, 363

testing, Naïve Bayes
about 163
evaluation 166, 167
textual information, retrieving 163, 165

[490]

text mining
about 156
extraction of terms 160, 161
implementing 159
Naïve Bayes, applying to 156-158
scoring of terms 161-163

time series
about 63, 64
analysis, with HMM 232
implementation 65, 66

toDate function 162
tools

about 19
Apache Commons Math 20
Java 19
JFreeChart 21
Scala 20

toOrderedArray method 161
toWords function 162
trading operators 353
trading signals 354
trading strategies, GA

about 351-355
cost/unfitness function 353, 354
defining 353
signal encoding 356
test case 357, 358
trading operators 353
trading signals 354

training cycle, MLP
about 300
configuration 309
convergence criteria 309
error backpropagation 305
implementation 310, 311
input forward propagation 301, 302
sum of squared errors 305
synapse/weights adjustment 308

training strategies, MLP
batch training 312
model instantiation 313, 314
online training 312

prediction 314
regularization 313

training workflow
exit conditions, defining 200
Jacobian matrix, computing 199
least squares optimizer, configuring 198
least squares problem, defining 201
loss function, minimizing 201
testing 202

train method 150
transformation methods, Apache Spark

coGroup 435
distinct 434
filter(f) 434
flatMap(f) 434
groupByKey 434
join 435
map(f) 434
mapPartitions(f) 434
reduceByKey(f) 434
sample 434
sortByKey 435
union 434

transition equation 86
transition feature functions 236
transposition operator 336
tuning, GA 340
typed actors

versus untyped actors 416

U
underfitting 61
unsupervised learning

about 15
clustering 15
dimension reduction 16
EM 99
goal 99
K-means 99
PCA 99

untyped actors
versus typed actors 416

[491]

V
val

versus final val 271
validation, model

implementation 56, 57
key metrics 54, 55
K-fold cross-validation 57

value encoding 331, 332
value of policy 369, 370
variables, HMM execution state

Alpha 214
Beta 214
Delta 214
DiGamma 214
Gamma 214
Qstar 214

variance 58
vector quantization 100
view bound

about 23
versus context bound 23

Viterbi algorithm 226-228

W
weighted moving average 68, 69
while loop 75
WordNet 159
workflow

computational framework 44

dependency injection 46-48
designing 42, 43
example 51
modules 48
monadic data transformation 45, 46
pipe operator 44
workflow factory 49-51

workflow, example
clustering module 52, 53
preprocessing module 51, 52

workflow factory 49-51

X
XCS

about 395, 396
components 396
core data 398, 399
covering 401
example 401
exploitation phase 395
exploration phase 395
rules, defining 399-401
used, for portfolio management 396-398

Z
zero-frequency problem 145
zip method 102

Thank you for buying
Scala for Machine Learning

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Scala for Java Developers
ISBN: 978-1-78328-363-7 Paperback: 282 pages

Build reactive, scalable applications and integrate
Java code with the power of Scala

1.	 Learn the syntax interactively to smoothly
transition to Scala by reusing your Java code.

2.	 Leverage the full power of modern web
programming by building scalable and
reactive applications.

3.	 Easy to follow instructions and real world
examples to help you integrate Java code
and tackle Big Data challenges.

Getting Started with SBT for Scala
ISBN: 978-1-78328-267-8 Paperback: 86 pages

Equip yourself with a high-productivity work
environment using SBT, a build tool for Scala

1.	 Establish simple and complex projects quickly.

2.	 Employ Scala code to define the build.

3.	 Write build definitions that are easy to update
and maintain.

4.	 Customize and configure SBT for your
project, without changing your project's
existing structure.

Please check www.PacktPub.com for information on our titles

Scaling Big Data with Hadoop
and Solr
ISBN: 978-1-78328-137-4 Paperback: 144 pages

Learn exciting new ways to build efficient,
high performance enterprise search repositories
for Big Data using Hadoop and Solr

1.	 Understand the different approaches of making
Solr work on Big Data as well as their benefits
and drawbacks.

2.	 Learn from interesting, real-life use cases for
Big Data search along with sample code.

3.	 Work with distributed enterprise search
without prior knowledge of Hadoop and Solr.

Programming MapReduce
with Scalding
ISBN: 978-1-78328-701-7 Paperback: 148 pages

A practical guide to designing, testing,
and implementing complex MapReduce
applications in Scala

1.	 Develop MapReduce applications using
a functional development language in
a lightweight, high-performance, and
testable way.

2.	 Recognize the Scalding capabilities to
communicate with external data stores
and perform machine learning operations.

3.	 Full of illustrations and diagrams, practical
examples, and tips for deeper understanding
of MapReduce application development

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Mathematical notation for the curious
	Why machine learning?
	Classification
	Prediction
	Optimization
	Regression

	Why Scala?
	Abstraction
	Scalability
	Configurability
	Maintainability
	Computation on demand

	Model categorization
	Taxonomy of machine learning algorithms
	Unsupervised learning
	Clustering
	Dimension reduction

	Supervised learning
	Generative models
	Discriminative models

	Reinforcement learning

	Tools and frameworks
	Java
	Scala
	Apache Commons Math
	Description
	Licensing
	Installation

	JFreeChart
	Description
	Licensing
	Installation

	Other libraries and frameworks

	Source code
	Context versus view bounds
	Presentation
	Primitives and implicits
	Primitive types
	Type conversions
	Operators

	Immutability
	Performance of Scala iterators

	Let's kick the tires
	Overview of computational workflows
	Writing a simple workflow
	Selecting a dataset
	Loading the dataset
	Preprocessing the dataset
	Creating a model (learning)
	Classify the data

	Summary

	Chapter 2: Hello World!
	Modeling
	A model by any other name
	Model versus design
	Selecting a model's features
	Extracting features

	Designing a workflow
	The computational framework
	The pipe operator
	Monadic data transformation
	Dependency injection
	Workflow modules
	The workflow factory
	Examples of workflow components
	The preprocessing module
	The clustering module

	Assessing a model
	Validation
	Key metrics
	Implementation

	K-fold cross-validation
	Bias-variance decomposition
	Overfitting

	Summary

	Chapter 3: Data Preprocessing
	Time series
	Moving averages
	The simple moving average
	The weighted moving average
	The exponential moving average

	Fourier analysis
	Discrete Fourier transform (DFT)
	DFT-based filtering
	Detection of market cycles

	The Kalman filter
	The state space estimation
	The transition equation
	The measurement equation

	The recursive algorithm
	Prediction
	Correction
	Kalman smoothing
	Experimentation

	Alternative preprocessing techniques
	Summary

	Chapter 4: Unsupervised Learning
	Clustering
	K-means clustering
	Measuring similarity
	Overview of the K-means algorithm
	Step 1 – cluster configuration
	Step 2 – cluster assignment
	Step 3 – iterative reconstruction
	Curse of dimensionality
	Experiment
	Tuning the number of clusters
	Validation

	Expectation-maximization (EM) algorithm
	Gaussian mixture model
	EM overview
	Implementation
	Testing
	Online EM

	Dimension reduction
	Principal components analysis (PCA)
	Algorithm
	Implementation
	Test case
	Evaluation

	Other dimension reduction techniques

	Performance considerations
	K-means
	EM
	PCA

	Summary

	Chapter 5: Naïve Bayes Classifiers
	Probabilistic graphical models
	Naïve Bayes classifiers
	Introducing the multinomial Naïve Bayes
	Formalism
	The frequentist perspective
	The predictive model
	The zero-frequency problem

	Implementation
	Software design
	Training
	Classification
	Labeling
	Results

	Multivariate Bernoulli classification
	Model
	Implementation

	Naïve Bayes and text mining
	Basics of information retrieval
	Implementation
	Extraction of terms
	Scoring of terms

	Testing
	Retrieving textual information
	Evaluation

	Pros and cons
	Summary

	Chapter 6: Regression and Regularization
	Linear regression
	One-variate linear regression
	Implementation
	Test case

	Ordinary least squares (OLS) regression
	Design
	Implementation
	Test case 1 – trending
	Test case 2 – features selection

	Regularization
	Ln roughness penalty
	The ridge regression
	Implementation
	The test case

	Numerical optimization
	The logistic regression
	The logit function
	Binomial classification
	Software design
	The training workflow
	Configuring the least squares optimizer
	Computing the Jacobian matrix
	Defining the exit conditions
	Defining the least squares problem
	Minimizing the loss function
	Test

	Classification

	Summary

	Chapter 7: Sequential Data Models
	Markov decision processes
	The Markov property
	The first-order discrete Markov chain

	The hidden Markov model (HMM)
	Notation
	The lambda model
	HMM execution state
	Evaluation (CF-1)
	Alpha class (the forward variable)
	Beta class (the backward variable)

	Training (CF-2)
	Baum-Welch estimator (EM)

	Decoding (CF-3)
	The Viterbi algorithm

	Putting it all together
	Test case
	The hidden Markov model for time series analysis

	Conditional random fields
	Introduction to CRF
	Linear chain CRF

	CRF and text analytics
	The feature functions model
	Software design
	Implementation
	Building the training set
	Generating tags
	Extracting data sequences
	CRF control parameters
	Putting it all together

	Tests
	The training convergence profile
	Impact of the size of the training set
	Impact of the L2 regularization factor

	Comparing CRF and HMM
	Performance consideration
	Summary

	Chapter 8: Kernel Models and Support Vector Machines
	Kernel functions
	Overview
	Common discriminative kernels

	The support vector machine (SVM)
	The linear SVM
	The separable case (hard margin)
	The nonseparable case (soft margin)

	The nonlinear SVM
	Max-margin classification
	The kernel trick

	Support vector classifier (SVC)
	The binary SVC
	LIBSVM
	Software design
	Configuration parameters
	SVM implementation
	C-penalty and margin
	Kernel evaluation
	Application to risk analysis

	Anomaly detection with one-class SVC
	Support vector regression (SVR)
	Overview
	SVR versus linear regression

	Performance considerations
	Summary

	Chapter 9: Artificial Neural Networks
	Feed-forward neural networks (FFNN)
	The Biological background
	The mathematical background

	The multilayer perceptron (MLP)
	The activation function
	The network architecture
	Software design
	Model definition
	Layers
	Synapses
	Connections

	Training cycle/epoch
	Step 1 – input forward propagation
	Step 2 – sum of squared errors
	Step 3 – error backpropagation
	Step 4 – synapse/weights adjustment
	Step 5 – convergence criteria
	Configuration
	Putting all together

	Training strategies and classification
	Online versus batch training
	Regularization
	Model instantiation
	Prediction

	Evaluation
	Impact of learning rate
	Impact of the momentum factor
	Test case
	Implementation
	Models evaluation
	Impact of hidden layers architecture

	Benefits and limitations
	Summary

	Chapter 10: Genetic Algorithms
	Evolution
	The origin
	NP problems
	Evolutionary computing

	Genetic algorithms and machine learning
	Genetic algorithm components
	Encodings
	Value encoding
	Predicate encoding
	Solution encoding
	The encoding scheme

	Genetic operators
	Selection
	Crossover
	Mutation

	Fitness score

	Implementation
	Software design
	Key components
	Selection
	Controlling population growth
	GA configuration
	Crossover
	Population
	Chromosomes
	Genes

	Mutation
	Population
	Chromosomes
	Genes

	The reproduction cycle

	GA for trading strategies
	Definition of trading strategies
	Trading operators
	The cost/unfitness function
	Trading signals
	Trading strategies
	Signal encoding

	Test case
	Data extraction
	Initial population
	Configuration
	GA instantiation
	GA execution
	Tests

	Advantages and risks of genetic algorithms
	Summary

	Chapter 11: Reinforcement Learning
	Introduction
	The problem
	A solution – Q-learning
	Terminology
	Concept
	Value of policy
	Bellman optimality equations
	Temporal difference for model-free learning
	Action-value iterative update

	Implementation
	Software design
	States and actions
	Search space
	Policy and action-value
	The Q-learning training
	Tail recursion to the rescue
	Prediction

	Option trading using Q-learning
	Option property
	Option model
	Function approximation
	Constrained state-transition
	Putting it all together

	Evaluation
	Pros and cons of reinforcement learning

	Learning classifier systems
	Introduction to LCS
	Why LCS
	Terminology
	Extended learning classifier systems (XCS)
	XCS components
	Application to portfolio management
	XCS core data
	XCS rules
	Covering
	Example of implementation

	Benefits and limitation of learning
classifier systems

	Summary

	Chapter 12: Scalable Frameworks
	Overview
	Scala
	Controlling object creation
	Parallel collections
	Processing a parallel collection
	Benchmark framework
	Performance evaluation

	Scalability with Actors
	The Actor model
	Partitioning
	Beyond actors – reactive programming

	Akka
	Master-workers
	Messages exchange
	Worker actors
	The workflow controller
	The master Actor
	Master with routing
	Distributed discrete Fourier transform
	Limitations

	Futures
	The Actor life cycle
	Blocking on futures
	Handling future callbacks
	Putting all together

	Apache Spark
	Why Spark
	Design principles
	In-memory persistency
	Laziness
	Transforms and Actions
	Shared variables

	Experimenting with Spark
	Deploying Spark
	Using Spark shell
	MLlib
	RDD generation
	K-means using Spark

	Performance evaluation
	Tuning parameters
	Tests
	Performance considerations

	Pros and cons
	0xdata Sparkling Water

	Summary

	Appendix: Basic Concepts
	Scala programming
	List of libraries
	Format of code snippets
	Encapsulation
	Class constructor template
	Companion objects versus case classes
	Enumerations versus case classes
	Overloading
	Design template for classifiers
	Data extraction
	Data sources
	Extraction of documents
	Matrix class

	Mathematics
	Linear algebra
	QR Decomposition
	LU factorization
	LDL decomposition
	Cholesky factorization
	Singular value decomposition
	Eigenvalue decomposition
	Algebraic and numerical libraries

	First order predicate logic
	Jacobian and Hessian matrices
	Summary of optimization techniques
	Gradient descent methods
	Quasi-Newton algorithms
	Nonlinear least squares minimization
	Lagrange multipliers

	Overview of dynamic programming

	Finances 101
	Fundamental analysis
	Technical analysis
	Terminology
	Trading signals and strategy
	Price patterns

	Options trading
	Financial data sources

	Suggested online courses
	References

	Index

