
M A N N I N G

Dave Hrycyszyn
Stefan Ollinger
Ross A. Baker

www.allitebooks.com

http://www.allitebooks.org

Scalatra in Action

DAVE HRYCYSZYN
STEFAN OLLINGER

ROSS A. BAKER

M A N N I N G
Shelter Island

www.allitebooks.com

http://www.allitebooks.org

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2016 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Manning Publications Co. Development editor: Karen Miller
20 Baldwin Road Technical development editor: Barry Polley
PO Box 761 Copyeditor: Andy Carroll
Shelter Island, NY 11964 Proofreader: Katie Tennant

Technical proofreader: Andy Hicks
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617291296
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 21 20 19 18 17 16

www.allitebooks.com

http://www.allitebooks.org

iii

brief contents
PART 1 INTRODUCTION TO SCALATRA...1

1 ■ Introduction 3

2 ■ A taste of Scalatra 12

3 ■ Routing 28

4 ■ Working with user input 49

PART 2 COMMON DEVELOPMENT TASKS ...71
5 ■ Handling JSON 73

6 ■ Handling files 94

7 ■ Server-side templating 104

8 ■ Testing 116

9 ■ Configuration, build, and deployment 130

10 ■ Working with a database 154

PART 3 ADVANCED TOPICS ..169
11 ■ Authentication 171
12 ■ Asynchronous programming 197
13 ■ Creating a RESTful JSON API with Swagger 211

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

contents
preface xi
acknowledgments xiii
about this book xv
about the cover illustration xviii

PART 1 INTRODUCTION TO SCALATRA1

1 Introduction 3
1.1 What’s Scalatra good at? 4

1.2 Hello World 4

1.3 Microframeworks vs. full-stack frameworks 5

1.4 How does Scalatra compare with other Scala web
frameworks? 6

Scalatra is a lean MVC framework 6 ■ Scalatra runs on
servlets 7

1.5 Installing Scalatra 7
Generating a new project 8 ■ Downloading dependencies and
building the app 9 ■ Starting the Hello World application 9
Making changes and seeing them in your browser 10

1.6 Summary 11

www.allitebooks.com

http://www.allitebooks.org

CONTENTSvi

2 A taste of Scalatra 12
2.1 Your first Scalatra application 12

2.2 Designing the UI 13

2.3 What’s in a Scalatra project? 14

2.4 Building the data model 16

2.5 Retrieving pages 17
A page-retrieval route 17 ■ A page-retrieval action 18

2.6 Rendering the page 20
A quick introduction to Scalate 20 ■ Adding a layout 21

2.7 Writing tests 23
Writing your first test 23 ■ Running your tests 25 ■ Adding
another test 25

2.8 Getting ready for deployment 26

2.9 Summary 27

3 Routing 28
3.1 Anatomy of a route 29

3.2 Choosing the right method 29
The CRUD methods 29 ■ The lesser-known methods 34
Overriding the methods 36

3.3 Route matchers 38
Path expressions 38 ■ Regular expressions 43 ■ Boolean
expressions 45

3.4 Advanced route matching 46
Conflict resolution 46 ■ Rails-style path expressions 47

3.5 Summary 48

4 Working with user input 49
4.1 The life of a request 49

4.2 Routes and actions 50

4.3 HTTP parameter handling in Scalatra 50
Query string parameters 51 ■ Path parameters 52 ■ Form
parameters 52 ■ Params versus multiParams 54 ■ Dealing
with unexpected input 55 ■ Typed parameters 59

4.4 Filters 63
Selectively running filters 65 ■ Filter conditions 65

www.allitebooks.com

http://www.allitebooks.org

CONTENTS vii

4.5 Other kinds of user input 66
Request headers 66 ■ Cookies 66

4.6 Request helpers 67
Halting 67 ■ Redirecting 68 ■ ActionResult 68

4.7 Summary 69

PART 2 COMMON DEVELOPMENT TASKS................................71

5 Handling JSON 73
5.1 Introducing JsonSupport 73

Adding JSON support to an application 74 ■ Introducing the
JValue type 75

5.2 Producing and consuming JSON 77
Producing JSON 79 ■ Consuming JSON 81

5.3 Customizing JSON support and handling mismatches 84
Customizing JSON support and using field serializers 84
Handling polymorphism with type hints 87 ■ Handling
heterogeneity with custom serializers 89

5.4 JSONP 92

5.5 Summary 93

6 Handling files 94
6.1 Serving files 95

Serving files through a route 95 ■ Serving static resources 98
Applying gzip compression to responses 98

6.2 Receiving files 98
Supporting file uploads 99 ■ Configuring the upload
support 101 ■ Handling upload errors 103

6.3 Summary 103

7 Server-side templating 104
7.1 Deciding whether server-side templating is right for you 104

Websites 105 ■ Web APIs 106

7.2 Introducing Scalate 107
Installing Scalate in a Scalatra app 107 ■ Scalate directory
structure 108

www.allitebooks.com

http://www.allitebooks.org

CONTENTSviii

7.3 Serving content with the Scalate template system 108
Your first Scaml template 109 ■ Layouts 110 ■ Invoking your
template 112 ■ A comparison of dialects 113

7.4 Serving content with Twirl 113
Configuring your project 113 ■ Using Twirl 114

7.5 Summary 115

8 Testing 116
8.1 Integration testing with Specs2 116

Getting started with Specs2 117 ■ Asserting over the entire
response 120 ■ Testing as JValues 121 ■ Running your
tests 122

8.2 Unit testing with Specs2 123
Testing with stubbed dependencies 124 ■ Injecting dependencies
into a servlet 125

8.3 Testing with ScalaTest 127
Setting up Scalatra’s ScalaTest 127 ■ Your first ScalaTest 128
Running ScalaTest tests 129

8.4 Summary 129

9 Configuration, build, and deployment 130
9.1 Configuring a Scalatra application 131

Working with application environments 131 ■ Using a type-safe
application configuration 132

9.2 Building a Scalatra application 136
A Scalatra application as an sbt project 136 ■ Working with the
xsbt-web-plugin 139 ■ Using sbt-web to simplify working with web
assets 140 ■ Precompiling Scalate templates with the scalate-
generator plugin 143

9.3 Deploying as a web archive 144

9.4 Deploying as a standalone distribution 145
Embedding a servlet container in an application 145 ■ Building a
distribution package 146

9.5 Running Scalatra as a Docker container 148

9.6 Summary 153

www.allitebooks.com

http://www.allitebooks.org

CONTENTS ix

10 Working with a database 154
10.1 Working with a relational database and example scenario 154
10.2 Integrating Slick and working with a DBIO action 156

10.3 Defining table models and working with a TableQuery 159
10.4 Using the query language 163

Defining queries 163 ■ Defining joins 166 ■ Using update and delete
statements 166 ■ Organizing queries as extension methods 167

10.5 Summary 168

PART 3 ADVANCED TOPICS...169

11 Authentication 171
11.1 A new, improved Hacker Tracker 172

11.2 An introduction to Scentry 174
Session handling in Scalatra 174 ■ Scentry setup 175

11.3 Protecting routes with HTTP Basic authentication 175
The simplest possible Scentry strategy 175 ■ A basic auth
strategy 176 ■ A basic authentication support trait 178
Protecting the DatabaseSetupController 180

11.4 Using forms authentication 181
Creating a simple login form 181 ■ Building a
UserPasswordStrategy 182 ■ Creating an AuthenticationSupport
trait 184 ■ Protecting your controllers with AuthenticationSupport 185
Deciding whether to run a strategy 187 ■ Logging out 188

11.5 A fallback Remember Me cookie strategy 191
Building the RememberMeStrategy class 192 ■ Scentry callbacks 193

11.6 Summary 196

12 Asynchronous programming 197
12.1 Exploring concurrency in Scalatra 198

12.2 Using Futures in Scalatra 200

12.3 Using Akka Actors from Scalatra 203

12.4 Using Scalatra for big data 207

12.5 Summary 210

www.allitebooks.com

http://www.allitebooks.org

CONTENTSx

13 Creating a RESTful JSON API with Swagger 211
13.1 An API for the Hacker Tracker 212

13.2 Adding an API controller 212
Returning Hacker JSON from the ApiController 214 ■ Refactoring
to remove duplication 218

13.3 Self-documenting APIs using Swagger 220
Swagger—what is it? 220 ■ Swaggerize the application 223
Documenting the routes 225 ■ Cross-origin API security and
Swagger UI 231

13.4 Securing your API 232
HMAC—what is it? 232 ■ An HMAC calculator in Scala 233
Protecting the API with a trait 234

13.5 Summary 237

appendix Installation and development setup 239

index 253

xi

preface
Most web frameworks have a lot of assumptions built into them. When you’re building
whatever the framework designers envisaged, they work very well. But if you need to
depart from their happy paths, all that prescriptiveness starts to work against you.

 Full-stack web frameworks with server-side rendering, using a relational database
are common, and in the past I used them all the time. But over time, I progressively
departed from using their standard components.

 I began to build web APIs and microservices, often using nonrelational data stores,
asynchronous requests, and server-push technologies. I was installing more dependen-
cies to layer extra functionality on top of already large and complex frameworks. Sim-
ple tasks were difficult, because I was fighting against the basic assumptions of the
frameworks I was using.

 Then I discovered Scalatra. The language was unfamiliar at first, but the friendly
community and incredibly simple HTTP DSL made it easy to get started.

 Suddenly I was working in the environment I always wanted. The Scala language
gave me all the speed and correctness benefits of static typing without the Java or C#
boilerplate, a simple and productive language syntax akin to Ruby or Python, and
access to a wealth of high-quality libraries.

 Scalatra, with its minimalistic style, does one thing well: it makes HTTP actions triv-
ially easy to express. Beyond that, it gets out of your way. This makes it easy to pick and
choose from tens of thousands of Java and Scala libraries to build exactly the applica-
tion you need.

PREFACExii

 We wrote this book to bring this minimal style of application development to a
wider audience. The web’s not new technology any more, and if the history of com-
puting tells us anything, it’s that common tasks get simpler over time.

 The modern internet wouldn’t be much fun if people sent input using punched
cards and had to wait several hours to get their output back, as though it were the 1960s.
We think that the acrobatics coders go through to quickly set up high-performance
HTTP interfaces to their programs are similarly outdated. It’s not 1996 anymore. HTTP
can be easy.

 Scalatra is one of the easiest ways to build a web application. This book will show
you pretty much the entirety of the framework in the first four chapters. The other
nine chapters explain how to integrate with other interesting components, customize
the framework, and deploy your applications. Because really, it’s not about us: it’s
about you, your ambitions, and the next thing you want to make.

 DAVE HRYCYSZYN

xiii

acknowledgments
We’d like to collectively thank everyone at Manning, especially Karen Miller, Michael
Stephens, Ozren Harlovic, Rebecca Rinehart, Candace Gillhooley, and Ana Romac.
And thanks to Christina Rudloff, who helped us get started.

 We’d also like to thank our technical editor, Barry Polley, and our technical proof-
reader, Andy Hicks. Their help was invaluable. The MEAP reviewers provided great
feedback: Brian Hanafee, Jeff Condal, Chuck Daniels, Christian Horsdal, Ronald
Tischliar, M. Marc-Philippe Huget, Ramsés Morales, Craig Aspinall, Helmuth Breiten-
fellner, Adam Slysz, Alain Couniot, Carlos Aya, Emre Kucukayvaz, Charles Feduke,
Alberto Quario, Scott Dierbeck, Dimitrios Liapis, and Dr. Dan Klose.

 Dave: I want to thank Tanya Gouthro, Bettina Wittneben, and Katrin Hellermann,
who encouraged me to go for it. Thanks also to employers and friends past and pres-
ent, including Dave Else, Pete Boyle, Rebecca Simmonds, and Ramsey Khoury, who
set me up to experiment with weird technologies as part of my job. And I thank my
parents, Bill and Carol, who stimulated my career in tech by encouraging me to mess
with computers, guns, exploration, and music (happily not all at the same time).

 Ross: I’d like to thank Jim Plush, who reached out from California all the way to
Indiana and gave me the opportunity to turn my hobby into a part of my daily job.
Also thanks to my wife, Brooke, and children, Will and Cara, who let me continue to
write about and work on my hobby after hours on said job.

 Stefan: I thank my friends and family for their support—especially my parents,
Edwin and Irmgard, as well as my sister, Patricia. Also thanks to the University of Trier

ACKNOWLEDGMENTSxiv

for a good learning environment. Big thanks to the Scala community for the continu-
ous evolution of the language and the ecosystem.

 The whole Scalatra core crew has been incredibly supportive and helpful, espe-
cially Ivan Porto Carrero. Early contributions and enthusiasm from Ivan, Jared Arm-
strong, and Mikko Nylen were part of the mix that got the book off the ground.
Thanks, guys!

 Lastly, thanks from all of us to everyone who contributes code to framework, and
to everyone who uses Scalatra. We hope you enjoy it as much as we do.

xv

about this book
Scalatra is an incredibly easy way to start building HTTP applications. A small but ded-
icated base of coders uses it, but the interesting thing is that it has a huge total user
base: from BBC, Tesco, and McLaren data systems to Box.com, IGN, and Netflix APIs,
this little framework has a reach that’s out of proportion to its developer numbers.
Written by three long-time Scalatra contributors, Scalatra in Action takes Scalatra devel-
opment out of the realm of relatively elite coders and shows a wider audience the sim-
plicity, scalability, and ease of use that have made Scalatra the framework of choice for
big organizations doing weird and wonderful things with HTTP.

Roadmap
The book is divided into three parts:

■ Part 1 starts with core Scalatra functionality. Chapter 1 gives you a brief taste of
what it’s like to build an application with Scalatra, and you’ll write a small sam-
ple application. Chapter 2 provides a broader overview of Scalatra develop-
ment, and chapters 3 and 4 cover the two core Scalatra concepts—defining
HTTP routes and executing actions on HTTP input—in more detail.

■ Part 2 deals with common development tasks that aren’t necessarily part of the
Scalatra core framework. You’ll learn how to integrate with external libraries
to extend Scalatra’s core capabilities. Chapter 5 deals with JSON handling.
Chapter 6 demonstrates how to handle file uploads and serve files to clients,
and chapter 7 goes into the details of HTML templating. Chapters 8 and 9

ABOUT THIS BOOKxvi

cover testing and application deployment, and then chapter 10 explores data
storage and querying.

■ Part 3 takes on advanced topics. Chapter 11 deals with securing your applica-
tion using HTTP sessions and authentication strategies. Chapter 12 discusses
asynchronous programming, demonstrating how to use Scala’s advanced sup-
port for concurrent programming. Finally, chapter 13 shows you how to build,
secure, and document your APIs using the Swagger framework, which has
become the world’s most popular way to represent REST APIs.

There’s also an appendix, which walks you through a full development setup includ-
ing installation, code generation, building and running code, and setting up your
favorite IDE.

Who should read this book?
Readers of this book should be familiar with an object-oriented programming lan-
guage such as Java, Ruby, Python, C#, or Scala. We don’t expect that you have a lot
of previous Scala (or Java) experience. We try to provide a gentle introduction to the
Scala language at the same time we’re explaining how to do HTTP development
using Scalatra.

 We assume that you have a basic familiarity with standard web programming con-
cepts (HTTP requests and responses, basic database knowledge) and that you want to
learn how to do web coding in Scala. This isn’t a general introduction to program-
ming. It’s also not a book on the Scala language. See Scala in Action by Nilanjan Ray-
chaudhuri (Manning, 2013) for a good introductory text on Scala.

Code conventions
This book provides full example listings, which include everything you should need to
learn Scalatra. Source code in listings or in text is in a fixed-width font like this to
separate it from ordinary text. Scala method names, component parameters, object
properties, and XML elements and attributes in text are also presented using fixed-
width font.

 When it’s written down, code can be verbose. In many cases, the original source
code (available online) has been reformatted; we’ve added line breaks and reworked
indentation to accommodate the available page space in the book. In rare cases, even
this wasn’t enough, and listings include line-continuation markers. Additionally, com-
ments in the source code have often been removed from the listings when the code is
described in the text. Code annotations accompany some of the source code listings,
highlighting important concepts.

ABOUT THIS BOOK xvii

Source code downloads
All source code for this book is freely available via Manning at www.manning.com/
books/scalatra-in-action, and also on GitHub at https://github.com/scalatra/scalatra-
in-action. If you get stuck with any of the example code in the book, check out the source
code using Git and run it—a running application can often be worth many lines of code
in a book! But try to type in as much of the code as you can, instead of copying and past-
ing it from the GitHub repository. It’ll help embed the concepts in your mind.

About the authors
Dave Hrycyszyn helps large organizations use emerging technologies for innovation.
He has spent the past two decades designing and building software systems that are
used by several hundred million people worldwide. He’s director of strategy and tech-
nology at the digital consulting firm Head: https://headlondon.com.

Stefan Ollinger likes to computationally hoist and crunch information. He is an active
Scalatra contributor.

Ross A. Baker is a senior cloud engineer, a Scalate committer, and an organizer of the
Indy Scala meetup.

xviii

about the cover illustration
The figure on the cover of Scalatra in Action is captioned “Girl from Novi Vinodolski,
Croatia.” The illustration is taken from a reproduction of an album of Croatian tradi-
tional costumes from the mid-nineteenth century by Nikola Arsenovic, published by
the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained
from a helpful librarian at the Ethnographic Museum in Split, itself situated in the
Roman core of the medieval center of the town: the ruins of Emperor Diocletian’s
retirement palace from around AD 304. The book includes finely colored illustrations
of figures from different regions of Croatia, accompanied by descriptions of the cos-
tumes and of everyday life.

 Dress codes and lifestyles have changed over the last 200 years, and the diversity by
region, so rich at the time, has faded away. It’s now hard to tell apart the inhabitants of
different continents, let alone of different hamlets or towns separated by only a few
miles. Perhaps we have traded cultural diversity for a more varied personal life—cer-
tainly for a more varied and fast-paced technological life.

 Manning celebrates the inventiveness and initiative of the computer business with
book covers based on the rich diversity of regional life of two centuries ago, brought
back to life by illustrations from old books and collections like this one.

Part 1

Introduction to Scalatra

This book begins by examining Scalatra’s core functionality. Chapter 1 gives
you a taste of what it’s like to build a small application with Scalatra. Chapter 2
provides a broader overview of Scalatra development, and chapters 3 and 4 dis-
cuss defining HTTP routes and executing actions on HTTP input.

3

Introduction

Scalatra is a lightweight web framework written in the up-and-coming new lan-
guage, Scala. It offers extremely fast development and execution speeds for HTTP
applications.

 If you’re a Java coder who’s curious about Scala or looking for a productivity
gain, Scalatra offers a perfect opportunity: it’s easy to get started with, and if you’re
already running your web apps in servlet containers, you can drop in a Scalatra
application without any fuss. You can be up and running in a few minutes, building
simple and intuitive HTTP interfaces to new or existing software.

 On the other hand, maybe you’re a Perl, PHP, Python, or Ruby coder looking for
a massive performance boost. Perhaps you’ve built a large system and want the
refactoring benefits of type safety without Java boilerplate. Scalatra is the simplest
way to jump into Scala web development. You get easy access to tens of thousands
of battle-tested Java libraries with a simple and familiar HTTP routing DSL wrapped
around them.

This chapter covers
■ Recognizing what Scalatra is good at
■ Writing a simple Hello World web application
■ Using microframeworks versus full-stack

frameworks

4 CHAPTER 1 Introduction

1.1 What’s Scalatra good at?
Scalatra can replace other web development frameworks for most tasks. This book will
guide you through all the major aspects of building a web application, starting with an
overview in chapter 2 and breaking down the details in chapters 3 through 11.

 Mobile app development on Android and iOS has exploded over the past half
decade. At the same time, single-page in-browser development frameworks such as
Backbone.js, Ember.js, and AngularJS are rapidly gaining in popularity.

 All of this means a lot of clients still make heavy use of web technologies but aren’t
the traditional browser clients we’ve seen for the past 20 years. Scalatra is a perfect fit
for these clients. It’s easy to install, lightweight, and fast. It lets you design and build
out high-performance web APIs quickly, and it’s integrated with special tools to pro-
duce beautiful, functional, and correct API documentation.

 Another major area of internet innovation recently is in the realm of server-push
technologies. Scalatra incorporates advanced constructs for event-driven program-
ming, so you can easily push information into your users’ browsers—they see con-
stantly updated information without having to refresh the page. This technology has
the potential to turn the web upside-down.

 Finally, in some cases people are using full-sized frameworks for the bulk of their web
development functionality, and they bust out Scalatra for specific, high-performance
actions. This means it’s relatively easy to try it out in an isolated part of your system. You
can use Scalatra to solve performance hotspots or wrap a legacy set of class libraries in
a shiny new HTTP layer.

1.2 Hello World
Scalatra is simple. All you need to do is add a small configuration file and download
and run one command, and you have a running web application. The following listing
illustrates just how simple a Scalatra program can be.

package com.example.yourapp
import org.scalatra._

class HelloWorld extends ScalatraServlet {
get("/") {
"Hello world"

}
}

When you run this code on your local machine, you can type http://localhost:8080/
into your browser and see the text “Hello world” in return, as shown in figure 1.1.

 There’s a lot more to learn, but that simple code expresses the essence of Scalatra.
You define a route, which is a combination of an HTTP verb (get) and a URL route

Listing 1.1 Scalatra in action

5Microframeworks vs. full-stack frameworks

matcher (/), which executes a block of code on the server and returns the result (in
this case, the string "Hello world"). The next listing explains things line by line.

package com.example.yourapp
import org.scalatra._

class HelloWorld extends ScalatraServlet {
get("/") {
"Hello world"

}
}

As you can see, Scalatra applications can be very small. What do all of these big organi-
zations see in it? The interesting thing is that there isn’t a single answer to that ques-
tion, because Scalatra is a microframework.

1.3 Microframeworks vs. full-stack frameworks
Most web programmers are used to full-stack frameworks. In general, these try to solve
all the problems you’ll commonly encounter, and to do so within the confines of a fairly
unified codebase. Despite their obvious differences, Spring, Symfony, Ruby on Rails,
Django, and the Play Framework all share something: they make the assumption that
you won’t often need (or even want) to step out of the environments they provide.

 Microframeworks are different.
 Instead of trying to provide for your every need, microframeworks try to do a few

things well. In Scalatra’s case, you get a great way of expressing HTTP actions, a lot of

Listing 1.2 Anatomy of “Hello world”

Figure 1.1 “Hello world” output

A package namespace
differentiates the classes you write

from other peoples’ libraries.Imports to get
access to the

framework code
Inherits from the
ScalatraServlet trait,
which makes this class
accessible via HTTP

Defines a route
using the HTTP GET
verb and a path (/)

Each route returns an action
that returns a value. In this
case, it’s a string.

6 CHAPTER 1 Introduction

optional modules for common tasks, and an easy way to bolt on additional libraries to
accomplish whatever you want.

 The microframework approach is a candid admission by the Scalatra authors that
they don’t have a clue what you’re going to build. It’ll probably be related to HTTP, but
your choices beyond that—of data stores, template libraries, testing frameworks, strat-
egies for asynchronous requests and responses, server push, message queuing systems,
and API documentation—are up to you. Maybe you don’t need half the things on that
list. Maybe you need all of them, but you want to choose each library yourself.

 This lean way of doing things allows you to build up exactly the right capabilities for
the job at hand and keeps the amount of extra code in your project to a minimum. If
you’re building a full-sized web application, like a social network app or an e-commerce
application, you can use Scalatra as a full model-view-controller stack, with an HTML
templating system and an object-relational mapper for database access. Conversely, if
you’re building a small, high-performance system, such as an API that routes incoming
request data to other systems, or an authorization server, you can import only what’s
needed to do so.

 The lean nature of the resulting codebases means fewer lines of code to maintain.
If you structure things well, this can mean speedier development, better performance,
and lower maintenance costs than a full-stack framework.

1.4 How does Scalatra compare with other Scala web frameworks?
Scalatra isn’t your only choice when it comes to HTTP development in Scala. Other
popular frameworks include Lift and Play. Of these three, why would you choose Scal-
atra? It comes down to trade-offs in several main areas: application development style,
the aforementioned microframework versus full-stack approach, and deployment.

1.4.1 Scalatra is a lean MVC framework

Let’s consider Scalatra versus Lift first. Unlike the other frameworks, Lift doesn’t use
the popular model-view-controller (MVC) pattern for organizing code. Instead, it offers a
view-first approach, which many programmers aren’t familiar with. Whatever the mer-
its of view-first versus MVC, sometimes familiarity is a big win, especially if you’re com-
ing from another MVC framework.

 Both Play and Scalatra, in contrast, use the more popular MVC pattern. With Play,
you get a larger and more featureful framework than Scalatra. Play favors convention
over configuration, so it seeks to decrease the number of decisions you’ll typically
need to make. Stay on the happy path, and it arguably provides more initial develop-
ment speed than Scalatra.

 But if you stray from Play’s application structure or library choices, you may find
yourself wanting more flexibility. Scalatra gives you the freedom to curate every library
choice and be in complete control of your application’s structure.

 The other main thing to consider is how you’ll host your application when it’s
built.

7Installing Scalatra

1.4.2 Scalatra runs on servlets

Once you build your application, you’ll need to deploy it to a server in order to make
it available to the world. Lift and Scalatra are both designed to be deployed in stan-
dard Java servlet containers: Tomcat, JBoss, and Jetty are popular examples. Play, on
the other hand, deploys on newer technology: the Netty network application frame-
work. Again, there are various pros and cons to consider.

 Netty, which uses the new Java NIO APIs, is a relatively fresh technology and is theo-
retically more performant. But the subject is complicated, with Netty winning against
servlets for some workloads and losing for others.

 In contrast to Netty, servlet containers aren’t sexy, but they’re battle-hardened and
have great tooling. Additionally, many people know how to configure them, tune
them, and keep them running in production.

 One last consideration: many workplaces still mandate servlets for web deploy-
ments. In these cases, the ability to deploy on servlets may be make-or-break for Scala
adoption.

 We hope this is enough to provide a fair overview of possible choices. Now let’s
write some Scalatra code.

1.5 Installing Scalatra
Before we can move on to the rest of the book, you’ll need to have a running installa-
tion of Scalatra. You can find installation instructions in the appendix. It includes full
instructions for getting Scalatra installed and for setting up your development envi-
ronment. If you haven’t yet installed Scalatra, take some time now to get set up.

 Once you’re ready, let’s generate, build, and run a traditional Hello World exam-
ple. The first thing you’ll need to do is generate an application skeleton. How does
project generation work?

 Although you can set up your project almost any way you want, the normal thing to
do when starting a new project is to use a tool called giter8 (or g8 for short). giter8
retrieves project templates from Git repositories. The standard Scalatra project

How much Scala do you need to know to read this book?
We write this book under the assumption that Scala is a new language and that there
aren’t many Scala programmers yet. We suspect that we’ll need to teach you a bit
about Scala at the same time we teach you Scalatra. We know how daunting it can
be to be suddenly thrust not just into the land of Scala, but also into the world of the
JVM, if you’re coming from another environment. We’ll provide a well-lit path for you.

At the same time, Scala is a large language with many concepts that may be unfamiliar
to you. Unfortunately, we don’t have enough room in this book to provide a full language
reference. You should get a copy of Scala in Action (Manning, 2013) to read alongside
this book if you haven’t yet read an introductory book on the Scala language.

8 CHAPTER 1 Introduction

template lives in a repository on the popular coding website GitHub, at https://
github.com/scalatra/scalatra-sbt.g8.

 When you run the g8 command, giter8 will ask you a series of questions about the
project you’d like to create. It will then retrieve the standard project skeleton from
GitHub, inject the information you provided into the retrieved files, and save them on
your machine.

1.5.1 Generating a new project

Run the following code in your terminal:

g8 scalatra/scalatra-sbt

This checks out a prebuilt application skeleton for you (from GitHub) and asks you
some questions about your application. giter8 will ask you the following questions
when generating a project. Press Enter to accept the default value for each question:

$ g8 scalatra/scalatra-sbt
organization [com.example]:
name [My Scalatra Web App]:
version [0.1.0-SNAPSHOT]:
servlet_name [MyScalatraServlet]:
package [com.example.app]:
scala_version [2.11.6]:
sbt_version [0.13.8]:
scalatra_version [2.4.0]:

giter8 will take your answers to these questions and write them into the build.sbt file
for your application, so you can change them in that file later. Table 1.1 gives a basic
rundown of what the questions mean.

Table 1.1 Generating a project

g8 question What it means

organization Used for publishing. Should be the reverse of a domain name you control. If you don’t
own a domain, com.github.username is a popular choice.

package All Scala code belongs in a package. The Scala Style Guide recommends that your
packages start with your organization. This convention is used across multiple JVM
languages and gives your project a globally unique namespace.

name The name of your project. g8 generates a project into a folder of this name, and the
artifacts you publish will be based on this name.

servlet_name The name of your servlet. This might be something like BlogServlet, BlogController, or
just Blog.

scala_version The version of Scala your project is built with. When in doubt, use the default.

version The version number of your project. This is entirely up to you, but we like semantic
versioning.

9Installing Scalatra

Once you’ve answered the questions, your answers are applied to the giter8 templates,
and the project skeleton is saved on your local system.

1.5.2 Downloading dependencies and building the app

Enter the top-level directory of your new application, and type ./sbt. sbt will take a
while to respond, especially the first time. sbt looks at the dependencies defined in the
file project/build.scala and downloads Scala, a Scala compiler, Scalatra, and a small
set of dependencies of the Scalatra application. That single three-letter command
gives you a full web development environment! Once sbt has finished downloading
everything, you’ll get an sbt prompt, which looks like this: >.

1.5.3 Starting the Hello World application

Let’s start the Hello World application:

jetty:start

That will compile the application and start a web server running on http://
localhost:8080. When you see some output like this, you’ll know it’s running:

Started
ServerConnector@5f164c1{HTTP/1.1}{0.0.0.0:8080}

Visit it in your browser—you’ll see
output similar to that in figure 1.2.
The first request will be slow, because
the application sets itself up for the
first time; subsequent requests will get
faster and faster as the JVM optimizes
code paths for your machine.

 We can now take a quick look at
the application code. Open the file
src/main/scala/com/example/app/
MyScalatraServlet.scala. You’ll see the
code in the following listing; this is a
simple Scalatra app containing a sin-
gle HTTP route.

Check for giter8 templates to speed things up
Quite a few Scalatra giter8 templates are available for various purposes. If you’re
looking to find out how to integrate Scalatra with some other library, do a bit of
searching on GitHub, and you may be pleasantly surprised.

Figure 1.2 Hello World in your browser

10 CHAPTER 1 Introduction

package com.example.app

import org.scalatra._
import scalate.ScalateSupport

class MyScalatraServlet extends MyScalatraWebAppStack {

get("/") {
<html>

<body>
<h1>Hello, world!</h1>
Say hello to Scalate.

</body>
</html>

}

}

1.5.4 Making changes and seeing them in your browser

Let’s change the code so that the response is the same as the original Hello World
example that started this chapter. Change the output from an XML literal to a string:

get("/") {
"Hello world"

}

Save the file and refresh your browser. The example hasn’t changed.
 Scala needs to recompile the program in order to make your changes appear.

Doing this manually every time you make a change to your source code would be
pretty awful, so there’s a handy way to make your changes appear automatically.

 Back at the sbt console, type this:

~jetty:start

From this point on, every time you change your code, sbt will automatically recompile
the application code to make your changes visible. It will then reload the server. When
that’s done, you’ll see this information in your console:

[success] Total time: 1 s, completed 01-Feb-2014 23:38:44
3. Waiting for source changes... (press enter to interrupt)

Click Refresh in your browser, and you should see your changes. When you’re only
modifying web assets, you can run the ~webappPrepare task, which leads to faster turn-
around times.

Listing 1.3 Your first Scalatra application

How do I stop?
When you want to stop the reloader, press the Enter key. If you want to stop serving
your application, type jetty:stop. To get out of the sbt console, type exit.

11Summary

Finally, let’s change the URL matcher. Change this

get("/") {
"Hello world!"

}

to this:

get("/hello") {
"Hello world!"

}

Visit it in your browser, at http://localhost:8080/hello. You’re done!

1.6 Summary
■ Microframeworks let you structure things exactly to your liking.
■ Scalatra applications are generated using the command g8.
■ The Scala build command sbt will download a functioning Scala environment.
■ Scalatra comes prebundled with a web server so you can get started coding with-

out a lot of setup.
■ You can define HTTP actions with very little code.

www.allitebooks.com

http://www.allitebooks.org

12

A taste of Scalatra

As an introduction to building applications with Scalatra, let’s start with a basic
page-retrieval system and then move on to more-advanced functionality. Because
it’s your first app, we’ll keep the initial requirements fairly simple. You want to be
able to visit URLs in the browser, retrieve data from a data store, format the data
into styled HTML, and display the page. These are the sorts of common tasks that
can be accomplished by pretty much any web framework. In this case, you’ll build a
site that displays food-related text.

2.1 Your first Scalatra application
Let’s try generating a Scalatra application. Scalatra code generation is handled by a
utility called g8, which grabs application templates from the internet, customizes
them, and saves them on disk for you. To use g8, type the following on the com-
mand line:

This chapter covers
■ Understanding the framework’s major features
■ A brief introduction to the concept of routing
■ Sending parameters to a Scalatra application

13Designing the UI

$ g8 scalatra/scalatra-sbt.g8
organization [com.example]:
name [My Scalatra Web App]: Scalatra CMS
version [0.1.0-SNAPSHOT]:
servlet_name [MyScalatraServlet]: PagesController
package [com.example.app]: com.example.cms
scala_version [2.11.6]:
sbt_version [0.13.8]:
scalatra_version [2.4.0]:

When you run the g8 command, you’re asked some questions about your application,
in the order shown. Once you answer the last question, giter8 creates your project for
you, and you can run the project using the ./sbt command:

cd scalatra-cms
chmod +x sbt
./sbt
~jetty:start

Your application is now running, although it doesn’t do anything yet. Let’s turn to the
user interface, so you can see something happen.

2.2 Designing the UI
Next you’ll build an HTML user interface for your application. It’s often best to start
by visualizing the interface you want, so figure 2.1 shows a quick sketch of the user
interface you’ll achieve.1

 The page is pretty simple. You can see a title at the top, a summary below that, and
body text at the bottom. The application will run at the web address http://
localhost:8080/pages, and you’ll retrieve the page via its slug, bacon-ipsum, which you
can see in the address bar.

1 We copied the text from the fabulous http://baconipsum.com. If your tastes run in a different direction, you
can always head over to http://veggieipsum.com, or the canonical http://lipsum.com.

Change into the scalatra-cms
directory if you haven’t done

so already.
On Linux and

OS X, you’ll
need to make

sbt executable.

Run sbt. It
downloads all
dependencies and
starts a shell.

Start the web server and begin
automatically recompiling the
project’s Scala code.

Installation
If you haven’t yet installed g8, conscript, and sbt, make sure you read the installation
instructions in the appendix before proceeding any further in the book.

14 CHAPTER 2 A taste of Scalatra

2.3 What’s in a Scalatra project?
At its core, Scalatra is nothing more than a way of routing HTTP requests in order to exe-
cute blocks of code on the server. Almost everything else comes from external libraries,
which are regular JAR files containing packaged JVM bytecode. Scalatra handles HTTP
requests and responses; for all other functionality, you choose from the vast array of
Scala (and Java) libraries and use them as building blocks for your application.

 Figure 2.2 shows the relationship between the various components, with some
commonly used external libraries grouped by function. The default g8 template gives
you the Scalatra core DSL, Scalate templating, the Specs2 testing library, a logger, and
a Jetty web server to run your project. You’re free to customize the application stack,
using the libraries that suit your needs. Your application can use zero or more of the
libraries from any given group. To add a library to your application, add a new depen-
dency line in the libraryDependencies section of the file project/build.scala (see the
appendix for more on this).

 When you generate a project using g8, Scalatra sets up a project as shown in figure 2.3.
The PagesController class, which is the class file you’ll do most of your work in (shown
in listing 2.1), is found in src/main/com/example/cms/PagesController.scala. It looks
much like the Hello World application you generated in chapter 1.

Figure 2.1 Bacon Ipsum

15What’s in a Scalatra project?

package com.example.cms

import org.scalatra._
import scalate.ScalateSupport

class PagesController extends ScalatraCmsStack {

get("/") {
<html>

<body>
<h1>Hello, world!</h1>
Say hello to Scalate.

</body>
</html>

}

}

Listing 2.1 Generated PagesController

Figure 2.2 Scalatra and a few related technologies Figure 2.3 A new Scalatra project

Defines a
package name
to group code

Imports everything in another
package. The _ here is equivalent
to * in Java or C#.

Imports a
single class from
another package

16 CHAPTER 2 A taste of Scalatra

You should be able to visit your application at http://localhost:8080. It doesn’t look
like much yet, but that will change. Before working on the user interface, though, you
should think about the data you want to show.

2.4 Building the data model
Data is fundamental to most applications, so let’s begin building Scalatra CMS by
defining the data model. All you need to start with is a simple Scala case class. If you
believed the application was going to grow significantly, you could create some new
package namespaces and files for your models to live in, but in this case you’ll keep
things simple. Drop the following code into the end of PagesController.scala:

case class Page(slug:String, title:String, summary:String, body: String)

A Scala case class automatically creates accessors for all the properties listed in the
constructor. So in the case of the Page class, you can get all the properties with which
you initialize an instance.

 The Page class has a title, a summary, and main body text. It also has a slug, which
allows you to retrieve the page.

 You could store the page data in a database such as PostgreSQL or MySQL. Like
other web frameworks, Scalatra can do this, and you’ll find out how in chapter 9. For
the moment, you’ll set up the simplest possible data store for your pages: an immuta-
ble List containing Page data. Let’s make some pages now.

 You’ll make two pages: one for Bacon Ipsum lovers, and another for veggies. Drop
the code from the next listing into the end of the PagesController class file, after the
case class Page definition.

object PageDao {

val page1 = Page("bacon-ipsum",
"Bacon ipsum dolor sit amet hamburger",
"""Shankle pancetta turkey ullamco exercitation laborum ut
officia corned beef voluptate.""",
"""Fugiat mollit, spare ribs pork belly flank voluptate ground
round do sunt laboris jowl. Meatloaf excepteur hamburger pork
chop fatback drumstick frankfurter pork aliqua.
Pork belly meatball meatloaf labore. Exercitation commodo nisi
shank, beef drumstick duis. Venison eu shankle sunt commodo short
loin dolore chicken prosciutto beef swine elit quis beef ribs.
Short ribs enim shankle ribeye andouille bresaola corned beef
jowl ut beef.Tempor do boudin, pariatur nisi biltong id elit
dolore non sunt proident sed. Boudin consectetur jowl ut dolor
sunt consequat tempor pork chop capicola pastrami mollit short
loin.""")

Listing 2.2 A simple data storage mechanism

An object in Scala is a singleton.
Its methods behave rather like

static methods in Java. Instantiates a page,
and defines a slug

Adds the
page title

Page
summary

Page body

17Retrieving pages

val page2 = Page("veggie-ipsum",
"Arugula prairie turnip desert raisin sierra leone",
"""Veggies sunt bona vobis, proinde vos postulo esse magis napa
cabbage beetroot dandelion radicchio.""",
"""Brussels sprout mustard salad jícama grape nori chickpea
dulse tatsoi. Maize broccoli rabe collard greens jícama wattle
seed nori garbanzo epazote coriander mustard.""")

val pages = List(page1, page2)
}

Classes in Scala aren’t allowed to define static methods—but you can get roughly the
same effect by defining an object. Listing 2.2 sets up a Scala object called PageDao.
You can call PageDao.pages directly, without explicitly instantiating anything, just like
a static method in Java or C# or a class method in Ruby.

2.5 Retrieving pages
Now that you have some pages stored, you need a way to retrieve them. Scalatra is an
implementation of Ruby’s Sinatra DSL in Scala, and when it comes to dealing with
HTTP, it looks almost identical to Sinatra. You make methods available over HTTP by
setting up routes, and you execute code, called actions, inside the routes.

2.5.1 A page-retrieval route

There are several different types of routes, and most of them correspond to an HTTP
verb—your choices are GET, POST, PUT, and DELETE, along with a few others for specific
situations. You’ll see more about routes in chapter 3. For now, let’s define a route that
you can use to retrieve your pages.

 The route needs to GET a page, identified by the page’s slug. Delete the entire
get("/") action, which currently looks like this:

get("/") {
<html>
<body>

<h1>Hello, world!</h1>
Say hello to Scalate.

</body>
</html> }

Replace that code with a page-retrieval route, which looks like this:

get("/pages/:slug") {

}

Let’s break that down. The route starts with get and defines a route matcher (pages/
:slug). The :slug portion of the route matcher tells Scalatra that you’re defining a
parameter in the URL, so anything submitted at the :slug part of the URL is treated as
input to the route.

Another
page, again

starting
with a slug,
and repeat

Defines a list of pages

18 CHAPTER 2 A taste of Scalatra

 You’re running this web app on http://localhost:8080. Any HTTP GET request to
the path http://localhost:8080/pages/anything-at-all will match the route and cause
the route’s body, or action code, to execute.

2.5.2 A page-retrieval action

Let’s fill in the action so your web application starts to do something useful. Enter the
body of the action as shown next.

get("/pages/:slug") {
contentType = "text/html"
PageDao.pages find (_.slug == params("slug")) match {
case Some(page) => page.title
case None => halt(404, "not found")

}
}

There’s quite a bit going on here. The route’s action uses the find method from
Scala’s List class. The _ may look strange if you haven’t seen it before; although the _
symbol has many different uses in Scala, in this case it’s used as a wildcard pattern.
Every Page object instance in the PageDao.pages list is iteratively sent to the match
function, and if a Page’s slug matches the params("slug"), the match block yields
that Page’s title. If no matching page is found, the match block calls halt and returns
an HTTP 404 status code.

 Time to try it out. Save your work, and ensure that you’ve enabled automatic com-
pilation. You know your data store contains pages with the slugs bacon-ipsum and veggie-
ipsum, so choose the one that matches your preference and retrieve it in a browser. For
our part, we chose http://localhost:8080/pages/bacon-ipsum. Type your chosen
address into a browser address bar, and you’ll get back something like figure 2.4, dis-
playing the page title.

Listing 2.3 Retrieving a page

Adds a content type
on the response

Calls the find method on
your list of pages, and
checks whether any page’s
slug matches the incoming
route parameter

If a page with a matching
slug is found, displays the
page’s titleIf no page with a matching

slug is found, stops and
displays an error

Figure 2.4 Following a route in the browser

19Retrieving pages

Next, let’s try using a slug that you know doesn’t exist: http://localhost:8080/pages/
pizza-ipsum. This time, you’ll see the “not found” message you defined in the case
None => halt(404, "not found") matcher in your controller, as shown in figure 2.5.

 Finally, let’s try a route that doesn’t exist: http://localhost:8080/foo/bar. The
behavior is slightly different. You’ll see something like figure 2.6.

 In this case, you’re shown the default Scalatra error-handling page, because no
matching routes were found. This one is subtly different from the /pages/pizza-ipsum
route in figure 2.5. Although you didn’t define a Page with the slug pizza-ipsum, the
URL path /pages/pizza-ipsum did match the route get("/pages/:slug") defined in
your application. You defined your own 404 message to be shown when the page
wasn’t found. The URL path /foo/bar doesn’t match any of the routes you defined in
the controller class, and it falls through to the default Scalatra 404 page, which lets
you know that no routes were matched.

Now that you’ve got a handle on hitting route matchers and sending simple text back
in response, let’s look at how to render more-complex content for display in a browser.

Figure 2.5 Generating a 404 message

Figure 2.6 The default Scalatra 404 page

Where are the tests?
You may have noticed that we’re not using any automated tests here. You can find a
short introduction in section 2.7. In chapter 8 you’ll see how to write tests in Scalatra
in detail.

20 CHAPTER 2 A taste of Scalatra

2.6 Rendering the page
The get("/pages/:slug") action does its job and shows you the page title, but it’s not
likely to win any design awards. Let’s fix that by rendering an HTML page to the browser.

2.6.1 A quick introduction to Scalate

Scalatra has a number of different ways of rendering HTML, and you’ll get full cover-
age of the options in chapter 7. For the moment, let’s use the Scalate template engine,
which is probably the most common way of doing templating in Scalatra.

 Scalate supports multiple templating styles. We’ll use the Scala Server Pages (SSP)
style, which is similar to Java’s Velocity or Ruby’s ERB template engines.

 First, let’s change the output of the page-retrieval action so that it renders a page
instead of merely displaying the page’s title. You can do this by changing the body of
the page-retrieval action so it contains the code from the following listing.

get("/pages/:slug") {
contentType = "text/html"
PageDao.pages find (_.slug == params("slug")) match {
case Some(page) => ssp("/pages/show", "page" -> page)
case None => halt(404, "not found")

}
}

The ssp method attempts to render a tem-
plate, and it passes the page from your
PageDao to the template. In order for this to
work, you need to make a template for dis-
playing pages.

 The default Scalatra project structure
includes a webapp folder, which holds your
application’s static assets (images, CSS, and
JavaScript) and also provides a place for you to
keep your HTML templates, in the WEB-INF/
templates folder. Figure 2.7 gives you an idea
of where this sits in the project’s structure.

 By default, g8 generated two template files,
default.jade and hello-scalate.jade, both of
which use the Jade templating style. You’ll use
the SSP style instead, so delete both of the .jade
files. Create a pages directory to hold page-
related templates and a show.ssp template file,
as shown in figure 2.8. The contents of
show.ssp should look like the next listing.

Listing 2.4 Using Scalate from an action

Renders a page
instead of just
printing a page
title

Figure 2.7 Views in your project structure

21Rendering the page

<%@ import val page: com.example.cms.Page %>

<div class="row">
<div class="span6">

<h2><%= page.title %> </h2>
<p class="lead"><%= page.summary %></p>
<p><%= page.body %></p>

</div>
</div>

If you’re coming from a dynamic language such as Python,
Ruby, or PHP, you may be surprised by the first line. Like
most other things in Scala, variables in Scalate templates are
statically typed, and you need to explicitly define all tem-
plate variables and their types before you can use them. The
import statement ensures that this template has access to
your com.example.chat.Page class. val page declares a
page variable so Scalate knows how to access the page being
passed to it from the page-retrieval action.

 With the page template in place, you can view http://localhost:8080/pages/
bacon-ipsum in your browser. You see the page’s title, summary, and body displayed, as
shown in figure 2.9

2.6.2 Adding a layout

You can quickly make things look nicer by wrapping the page template in a layout that
includes some boilerplate CSS. Open the layouts folder, and create a new file called
default.ssp containing the contents of listing 2.6. By convention, Scalate will use this file
as the layout for your pages/show.ssp template. It will wrap the contents of listing 2.6
around the HTML output of each of your controller’s actions, inserting the action’s out-
put into the layout at the point where the layout says <%= unescape(body) %>.

Listing 2.5 Initial page template

Figure 2.9
Template output
using SSP

Figure 2.8 Create a
show.ssp template.

22 CHAPTER 2 A taste of Scalatra

<%@ val body:String %>
<html>

<head>
<title>Scalatra CMS</title>
<!-- Bootstrap -->
<link href="/css/bootstrap.min.css" rel="stylesheet" media="screen">
<style type="text/css">

body {
padding-top: 60px;

}
</style>

</head>
<body>
<div class="navbar navbar-inverse navbar-fixed-top">

<div class="navbar-inner">
<div class="container">
 <a class="btn btn-navbar" data-toggle="collapse"

 data-target=".nav-collapse">

 <ul class="nav">

 Scalatra CMS

 </div>

 </div>
 </div>

<div class="container">

<%= unescape(body) %>

</div> <!-- /container -->
</body>

</html>

This is a fairly unexceptional layout based on the popular Twitter Bootstrap framework.
Download the referenced CSS and JavaScript from http://getbootstrap.com/2.3.2/,
and put them into your application’s webapp/css, webapp/js, and webapp/img folders.
Refresh the page in your browser, and you should get a result like figure 2.10.

 You now have a much better-looking result. The output of the action get("/pages/
:slug") is inserted into the default SSP layout you just defined.

 When a page is found, the get("/pages/:slug") action calls ssp("/pages/show",
"page" -> page). The HTML generated out of views/pages/show.ssp is then inserted
into the default.ssp layout at the point where it says <%= unescape(body) %>.

Listing 2.6 A Scalate layout

23Writing tests

Now that you’ve been introduced to templating, it’s time to turn your attention to
another important tool: automated testing.

2.7 Writing tests
Scalatra has integrations for the major Scala test frameworks: ScalaTest, Specs2, and
ScalaCheck. Which one to use is mostly a matter of personal taste. You’ll get a full tour
of Scala testing libraries in chapter 8, but for the moment let’s test the /pages/bacon-
ipsum route using the Specs2 library, which is
used by default in Scalatra’s g8 template.

2.7.1 Writing your first test

When you generated your project, you may have
noticed that the src folder containing your
application’s source code has two subdirecto-
ries: main and test. So far, you’ve done every-
thing in the application’s main directory, which
contains the application itself. Now let’s explore
the test directory, which you can see expanded
in a file browser in figure 2.11.

 If you open the test directory tree, you’ll see
that when you generated your PagesController,
g8 automatically generated a matching test file
called PagesControllerSpec. Open that now.

Figure 2.10 Adding a layout

Figure 2.11 You’ve got tests!

24 CHAPTER 2 A taste of Scalatra

 The default generated test looks like this:

package com.example.cms

import org.scalatra.test.specs2._

class PagesControllerSpec extends ScalatraSpec { def is =
"GET / on PagesController" ^
"should return status 200" ! root200^

end

addServlet(classOf[PagesController], "/*")

def root200 = get("/") {
status must_== 200

}
}

This is a Specs2 acceptance test designed to exercise the PagesController. In its pres-
ent form, it’s not much use, though, because it’s not testing a route that you’ve
defined. There’s a test for the root path of the servlet (/), but there’s no test for the
route get("/pages/:slug") you’re interested in testing.

 First, change the route being tested to GET /pages/:slug, as shown in the follow-
ing listing, so you’re testing the correct route.

package com.example.cms

import org.scalatra.test.specs2._

class PagesControllerSpec extends ScalatraSpec { def is =
"GET /pages/:slug on PagesController" ^

"should return status 200" ! pagesWork^
end

addServlet(classOf[PagesController], "/*")

def pagesWork = get("/pages/bacon-ipsum") {
status must_== 200

}

}

Let’s take a closer look at the structure of the test. The def pagesWork function is
fairly self-explanatory: it’s a regular Scala method that follows the get("/pages/
bacon-ipsum") route in the PagesController and gets access to the resulting
response status and the response body. The ! pagesWork^ part probably deserves a
bit more explanation, though.

 Specs2 uses the ^ operator to separate your test headings into a series of tests that
it can then output into your test runner. The ! operator tells Specs2 that you’d like to

Listing 2.7 Testing the /pages/:slug route

The test can access your
main application code.

Gets access
 to the entire

Specs2 library
Your controller class

gets an accompanying
Spec class.

Groups your
tests with

convenient
headings

Says what the test
should do, and

defines a method
that proves it Mounts your controller

class in the test

Defines a method for
calling the root path (/)

Uses matchers to
set expectations

Tests the
/pages/:slug

route

Calls the
pagesWork
method to
test whether
pages work

Follows the correct
route, with a slug
you know exists

25Writing tests

run the pagesWork method to prove the assertion that hitting the pages route should
return status 200. The 200 HTTP status, of course, is the web server status, which
denotes a successful request. As you add more tests, you’ll slowly build out the list of
assertions, adding more spec lines that call methods using ! and separated by ^.

2.7.2 Running your tests

Let’s try running the new test. In a new terminal window, run ./sbt again so you have
a fresh sbt prompt running. Then type ~ test to execute all test code in your applica-
tion. Additionally, because the command is prefaced with ~, it watches your filesystem
for changes, recompiles, and reruns the test command whenever you make a change
in your application. You’ll see output like figure 2.12: there’s a green success indicator
after every passing test, and an overview message about the entire test run (in this
case, a green success message).

2.7.3 Adding another test

To round things out, let’s add one more test. When hitting the get("/pages/:slug")
route, you can expect to see the word Bacon in the response body. Check that it’s there
by adding the following test code.

package com.example.chat

import org.scalatra.test.specs2._

class PagesControllerSpec extends ScalatraSpec { def is =
"GET /pages/:slug on PagesController" ^
"should return status 200" ! pagesWork^
"shows the word 'Bacon' in the body" ! containsBacon^

end

addServlet(classOf[PagesController], "/*")

def pagesWork = get("/pages/bacon-ipsum") {
status must_== 200

}

def containsBacon = get("/pages/bacon-ipsum") {
body must contain("Bacon")

}
}

Listing 2.8 Setting an expectation on the response body

Figure 2.12 Test output

Adds a new
expectation

Sets up a new
assertion function,
and tries the route

Specifies that the body must
contain a known string

26 CHAPTER 2 A taste of Scalatra

If you’re still running your ~ test terminal, then sbt should automatically recompile
your test code and run it.

 Before moving on to deployment, it’s a good idea to see a failing test (because
that’s what you’re supposed to write first). Generally speaking, there are two cases
you’ll encounter over and over when testing: code errors and test failures.

CODE ERRORS

You may see syntax errors in either the code being tested or the test code itself. Try
generating error output by opening your PagesController and dropping some gar-
bage into the body of the class. We typed the word foo right before the end of the
class and saved the file; our tests ran, and the compiler displayed the error shown in
figure 2.13. (Remember to take the foo out of your PagesController class body
before you continue!)

TEST FAILURES

The application may compile and run but not meet the expectations you’ve set up. To
see what happens, change the containsBacon function in your PagesControllerSpec
so that it looks like this (substitute the word flowers instead of Bacon in the assertion
testing the response body):

def containsBacon = get("/pages/bacon-ipsum") {
body must contain("flowers")

}

You’ll see output like that in figure 2.14.
 You’re told that although the code compiled and everything ran without problems,

the expectation that the response body contains the word flowers wasn’t met. Your
application is “working” insofar as it’s not throwing a 500 error. But it’s not doing what
the test is asserting about the way the application should behave. Set that test assertion
back to Bacon, and bask in the warm glow of a test suite running green.

2.8 Getting ready for deployment
Now that your app has some basic tests, you may want to deploy it so you can show off what
you’ve done. You’ll see a full breakdown of deployment options in chapter 9. For the
moment, we’ll show you only the basics of exporting a deployable copy of your application.

 First, stop automatic compilation in your sbt console by pressing the Enter key. Then
type package and press Enter again. sbt packages your application into a WAR file—a web
application archive. This is a self-contained export of your entire application, including

Figure 2.13 A compile error in the test terminal

27Summary

the Java bytecode, templates, and other resources needed to run it, all zipped up into
a single file. When packaging is complete, sbt will tell you where it put the file, with con-
sole output as shown in figure 2.15. In our case, the file ended up at target/scala-2.10/
scalatra-cms_2.10-0.1.0-SNAPSHOT.war.

Once the WAR file has exported, you can drop it into a servlet container (Tomcat,
JBoss AS, and Glassfish are popular open source containers), or you can upload to a
platform such as Jelastic, which takes care of the infrastructure for you. You’ll see
detailed deployment instructions in chapter 9.

2.9 Summary
■ Routes, route parameters, actions, and template rendering work together in a

Scalatra application. We’ll go into these in greater detail in future chapters.
■ Adding a layout can give your application a consistent look and style.
■ Scalatra serves static CSS, JavaScript, and image files from inside the webapp

directory.
■ Automated tests ensure the correctness of your code. You can easily distinguish

between test failures and broken application code by watching for compilation
errors.

■ Scalatra applications can be exported as self-contained WAR files for production
deployments.

Figure 2.14 A failure of expectations

Figure 2.15 Packaging a WAR file

28

Routing

Scalatra is often referred to as a web framework. This is fair. Scalatra ably handles
requests from a web browser and responds with dynamically generated HTML. But
web framework fails to tell the whole story. We prefer to call Scalatra an HTTP frame-
work. This distinction is subtle but important.

 Scalatra often serves applications unrelated to web clients. It’s used for RESTful
services that may serve a mobile application or integrate internal systems. One user
even uses Scalatra to provide an interface to his home heater. This is all made possi-
ble by Scalatra’s firm embrace of HTTP.

 Routes are the glue that binds HTTP requests to the blocks of Scala code that
implement your application logic. New Scala developers with HTTP experience
should find immediate comfort in Scalatra’s HTTP DSL. If you’re new to HTTP, don’t
despair. Although full coverage of HTTP is out of scope for this book, we’ll cover
enough to empower you to make the right decisions when designing your HTTP API.

This chapter covers
■ Defining a route
■ Choosing the right HTTP method
■ Matching path expressions
■ Exploring advanced routes

29Choosing the right method

In this chapter, we’ll demonstrate routing
with a simple music service.1

3.1 Anatomy of a route
Routes are declared directly in the body
of your Scalatra application. Let’s look at
an example in figure 3.1.

 A Scalatra route is composed of three
main components:

■ The HTTP method—This is required. HTTP supports only eight methods, and
we’ll cover them all in section 3.2.

■ The route matcher—The route is matched by a single path expression. Route match-
ers are flexible in number and type. Matchers are discussed in section 3.3.

■ The action—This is also required, and it’s the block of code responsible for
handling the request and generating a response. Actions will be discussed in
chapter 4.

Now that you understand the syntax of a route, let’s go into detail about how to define
it. We’ll start with a discussion of methods.

3.2 Choosing the right method
HTTP supports just eight methods. Making it simpler still, a couple of these methods
derive their semantics from other methods. This controlled vocabulary allows clients
and servers to have certain expectations of each other, regardless of the application.

 Unfortunately, these expectations can’t be enforced by the Scala compiler. Choos-
ing the right method and implementing it according to convention is a crucial part of
writing an HTTP API.

TIP Consumers of your API will tend to consume a lot of APIs and will have
certain expectations. Your API may be combined with other APIs in a mashup.
The principle of least astonishment applies to HTTP as much as it does to your
lower-level code. Learn the conventions and follow them, and your API will
stand a greater chance of success.

3.2.1 The CRUD methods

With few exceptions, application developers eventually need to deal with persistence.
Whether that storage is a trusty old SQL engine or cutting-edge cloud storage, a CRUD
pattern inevitably emerges in most applications. The mapping between CRUD and
HTTP methods is not quite one-to-one (as shown in table 3.1), but it’s simple to imple-
ment a CRUD service over HTTP.

1 We might not topple iTunes or Amazon Music, but we’ll have a good time name-checking our favorite artists.

Figure 3.1 Anatomy of a route

30 CHAPTER 3 Routing

NOTE Method names are uppercase in the HTTP protocol but, following the
Scala Style Guide (http://docs.scala-lang.org/style/), always use lowercase in
Scalatra code.

HTTP doesn’t know about rows in relational databases, documents in MongoDB, or
any other data store’s implementation. When we speak of CRUD in a Scalatra service,
we’re referring to resources. We’ll discuss how URIs are matched in section 3.3 and map
them to the persistence layer in chapter 10. But first, we’ll discuss how the HTTP meth-
ods would be mapped to the CRUD operations of a resource that represents an artist
in our music service.

GET

GET is the most familiar of the HTTP methods. When a user enters an address in the
browser’s location bar, a GET request is submitted. Simple hyperlinks generate a GET
request. The class in the following listing creates a route that fetches information
about an artist by name.

class RecordStore extends ScalatraServlet {
get("/artists/:name/info") {
Artist.find(params("name")) match {

case Some(artist) => artist.toXml
case None => status = 404

}
}

}

Don’t worry about the :name path expression or the action body for now. These will be
discussed in detail in section 3.3.1 and chapter 4, respectively. The focus here is to get
a feel for choosing the correct method.

 Use GET in the following situations:

■ When you’re implementing a read-only operation, such as the R in CRUD—A GET action
must not have any observable side effects. It’s fine to populate a cache from a GET
action, but it would be inappropriate to modify the document being retrieved.

Table 3.1 CRUD-to-HTTP method mapping

CRUD operation HTTP method

Create ■ POST

■ PUT

Read ■ GET

Update ■ PUT

■ PATCH

Delete ■ DELETE

Listing 3.1 Fetching an artist with get

31Choosing the right method

■ When the request can be submitted repeatedly—Building on the read-only nature, the
application should be prepared to handle identical GET requests. It need not
respond identically if an intervening event changes the application’s state. For
web interfaces, ask yourself if your application is prepared for a user who leans
on the F5 key.

■ When the response should be bookmarkable or indexed in search engines—Whenever
you see a link in a search engine, it’s a GET request. Your bookmarks all repre-
sent GET requests. The QR code on the back of your company’s T-shirt generates
a GET request. If the URL is meant to be shared, think GET.

POST

The default method of a web form is POST, but POST isn’t limited to web forms. The
request body may contain any arbitrary data, described by the Content-Type header
of the request. Other common POST bodies include JSON, XML, and images. Special
handling for JSON bodies is discussed in chapter 5.

 The following listing declares a route to add a new artist to the database via a POST.

class RecordStore extends ScalatraServlet {
post("/artists/new") {
val artist = parseArtist(request)
Artist.save(artist)
val location = s"/artists/${artists.name}"
Created(artist, headers = "Location" -> location)

}

def parseArtist(implicit request: HttpServletRequest): Artist =
Artist(

name = Artist.fromParam(params("name")),
nationality = params("nationality"),
isActive = params("isActive").toBoolean

)
}

}

A typical POST action parses the request body, creates a new resource on the server, and
responds with a pointer to the new resource. All HTTP responses include a status code
to inform the client of the result of the request.

 The default is 200 OK, which is appropriate for successful GET requests. This POST
resulted in the creation of a resource, so you respond with a Created action result.
This sets the response status to 201 Created, along with a Location header. The
header points to a URL at which your new artist can be fetched via a subsequent GET
request. Action results are discussed in depth in section 4.6.3.

Listing 3.2 Adding a new artist with post

Generates a 201
Created response with
Location header

Reads the artist from the request
parameters. Input parsing is
covered in chapter 4.

www.allitebooks.com

http://www.allitebooks.org

32 CHAPTER 3 Routing

 Use POST in the following cases:

■ When implementing create operations, such as the C in CRUD—In this usage, a POST
action reads the request body according to its Content-Type header and adds a
new resource to the application.

■ When the server is responsible for generating a URI for the created entity—It’s bad form
to allow POSTs on resources that don’t already exist. A POST request often hits a
parent URI and responds with a Location header giving the URI of the newly
created resource. This is similar to autogenerating a key in a database when a
record is inserted.

■ When you’re implementing a write operation, and nothing else seems to fit—POST is a
good default choice, because it’s the only CRUD method that’s not idempotent. A
client should be able to resubmit a GET, DELETE, or PUT request and expect the
same result. A POST offers no such guarantee and is thus more flexible in its
implementation. This is the reason why web browsers issue a warning when a
POST request is resubmitted.

WARNING HTML forms only support GET and POST, requiring scripting for a
browser client to submit methods such as PUT or DELETE. Some corporate
proxies rigidly reject anything but a GET or POST. In these circumstances, it’s
tempting to treat all non-GET operations as POSTs. A better alternative is intro-
duced in section 3.2.3.

PUT

PUT requests are most similar to POST. The PUT body should overwrite the resource at
the specified URI. The following listing updates an existing artist with PUT.

class RecordStore extends ScalatraServlet {
put("/artists/:name"/) {
val artist = parseArtist(request)
Artist.update(params("name"), artist)
NoContent()
}

def parseArtist(implicit request: HttpServletRequest): Artist = {
Artist(

name = Artist.fromParam(params("name")),
nationality = params("nationality"),
isActive = params("isActive").toBoolean

)
}

}

PUT requests tend to look a lot like POSTs: you parse the input, modify the data store,
and return. In fact, parsing the input is usually identical between PUT and PUT routes
for a given type.

Listing 3.3 Updating an artist with put

Sets the status to 204
No Content

Reads the artist from the request, using
the same method as in listing 3.2

33Choosing the right method

 In contrast to the POST handler in listing 3.2, here you return a NoContent status.
Instead of regurgitating a representation of the resource identical to the request body,
NoContent signals to the client that the update was successful, and there’s nothing left
to be said in the response body.

 Use PUT in the following cases:

■ When implementing update operations, such as the U in CRUD—All the same tech-
niques used to read a POST request body are available to PUT. It’s not uncommon
for a POST and a PUT action to share code.

■ When implementing create operations, such as the C in CRUD when the URI is known—
Note in the CRUD mapping table that a create operation can be implemented
as either a POST or a PUT. The correct choice depends on whether the resource’s
URI is fully known to the client. Unlike a POST, a PUT can be executed on a new
URI. Use PUT if the client assigns the identifier, or POST if the server does.

DELETE

A DELETE request is structurally closest to a GET. It comes with no request body, but like
a GET may use query strings and headers to refine itself. The following listing declares
a route to delete an artist.

class RecordStore extends ScalatraServlet {
delete("/artists/:name") {

if (Artist.delete(params("name")).isDefined)
NoContent()

else
NotFound()

}
}

In most services, confirmation would be handled on the client side. It’s assumed that
anybody who hits this URL is authorized (covered in chapter 11) and really means it.

 Like the POST action in listing 3.2, here you return a NoContent on success. It’s use-
ful to let the client know whether the operation was successful, so you introduce a con-
ditional and respond with NotFound if no artist was found to delete.

Listing 3.4 Removing an artist with delete

PATCH
There is an RFC for PATCH requests. A PATCH is like PUT, but instead of overwriting
the resource, it partially modifies the existing resource. PATCH should only be used
for updates, not for creates.

PATCH is not part of the HTTP 1.1 specification, but it’s fully supported by Scalatra.

Returns an option:
Some if the artist was
found to delete, None
if not

If an artist was
deleted, responds

with 204 No Content

If no artist was found,
responds with 404
Not Found

34 CHAPTER 3 Routing

 Use DELETE in the following case:

■ When implementing delete operations, such as the D in CRUD—This is the most obvi-
ous of the CRUD methods. Indeed, it’s the only one whose CRUD name matches
its HTTP name.

3.2.2 The lesser-known methods

The vast majority of APIs need to worry themselves only with the CRUD methods dis-
cussed in the previous section. Still, Scalatra aims to be a complete HTTP framework,
and it’s good to know about the other methods.

HEAD

A HEAD request should be handled like an otherwise identical GET request, except that
it shouldn’t return a body. The following listing declares special handling for a HEAD
request to an artist.

class RecordStore extends ScalatraServlet {
head("/artists/:name/info") {
contentType = "text/json"
if (Artist.exists(params("name"))) Ok()
else NotFound()

}
}

Where the GET request in listing 3.1 needs to load the artist to render the info, a HEAD
request only needs to verify its existence. You’re able to override the default behavior
with a more efficient implementation.

Listing 3.5 Optimizing HEAD requests with an explicit HEAD

The perils of not following the rules
Many web developers ignore anything beyond the familiar GET and POST. This can be
a security risk if the rules aren’t followed.

In one infamous case, an application implemented delete with simple hyperlinks (GET
requests). Much to the horror of the development team, they found their content was
gone. The culprit? Google’s web spider, which dutifully followed every delete link on
the page to index the site.

HTTP services are often consumed by clients that aren’t considered at the time of
development. This is why it’s important to follow conventions and use the methods
as they’re intended.

35Choosing the right method

 Use HEAD in this case:

■ When the default implementation is suboptimal—Because a HEAD response can be
derived from a GET, Scalatra gives it to you for free by calling GET with a null
response writer.2

OPTIONS

An OPTIONS request, like HEAD, is implemented in terms of other methods. It’s
expected to return an Allows header so clients understand which other methods are
supported for a particular path.

 The following listing shows that a call to delete Frank Zappa will not be supported
by the delete call.3

class RecordStore extends ScalatraServlet {
get("/artists/:name") {
Artist.find(params("name")) match {

case Some(artist) => artist.toXml
case None => status = 404

}
}

delete("/artists/:name") {
val name = params("name")
if (name == "Frank Zappa")

MethodNotAllowed()
else if (Artist.delete(name).isDefined)

2 Actually, this functionality is provided by the underlying servlet container. Scalatra’s philosophy is to build on
existing standards where possible.

Listing 3.6 Returning the supported methods with options

3 If a music service doesn’t carry Frank Zappa, it’s not worth running.

Premature optimization
We should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil.

—Donald Knuth

Most applications shouldn’t implement HEAD directly. Doing so is error-prone, and un-
less the GET action is known to be slow, it’s a form of premature optimization.

On the other hand, a client may execute a HEAD request to determine whether a pre-
viously fetched resource has been modified. This is especially common when the cli-
ent is a caching proxy. If headers such as Last-Modified or Content-MD5 have
changed, the client may execute a GET request for the full body. Recalculating a time-
stamp or especially a digest can be expensive, so if the resource is known to be un-
changed on the server side, it may make sense to return these headers as cached
values in a custom HEAD route.

405 is the standard HTTP
status code for invoking a
method that isn’t allowed.

36 CHAPTER 3 Routing

NoContent()
else

NotFound()
}

options("/artists/Frank_Zappa") {
response.setHeader("Allow", "GET, HEAD")

}
}

OPTIONS requests on lesser artists will fall through to the default and return an Allow
header of GET, HEAD, DELETE.

 Use OPTIONS in these cases:

■ When the default implementation is incorrect—By default, Scalatra searches its rout-
ing table, seeking a matching route for each HTTP method. Instead of execut-
ing the action, as with other methods, it constructs an Allow header with all the
matching methods.

In some cases, the user might want to customize the methods. A delete
method may be supported for some resources matched by a given route, but
others may be protected from deletion. A customized view can be generated by
explicitly overriding the OPTIONS route.

■ For security—Every bit of unnecessary information a service exposes potentially
gives an attacker another clue to break into your application. Options are con-
sidered rather harmless by most, but some users would prefer to not give this
information away at all.

The following listing declares a route that forbids all requests with method option.

options() {
Forbidden()

}

Listing 3.7 Forbidding all OPTIONS requests

Note the absence
of DELETE.

A method with no path matches
everything. Learn more in section 3.3.3.

Returns HTTP status 403, indicating
the request is forbidden

Methods unsupported by Scalatra
There are two standard HTTP methods we haven’t discussed:

■ A TRACE request echoes the request back as the body of the response. The
implementation of this method is rigidly defined by spec. Scalatra inherits a
default implementation through the servlet container and thus doesn’t provide a
method to customize the behavior.

■ CONNECT requests are used in SSL tunneling, which is not relevant to Scalatra.
Scalatra handles these requests by issuing a 404 response. Like TRACE, this
behavior is not overridable.

37Choosing the right method

3.2.3 Overriding the methods

The preceding sections describe the perfect world where the client speaks the entire
HTTP standard. It won’t surprise veteran web programmers that implementations
often fall short of the published standard.
Many web browsers support a subset of the HTTP methods GET and POST. This is ade-
quate for web browsers that simply need to get pages and post form data. But as the
line blurs between web APIs and websites, this is inadequate. You’d like to support
browsers as first-class clients of our APIs.

 This isn’t a new problem, and various ad hoc solutions have been developed. A
popular one is to look for a special _method parameter in a POST request. If present,
the request is interpreted with the parameter. This is a fair solution on the client side,
but it quickly becomes tedious for a Scalatra application.

class RecordStore extends ScalatraServlet {
delete("/artists/:name") {
if (Artist.delete(params("name")).isDefined)

NoContent()
else

NotFound()
}

post("/item") {
params.get("method") match {

case Some("delete") =>
if (Artist.delete(params("name")).isDefined)

NoContent()
else

NotFound()
case None =>

val artist = parseArtist(request)
Artist.save(artist)
val location = s"/artists/${artists.name}"
Created(artist, headers = "Location" -> location)

}
}

}

Note how the deleteArtist call is repeated in listing 3.8. Even if the delete logic is
extracted, you’d still need to repeat the call in both the DELETE route and the POST’s
“delete” condition.

 What you want is a way to transparently rewrite the request before routing occurs. Sca-
latra provides this functionality out of the box with MethodOverrideSupport. In addition
to the _method body parameter, MethodOverrideSupport observes the X-HTTP-Method-
Override header, a convention adopted by many JavaScript frameworks.

Listing 3.8 Method override example

Duplicate
calls

38 CHAPTER 3 Routing

class RecordStore extends ScalatraServlet with MethodOverrideSupport {
delete("/artists/:name") {
val name = params("name")
if (Artist.delete(name).isDefined)

NoContent()
else

NotFound()
}

post("/item") {
val artist = parseArtist(request)
Artist.save(artist)
val location = s"/artists/${artist.name}"
Created(artist, headers = Map("Location" -> location))

}
}

Listing 3.9 shows an example of Scalatra’s stackable modifications, where additional
behaviors can be composed onto the core with mixin traits.

3.3 Route matchers
If HTTP methods declare the type of action to be performed, then route matchers
declare the resources on which the action is to be performed. They describe which
requests an action runs on and extract parameters to further describe the request to
the action.

 Unlike the tightly constrained HTTP methods, route matchers can take many
forms and match an unlimited number of resources. Three types of route matchers
are supported out of the box:

■ Path expressions (string)
■ Regular expressions
■ Boolean expressions

We’ll examine each of these in detail, and later show you how to create your own.

3.3.1 Path expressions

The most common type of route matcher is the path expression. A path expression
always starts with a / character and refers to the mount point of your application.

 In this chapter, assume that your application is mounted at http://localhost:8080,
and that your servlet is mounted to /* within your application. More complex deploy-
ments are covered in chapter 5.

NOTE Scalatra is a portmanteau of Scala and Sinatra, the Ruby framework that
inspired it. Rubyists may find the path expression syntax familiar. This is not
coincidental.

Listing 3.9 Using method-override conventions

Declares that this servlet supports
the method-override conventions

This is now the only
call to deleteArtist.

This now has one
responsibility: handling POST.

39Route matchers

STATIC PATH EXPRESSIONS

In the following listing, you’ll see a static path expression. This path expression declares
a literal path to match.

class RecordStore extends ScalatraServlet {
get("/artists") {
<artists>

Artist.getAll.map { artist =>
<artist href=""/artists/${artist.name}$quot;>

${artist.name}
</artist>

}
</artists>

}
}

With this route, a GET request to http://localhost:8080/artists fetches a list of all the
artists in the system. A resource can be an individual item or a collection of items.
Static routes are ideal for referring to a collection of a items—though the collection of
artists may be dynamic, the collection maintains a static resource identifier. Static path
expressions are an ideal fit for static URIs.

 The /artists resource only links to the individual artists. Each artist is a resource
with its own URI. The following listing adds a static route per artist.

class RecordStore extends ScalatraServlet {
get("/artists/Bruce_Springsteen/info") {
showArtist("Bruce Springsteen")

}

get("/artists/Charles_Mingus/info") {
showArtist("Charles Mingus")

}

get("/artists/A_Tribe_Called_Quest/info") {
showArtist("A Tribe Called Quest")

}

def showArtist(name: String) = {
Artist.find(name) match {

case Some(artist) => artist.toXml
case None => NotFound()

}
}

}

Listing 3.10 Static path expression

Listing 3.11 Routes with static path expressions

/artists is the route matcher.

Action code that lists
each artist ID. Actions
will be discussed in
detail in chapter 5.

40 CHAPTER 3 Routing

In listing 3.11, a GET request to http://localhost:8080/artists/Bruce_Springsteen/info
would fetch information about Bruce Springsteen. It’s a nice start, but notice how
repetitive the routes are. The action repeats a part of the request path, and each art-
ist’s action is almost identical to the others. It would be difficult to maintain a fully
stocked music shop this way. Further, you wouldn’t want to modify and redeploy your
application every time an artist was added to your inventory. It would be nice if you
could parameterize the paths.

PATH PARAMETERS

Listing 3.12 introduces path parameters. A path parameter called name is declared by
preceding it with a colon character. Instead of literally looking for "/:name", the
colon signals Scalatra to capture that portion of the request path as a parameter,
which is made available to the route.

class RecordStore extends ScalatraServlet {
get("/artists/:name/info") {
showArtist(params("name"))

}

def showArtist(name: String) = {
Artist.find(name) match {

case Some(artist) => artist.toXml
case None => status = 404

}
}

}

The example in listing 3.12 is much cleaner. With dynamic names, you can add to the
Artist data store without touching the Scalatra application. Working with path
parameters is discussed in depth in chapter 4.

 Path parameters are matched according to the following rules:

■ A path parameter is never an empty string. At least one character must be
matched.

■ A path parameter matches everything up to the next special character: /, ?, or #.

Table 3.2 shows some hypothetical URIs for the path expression /artists/:name/
info, whether they’d match, and the value of the extracted parameter.

Listing 3.12 Path parameter example

Table 3.2 Some examples of matching /artists/:name/info

URI Matches? Name param

http://localhost:8080/artists/Radiohead/info Yes Radiohead

http://localhost:8080/artists/AC/DC/info No

http://localhost:8080/artists/AC%2FDC/info Yes AC/DC

:name declares a path parameter.

params("name") evaluates
to the name from the
request path.

41Route matchers

OPTIONAL PARAMETERS

A ? in a path expression makes the previous character or path parameter optional. The
following listing demonstrates an optional trailing slash.

class RecordStore extends ScalatraServlet {
get("/artists/?") {
<artists>${Artist.fetchAll().map(_.toXml)}</artists>

}
}

The "/artists/?" expression would match a request to both of these:

■ http://localhost:8080/artists
■ http://localhost:8080/artists/

A trailing slash can be significant in a URI, but humans are apt to overlook it. If your
application’s URI is likely to be typed by a person rather than provided by a machine,
supporting trailing slashes is good practice.

WARNING In the literal URI, ? marks the beginning of the query string, which is
not part of the path matched by Scalatra. In a path expression, ? marks the
previous token as optional. It’s unrelated to matching the query string.

This technique is taken one step further in the next listing and is also applied to a
path parameter.

class RecordStore extends ScalatraServlet {
get("/artists/:name/info.?:format?) {

Artist.find(params("name")) match {
case Some(artist) =>

params.get("format") match {
case Some("json") => artist.toJson
case _ => artist.toXml

}

Listing 3.13 Trailing slash

Listing 3.14 Optional format suffix

URL encoding
It’s possible to use special characters like / in a path parameter, but they must be
percent-encoded (http://en.wikipedia.org/wiki/Percent-encoding). AC/DC doesn’t
match in table 3.2 because the name parameter stops matching at /, leaving the lit-
eral /DC where /info is expected. By percent-encoding the / as %2F, the slash is
absorbed as part of the path parameter, and it’s then decoded as / when exposed
to the application as a param.

First ? applies to the literal
period (.) character. Second ?
applies to the format param.

42 CHAPTER 3 Routing

case None => NotFound()
}

}
}

Table 3.3 gives some examples of how the route in listing 3.14 would match various
requests. In all the examples, the route matches, but only in some is a "json" format
parameter defined.

The last two examples in table 3.3 may come as a surprise. Both the literal . and the
parameter that follows are optional, and the matching of one doesn’t depend on the
presence of the other. This is acceptable for many applications, but too permissive for
some. Finer-grained control can be obtained with regular expression matching or
Rails path pattern parsing.

SPLAT SUPPORT

Path expressions also support splat parameters. Splat parameters are nicknamed for
the * character that declares them.

class RecordStore extends ScalatraServlet {
val downloadPath = "/srv/media"

get("/downloads/*") {
val path = params("splat")
new File(downloadPath, path))

}
}

Listing 3.15 implements a download section of the site. In this route, you use a single
/downloads/* route to serve files under a virtual filesystem. You could have used
/downloads/:name, but recall that named parameters match up until the next / char-
acter in a URL. A splat parameter frees you from this restriction, so that you can match
a path in an arbitrary directory structure.

Table 3.3 Format examples

URI Format param

http://localhost:8080/artists/Otis_Redding/info undefined

http://localhost:8080/artists/Otis_Redding/info.json "json"

http://localhost:8080/artists/Otis_Redding/info.xml "xml"

http://localhost:8080/artists/Otis_Redding/info. undefined

http://localhost:8080/artists/Otis_Redding/infojson "json"

Listing 3.15 Splat example

* declares the splat param.

params(“splat”)
references the portion of
the path captured by *.Returning a File sends the

file as the response.

43Route matchers

3.3.2 Regular expressions

Some people, when confronted with a problem, think “I know, I’ll use regular
expressions.” Now they have two problems.

—Jamie Zawinski

Path expressions are a simple, satisfactory solution to the majority of routing needs,
but they’re limited in what they can express. Regular expressions provide the needed
expressivity at the expense of a steeper learning curve. A full tutorial on regular
expressions is beyond the scope of this book, but we’ll show you how a not-too-scary
regular expression can solve a rather complicated problem.

 In our music shop, we’d like to create a route to show the best albums of either a
year or an entire decade:

■ For a year, we expect a four-digit number.
■ For a decade, we expect a four-digit number ending in 0, followed by an s.

We could attempt to route these requests with a simple path expression like "/best-
of/:when". The problem is that the same route would need to handle both the year
and the decade list. Furthermore, if the parameter were neither a year nor a decade,
the route would still match. We want to both capture and validate. Regular expressions
excel at validating special syntax as part of the match.

 Conceptually, we have two routes: one for years and one for decades. The following
listing shows how to use regular expressions to express these as two separate routes.

class RecordStore extends ScalatraServlet {
get("""/best-of/(\d{4})""".r) {

val Seq(year) = params("captures")
// Load albums by year

}

get("""/best-of/(\d{3}0)s""".r) {
val Seq(decade) = params("captures"
// Load albums by decade

}
}

In both expressions, /best-of/ does a simple literal match. (\d{4}) and (\d{3}0)s
declare the syntax for a year and a decade, respectively. Let’s tear apart the latter:

■ \d matches a digit, 0–9.
■ {3} repeats the previous expression (\d) exactly three times.
■ 0 is a literal 0.
■ () declares a capture group. The characters matched by the expression inside the

capture group are made available to the route under the param name "cap-
tures". In this case, you capture exactly three digits followed by a zero.

Listing 3.16 Regular expression route

Defines
 a regular

expression

captures is a special
parameter name for
accessing the groups of
a regular expression.

44 CHAPTER 3 Routing

Table 3.4 shows how various URIs might be matched by the routes declared in listing 3.16.

Internally, Scalatra compiles path expressions down to regular expressions. For those who
grok regex, table 3.5 explains how Scalatra’s path expressions map to regular expressions.

3.3.3 Boolean expressions

The third and final type of route matcher in Scalatra’s core is the Boolean expression. A
Boolean expression is any arbitrary Scala expression that returns a Boolean value. The
expression is evaluated at request time, with the current request in scope.

 Unlike path expressions and regular expressions, a Boolean expression can’t
extract any parameters. Its role is to act as a guard. So far, all of our routes have taken

Table 3.4 Year and decade URI examples

URI Route matched param(“captures”)

http://localhost:8080/best-of/1967 Year 1967

http://localhost:8080/best-of/1960s Decade 1960

http://localhost:8080/best-of/1967s None

Table 3.5 Path expression–to–regular expression translation

Path expression Regex equivalent

:param ([/*#?]+)

? ?

* (.*?)

() \(\)a

a. () are not special characters in a path expression. Only the
characters already listed are special in a path expression.

What makes a regular expression in Scala?
We could just as well have written the regular expression """/best-of/
(\d{4})""".r as new Regex("/best-of/(\\d{4})"), but the former is more idi-
omatic in Scala. How does it work?

Certain special characters in a string literal, such as \ and ", can be disabled by en-
closing the string in triple quotes. This syntax comes in handy with regular expres-
sions, which tend to contain several backslashes. But merely triple quoting still yields
a string, not a regex.

Scala also provides an implicit method r on StringLike, which compiles the string
into a regex. Without the .r call, the string would be interpreted by Scalatra as a path
expression.

45Route matchers

a single route matcher, but Scalatra supports any number of route matchers in a given
route. Most commonly, a Boolean expression will act as a guard condition, adding an
extra constraint to a path or regular expression. A route matches if, and only if, all of
its route matchers match.

The following listing defines two routes: one for mobile users and one for everybody else.

class RecordStore extends ScalatraServlet {
get("/listen/*".r, isMobile(request))) {
StreamService.mobile(params("splat"))

}

get("/listen/*".r, !isMobile(request))) {
StreamService.desktop(params("splat"))

}

def isMobile(request: HttpServletRequest): Boolean = {
val lower = request.getHeader("User-Agent")
lower.contains("android") || lower.contains("iphone")
}

}

The route code in listing 3.17 could just as well have been written as a single route:

get("/listen/*".r) {
if (isMobile(request.getHeader("User-Agent"))) {
StreamService.mobile(params("splat"))

} else {

Listing 3.17 Matching mobile requests

Formal definition of “match”
A route matcher returns an Option[Map[String, Seq[String]]. An Option can be
Some map of extracted parameters, or None. A route matches if and only if all of its
route matchers return Some. The extracted parameters are merged into a single map,
and these are the route parameters passed to the action.

But how do our types translate into this Option?

■ A path expression or regular expression returns Some extracted route parame-
ters if the expression matches the request URI.

■ A Boolean expression returns Some empty map of route parameters if the
expression evaluates to true. As already stated, Booleans don’t extract param-
eters. If the expression evaluates to false, the route matcher returns None, and
the route doesn’t match.

Consistent with forall on an empty collection, a route with no matchers always
matches. To match all POST requests, you might write a route with an empty list of
route matchers (such as post()).

Responds with a mobile-
friendly stream

Responds with a richer
stream for desktops

A naive browser
sniffer. There are
free databases and
subscription APIs to
do this properly.

46 CHAPTER 3 Routing

StreamService.desktop(params("splat"))
}

}

The Boolean guard neatly keeps all the request-related logic together in the route
matchers, and lets the route action focus on a single thing. But it’s fine to keep the
branching logic in the action if you prefer. In Scalatra, as with Scala, there’s usually
more than one way to do it.

WARNING Boolean expressions support arbitrary snippets of code, as long as
the return type is correct. These snippets may be evaluated on each request as
Scalatra attempts to find a matching route. It’s important that these expres-
sions be free of side effects, or failed matches could change the state of your
application. Your Boolean guards should always be read-only operations.

We’ve now taken a tour of the three primitive route matchers in Scalatra. In the next
section, we’ll look at some more-advanced use cases.

3.4 Advanced route matching
By now, you should have a good grasp of the basic building blocks of a route. As your
applications grow larger, you might run into routes that overlap, or find a corner case
that just isn’t handled well by the basic routing structures. In this section, we’ll cover
these more complicated scenarios.

3.4.1 Conflict resolution

In the spirit of guessable URIs, you’d like your users to be able to type an address to look
up their favorite bands. But is it “Smashing Pumpkins” or “The Smashing Pumpkins”?4

This is a common problem, but one you can solve easily with overlapping routes.
 The following listing defines a splat route that overlaps the info and album routes.

class RecordStore extends ScalatraServlet {
get("/artists/:name/info") {

Artists.findByName(params("name"))
}

get("/artists/:name/albums/:album") {
Albums.findByName(artist = params("name"), name = params("album"))

}

get("/artists/The_:name/*") {
redirect("/artists/%s/%s".format(params("name"), params("splat")))

}
}

4 Check out the covers of Siamese Dream and Mellon Collie and the Infinite Sadness. Even the band doesn’t know.

Listing 3.18 Article normalizer

This route is matched third.

This route is matched second.

This route is tried first.

47Advanced route matching

What happens when a request matches two routes? Scalatra looks for matching routes
from the bottom of your application, and works its way to the top.

WARNING Scalatra routes applications from the bottom up. Sinatra, and most
other frameworks inspired by Sinatra, route from the top down. This is to
allow routes declared in a child class to override routes declared in a parent.

Figure 3.2 demonstrates how the client interacts with Scalatra given the music store in
listing 3.18.

When a request comes in for /artists/The_Rolling_Stones/info, the top and bot-
tom routes match. Because Scalatra routes from the bottom up, /artists/

The_:name/* is matched. This triggers the redirect response. The client immediately
requests /artists/Rolling_Stones/info. Scalatra, as always, matches the request
from the bottom up.5 The redirected request finally matches /artists/:name/info,
which generates the desired response.

3.4.2 Rails-style path expressions

As already mentioned, Scalatra is heavily influenced by the Sinatra framework, but
Sinatra-style path expressions aren’t the only game in town. Ruby on Rails6 uses an
alternate syntax—one that lends itself a little better to the format example introduced
in listing 3.14.

5 Redirects are stateless. Scalatra neither knows nor cares that the original request was rewritten.
6 Technically, it’s the Ruby Rack::Mount::Strexp module.

Figure 3.2 Tracing a request for The_Rolling_Stones

48 CHAPTER 3 Routing

class RecordStore extends ScalatraServlet {
implicit override def string2RouteMatcher(path: String) =

RailsPathPatternParser(path)

get("/artists/:name/info(.:format)") {
// Load artist info according to the format

}
}

Listing 3.19 demonstrates the use of Rails-style path expressions. The implicit
string2RouteMatcher method overrides the inherited ScalatraServlet.

The expression is very similar to the standard path expressions. Instead of using ? to
make the previous token optional, the Rails style uses () to make its entire contents
optional. This allows you to express that, if there is a period, the format must also be
provided.

 Table 3.6 takes the URIs from table 3.3 and shows how the Rails routes can lock
down two typically undesirable matches.

3.5 Summary
■ Choosing the correct HTTP methods results in APIs that act in accordance with

prevailing standards.
■ It’s important to choose intuitive URIs for application resources. You can use

Scalatra’s route resolution to create concise code.

Listing 3.19 Rails matcher

Table 3.6 Rails-style format examples

URI
Sinatra /artists/:name/

info.?:format?
Rails /artists/:name/

info(.:format)

/artists/Otis_Redding/info Yes Yes

/artists/Otis_Redding/info.json Yes Yes

/artists/Otis_Redding/info.xml Yes Yes

/artists/Otis_Redding/info. Yes No

/artists/Otis_Redding/infojson Yes No

Overrides the
existing string

Supports an info route
with an optional format

What type are route matchers, anyway?
Route matchers extend the org.scalatra.RouteMatcher trait. ScalatraServlet
inherits protected methods that perform implicit conversions of strings, regular ex-
pressions, and Boolean expressions to RouteMatcher. You can extend the DSL to
support arbitrary types by creating your own implicit conversions to RouteMatcher.

49

Working with user input

In the previous chapter, we focused on route matchers. You saw how Scalatra takes
an incoming URL, decomposes it into its constituent parts, and matches it to a
block of code in your application. But route matching is only part of the overall
request-response cycle. We’ll give you the whole life story of a request in this chap-
ter so you can start responding to incoming HTTP requests and do some useful
work. Let’s start with an overview.

4.1 The life of a request
In Scalatra, each incoming HTTP request that hits your server is answered with an
HTTP response. What happens when an HTTP request hits your application?

 First, Scalatra checks the URL’s path (including path parameters) to see
whether it has a matching route. Assuming a matching route is found, the follow-
ing things happen:

This chapter covers
■ Executing code on the server using actions
■ Query string, path, and form parameters
■ Dealing with headers and cookies
■ Before and after filters

50 CHAPTER 4 Working with user input

1 Params are extracted and placed in a params map, so that you can use them
inside the route’s action.

2 before filters are executed, so you can do preprocessing.
3 The body of the route’s action code is executed.
4 after filters are executed.
5 The response is written and returned to the requesting agent.

If no matching route is found, Scalatra will run a special method called notFound, so
you can customize the response. Usually this involves setting a 404 response status, but
you’re free to do whatever you like.

 You saw how routing works in chapter 3, so let’s move on to look at the route body,
which is called an action in Scalatra.

4.2 Routes and actions
The URL http://localhost:8080/hackers/ada-lovelace might map to the following
route.

package com.constructiveproof.hackertracker

import org.scalatra._
import scalate.ScalateSupport

class HackersController extends HackerTrackerStack {
get("/hackers/:slug") {

// Code to retrieve info about this hacker
// Code to display information about this hacker

}
}

The block of code inside a route matcher is called action code or an action. In a forms-
based CRUD application, you might retrieve some data and then render a view inside
the action. In an API, you might accept incoming data, use it to create a new object,
and then return the newly created object as JSON. In either case, the action is where
your application goes to work for you.

 One of the things that your actions need is a way to read incoming HTTP input, so
that your program can react appropriately. There are multiple ways that an HTTP
application typically receives input. Let’s take a look at how Scalatra handles HTTP
parameters.

4.3 HTTP parameter handling in Scalatra
HTTP parameters are key-value pairs, with the key and value separated by an equals
sign: key1=first-value&key2=second-value. Parameters can be received by your
application in several different ways, which we’ll go over in a moment. Once your

Listing 4.1 Retrieving info about specific hackers

Defines
a route

matcher
The code inside
the route is
called an action.

51HTTP parameter handling in Scalatra

application receives HTTP parameters as input, they get turned into a Scala Map, and
they become available for you to use in your action code using the params method.

NOTE If you’re new to Scala, a Map is like Ruby’s Hash, Python’s dict,
JavaScript’s object, or Java’s Map. It’s a data structure that stores and retrieves
values by key.

If your application receives the parameters key1=hello&key2=world, you’ll be able to
access the values hello and world by calling params("key1") and params("key2")
inside your route actions. When accessed using the params method, all parameters are
of type String unless you explicitly force them to be something different.

 Now let’s turn our attention to the various ways you can read HTTP parameters.
Excluding file uploads for the moment (we’ll cover those in chapter 6), there are
three kinds of HTTP parameters that you’ll typically want to read inside your actions:

■ Query string parameters
■ Path parameters (sometimes known as route parameters)
■ Form parameters (sometimes inaccurately called POST parameters)

Let’s take a look at how some familiar real-world applications use parameters, and
then look at how to model them in a Hacker Tracker application.

4.3.1 Query string parameters

Query string parameters live on the query string of the request URL. Figure 4.1 shows
query string parameters for an example YouTube search, visible in the browser’s
address bar. In the Hacker Tracker application, a route and action for a similarly struc-
tured search URL could look like the following listing.

get("/results") {
val searchQuery = params("search_query")
val originalQuery = params("oq")
println(searchQuery)
println(originalQuery)
// Search for matching hackers
// Display information about matching hackers

}

If the application is running locally, and you hit the URL http://localhost:8080/
results?search_query=scalatra&oq=scalatra, Scalatra reads the incoming HTTP param-
eters from the request and makes them available in the params map. In this example,
the value of val searchQuery will be the string "scalatra".

Listing 4.2 An action that reads query string params

Figure 4.1 A YouTube search with highlighted query string parameters

Assigns the search_query
parameter to a value

Assigns the oq
parameter to a value

52 CHAPTER 4 Working with user input

4.3.2 Path parameters

Also called route parameters, path parameters are incorporated directly into the full
path of the URL. If you’ve been programming for any length of time, you’ve almost
certainly seen path parameters in action in the URLs of GitHub, the popular code-
hosting service. Path parameters in a GitHub URL are highlighted in figure 4.2.

The Hacker Tracker application already has a route with a path parameter in it. Let’s
make parameter handling more explicit by assigning the incoming :slug parameter
to a value, as follows.

get("/hackers/:slug") {
val slug = params("slug")
println(slug)
// Retrieve info about this hacker, based on the slug
// Display information about this hacker

}

The route matcher here defines a path parameter called slug, which is denoted by
the colon (:) in the route declaration. For each path parameter, Scalatra extracts the
key and value of the path parameter from the URL’s full path and makes it available to
you in the params map.

 Given the URL http://localhost:8080/hackers/ada-lovelace, val slug would equal
"ada-lovelace".

4.3.3 Form parameters

Form parameters aren’t carried around in the URL path or in the query string.
Instead, they’re part of the body of an HTTP request. They’re often called POST param-
eters, because web programmers are used to thinking of HTTP POST requests as carry-
ing this type of input, but it’s worth noting that PUT and PATCH requests can also carry
form parameters.

 To try posting some form parameters to your application, you could either make
an HTML form with its action set to an HTTP route in your application, or use the
command line. The following listing shows a request to create a new hacker in the
Hacker Tracker, which uses the curl command-line utility to send the parameters name
and motto to the server.

Listing 4.3 An action that reads a path parameter

Figure 4.2 GitHub uses path parameters heavily in its repository browser.

Named path params form matchable
parts of the URL’s full pathAssigns the

:slug path
parameter
to a value

53HTTP parameter handling in Scalatra

curl \
--data-urlencode "name=Grace Hopper" \
--data-urlencode "motto=It is better to ask forgiveness \
than permission" \
http://localhost:8080/hackers

Assuming you’ve got a *nix terminal and have curl installed, you should be able to
copy and paste that code into your terminal to send a request to a Scalatra application
running on localhost. It will pack up the parameters name and motto and send them to
your application.

TIP Curl (pronounced “see url”) is a command-line utility for making
requests and inspecting responses. If you’re using a Unix-based system,
chances are you already have it. If you don’t, you should seriously consider
installing it, as it makes developing and experiencing RESTful APIs so much
easier by exposing a command-line interface for everything that is HTTP.
(Curl is also available on Windows through cygwin.)

Here’s a route and action that can read the inbound name parameter.

post("/hackers") {
val name = params("name")
val motto = params("motto")
println(name)
println(motto)
// Create a new hacker with the incoming parameters

}

As with the other parameter types, form parameters are key-value pairs, and they
become available inside your Scalatra actions in exactly the same way as path or query
string parameters do: you use the params method to access incoming input. Note that
although curl URL-encoded the value of name (so that it was sent as Grace%20Hopper),
Scalatra automatically decodes incoming parameters so that val name contains the
decoded string "Grace Hopper".

Listing 4.4 Using the curl utility to add a hacker to the tracker

Listing 4.5 An action that reads form params

A form param with
the key “name”A form param

with the key
“motto”

The URL to which the
request should be posted

Assigns the “name”
parameter coming in on
the POST body to a value

Assigns the
“motto”

parameter
to a value

Query string, form, or route parameters?
Which parameter type you should use comes down to one question: how will you use
the parameters? Here are some rules for deciding:

■ If the parameter can be used to clearly identify a resource, it should be declared as
route parameter. IDs are a fine example of parameters that fall into this category.

54 CHAPTER 4 Working with user input

4.3.4 Params versus multiParams

It’s entirely possible to send multiple parameter values that share the same key. For
instance, you might get query params on a request like the following.

GET http://localhost:8080/tagged?tag=linguistic&tag=mustache

Note that the parameter key tag is in there twice. This is an entirely legal set of HTTP
parameters, and indeed this sort of thing can be very useful if you want to build up
arrays of parameters in some situation, such as tags or check box values.

 Accessing these parameters in an action using params("tag") will retrieve only the
first value. But there’s another method, multiParams("tag"), that will retrieve all the
available values of tag and return them in a Scala sequence. In Scala, a Seq is a kind of
iterable that has a length and whose elements have fixed index positions, starting from 0.

 Let’s write a route and action that will read the incoming tag parameters from list-
ing 4.6 and show what happens when you access them via both params and multiParams.

get("/hackers/tagged") {
println(params("tag"))
for(x <- multiParams("tag")) {

println(x)
}

val tags = multiParams("tag")
// Retrieve hackers matching all the given tags
// Display hackers matching all the given tags

}

If you run the example, you’ll see that printing params results in only the first value:
linguistic. But when you loop through and print each element in the multi-
ParamsSeq, you get all values matching the duplicate key: linguistic and mustache.

Listing 4.6 A request with duplicate parameter keys

Listing 4.7 The difference between params and multiParams

(continued)
■ If the parameter controls things like a listing’s sort column, or the sort order, the

query string is an ideal place for it.
■ If the parameter has a lot of content or is used to create a new resource, it

should always go into the form parameters of the request body.

Last but not least, if putting the parameter in the route gets you cleaner URLs, by all
means use route parameters. As an example, consider a listing of blog entries by date:
GET /entries/?date=2012-08-20 might work, but GET /entries/2012/08/20 looks
a lot nicer on the address bar.

Prints only
“linguistic” But looping through

multiParams …

… prints
“linguistic” and

then “mustache”
Assigns the multiple tags
parameters to a value

55HTTP parameter handling in Scalatra

4.3.5 Dealing with unexpected input

Whenever you accept arbitrary input, you open up the possibility that a user, or
another computer system, will send parameters that you don’t expect. For example, in
our previous examples of using HTTP parameters via the params method, there’s no
code to check either the existence or the type of incoming params.

 In other words, it’s possible that someone might hit the route and action in list-
ing 4.8 with the properly formatted URL that you expect.

get("/results") {
val searchQuery = params("search_query")
// Search for matching hackers
// Display information about matching hackers

}

The preceding code is expecting a request like this:

$ curl localhost:8080/results?search_query=larry

On the other hand, you might get a request like this:

$ curl localhost:8080/results

This time, the URL is missing the search_query query string parameter and the oq
parameter. When it comes time to access the nonexistent search_query parameter
key, Scalatra will throw an exception. If you attempt to view the page in a browser,
you’ll get a page like figure 4.3.

 If you take a look at the stack trace, you’ll notice that the culprit for the error is the
innocent-looking call to params("search_query"). When you attempt to access a
nonexistent key in the params map, Scala doesn’t just return a null value, as might
happen in some other languages. Instead, it throws an exception.

 Why is Scala so strict in this respect? This is, in fact, one of the primary design goals
of the Scala language (not just Scalatra).

AN INTRODUCTION TO PATTERN MATCHING USING THE OPTION TYPE

We’re all used to those ugly moments when code that works just fine under some con-
ditions gives back an unexpected error at runtime. This is often due to the program
receiving some input it didn’t expect.

 In Java, this situation gives you the dreaded NullPointerException, or NPE for
short. In C#, you might be told that your Object reference is not set to an instance
of an object. Other languages have their own messages, but what they all have in
common is that these errors happen at runtime, when it’s possible that your users are
actually trying to accomplish something.

 Wouldn’t it be nice if you could detect these problems at compile time instead?

Listing 4.8 An accident waiting to happen

A missing :search_query param
will cause problems here.

56 CHAPTER 4 Working with user input

Martin Odersky, the designer of Scala, thought so. He designed Scala’s type system in
a particularly clever (and elegant) way, allowing you to program in a style that means
you may rarely see an NPE. One of the main ways of catching NPEs at compile time
rather than runtime is by using the Option type.

NOTE Keep in mind that none of what follows is mandatory (as we’ve just
proved by generating an NPE), but relying on Scala’s type system will allow
you to clean up your code dramatically and reduce your bug count. It’s the
recommended programming style in Scalatra.

You can think of Option as a simple truth value. It either is or isn’t. Instead of true
and false, though, Option has the subtypes Some and None. Some is a container for
some value and None is the opposite: it’s the container for nothing and is used when
there’s no Some.

 The Option type and its subclasses Some and None give you an alternative to nulls.
Instead of confidently declaring that something has the type String, but with the
unspoken understanding that sometimes you’ll get back a live grenade instead, you

Figure 4.3 An exception resulting from bad input

57HTTP parameter handling in Scalatra

can declare it to have a type of Option[String] and a value of either Some("wrapped
value") or None.

 If you use Option as a parameter type, it acts as an explicit signal to other coders
(or your future self) that a return value of None is possible. In part, this is just a matter
of properly communicating your intentions using the type system.

 The biggest improvement Option offers over null, however, is that you can’t forget
to check for None, because it’s part of the type system and can be checked at compile
time. The compiler will force you to first check if you’re dealing with Some, and if you
are, to explicitly say what should happen with a None. Only after that does it allow you
to access the contained value.

GETTING PARAMETERS AS OPTIONS

Currently, params("search_query") gives you the value you’re after directly, but it
contains the possibility of a runtime exception if it hits a null. To fix your action’s
handling of the search_query parameter, you’ll need a way to access the params map
that returns an Option.

 What you want to use is params.get. This method, defined on Scala’s Map class, has
a return type of Option[String]. You then use Scala’s pattern matching to check
whether it’s Some(string) or None.

get("/results") {
params.get("search_query") match {

case Some(search_query) =>
"You searched for: '" + search_query + "'"

case None => "No search query, please provide one."
}

}

The match starts pattern matching on an Option[String] returned from a call to
params.get("search_query"). In the first case you match the actual value against the
pattern Some(message). What that does is just match anything that is Some. By saying
Some(search_query), you also tell the pattern to extract the value to search_query.
The last line checks for the None case that sparked this discussion in the first place.

CHECKING THE CONTENTS

Although the preceding solution works just fine, it ignores one important thing: the
data itself. The existence of the search_query parameter and whether there really is a
search query in it are completely unrelated matters. The query might be an empty
string. Or it might be whitespace.

 You can reuse the same code from listing 4.9. Just add a guard on the Some case
that checks the message, as in the following listing.

Listing 4.9 Using Option to handle missing parameters

Starts pattern
matchingIf there’s Some

search_query
param, echoes

it back Deals with the possibility of
None, without using null

58 CHAPTER 4 Working with user input

params.get("search_query") match {
case Some(search_query) if search_query.trim.length > 0 =>

"You searched for: '" + search_query + "'"

case _ => "No search query, please provide one."
}

First, the pattern matches against the type of the Some. Then, the safeguard (if) lets
you make fine-grained decisions based on the value itself. In listing 4.10, the case
statements effectively mean, if there’s a message and it’s non-empty, then …

PROVIDING DEFAULT VALUES WITH GETORELSE

Often it’s good enough to provide a default value. You could have fixed the error in
the search service using params.getOrElse. Keep in mind that Scalatra’s params are
really just a standard Scala Map. This means that you can use the standard Scala
getOrElse method on the Map class to good effect.

 getOrElse tries to get a parameter value, and when it fails to do that, it uses a pro-
vided function to produce a default value. The following listing shows an example of
how you might use it.

get("/results") {
"You searched for '" + params.getOrElse("search_query", "") + "'"

}

This is a lot shorter than what you saw in listing 4.9 and still manages to keep your
code from throwing exceptions when your application doesn’t receive a
search_query parameter.

HALTING WITH GETORELSE

If you read carefully, you might have noticed that we said getOrElse takes a function
to produce the default value. This function is called only if it’s needed.

 This means you can do interesting tricks with getOrElse. You could provide a func-
tion that logs the missing parameter to a debug log and after that returns a default
value:

params.getOrElse("search_query", {
log.debug("search query missing :(using default")
""

})

This is an interesting possibility, but something far more interesting is that you can
throw exceptions from the default functions.

Listing 4.10 Adding a guard on pattern match

Listing 4.11 Giving parameters default values

Pattern
matches can
have conditions.

Match all other patterns
with the _ placeholder.

59HTTP parameter handling in Scalatra

 This might seem a bit crazy. Wasn’t the original problem that your code could
unexpectedly throw an exception? Well, yes. But it’s a completely different thing when
the exception in question is being explicitly thrown and you’re forced by the type sys-
tem to handle it properly.

 What you can do is use getOrElse and halt together to stop your action whenever
it finds a missing parameter. halt is a Scalatra method that throws a HaltException.
When this happens, Scalatra renders a response according to the parameters given to
the halt method call.

 For example, if you wanted to replicate listing 4.9 in a more succinct way, you
could rewrite it as follows.

get("/results") {
val search_query =
params.getOrElse("search_query",
halt(200, "Please provide a search query"))

"You searched for '" + search_query + "'"
}

Now that you’ve seen how to do type-safe exception handling and halt execution, let’s
delve into type safety for HTTP parameters.

4.3.6 Typed parameters

So far we’ve only talked about String parameters. This has been enough for the simple
search service, but in real-world applications you often need something a bit more fine-
grained to satisfy the needs of type-safe libraries. Numbers need to be Ints, date strings
should be converted to Dates, and decimals should be Doubles or Floats. You might
also want to use your own custom types, such as Name or PhoneNumber instead of String.

 Writing conversion logic for types can be boring, so Scalatra helps by giving you
conversions to some of these primitive types for free, using the params.getAs method.

USING PARAMS.GETAS

You can use params.getAs like this:1

params.getAs[Double]("price") //=> Option(9.99)

Here, you give the type you want to convert to inside the brackets, and the parameter
name like you would normally. The return value will be an Option of that type.

 Let’s say that you want to log a message when you’re adding a new hacker to the
Hacker Tracker. If the hacker was born before Unix, they’re considered classical. The
action should halt if it doesn’t get properly formatted input. The following listing
shows an example implementation.

Listing 4.12 Halting with getOrElse

1 Yes, we’re keenly aware that float arithmetic and money don’t mix well, but it makes for a simple example.

60 CHAPTER 4 Working with user input

post("/hackers") {
val name = params.getAs[Name]("name").getOrElse(

halt(BadRequest("Please provide a name")))

val motto = params("motto")
val birthYear =
params.getAs[Int]("birth-year").getOrElse(
halt(BadRequest("Please provide a year of birth.")))

if(birthYear >= 1970) {
println("Adding a hacker who was born \

within the Unix epoch.")
} else {
println("Adding a classical hacker.")

}

// Create a new hacker with the incoming parameters
}

As before, you get the name and motto parameters as strings. The birth-year parame-
ter gets pulled out of the incoming params map as an Int, and you prove it by using it
to conditionally log the hacker’s status (classical or Unix-era).

 One nice thing about getAs is that it handles errors silently for you. If your action
receives a value that doesn’t look like an integer (such as "nineteen seventy"), call-
ing getAs[Int]("birth-year") will still return None, just as if the parameter wasn’t
there to begin with.

 By default, getAs supports conversions to the following types:

■ Integer types—Int, Long, Short, Byte
■ Floating-point types—Float, Double
■ Boolean—The value of true converts to Some(true), false to Some(false),

and everything else to None
■ java.util.Date—Requires a format string to be set:

params.getAs[Date]("publishAt" -> "MM/dd/YYYY")

The date format string is explained in more detail in the JavaDocs of SimpleDateFormat,
available from Oracle at http://mng.bz/itiM.

CUSTOM TYPES

Scalatra’s type conversion mechanism is fully extensible. Let’s look at an example.
 Let’s build a converter to convert name strings to Name instances. A name will be

given in the format of LastName, FirstName, and the type converter’s job will be to
convert that string to an instance of the following case class:

case class Name(firstName: String, lastName: String)

Listing 4.13 Using getAs to get a parameter value with the desired type

Attempts to get
the birth year
as an integer

Throws a
BadRequest
exception if the year
of birth is missing
or not an int

61HTTP parameter handling in Scalatra

Divide the work into three parts. The first part, parsing a Name out of a String, is just a
matter of using split and doing some cleanup. You can pattern-match the returned
Array[String] to extract the lastName and firstName:

def toName(str: String) = str.
split(',').
map(_.trim) match {

case Array(lastName, firstName) =>
Name(lastName, firstName)

}

str.split(',').map(_.trim) returns an Array of name parts. Using map(_.trim)
applies the String#trim() method on each part to strip any surrounding whitespace
from the parts.

 What will ultimately reach the pattern match will be a two-element Array with the
last and first names. For example, for the name Doe, John, the array would look like
Array(Doe, John). The pattern Array(lastName, firstName) will match that and
extract lastName and firstName out for you.

 Next, you need to define the type converter. A type converter is just a function that
has the type of TypeConverter[T]. For this example, the type parameter T will be
Name. With the toName method already defined, the code needed for the type con-
verter is reduced to this:

val stringToName: TypeConverter[Name] = safe { str =>
toName(str)

}

That safe { block will catch any exceptions resulting from bad casting attempts and
return an Option instead.

 In theory, you could stop here and start using the custom type conversion with getAs.
But the code would be verbose, because you’d need to write params.getAs[Name]
("name")(stringToName).

 To fix this, you can make stringToName an implicit val. A Scala implicit is like
a compile-time decorator for doing type conversions. If you try to cast a variable from
one type to another, and the compiler doesn’t know what to do, it’ll check in the cur-
rent scope to see if there are any implicits defined that can handle the type conversion
before it gives up and throws a compile-time exception.

 Just add the keyword implicit to the definition, and you’re ready:

implicit val stringToName: ...

With the converter in place, all that’s left is utilizing the new converter. The following
listing shows the current state of the controller (with print and logging statements
taken out).

62 CHAPTER 4 Working with user input

package com.constructiveproof.hackertracker

import org.scalatra._
import scalate.ScalateSupport
import org.scalatra.util.conversion.TypeConverter

class HackersController extends HackerTrackerStack {

case class Name(
lastName: String, firstName: String)

def toName(str: String) = str.split(',').
map(_.trim) match {

case Array(lastName, firstName) =>
Name(lastName, firstName)

}

implicit val stringToName:
TypeConverter[String, Name] =

safe { str =>
toName(str)

}

post("/hackers") {
val name = params.getAs[Name]("name").getOrElse(

halt(BadRequest("Please provide a name")))

val motto = params("motto")
val birthYear = params.getAs[Int]("birth-year").getOrElse(

halt(BadRequest("Please provide a year of birth.")))

if (birthYear >= 1970) {
println("Adding a hacker who was born within the Unix epoch.")

} else {
println("Adding a classical hacker.")

}

// Create a new hacker and redirect to /hackers/:slug
}

get("/hackers/:slug") {
val slug = params("slug")
// Retrieve and display info about this hacker

}

get("/results") {
val searchQuery = params("search_query")
// Search for and display matching hackers

}

get("/hackers/tagged") {
val tags = multiParams("tag")
// Retrieve and display hackers
// matching all the given tags

}
}

Listing 4.14 A Scalatra action with custom typed parameters

63Filters

This wraps up our discussion of parameter handling in Scalatra. Now that you’ve had
an introduction to basic parameter handling, you should be able to confidently grab
incoming input from the request.

 Now let’s turn our attention to the next parts of the request’s lifespan: before and
after filters, reading headers, reading and writing cookies, and writing out a response.

4.4 Filters
Just like its Sinatra forebear, Scalatra allows you to do selective processing before and
after hitting the main body of a route action.

Let’s say you’ve got a controller class that looks like the following listing.

package com.constructiveproof.hackertracker

import org.scalatra._
import scalate.ScalateSupport
import org.scalatra.util.conversion.TypeConverter

class HackersController extends HackerTrackerStack {

case class Name(lastName: String, firstName: String)

def toName(str: String) = str.split(',').
map(_.trim) match {
case Array(lastName, firstName) =>

Name(lastName, firstName)
}

Listing 4.15 Filters example

Sharing your conversions
If you want to use your custom converters across servlets, or if you have more than
one of them, it might be a good idea to place them in a trait.

Just extend org.scalatra.util.conversion.TypeConverterSupport from that
trait, and you can then mix in the conversions to all servlets needing them.

Scalatra before/after filters are not servlet filters
If you’re coming from a Java background, you may be used to thinking of filters as
servlet filters, which are a way of operating on the request at the servlet level.

Although Scalatra classes can be filters in this sense, when we talk about filters in
this section, we’re talking about the equivalent of Sinatra’s filters, which are (confus-
ingly) called the same thing.

64 CHAPTER 4 Working with user input

implicit val stringToName:
TypeConverter[String, Name] =

safe { str =>
toName(str)

}

before() {
contentType="text/html"
DataBase.connect

}

after() {
DataBase.disconnect

}

post("/hackers") {
val name = params.getAs[Name]("name").getOrElse(

halt(BadRequest("Please provide a name"))
)
val motto = params("motto")
val birthYear =

params.getAs[Int]("birth-year").getOrElse(
halt(BadRequest("Please provide a year of birth.")))

// Create a new hacker and redirect to /hackers/:slug
}

get("/hackers/:slug") {
val slug = params("slug")
// Retrieve and display info about this hacker

}

get("/results") {
val searchQuery = params("search_query")
// Search for and display matching hackers

}

get("/hackers/tagged") {
val tags = multiParams("tag")
// Retrieve and display hackers
// matching all the given tags

}
}

object DataBase {
def connect = {
println("Connecting to database.")

}
def disconnect = {
println("Disconnecting from database.")

}
def insert(message: String) {
println("Inserting '" + message +

"' into the database")
}

}

A before filter that
runs before every
route in this class Sets a contentType

before every request

Connects to a
(fake) database An after filter that

runs after the action

Disconnects
from the (fake)

database

All action code
runs between
the before and
after filters.

A fake database
object to make

the compiler
happy

65Filters

The code in the before filter will run before every matched route in HackersCon-
troller. Keep in mind that the before filter will not be run if no matching routes are
found; a request to /echo/foo/bar, for example, would not match any routes and the
before filter would never run.

 This before filter does two things:

■ It sets a contentType on the response.
■ It opens a fake database connection. You’ll see real database connections in

chapter 10. For now, you’ll just stub them out.

Next, the action code runs. In this controller, multiple routes are defined: post("/hack-
ers"), get("/hackers/:slug"), get("/results"), and get("/hackers/tagged"). If an
incoming request maps to any of these routes, the before filter runs first, and then the
route’s action is run. Afterward, the after filter runs.

4.4.1 Selectively running filters

It’s possible to define multiple filters at once, and to run filters selectively. If you wanted
to set the content type before every request, but only open and close the database con-
nection when it’s in use on a specific route, you could set up your filters as follows.

before() {
contentType="text/html"

}

before("/hackers") {
DataBase.connect

}

after("/hackers") {
DataBase.disconnect

}

Listing 4.16 defines two before filters. The first one will set the contentType before
every request.

 The other filters defined here, before("/hackers") and after("/hackers"), will
run only on the post("/hackers") route. The other routes will not trigger execution
of these filters.

4.4.2 Filter conditions

It’s also possible to run (or not run) filters based on fairly complex conditional code.
For example, if you wanted to run a before filter for a specific route, but only on POST
requests, you could do this:

before("/hackers", request.requestMethod == Post) {
DataBase.connect;

}

Listing 4.16 Multiple and selective filters

Runs before all routes

Runs only before the post("/")

Runs only after the post("/")

66 CHAPTER 4 Working with user input

The second argument to the before method is a Boolean condition that checks that
the HTTP request verb is POST. It’s possible to use any Boolean expression you can
think of to conditionally run filters on your routes.

 Filters are a great way to use the Don’t Repeat Yourself (DRY) principle to clean up
your code. Next, we’ll look at several other handy helpers.

4.5 Other kinds of user input
Besides HTTP parameters, there are several other kinds of information that you can
read from a request, such as request headers and cookies.

4.5.1 Request headers

Sometimes you’ll need to read headers off an incoming request. You can do this using
the request.getHeader() method.

 For example, if you want to know whether text/html is an acceptable content type
for a given request, you can check by doing this:

request.getHeader("Accept").split(",").contains("text/html")

4.5.2 Cookies

You can easily read incoming cookies using the cookies.get method and write them
using cookies.update, as shown in the following listing.

package org.scalatra.example

import org.scalatra._

class CookiesExample extends ScalatraServlet {
get("/") {
val previous = cookies.get("counter") match {

case Some(v) => v.toInt
case None => 0

}
cookies.update("counter", (previous+1).toString)
<p>

Hi, you have been on this page {previous} times already
</p>

}
}

Listing 4.17 Reading and writing cookies

Skinny controllers, fat elsewhere
In Scalatra, you’re free to structure your application in any way you like. Having said
that, it pays to think of your action code as the place where you grab data off the
incoming HTTP request and then quickly hand it off to other layers of your application
that do the real work. If you do everything in your actions, you’re probably not going
to build the most modular, testable, and reusable code that you can. Put your con-
trollers on a diet, and keep your action code thin.

Reads the cookie using
cookies.get(“counter”)

Writes to the cookie using
cookies.update(“counter”)

67Request helpers

Listing 4.17 shows the reading and writing of cookies. The cookies method is avail-
able in any of your actions.

 The cookies method, like the params method, gives you access to a Scala Map con-
taining available cookie keys and values. As with params, if you want to go back to
using null values instead of Option and pattern matching, you can use cook-
ies("counter") to get the value out directly.

4.6 Request helpers
Scalatra also includes some built-in helper methods to accomplish common HTTP-
related tasks.

4.6.1 Halting

If you want to immediately stop execution within a filter or an action, you can call
halt(). You can also supply an HTTP status, which will be sent back as part of the
response: halt(403). Additionally, you can send back a status, a reason, whatever
headers you want, and even a response body.

 For convenience, you can used named arguments if you’re sending back some-
thing complicated, as follows.

package com.example.app

import org.scalatra.ScalatraServlet

class GateController extends ScalatraServlet {

before(){
if(params("name") == "Arthur") {

halt(status = 403,
reason = "Forbidden",
headers = Map("X-Your-Mother-Was-A" -> "hamster",
"X-And-Your-Father-Smelt-Of" -> "Elderberries"),

body = <h1>Go away or I shall taunt you a second time!</h1>)
}

}

get("/") {
"the holy grail!"

}
}

Almost anyone hitting the code in list-
ing 4.18 will see the result shown in
figure 4.4. But if your name is Arthur,
execution will halt, as in figure 4.5.

Listing 4.18 Halting

If King
Arthur is at
the gate … Halts with a 403

forbidden HTTP status

Gives a reason
back to the client

Sets some
response
headers

Taunts the user
in the returned
response body

Figure 4.4 The holy grail

68 CHAPTER 4 Working with user input

As a creative exercise, feel free to combine this code with the cookie-counter example
from section 4.5.2 so you can detect when Arthur comes back for more.

4.6.2 Redirecting

Another common task in HTTP applications is issuing a redirect. To issue a temporary
(301) redirect, you can say redirect("/someplace/else") in any filter or action.

 There are no built-in helpers for permanent redirects. If you want to issue a per-
manent redirect, your best bet is to do something like this:

halt(status = 301, headers = Map("Location" -> "http://example.org/"))

4.6.3 ActionResult

There’s another way to issue HTTP responses (and potentially redirects). Scalatra
actions can return an ActionResult. An ActionResult is a conveniently named Scala-
tra type bundling up a specific HTTP response status, an optional redirect where appli-
cable, and headers.

 An example is worth a thousand words. Let’s rewrite listing 4.18 with an Action-
Result and include a nicer form of permanent 301 redirect.

package com.example.app

import org.scalatra.{Forbidden, ScalatraServlet}

class GateController extends ScalatraServlet {

before(){
if(params("name") == "Arthur") {

halt(Forbidden(
<h1>

Go away or I shall taunt you a second time!
</h1>,
Map("X-Your-Mother-Was-A" -> "hamster",

"X-And-Your-Father-Smelt-Of" -> "Elderberries"),
"Forbidden"))

}
}

get("/") {
"the holy grail!"

Listing 4.19 ActionResult in action

Figure 4.5 Halt with
a response body

Forbidden object
is an ActionResult

69Summary

}

get("/") {

}

}

That Forbidden object is an ActionResult that’s built into Scalatra. It will cause the
framework to respond to the request with a 403 status.

 There are several dozen other ActionResult objects in Scalatra, mapping to
most HTTP status codes. Ok maps to a 200 response, Created maps to a 201, Bad-
Request maps to a 400, and NotFound maps to a 404. See the Scalatra source code at
GitHub (https://github.com/scalatra/scalatra/blob/master/core/src/main/scala/
org/scalatra/ActionResult.scala) for a full list.

 ActionResults can make your intentions a lot clearer to readers of your code,
especially when you return any of the lesser-known status codes.

4.7 Summary
■ HTTP-based applications can accept input in a variety of ways, including form

parameters, path parameters, and query parameters. Scalatra reads all of these
types of parameters from incoming requests using the params function, which is
part of the Scalatra DSL.

■ The params function returns a Scala Map containing all incoming parameters.
The map keys and values are strings.

■ Scala’s Option type is one of the language’s key features. You can use it to check
your code at compile time, guarding against runtime errors.

■ You can execute code before any action in a servlet using the before() func-
tion. Combine it with conditional statements if you need to.

■ Scalatra has built-in helpers for most HTTP-related tasks, including writing
cookies, redirecting to alternate URLs, or halting execution.

■ The ActionResult functions can be used when rendering a response. They
return the proper HTTP status code for a given situation, and give an English-
language explanation of your intentions, which can provide a useful explana-
tion of what’s going on to other programmers (or your future self).

Part 2

Common development tasks

The topics we’ll discuss in this part of the book aren’t necessarily part of the
Scalatra core framework; you'll learn how to integrate with external libraries to
extend Scalatra’s core capabilities. Chapter 5 explores JSON handling, and chap-
ter 6 shows you how to handle file uploads and serve files to clients. Chapter 7
looks at the details of HTML templating. Chapters 8 and 9 cover testing and
application deployment, and chapter 10 discusses data storage and querying.

73

Handling JSON

JSON is a common data interchange format for semistructured data. It’s human-
readable and supports primitive, array, and object values. Additionally, for web services
it’s the natural data format of the browser, due to its close relationship with JavaScript.

 Scalatra offers a module that supports an application working with JSON. This
chapter covers its use with practical examples taken from the food domain. Who
knows, maybe you’ll also learn a useful recipe!

5.1 Introducing JsonSupport
The Scalatra JSON module extends an application’s request handling with two facets:

■ An incoming JSON request is parsed to a JSON value.
■ A JSON value is written to the response as JSON text, as a result of a route action.

Let’s see how you can add JSON support to an application.

This chapter covers
■ Consuming and producing JSON using the

Scalatra JSON module
■ Handling heterogeneity when working with

JSON
■ Using JSONP

74 CHAPTER 5 Handling JSON

5.1.1 Adding JSON support to an application

Because Scalatra’s JSON support is an optional module, it needs to be added as a
dependency to the sbt build definition:

libraryDependencies ++= Seq(
"org.scalatra" %% "scalatra-json" % ScalatraVersion,
"org.json4s" %% "json4s-jackson" % "3.3.0")

Those dependencies pull in scalatra-json and Json4s. Json4s is a Scala JSON library;
scalatra-json is the actual JSON module that builds on top of Json4s, reusing its JSON-
handling methods and JValue data type. This chapter covers a fair amount of Json4s,
but for full documentation refer to the official website at http://json4s.org.

 Let’s look at what an application needs to do in order to handle JSON. Listing 5.1
shows a minimal example application defining two routes in a trait. You’ll need to mix
these into a class in order to run them.

 The GET route builds and returns a JSON document representing a delicious snack.
The POST route extracts a tuple out of a JSON request and prints it to the console.

import org.scalatra._
import org.scalatra.json._

import org.json4s._
import org.json4s.JsonDSL._

trait MyJsonRoutes extends ScalatraBase with JacksonJsonSupport {

implicit val jsonFormats = DefaultFormats

get("/foods/foo_bar") {
val productJson =

("label" -> "Foo bar") ~
("fairTrade" -> true) ~
("tags" -> List("bio", "chocolate"))

productJson
}

post("/foods") {

def parseProduct(jv: JValue): (String, Boolean, List[String]) = {
val label = (jv \ "label").extract[String]
val fairTrade = (jv \ "fairTrade").extract[Boolean]
val tags = (jv \ "tags").extract[List[String]]

(label, fairTrade, tags)
}

val product = parseProduct(parsedBody)

Listing 5.1 A basic JSON example application

Mixes in the
JacksonJsonSupport

Provides Json4s Formats

Produces a JSON JValue

Reads a tuple from the
JSON request

Invokes a simple parser

75Introducing JsonSupport

println(product)
}

}

Let’s take a closer look at what happens in this listing. The JacksonJsonSupport trait
is responsible for parsing an incoming JSON request to a JValue as well as for writing a
result of type JValue as JSON text to a response. This is accomplished by hooking into
Scalatra’s request-response cycle.

 The GET route returns a JValue as a result, which is written as JSON text to the
response. Generally, if you intend to output JSON using Scalatra’s JSON support, your
JSON routes should always return a value of type JValue. When the route result is of
type JValue, it’s set implicitly to application/json by JacksonJsonSupport.

 Because an HTTP request contains the JSON in textual form, JacksonJsonSupport
provides the function parsedBody, which parses the JSON text and returns a value of
type JValue. parsedBody does several things:

■ Parses the JSON text from the HTTP request body and always returns a JValue.
■ Returns JNothing if the JSON isn’t well-formed.
■ Returns JNothing if the HTTP request doesn’t have the Content-Type header

set to application/json.
■ Parses once for each request, and caches the result. Subsequent calls return the

cached result.

The request will be parsed eagerly before the route is invoked. With the JSON parsed
from the request, the next logical step is usually to extract useful information from
the JSON data. This can include the following:

■ Selecting specific parts of a JSON document
■ Extracting values of other types from a JSON primitive, array, or object
■ Handling optional, missing, and null values

You may have noticed the implicit jsonFormats value. It holds serialization configura-
tion telling Json4s how to handle specific cases when parsing and writing JSON. For
instance, a JSON number can either be handled as a Double or a BigDecimal. The
JSON support requires you to define this value.

 The Formats type is explained in detail in section 5.3.1, and we’ll look at construct-
ing and working with JSON in more detail in section 5.2. For now we’ll stay with the
DefaultFormats settings. As a rule, you should always return a JValue from an action
and use the parsedBody method to access the request’s JSON.

 Let’s now take a closer look at the JValue type.

5.1.2 Introducing the JValue type

The JValue type represents a JSON intermediate model. You can think of a value of
type JValue as the abstract representation of a JSON document, often called its abstract
syntax tree. This simplifies further read and modify operations on that JSON data.

76 CHAPTER 5 Handling JSON

 JSON is a typed language, so a JValue needs to support all types that may appear in
a JSON document. Those are objects, arrays, and primitive values (such as string, num-
ber, Boolean, and null). For each JSON type, there’s a counterpart in the intermediate
model. Listing 5.2 shows the various types. Note that a JValue boxes a native Scala
value—it acts as a container for a value of that type.

sealed trait JValue
case class JString(s: String) extends JValue
case class JBool(value: Boolean) extends JValue

trait JNumber
case class JInt(num: BigInt) extends JValue with JNumber
case class JDouble(num: Double) extends JValue with JNumber
case class JDecimal(num: BigDecimal) extends JValue with JNumber

type JField = (String, JValue)
case class JObject(obj: List[JField]) extends JValue
case class JArray(arr: List[JValue]) extends JValue

case object JNothing extends JValue
case object JNull extends JValue

Let’s look at how a JSON document is represented as a JValue. The following listing
shows a sample JSON document.

{
"label" : "Foo bar",
"fairTrade" : true,
"tags" : ["bio", "chocolate"]

}

Figure 5.1 shows how the document
looks as a JValue. A JSON document
forms a tree. The top-level object is a
JObject containing a set of key-value
pairs representing the JSON object.
The keys (label, tags, and fairTrade)
are of type String. The values are of
type JValue.

 A document tree can be arbitrarily
deep. The array at the key tags is rep-
resented as a value of type JArray.

 Constructing this document from scratch using the JValue types is straightfor-
ward. Let’s construct some objects and see what the resulting Scala types look like. You

Listing 5.2 JValue type

Listing 5.3 A sample JSON document

Figure 5.1 A JSON document as a JValue

77Producing and consuming JSON

can play around with all of the JSON code in a Scala console. Result types are shown in
comments below the assignment code.

val fooBar = JObject(
"label" -> JString("Foo bar"),
"fairTrade" -> JBool(true),
"tags" -> JArray(List(JString("bio"), JString("chocolate"))))

// fooBar: org.json4s.JValue =
// JObject(List((label,JString(Foo bar)), ...

The JValue can also be parsed from JSON text using the parse method, which is
defined on the JsonMethods object:

import org.json4s.jackson.JsonMethods.parse

val txt =
"""{

| "tags": ["bio","chocolate"],
| "label": "Foo bar",
| "fairTrade": true
|}""".stripMargin

val parsed = parse(txt)
// parsed: org.json4s.JValue =
// JObject(List((label,JString(Foo bar)), ...

When comparing the previously constructed value against the parsed value, they are
equal. Note that the order of the fields in a JObject doesn’t matter for equality:

fooBar == parsed
// res: Boolean = true

You should now have a basic understanding of the scope of Scalatra’s JSON support.
Remember that parsing and serialization is done by the JSON support transparently in
a request-response cycle. Also note that it is easy to integrate another JSON library on
your own, such as argonaut or play-json.

 Now let’s look at how you can work with JSON data.

5.2 Producing and consuming JSON
When receiving JSON, you’ll probably want to be able to extract useful information.
When sending JSON, you’ll need to be able to construct it. Let’s start with getting to
know the JSON intermediate data model. We’ll serialize a Recipe object instance as an
example.

 Applications use JSON to encode data that’s delivered to the client, so the applica-
tion needs to be able to create a JSON message. In this section, you’ll learn a simple
but effective DSL for constructing a JSON value that’s then delivered to a client as the
body of an HTTP response.

78 CHAPTER 5 Handling JSON

 There are two ways to create JSON, which can also be combined:

■ Construct it from scratch using the JValue types and the DSL.
■ Decompose existing values to a JValue.

When your application receives a JSON request, it needs to be able to interpret the
JSON contained in that request. This section will introduce you to the following:

■ Parsing a JSON value from an HTTP request
■ Navigating a JSON value to find the required information
■ Extracting a value of a type from a JSON value
■ Handling of extraction failures

The following listing shows a recipe for an Italian pasta dish as a JSON document.
We’ll use this JSON document to explain the concepts in this section.

{
"title": "Penne with cocktail tomatoes, Rucola and Goat cheese",
"details": {
"cuisine": "italian",
"vegetarian": true

},
"ingredients": [{

"label": "Penne",
"quantity": "250g"

}, {
"label": "Cocktail tomatoes",
"quantity": "300g"

}, {
"label": "Rucola",
"quantity": "2 handful"

}, {
"label": "Goat cheese",
"quantity": "200g"

}, {
"label": "Garlic cloves",
"quantity": "2 tsps"

}],
"steps": [
"Cook noodles until aldente.",
"Quarter the tomatoes, wash the rucola, dice

the goat's cheese and cut the garlic.",
"Heat olive oil in a pan, add the garlic and the tomatoes and

steam short (approx. for 5 minutes).",
"Shortly before the noodles are ready add the rucola

to the tomatoes.",
"Drain the noodles and mix with the tomatoes,

finally add the goat's cheese and serve."
]

}

Listing 5.4 Example recipe as JSON text

79Producing and consuming JSON

Although it’s possible to stick with the JValue types when processing JSON, it’s often
helpful or necessary to also employ classes. The JSON language features basic types,
but classes give you additional expressivity and type safety. In addition, other third-
party libraries, such as database-mapping layers, may require the use of classes.

 The domain model consists of the types Recipe, RecipeDetails, and Ingredient-
Line. The code is shown in the following listing.

case class Recipe(title: String,
details: RecipeDetails,
ingredients: List[IngredientLine],
steps: List[String])

case class RecipeDetails(cuisine: String, vegetarian: Boolean,
diet: Option[String])

case class IngredientLine(label: String, quantity: String)

5.2.1 Producing JSON

There are three methods of creating a JValue in the Json4s library:

■ Using the JValue types
■ Using the JValue DSL
■ Decomposing values to a JValue using a generic reflection-based method

Creating a JValue from scratch using the JValue types has the benefit that you can be
explicit about the resulting JSON. But it’s also the most verbose approach and can lead
to cumbersome code. You saw this approach in section 5.1.2, so we’ll employ the other
two approaches here.

 The DSL is based on a few simple operators and implicit conversion. In order to
use the JSON DSL, it needs to be made available in the current scope by importing
org.json4s.JsonDSL._. This enables conversion from primitive and collection types
to a JValue by specifying the expected type for an expression:

val jsString: JValue = "italian"
// jsString: org.json4s.JValue = JString(italian)

val jsBool: JValue = true
// jsBool: org.json4s.JValue = JBool(true)

A JSON object is constructed from Tuple2[String, A], where A has an implicit view to
JValue. The ~ operator combines multiple fields into a single JSON object. JSON
arrays are created from Scala collections:

val detailsJson =
("cuisine" -> "italian") ~ ("vegetarian" -> true)

// detailsJson: org.json4s.JsonAST.JObject =

Listing 5.5 Example recipe domain model

80 CHAPTER 5 Handling JSON

// JObject(List((cuisine,JString(italian)),
// (vegetarian,JBool(true))))

val tags: JValue = List("higher", "cuisine")

The next listing shows an example using nested objects, a list of primitives, and a list
of nested objects, and constructs the JSON document from listing 5.4.

val recipeJson =
("title" ->
"Penne with cocktail tomatoes, Rucola and Goat cheese") ~

("details" -> detailsJson) ~
("ingredients" -> List(
("label" -> "Penne") ~ ("quantity" -> "250g"),
("label" -> "Cocktail tomatoes") ~ ("quantity" -> "300g"),
("label" -> "Rucola") ~ ("quantity" -> "2 handful"),
("label" -> "Goat cheese") ~ ("quantity" -> "250g"),
("label" -> "Garlic cloves") ~ ("quantity" -> "250g"))) ~

("steps" -> List(
"Cook noodles until aldente.",
"Quarter the tomatoes, wash the rucola,

dice the goat's cheese ...",
"Heat olive oil in a pan, add the garlic and the tomatoes and ...",
"Shortly before the noodles are ready add the rucola to the ...",
"Drain the noodles and mix with the tomatoes,

finally add the ..."))

One goal of the DSL is to construct a valid JValue with very little boilerplate code.
Because the DSL is based on implicit conversion, this means a conversion function
needs to be available for all values.

 Say you want to support a class from the recipe domain model shown earlier, in list-
ing 5.5. Assume that you want to convert a RecipeDetails value to a JValue. When
trying to use a value of type RecipeDetails directly in the DSL, this won’t work:

val jsObject: JValue =
("details" -> RecipeDetails("italian", true, None))

// <console>:23: error: No implicit view available
// from RecipeDetails => org.json4s.JsonAST.JValue.

The error tells you that no conversion function is available in the current scope. Now
let’s see how you can extend the DSL for your own types by providing one. The
implicit function details2jvalue in the following listing takes a RecipeDetails
and returns a JValue. This allows you to use a RecipeDetails.

implicit val formats = DefaultFormats

implicit def details2jvalue(rd: RecipeDetails): JValue =
Extraction.decompose(rd)

Listing 5.6 Producing a JValue with the DSL

Listing 5.7 Extending the DSL

81Producing and consuming JSON

val jsObject: JValue =
("details" -> RecipeDetails("italian", true, None))

// jsObject: org.json4s.JValue =
// JObject(List(
// (details,JObject(List((cuisine,JString(italian)),
// (vegetarian,JBool(true)))))))

The function relies on decomposition to convert a RecipeDetails to a JValue.
Decomposing is a generic reflection-based method. Depending on the concrete type
of a value, either a JObject, a JArray, or a primitive value is constructed. It’s exposed
through the function Extraction.decompose(a: Any): JValue.

 Generally, the following rules are used:

■ A primitive value is converted to its matching JSON primitive (for example, a
String will result in a JString).

■ A collection value is converted to a JSON array, with the elements of the collec-
tion being converted recursively.

■ An object is converted to a JSON object, with all constructor fields being con-
verted recursively.

It’s possible to override the default conversion behavior for a type by registering a cus-
tom serializer for that type. This is discussed in section 5.3.

 The JValue DSL leads to concise code and allows you to produce JSON with little
typing overhead. Decomposition doesn’t involve writing any manual conversion code,
and it’s good for the average conversion case. It relies on general conventions that
may not be suitable in all cases, so you may need to write a custom serializer.

 Both approaches can be combined: decomposition can be used in the DSL, and
the DSL can be used to write a custom serializer. Now let’s move on and look at how to
process JSON.

5.2.2 Consuming JSON

In this section, you’ll learn how to traverse a JSON document and extract values from
it. Let’s say you’re interested in a specific part of the JSON document, such as the title
of the recipe in listing 5.4. In order to read this information, you need to be able to
address that part of the document. Because a JSON object consists of nested key-value
pairs, the keys can be used to perform a traversal trough the JSON document.

 For example, selecting the value of the field with the name "title" works like this:

recipeJson \ "title"
// res: JString(Penne with cocktail tomatoes, Rucola and Goat cheese)

The function \(nameToFind: String): JValue represents a one-step select that tries
to find a field with the given key in the current value. Multiple operations can be
chained consecutively:

recipeJson \ "details" \ "cuisine"
// res: JString(italian)

www.allitebooks.com

http://www.allitebooks.org

82 CHAPTER 5 Handling JSON

This one-step selection process allows you to select values deep in nested objects. The
syntax resembles XPath in the XML world, which is used to address parts of an XML
document.

 In an array, the select operation is applied to each contained value, and the results
of these invocations are merged in a single JArray:

recipeJson \ "ingredients" \ "label"
// res: JArray(List(JString(Penne), JString(Cocktail tomatoes), ...))

In addition to simple selects, it’s possible to do a recursive selection that searches all
nested values. This is what the function \\(nameToFind: String): JValue does:

scala> recipeJson \\ "cuisine"
// res: org.json4s.JValue = JString(italian)

There are two special cases that we’ll take a short look at now: one regarding missing
values and the other regarding null values.

 Missing values happen when a traversal can’t find a suitable value in the JSON doc-
ument. A missing value is represented by the JValue zero value, JNothing:

recipeJson \ "details" \ "prerequisites"
// res: JNothing
// there are no prerequisites, returns JNothing

Applying a select on a JNothing yields JNothing again.
 A null value is often used to imply a missing value. It’s represented as the unique

value JNull.
 Now that you know how to navigate through a JSON document, let’s look at how

you can extract a value of some arbitrary type, A, from a JValue. This is called extrac-
tion, and it’s handled by the function extract[A], which is defined on a JValue.

 The following types are valid targets to extract to:

■ Case classes and classes
■ Value types (Boolean, Int, Float, Double) or primitive reference types (String,

Date)
■ Standard collection types (List[T], Seq[T], Map[String, _], Set[T])
■ Any type that has a configured custom deserializer (this is shown in section 5.3.3)

When extracting a value from a JValue, that JValue is checked for compatibility with
the target type. When the two are compatible, an instance of the target type is con-
structed. Primitives and arrays are compatible with Scala’s primitives and collections.
For example, the title of the recipe can be extracted as a String by calling extract
with String as the target type:

(recipeJson \ "title").extract[String]
// res: String = Penne with cocktail tomatoes, Rucola and Goat cheese

83Producing and consuming JSON

Collections are read from a JSON array. A list of preparation steps from the recipe can
be extracted to a List[String]:

(recipeJson \ "steps").extract[List[String]]
// res: List[String] = List(Cook noodles until aldente., ...)

Class instances are extracted from JSON objects using a 1:1 mapping approach
between a JSON object and a class. For each constructor parameter of the class type, a
matching field in the object is required. This is similar to decomposition, described in
section 5.2.2.

 For example, the following code extracts a RecipeDetails value:

(recipeJson \ "details").extract[RecipeDetails]
// res: RecipeDetails = RecipeDetails(italian,true,None)

This is how extraction works. Note that because there is no diet in the JSON, a None is
extracted.

 The extraction fails at runtime when the JSON is incompatible with the type. For
example, a JBool can’t be extracted as a String, and a missing value is incompatible
with every type. In this case an exception is raised:

JNothing.extract[String]
// MappingException:
// Did not find value which can be converted into java.lang.String

In the case where an extraction may fail, the value can optionally be extracted. This
means the value is read into an instance of Option[A]. This is what extractOpt[A]
(json: JValue): Option[A] does, with the following possible results:

■ Some(v)—If the value can be extracted
■ None—If the extraction fails
■ None—If extractOpt is called on JNull or JNothing

The following code shows various examples of optional extraction. Note that JNull
and JNothing are both handled as missing values:

JString("foo").extractOpt[String]
// res: Option[String] = Some(foo)

JString("foo").extractOpt[Boolean]
// res: Option[Boolean] = None

JNull.extractOpt[String]
// res: Option[String] = None

JNothing.extractOpt[String]
// res: Option[String] = None

84 CHAPTER 5 Handling JSON

The optional extraction can be combined with the \/ type from Scalaz (see https://
github.com/scalaz/scalaz), resulting in a simple validation. Listing 5.8 shows how this
can be done. The computation succeeds with an Ok(..) when all values are present.
Otherwise, a BadRequest() is returned.

trait MyJsonScalazRoutes extends ScalatraBase with JacksonJsonSupport {

override def renderPipeline: RenderPipeline = ({
case \/-(r) => r
case -\/(l) => l

}: RenderPipeline) orElse super.renderPipeline

post("/foods_alt") {

for {
label <- (parsedBody \ "label").extractOpt[String] \/> BadRequest()
fairTrade <- (parsedBody \ "fairTrade").extractOpt[Boolean] \/> BadRequest()
tags <- (parsedBody \ "tags").extractOpt[List[String]] \/> BadRequest()

} yield Ok((label, fairTrade, tags))

}

}

This should give you some methods for extracting basic information from JSON. Let’s
now look at how to handle more-specific cases.

5.3 Customizing JSON support and handling mismatches
The conversion presented in the previous section is sufficient in cases where the struc-
tures of a class and a JSON object are very similar. In reality, there’s often some form of
discrepancy. This can be a simple variation in the naming of fields or a difference in
the structures.

 Sometimes you can adjust one side so that both match, but in some cases this may
not be feasible. For example, when you’re working with an existing data model, a
code refactoring would be impossible due to dependencies. Similarly, when you’re
supporting a standardized JSON format, designing Scala classes to exactly match the
JSON format can be impractical.

 In these cases, a custom conversion function is a cheaper and more sensible alter-
native. This section covers common approaches for handling such cases.

5.3.1 Customizing JSON support and using field serializers

In Json4s, an implicit value of type Formats determines the concrete JSON handling.
When mixing in the Scalatra JSON support, the implicit value needs to be defined, as
shown earlier in listing 5.1.

Listing 5.8 JSON validation using optional extraction and Scalaz’s \/ type

Handles \/ as a return value
by extending Scalatra’s
render pipeline and extracts
the value from the container

Short-circuits with BadRequest
when optional extraction fails

Yields an Ok when all
previous steps succeed

85Customizing JSON support and handling mismatches

 There’s an implementation with common default values in the DefaultFormats
trait. The trait defines properties that can be overridden when the default behavior
isn’t sufficient. These are a few use cases where a custom Formats saves the day:

■ When a date value should be read or written in a non-default date format
■ When a JSON number should be read as a BigDecimal instead as a Double
■ When there’s a difference between a JSON object and some type, A, that

requires specific conversion using a custom serializer or field serializer

Table 5.1 lists properties that can be overridden. For a full reference, see the official
Json4s documentation at http://json4s.org.

Let’s see how the default formats handle dates. You’ll define an implicit Default-
Formats value and decompose a map with a java.util.Date. After that, you’ll parse it
again and extract the date. The date is written following the ISO 8601 standard.

Table 5.1 Properties of Formats

Formats property Explanation Default

wantsBigDecimal:
Boolean

If true, a decimal value is read to
JDecimal when decomposing.
Otherwise, it’s read to a JDouble.

false

strictOptionParsing:
Boolean

If true, parsing to an Option[T] is
strict. Incompatible values are then not
mapped to None but throw an error.

false

emptyValueStrategy:
EmptyValueStrategy

When set to skip, a None is skipped.
preserve writes None as null.

skip

dateFormatter:
SimpleDateFormat

Specifies the format used to parse and
write dates.

yyyy-MM-dd'T'
HH:mm:ss'Z'

typeHints:
TypeHints

Specifies what type hints variant
should be used.

NoTypeHints

typeHintsFieldName:
String

Sets the name used as the key of the
type hint field.

jsonClass

customSerializers:
List[Serializer[_]]

Specifies a list of custom serializers. Empty list

customKeySerializers:
List[KeySerializer[_]]

Specifies a list of custom key serializers. Empty list

fieldSerializers:
List[(Class[_],
FieldSerializer[_])]

Specifies a list of field serializers. Empty list

86 CHAPTER 5 Handling JSON

import org.json4s._
import org.json4s.Extraction.decompose
import org.json4s.jackson.JsonMethods.{parse, compact}
import java.util.Date

implicit val formats = DefaultFormats

val txt = compact(decompose(Map("date" -> new Date())))
// txt: String = {"date":"2014-11-19T19:34:34Z"}

val date = (parse(txt) \ "date").extractOpt[Date]
// date: Option[java.util.Date] = Some(Wed Nov 19 20:34:34 CET 2014)

A custom Formats is most easily created by extending the DefaultFormats trait. As an
exercise, you can create one that employs a custom date format, MM/dd/YYYY.

import java.text.SimpleDateFormat

implicit val formats = new DefaultFormats {
override protected def dateFormatter: SimpleDateFormat = {
new SimpleDateFormat("MM/dd/yyyy")

}
}
val txt = compact(decompose(Map("date" -> new Date())))
// txt: String = {"date":"11/19/2014"}

val date = (parse(txt) \ "date").extractOpt[Date]
// date: Option[java.util.Date] = Some(Wed Nov 19 00:00:00 CET 2014)

A field serializer is useful when those fields that don’t appear in a class constructor
should be serialized. Assume you have a class, Foo, that you want to serialize with all its
fields. The constructor has two parameters: x and y. Because y is prefixed by a val,
there’s also a y field. Additionally, there are a and b fields:

class Foo(x: String, val y: String) {
private val a: String = "a"
var b: String = "b"

}

With the default serialization, only the single field, y, that appears in the constructor is
written to the JSON during serialization:

import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.Serialization.write

implicit val formats = DefaultFormats

Listing 5.9 Using the default Formats

Listing 5.10 Creating a custom Formats

87Customizing JSON support and handling mismatches

val foo = new Foo("x", "y")

val txt1 = write(foo)
// txt1: String = {"y":"y"}

In this example, you want all fields, y, a, and b, to appear. A field serializer does exactly that.
 You can add a FieldSerializer[Food] using the + operator, resulting in a new

Formats. Now all fields are taken into account:

import org.json4s._
import org.json4s.JsonDSL._
import org.json4s.jackson.Serialization

implicit val formats = DefaultFormats + new FieldSerializer[Foo]()

val foo = new Foo("x", "y")

val txt1 = Serialization.write(foo)
// txt1: String = {"y":"y","a":"a","b":"b"}

Section 5.3.3 shows how to further specialize the JSON handling for a type featuring
custom serializers. Let’s next look at how to employ type hints.

5.3.2 Handling polymorphism with type hints

In this section, we’ll discuss how to use type hints, which are a way to work with poly-
morphic values. Let’s assume that you need to work with the class hierarchy shown
next. The Measure data type describes common measures that may appear in a recipe,
and it improves the expressivity of the recipe model:

sealed trait Measure
case class Gram(value: Double) extends Measure
case class Teaspoon(value: Double) extends Measure
case class Tablespoon(value: Double) extends Measure
case class Handful(value: Double) extends Measure
case class Pieces(value: Double) extends Measure
case class Milliliter(value: Double) extends Measure

Let’s further assume that you want to create a JSON array from a list of such values and
read it back. This is the JSON that’s generated by default:

val amounts = List(Handful(2), Gram(300), Teaspoon(2))
val amountsJson = Extraction.decompose(amounts)

[{
"value" : 2

}, {
"value" : 300

}, {
"value" : 2

}]

88 CHAPTER 5 Handling JSON

Each element consists of a single field, v.
 Note that by looking at the JSON representation, there’s no clear way to determine

what subtype of Amount a single element of this array represents. Consequently, it’s not
possible to read this array back to a List[Amount]. Instead, this results in the follow-
ing exception:

amountsJson.extract[List[Measure]]
// MappingException:
// No constructor for type Measure, JObject(List((v,JInt(2))))

One way out of this dilemma is to use a synthetic field that holds type information. In
Json4s, such a field is called a type hint. By default, the key is jsonClass and the value is
equal to the name of the respective type. When a value is decomposed to a JSON object,
a type hint field is added to it automatically, and when a value is extracted from a JSON
object, the type hint is used to infer the actual type. In order to enable type hints, you
can use the withHints method and provide a type hint configuration, as follows.

import org.json4s.Extraction.decompose
import org.json4s.jackson.JsonMethods.pretty

val hints = ShortTypeHints(List(
classOf[Gram],
classOf[Tablespoon],
classOf[Teaspoon],
classOf[Handful]))

implicit val formats = DefaultFormats.withHints(hints)

val amountsJson = decompose(amounts)

pretty(amountsJson)
// [{
// "jsonClass" : "Handful",
// "v" : 2
// }, ...
//]

amountsJson.extract[List[Measure]]
// res: List[Amount] = List(Handful(2), Gram(300), Teaspoon(2))

Here you use ShortTypeHints with a list of all classes where type hints should be
enabled. The resulting JSON correctly interprets the objects, because there are no
long ambiguities.

 The format of the type hint field can also be customized. For example, there could
already be a different naming convention for a type hint field other than jsonClass,
or the class name could follow a special format. You can customize these two things.

Listing 5.11 Using type hints

89Customizing JSON support and handling mismatches

 Let’s say you need to use the key _type. In order to define a non-default field
name, the value typeHintFieldName can be overridden:

implicit val jsonFormats = new DefaultFormats {
override val typeHintFieldName: String = "_type"

}

For the type hint value, there’s an alternative implementation in the form of Full-
TypeHints that uses the full class name.

 The type hints can be overridden in the Formats as well:

implicit val jsonFormats = DefaultFormats.withHints(FullTypeHints(List(
classOf[Gram],
classOf[Tablespoon],
classOf[Teaspoon],
classOf[Handful])))

Type hints are a simple but effective approach to working with class hierarchies in
polymorphic collections and fields. Let’s now move on and look at how to work with
custom serializers.

5.3.3 Handling heterogeneity with custom serializers

A custom serializer defines the JSON conversion for a specific type. In the case of a syn-
tactical mismatch between JSON and a Scala type, a custom serializer can help you
align the two formats through syntactical and structural transformations. In this sec-
tion, we’ll look at how you can make use of custom serializers.

 Let’s say your application wants to retrieve and send nutritional facts about food
products, and the facts are represented as values of type NutritionFacts. Instead of
typing the facts as primitives, they’re represented as subtypes of Fact. This improves
the expressivity of the model and prevents errors by early and strongly typing. The
model is shown in the following listing.

sealed trait Fact
case class Energy(value: Int) extends Fact
case class Carbohydrate(value: Double) extends Fact
case class Fat(value: Double) extends Fact
case class Protein(value: Double) extends Fact

case class NutritionFacts(
energy: Energy,
carbohydrate: Carbohydrate,
fat: Fat,
protein: Protein)

The nutritional facts should be sent and received as JSON. The expected JSON format
for the public API is defined as follows:

Listing 5.12 Nutritional facts domain

90 CHAPTER 5 Handling JSON

{
"energy": 2050
"fat": 33.9,
"carbohydrate": 36.2,
"protein": 7.9

}

Your goal is to be able to read and write a NutritionFacts value in exactly that for-
mat. Serializing a value to JSON using the default conversion yields the following:

val facts = NutritionFacts(
Energy(2050),
Carbohydrate(36.2),
Fat(33.9),
Protein(7.9))

pretty(decompose(facts))
// {
// "energy": {
// "value": 2050
// },
// ...
// }

This isn’t exactly what you want. Each fact should be written as a JSON number and
not as an object. Trying to read your expected JSON document also results in an
extraction error:

val jsObj = parse("""
{ "energy": 2050,
"carbohydrate": 36.2,
"fat": 33.9,
"protein": 7.9 }

""")

jsObj.extractOpt[NutritionFacts]
// None

In order to fix the mismatch between the two formats, you could adjust either your
domain model or your public API. For example, you could primitively type the fact’s
values as Double instead.

 But obviously this isn’t always possible or preferable. Take as an example a big proj-
ect employing a legacy data model or legacy API. Furthermore, adjusting a model just
to overcome a technical problem is rarely an ideal solution.

 What can you do instead? You can write a custom serializer. A custom serializer
basically represents two partial functions: one function accepts a JValue and returns a
NutritionFacts; the other function knows how to create a NutritionFacts from a
JSON document.

91Customizing JSON support and handling mismatches

 The following listing shows how to define a custom serializer for the example.
Note that you can use the full power of operations discussed in section 5.2.

class NutritionFactsSerializer
extends CustomSerializer[NutritionFacts](implicit formats => ({
case jv: JValue =>

val e = (jv \ "energy").extract[Int]
val c = (jv \ "carbohydrate").extract[Double]
val f = (jv \ "fat").extract[Double]
val p = (jv \ "protein").extract[Double]

NutritionFacts(
Energy(e), Carbohydrate(c), Fat(f), Protein(p)) },

 {
case facts: NutritionFacts =>

 ("energy" -> facts.energy.value) ~
("carbohydrate" -> facts.carbohydrate.value) ~
("fat" -> facts.fat.value) ~
("protein" -> facts.protein.value)

}))

The custom serializer needs to be registered in the implicit Formats value. This can be
achieved by using the + operator, which takes a CustomSerializer as an argument
and returns a new Formats. The following listing shows an example with two routes
using the custom serializer.

trait FoodRoutes extends ScalatraBase with JacksonJsonSupport {

implicit val jsonFormats = DefaultFormats +
new NutritionFactsSerializer

get("/foods/foo_bar/facts") {
val facts = NutritionFacts(

Energy(2050), Carbohydrate(36.2), Fat(33.9), Protein(7.9))

val factsJson = Extraction.decompose(facts)

factsJson
}

post("/foods/:name/facts") {
val facts = parsedBody.extractOpt[NutritionFacts]
println(f"updated facts: $facts")

}

}

This should give you enough power to handle even major format mismatches.

Listing 5.13 Custom serializer for NutritionFacts

Listing 5.14 Using a custom serializer

92 CHAPTER 5 Handling JSON

5.4 JSONP
If you’ve already developed a browser-based web 2.0 application, you’ve probably
heard of the same origin policy (SOP). This is a security measure that should prevent a
resource from accessing resources located on a different host than the resource itself.
It therefore prevents cross-site requests.

 But sometimes you’ll want your website to do exactly that, such as querying a web
service located at another host using an Ajax request. With the SOP, this isn’t possible
without further ado. JSONP (JSON with Padding) allows you to work around SOP. It
issues an HTTP request by inserting a <script /> tag into the DOM instead of using
Ajax. This works because the src attribute of a script isn’t subject to SOP.

 A JSONP request can be detected by the JSON module, and in the case of a JSONP
request, the web service returns JavaScript source code instead of JSON. That
JavaScript represents a function call passing the JSON data as argument. The name of
the function is given as a query parameter.

 A JSONP request is detected by comparing the request parameters against a pre-
defined set of callback parameter names. Those parameters can be set by overriding
the jsonpCallbackParameterNames: Iterable[String] method, as follows.

trait MyJsonpRoutes extends ScalatraBase with JacksonJsonSupport {

override def jsonpCallbackParameterNames = Seq("jsonp")

implicit val jsonFormats = DefaultFormats

get("/foods/foo_bar") {
val productJson =

("label" -> "Foo bar") ~
("fairTrade" -> true) ~
("tags" -> List("bio", "chocolate"))

productJson
}

}

The route can now be called with a query parameter, jsonp, that specifies the name of
the local JavaScript method that should handle the response. The resulting JSON is
returned as a JSONP response. Note that the content type of the response is text/
javascript:

curl -v http://localhost:8080/foods/foo_bar\?jsonp\=handleResponse
> GET /foods/foo_bar?jsonp=handleResponse HTTP/1.1
> User-Agent: curl/7.37.1
> Host: localhost:8080
> Accept: */*
>

Listing 5.15 Supporting JSONP in an application

93Summary

< HTTP/1.1 200 OK
< Date: Wed, 01 Jul 2015 12:05:00 GMT
< Content-Type: text/javascript; charset=UTF-8
< Content-Length: 84
<
/**/handleResponse({"label":"Foo bar","fairTrade":true,"tags":["bio","chocolate"]});

5.5 Summary
■ The Scalatra JSON module integrates Json4s in Scalatra’s request-response cycle

and enables an application to handle JSON requests and answer with JSON
responses.

■ A JValue represents a JSON value. There is a DSL to create JSON as well as to nav-
igate and extract information from it.

■ A value can be converted to and from a JValue using automatic extraction and
decomposition and by writing a custom serializer.

■ JSONP enables a website to query JSON data from different sites in a browser.

94

Handling files

This chapter discusses how to implement file exchange over HTTP with Scalatra. As
an example, you’ll build a basic document store application that acts as an HTTP-
based file server. It will serve documents from the filesystem, and new documents
can be uploaded by a client. The user interface is depicted in figure 6.1.

This chapter covers
■ Serving files to a client via HTTP
■ Receiving files from a client as an HTTP file

upload

Figure 6.1 User interface for the document store example

95Serving files

6.1 Serving files
First we’ll discuss how to serve non-HTML files, such as text documents, web assets,
and media files from a route. You’ll also learn how to serve static resources and how to
apply gzip compression to HTTP responses.

6.1.1 Serving files through a route

A route can serve a file by returning a file as a result. There’s built-in support for the
types java.io.File, java.io.InputStream, and scala.Array[Byte].

 When the type of a returned value is supported, that value is written to the HTTP
response body. The file itself can be read by the route’s action from various places,
such as local or remote filesystems or databases:

get("/sample") {
new File("images/cats.jpg")

}

When the file is written to the response, it ensures that a content type header is set.
This header indicates the type of the file contained in the response body, and this
information enables a client to appropriately interpret the response. Valid content
types include text/plain for text, image/jpeg for JPEG images, and application/
octet-stream for arbitrary binary data. When no content type is explicitly set by the
route, the content type of the file is inferred. This is accomplished by a partial analysis
of the file’s data.

 Let’s build a file-server application as a more advanced example. The application
should have a web API offering read and write access to documents in a document
store. A Document represents the file’s meta-information, including the file’s ID, name,
an optional content type, and a description. The DocumentStore will have methods to
create, find, and list documents. A new document is stored as a map entry in an inter-
nal map, and the file content is written to the filesystem with the Document ID as the
filename. The following listing shows the code.

case class Document(
id: Long,
name: String,
contentType: Option[String],
description: String)

case class DocumentStore(base: String) {

private val fileNameIndex =
collection.concurrent.TrieMap[Long, Document]()

private val idCounter = new AtomicLong(0)

Listing 6.1 Document and DocumentStore classes

96 CHAPTER 6 Handling files

def add(name: String,
in: InputStream, contentType: Option[String],
description: String): Long = {

copyStream(in, new FileOutputStream(getFile(id)))
val id = idCounter.getAndIncrement
fileNameIndex(id) = Document(id, name, contentType, description)
id

}

def list: Seq[Document] = fileNameIndex.values.toSeq

def findById(id: Long): Option[Document] = fileNameIndex.get(id)

def asFile(id: Long): File = new File(f"$base/$id")

private def copyStream(input: InputStream, output: OutputStream) {
val buffer = Array.ofDim[Byte](1024)
var bytesRead: Int = 0
while (bytesRead != -1) {

bytesRead = input.read(buffer)
if (bytesRead > 0) output.write(buffer, 0, bytesRead)

}
}

}

Two optional response header fields can be useful when serving files: Content-
Disposition and Content-Description. The Content-Disposition field contains
information about the processing of the file contained in the response. If the
disposition type is set to inline, then the document in the response should be
displayed directly to the user. The disposition type defaults to attachment, which
usually requires further action from the user to display a result (the browser usually
presents the user with a Save As dialog box or just downloads the file in the
background). Additionally, a filename parameter can be set in the Content-
Disposition field. This provides the client with a default filename that can be used
when storing the file in the filesystem. The Content-Description response header
field can contain a short description about the request payload.

 Listing 6.2 shows how to serve documents from the document store and how to
include meta-information by setting the HTTP headers just discussed. A document
can be queried by its ID. If it can be found, it’s returned with the headers set; other-
wise, a 404 error is returned.

class DocumentsApp(store: DocumentStore)
extends ScalatraServlet with FileUploadSupport with ScalateSupport {

get("/documents/:documentId") {
val id = params.as[Long]("documentId")

Listing 6.2 Serving a file

Adds a new document

Returns a
sequence

of all
documents

Returns a
document
for a given

ID

Returns a
file for a
given ID

Writes an input stream
to an output stream

97Serving files

val doc = store.getDocument(id) getOrElse
halt(404, reason = "could not find document")

doc.contentType foreach { ct => contentType = ct }
response.setHeader("Content-Disposition",

f"""attachment; filename="${doc.name}"""")
response.setHeader("Content-Description", doc.description)
store.getFile(id)

}
}

Let’s turn to the document store now. The DocumentStore is created in the Scalatra-
Bootstrap class when the application starts. You provide the DocumentStore to the
application through constructor injection. Because the document store is initially
empty, the following code adds some sample documents. (Adding documents to the
store via an HTTP file upload is shown in section 6.2.)

import org.scalatra._
import javax.servlet.ServletContext
import org.scalatra.book.chapter05.{DocumentStore, DocumentsApp}

class ScalatraBootstrap extends LifeCycle {
override def init(context: ServletContext) {
val store = DocumentStore("data")
store.add("strategy.jpg",

new FileInputStream(new File("data/strategy.jpg")),
Some("image/jpeg"),
"bulletproof business strategy")

store.add("manual.pdf",
new FileInputStream(new File("data/manual.pdf")),
Some("application/pdf"),
"the manual about foos")

val app = new DocumentsApp(store)
context.mount(app, "/*")

}
}

A request querying the sample document would query the URL http://localhost:8080/
documents/0:

HTTP/1.1 200 OK
Content-Type: application/jpeg;charset=UTF-8
Content-Disposition: attachment; filename="strategy.jpg"
Content-Description: bulletproof business strategy

<<binary data>>

The response contains the stored document.

98 CHAPTER 6 Handling files

6.1.2 Serving static resources

A web application often consists of static web assets, like images, CSS, and HTML.
They’re usually located as static resources in the src/main/webapp source directory.
Those resources can be served to a client in a generic way with the serveStatic-
Resource method.

 The serveStaticResource method resolves a resource from the request URL, and
if one can be found, it’s written to the response. Internally, the resource is resolved by
using the ServletContext.getResource method.

 If no action can be found for a URL, Scalatra tries to serve a static resource by
invoking serveStaticResource. If no resource can be found, a 404 response is
returned with the previously set content type removed. This default behavior is imple-
mented in the notFound handler:

notFound {
contentType = null
serveStaticResource() getOrElse halt(404, <h1>Not found.</h1>)

}

If an application requires nonstandard handling of static resources, you can overwrite
the notFound handler.

6.1.3 Applying gzip compression to responses

HTTP allows you to apply content encoding to the body of a response. In practice, this
is often a compression algorithm that reduces the bandwidth used by a website.

 Scalatra offers the option to encode outgoing responses with the gzip algorithm. In
order to make use of it, the ContentEncodingSupport trait needs to be mixed into the
application:

class DocumentsApp extends ScalatraServlet with ContentEncodingSupport {

get("/sample") {
new File("data/strategy.jpg")

}

}

Now, when a client indicates that it’s able to receive a response compressed with gzip
(by sending an appropriate Accept-Encoding header), the response body is encoded
and a Content-Encoding header is added to the response:

curl -H "Accept-Encoding: gzip" http://localhost:8080

6.2 Receiving files
A multipart request combines one or more different sets of data in a single message
body. When your application receives a multipart request, Scalatra handles it as a
multipart/form-data request, where each body part represents a form field consisting

99Receiving files

of the field’s name and value. The value can be a simple string or binary data represent-
ing a document. Often a body part also contains a suggested filename and a description.

 We’ll start this section with a basic introduction to receiving files in an action. Then
we’ll discuss the possible configuration settings and how to handle errors during the
upload. Along the way, we’ll extend the document store code with a file upload.

6.2.1 Supporting file uploads

Scalatra’s support for file uploads needs to be explicitly mixed into an application
through the FileUploadSupport trait. When that trait is mixed in, and if a multipart
request is detected, the body parts are extracted and made available to the application:

import org.scalatra.ScalatraServlet
import org.scalatra.servlet.FileUploadSupport
import org.scalatra.scalate.ScalateSupport

class DocumentsApp extends ScalatraServlet
with FileUploadSupport with ScalateSupport {

}

Each form field with a specified filename is handled as a file; all other form fields are
handled as standard parameters.

 Each file is represented as an instance of FileItem. A FileItem describes the file’s
name, size, and original field name in the multipart request. The content type as well
as the charset are available if they have been specified in the request; otherwise they
are None. The FileItem fields and methods are listed in table 6.1.

A FileItem can be written to the filesystem, or the content can be retrieved as an
Array[Byte] or java.io.InputStream for further processing. Parameters are merged

Table 6.1 FileItem fields and methods

Name Description

size: Long Size of the file

name: String Name of the file

fieldName: String Name of the form field

contentType: Option[String] Content type of the file

charset: Option[String] Charset of the file

write(file: java.io.File) Writes the data to the filesystem via a
java.io.File

write(fileName: String) Writes the data to the filesystem

get: Array[Byte] Returns the data as a byte array

getInputStream: java.io.InputStream Returns an InputStream to the data

100 CHAPTER 6 Handling files

with GET and POST parameters and can be accessed with either the params or multi-
Params method, as discussed in chapter 4.

 A FileItem can be retrieved with the method fileParams(key: String). The key
parameter is the name of the form field, which can contain multiple files. In that case, the
fileMultiParams(key: String) method can be used, and it returns a Seq[FileItem].

 The following code performs a simple file-upload action:

post("/sample") {
val file = fileParams("sample")
val desc = params("description")
<div>
<h1>Received {file.getSize} bytes</h1>
<p>Description: {desc}</p>

</div>
}

This POST action expects a file with the name sample and a parameter with the name
description. A sample multipart/form-data message conforming to those require-
ments is shown next.

--a93f5485f279c0
content-disposition: form-data; name="file"; filename="foobar.txt"

FOOBAZ
--a93f5485f279c0
content-disposition: form-data; name="description"

A document about foos.
--a93f5485f279c0--

You can send this message as an HTTP request via curl:

curl http://localhost:8080/sample \
--data-binary @data/multipart-message.data \
-X POST \
-i -H "Content-Type: multipart/form-data; boundary=a93f5485f279c0"

You’ve now seen how to upload a document manually.
 Next, let’s extend the document store application with a file-upload form and func-

tionality to receive uploads. The upload form is shown in the following listing. It’s inte-
grated in WEB-INF/templates/views/index.scaml and rendered with the main page.

<div class="col-lg-3">
<h4>Create a new document</h4>
<form enctype="multipart/form-data" method="post" action="/documents">
<div class="form-group">

<label>File:</label>

Listing 6.3 Sample multipart/form-data message

Listing 6.4 A basic file-upload form

101Receiving files

<input type="file" name="file">
</div>
<div class="form-group">

<label>Description:</label>
<input class="form-control"

type="text" name="description" value="">
</div>
<input class="btn btn-default" type="submit">

</form>
</div>

The next listing shows the upload handler.

post("/documents") {
val file = fileParams.get("file") getOrElse
halt(400, reason = "no file in request")

val desc = params.get("description") getOrElse
halt(400, reason = "no description given")

val name = file.getName
val in = file.getInputStream
store.add(name, in, file.getContentType, desc)
redirect("/")

}

First the input is validated, halting with a status code of 400 if a parameter is missing.
The file is then added (with the given description) to the document store, and the cli-
ent is redirected to the main page again.

6.2.2 Configuring the upload support

Having file-upload support in your application allows users to upload files to the
server. But this means users can upload a lot of big files and consume your memory
and disk space. It can therefore be useful to set certain limits on multipart request
handling.

 In listing 6.6, limits are applied to an application: a 30-MB maximum for a single
file, and a 100-MB maximum for the entire request. When a request exceeds one of
these limits, an exception is thrown, which you can handle as shown in section 6.2.3.
The configuration is set by invoking the configureMultipartHandling method, pro-
viding a value of type MultipartConfig.

import org.scalatra.ScalatraServlet
import org.scalatra.servlet.FileUploadSupport
import org.scalatra.servlet.MultipartConfig
import org.scalatra.scalate.ScalateSupport

class DocumentsApp extends ScalatraServlet

Listing 6.5 Upload handler in the DocumentStorage example

Listing 6.6 Configuring upload support in an application

102 CHAPTER 6 Handling files

with FileUploadSupport with ScalateSupport {

configureMultipartHandling(MultipartConfig(
maxFileSize = Some(30 * 1024 * 1024),
maxRequestSize = Some(100 * 1024 * 1024),
))

// ...

}

Table 6.2 lists the available fields of MultipartConfig, all of which are optional. If no
field value is provided, the default value is used. Here a value of -1 means unlimited,
and in theory it could use all available memory. In reality, the concrete behavior also
depends on the servlet container that’s used. For example, some servlet containers
ignore the fileSizeThreshold setting for body parts representing files, and write
those to the disk by default.

Listing 6.6 showed the preferred approach to upload a configuration, but the web.xml
deployment descriptor can also be used to configure upload support, as shown in list-
ing 6.7. This can be useful when an application already makes substantial use of web.xml.
It’s possible because Scalatra’s upload support builds on the Servlet 3.0 multipart API.

<servlet>
<servlet-name>documents</servlet-name>
<servlet-class>org.scalatra.book.chapter06.Documents</servlet-class>
<multipart-config>
<max-file-size>31457280</max-file-size>
<max-request-size>104857600</max-request-size>
<location>/tmp/uploads</location>

</multipart-config>
</servlet>

This XML is functionally equivalent to the Scala code in listing 6.6.

Table 6.2 The fields of the MultipartConfig type

Name Type Default Description

maxRequestSize Option[Long] Some(-1) The maximum size allowed for a full
multipart/form-data request

maxFileSize Option[Long] Some(-1) The maximum size allowed for a sin-
gle uploaded body part

location Option[String] "" (empty string) The directory location where body
parts that are cached to the file-
system will be stored

fileSizeThreshold Option[Int] 0 The size threshold after which a body
part will be written to disk

Listing 6.7 Configuration of upload support in web.xml

103Summary

6.2.3 Handling upload errors

When handling file uploads, errors can occur. For example, the file being uploaded
may exceed the configured size limit, or there may not be enough space left on the
filesystem. In such cases, an exception is thrown. By default, that exception is then
shown to the user.

 Listing 6.8 shows an error handler that handles two exceptions related to file
uploads. A SizeConstraintExceededException is thrown when the uploaded file
exceeds a file limit. An IOException implies that an I/O operation failed, such as
when the permissions aren’t sufficient to execute the operation.

error {
case e: SizeConstraintExceededException => halt(500, "Too much!")
case e: IOException => halt(500, "Server denied me my meal, thanks anyway.")

}

6.3 Summary
■ Serving files through a route isn’t as fast as serving files statically, but it can be

useful if you want to apply some processing to files, serve a file from an arbitrary
location, or construct an entirely new file in your response.

■ Static file serving is useful when you want to quickly serve a file directly from the
filesystem.

■ Gzipping lets you compress your responses.

Listing 6.8 Error handling for uploads

104

Server-side templating

In chapters 5 and 6, you saw how Scalatra can be used to build RESTful APIs by
returning JSON and files directly from your controller actions. Scalatra excels at
this architecture, but as an HTTP framework, it’s also well suited to serving websites.
In this chapter, we’ll discuss what this means and look at how Scalatra can integrate
various standalone templating systems to render the user interface.

7.1 Deciding whether server-side templating is right for you
Server-side templating will be a familiar topic to many readers. Many Scalatra users
come from the Java world, where JSP and JavaServer Faces (JSF) are used to render
websites. Others come from Ruby’s Sinatra, which boasts integration with 20 tem-
plating systems.

This chapter covers
■ Deciding whether server-side templating is right

for you
■ Introducing Scalate
■ Serving content with Scalate
■ Comparing Scalate and Twirl

105Deciding whether server-side templating is right for you

 Server-side templates have also been stigmatized as an outmoded design. The rise
of web APIs has certainly led to some movement away from the technique. Still, there
are certain types of Scalatra applications where they remain a great fit. Let’s first
examine whether server-side templates are right for you.

7.1.1 Websites

The distinction between websites and
web applications is a bit fuzzy, but it’s a
topic worth considering as you build
your architecture around Scalatra.

 The term website doesn’t mean
static, but it does imply having a
browser as a client. In these applica-
tions, the server generates the user
interface in the form of HTML views.
These are usually complemented by
CSS and JavaScript. The client is a sim-
ple web browser. This architecture is
sketched out in figure 7.1.

 We’ll assume the use of Scalate as a
template engine for now. Scalate will
be formally introduced in section 7.2.
Let’s follow the flow of a typical
request in this architecture:

1 The browser issues a request to Scalatra.
2 Scalatra queries the database.
3 The database responds with a result set.
4 Scalatra calls a Scalate template with the result set.
5 Scalate returns an HTML view.
6 Scalatra returns the HTML view to the client.

A site like Wikipedia is a great example of this architecture:

■ It’s document-oriented. Its primary purpose is to serve structured content to
end users, and HTML is an ideal format.

■ It doesn’t require a sidebar with a streaming view of what one’s friends are read-
ing. It fits a simple request-response cycle.

■ It needs to be easily indexed by search engines. There are ways to do this in
other architectures, but none is as simple or as reliable as a simple HTML
response at a stable URI.

Unsurprisingly, Wikipedia is built on server-side templates. This architecture won’t
add any buzzwords to your resume, but it’s tried and true. But before diving in, let’s
consider an alternative view.

Figure 7.1 In a traditional website, the client is
served directly by Scalatra.

106 CHAPTER 7 Server-side templating

7.1.2 Web APIs

In recent years, many web applications
have evolved into web APIs. There are
several reasons for this:

■ Browsers are as important as
ever, but they now support richer
user interfaces through single-
page JavaScript apps, as opposed
to regenerating the entire view
on each trip to the server.

■ Mobile applications are often
built on UI toolkits that use HTTP
for fetching and sending the
data that drives them.

■ Often, the client is actually
another HTTP server, aggregat-
ing multiple services to provide
new views into the data.

These apparently different use cases share one common trait: they have little use for
server-generated HTML. Instead of responding with a user interface, the server
responds with the data to drive an interface generated elsewhere. This decoupling of
user interface from data allows a single API to serve a more diverse set of clients. This
architecture is illustrated in figure 7.2.

 There is a striking difference between figure 7.2 and figure 7.1: Scalate is gone.
Relieved of the need to apply a standard HTML structure to the data, Scalate becomes
superfluous in this style.

In summary, server-side templating is far from dead, but it’s also far from mandatory.
If you’re primarily interested in REST APIs, feel free to skim ahead to the next chapter.
Otherwise, let’s get our feet wet with Scalate.

False dichotomy alert
As alluded to at the beginning of the section, it’s a fuzzy line between website and
web application.

■ Our canonical website example, Wikipedia, is not purely HTML. It implements
autocomplete on search results via JSON.

■ A client-side application driven by RESTful endpoints may initialize itself from an
HTML template.

■ A single Scalatra route might examine the request headers to determine
whether the client wants an HTML view or a JSON view. This is called content
negotiation, and it can result in a hybrid-style application.

Figure 7.2 A RESTful API: a single Scalatra service
serving disparate clients

107Introducing Scalate

7.2 Introducing Scalate
Scalate1 is a fast and versatile server-side template system, directly supported by Scala-
tra as an optional module. A standout feature of Scalate is its support for multiple
template dialects, which we’ll cover in section 7.3.4. Other benefits of Scalate include
these:

■ Strongly typed templates2

■ The ability to pass custom bindings
■ Automatic template reloading and caching
■ Error reporting with trace output and line numbers

We’ll start by looking at Scalatra’s dependencies file, project/build.scala, to ensure
that Scalate is installed.

7.2.1 Installing Scalate in a Scalatra app

Scalatra comes with Scalate support by default when you create your project using
giter8. You can see the relevant line in the libraryDependencies section of project/
build.scala:

libraryDependencies ++= Seq(
"org.scalatra" %% "scalatra" % ScalatraVersion,
"org.scalatra" %% "scalatra-scalate" % ScalatraVersion,
"org.scalatra" %% "scalatra-specs2" % ScalatraVersion % "test",
"ch.qos.logback" % "logback-classic" % "1.1.3" % "runtime",

The giter8 template also creates a WebAppStack trait for customizing Scalatra’s fea-
tures across all of your servlets. If you look at the WebAppStack trait in src/main/scala,
you’ll see that the ScalateSupport trait is already included in the class declaration.
Additionally, you’ll see the default behavior of searching for templates and static
resources. The exact location of your WebAppStack trait is determined by your pack-
age and application names, but you’ll find it as the *WebAppStack.scala file in src/
main/scala. Let’s take a deeper look in the next listing.

package com.example.app

import org.scalatra._
import scalate.ScalateSupport

trait MyScalatraWebAppStack extends ScalatraServlet
with ScalateSupport

1 The core developers don’t agree on whether it’s two syllables or three, but all agree that the te stands for tem-
plate engine.

2 True for each dialect except Mustache.

Listing 7.1 The WebAppStack trait

This line pulls in the Scalatra-Scalate integration and
transitively pulls in a version of Scalate known to

work with the selected version of Scalatra.

Your project’s package. Replace the
dots with slashes, prepend src/main/
scala, and you’ll find your trait.

Mixes in the
Scalatra-Scalate

integration

108 CHAPTER 7 Server-side templating

{
notFound {

contentType = null
findTemplate(requestPath) map { path =>
contentType = "text/html"
layoutTemplate(path)

} orElse serveStaticResource()
getOrElse resourceNotFound()

}
}

7.2.2 Scalate directory structure

Scalatra asks Scalate to look for layouts and views in a structure similar to Sinatra’s.
The major difference is that Scalatra templates go into a WEB-INF subdirectory. Let’s
look at the structure of a typical Scalatra application:

src/main/webapp
 js
 css
 WEB-INF

 templates
 layouts
 default.jade
 views

 hello-scalate.jade

You can see in the default Scalatra folder structure that the giter8 template provides
an example layout and view template. We’ll cover each of these in detail in the next
section.

Now that Scalate is installed, let’s see it in action.

7.3 Serving content with the Scalate template system
Your first view will (not very cleverly) say hello to a user by name and offer some lucky
numbers.

Removes the content type in case it
was set through an action integration

Invokes the
template

If no explicit route
is mapped, falls
through to the

not-found handler

If neither a route
matches nor a template
is found, looks for a
static resourceIf it falls through to

here, admits defeat

Why WEB-INF?
The WEB-INF convention comes from the servlet world. The src/main/webapp direc-
tory corresponds to the root of your web application. A GET request on /images/ban-
ner.png would map to src/main/webapp/images/banner.png if it falls through to
serveStaticResource.

The WEB-INF directory is special in that it’s shielded from direct access. You wouldn’t
want serveStaticResource to find a scaml template, because it would render the
template source instead of executing the template. Templates are inaccessible un-
less explicitly called because they’re in a special directory.

109Serving content with the Scalate template system

7.3.1 Your first Scaml template

You’ll use Scaml for your first view. It’s well-structured HTML, and it fits nicely with
Scaml’s strengths. Let’s create the view in src/main/webapp/WEB-INF/templates/
views/greeter.scaml, as shown in the following listing.

!!! 5
-@ val whom: String
-@ val lucky: List[Int]
%html

%head
%link(type="text/css" href="/css/style.css" rel="stylesheet")
%title Hello, #{whom}

%body
%h1 Congratulations
%p You've created your first Scalate view, #{whom}.
%p Your lucky numbers are:
%ul
- for (number <- lucky)

%li #{number}

When you render the template, you get real HTML. If you squint at the template
source, it even resembles HTML, but it’s clearly different. Let’s examine the Scaml
code in more depth:

■ No HTML-style tags—The familiar HTML tags are instead prefixed with a percent
symbol (%).

■ No end tags—Indentation is significant in Scaml. Nesting is inferred from the
level of indentation.

■ Scala declarations—At the top, you’ll see some declarations that look like
abstract Scala declarations.3 A line beginning with -@ declares attributes for
your template. Why? Keep reading.

■ A curious #{} syntax—Code in this syntax is interpreted as Scala code and is ren-
dered to the output. Because Scala is a static language, the code must type-
check. By declaring a whom attribute, the #{whom} code compiles. #{who} would
fail at compile time, because it’s not declared.4

Because #{whom} is declared as a String, you could use #{whom.toUpper-
Case} if you wanted to shout. #{lucky.toUpperCase} would fail at compile
time because lucky is a list.

Listing 7.2 greeter.scaml

3 You can also provide a default value by assigning the attribute in place: val whom: String = "Pete".
4 Contrast this with more-dynamic templating languages, where such an error results in silently blank output

or a literal null.

Specifies the HTML
doctype (here, HTML 5)Declares an

attribute,
named whom,
of type String

Declares a second
attribute, named
lucky, of type Int

Loops with
typical Scala

code

Dereferences the whom
attribute; can be done

multiple times

Dereferences
the lucky
attribute

110 CHAPTER 7 Server-side templating

■ A for loop—A line beginning with - also follows Scala code. Unlike the #{} syn-
tax, it evaluates the code without emitting the result into the output. It’s most
commonly used to introduce looping constructs. Note that instead of an ad hoc
looping syntax, Scaml reuses Scala’s for comprehensions by reusing Scala itself.
What good is code that emits no output in a template? There’s one more thing.

■ Scaml code nested in Scala code—Nested inside the for loop is a %li element. Just
as you embedded Scala code in your Scaml, you can embed Scaml in your Scala
code. Just as HTML nests tags, Scala nests blocks. It’s all scoped in a Scaml tem-
plate using the same indentation syntax. In listing 7.2, the %li element is part of
the loop, so each lucky number in the list is rendered to the output.

Notice that Scaml doesn’t require any extra syntax for looping. It has a few
simple ways of escaping to Scala, allowing you to harness the full power of
Scala’s for comprehensions to establish the looping logic.

Further views would proceed similarly, with similar HTML boilerplate. This should
make any good developer uneasy. In the next discussion, we’ll extract it into a layout.

7.3.2 Layouts

Don’t Repeat Yourself (DRY) is a recurring principle in software development. In
Scala code, you extract common code into helper functions. In a relational database,
you normalize tables to reduce anomalies. Similarly, you can factor common code out
of your templates. In Scalate, you use layouts.

 When rendering your views, Scalate will look for a layout in the /WEB-INF/
templates/layouts/default.{dialect} file, where dialect is one of the supported
types.5 There’s no rule that the layout must be the same dialect as the template,
though that’s the most common case. Take a look at the example Scaml layout in
the following listing.

!!! 5
-@ val body: String
-@ val title: String
%html

%head
%link(type="text/css" href="/css/style.css" rel="stylesheet")
%title= title

%body
!= body

The layout looks a lot like a view, but it introduces two new bits of Scaml syntax:

■ %title= title creates an HTML element (that’s the %title part) and fills it
with the variable title. The syntax is shorthand for %title #{title}.

5 Supported types are .scaml, .ssp, .jade, and .mustache.

Listing 7.3 default.scaml

Renders
the title

Renders the body

111Serving content with the Scalate template system

■ != is used to render the raw body variable. By default, interpolation sanitizes
embedded HTML characters, turning < into < so that it displays literally
instead of being interpreted as the start of a tag. Because you want the tags of a
body to be treated as HTML, you need to turn off this escaping to render the body.

With the common HTML elements extracted to a layout, you can pull it out of
greeter.scaml, and any other views. The amended greeter_dry.scaml is presented in
the following listing.

-@ val whom: String
-@ val lucky: List[Int]
- attributes("title") = "Hello, "+whom

%h1 Congratulations
%p You've created your first Scalate view, #{whom}.
%p Your lucky numbers are:
%ul

- for (number <- lucky)
%li #{number}

The most interesting thing in the slimmed-down greeter.scaml is the attri-
butes("title") line. The layout requires a title, but in this case it’s derived from the
whom attribute. That line allows the template to provide the value of the attribute on
the layout.

 Recall that the layout in listing 7.3 declared a body attribute. body is a special
name. The entire output of the view is passed to the layout as the body attribute, in the
form of a String.

SELECTING AN ALTERNATE LAYOUT

body is one special attribute; the other is layout.
 It’s common for the authenticated portion of a website to require one layout,

with navigation that applies to registered users, and for other pages to have a simpli-
fied layout for guests. A different layout can always be specified by setting the lay-
out attribute:

- attributes("layout") = "/WEB-INF/templates/layouts/guest.scaml"
%h1 Welcome, guest
% This page will use the guest layout.

TIP You can even suppress the layout altogether by setting layout to the
empty string.

Now that you have a template and a layout, let’s see how to invoke it from Scalatra.

Listing 7.4 greeter_dry.scaml for layout

Passes an attribute
to the layout

112 CHAPTER 7 Server-side templating

7.3.3 Invoking your template

Way back in listing 7.1, you saw an example of rendering a template with the layout-
Template(path) command. That worked well in the notFound handler, but it didn’t
offer any opportunity to set template attributes. The signature is layout-

Template(path: String, attributes: (String, Any)*).6

 The attributes parameter allows you to specify a series of tuples to define the
attributes. Let’s create a simple servlet to invoke your greeter.

class GreeterServlet extends MyScalatraWebappStack {
get("/greet/:whom") {
val lucky =

for (i <- (1 to 5).toList)
yield util.Random.nextInt(48) + 1

layoutTemplate("greeter.html",
"whom" -> params("whom"),
"lucky" -> lucky)

}
}

You name the template path "greeter". The layoutTemplate call uses the same logic
as the findTemplate you used in the notFound handler to search for a template.

 The conventions are as follows:

1 It first tries a direct match in the default directory: "greeter.html" -> "/WEB-
INF/templates/views/greeter.html". This fails because your template has an
extension of scaml.

2 It then tries appending the template suffix path: "greeter.html" -> "/WEB-
INF/templates/views/greeter.html.scaml". Again, this fails.

3 Next, it tries replacing the path suffix with the template suffix: "greeter.html"
-> "/WEB-INF/templates/views/greeter.scaml". This is a hit, and it’s why
your template renders.

4 Finally, it tries the same logic again with /index appended to the supplied path:
"greeter.html" -> "/WEB-INF/templates/views/greeter.html/index". This
is not useful here, but it’s very useful for paths that represent directories.

After the path, you bind your attributes using Scala’s convenient arrow syntax for
Tuple2. You can specify attributes that aren’t needed by the template, but any
declared attribute without a default value must be passed.

TIP layoutTemplate uses varargs syntax, which is great for a fixed number of
attributes. If the attributes are dynamically generated, they’re more likely to
come in a Map. If your map is called attributeMap, you can invoke your tem-
plate as layoutTemplate(path, attributeMap.toSeq: _*).

6 There’s also an implicit request and response, but don’t worry about those. That’s why they’re implicit.

Listing 7.5 GreeterServlet

Passes the attributes
to the template.

113Serving content with Twirl

7.3.4 A comparison of dialects

As previously mentioned, Scalate also allows you to choose between a defined list of
template dialects. We’ve focused on Scaml, which is concise and different enough
from HTML to be interesting. But each dialect has benefits in its capabilities and for-
matting that you may already be familiar with. You should choose the template lan-
guage that you are most comfortable with and that grants you the control you need.

 There’s no additional overhead to using more than one dialect in the same appli-
cation, so it’s reasonable to mix and match. The dialects are compared in table 7.1.

All of these dialects are covered in depth on the Scalate website (http://scalate.github
.io/scalate/). If none of these satisfy, there’s yet another option for server-side templat-
ing with Scalatra: Twirl.

7.4 Serving content with Twirl
Instead of integrating with Scalate, the Play Framework created its own template sys-
tem. This was tightly coupled with the rest of the Play Framework, yet was attractive to
other web frameworks. This prompted the Spray.io team to spin it off into a separate
project called Twirl. Twirl templates are somewhat reminiscent of SSP in that they can
generate free-form text rather than strict HTML structure. Like Scalate, Twirl tem-
plates are also compiled to catch as many errors as possible at compile time.

7.4.1 Configuring your project

Setting up a project for Twirl involves configuring a Simple Build Tool (SBT) plug-in
rather than a simple library dependency. To add the Twirl SBT plugin, add a line to
project/plugins.sbt, as follows:

addSbtPlugin("org.scalatra.sbt" % "scalatra-sbt" % "0.4.0")

addSbtPlugin("com.typesafe.sbt" % "sbt-twirl" % "1.0.4")

Table 7.1 A comparison of Scalate dialects

Dialect Resembles Notes

SSP Java’s Velocity,
Java’s JSP

Good for free-form markup with lots of mixed elements (such as a
<p> tag interspersed with several anchors). Has even been used for
non-HTML responses, such as CSV.

Scaml Ruby’s Haml Depends on indentation instead of end tags to close HTML. Develop-
ers generally either love this or hate it. Good for highly structured con-
tent like tables, but awkward for rendering long blocks of content.

Jade Node.js’s Jade Nearly identical to Haml. Loses the % before elements.

Mustache Other
Mustaches

Works inside the browser, so the front-end developer can develop
without blocking on, or learning, anything about the server side. Of
the Scalate dialects, it’s the only one whose expressions aren’t
checked at compile time.

Adds the
Twirl plugin

114 CHAPTER 7 Server-side templating

TIP The blank lines are important! *.sbt files are like *.scala files, but they
require a blank line between each statement.

Finally, you need to add the Twirl settings to your project/build.scala, as in the follow-
ing listing.

import play.twirl.sbt.SbtTwirl

object Chapter07TwirlBuild extends Build {
lazy val project = Project(
Name,
file("."),
settings = Seq(

organization := Organization,
name := Name,
version := Version,
// and so on

).settings(ScalatraPlugin.scalatraSettings:_*)
.enablePlugins(SbtTwirl)

With that out of the way, it’s time to see Twirl in action.

7.4.2 Using Twirl

It’s important to recognize that Twirl is simply Scala mixed with text. The Twirl tem-
plates are compiled into standard Scala functions that can be called by the rest of the
application.

 All templates go into src/main/twirl. If you name your template src/main/twirl/
greeting.scala.html, it will be available as a function named html.greeting. Note how
the suffix, html, shifts to before the filename. Let’s port the Scalate greeting to Twirl,
as shown in the following listing.

@(whom: String, lucky: List[Int])

<html>
<head>
<link type="text/css" href="/css/style.css" rel="stylesheet" />
<title>Hello, @whom</title>

</head>
<body>
<h1>Congratulations</h1>
<p>You've created your first Twirl view, @whom.</p>
<p>Your lucky numbers are:</p>

@for(number <- lucky) {

@number

Listing 7.6 build.scala

Listing 7.7 greeting.scala.html

Brings the Twirl
settings into scope

Configures this project
to use Twirl

115Summary

}

</body>
</html>

This Twirl template takes the same two parameters, whom and lucky. That means the
generated function will also take two parameters. To invoke the Twirl template, you
call this function:

get("/greet/:whom") {
contentType = "text/html"
val lucky =
for (i <- (1 to 5).toList)
yield util.Random.nextInt(48) + 1

html.greeting(params("whom"), lucky)
}

This looks substantially similar to the example in listing 7.5. You access the route
parameter and generate the lucky numbers in the same fashion as with Scalate. Only
the template call is different.

Twirl offers capabilities similar to Scalate for extracting layouts, escaping content, and
so on. To learn more, please see the Twirl website (https://github.com/spray/twirl).

7.5 Summary
■ Scalate is the mainstream templating system option, offering first-class integra-

tion with Scalatra.
■ Twirl is the upstart contender that lacks formal support from the Scalatra team

but is easy to integrate.

Twirl invocation

Twirl vs. Scalate
The function call interface of Twirl offers a huge advantage over Scalate. Recall that
Scalate passes attributes to its templates as a Map[String, Any]. Although the
template itself is checked at compile time, the call to the template isn’t. In Twirl, it’s
a compile-time error to call a template with the wrong parameters.

Does this mean Twirl should replace Scalate? Not necessarily. Scalate is more widely
used, and it supports many more dialects.

Both template engines have their strengths. In a better world, we’d have Scalate’s
wider dialect support merged with Twirl’s API.

116

Testing

By now, you’ve had a thorough introduction to the basic features of Scalatra. As
good test-first developers, we feel a little guilty about waiting until now to introduce
testing, but here we are.

 Scalatra comes with a test DSL to simplify testing your application. The DSL fol-
lows the Scalatra philosophy of not being particularly opinionated. It works with
both major Scala test frameworks, ScalaTest and Specs2. It’s suited to both integra-
tion and unit testing. And if it doesn’t fully suit your needs, it’s easy to pull out the
pieces that do. It’s time to write your first test.

8.1 Integration testing with Specs2
Scalatra is built on the Java Servlet API. This design permits Scalatra to sit atop serv-
ers like Jetty and Tomcat, the most mature servers on the JVM. It also complicates
testing for a few reasons:

This chapter covers
■ Integration testing with Specs2
■ Unit testing with Specs2
■ Testing with ScalaTest

117Integration testing with Specs2

■ The central method of the Servlet API returns Unit.1 With no return value to
inspect, you have to intercept the response object.

■ The API has a large surface area that’s difficult to stub. In version 3.0 Http-
ServletRequest alone has 66 methods.

■ Mocking a container is difficult because of the peculiar rules of the Servlet spec-
ification. Calling certain methods of HttpServletResponse is illegal at certain
times, sendError throws an exception when called after the response is com-
mitted, and setHeader is ignored in the same state. You can’t call getWriter
and getOutputStream on the same response. Simulating these rules correctly
would be as daunting as building a new container.

For these reasons, the servlet layer of an application is notoriously difficult to test and
is therefore notoriously undertested. Talking directly to your Scalatra servlet isn’t a
viable approach.

 Scalatra’s test DSL takes a different tack: it embeds a live servlet container and
speaks to it through an HTTP client. It sounds a bit bulky, but in the next section you’ll
see how simple it really is.

8.1.1 Getting started with Specs2

Like Scalate in chapter 7, Specs2 is integrated as a module. This involves an extra line
in project/build.scala. Users of the giter8 template will find it already configured:

libraryDependencies ++= Seq(
"org.scalatra" %% "scalatra-specs2" % ScalatraVersion % "test"

)

One important difference between scalatra-specs2 and other dependencies is the
% "test" at the end of the dependency. This declares the dependency to be in test
scope. Libraries in test scope are only available during test runs. Tests aren’t meant
to be deployed, so this separation enforces the divide and slims down the deploy-
able artifact.

 Also included in the giter8 template is a simple test named HelloWorldSpec. Tests
are found in src/test/scala.2

Let’s test a simple food servlet. It returns product information for potatoes, in JSON
format. First, add the dependency to Json4s and Scalatra’s JSON integration:

"org.scalatra" %% "scalatra-json" % ScalatraVersion,
"org.json4s" %% "json4s-jackson" % "3.3.0",

Next, add the servlet, shown in the following listing.

1 In Java, it’s called void.
2 Code in src/test/scala is compiled against the test scope described previously and is also excluded from the

deployable artifact.

Defines the scalatra-specs2
dependency in test scope.

118 CHAPTER 8 Testing

package org.scalatra.book.chapter08

import org.json4s.DefaultFormats
import org.json4s.JsonDSL._
import org.scalatra.ScalatraServlet
import org.scalatra.json._

class FoodServlet extends ScalatraServlet with JacksonJsonSupport {

implicit lazy val jsonFormats = DefaultFormats

get("/foods/potatoes") {
val productJson =

("name" -> "potatoes") ~
("fairTrade" -> true) ~
("tags" -> List("vegetable", "tuber"))

productJson
}

}

Last, mount the FoodServlet in ScalatraBootstrap:

context.mount(new FoodServlet, "/*")

Rename HelloWorldSpec to FoodServletSpec, and make it look like the next listing.

package org.scalatra.book.chapter08

import org.scalatra.test.specs2._

class FoodServletSpec extends ScalatraSpec {
def is = s2"""

GET /foods/potatoes on FoodServlet
should return status 200

$potatoesOk
"""

addServlet(classOf[FoodServlet], "/*")

def potatoesOk =
get("/foods/potatoes") {

status must_== 200
}

}

Listing 8.1 The FoodServlet

Listing 8.2 Immutable Specs2 test

Brings ScalatraSpec
into scopeBase trait enables

the Scalatra
integration of the

Specs2 DSL Specs2 syntax
describes what
will be asserted

Describes
the test

Ties the test description to the
method that implements itMounts the servlet

to the root path so
it can be called

Issues a GET request
to the specified path

Asserts that the status of
response was 200 (OK)

119Integration testing with Specs2

There’s a lot going on here in a relatively small amount of code. The first thing to
notice is that you define a class that extends ScalatraSpec. Just as ScalatraServlet
enables the DSL for your application, ScalatraSpec enables the DSL for your test.

 After that comes an is method with some curious syntax. A Specs2 acceptance test
is a literate specification: the text on the left declares the intent in a format you can
discuss with your non-technical product manager to agree on the specification, and
the bindings to the code that implement the test are swept off to the right. It’s a for-
eign syntax to those coming from the xUnit family of test frameworks, and it seems
like overkill with a single assertion, but as a specification grows larger, the syntax keeps
front and center exactly what you’re trying to accomplish.

Next, you add your servlet. It’s as simple as providing the class reference and the path
to mount it to. The path specification is identical to what you find in ScalatraBoot-
strap.

 Finally, we get to the test. The get("/foods/potatoes") block is designed to
resemble the corresponding Scalatra route that matches it. But the separate purposes
of the core framework and test framework give rise to separate rules:

■ Path parameters aren’t supported. You can specify a query string, which you’ll
see later. The intent is not to define a broad matcher like a route, but rather an
exact path for a single test case.

■ Similarly, Boolean guards and regular expressions aren’t supported. Neither of
these fit with the idea of specifying a single path for a request.

Inside the get block is the assertion of your test—that the status must equal 200.
Review the code from listing 8.2 again, and read it out loud: status must_== 200. The
code reads exactly as you’d describe the test. This is another example of Specs2’s phi-
losophy of literate specifications.

Specs2 string interpolation
The s2 syntax uses Scala’s customizable string-interpolation features to cleanly sep-
arate the descriptions from the code. The s interpolator in the standard library is com-
mon in Scala code. A string literal prefixed with s may embed Scala expressions with
${} syntax. For example, s"Byte.MaxValue == ${Byte.MaxValue}" results in
String"ByteMaxValue == 127". The interpolated code is typechecked just like any
other Scala code, preventing silly runtime mistakes.

Scala goes one step further, allowing libraries to provide custom String interpola-
tors. Specs2’s is method doesn’t return a String but a special Specs2 data struc-
ture called Fragments to describe the test. The s2 syntax converts the String literal,
with embedded code, into the necessary Fragments. More on the motivation for us-
ing this syntax can be found in Eric Torreborre’s article “Specs2 2.0 - Interpolated”
on his blog (http://mng.bz/0AOC).

120 CHAPTER 8 Testing

 The status code is just one part of a response. In the next specification, you’ll
enhance the test to cover all the basics of the response.

8.1.2 Asserting over the entire response

An HTTP response can be thought of as being composed of three main parts:

■ The status
■ The headers
■ The body

You’ve already seen how to assert the correct status code. Let’s now enhance the test
to test the other two parts.

class FoodServletSpec extends ScalatraSpec { def is = s2"""
GET /foods/potatoes on FoodServlet

should return status 200 $potatoesOk
should be JSON $potatoesJson
should contain name potatoes $potatoesName

"""

addServlet(classOf[FoodServlet], "/*")

def potatoesOk = get("/foods/potatoes") {
status must_== 200

}

def potatoesJson = get("/foods/potatoes") {
header("Content-Type") must startWith ("application/json;")

}

def potatoesName = get("/foods/potatoes") {
body must contain("""{name: "potatos"}""")

}
}

These examples hardly require any explanation, but they’re useful to see in action.
The literate style is easy to read, but because Scala isn’t a natural language parser, it
does require some knowledge to write correctly.

TIP We discussed triple-quoted string literals in section 3.3.2. Specs2 descrip-
tions like the one in listing 8.3 frequently contain characters like quotation
marks that benefit from the same escaping rules as regular expressions. We
recommend using the """ syntax in s2.

One interesting note is the use of Specs2’s matchers. You’ve already seen must_==.
This example introduces startsWith and contain. You could write everything as an
equality check, but you’re not particularly interested in the charset of the content type

Listing 8.3 Testing headers and the body

Asserts that the Content-
Type header specifies a

JSON response

Asserts that the media
type is correct for JSON

121Integration testing with Specs2

nor the rest of the response body. Overspecification makes tests brittle. The rich
matcher vocabulary lets you say exactly what you mean, and no more.

 The test is still a bit unsatisfying. The body is JSON, but you’re testing it as a String.
Even with the contain matcher, the test could fail for whitespace issues on structurally
equivalent JSON. In the next section, you’ll test the JSON directly.

8.1.3 Testing as JValues

The Json4s object model was introduced in chapter 5. It would be nice to use that
model directly. The following listing parses the body to a JValue and specifies the test
in terms of JSON instead of a JValue.

import org.json4s._
import org.json4s.jackson.JsonMethods

class FoodServletSpec extends ScalatraSpec {

def potatoesName = get("/foods/potatoes") {
val json = JsonMethods.parse(body)
json \ "name" must_== JString("potatos")

}
}

This is much nicer. Instead of making assertions about the output string, you make
assertions about the JSON. The \ character is an operator provided by Json4s to find
the child element of a JSON object. You could instead use \\ to recursively search json
for a key named name, but in this case you expect it to be a child of the root.

 The result of \ is another JValue. In this case, you expect a String, which is repre-
sented in Json4s as a JString. So you assert that the name equals JString("potatos").

 For a service that returns JSON, the JsonMethods.parse(body) will be repeated
often. Let’s DRY that up with a helper trait to mix into all the tests.

import org.json4s.JValue
import org.json4s.jackson.JsonMethods

trait JsonBodySupport { self: ScalatraTests =>
def jsonBody: JValue = JsonMethods.parse(body)

}

class FoodServletSpec extends ScalatraSpec with JsonBodySupport {

def potatoesName = get("/foods/potatoes") {
jsonBody \ "name" must_== JString("potatos")

}
}

Listing 8.4 Testing headers and the body as JValues

Listing 8.5 Testing headers and the body with a helper trait

Imports the JSON parse and
query methods from Json4s

Parses the response
body to a JValue

Tests the name in terms of a JValue

Requires that children
are Scalatra tests

Enables the jsonBody syntax

 Asserts against the
parsed JSON body

122 CHAPTER 8 Testing

The JsonBodySupport takes advantage of a Scala feature called self-types. You specify
that any class that extends JsonBodySupport must also be a subtype of ScalatraTests.
This gives your trait access to all the members of ScalatraTests, such as body.

Your new JsonBodySupport can now be mixed into any Scalatra test for easy testing of
a JSON service. Similar techniques can be used to support XML, HTML, or whatever
other text-based format may be prevalent in your service.

TIP Most responses are some form of text, but you may wish to test a binary
output format, such as a protocol buffer, an image, or a compressed
response. bodyBytes, built into ScalatraTests, is the equivalent of body, but
returns an Array[Byte].

In the next section, you’ll learn to run your tests, and we’ll also bring relief to any
astute readers who caught the typo intentionally propagated through this section.

8.1.4 Running your tests

You’ve already seen how sbt compiles your code, and you’ll learn in chapter 9 how it
packages your code for deployment. It’s also a great way to run tests. Just run sbt test
from the command line.

 The output is shown in the next listing. Framework logging is omitted for brevity.

[info] FoodServletSpec
[info] GET /foods/potatoes on FoodServlet
[info] + should return status 200
[info] + should be JSON
[info] x should contain name potatoes
[error] 'JString(potatoes)' is not equal to 'JString(potatos)'

(FoodServletSpec.scala:26)
[info]
[info]
[info] Total for specification FoodServletSpec
[info] Finished in 797 ms
[info] 3 examples, 1 failure, 0 error
[info] ScalaTest
[info] Run completed in 1 second, 702 milliseconds.

Listing 8.6 A successful sbt test run

ScalatraTests vs. ScalatraSpec
ScalatraSpec is a subtype of ScalatraTests, and it could be used just as well in
the subtype. But by using the more abstract ScalatraTests, your helper can also be
mixed into ScalaTest suites, which we’ll introduce in section 8.3. The self type allows
your JsonBodySupport to refer to members of ScalatraTests, such as body.

The output contains the
description of each test
extracted from the code.

+ indicates success.

x indicates failure.

Shows what failed
and where

123Unit testing with Specs2

[info] Total number of tests run: 0
[info] Suites: completed 0, aborted 0
[info] Tests: succeeded 0, failed 0, canceled 0, ignored 0, pending 0
[info] No tests were executed.
[error] Failed: Total 3, Failed 1, Errors 0, Passed 2
[error] Failed tests:
[error] org.scalatra.book.chapter07.FoodServletSpec
[error] (test:testOnly) sbt.TestsFailedException: Tests unsuccessful
[error] Total time: 7 s, completed Aug 18, 2014 2:39:56 AM

You have your first test and, not unexpectedly, your first test failure. Cheer up: this is a
good thing! It’s good practice to write the test, see it fail, and then implement (or fix)
the main code. Seeing the test switch from failing to passing with a change to the main
code serves as a sort of test of the tests, warding off false positives.

 Now you need to make the test pass. The sample output shows that you have been
expecting potatos when the correct output is potatoes. You can fix the assertion:

def potatoesName = get("/foods/potatoes") {
val json = JsonMethods.parse(body)
json \ "name" must_== JString("potatoes")

}

Now run sbt test from the console again, and you should see the following output:

[info] FoodServletSpec
[info] GET /foods/potatoes on FoodServlet
[info] + should return status 200
[info] + should be JSON
[info] + should contain name potatoes
[info]
[info] Total for specification FoodServletSpec
[info] Finished in 665 ms
[info] 3 examples, 0 failure, 0 error
[info] ScalaTest
[info] Run completed in 1 second, 305 milliseconds.
[info] Total number of tests run: 0
[info] Suites: completed 0, aborted 0
[info] Tests: succeeded 0, failed 0, canceled 0, ignored 0, pending 0
[info] No tests were executed.
[info] Passed: Total 3, Failed 0, Errors 0, Passed 3
[success] Total time: 5 s, completed Aug 18, 2014 2:48:13 AM

The tests pass. Celebrate with the beverage of your choice, and then we’ll talk about
white-box testing.

8.2 Unit testing with Specs2
The tests in the previous section were black-box tests. The specification considers only the
inputs (requests) and outputs (responses) without any regard to implementation. The
route could be a simple XML literal, or it could cheat and make a system call to spin up
a Sinatra server and proxy the result. As long as the response matches the specification,

One bad apple
spoils the bunch.

Indicates all the tests
passed. In most terminals,

this is highlighted in green.

124 CHAPTER 8 Testing

the tests pass. This is a useful mode of operation for integration testing, when you want
to test the behavior of the entire application. It’s not so good for unit testing.

 Unit tests are so named because they test a single unit of the code, rather than the
entire application. Why is this advantageous?

■ They’re easier to write. Working with a single unit requires less setup.
■ They’re easier to deploy. If your tests don’t hit the live database, you don’t need to

worry about granting your test box access to the live database.
■ They run faster. It’s faster to go through one layer than all the layers.

Let’s look at a unit-testing example by building a new service that launches nukes.

8.2.1 Testing with stubbed dependencies

You may be concerned that the sample application will result in the extinction of
humankind as soon as you submit a successful request to launch the nukes. Worry not,
because you’re going to stub out the dependency. First you need the business logic,
shown in the following listing.

trait NukeLauncher {
def launch(): Unit

}

object RealNukeLauncher extends NukeLauncher {
def launch(): Unit = ???

}

class StubNukeLauncher extends NukeLauncher {
var isLaunched = false
def launch(): Unit = isLaunched = true

}

Whether it’s a database, a message queue, or a nuclear missile silo, it can be difficult
to set up the external resources an integration test needs. Verifying a successful
launch via the setting of a var will be a much more pleasant developer experience
than inspecting a mushroom cloud. This is an ideal time for a unit test.

Listing 8.7 Stubbed dependencies

Pulling out a
trait makes it
more testable. This object would be used

in the production setup.

Implementation left as an exercise
for you. Note that the use of ??? is
perfectly legal in Scala.

The danger of public vars
On top of the inherent dangers in handling nuclear warheads, astute observers will
note that we also left a public var on the trait. This is generally not good design in
Scala. Mutable state is hard to reason about, and the object isn’t thread-safe for a
concurrent environment.

We stand by it here. This stub implementation isn’t going to be subject to a highly
concurrent environment. It needs to be trivially verifiable when accessed by a single
thread in a unit test, so you can concentrate on your real business problem, such as
the nuke.

125Unit testing with Specs2

Next, you’ll create a servlet to provide an HTTP interface to conveniently launch the
nukes from a safe, remote location.

8.2.2 Injecting dependencies into a servlet

In order to unit test your servlet, you need to be able to swap in different implementa-
tions of the nuke launcher. The simplest way to do this is through constructor injec-
tion. Your servlet will take a single constructor parameter, as shown in the following
listing.

class NukeLauncherServlet(launcher: NukeLauncher)
extends ScalatraServlet {
val NuclearCode = "password123"

post("/launch") {
if (params("code") == NuclearCode)

launcher.launch()
else

Forbidden()
}

}

Accepting an instance of the NukeLauncher trait makes it simple to configure this serv-
let for either test or production. First, here’s an example production ScalatraBoot-
strap file with the live launcher.

class ScalatraBootstrap extends LifeCycle {
override def init(context: ServletContext) {
context.mount(new NukeLauncherServlet(RealNukeLauncher), "/nuke/*")

}
}

Because this is a white-box test, you can assume that the servlet delegates to a Nuke-
Launcher. As such, it’s fair to swap in a stub instance for testing, as shown in list-
ing 8.10. This test will introduce the unit test syntax of Specs2.

import org.scalatra.test.specs2._
import org.specs2.mutable.After

class NukeLauncherSpec extends MutableScalatraSpec with After {
sequential

val stubLauncher = new StubNukeLauncher
addServlet(new NukeLauncherServlet(stubLauncher), "/*")

Listing 8.8 Nuke launcher servlet

Listing 8.9 Example ScalatraBootstrap with live dependency

Listing 8.10 A unit specification for the Nuke launcher

Constructor parameter
accepts the trait

Production implementation of the trait

Uses the
mutable
Specs2 style

Runs the tests sequentially
because the stub is stateful

126 CHAPTER 8 Testing

def after: Any = stubLauncher.isLaunched = false

def launch[A](code: String)(f: => A): A =
post("/launch", "code" -> code) { f }

"The wrong pass code" should {
"respond with forbidden" in {

launch("wrong") {
status must_== 403

}
}

"not launch the nukes" in {
launch("wrong") {

stubLauncher.isLaunched must_== false
}

}
}

"The right pass code" should {
"launch the nukes" in {

launch("password123") {
stubLauncher.isLaunched must_== true

}
}

}
}

The post call is the first time you’ve submitted parameters. post takes a variable argu-
ment list of String->String tuples and passes them as parameters in the form body.
get has a similar signature for query parameters. In fact, all the HTTP methods take
several overloads to handle the common use cases of parameters, headers, and bodies.
These are best learned by looking at the Scaladoc.

 Because the same post to /launch appears three times in the test, it’s extracted to
a launch helper. A broken test is a broken build, so test code needs to be maintained
as surely as production code. Factoring out the duplicate code, even in tests, will tend
to save time in the long run.

 The other new feature in listing 8.10 is the sequential declaration. By default,
Specs2 runs each test in a spec in parallel. This can speed up test runs when all code
under test is immutable. But when an object under test, like the StubNukeLauncher, is
mutable, this parallelism results in non-deterministic test failures. The right passcode
may be submitted in a different thread while the wrong passcode is being asserted. In
cases where it’s impossible or awkward to write in a pure functional style, the sequen-
tial declaration offers a simple way out. Because sbt can run separate specs in paral-
lel, as long as no state is shared between specs, sequential may not even add
significantly to test time.

 You can now run your unit test. The stub successfully isolates your tidy API from its
burdensome dependency to allow more thorough tests than you otherwise might have
written.

Cleans up the state
between test runs

Factors out common logic

Invokes the post with a
form-encoded parameter

127Testing with ScalaTest

Having seen the major features of Specs2, we’ll now take a look at ScalaTest.

8.3 Testing with ScalaTest
ScalaTest is an alternative test framework to Specs2. Both are mature, both are flexi-
ble, and both are maintained by highly responsive developers. The differences are
more a matter of taste than of substance.

8.3.1 Setting up Scalatra’s ScalaTest

Setting up Scalatra’s ScalaTest integration requires minimal changes from the giter8
project. It’s as easy as changing a single line in the library dependencies from
scalatra-specs2 to scalatra-scalatest.

 Open project/build.scala and make sure libraryDependencies contains the fol-
lowing line:

libraryDependencies ++= Seq(
"org.scalatra" %% "scalatra-scalatest" % ScalatraVersion % "test"

)

That’s all the setup required. The next time you reload your sbt project, it will fetch
ScalaTest and the scalatra-scalatest integration library. The next thing you need to do
is port the existing Specs2 test to ScalaTest.

Specs2 acceptance vs. unit test syntax
The Specs2 documentation calls the two forms of testing acceptance and unit tests.
The acceptance tests are immutable and require a single matcher result to be re-
turned. The unit tests run in a mutable context and are more flexible about where
matching is done.

A thorough examination of the differences is included in the official Specs2 documen-
tation. We follow the convention here to demonstrate both. In practice, people tend
to pick the syntax they like better and stick to it.

Scalatra’s own preference
Scalatra is tested with its own DSL and employs a mix of ScalaTest and Specs2. Scalatra
has multiple contributors, and different ones prefer different frameworks. The tests
run together in a single report, which is a testament to sbt’s abstract test interface.

Although using both is supported, it’s not recommended. It’s good for Scalatra’s in-
ternals, because it helps test the test integrations. But for your project, look at both,
learn one well, and know that you can’t go wrong.

Defines the scalatra-scalatest
dependency in test scope

128 CHAPTER 8 Testing

8.3.2 Your first ScalaTest

Open your ScalatraServletSpec file from listing 8.2, and compare it to the ScalaTest
port in the following listing.

package org.scalatra.book.chapter07

import org.json4s.JString
import org.scalatra.test.scalatest._

class FoodServletWordSpec extends ScalatraWordSpec
with JsonBodySupport {

addServlet(classOf[FoodServlet], "/*")

"GET /foods/potatoes on FoodServlet" must {
"return status 200" in {

get("/foods/potatoes") {
status should equal(200)

}
}

"be JSON" in {
get("/foods/potatoes") {

header("Content-Type") should startWith("application/json;")
}

}

"should have name potatoes" in {
get("/foods/potatoes") {

jsonBody \ "name" should equal(JString("potatoes"))
}

}
}

}

The WordSpec of ScalaTest and the mutable specification of Specs2 are similar in how
they intermingle the descriptions with the implementations. This is just one of the
many syntaxes that ScalaTest supports. Another worth looking at is ScalatraFun-
Suite, where developers coming from xUnit will feel at home.

 Some matchers, like the equality test, changed from Specs2. Others, like
startsWith, did not. Like Specs2, ScalaTest comes with an expressive, literate library
of matchers. But, again, Scala is a compiled language, not a natural language, so you
have to learn the precise vocabulary of the test framework you choose.3

 Two very important things didn’t change in this port: the get blocks that define
the request, and the references to the parts of the response inside the header. These

Listing 8.11 A ScalaTest WordSpec

3 Matcher differences are the greatest source of confusion when one works in both Specs2 and ScalaTest on a
regular basis; hence, our recommendation to pick just one for your organization.

Replace specs2
with scalatest.

Compare to Specs2’s
must_== .

This matcher is the
same as Specs2’s.

129Summary

come from the abstract Scalatra test framework and operate in exactly the same fash-
ion in both ScalaTest and Specs2.

 That was easy. Now it’s time to run your ScalaTest.

8.3.3 Running ScalaTest tests

Once again, run sbt test. Just as Scalatra abstracts over the test frameworks, so does
sbt. The same command works for both.

 An example run follows:

[info] FoodServletWordSpec:
[info] GET /foods/potatoes on FoodServlet
[info] - must return status 200
[info] - must be JSON
[info] - must should have name potatoes
[info] ScalaTest
[info] Run completed in 1 second, 187 milliseconds.
[info] Total number of tests run: 3
[info] Suites: completed 1, aborted 0
[info] Tests: succeeded 3, failed 0, canceled 0, ignored 0, pending 0
[info] All tests passed.
[info] Passed: Total 3, Failed 0, Errors 0, Passed 3
[success] Total time: 1 s, completed Aug 18, 2014 3:03:00 AM

The formatting of the test descriptions differs a bit from what you saw in listing 8.6,
but the test counts and success lines are the same as in Specs2. From a tooling per-
spective, it matters little.

8.4 Summary
■ Scalatra’s test DSL is similar to the main DSL you use in your application code.

This makes it easy for any Scalatra developer to write tests.
■ Scalatra offers first-class support for both of Scala’s major test libraries, Scala-

Test and Specs2. You can use a wide variety of testing styles.
■ Run your application inside the embedded container to integration-test your

application easily.
■ Alternatively, wiring up your Scalatra servlets with stub dependencies via con-

structor injection allows you to isolate your HTTP logic with unit tests.

130

Configuration,
 build, and deployment

This chapter discusses topics related to configuring, building, and running an
application. In section 9.1 you’ll learn how to provide configuration to an applica-
tion and how to work with application environments. Section 9.2 covers defining
the sbt build and employing sbt plugins.

 Once you’ve built your application, you’ll need to know how to deploy it and
make it available to the public. The next two sections provide a gentle introduction
to the mysteries of JVM deployments, suitable for people coming from other back-
grounds. Section 9.3 discusses the web archive (WAR) file, which is a typical deploy-
ment method for servlet-based web applications. Section 9.4 builds a standalone

This chapter covers
■ Application configuration and environments
■ sbt builds and working with plugins
■ Deploying as a web archive
■ Deploying as a standalone distribution
■ Running a Scalatra application as a Docker

container

131Configuring a Scalatra application

application, which embeds a servlet container. Section 9.5 then shows how to use Scal-
atra with Docker. We’ll start with configuration.

9.1 Configuring a Scalatra application
An application’s configuration is how you tell the application about the environment
it runs in. It’s the context that allows an application to adapt itself to different environ-
ments. For example, one setting might hold the directory on the filesystem that’s used
to store file uploads.

 The configuration allows an application to expose different behavior depending
on the context the application runs in. As an example, the logging output in a devel-
opment environment can be more chatty than it is in a production environment.

9.1.1 Working with application environments

Usually, when you’re developing an application, there are several environments it can
run in. A programmer develops the application in the development environment. In the
production environment, the application is served to the public. There can be other
environments as well. For example, before shipping an application to production, the
application can be tested on a staging site. In the staging environment, the application
behaves similar to the production environment, but it runs in a non-public area.

 Scalatra has built-in support for simple String-based application environments.
The current environment in which a Scalatra application runs can be read using the
environment method defined on ScalatraBase. If no environment is set, the environ-
ment defaults to "DEVELOPMENT":

get("/me") {
environment match {
case "DEVELOPMENT" =>

println("oh hai")

case "PRODUCTION" =>
case _ =>

}
}

The method isDevelopment returns true when the application runs in a development
environment. In a development environment, the Scalatra kernel sends more-detailed
error information to the developer, which may be useful when debugging a problem.
This information includes the stacktrace in the case of an uncaught exception on the
server side, and a list of all available routes if no route can be found to answer a request.

 You can also use the isDevelopment method in your application:

get("/me") {
if (isDevelopment) {
//

} else {
//

}
}

132 CHAPTER 9 Configuration, build, and deployment

The application environment is set through the org.scalatra.environment key
either as a system property or using the web.xml file, found at src/main/webapp/
WEB-INF/web.xml. For example, a system property can be set through a command-
line parameter: -Dorg.scalatra.environment=production. The web.xml file sets the
parameter as a context parameter, as shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
id="WebApp_ID" version="3.0>

<context-param>
<param-name>org.scalatra.environment</param-name>
<param-value>production</param-value>

</context-param>

<listener>
<listener-class>

org.scalatra.servlet.ScalatraListener
</listener-class>

</listener>
</web-app>

Application environments provide the option to modify the runtime behavior of the
application based on what environment the application currently runs in.

 In the next section, we’ll take a look at how to provide configuration to an applica-
tion. You’ll also see a more formalized way of expressing application environments.

9.1.2 Using a type-safe application configuration

An application configuration collects all the variable settings of that application in a
single place. In this section, we’ll show you how to use the typesafe config library
(https://github.com/typesafehub/config); it offers typed access to configurations
written in HOCON, which is a JSON-based language.

 You’ll need to add a dependency to the library in the project build definition,
project/build.scala:

libraryDependencies += "com.typesafe" % "config" % "1.2.1"

A sample application configuration is shown in the next listing. It contains typical set-
tings, such as the public URL of the application, the application environment, and an
email account.

Listing 9.1 web.xml setting the application environment

133Configuring a Scalatra application

port = 8080
webBase = "http://dev.example.org"

assetsDirectory = "target/webapp"
environment = "development"

email {
user = "my-app@example.com"
password = "mypassword"
host = "smtp.example.com"
sender = "My App <my-app@example.com>"

}

The public web assets directory (assetsDirectory) and embedded servlet container
port (port) are useful when embedding a servlet container in your application (see
sections 9.4 and 9.5). assetsDirectory is usually set to target/webapp (section 9.2.2)
or target/web/stage (section 9.2.3). In a production environment, it might be a rela-
tive path such as ./webapp or an absolute path such as /app/webapp. webBase defines
the public URL of the application as seen from the user agent. The AppConfig type
shown in the following listing holds the configuration values.

case class AppConfig(
port: Int,
webBase: String,
assetsDirectory: String,
env: AppEnvironment,
mailConfig: MailConfig) {

def isProduction = env == Production
def isDevelopment = env == Development

}

case class MailConfig(
user: String,
password: String,
host: String,
sender: String)

The AppEnvironment type in listing 9.4 represents all possible application environ-
ments, as alternatives to the simple string-based application environments. The con-
version between String and AppEnvironment exists as two functions in the
AppEnvironment trait’s companion object (also called AppEnvironment).

Listing 9.2 A sample application.conf

Listing 9.3 AppConfig and MailConfig types

Port on which the embedded
servlet container should listenPublic

 URL of the
application Directory from which

public web assets are
served

Environment this instance
runs in; can be one of
development, test,
staging, or production

Sample
email

address

134 CHAPTER 9 Configuration, build, and deployment

sealed trait AppEnvironment
case object Development extends AppEnvironment
case object Staging extends AppEnvironment
case object Test extends AppEnvironment
case object Production extends AppEnvironment

object AppEnvironment {
def fromString(s: String): AppEnvironment = {
s match {

case "development" => Development
case "staging" => Staging
case "test" => Test
case "production" => Production

}
}

def asString(s: AppEnvironment): String = {
s match {

case Development => "development"
case Staging => "staging"
case Test => "test"
case Production => "production"

}
}

}

The configuration is stored in src/main/resources/application.conf, which makes it
available on the JVM classpath. The application.conf file is loaded by the Config-
Factory and represented as a value of type Config, which allows read access to the
configuration. The following code loads the configuration, reads the webBase setting,
and prints it to stdout:

import com.typesafe.config.ConfigFactory

val cfg = ConfigFactory.load
val webBase = cfg.getString("webBase")

println(webBase)

Listing 9.5 shows a configuration reader from Config to your AppConfig type. Any
error in the configuration throws an exception at runtime, which allows your applica-
tion to fail fast during startup in the case of syntactically invalid configuration.

object AppConfig {
def load: AppConfig = {
val cfg = ConfigFactory.load

val assetsDirectory = cfg.getString("assetsDirectory")

Listing 9.4 Application environment types

Listing 9.5 A simple configuration factory

135Configuring a Scalatra application

val webBase = cfg.getString("webBase")
val port = cfg.getInt("port")
val env = AppEnvironment.fromString(cfg.getString("environment"))
val mailConfig = MailConfig(

cfg.getString("email.user"),
cfg.getString("email.password"),
cfg.getString("email.host"),
cfg.getString("email.sender"))

AppConfig(port, webBase, assetsDirectory, env, mailConfig)
}

}

The configuration can now be used throughout the application. The servlet declares
its dependency to AppConfig through a constructor parameter. For example, you can
use the value of webBase to create a hypothetical URL shortener:

class Chapter09(appConfig: AppConfig) extends ScalatraServlet {
get("/shorten-url") {
val token = UrlShortener.nextFreeToken
f"${appConfig.webBase}/$token"

}
}

The configuration is loaded in the application’s LifeCycle, ScalatraBootstrap. This
is shown in the following listing. Note that you read the Scalatra application environ-
ment from the configuration.

import org.scalatra.book.chapter09._
import org.scalatra._
import javax.servlet.ServletContext

class ScalatraBootstrap extends LifeCycle {
override def init(context: ServletContext) {
val conf = AppConfig.load
sys.props(org.scalatra.EnvironmentKey) = conf.env.asString

val app = new Chapter09(conf)
context.mount(app, "/*")

}
}

The application.conf can also be provided from the classpath by specifying a system
property when starting the JVM:

-Dconfig.file=/opt/instances/production/application.conf

For more details, see the official documentation of the config library.

Listing 9.6 Loading an application-specific configuration in a LifeCycle

Creates the environment-
specific application
configuration

Creates the handler of the
application and mounts it

136 CHAPTER 9 Configuration, build, and deployment

9.2 Building a Scalatra application
During the development of an application, common tasks are executed on a regular
basis. For example, after you make changes to the source code, the code is compiled,
and related tests can be executed. Before you release an application, a distributable
package of the application must be created. A build tool helps you automate these
tasks, leading to repeatable and reliable builds.

 sbt (Simple Build Tool) is a build tool for Scala. It can be used to build a Scalatra
application, and you should already be familiar with it, having used it in the previous
chapter. This section will look at some of the details of developing a Scalatra applica-
tion with sbt.

9.2.1 A Scalatra application as an sbt project

When you’re using the giter8 (g8) template, a Scalatra application is built around an
sbt project. This means there’s an sbt build definition, and the project layout follows
the standard sbt structure and conventions. As a result, you can let sbt manage the
dependencies and use it to build the application, and reuse the wealth of functionality
wrapped in sbt extensions.

 The project layout was introduced in chapter 2; we’ll briefly recap the structure
here. Note that all paths are relative to the base directory:

.
 build.sbt
 project
 build.properties
 Build.scala
 plugins.sbt
 src
 main
 resources
 scala
 webapp
 test
 scala
 target

The application sources and resources are usually found in the src folder. The src/
main/scala folder contains the main Scala sources. The src/main/resources folder
contains application resources, which are available on the application’s classpath dur-
ing runtime. The src/main/webapp folder contains web resources that are available
to the public. A similar structure exists in src/test, but it’s specifically for tests and
doesn’t appear in a distributable application package. Those defaults have been
inspired by other build tools and have proven their usefulness in practice. The target
folder contains all the resources generated during a build.

 The project folder holds sbt-specific resources. The project/plugins.sbt file speci-
fies which sbt plugins the build uses. The project/build.properties file usually sets the

137Building a Scalatra application

sbt version that’s used when building the project. The build definition of an applica-
tion is defined in the build.sbt file or in project/Build.scala.

 A build definition describes how to build an application. It consists of one or more
projects. Each project holds a list of Settings. When sbt loads the build definition, all
the settings of a project are evaluated, resulting in an immutable map that is the inter-
nal representation of that project. The following listing shows a sample build defini-
tion with a single project, taken from the file project/Build.scala.

import sbt._
import Keys._
import org.scalatra.sbt._
import org.scalatra.sbt.PluginKeys._
import com.earldouglas.xwp.JettyPlugin
import com.mojolly.scalate._
import com.mojolly.scalate.ScalatePlugin._
import com.mojolly.scalate.ScalatePlugin.ScalateKeys._

object Chapter09Build extends Build {
val Organization = "org.scalatra"
val Name = "chapter09"
val Version = "0.1.0-SNAPSHOT"
val ScalaVersion = "2.11.6"
val ScalatraVersion = "2.4.0"

val mySettings =
ScalatraPlugin.scalatraSettings ++
Seq(

organization := Organization,
name := Name,
version := Version,
scalaVersion := ScalaVersion,
resolvers += Classpaths.typesafeReleases,
libraryDependencies ++= Seq(

"org.scalatra" %% "scalatra" % ScalatraVersion,
"org.scalatra" %% "scalatra-scalate" % ScalatraVersion,
"org.scalatra" %% "scalatra-specs2" % ScalatraVersion % "test",
"ch.qos.logback" % "logback-classic" % "1.1.3" % "runtime",
"javax.servlet" % "javax.servlet-api" % "3.1.0" % "provided"

)
)

lazy val project = Project(Name, file("."))
.enablePlugins(JettyPlugin)
.settings(mySettings:_*)

}

The build definition is represented by the Chapter09Build object extending the
Build trait. A sequence of settings is collected in the mySettings value and used to
construct a value of type Project. The settings here provide general information

Listing 9.7 Sample build definition

Declares required imports, such
as built-in and plugin keys

Build definition

Creates an instance
of a Project …

… and provides the previously
defined settings for it

138 CHAPTER 9 Configuration, build, and deployment

about a project (organization, name, version), the Scala version used to compile the
sources, an additional resolver (which is a repository for dependencies), and the
dependencies of the project. Using constants makes the build definition more main-
tainable; for example, the Scala and Scalatra versions are defined here as constants.

TIP There are several project templates that can be used to create an sbt
project. These templates contain the required build definition and basic
application resources, so you don’t need to start from scratch. You can find a
template for a simple Scalatra application at https://github.com/scalatra/
scalatra-sbt.g8.

Let’s take a closer look at the settings. A Setting maps a key to some value. Using sbt’s
:= operator, you can construct a setting that, when evaluated, sets a value in the proj-
ect’s internal map. For example, the following code represents an assignment to the
keys organization and name, describing the publisher of the project and the project’s
name, respectively:

organization := "org.scalatra"
name := "chapter09"

sbt has built-in keys that are imported from sbt.Keys._. Plugins often define their
own keys, which can be imported as well.

 The dependencies of a project are represented by the key libraryDependencies.
For example, you can add a dependency to scalatra-specs2 like this:

libraryDependencies +=
"org.scalatra" %% "scalatra-specs2" % "2.4.0" % "test"
____________/ _______________/ _____/ ____/

| | | |
groupId artifactId version scope

Here the += method results in a Setting that adds the dependency to the existing val-
ues instead of replacing that value in the map. A dependency is specified through its
groupId, artifactId, and version. There can be additional specifiers, such as a
scope in which the dependency is valid, or an exclusion for specific transitive depen-
dencies. In this example, the dependency is scoped to test, which makes it available
only when running the tests.

 Reusable functionality is often packaged in a plugin. The file project/plugins.sbt
contains a list of the sbt plugins that should be added to an sbt build. To take one
example, the Scalatra developers have built an sbt plugin called scalatra-sbt. A depen-
dency to it is contained in the default g8 template:

addSbtPlugin("org.scalatra.sbt" % "scalatra-sbt" % "0.4.0")

The scalatra-sbt plugin adds a servlet container that can be used during development.
It also supports building deployable web archive (WAR) packages of an application.

139Building a Scalatra application

 The settings from scalatra-sbt are combined with other settings in your application’s
build file, found at project/build.scala, by accessing ScalatraPlugin.scalatra-
Settings like this:

lazy val project = Project("chapter09", file("."))
.enablePlugins(JettyPlugin)
.settings(myProjectSettings: _*)
.settings(ScalatraPlugin.scalatraSettings)

The next section presents some background information about xsbt-web-plugin. Sec-
tions 9.3 and 9.4 show how to build a deployable package of an application.

9.2.2 Working with the xsbt-web-plugin

xsbt-web-plugin is an extension to sbt that integrates a servlet-based web application
into an sbt build. The scalatra-sbt plugin depends on it.

 xsbt-web-plugin, in turn, consists of three other plugins: WebappPlugin, Container-
Plugin, and WarPlugin. In this section, we’ll take a look at WebappPlugin and
ContainerPlugin. WarPlugin’s job is to package the web application as a WAR file in
order to deploy it to an external servlet container. This is discussed in section 9.3.

 WebappPlugin integrates a web application layout in an sbt build. The web applica-
tion resource directory contains the static resources of a web application. It’s repre-
sented by the key sourceDirectory in webappPrepare and defaults to src/main/
webapp. The web application destination directory is where those resources, together
with the dependencies, are copied during a build. It’s represented by the key target
in webappPrepare and defaults to target/webapp. For example, the servlet container
serves the web application from here:

sourceDirectory in webappPrepare := (sourceDirectory in Compile).value / "webapp"
target in webappPrepare := (target in Compile).value / "webapp"

Following the servlet standard, the WEB-INF directory—which is not publicly
accessible—contains the web.xml deployment descriptor and the dependency JARs in
WEB-INF/lib. WebappPlugin provides the base on which both ContainerPlugin and
WarPlugin build.

 ContainerPlugin integrates a servlet container into sbt that can be used to host the
web application on the developer’s local machine. The servlet container serves the
web application from the web application destination directory. Two specific plugins,
JettyPlugin and ContainerPlugin, use Jetty and Tomcat, respectively, as the underlying
servlet container. We stick with JettyPlugin here. JettyPlugin needs to be enabled via
enablePlugins(JettyPlugin).

 The jetty:start task starts a servlet container in a forked JVM process that hosts
the web application. Before the server is started, any running container process is
stopped. The server can be stopped with the jetty:stop task.

140 CHAPTER 9 Configuration, build, and deployment

 The webappPrepare task copies the web application resources from the web appli-
cation’s source directory to the target directory. You can use it to watch changes and
mirror those by prefixing it with ~:

> jetty:start
[info] starting server ...
INFO: Started ServerConnector@5598f84b{HTTP/1.1}{0.0.0.0:8080}
2015-02-08 16:11:05.137:INFO:oejs.Server:main: Started @6438ms
[success] Total time: 0 s, completed 08.02.2015 16:10:58

> ~webappPrepare
[success] Total time: 0 s, completed 08.02.2015 16:11:40
1. Waiting for source changes... (press enter to interrupt)

If you’re using the servlet container for development, there may be situations where
you want to change the default configuration. Let’s look at an example.

 The servlet container listens to http://localhost:8080 by default. The port can be
set through the containerPort in Jetty setting in case a different port needs to be
chosen. This is useful for avoiding conflicts with other applications. The following
changes the port to 8090:

import com.earldouglas.xwp.JettyPlugin.autoImport._
import com.earldouglas.xwp.ContainerPlugin.autoImport._

val mySettings = Seq(
// ...
containerPort in Jetty := 8090

)

lazy val project = Project("chapter09", file("."))
.enablePlugins(JettyPlugin)
.settings(mySettings: _*)

The servlet container runs in a forked JVM. You can configure the forked JVM process
through a ForkOptions value. The following snippet sets the maximum heap size of
the forked JVM to 8 GB:

val mySettings = Seq(
containerForkOptions in Jetty :=

new ForkOptions(runJVMOptions = Seq("-Xmx8g"))
)

You can check the plugin documentation for further details. Next, we’ll look at
another plugin: sbt-web.

9.2.3 Using sbt-web to simplify working with web assets

The sbt-web plugin adds the notion of web assets and introduces an incremental build
pipeline to an sbt build. Assets are resources that are served by a web server, such as
JavaScript or CSS files. The asset pipeline produces assets from asset sources and asset

141Building a Scalatra application

resources. Sbt-web provides a common base on which assets-related plugins can be
built. There’s a wealth of such plugins for different technologies (for example, Sass/
Less, UglifyJS, and gzip).

 Asset sources exist in src/main/assets, and the asset pipeline produces assets from
those sources. The final product is written to the target/web/stage directory.

 A simple pipeline consisting of two steps can, for example, compile a Sass file to
CSS and then fingerprint the CSS file with an MD5 checksum, which enables aggressive
browser caching. Asset resources are copied to the staging directory as is. They’re
found in src/main/public. The following listing shows a sample layout.

.
 project
 src
 main
 assets
 css/main.less
 public
 WEB-INF/web.xml
 resources
 scala
 test
 target

 stage
 web/stage

The actual functionality is realized by specific sbt plugins. Let’s look at an example
that uses sbt-less and sbt-filter. sbt-less integrates the Less CSS preprocessor in an sbt
build. sbt-filter allows you to filter resources from the final product.

 Let’s add the plugins to the build via project/plugins.sbt:

addSbtPlugin("com.typesafe.sbt" % "sbt-less" % "1.0.6")

addSbtPlugin("com.slidingautonomy.sbt" % "sbt-filter" % "1.0.1")

The sbt-web plugin is enabled through enablePlugins(SbtWeb), which includes
default settings for all the plugins. The asset pipeline is run with the web-stage task,
which produces the assets to target/web/stage.

 The sbt-less plugin is a generator that generates CSS assets from Less asset sources.
It’s enabled by default.

 The sbt-filter plugin runs as an asset task in the asset pipeline. It receives the assets
from a previous stage and filters out all the Less source files (*.less). It needs to be
added to the pipelineStage.

 You can integrate xsbt-web-plugin and sbt-web by telling xsbt-web-plugin that the
public web application resources are found in src/main/public instead of src/main/
webapp and that the servlet container should serve the application from target/web/

Listing 9.8 sbt-web project layout

142 CHAPTER 9 Configuration, build, and deployment

stage. In addition, the test and jetty:start tasks each depend on the web-stage
task. The next listing shows the build definition.

import com.earldouglas.xwp.JettyPlugin
import com.earldouglas.xwp.WebappPlugin.autoImport._
import com.earldouglas.xwp.JettyPlugin.autoImport._
import com.earldouglas.xwp.ContainerPlugin.start
import com.slidingautonomy.sbt.filter.Import._

val webSettings = Seq(
pipelineStages := Seq(filter),
includeFilter in filter := "*.less" || "*.css.map"
webappSrc in webapp := (resourceDirectory in Assets).value,
webappDest in webapp := (stagingDirectory in Assets).value,
webappPrepare <<= webappPrepare dependsOn (stage in Assets),
(test in Test) <<= (test in Test) dependsOn (stage in Assets)

)

lazy val project = Project("chapter09", file("."))
.settings(mySettings:_*)
.settings(webSettings:_*)
.enablePlugins(SbtWeb, JettyPlugin)

Now you can start the servlet container using jetty:start and then run the asset
pipeline:

> jetty:start
[info] LESS compiling on 1 source(s)
[info] starting server ...
[success] Total time: 0 s, completed 08.02.2015 00:48:29

> ~web-stage
[success] Total time: 1 s, completed 08.02.2015 00:49:14
1. Waiting for source changes... (press enter to interrupt)

When you visit http://localhost:8080/css/main.css with a browser, you should be able
to see the generated CSS.

 When your application grows, running the asset pipeline can take time. It can be
useful to run a more lightweight asset pipeline during development, leading to shorter
turnaround times. The development asset pipeline can emit additional resources, such
as source maps. A simple way to achieve this is by using a system property:

val devSettings = Seq()

val prodSettings = Seq(
pipelineStages := Seq(filter),
includeFilter in filter := "*.less" || "*.css.map"

)

Listing 9.9 Build definition using sbt-web

Defines
settings

 for sbt-web

Runs the filter stage
in the asset pipeline

Filters out Less
sources and
source mapssbt-web and

xsbt-web-plugin
integration

Makes test and
webappPrepare
depend on web-

stage task

Enables sbt-web plugins

143Building a Scalatra application

val stage = sys.props.getOrElse("stage", "production")
val webSettings = {

if (stage == "dev") devSettings
else prodSettings

}

When sbt is started with sbt -Dstage=dev, the filter stage is omitted and the CSS
source maps will be available to the browser.

 That was a quick introduction to the sbt-web plugin. Let’s now look at precompil-
ing Scalate templates.

9.2.4 Precompiling Scalate templates with the scalate-generator plugin

The xsbt-scalate-generator plugin integrates the Scalate template library into sbt. Basi-
cally, it enables you to precompile Scalate templates during the normal compilation
process. This speeds up the availability of an application and ensures the validity of all
templates. Runtime errors related to syntax errors are detected during compile time.

 The plugin is added to project/plugins.sbt:

addSbtPlugin("com.mojolly.scalate" %
"xsbt-scalate-generator" % "0.5.0")

A collection of templates for an application is configured by a TemplateConfig value,
which represents the location of the templates, default imports, variable bindings, and
a package name. Listing 9.10 shows how a TemplateConfig for a simple Scalatra appli-
cation is assigned to scalateTemplateConfig in Compile. The default settings are
combined in the value ScalatePlugin.scalateSettings. For more-detailed docu-
mentation, we again refer you to the official xsbt-scalate-generate website at https://
github.com/backchatio/xsbt-scalate-generate.

import com.mojolly.scalate._
import com.mojolly.scalate.ScalatePlugin._
import com.mojolly.scalate.ScalatePlugin.ScalateKeys._

val myScalateSettings = ScalatePlugin.scalateSettings ++ Seq(
scalateTemplateConfig in Compile := Seq(
TemplateConfig(

(sourceDirectory in Compile).value /
"webapp" / "WEB-INF" / "templates",

Seq.empty, /* default imports should be added here */
Seq.empty, /* add extra bindings here */
Some("templates")

)
)

)

lazy val project = Project("chapter09", file("."))
.enablePlugins(JettyPlugin)

Listing 9.10 Configuring the scalate-generator plugin

Defines a
configuration for a
template location that
takes templates from
src/main/webapp/
WEB-INF/templates
and precompiles them
using a “templates”
package prefix

144 CHAPTER 9 Configuration, build, and deployment

.settings(myProjectSettings: _*)

.settings(ScalatraPlugin.scalatraSettings: _*)

.settings(myScalateSettings: _*)

The templates are compiled with the compile task. During development mode, the
template sources additionally need to be synchronized to the target folder using the
webappPrepare task:

> ~webappPrepare
[info] Compiling Templates in Template Directory: \

/home/stefan/Code/funk/black-coffee/src/main/webapp/WEB-INF/templates
[success] Total time: 0 s, completed 08.02.2015 02:06:02
1. Waiting for source changes... (press enter to interrupt)

Now you know the basics of using sbt and sbt plugins. The next two sections will dis-
cuss creating deployable packages.

9.3 Deploying as a web archive
Web application archive (WAR) files are a typical way to deploy an application to a
servlet container.

 A WAR file corresponds to a self-contained version of a servlet-based web applica-
tion. Like a JAR file, a WAR file is in zip format but has a .war suffix. It contains the
resources required to run a web application. A servlet container is able to receive a
WAR file and host the contained web application.

 Listing 9.11 shows the structure of a simple WAR file. The servlet container serves
the web application from the base directory, and public resources are at the base
directory. The folders WEB-INF and META-INF are inaccessible via HTTP. The .jar
libraries are contained in the /WEB-INF/lib directory. Any .class files and resources
are contained in /WEB-INF/classes. Those two directories also constitute the classpath
of the web application.

.
 META-INF
 MANIFEST.MF
 WEB-INF

 lib
 chapter-9_2.11-0.1.0-SNAPSHOT.jar
 scala-compiler-2.11.0.jar
 scala-library-2.11.6.jar
 scalatra_2.11-2.4.0.jar
 slf4j-api-1.7.10.jar
 templates
 layouts
 default.jade
 views
 hello-scalate.jade
 web.xml

Listing 9.11 Sample WAR archive structure

Uses the settings
in the project

145Deploying as a standalone distribution

A WAR file is created with the package task from WarPlugin (of xsbt-web-plugin).
When you create a WAR file, the various project resources are fused into a single pack-
age. The file is written to the target folder:

> package
[info] Packaging

.../target/scala-2.11/chapter09_2.11-0.1.0-SNAPSHOT.war.
[info] Done packaging.

This file can now be deployed to a servlet container. There’s a wide range of servlet
containers to choose from. Configuring a servlet container is a complex problem on
its own; luckily, here we’ll use the Apache Tomcat servlet container with the default
configuration. If you need to install it, download the binary distribution of Tomcat
from http://tomcat.apache.org/ and unpack it to the filesystem. The server can be
started with the start script in the apache-tomcat-[version]/bin directory.

 Now that Tomcat is running, you can deploy the web application. A simple way to
do this is by copying the WAR file to the apache-tomcat-[version]/webapps folder.
During the deployment of the web application, the lifecycle is initialized, which sets
up the Scalatra application. By default, the servlet container uses the name of the WAR
file as the context path. For example, if the WAR file is named chapter09_2.11-0.1.0-
SNAPSHOT.war, the web application will be available under http://host:port/
chapter09_2.11-0.1.0-SNAPSHOT/.

 The web application is now deployed to a servlet container and ready to use. A new
version of the application can be deployed by copying the new WAR file to the apache-
tomcat-[version]/webapps folder.

 WAR deployment depends on an external servlet container and creates the addi-
tional overhead of configuration and maintenance. In some cases, a standalone distri-
bution of the application is more feasible. We’ll present a way to achieve this in the
next section.

9.4 Deploying as a standalone distribution
In this section, we’ll present a way of embedding a servlet container in an application.
This is in contrast to having an external servlet container that manages the application.

 We’ll also show how you can create a standalone distribution of an application with
DistPlugin from scalatra-sbt. A standalone distribution consists of the application
classes, resources, and runtime libraries, packaged as a zip archive.

9.4.1 Embedding a servlet container in an application

You’re going to embed Jetty. Jetty is a lightweight servlet container that can easily be
embedded in an application.

 Let’s start by adding a dependency to Jetty in the file project/build.scala:

"org.eclipse.jetty" % "jetty-webapp" % "9.2.10.v20150310"

146 CHAPTER 9 Configuration, build, and deployment

Next, listing 9.12 shows a sample launcher, which starts a Jetty servlet container with a
Scalatra application registered on it. You set up the server with a single connector that
receives incoming HTTP connections. A WebAppContext for the Scalatra application is
registered. After the servlet container is started, the ScalatraListener invokes the
application’s LifeCycle where the usual initialization takes place.

import org.scalatra.book.chapter09.AppConfig

import org.eclipse.jetty.server._
import org.eclipse.jetty.webapp.WebAppContext
import org.scalatra.servlet.ScalatraListener

object ScalatraLauncher extends App {

val conf = AppConfig.load

val server = new Server
server.setStopTimeout(5000)
server.setStopAtShutdown(true)

val connector = new ServerConnector(server)
connector.setHost("127.0.0.1")
connector.setPort(conf.port)

server.addConnector(connector)

val webAppContext = new WebAppContext
webAppContext.setContextPath("/")
webAppContext.setResourceBase(conf.assetsDirectory)
webAppContext.setEventListeners(Array(new ScalatraListener))
server.setHandler(webAppContext)

server.start
server.join

}

The port and the assetsDirectory are configured in application.conf. This was dis-
cussed in section 9.1.2.

9.4.2 Building a distribution package

Now we’ll look at the standalone distribution structure. The folder structure is shown
in listing 9.13. The /lib folder constitutes the application’s classpath. It contains the
compiled application classes, the third-party libraries as .jar files, and the classpath
resources. The /bin folder contains a shell script that starts the JVM and runs the
launcher. The /webapp folder contains all the web resources. Log files will be written
to the /logs folder.

Listing 9.12 A basic standalone launcher

Loads the configuration

Creates an embedded Jetty that
listens on the configured host/port

Creates the web application context:
sets the context path, resource
base, and context listener

Starts the server

147Deploying as a standalone distribution

.
 bin
 chapter09
 lib
 chapter09-standalone_2.11-0.1.0-SNAPSHOT.jar
 jetty-webapp-9.2.10.v20150310.jar
 scala-compiler-2.11.0.jar
 scala-library-2.11.6.jar
 logs
 webapp

 WEB-INF

The distribution is built using DistPlugin. This plugin provides the stage and dist
tasks. The former task stages the application to target/dist, and the latter creates a zip
package from those resources.

 The plugin’s settings are included in the build definition, such as project/
build.scala:

lazy val project = Project("chapter09-standalone", file("."))
.settings(mySettings: _*)
.settings(DistPlugin.distSettings:_*)

When you stage an application, a launcher script is also generated. The launcher
script essentially sets the classpath, defines JVM settings, and then runs the standalone
launcher class. A typical launcher script looks like this:

#!/bin/env bash

export CLASSPATH="lib:lib/scala-library.jar:lib/...
export JAVA_OPTS="-Xms2g -Xmx2g -XX:PermSize=256m -XX:MaxPermSize=256m"
export LC_CTYPE=en_US.UTF-8
export LC_ALL=en_US.utf-8

java $JAVA_OPTS -cp $CLASSPATH ScalatraLauncher

The script can be configured through several settings, as illustrated in the following
listing. This example creates a Seq[Setting] consisting of DistPlugin.distSettings
and the custom settings.

val myDistSettings =
DistPlugin.distSettings ++ Seq(

exportJars := true,
mainClass in Dist := Some("ScalatraLauncher"),
memSetting in Dist := "2g",
permGenSetting in Dist := "256m",

Listing 9.13 Structure of a standalone distribution

Listing 9.14 Customizing the default scalatra-sbt dist task

Packages the .class files and
resources as a JAR file before
exporting to the classpath

mainClass sets the
launcher class name.

memSetting sets
maximum and

initial heap sizes.
permMemSetting
sets PermGen size.

148 CHAPTER 9 Configuration, build, and deployment

envExports in Dist := Seq("LC_CTYPE=en_US.UTF-8",
"LC_ALL=en_US.utf-8"),

javaOptions in Dist ++= Seq("-Xss4m",
"-Dfile.encoding=UTF-8",
"-Dlogback.configurationFile=logback.production.xml",
"-Dorg.scalatra.environment=production")

)

lazy val project = Project("chapter09-standalone", file("."))
.settings(mySettings: _*)
.settings(myDistSettings: _*)

You can now create the standalone distribution using sbt. webappPrepare (or web-
stage when using sbt-web) stages the web application to target/web. The stage task
prepares the distribution in the target/dist directory. From those resources, the dist
task creates a zip package. The tasks are prefixed with the dist scope:

> webappPrepare
[success] Total time: 0 s, completed 11.02.2015 23:01:45

> dist:stage
[success] Total time: 7 s, completed 11.02.2015 23:01:57

> dist:dist
[success] Total time: 2 s, completed 11.02.2015 23:02:20

The zip can now be distributed to other systems, unpacked, and executed:

cp ./target/chapter09-standalone-0.1.0-SNAPSHOT.zip .
unzip chapter09-standalone-0.1.0-SNAPSHOT.zip
Archive: chapter09-standalone-0.1.0-SNAPSHOT.zip

creating: chapter09-standalone/
creating: chapter09-standalone/bin/
creating: chapter09-standalone/lib/
...

cd chapter09-standalone
chmod +x bin/chapter09-standalone
bin/chapter09-standalone
INFO org.eclipse.jetty.util.log - Logging initialized @922ms
INFO org.eclipse.jetty.server.Server - jetty-9.2.10.v20150310
INFO o.scalatra.servlet.ScalatraListener -

The cycle class name from the config: ScalatraBootstrap
INFO o.scalatra.servlet.ScalatraListener -

Initializing life cycle class: ScalatraBootstrap
INFO o.e.jetty.server.ServerConnector -

Started ServerConnector@6b12eaa3{HTTP/1.1}{localhost:8080}
INFO org.eclipse.jetty.server.Server - Started @2257ms

9.5 Running Scalatra as a Docker container
Docker allows you to bundle a service as an image. The Docker image is basically an
immutable template from which one or more containers can be run. A container

envExports values will
be exported when
starting the JVM.

javaOptions lists additional parameters
that will be supplied to the JVM.

149Running Scalatra as a Docker container

represents a running service and is isolated from the host system it runs in, comparable
to a virtual machine. In this section, we’ll show how you can use sbt-docker with Scalatra.

 The sbt-docker plugin (https://github.com/marcuslonnberg/sbt-docker) inte-
grates the building of a Docker image into an sbt build. It offers a task to build the
image and a DSL to express a Dockerfile, which is the specification from which a
Docker image is created. A Docker image for a Scalatra application might, for exam-
ple, consist of an Ubuntu base system, a Java JDK, and the compiled web application.

 A prototypical structure of a Scalatra application is shown in listing 9.15. The appli-
cation lives in the /app directory. The configuration for the application and the log-
ging are stored in /app/conf. The /app/data folder holds working data, such as log
files, user uploads, or a database. The compiled application and the libraries reside as
.jar files in the /app/lib directory. The public web assets are served from /app/webapp.

app
|-- conf
| |-- application.conf
| `-- logback.xml
|-- data
| `-- logs
|-- lib
| |-- chapter09-docker_2.11-0.1.0-SNAPSHOT.jar
| |-- ...
| `-- slf4j-api-1.7.10.jar
`-- webapp

|-- WEB-INF
`-- static.txt

The sbt-docker plugin expects the Dockerfile definition to be in the dockerfile in
docker setting. Listing 9.16 shows an excerpt from the sbt build. On top of an Ubuntu
base image, a JDK and the Scalatra application are installed. The compiled application
and all dependencies are copied as .jar files to /app/lib, and all the web assets are
copied to /app/webapp.

val myDockerSettings = Seq(
mainClass := Some("ScalatraLauncher"),
exportJars := true,
docker <<= docker.dependsOn(`package`),
imageNames in docker := Seq(ImageName("org.scalatra/chapter09-docker")),

dockerfile in docker := {

Listing 9.15 Scalatra application structure

Listing 9.16 Dockerizing a Scalatra application

Defines a main class

Packages the .class files and resources as a
JAR file before exporting to the classpath

Makes the docker task
depend on the package task

Defines a name for
the Docker image

Defines a Dockerfile

150 CHAPTER 9 Configuration, build, and deployment

val webappDir = (webappDest in webapp).value
val mainclass = mainClass.value.getOrElse(sys.error("No main class"))
val classpath = (fullClasspath in Runtime).value
val classpathString =

classpath.files.map("/app/lib/" + _.getName).mkString(":")

new Dockerfile {
from("ubuntu:14.04")

runRaw("apt-get update")
runRaw("apt-get install -y vim curl wget unzip")

runRaw("mkdir -p /usr/lib/jvm")
runRaw(

"wget --header \"Cookie: oraclelicense=accept-securebackup-cookie\"" +
" -O /usr/lib/jvm/jdk-8u51.tar.gz http://download.oracle.com/" +
"otn-pub/java/jdk/8u51-b16/jdk-8u51-linux-x64.tar.gz")

runRaw("tar xzf /usr/lib/jvm/jdk-8u51.tar.gz --directory /usr/lib/jvm")
runRaw("update-alternatives --install /usr/bin/java java" +

" /usr/lib/jvm/jdk1.8.0_51/bin/java 100")
runRaw("update-alternatives --install /usr/bin/javac javac" +

" /usr/lib/jvm/jdk1.8.0_51/bin/javac 100")

add(classpath.files, "/app/lib/")

add(webappDir, "/app/webapp")
runRaw("rm -rf /app/webapp/WEB-INF/lib")

volume("/app/conf")
volume("/app/data")
expose(80)
workDir("/app")

cmdRaw(
f"java " +

f"-Xmx4g" +
f"-Dlogback.configurationFile=/app/conf/logback.xml " +
f"-Dconfig.file=/app/conf/application.conf " +
f"-cp $classpathString $mainclass")

}
}

)

lazy val project = Project("chapter09-docker", file("."))
.enablePlugins(DockerPlugin)
.settings(mySettings: _*)
.settings(myScalateSettings: _*)
.settings(myDockerSettings: _*)

The Docker image is tagged as org.scalatra/chapter09-docker with the image-
Names in docker setting. When running a container from that image, it can be refer-
enced by that name. With this specification, the docker task is able to create a Docker
image:

Uses an Ubuntu
base image

Updates and
installs packages

Installs Oracle JDK 1.8

Adds all .jar files
to /app/lib

Adds all webapp files (from webappPrepare
task) to /app/webapp, and removes the .jar
libs from WEB-INF/lib

Declares volumes, ports,
and working directory

Defines the default command
of the container

Includes settings
in the project

151Running Scalatra as a Docker container

> docker
[info] Compiling Templates
[info] Compiling Scala sources
[info] Packaging
[info] Done packaging.
[info] Sending build context to Docker daemon
[info] Step 0 : FROM ubuntu:14.04
[info] ---> 8251da35e7a7
[info] Step 1 : RUN apt-get update
[info] ---> Using cache
[info] ---> f6ab6f8cec44
[info] ...
[info] Removing intermediate container 81f7377e71ed
[info] Successfully built 4e28509888f8
[info] Tagging image 4e28509888f8 with name: org.scalatra/chapter09-docker
[success] Total time: 28 s
>

Note that when building the image, Docker may use intermediate images from the
cache and not rerun the full Dockerfile. The caching strategy can be tuned with the
buildOptions in docker setting. See the plugin documentation for more details.

 In order to start and stop the container, you can use the two shell scripts shown in
listings 9.17 and 9.18.

#!/bin/bash

BASE=$(dirname $(readlink -f $0))

docker run -d \
-v $BASE/data:/app/data \
-v $BASE/conf:/app/conf:ro \
-p 8080:80 \
--name chapter09-standalone \
org.scalatra/chapter09-docker

#!/bin/bash

docker stop chapter09-standalone

docker rm chapter09-standalone

Now you’re ready to run containers from this image.
 The shell script start.sh starts a container from the image that runs in detached

mode in the background. The container’s port 80 is forwarded to port 8080 on the
host system. The docker ps command shows a list of all running containers. The out-
put of the application is shown with docker logs. The container can be stopped with
a stop.sh script:

Listing 9.17 Start script for container

Listing 9.18 Stop script for container

152 CHAPTER 9 Configuration, build, and deployment

$./start.sh
11416efae5543b69e909c65eca6368e55528befe40a2250fbaf405b314071103

$ docker ps
CONTAINER ID IMAGE COMMAND

CREATED STATUS PORTS NAMES

11416efae554 org.scalatra/chapter09-docker "/bin/sh -c 'java

➥ -X 2 seconds ago
Up 2 seconds 0.0.0.0:8080->80/tcp chapter09-standalone

$ docker logs chapter09-standalone
org.eclipse.jetty.util.log - Logging initialized @809ms
org.eclipse.jetty.server.Server - jetty-9.2.10.v20150310
o.scalatra.servlet.ScalatraListener -

The cycle class name from the config: ScalatraBootstrap
o.scalatra.servlet.ScalatraListener

➥ - Initializing life cycle class: ScalatraBootstrap
o.e.jetty.server.ServerConnector

➥ - Started ServerConnector@d737b89{HTTP/1.1}{0.0.0.0:80}
org.eclipse.jetty.server.Server - Started @1519ms

$./stop.sh

The data directories are mounted from the host system (/app/conf and /app/data).
Because the container just holds the application binaries, no data is lost when the con-
tainer is replaced, such as when a newer version is available. The lifecycle of the appli-
cation container and the data are separate. As a rule of thumb, containers should be
immutable and disposable.

 A Docker image is usually distributed to and run on other machines. Distribution
can be achieved by publishing the image to a public or private Docker registry. Alter-
natively, the image can be copied via the filesystem and network. The command
docker save writes the image to the filesystem:

$ docker save -o chapter09-docker.tar.gz org.scalatra/chapter09-docker
$ ls chapter09-docker.tar.gz
-rw-rw-r-- 1 user user 817M Sep 22 22:24 chapter09-docker.tar.gz

The image can then be copied (via SSH, for example) and imported using the docker
load command:

$ docker load -i chapter09-docker.tar.gz
$./start.sh

This concludes your introduction to using Docker with sbt and Scalatra.

153Summary

9.6 Summary
■ A Scalatra application is usually built with sbt and has a sbt build definition. sbt

is a modern build tool, with simple and effective concepts, based on tasks and
settings.

■ Configuration and environments allow for adapting an application to different
situations.

■ sbt plugins represent reusable logic in the form of tasks and settings. They deal
with common build-related use cases. A multitude of plugins have been devel-
oped by the community.

■ xsbt-web-plugin adds support for packaging servlet-based web applications as
well as running an application in a servlet container during development.

■ sbt-web introduces an asset pipeline for a web application, supporting a range
of tools and standards. Usually, an asset pipeline consists of a sequence of com-
pilation and transformation steps. Each step passes its results to the following
steps.

■ scalate-generator precompiles Scalate templates as .class files. This improves the
application loading time and provides additional compile-time safety. Errors in
a template appear during compilation and make a build either fail or succeed.

■ scalatra-sbt generates a standalone zip distribution of an application, consisting
of the embedded HTTP server, dependencies, and assets. The zip file can be
downloaded and installed on another system.

■ sbt-docker creates Docker containers for a Scala application. A container is sim-
ilar to a standalone distribution but also contains at minimum the operating sys-
tem and a Java Runtime Environment. That way, it can be run on another
system with minimal prerequisites.

154

Working with a database

In this chapter, you’ll work with persistent data in a Scalatra application and use the
Slick library. Slick integrates relational databases in the Scala language, providing a
type-safe query language.

10.1 Working with a relational database and example scenario
A database is typically used by an application to store persistent data. That way, the
data can be efficiently queried, loss of data can be minimized, and scaling the data-
base is possible. The application doesn’t talk to the database directly, but uses a
database library that provides methods for querying and updating the database.

This chapter covers
■ Working with persistent data in a Scalatra

application
■ Introducing the Slick library and integrating it

into a Scalatra application
■ Creating a persistence layer using Slick’s table

models, queries, and DBIO actions

155Working with a relational database and example scenario

 Scalatra has no built-in support or preference for a specific database system or
database library. In principle, all databases that provide a connector library for the
JVM can be used.

 This chapter shows how you can integrate the Slick library in a Scalatra web appli-
cation and includes a tutorial on using Slick. Interaction with the database is often
abstracted away in the application architecture and encapsulated in a persistence
layer. This is shown in figure 10.1.

 Slick makes it possible to use a relational database from the Scala language in a
type-safe way without writing SQL. A database table is described as a Table model, and
Slick maps a database table to a Scala type. From a Table model, a Query can be
derived, which can be further specialized and composed with other queries. A query
can be turned into a DBIO action, which represents an interaction with the database.
DBIO actions can be composed and are eventually executed on a Database object.

 We’ll start with the integration of the Slick library and then progress to more-
advanced Slick concepts. Presenting the full details is beyond the scope of this book, but
you can find them in the official documentation (http://slick.typesafe.com/docs/).

 Slick tries to mirror the relational model in the Scala language. As a result, Slick
allows you to stay close to the relational database model while supporting type-
safe interaction with it. This is sometimes called functional-relational mapping, in
contrast to object-relational mapping. Being able to work with simple and composable
queries can lead to good reasoning about the actual database interaction and the
resulting performance.

 The sample application you’ll build in this section is a website dedicated to sharing
climbing routes in different areas of the world. The relational database consists of two
tables for areas and routes. Each table defines typical columns such as ID, name, and

Figure 10.1 Components involved in the database interaction

156 CHAPTER 10 Working with a database

description. A route belongs to exactly one area. In Scala, this model is represented as
two classes: Area and Route.

case class Area(
id: Int,
name: String,
location: String,
latitude: Double,
longitude: Double,
description: String)

case class Route(
id: Int,
areaId: Int,
mountainName: Option[String],
routeName: String,
latitude: Double,
longitude: Double,
description: String)

10.2 Integrating Slick and working with a DBIO action
Let’s start with integrating Slick. You’re going to do the following:

■ Add Slick to the application build
■ Set up and configure a Database object
■ Create and run DBIO actions

Slick needs to be added to the dependencies in the application’s build definition in
project/Build.scala. You’ll also need to add a dependency to the database system you
want to use. Slick has support for a wide range of database systems; here you’ll use the
H2 embedded database, which can easily be embedded and has acceptable perfor-
mance for this sample application:

libraryDependencies ++= Seq(
"com.typesafe.slick" %% "slick" % "3.0.0",
"com.h2database" % "h2" % "1.4.187")

All the types, values, and implicit conversions that Slick requires to build queries and
execute DBIO actions are bundled as members of the driver’s api value and can be
imported from there. Further, because Slick is fully asynchronous, an Execution-
Context needs to be available. The following snippet imports from the H2Driver and
relies on Scala’s default ExecutionContext:

import slick.driver.H2Driver.api._

import scala.concurrent.ExecutionContext.Implicits.global

Listing 10.1 Example domain: Area and Route

157Integrating Slick and working with a DBIO action

In order to talk to the database, the Driver helps by translating Slick queries to
database-specific SQL. There’s a driver for each supported database system. For
example, the driver for MySQL is called MySQLDriver, and for H2 it’s H2Driver. Most
drivers extend JdbcDriver, which is a generic driver for relational databases using
JDBC. It knows enough to be able to execute plain SQL statements.

 A Database object represents the database and is responsible for running database
actions in the form of values of type DBIO[T]. This object usually is created early in the
application lifecycle. There are several factory methods. In this example, you call the
forURL method, which accepts the JDBC driver’s classname as well as a connection URI
and returns a Database object:

val jdbcUrl = "jdbc:h2:mem:chapter09;DB_CLOSE_DELAY=-1"
val jdbcDriverClass = "org.h2.Driver"
val db = Database.forURL(jdbcUrl, driver = jdbcDriverClass)

Each interaction with the database is encapsulated in a DBIO[T] action, where T is the
return type of that action. A DBIO action is defined at some place in the application
and can be executed using the run method of the Database object. The method
returns a Future[T] as the result, and Slick runs the action fully asynchronously,
meaning the execution doesn’t block the current thread.

 A simple way to construct an action is by formulating a plain SQL query using the
string interpolation operators sql and sqlu. The following example creates an action
running a single SQL statement, which creates a table called foo. You use Scala’s Await
to wait for the query to finish and the result to be available:

val createAction: DBIO[Int] = sqlu"create table foo(name varchar)"
val run: Future[Int] = db.run(createAction)
Await.result(run, Duration(5, "seconds"))

The sqlu interpolator yields a DBIO action giving the number of modified rows as an
Int. The sql interpolator declares its return type using the as[T] method. The DBIO
action yields a Seq[T]. A query can contain variables, and each embedded variable ref-
erence is converted to a bind variable in the resulting query.

 Multiple actions can be composed together to form a new action running all the
statements of the single actions. One way to do this is to use the DBIO.seq method,
which accepts a variable number of DBIO actions. The following listing shows an
example of how to construct and run actions.

import scala.concurrent.Future
import scala.concurrent.Await
import scala.concurrent.duration.Duration
import slick.jdbc.GetResult._

val createFoo: DBIO[Int] = sqlu"create table foo(name varchar)"

Listing 10.2 Creating, composing, and running DBIO actions

Imports scala.concurrent and
Slick result conversion types Creates

DBIO actions
using sqlu
interpolator

158 CHAPTER 10 Working with a database

val dropFoo: DBIO[Int] = sqlu"drop table foo"

def insertFoo(name: String): DBIO[Int] = sqlu"insert into foo values ($name)"

val selectFoo: DBIO[Seq[String]] = sql"select name from foo".as[String]

val composedAction: DBIO[Unit] = DBIO.seq(
createFoo,
insertFoo("air"),
insertFoo("water"),
selectFoo map { xs => xs foreach println },
dropFoo

)

val run: Future[Unit] = db.run(composedAction)

Await.result(run, Duration(5, "seconds"))

Note that the preceding composed action involves the side effect of printing the
results of the action. In the following example, you’ll see another way to chain multi-
ple actions using flatMap. Here the composedAction returns the results of the
selectAction and prints them later to stdout:

val composedAction: DBIO[Seq[String]] = for {
_ <- createAction
_ <- insertAction("air")
_ <- insertAction("water")
xs <- selectAction
_ <- dropAction

} yield xs

db.run(composedAction) foreach { xs => println(xs) }
// Vector(air, water)

By default, all statements are executed in auto-commit mode. That means when one
statement fails, the following statements aren’t executed, possibly leaving the database
in an inconsistent state. In order to avoid this, multiple statements can be grouped in
a transaction, guaranteeing that either all statements are applied as an atomic group,
or none are. In the case of a failure, no changes are applied, leaving the database
always in a consistent state.

 A transactional DBIO action can be built by invoking transactionally on an
action. The following example runs all the statements of composedAction in a single
transaction:

db.run(composedAction.transactionally)

The actual initialization happens in the application’s LifeCycle, as shown in the next list-
ing. The Database object is provided to the Chapter10App via the constructor. The data-
base schema and sample data are created during initialization using the DbSetup object.

Uses variables with SQL
string interpolation

Queries data
from the
databaseCreates a composed

action from other
actions

Runs all statements of the composed
action in a single transaction and
waits for the result

159Defining table models and working with a TableQuery

import org.scalatra.book.chapter10.{DbSetup, Chapter10App}

import org.scalatra._
import javax.servlet.ServletContext

import slick.driver.H2Driver.api._
import scala.concurrent.Await
import scala.concurrent.duration.Duration

class ScalatraBootstrap extends LifeCycle {

val jdbcUrl = "jdbc:h2:mem:chapter10;DB_CLOSE_DELAY=-1"
val jdbcDriverClass = "org.h2.Driver"
val db = Database.forURL(jdbcUrl, driver = jdbcDriverClass)

val app = new Chapter10App(db)

override def init(context: ServletContext): Unit = {
val res = db.run(DbSetup.createDatabase)

Await.result(res, Duration(5, "seconds"))

context.mount(app, "/*")
}

override def destroy(context: ServletContext): Unit = {
db.close()

}

}

This section demonstrated the integration of Slick in an application and working with
DBIO actions. You’ve seen how to compose DBIO actions either with DBIO.seq or by
using a for comprehension.

 Plain SQL queries can be useful, but they aren’t statically typed and checked by the
compiler. In the next section, we’ll show you how to define types for your tables.

10.3 Defining table models and working with a TableQuery
In Slick, a database table is described as a Table in Scala code. This allows it to formu-
late statically typed queries against that table without having to write SQL.

 A table is described with a few methods and types. The columns of the table appear
as def methods invoking the column[T] method. The type parameter, T, is the Scala
type of the column, and the name of the column is given as an argument. You use
Option[T] to indicate that a column is nullable. You mark the primary key of a table
with O.PrimaryKey, and an auto-increment column can be annotated with O.AutoInc.
You can explicitly specify a relation to another table using the foreignKey method.

 Each table definition needs to define a default projection, *, constituting the default
selection on that table. The result type of * must be aligned to the type parameter, T, of

Listing 10.3 Integration of Slick in the application’s LifeCycle

JDBC URL, JDBC driver
class, and Slick driver
class

Builds the
Database object

Creates the database
schema if it doesn’t
exist

Blocks here

Mounts the
application to /*

At the end of the
application lifecycle,
closes the database

160 CHAPTER 10 Working with a database

the table definition. For example, Table[(Int, String)] has a default projection of
type (Rep[Int], Rep[String]). Rep[T] lifts a T into the Slick DSL:

class Foos(tag: Tag) extends Table[(Int, String)](tag, "FOOS") {
def id = column[Int]("INT", O.PrimaryKey, O.AutoInc)
def name = column[String]("NAME")

def * = (id, name)
}

The following listing shows table definitions for two tables: Area and Route. When you
map a table row to a custom entity type, you need to define a bidirectional mapping
function between the column types and the entity type using the <> operator. For
example, the default projection of Areas provides a mapping between a single row
and Area.

object Tables {
class Areas(tag: Tag) extends Table[Area](tag, "AREAS") {
def id = column[Int]("ID", O.PrimaryKey, O.AutoInc)
def name = column[String]("NAME")
def location = column[String]("LOCATION")
def latitude = column[Double]("LATITUDE")
def longitude = column[Double]("LONGITUDE")
def description = column[String]("DESCRIPTION")

def * = (id, name, location, longitude, latitude, description)
<> (Area.tupled, Area.unapply)

}

class Routes(tag: Tag) extends Table[Route](tag, "ROUTES") {
def id = column[Int]("ID", O.PrimaryKey, O.AutoInc)
def areaId = column[Int]("AREAID")
def mountainName = column[Option[String]]("MOUNTAINNAME")
def routeName = column[String]("ROUTENAME")
def description = column[String]("DESCRIPTION")
def latitude = column[Double]("LATITUDE")
def longitude = column[Double]("LONGITUDE")

def * = columns <> (Route.tupled, Route.unapply)

def area = foreignKey("FK_ROUTE_AREA", areaId, areas)(_.id)
}

val areas = TableQuery[Areas]
val routes = TableQuery[Routes]

}

Listing 10.4 Table definitions for the Area and Route tables

Defines a Table type
for the areas relation Defines all required columns

with their names and typesSets primary
key and auto-

increment
attributes for
the id column

Defines
 the default

projection
for queries

to the table
Defines a Table type

for the routes relation

A mountain name
is optional and is

therefore mapped
to the type

Option[String].

Specifies table queries
for both tables

161Defining table models and working with a TableQuery

A TableQuery[E <: AbstractTable[_]] represents a Query on the table E using the
table’s default projection. A TableQuery can, for example, select all rows of that table.
Further, it can be used to insert new rows, manage the database schema, and act as a
starting point for building more specific queries (this is shown in greater detail in sec-
tion 10.4). Listing 10.4 defines a TableQuery value for each table.

 Let’s see how to manage the database schema with Slick. A TableQuery has a
schema method yielding a SchemaDescription that describes that table. The create
method from a schema definition yields a DBIO action that runs the SQL statements
required to create the schema for that table. The drop method drops the table from
the database schema. Multiple schemas can be combined with the ++ method. You can
define a create and drop action for the example tables like this:

import Tables.{routes, areas}

val createTables: DBIO[Unit] = (routes.schema ++ areas.schema).create

val dropTables: DBIO[Unit] = (routes.schema ++ areas.schema).drop

Now let’s look at querying data from a table. A Query represents a specific multiset of
tuples from the database. The result method returns a DBIO[Seq[T]] representing
an I/O action, which runs the query on a database connection and gives the result.
Invoking headOption on an action restricts the action on only the first row as a
DBIO[Option[T]], whereas head gives the first row as a DBIO[T]. You can invoke the
result method on the TableQuery:

val allRoutes: DBIO[Seq[Route]] = routes.result

val firstOpt: DBIO[Option[Route]] = routes.result.headOption

val first: DBIO[Route] = routes.result.head

New rows can be inserted with the += and ++= methods, similar to Scala collections.
The difference is that here a DBIO action is returned. The += method inserts a single
row, and ++= inserts a sequence of rows. A new area can be inserted like this:

val insertArea: DBIO[Int] = {
areas += Area(0, "Magic Wood", "Switzerland, Europe", 46.3347, 9.2612,
"Hidden in the forest of the Avers valley there are some of the ...")

}

By default, an insert returns the number of affected rows. When the table has an auto-
increment column, that column is ignored when inserting a new row. Here it’s set to 0.

 You can also use an Option[Int] to represent an ID type. Instead of returning the
number of affected rows, it’s also possible to return the generated ID. This can be
achieved by fusing the insert query and a select query that returns the ID with the
returning method, as shown here:

162 CHAPTER 10 Working with a database

val insertAreaReturnId: DBIO[Int] = {
val area = Area(0, "Magic Wood", "Switzerland, Europe", 46.3347, 9.2612,
"Hidden in the forest of the Avers valley there are some of the ...")

(areas returning areas.map(_.id)) += area
}

The next listing shows how to insert data into multiple tables by combining two insert
actions. The insertRoutes action references the ID of the newly inserted area in the
first action.

def insertRoutes(areaId: Int): DBIO[Option[Int]] = {
routes ++= Seq(
Route(0, areaId, None, "Downunder", 46.3347, 9.2612, "Boulder, 7C+ at ..."),
Route(0, areaId, None, "The Wizard", 46.3347, 9.2612, "Boulder, 7C at ..."),
Route(0, areaId, None, "Master of a cow", 46.3347, 9.2612, "Boulder, 7C+ ...")

)
}

val insertSampleData: DBIO[Int] = for {
areaId <- insertAreaReturnId
_ <- insertRoutes(areaId)

} yield areaId

val res: Future[Int] = db.run(insertSampleData)
res foreach println

When you run a DBIO action in a Scalatra action, a Future is typically returned (either
directly or in the form of an AsyncResult). When returning a Future, you need
ensure that FutureSupport is mixed into your application in order to enable asyn-
chronous request processing (see chapter 12 for more details).

 Listing 10.6 shows a sample application defining two actions for the /areas route.
A GET action loads a list of all areas from the database and renders that list in a tem-
plate. The POST action creates a new area in the database and returns an HTTP 302
Found status code with the URL to the new area resource. Both actions return a
Future. Note that the code maps over the result of a single DBIO action.

class Chapter10App extends ScalatraServlet with ScalateSupport with FutureSupport {
override protected implicit def executor = scala.concurrent.ExecutionContext.global

before("/*") {
contentType = "text/html"

}

get("/areas") {
new AsyncResult {

Listing 10.5 Inserting sample data

Listing 10.6 Using Slick DBIO actions in Scalatra actions

Defines an action that
inserts multiple routes

An action that inserts
an area and then inserts
multiple routes

Runs the
DBIO action

Mixes in the
FutureSupport trait

and defines an implicit
ExecutionContext for
handling the Futures

GET action
shows all areas

163Using the query language

val is = {

db.run(allAreas) map { areas =>
jade("areas.jade", "areas" -> areas)

}

}
}

}

post("/areas") {
val name = params.get("name") getOrElse halt(BadRequest())
val location = params.get("location") getOrElse halt(BadRequest())
val latitude = params.getAs[Double]("latitude") getOrElse halt(BadRequest())
val longitude = params.getAs[Double]("longitude") getOrElse halt(BadRequest())
val description = params.get("description") getOrElse halt(BadRequest())

db.run(createArea(name, location, latitude, longitude, description)) map { area =>
Found(f"/areas/${area.id}")

}
}

}

Defining a table model for database tables is straightforward and allows you to define
type-safe queries. Now let’s look at some more-challenging queries.

10.4 Using the query language
In this section, we’ll look at defining queries using the query language. A query is rep-
resented as a value of type Query, which is eventually translated by the Slick query
compiler to an SQL statement.

10.4.1 Defining queries

One fundamental Query is TableQuery, which represents the default projection of the
table. It’s often used as a starting point for building more-specific queries with the
operators of the query language method:

val areas = TableQuery[Areas]
val routes = TableQuery[Routes]

A new query can be derived from an existing one. For example, the filter method
filters a result set using a predicate. The map method projects each result tuple to a
subset of its attributes. These methods are similar to those of the Scala collection
types. Because a Query object is immutable, an operation always creates a new query,
and the original Query on the left side stays unmodified.

 For example, you can select all routes in the area with ID 2 and project the result-
ing tuples to the route’s id and name. You start with a TableQuery that will return all
rows, and build a new Query object using filter and map:

val routesQuery =
routes.filter(_.areaId === 2).map(r => (r.id, r.routeName))

Runs a DBIO action and
maps to a template

POST action creates
a new area

Runs a DBIO action and
maps to an HTTP 302 Found

164 CHAPTER 10 Working with a database

Note that the comparison in the filter predicate is realized using the === method.
This clause translates to a WHERE expression in the generated SQL query.

 For each column type, there are operators similar to the SQL operators for that
datatype. Table 10.1 shows a list of datatypes and operators.

Alternatively, you can build a query using a for comprehension, which may lead to
more-readable and concise code. The previous routesQuery expressed as a for com-
prehension looks like this:

val routesQuery = for {
route <- routes
if route.areaId === 2

} yield (route.id, route.routeName)

In the routesQuery, the left sides of the clauses in the for comprehension extend
Rep[T]. For example, route is a value of type Table[Route], and route.id is a value
of type Rep[Int].

 You can turn the Query into a DBIO action by using the result method, as shown
in section 10.3. The following listing shows a complete example, defining a Table-
Query, a Query, and a DBIO action. The action is run, and you wait for the result by
blocking on the Future. After that, you print the result to stdout.

val routes = TableQuery[Routes]

val routesQuery = routes.filter(_.areaId === 2).map(r => (r.id, r.routeName))

Table 10.1 Operators for column types

Column types Operators

All columns ===, =!=, <, <=, >, >=, in, inSet, inSetBind, between, ifNull

Optional columns getOrElse, get, isEmpty, isDefined

Numeric columns +, -, -, *, /, %, abs, ceil, floor, sign

Boolean columns &&, ||, unary_!

String columns length, like, startsWith, endsWith, toUpperCase,
toLowerCase, ltrim, rtrim, trim, reverseString, substring,
substring, take, drop, replace, indexOf

Single columns min, max, sum, avg, length, exists

Listing 10.7 TableQuery, Query, and DBIO action

Defines a TableQuery

Defines a Query that selects all routes in a specific area
and projects all resulting rows to the id and

routeName columns, yielding a Tuple2[Int, String]

165Using the query language

val routesAction: DBIO[Option[(Int, String)]] = routesQuery.result.headOption

val action: DBIO[Option[(Int, String)]] = for {
_ <- DbSetup.createDatabase
x <- routesAction
_ <- DbSetup.dropDatabase

} yield x

val res = Await.result(db.run(action), Duration(5, "seconds"))

println(res)
// Some((2,Bobcat-Houlihan))

There are other methods in addition to filter and map. A specific range in a result
set can be selected with the take and drop methods, leading to a LIMIT SQL clause:

val lessRoutes = routes.drop(3).take(10)

You can sort a result set with the sortBy method, which accepts a sort criterion. The
methods asc and desc allow you to specify the sort order for each single column:

val sortById = routes.sortBy(_.id.desc)
val sortByIdName = routes.sortBy(r => (r.areaId.asc, r.routeName))

There are several methods you can use to aggregate a result set. The methods min,
max, sum, avg, length, and exists aggregate a single column of a result set. The
groupBy method aggregates a result set by a column and projects each aggregated
result set to a flat tuple.

 For example, the following query groups routes by the areaId and creates statistics
consisting of the number of routes and the coordinate boundaries of that area, based
on the routes in that area:

val statistics = routes
.groupBy(_.areaId)
.map { case (areaId, rs) =>
(areaId,
rs.length,
rs.map(_.longitude).min,
rs.map(_.longitude).max,
rs.map(_.latitude).min,
rs.map(_.latitude).max)

}

It’s possible to compose queries that let you reuse and modularize queries. For
example, you can fetch all areas where the ID appears in a set of other IDs by fusing
a subquery using the in operator. In the following snippet, the subquery queries all
distinct area IDs where the area has at least one route with the route name match-
ing a suffix test:

Defines an Action that returns
only the first result as an

Option[(Int, String)]

Runs a composed action and
blocks for the result

166 CHAPTER 10 Working with a database

def bySuffix(str: String) = {
query.filter(_.routeName.toLowerCase like f"%%${str.toLowerCase}")
.groupBy(_.areaId).map(_._1)

}

val areasWithTrails = areas.filter(_.id in bySuffix("trails"))

10.4.2 Defining joins

A join can be expressed either as an applicative join or as a monadic join. Let’s first
take a look at applicative joins.

 There are Slick methods for each SQL join method: join for cross or inner joins,
and leftJoin, rightJoin, and outerJoin. Each join operator fuses two queries into a
single one, returning a tuple of the single result types. You can give a join condition
using an on clause.

 The following snippet shows examples for cross, inner, and left joins using applica-
tive join syntax:

val crossJoin = areas join routes
val innerJoin = routes join areas on (_.areaId === _.id)
val leftJoin = areas joinLeft routes on (_.id === _.areaId)

The monadic join style uses flatMap to construct joins. For example, an inner join has
a filter specifying the join condition:

val innerJoinMonadic = for {
r <- routes
a <- areas if r.areaId === a.id

} yield (r, a)

The foreign key declaration in the table definition (see listing 10.4) can be used to
navigate from the source to the target table:

val trailAreasQuery = for {
route <- routes
if (route.routeName.toLowerCase like "%trail")
area <- route.area

} yield area

10.4.3 Using update and delete statements

You’ve now seen how to insert and query data from the database. Let’s look at how you
can update and delete rows.

 The update operation is defined for a Query and updates all tuples of the projec-
tion to the given values. An update can be invoked on the default projection or a sub-
set of the columns. Values for nullable columns can be omitted.

 You can update the description of a specific route as follows:

167Using the query language

routes.byName("Midnight Lightning")
.map(r => r.description)
.update("Midnight Lightning is a problem on the Columbia Boulder.")

The delete operation deletes all rows that a query would yield:

routes.byName("Midnight Lightning").delete

10.4.4 Organizing queries as extension methods

If you have a lot of queries, it can be useful to organize them a bit. The next listing
shows how to extend the Query[Routes, Route, Seq] type with the queries from sec-
tions 10.4.1 and 10.4.2 using an implicit class.

implicit class RoutesQueryExtensions(query: Query[Routes, Route, Seq]) {

val lessRoutes = query.drop(3).take(10)

val sortById = query.sortBy(_.id.desc)
val sortByIdName = query.sortBy(r => (r.areaId.asc, r.routeName))

val statistics = query
.groupBy(_.areaId)
.map { case (areaId, rs) => (areaId,

rs.length,
rs.map(_.longitude).min,
rs.map(_.longitude).max,
rs.map(_.latitude).min,
rs.map(_.latitude).max)

}

def byId(id: Int) = query.filter(_.id === id)
def byName(name: String) = query.filter(_.routeName === name)

def bySuffix(str: String) =
query.filter(_.routeName.toLowerCase like f"%%${str.toLowerCase}")

val distinctAreaIds = query.groupBy(_.areaId).map(_._1)

}

def log(title: String)(xs: Seq[Any]): Unit = {
println(f"$title")
xs foreach { x => println(f"--$x") }
println

}

val trailAreaIds = routes.bySuffix("trails").distinctAreaIds
val areasWithTrails = areas.filter(_.id in trailAreaIds)

Listing 10.8 Organizing queries as extension methods

Defines a few useful queries as
extension methods to a Query

A helper function that
prints results to stdout

Composes
a query using the
extension methods

168 CHAPTER 10 Working with a database

val action = for {
_ <- DbSetup.createDatabase
_ <- routes.lessRoutes.result map log("limited routes")
_ <- routes.sortById.result map log("sorted routes (id)")
_ <- routes.sortByIdName.result map log("sorted routes (id, name)")
_ <- routes.statistics.result map log("area statistics")
_ <- DbSetup.dropDatabase

} yield ()

As you can see from the example of the areasWithTrails query, you can improve the
readability of a query by reusing a few basic predefined queries.

10.5 Summary
■ Slick allows you to work with a relational database in a functional way. It can eas-

ily be integrated into a Scalatra application.
■ Table models define Scala types for database tables. They let you safely refer to

table names and columns in queries.
■ Queries are written in a language similar to relational algebra so that you can

retain Scala’s type safety while still staying close to the SQL database.
■ A DBIO action represents a composable database read and write operation and

usually consists of one or more queries.

Builds a few more queries

Part 3

Advanced topics

The final part of this book explores several types of advanced subject matter.
Chapter 11 discusses how you can secure your application using HTTP sessions and
authentication strategies. Chapter 12 covers asynchronous programming and
using Scala’s advanced support for concurrent programming. Chapter 13 shows
you how to build, secure, and document APIs using the Swagger framework.

171

Authentication

Authentication, the act of confirming that somebody is who you think they are, is
something you’ll do over and over when constructing HTTP applications. To illus-
trate how authentication works in Scalatra, you’ll protect parts of the Hacker
Tracker application from chapter 4. You’ll change it so that only logged-in users
can add, remove, or edit hackers.

 It’s worth understanding right at the start that typically there are big differ-
ences between web applications and HTTP APIs when it comes to authentication.
Web applications usually require a user to log in once, and then they hold on to
that authentication state across multiple requests: they are stateful. APIs usually

This chapter covers
■ Stateful vs. stateless authentication
■ The Scentry authentication framework
■ HTTP Basic authentication
■ Session handling in Scalatra
■ Form-based login with a username and password
■ Remembering a user with a cookie
■ Defining multiple authentication strategies for a

single application

172 CHAPTER 11 Authentication

require that each request is authenticated independently of all other requests: they
are stateless.

 We’ll take a look at web application security using stateful authentication in this
chapter. If you’re interested in protecting your APIs, there are many ways to accom-
plish that—OAuth2 and HMACs are the most popular. OAuth2 is beyond the scope of
this chapter. HMAC is shown in chapter 13.

11.1 A new, improved Hacker Tracker
In the code samples for this chapter, you’ll find two versions of the Hacker Tracker
application. The first, chapter11/hacker-tracker-unprotected, is a more advanced ver-
sion of the Hacker Tracker from chapter 4. The version in chapter 4 demonstrated
routes, actions, and parameters, but it didn’t actually save anything. This new version
has a web form for creating new hackers and the ability to save them using an embed-
ded H2 database.

 To see it in action, start Scalatra:

cd chapter11/hacker-tracker-unprotected
chmod +x sbt
./sbt
~jetty:start

Let’s look at what’s been added since the last time you saw the project. Open it in your
editor or IDE. You’ll see that there are two new folders in src/main/scala/com/
constructiveproof/hackertracker. In the init folder, there’s a bunch of database initial-
izer code; and in the models folder is a persistence system for hackers that uses the
Squeryl object-relational mapper. The functionality of HackersController has been
expanded so that it can save hackers to the database. There’s also a new controller,
DatabaseSetupController, which can create or drop a database for you, set up the
database schema, and print out the database schema to the console.

 Let’s try setting up a new database. Open your browser and hit the URL http://
localhost:8080/database/create. Several things will happen:

■ Scalatra will tell Squeryl to create an H2 database storage file on disk.
■ Squeryl will attempt to create the file in your home directory, at the path ~/db/

hackertracker.db.
■ You’ll be redirected to a hacker-creation form.

The hacker-creation form looks like figure 11.1 (note that there are a lot of problems
with this form from a security perspective).

 There’s also a route allowing you to drop the database, at http://localhost:8080/
database/drop. Hit that route, and you’ll destroy the database. You’ll see output as
shown in figure 11.2.

 If you’re a security specialist, you’ll have noted the problem: most web applica-
tions don’t allow anonymous web users to create, drop, and re-create the data store.
In fact, most don’t expose these operations via HTTP. Let’s put the second objection

173A new, improved Hacker Tracker

aside and assume that you want routes for database creation and destruction, but that
only properly authenticated users should be allowed to do these things. How can you
enforce this?

 There are many ways to do it. If you’re an old Java servlet hand and can deal with
the stench of XML configuration, you can use native servlet security configuration to
protect your routes. After all, Scalatra runs inside a normal Java servlet container; all
the 2003-era options are available to you, if you want them.

 Another option is Apache Shiro. Again, because Shiro is designed for servlet appli-
cations, and Scalatra is a servlet-based framework, this will work just fine. The good
thing about Shiro is that you get not only authentication support (is this user who they
say they are?), you also get authorization support (what is this user allowed to do?).
But in this chapter, we’ll focus on what Scalatra provides natively.

Figure 11.1 The hacker-creation form

Figure 11.2 Dropping the database

174 CHAPTER 11 Authentication

11.2 An introduction to Scentry
Scalatra includes its own authentication framework called Scentry. It’s a version of
Ruby’s Warden authentication framework that has been ported to Scala.

 Like Warden, Scentry is structured around the concept of authentication strategies.
A strategy is a self-contained piece of logic for checking whether an authentication
attempt should succeed or fail. Strategies can run additional code after authentication
or logout takes place, allowing you to take care of things like giving the user a session
or destroying cookies on logout.

 You can protect your application in whatever ways you’d like, but these are some
common strategies:

■ A BasicAuthStrategy that prevents a user from seeing a web page without the
proper credentials.

■ A UserPasswordStrategy that allows a user to log in from a web form.
■ A RememberMeStrategy that remembers the user for a week after they’ve logged

in, so that they don’t need to enter their credentials every time they visit the
site.

Another way in which Scentry is like Warden is that it requires a session. Let’s take a
quick detour and look at session handling in Scalatra.

11.2.1 Session handling in Scalatra

Most of the stateful authentication methods we’ll be looking at involve using server-side
session mechanisms to remember a user’s identity between requests. Because session-
handling mechanisms underpin so much of the stateful security model, it’s a good idea
to understand how sessions work in Scalatra.

 Like many other frameworks, Scalatra needs to use some tricks to remember any-
thing about a given user between requests. In reality, every HTTP request is indepen-
dent of every other HTTP request; all HTTP applications are naturally stateless. To get
around this, Scalatra can be configured to set a session cookie in a user’s browser dur-
ing a request. When the user later makes another request, the session cookie is sent
back to the server. The server has a bit of RAM put aside to remember the information
inside the user’s session cookie. This allows the server to differentiate between users
and provide a decent illusion of statefulness between requests.

 Scalatra is a servlet-based framework, and the Java servlet specification dictates how
sessions are implemented by whatever container (such as Jetty, Tomcat, JBoss, Web-
Sphere, GlassFish) your application is running in.

 By default, Scalatra controller classes don’t set up sessions. Leaving session func-
tionality out of your application reduces RAM consumption and data transfer, so it
makes sense to leave sessions off if you’re building a stateless application, such as an
API. But when you need them, you need them.

 Sessions are a core part of Scalatra, and you can start a session in one of several ways.
The most explicit way to trigger a session is to mix Scalatra’s SessionSupport trait into

175Protecting routes with HTTP Basic authentication

one or more of your controllers. This will cause Scalatra to set a session cookie and
remember a user between successive requests. Mixing in FlashMapSupport, which
allows you to “flash” short amounts of information to a user between requests, will also
trigger a session. This is why FlashMapSupport isn’t turned on by default.

 Let’s use Scentry to protect the Hacker Tracker. You’ll start simply and use Scentry to
protect the database creation and destruction routes using HTTP Basic authentication.

 HTTP Basic authentication will be familiar if you’ve been around on the web for a
while: it pops up an ugly-looking login box that’s part of the browser, and it requires a
username and password in order to proceed.

11.2.2 Scentry setup

Setting up Scentry is fairly simple. First, add the Scentry dependency to your project/
build.scala file in the libraryDependencies section:

"org.scalatra" %% "scalatra-auth" % ScalatraVersion,

Make sure you restart sbt to pick up the dependency.
 Now you have access to all of Scentry’s authentication methods in your application,

and you’ve had a basic introduction to sessions in Scalatra. Let’s look at how you can
protect routes using Scentry.

 There are a variety of ways to protect routes but still give access to logged-in users:

■ HTTP Basic authentication
■ Forms authentication with a username and password
■ A Remember Me cookie

We’ll look at each of these over the next several sections.

11.3 Protecting routes with HTTP Basic authentication
Giving anonymous users on the web the ability to drop your database is a little danger-
ous. Now that Scentry is installed, you can fix that hole. You’ll need to write two pieces
of code:

■ An authentication strategy
■ A trait that you can mix into the controller you want to protect

You’ll write a BasicAuthStrategy and a BasicAuthSupport trait to mix into the
DatabaseSetupController to protect it.

11.3.1 The simplest possible Scentry strategy

The anatomy of any Scentry strategy is fairly simple. Strategies are just regular Scala
classes that inherit from ScentryStrategy. They must implement two methods: a way
to retrieve a user for authentication purposes, and a way to authenticate that the user
is who they say they are.

176 CHAPTER 11 Authentication

 The simplest possible strategy would look something like the following code. Don’t
add this code to your application—it’s just an example to explain what a very simple
strategy should look like. You’ll write a working one in a moment:

class YourStrategy()
extends ScentryStrategy[YourUserClass] {

def authenticate()
(implicit request: HttpServletRequest,

response: HttpServletResponse):
Option[YourUserClass] = {

// authentication logic goes here
}

}

Note that you’re obliged to carry an implicit request and response around with you
when defining strategies. This is ugly, but it’s needed in order to make asynchronous
requests work in a safe way.

 When defining a strategy, you need to tell Scentry what your User class is. In most
cases, it will probably be called something like User or Account. In security speak, this
is the security subject—the thing that you’re trying to authenticate. In the previous
example code, the subject is YourUserClass.

 The only method you must include is authenticate(). If authentication succeeds,
this method should return Some(user). If authentication fails, it should return None.

 Strategies are flexible, and you can define a lot of extra things about them. For
instance, you can conditionally determine whether an authentication strategy should
be run, or trigger actions at quite a few different points in the authentication lifecycle.
You’ll see some of these in this chapter.

11.3.2 A basic auth strategy

Enough of the theory. Let’s define a real strategy.
 First, you need to define a User class. Put the following code into models/

Models.scala:

case class User(id:String)

This defines a User model that you can use as an authentication subject. It’s a Scala
case class that takes a single string parameter as an id. It won’t persist to disk using
Squeryl, but it’s enough to show authentication in action.

 You need a place to keep your strategies. In the src/main/scala/com/
constructiveproof/hackertracker folder, create a folder called auth, and inside it,
create a folder called strategies.

 Scalatra comes with one built-in strategy for you to extend: the BasicAuthStrategy.
It requires that you pass a reference to your Scalatra application into the strategy’s

Gives your strategy
class a name

Extends ScentryStrategy
and says what your User
class isThe authenticate()

method is where
your authentication

logic goes. Returns an
Option[YourUserClass]

177Protecting routes with HTTP Basic authentication

constructor, so that it can reference incoming HTTP params. It also requires that you
specify an HTTP Basic authentication realm, so the user knows what they’re
authenticating to. This is a requirement of HTTP Basic authentication—it shows up at
the top of the authentication box that opens when a user tries to log in.

 Create the file OurBasicAuthStrategy.scala inside the strategies folder, and drop
the following code into it.

package com.constructiveproof.hackertracker.auth.strategies

import org.scalatra.auth.strategy.{BasicAuthStrategy}

import org.scalatra.{ScalatraBase}

import javax.servlet.http.{HttpServletResponse, HttpServletRequest}

import com.constructiveproof.hackertracker.models.User

class OurBasicAuthStrategy(

protected override val app: ScalatraBase,

realm: String)

extends BasicAuthStrategy[User](app, realm) {

protected def validate(userName: String, password: String)

(implicit request: HttpServletRequest,

response: HttpServletResponse): Option[User] = {

if(userName == "scalatra" && password == "scalatra")

Some(User("scalatra"))

else None

}

protected def getUserId(user: User)

(implicit request: HttpServletRequest,

response: HttpServletResponse): String = user.id

}

Scentry’s built-in BasicAuthStrategy is an abstract class. It has its own authenticate()
method—but that method calls validate(), which you’ve implemented here. In
OurBasicAuthStrategy, validate returns an Option[User], indicating that there’s a
possibility that it’ll return either Some(User) or None. The body of the validate
method checks whether the userName and password parameters that the app has
received are both equal to "scalatra".

 You can put any authentication logic you want into your strategy. In a more com-
plex system, you might, for instance, decide to do a database lookup on the username
that came in on the app’s HTTP params, and then check whether that User’s hashed
and salted password was equal to the incoming password parameter.

Listing 11.1 OurBasicAuthStrategy

Defines the
strategy

Passes the Scalatra
app in the constructor

Defines
 an HTTP Basic
authentication

realm
Extends Scentry’s built-
in BasicAuthStrategy

The validate()
method is called by

authenticate() in
the superclass.

Returns
Option[User]—maybe

a User, maybe None

If the username
and password
are both
scalatra,
authentication
succeeds.

Returns Some[User]
for a successful login

Returns None for an
unsuccessful login

Provides a way
to pull the user ID
out of the session

178 CHAPTER 11 Authentication

11.3.3 A basic authentication support trait

Now that you have an authentication strategy defined, you need a way to use it in a con-
troller. Let’s make a trait that you can mix into your DatabaseSetupController, forcing
it to use OurBasicAuthStrategy. Just as Scalatra has a built-in BasicAuthStrategy that
you can extend, it also has a BasicAuthSupport trait to make your life a bit easier. All
you need to do is extend that one, and it’ll take care of the mundane details of HTTP
Basic authentication redirects, HTTP headers, and status codes for you.

 The trait should look like the following listing. Drop it into the auth folder you cre-
ated earlier.

package com.constructiveproof.hackertracker.auth

import org.scalatra.auth.{ScentryConfig, ScentrySupport}
import org.scalatra.auth.strategy.BasicAuthSupport
import org.scalatra.ScalatraBase
import com.constructiveproof.hackertracker.auth.strategies.

OurBasicAuthStrategy
import com.constructiveproof.hackertracker.models.User

trait OurBasicAuthenticationSupport extends ScentrySupport[User]
with BasicAuthSupport[User] {
self: ScalatraBase =>

val realm = "Scalatra Basic Auth Example"

protected def fromSession = { case id: String => User(id) }
protected def toSession = { case usr: User => usr.id }

protected val scentryConfig =
(new ScentryConfig {}).asInstanceOf[ScentryConfiguration]

override protected def configureScentry = {
scentry.unauthenticated {

scentry.strategies("Basic").unauthenticated()
}

}

override protected def registerAuthStrategies = {
scentry.register("Basic", app =>

new OurBasicAuthStrategy(app, realm))
}

}

The trait extends ScentrySupport with a user type of User for an authentication sub-
ject. It’s worth pointing out the self: ScalatraBase => idiom used here, because
you’ll see it used in lots of Scala traits. In English, it would mean any class that mixes in

Listing 11.2 The OurBasicAuthenticationSupport trait

Extends
ScentrySupport

and lets Scalatra
know that your
security subject

is User

Mixes in
Scentry’s built-

in BasicAuth-
Support trait

Requires that any class
this trait gets mixed into
inherits from ScalatraBasePulls user

references out
of the session

Adds user
references to

the session

Gets a reference to the
Scentry configuration

Uses Scentry’s
built-in handler for
unauthenticated
users

Registers
OurBasicAuthStrategy
with Scentry

179Protecting routes with HTTP Basic authentication

the BasicAuthenticationSupport trait must inherit from ScalatraBase. In other words,
this trait can only be mixed into Scalatra controllers.

 You also hardcoded an HTTP Basic authentication realm into place. When a user
attempts to view a protected URL, they’ll see a login prompt pop up, and it’ll have the
title Scalatra Basic Auth Example set as the security realm.

 The support trait must be able to pull a User object out of the session and serialize
a user into the session, so that your users don’t need to reauthenticate on every
request. The fromSession and toSession methods do this in a simple way. Given a
User object with an ID, toSession whacks the user’s ID into the session and stores it
between requests. When you want to pull a User out of session, fromSession instanti-
ates a User with the proper ID. Once again, in a more complex application you’d
likely be doing some sort of retrieval from your data store, but this is enough to get
the job done here without getting bogged down in persistence details.

 scentryConfig is a value in the constructor that gives you a reference to your
application’s Scentry configuration. It’s used to define Scentry’s behavior. In this case,
you’re using it to answer a fairly simple question: what should happen when an unau-
thenticated user hits a protected controller action?

 The answer is here:

override protected def configureScentry = {
scentry.unauthenticated {
scentry.strategies("Basic").unauthenticated()

}
}

You tell your support trait that if any unauthenticated user hits a protected controller
action, it should look up Scentry’s built-in "Basic" strategy and run its unauthenti-
cated() method. If you nose around inside Scentry, you’ll see that this causes a
halt(401, "Unauthenticated"). Scalatra will stop the user from proceeding any fur-
ther, and the user will see the word “Unauthenticated” as the response body.

 The last thing you do in the support trait is register OurBasicAuthStrategy with
Scentry’s list of possible strategies. As you’ll see in a little while, it’s possible to define
multiple Scentry strategies and fall back from one to another. For the moment, you’re
only registering the "Basic" strategy.

 All the infrastructure you need is now set up, and you can protect your Database-
SetupController. At present, the top of DatabaseSetupController looks like this:

class DatabaseSetupController extends HackerTrackerStack {

before() {
contentType = "text/html"

}

Once again, you can take advantage of some built-in Scentry functionality: there’s already
a way to trigger a check for basic authentication. Just mix in OurBasicAuthentication-
Support and add a call to basicAuth to the before() filter, so it looks like this:

180 CHAPTER 11 Authentication

class DatabaseSetupController extends HackerTrackerStack
with OurBasicAuthenticationSupport {

before() {
contentType = "text/html"
basicAuth

}

That’s it. All routes in the controller are now protected by the basicAuth call, which
checks Scentry’s list of registered strategies and triggers an authentication box if Scen-
try’s built-in BasicAuthStrategy (or one of its subclasses) is registered.

11.3.4 Protecting the DatabaseSetupController

The result is wonderfully simple. Hit http://localhost:8080/database/drop. Instead
of dropping the database as before, you’re confronted with the browser’s HTTP Basic
authentication box asking you to log in, as shown in figure 11.3.

If you enter scalatra as the username and scalatra as the password, the validate()
method in OurBasicAuthStrategy will succeed, and Scentry will allow you to hit the
route and drop the database. If you do anything else, you’ll be shown the word Unau-
thenticated instead, as shown in figure 11.4.

Figure 11.3 HTTP Basic authentication in action

Figure 11.4 An unsuccessful login attempt

181Using forms authentication

The Basic authentication strategy works, but that browser-specific login box is rather
ugly. Most public-facing applications use a styled HTML login form instead. Let’s see
how to make a login form using a forms authentication strategy.

11.4 Using forms authentication
You don’t want unauthenticated users to be able to add new hackers to the database,
which they can currently do. The problem is, HackersController isn’t protected. To
fix this, let’s turn our attention toward securing get("/new"), which displays the new
hacker form, and post("/"), which creates a new hacker in the database.

 Unauthenticated users who hit the new hacker route or try to create a new hacker
should be redirected to a login page. After logging in, users should be able to see the
new hacker form and create new hackers in the database. Scentry doesn’t have a built-
in strategy for doing this, so you’ll write the code from scratch.

 You want users to supply a username and password when users attempt to log in,
so you’ll call the strategy UserPasswordStrategy. You also want to have a Remem-
ber Me check box that allows the system to remember a user for a week, so the user
can bypass authentication as long as a cookie is set. This requires a different strat-
egy: RememberMeStrategy. You’ll also make an AuthenticationSupport trait that you
can mix into your controllers in order to protect them with your new strategies.

11.4.1 Creating a simple login form

You may as well start with the user interface. Add a new folder named sessions in your
webapp/WEB-INF/templates/views folder, and create a file in it called new.ssp. That
file is a simple login form, as follows.

<p>Please login:</p>
<form action="/sessions" method="post">

<p>
<label>Login:</label>
<input type="text" name="username"/>

<label>Password:</label>
<input type="password" name="password"/>

<label>Remember Me:</label>
<input type="checkbox" name="rememberMe" value="true" />

</p>
<p>

<input type="submit">
</p>

</form>

This form defines the user interface: a text input field for users to type their username
into, a password field, and a check box that causes Hacker Tracker to remember the
user for a week if it’s selected when they log in successfully.

Listing 11.3 A simple login form

182 CHAPTER 11 Authentication

 You’ll now create a SessionsController so that you can display this form. Add the
code from the following listing to it.

package com.constructiveproof.hackertracker

class SessionsController extends HackerTrackerStack {
get("/new") {
contentType="text/html"
ssp("/sessions/new", "allHackers" -> Hacker.all,

"authenticated" -> isAuthenticated)
}

}

Nothing too noteworthy here; it’s a standard Scalatra action that renders the form.
Remember to mount the controller in ScalatraBootstrap by adding context

.mount(new SessionsController, "/sessions") to the init() method. Point your
browser at http://localhost:8080/sessions/new, and you’ll be able to see the form, as
shown in figure 11.5.

11.4.2 Building a UserPasswordStrategy

At this point, you need to set up a Scentry strategy that can deal with form input and
deal with login attempts by checking whether a user’s username and password should

Listing 11.4 A basic sessions controller

Figure 11.5 The login form

183Using forms authentication

log them in. Create a new file called UserPasswordStrategy in auth/strategies/, and
drop the following code into it.

package com.constructiveproof.example.auth.strategies

import org.scalatra.ScalatraBase
import javax.servlet.http.{HttpServletResponse, HttpServletRequest}
import org.scalatra.auth.ScentryStrategy
import com.constructiveproof.hackertracker.models.User

class UserPasswordStrategy(protected val app: ScalatraBase)
extends ScentryStrategy[User] {

override def name: String = "UserPassword"

def authenticate()
(implicit request: HttpServletRequest,
response: HttpServletResponse): Option[User] = ???

}

This looks very much like the minimal strategy from section 11.3.1, with one differ-
ence: it has an explicit name, which becomes important when multiple strategies with
fallbacks are in play. The code will compile, but you only have a nonfunctional stub of
the authenticate() method’s functionality. Before you finish that, let’s add a few con-
venience methods so your strategy can read incoming HTTP parameters.

 You’ll add one for reading the incoming username parameter and another for the
incoming password parameter. Drop these into the body of the strategy class:

private def username = app.params.getOrElse("username", "")
private def password = app.params.getOrElse("password", "")

Both methods use the app val that this strategy was initialized with to read incoming
form parameters. During authentication attempts, instances of this strategy will be cre-
ated, and you can use these methods to either grab the parameters you want or return
an empty string.

 Now you’re ready to finish the authenticate() method. Add code to that method
so it attempts to authenticate the user:

def authenticate()
(implicit request: HttpServletRequest,
response: HttpServletResponse): Option[User] = {

if(username == "foo" && password == "foo") {
Some(User("foo"))

Listing 11.5 The start of a UserPasswordStrategy

Defines a
strategy, and
passes your

Scalatra app
into the

constructor

Inherits from
ScentryStrategy

[User] Explicitly naming your
strategy is a good idea.

Stubs out the
authenticate() method

184 CHAPTER 11 Authentication

} else {
None

}
}

This is a simple method that uses the convenience methods for username and pass-
word to check a user’s credentials. If the user enters “foo” for both the username and
password, authenticate() returns a User and authentication succeeds. Otherwise,
the method returns None, and authentication fails.

 Part of a Scentry strategy’s job is to package up all authentication-related logic into
one neat little bundle. Let’s use Scentry to define what should happen when an unau-
thenticated user requests a protected resource. Add the function in the following list-
ing to UserPasswordStrategy.

override def unauthenticated()
(implicit request: HttpServletRequest,

response: HttpServletResponse) {
app.redirect("/sessions/new")

}

When an unauthenticated user attempts to hit a route that’s protected by this particular
Scentry strategy, you issue a redirect to "/sessions/new" and the user sees the login
form, requesting their username and password. Now let’s create an Authentication-
Support trait that you can use to protect the hacker-creation form, and see this in action.

11.4.3 Creating an AuthenticationSupport trait

As with the UserPasswordStrategy, you’ll need to write the AuthenticationSupport
trait from the ground up. Create a new trait beside OurBasicAuthenticationSupport
in the auth namespace, and call it AuthenticationSupport. Its contents are shown in
the following listing.

package com.constructiveproof.hackertracker.auth

import org.scalatra.ScalatraBase
import org.scalatra.auth.ScentrySupport
import com.constructiveproof.hackertracker.models.User
import com.constructiveproof.example.auth.strategies.

{UserPasswordStrategy}

trait AuthenticationSupport extends ScalatraBase
with ScentrySupport[User] {
self: ScalatraBase =>

protected val scentryConfig = (new ScentryConfig {})

Listing 11.6 Defining what happens when someone accesses a protected resource

Listing 11.7 AuthenticationSupport trait for use across the app

Overrides the unauthenticated()
method from ScentryStrategy

Redirects to
the login form

185Using forms authentication

.asInstanceOf[ScentryConfiguration]

protected def fromSession = { case id: String => User(id) }
protected def toSession = { case usr: User => usr.id }

protected def requireLogin() = {
if(!isAuthenticated) {

redirect("/sessions/new")
}

}

override protected def configureScentry = {
scentry.unauthenticated {

scentry.strategies("UserPassword").unauthenticated()
}

}

override protected def registerAuthStrategies = {
scentry.register("UserPassword", app =>

new UserPasswordStrategy(app))
}

}

The trait defined in listing 11.7 is almost exactly the same as the OurBasicAuthenti-
cationSupport trait you defined in section 11.3.3, but there’s one crucial difference.
When you used Scentry’s built-in BasicAuthStrategy, you were able to protect a route
by using the basicAuth method in the before filter of your DatabaseSetup-
Controller. That’s what told Scentry to protect all the routes in that controller.

 In the case of your new AuthenticationSupport trait, you need to build your own
equivalent functionality, and that’s what the requireLogin() method does. You can
put requireLogin() either in a before() filter (to protect an entire controller) or in
an action (to protect only a single action). It triggers a Scentry authentication check,
and if the user is authenticated, it does nothing. But if a user isn’t authenticated,
they’re redirected to the login form.

11.4.4 Protecting your controllers with AuthenticationSupport

Let’s try it. You only need to make two small changes. Right now, the class definition
for HackersController looks like this:

class HackersController extends HackerTrackerStack {

First, change the definition of HackersController so that it inherits from Authenti-
cationSupport in addition to HackerTrackerStack:

class HackersController extends HackerTrackerStack
with AuthenticationSupport {

A method you can use in the controller
to define a protected route

Triggers an
authentication checkRedirects to the login form if

the user fails authentication

186 CHAPTER 11 Authentication

Second, add the requireLogin method call to the get("/new") route in Hackers-
Controller. Right now, it looks like this:

get("/new") {
val allHackers = from(Db.hackers)(select(_))
ssp("/hackers/new", "allHackers" -> allHackers)

}

All you need to do is drop the method call into place:

get("/new") {
requireLogin
val allHackers = from(Db.hackers)(select(_))
ssp("/hackers/new", "allHackers" -> allHackers)

}

Now try hitting the URL http://localhost:8080/hackers/new. You’re instantly redi-
rected to the form asking you to log in. A small victory! The trouble is, currently there
isn’t any way for you to log in. Let’s change that.

 Open SessionsController again. At present, the controller definition looks like
this:

class SessionsController extends HackerTrackerStack {

Change it by mixing in AuthenticationSupport:

class SessionsController extends HackerTrackerStack
with AuthenticationSupport {

That gives the controller access to Scentry. You’ll need that in a moment.
 Next, paste a session creation action into it, as in the next listing.

post("/") {
scentry.authenticate()

if (isAuthenticated) {
redirect("/hackers")

}else{
redirect("/sessions/new")

}
}

This session-creation action is deceptively simple. The login form at webapp/WEB-
INF/templates/views/sessions/new.ssp posts the parameters username and password
to this action. When scentry.authenticate() is called, Scentry checks which strate-
gies are currently registered for this controller. There’s only one at the moment:
UserPasswordStrategy.

Listing 11.8 Scentry login action

The action with
requireLogin added

Attempts to authenticate the user
using the incoming “username”
and “password” parameters

Checks whether
authentication succeeded

187Using forms authentication

 Scentry instantiates an instance of UserPasswordStrategy, passing in the current
controller as the strategy’s app. Then it runs the authenticate() method on the strat-
egy. You might want to reread that code right now to see what it does: it returns a User
to Scentry if both the username and password parameters from the form submission
are equal to the string "foo".

 The authenticate() method has another effect, though. If authentication suc-
ceeds, it stores a reference to the user in the session, using whatever the strategy has
defined in the toSession method. At any time after that, you can call isAuthenticated
and find out whether the current user has a login session.

 The login code is complete, so let’s stop talking about it and try it. Try a failure
first: enter a username of foo and a password of bar into the form, and submit it.
Authentication will fail, and you’ll be redirected back to the login form to try again.

 Now try logging in with a username of foo and a password of foo. Authentication
will succeed this time. The user will have a login session, and Scentry will remember
that the user is logged in, even over multiple requests (try hitting Refresh a few times).

 Because you’re logged in, you can also click the New Hacker link or visit http://
localhost:8080/hackers/new. You’ll see a form like the one shown in figure 11.6.

 You’ve achieved your objective of protecting the new hacker action. You should
add requireLogin to the post("/") action in HackersController, so you don’t forget
to protect that route. Now, let’s optimize a little.

11.4.5 Deciding whether to run a strategy

The way the code is set up right now, UserPasswordStrategy will run in full every
time the scentry.authenticate() method is called. But sometimes you won’t want

Figure 11.6 You can visit the hacker-creation form again.

188 CHAPTER 11 Authentication

this to happen, depending on your application state. Let’s see how you can tell Scen-
try to not bother running a strategy under certain conditions. The key to this is Scen-
try’s isValid() method.

 The isValid() method determines whether a strategy should run or not. It
returns a Boolean, and you can use override in your strategies to determine the con-
ditions under which they will run (or not).

 Let’s try it. You want the UserPasswordStrategy to run if and only if the strategy
has received username and password params. Add the following code to UserPass-
wordStrategy.

override def isValid(implicit request: HttpServletRequest) = {
username != "" && password != ""

}

Your strategies will only run if their isValid methods return true; and by default,
isValid set to true. The code in listing 11.9 tells Scentry to run UserPassword-
Strategy’s authenticate() method only if the user has entered both a username
and password.

 This isn’t much of a gain from an efficiency point of view, but it illustrates that you
can choose to run strategies conditionally. You might decide, for instance, that you
shouldn’t allow anyone to log in to your application between the hours of 10:00 p.m.
and 8:00 a.m. on Tuesday nights.

 The strategy is starting to become more full-featured. There’s still a problem with
the code as it stands, though: users can’t log out.

11.4.6 Logging out

You need to add a Log Out link to the main navigation if the user is currently logged
in, and a Log In link to the main navigation if the user is currently logged out. But
first you need to make some additions to SessionsController and Hackers-
Controller. You need to ensure that your Scalate templates know whether the user is
currently logged in.

 Open HackersController, and take a look at the get("/") action:

get("/") {
ssp("/hackers/index", "allHackers" -> Hacker.all)

}

Add a new value, authenticated, to the outgoing template parameters:

get("/") {
ssp("/hackers/index", "allHackers" -> Hacker.all,
"authenticated" -> isAuthenticated)

}

Listing 11.9 Conditionally running authentication strategies

189Using forms authentication

You’ll need to add the authenticated value to every one of your controller actions, in
both HackersController and SessionsController. You’re going to use it in the
application’s default layout, and everything will explode if it’s not available.

 Let’s add a Log Out link to the top navigation. Open the Hacker Tracker’s layout
file at webapp/WEB-INF/templates/layouts/default.ssp. At the moment, the nav sec-
tion looks like the following listing.

<!-- Header and Nav -->
<div class="row">

<div class="large-3 columns">
<h1>
</h1>

</div>
<div class="large-9 columns">

<ul class="inline-list right">
New hacker

</div>

</div>
<!-- End Header and Nav -->

Declare the authenticated value at the top of webapp/WEB-INF/templates/layouts/
default.ssp:

<%@ val authenticated: Boolean %>

Now add conditional Log In and Log Out links to the default.ssp template.

<!-- Header and Nav --> <div class="row">
<div class="large-3 columns">
<h1>
</h1>

</div>
<div class="large-9 columns">
<ul class="inline-list right">

New hacker
#if(authenticated)

Log out
#else

Log in
#end

</div> </div>

<!-- End Header and Nav -->

Your view code can now tell whether the user is authenticated: the #if(authenti-
cated) conditional code will check to see whether the user is logged in.

Listing 11.10 Navigation menu without Log In and Log Out links

Listing 11.11 Navigation menu with Log In and Log Out links

190 CHAPTER 11 Authentication

 If you’re logged out, you’ll see a link inviting you to Log In. It’s in the upper-right
corner of the page shown in figure 11.7. If you’ve logged in, you’ll see a Log Out link
instead, as shown in figure 11.8.

Figure 11.7 A conditional Log In link

Figure 11.8 A Log Out link

191A fallback Remember Me cookie strategy

Now it’s time to wrap things up and fix the last problem. At present, clicking the Log
Out link won’t do anything. Open SessionsController, and add a route for destroy-
ing the session, as follows.

get("/destroy") {
scentry.logout()
redirect("/hackers")

}

Calling scentry.logout() tells Scentry to destroy the session for the current user and
log them out. The servlet container that Scalatra is running inside destroys its refer-
ence to this user’s session, and the user can no longer access any Scentry-protected
routes without logging in again.

 The UserPasswordStrategy is complete. You’ve defined your own strategy, built
an AuthenticationSupport trait that you can mix into your controllers, and pro-
tected a couple of routes in the HackersController so that anonymous users can’t
access them. Now let’s add a second strategy, so you can see how you can fall back
when using multiple Scentry strategies.

11.5 A fallback Remember Me cookie strategy
Take another look at your login form, shown in figure 11.9. There’s a Remember Me
check box on the login form, but you haven’t done anything with it yet. A check box
like this typically sets a cookie and remembers the user for a week, so they don’t need
to log in again. Let’s implement this functionality. To do so, you’ll build another strat-
egy, RememberMeStrategy, and register it with the AuthenticationSupport trait.

Listing 11.12 A session-destruction action

Figure 11.9 Note the Remember Me check box

192 CHAPTER 11 Authentication

You want to implement fallback behavior. When a user attempts to access a protected
route, Scentry will first check to see if the user has a cookie set, and, if so, the user will
be logged in without being asked for a username and password. This will happen
using RememberMeStrategy.

 If no cookie is set, Scentry will fall back to using UserPasswordStrategy, redirect
the user to the login form, and ask for a username and password. If the user checks
the Remember Me box in the form, you’ll set a cookie so the user is remembered next
time. Finally, you’ll ensure that the Remember Me cookie is destroyed when the user
logs out, so you don’t inadvertently create a huge security hole.

11.5.1 Building the RememberMeStrategy class

The process of building authentication strategies should be familiar by now. Let’s start
by defining the RememberMeStrategy class. Create a RememberMeStrategy.scala file
inside auth/strategies, and add the following code to it.

package com.constructiveproof.hackertracker.auth.strategies

import org.scalatra.{CookieOptions, ScalatraBase}
import javax.servlet.http.{HttpServletResponse, HttpServletRequest}
import org.scalatra.auth.ScentryStrategy
import com.constructiveproof.hackertracker.models.User
import org.slf4j.LoggerFactory

class RememberMeStrategy(protected val app: ScalatraBase)
extends ScentryStrategy[User] {

override def name: String = "RememberMe"

val CookieKey = "rememberMe"
private val oneWeek = 7 * 24 * 3600

private def tokenVal = {
app.cookies.get(CookieKey) match {

case Some(token) => token
case None => ""

}
}

def authenticate()
(implicit request: HttpServletRequest,
response: HttpServletResponse) = {

if(tokenVal == "foobar") Some(User("foo"))
else None

}

override def unauthenticated()
(implicit request: HttpServletRequest,

Listing 11.13 RememberMeStrategy

Grabs the value of the
rememberMe cookie
token from the app’s
cookies hash

Authenticates by
checking the tokenVal

193A fallback Remember Me cookie strategy

response: HttpServletResponse) {
app.redirect("/sessions/new")

}
}

This strategy compiles, but it’s not yet complete. So far, it looks almost exactly like Our-
BasicAuthStrategy and UserPasswordStrategy. It inherits from ScentryStrategy,
and it defines User as the authentication subject. It has an explicit name, RememberMe.
Let’s take a closer look at what it’s doing.

 The authenticate() method checks if there’s an incoming cookie, using the
tokenVal method. For simplicity’s sake, you’re only checking to see whether the
incoming rememberMe cookie contains the string "foobar"; if it does, you return a
User, which causes Scentry to log the user in.1

 The main problem with the code as it stands is that nothing ever sets the rememberMe
cookie, so the strategy will never log a user in. You can set and unset the rememberMe
cookie at appropriate times using Scentry’s callbacks.

11.5.2 Scentry callbacks

You’ll often want to perform actions before, during, and after authentication or log-
out. In the case of Hacker Tracker, you want to set a rememberMe cookie if the user has
checked the Remember Me check box during login, and destroy the rememberMe
cookie when the user logs out. Other applications may need to do different things,
such as notify all users that somebody has logged out, or log messages to a security
audit log when a user logs in.

 Scentry defines quite a few callbacks. Table 11.1 lists them.

1 A real-world application would save a randomized token value into the User object’s backing data store when
the user decided to be remembered, and would check the incoming cookie to see if it had the same value as
the user has in the database.

Table 11.1 Scentry callbacks

Callback What it does

beforeAuthenticate Runs code before authenticating; is only run when the module is valid

afterAuthenticate Runs code after authenticating; is only run when the module is valid

beforeSetUser Runs code before setting the user in the session

afterSetUser Runs code after setting the user in the session

beforeFetch Runs code before fetching and deserializing the user from the session

afterFetch Runs code after fetching and serializing the user from the session

beforeLogout Runs code before logging the user out and invalidating the session

afterLogout Runs code after logging the user out and invalidating the session

Redirects to the login form if
the user isn’t authenticated

194 CHAPTER 11 Authentication

Let’s try a few of them. You want to set a cookie after authentication takes place if
the user selected the Remember Me check box. Add the following code to your
RememberMeStrategy.

override def afterAuthenticate(winningStrategy: String, user: User)
(implicit request: HttpServletRequest,
response: HttpServletResponse) = {
if (winningStrategy == "RememberMe" ||

(winningStrategy == "UserPassword" &&
checkbox2boolean(app.params.get("rememberMe").
getOrElse("").toString))) {

val token = "foobar"
app.cookies.

set(CookieKey, token)(CookieOptions(
maxAge = oneWeek, path = "/"))

}
}

/**
* Used to easily match a checkbox value
*/

private def checkbox2boolean(s: String): Boolean = {
s match {
case "yes" => true
case "y" => true
case "1" => true
case "true" => true
case _ => false

}
}

In this code, you use Scentry’s afterAuthenticate callback to set the rememberMe
cookie. The cookie is set if the winningStrategy is "RememberMe", and it’s also set if
the winningStrategy is "UserPassword" and the Remember Me check box form
element was checked during login. Under any other conditions, the cookie doesn’t
get set.

 The cookie is now being set, but there’s nothing to trigger an authentication
attempt. You need to add this code to the top of SessionsController:

before("/new") {
if(!isAuthenticated) {
scentry.authenticate("RememberMe")

}
}

With this code in place, Scentry will attempt to authenticate users against the remem-
berMe cookie before they’re shown the login form.

Listing 11.14 afterAuthenticate callback to set the rememberMe cookie

If the
RememberMeStrategy

authentication
succeeded …

… or the
UserPasswordStrategy
succeeded …

… and the user
selected the

Remember Me check
box in the form … … then set the

rememberMe cookie

Converter
function to grab
the check box
value from the
params

195A fallback Remember Me cookie strategy

 One last thing: you need to register RememberMeStrategy with Scentry. Open the
AuthenticationSupport trait, and add the following code to it:

override protected def registerAuthStrategies = {
scentry.register("UserPassword",
app => new UserPasswordStrategy(app))

scentry.register("RememberMe",
app => new RememberMeStrategy(app))

}

You should now be able to select the check box when you log in. If you then restart
your browser and attempt to hit a protected action, you’ll automatically be logged in
via the RememberMeStrategy. You may want to add a bit of code to the get("/new")
route in the SessionsController, because it can be confusing to see a login form
when you’re already logged in:

get("/new") {
if (isAuthenticated) redirect("/hackers")

contentType="text/html"
ssp("/sessions/new",
"allHackers" -> Hacker.all,
"authenticated" -> isAuthenticated)

}

With this code in place, if you try to view the login form when you’re already logged
in, you’ll be redirected to the /hackers route.

 The last thing you need to do is destroy the rememberMe cookie when the user logs
out. If you don’t do this, users will have their sessions invalidated on the server when
they click the Log Out link, but they’ll be reauthenticated as soon as they attempt to
view a protected part of the application, which probably isn’t what anybody expects.
You can use Scentry’s beforeLogout callback to fix this, as follows.

override def beforeLogout(user: User)
(implicit request: HttpServletRequest,
response: HttpServletResponse) = {
if (user != null){
user.forgetMe

}
app.cookies.delete(CookieKey)(CookieOptions(path = "/"))

}

In the callback examples in listings 11.14 and 11.15, you can see the use of Scentry’s
winningStrategy. There can be multiple strategies in play during any authentication
attempt where more than one strategy is registered. The winningStrategy is the one
that succeeded.

Listing 11.15 beforeLogout callback to destroy the rememberMe cookie

Redirects to /hackers if the
user is already logged in

196 CHAPTER 11 Authentication

 Scentry strategies for which isValid evaluates to true run successively until one of
the following happens:

■ A strategy succeeds
■ All strategies have failed
■ There are no more valid strategies

You’ve seen how to log in a user with a Remember Me cookie, and you’ve had a broad
overview of using multiple Scentry strategies, falling back one after another. Like most
things in Scalatra, the way in which your authentication strategies fall back on each
other gives you maximum flexibility to structure your application in the way you want.

11.6 Summary
■ Scentry is the authentication module shipped with Scalatra. To keep Scalatra as

light as possible, Scentry isn’t enabled by default. You need to add a depen-
dency on scalatra-auth in order to use it.

■ Scentry triggers a cookie-based HTTP session when it’s used, so remember that
you’re setting a cookie on every request as soon as you extend Scalatra’s
SessionSupport.

■ Scentry is ideally suited to stateful authentication scenarios, where credentials
are submitted at the beginning of a session as opposed to per request.

■ The pluggable design of Scentry makes it simple to support several authentica-
tion mechanisms, such as HTTP Basic or HTML login forms, or “remember-me”
cookies.

197

Asynchronous programming

Scala makes multicore, distributed, and asynchronous programming easier. Its
focus on immutability, as well as associated libraries such as Akka, lower the concep-
tual burdens of concurrency management by making it easier to reason about your
code. Why is this important?

 Most other languages still rely on old-style concurrency management tools like
locks and threads, which can be extremely difficult to use because they are non-
deterministic. That is, you can’t necessarily reproduce your threading bugs when
you want, because they can be the result of multiple threads interacting in strange
and horrifying ways.

 Older concurrency models were designed in an age of non-networked, single-
core microcomputers, when building distributed systems was the exception rather
than the norm. We now live in a very different world. New servers today typically
have 32 or 64 cores, and high-performance applications are almost always built to

This chapter covers
■ Scala, servlets, and mutable state
■ Using Futures for asynchronous programming
■ Using Akka Actors with Scalatra
■ Big data in Scalatra with Spark

198 CHAPTER 12 Asynchronous programming

run across a network. Scala stands out from the language crowd as a great choice for
this new hardware and networking environment. This is one of the reasons that it’s
being used by big organizations that need to build highly scalable distributed systems.

 How does Scalatra fit into all this?
 Scalatra runs on good old-fashioned servlets. This means that in order to under-

stand asynchronous operations in Scalatra, you need to take the servlet threading
model into account.

12.1 Exploring concurrency in Scalatra
To illustrate your options, let’s build a simple web application. First, generate the pro-
ject using g8:

g8 scalatra/scalatra-sbt
organization [com.example]: com.constructiveproof
name [My Scalatra Web App]: Crawler
version [0.1.0-SNAPSHOT]:
servlet_name [MyScalatraServlet]: CrawlController
package [com.example.app]: com.constructiveproof.crawler
scala_version [2.11.6]:
sbt_version [0.13.8]:
scalatra_version [2.4.0]:

With that done, let’s build out a simple single-threaded web client. Hitting the route
"/" on the controller in the following listing will trigger a call to Grabber.evaluate.
Whatever URL you drop into the url parameter will be retrieved and evaluated. If it’s
a Scala site, you’ll be congratulated. If it’s not, you’ll be admonished to choose more
carefully next time.

package com.constructiveproof.crawler

import java.net.URL
import java.nio.charset.StandardCharsets

import scala.io.Source

class CrawlController extends CrawlerStack {

get("/") {
contentType = "text/html"
Grabber.evaluate(new URL(params("url")))

}
}

object Grabber {
def evaluate(url: URL): String = {
val content = Source.fromURL(

url, StandardCharsets.UTF_8.name()

Listing 12.1 Synchronous network retrieval

Calls the Grabber object
and gives it whatever’s
in params(“url”)

Makes a network call …

… to the URL specified

199Exploring concurrency in Scalatra

).mkString
content.contains("Scala") match {

case true => "It's a Scala site, very cool."
case false => "Whoops, you've made some sort " +

"of mistake in your reading choices."
}

}

}

You can easily try this code by hitting the URL http://localhost:8080/?url=http://
scala-lang.org/. You should see a response like the one shown in figure 12.1.

 In a world awash with HTTP APIs and networked machines, making network calls
like this, and doing one thing or another based on the response received, is the sort of
thing we need to do constantly. Whether you’re dealing with upstream APIs, machine
learning problems, or some other area of development, chances are you’ll need to
write code like this pretty often. The problem is that the preceding code isn’t going to
scale very well.

 Servlet containers maintain a thread pool for dealing with incoming requests. By
default, Apache Tomcat has a pool of 200 threads. When a request comes in, Tomcat
uses a thread from the pool, and the thread stays tied up for the duration of the request.

 In the case of the previous code, you’re making a call to the network, which is
potentially slow. You’re tying up a thread for however long it takes the upstream server
to respond. This call is synchronous. The CrawlController calls Grabber.evaluate
and sits there waiting for the response.

 The upstream server will probably come back within 1 second or so, but you’re
using 0.5% of the available thread resources to service this one request. It’s wasteful,
and it isn’t going to scale well, especially if you need to make multiple requests to
upstream APIs in order to build the response. You’d be able to handle a lot more traf-
fic if you handed execution of Grabber.evaluate off to another thread pool,
returned the controller’s thread back to the servlet container while you waited for the
long-running network operation to complete, and resumed execution once the
upstream server had responded.

Returns
the
retrieved
page as a
string

Judges the user on
their reading choices
and returns a string
to the controller

Figure 12.1 A response from the Grabber

200 CHAPTER 12 Asynchronous programming

This kind of asynchronous processing is what Scala excels at. Scala has a few different
constructs for dealing with asynchronous tasks, and we’ll look at two of them: Futures
and Actors. Let’s start with Futures.

12.2 Using Futures in Scalatra
A Future is part of the Scala standard library. It represents a possibly still-running com-
putation. Futures let you program with results you don’t have yet, and when the
results become available, any transformations you’ve defined will run. You can attach
callbacks to them—onSuccess, onFailure, onComplete—to take action whenever
they’re done.

 If you return a Future from your Scalatra action, Scalatra suspends the request
when it hands off to the Future, freeing up a thread. When the Future is completed,
Scalatra will wake up the servlet thread and send the response back to the client. This
can dramatically increase your throughput compared with hanging on to a thread for
the duration of the process.

 Futures are easy to use in Scalatra. All you need to do is add FutureSupport to
your controller class definition and define a thread pool for the Future to do its work
in. Futures run in their own thread pool, separate from the servlet container’s thread
pool. With these changes made, CrawlController looks as shown next.

package com.constructiveproof.crawler

import java.net.URL
import java.nio.charset.StandardCharsets

import org.scalatra.FutureSupport

import scala.concurrent.{ExecutionContext, Future}
import scala.io.Source

class CrawlController extends CrawlerStack with FutureSupport {

protected implicit def executor = ExecutionContext.global

get("/") {
contentType = "text/html"
Future {

Grabber.evaluate(new URL(params("url")))
}

}
}

object Grabber {
def evaluate(url: URL): String = {
val content = Source.fromURL(

url, StandardCharsets.UTF_8.name()
).mkString

Listing 12.2 CrawlController with FutureSupport

Adds a few imports
to get access to
concurrency classes

Adds
FutureSupport
to the class
definition

Defines a thread
pool for the
Futures to run in

Uses a Future from inside
the Scalatra action

201Using Futures in Scalatra

content.contains("Scala") match {
case true => "It's a Scala site, very cool."
case false => "Whoops, you've made some sort " +
"of mistake in your reading choices."

}
}

}

The code has hardly changed, but suddenly Grabber.evaluate is running inside its
own thread pool, and the servlet container’s thread will suspend execution until the
Grabber does its work. The servlet thread will resume afterwards. It’s asynchronous.

NOTE We could easily use an asynchronous HTTP client, such as Apache’s
HttpAsyncClient, or Scala’s Dispatch HTTP library, to decouple the outgoing
HTTP calls from the servlet container’s thread pool. These would solve the
problem very well, in fact. But by using Scala’s synchronous Source.fromURL
function, we demonstrate the ways in which you can take any synchronous
code and make it asynchronous, without needing any extra libraries. This is a
much more flexible and general solution.

There are a few things to consider here. Adding FutureSupport means that you need
to define an ExecutionContext for your Futures to run in. Adding implicit def
executor = ExecutionContext.global is what accomplishes this. There are quite a
few different kinds of ExecutionContexts that you can choose from, each with differ-
ent qualities. If in doubt, use ExecutionContext.global. It uses a ForkJoinPool,
which helps to minimize context switches and starts up the thread pool with a size
equal to the number of processors. If you need more control over the behavior of
your thread pool, you can instantiate a different one yourself. Examples include
CachedThreadPool, FixedThreadPool, and WorkStealingThreadPool, each with their
own trade-offs.

 One thing to watch out for: never close a Future over mutable state. For instance, the
servlet container makes the variable request available to you inside your Scalatra
actions. The request is a reference to something that, by definition, lives inside the servlet
container’s thread pool. This raises a conundrum: the request is in the servlet container,
but everything inside the Future executes in a totally different thread pool. What hap-
pens if you attempt to access the request from inside the Future? The answer is simple
and potentially unexpected: it will be null, because ExecutionContext.global doesn’t
know anything about it.

 This goes for Scala vars just as much as the servlet’s request object, and it’s a
common pitfall when working with Scala async libraries. If you want to eliminate the
problem in Scalatra, you can do so by wrapping your Future in some syntactic
sludge: AsyncResult. At the cost of some extra boilerplate, this provides a stable
identifier to the request object that’s in scope for the Future. You can then use the
request inside your Futures in complete safety. The AsyncResult version looks like
the next listing.

202 CHAPTER 12 Asynchronous programming

package com.constructiveproof.crawler

import java.net.URL
import java.nio.charset.StandardCharsets

import org.scalatra.{AsyncResult, FutureSupport}

import scala.concurrent.{ExecutionContext, Future}
import scala.io.Source

class CrawlController extends CrawlerStack with FutureSupport {

protected implicit def executor = ExecutionContext.global

get("/") {
contentType = "text/html"
new AsyncResult { val is =

// this would have nulled out without AsyncResult
println(request.getProtocol)
Grabber.evaluate(new URL(params("url")))

}
}

}

object Grabber {
def evaluate(url: URL)
(implicit ctx: ExecutionContext): Future[String] = {
Future {

val content = Source.fromURL(
url, StandardCharsets.UTF_8.name()

).mkString
content.contains("Scala") match {

case true => "It's a Scala site, very cool."
case false => "Whoops, you've made some sort " +

"of mistake in your reading choices."
}

}
}

}

AsyncResult expects that whatever method it calls will return a Future, so the
method signature of Grabber.evaluate has changed a little. Instead of giving back a
String, it now returns a Future[String].

 Futures can be strange to work with. Instead of working with actual values, you
work with a wrapper, which may or may not contain the value you expect at any given
point in time. This is because you asynchronously wait for operations to complete, and
you don’t necessarily control when they will complete. The key thing to remember
is that you don’t need to have the value in order to define what should happen when
it arrives.

Listing 12.3 Using AsyncResult

Wraps the Grabber in
a new AsyncResult
rather than a Future

This would have caused a
NullPointerException if you
weren’t inside an AsyncResult

Passes the
ExecutionContext
implicitly to the
Grabber

Wraps the
Grabber’s
response

in a Future

203Using Akka Actors from Scalatra

 Now that you’ve seen how to integrate Futures into Scalatra, the Akka documenta-
tion on Futures is a good thing to read next: http://doc.akka.io/docs/akka/2.3.4/
scala/futures.html. Let’s turn our attention to another way of dealing with concur-
rency in Scalatra: Akka Actors.

12.3 Using Akka Actors from Scalatra
Akka is a Scala library that gives you access to a software construct called Actors. An
Actor is a container for application logic that’s designed to send and receive messages.
An Actor is lightweight—about 400 bytes before you start adding your domain logic—
so you can have millions of them running at any given time. Like Futures, Akka Actors
run in their own thread pool, which is detached from your Scalatra application’s serv-
let thread pool. Unlike Futures, they can run on either a single machine or across a
cluster of machines. The Akka library does all the thread management and schedul-
ing and takes care of inter-Actor communication. On the other hand, setting up a dis-
tributed Akka ActorSystem is a lot more complex than just firing off a Future—each
approach has its place.

 To add Akka to your application, you’ll need to add the following dependency to
project/build.scala:

"com.typesafe.akka" %% "akka-actor" % "2.3.4",

Let’s add an Actor that serves the same function as your Grabber object already does.
Drop the code from the following listing into your application, in the actors
namespace.

package com.constructiveproof.crawler.actors

import java.net.URL
import java.nio.charset.StandardCharsets

import akka.actor.Actor

import scala.io.Source

class GrabActor extends Actor {

def receive = {
case url: URL => evaluate(url)
case _ => sender ! "That wasn't a URL."

}

def evaluate(url: URL) = {
val content = Source.fromURL(

url, StandardCharsets.UTF_8.name()
).mkString

Listing 12.4 Akka Actor for retrieving URLs

GrabActor inherits
from Actor.

An Actor must
implement a
receive method.

204 CHAPTER 12 Asynchronous programming

content.contains("Akka") match {
case true => sender ! "It's an Akka-related site, very cool."
case false => sender ! "Whoops, you've made some sort of " +

"mistake in your reading choices."
}

}

}

As you can see, this is really just the Grabber object expressed as an Actor. Let’s take a
look at the component parts. There are two main differences between the GrabActor
and the Grabber object.

 First, the GrabActor has a receive method. All Actors must implement one of
these: it’s the key to their concurrency properties. Actors are completely opaque to
other software components in your system. They communicate with each other only
by sending immutable messages to the receive method. This keeps them isolated
from each other, and it means that they can run across more than one machine: the
immutable messages can easily be serialized and sent to an Actor that exists remotely.
The requirement that messages must be immutable (that you can use vals but not
vars) means that all of the problems stemming from using locks to access shared
memory go away. An Actor instance never shares any state with any other code, so it
can safely be executed on any available thread. Getting rid of locks, in turn, means
higher performance and eliminates the chance of deadlocks, race conditions, thread
starvation, and many of the other problems that have plagued programmers for the
last several decades.

 Second, the receive method returns Unit, which is Scala’s way of saying it doesn’t
return anything to the caller. Instead of returning a value directly from its receive
method, GrabActor does things the Actor way. It knows what sent it the message, and
it stores this as a special reference in the value sender. When it’s done evaluating the
web page, it sends a message back to the sender using the syntax sender ! "It's a
Scala site, very cool." The bang operator, !, is the tell operator. It means “Send a
fire-and-forget message to whatever Actor reference is on the left side of me. The mes-
sage to send is on the right side of me.”

 Let’s integrate GrabActor with the rest of your Scalatra application. First, add a
new controller, called AkkaCrawler.

package com.constructiveproof.crawler

import java.net.URL

import akka.actor.{ActorRef, ActorSystem}
import akka.pattern.ask

Listing 12.5 Controller class integrated with an Akka Actor

An Actor can send messages to
other Actors using the ! method.

205Using Akka Actors from Scalatra

import akka.util.Timeout
import org.scalatra.{AsyncResult, FutureSupport}

import scala.concurrent.ExecutionContext
import scala.concurrent.duration._

class AkkaCrawler(system: ActorSystem, grabActor: ActorRef)
extends CrawlerStack with FutureSupport {

protected implicit def executor = system.dispatcher

implicit val defaultTimeout = new Timeout(2 seconds)

get("/") {
contentType = "text/html"
new AsyncResult {

val is = grabActor ? new URL(params("url"))
}

}

}

Again, it looks almost exactly the same as the original CrawlController, which used
bare Futures. There are a few differences, though. First, you pass an ActorSystem and
a reference to GrabActor in to the controller’s constructor. You need to have the ref-
erence to the GrabActor in order to use it, which makes sense; but what’s the Actor-
System? It’s a set of Actors and a thread pool, which share a common configuration.

 Second, you can see that although AsyncResult is still in use (just like with the
Future example, earlier), you no longer invoke a method on an object in order to
return a response. Instead, you send a message to the grabActor using the ? operator.
The question mark operator, ?, is known as the ask pattern operator. It means “Ask
whatever Actor reference is on the left side of me for a response to the message on the
right side of me.” The Actor being asked sends back a response as a Future, using !
(the tell operator). If you take a look back at GrabActor, you’ll see that’s exactly what
it’s doing.

 The last main difference between the original CrawlController and this
AkkaCrawler is the timeout. Akka requires that you explicitly set a timeout duration
(in this case, 2 seconds) whenever you use the ask pattern. This forces you to think
about how reactive you want your application to be. It also stops you from uselessly
tying up resources with asks that will never complete. Any ask that exceeds its time-
out will throw an exception. You should read the Akka documentation, which is
extensive, or the book Akka in Action by Raymond Roestenburg, Rob Bakker, and
Rob Williams (also from Manning) to get a feel for timeouts and exception han-
dling with Akka.

 Now that the controller is in place, you need to mount it in ScalatraBootstrap.
Change the default ScalatraBootstrap so that it looks like the following listing.

Passes in an ActorSystem and
whatever Actors you want to use

Provides a Timeout, after
which the Actor will
return an exception

Instead of directly calling a
method on the Actor, sends
a message to it, this time
using the ask pattern

206 CHAPTER 12 Asynchronous programming

import javax.servlet.ServletContext

import akka.actor.{ActorSystem, Props}
import com.constructiveproof.crawler._
import com.constructiveproof.crawler.actors.GrabActor
import org.scalatra._

class ScalatraBootstrap extends LifeCycle {

override def init(context: ServletContext) {
val system = ActorSystem()
val grabActor = system.actorOf(Props[GrabActor])

context.mount(new CrawlController, "/*")
context.mount(new AkkaCrawler(system, grabActor), "/akka/*")

}
}

ActorSystem creation is a relatively heavyweight operation, and you typically only
want one of them in your web app. You’ll usually instantiate one when your applica-
tion starts and then use it for all Akka-related purposes, as you’re doing here.

 This code also mounts the AkkaCrawler so it’s available for web requests and pass-
ing references to the ActorSystem and GrabActor into the constructor.

 Once you recompile your application and reload it, you can hit the URL http://
localhost:8080/akka?url=http://akka.io/ and see that the GrabActor has asynchro-
nously gone off to grab the Akka home page and evaluate it. Because it obviously has
the word Akka in it, you’ll see the message from figure 12.2 displayed in your browser.

 Akka programming is something that entire books are written about. We’ve only
scratched the surface here, but you’ve seen how easy it is to integrate Akka with a Sca-
latra web app.

 When should you use a Future? When should you use an Actor? Futures execute
on the same machine, whereas Actors can be on the same machine or they can run
across a network. Futures can be easier to use, but Actors can encapsulate state very
cleanly.

Listing 12.6 Setting up for Akka in ScalatraBootstrap

A few new Akka-
related imports

Imports GrabActor
so it’s available

Instantiates an
ActorSystem

Instantiates a
GrabActor

Figure 12.2 A message from your Akka GrabActor

207Using Scalatra for big data

12.4 Using Scalatra for big data
Scalatra can easily be used to provide an HTTP interface to your big data jobs. Using
Spark, a successor to Hadoop, you can easily query datasets even if they’re too big for
comfortable processing using conventional tools. Spark is a big data framework that
allows you to run batch jobs, query data interactively, and process incoming informa-
tion as it streams into your system.

 Spark runs on top of normal Hadoop data analysis infrastructure—if you already
have a Hadoop Distributed File System (HDFS) cluster set up, you can run Spark on
top of that, and run jobs on it without modifying or disturbing anything you’re already
doing. Like Hadoop, Spark can do batch processing, although it’s typically quite a bit
faster than Hadoop due to aggressive caching of data in RAM.

 Hadoop workloads are usually batch jobs on large amounts of data, and Hadoop
isn’t usually used for interactive querying. In contrast, Spark has the ability to do inter-
active queries with quick response times. It has the potential to fundamentally trans-
form the way people are doing big data.

 To see this in action, find yourself any downloadable large dataset. We went to
gov.uk’s statistical datasets and grabbed the Price Paid data as a CSV file (http://
mng.bz/bn9Y). It contains information about every house or apartment sold in the
United Kingdom in the past 20 years. But the example analysis job will be non-specific
enough that any big dataset should work fine.

 We unzipped the downloaded zip file, moved it to a desktop, and renamed it
data.csv. You should put yours in an easily accessible place; we’ll reference the file-
name directly in a few moments.1

 Next, you need to get Spark imported into your Scalatra application. Add the fol-
lowing dependency into ScalatraBootstrap:

"org.apache.spark" %% "spark-core" % "1.3.1",

Next, make a controller so that you can access Spark. It should look like the following
listing.

package com.constructiveproof.crawler

import org.apache.spark.SparkContext
import org.scalatra.FutureSupport
import scala.concurrent.{Future, ExecutionContext}

class SparkExampleController(sc: SparkContext)
extends CrawlerStack with FutureSupport {

protected implicit def executor = ExecutionContext.global

1 Making the file location configurable rather than hardcoded would be the right thing to do, but it’d take us
a little farther afield than we want right now.

Listing 12.7 Example Spark controller

Passes a SparkContext
to the controller’s
constructor

208 CHAPTER 12 Asynchronous programming

get("/count/:word") {
val word = params("word")
Future {

val occurrenceCount = WordCounter.count(word, sc)
s"Found $occurrenceCount occurrences of $word"

}
}

}

object WordCounter {

def count(word: String, sc: SparkContext) = {
val data = "/path/to/data.csv"
val lines = sc.textFile(data)
lines.filter(line => line.contains(word)).count()

}

}

Intriguingly, there’s not much code here. In the constructor for SparkExample-
Controller, you pass in a SparkContext object. Spark is based on Akka, and like an
Akka ActorSystem, a SparkContext is essentially a thread pool providing access to a
configuration of Akka Actors. These actors may be local to the machine you’re run-
ning on or may be a cluster of machines running remotely.

 You define the route GET /count/:word, and because you expect this Spark job to
be long-running, you run the WordCounter.count invocation inside a Future. The
SparkContext gets passed into the WordCounter so that you can keep a reference to
the thread pool where Spark is running. You then define a path to the data source
(change this to suit where you put your data), and define it as a textFile for the
SparkContext, sc. That takes care of the setup.

 All the work is done in one line. Spark contains a set of distributed collection classes,
which are very similar to the regular Scala collections but which can be run distributed
inside a Spark cluster. The code lines.filter(line => line.contains(word))
.count() counts all occurrences of whatever word you’re interested in. If the Spark-
Context is running locally, this will happen on the local machine. If the SparkContext
points at a cluster, the job will be run there (although you’ll need to do some additional
configuration work to distribute your Spark job across the cluster).

 Before you can see your job in action, you need to define a SparkContext and
mount the new controller in ScalatraBootstrap. Change yours as follows.

import javax.servlet.ServletContext

import akka.actor.{ActorSystem, Props}
import com.constructiveproof.crawler._

Listing 12.8 ScalatraBootstrap with Spark

Passes the
SparkContext to
the WordCounter

Defines the
data source

Imports the
data into Spark

Uses Spark to count
occurrences of the
desired word

209Using Scalatra for big data

import com.constructiveproof.crawler.actors.GrabActor
import org.apache.spark.SparkContext
import org.scalatra._

class ScalatraBootstrap extends LifeCycle {

val sc = new SparkContext("local", "Spark Demo")

override def init(context: ServletContext) {
val system = ActorSystem()
val grabActor = system.actorOf(Props[GrabActor])

context.mount(new CrawlController, "/*")
context.mount(new AkkaCrawler(system, grabActor), "/akka/*")
context.mount(new SparkExampleController(sc), "/spark/*")

}

override def destroy(context: ServletContext) {
sc.stop()

}
}

Creating a SparkContext is relatively easy. In its simplest form, it takes only two param-
eters: the address of a Spark cluster (or the word local), and a human-readable name.
You then mount the SparkExampleController, passing the SparkContext to the con-
troller’s constructor. Finally, you tell the SparkContext to shut down, using sc.stop()
when Scalatra shuts down, by adding a destroy() method to ScalatraBootstrap.

 You’re now ready to run the code. Exit sbt by typing exit, and rerun sbt—that
way, the servlet container will create a SparkContext when it starts up. The results
look like figure 12.3.

Creates a
SparkContext

Mounts the
SparkExampleController,

passing in the SparkContext

Shuts down the SparkContext
when Scalatra stops, by
calling sc.stop()

Figure 12.3 Running the Spark job and viewing its output

210 CHAPTER 12 Asynchronous programming

Impressively, Spark was able to rip through our 3.4 GB file in about 8 seconds. This
would be considered too slow for your average web application, but for doing data
analytics work, it’s quite acceptable in our view.

 Running in local mode like this is great for demonstrating how easy Spark is to use,
but it isn’t very useful if you’ve got multiple users accessing your application at the
same time. When you’re running in local mode like this, there’s no concurrency avail-
able to you. Your Spark jobs are all submitted to the same SparkContext, and they’ll
run in order rather than simultaneously. If you want to have concurrent access to mul-
tiple Spark jobs running at the same time, you’ll need to set up a Spark cluster, and let
the cluster handle concurrency and resource-sharing.

 If you’re running on a multicore system, it’s possible to use a trick to speed things
up a bit. When you defined your SparkContext in ScalatraBootstrap, it looked like
this:

val sc = new SparkContext("local", "Spark Demo")

When you define your SparkContext as "local", you’re telling Spark to use only one
processor. But you likely have more than one available. If you set your SparkContext
as "local[X]" where X is equal to the number of processors in your machine, your
job will speed up. We’ve set ours like this:

val sc = new SparkContext("local[8]", "Spark Demo")

Doing this allows processing to speed up quite a bit: from 8 seconds on average to
about 2.4 seconds. Pretty good!

 Spark is itself written in Scala, so it takes advantage of the same kinds of technolo-
gies (Akka Actors and Futures) that we’ve discussed in this chapter. If you really want
to see the performance benefits of Spark, try running it on a cluster—it’s designed to
efficiently share the resources of dozens or hundreds of machines, and you’ll see mas-
sive performance increases from running it this way.

12.5 Summary
■ You can use Scala’s Futures to decouple work that Scalatra’s HTTP thread pool

does from the main work in your application. Use Futures when you want a sim-
ple, lightweight concurrency construct.

■ Akka is more complex, but potentially much more powerful, than the Futures
approach. Using Akka Actors gives you a very large number of independent
concurrency units that can interoperate with each other. Because Akka can han-
dle execution over a network, this gets your code running on more than one
machine at the same time.

■ Using the Spark library, which is built on top of Akka, you can do parallel pro-
cessing of very large datasets.

211

Creating a RESTful
 JSON API with Swagger

Scalatra is commonly used as a way to build HTTP application programming inter-
faces (APIs). An API is a way for one computer system to talk to another. It usually
exposes business processes and data from one computer system, making it available
for another computer system to talk to.

 If you’ve done any web development over the past several years, you’ll be aware
that large web companies—Google, Facebook, Twitter, Amazon—all have APIs that
you can integrate with. This functionality often mirrors what you get from their
websites. In the case of Google, for instance, you can send machine-readable

This chapter covers
■ API basics and construction styles
■ Adding an HTTP API to the Hacker Tracker
■ Refactoring code to remove trait duplication
■ The Swagger documentation framework
■ Annotating the Hacker Tracker API using Swagger
■ Securing your API with HMAC

212 CHAPTER 13 Creating a RESTful JSON API with Swagger

requests to and from the Google Maps API, just as you can request human-readable
information from the Google Maps web interface. With the web interface, you get
back HTML that your browser allows you to read yourself. With the API, you get back
JSON or XML responses that your programs can use.

 Now that you know what an API is, let’s make one.

13.1 An API for the Hacker Tracker
At present, the Hacker Tracker application is set up solely for use by a person, using a
web browser. You’re going to build a simple REST API that will allow you (or other
people) to access and update the information inside the Hacker Tracker’s data store
programmatically.

13.2 Adding an API controller
You’ll start with the Hacker Tracker as it last appeared, at the end of chapter 11.
Before you start coding, let’s consider what you can reuse and what you’ll need to add
to the application.

 At the moment, you’ve got a functional data storage system that uses Squeryl for
persistence. It allows you to create new hackers and to list all hackers in the database.
You don’t need to modify any of this.

 You need to add a new controller to deal with incoming API requests. Just like the
existing HackersController, the new controller will have operations for creating and
retrieving hackers. The big difference is that it’ll return JSON instead of HTML
responses.

 Let’s add the API controller. Create a new file called ApiController.scala at the same
level as HackersController.scala. Because you won’t have a user interface, there’s no
need to inherit from HackerTrackerStack, which has references to ScalateSupport
and FlashMapSupport. Instead, you can inherit directly from ScalatraServlet (which
gives you the HTTP DSL) and MethodOverride (which allows you to support HTTP’s PUT
and DELETE operations in addition to GET and POST). Your controller should look like
the following listing.

What’s a REST API?
The example API will be a RESTful one. The term REST (short for Representational
State Transfer) is one of the most meaningless acronyms ever, but RESTful APIs ar-
en’t difficult to understand. A RESTful API uses the standard HTTP verbs combined
with route matchers to define functionality.

In your API, you’ll have method names like GET /hackers (which brings back a list of
hackers), POST /hackers (which creates a single hacker), and GET /hackers/1
(which gets the first hacker). REST APIs tend to be self-describing, and they usually
operate on a single well-defined resource (such as a hacker).

213Adding an API controller

package com.constructiveproof.hackertracker

import com.constructiveproof.hackertracker.init.DatabaseSessionSupport
import org.scalatra.{MethodOverride, ScalatraServlet}

class ApiController extends ScalatraServlet with MethodOverride
with DatabaseSessionSupport {

/**
* List all hackers.
*/

get("/") {
// retrieve all hackers from the database
// return a JSON representation

}

/**
* Retrieve a specific hacker.
*/

get("/:id") {
// retrieve a single hacker from the database
// return a JSON representation

}

/**
* Create a new hacker in the database.
*/

post("/") {
// create a new hacker in the database
// return a JSON representation of the new hacker

}

}

This is just a skeletal controller, and it should look familiar. It’s structurally similar to
the HackersController, with one difference. There’s no need for a get("/new")
action, because the API has no reason to show an HTML form.

 You need to mount the ApiController in ScalatraBootstrap, so that it becomes
available to the outside world, as shown in the next listing.

import com.constructiveproof.hackertracker._
import com.constructiveproof.hackertracker.init.DatabaseInit
import org.scalatra._
import javax.servlet.ServletContext

class ScalatraBootstrap extends LifeCycle with DatabaseInit {

Listing 13.1 The API controller

Listing 13.2 Mounting the ApiController

Notice that there’s no “new” action.

214 CHAPTER 13 Creating a RESTful JSON API with Swagger

override def init(context: ServletContext) {
configureDb()
context.mount(new ApiController, "/hackers-api", "hackers-api")
context.mount(new DatabaseSetupController, "/database")
context.mount(new HackersController, "/hackers")
context.mount(new SessionsController, "/sessions")

}

override def destroy(context:ServletContext) {
closeDbConnection()

}
}

All the functionality you define in the ApiController will now be available at http://
localhost:8080/hackers-api. In REST terms, you’ve defined some of the operations of a
Hacker resource and made it addressable via standard HTTP routes. See chapter 3 for
a refresher on the standard REST routes, if you need one.

13.2.1 Returning Hacker JSON from the ApiController

We covered JSON handling in chapter 5. Now we’ll look at interacting with the data-
base and returning JSON from your routes.

 As in chapter 5, you’ll need to add the line "org.json4s" %% "json4s-jackson" %
"3.2.11", to your libraryDependencies in project/build.scala and restart to pick up
the dependencies.

 Now let’s add the necessary JSON-handling traits and return JSON from the con-
troller. You can see what you need to add in the following listing.

package com.constructiveproof.hackertracker

import com.constructiveproof.hackertracker.init.DatabaseSessionSupport
import org.json4s.{DefaultFormats, Formats}
import org.scalatra.{MethodOverride, ScalatraServlet}
import org.scalatra.json.JacksonJsonSupport

class ApiController extends ScalatraServlet with MethodOverride
with DatabaseSessionSupport with JacksonJsonSupport {

protected implicit lazy val jsonFormats: Formats = DefaultFormats

before() {
contentType = formats("json")

}

/**
* List all hackers.
*/

get("/") {

Listing 13.3 Adding JSON support

Mounts the
ApiController

at /hackers-api
 and names it
“hackers-api”

Adds
Jackson
support

Adds JSON formats

All responses
should return JSON.

215Adding an API controller

// retrieve all hackers from the database
// return a JSON representation

}

You add the JacksonJsonSupport trait so that you can parse JSON and import the
DefaultFormats implicit so that you can transform case classes and JSON. You also
ensure that you always respond with JSON by setting the contentType in the before
filter. If any of that is unfamiliar to you, please refer back to chapter 5 for a detailed
explanation.

 You’ll work directly with the Hacker model, so make sure you’ve got a reference to
it in your controller:

import org.scalatra.json.JacksonJsonSupport
import com.constructiveproof.hackertracker.models.Hacker

class ApiController extends ScalatraServlet with MethodOverride
with JacksonJsonSupport {

Now it’s time to implement the actions inside your routes. All the actions in Api-
Controller will be functionally similar to the corresponding actions in Hackers-
Controller, but they’ll respond with JSON. First up: the get("/") action.

 Currently the action body is blank. Change it so it looks like the following listing.

/**
* List all hackers.
*/

get("/") {
Hacker.all.toList

}

Pretty simple. Because you’ve added all the JSON support code, you should be able to
run your application now. Hit http://localhost:8080/hackers-api, and you’ll get a
JSON representation of the hackers in your database. Ours looks like figure 13.1.

Listing 13.4 Implementing get("/")

Reference the
Hacker model
class.

Figure 13.1 Hacker
API output

216 CHAPTER 13 Creating a RESTful JSON API with Swagger

As you can see, Scalatra has serialized the Hackers into a list structure and given it
back as JSON output. Yours may be different if you’ve already input different hackers,
or it may be empty if you haven’t entered any yet (you can log in and enter some hack-
ers if so).

 Next, let’s add the show action, which returns a single hacker. Change the get
("/:id") method so that it looks like the next listing.

/**
* Retrieve a specific hacker.
*/

get("/:id") {
val id = params.getAs[Int]("id").getOrElse(0)
Hacker.get(id)

}

Once again, JSON serialization is handled automatically by Json4s and Scalatra. Assum-
ing that you’ve got at least one hacker in your database, you should be able to hit
http://localhost:8080/hackers-api/1 and retrieve data for a single hacker, as shown in
figure 13.2.

The JSON output this time is for a single Hacker. You can retrieve different hackers by
changing the :id parameter in the URL.

 Now on to the final action, post("/"), which creates a new Hacker in the database.
Add the following code to the action body.

/**
* Create a new hacker in the database.
*/

post("/") {

Listing 13.5 Hacker retrieval action

Listing 13.6 Hacker creation action

Figure 13.2 Hacker
API output for a single
retrieval

217Adding an API controller

val firstName = params("firstname")
val lastName = params("lastname")
val motto = params("motto")
val birthYear = params.getAs[Int]("birthyear").getOrElse(
halt(BadRequest("Please provide a year of birth.")))

val hacker = new Hacker(0, firstName, lastName, motto, birthYear)
if(Hacker.create(hacker)) {
hacker

}
}

You can try it with the following curl invocation:

curl -X POST \
--data "firstname=Richard&lastname=Stallman" \
--data "motto=Free+as+in+Freedom&birthyear=1953" \
http://localhost:8080/hackers-api

This will post a new Hacker to the API and save it to the database. If you refresh the list
view, you’ll see that the hacker has been inserted, as shown in figure 13.3.

Figure 13.3 A new Hacker added to the tracker

218 CHAPTER 13 Creating a RESTful JSON API with Swagger

13.2.2 Refactoring to remove duplication

Let’s pause and take stock. The functionality of the application has grown, and with
the addition of the API controller, things are starting to get a bit messy. Time for some
refactoring.

 There are several problems you can easily clean up. First, the traits being mixed
into the ApiController and HackersController have some duplication (and as you
know, duplication is maintainability’s greatest enemy). Here’s what you currently have
mixed into the ApiController:

class ApiController extends ScalatraServlet with MethodOverride
with DatabaseSessionSupport with JacksonJsonSupport {

This is strikingly similar to your HackerTrackerStack, which is mixed into the Hackers-
Controller:

trait HackerTrackerStack extends ScalatraServlet with ScalateSupport
with DatabaseSessionSupport with FlashMapSupport with MethodOverride {

Several traits are duplicated between the two: MethodOverride, DatabaseSession-
Support, and ScalatraServlet. These three traits are core to your application,
and almost every controller will probably use them. But only controllers that serve
HTML will need FlashMapSupport or
ScalateSupport.

 The solution is simple: you need to
refactor these traits so that you have a
CoreAppStack trait that can be used by
all controllers, a BrowserStack that
can be used by controllers that serve
HTML, and an ApiStack that you can
mix into your API controllers. Because
you’re now multiplying your stacks, you
might as well give them a home. Create
a package directory for the new stacks
to live in, as shown in figure 13.4.

 Next, create the HackerCoreStack
trait in the new stacks package, and
mix in the traits you’ll want to use in
every controller:

package com.constructiveproof.hackertracker.stacks

import org.scalatra.{MethodOverride, ScalatraServlet}
import com.constructiveproof.hackertracker.init.DatabaseSessionSupport

Figure 13.4 Creating a package for your stacks

219Adding an API controller

trait HackerCoreStack extends ScalatraServlet
with DatabaseSessionSupport with MethodOverride {

}

Rename the current HackerTrackerStack so it’s called BrowserStack, move it into
the stacks package, and replace the core traits by mixing in HackerCoreStack. You’ll
end up with a trait declaration that looks like this:

trait BrowserStack extends HackerCoreStack with ScalateSupport
with FlashMapSupport {

Finally, create an ApiStack that extends the HackerCoreStack with JSON support:

package com.constructiveproof.hackertracker.stacks

import org.scalatra.json.JacksonJsonSupport

trait ApiStack extends HackerCoreStack with JacksonJsonSupport{

}

You can now proceed to clean up your controllers. HackersController, for instance,
can be simplified quite nicely:

class HackersController extends BrowserStack
with AuthenticationSupport {

The SessionsController cleans up in a similar way:

class SessionsController extends BrowserStack
with AuthenticationSupport {

The DatabaseSetupController mixes in a different authentication trait, but it’s oth-
erwise the same:

class DatabaseSetupController extends BrowserStack
with OurBasicAuthenticationSupport {

The ApiController also sheds a lot of declarative weight:

class ApiController extends ApiStack {

With the refactoring complete, you have a much more rational structure of traits
mixed into your controllers. The final directory structure looks like figure 13.5.

 There are several other refactorings you could apply. Usually, we prefer to have
controllers in their own package.

220 CHAPTER 13 Creating a RESTful JSON API with Swagger

 We’d probably rename Api-

Controller to something like
HackersApiController so that future
API controllers could be added more
easily. You can also drop in a business
logic layer to abstract communication
between controllers (which should
only handle user input and response
generation) and the persistence layer
(which should handle persistence but
not much application logic). But the
application is clean enough for now, so
let’s move on.

 Let’s turn our attention back to the
ApiController and add another hacker:

curl -X POST \
--data firstname=Alan \
--data lastname=Turing \
--data motto="We can only see a short distance ahead, \

but we can see plenty there that needs to be done." \
--data birthyear=1912 http://localhost:8080/hackers-api

It works, but it’s pretty cryptic. Anyone wanting to use the API would need to read your
code to figure out what routes are available, what parameters are required, and what
the return values of each action are. This is impractical, especially if you don’t want to
publish your source code.

13.3 Self-documenting APIs using Swagger
There are two common solutions to the problem of API documentation. Typically,
people write up a spec document and email it to prospective implementers as a PDF. A
more advanced, but still very manual, approach is to make a web page detailing avail-
able routes, parameters, and return types, and update it by hand.

 These options are terrible. Even with the best of intentions, the code and docu-
mentation will probably drift apart eventually—and it’s potentially a lot of work to
document all this information for even a small API. Because (as Larry Wall argues)
laziness is one of the cardinal virtues of a programmer, it seems like this isn’t the right
way to do things. How can you fix this? The Scalatra community solves it by integrating
with a library called Swagger.

13.3.1 Swagger—what is it?

Swagger is a specification and complete framework implementation for describing, pro-
ducing, consuming, and visualizing RESTful web services. Scalatra integrates Swagger so
that your API always has autogenerated documentation that you can easily keep in step

Figure 13.5 The stacks package after refactoring

221Self-documenting APIs using Swagger

with your application code. Swagger also lets people try out API methods using auto-
generated forms in a web browser.

 Swagger is an open source project from Wordnik, the word-meanings people. It’s a
specification that allows you to create simple JSON-based documents that describe
your API. These JSON specs can then be used for several things.

 First, there’s a project called swagger-ui. This is a simple idea—it’s a set of HTML/
CSS/JavaScript that reads Swagger JSON specs and kicks out a web page allowing you to
explore a REST API. Let’s take a look at the Swagger Petstore, which is their sample app.

 Go to http://petstore.swagger.io/ and wait a moment. The HTML interface will
load up, and you’ll be presented with a page that allows you to explore a sample Pet-
store API, which will look something like the one in figure 13.6. It may have slightly
different names and methods as the Swagger people update their demo. The impor-
tant thing is to get a feel for how easy Swagger makes it to browse REST APIs.

You can see all the APIs that this application exposes: pet, store, and user. Click the pet
link to see what operations you can perform on pets, as shown in figure 13.7.

Figure 13.6 The Swagger Petstore as viewed in Swagger-ui

Figure 13.7 Exploring the pet resource

222 CHAPTER 13 Creating a RESTful JSON API with Swagger

This API has some methods similar to what you’ve got, plus a few more—this API allows
you to retrieve a single pet, add a new pet, update a pet, and find pets by tags or status.

 Let’s see what parameters you’d need to use to add a new pet. Click the GET
/pet.json link. You’ll be presented with a form input such as figure 13.8, allowing you
to retrieve a pet by its petId. Enter the number 2 in the petId input field, and click
the Try It Out button.

 This gives you information related to this pet, including its name (Cat 2), what cat-
egories it’s in, and the API’s response status (200 OK). All of this information came
from the Swagger spec file for the Petstore API, which you can see by clicking the Raw
link on the right side of the /pet definition. It looks like figure 13.9.

Figure 13.8 Exploring the GET /pet/{petId} method

Figure 13.9 A raw machine-readable JSON spec

223Self-documenting APIs using Swagger

This machine-readable JSON is what the swagger-ui HTML client is reading in order
to autogenerate documentation for the pet store or, potentially, for your Hacker
Tracker API.

 In addition to the documentation, the Swagger spec for this application can be
used to automatically generate client code (in multiple languages) in order to speed
the process of creating integrations with an API. This is part of the swagger-codegen
project (https://github.com/wordnik/swagger-codegen). There’s also support for
generating server-side code in Scala and Java.

 You might be thinking that all of these benefits sound wonderful, but if you need
to build a JSON file by hand for each of your APIs, and keep it up to date manually
whenever you make any changes, you’re not very far ahead. Luckily, this isn’t the case.

 Scalatra has Swagger support baked right into it. This means you can annotate your
controller and your actions with a few extra bits of information, and Scalatra will auto-
matically generate a full Swagger spec for the APIs and models in your application.

13.3.2 Swaggerize the application

Let’s set your application up to use Swagger. First, add the Swagger dependencies to
your build.sbt file:

"org.scalatra" %% "scalatra-swagger" % ScalatraVersion,

Exit your sbt console, and again type sbt in the top-level directory of your application
in order to pull in the dependencies. Then run ~jetty:start to start the server and
get code reloading going again.

 Any Scalatra application that uses Swagger support must implement a Swagger
controller. Those JSON specification files, which you’d otherwise need to write by
hand, need to be served by something, after all. Let’s add a standard Swagger control-
ler to your application. Drop the code in the following listing into a new file next to
ApiController.scala. You can call it HackersSwagger.scala.

package com.constructiveproof.hackertracker

import org.scalatra.swagger.{Swagger, JacksonSwaggerBase}
import org.scalatra.ScalatraServlet
import org.json4s.DefaultFormats

class HackersSwagger(implicit val swagger: Swagger)
extends ScalatraServlet with JacksonSwaggerBase {

}

That code will automatically produce Swagger-compliant JSON specs for every Swagger-
documented API method in your application. The rest of your application doesn’t know
about it yet, though. In order to get everything set up properly, you need to change your

Listing 13.7 Standard Swagger controller to serve JSON spec files

224 CHAPTER 13 Creating a RESTful JSON API with Swagger

ScalatraBootstrap class so that the container knows about this new controller, and
provide some summary information about the API; see the next listing.

import com.constructiveproof.hackertracker._

import com.constructiveproof.hackertracker.init.DatabaseInit

import javax.servlet.ServletContext

import org.scalatra._

import org.scalatra.swagger.{ApiInfo, Swagger}

class ScalatraBootstrap extends LifeCycle with DatabaseInit {

implicit val apiInfo = new ApiInfo(

"The HackerTracker API",

"Docs for the HackerTracker API",

"http://www.constructiveproof.com/hacker-tracker/tos.html",

"apiteam@constructiveproof.com",

"MIT",

"http://opensource.org/licenses/MIT")

implicit val swagger = new Swagger("1.2", "1.0.0", apiInfo)

override def init(context: ServletContext) {

configureDb()

context.mount(new ApiController, "/hackers-api", "hackers-api")

context.mount(new HackersSwagger, "/api-docs")

context.mount(new DatabaseSetupController, "/database")

context.mount(new HackersController, "/hackers")

context.mount(new SessionsController, "/sessions")

}

override def destroy(context:ServletContext) {

closeDbConnection()

}

}

val apiInfo holds global information about the Hacker Tracker API—what it’s called,
a brief description, contact details so that implementers know who to talk to about the
API, and licensing information. This information will presumably be constant for all
methods in the API, so it’s defined at the application level in ScalatraBootstrap.

 Next, you instantiate a new swagger object, which will implicitly be passed to all
Swaggerized controllers. Finally, you mount the HackersSwagger controller at the
location api-docs/*. The HackersSwagger controller will now automatically spit out
Swagger JSON spec files for any route in your application that you’d like to document.
Let’s document your ApiController to see how this works.

 Currently, the ApiController declaration should look like this:

class ApiController extends ApiStack {

Listing 13.8 Mounting the Swagger docs controller

Adds Swagger-
related imports

Defines an
apiInfo val

Sets the
API’s title

Sets the API’s
description

Specifies a
terms-of-service
URL for the API

Specifies a person
to contact about

the API

Provides a brief
description of the

API’s license terms

Specifies a URL providing
a pointer to the API’s
license terms

Defines a Swagger
object you can

pass to controllers

Mounts the
Swagger

controller

225Self-documenting APIs using Swagger

This needs to change a bit. You need to ensure that the ApiController has a refer-
ence to the swagger object you just defined in ScalatraBootstrap. Change the con-
structor parameters so that they look like the following listing.

class ApiController()(implicit val swagger: Swagger)
extends ApiStack with SwaggerSupport {

Because Swagger already implements jsonFormats, you need to remove the following
line from your ApiController:

protected implicit lazy val jsonFormats: Formats = DefaultFormats

The ApiController is now Swagger-enabled.
 What have you accomplished so far? You’ve got a controller, which, given informa-

tion from Swagger annotations in your controllers, can automatically generate
machine-readable descriptions of your API’s methods. These machine-readable
descriptions can, in turn, be read by an HTML5/JavaScript user interface, allowing
easy browsing of the API documentation in a web browser.

 You can see Swagger starting to work already. Take a look at http://localhost
:8080/api-docs/resources.json (figure 13.10). You should see a JSON description of
your API’s capabilities, built from the apiInfo you entered into ScalatraBootstrap.

That’s pretty much it for setup. Now you can begin documenting the API methods
with Swagger.

13.3.3 Documenting the routes

You’ve already added an apiInfo to ScalatraBootstrap to add some information
about the API. Now you should add some information about the ApiController. Drop
a controller name and description into the body of the ApiController class, as in the
following listing.

Listing 13.9 Adding Swagger constructor parameters

Figure 13.10 The re-
sources.json API de-
scriptor file

226 CHAPTER 13 Creating a RESTful JSON API with Swagger

class ApiController()(implicit val swagger: Swagger)
extends ApiStack with SwaggerSupport {

before() {
contentType = formats("json")

}

protected val applicationDescription =
"""The Hacker Tracker API. Exposes operations for adding
hackers and retrieving lists of hackers."""

/**
* List all hackers.
*/

get("/") {
Hacker.all.toList

}

It’s time to document a route. Swagger annotations are fairly simple in Scalatra. You
describe each route as an ApiInfo object and decorate each of your routes with it, and
Scalatra generates the JSON spec for your route.

 Let’s do the get("/") method first. Right now, it looks like this:

/**
* List all hackers.
*/

get("/") {
Hacker.all.toList

}

You’ll need to add some information to the controller in order to tell Swagger what
this method does, what parameters it can take, and what it responds with. Drop a new
apiOperation val into the body of the controller class, and start describing the
get("/") method. Then add the apiOperation into the method call.

val listHackers = (apiOperation[List[Hacker]]("listHackers")
summary("Show all hackers")
notes("Shows all available hackers."))

/**
* List all hackers.
*/

get("/", operation(listHackers)) {
Hacker.all.toList

}

Listing 13.10 Adding controller information

Listing 13.11 Documenting the get("/") route

Provides a human-
readable description
of the controller’s
functionality

Sets up an apiOperation and notes
the method’s return type and name

Provides a simple human-
readable description

Notes any special
behavior

Adds the apiOperation
to the route

227Self-documenting APIs using Swagger

These annotations are used by Scalatra’s Swagger integration to automatically gener-
ate Swagger spec files for your API’s methods. You can see the spec file in raw JSON
form at http://localhost:8080/api-docs/hackers-api.json (see figure 13.11).

 Swagger-ui can read this JSON spec and show you a set of dynamic forms. These
allow you to interact directly with your API, seeing the methods available and each
method’s required and optional parameters.

 To try out your API using swagger-ui, go to http://petstore.swagger.io/ in a browser.
By default, this shows you the Swagger Petstore API, but you can use it to browse your
own local APIs as well.

 Paste the path to your application’s resources.json file, http://localhost:8080/
api-docs, into Swagger UI’s location field, and then click Explore. You’ll be presented
with a view like that shown in figure 13.12.

Figure 13.11
Swagger spec file for
the ApiController

Figure 13.12 Browsing local API docs using Swagger UI

228 CHAPTER 13 Creating a RESTful JSON API with Swagger

NOTE Swagger UI can be used to browse any Swagger-compliant API. You can
run your own local copy by grabbing the wordnik/swagger-ui project code
from GitHub. There are no dependencies.

Clicking the Hackers-api link will present you with a list of all the Swagger-annotated
RESTful API methods in your ApiController. Clicking the GET /hackers-api/ route
will give you an interactive user interface, as shown in figure 13.13, which you can use
to explore that route.

You can now document the post("/") route, which allows you to add a new hacker to
your list. Right now the route definition looks like this:

/**
* Create a new hacker in the database.
*/

post("/") {

You can add Swagger information to the route, so it looks like the next listing.

val createHacker = (apiOperation[Hacker]("createHacker")
summary("Create a new hacker")
notes("firstname, lastname, motto, and year of birth are required")
parameters(

Parameter(
"firstname",
DataType.String,
Some("The hacker's first name"),
None,

Listing 13.12 Documenting the hacker creation action

Figure 13.13 Getting a list of hackers

Declares that this
apiOperation has a
list of parameters

Creates a new
Parameter object

Documents the
parameter name

Documents the type
of the parameter

Provides a human-
readable description
of the parameter

Provides optional notes
about the parameter

229Self-documenting APIs using Swagger

ParamType.Body,
required = true),

Parameter(
"lastname",
DataType.String,
Some("The hacker's last name"),
None,
ParamType.Body,
required = true),

Parameter(
"motto",
DataType.String,
Some("A phrase associated with this hacker"),
None,
ParamType.Body,
required = true),

Parameter(
"birthyear",
DataType.Int,
Some("The year that the user was born in"),
Some("A four-digit number"),
ParamType.Body,
required = true))

)

/**
* Create a new hacker in the database.
*/

post("/", operation(createHacker)) {

Each parameter to the API method is documented as a Parameter object within a List
of parameters. Each parameter is thoroughly documented and includes information
about the parameter name; what data type is acceptable; a human-readable descrip-
tion; any notes about the parameter that implementers need to know about; and
whether the parameter should be sent in a POST body, as a file, within the URL path,
on the query string, or as a header. Finally, you can specify whether the parameter is
required or optional. Adding these annotations increases the JSON specs at http://
localhost:8080/api-docs/hackers-api.json by a considerable amount, as shown in fig-
ure 13.14.

 Clicking Explore again in the Swagger UI browser and expanding the POST /
route will show you the documentation for the route, as you can see in figure 13.15.
Note that this form is fully interactive, and it generates real API requests that you can
use to explore your application. Click the Try It Out button to see your API method
in action.

Specifies the type of the parameter
(possible types are Body, File, Path,

Query, and Header)
Specifies whether the
parameter is required

Adds the createHacker
operation to the route

230 CHAPTER 13 Creating a RESTful JSON API with Swagger

Figure 13.14
Hackers-api.json with
a second annotated
method

Figure 13.15 Swagger UI for POST /

231Self-documenting APIs using Swagger

Let’s document the last API method, get("/:id"). Add the code from Listing 13.13 to
the ApiController. The process is fairly similar to the previous two examples. First
define an apiOperation, and then add the operation to the route so that it gets
documented.

val getHacker = (apiOperation[Hacker]("getHacker")
summary("Retrieve a single hacker by id")
parameters(
Parameter(

"id",
DataType.Int,
Some("The hacker's database id"),
None,
ParamType.Path,
required = true)

))

/**
* Retrieve a specific hacker.
*/

get("/:id", operation(getHacker)) {

That’s it—the API methods are now documented with Swagger. But there are a few
security-related mysteries. Why does the documentation browser work at all (the docs
are on a remote server and your API is local)? Also, what’s that empty api_key text
field doing there in the Swagger documentation browser? We’ll deal with these ques-
tions in the next few sections.

13.3.4 Cross-origin API security and Swagger UI

How is it possible that you can use a form on the internet, at http://petstore.swagger
.io/, to browse an application running on http://localhost:8080? Why does Swagger
UI work at all? Shouldn’t the JavaScript security sandbox, which normally blocks these
kinds of cross-domain shenanigans, swing into action and deny the request?

 Normally, this would be true. But Scalatra has built-in support for cross-origin
resource sharing (CORS), and it’s enabled by default whenever you mix SwaggerSupport
into a servlet.

 You can restrict access to the documentation browser (or to your API itself) by set-
ting the init parameter org.scalatra.cors.allowedOrigins to a comma-separated
list of values, in your ScalatraBootstrap file:

context.initParameters("org.scalatra.cors.allowedOrigins") =
"http://example.com:8080 http://foo.example.com"

Listing 13.13 Documenting get("/:id")

The id in this case is
expected to be on
the URL path.

Adds the operation
to the route

232 CHAPTER 13 Creating a RESTful JSON API with Swagger

13.4 Securing your API
API security is a complex subject—there are a lot of ways to do it. Because you’ve
built a RESTful API here, it’s normal to want to keep things stateless. This means API
clients don’t log in first to pick up a session and then use the session as their authen-
tication mechanism. Every request needs to authenticate itself separately from every
other request.

 There are many ways to accomplish this. Probably the simplest way is to use the
same HTTP Basic authentication mechanism you used back in chapter 11, and send
the username and password to the API with every request. It’s not particularly pretty,
but if secured with an SSL connection, it’ll do the job with minimum fuss for low-
ceremony applications.

 Other ways to do it are more complex. Popular ways to secure APIs include HMAC
request signing using shared secrets, multiple authentication flows using OAuth2, and
heavyweight solutions such as SAML.

 Which authentication method you choose will depend on many different factors.
What kinds of clients do you plan to support? What degree of technical sophistication
do you expect your API client implementers to have? What’s your strategy for protect-
ing shared secrets? Do you need to support JavaScript clients?

 These subjects warrant a book of their own, and they’re way beyond the scope of
what we can cover in detail here. But we can look at simple API security using HMAC
signing.

13.4.1 HMAC—what is it?

Hash-based message authentication codes (HMACs) are a way to guarantee two things:
that an incoming request was sent by a client your application knows about (authentica-
tion) and that the request data hasn’t been tampered with in transit (data integrity). The
API server and the API client both have access to a shared secret. The client cryptograph-
ically signs requests to the API, using the shared secret. It then makes the request, and
submits the signature alongside the request.

 When the server receives a request, it uses the same shared secret to sign the
incoming request data, and compares the resulting hash with the submitted signature.
If the two values match, the server knows that the request originated from someone
with access to the shared secret. To illustrate this in a practical way, let’s try it out using
Amazon’s signing strategy as a guide.

 If you’ve ever used the popular Amazon S3 API, you’ve used HMAC signing to
authenticate, although you might not have realized it. S3 uses HMAC signatures to
guarantee a lot of things about the data integrity of each request: the HTTP verb, the
path being requested, the date, the Content-Type, submitted HTTP headers, and
incoming parameters. It’s worth reading Amazon’s HMAC article.1

1 Amazon Web Services, “Signing and Authenticating REST Requests,” http://mng.bz/DlDH.

233Securing your API

 For the purposes of this chapter, you’ll use a simplified version of the S3 signatures.
It will look like this pseudocode:

Signature = Base64(HMAC-SHA1(secretKey, stringToSign));

In this case, stringToSign will contain two things: the HTTP verb for the request, and
the path you’re going to hit on the server, concatenated together in order as a
comma-separated list. You’ll use the string thisisthesecretkey as a shared secret. So
for a request such as GET /hackers-api, you calculate the signature as follows:

Base64 (HMAC-SHA1 ("thisisthesecretkey", "GET,/hackers-api"))

If the client signs its request this way and sends the signature along with the request, the
API will know whether the client had access to the shared secret. It will also be able to
tell that neither the requested path nor the HTTP verb were tampered with in transit.

13.4.2 An HMAC calculator in Scala

Let’s build an HMAC calculator in Scala, borrowing from the Java security libraries
included in the standard library. Create a new package inside the existing auth pack-
age and call it utils. Then create the file HmacUtils.scala inside that package. It
should look like the following listing.

package com.constructiveproof.hackertracker.auth.utils

import javax.crypto.Mac
import javax.crypto.spec.SecretKeySpec
import sun.misc.BASE64Encoder

object HmacUtils {

def sign(secretKey: String,
signMe: String): String = {
val secret = new SecretKeySpec(secretKey.getBytes(),

"HmacSHA1")
val mac = Mac.getInstance("HmacSHA1")
mac.init(secret)
val hmac = mac.doFinal(signMe.getBytes)
new BASE64Encoder().encode(hmac)

}

}

It’s a pretty straightforward translation of the pseudocode into Scala. The secret key is
used to cryptographically sign a string called stringToSign and hash it with the bytes
of the secretKey using the HmacSHA1 hash function.

 What does this get you? You can now sign a string with a shared secret to produce a
cryptographic signature. If you drop the code in listing 13.15 into HmacUtils.scala,

Listing 13.14 HmacUtils.scala

With the
secret key …

… and the
string you want

to sign …
… transform the

secret key into
 its bytes …

… and specify
the HMAC-SHA1

algorithm Next, initialize a new
message authentication
code (MAC) …

… and initialize
it with the

secret bytes
Sign the string’s
bytes …

… and return a Base64-
encoded string

234 CHAPTER 13 Creating a RESTful JSON API with Swagger

you’ll see the verification part. It adds the ability to verify that a submitted hmac
matches a signed string.

def verify(secretKey: String, stringToVerify: String,
hmac: String): Boolean = {
sign(secretKey, stringToVerify) == hmac

}

Now you’re getting somewhere. Let’s use the new HmacUtils.verify function to pro-
tect the Hacker Tracker’s API.

13.4.3 Protecting the API with a trait

In chapter 11 you saw various uses of Scentry to secure the Hacker Tracker: HTTP
Basic authentication, a username/password strategy, and using a Remember Me
cookie to let users back in without re-authenticating. This time, let’s try something a
bit more lightweight: you’ll secure the API using a simple trait with a before filter.
Drop the code from the following listing into a file called ApiAuthenticationSupport
in the auth directory.

package com.constructiveproof.hackertracker.auth

import java.net.URLEncoder

import com.constructiveproof.hackertracker.auth.utils.HmacUtils
import org.scalatra.{ScalatraBase, Unauthorized}

trait ApiAuthenticationSupport extends {
self: ScalatraBase =>

protected val secretKey = "thisisthesecretkey"

protected def validateRequest() = {
if (!HmacUtils.verify(secretKey, signMe, hmac)) {

unauthorized
}

}

protected def hmac = params.getOrElse("sig", unauthorized)

protected def unauthorized = {
halt(Unauthorized("Please provide a valid sig parameter. "

+ notifySig()))
}

protected def signMe = {

Listing 13.15 Verifying the signature

Listing 13.16 ApiAuthenticationSupport trait

Returns true if a submitted
HMAC matches the signature
you calculate for a given string

This trait can only be
mixed into subclasses

of ScalatraBase.
Defines the
shared secretThis will be called

by a before() filter
in protected API

controllers.

If the incoming HMAC parameter
doesn’t match the one you compute

from the current request …
… halt

execution

Gets the hmac
parameter or

stops execution

235Securing your API

request.requestMethod + "," + request.scriptName + requestPath
}

protected def notifySig() = {
val base64hmac = HmacUtils.sign(secretKey, signMe)
val urlEncodedHmac = URLEncoder.encode(base64hmac, "UTF-8")
val notification =
"""Append the following to this request

in order to sign it: ?sig=""" + urlEncodedHmac
println(notification)
notification

}

}

Let’s take this one step at a time. You’ve built a trait that you can mix into either the
ApiController or the ApiStack. It has a validateRequest method, which you can
execute in a before() filter to check that requests have been properly signed.

 The secretKey defines a shared secret. When making requests, API clients need to
concatenate a string consisting of the HTTP verb and the request path, separated by a
comma, and sign it with the shared secret. The signed hash is then submitted as a
query string parameter sig, as ?sig=thisiswherethesignaturegoes.

 The ApiAuthenticationSupport trait’s validateRequest function reads the signa-
ture sig from the query string, and then concatenates the HTTP verb (GET, PUT, POST, or
DELETE) and the request path, separated by a comma, in the signMe function. It then
sends both these values, and the secret key, to HmacUtils.verify to see whether the
incoming request is properly signed (that is, whether the request being received has a
hashed value equal to the incoming signature). Requests with incorrect or nonexistent
signatures will be stopped in their tracks when the unauthorized function is called. Addi-
tionally, both the sbt console and the response have the correct signature added to them,
for your learning convenience. Obviously, it’d be a bad idea to do this in production.

 Let’s see it in action. First, add the ApiAuthenticationSupport trait to the
ApiStack:

trait ApiStack extends HackerCoreStack with ApiAuthenticationSupport
with JacksonJsonSupport {

override protected implicit lazy val jsonFormats = DefaultFormats

}

Now you have the ability to use the validateRequest function in your controllers.
Let’s try it. Add the validateRequest function call to the before() filter in the Api-
Controller, as in the next listing.

Concatenates the HTTP verb and
request path for the current

request, separated by a comma

Outputs the proper
HMAC if request

signing has failed

Adding ApiAuthenticationSupport
to ApiStack

236 CHAPTER 13 Creating a RESTful JSON API with Swagger

before() {
contentType = formats("json")
validateRequest()

}

Your API is now protected from access by unauthenticated clients. Try it by hitting
the URL http://localhost:8080/hackers-api, and you’ll see a message like that in fig-
ure 13.16.

As you can see, the API no longer allows access without a valid HMAC signature. The
error message in the response tells you the proper sig parameter to append. You can
see it in action in figure 13.17.

 It works! Now you can sleep easy, knowing your API has been secured from use by
world + dog.

 There are several other things you’ll want to do in production. First, you should
include a timestamp in the request and include it in the request signature, so that any-
one who gets hold of a signed request can only replay the request within a fairly small

Listing 13.17 Adding API request validation

Adds the validateRequest()
function call to the before
filter in the ApiController

Figure 13.16 API authentication is now required.

Figure 13.17 A request with a good HMAC signature

237Summary

time period (Amazon uses 15 minutes). This prevents what are called replay attacks,
where an unauthorized person gets hold of signed requests after they’re made and
executes the same actions as the original client.

 Unless your API has only one user, you’ll probably also want to include some kind
of keyid parameter so you can have one shared secret per user, or per client applica-
tion. When a request comes in, you’ll read the keyid parameter, retrieve the shared
secret for that account from your data store, and use the shared secret to verify the
incoming request.

 If you have an account-based setup that allows external parties to register apps, like
Twitter and Facebook do, you might generate a shared secret when a user decides to
create a new client app, and show it to users in their account area.

 This is just the start of your API construction journey; there’s lots still to learn. But
this should be enough to get you started.

13.5 Summary
■ You’ve seen the basics of constructing and interacting with a RESTful HTTP API

using Scalatra.
■ The Hacker Tracker now sports an API, so it can be accessed not only by

humans using a web browser but also via machine-to-machine interactions on
the internet.

■ The Swagger API documentation framework lets your API users browse methods
and data. You can use Swagger docs as a way to communicate with both techni-
cal and non-technical people about the capabilities of your API. You can also
send requests directly to your API and see them in Swagger’s handy human-
usable web interface.

■ API security is just as important as securing HTML-based information and forms.
You can use HMAC request signing to authenticate requests and guarantee data
integrity for requests to your API.

And with that, the book comes to an end. We hope it proves useful to you. Stop by for
a chat on https://gitter.im/scalatra/scalatra if you need to discuss any aspects of the
framework in real time, have questions, or just want to hang out.

 From the Scalatra crew, thanks for reading. We wish you good luck in your use of
the framework!

239

appendix
Installation

 and development setup

Installation
In order to run the code in this book, you need to set up your development
machine with several components that will help you generate, build, and run Scala-
tra applications. This appendix will give you a quick start.

Installing JDK 7

Scalatra runs on the Java Virtual Machine (JVM), so you need a Java Development
Kit (JDK). Many systems come with a JDK preinstalled; let’s check first to see
whether you’ve got one. Run this in a DOS or Unix console:

java -version

This should give back the following:

java version "1.7.0_65"
Java(TM) SE Runtime Environment (build 1.7.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode)

Also run this:

javac -version

You should see something like this:

javac 1.7.0_65

240 APPENDIX Installation and development setup

If both commands spew forth responses like those shown here, you’re all set. The key
thing is the number 1.7 in the responses. If you see 1.6, your version of Java is too old,
and you’ll need to upgrade.

 Scalatra 2.4.0 requires Java 7 (a JVM version of 1.7). As of this writing, the Scala 2.11.x
language has experimental support for Java 8 (JVM 1.8.x). This means Java 8 may work
for you, but you probably shouldn’t depend on it in a production situation until
Scala 2.12 is available. If you don’t already have a JDK, or if your version is too old,
go here and follow the install instructions: http://docs.oracle.com/javase/7/docs/
webnotes/install/index.html.

 Now that you’ve got Java installed and working, you need to install some tools to
generate code and build your application.

Installing conscript and giter8

Although it’s theoretically possible that you could open your favorite code editor and
start working on your first Scalatra application, it would take you a long time to get all
the files into place and lay them out with the proper structure. To simplify this pro-
cess, most people use a tool called giter8.

 Giter8, which depends on another tool called conscript, generates customized Sca-
latra projects for you. When you run giter8, it uses conscript to retrieve template files
from GitHub, and it asks you several questions about your project—its name and ver-
sion number, for example. Once you’ve answered these questions, giter8 injects your
answers into the retrieved template code, and the result is a customized, buildable,
runnable project skeleton on your machine. This is the recommended way of getting
started with Scalatra.

 Install conscript first by following the instructions for your platform at https://
github.com/foundweekends/conscript. Conscript will install itself into your home
directory, in a folder called bin. You’ll probably need to add this folder to your sys-
tem’s PATH variable so you can run the conscript utility, cs.

SETTING PATH ON WINDOWS

There are quite a few versions of Windows in use, and each version has a slightly dif-
ferent way of setting the PATH environment variable. Go to https://www.java.com/en/
download/help/path.xml, and follow the instructions for the version of Windows
you’re using.

 In the PATH editing box, type a ; (semicolon) character at the end of it, and then
enter the path to your new bin folder. On our system, it’s at C:\Users\IEUser\bin. Once
this is set, close and open your terminal. If you’ve entered your PATH correctly, you
should now be able to type cs at the DOS prompt and see the output shown in figure A.1.

SETTING PATH ON MAC OR LINUX

Setting PATH on a Mac OS X or a Linux system is a fairly simple matter. If you’re on
Linux, open the .bashrc file in your home directory. On Mac OS X, open the
.bash_profile file in your home directory.

241Installation

Add the following line at the end of the file: export PATH=$PATH:~/bin. Close and
reopen any terminals you have open so that you pick up the new $PATH variable. Now,
type cs at your command prompt, and you should see the output shown in figure A.2.

Figure A.1 Making sure conscript works on Windows

Figure A.8 Making sure conscript works on Mac or Linux

242 APPENDIX Installation and development setup

INSTALLING GITER8
Now that conscript is installed, you can proceed with installing giter8. This is much
easier. Run the following command from a DOS or Unix terminal, and giter8 will be
retrieved from GitHub:

cs foundweekends/giter8

Conscript will download the giter8 utility into the bin folder in your home directory
and make it available as the command-line utility g8. To test that it works, run it. The
output should be like that shown in figure A.3.

 With conscript and giter8 installed, you have everything you need to generate a
Scalatra project. You’ll try it in the next section.

Generating your first Scalatra project

The Scalatra team maintains a giter8 template for a standard Scalatra project skeleton
on GitHub. To generate your own project code from it, run the following code in your
terminal:

g8 scalatra/scalatra-sbt

Figure A.8 Making sure giter8 works

243Installation

Giter8 will reach out to GitHub and download a full Scalatra application skeleton. It will
then ask you a series of questions about your project. Answer as shown in figure A.4.

 Each question customizes a specific aspect of your application:

■ organization is used for publishing. Most people use either their organiza-
tion’s domain name (such as com.constructiveproof in our case) or the reverse
of their GitHub username (for example, com.github.futurechimp).

■ package is the namespace you want to use for this particular application. Use
something unique for each of your web apps.

■ name is the particular name for this application. Type it as a free-form sentence;
giter8 will automatically turn it into a project name.

■ servlet_name is the name of the first servlet, or controller, that you want to
generate.

■ version is the version number of your application. It starts at 0.1.0, and you can
increment it in your build file as you do releases.

■ scala_version is the version of the Scala language you’d like to use.

If you don’t know the answers to some of the questions, press Enter to accept the default;
you can always change the generated code later. When you’re finished answering, giter8
injects your answers into the templates it downloaded from the internet. The template
files for any giter8 project are typically stored on GitHub. The ones you downloaded are
found in the project https://github.com/scalatra/scalatra-sbt.g8.

Figure A.8 Generating a Scalatra project

244 APPENDIX Installation and development setup

 Using conscript and giter8, you can generate a new project. Next, you need the
build tool that lets you run your generated project.

Building your code with the simple build tool (sbt)

The simple build tool (sbt) is the standard build system for Scala projects. Like any soft-
ware with the word simple or lightweight in it, sbt is complex. It has quite a few functions:

■ It automatically downloads and installs a full Scala installation, including a Scala
compiler, on first use.

■ It builds your application.
■ It runs your automated tests.
■ It manages dependencies, rather like Maven, Ruby Gems, and Python Eggs do

in other languages.
■ It can automate common tasks, as Ant and Rake do in other languages.

Scalatra conveniently bundles its own copy of sbt for use on Unix-style systems. This
means that on Linux and Mac systems, you don’t necessarily need to install sbt, if all
you’re using it for is Scalatra development. But if you want to do general non-Scalatra
development in Scala, or if you’re on Windows, follow the installation instructions for
your platform at http://scala-sbt.org to install sbt.

 Let’s run your newly generated Scalatra project using sbt. To do so, cd into the top-
level my-scalatra-web-app project by typing cd my-scalatra-web-app. Then type
either ./sbt (Linux or Mac) or sbt (Windows) at the command prompt to start sbt.
The first time you do this, you may as well go get a cup of coffee; sbt will download an
entire Scala development environment, including the language, a compiler, and the
Scala standard libraries, and then grab all the dependencies needed to run a Scalatra
application. This can take a while, depending on the speed of your internet connec-
tion. At the end, you’ll see the > character, which is the sbt command prompt, as
shown in figure A.5.

Figure A.8 Running
Scalatra using sbt

245Installation

Scalatra’s sbt setup packages a web server, so you can get to work right away. To run
your new project, type the command jetty:start at the sbt prompt. You’ll see output
something like that shown in figure A.6.

 sbt will start a web server and make your application available on port 8080. You
can view your application by going to http://localhost:8080. To enable automatic
code reloading, so the web server reloads itself to pick up changes whenever you save
a file, use this command:

~jetty:start

You now have all the mandatory components installed, and you’ve seen how to gener-
ate and run a Scalatra application. If you were in the middle of chapter 1 and you’re
eager to get busy constructing your application, you can go back there now. The rest
of this appendix will guide you through the Scalatra project structure and give you a
few tips on working with sbt, adding and removing project dependencies, and setting
up Scalatra with your favorite IDE.

The structure of a Scalatra project

The structure of your new project will look like that shown in figure A.7. Let’s take a
quick tour of the project.

Figure A.8 Starting the Scalatra app in a web server

246 APPENDIX Installation and development setup

 The project directory contains project-
related files. The build.properties file specifies
which version of sbt should be used to build the
project. build.scala is the project’s build file,
and it’s where you can configure all aspects of
the build. This is one of the most important files
in the entire application, and you’ll open it fre-
quently when you want to add dependencies to
or remove them from your project. The plugins
.sbt file allows you to add sbt plugins to your
project, extending the capabilities of sbt itself.

 The src/main/scala directory is where you’ll
do most of your application development work.
By default, the giter8 template generates pack-
age directories for you, composed of your orga-
nization name and the package name you
entered when you generated the project.
There’s no reason to use packages like this if
you don’t want to; you can, for instance, put all
your Scala code in src/main/scala, and every-
thing will build and run without any trouble.

 The src/main/resources directory can con-
tain any project-specific resource files that you
need to build into your web application. Configuration files, I18N files, and any other
files you want to bundle into your application go here.

 The src/main/webapp directory is where your web resources live. Except for WEB-
INF, all files and directories placed in webapp are served publicly. This is where you’ll
typically keep any static HTML, CSS, and JavaScript needed to serve your application.
The contents of the WEB-INF directory aren’t served; this is where Scalatra keeps the
files for its web-templating system by default (see chapter 7 for details).

 The src/main/test directory is where you keep your automated test code. The sbt
file in the project root contains the sbt launcher, so you don’t need to install sbt glob-
ally on your system if you’re on Mac OS X or Linux.

 With the overview out of the way, let’s zoom in and focus specifically on two files:
we’ll look at dependency management in project/build.scala and also examine the
ScalatraBootstrap init file.

Configuring your application with sbt

As mentioned, you can configure most aspects of your project’s build settings, includ-
ing what dependencies it pulls in, using the configuration file at project/build.scala.
This is an sbt configuration file.

 One thing you may find confusing when you’re first using Scala is that sbt can have
its configuration in two locations. Simple sbt projects typically have a build.sbt file in the

Figure A.7 A Scalatra project’s structure

247Installation

project root; this file lets you configure your application with a limited subset of Scala.
More-complex projects, including Scalatra, instead use the file at project/build.scala.
This file is an actual Scala file, laid out in a specific structure, and it provides for more-
complex configurations than build.sbt. It’s worth noting that you can use project/
build.scala and build.sbt in the same sbt project, and settings in both will work.

 Let’s turn our attention to dependency management in sbt. Scalatra depends on
Java JAR files to make dependencies available. A JAR file is basically a zip file contain-
ing JVM bytecode, laid out in a specific structure.

 When you want to make a new capability available to your Scalatra application, you
add a new dependency listing to project/build.scala. sbt will then take care of down-
loading the JAR file for this dependency and making it available to your application.
Let’s see how this works. Open project/build.scala; halfway through the file, you’ll see
a series of lines like the following.

"org.scalatra" %% "scalatra" % ScalatraVersion,

In the Java (and thus Scala) world, every library JAR has at least three pieces of infor-
mation associated with it:

■ An organization, typically defined by its domain name
■ A name
■ A version number

Those are the pieces of information you see here. The organization name of this file
is "org.scalatra", the library’s name is "scalatra", and the version number is
ScalatraVersion (look further up the file, and you’ll see that it’s "2.4.0").

 Any time you want to add a new dependency to your Scalatra application, you
determine these three pieces of information and put them in the file. Any Scala
library will list an sbt dependency line in this format.

 You also have the entire world of Java libraries available to you. If you want to use
a Java library, it may not have an sbt
dependency line listed in its documenta-
tion. Your best bet is to go to http://
search.maven.org and search for the
library name. Clicking a library name and
then clicking the Scala sbt link in the
Dependency Information box on the left
side of the window will display the sbt
dependency line, as shown in figure A.8.

 To add a dependency, add the depen-
dency line to project/build.scala, adding a
comma at the end of the line if it’s not the last
line in the Seq. Then you can type the reload

Listing A.1 Dependencies in sbt

Figure A.8 sbt dependencies on
search.maven.org

248 APPENDIX Installation and development setup

command at the sbt prompt, which will cause sbt to look for any new dependencies.
Alternately, you can type the exit command to leave sbt; the dependency will become
available the next time you run sbt. For more-detailed information on sbt project defi-
nitions, see chapter 9.

sbt tasks

When you run jetty:start to start your web server, you’re running an sbt command.
It’s not the only one available; to see a list of available sbt tasks, run tasks. Other use-
ful tasks include the following:

■ compile—Compiles without running the web server
■ jetty:stop—Stops the web server
■ reload—Reloads the sbt environment to pick up new dependencies
■ test—Runs your application’s tests
■ testQuick—Runs all tests that failed during the previous test run

Mounting servlets in ScalatraBootstrap

The default generated template contains only a single servlet, or controller (the terms
are used interchangeably by many Scalatra developers). If you’ve generated a fresh proj-
ect and specified ArticlesController as the default servlet when answering g8’s ques-
tions, the file src/main/scala/ScalatraBootstrap.scala will contain the following lines.

import com.example.app._
import org.scalatra._
import javax.servlet.ServletContext

class ScalatraBootstrap extends LifeCycle {
override def init(context: ServletContext) {
context.mount(new ArticlesController, "/*")
}

}

In a real application, it’s unlikely that you’ll have only a single controller—you may
have dozens of them in a large application. If you add another controller, such as a
CommentsController, you need to mount it in ScalatraBootstrap’s init method
before it will become available to your application. The next listing shows a stubbed
CommentsController.

package com.example.app

import org.scalatra._
import scalate.ScalateSupport

Listing A.2 ScalatraBootstrap with a single mounted controller

Listing A.3 The CommentsController

A single controller is
available via HTTP.

249Installation

class CommentsController extends MyScalatraWebAppStack {

get("/") {
//We would list comments here

}

get("/new") {
//We would show a new comment form here

}
}

The controller is now defined, but it’s not available for HTTP requests. You need to
mount it so that it becomes requestable. To do so, you add it to the list of instantiated
classes using context.mount.

override def init(context: ServletContext) {
context.mount(new ArticlesController, "/*")
context.mount(new CommentsController, "/comments/*")

}

The CommentsController’s routes are now available at GET http://localhost:8080/
comments/ and GET http://localhost:8080/comments/new. To keep things clean, it’s
a good idea to also mount ArticlesController at the path "/articles/*".

 Note that you could just as easily have mounted CommentsController at "/*" and
then set up the controller class’s routes as in the following listing. As with most things
in Scalatra, how you structure your routes is up to you.

package com.example.app

import org.scalatra._
import scalate.ScalateSupport

class CommentsController extends MyScalatraWebAppStack {

get("/comments") {
//We would list comments here

}

get("/comments/new") {
//We would show a new comment form here

}
}

You can also run any other initialization code you want in the init method of
ScalatraBootstrap. Add a destroy method if you want to do some cleanup when
your application exits, as shown next.

Listing A.4 Mounting a second controller

Listing A.5 Namespaced routes in the controller

Mounts the
CommentsController

Namespaces the index
action to /comments

Namespaces the new action
to /comments/new

250 APPENDIX Installation and development setup

override def destroy(context: ServletContext) {
// clean up database connections, close resources, etc.

}

For a more detailed discussion of ScalatraBootstrap, see chapter 9.

Do you need an IDE?
The short answer is no: nothing about Scala requires an IDE. If you’re thinking about
trying Scala but the thought of losing your regular text editor gives you the shudders,
take heart: nothing in this book assumes or requires that you have an IDE. If you’re a
happy vi, Emacs, Sublime, gedit, or jEdit user, you should probably stick with a famil-
iar setup for the moment. There’s a lot to learn, and learning an entirely new IDE
while you’re learning all about sbt, Scala, Scalatra, Scalate, servlet configuration, and
the million other details of an unfamiliar environment may be too much.

 But speaking from experience as former Rubyists, we were pleasantly surprised by
the speed boost we got when we started using IntelliJ Idea and its Scala plugin, which
is now our environment of choice for Scalatra development. The refactoring, code
completion, and integrated docs support make it much easier to learn Scalatra, Scala,
and dozens or hundreds of libraries. The syntax highlighting is nearly perfect, making
it easy to see when you’ve made a mistake before you compile. Having said that, you’re
spoiled for choice. If you don’t care about compiler-aware syntax highlighting, auto-
mated typesafe refactoring, and integrated docs, you can skip this section. If you’re
interested in these things, there are three ways to get them: Emacs, IntelliJ, or Eclipse.

Emacs

If you’re an Emacs user, you can use the Enhanced Scala Interaction Mode for text
Editors (ENSIME). It has quite a few features, including the following:

■ Showing the type of the symbol under the cursor
■ Contextual completion for vars, vals, and defs
■ Adding imports for the symbol under the cursor
■ Classpath search for types and members
■ Browsing packages and type hierarchies
■ Finding all references to a symbol
■ Refactorings such as (rename, organize imports, extract method)
■ A REPL with stack-trace highlighting
■ Red squiggles for errors and warnings in your code
■ Debugger support

You begin by installing the scala-mode2 Emacs mode from https://github.com/
hvesalai/scala-mode2. Once that’s running, follow the installation instructions at
https://github.com/ensime/ensime-server to install ENSIME. Next, install the

Listing A.6 Cleaning up at application shutdown

251Do you need an IDE?

ENSIME sbt plugin and generate an .ensime configuration file by following the
instructions at https://github.com/ensime/ensime-sbt.

Eclipse

If you’re already an Eclipse user, you can add the Scala plugin to your current installa-
tion. Alternately, you can download a version of Eclipse with the Scala plugin already
installed. In either case, go to http://scala-ide.org, which is where the downloads live.

 Eclipse requires an Eclipse project file to be present so it can figure out dependen-
cies for syntax highlighting and other IDE features. Follow the instructions at https://
github.com/typesafehub/sbteclipse to install the sbteclipse plugin.

 If you want to use Eclipse’s integrated debugging, start sbt like this:

./sbt -jvm-debug 8000

You can then set up your Eclipse debugger. Go to Run > Debug configurations, select
Remote Java Application, and click New Configuration. Select Remote to make a new
remote debugging configuration, and give it a name. The default debugging port
should already be 8000 (matching the port you started sbt with earlier), so clicking
Debug and setting some breakpoints should result in a working debugger.

IntelliJ IDEA

You can use the Community Edition of IntelliJ IDEA and add the Scala plugin. There’s
no need to add any extra sbt plugins to your projects, because IDEA’s Scala plugin rec-
ognizes sbt projects without any further configuration.

 To debug in IntelliJ IDEA, start sbt like this:

./sbt -jvm-debug 5005

Next, go to Run > Edit Configurations. Click the + button, and select Remote to make
a new remote debugging configuration. Give it whatever name you like, such as Scala-
tra Debug. The default run configuration, -agentlib:jdwp=transport=dt_socket,
server=y,suspend=n,address=5005, should work (note that the port 5005 you
started sbt with should match the run configuration).

 Set some breakpoints and refresh your browser. The debugger should start up
when you select Run Debug ‘Scalatra Debug’.

253

index

Symbols

^ operator 24
_ wildcard pattern 18
! operator 24
? operator 41, 205
/ type 84
\ function 81–82
\ operator 121
+ operator 91
++ method 161
++= method 161
+= method 161
~ operator 25, 79
~webappPrepare 10

Numerics

200 OK 31
201 Created 31
404 error 19, 50, 96, 98

A

Accept-Encoding header 98
action codes. See actions
ActionResult type 68

BadRequest 69
Forbidden 69
NotFound 69
Ok 69

actions 29
and Scalate 20
DBIO 156–159
headOption 161

retrieving pages 18–19
returning a Future 200
user input 50

Actors 203–206
ActorSystem 205
receive method 204

ActorSystem 205
after filters 50, 65
afterAuthenticate 193
afterFetch 193
afterLogout 193
afterSetUser 193
Akka

Actors 203–206
ActorSystem 205
timeouts 205

Allow header 36
Amazon S3 232
AngularJS 4
API controllers 212–220

returning JSON 214–217
APIs 29

API controllers 212–220
creating 211–237
cross-origin resource

sharing 231
protecting with traits 234–237
REST 212, 220
securing 232–237
Swagger 220–231

application programming
interfaces. See APIs

applications
adding JSON support 74–75
and Swagger 223–225
assets 140

build definition 137
building 136–144

as sbt project 136–139
sbt-web 140–143
xsbt-web-plugin 139–140

configuring 131–135,
246–248

deploying 144–145
Docker 148–152
embedding a servlet

container 145–146
environments 131–132
folder structure 136
installing Scalate in 107
standalone 145–148
type-safe configuration

132–135
vs. websites 106

Area class 156
areas 156
Array type 95
asc method 165
assertions 119

over HTTP response 120–121
assets 140
assetsDirectory 133
asynchronous

programming 197–210
Actors 203–206
AsyncResult 201
big data 207–210
concurrency 198–200
Futures 200–203
making synchronous code

asynchronous 201
AsyncResult 201

INDEX254

authenticate method
176–177, 183

authentication 171–196
and routes 175–181
authenticate method

176–177, 183
AuthenticationSupport

184–187
BasicAuthStrategy 176–177
BasicAuthSupport 178–180
DatabaseSetupController 180
forms authentication 181–191
handling sessions 174–175
HMAC 232
HTTP Basic 175–181
logging out 188–191
remembering cookies

191–196
RememberMeStrategy 191
Scentry 174–175
security subject 176
self 178
Shiro 173
stateful vs. stateless 171
strategies 174
UserPasswordStrategy

182–184
AuthenticationSupport 184–187
AutoInc 159
avg method 165
Await method 157

B

Backbone.js 4
basicAuth method 185
BasicAuthenticationSupport

self 178
BasicAuthStrategy 174, 176–177

basicAuth method 185
BasicAuthSupport 178–180
before filters 50, 65, 179

contentType 215
filter conditions 65
security 234

beforeAuthenticate 193
beforeFetch 193
beforeLogout 193, 195
beforeSetUser 193
big data 207–210
Boolean expressions 44–46

must be free of side effects 46
build.properties 246
build.sbt file 8
build.scala 107, 114, 246

building applications 136–144
as sbt projects 136–139
build definition 137
Docker 148–152
sbt-web 140–143
scalate-generator 143–144
xsbt-web-plugin 139–140

C

CachedThreadPool 201
calculator example 233
callbacks 193–196

and Futures 200
onFailure 200
onSuccess 200

capture groups 43
case classes 16
classes

Area 156
case classes 16
defining objects 17
FileItem 99
importing 21
List 16, 18
Map 51, 57
Option 45
Route 156
ScalatraBootstrap 97
Table 155
User 176

column method 159
concurrency 198–200

Spark 210
thread pools 199

configuration 131–135
environments 131–132
type safe 132–135

configureMultipartHandling
method 101

configuring
sbt build settings 246–248

connect 36
conscript 13

installing 240
constructor injection 97
contain 120
ContainerPlugin 139
Content-Description 96
Content-Disposition 96
Content-Encoding header 98
Content-MD5 35
Content-Type header 31
contentType 215
context.mount 249

cookies 66, 191–196
cookies method 67
destroying 195
setting 194

cookies method 67
create method 161
cross-origin resource

sharing 231
CRUD 29–34

idempotence 32
mapped to HTTP methods 29
read-only operations 30
repeated requests 31
resources 30
security risks 34

curl 52, 100, 217
custom serializers 89–91
custom types

sharing across servlets 63
customizing

Formats type 86
JSON support 84–87

customKeySerializers 85
CustomSerializer 91
customSerializers 85
cygwin 53

D

data models 16–17
databases 154, 214

areas 156
AutoInc 159
DatabaseSetupController 180
default projections 159
defining joins 166
defining queries 163–166
delete 166
drivers 156
dropping 172
functional-relational

mapping 155
H2 156
headOption 161
insertRoutes 162
operators 164
PrimaryKey 159
queries as extension

methods 167–168
query language 163–168
relational 154–156
routes 156
Slick 156–159
sql interpolator 157
sqlu interpolator 157

INDEX 255

databases (continued)
TableQuery 159–163
tables 159
update 166

DatabaseSessionSupport 218
DatabaseSetupController 180
dateFormatter 85
DBIO actions 156–159
DBIO type 157
decomposition 81
DefaultFormats 85
delete 17, 33–34

NotFound 33
when to use 34

dependencies 9
finding library names 247
injecting into servlets

125–127
libraryDependencies 14, 107,

127, 138, 175
sbt 244, 247
ScalaTest 127
Scentry 175
Slick 156
stubbed 124
test scope 117

dependency injection 125–127
deploying 26, 144–145

launcher scripts 147
standalone applications

145–148
distribution packages

146–148
desc method 165
development environment 131

isDevelopment method 131
Dispatch 201
distribution packages 146–148
Django 5
Docker 148–152
Don't Repeat Yourself

principle 110
drop method 161, 165

E

Eclipse 251
Emacs 250
Ember.js 4
emptyValueStrategy 85
enablePlugins method 139, 141
environment method 131
environment variables

path 240

environments 131
development 131

isDevelopment method 131
environment method 131
production 131
staging 131

error messages
upload errors 103

examples
big data 207
calculator 233
data model 16–17
file server 95
first application 12–27
first test 23–25
food servlet testing 117
Grabber 198–206
Hacker Tracker 172–173,

212–237
Hello World 4–5, 9
nutrition facts 89
optional path parameters 42
PagesController 14
pasta recipe 78–84
path parameter matching 40
Rails-style path expressions 48
regular expressions 44
relational database 154–156
RememberMeStrategy

191–196
ScalaTest 128
Specs2 test 117
Swagger Petstore 221
user interface 13

exceptions
IOException 103
SizeConstraintExceeded-

Exception 103
ExecutionContext 156, 201
exists method 165
extract function 82
extraction 82
extractOpt function 83

F

field serializers 84–87
fieldSerializers property 85–86
file server example 95
File type 95
FileItem class 99
fileMultiParams method 100
fileParams method 100
files 94–103

Accept-Encoding header 98

build.properties 246
build.sbt 8
build.scala 107, 114, 246
Content-Description 96
Content-Disposition 96
Content-Encoding header 98
FileUploadSupport 99–101

configuring 101–102
folder structure 245
gzip compression 98
JAR files 14
multipart/form-data 98
plugins.sbt 246
receiving 98–103
ScalatraBootstrap 248
serving 95–98

static resources 98
through routes 95–97

upload errors 103
WAR files 26, 144–145
web.xml 102, 132

fileSizeThreshold 102
FileUploadSupport 99–101

configuring 101–102
filter method 163
filters 63–66

after filters 50, 65
before filters 50, 65, 179,

215, 234
distinction from servlet

filters 63
filter conditions 65
running selectively 65

FixedThreadPool 201
FlashMapSupport 175, 218
flatMap method 158, 166
for comprehensions 164
for loops

Scaml 110
Forbidden 69
foreignKey method 159
ForkJoinPool 201
form parameters

key-value pairs 53
when to use 53

Formats type 84
and CustomSerializer 91
customizing 86
dates 85
DefaultFormats 85
properties 85

forms authentication 181
AuthenticationSupport

184–187
logging out 188–191

INDEX256

forms authentication (continued)
login form 181
UserPasswordStrategy

182–184
forURL method 157
Fragments 119
frameworks 7

Django 5
full-stack 4
HTTP frameworks 28
in-browser 4
micro vs. full-stack 5
microframeworks 5
Play Framework 5
Ruby on Rails 5
Scalatra versus Lift 6
Scalatra vs. others 6–7
Spring 5
Symfony 5
Twitter Bootstrap 22

fromSession method 179
full-stack frameworks 4
FullTypeHints 89
functional-relational

mapping 155
Future type

FutureSupport 162
Futures 157, 200–203

AsyncResult 201
callbacks 200
ExecutionContext 201
FutureSupport 200

FutureSupport 162, 200

G

g8 12, 23, 107, 198
building applications 136
conscript 240
default template 14
installing 242
standard template 242
See also giter8

get 4, 17, 30, 57, 66, 99, 128,
215, 226

when to use 30
with JSON 74

getAs method 59–60
supported types 60

getHeader method 66
getInputStream method 99
getOrElse method 58–59

and halt 58
getResource method 98

giter8 107, 198
and ScalaTest 127
building applications 136
conscript 240
installing 242
standard template 242
testing 117
See also g8

Grabber example 198–206
gzip 98
GZipSupport 98

H

H2 database 156
Hacker Tracker example

172–173, 212–237
halt method 58, 67–68
HaltException 59
halting 67–68
hash-based message authentica-

tion codes. See HMAC
head 34–35

Content-MD5 35
Last-Modified 35
when not to implement

directly 35
when to use 35

headOption 161
Hello World example 4–5, 9
HMAC 232–237

Amazon S3 232
HTML

rendering with Scalate 20
HTTP 106

compression 98
form parameters 52–54
HTTP framework 28
multiple parameters sharing

same key 54
parameters 50–63
query string parameters 51
response

and assertions 120–121
sessions 174

HTTP Basic
authentication 175–181

BasicAuthStrategy 176–177
BasicAuthSupport 178–180
DatabaseSetupController 180

HTTP methods. See methods
HTTP parameters 50–63

as Option 57
custom types 60–63
form parameters 52–54

getAs 59–60
getOrElse 58–59
key-value pairs 50
multiple parameters sharing

same key 54
params map 49
path parameters 52
query string parameters 51
search_query 57
setting default values 58
typed parameters 59–63
unexpected input 55–59
which to use 53

HTTP path parameters 52
HTTP verbs 17
HttpAsyncClient 201

I

idempotence 32
IDEs

Eclipse 251
for Emacs 250
IntelliJ IDEA 251
whether to use 250

implicit 61
import statement 21
InputStream type 95
insertRoutes 162
installing

conscript 240
giter8 242
JDK 239
required tools 239–250
Scalatra 7–11

IntelliJ IDEA 251
IOException 103
is method 119
isAuthenticated method 187
isDevelopment method 131
isValid method 187, 196
Italian recipe example 78–84

J

JacksonJsonSupport 75, 215
Jade 113
JAR files 14
JArray type 76
Java Development Kit 239
JavaScript Object Notation. See

JSON
JavaServer Faces 104

INDEX 257

JDK
installing 239

Jetty 10, 14
and sbt 245
embedding in an

application 145
JettyPlugin 139
stopping 248

JettyPlugin 139
JNothing 75, 82
JNull 82
JObject type 76
JSON 73–93

\ function 81–84
\\ function 82
adding support to an

application 74–75
and type hints 87–89
API controllers 212–220
consuming 81–84
creating an API 211–237
custom serializers 89–91
customizing support 84–87
decomposition 81
field serializers 84–87
JacksonJsonSupport 75, 215
JArray type 76
JObject type 76
Json4s 74, 216
JSONP 92–93
JsonSupport 73–77
JValue type 75–77, 79
parse method 77
producing 79–81
returning from API

controller 214–217
scalatra-json 74
serialization 216
Swagger 220–231
testing 120
types 75

JSON with Padding. See JSONP
Json4s 74, 216

\ operator 121
\\ operator 121
creating JValue 79
Formats type 84
testing 121

jsonClass 88
jsonFormats 75
JSONP 92–93
jsonpCallbackParameterNames

method 92

JsonSupport 73–77
adding to an application

74–75
customizing 84–87
JacksonJsonSupport 75
JValue type 75–77

JValue type 74–77
creating 79
DSL 79
extraction 82
testing as 121–122

JVM
JDK 239

K

key-value pairs 53

L

Last-Modified 35
launcher scripts 147
layouts 21–23
layoutTemplate 112

syntax 112
leftJoin method 166
length method 165
Less 141
libraries 14

adding to
LibraryDependencies 14

Dispatch 201
finding names of 247
Slick 156–159
Specs2 14
Swagger 220
See also Slick

libraryDependencies 14, 107,
127, 138, 175

LifeCycle 158
Lift

versus Scalatra 6
view-first approach 6

List class 16, 18
location 102

M

Map class 51
and getOrElse 58
get method 57

map method 163
MappingException 88

max method 165
maxFileSize 102
maxRequestSize 102
MethodOverride 212, 218
MethodOverrideSupport 37
methods 29

++ 161
++= 161
+= 161
asc 165
authenticate 176–177, 183
avg 165
Await 157
basicAuth 185
browser support 37
column 159
configureMultipartHandling

101
connect 36
cookies 67
create 161
CRUD 29–34
delete 33–34
desc 165
drop 161, 165
enablePlugins 139, 141
environment 131
exists 165
fileMultiParams 100
fileParams 100
filter 163
flatMap 158, 166
for routing 29–38
foreignKey 159
forURL 157
fromSession 179
get 30, 57, 66, 99, 128,

215, 226
getAs 59–60
getHeader 66
getInputStream 99
getOrElse 58–59
getResource 98
halt 58, 67–68
head 34–35
is 119
isAuthenticated 187
isDevelopment 131
isValid 187, 196
jsonpCallbackParameter-

Names 92
leftJoin 166
length 165
lesser-known 34–36

INDEX258

methods (continued)
lowercase names 30
map 163
max 165
MethodOverrideSupport 37
min 165
multiParams 54, 100
notFound 50
options 35–36
outerJoin 166
overriding 37–38
params 51, 100
parse 77, 121
patch 33
post 31–32, 126, 216, 228
put 32–33
queries as 167–168
r 44
receive 204
result 161, 164
returning 161
rightJoin 166
run 157
schema 161
security risks 34
seq 157
serveStaticResources 98
sortBy 165
startsWith 120, 128
string2RouteMatcher 48
sum 165
take 165
toSession 179, 187
trace 36
unauthenticated 179
unsupported 36
update 66
validate 177, 180
withHints 88
write 99
X-HTTP-Method-Override 37

microframeworks
versus full-stack 5

min method 165
model-view-controller pattern 6
multiParams method 54, 100
multipart/form-data 98
MultipartConfig type 101

fileSizeThreshold 102
location 102
maxRequestSize 102

Mustache 113
MVC 6

N

namespaces
package 5

Netty framework 7
NoContent 33
None 57, 83, 99

See also Option type
NotFound 33
notFound method 50
NullPointerException 55
nutrition facts example 89

O

objects
defining 17

Ok 69
onFailure 200
onSuccess 200
operators

^ 24
! 24
? 41, 205
\ 121
+ 91
~ 25, 79
for databases 164

Option class 45
Option type 55, 57
options 35–36

security 36
when to use 36

outerJoin method 166
overriding

MethodOverrideSupport 37
methods 37–38
X-HTTP-Method-Override 37

P

package namespace 5, 14
pages

404 error 19
rendering 20–23
retrieving 17–19

actions 18–19
with routes 17

params map 49
params method 51, 100
parse method 77, 121
parsedBody function 75
patch 33

path environment variable
Mac OS X and Linux 240
Windows 240

path expressions 38–42
? 41
mapping to regular

expressions 44
path parameters 40–41

optional 41–42
Rails-style 47–48
splat parameters 42
static 39–40

path parameters 40–41
matching rules 40
not supported in Specs2 119
optional 41–42
percent encoding 41
special characters 40
splat parameters 42
when to use 53

pattern matching
with Option 55

percent encoding 41
pet store example 221
Play Framework 5

and MVC 6
and Netty 7
Twirl 113

plug-ins
ENSIME (Emacs) 251
plugins.sbt 246
sbteclipse 251

plugins 138
ContainerPlugin 139
JettyPlugin 139
sbt-docker 149
sbt-filter 141
sbt-less 141
sbt-web 140–141
scalatra-sbt 138
WarPlugin 145
WebappPlugin 139
xsbt-scalate-generator 143
xsbt-web-plugin 139, 141

polymorphism 87–89
port 133
post 17, 31–32, 126, 216, 228

_method parameter 37
when clients don't understand

other methods 32
when to use 32
with JSON 74

post parameters. See form
parameters

PrimaryKey 159

INDEX 259

principle of least
astonishment 29

production environment 131
project structure 245
projects 14–16

generating a new project 8
project structure 20
src folder 23

public vars 124
push 4
put 17, 32–33

NoContent 33
when to use 33

Q

query language 163–168
defining joins 166
defining queries 163–166
delete 166
update 166

query string parameters
when to use 53

Query type 155, 159–168
as extension methods

167–168
defining queries 163–166
delete 166
query language 163–168
update 166

R

r method 44
read-only operations 30
receive method 204
receiving files 98–103

FileUploadSupport 99–101
configuring 101–102

multipart/form-data 98
upload errors 103

redirects 68
with ActionResult 68

refactoring 218
regular expressions 43–44

capture groups 43
examples 44
how they work 44
mapping to path

expressions 44
special characters 44
syntax 43
validating routes 43

relational databases 154–156

reload 248
RememberMeStrategy

174, 191–196
rendering pages 20–23
repeated requests 31
replay attacks 237
Representational State Transfer.

See REST
request helpers 67–69
requests 201

AsyncResult 201
lifecycle 49
redirecting 68
request headers 66
request helpers 67–69

resources 30
assets 140

response
and assertions 120–121

REST 212
See also APIs

result method 161, 164
retrieving pages 17–19

404 error 19
actions 18–19
with routes 17

returning method 161
rightJoin method 166
route actions. See actions
Route class 156
route matchers 29, 38–46, 52

advanced 46–48
Boolean expressions 44–46
Rails-style path

expressions 47–48
regular expressions 43–44
resolving conflicts 46–47
return Option 45
type 48

route parameters. See path
parameters

RouteMatcher trait 48
routes 4, 28–48

anatomy of 29
and authentication 175–181
and filters 63–66
and methods 29–38
areas 156
bottom-up 47
path expressions 38–42
path parameters 52
Rails-style path

expressions 47–48
regular expressions 43–44
resolving conflicts 46–47
retrieving pages 17

returning JSON 214
route matchers 29, 38–46, 52

advanced 46–48
Boolean expressions 44–46
path expressions 38–42

serving files 95–97
static 39
Swagger 225–231
testing 24
user input 50
validating 43

Ruby on Rails 5
Rails-style path expressions 47

run method 157
running tests

with ScalaTest 129
with Specs2 122–123

S

s interpolator 119
same origin policy 92
SBT

and Swagger 223
and Twirl 113

sbt 9, 13, 25, 244–245
adding JSON to build

definition 74
and ScalaTest 127, 129
assets 140
build settings 246–248
building applications

136–139
command prompt 244
compile 248
ContainerPlugin 139
dependencies 244, 247
Eclipse plug-in 251
Emacs plug-in 251
keys 138
plugins 138, 246
project folder 136
project settings 138
project templates 138
reload 248
sbt-web 140–143
starting Jetty 245
stopping Jetty 248
tasks 248
test 248
testing 122
testQuick 248
WAR files 26
WebappPlugin 139
xsbt-web-plugin 139–140

INDEX260

sbt-docker 148–152
sbt-filter 141
sbt-less 141
sbt-web 140–143
Scala 3, 7

Style Guide 8
Scala Server Pages 20
Scala Style Guide 8
Scalate 14, 20–21, 107–113

dialects 110, 113
directory structure 108
from an action 20
installing 107
invoking templates 112
Jade 113
layouts 21–23, 110–111
Mustache 113
scalate-generator 143–144
Scaml 109–110
SSP 113
template path 112
TemplateConfig 143
vs. Twirl 115

scalate-generator 143–144
ScalaTest 127–129

and giter8 127
example 128
running tests 129
setting up 127

ScalateSupport 107, 218
Scalatra

and MVC 6
and servlets 7
dependencies 9
generating a new project 8
installing 7–11
installing required tools

239–250
origin of name 38
project structure 245
versus Lift 6
versus other frameworks 6–7
viewing changes in

browser 10
when it's useful 4

scalatra-json 74
scalatra-sbt 138
ScalatraBootstrap class 97, 135

mounting servlets 248–250
ScalatraFunSuite 128
ScalatraServlet 5, 212, 218
ScalatraSpec 119
ScalatraTests 122
Scalaz

/ type 84

Scaml 109–110
!= 111
#{} syntax 109
~@ 109
body attribute 111
embedding in Scala code 110
for loops 110
indentation 109
layout attribute 111
layouts 110–111
tags 109
turning off character

escaping 111
type checking 109

Scentry 174–175
afterAuthenticate 193
afterFetch 193
afterLogout 193
afterSetUser 193
BasicAuthStrategy

174, 176–177
beforeAuthenticate 193
beforeFetch 193
beforeLogout 193, 195
beforeSetUser 193
callbacks 193–196
handling sessions 174–175
isValid method 187
RememberMeStrategy

174, 191
scentryConfig 179
ScentryStrategy 175
ScentrySupport 178
setting up 175
simplest strategy 175
strategies 174
UserPasswordStrategy

174, 182, 187
scentryConfig 179
ScentryStrategy 175
ScentrySupport 178
schema method 161
search_query parameter 57
security

Amazon S3 232
APIs 232–237
cross-origin resource

sharing 231
HMAC 232–237
in before filter 234
options method 36
replay attacks 237
risks of using wrong

methods 34
same origin policy 92

shared secret 232, 235
traits 234–237

security subject 176
self 178
seq method 157
Seq type 54
sequential 126
serializers

custom 89–91
server-side templating 104–115

dialects 113
invoking 112
Jade 113
layouts 110
Mustache 113
Scalate 107–113
Scaml 109–110
SSP 113
Twirl 113–115
web APIs 106
websites 105
whether you should use

104–106
serveStaticResource method

98, 108
serving files 95–98

and gzip compression 98
static resources 98
through routes 95–97

Servlet 3.0 multipart API 102
servlet controllers

and Swagger 225
AuthenticationSupport

185–187
refactoring 218

servlets 7
and dependency

injection 125–127
and WAR files 27, 145
embedding in

applications 145–146
FutureSupport 200
mounting controllers 249
mounting in

ScalatraBootstrap 248–250
refactoring controllers 218
ScalatraServlet 212
Servlet 3.0 multipart API 102
servlet containers 7
sharing custom types 63
testing 116
thread pools 199
Tomcat servlet container 145
unit testing 125
WEB-INF 108

INDEX 261

sessions 174
SessionSupport 174

SessionSupport 174
shared secret 232, 235
Shiro 173
simple build tool. See sbt
Sinatra 104
SizeConstraintExceeded-

Exception 103
Slick 156–159

defining joins 166
dependencies 156
query languages 163
TableQuery 159–163

Some 57
See also Option type

sortBy method 165
Spark 207–210

concurrency 210
on local machine 208
on multiple cores 210
SparkContext 208

SparkContext 208
special characters 40

in regular expressions 44
percent encoding 41

Specs2 14, 116–127
^ operator 24
! operator 24
acceptance tests 127
binary output 122
dependency injection

125–127
example test 117
Fragments 119
running tests 122–123
sequential 126
stubbed dependencies 124
syntax 119
triple quotes 120
unit testing 123–127
unsupported features 119

splat parameters 42
Spring 5
sql interpolator 157
sqlu interpolator 157
Squeryl 172
src folder 23, 136
src/main/webapp 98
SSP 113
stackable modifications 38
staging environment 131

standalone applications
deploying 145–148
distribution packages

146–148
folder structure 146
launcher scripts 147

startsWith method 120, 128
state

stateful vs. stateless
authentication 171

static path expressions 39–40
static resources

serving 98
static types 21
strictOptionParsing 85
string2RouteMatcher

method 48
stubbed dependencies 124
sum method 165
Swagger 220–231

cross-origin resource
sharing 231

parameters 229
routes 225–231
servlet controllers 225
swagger-codegen 223
swagger-ui 221
using in applications 223–225

swagger-codegen 223
swagger-ui 221
SwaggerSupport

cross-origin resource
sharing 231

Symfony 5
syntax errors 26
system path

Mac OS X and Linux 240
Windows 240

T

Table class 155
TableQuery 159–163
take method 165
tasks 248
templates

and websites 105
dialects 113
for sbt projects 138
giter8 242
invoking 112
invoking Twirl 115
Jade 113
layouts 110–111

layoutTemplate 112
Mustache 113
Scalate 20–21, 107–113

installing in an app 107
scalate-generator 143–144
Scaml 109–110
server-side 104–115
SSP 113
strongly typed 107
template path 112
TemplateConfig 143
Twirl 113–115
web APIs 106

test scope 117
testing 23–26, 116–129

and dependency
injection 125–127

as JValue type 121–122
binary output 122
integration testing 116–123
JSON 120
poorly written tests 26
routes 24
running tests 25, 129

with Specs2 122–123
sbt test command 248
sbt testQuick command 248
ScalaTest 127–129
sequential 126
Specs2 116–127

integration testing 116–123
unit testing 123–127

stubbed dependencies 124
syntax errors 26
test failures 26
unit testing 123–127
with giter8 117
writing your first test 23–25

testQuick 248
thread pools 199

ActorSystem 205
CachedThreadPool 201
FixedThreadPool 201
ForkJoinPool 201
requests 201
WorkStealingThreadPool 201

timeouts 205
Tomcat

ContainerPlugin 139
servlet container 145

toSession method 179, 187
trace 36
transactionally 158
triple quoted string literals 120

INDEX262

Twirl 113–115
blank lines 114
invoking templates 115
using 114
vs. Scalate 115

Twitter Bootstrap 22
type hints 85, 87–89
TypeConverter type 61
TypeConverterSupport 63
typeHints 85

FullTypeHints 89
typeHintsFieldName 85
types

/ 84
ActionResult 68
Array 95
content type header 95
custom types 60–63
DBIO 157
File 95
Formats 84
getAs method 59
in JSON 75
incompatible 83
InputStream 95
JArray 76
JObject 76
JValue 74–77, 79
MultipartConfig 101
Option 55, 57
Query 155, 159–168
RouteMatcher types 48
Scaml type checking 109
Seq 54
strongly typed templates 107
type hints 85, 87–89
type-safe configuration

132–135
TypeConverter 61
typed parameters 59–63
Unit 117

U

UI. See user interface
unauthenticated method 179
unit testing

reasons to use 124
servlets 125

Unit type 117
update 66
upload errors 103
URLs

poorly written 55
query string parameters 51

User class 176
user input 49

actions 50
checking content 57
cookies 66
form parameters 52–54
HTTP parameters 50–63
multiple parameters sharing

same key 54
path parameters 52
query string parameters 51
request headers 66
routes 50
unexpected 55–59

user interface
designing 13

UserPasswordStrategy
174, 182–184, 187

isValid method 187

V

validate method 177, 180
variables

statically typed 21
view-first approach 6

W

wantsBigDecimal 85
WAR files 26

deploying 144–145
to servlet containers 145

WarPlugin 145
web APIs

server-side templating 106
web browsers 105–106

supported methods 37
viewing changes 10

WEB-INF directory 108, 139,
144, 246

web.xml file 102, 132
WebappPlugin 139
WebAppStack 107
webBase 133
websites

server-side templating 105
vs. applications 106

wildcard pattern 18
withHints method 88
Wordnik 221
WorkStealingThreadPool 201
write method 99

X

X-HTTP-Method-Override
header 37

xsbt-web-plugin 139–141

Hrycyszyn ● Ollinger ● Baker

S
calatra is a lightweight Scala web framework similar to
the popular Ruby-based Sinatra. It’s perfect for running
real-time applications on multicore servers, and is a fast

way to spin up web apps and build HTTP APIs for mobile,
Backbone.js, and AngularJS apps.

Scalatra in Action covers the Scalatra framework in its entirety,
starting with concepts such as request routing, input handling,
actions, and HTTP responses. For readers who don’t already
know Scala, the book introduces the Scala language and sbt,
the Simple Build Tool. You’ll learn how to use Scalatra’s pow-
erful templating engine, Scalate. It also covers advanced topics
such as data access, handling heavy load, asynchronicity, secur-
ing your application, designing RESTful APIs, and real-time
web programming.

What’s Inside
● Make clean templates using Scalate
● Integrate with libraries that supplement Scalatra
● Write tests using Specs2
● Integrate Scalatra with databases

Readers should be familiar with the basics of HTTP, REST,
and web applications. No experience with Scalatra, Sinatra, or
Scala is required.

Dave Hrycyszyn is technical director for a London-based agency
specializing in agile software design and development. Stefan
Ollinger is an active Scalatra contributor. Ross A. Baker is a
Senior Cloud Engineer, a Scalate committer, and an organizer
of the Indy Scala meetup.

To download their free eBook in PDF, ePub, and Kindle formats, owners
of this book should visit manning.com/books/scalatra-in-action

$44.99 / Can $51.99 [INCLUDING eBOOK]

Scalatra IN ACTION

PROGRAMMING/JAVA

M A N N I N G

“If you’re interested in Scala
and RESTful APIs, just stop—

you’ve found your bible!”
—Alberto Quario, UniCredit

“There are many ways to
learn Scalatra, but the best one

is with Scalatra in Action.”
—Adam Słysz

Founder of Binary Horizon

“An excellent way to become
productive from day one.”

—Ramsés Morales, VMware

“Clear and thorough
coverage of the Scalatra

framework.”—Alain Couniot, STIB-MIVB

SEE INSERT

	Scalatra in Action
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Who should read this book?
	Code conventions
	Source code downloads
	About the authors

	about the cover illustration
	Part 1: Introduction to Scalatra
	Chapter 1: Introduction
	1.1 What’s Scalatra good at?
	1.2 Hello World
	1.3 Microframeworks vs. full-stack frameworks
	1.4 How does Scalatra compare with other Scala web frameworks?
	1.4.1 Scalatra is a lean MVC framework
	1.4.2 Scalatra runs on servlets

	1.5 Installing Scalatra
	1.5.1 Generating a new project
	1.5.2 Downloading dependencies and building the app
	1.5.3 Starting the Hello World application
	1.5.4 Making changes and seeing them in your browser

	1.6 Summary

	Chapter 2: A taste of Scalatra
	2.1 Your first Scalatra application
	2.2 Designing the UI
	2.3 What’s in a Scalatra project?
	2.4 Building the data model
	2.5 Retrieving pages
	2.5.1 A page-retrieval route
	2.5.2 A page-retrieval action

	2.6 Rendering the page
	2.6.1 A quick introduction to Scalate
	2.6.2 Adding a layout

	2.7 Writing tests
	2.7.1 Writing your first test
	2.7.2 Running your tests
	2.7.3 Adding another test

	2.8 Getting ready for deployment
	2.9 Summary

	Chapter 3: Routing
	3.1 Anatomy of a route
	3.2 Choosing the right method
	3.2.1 The CRUD methods
	3.2.2 The lesser-known methods
	3.2.3 Overriding the methods

	3.3 Route matchers
	3.3.1 Path expressions
	3.3.2 Regular expressions
	3.3.3 Boolean expressions

	3.4 Advanced route matching
	3.4.1 Conflict resolution
	3.4.2 Rails-style path expressions

	3.5 Summary

	Chapter 4: Working with user input
	4.1 The life of a request
	4.2 Routes and actions
	4.3 HTTP parameter handling in Scalatra
	4.3.1 Query string parameters
	4.3.2 Path parameters
	4.3.3 Form parameters
	4.3.4 Params versus multiParams
	4.3.5 Dealing with unexpected input
	4.3.6 Typed parameters

	4.4 Filters
	4.4.1 Selectively running filters
	4.4.2 Filter conditions

	4.5 Other kinds of user input
	4.5.1 Request headers
	4.5.2 Cookies

	4.6 Request helpers
	4.6.1 Halting
	4.6.2 Redirecting
	4.6.3 ActionResult

	4.7 Summary

	Part 2: Common development tasks
	Chapter 5: Handling JSON
	5.1 Introducing JsonSupport
	5.1.1 Adding JSON support to an application
	5.1.2 Introducing the JValue type

	5.2 Producing and consuming JSON
	5.2.1 Producing JSON
	5.2.2 Consuming JSON

	5.3 Customizing JSON support and handling mismatches
	5.3.1 Customizing JSON support and using field serializers
	5.3.2 Handling polymorphism with type hints
	5.3.3 Handling heterogeneity with custom serializers

	5.4 JSONP
	5.5 Summary

	Chapter 6: Handling files
	6.1 Serving files
	6.1.1 Serving files through a route
	6.1.2 Serving static resources
	6.1.3 Applying gzip compression to responses

	6.2 Receiving files
	6.2.1 Supporting file uploads
	6.2.2 Configuring the upload support
	6.2.3 Handling upload errors

	6.3 Summary

	Chapter 7: Server-side templating
	7.1 Deciding whether server-side templating is right for you
	7.1.1 Websites
	7.1.2 Web APIs

	7.2 Introducing Scalate
	7.2.1 Installing Scalate in a Scalatra app
	7.2.2 Scalate directory structure

	7.3 Serving content with the Scalate template system
	7.3.1 Your first Scaml template
	7.3.2 Layouts
	7.3.3 Invoking your template
	7.3.4 A comparison of dialects

	7.4 Serving content with Twirl
	7.4.1 Configuring your project
	7.4.2 Using Twirl

	7.5 Summary

	Chapter 8: Testing
	8.1 Integration testing with Specs2
	8.1.1 Getting started with Specs2
	8.1.2 Asserting over the entire response
	8.1.3 Testing as JValues
	8.1.4 Running your tests

	8.2 Unit testing with Specs2
	8.2.1 Testing with stubbed dependencies
	8.2.2 Injecting dependencies into a servlet

	8.3 Testing with ScalaTest
	ࠀ⸀㌀⸀ 匀攀琀琀椀渀最 甀瀀 匀挀愀氀愀琀爀愠ᤀ猀 匀挀愀氀愀吀攀猀�
	8.3.2 Your first ScalaTest
	8.3.3 Running ScalaTest tests

	8.4 Summary

	Chapter 9: Configuration, build, and deployment
	9.1 Configuring a Scalatra application
	9.1.1 Working with application environments
	9.1.2 Using a type-safe application configuration

	9.2 Building a Scalatra application
	9.2.1 A Scalatra application as an sbt project
	9.2.2 Working with the xsbt-web-plugin
	9.2.3 Using sbt-web to simplify working with web assets
	9.2.4 Precompiling Scalate templates with the scalate-generator plugin

	9.3 Deploying as a web archive
	9.4 Deploying as a standalone distribution
	9.4.1 Embedding a servlet container in an application
	9.4.2 Building a distribution package

	9.5 Running Scalatra as a Docker container
	9.6 Summary

	Chapter 10: Working with a database
	10.1 Working with a relational database and example scenario
	10.2 Integrating Slick and working with a DBIO action
	10.3 Defining table models and working with a TableQuery
	10.4 Using the query language
	10.4.1 Defining queries
	10.4.2 Defining joins
	10.4.3 Using update and delete statements
	10.4.4 Organizing queries as extension methods

	10.5 Summary

	Part 3: Advanced topics
	Chapter 11: Authentication
	11.1 A new, improved Hacker Tracker
	11.2 An introduction to Scentry
	11.2.1 Session handling in Scalatra
	11.2.2 Scentry setup

	11.3 Protecting routes with HTTP Basic authentication
	11.3.1 The simplest possible Scentry strategy
	11.3.2 A basic auth strategy
	11.3.3 A basic authentication support trait
	11.3.4 Protecting the DatabaseSetupController

	11.4 Using forms authentication
	11.4.1 Creating a simple login form
	11.4.2 Building a UserPasswordStrategy
	11.4.3 Creating an AuthenticationSupport trait
	11.4.4 Protecting your controllers with AuthenticationSupport
	11.4.5 Deciding whether to run a strategy
	11.4.6 Logging out

	11.5 A fallback Remember Me cookie strategy
	11.5.1 Building the RememberMeStrategy class
	11.5.2 Scentry callbacks

	11.6 Summary

	Chapter 12: Asynchronous programming
	12.1 Exploring concurrency in Scalatra
	12.2 Using Futures in Scalatra
	12.3 Using Akka Actors from Scalatra
	12.4 Using Scalatra for big data
	12.5 Summary

	Chapter 13: Creating a RESTful JSON API with Swagger
	13.1 An API for the Hacker Tracker
	13.2 Adding an API controller
	13.2.1 Returning Hacker JSON from the ApiController
	13.2.2 Refactoring to remove duplication

	13.3 Self-documenting APIs using Swagger
	13.3.1 Swagger—what is it?
	13.3.2 Swaggerize the application
	13.3.3 Documenting the routes
	13.3.4 Cross-origin API security and Swagger UI

	13.4 Securing your API
	13.4.1 HMAC—what is it?
	13.4.2 An HMAC calculator in Scala
	13.4.3 Protecting the API with a trait

	13.5 Summary

	appendix: Installation and development setup
	Installation
	Installing JDK 7
	Installing conscript and giter8
	Generating your first Scalatra project
	Building your code with the simple build tool (sbt)
	The structure of a Scalatra project
	Configuring your application with sbt
	sbt tasks
	Mounting servlets in ScalatraBootstrap

	Do you need an IDE?
	Emacs
	Eclipse
	IntelliJ IDEA

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

