
www.allitebooks.com

http://www.allitebooks.org

Sencha Touch
Cookbook

Over 100 recipes for creating HTML5-based cross-platform
apps for touch devices

Ajit Kumar

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Sencha Touch Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2011

Production Reference: 1081211

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-544-3

www.packtpub.com

Cover Image by Rakesh Shejwal (shejwal.rakesh@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Ajit Kumar

Reviewers
Kristian Kristensen

Matthew Makai

Acquisition Editor
Usha Iyer

Development Editor
Meeta Rajani

Technical Editor
Azharuddin Sheikh

Project Coordinator
Kushal Bhardwaj

Proofreaders
Bernadette Watkins

Neha Shetty

Indexer
Hemangini Bari

Graphics
Conidon Miranda

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ajit Kumar started his IT career with Honeywell, Bangalore, in embedded systems and
moved on to Enterprise Business Applications (such as ERP) in his 11 years of journey. From
day one, he has been a staunch supporter and promoter of open source and strongly believes
that open source is the way for a liberal, diversified, and democratic setup, like India.

He dreams and continuously endeavors that the architecture, frameworks, and tools must
facilitate the software development—at the speed of thought.

Ajit holds B.E. in Computer Science and Engineering from Bihar Institute of Technology and
has co-founded Walking Tree, which is based out of Hyderabad, India. This is the place where
he plays a role of CTO and works to fulfill his vision.

I would like to thank my wife, Priti, my sons, Pratyush and Piyush, who were
very patient and supportive; my business partners, Alok and Pradeep, who,
relentlessly, talk about the book; friends who always encouraged me; the
reviewers and all the people behind the Sencha Touch project and other
open source projects.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Kristian Kristensen is an independent software development consultant. Through his
company, Whiz IT, he takes on the role of a teacher, coach, facilitator, and anything in between
to help software shops improve their processes and skills. He is particularly interested in
languages and the way they shape our thoughts and problem-solving abilities.

Kristian worked as a consultant for Microsoft before embarking on the journey of freelance
consulting. He holds a Master's degree in software engineering from Aalborg University and
currently lives in Brooklyn, NY with his wife.

Matthew Makai is a software development consultant with Excella Consulting in Arlington,
Virginia. He works on application development with Python and Java using the Django, JQuery
Mobile, Sencha Touch, and PhoneGap frameworks. He is interested in enhancing personal
and business decisions with mobile applications and data visualization. Matthew earned his
Computer Science B.S. at James Madison University, his Computer Science M.S. at Virginia
Tech, and his Management of Information Technology M.S. at the University of Virginia.

Matthew writes about consulting and solutions to technical problems on his blog at
http://mmakai.com/.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books. 

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Gear up for the Journey	 7

Introduction	 8
Setting up the Android-based development environment	 10
Setting up the iOS-based development environment	 16
Setting up the Blackberry-based development environment	 18
Setting up the browser-based development environment	 21
Setting up the production environment	 22
Detecting the device	 24
Finding information about features that are supported in the
current environment	 26
Initializing your application	 28
Tweaking your application to configure itself using profiles	 29
Responding to the orientation change	 33

Chapter 2: Catering to your Form Related Needs	 37
Introduction	 38
Getting your form ready with FormPanel	 39
Working with search	 44
Putting custom validation in the e-mail field	 46
Working with dates using DatePicker	 47
Making a field hidden	 50
Working with the select field	 51
Changing the value using Slider	 54
Spinning the number wheel using Spinner	 55
Toggling between your two choices	 57
Checkbox and Checkbox group	 58
Text and TextArea	 60
Grouping fields with FieldSet	 62

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Validating your form	 65
Chapter 3: Containers and Layouts	 69

Introduction	 69
Keeping the container lightweight	 72
Working with Panel	 75
Adding items to a container at runtime	 78
Building wizards using CardLayout	 84
Panel docking using DockLayout	 88
Fitting into the container using FitLayout	 90
Arranging your items horizontally using HBoxLayout	 92
Arranging your items vertically using VBoxLayout	 95
Mixing layouts	 98

Chapter 4: Building Custom Views	 101
Introduction	 101
Basic HTML templating using Template	 102
Using XTemplate for advanced templating	 107
Conditional view rendering using XTemplate	 111
Designing a custom view using DataView	 114
Showing the filtered data	 119
Responding to the user action	 124

Chapter 5: Dealing with Data and Data Sources	 131
Introduction	 132
Creating models	 133
Loading the form using a data model	 137
Working with Store	 142
Converting incoming JSON data into models using JsonReader	 148
Converting incoming XML data into models using XmlReader	 153
Validations in models	 156
Defining the custom validation	 160
Relating models using association	 163
Persisting session-specific data using SessionStorageProxy	 167
Persisting data using LocalStorageProxy	 172
Accessing in-memory data using MemoryProxy	 172
Loading data through AJAX using AjaxProxy	 175
Sorting of the data	 178
Data grouping	 181
Filtering data	 182
Using a cross-domain URL in your application	 183

Chapter 6: Adding the Components	 189
Introduction	 190

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Working with Button	 190
Creating a sheet of buttons with
ActionSheet	 193
Carousel	 197
Managing a list of data using List	 201
Grouping items in a List	 204
Navigating through a list of data using indexBar	 207
Working with a list of nested data using NestedList	 209
Picking your choice using Picker	 212
Switching between multiple views using SegmentedButton	 215
Working with Tab panels	 217
Quicker access to application features using Toolbar	 220
Creating a new component	 222
Extending an existing component capability	 225
Overriding a component behavior	 228
Adding behavior to an existing component using plugins	 230

Chapter 7: Adding Audio/Visual Appeal	 233
Introduction	 234
Animate me!	 234
Ding-dong! You have a message!	 237
Working with videos	 239
Adding the chart support to your app	 242
Working with an area chart	 245
Generating a bar chart	 249
Creating a column chart	 252
Showing a group of bars and columns	 254
Switching between stacked and grouped orientation	 256
Highlighting and displaying an item detail	 259
Creating a gauge chart	 261
Creating a line chart	 264
Creating a pie chart	 268
Rotating the pies	 271
Grouping the pies	 272
Highlighting a pie	 274
Using a radar chart	 275
Using a scatter chart	 279

Chapter 8: Taking your Application Offline	 283
Introduction	 283
Detecting offline mode	 284
Storing your data offline	 287

www.allitebooks.com

http://www.allitebooks.org

iv

Table of Contents

Storing your images offline	 292
Application caching	 302

Chapter 9: Engaging Users by Responding to Events	 305
Introduction	 305
Handling Touch Events	 306
Handling Scroll Events	 307
Handling Tap Events	 308
Handling Double Tap Events	 309
Handling TapHold Events	 309
Handling Swipe Events	 310
Handling Pinch Events	 310
Handling Drag Events	 311

Chapter 10: Increased Relevance Using Geolocation	 313
Introduction	 313
Finding out your location	 314
Auto-update of your location	 316
Tracking direction and speed	 317
Hooking up Google Maps with your application	 319
Working with Google Maps options	 321
Mapping Geolocation on Google Maps	 323

Index	 327

Preface
Sencha Touch is a HTML5-compliant framework for development of touch-based applications.
An application written using this framework can be run—without any change—on iOS, Android,
and Blackberry-based touch devices. The framework comes along with numerous built-in UI
components similar to the ones that we see on different mobile platforms, nicely designed
with efficient data package to work with varied client-side or server-side data sources.
In addition to this, the framework also offers APIs to work with DOM and it brings in the
extensibility to every aspect of it, which is a bingo combination that every enterprise looks for
and expects from a framework.

What this book covers
Chapter 1, Gear up for the Journey. This chapter is all about setting up the right development
environment for iOS, Android, and Blackberry. It covers the detailed step to set up the
environment using which we can build and test our application, either on a browser or on an
emulator or a real device. The latter half of the chapter covers the Sencha Touch APIs that
can be used to detect what device our application is running, what platform the application is
running, what features are offered by a platform, how to handle orientation change, and build
profiles for different platforms or devices and let our application configure itself using those
profiles.

Chapter 2, Catering to your Form Related Needs. This chapter covers every aspect of a form,
including the different form fields offered by Sencha Touch, configuring each one of them for
the user in a form, and configuring ways by which a typical form validation can be done. Fields
such as Search, E-mail, DatePicker, Select, Slider, Checkbox, TextArea, FieldSet, and so on are
covered in this chapter along with their detailed usage.

Chapter 3, Containers and Layouts. Containers contain one or more child items, and layouts
help us position our content properly on the screen, and this chapter is all about them. It
covers what are the different types of containers and layouts available with the framework and
their behavior, which is a key point in developing an application where we would have nested
containers, each one of them having their own layout to position their children on the screen.

Preface

2

Chapter 4, Building Custom Views. If the components offered by Sencha Touch is not sufficient
to achieve the layout and look-n-feel that we are looking for, then custom views is the way to
go. In this chapter, we cover Template, XTemplate, and DataView classes of Sencha Touch
to see how to build custom views and how to handle events on it to build interactive custom
views.

Chapter 5, Dealing with Data and Data Sources. This chapter is all about working with
different data sources, storing data on the client side and using it in the most effective way.
It shows how to work with the local data source, as well as remote data source. The chapter
also covers how to associate data with different components, including form, and validating,
filtering, grouping, and sorting data.

Chapter 6, Adding the Components. This chapter covers various other components of Sencha
Touch such as Button, ActionSheet, List, IndexBar, NestedList, Picker, Toolbar, and so on. It
demonstrates how to configure each of these components.

Chapter 7, Adding Audio/Visual Appeal. This chapter covers how to work with media—audio
and video—and different graphs and charts to present our data, graphically. As charts don't
come with Sencha Touch, this chapter explains the steps to configure the charts framework
with Sencha Touch and then use it to build interactive charts.

Chapter 8, Taking your Application Offline. In this chapter, we will see how to detect the offline
mode on a device or a platform and how to model our application to make it work even in the
offline mode.

Chapter 9, Engaging Users by Responding to Events. In browsers, we have mouse events
whereas a touch device raises events specific to touch actions such as tab, Double tap, drag,
swipe, and so on. In this chapter, we will look at the list of touch events the framework offers
and the ways to handle them to respond to those events.

Chapter 10, Increased Relevance Using Geolocation. This chapter shows how to fetch the
GeoLocation information on a device/platform and work with it. We will cover various aspects
such as how to find out the direction and speed at which the device is moving, and how to
integrate the Geolocation information with Google map to show interesting and relevant
information to the user.

What you need for this book
In order to follow this book, you would need the Sencha Touch framework and good knowledge
of JavaScript and some knowledge of HTML and CSS. The following list shows the
software needed:

ff Sun JDK Version 1.5 or above

ff Eclipse 3.3 or above

ff PhoneGap 1.0.0

Preface

3

ff Sencha Touch 1.1.0 library

ff Sencha Touch Charts 1.0 library

ff Android SDK

ff ADT Plugin

ff XCode 4

ff Blackberry SDK

If you want to try out the recipes on your touch device, you may have to have one.

Who this book is for
This book is for someone who wants to learn about a framework which can be used to
develop HTML5-compliant mobile applications, and can work on various different platforms—
Android, iOS, and BlackBerry. This cookbook provides numerous recipes for the developers
to understand Sencha Touch functionalities, in general, and use them to address practical
needs in particular.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "Copy phonegap.1.0.0.js from your PhoneGap
downloaded earlier to assets/www."

A block of code is set as follows:

Ext.setup({
 onReady: function() {
 if (Ext.is.Android)
 Ext.Msg.alert("INFO", "Welcome Android user!");

 if (Ext.is.Blackberry)
 Ext.Msg.alert("INFO", "Welcome Blackberry user!");

 if (Ext.is.iPad)
 Ext.Msg.alert("INFO", "Welcome iPad user!");
 }
});

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

layout: {
 type: 'hbox',
 direction: 'reverse'
}

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: " Launch Eclipse, click on the
File menu, and select New | Android Project".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

5

Downloading the example code for this book
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

1
Gear up for the

Journey

In this chapter, we will cover:

ff Setting up the Android-based development environment

ff Setting up the iOS-based development environment

ff Setting up the Blackberry-based development environment

ff Setting up the browser-based development environment

ff Setting up the production environment

ff Detecting your device

ff Finding information about features that are supported in the current environment

ff Initializing your application

ff Letting your application configure itself using profiles

ff Responding to the orientation change

Gear up for the Journey

8

Introduction
Like any other development, the first and foremost thing which is required, before we embark
on our journey, is setting up the right environment so that the development, deployment,
and testing becomes easy and effective. Moreover, this calls for a list of tools which are
appropriate in this context. In this chapter, we will cover the topics related to setting up the
environment using the right set of tools. Sencha Touch works on Android, iOS, and Blackberry
platforms. For each of these platforms, we will see what steps we need to follow to set up
the complete development and deployment environment. We will be packaging our Sencha
Touch-based application using PhoneGap. PhoneGap is another JavaScript framework which
provides the following two important capabilities:

1.	 The APIs needed to access the device features such as camera, address book, and
so on.

2.	 A build mechanism for writing the code once (in the form of JS, HTML, CSS) and
packaging them for different platforms such as iOS, Android, and so on.

Throughout the book, we will be using the following software:

ff Sun JDK Version 1.5 or above

ff Eclipse 3.3 or above

ff PhoneGap 1.0.0

ff Sencha Touch 1.1.0 library

ff Android SDK

ff ADT Plugin

ff XCode 4

ff Blackberry SDK

Before we get any further, you should download and install the following, which will act as a
common base for all our discussions:

ff Sun JDK 1.5 or above

ff Eclipse 3.3 or above

ff Sencha Touch 1.1.0 library

After downloading the Sencha Touch library, extract it to a folder, say c:\sencha-touch.
When you extract the folder, you would see the folders as shown in the following screenshot:

Chapter 1

9

There are many files, however, which are not required for development and testing.

The docs folder contains the documentation for the library and is very handy
when it comes to referring to the properties, configs, methods, and events
supported by different classes. You may want to copy it to a different folder,
so that you can refer to the documentation whenever needed.

Delete the files and folders which are enclosed within the rectangles as shown in the following
screenshot:

Gear up for the Journey

10

This prepares us to get started. As Sencha Touch is a JavaScript library, you may want to
configure your Eclipse installation for JavaScript development. You may install the Spket plug-
in and configure it for Sencha Touch development. Steps to do so are detailed on the Spket
website (http://spket.com/) and hence have been excluded from this book.

Setting up the Android-based development
environment

This recipe describes the detailed steps we shall follow to set up the environment for the
Android-based development. The steps do not include setting up the production environment,
which are detailed in a different recipe.

Getting ready
Before you begin, check that JDK is installed and the following environment variables are set
correctly:

ff JAVA_HOME

ff PATH

How to do it...
Carry out the following steps:

1.	 Download and install Android SDK from the following URL:
http://developer.android.com/sdk/index.html.

2.	 Download and install Eclipse ADT Plugin from the following URL:
http://developer.android.com/sdk/eclipse-adt.html#installing.

3.	 Download and install PhoneGap from http://www.phonegap.com.

4.	 Launch Eclipse, click on the File menu, and select New | Android Project. Fill in the
details, as shown in the following screenshot, and click on the Finish button:

Chapter 1

11

5.	 In the root directory of the project, create two new directories:

�� libs: To keep the third party jar that we will be using. In this case, we will
keep the PhoneGap jar in it

�� assets/www: This is the default folder the SDK expects to contain the
complete set of JS, CSS, and HTML files

6.	 Copy phonegap.1.0.0.js from your PhoneGap downloaded earlier to assets/
www.

7.	 Copy phonegap.1.0.0.jar from your PhoneGap downloaded earlier to libs.

8.	 Copy the xml folder from the Android folder of your PhoneGap downloaded earlier
to the res folder.

Gear up for the Journey

12

9.	 Make the following changes to App.java, found in the src folder in Eclipse:

�� Change the class extend from Activity to DroidGap
�� Replace the setContentView() line with super.loadUrl("file:///

android_asset/www/index.html");

�� Add import com.phonegap.*;

10.	 Right-click on the libs folder and select Build Paths | Configure Build Paths. Then,
in the Libraries tab, add phonegap-1.0.0.jar to the Project. You may have to
refresh the project (F5) once again.

11.	 Right-click on AndroidManifest.xml and select Open With | Text Editor.

12.	 Paste the following permissions under versionName:
<supports-screens
android:largeScreens="true"
android:normalScreens="true"
android:smallScreens="true"
android:resizeable="true"
android:anyDensity="true"
/>
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.VIBRATE" />
<uses-permission android:name="android.permission.ACCESS_COARSE_
LOCATION" />
<uses-permission android:name="android.permission.ACCESS_FINE_
LOCATION" />
<uses-permission android:name="android.permission.ACCESS_LOCATION_
EXTRA_COMMANDS" />
<uses-permission android:name="android.permission.READ_PHONE_
STATE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.RECEIVE_SMS" />
<uses-permission android:name="android.permission.RECORD_AUDIO" />
<uses-permission android:name="android.permission.MODIFY_AUDIO_
SETTINGS" />
<uses-permission android:name="android.permission.READ_CONTACTS"
/>
<uses-permission android:name="android.permission.WRITE_CONTACTS"
/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE" />
<uses-permission android:name="android.permission.ACCESS_NETWOvRK_
STATE" />

Chapter 1

13

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you purchased
this book elsewhere, you can visit http://www.PacktPub.com/support and
register to have the files e-mailed directly to you.

13.	 Add android:configChanges="orientation|keyboardHidden" to the
activity tag in AndroidManifest.

14.	 Move the c:\sencha-touch folder to the assets/www directory.

15.	 Create and open a new file named ch01_01.js in the assets/www/ch01 directory.
Paste the following code into it:
Ext.setup({
 onReady: function() {
 Ext.Msg.alert("INFO", "Welcome to the world of Sencha
 Touch!");
 }
});

16.	 Now create and open a new file named index.html in the assets/www directory
and paste the following code into it:
<!DOCTYPE HTML>
<html>
 <head>
 <title>Yapps! - Your daily applications!</title>
 <link rel="stylesheet" href="sencha-
 touch/resources/css/sencha-touch.css" type="text/css">
 <script type="text/javascript" charset="utf-8"
 src="phonegap.1.0.0.js"></script>
 <script type="text/javascript" charset="utf-8" src="sencha-
 touch/sencha-touch-debug.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="ch01/ch01_01.js"></script>
 </head>
 <body></body>
</html>

Gear up for the Journey

14

17.	 Deploy to Simulator:

�� Right-click on the project and go to Run As and click on Android Application

�� Eclipse will ask you to select an appropriate AVD (Android Virtual Device).
If there is not one, then you will need to create it. In order to create an AVD,
follow these steps:

�� In Eclipse, go to Window | Android SDK and AVD Manager

�� Select Virtual Devices and click on the New button

�� Enter your virtual device details, for example, the following
screenshot shows the virtual device details for the Samsung Galaxy
Ace running Android 2.2:

Chapter 1

15

18.	 Deploy to Device:

�� Make sure USB debugging is enabled on your device and plug it into
your system. You may enable it by going to Settings | Applications |
Development

�� Right-click on the project, go to Run As, and click on Android Application.
This will launch the Android Device Chooser window

�� Select the device and click on the OK button

With the preceding steps, you will be able to develop and test your application.

How it works...
In steps 1 through 3, we downloaded and installed Android SDK, its Eclipse plugin, and
PhoneGap, which are required for the development of the Android-based application. The
SDK contains the Android platform-specific files, an Android emulator, and various other tools
required for the packaging, deployment, and running of Android-based applications. The ADT
plugin for Eclipse allows us to create Android-based applications, build, test, and deploy them
using Eclipse.

In step 4, we created an Android 2.2 project by using the ADT plugin.

In steps 5 through 12, we created the required folders and kept the files in those folders, and
updated some of the files to make this Android project a PhoneGap-based Android project.
In step 5, we created two folders: libs and assets\www. The libs folder is where the
PhoneGap and other third party libraries (JAR files) need to be kept. In our case, we only had
to put in the PhoneGap JAR file (step 7). This JAR contains the PhoneGap implementation,
which takes care of packaging the application for the target device (in this case, Android). The
www folder is where the complete application code needs to be kept. PhoneGap will use this
folder to create the deployment package.

In step 6, we copied the PhoneGap's JavaScript file which contains the implementation of the
PhoneGap APIs. You will do this if you intend to use the PhoneGap APIs in your application (for
example, to get the contacts list in your application).

For this book, this is an optional step. However, interested readers
may find details about the API at the following URL:
http://docs.phonegap.com/en/1.0.0/index.html.

In steps 8 and 9, we added the PhoneGap JAR file to our project's Build Path, so that it
becomes available for the application development (and takes care of the compilation errors).

http://docs.phonegap.com/en/1.0.0/index.html
http://docs.phonegap.com/en/1.0.0/index.html

Gear up for the Journey

16

Then, in steps 10 through 13, we made changes to the manifest file to add the required
application privileges, for example, access to the phone book, access to the phone status, and
so on, when it is run on the Android 2.2 platform. You may learn more about the content of the
manifest file and each of the elements that we added to it by referring to
http://developer.android.com/guide/topics/manifest/manifest-intro.html.

In step 14, we moved the Sencha Touch library files to the www folder, so that they are
included in the package. This is required to run Touch-based applications.

In step 15, we created the ch01_01.js JavaScript file, which contains the entry point for
our Sencha Touch application. We have used the Ext.setup API. The important property is
onReady, which is a function that Ext.setup registers to invoke as soon as the document is
ready.

In step 16, we modified the index.html to include the Sencha Touch library related
JavaScript: sencha-touch-debug.js and CSS file: sencha-touch.css, and our
application specific JavaScript file: ch01_01.js. The sencha-touch-debug.js file is very
useful during development as it contains the nicely formatted code which can be used to
analyze the application errors during development. You also need to include the PhoneGap
JS file, if you intend to use its APIs in your application. The order of inclusion of the JavaScript
and CSS files is PhoneGap | Sencha Touch | Application specific files.

In step 17, we created an Android Virtual Device (an emulator), and deployed and tested the
application on it.

Finally, in step 18 we deployed the application on a real Android 2.2 compatible device.

Setting up the iOS-based development
environment

This recipe outlines the steps to set up the environment for the iOS-based (for example,
iPhone, iPad, iPod) development.

Getting ready
JDK is installed and the following environment variables are set correctly:

ff JAVA_HOME

ff PATH

You should have created the ch01_01.js file as mentioned in the previous recipe.

Chapter 1

17

How to do it...
Carry out the following steps:

1.	 Download and install Xcode from Apple Developer Portal
(http://developer.apple.com). This requires you to have membership of the
iOS and Mac developer programs.

2.	 Download the copy of PhoneGap-1.0.0 and extract its contents. Navigate to the
iOS directory and run the installer until completion.

3.	 Launch Xcode, and under the File menu, select New and then New Project. Name
the new project SenchaTouch.

4.	 Select PhoneGap-based Application from the list of templates.
5.	 Click on the Next button. Fill in the Product Name and Company Identifier for your

application.
6.	 Choose a directory in which to store your application.
7.	 You should see your project in Xcode 4 now. Click on the Run button at the top-left

corner. Your build should succeed and launch in the simulator.
8.	 You should see an error in your simulator informing you that index.html was not

found.
9.	 In order to fix this, we need to copy the www directory into the project. Right-click on

the project in the left navigation window and click on Show in finder.
10.	 In Finder, you should see the www directory beside your project.
11.	 Drag the www folder into Xcode 4.
12.	 Move the C:\sencha-touch folder to www.
13.	 After you drag, you should see a prompt with a few options. Make sure to select

Create folder references for any added folders and click on Finish.
14.	 Add the ch01 folder to www and copy the ch01_01.js file, which was created in the

previous recipe, inside it.
15.	 Open the folder named www and paste the following code in index.html:

<!DOCTYPE HTML>
<html>
 <head>
 <title>Yapps! - Your daily applications!</title>
 <link rel="stylesheet" href="sencha-
 touch/resources/css/sencha-touch.css" type="text/css">
 <script type="text/javascript" charset="utf-8"
 src="phonegap.1.0.0.js"></script>
 <script type="text/javascript" charset="utf-8" src="sencha-
 touch/sencha-touch-debug.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="ch01/ch01_01.js"></script>
 </head>

http://phonegap.googlecode.com/files/phonegap-0.9.5.1.zip
http://phonegap.googlecode.com/files/phonegap-0.9.5.1.zip

Gear up for the Journey

18

 <body></body>
</html>

16.	 Deploy to Simulator:

�� Make sure to change the Active SDK in the top-left menu to
Simulator+version#

�� Click on Run in your project window header

17.	 Deploy to Device:

�� Open SenchaTouch-Info.plist and change BundleIdentifier to
the identifier provided by Apple. If you have a developer license, then you
can access and run the Assistant at http://developer.apple.com/
iphone/manage/overview/index.action and register your App.

�� Make sure to change the Active SDK in the top left menu to
Device+version#.

�� Click on Run in your project window header.

How it works...
In steps 1 and 2, we downloaded and installed XCode and other required tools and libraries.
XCode is the IDE provided by Apple for the iOS-based application development.

In steps 3 through 6, we created a PhoneGap-based iOS project, using XCode.

In steps 7 through 14, we prepared the www folder for the application. Its contents are
described in the Setting up the Android-based development environment recipe.

In step 15, we included the Sencha Touch related files and the application specific JS file—
ch01_01.js—in index.html.

In steps 16 and 17, we deployed and tested the application in the simulator, as well as a real
iOS device, such as iPhone.

See also
The recipe named Setting up the Android-based development environment in this chapter.

Setting up the Blackberry-based
development environment

So far, we have seen how to set up the environments for Android and iOS development. This
recipe walks us through the steps required to set up the environment for Blackberry-based
development.

Chapter 1

19

Getting ready
JDK is installed and the following environment variables are set correctly:

ff JAVA_HOME

ff PATH

How to do it...
Carry out the following steps:

1.	 Download and extract Apache Ant and add it to your PATH variable.

2.	 Download BlackBerry WebWorks SDK from http://na.blackberry.com/eng/
developers/browserdev/widgetsdk.jsp and install to, say, C:\BBWP.

3.	 Open a command window and navigate to the C:\BBWP directory.

4.	 Type ant create -Dproject.path=C:\Touch\BlackBerry\WebWorks\book
and press Enter.

5.	 Change to the newly created directory located at C:\Touch\BlackBerry\
WebWorks\book.

6.	 Open the project.properties file in your favorite editor and change the line
bbwp.dir= to bbwp.dir=C:\\BBWP.

7.	 Copy C:\sencha-touch to the www folder.

8.	 Create the ch01 folder inside www and copy ch01_01.js, which was created in the
first recipe, into the ch01 folder.

9.	 Edit index.html and past the following code:
<!DOCTYPE HTML>
<html>
 <head>
 <title>Yapps! - Your daily applications!</title>
 <link rel="stylesheet" href="sencha-
 touch/resources/css/sencha-touch.css" type="text/css">
 <script type="text/javascript" charset="utf-8"
 src="phonegap.1.0.0.js"></script>
 <script type="text/javascript" charset="utf-8" src="sencha-
 touch/sencha-touch-debug.js"></script>
 <script type="text/javascript" charset="utf-8"
 src="ch01/ch01_01.js"></script>
 </head>
 <body></body>
</html>

www.allitebooks.com

http://www.allitebooks.org

Gear up for the Journey

20

11.	 Build the PhoneGap sample project by typing ant build in your command window
while you are in your project's directory.

12.	 Deploy to Simulator:

�� While in your project directory, in command prompt, type ant load-
simulator

�� Press the BlackBerry button on the simulator, go to downloads and you
should see your app loaded there

13.	 Deploy to Device:

�� You have to have your signing keys from RIM

�� While in your project directory, in the command prompt, type ant load-
device

�� Press the BlackBerry button on the simulator, go to downloads and you
should see your app loaded there

How it works...
In steps 1 and 2, we downloaded and installed the Blackberry SDK and PhoneGap required
for Blackberry-based development.

In steps 3 through 6, we created a PhoneGap-based project for Blackberry.

In steps 7 through 9, we prepared the www folder by creating and copying our application
specific folders and files.

In step 10, we built the project. In addition, we modified index.html to make it look exactly
like the one created in the Setting up the Android-based development environment recipe.

In steps 11 and 12, we deployed and tested the application in the simulator, as well as in the
real Blackberry device.

See also
The recipe named Setting up the Android-based development environment in this chapter.

Chapter 1

21

Setting up the browser-based development
environment

In the previous recipes, we saw how we can make use of PhoneGap to build, package, and
deploy the Sencha Touch applications directly on the device. Another very popular kind of
application is the browser-based one. All the devices which Sencha Touch supports come
along with Internet browsers. In this recipe, we will see how we can develop a Sencha Touch
application, access it, and test it using Internet browsers.

Sencha Touch is moving towards using HTML5 features but, today, it heavily uses the WebKit
engine and, hence, in order to test the applications, we will require a browser which runs
on the WebKit engine—Opera, Safari, and Chrome. We can also test most of the things on a
browser running on your desktop/workstation (except things such as orientation changes).

Sencha Touch applications do not work on browsers using the Gecko
engine, which includes Mozilla Firefox.

We will be using this environment for this book to demonstrate the capabilities of Sencha
Touch.

Getting ready
Make sure that your device has a WebKit compatible browser—Opera, Safari, or Chrome.

Verify that you have your GPRS or Wi-Fi enabled and working on your device, so that you are
able to access the Internet.

You should have a web server such as Apache or Nginx deployed on a server, which is
accessible on the Internet. For example, I have my web server running on
http://walkingtree.in.

How to do it...
Carry out the following steps:

1.	 Create a folder named touch in your web server's deployment/root folder, for
example, public_html or htdocs.

Gear up for the Journey

22

2.	 Copy the content of the assets\www folder, prepared in the Setting up the Android-
based development environment recipe, to the touch folder. After copying, the
touch folder should have the following files:

3.	 Remove phonegap-1.0.0.js from index.html.

4.	 Go to the Internet browser on your device and enter the URL: http://<your
domain or ip address>:<port>/touch (for example,
http://walkingtree.in/touch) in the address bar and hit Go.
You should have the application running inside the browser.

How it works...
In step 1, we created the touch folder as a placeholder to keep our application code inside it.
This would help us avoid polluting the web server's root folder.

In step 2, we copied the contents from the assets\www folder, which we prepared in the
Setting up the Android-based development environment recipe. In step 3, we removed the
<script> tag including the PhoneGap JS file, as we are not going to use its APIs in this book.
Finally, in step 4, we accessed the application from a browser.

See also
The recipe named Setting up the Android-based development environment in this chapter.

Setting up the production environment
This recipe describes the steps required to create a production-ready package of the
application. These steps are mentioned for the Sencha Touch-related applications; however,
they can also be applied to any JavaScript-based application.

Getting ready
Make sure that you have completed the steps outlined in the Setting up the browser-based
development environment recipe.

Chapter 1

23

How to do it...
Carry out the following steps:

1.	 Trim down the Sencha Touch library by deleting the files and folders which are not
required in the production environment. The following screenshot shows the files and
folders which should be deleted from the sencha-touch folder:

2.	 Update the index.html file to include sencha-touch.js in place of sencha-
touch-debug.js.

3.	 Merge and minify your JavaScripts and CSS files. You may use the tool of your choice.
Say you have created yapps-all.js (for now, it contains only the ch01_01.js)
and yapps-all.css (this may contain the merged sencha-touch.css and any
of our application-specific CSS file, say, yapps.css) as the merged and minified
JavaScripts and CSS files, respectively.

Sencha uses and recommends JSBuilder and YUI Compressor and you
can read more about this at the following URL:
http://www.sencha.com/products/jsbuilder.

4.	 Remove the inclusion of the individual application-specific JavaScript files and CSS
files from index.html.

5.	 Include yapps-all.js and yapps-all.css.

6.	 Deploy the application on your production server.

Gear up for the Journey

24

How it works...
In step 1, we removed the unwanted folders and files which are not required for a typical
production deployment.

In step 2, we replaced the debug version of the library with the production ready version,
which is a compressed and minified version of the debug version. This file will not have the
comments and also the code is obfuscated.

In step 3, we merged all the JS/CSS files into one single file and minified them. You may want
to find out the best way to combine the files. This is generally done to load the application
quickly. You may choose to combine one or more files into one or create individual minified
files. It is totally based on your project design and code structure.

In steps 4 and 5, we removed the individual inclusion of the JS and CSS files from index.
html and included the merged and minified ones. This recipe does not show the
PhoneGap-related JS file. However, if your application is using it, then make sure that you also
minify it, as the default one is not the production ready file.

See also
ff The recipe named Setting up the browser-based development environment in this

chapter

ff The recipe named Setting up the Android-based development environment in this
chapter

Detecting the device
Different devices offer different capabilities and hence for an application developer, it
becomes important to identify the exact device, so that it can respond to the events in the
most appropriate way. This recipe describes how we can detect the device on which the
application is being run.

How to do it...
Carry out the following steps:

1.	 Create and open a new file ch01_02.js in the ch01 folder and paste the following
code into it:
Ext.setup({
 onReady: function() {
 if (Ext.is.Android)
 Ext.Msg.alert("INFO", "Welcome Android user!");

Chapter 1

25

 if (Ext.is.Blackberry)
 Ext.Msg.alert("INFO", "Welcome Blackberry user!");

 if (Ext.is.iPad)
 Ext.Msg.alert("INFO", "Welcome iPad user!");
 }
});

2.	 Remove the following line from index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_01.js"></script>

3.	 Include the following line in index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_02.js"></script>

4.	 Deploy and run the application. Based on the device on which the application is being
run, you will see a corresponding message.

How it works...
The Ext.is class is instrumental in detecting the target device on which your application is
being run. It uses the JavaScript's navigator object to detect the browser details, including
the platform/device. For example, if the platform property in the navigator object has
iPhone in it, then the target platform is iPhone, whereas if the userAgent property in the
navigator object has Android, then the platform is Android.

See also
ff The recipe named Setting up the browser-based development environment in this

chapter

ff The recipe named Setting up the production environment in this chapter

Gear up for the Journey

26

Finding information about features that are
supported in the current environment

Each device and platform offers a rich set of functionality. However, it is difficult to identify
a set of features which are available across devices and platforms. In addition, even if we
happen to find out the list of common features, there may be reasons where you may want
to use a feature on a device which is not present on other devices and you would make your
application work on those devices by performing the best approximation of that specific
feature. For example, on a device if SVG is supported, you may want to make use of that
feature in your application to render images using it, so that they are scalable. However, if
another device does not support SVG, you may want to fall back to rendering your image
into JPEG/PNG, so that the image will be visible to the user. This recipe describes how an
application can detect the different features that a device supports. This comes in very handy
to enable/disable certain application features based on the device-supported features.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch01_03.js in the ch01 folder and paste the
following code into it:
Ext.setup({
 onReady: function() {
 var supportedFeatures = "Ext.supports.AudioTag : " +
 (Ext.supports.AudioTag ? "On" : "Off");
 supportedFeatures += "\nExt.supports.CSS3BorderRadius : " +
 (Ext.supports.CSS3BorderRadius ? "On" : "Off");
 supportedFeatures += "\nExt.supports.CSS3DTransform : " +
 (Ext.supports.CSS3DTransform ? "On" : "Off");
 supportedFeatures += "\nExt.supports.CSS3LinearGradient : " +
 (Ext.supports.CSS3LinearGradient ? "On" : "Off");
 supportedFeatures += "\nExt.supports.Canvas : " +
 (Ext.supports.Canvas ? "On" : "Off");
 supportedFeatures += "\nExt.supports.DeviceMotion : " +
 (Ext.supports.DeviceMotion ? "On" : "Off");
 supportedFeatures += "\nExt.supports.Float : " +
 (Ext.supports.Float ? "On" : "Off");
 supportedFeatures += "\nExt.supports.GeoLocation : " +
 (Ext.supports.GeoLocation ? "On" : "Off");
 supportedFeatures += "\nExt.supports.History : " +
 (Ext.supports.History ? "On" : "Off");
 supportedFeatures += "\nExt.supports.OrientationChange : " +
 (Ext.supports.OrientationChange ? "On" : "Off");

Chapter 1

27

 supportedFeatures += "\nExt.supports.RightMargin : " +
 (Ext.supports.RightMargin ? "On" : "Off");
 supportedFeatures += "\nExt.supports.SVG : " +
 (Ext.supports.SVG ? "On" : "Off");
 supportedFeatures += "\nExt.supports.Touch : " +
 (Ext.supports.Touch ? "On" : "Off");
 supportedFeatures += "\nExt.supports.Transitions : " +
 (Ext.supports.Transitions ? "On" : "Off");
 supportedFeatures += "\nExt.supports.TransparentColor : " +
 (Ext.supports.TransparentColor ? "On" : "Off");
 supportedFeatures += "\nExt.supports.VML : " +
 (Ext.supports.VML ? "On" : "Off");

 Ext.Msg.alert("INFO", supportedFeatures);
 }
});

2.	 Remove the following line from index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_02.js"></script>

3.	 Include the following line in index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_03.js"></script>

4.	 Deploy and run the application.

How it works...
Check that the support for different features is encapsulated inside the Sencha Touch's Ext.
supports class. This class applies different mechanisms to find out whether a requested
feature is supported by the target platform/device. For example, to find out whether the device
supports touch, this class checks whether ontouchstart is present in the window object.
Another example is, to find out whether SVG is supported on the target platform, it tries to add
an SVG element (which it removes after successful creation and setting the flag to indicate
that the device supports SVG) to the document.

See also
ff The recipe named Setting up the browser-based development environment in this

chapter

ff The recipe named Setting up the production environment in this chapter

Gear up for the Journey

28

Initializing your application
So far, we have been using Ext.setup to enter into our application, where the entry point
is provided by the onReady method, which is invoked when the document is ready. However,
in an enterprise setup, an application is much more complex and needs more configurations
that that which Ext.setup provides. For example, if you would like to configure your
application with the history support, rather than doing it for individual pages or components,
you may like your application to configure it based on the target platform and many more.
These kinds of needs are addressed by Sencha Touch by providing a dedicated class.

Sencha Touch provides an Ext.Application class to create an application. This is a
convenient way to create an application. Besides configuring your application, this class also
allows you to structure your complete application in the form of Model-View-Controller and
initialize it using a convenient method. The class allows the user to implement a function,
which can be called when the application is launched. In this recipe, we will see how to create
and initialize an application using the Ext.Application class.

How to do it...
Carry out the following steps:

1.	 Create and open a new file ch01_04.js in the ch01 folder and paste the following
code into it:
new Ext.Application({
 name: 'MyApp',

 launch: function() {
 this.viewport = new Ext.Panel({
 fullscreen: true,
 items : [
 {
 html: 'Welcome to My App!'
 }
]
 });
 }
});

2.	 Remove the following line from index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_03.js"></script>

Chapter 1

29

3.	 Include the following line in index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_04.js"></script>

4.	 Deploy and run the application.

How it works...
Ext.Application provides various configuration options, which can be specified while
constructing the Application instance. The name property provides the application name,
which is also used as the namespace for the application being initialized. In addition, by
default, the following namespaces are registered using the name property value:

ff MyApp.models

ff MyApp.views

ff MyApp.controllers

ff MyApp.stores

Another property is launch. The launch function creates the application's viewport and runs
any actions the application needs to perform when it boots up. The launch function is run
once. In the preceding code, we are creating a panel in the full screen mode which will show
Welcome to My App! in its body.

If you are using PhoneGap, aviod using the app and phonegap
namespaces, as they are used by PhoneGap and usage of them
may throw up errors.

See also
The recipe named Setting up browser-based development environment in this chapter.

Tweaking your application to configure itself
using profiles

This recipe describes how you can set up multiple profiles for your application and let your
application configure itself using the profile.

Gear up for the Journey

30

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch01_05.js in the ch01 folder and paste the
following code into it:
new Ext.Application({
 name: 'MyApp',
 profiles: {
 phoneBlackberry: function() {
 return Ext.is.Blackberry;
 },
 phoneAndroid: function() {
 return Ext.is.Android;
 },
 tabletPortrait: function() {
 return Ext.is.Tablet && Ext.orientation == 'portrait';
 },
 tabletLandscape: function() {
 return Ext.is.Tablet && Ext.orientation == 'landscape';
 }
 },
 launch: function() {
 this.viewport = new Ext.Panel({
 fullscreen: true,
 items : [
 {
 html: 'Welcome to My App!' + ' - profile - ' +
 this.getProfile(),

 }
]
 });
 }

});

2.	 Remove the following line from index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_04.js"></script>

Chapter 1

31

3.	 Include the following line in index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_05.js"></script>

4.	 Deploy and run the application.

How it works...
The Application class provides a property named profiles, which is used to set up
multiple profiles, as shown in the preceding code. When the application is launched, each of
the configured profile functions such as phoneBlackberry, phoneAndroid, and so on, is
evaluated in the order of their definition. The first profile function that returns true is the one
which becomes the profile of the application. For example, if we are running the application on
the Android phone, then phoneAndroid is the first function that will return true and, hence,
the profile of the application will be set to phoneAndroid.

The current profile can be fetched from the application or any component. You can use the
getProfile() method which returns the name of the profile, for example, phoneAndroid.

The profile is applied, by default, at the time of the application launch.

There's more...
There are few more interesting options and features that the Application class provides to
have a better control of the profiles and their application. Let's see what else can be done with
the profiles.

Do not apply the profile at the time of application launch
As we saw, the profile is applied to the components at the time of application launch. It
may not be desirable all the time. You may want to apply the profiles at a later stage in your
application. For example, your application has a photo viewer which shows the photo on the
left-hand side and the photo detail on the right-hand side of the page. Moreover, due to the
layout, and to have a better view of the photo and its detail, say, you always want the user to
switch to the landscape mode. In this case, you would like to wait until the user opens the
viewer and that is when you would like to identify the profile and take action accordingly.

Applying the profile at the application launch time is controlled by the
setProfilesOnLaunch property. By default, this is set to true. In your application
initialization, you should pass the following additional config:

setProfilesOnLaunch : false

http://localhost/sencha-touch-1.1.0/docs/source/Application.html#cfg-Ext.Application-setProfilesOnLaunch
http://localhost/sencha-touch-1.1.0/docs/source/Application.html#cfg-Ext.Application-setProfilesOnLaunch

Gear up for the Journey

32

Therefore, the code would look something like this:

new Ext.Application({
 name: 'MyApp',
 setProfilesOnLaunch: false,
 profiles: {
……..

Do not apply the profile on the components, by default
By default, at the launch time, the current profile is applied to all the components
of the application. If you do not want this to happen, then you will have to set
autoUpdateComponentProfiles to false during your application initialization.

Ignoring the profile change
In some applications, you may want to ignore the effect of profile changes. To do so, we will
have to implement the handler for the beforeprofilechange event and return false
from it. The Application class raises this event after it has detected the profile change and
before it would start to apply the profile to the components. If false is returned from the
handler, it would not apply the profile to the components. The following code snippet shows
how the handler needs to be written:

new Ext.Application({
 name: 'MyApp',
 setProfilesOnLaunch: false,
 profiles: {
……..
},
 beforeprofilechange: function(profile, oldProfile) {
 return false;
 }

Deferred application of profile
If you choose not to apply the profile at the time of launch, but defer it until the event
of interest occurs, then you can achieve this by calling the determineProfile()
method of the Application class. In addition, you will have to make sure that
autoUpdateComponentProfiles is set to true before the method is called.

http://localhost/sencha-touch-1.1.0/docs/source/Application.html#cfg-Ext.Application-setProfilesOnLaunch
http://localhost/sencha-touch-1.1.0/docs/source/Application.html#cfg-Ext.Application-autoUpdateComponentProfiles

Chapter 1

33

See also
ff The recipe named Setting up the browser-based development environment in

this chapter

ff The recipe named Initializing your application in this chapter

Responding to the orientation change
It is possible to change the orientation from portrait to landscape mode by turning your device.
Many applications make use of this facility to provide better usability to the user. For example,
when we are working with the virtual keyboard and change the orientation from portrait
to landscape, the keyboard gets bigger and it becomes easier to type. Most of the devices
support orientation changes and, based on your application, you may want to make use of this
feature to change your application layout or behavior. Sencha Touch automatically watches for
this and notifies all the application components by sending them the orientationchange
event. If the application or any component of it needs to change its behavior, then the
corresponding component registers a handler for the orientationchange event.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch01_06.js in the ch01 folder and paste the
following code into it:
new Ext.Application({
 name: 'MyApp',

 profiles: {
 phoneBlackberry: function() {
 return Ext.is.Blackberry;
 },
 phoneAndroid: function() {
 return Ext.is.Android;
 },
 tabletPortrait: function() {
 return Ext.is.Tablet && Ext.orientation == 'portrait';
 },
 tabletLandscape: function() {
 return Ext.is.Tablet && Ext.orientation == 'landscape';
 }
 },
 launch: function() {

Gear up for the Journey

34

 this.viewport = new Ext.Panel({
 fullscreen: true,
 listeners: {
 orientationchange : function(thisPnl, orientation,
 width, height){
 Ext.Msg.alert("INFO","Orientation: " + orientation
 + " : width:" + width + ":height:" + height);
 }
 },
 items : [
 {
 html: 'Welcome to My App!' + ' - profile - ' +
 this.getProfile(),
 }
]
 });
 }

});

2.	 Remove the following line from index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_05.js"></script>

3.	 Include the following line in index.html:
<script type="text/javascript" charset="utf-8"
 src="ch01/ch01_06.js"></script>

4.	 Deploy and run the application.

How it works...
The Sencha Touch framework provides certain properties on the components, which
directly affect the orientation change detection and notification. There are certain
properties on the components based on which it derives whether the orientation change
needs to be notified. The monitorOrientation property on the component directly
instructs the library whether it has to monitor for the orientation change. This property
is, by default, set to false—meaning, do not monitor for the orientation change. Hence,
beforeorientationchange and orientationchange events will not be fired. However,
the property fullscreen affects the monitorOrientation value. In the preceding code,
fullscreen has been set to true, which sets the monitorOrientation to true and
due to this, the library will monitor for the orientation change. When that happens, it fires the
beforeorientationchange and orientationchange events. Any component which
intends to handle the orientation change must implement the handler for these events.

Chapter 1

35

On the container components (for example, Panel, TabPanel, and so on) enabling scrolling
immediately sets the monitorOrientation to true.

There's more...
Say, in your application, monitoring of the orientation change has been enabled, but some
components neither want to handle the orientation change-related events, nor do they want
the default behavior to be executed. In this case, these components will have to stop the
orientation change and the subsequent section shows how to achieve that.

Stopping the orientation change
If a component wants to ignore the orientation change, then it should implement the
beforeorientationchange listener which should return false. The following code
snippet shows how to do it:

beforeorientationchange: function(thisPnl, orientation, width, height)
{
 return false;
}

See also
ff The recipe named Setting up the browser-based development environment in this

chapter

ff The recipe named Initializing your application in this chapter

2
Catering to your Form

Related Needs

In this chapter, we will cover:

ff Getting your form ready with FormPanel

ff Working with search

ff Putting custom validation in the e-mail field

ff Working with dates using DatePicker

ff Making a field hidden

ff Working with the select field

ff Changing the value using Slider

ff Spinning the number wheel using Spinner

ff Toggling between your two choices

ff Checkbox and checkbox group

ff Text and TextArea

ff Grouping fields with FieldSet

ff Validating your form

Catering to your Form Related Needs

38

Introduction
Most of the useful applications not only present the data, but also accept inputs from their
users. When we think of having a way to accept inputs from the user, send them to the server
for further processing, and allow the user to modify them, we think of forms and the form
fields. If our application requires users to enter some information, then we go about using
the HTML form fields, such as <input>, <select>, and so on, and wrap inside a <form>
element. Sencha Touch uses these tags and provides convenient JavaScript classes to work
with the form and its fields. It provides field classes such as Url, Toggle, Select, Text, and
so on. Each of these classes provides properties to initialize the field, handle the events, and
utility methods to manipulate the behavior and the values of the field. On the other side, the
form takes care of the rendering of the fields and also handles the data submission.

Each field can be created by using the JSON notation (JavaScript Object Notation—
http://www.json.org) or by creating an instance of the class. For example, a text field can
either be constructed by using the following JSON notation:

{
 xtype: 'textfield',
 name: 'text',
 label: 'My Text'
}

Alternatively, we can use the following class constructor:

var txtField = new Ext.form.Text({
 name: 'text',
 label: 'My Text'
});

The first approach relies on xtype, which is a type assigned to each of the Sencha Touch
components. It is used as shorthand for the class. The basic difference between the two is
that the xtype approach is more for the lazy initialization and rendering. The object is created
only when it is required. In any application, we would use a combination of these
two approaches.

In this chapter, we will go through all the form fields and understand how to make use of them
and learn about their specific behaviors. In addition, we will see how to create a form using
one or more form fields and handle the form validation and submission.

Chapter 2

39

Getting your form ready with FormPanel
This recipe shows how to create a basic form using Sencha Touch and implement some of the
behaviors such as submitting the form data, handling errors during the submission, and
so on.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear up for the Journey.

How to do it...
Carry out the following steps:

1.	 Create a ch02 folder in the same folder where we had created the ch01 folder.

2.	 Create and open a new file named ch02_01.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var form;

 //form and related fields config
 var formBase = {
 //enable vertical scrolling in case the form exceeds the
 page height
 scroll: 'vertical',
 url: 'http://localhost/test.php',
 items: [{//add a fieldset
 xtype: 'fieldset',
 title: 'Personal Info',
 instructions: 'Please enter the information above.',
 //apply the common settings to all the child items
 of the fieldset
 defaults: {
 required: true, //required field
 labelAlign: 'left',
 labelWidth: '40%'
 },
 items: [
 {//add a text field
 xtype: 'textfield',
 name : 'name',

www.allitebooks.com

http://www.allitebooks.org

Catering to your Form Related Needs

40

 label: 'Name',
 useClearIcon: true,//shows the clear icon in the
 field when user types
 autoCapitalize : false
 }, {//add a password field
 xtype: 'passwordfield',
 name : 'password',
 label: 'Password',
 useClearIcon: false
 }, {
 xtype: 'passwordfield',
 name : 'reenter',
 label: 'Re-enter Password',
 useClearIcon: true
 }, {//add an email field
 xtype: 'emailfield',
 name : 'email',
 label: 'Email',
 placeHolder: 'you@sencha.com',
 useClearIcon: true
 }]
 }
],
 listeners : {
 //listener if the form is submitted, successfully
 submit : function(form, result){
 console.log('success', Ext.toArray(arguments));
 },
 //listener if the form submission fails
 exception : function(form, result){
 console.log('failure', Ext.toArray(arguments));
 }
 },

 //items docked to the bottom of the form
 dockedItems: [
 {
 xtype: 'toolbar',
 dock: 'bottom',
 items: [
 {
 text: 'Reset',
 handler: function() {
 form.reset(); //reset the fields

Chapter 2

41

 }
 },
 {
 text: 'Save',
 ui: 'confirm',
 handler: function() {
 //submit the form data to the url
 form.submit();
 }
 }
]
 }
]
 };

 if (Ext.is.Phone) {
 formBase.fullscreen = true;
 } else { //if desktop
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }
 //create form panel
 form = new Ext.form.FormPanel(formBase);
 form.show(); //render the form to the body
 }
});

3.	 Include the following line in index.html:
<script type="text/javascript" charset="utf-8"
 src="ch02/ch02_01.js"></script>

Catering to your Form Related Needs

42

4.	 Deploy and access it from the browser. You will see the following screen:

How it works...
The code creates a form panel, with a field set inside it. The field set has four fields specified
as part of its child items. xtype mentioned for each field instructs the Sencha Touch
component manager which class to use to instantiate them.

form = new Ext.form.FormPanel(formBase) creates the form and the other field
components using the config defined as part of the formBase.

form.show() renders the form to the body and that is how it will appear on the screen.

url contains the URL where the form data will be posted upon submission. The form can be
submitted in the following
two ways:

1.	 By hitting Go, on the virtual keyboard or Enter on a field that ends up generating the
action event.

2.	 By clicking on the Save button, which internally calls the submit() method on the
form object.

form.reset() resets the status of the form and its fields to the original state. Therefore, if
you had entered the values in the fields and clicked on the Reset button, all the fields would
be cleared.

form.submit() posts the form data to the specified url. The data is posted as an Ajax
request using the POST method.

Chapter 2

43

Use of useClearIcon on the field instructs Sencha Touch whether it should show the clear
icon in the field when the user starts entering a value in it. On clicking on this icon, the value
in the field is cleared.

There's more...
In the preceding code, we saw how to construct a form panel, add fields to it, and handle
events. We will see what other non-trivial things we may have to do in the project and how we
can achieve these using Sencha Touch.

Standard submit
This is the old and traditional way for form data posting to the server url. If your application
need is to use the standard form submit, rather than Ajax, then you will have to set
standardSubmit to true on the form panel. This is set to false, by default. The following
code snippet shows the usage of this property:

var formBase = {
 scroll: 'vertical',
 standardSubmit: true,
...

After this property is set to true on the FormPanel, form.submit() will load the complete
page specified in url.

Do not submit on field action
As we saw earlier, the form data is automatically posted to the url if the action event (when
the Go or Enter key is hit) occurs. In many applications, this default feature may not be
desirable. In order to disable this feature, you will have to set submitOnAction to false on
the form panel.

Post-submission handling
Say we posted our data to the url. Now, either the call may fail or it may succeed. In order
to handle these specific conditions and act accordingly, we will have to pass additional config
options to the form's submit() method. The following code shows the enhanced version of
the submit call:

form.submit({
 success: function(form, result) {
 Ext.Msg.alert("INFO", "Form submitted!");
 },
 failure: function(form, result) {
 Ext.Msg.alert("INFO", "Form submission failed!");
 }
});

Catering to your Form Related Needs

44

If the Ajax call (to post form data) fails, then the failure callback function is called, and
in the case of success, the success callback function is called. This works only if the
standardSubmit is set to false.

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1
ff The recipe named Setting up the iOS-based development environment in Chapter 1
ff The recipe named Setting up the Blackberry-based development environment in

Chapter 1
ff The recipe named Setting up the browser-based development environment in

Chapter 1
ff The recipe named Setting up the production environment in Chapter 1

Working with search
In this and the subsequent recipes of the chapter, we will go over each of the form fields and
understand how to work with them. This recipe describes the steps required to create and use
a search form field.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe.

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_02.js.

2.	 Open a new file named ch02_02.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [{
 xtype: 'searchfield',
 name: 'search',
 label: 'Search'
 }]
};

Chapter 2

45

3.	 Include ch02_02.js in place of ch02_01.js in index.html.

4.	 Deploy and access the application in the browser. You will see a form panel with a
search field.

How it works...
The search field can be constructed by using the Ext.form.Search class instance or by
using the xtype—searchfield. The search form field implements HTML5 <input> with
type="search". However, the implementation is very limited. For example, the HTML5
search field allows us to associate a data list to it which it can use during the search, whereas
this feature is not present in Sencha Touch. Similarly, the W3 search field spec defines a
pattern attribute to allow us to specify a regular expression against which a User Agent
is meant to check the value, which is not supported yet in Sencha Touch. For more detail,
you may refer to the W3 search field (http://www.w3.org/TR/html-markup/input.
search.html) and the source code of the Ext.form.Search class.

There's more...
Often, in the application, for the search fields we do not use a label. Rather, we would like to
show a text, such as Search inside the field that will disappear when the focus is on the field.
Let's see how we can achieve this.

Using a placeholder
Placeholders are supported by most of the form fields in Sencha Touch by using the property
placeHolder. The placeholder text appears in the field as long as there is no value entered
in it and the field does not have the focus. The following code snippet shows the typical
usage of it:

{
 xtype: 'searchfield',
 name: 'search',
 label: 'Search',
 placeHolder: 'Search...'
}

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

http://www.w3.org/TR/html-markup/input.search.html

Catering to your Form Related Needs

46

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Getting your form ready with FormPanel in this chapter

Putting custom validation in the e-mail field
This recipe describes how to make use of the e-mail form field provided by Sencha Touch and
how to validate the value entered into it to find out whether the entered e-mail passes the
validation rule or not.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe in this
chapter.

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_03.js.

2.	 Open a new file named ch02_03.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [{
 xtype: 'emailfield',
 name : 'email',
 label: 'Email',
 placeHolder: 'you@sencha.com',
 useClearIcon: true,
 listeners: {
 blur: function(thisTxt, eventObj) {
 var val = thisTxt.getValue();

 //validate using the pattern
 if (val.search("[a-c]+@[a-z]+[.][a-z]+") == -1)
 Ext.Msg.alert("Error", "Invalid e-mail address!!");
 else
 Ext.Msg.alert("Info", "Valid e-mail address!!");

Chapter 2

47

 }
 }
 }]
};

3.	 Include ch02_03.js in place of ch02_02.js in index.html.

4.	 Deploy and access the application in the browser.

How it works...
The e-mail field can be constructed by using the Ext.form.Email class instance or by
using the xtype: emailfield. The e-mail form field implements HTML5 <input> with
type="email." However, as with the search field, the implementation is very limited. For
example, the HTML5 e-mail field allows us to specify a regular expression pattern which can
be used to validate the value entered in the field.

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Getting your form ready with FormPanel in this chapter

Working with dates using DatePicker
This recipe describes how to make use of the date picker form field provided by Sencha Touch,
which allows the user to select a date.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe in
this chapter.

Catering to your Form Related Needs

48

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_04.js.

2.	 Open a new file named ch02_04.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date'
 }]
};

3.	 Include ch02_04.js in place of ch02_03.js in index.html.

4.	 Deploy and access the application in the browser.

How it works...
The date picker field can be constructed by using the Ext.form.DatePicker class instance
or by using xtype: datepickerfield. The date picker form field implements HTML
<select>. When the user tries to select an entry, it shows the date picker with the month,
day, and year slots for selection. After selection, when the user clicks on the Done button, the
field is set with the selected value.

There's more...
Additionally, there are other things that can be done such as setting the date to the current
date, or any particular date, or changing the order of appearance of a month, day, and year.
Let's see what it takes to accomplish this.

Setting the default date to the current date
In order to set the default value to the current date, the value property must be set to the
current date. The following code shows how to do it:

var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date',
 value: new Date(),

Chapter 2

49

Setting the default date to a particular date
The default date is 01/01/1970. Let's assume that you need to set the date to a different
date, but not the current date. To do so, you will have to set the value using the year,
month, and day properties, as follows:

var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date',
 value: {year: 2011, month: 6, day: 11},
…

Changing the slot order
By default, the slot order is month, day, and year. You can change it by setting the slotOrder
property of the picker property of date picker, as shown in the following code:

var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date',
 picker: {slotOrder: ['day', 'month', 'year']}
 }]
};

Setting the picker date range
By default, the date range shown by the picker is 1970 until the current year. For our
application need, if we have to alter the year range, we can do so by setting the yearFrom
and yearTo properties of the picker property of the date picker, as follows:

var formBase = {
 items: [{
 xtype: 'datepickerfield',
 name: 'date',
 label: 'Date',
 picker: {yearFrom: 2000, yearTo: 2010}
 }]
};

Catering to your Form Related Needs

50

See also
ff The recipe named Setting up the Android-based development environment in Chapter

1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Getting your form ready with FormPanel in this chapter

Making a field hidden
Often in an application, there would be a need to hide fields which are not needed in a
particular context but are required and hence need to be shown in another. In this recipe, we
will see how to make a field hidden and show it, conditionally.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe in
this chapter.

How to do it...
Carry out the following steps:

1.	 Edit ch02_04.js and modify the code as follows by adding the hidden property:
var formBase = {
 items: [{
 xtype: 'datepickerfield',
 id: 'datefield-id',
 name: 'date',
 hidden: true,
 label: 'Date'}]
};

2.	 Deploy and access the application in the browser.

Chapter 2

51

How it works...
When a field is marked as hidden, Sencha Touch uses the DOM's hide method on the
element to hide that particular field.

There's more...
Let's see how we can programmatically show/hide a field.

Showing/Hiding a field at runtime
Each component in Sencha Touch supports two methods: show and hide. The show method
shows the element and hide hides the element. In order to call these methods, we will
have to first find the reference to the component, which can be achieved by either using the
object reference or by using the Ext.getCmp() method. Given a component ID, the getCmp
method returns us the component. The following code snippet demonstrates how to show
an element:

var cmp = Ext.getCmp('datefield-id');
cmp.show();

To hide an element, we will have to call cmp.hide();

See also
ff The recipe named Setting up the Android-based development environment in Chapter

1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Getting your form ready with FormPanel in this chapter

Working with the select field
This recipe describes the use of the select form field, which allows the user to select a value
from a list of choices, such as a combo box.

Catering to your Form Related Needs

52

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe in this
chapter.

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_05.js.

2.	 Open a new file named ch02_05.js and replace the definition of formBase with
the following code:
 var formBase = {
 items: [{
 xtype: 'selectfield',
 name: 'select',
 label: 'Select',
 placeHolder: 'Select...',
 options: [
 {text: 'First Option', value: 'first'},
 {text: 'Second Option', value: 'second'},
 {text: 'Third Option', value: 'third'}
]
 }]
 };

3.	 Include ch02_05.js in place of ch02_04.js in index.html.

4.	 Deploy and access the application in the browser.

How it works...
The preceding code creates a select form field with the three options for selection. The select
field can be constructed by using the Ext.form.Select class instance or by using the
xtype—selectfield. The select form field implements HTML <select>. By default, it uses
the text property to show the text for selection.

Chapter 2

53

There's more...
It may not always be possible or desirable to use text and value properties in the date to
populate the selection list. If we have a different property in place of text, then how do we
make sure that the selection list is populated correctly without any further conversion? Let's
see how we can do this.

Using the custom display value
We, use displayField to specify the field that will be used as text, as shown in the following
code:

{
 xtype: 'selectfield',
 name: 'select',
 label: 'Second Select',
 placeHolder: 'Select...',
 displayField: 'desc',
 hiddenName: 'second-select'
 ,options: [
 {desc: 'First Option', value: 'first'},
 {desc: 'Second Option', value: 'second'},
 {desc: 'Third Option', value: 'third'}
]
}

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Getting your form ready with FormPanel in this chapter

Catering to your Form Related Needs

54

Changing the value using Slider
This recipe describes the use of the Slider form field, which allows the user to change the
value by merely sliding.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Get your form ready with FormPanel recipe in
this chapter.

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_06.js.

2.	 Open a new file named ch02_06.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [{
 xtype: 'sliderfield',
 name : 'height',
 label: 'Height',
 minValue: 0,
 maxValue: 100,
 increment: 10
 }]
};

3.	 Include ch02_06.js in place of ch02_05.js in index.html.

4.	 Deploy and access the application in the browser.

How it works...
The preceding code creates a slider field with 0–100 as the range of values, with 10 as the
increment, which means when a user clicks on the slider, the value will change by 10 on
every click. The increment value must be a whole number.

Chapter 2

55

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1
ff The recipe named Setting up the iOS-based development environment in Chapter 1
ff The recipe named Setting up the Blackberry-based development environment in

Chapter 1
ff The recipe named Setting up the browser-based development environment in

Chapter 1
ff The recipe named Setting up the production environment in Chapter 1
ff The recipe named Getting your form ready with FormPanel in this chapter

Spinning the number wheel using Spinner
This recipe describes the use of a spinner form field, which allows the user to change the
value by clicking on the wheel.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe in
this chapter.

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_07.js.

2.	 Open a new file named ch02_07.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [{
 xtype: 'spinnerfield',
 name : 'spinner',
 label: 'Spinner',
 minValue: 0,
 maxValue: 100,
 incrementValue: 10,
 cycle: true
 }]
};

Catering to your Form Related Needs

56

3.	 Include ch02_07.js in place of ch02_06.js in index.html.

4.	 Deploy and access the application in the browser.

How it works...
Spinner is a wrapper around the HTML5 number field. A spinner field can be constructed
by using the Ext.form.Spinner class instance or by using the xtype—spinnerfield.
minValue sets the initial value which will be displayed in the field when the field is rendered.
maxValue: 100 is the maximum value that will be displayed in this field. incrementValue
instructs the framework that on every click the value will be incremented/decremented by 10,
based on the direction in which the user is moving.

There's more...
In the spinner, it may be a more sensible thing to recycle the value. The following section
shows how to do this.

Recycling the values
By default, when the user reaches the maxValue or the minValue, he/she cannot move
further. In this case, we may want to recycle the values. In order to do this, the spinner class
provides a cycle property and setting its value to true will ensure that the value is set to
minValue when the user clicks after the field value had reached the maxValue and vice
versa. The following code snippet shows how to set this property:

items: [{
 xtype: 'spinnerfield',
 name : 'spinner',
 label: 'Spinner',
 minValue: 0,
 maxValue: 100,
 incrementValue: 10,
 cycle: true
}]

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

Chapter 2

57

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Getting your form ready with FormPanel in this chapter

Toggling between your two choices
This is a specialized slider with only two values. In this recipe, we will see how to make use of
the toggle field.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe. in
this chapter

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_08.js.

2.	 Open a new file named ch02_08.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [{
 xtype: 'togglefield',
 name : 'toggle',
 label: 'Toggle'
 }]
};

3.	 Include ch02_08.js in place of ch02_07.js in index.html.

4.	 Deploy and access the application in the browser.

How it works...
This creates a slider field with the minValue set to 0 and maxValue set to 1.

Catering to your Form Related Needs

58

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1
ff The recipe named Setting up the iOS-based development environment in Chapter 1
ff The recipe named Setting up the Blackberry-based development environment in

Chapter 1
ff The recipe named Setting up the browser-based development environment in

Chapter 1
ff The recipe named Setting up the production environment in Chapter 1
ff The recipe named Getting your form ready with FormPanel in this chapter

Checkbox and Checkbox group
Checkboxes permit the user to make multiple selections from a number of available options.
It is a convenient way to learn about user choices. For example, in an application, we may
have a checkbox asking the user if he/she stayed in Hyderabad. Moreover, if we are capturing
the detail about multiple cities where the user had stayed, then we would group multiple
checkboxes under one name and use them as a checkbox group. In this recipe, we will see
how we can create a checkbox and a checkbox group using Sencha Touch and how to handle
the values when you want to set them, or when the form data is posted.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe in
this chapter.

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_09.js.

2.	 Open a new file named ch02_09.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [{
 xtype: 'checkboxfield',
 name: 'city',
 value: 'Hyderabad',

Chapter 2

59

 label: 'Hyderabad',
 checked: true
 }, {
 xtype: 'checkboxfield',
 name: 'city',
 value: 'Mumbai',
 label: 'Mumbai'
 }]
};

3.	 Include ch02_09.js in place of ch02_08.js in index.html.

4.	 Deploy and access the application in the browser. You will see the checkboxes as
shown in the following screenshot:

How it works...
The preceding code creates two checkboxes inside the form panel. checked: true checks
the checkbox when it is rendered. When a form is submitted, the checkbox values are
returned as an array. For example, given the preceding code, when the user clicks on Submit,
city would have two values, as follows:

city: ['Hyderabad', 'Mumbai']

Catering to your Form Related Needs

60

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1
ff The recipe named Setting up the iOS-based development environment in Chapter 1
ff The recipe named Setting up the Blackberry-based development environment in

Chapter 1
ff The recipe named Setting up the browser-based development environment in

Chapter 1
ff The recipe named Setting up the production environment in Chapter 1
ff The recipe named Getting your form ready with FormPanel in this chapter

Text and TextArea
Text fields are one of the initial fields which allow the user to enter data in a form. Text area
allows entering multiple lines of text. In this recipe, we will make use of the text and text area
related classes.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe in
this chapter.

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_10.js.

2.	 Open a new file named ch02_10.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [
 {
 xtype: 'textfield',
 name : 'firstName',
 label: 'First Name'
 },
 {
 xtype: 'textfield',

Chapter 2

61

 name : 'lastName',
 label: 'Last Name'
 },
 {
 xtype: 'textareafield',
 name : 'detail',
 label: 'Detail'
 }
]
};

3.	 Include ch02_10.js in place of ch02_09.js in index.html.

4.	 Deploy and access the application in the browser.

How it works...
In the preceding code, we created two text fields and a text area. Text field can be constructed by
using the Ext.form.Text class instance or by using the xtype—textfield. Similarly, a text
area can be constructed by using the Ext.form.TextArea class instance or by using xtype—
textareafield. Internally, the text form field implements the HTML <input> element with
type="text" whereas text area implements the HTML <textarea> element. There is no
validation on these fields, hence the user is allowed, by default, to enter any kind of value.

There's more...
By default, a text field or a text area allows entering any number of characters. However, in
some specific scenarios, we may have to limit this to a particular value in our application. Let's
see how we can limit this.

Limiting the number of input characters
Both text field and text area support a property named maxLength which controls the number
of characters the user can enter. If this property is set to 20, then the user can only enter 20
characters. The following code snippet shows how to do this:

{
 xtype: 'textfield',
 name : 'firstName',
 maxLength: 20,
 label: 'First Name'
},
{
 xtype: 'textareafield',
 name : 'detail',
 maxLength: 80,

Catering to your Form Related Needs

62

 label: 'Detail'
}

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1
ff The recipe named Setting up the iOS-based development environment in Chapter 1
ff The recipe named Setting up the Blackberry-based development environment in

Chapter 1
ff The recipe named Setting up the browser-based development environment in

Chapter 1
ff The recipe named Setting up the production environment in Chapter 1
ff The recipe named Getting your form ready with FormPanel in this chapter

Grouping fields with FieldSet
FieldSet is used to logically group together elements in a form, an example of which we saw in
the first recipe of this chapter. This recipe shows how the Sencha Touch class can be used to
create and group items under FieldSet.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe in
this chapter.

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_12.js.

2.	 Open a new file named ch02_12.js and replace the definition of formBase with
the following code:
var formBase = {
 items: [
 {
 xtype: 'fieldset',
 title: 'About Me',
 items: [

Chapter 2

63

 {
 xtype: 'textfield',
 name : 'firstName',
 label: 'First Name'
 },
 {
 xtype: 'textfield',
 name : 'lastName',
 label: 'Last Name'
 }
]
 }
]

};

3.	 Include ch02_12.js in place of ch02_10.js in index.html.

4.	 Deploy and access the application in the browser.

How it works...
FieldSets can be constructed by using the Ext.form.FieldSet class instance or by
using the xtype—fieldset. All elements which must be grouped under the field set
must be added to the field set as child items. The FieldSet class implements the HTML
<fieldset> element and uses legend to show the title.

There's more...
Suppose, when you are grouping the elements under the field set, you also want a way to add
some instructions for it, to give more information to the user. The FieldSet class supports
this and we will now see how to do it.

Adding instructions
The Ext.form.FieldSet class provides a property named instructions which we can
use to add additional instructions. The following code snippet shows how to set this property:

xtype: 'fieldset',
title: 'About Me',
instructions: 'Fill in your personal detail',
…

Catering to your Form Related Needs

64

The specified instruction is added at the bottom of the field set as shown in the
following screenshot:

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Getting your form ready with FormPanel in this chapter

Chapter 2

65

Validating your form
So far, we have looked at how to create a form and make use of different form fields offered
by Sencha Touch. Different form fields provide different kinds of information a user can enter.
Now, some of them may be valid and some may not. It is a common practice to validate
the form and the entered values at the time of posting. Now, based on your application
architecture, you may choose to apply all kinds of validations in the frontend UI, or you may
choose to handle them in the backend server code, or a combination of the two. All are valid
approaches. However, for this chapter, we would assume that we want to validate the form on
the frontend to make sure that the values entered are valid.

Sencha Touch does not offer a mechanism to do form validation. As of now, it has no direct
support for validating the inputs. If we intend to validate the form, then the code has to be
written to do so. There are various approaches to building the form validation capability,
depending upon what level of abstraction and re-usability we want to achieve. We can
write a specific code in each form to carry out the validation or we can enhance Ext.
Component, which is the base class for all the Sencha Touch components, or the Ext.
form.Field classes to handle the validation in a more generic way. Alternatively, we can
enhance FormPanel, as well, to implement a nicely encapsulated form and field validation
functionality. In this recipe, we will see how we can write the specific validation code to take
care of our need. The author hopes that there will be a more streamlined validation in a future
version of Sencha Touch.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Make sure that you have followed the Getting your form ready with FormPanel recipe in
this chapter.

How to do it...
Carry out the following steps:

1.	 Copy ch02_01.js to ch02_13.js and modify the handler function with the
following code:
handler: function() {
 var isValid = true;
 var errors = new Array();

 var fieldValMap = form.getValues();
 var email = fieldValMap['email'];
 var name = fieldValMap['name'];

Catering to your Form Related Needs

66

 //validate the name
 if (name.search(/[0-9]/) > -1) {
 isValid = false;
 errors.push({field : 'name',
 reason : 'Name must not contain numbers'});
 }

 //validate e-mail
 if (email.search("@") == -1) {
 isValid = false;
 errors.push({field : 'email',
 reason : 'E-mail address must contain @'});
 }

 //show error if the validation failed
 if (!isValid) {
 var errStr = "";

 Ext.each(errors, function(error, index){
 errStr += "[" + (index+1) + "] - " + error.reason + "\n";
 });

 Ext.Msg.alert("Error", errStr);
 } else {//form is valid
 form.submit();
 }
}

2.	 Include ch02_13.js in place of ch02_12.js in index.html.

3.	 Deploy and access the application in the browser.

How it works...
The handler function is called when the user clicks on the Save button. The handler
validates the name and the e-mail address field values. name.search(/[0-9]/) checks
if the name entered contains any numbers and email.search("@") verifies if the e-mail
address contains @ or not. In case of an error, we are adding an error object to the errors array
with two properties: field and reason. The field property stores the field on which the
validation had failed and the corresponding reason is stored in the reason property. After
all the fields have been validated, we are checking the isValid flag to see if any of the field
validation had failed and, if so, we show up a message box with the list of errors, as shown in
the following screenshot:

Chapter 2

67

If there are no field validation errors, then the form is submitted.

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Getting your form ready with FormPanel in this chapter

3
Containers and

Layouts

In this chapter, we will cover:

ff Keeping the container lightweight

ff Working with Panel

ff Adding items to a container at runtime

ff Building wizards using CardLayout

ff Panel docking using DockLayout

ff Fitting into the container using FitLayout

ff Arranging items horizontally using HBoxLayout

ff Arranging items vertically using VBoxLayout

ff Mixing layouts

Introduction
Containers in Sencha Touch are components which can contain other components. They
handle the basic behavior of containing items, namely adding and removing items. In the
previous chapter, we talked about the form and the different form fields. A form is a container.
Other containers are Panel, TabPanel, Sheet, NestedList, Carousel, FieldSet,
Toolbar, and so on. All the container classes extend the Ext.Container class.

Containers and Layouts

70

The following diagram depicts the various container classes and their relationship with
each other:

Ext.Audio

Ext.Video

FormPanel

Carousel

Ext.NestedList

Ext.TabPanel

Ext.Sheet

Ext.TabBar

Ext.Panel

Ext.form.Fieldset

Ext.form.Field

Ext.Toolbar

Ext.SegmentedButton

Ext.Media

Ext.Container

Ext.Container is the base class, which provides the basic common functionalities related
to a container and it is extended further by the different classes which implement certain
specific behaviors. For example, Toolbar takes care of showing various buttons in the form
of a toolbar whereas Media takes care of playing the audio/video.

In order to implement a new container, you may extend one of the
existing specific container classes, such as TabPanel extending
Panel, which is very close to your requirement. In the worst case, you
will have to extend the Ext.Container class.

Chapter 3

71

When we go on adding items (fields, panel, etc.) to a container, an obvious question is how
will these items be rendered and positioned on the page? Will they be rendered one after
another, vertically? Will they be rendered horizontally? Will they be resized when we resize the
page? The answer to all these questions is layout. A layout takes care of the sizing, re-sizing,
and positioning of the children of a container. Every container in Sencha Touch has a config
property named layout, which accepts the name of the layout that needs to be used to
calculate the sizing and position of the children. The following are the pre-defined values and
how they layout the child items:

Layout Description
auto Renders one item after another
card Renders each item as a card and only one item is visible at any given time
dock Handles docking for panels
fit Renders a single item and automatically expands to fill the layout's container
hbox Arranges items horizontally across a container
vbox Arranges items vertically down a container

The following diagram depicts the different layout related classes and the way they are related
to each other:

Ext.layout.ComponentLayoutExt.layout.ContainerLayout

Ext.layout.AutoComponentLayoutExt.layout.AutoContainerLayout

Ext.layout.FieldLayoutExt.layout.BoxLayout

Ext.layout.FitLayout

Ext.layout.CardLayout

Ext.layout.DockLayout

Ext.layout.HBoxLayout

Ext.layout.VBoxLayout

Ext.layout.Layout

Containers and Layouts

72

Ext.Panel is the default container class and auto is the default
container layout used by Sencha Touch.

Some of the containers we have already used in the previous chapter and we will use the
other ones in this and the subsequent chapters. In this chapter, we will look into different
containers and the use of layouts to position the items.

Keeping the container lightweight
We saw earlier in this chapter that Ext.Container is the base class for all the containers.
It gives the basic building block and the specific behaviors are implemented in the respective
specific containers. Ext.Panel acts as a generic container class with the support for
docking. If your application only needs a container so that you can add items to it and they
are rendered, then you should go for Ext.Container rather than using Ext.Panel. In this
recipe, we will see how to make use of Ext.Container to contain our item.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear up for the Journey.

Create a new folder named ch03 in the same folder where we created the ch01 and ch02
folders. We will be using this new folder for keeping the code.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch03_01.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var pnl = new Ext.Container({
 fullscreen: true,
 defaults: {
 border: false
 },
 items: [{
 bodyStyle: 'background:grey;',
 html: '<p>Panel 1</p>'
 },{
 xtype: 'textfield',

Chapter 3

73

 name : 'first',
 label: 'First name'
 },
 {
 xtype: 'textfield',
 name : 'last',
 label: 'Last name'
 },
 {
 xtype: 'numberfield',
 name : 'age',
 label: 'Age'
 },
 {
 xtype: 'urlfield',
 name : 'url',
 label: 'Website'
 }]
 });
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You will see the panel with items as shown in
the following screenshot:

Containers and Layouts

74

How it works...
The preceding code creates a container with a panel and four form fields. The following is the
first child item being added to the container:

{
 bodyStyle: 'background:grey;',
 html: '<p>Panel 1</p>'
}

As there is no xtype specified, Sencha Touch creates Ext.Panel and sets the bodyStyle
and html on it.

The default layout used is auto; hence, we see the items are rendered one after another.

There's more...
While we are using Ext.Container for its lightweight nature, we may need our items to be
laid out differently. Let's see how we can do this.

Using layout
The Ext.Container class supports the layout property, which we can set to request the
container to position and calculate sizing accordingly. The following are the layouts that can
be used with Ext.Container:

ff auto

ff fit

ff card

ff hbox

ff vbox

For example adding the following additional properties on Ext.Container would show the
first panel in the whole screen:

layout: 'card',
activeItem: 0

Chapter 3

75

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Getting your form ready with FormPanel in Chapter 2

ff The recipe named Panel docking using DockLayout in this chapter

Working with Panel
Ext.Panel is a specific implementation of a generic container by extending the Ext.
Container. The main functionality that it provides on top of the Ext.Container is the
support for docking items. We can add any number of items to it, which it can dock. This
recipe describes how to make use of the Ext.Panel class to create an application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch03_02.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var pnl = new Ext.Panel({
 fullscreen: true,
 defaults: {
 border: false
 },
 items: [{
 bodyStyle: 'background:grey;',
 html: '<p>Panel 1</p>'
 },{
 xtype: 'textfield',
 name : 'first',
 label: 'First name'
 },
 {

Containers and Layouts

76

 xtype: 'textfield',
 name : 'last',
 label: 'Last name'
 },
 {
 xtype: 'numberfield',
 name : 'age',
 label: 'Age'
 },
 {
 xtype: 'urlfield',
 name : 'url',
 label: 'Website'
 }]
 });
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser.

How it works...
The preceding code creates a panel with a panel and four form fields. The default layout
used is auto.

There's more...
Additionally, we can use a different layout and also have the docking items with a panel. Let's
see how we can make use of these features.

Docking items
As we discussed earlier, one of the major advantages of using Ext.Panel over Ext.
Container is that it can dock one or more items. This is driven by the config—dockedItems.
It accepts the items that can be specified as part of the items config. This config property
instructs Ext.Panel that these items need to be docked and it uses the dock layout to
position them and calculate their sizing.

The following code shows that we are adding a toolbar with two buttons, Save and Reset, as
the dock item:

dockedItems: [
 {
 xtype: 'toolbar',

Chapter 3

77

 dock: 'bottom',
 items: [
 {
 text: 'Reset',
 handler: function() {

 }
 },
 {
 text: 'Save',
 ui: 'confirm',
 handler: function() {
 Ext.Msg.alert("INFO", "In real implementation, this
 will be saved!");
 }
 }
]
 }
]

dock: 'bottom' is a dock layout specific property which instructs that the toolbar needs
to be positioned at the bottom of the panel. In the dock panel, we have added two buttons,
Reset and Save. The following screenshot shows how the screen will look:

Containers and Layouts

78

Using layouts
Similar to Ext.Container, Ext.Panel also supports the layout property, which can be
used to set the appropriate layout. The following are the layouts that can be used with
Ext.Panel:

ff auto

ff fit

ff dock

ff card

ff hbox

ff vbox

The dock layout is not specified explicitly. Rather, based on the dockedItems config
property the container uses this layout internally.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Panel docking using DockLayout in this chapter

Adding items to a container at runtime
In an application, there would be numerous scenarios where we would have to add
components ranging from a simple field to a panel at runtime as part of the response to
the user event. For example, your application may have a payment panel where you may
want to show the payment specific detail panels based on the payment method. If a user
selects Credit Card as the payment method, then you may show a panel asking the user to
enter their credit card detail. This requires us to add components dynamically to an existing
container. In this recipe, we will see how to work with components at runtime.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Chapter 3

79

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch03_03.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var pnl = new Ext.Panel({
 fullscreen: true,
 defaults: {
 border: false
 },
 items: [{
 xtype: 'textfield',
 name : 'first',
 label: 'First name'
 },
 {
 xtype: 'textfield',
 name : 'last',
 label: 'Last name'
 },
 {
 xtype: 'numberfield',
 name : 'age',
 label: 'Age'
 },
 {
 xtype: 'urlfield',
 name : 'url',
 label: 'Website'
 }],
 dockedItems: [
 {
 xtype: 'toolbar',
 dock: 'bottom',
 items: [
 {
 text: 'Reset',
 handler: function() {

 }
 },

Containers and Layouts

80

 {
 text: 'Add',
 ui: 'confirm',
 handler: function() {
 Ext.Msg.alert("INFO", "This will add a new
 e-mail field to the panel!");
 pnl.add({
 xtype: 'emailfield',

 name : 'email',
 label: 'E-mail'
 });
 pnl.addDocked({
 xtype : 'toolbar',
 dock: 'top',
 items: [{
 text: 'Dummy'
 }]
 });
 pnl.doLayout();
 }
 }
]
 }
]
 });

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser.

How it works...
The code creates a panel with three form fields and two buttons, Add and Reset. When the
user clicks on the Add button, a new e-mail field is added to the panel and a new toolbar with
a Dummy button is added to the docked items. The following code in the Add button handler
adds an e-mail field and a docked item to the panel:

pnl.add({
 xtype: 'emailfield',
 name : 'email',
 label: 'E-mail'

Chapter 3

81

});

pnl.addDocked({
 xtype : 'toolbar',
 dock: 'top',
 items: [{
 text: 'Dummy'
 }]
});

When the items are added to the panel, the panel does not automatically do the rendering
and size calculation. The addDocked method internally calls the doComponentLayout
and hence the toolbar is rendered with the button and we can see it. However, this does not
happen in the case of the add method. Due to this, even though the e-mail field is added
to the panel, we don't see it appearing on the screen. To ensure that the newly added
component shows up after addition at runtime, the following line must be added where the
doLayout method is called on the container:

pnl.doLayout();

The doLayout method invokes the layout manager associated with the container. In this
case, as we have not specified layout property, the auto layout manager will be invoked which
will add the E-mail field after the Website. The following screenshot shows how the screen will
look before and after clicking on the Add button:

Containers and Layouts

82

There's more...
Additionally, we can use a different layout and also have the docking items with a panel. Let's
see how we can make use of these features.

Inserting at a specific position
The insert and insertDocked methods allow us to insert a component at the desired
position. For example, the following code will add the e-mail field before the Website:

pnl.insert(3, {
 xtype: 'emailfield',
 name : 'email',
 label: 'E-mail'
});

Removing an item
In order to remove an item, the container provides remove and removeAll methods to
remove one or all components, respectively. In order to remove a particular component, we
need either its ID or its object reference. In the following code snippet, we have added an ID,
email-id, to the e-mail field that we are creating and when the user clicks on the Reset
button, we are removing it from the panel:

dockedItems: [
 {
 xtype: 'toolbar',
 dock: 'bottom',
 items: [
 {
 text: 'Reset',
 handler: function() {
 //remove the added e-mail field
 pnl.remove('email-id');
 }
 },
 {
 text: 'Add',
 ui: 'confirm',
 handler: function() {
 Ext.Msg.alert("INFO", "This will add a new e-mail
 field to the panel!");
 pnl.add({
 xtype: 'emailfield',
 id: 'email-id',
 name : 'email',

Chapter 3

83

 label: 'E-mail'
 });
 pnl.doLayout();
 }
 }
]
 }
]

Hiding/Showing
Sometimes in your application the user will be seeing a field based on some conditions.
Moreover, if your application was doing this repeatedly, then add and remove may not be an
efficient set of methods to use. Rather, we should use show and hide methods to control the
visibility of a component. The following code snippet shows how a component can be hidden
and shown again:

dockedItems: [
 {
 xtype: 'toolbar',
 dock: 'bottom',
 items: [
 {
 text: 'Reset',
 handler: function() {
 //hide the added e-mail field
 var cmp = Ext.getCmp('email-id');
 if (!Ext.isEmpty(cmp))
 cmp.hide();
 }
 },
 {
 text: 'Add',
 ui: 'confirm',
 handler: function() {
 var cmp = Ext.getCmp('email-id');
 if (!Ext.isEmpty(cmp))
 cmp.show();
 else {
 pnl.add({
 xtype: 'emailfield',
 id: 'email-id',
 name : 'email',
 label: 'E-mail'
 });

Containers and Layouts

84

 pnl.addDocked({
 xtype : 'toolbar',
 dock: 'top',
 items: [{
 text: 'Dummy'
 }]
 });
 pnl.doLayout();
 }
 }
 }
]
 }
]

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with panel in this chapter

ff The recipe named Panel docking using DockLayout in this chapter

Building wizards using CardLayout
This recipe describes how to use a card layout as a container layout. Card layout lays items
in the form of (playing) cards and shows only one item at a time. We will implement a wizard
application to understand the usage of this layout.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch03_04.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var navigate = function(panel, direction){

Chapter 3

85

 var layout = panel.getLayout();
 layout[direction]();
 Ext.getCmp('move-prev').setDisabled(!layout.getPrev());
 Ext.getCmp('move-next').setDisabled(!layout.getNext());
 };

 var pnl = new Ext.Panel({
 title: 'Wizard',
 fullscreen: true,
 layout: 'card',
 bodyStyle: 'padding:15px',
 defaults: {
 border: false
 },
 dockedItems: [
 {
 dock : 'top',
 xtype: 'toolbar',
 ui : 'light',
 items: [
 {
 id: 'move-prev',
 text: 'Back',
 ui: 'back',
 handler: function(btn) {
 navigate(btn.up("panel"), "prev");
 },
 disabled: true
 },{xtype: 'spacer'},
 {
 id: 'move-next',
 text: 'Next',
 ui: 'forward',
 handler: function(btn) {
 navigate(btn.up("panel"), "next");
 }
 }
]
 }

],
 items: [{
 id: 'card-0',

Containers and Layouts

86

 html: '<h1>Welcome to the Wizard!</h1><p>Step 1 of
 3</p>'
 },{
 id: 'card-1',
 html: '<p>Step 2 of 3</p>'
 },{
 id: 'card-2',
 html: '<h1>Congratulations!</h1><p>Step 3 of 3 -
 Complete</p>'
 }]
 });
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You will see the following screens when you
click on the Next button:

How it works...
The preceding code creates a panel with three child panels and a dock panel with two
buttons, Back and Next. The layout: 'card' indicates that the card layout will be used to
lay out the panel and its items.

Chapter 3

87

The navigation function based on the specified direction enables and disables the
appropriate panel.

var navigate = function(panel, direction){
 var layout = panel.getLayout();
 layout[direction]();
 Ext.getCmp('move-prev').setDisabled(!layout.getPrev());
 Ext.getCmp('move-next').setDisabled(!layout.getNext());
};

panel.getLayout() returns the CardLayout instance, which contains next() and
prev() methods that can set the active panel based on the card stack and the direction.
layout[direction] calls next() or prev() depending on the direction. Other
two lines:

Ext.getCmp('move-prev').setDisabled(!layout.getPrev());
Ext.getCmp('move-next').setDisabled(!layout.getNext());

In these lines, we are disabling the Back button if we have reached the first panel, otherwise
it remains enabled. Similarly, for the Next button, we will disable it if we have reached the
last panel

The button handler calls the navigate method where it passes the reference of the panel
object (btn.up("panel")) and the direction text—next using the following line:

navigate(btn.up("panel"), "next");

There's more...
By default, card layout sets the first item as the active item and the user would see that on the
screen when the application comes up. However, there might be a situation where we would like
a different item to remain active, by default. Let's see what facility the card layout provides.

Changing the default active item
Card layout provides the property named activeItem that can be used to set the item which
will be active, by default. The default value of this property is 0. To show the second item as
the default panel when the container is initialized, setting activeItem to 1 on the container
panel would do the work for us. The following code snippet shows the use of this property:

var pnl = new Ext.Panel({
 title: 'Wizard',
 fullscreen: true,
 layout: 'card',
 activeItem: 1,
});

Alternatively, you may use the setActiveItem method to set the active item at runtime.

Containers and Layouts

88

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with panel in this chapter

ff The recipe named Panel docking using DockLayout in this chapter

Panel docking using DockLayout
The dock panel is used to position the child content along the edge of a layout container.
Sencha Touch provides the mechanism to dock items along any of the four edges: top, left,
bottom, and right. In this recipe, we will see what needs to be done to use a dock layout.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch03_05.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var pnl = new Ext.Panel({
 fullscreen: true,
 bodyStyle: 'padding:15px',
 dockedItems: [{
 dock : 'top',
 bodyStyle: 'background:grey;',
 html: '<p>Panel 1</p>'
 },{
 dock : 'bottom',
 bodyStyle: 'background:blue;',
 html: '<p>Panel 2</p>'
 },{
 dock : 'right',
 bodyStyle: 'background:green;',
 html: '<p>Panel 3</p>'
 },{

Chapter 3

89

 dock : 'left',
 bodyStyle: 'background:yellow;',
 html: '<p>Panel 4</p>'
 }]
 });
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. The following screenshot shows how the view
will look:

How it works...
The preceding code creates a panel with four docking panels along four different edges. The
dock layout considers the dockedItems property. In addition, irrespective of the value of the
layout config, if a container has dockedItems defined, they would be rendered using the
dock layout.

www.allitebooks.com

http://www.allitebooks.org

Containers and Layouts

90

Dock is a property specific to the dock layout. By default, the dock layout will render the item
at the top if the dock property is not set for that item.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with panel in this chapter

Fitting into the container using FitLayout
The fit layout is for the container that contains a single item that automatically expands to fill
the layout's container. The card layout utilizes the fit layout to fit an item into a card. In this
recipe, we will learn about the use of the fit layout.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch03_06.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var pnl = new Ext.Panel({
 fullscreen: true,
 layout: 'fit',
 bodyStyle: 'padding:15px',
 items: [{
 bodyStyle: 'background:grey;',
 html: '<p>Panel 1</p>'
 }]
 });
 }
});

2.	 Update the index.html file.

Chapter 3

91

3.	 Deploy and access it from the browser. The following screenshot shows the view:

How it works...
layout: 'fit' initializes the fit layout class and associates it with the panel, which will then
be used to render the child items. There is no other config specific to the fit layout.

If the container with a fit layout has multiple panels, then
only the first one will be displayed.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with panel in this chapter

Containers and Layouts

92

Arranging your items horizontally using
HBoxLayout

The HBox layout arranges items horizontally across a container. It optionally divides the available
horizontal space between child items containing a flex configuration, which is numeric. The
flex option is a ratio that distributes the width after any items with explicit widths have been
accounted for. We can either use the width property to specify a fixed width or use flex. This
recipe describes how we can arrange our items using the hbox layout.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch03_07.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var pnl = new Ext.Panel({
 width: 400,
 height: 300,
 fullscreen: true,
 layout: 'hbox',
 items: [{
 flex: 3,
 html: 'First',
 bodyStyle: 'background:grey;'
 },{
 width: 100,
 html: 'Second',
 bodyStyle: 'background:blue;'
 },{
 flex: 2,
 html: 'Third',
 bodyStyle: 'background:yellow;'
 }]
 });
 }
});

Chapter 3

93

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. The following screenshot shows the view:

How it works...
The preceding code creates a panel 400 pixels wide and 300 pixels high. In addition, it has
three child panels where one panel has a fixed width of 100px and others are using flex. This
is how the hbox layout will calculate the width of each item:

ff The fixed width item is subtracted, leaving us with 300px width

ff The total flex number is counted, in this case, it is 5

ff The ratio is then calculated, 300 / 5 = 60

ff The first item has a flex of 3, so its width is set to 3 * 60 = 180px

ff The other remaining item is set to 2 * 60 = 120px

Containers and Layouts

94

There's more...
Additionally, the hbox layout provides options such as rendering the items in the reverse
order, and controlling the vertical and horizontal alignment of the item.

Component vertical alignment
If there is no height specified for the items, you would notice that the items do not occupy the
complete container height. In some cases, you may have a need to make the item occupy the
complete container height. In order to achieve this, set the align property to stretch, as
shown in the following code snippet:

layout: {
 type: 'hbox',
 align: 'stretch'
}

Other valid values for the align property are center, start, and end.

Lay out items in reverse order
Suppose we are developing a panel where, based on the user locale, you may want to show
the items from left-to-right or right-to-left. If this is a need, then we can use the direction
property to achieve the desired result. Setting the direction to reverse would render the
items in the reverse order. The following code snippet shows the use of the property:

layout: {
 type: 'hbox',
 direction: 'reverse'
}

Once set, the view will show the panels in the reverse order as shown in the following
screenshot:

Chapter 3

95

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with panel in this chapter

Arranging your items vertically using
VBoxLayout

The VBox layout arranges items vertically down in a container. It optionally divides the
available vertical space between child items containing a flex configuration, which is
numeric. The flex option is a ratio that distributes the height after any items with explicit
heights have been accounted for. We can either use the height property to specify a fixed
height or use flex. This recipe describes how we can arrange our items by using the
vbox layout.

Containers and Layouts

96

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch03_08.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var pnl = new Ext.Panel({
 width: 400,
 height: 400,
 fullscreen: true,
 layout: {
 type: 'vbox',
 align: 'stretch'
 },
 items: [{
 flex: 2,
 html: 'First',
 bodyStyle: 'background:grey;'
 },{
 height: 100,
 html: 'Second',
 bodyStyle: 'background:blue;'
 },{
 flex: 1,
 html: 'Third',
 bodyStyle: 'background:yellow;'
 }]
 });
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. The following screenshot shows the view:

Chapter 3

97

How it works...
The preceding code creates a panel 400 pixels wide and 400 pixels high. In addition, it has
three child panels where one panel has a fixed height of 100px and the others are using
flex. This is how the vbox layout will calculate the height of each item:

ff The fixed height item is subtracted, leaving us with a 300px height

ff The total flex number is counted, in this case, it is 3

ff The ratio is then calculated, 300 / 3 = 100

ff The first item has a flex of 2, so its height is set to 2 * 100 = 200px

ff The other remaining item is set to 1 * 100 = 100px

Containers and Layouts

98

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with panel in this chapter

Mixing layouts
In previous recipes, we looked at the different container layouts which are available with
Sencha Touch. Given the different layouts, a question that arises is whether these layouts are
compatible with each other to an extent where they can be nested. For example, is it valid to
use the hbox layout at the parent container level but use vbox inside the subcontainer? The
answer is, Yes. Technically, it is feasible to combine multiple layouts to create complex looking
views. For example, we can have a panel with a card layout, with each item having an hbox
layout and each of its items having a vbox layout and the final container having an auto
layout with few docked items defined.

In this recipe, we will see how we can mix different layouts and the important points that we
need to keep in mind when we use these combinations.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch03_09.js and paste the following code into it:
Ext.setup({
 onReady: function() {
var pnl = new Ext.Panel({
 width: 400,
 height: 400,
 fullscreen: true,
 layout: {
 type: 'vbox',
 align: 'stretch'
 },
 items: [{
 flex: 2,

Chapter 3

99

 html: 'First',
 bodyStyle: 'background:grey;',
 items: [{layout: {
 type: 'hbox',
 align: 'stretch'
 },
 items: [{
 flex: 2,
 html: 'First',
 bodyStyle: 'background:grey;',
 items: [{layout: 'fit',
 bodyStyle: 'padding:15px',
 items: [{
 xtype: 'textareafield',
 name : 'url',
 label: 'Website'
 }]
 }]
 },{
 width: 100,
 html: 'Second',
 bodyStyle: 'background:blue;'
 },{
 flex: 1,
 html: 'Third',
 bodyStyle: 'background:yellow;'
 }]}]
 },{
 height: 100,
 html: 'Second',
 bodyStyle: 'background:blue;'
 },{
 flex: 1,
 html: 'Third',
 bodyStyle: 'background:yellow;'
 }]
});
 }
});

2.	 Update the index.html file.

Containers and Layouts

100

3.	 Deploy and access it from the browser. The following screenshot shows the view:

How it works...
The preceding code creates a top-level panel with the vbox layout and one of its items having
an hbox layout. The subitem of the panel with the hbox layout has an item with the
fit layout.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with panel in this chapter

4
Building

Custom Views

In this chapter, we will cover:

ff Basic HTML templating using Template

ff Using XTemplate for advanced templating

ff Conditional view rendering using XTemplate

ff Designing a custom view using DataView

ff Showing the filtered data

ff Responding to the user action

Introduction
In Chapters 2 and 3, we saw how to make use of different form fields, containers, and
layouts to create a view of our choice. The out-of-the-box layouts provided by Sencha Touch
have a pre-defined way to position the components and calculate their sizes. Often, there
may be situations in the application where the view cannot be created, directly using the
available containers, components, and layouts. For example, if we wanted to create a photo
album where the view shows the photos in a matrix based on the dimension of the device.
Alternatively, suppose we wanted to design a view similar to the Facebook feed view. There is
no direct layout supporting these needs. If we try to achieve it by mixing different layouts, it
would become a heavy view, which would use multiple containers. We would have to work with
the styles to do some tweaking on top of what the layouts provide us to align the information
properly. Alternatively, Sencha Touch provides us a way to create templates using HTML
fragments and use them along with the data set to render custom views.

Building Custom Views

102

There are two types of templates provided: Template and XTemplate. Template provides us
the basic template functionality, whereas XTemplate is much more advanced. Additionally,
Sencha Touch provides a DataView, which uses an XTemplate to render the view and a store
for the data. It also provides events which can be used to respond to user actions.

In this chapter, we will learn about each one of these options to render the custom view and
understand their specific usage.

Basic HTML templating using Template
Template provides a way to create templates using the HTML fragments. It contains HTML
elements and various placeholders which are replaced with the values of the fields present
in the data that is given to the template API to use in conjunction with the template text. For
example, we may have a <div> element present in the body and, based on the data, we may
add and elements to it at runtime.

In this recipe, we will look at a typical usage of template and understand what it takes to
define and use one.

Getting ready
Make sure that you have set up your development environment by following the Gear up for
the Journey recipe outlined in Chapter 1.

Create a new folder named ch04 in the same folder where we created the ch01 and ch02
folders. We will be using this new folder in which to keep the code.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch04_01.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var data = [{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/flowers_
 pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'}, {
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 redroses08.jpg',

Chapter 4

103

 title:'Rose 2',
 about:'Red'}, {
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 abflowers5613.jpg',
 title:'Rose 3',
 about:'Pink'}, {
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers0399.jpg',
 title:'Rose 4',
 about:'Orange'}, {
 album:'daffodil',
 url:'http://www.pictures.vg/vgflowers/400x300/
 daff001.jpg',
 title:'Daffodil 1',
 about:'Yellow'}, {
 album:'daffodil',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers0484.jpg',
 title:'Daffodil 2',
 about:'Small'}, {
 album:'daffodil',
 url:'http://www.pictures.vg/vgflowers/400x300/
 abflowers2232.jpg',
 title:'Daffodil 2',
 about:'Orange'}, {
 album:'daffodil',
 url:'http://www.pictures.vg/vgflowers/400x300/
 abflowers7230.jpg',
 title:'Daffodil 2',
 about:'Winter'}, {
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers4214.jpg',
 title:'Hibiscus 1',
 about:'Peach'}, {
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers3250.jpg',
 title:'Hibiscus 1',
 about:'Red'}, {
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers2631.jpg',

Building Custom Views

104

 title:'Hibiscus 1',
 about:'Pink'}, {
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers5645.jpg',
 title:'Hibiscus 1',
 about:'Maroon'}, {
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers0577.jpg',
 title:'Hibiscus 1',
 about:'Pink'}, {
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers3224.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];

 var t = new Ext.Template
 ('<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div>');

 Ext.each(data, function(item, index, allItems){
 t.append(Ext.getBody(), item);
 });
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see a screen similar to the one shown in the following screenshot:

Chapter 4

105

How it works...
In the preceding code, we have a JSON object stored in data. Each data has album, url,
title, and about fields which are referred to in the HTML fragment given to the template.

{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'

}

The following code instantiates Ext.Template with the HTML fragment containing the
placeholders: {url}, {title}, {about}, which are then replaced with the real values from
the data when the append method is called on the template. The placeholder name must
match with the field name in the data.

var t = new Ext.Template
 ('<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',

Building Custom Views

106

 '<p>{about}</p>',
 '</div>');

In the following code, we are calling the template's append method to render each item to
the body:

Ext.each(data, function(item, index, allItems){
 t.append(Ext.getBody(), item);
});

There's more...
A template uses placeholders, which can be either a field name or an index in the data.
Internally, a template goes through the stage of compilation and then starts applying the data
to the template to get the final HTML fragment that is appended to the element (in this case,
body). Additionally, it also provides us a way to use different in-built formats and apply them
to the data before displaying.

Compiling the template
Compilation of a template is a costly affair. This is the stage where the framework parses
the template string and replaces the appropriate function references to get the values for
the placeholders. If we are creating a template once in our code and re-using it to render
a view at different stages in the code, then it makes sense to minimize the time spent in
the compilation because now the template can be compiled only once and used multiple
times. Ext.Template provides the option as well as a method to compile the template. The
property named compiled, when set to true at the time of instantiating a template, will be
instantiated and then compiled. However, on-demand, if we want to compile the template,
then we can call the compile method on the template instance. The following code snippet
shows the use of the property for an immediate compilation:

var t = new Ext.Template
 ('<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div>',
 {
 compiled: true // compile immediately

 }
);

Chapter 4

107

The following code snippet shows the usage of the compile method:

t.compile();

Formatting values
In some cases, there may be a need to cook the incoming data before it is displayed on the
screen. For example, you may want to format the date properly or you may want to terminate
the large text with ellipsis. The Ext.Template class allows us to use the formats defined in
the Ext.util.Format class to format the values. The following code snippet shows a typical
usage of a format:

var t = new Ext.Template([
 '<div name="{id}">',
 '{name:trim} {value:ellipsis(10)}',
 '</div>',
]);

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Using XTemplate for advanced templating
Conceptually, XTemplate provides similar functionality to that which Template provides.
However, it also provides certain advanced functionalities to work with the template and its
data quickly. This recipe describes the use of XTemplate and demonstrates the difference
between XTemplate and Template.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Building Custom Views

108

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch04_02.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var data = [{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'},
 …
 …
 {
 album:'hibiscus',
 url:'http:/
 /www.pictures.vg/vgflowers/400x300/cflowers2631.jpg',
 title:'Hibiscus 1',
 about:'Pink'}];

 var t = new Ext.XTemplate('<tpl for=".">',
 '<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div></tpl>');
 t.append(Ext.getBody(), data);
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see a screen similar to the one shown in the following screenshot:

Chapter 4

109

How it works...
The preceding code uses the same JSON data that we used in the previous recipe.

We are then instantiating the Ext.XTemplate class with a similar HTML fragment, which we
used with the Ext.Template:

 var t = new Ext.XTemplate('<tpl for=".">',
 '<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div></tpl>');

One difference is that, now, in the HTML fragment, we have enclosed the original HTML within
a <tpl> tag, which is specific to the XTemplate. <tpl for="."> is an XTemplate shortcut
to say that this HTML fragment will be used for each item in the data array, which is passed
to the template append method. As the looping construct is part of the XTemplate, we don't
have to loop through the data array. So, the t.append(Ext.getBody(), data); line will
do the work for us.

Building Custom Views

110

There's more...
Similar to Ext.Template, Ext.XTemplate also provides the compilation and formatting
capabilities.

Compiling the template
XTemplate also has a property named compiled and a method compile to accomplish
the compilation task. The following code snippet shows the use of the property for immediate
compilation:

var t = new Ext.XTemplate
 ('<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div>',
 {
 compiled: true // compile immediately
 }
);

The following code snippet shows the usage of the compile method:

t.compile();

Formatting values
XTemplate has similar formatting functionality that is available with Template. Refer to the
Basic HTML templating using Template recipe for more details.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Basic HTML templating using Template in this chapter

Chapter 4

111

Conditional view rendering using XTemplate
In the previous recipe, we saw how to use XTemplate, but did not utilize its capabilities such
as using auto-filling arrays, conditional processing, math function, and so on to build the view
by making different decisions on the incoming data. For example, in the previous recipe, we
are showing all kinds of flowers in our view. What if we just want to show roses? This is where
XTemplate helps us to put the constructs inside the template definition and not make any
change to the data.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch04_03.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var data = [{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'},
 …
 …
 {
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers2631.jpg',
 title:'Hibiscus 1',
 about:'Pink'}];
 var t = new Ext.XTemplate('<tpl>',
 '<tpl for="items">',
 '<tpl if="album==parent.filter && this.
 matchFound()">',
 '<div style="float:left;margin:10px;border:sol
 id;">',

Building Custom Views

112

 '<img border="0" src={url} title={title}
 width="100" height="80" />',
 '<p>{about}</p>',
 '</div></tpl></tpl>',
 '<tpl if="this.isMatchNotFound()">',
 '<h1>No match found!!',
 '</tpl></tpl>',
 {
 found: false,
 matchFound: function(){
 this.found = true;
 return this.found;
 },
 isMatchNotFound: function(){
 return this.found ? false: true;
 }
 });

 t.append(Ext.getBody(), {filter: 'rose', items: data});
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see a screen similar to the one shown in the following screenshot:

Chapter 4

113

How it works...
The preceding code uses the additional capabilities such as conditions, loops, inline
functions, and in-built variables offered by XTemplate to show the filtered items. Based on
the value specified in the filter property of the data, which is passed to the template, it
checks if there are images whose album name matches with the filter and the matching
ones are shown in the view, otherwise the No match found! message is displayed.

The data, which is being passed to the template, has the following structure:

{filter: 'rose', items: data}

<tpl for="items"> tells that the content inside this <tpl> tag is applied to each item of
the items array passed as part of the data.

In the line:

<tpl if="album==parent.filter && this.matchFound()">

We are comparing the album field on the incoming data with the filter value ('rose' in
this case) and calling an inline function matchFound() to set a member property found to
true indicating that a matching item has been found, as shown in the following code:

matchFound: function(){
 this.found = true;
 return this.found;
}

For the entire matching item, the following HTML fragment is used to render them:

'<div style="float:left;margin:10px;border:solid;">',
 '<img border="0" src={url} title={title} width="100"
 height="80" />',
 '<p>{about}</p>',
 '</div>'

The following template fragment checks if there are any matches found; if no, it displays No
match found!!:

'<tpl if="this.isMatchNotFound()">',
 '<h1>No match found!!',

 '</tpl>

Building Custom Views

114

See also
The recipe named Setting up the browser-based development environment in Chapter 1.

Designing a custom view using DataView
Template and XTemplate provide a way to create elements using the template,
placeholders, and the data. There is one thing which is not really straightforward and this is
the support for events. For example, if you want to handle the click on a rose to show a bigger
picture of it, this is not very straightforward. We will have to work with elements and register
handlers for the different DOM events that we may be interested in. In addition, there is no
way to leverage the store. Store is covered in more detail in the next chapter. For now, we
can say that a store is a data structure, which can hold a collection of records and can be
associated with components, such as DataView, to provide it the required data to render their
view. Sencha Touch provides a convenient way to create views by using XTemplate and link it
with a data store and also provides events that we can handle to respond to the user action—
using DataView.

This recipe describes the steps to use DataView.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch04_04.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var data = [{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'}
 …
 …
, {

Chapter 4

115

 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers2631.jpg',
 title:'Hibiscus 1',
 about:'Pink'}];

 var store = new Ext.data.JsonStore({
 data: data,
 mode: 'local',
 fields: [
 'url', 'title','about'
]
 });

 var tpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb">
 </div>',
 '{about}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
);
 var panel = new Ext.Panel({
 id:'images-view',
 frame:true,
 width:535,
 fullscreen: true,
 autoHeight:true,
 layout:'fit',
 title:'Simple DataView',

 items: new Ext.DataView({
 data: data,
 store: store,
 tpl: tpl,
 autoHeight:true,
 overItemCls:'x-view-over',
 itemSelector:'div.thumb-wrap',
 emptyText: 'No images to display'
 })
 });
 }
});

Building Custom Views

116

2.	 Create and open a new file named ch04.css and paste the following style code into it:
#images-view .x-panel-body{
 background: white;
 font: 11px Arial, Helvetica, sans-serif;
}
#images-view .thumb{
 background: #dddddd;
 padding: 3px;
}
#images-view .thumb img{
 height: 60px;
 width: 80px;
}
#images-view .thumb-wrap{
 float: left;
 margin: 4px;
 margin-right: 0;
 padding: 5px;
}
#images-view .thumb-wrap span{
 display: block;
 overflow: hidden;
 text-align: center;
}

#images-view .x-view-over{
 border:1px solid #dddddd;
 background: #efefef url(images/row-over.gif) repeat-x left top;
 padding: 4px;
}

#images-view .x-item-selected{
 background: #eff5fb url(images/selected.gif)
 no-repeat right bottom;
 border:1px solid #99bbe8;
 padding: 4px;
}
#images-view .x-item-selected .thumb{
 background:transparent;
}

3.	 Update the index.html file by including the css and js files.

Chapter 4

117

4.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see a screen similar to the one shown in the following screenshot:

How it works...
The preceding code uses the Ext.DataView class to create a custom view. We have created
a panel with DataView as its child item.

First, we created a JSON store to hold the data. You may refer to Chapter 5, Dealing with Data
and Data Sources for a detailed discussion on the different type of stores:

var store = new Ext.data.JsonStore({
 data: data,
 mode: 'local',
 fields: [
 'url', 'title','about'
]
});

Building Custom Views

118

url, title, and about are the fields that will be present in the record stored within the
store. mode: 'local' tells us that the data for the store is coming from the in-memory
object rather than from a remote location.

Then, we instantiated XTemplate in the following part of the code:

var tpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"></div>',
 '{about}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
);

The template is using title, url, and about as the placeholders. The CSS classes used in
the template are defined in the ch04.css file.

Next, we created a panel with the fit layout and DataView as its only item, so that it fits
itself to the area available with the container panel.

To the panel, we are adding DataView as follows:

items: new Ext.DataView({
 data: data,
 store: store,
 tpl: tpl,
 autoHeight:true,
 overItemCls:'x-view-over',
 itemSelector:'div.thumb-wrap',
 emptyText: 'No images to display'
})

store: store is where we associated our store object with DataView. Moreover, the tpl
property helps us in associating XTemplate with DataView, which it will use to render
the items in the view. itemSelector tells that when the user selects or taps, the element
accessible using the div.thumb-wrap selector will be returned to the event handlers.

There's more...
When we are working with custom views, it is also important that we are sensitive towards the
orientation change. Let's see how it can be done with DataView.

Chapter 4

119

Orientation change
In order to handle the orientation change, first we will have to set the monitorOrientation
property to true on DataView and register a handler for the orientationchange event on
DataView and in the handler; we must call the refresh method. The following code snippet
shows how to do this:

orientationchange: function(thisPnl, orientation, width, height) {
 thisPnl.refresh();
}

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Panel in Chapter 3

ff The recipe named Working with Store in Chapter 5

Showing the filtered data
In the previous recipe, we saw how to create DataView and use XTemplate and a store to
generate the view. In this recipe, we will see if we have to show only the relevant items in the
view, and how we go about approaching it.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch04_05.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var data = [{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'},

Building Custom Views

120

 …
 …
, {
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers3224.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];

 var store = new Ext.data.JsonStore({
 data: data,
 mode: 'local',
 fields: [
 'url', 'title','about'
]
 });

 var tpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"><img src="{url}"
 title="{title}"></div>',
 '{about}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
);

 var filter = function(criteria) {
 return store.filterBy(function(record, id){
 if (record.get('album') === criteria ||
 Ext.isEmpty(criteria))
 return true;
 else
 return false;
 });
 }

 var pnl = new Ext.Panel({
 id:'images-view',
 fullscreen: true,
 defaults: {
 border: false
 },

Chapter 4

121

 items: new Ext.DataView({
 data: data,
 store: store,
 tpl: tpl,
 autoHeight:true,
 simpleSelect: true,
 overItemCls:'x-view-over',
 itemSelector:'div.thumb-wrap',
 emptyText: 'No images to display'
 }),
 dockedItems: [
 {
 xtype: 'toolbar',
 dock: 'top',
 items: [
 {
 text: 'Rose',
 handler: function() {
 filter('rose');
 }
 },
 {
 text: 'Daffodil',
 handler: function() {
 filter('daffodil');
 }
 },{
 text: 'Hibiscus',
 handler: function() {
 filter('hibiscus');
 }
 },{
 text: 'Reset',
 ui: 'confirm',
 handler: function() {
 filter('');
 }
 }
]
 }
]
 });
 }
});

Building Custom Views

122

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see a screen similar to the one shown in the following screenshot:

4.	 Click on the Rose button. You will see roses on the screen as shown in the following
screenshot:

Chapter 4

123

How it works...
In the preceding code, besides DataView, we have also added a docked toolbar with a button
for each album (Rose, Daffodil, and Hibiscus) and a Reset button. We have then registered
the click handler for all buttons and each handler is calling the filter function with the filter
criteria as follows:

{
 text: 'Hibiscus',
 handler: function() {
 filter('hibiscus');
 }
}

In the case of the Reset click handler, filter('') is called which ensures that all the items
are displayed in the view as shown in the following code snippet:

var filter = function(criteria) {
 return store.filterBy(function(record, id){
 if (record.get('album') === criteria || Ext.isEmpty(criteria))
 return true;

Building Custom Views

124

 else
 return false;
 });
}

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Panel in Chapter 3

ff The recipe named Designing a custom view using DataView in this chapter

ff The recipe named Working with Store in Chapter 5

ff The recipe named Filtering data in Chapter 5

Responding to the user action
So far, we have seen how to create DataView, bind it to an XTemplate and a store, and
apply certain filtering on the data. In this recipe, we will see how to handle the events
generated as part of the user action, for example, when a user selects an item in the view.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch04_06.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var data = [{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'},
 …
 …

Chapter 4

125

 ,{
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers3224.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];

 var store = new Ext.data.JsonStore({
 data: data,
 mode: 'local',
 fields: [
 'url', 'title','about'
]
 });

 var tpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"></div>',
 '{about}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
);

 var filter = function(criteria) {
 return store.filterBy(function(record, id){
 if (record.get('album') === criteria || Ext.isEmpty(criteria))
 return true;
 else
 return false;
 });
 }

 var pnl = new Ext.Panel({
 id:'images-view',
 fullscreen: true,
 scroll: false,
 monitorOrientation: true,
 layout: 'card',
 defaults: {
 border: false
 },

Building Custom Views

126

 items: [new Ext.DataView({
 data: data,
 store: store,
 scroll: 'vertical',
 tpl: tpl,
 autoHeight:true,
 singleSelect: true,
 overItemCls:'x-view-over',
 itemSelector:'div.thumb-wrap',
 emptyText: 'No images to display',
 listeners: {
 selectionchange: function(model, recs) {
 if (recs.length > 0) {
 Ext.getCmp('detail-panel').update('<img src="' +
 recs[0].data.url + '" title="' +
 recs[0].data.title + '">');
 Ext.getCmp('images-view').
 getLayout().setActiveItem(1);
 Ext.getCmp('back-button').show();
 Ext.getCmp('rose-button').hide();
 Ext.getCmp('daffodil-button').hide();
 Ext.getCmp('hibiscus-button').hide();
 }
 }
 }
 }), new Ext.Panel({
 id: 'detail-panel',
 width: 400,
 height: 300,
 styleHtmlContent: true,
 scroll: 'vertical',
 cls: 'htmlcontent'
 })],
 dockedItems: [
 {
 xtype: 'toolbar',
 dock: 'top',
 items: [
 {
 text: 'Rose',
 id: 'rose-button',
 handler: function() {
 filter('rose');
 }

Chapter 4

127

 },
 {
 text: 'Daffodil',
 id: 'daffodil-button',
 handler: function() {
 filter('daffodil');
 }
 },{
 text: 'Hibiscus',
 id: 'hibiscus-button',
 handler: function() {
 filter('hibiscus');
 }
 },{
 text: 'Reset',
 id: 'reset-button',
 ui: 'decline-round',
 handler: function() {
 Ext.getCmp('images-view').
 getLayout().setActiveItem(0);
 filter('');
 }
 },{
 text: 'Back',
 id: 'back-button',
 ui: 'back',
 hidden: true,
 handler: function() {
 Ext.getCmp('images-view').
 getLayout().setActiveItem(0);
 this.hide();
 Ext.getCmp('rose-button').show();
 Ext.getCmp('daffodil-button').show();
 Ext.getCmp('hibiscus-button').show();
 }
 }
]
 }
]
 });

 }
});

Building Custom Views

128

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see a screen as shown in the following screenshot:

4.	 Click on an item. You will see the bigger image shown in the second card with the
Reset and Back button on the toolbar, as shown in the following screenshot:

Chapter 4

129

How it works...
The preceding code makes changes on top of the functionality that we built in the previous
recipe. We changed the layout of the main container panel from fit to card and added
DataView to the first card and another panel to the second card to show the bigger image
of the selected flower. In addition, we added a Back button to the docked toolbar, so that the
user can come back to the multiple images view from the detail view.

singleSelect is set to true on DataView to enable the user to select an item from the
view. Moreover, a selectionchange listener is registered to show the bigger image of the
flower on the second card panel, switch the active panel to the second, and show/hide the
toolbar buttons, appropriately, as follows:

singleSelect: true,
listeners: {
 selectionchange: function(model, recs) {
 if (recs.length > 0) {
 Ext.getCmp('detail-panel').update('<img src="' +
 recs[0].data.url + '" title="' + recs[0].data.title + '">');
 Ext.getCmp('images-view').getLayout().setActiveItem(1);
 Ext.getCmp('back-button').show();

Building Custom Views

130

 Ext.getCmp('rose-button').hide();
 Ext.getCmp('daffodil-button').hide();
 Ext.getCmp('hibiscus-button').hide();
 }
 }
}

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Panel in Chapter 3

ff The recipe named Designing a custom view using DataView in this chapter

ff The recipe named Building wizards using CardLayout in Chapter 3

5
Dealing with Data and

Data Sources

In this chapter, we will cover:

ff Creating models

ff Loading the form using a data model

ff Working with Store

ff Converting incoming JSON data into models using JsonReader

ff Converting incoming XML data into models using XmlReader

ff Validations in models

ff Defining the custom validation

ff Relating models using Association

ff Persisting session specific information using SessionStorageProxy

ff Persisting data using LocalStorageProxy

ff Accessing in-memory data using MemoryProxy

ff Loading data through AJAX using AjaxProxy

ff Sorting of the data

ff Data grouping

ff Filtering data

ff Using a cross-domain URL in your application

Dealing with Data and Data Sources

132

Introduction
Imagining an application without the need for data is impossible in today's world. Almost
every application has a need for data and some ways to store and work with them effectively
and efficiently. Sencha Touch provides a rich set of classes to work with varied data sources,
represent structured data, and store it locally, which can then be fed to different data centric
components such as list, form, combo-box, charts, and so on. It also provides classes and
APIs to validate, filter, sort, and group data. The following diagram depicts the different
classes, which are part of the data infrastructure provided by Sencha Touch:

Reader

Proxy Model Store

Writer

Data
Source

list

form

combo

charts

ff Proxy: Proxies allow us to interface with different data sources such as REST
services, Servlet, in-memory array, HTML5-based storage, and so on to read data
from or save data to.

ff Reader: Readers are used during the loading of the data. They interpret the data into
a model or a store. Based on the type of data we have to deal with, the respective
reader is used, for example, for JSON type data, JsonReader is used whereas for
XML data, XmlReader is used.

ff Writer: Writers are used during saving the data. Similar to a reader, an appropriate
writer is used based on the type of data we deal with—JSON or XML.

ff Model: Models represent the object which our application uses and works with. For
example, a user, payment objects used by the application containing application
specific fields and methods manipulating those fields. A store contains a collection of
such models.

Chapter 5

133

ff Store: Stores are a collection, which contains the models, and are used by the
different components. This is the class which helps us reuse the collection across
multiple components. For example, the same store can be used for populating a grid,
as well as in a chart.

The following diagram depicts a typical flow involving different concepts to show how the raw
data from a data source is rendered in a grid:

In this chapter, we will learn about every aspect of the data infrastructure provided by Sencha
Touch. We will work through models to represent our data structure, use it to render views,
make use of the stores and different proxies to load and save data.

Creating models
Let's start with understanding how we can represent a data structure by using a model and
create objects using it.

Dealing with Data and Data Sources

134

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1, Gear up for the Journey.

Create a new folder named ch05 in the same folder where we created the ch01 and ch02
folders. We will be using this new folder in which to keep the code.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_01.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.regModel('User', {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
]
 });

 var user = Ext.ModelMgr.create({
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajitkumar@walkingtree.in'
 }, 'User');

 Ext.Msg.alert('INFO', user.get('name'));
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator.

Chapter 5

135

How it works...
Ext.regModel is a shortcut for Ext.ModelMgr.registerType using which we registered
a model definition with the model manager—ModelMgr. The method does a lot of work in
the background. First, it normalizes the configured associations as there are different ways
that the association configuration can be specified, which we will learn more about in the
Relating models using Associations recipe later in this chapter. After the normalization is
done, it checks whether the model is extending any other model. If so, it copies all the fields,
associations, and validations from the super-class model. Then, the fields and associations
are created and it sets the proxy, its type, and the method that will be used to load the data
into the model.

Once registered, by using the Ext.ModelMgr.create method we created a model with
specific data. To the create method, we also passed the model name—User— that we had
registered with the ModelMgr. Based on this, ModelMgr constructs an object for us, copies
the field values, and returns it to us.

Once a model is created, ModelMgr, by default, provides getter and setter methods for every
field. user.get('name') returns the value stored in the name field of the model. To set a
field value, we call the setter method—user.set('age', 33).

Each field in the fields array represents Ext.data.Field. There are various useful
properties supported by the field. However, in the preceding code, we have used name, type,
and defaultValue properties. The type property, when specified, is used by the framework
to perform the conversion and formatting of the incoming value based on the specified type.
The following are the types that the Ext.data.Field supports:

ff auto allows every kind of value; if no type property is specified, then auto is selected
as the default

ff string

ff int

ff float

ff boolean

ff date

The defaultValue property helps us to set the value that will be used as a default for
a field.

For the date type field, we can also use the dateFormat property to specify the format in
which the date will be converted.

Another important property on a field is convert. This accepts a function which can be used
to convert the value provided by Reader into an object that will be stored in the model.

Dealing with Data and Data Sources

136

There's more...
We can imagine a model as an object and due to its very nature, it also allows us to define
methods inside it to implement a certain logic. Additionally, it also allows us to create a model
by extending another model. Let's see how to make use of these functionalities.

Adding methods to a model
The following code snippet shows how a changeName method is defined inside the User
model, which is appending an additional text to the user's name:

 Ext.regModel('User', {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
],

 changeName: function() {
 var oldName = this.get('name'),
 newName = oldName + " Azad";

 this.set('name', newName);
 }
 });

Once the method is defined, calling it is as easy as calling a method on any object as shown in
the following code snippet:

 user.changeName();
 Ext.Msg.alert('INFO', .get('name'));//shows Ajit Kumar Azad

Extending a model
Sencha Touch follows object oriented approaches and methodologies. As part of this, it has
also provided a mechanism to extend one class from another, though it is not something
offered by JavaScript, directly. Moreover, the same has been applied to models as well, which
allows us to create a model by extending an existing model. The following code snippet shows
that we are defining a model named MyUser which is extending the User model and adding a
new field—dob:

 Ext.regModel('MyUser', {
 extend: 'User',
 fields: [

Chapter 5

137

 {name: 'dob', type: 'string'}
]
 });

When Ext.regModel comes across the extend property, it copies all the properties of the
base class—User—inside MyUser and hence they also become part of the new class. The
following code shows instantiating MyUser, which ensures that the properties from the User
class are available on MyUser as part of the extend mechanism:

 var myuser = Ext.ModelMgr.create({
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajitkumar@walkingtree.in',
 dob: '04-04-1978'
 }, 'MyUser');

 Ext.Msg.alert('INFO', myuser.get('name') + ' : dob : ' +
 myuser.get('dob'));

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Loading the form using a data model
In this recipe, we will see how to make use of the model that we created in the previous recipe
to populate the fields in a form.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_02.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.regModel('User', {

Dealing with Data and Data Sources

138

 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
],

 changeName: function() {
 var oldName = this.get('name'),
 newName = oldName + " Azad";

 this.set('name', newName);
 }
 });

 var user = Ext.ModelMgr.create({
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajit.kumar@walkingtree.in'
 }, 'User');

 user.changeName();

 var form;

 var formBase = {
 scroll: 'vertical',
 items: [{
 xtype: 'fieldset',
 title: 'Personal Info',
 instructions: 'Please enter the information above.',
 defaults: {
 required: true,
 labelAlign: 'left',
 labelWidth: '40%'
 },
 items: [
 {
 xtype: 'textfield',
 name : 'name',
 label: 'Name',
 useClearIcon: true,

Chapter 5

139

 autoCapitalize : false
 }, {
 xtype: 'numberfield',
 name : 'age',
 label: 'Age',
 useClearIcon: false
 }, {
 xtype: 'textfield',
 name : 'phone',
 label: 'Phone',
 useClearIcon: true
 }, {
 xtype: 'emailfield',
 name : 'email',
 label: 'Email',
 placeHolder: 'you@sencha.com',
 useClearIcon: true
 }, {
 xtype: 'checkboxfield',
 name : 'alive',
 label: 'Is Alive',
 useClearIcon: true
 }]
 }
],
 listeners : {
 submit : function(form, result){
 console.log('success', Ext.toArray(arguments));
 },
 exception : function(form, result){
 console.log('failure', Ext.toArray(arguments));
 }
 },

 dockedItems: [
 {
 xtype: 'toolbar',
 dock: 'bottom',
 items: [
 {
 text: 'Load',
 handler: function() {
 //load fields from model
 form.loadRecord(user);

Dealing with Data and Data Sources

140

 }
 },
 {
 text: 'Reset',
 ui: 'decline',
 handler: function() {
 form.reset();
 }
 },
 {
 text: 'Save',
 ui: 'confirm',
 handler: function() {
 Ext.Msg.alert("INFO", "In real
 implementation, this will be saved!");
 }
 }
]
 }
]
 };

 if (Ext.is.Phone) {
 //phone specific configuration
 formBase.fullscreen = true;
 } else {
 //desktop specific configuration
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = new Ext.form.FormPanel(formBase);
 form.show();
 }
});

Chapter 5

141

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator.

4.	 Click on the Load button to load model data into the fields. You will see a screen
similar to the one shown in the following screenshot:

How it works...
In the preceding code, we created a model, a form panel with fields Name, Age, Phone,
Email, and Is Alive and buttons Load, Save, Reset in the docked toolbar. On clicking the Load
button, the following handler code loads the form field with the values from the
user model:

form.loadRecord(user);

For this to work, the form field name must match with the model field name.

Dealing with Data and Data Sources

142

There's more...
When we use the model to update a view, such as a form, which has editable fields whose
values can be changed by the user, a natural need arises where we question whether the
model will be updated automatically. The answer is, No. If we intend to get the updated model
and then work with it to, say, save then we need to do some work. Let's see what exactly we
will have to do if we have to use the model to save the updated form data.

Saving form data using the associated model
The getRecord method of the Ext.form.FormPanel returns the model instance currently
loaded into the form. However, the model is not automatically updated when the field value
changes. If we want to get an updated model at any instance of time, then the following piece
of code should be written inside the Save button handler:

var formValues = form.getValues();
user.set(formValues); //updates the values and marks
 the instance dirty
user.save(); //saves the data

Once we have updated our model, the save method takes care of saving it to the appropriate
data source. The detail about how it identifies which data source and how it knows whether
the data needs to be sent in XML or JSON format, and so on, will be covered in the
subsequent recipes.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Getting your form ready with FormPanel in Chapter 2

ff The recipe named Working with the select field in Chapter 2

ff The recipe named Creating models in this chapter

Working with Store
So far, we saw how to define and create a model and use it to populate a form. There are
various other components which work with a collection of models that need to be saved in a
store. In this recipe, we will look at the steps required to define a store and use it to contain
models and populate the data in a component.

Chapter 5

143

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_03.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.regModel('User', {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
]
 });

 var store = new Ext.data.Store({
 model: 'User',
 data : [{
 name : 'Ajit Kumar',
 age : 32,
 phone: '555-555-5555',
 email: 'ajit@walkingtree.in'
 }, {
 name : 'Alok Ranjan',
 age : 32,
 phone: '123-456-7890',
 email: 'alok@walkingtree.in'
 }, {
 name : 'Pradeep Lavania',
 age : 34,
 phone: '987-654-3210',
 email: 'pradeep@walkingtree.in'
 }
]
 });

Dealing with Data and Data Sources

144

 var form;

 var formBase = {
 scroll: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.is.Phone) {
 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = new Ext.form.FormPanel(formBase);
 form.show();
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see a screen similar to the one shown in the following screenshot:

Chapter 5

145

How it works...
In the preceding code, we create a form panel with a combobox with a store associated
with it. The following code creates a store object using the inline data containing the user
information:

var store = new Ext.data.Store({
 model: 'User',
 data : [{
 name : 'Ajit Kumar',
 age : 32,
 phone: '555-555-5555',
 email: 'ajit@walkingtree.in'
 }, {
 name : 'Alok Ranjan',
 age : 32,
 phone: '123-456-7890',
 email: 'alok@walkingtree.in'
 }, {
 name : 'Pradeep Lavania',

Dealing with Data and Data Sources

146

 age : 34,
 phone: '987-654-3210',
 email: 'pradeep@walkingtree.in'
 }
]
});

The model property on store instructs the store that each item in the data array will
be converted into a User model. After this, we created a combobox using the store in the
following code:

items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
}]

valueField and displayField contain the model field names whose value will be read to
populate the combobox. In our code, both fields are using the name field, so we see the user
name appearing in the selection list.

There's more...
In the recipe, we saw how to make use of the inline data to populate a store and subsequently
the combobox. In an application, we may have a need to add the records dynamically to the
store based on certain application logic. Let's see how we can do it.

Adding records to a store at runtime
There are multiple options depending upon what exactly we want to do. Let's visit each of the
options and understand what the specific usage of them is.

The following code shows appending an array of JSON objects to the store using the
loadData method:

 store.loadData([{
 name : 'Priti',
 age : 30,
 phone: '987-654-3210',
 email: 'priti@walkingtree.in'
 }], true);

Chapter 5

147

The second parameter indicates whether the new data needs to be appended if it is set to
true. If we pass false, then the old data from the store is cleared and the new data is
added to it.

The same functionality can be achieved by calling the add method, which appends the new
data to the end of the existing record set as follows:

 store.add({
 name : 'Priti',
 age : 30,
 phone: '987-654-3210',
 email: 'priti@walkingtree.in'
 });

If we want to insert the new record at a specific position in store, then the insert method
can be used, as shown in the following code snippet, where we are adding the new record
at index 1:

 store.insert(1, {
 name : 'Priti',
 age : 30,
 phone: '987-654-3210',
 email: 'priti@walkingtree.in'
 });

Last but not least, if we have models and want to use them to add records to store, we use
the loadRecords method on store as follows:

 var user = Ext.ModelMgr.create({
 name : 'Pratyush Kumar',
 age : 5,
 phone: '987-654-3210'
 }, 'User');

 store.loadRecords([user], true);

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Getting your form ready with FormPanel in Chapter 2

ff The recipe named Working with the select field in Chapter 2

ff The recipe named Creating models in this chapter

Dealing with Data and Data Sources

148

Converting incoming JSON data into models
using JsonReader

As we saw earlier in the chapter, a reader helps us in data loading and converting the
incoming data into a model, which can then be added to a store. Based on the type of data,
Sencha Touch provides two readers – JsonReader and XmlReader. In this recipe we will
see how to make use of the JsonReader to read the JSON data and prepare a model out
of it.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named users.json and paste the following into it:
{"users": [{
 "id": "1",
 "name" : "Ajit Kumar",
 "age" : "32",
 "phone": "555-555-5555",
 "email": "ajit@walkingtree.in"
 }, {
 "id": "2",
 "name" : "Alok Ranjan",
 "age" : "32",
 "phone": "123-456-7890",
 "email": "alok@walkingtree.in"
 }, {
 "id": "3",
 "name" : "Pradeep Lavania",
 "age" : "34",
 "phone": "987-654-3210",
 "email": "pradeep@walkingtree.in"
 }]

Chapter 5

149

2.	 Create and open a new file named ch05_04.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.regModel('User', {
 fields: [
 'id',
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
]
 });

 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url : 'users.json',
 reader: {
 type: 'json',
 root: 'users'
 }
 }
 });

 var form;

 var formBase = {
 scroll: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.is.Phone) {
 formBase.fullscreen = true;

Dealing with Data and Data Sources

150

 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = new Ext.form.FormPanel(formBase);
 form.show();
 }
});

3.	 Update the index.html file.

4.	 Deploy and access it from the browser. You may also run it using the emulator.

How it works...
The code creates a form panel with a selection field which shows the list of users loaded by
store from the users.json file. The users.json file contains the user information in the
JSON encoded form.

The following code creates a store by using an Ajax proxy and url pointing to the users.
json file:

 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url : 'users.json',
 reader: {
 type: 'json',
 root: 'users'
 }
 }
 });

The proxy uses the JSON reader, which is indicated by the type property of reader. The
other important property on the reader is root which needs to be set to the property in the
users.json file which contains the data array. Hence, it is set to users.

Chapter 5

151

Once the proxy and reader is setup on the store, the store knows from where it has
to load the data (proxy detail) and how the data needs to be interpreted (reader detail) to
construct the model. One thing left is when to load the date? For this, we set the autoLoad
property on store to true. This will instruct the store to start loading the data as soon as it
is initialized.

More about the proxy and reader is covered in the recipes to follow.

There's more...
There are different properties provided by the proxy and reader to help us deal with different
incoming data structures. In the next section, we will see how to deal with some of the data
structures such as nested data and metadata.

Fetching a record from a nested data
Say, if our data contains some metadata about each data such that the actual record is
nested as shown in the following data format:

{"users": [{
 "id": "1234",
 "count": "1",
 "user" : {
 "id": "1",
 "name" : "Ajit Kumar",
 "age" : "32",
 "phone": "555-555-5555",
 "email": "ajit@walkingtree.in"
 }
 }, {
 "id": "1234",
 "count": "1",
 "user" : {
 "id": "2",
 "name" : "Alok Ranjan",
 "age" : "32",
 "phone": "123-456-7890",
 "email": "alok@walkingtree.in"
 }
 }, {
 "id": "1234",
 "count": "1",
 "user" : {
 "id": "3",
 "name" : "Pradeep Lavania",

Dealing with Data and Data Sources

152

 "age" : "34",
 "phone": "987-654-3210",
 "email": "pradeep@walkingtree.in"
 }
 }]
}

To fetch the actual user information from the above structure, we will have to make use of the
record property on reader to indicate the nested field that contains the user information
as follows:

reader: {
 type: 'json',
 root: 'users',
 record: 'user'
}

Working with response metadata
Sometimes, the response contains the metadata and the actual data. These metadata
contain application specific information, which can be used by the client-side code to exhibit
certain behaviors. For example, one of the important pieces of information which helps
our application to implement pagination is the total record count returned along with the
page data, so that the frontend would be able to derive the number of pages of data it will
have to deal with and, accordingly, render the page information or handle the previous/next
functionality. Similarly, the server-side application may have to indicate whether the request
was processed successfully or if there was an error. This may be achieved by the server side
by returning a property in the metadata and setting it to true/false to indicate success/error.
The following code shows the record structure where totalRecords and success are two
metadata properties being returned from the server besides the actual data—users:

{
 "totalRecords" : "20",
 "success" : "true",
 "users": [{
 "id": "1",
 "name" : "Ajit Kumar",
 "age" : "32",
 ……..
 }]
}

Chapter 5

153

There are two additional properties provided by the reader: totalProperty and
successProperty to map the field on the server response which contains the total number
of records available with the server (although it is returning only three in a read) and the
field that would indicate whether there was any application level error while processing the
request. For example, if the application failed to get users from its database, it can make use
of the success field to convey the error to the frontend. The following code shows the changes
that we will have to make to the reader to accommodate these two additional metadata
properties:

reader: {
 type: 'json',
 root: 'users',
 totalProperty: 'totalRecords',
 successProperty: 'success'
}

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Getting your form ready with FormPanel in Chapter 2

ff The recipe named Working with the select field in Chapter 2

ff The recipe named Creating models in this chapter

ff The recipe named Working with Store in this chapter

ff The recipe named Loading data through AJAX using AjaxProxy in this chapter

Converting incoming XML data into models
using XmlReader

Similar to the JsonReader, XmlReader exists for us to work with the XML data efficiently. It
provides XPath kind of notation to quickly access the elements of the incoming XML data.

In this recipe, we will see how to work with the XML data and use XmlReader to construct the
model, which can be used within the application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Dealing with Data and Data Sources

154

How to do it...
Carry out the following steps:

1.	 Create and open a new file named users.xml and paste the following code into it:
<?xml version="1.0" encoding="UTF-8"?>
<users>
<user>
 <id>1</id>
 <name>Ajit Kumar</name>
 <age>33</age>
 <phone>123-456-7890</phone>
 <email>ajit.kumar@walingtree.in</email>
 <alive>true</alive>
</user>
<user>
 <id>2</id>
 <name>Alok Ranjan</name>
 <age>34</age>
 <phone>123-456-7890</phone>
 <email>alok@walkingtree.in</email>
 <alive>true</alive>
</user>
</users>

2.	 Create and open a new file named ch05_05.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.regModel('User', {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
]
 });

 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',

Chapter 5

155

 url : 'users.xml',
 reader: {
 type: 'xml',
 record: 'user'
 }
 }
 });

 var form;

 var formBase = {
 scroll: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.is.Phone) {
 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = new Ext.form.FormPanel(formBase);
 form.show();
 }
});

3.	 Update the index.html file.

4.	 Deploy and access it from the browser. You may also run it using the emulator.

Dealing with Data and Data Sources

156

How it works...
The code loads the data from the users.xml file and populates the items in the selection
field of the form panel. The store is modified to use proxy with url set to the users.
xml file and reader is configured on the proxy with type xml, so that it can interpret the
incoming XML data into the model.

 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url : 'users.xml',
 reader: {
 type: 'xml',
 record: 'user'
 }
 }
 });

For XML reader, we have used the property record to tell which element in the incoming XML
represents the user information.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Getting your form ready with FormPanel in Chapter 2

ff The recipe named Working with Select field in Chapter 2

ff The recipe named Working with Store in this chapter

ff The recipe named Loading data through AJAX using AjaxProxy in this chapter

Validations in models
A model definition represents the structure of the data which has one or more fields, for
example, a Payment model containing a paymentDate field to store the date when the
payment was made. Now, when we construct models using the incoming data, there may be
certain rules that we would like to apply to make sure that the model represents valid data.
For example, on a Payment model, it may be required to have a paymentDate field and also
it may be required that the value in this field is in the past (prior to today's date). This kind of
mechanism helps us to build robust applications.

Chapter 5

157

Sencha Touch provides support for this by using validations on Model. There are pre-
defined lists of validations, which we can use to setup the validation rules on our model. The
following are the pre-defined validations supported:

ff presence: Validates that a given property is present

ff length: Validates if the given value is between the specified min and max

ff inclusion: Validates that the value is present in the specified list

ff exclusion: Validates that the value is not present in the specified list

ff format: Validates that the value matches with the specified regular expression

In this recipe, we will see how to make use of these validations.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_06.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.regModel('User', {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
],
 validations: [
 {type: 'presence', field: 'age'},
 {type: 'length', field: 'name', min: 2}
]
 });

 var user = Ext.ModelMgr.create({
 name : '',
 phone: '555-555-5555',
 email: 'ajit.kumar@walkingtree.in'

Dealing with Data and Data Sources

158

 }, 'User');

 var errors = user.validate();
 if (!errors.isValid()) {
 var errStr = '';
 Ext.each(errors.items, function(error, index, allErrors){
 errStr += error.field + ' : ' + error.message + '\n';
 });
 alert(errStr);
 }
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator.

How it works...
The preceding code sets up the validation rules on the model and validates the model objects
using them.

validations: [
 {type: 'presence', field: 'age'},
 {type: 'length', field: 'name', min: 2}
]

By using the preceding code, we configured two validation rules: presence and length on
the age and name fields, respectively. The rules suggest that we want to make sure that a
model must have the age field in it and the name must be at least two characters long.

 var errors = user.validate();

The preceding line validates the user model where it applies all the validations that we had
configured on the User model. The validate method returns Ext.data.Errors as the
error object. errors.isValid() returns true if the model has passed the validations.

 if (!errors.isValid()) {
 var errStr = '';
 Ext.each(errors.items, function(error, index, allErrors){
 errStr += error.field + ' : ' + error.message + '\n';
 });
 alert(errStr);
 }

Chapter 5

159

In case of an error, the validate method returns an array of error items. Each will have
a field indicating the model field that has failed the validation and the corresponding
message. In the preceding code, we iterated through the errors.items array, concatenated
all the error fields and their messages, and displayed them as shown in the following
screenshot:

There's more...
In the following sections, we will see how to make use of the other validations.

Inclusion
Inclusion works with the list property which contains an array of strings. The validation logic
for inclusion checks if the value is present in the specified list.

The following line shows the typical usage of the inclusion validation:

{type: 'inclusion', field: 'gender', list: ['Male', 'Female']}

Exclusion
Exclusion works as a complement of inclusion, where it returns true (validation passed)
if the value does not belong to the specified list. Usage is exactly the same as inclusion,
except that the type will be 'exclusion'.

Format
Format helps us to verify if the value matches with the specified regular expression. We can
use the JavaScript regular expressions to create any matchers. This validation rule works on
the matcher property. The following is a sample usage:

{type: 'format',field: 'username', matcher: /([a-z]+)[0-9]{2,3}/}

Dealing with Data and Data Sources

160

Changing the default message
By default, the Ext.data.validations class defines the messages for each type of
validation rules. For example, if the presence validation fails, then must be present appears
for the field for which it had failed. If the default message is not the desired one, then we can
change it by specifying the message property for the validation as follows:

{type: 'presence', message: ' property not found', field: 'age'}

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Creating models in this chapter

ff The recipe named Validating your form in Chapter 2

Defining the custom validation
In the previous recipe, we saw out-of-the-box validations available in Sencha Touch. However,
for various practical reasons, we may have a need to create additional validation rules and
use them across the application. For example, the payment amount must not be negative;
date must be prior to today's date, and so on.

In this recipe, we will go through the steps to create a new validation rule and use it in the
application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_07.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.apply(Ext.data.validations, {

 checkdateMessage: 'date is not within the allowed range',

Chapter 5

161

 checkdate: function(config, value) {
 if (value === undefined) {
 return false;
 }

 var graceDays = Ext.isEmpty(config.grace) ? 1 :
 config.grace;

 var date = Date.parseDate(value, 'd-m-Y');
 var currDate = new Date();
 currDate.clearTime();
 if (date.between(currDate, currDate.add(Date.DAY,
 graceDays)))
 return true;
 else
 return false;

 }
 });

 Ext.regModel('User', {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'effectiveDate', type: 'string'}, //format d-m-Y
 {name: 'alive', type: 'boolean', defaultValue: true}
],
 validations: [
 {type: 'presence', field: 'age'},
 {type: 'length', field: 'name', min: 2},
 {type: 'checkdate', field: 'effectiveDate', grace: 2}
]
 });

 var user = Ext.ModelMgr.create({
 name : '',
 phone: '555-555-5555',
 email: 'ajit.kumar@walkingtree.in',
 effectiveDate: '23-07-2011'
 }, 'User');

 var errors = user.validate();

Dealing with Data and Data Sources

162

 if (!errors.isValid()) {
 var errStr = '';
 Ext.each(errors.items, function(error, index, allErrors){
 errStr += error.field + ' : ' + error.message + '\n';
 });
 alert(errStr);
 }
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator.

How it works...
 Ext.apply(Ext.data.validations, {

Ext.data.validations contains all the five validation rules and is a singleton class. Using
Ext.apply, we are adding additional validation to it:

 checkdateMessage: 'date is not within the allowed range',

checkdateMessage, once defined, will be used by the validate method to show the
message in the errors when a field with the new validation—checkdate—fails. The syntax for
this property is <name of the validation rule>Message. So, for our new validation rule
checkdate, this has been named as checkdateMessage.

 checkdate: function(config, value) {
 if (value === undefined) {
 return false;
 }

 var graceDays = Ext.isEmpty(config.grace) ? 1 : config.grace;

 var date = Date.parseDate(value, 'd-m-Y');
 var currDate = new Date();
 currDate.clearTime();
 if (date.between(currDate, currDate.add(Date.DAY, graceDays)))
 return true;
 else
 return false;

 }

Chapter 5

163

The preceding code defines the core logic of the new validation rule checkdate. All it is doing
is returning true if the passed date value is within the specified grace days from today. If
the function returns true, it means the validation has passed. If false is returned, then the
framework adds the field name and the corresponding message to the errors array.

Once the new validation rule is defined, we added it to the validations:

{type: 'checkdate', field: 'effectiveDate', grace: 2}

where we mentioned that effectiveDate must be between today and today+2 days, and
then we passed the effectiveDate on the model:

effectiveDate: '23-07-2011'

When the validation fails, the following errors show up:

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Creating models in this chapter

ff The recipe named Validations in models in this chapter

Relating models using association
In an application, we generally deal with multiple types of models, for example, user, address,
order, payment, account, and so on. Some models are self-sufficient. However, there will be
some models that are related to each other, and there is an association which exists between
them. For example, a user can have one or more addresses, a user may place one or more
orders, and an order may have one or more payments made against it, and so on. In a typical
relational database, we have entities and the relationship between them. The same can be
achieved with models using the association mechanism provided by Sencha Touch. This
recipe will demonstrate how to define associations between models, which are used by the
reader, internally, to populate nested models for us.

Dealing with Data and Data Sources

164

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_08.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.regModel('User', {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}

],
 hasMany: {model: 'Address', name: 'addresses'}
 });

 Ext.regModel('Address', {
 fields: ['id', 'line1', 'line2', 'zipcode', 'state', 'country']
 });

 var user = Ext.ModelMgr.create({
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajit.kumar@walkingtree.in',
 addresses: [{
 id: 1,
 line1: 'Flat# 101, Plot# 101, Elegance Apartment',
 line2: 'New SBH Colony, East Maredpally, Hyderabad',
 zipcode: '500023',
 state: 'AP',
 country: 'India'
 }, {

Chapter 5

165

 id: 2,
 line1: 'Janapriya Utopia',
 line2: 'Hyderguda, Hyderabad',
 zipcode: '500081',
 state: 'AP',
 country: 'India'
 }]
 }, 'User');

 alert('Number of addresses: ' + user.get('addresses').length);
 }

});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator.

How it works...
In the preceding code, we defined two models: User and Address and established the
hasMany association between them such that a user can have multiple addresses. The
hasMany association helps us establish a one-to-many relationship:

hasMany: {model: 'Address', name: 'addresses'}

The preceding line in the User model definition indicates that the User model has hasMany
association with the Address model where the addresses is a reference with which we can
access the addresses associated with a particular user.

Then, we added addresses to the user while creating an instance of the User model:

var user = Ext.ModelMgr.create({
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',
 email: 'ajit.kumar@walkingtree.in',
 addresses: [{
 id: 1,
 line1: 'Flat# 101, Plot# 101, Elegance Apartment',
 line2: 'New SBH Colony, East Maredpally, Hyderabad',
 zipcode: '500023',
 state: 'AP',
 country: 'India'
 }, {
 id: 2,

Dealing with Data and Data Sources

166

 line1: 'Janapriya Utopia',
 line2: 'Hyderguda, Hyderabad',
 zipcode: '500081',
 state: 'AP',
 country: 'India'
 }]
 }, 'User');

user.get('addresses') returns the array of addresses associated with the user model
as the model manager automatically provides the getter and setter methods for every
model field.

There's more...
Like hasMany, Sencha Touch provides another association mechanism named belongsTo.
Let's see what it is and where we can use it.

Many-to-one association
belongsTo is used to establish many-to-one association. This is a way to access the parent/
owner model from the child. For example, a user can have multiple addresses. For a user, if
we have to get the addresses, we can do this by putting a hasMany association between the
User and the Address in the User model. However, if for an address, we want to get the
corresponding User, then we can define the belongsTo association in the Address model
with the User model. A point to remember in this association is that we must establish a
foreign key relationship with the parent/owner model. The following code shows the modified
Address model with the belongsTo association:

Ext.regModel('Address', {
 fields: ['id', 'line1', 'line2', 'zipcode', 'state', 'country',
 'user_id']
 ,belongsTo: 'User'
});

Moreover, when we instantiate the address, we will specify the user_id, as follows:

{
 id: 1,
 user_id: 1,
 line1: 'Flat# 101, Plot# 101, Elegance Apartment',
 line2: 'New SBH Colony, East Maredpally, Hyderabad',
 zipcode: '500023',
 state: 'AP',
 country: 'India'
}

Chapter 5

167

The framework is intelligent enough to generate the getter and setter methods for us
based on the association. On the address model, we can use getUser() and setUser()
methods to work with the model, and based on the proxy setup on the model, it will load/save
the user model for us.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Creating models in this chapter

Persisting session-specific data using
SessionStorageProxy

So far in this chapter we have learned how to create a model, store it as a collection in a
store, establish relationships and carry out the validations. However, all this was happening in
memory. One page refresh and all our models will be re-initialized and stores re-constructed.
It would be a lot better if we could persist them and use them for a longer interval. Persistence
capability is provided to us by Proxy. Now let's see how to work with the specific proxies to
load and save models. The following are types of proxies supported by Sencha Touch:

ff ClientProxy: Helps us to persist a model on the client browser and load it from
that storage

ff MemoryProxy: Uses an in-memory storage

ff SessionStorageProxy: Uses HTML5 session storage

ff LocalStorageProxy: Uses HTML5 local storage

ff ServerProxy: Helps us to persist a model on the server and load it from the remote
server

ff AjaxProxy: Used with the server in the same domain where the application is being
accessed

ff ScriptTagProxy: Used to connect to a server which is deployed in a domain
different from the application domain

In this recipe, we will see how to make use of SessionStorageProxy to persist the model
and restore it from the storage.

Dealing with Data and Data Sources

168

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_09.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.regModel('User', {
 fields: [
 {name: 'id', type: 'int'},
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}

],
 hasMany: {model: 'Address', name: 'addresses'},
 proxy: {
 type: 'sessionstorage',
 id : '5443ch05sessionkey'
 }
 });

 Ext.regModel('Address', {
 fields: ['id', 'line1', 'line2', 'zipcode', 'state',
 'country'],

 belongsTo: 'User'
 });

 var user = Ext.ModelMgr.create({
 id: 1,
 name : 'Ajit Kumar',
 age : 24,
 phone: '555-555-5555',

Chapter 5

169

 email: 'ajit.kumar@walkingtree.in',
 addresses: [{
 id: 1,
 line1: 'Flat# 101, Plot# 101, Elegance Apartment',
 line2: 'New SBH Colony, East Maredpally, Hyderabad',
 zipcode: '500023',
 state: 'AP',
 country: 'India'
 }, {
 id: 2,
 line1: 'Janapriya Utopia',
 line2: 'Hyderguda, Hyderabad',
 zipcode: '500081',
 state: 'AP',
 country: 'India'
 }]
 }, 'User');

//save the model
 user.save({
 success: function() {
 console.log('The User was saved');
 }});

//load model from the storage
 User = Ext.ModelMgr.getModel('User');
 User.load(1, {
 success: function(record, operation) {
 console.log('The User was loaded');
 alert('Name: ' + record.get('name') + ' : Addresses : ' +
 record.get('addresses').length);
 }});
 }

});

2.	 Update the index.html file.

Dealing with Data and Data Sources

170

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following content in the Session Storage of Google Chrome:

How it works...
In the preceding code, we set up proxy on the model and configured sessionstorage
as the proxy type, which allows us to persist data in the browser provided HTML5-based
Sessionstorage. id is an important property and the value in it must be unique within the
session. If the IDs are not unique, we will run the risk of one part of the application overwriting
the data, which was stored by some other part of the application.

proxy: {
 type: 'sessionstorage',
 id : '5443ch05sessionkey'
 }

After proxy is set up on the model, it is persisted by calling the save method as follows:

 user.save({
 success: function() {
 console.log('The User was saved');
 }});

Then, we are loading the persisted model from the session storage where the user ID is 1:

User.load(1, {
 success: function(record, operation) {
 console.log('The User was loaded');
 alert('Name: ' + record.get('name') + ' : Addresses : ' +
 record.get('addresses').length);
}});

On successful load of the model from the session storage, the callback registered for
success is called.

Chapter 5

171

If this proxy is used in a browser where session storage is not supported,
the constructor will throw an error.

There's more...
The code that we saw in the recipe uses the model and the associated proxy to save it in the
storage. However, alternatively, we can also use the store to save models contained by the
store. In the following section, we will see how to make use of the store to do so.

Working through the store
To go through the store, replace:

//save the model
 user.save({
 success: function() {
 console.log('The User was saved');
 }});

with the following:

store.add(user);
store.sync();

This will ensure that the user model is saved in the storage.

Similarly, to read the data from the storage, we can use store.load() to read all the stored
models.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Creating models in this chapter

Dealing with Data and Data Sources

172

Persisting data using LocalStorageProxy
This recipe describes the usage of HTML5 provided local storage. This persists the data
across sessions.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
proxy: {
 type: 'localstorage',
 id : '5443ch05localkey'
 }

How it works...
The preceding code uses the local storage proxy to store the data on the browser. Similar to
SessionStorageProxy, this also requires a unique ID against which the data is stored
and used to retrieve.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Creating models in this chapter

ff The recipe named Persisting session specific information using SessionStorageProxy
in this chapter

Accessing in-memory data using
MemoryProxy

The simplest form, yet very temporary, is to save and load data in an in-memory variable. In
the Working with Store recipe, we used the inline data to load records in the store. However,
that does not utilize the reader. In order to use the capabilities of the reader, we have to use
proxy. MemoryProxy is an implementation of the proxy class to help us work with the
in-memory data and use the reader's capabilities. This recipe shows how to use the
memory proxy.

Chapter 5

173

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_11.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 Ext.regModel('User', {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
]
 });

 var data = {users: [{
 id: 1,
 name : 'Ajit Kumar',
 age : 32,
 phone: '555-555-5555',
 email: 'ajit@walkingtree.in'
 }, {
 id: 2,
 name : 'Alok Ranjan',
 age : 32,
 phone: '123-456-7890',
 email: 'alok@walkingtree.in'
 }, {
 id: 3,
 name : 'Pradeep Lavania',
 age : 34,
 phone: '987-654-3210',
 email: 'pradeep@walkingtree.in'
 }]
 };

 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 data: data,
 proxy: {

Dealing with Data and Data Sources

174

 type: 'memory',
 reader: {
 type: 'json',
 root: 'users'
 }
 }
 });

 var form;

 var formBase = {
 scroll: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.is.Phone) {
 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = new Ext.form.FormPanel(formBase);
 form.show();
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator.

Chapter 5

175

How it works...
var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 data: data,
 proxy: {
 type: 'memory',
 reader: {
 type: 'json',
 root: 'users'
 }
 }
 });

Setting type to memory sets up the MemoryProxy on the store. Memory proxy works only on
the in-memory data, which we have stored in the data variable. As data represents a JSON
format of the data; we configured the json type reader and used the root to point to the
property in the data which contains the actual user information.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Getting your form ready with FormPanel in Chapter 2

ff The recipe named Working with the select field in Chapter 2

ff The recipe named Working with Store in this chapter

Loading data through AJAX using AjaxProxy
In the last three recipes, we saw the usage of the different types of client-side proxies, which
help us persist the data on the client browser. Now, we will see how to work with the server
proxies to persist the data on a remote server.

In this recipe, we will see what it takes to use AjaxProxy to persist and load models.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Dealing with Data and Data Sources

176

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_12.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 Ext.regModel('User', {
 fields: [
 {name: 'name', type: 'string'},
 {name: 'age', type: 'int'},
 {name: 'phone', type: 'string'},
 {name: 'email', type: 'string'},
 {name: 'alive', type: 'boolean', defaultValue: true}
]
 });
 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 root: 'users'
 }
 }
 });

 var form;

 var formBase = {
 scroll: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'name',
 displayField: 'name'
 }]
 };

 if (Ext.is.Phone) {

Chapter 5

177

 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = new Ext.form.FormPanel(formBase);
 form.show();
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator.

How it works...
 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 root: 'users'
 }
 }
 });

Setting type to ajax sets up AjaxProxy on the store. Ajax proxy works only if the specified
URL is in the domain in which the application is running. users.json contains the JSON
formatted data that we saw in the Converting incoming JSON data into models using
JsonReader recipe. As data represents a JSON format of the data, we configured the json
type reader and used root to point to the property in the data which contains the actual
user information.

Dealing with Data and Data Sources

178

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Getting your form ready with FormPanel in Chapter 2

ff The recipe named Working with the select field in Chapter 2

ff The recipe named Working with Store in this chapter

ff The recipe named Converting incoming JSON data into models using JsonReader in
this chapter

Sorting of the data
The store supports filters, sorting, and grouping. These are very important functionalities
which make the Sencha Touch data classes so useful. One can sort data in one or more fields,
apply one or more filter, and group the data on certain fields. All this is available on the client
side, as well as the server side. On the client side, the framework applies the sorting, filtering,
and grouping on the models stored within it whereas on server side, the information is passed
to the remote server, so that the server-side application/script can handle them and provide
the desired sorted, filtered, and grouped data.

In this recipe, we will see how to sort the data, send the sorting information to the server, and
customize the information sent to the server.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 root: 'users'
 }
 }
 });

Chapter 5

179

 store.sort([
 {
 property : 'age',
 direction: 'DESC'
 },
 {
 property : 'name',
 direction: 'ASC'
 }
]);

How it works...
The code in this recipe is based on the previous recipe, Loading data through AJAX using
AjaxProxy. In the preceding code, we are using AjaxProxy to load data from the users.
json file and using the sort method, we are sorting the data in the store:

 store.sort([
 {
 property : 'age',
 direction: 'DESC'
 },
 {
 property : 'name',
 direction: 'ASC'
 }
]);

The sort method accepts an object containing property and sort direction. property
instructs the model field on which record the sorting should be done and direction
instructs whether the record should be sorted in ascending or descending order. The direction
name is case sensitive and we should always use the uppercase versions.

As we have added sorting on two fields: age and name, the order of sorting is the order in
which the sorting information is added. Therefore, in our case, the records will be first sorted
on age and then on name.

There's more...
Alternatively, the sorting can happen on the server side. Let's see how to enable the server-
side sorting and send the sorting information to the server, so that the server-side code can
return the sorted data using the specified information.

Dealing with Data and Data Sources

180

Sending the sorting information to the server
We send the sorting information to the server so that the server-side application can sort the
data before returning it to the client-side application. To ask the framework to send the sorting
information to the server, we will have to set remoteSort to true on the store as follows:

 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.php',
 reader: {
 type: 'json',
 root: 'users'
 },
 remoteSort: true

 }
 });

Once this is set, the sorting information will be passed as part of the query parameter as
shown in the following screenshot:

Customizing the sort information being sent to the server
By default, the sort information is sent to the server using the parameter named sort. If we
want to change this default, then we use the sortParam property on proxy to set it to the
desired name, say, searchCritera.

If we don't want the sorting information to be sent to the server, we can achieve it by setting
the sortParam property to undefined.

Chapter 5

181

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in this chapter

ff The recipe named Loading data through AJAX using AjaxProxy in this chapter

Data grouping
In this recipe, we will see how to group the data and how to send the grouping information to
the server application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 root: 'users'
 },
 remoteSort: true,
 groupField: 'age',
 groupDir: 'ASC'
 }
 });

Dealing with Data and Data Sources

182

How it works...
The preceding code shows how to specify the grouping information and send it to the server.
The related properties are groupField and groupDir. The groupField property instructs
the model field on which data needs to be grouped and the groupDir property instructs the
direction—ascending or descending. Grouping information is treated in a similar way to the
sort information. Grouping information is passed as the first sort information.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1
ff The recipe named Working with Store in this chapter
ff The recipe named Loading data through AJAX using AjaxProxy in this chapter

Filtering data
Filtering is a great way to remove unwanted records based on certain criteria. A store allows
us to specify the filters and additional properties to send the filter information to the server
application. One or more filters can be applied. In this recipe, we will see how to do this.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
The following code highlights the property and method that needs to be used in order to
apply the filtering:

 var store = new Ext.data.Store({
 model: 'User',
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url: 'users.json',
 reader: {
 type: 'json',
 root: 'users'
 },
 remoteFilter: true
 }
 });

Chapter 5

183

 store.filter([
 {
 property: 'name',
 value : /Aj/
 }
]);

How it works...
The code in this recipe is based on the previous recipe, Loading data through AJAX using
AjaxProxy. In the preceding code, we use AjaxProxy to load data from the users.json file
and by using the filter method, we are filtering the data in the store:

 store.filter([
 {
 property: 'name',
 value : /Aj/
 }
]);

The filter method accepts an object containing property and value to compare with.
property instructs the model field on which the filtering should be done and value instructs
the value/pattern which shall be used to filter the records.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in this chapter

ff The recipe named Loading data through AJAX using AjaxProxy in this chapter

Using a cross-domain URL in your
application

Besides AjaxProxy, ScriptTagProxy is the other server proxy which helps us to persist
the model on a remote server and load it from the same. The only catch is that this proxy is
used only when the domain where the server is running is different from the domain where
the application is running, for example, loading the search detail from the Google Custom
search API. This recipe outlines the usage of ScriptTagProxy to make cross-domain
URL calls.

Dealing with Data and Data Sources

184

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch05_14.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 Ext.regModel('SearchResult', {
 fields: [
 {name: 'kind', type: 'string'},
 {name: 'title', type: 'string'},
 {name: 'htmlTitle', type: 'string'},
 {name: 'displayLink', type: 'string'},
 {name: 'snippet', type: 'boolean', defaultValue: true}
]
 });

 var store = new Ext.data.Store({
 model: 'SearchResult',
 autoLoad: true,
 proxy: {
 type: 'scripttag',
 url: 'https://www.googleapis.com/customsearch/v1?key=' +
 'XXXXXXXX' + '&cx=013036536707430787589:_pqjad5hr1a&q=rose',
 reader: {
 type: 'json',
 root: 'items'
 }
 }
 });

 var form;

 var formBase = {
 scroll: 'vertical',
 items: [{
 xtype: 'selectfield',
 name : 'user',
 label: 'User',
 store: store,
 valueField: 'title',
 displayField: 'title'

Chapter 5

185

 }]
 };

 if (Ext.is.Phone) {
 formBase.fullscreen = true;
 } else {
 Ext.apply(formBase, {
 autoRender: true,
 floating: true,
 modal: true,
 centered: true,
 hideOnMaskTap: false,
 height: 385,
 width: 480
 });
 }

 form = new Ext.form.FormPanel(formBase);
 form.show();
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see a screen similar to the one shown in the following screenshot:

Dealing with Data and Data Sources

186

How it works...
In the preceding code, we have used the scripttag proxy to read search data from Google's
search API.

 var store = new Ext.data.Store({
 model: 'SearchResult',
 autoLoad: true,
 proxy: {
 type: 'scripttag',
 url: 'https://www.googleapis.com/customsearch/v1?key=' +
 'AIzaSyD8nxb7bFwURb6gXqHWz9dFMQw8-bZCvPw' +
 '&cx=013036536707430787589:_pqjad5hr1a&q=rose',
 reader: {
 type: 'json',
 root: 'items'
 }
 }
 });

The Google API returns data in the form of JSON. The following screenshot shows the
response received from the Google API call:

items contains the actual response data that we are interested in. Hence, reader is
configured with json type and the items as the root.

Chapter 5

187

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Getting your form ready with FormPanel in Chapter 2

ff The recipe named Working with the select field in Chapter 2

ff The recipe named Working with Store in this chapter

6
Adding the

Components

In this chapter, we will cover:

ff Working with Button

ff Creating a sheet of buttons with ActionSheet

ff Carousel

ff Managing a list of data using List

ff Grouping items in a List

ff Navigating through a list of data using indexBar

ff Working with a list of nested data using NestedList

ff Picking your choice using Picker

ff Switching between multiple views using SegmentedButton

ff Working with Tab panels

ff Quicker access to application features using Toolbar

ff Creating a new component

ff Extending an existing component capability

ff Overriding a component behavior

ff Adding behavior to an existing component using plugins

Adding the Components

190

Introduction
So far, we have seen the usage of various components such as FormPanel, DataView,
Panel, and so on. There were some components that we had used in previous recipes, such
as toolbar, but not discussed in detail. Besides, there are some more components which are
worth a discussion to understand the purpose of their existence and use them accordingly.
In addition, this chapter goes beyond the existing components by covering how to create a
new component, extending an existing component, and building plugins and using them in
enhancing the capabilities of a component.

Working with Button
This recipe introduces the button component where it shows how to make use of the button in
our application, how to have a different look-n-feel for it, and handle the user action.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Create a new folder named ch06 in the same folder where we had created ch01 and ch02
folders. We will be using this new folder to keep the code.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_01.js and paste the following code in it:
Ext.setup({
 onReady: function() {

 var buttons = [
 {
 text: 'Normal',
 handler: function() {
 Ext.Msg.alert('Info', 'You have clicked: ' + this.text);
 }
 },
 {
 ui : 'round',
 text: 'Round'
 },

Chapter 6

191

 {
 ui : 'small',
 text: 'Small'
 }
];

 var panel = new Ext.Panel({
 fullscreen: true,
 layout: {
 type : 'hbox',
 pack : 'center'
 },
 defaults: {
 xtype: 'button'
 },
 items: [buttons]
 });
 }
});

2.	 Update index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator.

How it works...
The preceding code creates a panel with three buttons laid out using the hbox layout. The
following code defines xtype for all the items of the panel to button:

defaults: {
 xtype: 'button'
}

This short cut allows us to set xtype for all the children in one go.

The ui property defines the look-n-feel of the button. This acts as a short cut to a group of
CSS styles.

The handler function is called when the button is clicked or tapped. It is equivalent to the
handling of the tap event on the button.

Adding the Components

192

There's more...
Additionally, the button component provides the mechanism to specify the badge and also
uses the icons along with the text. The following section describes how to make use of
these functionalities.

Using badge
Badge is a text which appears on top of the button. This may be useful to highlight a button
with a badge, say, New, indicating to the user that this button is newly added. This helps us
grab the user attention. The following code snippet shows how to show a badge with the New
text on the button:

{
 ui : 'round',
 text: 'Round',
 badgeText: 'New'

}

When we run the code, we will see the Round button with a badge with a New text, as shown
in the following screenshot:

The framework uses the pre-defined CSS to show the badge. If you want to define and use a
different style, you can do so by setting the badgeCls property on the button.

Using icon
It is generally considered good practice to use an icon along with the text while creating a
button as it gives both textual, as well as visual meaning to it. People who have difficulty in
reading and understanding the text may find it easier to remember the icon and understand
it easily. For this, the button component supports multiple properties: icon, iconCls, and
iconAlign. If you want to use the image directly as an icon, you can do it by setting the icon
property. However, it is better that we define a CSS class and use it. For this, we shall use
iconCls. The following code snippet shows the usage of these properties:

{
 ui : 'small',
 text: 'Small',
 //icon: 'ch06/cancel.png',
 iconCls: 'cancel-icon',
 iconAlign: 'right'
}

Chapter 6

193

iconAlign allows us to align the icon with respect to the text. The valid values are
top, bottom, right, and left, where left is the default alignment. The following
screenshot shows how the icon would appear on the button:

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Creating a sheet of buttons with
ActionSheet

In an application, say, on an entity, multiple actions can be performed. For example, on an
inbox item, a user can reply back to the sender, reply to all, delete the mail, and view the
complete mail. Moreover, these actions may vary based on the entity in the context. To handle
such scenarios, the Sencha Touch framework provides an ActionSheet component, which
allows us to show a sheet of buttons which can help the user trigger different actions. This
recipe shows us how to create ActionSheet and use it in an application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_02.js and copy the ch04/ch04_07.js
content inside it.

2.	 Add the following code at the beginning of the onReady function:
 var actionSheet = new Ext.ActionSheet({
 items: [
 {
 text: 'Cancel',
 ui : 'decline',
 handler: function() {
 actionSheet.hide();
 }

Adding the Components

194

 },
 {
 text: 'Detail',
 handler: function() {
 var recs = Ext.getCmp('images-data-view').
 getSelectedRecords();
 Ext.getCmp('detail-panel').update('<img src="' +
 recs[0].data.url + '" title="' +
 recs[0].data.title + '">');
 Ext.getCmp('images-view').
 getLayout().setActiveItem(1);
 Ext.getCmp('back-button').show();
 Ext.getCmp('rose-button').hide();
 Ext.getCmp('daffodil-button').hide();
 Ext.getCmp('hibiscus-button').hide();
 actionSheet.hide();
 }
 },
 {
 text: 'Delete',
 ui : 'confirm',
 handler: function(){
 Ext.Msg.confirm("Confirmation", "Are you sure you want
 to delete the picture?", function(btn){
 if (btn == "yes") {
 var dview = Ext.getCmp('images-data-view');
 var recs = dview.getSelectedRecords();
 dview.getStore().remove(recs);
 }
 actionSheet.hide();
 });
 }
 }
]
 });

3.	 Change the selectionchange handler as per the following code:

 selectionchange: function(model, recs) {
 if (recs.length > 0) {
 actionSheet.show();
 }
 },

Chapter 6

195

4.	 Include the ch04/ch04.css file into index.html.

5.	 Update the index.html file.

6.	 Deploy and access it from the browser. You may also run it using the emulator. You
shall see the flowers on the screen and when you click/tap on a particular flower, you
will see the buttons docking in from left, as shown in the following screenshot:

How it works...
The preceding code creates a sheet of three buttons: Cancel, Detail, and Delete. The
DataView shows the photos and when a user selects a photo, the selectionchange event
is fired and its handler shows the button sheet to the user by calling the show method on the
ActionSheet instance.

On clicking the Cancel button, we are hiding the button sheet by calling the hide method.
When the user clicks on the Delete button, the following handler code seeks the user
confirmation and upon confirmation, removes the selected photo from the view's store.

 Ext.Msg.confirm("Confirmation", "Are you sure you
 want to delete the picture?", function(btn){
 if (btn == "yes") {
 var dview = Ext.getCmp('images-data-view');
 var recs = dview.getSelectedRecords();
 dview.getStore().remove(recs);

Adding the Components

196

 }
 actionSheet.hide(); //hide the sheet
 });

When the user clicks on the Detail button, the handler shows the bigger image of the selected
photo, updates the toolbar to show the appropriate buttons, and hides the sheet.

There's more...
By default, the sheet appears at the bottom of the viewport and slides in and out when it is
shown or hidden. Let us see how to change these defaults.

Change the position and animation
ActionSheet provides different properties to control these defaults:

ff enter: It is the viewport side from which to anchor the sheet

ff enterAnimation: The animation to be used

The following code snippet shows the usage of these fields to make sure that the sheet
appears on the left-hand side and the animation it uses is fade:

 var actionSheet = new Ext.ActionSheet({
 enter: 'left',
 enterAnimation: 'fade',
 items: [
 {
 ...
 ...
 }]
});

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Building Custom Views in Chapter 4

Chapter 6

197

Carousel
Carousel is an extension of Ext.Panel and provides the ability to slide back and forth
between different child items. Carousel, internally, uses the card layout to render items and
allows the user to slide back and forth by setting the active item appropriately.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_03.js and paste the following code in it:
Ext.setup({
 onReady: function() {

 var actionSheet = new Ext.ActionSheet({
 ……….. //code is same as the one in previous recipe
 ……….. //code is same as the one in previous recipe
 });

 var data = [{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'},
 ………. //code is same as the one in previous recipe
 ………. //code is same as the one in previous recipe
{
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers3224.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];

 var store = new Ext.data.JsonStore({
 data: data,
 mode: 'local',
 fields: [

Adding the Components

198

 'url', 'title','about'
]
 });

 var tpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb">
 </div>',
 '{about}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
);

 var filter = function(criteria) {
 return store.filterBy(function(record, id){
 if (record.get('album') === criteria ||
 Ext.isEmpty(criteria))
 return true;
 else
 return false;
 });
 }

 var carousel = new Ext.Carousel({
 items: [
 {
 id: 'detail-panel',
 width: 400,
 height: 300,
 styleHtmlContent: true,
 scroll: 'vertical'
 },
 {
 html: '<h1 style="font-size:16px;">About Roses
 </h1><p>The leaves are borne alternately
 on the stem. In most species they are 5 to 15
 centimetres (2.0 to 5.9 in) long, pinnate,
 with (3–) 5–9 (–13) leaflets and basal
 stipules; the leaflets usually have a
 serrated margin, and often a few small
 prickles on the underside of the stem. Most
 roses are deciduous but a few (particularly
 from South east Asia) are evergreen or
 nearly so.</p>'

Chapter 6

199

 },
 {
 html: '<h1 style="font-size:16px;">Uses
 </h1><p>Roses are best known as ornamental
 plants grown for their flowers in the garden
 and sometimes indoors. They have been also
 used for commercial perfumery and commercial
 cut flower crops. Some are used as landscape
 plants, for hedging and for other utilitarian
 purposes such as game cover and slope
 stabilization. They also have minor medicinal
 uses.</p>'
 }
]
 });

 var pnl = new Ext.Panel({
 id:'images-view',
 ……… //code is same as the one in previous recipe
 ……… //code is same as the one in previous recipe
 items: [new Ext.DataView({
 id: 'images-data-view',
 ……… //code is same as the one in previous recipe
 ……… //code is same as the one in previous recipe
 }), carousel],
 dockedItems: [
 {
 xtype: 'toolbar',
 ……….. //code is same as the one in previous recipe
 ……….. //code is same as the one in previous recipe
 }
]
 });

 }
});
});

2.	 Update the index.html file.

Adding the Components

200

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see a screen similar to the one shown in the following screenshot:

How it works...
The preceding code modifies the code in the previous recipe such that the panel to show the
large photo is moved from the main panel to the Carousel. The Carousel has two more panels:
About and Uses which contain more information about, say, roses.

The Ext.Carousel class implements the complete Carousel functionality. Internally, it uses
the card layout to render its children.

There's more...
Orientation is one thing in Carousel, which different applications may have different needs.
Some may like it to be horizontal whereas some may like it to be vertical. In the next section,
we will see how to achieve it.

Chapter 6

201

Changing the direction
By default, the Carousel direction is horizontal. Alternatively, if required, we can set it to
vertical, as well. This behavior is provided by the direction property of the Carousel class.
The following code snippet shows how to set this property on Carousel:

 var carousel = new Ext.Carousel({
 direction: 'vertical',
 items: [

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Building Custom Views in Chapter 4

Managing a list of data using List
Say, in your application, there is a data set that needs to be presented to users in the form
of a list, where users can scroll through the list and make their selection, for example, a list
of contacts, list of places, list of matching words, and so on. Sencha Touch provides a List
component to handle any list-related needs. This recipe shows how to use it to present the
contact list to the user.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_04.js and paste the following code in it:
Ext.setup({
 onReady: function() {
Ext.regModel('Contact', {
 fields: ['firstName', 'lastName']
});

var store = new Ext.data.JsonStore({
 model : 'Contact',

Adding the Components

202

 data: [
 {firstName: 'Ajit', lastName: 'Kumar'},
 {firstName: 'Alok', lastName: 'Ranjan'},
 {firstName: 'Pradeep',lastName: 'Lavania'},
 {firstName: 'Sunil', lastName: 'Kumar'},
 {firstName: 'Sujit', lastName: 'Kumar'},
 {firstName: 'Pratyush',lastName: 'Kumar'},
 {firstName: 'Piyush', lastName: 'Kumar'},
 {firstName: 'Priti', lastName: ''},
 {firstName: 'Seema', lastName: 'Singh'},
 {firstName: 'Ayush', lastName: 'Kumar'},
 {firstName: 'Ayush', lastName: 'Ranjan'},
 {firstName: 'Alisha', lastName: 'Lavania'},
 {firstName: 'Deepak', lastName: 'Sinha'},
 {firstName: 'Sheela', lastName: 'Kejawani'},
 {firstName: 'Srikanth', lastName: 'Reddy'},
 {firstName: 'Suman', lastName: 'Ravuri'},
 {firstName: 'Ranjit', lastName: ''},
 {firstName: 'Jay', lastName: 'Sharma'}
]
});

var list = new Ext.List({
 itemTpl: '<tpl for="."><div class="contact">{firstName}
 {lastName}</div></tpl>',

 store: store,

 floating : true,
 width : 350,
 height : 370,
 centered : true,
 modal : true,
 hideOnMaskTap: false
});
list.show();
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

Chapter 6

203

How it works...
The preceding code creates a list of contact names and allows the user to select an entry.

Ext.regModel('Contact', {
 fields: ['firstName', 'lastName']
});

This code registers a Contact model with the model manager. The model is used on the
store in conjunction with the data array to convert the data array into the model and
populate the store.

List extends DataView. Thus, it inherits the capabilities and behaviors of DataView. The
view is refreshed as soon as the models are loaded into the store, which is associated with
the list. Each record in the list is rendered using the template defined in itemTpl.

Adding the Components

204

There's more...
Sorting is one need that arises naturally when we are dealing with the list information. Let us
see how we can have a sorted data inside a list.

Sorting entries
In order to sort entries in the list, the list does not provide any method. Rather, we shall set up
sorters on the associated store, as shown in the following code snippet:

var store = new Ext.data.JsonStore({
 model : 'Contact',
 sorters: 'firstName',

sorters: 'firstName' will sort the records by their first name and in the ascending
order. If we want to sort the data on multiple fields and specify the specific way (ascending/
descending) the data needs to be sorted, then we will expand the sorters property value to:

sorters: [{property: 'firstName', direction: 'ASC'},
 {property: 'lastName', direction: 'DESC'}],

See also
ff The recipe named Setting up browser-based development environment in Chapter 1

ff The recipe named Working with Store in Chapter 5

Grouping items in a List
In a list, you may want to see items grouped on certain criteria, for example, in our contact list,
we may want to see our names grouped alphabetically. For this, the list allows us to group the
data using the criteria and this recipe will show exactly how this can be achieved.

Getting ready
Make sure that you have setup your development environment by following the recipes
outlined in Chapter 1.

Chapter 6

205

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_05.js and paste the following code in it:
var list = new Ext.List({
 itemTpl: '<tpl for="."><div class="contact">{firstName}
 {lastName}</div></tpl>',
 grouped : true,
 store: store,

 floating : true,
 width : 350,
 height : 370,
 centered : true,
 modal : true,
 hideOnMaskTap: false
});

var store = new Ext.data.JsonStore({
 model : 'Contact',

 getGroupString : function(record) {
 return record.get('firstName')[0];
 },
….. //code from ch06_04.js

2.	 Update the index.html file.

Adding the Components

206

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

How it works...
The preceding code builds on top of the code mentioned in the previous recipe. It adds
the grouping capability to the list by setting the grouped property on the list to true and
implementing a method getGroupString on the store, which is called by the framework to
group the information as per the specified field, in this case, firstName. In the code, we are
returning the first character of the first name from getGroupString and hence the data will
be grouped on the returned character. However, we can group the data using the entire first
name by returning the value of the firstName field by changing the function body to return
record.get('firstName')

Chapter 6

207

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Data grouping in Chapter 5

ff The recipe named Managing a list of data using List in this chapter

Navigating through a list of data using
indexBar

Imagine there is big book that we are reading and we want to quickly locate the topic of our
interest. The very first thing that we look forward to is the Index page which can tell us the
topics and their page numbers. Similarly, in a list, if items are huge, we can use the index bar
functionality to quickly go to the item of our choice, and this recipe will walk us through the step.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_06.js and paste the following code in it:
var list = new Ext.List({
 itemTpl: '<tpl for="."><div class="contact">{firstName}
 {lastName}</div></tpl>',
 grouped : true,
 indexBar : true, //use IndexBar
 store : store,
 floating : true,
 width : 350,
 height : 370,
 centered : true,
 modal : true,
 hideOnMaskTap: false
});
….. //code from ch06_04.js

Adding the Components

208

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

How it works...
In the preceding code, the index bar is enabled by setting the property indexBar to true on
List. This property instructs the framework to generate an index bar (similar to the index at
the end of the book) with A-Z alphabets and allows the user to jump to the matching entries
when he/she clicks on a particular index.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Managing a list of data using List in this chapter

Chapter 6

209

Working with a list of nested data using
NestedList

Imagine you have a nested data structure which you would like to present to the user in the
form of a list and allow him/her to drill down the nested data structure. In this recipe, we will
understand how to achieve this using the NestedList component.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_07.js and paste the following code in it:
Ext.setup({
 onReady: function() {
 var data = {
 items: [{
 text: 'Flowers',
 items: [{
 text: 'Roses',
 items: [{
 text: 'Red',
 leaf: true
 },{
 text: 'Peach',
 leaf: true
 },{
 text: 'Yellow',
 leaf: true
 }]
 },{
 text: 'Daffodils',
 leaf: true
 },{
 text: 'Hibiscus',
 leaf: true
 }]
 },{

Adding the Components

210

 text: 'Animals',
 items: [{
 text: 'Lion',
 leaf: true
 },{
 text: 'Elephant',
 leaf: true
 }]
 },{
 text: 'Birds',
 items: [{
 text: 'Eagle',
 leaf: true
 },{
 text: 'Hamsa',
 leaf: true
 },{
 text: 'Pegion',
 leaf: true
 }]
 }]
 };
 Ext.regModel('ListItem', {
 fields: [{name: 'text', type: 'string'}]
 });
 var store = new Ext.data.TreeStore({
 model: 'ListItem',
 root: data,
 proxy: {
 type: 'ajax',
 reader: {
 type: 'tree',
 root: 'items'
 }
 }
 });
 var nestedList = new Ext.NestedList({
 fullscreen: true,
 title: 'Fauna & Flora',
 store: store
 });
 }
});

Chapter 6

211

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

How it works...
The preceding code creates a NestedList component using the data array. The
NestedList uses a TreeStore, which expects the data to follow a particular tree structure.
The data structure shows that at the top level, data has three nodes: Flowers, Animals,
and Birds. Each one of them has child items, for example, Flowers has immediate children
Roses, Daffodils, and Hibiscus. For Daffodils and Hibiscus, the leaf property is set to
true, indicating that they are the leaf nodes of the tree and will not have any child items. The
nesting can go up to any level. Each node has a property text, which the TreeStore uses to
show them on the screen.

NestedList extends the Panel component, and based on the nesting of the data and
at what level the user is, it creates a docked toolbar at the top and displays buttons on the
toolbar to allow the user to navigate through the hierarchy. The button labels are generated
using the text property of the nodes.

Adding the Components

212

There's more...
There are additional features available with a tab panel and the subsequent sections
cover them.

Using a property other than text
By default, the NestedList uses the text property of the node to display it on the screen
and generate the button labels. If our data has a different property, say, label, then we shall
use the displayField property on NestedList and set it to 'label', as follows:

var nestedList = new Ext.NestedList({
 fullscreen: true,
 title: 'Fauna & Flora',
 displayField: 'label',
 store: store
});

Showing the Back button
Say, in our application, we want to have a label Back for the button rather than the text of the
parent node of the current level. This can be achieved by setting the useTitleAsBackText
to false.

No toolbar, please!
By default, NestedList generates a toolbar at the top, adds a Back button to it, and handles
the click event on it. If we do not want to see this toolbar, we shall set the useToolbar
property on NestedList to false.

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Picking your choice using Picker
In Chapter 2, we had talked about DatePicker, which shows the dates in the form of slots
and allows us to pick a date. DatePicker is a specialised version of the Picker class. In
this recipe, we will see how to make use of this class.

Chapter 6

213

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_08.js and paste the following code in it:
Ext.setup({
 onReady: function() {
var picker = new Ext.Picker({
 slots: [
 {
 name : 'color',
 data : [
 {text: 'Red', value: 'red'},
 {text: 'Peach', value: 'peach'},
 {text: 'Yellow', value: 'yellow'},
 {text: 'White', value: 'white'}
]
 }
],
 listeners: {
 pick: function(picker, pickedObj, slot) {
 Ext.Msg.alert('Info', 'Value picked is: ' +
 pickedObj.color);
 }
 }
});

picker.show();
 }
});

2.	 Update the index.html file.

Adding the Components

214

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

How it works...
The preceding code creates a picker to allow the user to choose a color of their choice. Each
color detail is added as a slot to the picker. Every slot contains two properties; text and
value. The text property is used to display the name in the slot and value is given back to
the program when the user picks up a slot.

We then register a handler for the pick event on the picker. The handler is fired when the
user selects a slot. The parameter pickerObj contains the information about the slot that
is selected. This object contains the name of the slots as its property and the value of the
selected slot is set as its value. In our case, the pickerObj will look like this when the user
selects the Peach slot:

{
 color: "peach"
}

Chapter 6

215

There's more...
Like any other component, there are certain defaults defined by Picker and for all practical
purposes. We may have to deviate from them, for example, the position, animation, and
alignment. The following section shows how to do this.

Changing the position and animation
The Picker class extends Sheet and inherits the positioning and animation properties from
it. We can use the four properties: enter, exit, enterAnimation, and exitAnimation to
indicate the position of the picker with respect to the viewport when it is shown or hidden and
the kind of animation that shall be used. The following code snippet shows the usage of these
properties to show the picker on the top of the screen and uses the fade animation when it is
being shown and flip when it is hidden:

var picker = new Ext.Picker({
 enter: 'top',
 enterAnimation: 'fade',
 exit: 'top',
 exitAnimation: 'flip',

By default, the picker uses the bottom position and slid animation.

Aligning the slot text
By default, the slot shows the text in the center. However, by using the align property on
slots, we can left/right align the texts as follows:

 slots: [
 {
 name : 'color',
 align: 'left',

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Switching between multiple views using
SegmentedButton

This recipe describes the usage of the SegmentedButton component, which is generally a
part of the toolbar and is useful in switching between different views.

Adding the Components

216

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
1.	 Create and open a new file named ch06_09.js and paste the following code in it:

Ext.setup({
 onReady: function() {
 var segmentedButton = new Ext.SegmentedButton({
 renderTo: Ext.getBody(),
 items: [
 {
 text: 'Album'
 },
 {
 text : 'About',
 pressed: true
 },
 {
 text: 'Help'
 }
],
 listeners: {
 toggle: function(container, button, pressed){
 console.log("User toggled the '" + button.text + "'
 button: " + (pressed ? 'on' : 'off'));
 }
 }
 });
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

Chapter 6

217

How it works...
The preceding code creates a SegmentedButton with three buttons: Album, About, and
Help and allows the user to select one of them. Setting pressed: true on the About button
ensures that it will be selected, by default. A selected button is de-selected only if the user
selects another button.

The SegmentedButton component fires the toggle event every time a button is selected
and de-selected. Our handler for the toggle event shows a message informing us which
button is selected/de-selected. For example, when the Album button is pressed, we see two
messages appearing in the console: one, saying About button: off and other one, saying
Album button: on

renderTo is the property where we specify the element whose child the item would become.
In this example, we have specified the document body, which is returned by the Ext.
getBody() method to instruct the Touch framework that the segmented button shall be
rendered to the document body.

There's more...
Segmented button also allows us to press multiple buttons. Let's see how to do it.

Multiple pressed buttons
If we need the capability to keep multiple buttons pressed, we can achieve it by setting the
allowMultiple property to true. Setting this property allows us to de-select an already
selected button.

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Working with Tab panels
The Tab panel is a popular UI component which can hold other components and that can be
accessed in a tabbed fashion using a tab bar. In this recipe, we will learn about the tab panel
and the different options that we may use to build our application.

Adding the Components

218

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
1.	 Create and open a new file named ch06_10.js and paste the following code in it:

Ext.setup({
 onReady: function() {

 new Ext.TabPanel({
 fullscreen: true,
 ui : 'light',
 sortable : true,
 items: [
 {
 title: 'Album',
 html: 'Contains the photos!',
 cls: 'tab1'
 },
 {
 title: 'Help',
 html: '<h1 style="font-size:16px;">Help</h1><p>This
 application shows the album of flower pictures.
 You can filter the flowers based on their
 category, e.g. Rose, and view the additional
 detail about them.</p>',
 cls : 'tab2'
 },
 {
 title: 'About',
 html : '<h1 style="font-size:16px;">About this
 app!</h1><p>Version 0.1</p>',
 cls : 'tab3'
 }
]
});
 }
});

2.	 Update the index.html file.

Chapter 6

219

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
shall see the following screen:

How it works...
The preceding code creates a tab panel with three panels. Internally, the tab panel generates
a tab bar using the title of each panel item and with that, it allows the user to switch between
different tabs.

There's more...
There are other interesting options available with the tab panel and the following section
describes them.

Positioning the tab bar at the bottom
By default, the tab bar is positioned on the top. In order to show it at the bottom, we shall set
the tabBarDock property to bottom.

Card switch animation
By default, the tab panel uses the slide animation. This can be changed by setting the
cardSwitchAnimation to the animation of your choice, such as flip.

Adding the Components

220

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Quicker access to application features
using Toolbar

Toolbar is a great way of getting a single-click access to application features. It can have
buttons, drop-downs, text field, and so on. Sencha Touch provides a toolbar component and
this recipe will show us how to use it and work with its options.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_11.js and paste the following code in it:
Ext.setup({
 onReady: function() {
 var myToolbar = new Ext.Toolbar({

 title: 'My Toolbar',
 items: [
 {
 text: 'Rose'
 },
 {
 text: 'Daffodil'
 },{
 text: 'Hibiscus'
 },{
 text: 'Reset',
 ui: 'decline-round'
 }, {
 text: 'Back',
 ui: 'back'
 }
]

Chapter 6

221

 });

 var myPanel = new Ext.Panel({
 dockedItems: [myToolbar],
 fullscreen : true,
 html : 'Test Panel'
 });

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

How it works...
The preceding code creates a toolbar with five buttons inside it and the toolbar is added to the
panel. The Reset button is using decline-round as the ui and the Back button is using
back as ui for a different look and feel.

There's more...
What if we want to have non-button components in our toolbar? Let us see.

Adding non-button components
The defaultType config property on the toolbar defines the xtype that shall be used for
each item being added to it. Unless the xtype is specified on an item, xtype is defaulted
to button, which is the default value for defaultType. This is the reason we did not have
to specify the xtype for buttons, in the preceding code. In order to add a component of
other xtype, we will have to set the xtype property on the particular item. For example, the
following code shows adding a select field to the toolbar:

items: [{
 xtype: 'selectfield'
}, {
 text: 'Rose'
}]

Adding the Components

222

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Creating a new component
So far, we have seen various components which the Sencha Touch framework offers and how
to use them to model our application. However, for all practical reasons, there may be a need
to create new components or extend the capability of an existing component. This recipe
walks us through the steps to create a new component.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named PhotoAlbum.js and paste the following code in
it:
Ext.ns('Touch.book.ux');

Touch.book.ux.PhotoAlbum = Ext.extend(Ext.DataView, {
 tpl : new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"><img src="{url}"
 title="{title}"></div>',
 '{about}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
),
 scroll: 'vertical',
 autoHeight:true,
 singleSelect: true,
 overItemCls:'x-view-over',
 itemSelector:'div.thumb-wrap',,
 emptyText: 'No images to display',
 monitorOrientation: true,
 initComponent: function() {

Chapter 6

223

 this.addListener('selectionchange', function(model, recs) {
 if (recs.length > 0) {
 Ext.Msg.alert('Info', 'Selected: ' +
 recs[0].data.album + ' : ' + recs[0].data.about);
 }
 });

 this.addListener('orientationchange', function(model, recs) {
 pnl.refresh();
 });

 Touch.book.ux.PhotoAlbum.superclass.initComponent.apply(this);
 },

 onRender: function(container, position) {
 this.store.loadData(this.data);

 Touch.book.ux.PhotoAlbum.superclass.onRender.apply
 (this, arguments);
 }
});

Ext.reg('photoalbum', Touch.book.ux.PhotoAlbum);

2.	 Create and open a new file named ch06_12.js and paste the following code in it:
Ext.setup({
 onReady: function() {

 var data = [{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'},
 ………
 ………
{
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers3224.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];

 var store = new Ext.data.JsonStore({
 mode: 'local',

Adding the Components

224

 fields: [
 'url', 'title','about'
]
 });

 var photoPnl = new Touch.book.ux.PhotoAlbum({
 data: data,
 store: store
 });

 var pnl = new Ext.Panel({
 id:'images-view',
 fullscreen: true,
 scroll: false,
 monitorOrientation: true,
 defaults: {
 border: false
 },
 items: [photoPnl]
 });

 }
});

3.	 Update the index.html file.

4.	 Deploy and access it from the browser. You may also run it using the emulator.

How it works...
In the preceding code, we defined a new component PhotoAlbum in the Touch.book.ux
namespace. PhotoAlbum extends the DataView component and defines its own template
to render its items, and other common properties are defined inside it. The Ext.extend
method provides us a way to define a new component by extending an existing one. You may
also extend Object using this method. Additionally, two methods have been added to it:
initComponent and onRender. These methods act as a hook into the overall component
management lifecycle of Sencha Touch, which is out of this book's scope.

The initComponent method is called by the component manager to give a chance to the
component to take care of its specific initialization. This is called during the initialization of a
component. Our PhotoAlbum component registers the handlers for selectionchange and
orientationchange events.

Chapter 6

225

onRender is called during the rendering of the component and all our component is doing is
loading store with the data as it is required to show the content.

The last statement, in both the methods, is calling the corresponding method of the super
class, which is DataView. This is required, so that the parent class is initialized properly.

The Ext.lib.Component class contains the code related to the component lifecycle and
understanding that may give you more insight into writing your own component.

The properties tpl, scroll, and so on which are being set inside the component, can be
overridden by the value specified by the user at the time of constructing an instance of the
PhotoAlbum. For example, if you want to have a different template for the PhotoAlbum, then
you can pass the tpl property during the instantiation as follows:

New Touch.book.ux.PhotoAlbum({tpl: ….});

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Stores in Chapter 5

Extending an existing component capability
In the previous recipe, we defined a new component and used it in our application. However,
in some cases, the choice may not be to define a new component. Rather, we may have to
see if we can add a capability to the existing component. For example, String is a standard
object in JavaScript and we would like to add a new method—formatWithWordBreak—
so that once it is added, it is available to the complete application code to make use
of this new method without defining a MyString class and using it wherever we need
formatWithWordBreak. This recipe will take us through the steps to achieve this
requirement.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Adding the Components

226

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch06_13.js and paste the following code in it:
Touch.book.ux.PhotoAlbum.prototype.loadData = function(data) {
 this.store.loadData(data);
};

Ext.setup({
 onReady: function() {

 var data = [{
 album:'rose',
 url:'http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg',
 title:'Rose 1',
 about:'Peach'},
 ………
 ………
{
 album:'hibiscus',
 url:'http://www.pictures.vg/vgflowers/400x300/
 cflowers3224.jpg',
 title:'Hibiscus 1',
 about:'Bright Red'}];
 var store = new Ext.data.JsonStore({
 mode: 'local',
 fields: [
 'url', 'title','about'
]
 });

 var photoPnl = new Touch.book.ux.PhotoAlbum({
 data: data,
 store: store
 });

 var pnl = new Ext.Panel({
 id:'images-view',
 fullscreen: true,
 scroll: false,
 monitorOrientation: true,
 defaults: {

Chapter 6

227

 border: false
 },
 items: [photoPnl],
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'top',
 items:[{
 text: 'Load New Data',
 handler: function() {
 photoPnl.loadData(newData);
 }
 }]
 }]
 });
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

Adding the Components

228

How it works...
prototype is the standard JavaScript mechanism to extend an existing Java Script object, for
example, adding the printWithLineBreak method to the exiting String class, so that the
new method is accessible across the application code. The book JavaScript: The Good Parts
by Douglas Crockford is an excellent resource on JavaScript. The preceding code uses the
same mechanism to add a new method loadData to the existing PhotoAlbum, which loads
data into the data view store. When the user clicks on the Load New Data button, photoPnl
is loaded with the new data array by calling the newly added loadData method on the
PhotoAlbum class.

See also
ff The recipe named Setting up browser-based development environment in Chapter 1

ff The recipe named Creating a new component in this chapter

Overriding a component behavior
This recipe will show us how to override an existing behavior of an existing component and
use the modified behavior in the code.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
1.	 Create and open a new file named PhotoAlbumOverride.js and paste the

following code in it:
Ext.override(Touch.book.ux.PhotoAlbum, {
 loadData : function(data) {
 if (this.store.getCount() > 0) {
 Ext.Msg.alert('Info', 'The view is already loaded with
 data. No action will be performed.');
 } else {
 this.store.loadData(data);
 }
 }
});

Chapter 6

229

2.	 Update the index.html file. We will use the existing ch06_13.js file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

How it works...
The Ext.override method allows us to override an existing behavior of a class. Ext.
override allows us to override class properties and/or methods in a convenient way using
the Touch API programming model. The good part is that you don't have to define a new class.
Rather, you can override a property or a method of the class and still continue to use it with a
different behavior. The method checks if there is already data loaded into the view and if so,
it shows a message to the user and skips the loading of the new data. Otherwise, it loads the
new data.

Adding the Components

230

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Creating a new component in this chapter

ff The recipe named Extending an existing component capability in this chapter

Adding behavior to an existing component
using plugins

Plugin is another mechanism by which we can enhance/customize the behavior of an existing
component. The new behavior is effective only if the plugin is added to the component.
Otherwise, the base behavior remains intact. In this recipe, we will understand how to create
a new plugin and use that on an existing component.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file PhotoAlbumPlugIn.js and paste the following code in
it:
Touch.book.ux.PhotoAlbumPlugIn = Ext.extend(Ext.util.Observable, {

 init: function(viewCmp) {
 viewCmp.tpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"><img src="{url}"
 title="{title}"></div>',
 '{title}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
);
 }

});

Chapter 6

231

2.	 Copy ch06_13.js as ch06_15.js and make the following changes to photoPnl:
 var photoPnl = new Touch.book.ux.PhotoAlbum({
 data: data,
 store: store,
 plugins: [new Touch.book.ux.PhotoAlbumPlugIn()]
 });

3.	 Update the index.html file.

4.	 Deploy and access it from the browser. You may also run it using the emulator. You
will see the following screen:

Adding the Components

232

How it works...
The Sencha Touch framework provides support for plugins and most of the components
have a plugins property which can accept one or more plugins that need to be initialized
for the component. Plugins is a great way to enhance the capabilities of a component
without modifying its core behavior, for example, using a plugin to make the label editable
for DataView. In the preceding code, we defined a plugin PhotoAlbumPlugIn within the
Touch.book.ux namespace. The plugin extends the Ext.util.Observable class, so
that if we have to deal with the events, our plugin would be capable of doing it. However, it
is not mandatory to extend Observable. You may also extend Object to define a plugin.
The important thing is that a plugin must have an init method defined which accepts the
component reference to which the plugin was added to its plugins property. In our case, our
plugin gets the reference to PhotoAlbum and sets tpl to a new template.

After the plugin is defined, plugins: [new Touch.book.ux.PhotoAlbumPlugIn()]
associates the plugin with the PhotoAlbum and thus when the application is run, we see the
template set by the plugin is used.

A plugin is initialized after initComponent of the component is called.
Therefore, you can be assured that when your plugin code is running, the
complete component has been initialized.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Creating a new component in this chapter

7
Adding Audio/Visual

Appeal

In this chapter, we will cover:

ff Animate me!

ff Ding-dong! You have a message!

ff Working with videos

ff Adding charting support to your app

ff Working with an area chart

ff Generating a bar chart

ff Creating a column chart

ff Showing a group of bars and columns

ff Switching between stacked and grouped orientation

ff Highlighting and displaying an item detail

ff Creating a gauge chart

ff Creating a line chart

ff Creating a pie chart

ff Rotating the pies

ff Grouping the pies

ff Highlighting a pie

ff Using a radar chart

ff Using a scatter chart

Adding Audio/Visual Appeal

234

Introduction
So far, we have worked with components which present the data either in the form of lists or
form field or custom views. However, there is always a need in an application to present the
information visually. In addition, notification is another key need in an application where you
want to notify the user that a certain event has occurred in the system, for example, a new
sales inquiry has arrived, an approval request has come for your approval, and so on. This
chapter starts with introducing animation where we will see how to animate the elements in
Sencha Touch and the different types of in-built animations supported by the framework. Next,
we will see how to use the audio control in our application to have notifications, audio help,
and so on. After audio, we will look into the video component and see how to use them in our
application. In the subsequent recipes, we will learn how to set up the charts support in our
application, what are the different types of charts available with the framework, how to use
them, and also understand the ways to build interactive charts, which can respond to
user actions.

Animate me!
A Sencha Touch application is built using the elements, represented by Ext.Element, and
every element of it can be animated. In this recipe, we will see how to animate an element,
what are the available types of animations, and how to change the animation properties.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Create a new folder named ch07 in the same folder where we had created ch01 and ch02
folders. We will be using this new folder to keep the code.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_01.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var pnl = new Ext.Panel({
 renderTo: Ext.getBody(),
 style: 'background-color:gold;',
 height: 100,
 width: 100,

Chapter 7

235

 });

 Ext.Anim.run(pnl.getEl(), 'cube', {

});

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser or the device of your choice.

How it works...
In the preceding code, we created a panel instance, which was rendered to the document
body. After its instantiation, we animated the panel by calling the run method of the Ext.
Anim class. The first argument to the run method indicates which element needs to be
animated, the second argument—'cube'—indicates the type of animation that needs to
be applied to the element, and the third argument is used to pass the animation specific
configuration object, which is, in this case, empty. This means that the default configuration
will be applied.

The list of animations supported by Sencha Touch is defined in the Ext.anims class and the
list is as follows:

ff cube

ff fade

ff flip

ff pop

ff slide

ff wipe

Internally, each animation type corresponds to some calculation and then uses the
appropriate Webkit CSS properties to animate the element. A list of Webkit CSS properties
can be found at http://css-infos.net/properties/webkit.php

There's more...
In the previous code, we saw that the third argument to the run method is the
animation-specific configuration. There are various options that can be passed, which are
outlined in the Ext.Anim class. Let us look at some of the important ones.

Adding Audio/Visual Appeal

236

Working with different animation durations
By default, 250 millisecond is the animation duration. If this is not the desired one, then we
can change it by passing the duration config option to the run method. duration accepts
a value in milliseconds. The following code snippet shows how to pass the duration:

 Ext.Anim.run(pnl.getEl(), 'cube', {
 duration : 2000 //20 seconds

 });

Direction of animation
Most of the animations use a default direction for their animation. It is useful in deciding the
side from which the element will enter into the scene; for example, the cube animation uses
the left direction, by default. We can change this by passing the direction config to the
run method. Possible values are:

ff left

ff right

ff up

ff down

Reversing the animation
If we want to reverse the direction of animation, it can be done by setting the reverse
property to true and passing the same to the run method.

Postponing animation
If we don't want the animation to start immediately but want it to start after a certain amount
of time, then we can achieve it by using the delay option. The delay option accepts a value
in milliseconds.

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Chapter 7

237

Ding-dong! You have a message!
Say, we are building an application for the sales force which allows them to look at the orders
placed in the ERP system from their touch device. Moreover, you want to notify the user
by playing a notification sound as soon as a new order arrives in the system. This can be
achieved by using the audio component which is provided by Sencha Touch and in this recipe.
We will see how to use the audio component to play a sound.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_02.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var pnl = new Ext.Panel({
 fullscreen: true,
 items: [
 {
 id: 'audio-pnl',
 xtype: 'audio',
 url : "ch07/here-it-is.mp3"
 }
],
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'bottom',
 items: [
 {
 text: 'Resume',
 ui: 'confirm',
 handler: function() {
 var audioPnl = Ext.getCmp('audio-pnl');
 audioPnl.play();
 }
 },
 {
 text: 'Stop',

Adding Audio/Visual Appeal

238

 handler: function() {
 var audioPnl = Ext.getCmp('audio-pnl');
 audioPnl.pause();
 }
 }
]
 }],
 listeners: {
 afterrender: function() {
 var audioPnl = Ext.getCmp('audio-pnl');
 audioPnl.play();
 }
 }
 });

 }
});

2.	 Save your MP3 file inside the ch07 folder and update the url property based on the
MP3 file name.

3.	 Update theindex.html file.

4.	 Deploy and access it from the browser or the device of your choice. You should see
the following screen when it is run:

Chapter 7

239

How it works...
The preceding code creates an audio component using xtype: 'audio' and the important
property—url—is set to the path of the MP3 file that needs to be played. This, internally, uses
the HTML5 audio field. By default, the audio component does not play the MP3 file. In order to
get that working, we registered a handler for the afterrender event on the container panel
and called the play method, explicitly, on the audio component.

Additionally, we created a docked toolbar with Resume and Stop buttons to play and stop
the audio.

Recommended file types are Uncompressed WAV and AIF audio, MP3
audio, and AAC-LC or HE-AAC audio.

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Working with videos
In this recipe, we will look at the video component to see how to use it to add the video playing
capability to our application.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_03.js and paste the following code in it:
Ext.setup({
 onReady: function() {
 var pnl = new Ext.Panel({
 fullscreen: true,
 items: [
 {
 xtype : 'video',
 id : 'video-pnl',

Adding Audio/Visual Appeal

240

 enableControls: false,
 x : 600,
 y : 300,
 width : 300,
 height : 250,
 url : "ch07/space.mp4",
 posterUrl: "ch07/Screenshot.png"
 }
],
 dockedItems: [{
 xtype: 'toolbar',
 dock: 'bottom',
 items: [
 {
 text: 'Resume',
 ui: 'confirm',
 handler: function() {
 var videoPnl = Ext.getCmp('video-pnl');
 videoPnl.play();
 }
 },
 {
 text: 'Stop',
 handler: function() {
 var videoPnl = Ext.getCmp('video-pnl');
 videoPnl.pause();
 }
 }
]
 }]
 });

 }
});

2.	 Save your MP4 file inside the ch07 folder and update the url property based on the
MP4 file name.

3.	 Update index.html file.

4.	 Deploy and access it from the browser or the device of your choice and you should
see the following screen:

Chapter 7

241

How it works...
The preceding code creates a video component using xtype: 'video' and the important
property—url—is set to the path of the MP4 file that needs to be played. This, internally, uses
the HTML5 video field.

Additionally, we create a docked toolbar with Resume and Stop buttons to play and stop
the video.

enableControls allows us to control whether the control panel (with Play/Pause button,
slider and sound buttons) should be displayed or not. As in our case, we are playing and
pausing the video on a click of the toolbar buttons—Resume and Stop—we have set the
property to false. By default, the controls are enabled. When the controls are enabled, we
shall see the control as shown in the following screenshot:

Adding Audio/Visual Appeal

242

See also
The recipe named Setting up the browser-based development environment in Chapter 1

Adding the chart support to your app
Data presentation is a key to decision making. While the tabular data can provide lot of details
about a certain topic, the visual presentation can help us take quick decisions, especially
when we have to compare the progression or regression of the data belonging to different
categories. Sencha Touch comes with and add-on for charts. However, before we can start
using them, we will have to set up our development environment with the chart support. In
this recipe, we will go through the steps to download, install, and configure our project for
Sencha Touch Charts.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Download the Sencha Touch Charts framework from the Sencha website
(http://www.sencha.com/products/charts/download/). We will be using
the 1.0 version of the chart framework.

How to do it...
Carry out the following steps:

1.	 Extract the downloaded chart package into a temporary folder of your choice. Once
extracted, the folder structure will look like this:

http://www.sencha.com/products/charts/download/
http://www.sencha.com/products/charts/download/

Chapter 7

243

2.	 Create a touch-charts folder in your project's assets/www folder and copy the
files from the extracted folder, as shown in the following screenshot. Refresh your
project in Eclipse:

Adding Audio/Visual Appeal

244

3.	 Update the index.html file with the following content:
<!DOCTYPE HTML>
<html>
 <head>
 <title>Yapps! - Your daily applications!</title>
 <link rel="stylesheet" href="touch-charts/resources/css/sencha-
 touch.css" type="text/css">
 <link rel="stylesheet" href="touch-charts/resources/css/touch-
 charts.css" type="text/css">
 <script type="text/javascript" charset="utf-8" src="phonegap-
 1.0.0.js"></script>
 <script type="text/javascript" charset="utf-8" src="touch-
 charts/sencha-touch-debug.js"></script>
 <script type="text/javascript" charset="utf-8" src="touch-
 charts/touch-charts-debug.js"></script>
 </head>
 <body></body>
</html>

How it works...
In step 2, we copied only the files and folders which are required to have the Sencha Touch
framework along with the chart support. We cannot use the Sencha Touch framework files
from the assets/www/sencha-touch folder as they have been modified for the charts
support. Moreover, due to that, we updated the index.html file to have the right set of
framework-related JS and CSS files included.

<link rel="stylesheet" href="touch-charts/resources/css/touch-
 charts.css" type="text/css">

The preceding line contains the chart-specific styles, for example, to style the legends and
hence we included it in our index.html file.

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

Chapter 7

245

Working with an area chart
In this recipe, we will learn about the area chart provided by Sencha Touch. This creates a
stacked area chart and is useful in displaying multiple aggregated layers of information.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

In all the chart-related recipes, we will be using the following store definition to feed the data
to our charts:

var store = new Ext.data.JsonStore({
 fields: ['name', 'data1', 'data2', 'data3', 'data4', 'data5'],
 data: [
 {'name':'House Rent', 'data1':10, 'data2':12, 'data3':14,
 'data4':8, 'data5':13},
 {'name':'Books', 'data1':7, 'data2':8, 'data3':16, 'data4':10,
 'data5':3},
 {'name':'Petrol', 'data1':5, 'data2':2, 'data3':14, 'data4':12,
 'data5':7},
 {'name':'Grocery', 'data1':2, 'data2':14, 'data3':6, 'data4':1,
 'data5':23},
 {'name':'Loans & Deposits', 'data1':27, 'data2':38, 'data3':36,
 'data4':13, 'data5':33}
]
});

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_04.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var store = new Ext.data.JsonStore(...); //defined above

 var chart = new Ext.chart.Chart({
 fullscreen: true,
 width: 500,
 height: 300,
 store: store,
 axes: [{

Adding Audio/Visual Appeal

246

 type: 'Numeric',
 position: 'left',
 fields: ['data1', 'data2', 'data3', 'data4', 'data5'],
 title: 'Sample Values',
 grid: {
 odd: {
 opacity: 1,
 fill: '#ddd',
 stroke: '#bbb',
 'stroke-width': 1
 }
 },
 minimum: 0

 },
 {
 type: 'Category',
 position: 'bottom',
 fields: ['name'],
 title: 'Sample Metrics',
 grid: true,
 label: {
 rotate: {
 degrees: 315
 }
 }
 }],
 series: [{
 type: 'area',
 highlight: false,
 axis: 'left',
 xField: 'name',
 yField: ['data1', 'data2', 'data3', 'data4', 'data5'],
 style: {
 opacity: 0.93
 }
 }]
 });

 }
});

2.	 Update the index.html file.

Chapter 7

247

3.	 Deploy and access it from the browser or the device of your choice. You will see the
following screen:

How it works...
The preceding code creates the high-level Ext.chart.Chart instance, which provides
the capability to visualize the data. This object accepts four important properties: store,
legend, axes, and series. The store property binds a data source to the chart, so that
the chart can be updated dynamically. The legend property displays a list of legend items,
each of them related to a series being rendered. This is optional. The axes property contains
the definition of the Cartesian axis and the field from the data set will be used to render the x
and y axis. The series property indicates the kind of chart that needs to be rendered using
the data stored in the store and the axes definition.

In the code, we have defined two axes: one of type Numeric and other of type Category.
Each entry in axes is represented by Ext.chart.axis.Axis class. grid:true tells that
the grid line should be displayed for the axis. For the Numeric axis, we defined grid as a
config object containing the information about how the odd rows in the grid should
be rendered.

Another property that the axes supports is label, which allows us to provide the information
about how the label should be displayed. In the preceding code, we have mentioned that the
label should be displayed at an angle of 315 degree with respect to the axis.

Adding Audio/Visual Appeal

248

Then, we added the series of type area to create the area chart. The axis property sets the
position of the axes. xField and yField properties provide the mapping of the field in the
data to the axis where they should be displayed.

There's more...
Having a legend in a chart is almost a necessity and Sencha Touch does support this in its
chart functionality. In the preceding discussion, we talked about the optional property on the
Chart object—legend. Let us see how to use it.

Showing legend
1.	 Add the legend config to the Chart object as follows:

legend: {
 field: 'name',
 position: {
 portrait: 'bottom',
 landscape: 'right'
 }
 }

In the preceding code, we have defined a legend metadata where the name field
from the data set will be used to generate the legend. However, if the view is in
portrait mode, the legend will be displayed at the bottom of the chart, whereas in
case of landscape mode, the legend will be displayed on the right-hand side of the
chart.

2.	 Set showInLegend property to true on the series

These changes to the code will ensure that the legend is generated for the chart as shown in
the following screenshot:

Chapter 7

249

Changing the legend text
By default, the chart library uses the field name mentioned in yField on the series. In
order to have a different legend text, add the title config to the series as follows:

title:['Sample 1','Sample 2','Sample 3','Sample 4','Sample 5'],

In the preceding code, we have defined a title for each sample data, which the chart library
will use to show the legend text, as shown in the following screenshot:

See also
ff The recipe named Setting up browser-based development environment in Chapter 1

ff The recipe named Working with Store in Chapter 5

Generating a bar chart
Bar chart is another series which can be used to help the user visualize and compare the
data. In this recipe, we will see how to use the bar series to get a bar chart generated.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Adding Audio/Visual Appeal

250

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_05.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var store = new Ext.data.JsonStore(...); //defined in Area
Chart recipe

 var chart = new Ext.chart.Chart({
 fullscreen: true,
 width: 500,
 height: 300,
 animate: true,
 store: store,
 axes: [{
 type: 'Numeric',
 position: 'bottom',
 fields: ['data1'],
 title: 'Sample Values',
 grid: true,
 minimum: 0
 }, {
 type: 'Category',
 position: 'left',
 fields: ['name'],
 title: 'Sample Metrics'
 }],
 series: [{
 type: 'bar',
 axis: 'bottom',
 highlight: true,
 label: {
 field: 'data1',
 orientation: 'horizontal',
 color: '#333',
 'text-anchor': 'middle'
 },
 xField: 'name',
 yField: ['data1']
 }]
 });

 }
});

Chapter 7

251

2.	 Update the index.html file.

3.	 Deploy and access it from the browser or the device of your choice. You will see the
following screen:

How it works...
In the preceding code, we created an instance of the Chart object with axes and series
information. In series, we set type to bar to get the bar chart generated from the data set.

There's more...
The default spacing between the bars is derived by the bar series. However, if there is a need
to increase or decrease the gap between them, here is the way to do that.

Changing the spacing between the bars
On the bar series, there is a property named gutter which accepts numeric values in pixels.
The value set to gutter is used as the gap between two bars. For example, if gutter:200 is
set on the series configuration, then the spacing between two bars will be 200 pixels.

Adding Audio/Visual Appeal

252

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

Creating a column chart
The column chart is extended from the bar series and displays the chart in the form of vertical
bars. In this recipe, we will see how to create a column chart.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_06.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var store = new Ext.data.JsonStore(...); //defined in Area
 Chart recipe

 var chart = new Ext.chart.Chart({
 fullscreen: true,
 width: 500,
 height: 300,
 animate: true,
 store: store,
 axes: [{
 type: 'Numeric',
 position: 'bottom',
 fields: ['data1'],
 title: 'Sample Values',
 grid: true,
 minimum: 0
 }, {
 type: 'Category',

Chapter 7

253

 position: 'left',
 fields: ['name'],
 title: 'Sample Metrics'
 }],
 series: [{
 type: 'column',
 axis: 'left',
 highlight: true,
 label: {
 'text-anchor': 'middle',
 field: ['data1'],
 orientation: 'vertical',
 color: '#333'
 },
 xField: 'name',
 yField: ['data1']
 }]
 });

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser or the device of your choice. You will see the
following screen:

Adding Audio/Visual Appeal

254

How it works...
The preceding code creates an instance of a Chart with axes and a series of type
column.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

Showing a group of bars and columns
Our data set contains data1, data2, data3, data4, and data5 fields, besides the name
field. Suppose, for every month for your monthly expenses, data1 represents the actual
expense whereas data2 represents the estimated expense and we want to see the visuals
for both the values being presented for each of the expense categories, that is, we need to
show a group of bars for each category. In the bar and column charts, Sencha Touch supports
showing a group of bars in the place of a single bar. This recipe will show how to do that.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it…
Carry out the following steps:

1.	 Edit the ch07_06.js file and add the properties highlighted in bold, as follows:
axes: [{
 type: 'Numeric',
 position: 'bottom',
 fields: ['data1', 'data2'],
 title: 'Sample Values',
 grid: true,
 minimum: 0
 }, {
 type: 'Category',
 position: 'left',

Chapter 7

255

 fields: ['name'],
 title: 'Sample Metrics'
 }],
 series: [{
 type: 'column',
 axis: 'left',
 highlight: true,
 label: {
 display: 'insideEnd',
 'text-anchor': 'middle',
 field: ['data1', 'data2'],
 orientation: 'vertical',
 color: '#333'
 },
 xField: 'name',
 yField: ['data1', 'data2']
 }],

2.	 Deploy and access the application from the browser or the device of your choice. You
will see the following screen:

Adding Audio/Visual Appeal

256

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

ff The recipe named Creating a column chart in this chapter

Switching between stacked and grouped
orientation

In previous recipes, we saw how to get grouped bars in a bar or a column chart. The Sencha
Touch Chart framework provides functionality where using one of the tap events, the grouped
bars can be converted into stacked bars and vice versa. This recipe will show how to use
that functionality.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry our the following steps:

1.	 Edit the ch07_06.js file and add the interactions properties, highlighted in
bold, to the chart object as follows:

 var chart = new Ext.chart.Chart({
 fullscreen: true,
 width: 500,
 height: 300,
 animate: true,
 store: store,
 axes: [………………],
 series: [……………],
 interactions: [{
 type: 'togglestacked'
 }]
 });

Chapter 7

257

2.	 Save the change and access the application from the browser or the device of your
choice.

3.	 Touch the bar and swipe. You will see the bars stacked as shown in the below
screenshot:

How it works...
In the preceding code, we added an interactions array with one a member of type
togglestacked which provides us the functionality of stacking the bars.

The Chart component in Sencha Touch provides a support for interactions and gestures,
which help us, build interactive charts. The framework provides a list of interactions which
can be used for different types of series. Each interaction is driven by a gesture, such as, tap,
doubletap, swipe, pinch, and so on. By default, every interaction is mapped to a specific event.
For example, in our case, the togglestacked is mapped to swipe.

This interaction can be used on the bar as well as column series.

Adding Audio/Visual Appeal

258

There's more...
First thing, in an application, we may want to change the default swipe gesture which is used
for togglestacked to, say, doubletap. In addition, during the interaction we might have
changed the state of the chart, which we may want to reset it back to its original state. Let us
see how to achieve these requirements.

Changing gesture
Besides the type property, an item in the interactions array contains an additional
property named gesture. Setting this to the event name, which will fire up the interaction,
will change the default gesture value. For example, to invoke the togglestacked interaction
on doubletap, the interaction will look like this:

{
type: 'togglestacked',
 gesture: 'doubletap'
}

Resetting the chart state
In order to reset the chart state to its original state, Sencha Touch provides an interaction
of type reset. When used, the chart is reset when the user doubletaps on the empty part
of the chart. The following code snippet shows how to add the reset behavior to a chart by
adding the following to the interactions array:

{
 type: 'reset'
}

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

ff The recipe named Creating a column chart in this chapter

Chapter 7

259

Highlighting and displaying an item detail
The next level of interaction is that when the user clicks on a chart item, we may want to
highlight that item and show the item detail corresponding to it. In this recipe, we will see how
to achieve this.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Edit the ch07_06.js file.

2.	 Add the following interactions to the chart's interactions array:
{
 type: 'iteminfo',
 gesture: 'taphold',
 listeners: {
 show: function(me, item, panel) {
 panel.update(item.value[0] + " : " + item.value[1]);
 }
 }
},
{
 type: 'itemhighlight'
}

3.	 Save the change.

4.	 Deploy and access it from the browser or the device of your choice.

5.	 Single tap on a bar, this will highlight the bar.

Adding Audio/Visual Appeal

260

6.	 Tap on the bar and hold it for a while. You will see a pop-up showing the item detail as
shown in the following screenshot:

How it works...
The code uses the two of the in-built interactions: itemhighlight and iteminfo. The
default handler of the iteminfo interaction shows a pop-up panel with Item Detail as the
title. This panel is passed to the show event handler as the third argument which we updated
with the selected item detail.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

ff The recipe named Creating a column chart in this chapter

Chapter 7

261

Creating a gauge chart
Gauge charts are used to show the progress in a certain variable. In this recipe, we will walk
through the steps to create a gauge chart.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_07.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var store = new Ext.data.JsonStore(...); //defined in the
 Area Chart recipe

 var chart = new Ext.chart.Chart({
 fullscreen: true,
 width: 500,
 height: 300,
 animate: true,
 store: store,
 axes: [{
 type: 'gauge',
 position: 'gauge',
 minimum: 0,
 maximum: 100,
 steps: 10
 }],
 series: [{
 type: 'gauge',
 angleField: 'data1',
 colorSet: ['#F49D10', '#123456']
 }],
 interactions: [{
 type: 'rotate'
 }]
 });
 }
});

Adding Audio/Visual Appeal

262

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will then see the following screen:

How it works...
The preceding code creates a Chart object with series of type gauge. The gauge chart
requires a special axis named gauge. Therefore, we set up the axes detail using the
gauge type, the starting number, the ending number, and the steps to be displayed along the
circumference of the semicircle. position is set to gauge in the Ext.axis.chart.Gauge,
by default, but we have to set it again to get around an issue in the framework.

In series, after the type property, the next important property is angleField, which
contains the field name of the record that is used for the gauge angles. The value must be
a positive real number. colorSet is used to specify colors that will be used to render the
sections/pies of the gauge chart.

Lastly, we configured the rotation interaction on the gauge chart.

Chapter 7

263

There's more...
There are some more useful properties of the gauge chart which are worth discussing.

Showing a needle
On a gauge, sometime we may want to see a needle to show something like a dial chart. This
can be achieved by setting the needle property to true on the gauge series.

The donut effect
The donut effect can be created by setting the donut property on the gauge series to a value
which is used as the radius of the inner circle. For example, this is how the gauge will look if
we set the donut to 50:

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

Adding Audio/Visual Appeal

264

Creating a line chart
This recipe is all about creating a line chart by using the Sencha Touch Chart library.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_08.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var store = new Ext.data.JsonStore(...); //defined in
 the Area Chart recipe

 var chart = new Ext.chart.Chart({
 fullscreen: true,
 width: 500,
 height: 300,
 animate: true,
 store: store,
 axes: [{
 type: 'Numeric',
 position: 'bottom',
 fields: ['data1'],
 title: 'Sample Values',
 grid: true,
 minimum: 0
 }, {
 type: 'Category',
 position: 'left',
 fields: ['name'],
 title: 'Sample Metrics'
 }],
 series: [{
 type: 'line',
 highlight: {
 size: 7,

Chapter 7

265

 radius: 7
 },
 axis: 'left',
 xField: 'name',
 yField: 'data1'
 }, {
 type: 'line',
 highlight: {
 size: 7,
 radius: 7
 },
 axis: 'left',
 xField: 'name',
 yField: 'data3'
 }],
 interactions: [{
 type: 'reset'
 },
 {
 type: 'panzoom',
 axes: {
 left: {}
 }
 },
 {
 type: 'iteminfo',
 gesture: 'taphold'
 },
 {
 type: 'itemcompare'
 }]
 });

 }
});

2.	 Update the index.html file.

Adding Audio/Visual Appeal

266

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will then see the following screen:

How it works...
The preceding code creates a Chart object with a line type series various interactions. In
each of the series, the highlight config object defines the configuration which is used to
highlight the line and the nodes when the user taps on a particular line series. It will show the
circle with a 7-pixel radius.

There's more...
Let us look at some of the additional useful properties of the line chart.

Filling the area
In order to fill the area under a line series, we will set the fill property to true on the
particular line series. For example, if we want to show the color under our first line series, then
we will set the property on it as follows:

series: [{
 type: 'line',
 fill: true,

Chapter 7

267

 highlight: {
 size: 7,
 radius: 7
 …
 }
 }]

Smooth curves
By default, the curve will have edges. However, if we want smooth curves such as the ones
drawn by the Bezier or B-Spline curves, then we must set the property smooth to true on the
desired line series. The following code snippet shows how to set this property:

series: [{
 type: 'line',
 fill: true,
 smooth: true,
 highlight: {
 size: 7,
 radius: 7
 …
 }
 }]

Once these properties are set, the chart will look similar to the one shown in the following
screenshot:

Adding Audio/Visual Appeal

268

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

Creating a pie chart
This recipe shows how to create a pie chart and work with some interesting features offered
by the framework.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_09.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var store = new Ext.data.JsonStore(...); //defined in the
 Area Chart recipe

 var chart = new Ext.chart.Chart({
 fullscreen: true,
 width: 500,
 height: 300,
 animate: true,
 store: store,
 legend: {
 position: {
 portrait: 'bottom',
 landscape: 'left'
 }
 },
 series: [{
 type: 'pie',
 angleField: 'data1',

Chapter 7

269

 showInLegend: true,
 label: {
 field: 'name',
 display: 'rotate',
 font: '18px Arial'
 }
 }]
 });

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will then see the following screen:

How it works...
The preceding code creates a Chart object with series of type pie. The angleField
is the record field which is used to calculate the angle. showInLegend is set to true to
generate the legend using the legend configuration specified within the chart.

Adding Audio/Visual Appeal

270

The label config contains the information about how the label for each pie will be generated.
field is the record field name whose value should be used as the label text. Setting
contrast to true will ensure that the label is displayed in a black or white color based on
the pie color, so that it is readable. font contains the font information that should be used for
the label text.

There's more...
Let us look at some of the other properties which might be of our interest.

The donut effect
Similar to the gauge chart, the donut effect can be created by setting the donut property on
the pie series with a positive numeric value.

Pie length derived from the data
In some presentation use cases, we may have to display the pie with its radius derived from
one of the data fields. If this is the case, we can do this by setting the lengthField property
on the pie series. The value assigned to this property must be a record field. The following
code shows how to use this property:

series: [{
 type: 'pie',
 angleField: 'data1',
 lengthField: 'data1',
…
}]

The following screenshot, the first one where the pie length is derived from data and the
second one is where it shows the donut, shows how the pie chart will look like after these
additional properties are set:

Chapter 7

271

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

Rotating the pies
Coming to the interactions with the pie chart, rotation is one of them, which allows the user
to rotate the pie chart to view a pie at a particular position. In this recipe, we will learn how to
achieve this.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Edit the ch07_09.js file.

2.	 Add the following interaction item to it:
interactions: [{
 type: 'rotate'
}]

3.	 Save the changes.

4.	 Deploy and access the application from the browser. You may also run it using the
emulator.

5.	 Use the single-finger or mouse drag, based on your device, around the center of the
series. You will see the pie chart rotating.

How it works...
This is taken care of by the default rotate interaction of the Sencha Touch Chart framework.

Adding Audio/Visual Appeal

272

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

ff The recipe named Creating a pie chart in this chapter

Grouping the pies
Another useful feature is while you are analyzing your data using the pie chart, you may want
to group multiple pies and get additional information; for example, what is the cumulative
expense for the House Rent and Petrol. In this recipe, we will see how to put this in place.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Edit the ch07_09.js file.

2.	 Add the following interaction item into it:
interactions: [{
 type: 'piegrouping',
 listeners: {
 selectionchange: function(interaction, selectedItems) {
 var msg = selectedItems.length + ' items
 grouped!\nItems are: ';
 Ext.each(selectedItems, function(item, idx, allItems) {
 msg += ' - ' + item.storeItem.data.name;
 });

 Ext.Msg.alert('INFO', msg);
 }
 }
}]

3.	 Save the changes.

Chapter 7

273

4.	 Deploy and access the application from the browser. You may also run it using the
emulator.

5.	 Tap a particular pie. This will show a handle which we can drag around other pies to
add/remove the slices to/from the selection group, and once grouped it will show
an alert message indicating the items, which have been grouped, as shown in the
following screenshot:

How it works...
This is taken care of by the default piegrouping interaction of the Sencha Touch Chart
framework. Upon grouping of the pies, the interaction fires the selectionchange event
which we have handled to show the selected items.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

ff The recipe named Creating a pie chart in this chapter

Adding Audio/Visual Appeal

274

Highlighting a pie
One fascinating feature the pie chart supports is highlighting a pie and when it is selected. It
actually stands out distinctly from other pies. In this recipe, we will see how to make use of
this feature.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

1.	 Edit the ch07_09.js file.

2.	 Add the following interaction item to it:
interactions: [{
 type: 'itemhighlight'
}]

3.	 Save the changes.

4.	 Deploy and access the application from the browser. You may also run it using the
emulator.

5.	 Tap a particular pie. This will show the pie highlighted and stand out from the rest of
the chart, as shown in the following screenshot:

Chapter 7

275

How it works...
This is taken care of by the default itemhighlight interaction on the pie series of the
Sencha Touch Chart framework.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

ff The recipe named Creating a pie chart in this chapter

Using a radar chart
A radar chart is a useful visualization technique for comparing different quantitative values for
a constrained number of categories, and this recipe will show us how to create a radar chart.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_10.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var store = new Ext.data.JsonStore(...); //defined in Area
 Chart recipe

 var chart = new Ext.chart.Chart({
 fullscreen: true,
 width: 500,
 height: 300,
 animate: true,
 store: store,
 axes: [{
 type: 'Radial',

Adding Audio/Visual Appeal

276

 position: 'radial',
 label: {
 display: true
 }
 }],
 legend: {
 field: 'name',
 position: {
 portrait: 'bottom',
 landscape: 'right'
 }
 },
 series: [{
 type: 'radar',
 xField: 'name',
 yField: 'data3',
 showInLegend: true,
 showMarkers: true,
 style: {
 'stroke-width': 2,
 fill: '#abcdef',
 opacity: 0.4
 }
 },{
 type: 'radar',
 xField: 'name',
 yField: 'data2',
 showMarkers: true,
 showInLegend: true,
 style: {
 'stroke-width': 2,
 fill: '#5d5f4d',
 opacity: 0.4
 }
 },{
 type: 'radar',
 xField: 'name',
 yField: 'data5',
 showMarkers: true,
 showInLegend: true,
 style: {
 'stroke-width': 4,
 fill: '#ddd',
 opacity: 0.4

Chapter 7

277

 }
 }]
 });

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will then see the following screen:

How it works...
The preceding code creates a Chart object with a series of type radar. xField and
yField are the record field names that are used to render the radar. style is used to style
each of the series by using the properties defined in it. In the style config object, we set the
fill color and the transparency level. showInLegend is set to true to add the series data
to the legend.

Adding Audio/Visual Appeal

278

There's more...
By default, the series uses circle as the marker. If we want to use a different one, following
is how we will do it.

Using a different marker
The kind of marker to be used is derived from the type property of the markerConfig
object. The following code, in bold, shows the usage of cross as the marker for one of
the series:

{
 type: 'radar',
 xField: 'name',
 yField: 'data5',
 showMarkers: true,
 showInLegend: true,
 markerConfig: {
 type: 'cross',
 size: 5
 },
 style: {
…}
}

Once set, the following screenshot shows what the new marker will look like:

Chapter 7

279

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

Using a scatter chart
The scatter plot is useful when trying to display more than two variables in the same
visualization. This recipe will show us how to work with a scatter chart.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch07_11.js and paste the following code into it:
Ext.setup({
 onReady: function() {
 var store = new Ext.data.JsonStore(...); //defined in
 the Area Chart recipe

 var chart = new Ext.chart.Chart({
 fullscreen: true,
 width: 500,
 height: 300,
 animate: true,
 store: store,
 axes: [{
 type: 'Numeric',
 position: 'bottom',
 fields: ['data1', 'data2', 'data3'],
 title: 'Sample Values',
 grid: true,
 minimum: 0
 }, {
 type: 'Category',

Adding Audio/Visual Appeal

280

 position: 'left',
 fields: ['name'],
 title: 'Sample Metrics'
 }],
 legend: {
 field: 'name',
 position: {
 portrait: 'bottom',
 landscape: 'right'
 }
 },
 series: [{
 type: 'scatter',
 axis: 'left',
 xField: 'name',
 yField: 'data1'
 },{
 type: 'scatter',
 markerConfig: {
 type: 'plus',
 radius: 5,
 size: 5
 },
 axis: 'left',
 xField: 'name',
 yField: 'data2'
 }, {
 type: 'scatter',
 markerConfig: {
 type: 'cross',
 size: 5
 },
 axis: 'left',
 xField: 'name',
 yField: 'data3'
 }],
 interactions: [{
 type: 'reset'
 },
 {
 type: 'panzoom',
 axes: {
 left: {}
 }

Chapter 7

281

 },
 {
 type: 'iteminfo',
 gesture: 'taphold'
 }]
 });

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the browser. You may also run it using the emulator. You
will then see the following screen:

Adding Audio/Visual Appeal

282

How it works...
The preceding code creates a Chart object with a series of type scatter. Each
series contains xField and yField properties which are set to the record data fields.
markerConfig contains the markers that need to be used for each of the scatter series.

In addition, there are three interactions added: reset, panzoom, and iteminfo. As there is
no handler written for the show event in case of iteminfo, taphold will show a blank pop-
up with the title Item Detail.

See also
ff The recipe named Setting up the browser-based development environment in

Chapter 1

ff The recipe named Working with Store in Chapter 5

ff The recipe named Working with an area chart in this chapter

8
Taking your

Application Offline

In this chapter, we will cover:

ff Detecting offline mode

ff Storing your data offline

ff Storing your images offline

ff Application caching

Introduction
When it comes to building mobile applications, there is one special case that is different to
the mobile application from today's desktop applications—offline mode or the flight mode.
However, this offline mode has been there on desktop applications for some time, where we
had intermittent or slow network connections. However, they are now more common to the
mobile world. This mode means the mobile is not on the network and does not have access to
the WLAN or GPRS data connection.

Taking your Application Offline

284

There are several cases where it is necessary for an application to have an offline presence.
For example, imagine that you are field maintenance staff and you work in areas where there
is no network coverage. However, you need to carry the list of customers, their orders, and
the order details containing the list of products the customer has ordered, their quantity,
prices, and so on. As field maintenance staff, you are expected to fulfill the order, collect the
payment, and issue a receipt to customers. Moreover, in your company, the order is created in
a centralized ERP system. In this case, it would be impossible to manage things electronically
if the offline application to enable the field maintenance staff was not there. A typical offline
application can help the maintenance staff to download the orders for a day on their mobile.
This will enable them to update the order status locally on their mobile, create, and issue a
receipt to the customer after the order is completed, come back to their office and sync up
the updated orders and the receipts and other updates with the centralized system. I am sure
there can be much more interesting scenarios where offline applications would be useful. The
bottom line is that having an offline capability in our application makes a lot of sense and is a
powerful feature to have in a mobile application.

A typical touch application consists of one or more JavaScript files, one or more CSS files and
work with the data and images. Taking this application offline means all these things should
be made available on the local device and should be stored in such a way that the absence of
the network does not make any difference to the application. In this chapter, we will see how
to take our application completely offline and learn how to model our application for online
and offline mode support.

Detecting offline mode
The life of an offline application starts with identifying whether the device/browser is online
or offline and, based on that, taking the appropriate action. In this recipe, we will see the
different ways that we can identify whether the device or the browser is online or offline, which
would help us make decisions in the subsequent recipes. We will start with using PhoneGap
API to detect the mode and then later look at other alternatives.

We have already set up our project with PhoneGap support as part of the setup in Chapter 1.
You may refer to http://docs.phonegap.com for more details on its APIs.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Create a new folder named ch08 in the same folder where we created the ch01 and ch02
folders. We will be using this new folder in which to keep the code.

http://docs.phonegap.com

Chapter 8

285

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch08_01.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 //phonegap way to detect connection
 var networkState = navigator.network.connection.type;

 var states = {};
 states[Connection.UNKNOWN] = 'Unknown connection';
 states[Connection.ETHERNET] = 'Ethernet connection';
 states[Connection.WIFI] = 'WiFi connection';
 states[Connection.CELL_2G] = 'Cell 2G connection';
 states[Connection.CELL_3G] = 'Cell 3G connection';
 states[Connection.CELL_4G] = 'Cell 4G connection';
 states[Connection.NONE] = 'No network connection';

 var str = (navigator.onLine ? 'ONLINE' : 'OFFLINE') + ' - ' +
 states[networkState];

 Ext.Msg.alert('INFO', str);
 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the device of your choice.

How it works...
navigator.network.connection.type gets the connection type from the navigator
JavaScript object and is used to compare the network status values defined in the PhoneGap's
Connection object to determine whether the device is online or offline. Additionally, the
Connection object gives more information about the kind of network available in the online
case. Connection.NONE indicates the offline mode of the device.

navigator.onLine allows us to check if the browser is in online or offline mode. This is
different from the device online/offline mode. Many browsers would say they are online even if
there is no network.

Taking your Application Offline

286

At the time of writing this chapter, the Connection API supports
the following platforms: (a) iOS (b) Android (c) BlackBerry
WebWorks (OS 5.0 and higher).

There's more...
The preceding code works well as long as we are using the compatible browsers which support
the property on the navigator object and the PhoneGap APIs. However, using PhoneGap is not
mandatory for creating Sencha Touch based applications. There is one more technique which
we can use to identify the offline mode. Let's see how to use that technique.

Using aggressive timeout
In Chapter 5, Dealing with Data and Data Sources, we saw how to use stores and proxies to
connect to the data sources and load the data. Proxy is configured on a model. To figure out
if we are in online or offline mode, we can use the timeout property on the proxy and set a
very small timeout period. If the connection fails, then the exception handler will take care
of using the offline data for the application, as shown in the following code snippet:

 proxy: {
 type: 'ajax',
 url : 'orders.json',
 reader: {
 type: 'json',
 root: 'orders',
 totalProperty: 'totalRecords',
 successProperty: 'success'
 },
 timeout: 2000,
 listeners: {
 exception:function (proxy, response, operation) {
 //we are offline
 }
 }
 }

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

Chapter 8

287

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Loading data through AJAX using AjaxProxy in Chapter 5

Storing your data offline
Any application has to deal with the data to provide a rich set of functionality. Moreover, when
the application goes offline, the data which is required to work with that also needs to be
available locally. In this recipe, we will look at how to take our data offline and use it in the
application.

In this recipe, we have taken an example of an application which will download the list of
orders and their details on the device and use it in the application to allow the user to look at
the list of orders and their details.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch08_02.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var orderList, onlineStore, offlineStore;

 //OrderLine model representing a line item in an order
 Ext.regModel('OrderLine', {
 fields: ['id', 'product', 'description', 'orderedQty',
 'uom', 'price']
 });

 //Order model representing an order in the system
 Ext.regModel('Order', {
 fields: [
 'id',
 {name: 'orderNbr', type: 'int', mapping: 'documentNo'},
 {name: 'description', type: 'string'},

Taking your Application Offline

288

 {name: 'dateOrdered', type: 'string'},
 {name: 'customer', type: 'string'},
 {name: 'customerLocation', type: 'string'},
 {name: 'isNewOrder', type: 'boolean', defaultValue: true}
],
 hasMany: {model: 'OrderLine', name: 'orderlines'},
 proxy: {
 type: 'ajax',
 url : 'orders.json',
 reader: {
 type: 'json',
 root: 'orders',
 totalProperty: 'totalRecords',
 successProperty: 'success'
 },
 timeout: 2000,
 listeners: {
 exception:function (proxy, response, operation) {
 //we are offline. Work with the local store
 orderList.bindStore(offlineStore);
 offlineStore.load();
 }
 }
 }
 });

 //online data store
 onlineStore = new Ext.data.Store({
 model: 'Order'
 });

 //upon data load, store the data in the local store and use
 //the same with the list
 onlineStore.addListener('load', function (store, records) {
 offlineStore.proxy.clear();
 offlineStore.add(records);
 offlineStore.sync();
 orderList.bindStore(offlineStore);
 });

 //offline local data store
 offlineStore = new Ext.data.Store({
 model: 'Order',
 proxy: {

Chapter 8

289

 type: 'localstorage',
 id: 'yapps-01'
 }
 });

 //list showing the list of orders
 orderList = new Ext.List({
 title: 'Orders',
 itemTpl: '<tpl for="."><div>{orderNbr}
 {description}</div></tpl>',
 //on click of disclosure, show the order lines
 onItemDisclosure: function(){
 var orderTabPnl = Ext.getCmp('ordertab-pnl-id');
 var orderLinesPnl = Ext.getCmp('orderlines-pnl-id');
 if (Ext.isEmpty(orderLinesPnl))
 orderLinesPnl = new Ext.List({
 id: 'orderlines-pnl-id',
 title: 'Order Lines',
 itemTpl: '<tpl for="."><div>{lineNo} - {product}
 {orderedQty}</div></tpl>',
 store: new Ext.data.Store({
 model: 'OrderLine',
 data : arguments[0].data.orderlines
 }),
 floating : true,
 width : 350,
 height : 370,
 centered : true,
 modal : true,
 hideOnMaskTap: false
 });

 orderTabPnl.add(1, orderLinesPnl);
 orderTabPnl.setActiveItem(1);
 },
 store: onlineStore,
 floating : true,
 width : 350,
 height : 370,
 centered : true,
 modal : true,
 hideOnMaskTap: false
 });

Taking your Application Offline

290

 var orderTab = new Ext.TabPanel({
 id: 'ordertab-pnl-id',
 title: 'List',
 fullscreen: true,
 ui : 'light',
 sortable : true,
 items: [orderList],
 listeners: {
 //on tab change, remove the order lines panel
 cardswitch: function(tabPnl, newCard, oldCard, index,
 animated) {
 if (index === 0) {
 var orderLinesPnl = Ext.getCmp('orderlines-pnl-id');
 if (!Ext.isEmpty(orderLinesPnl))
 tabPnl.remove(orderLinesPnl);
 }
 }
 }
 });

 new Ext.TabPanel({
 id: 'tab-pnl-id',
 fullscreen: true,
 ui : 'light',
 sortable : true,
 items: [orderTab,
 {
 title: 'Help',
 html: '<h1 style="font-size:16px;">Help
 </h1><p>This application shows the orders and
 their line items.</p>',
 cls : 'tab2'
 },
 {
 title: 'About',
 html : '<h1 style="font-size:16px;">About this
 app!</h1><p>Version 0.1</p>',
 cls : 'tab3'
 }
]
 });

 //load data in the online store
 onlineStore.load();
 }
});

Chapter 8

291

2.	 Update the index.html file.

3.	 Deploy and access it from the device of your choice.

How it works...
In the preceding code, we defined two models: Order and OrderLine, and the association
between them is one-to-many, which is indicated by hasMany. Then, we created two stores:
onlineStore and offlineStore. The onlineStore is of type ajax and loads the order
data from the orders.json file. The offlineStore is bound to the HTML5 localStorage.

onlineStore is bound to the orderList and we registered a handler for the load event
on the onlineStore. The handler function saves all orders into the local storage and binds
the orderList to the offlineStore. Therefore, we first download all the orders from the
remote system, save them locally, and work with the local data.

In order to switch to the offline mode, we used the timeout technique and the exception
handler binds orderList with the offlineStore and loads the data from there.

Taking your Application Offline

292

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Loading data through AJAX using AjaxProxy in Chapter 5

ff The recipe named Creating models in Chapter 5

ff The recipe named Relating models using association in Chapter 5

ff The recipe named Managing a list of data using List in Chapter 6

ff The recipe named Working with Tab panels in Chapter 6

Storing your images offline
In the previous recipe, we talked about storing the data offline. Another thing which is used
extensively in applications is images, which enhance the overall presentation. Typically,
an image is accessed as a URL. These URLs will not be accessible when the device or the
browser goes offline. To some extent, this can be managed by using the image-caching feature
of the browser and giving it a large expiry time. However, this may not be honored all the time
by the browsers. We need a better mechanism to contain the images, which is in complete
control of our application. In this recipe, we will see what it takes to persist images locally and
use them in the application.

For the demonstration, we will enhance the application that we built in Chapter 4 where we
used the images from a third party website to show the album of flowers, as shown in the
following screenshot:

Chapter 8

293

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch08_03.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 //Flower model representing a flower record in the data
 Ext.regModel('Flower', {
 fields: [
 'id','album','url','title', 'about'
],

Taking your Application Offline

294

 proxy: {
 type: 'ajax',
 url : 'flowers.json',
 reader: {
 type: 'json',
 root: 'flowers',
 totalProperty: 'totalRecords',
 successProperty: 'success'
 },
 timeout: 2000,
 listeners: {
 exception:function (proxy, response, operation) {
 //we are offline. Use the local storage with the
 //data view
 var dv = Ext.getCmp('dataview-id');
 dv.bindStore(offlineStore);
 offlineStore.load();
 }
 }
 },
 //member method to create the Sencha IO url to get the
 //data url for an image
 setUrl: function() {
 var script = document.createElement("script");
 script.setAttribute("src",
 "http://src.sencha.io/data.setPhotoUrl-" + this.getId() +
 "/" + this.get('url'));
 script.setAttribute("type","text/javascript");
 document.body.appendChild(script);
 }
 });

 //method to set the data url on a model
 setPhotoUrl = function (id, dataUrl) {
 var flower = this.offlineStore.getById(id);
 flower.set('url', dataUrl);
 offlineStore.sync();
 };

 //online data store
 onlineStore = new Ext.data.Store({
 model: 'Flower'
 });

Chapter 8

295

 onlineStore.addListener('load', function (store, records) {
 //after the data is loaded, add them to the local store
 //and bind the local store to the data view
 offlineStore.proxy.clear();
 this.each(function (record) {
 var flower = offlineStore.add(record.data)[0];
 flower.setUrl();
 });
 offlineStore.sync();
 var dv = Ext.getCmp('dataview-id');
 dv.bindStore(offlineStore);
 });

 //offline data store using the localStorage
 offlineStore = new Ext.data.Store({
 model: 'Flower',
 proxy: {
 type: 'localstorage',
 id: 'yapps-02'
 }
 });

 //template to show the photos
 var tpl = new Ext.XTemplate(
 '<tpl for=".">',
 '<div class="thumb-wrap" id="{title}">',
 '<div class="thumb"><img src="{url}"
 title="{title}"></div>',
 '{about}</div>',
 '</tpl>',
 '<div class="x-clear"></div>'
);

 var filter = function(criteria) {
 var dv = Ext.getCmp('dataview-id');
 var store = dv.getStore();
 return store.filterBy(function(record, id){
 if (record.get('album') === criteria ||
 Ext.isEmpty(criteria))
 return true;
 else
 return false;
 });

Taking your Application Offline

296

 }

 var pnl = new Ext.Panel({
 id:'images-view',
 fullscreen: true,
 scroll: false,
 monitorOrientation: true,
 layout: 'card',
 defaults: {
 border: false
 },
 items: [new Ext.DataView({
 id: 'dataview-id',
 store: onlineStore,
 scroll: 'vertical',
 tpl: tpl,
 autoHeight:true,
 singleSelect: true,
 overItemCls:'x-view-over',
 itemSelector:'div.thumb-wrap',
 emptyText: 'No images to display',
 monitorOrientation: true,
 listeners: {
 selectionchange: function(model, recs) {
 if (recs.length > 0) {
 Ext.getCmp('detail-panel').update('<img
 src="' + recs[0].data.url + '" title="' +
 recs[0].data.title + '">');
 Ext.getCmp('images-
 view').getLayout().setActiveItem(1);
 Ext.getCmp('back-button').show();
 Ext.getCmp('rose-button').hide();
 Ext.getCmp('daffodil-button').hide();
 Ext.getCmp('hibiscus-button').hide();
 }
 },
 orientationchange: function(pnl, orientation,
 width, height){
 pnl.refresh();
 }
 }
 }), new Ext.Panel({
 id: 'detail-panel',
 width: 400,

Chapter 8

297

 height: 300,
 styleHtmlContent: true,
 scroll: 'vertical',
 cls: 'htmlcontent'
 })],
 dockedItems: [
 {
 xtype: 'toolbar',
 dock: 'top',
 items: [
 {
 text: 'Rose',
 id: 'rose-button',
 handler: function() {
 filter('rose');
 }
 },
 {
 text: 'Daffodil',
 id: 'daffodil-button',
 handler: function() {
 filter('daffodil');
 }
 },
 {
 text: 'Hibiscus',
 id: 'hibiscus-button',
 handler: function() {
 filter('hibiscus');
 }
 },
 {
 text: 'Reset',
 id: 'reset-button',
 ui: 'decline-round',
 handler: function() {
 Ext.getCmp('images-
 view').getLayout().setActiveItem(0);
 filter('');
 }
 }, {
 text: 'Back',
 id: 'back-button',
 ui: 'back',

Taking your Application Offline

298

 hidden: true,
 handler: function() {
 Ext.getCmp('images-
 view').getLayout().setActiveItem(0);
 this.hide();
 Ext.getCmp('rose-button').show();
 Ext.getCmp('daffodil-button').show();
 Ext.getCmp('hibiscus-button').show();
 }
 }
]
 }
]
 });

 onlineStore.load();

 }
});

2.	 Create and open a new file named flowers.json in the www folder and paste the
following into it:
{
"totalRecords" : "20",
"success" : "true",
"flowers": [{
 "id": "1",
 "album":"rose",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 flowers_pics_4870.jpg",
 "title":"Rose 1",
 "about":"Peach"}, {
 "id": "2",
 "album":"rose",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 redroses08.jpg",
 "title":"Rose 2",
 "about":"Red"}, {
 "id": "3",
 "album":"rose",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 abflowers5613.jpg",
 "title":"Rose 3",
 "about":"Pink"}, {
 "id": "4",

Chapter 8

299

 "album":"rose",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 cflowers0399.jpg",
 "title":"Rose 4",
 "about":"Orange"}, {
 "id": "5",
 "album":"daffodil",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 daff001.jpg",
 "title":"Daffodil 1",
 "about":"Yellow"}, {
 "id": "6",
 "album":"daffodil",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 cflowers0484.jpg",
 "title":"Daffodil 2",
 "about":"Small"}, {
 "id": "7",
 "album":"daffodil",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 abflowers2232.jpg",
 "title":"Daffodil 2",
 "about":"Orange"}, {
 "id": "8",
 "album":"daffodil",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 abflowers7230.jpg",
 "title":"Daffodil 2",
 "about":"Winter"}, {
 "id": "9",
 "album":"hibiscus",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 cflowers4214.jpg",
 "title":"Hibiscus 1",
 "about":"Peach"}, {
 "id": "10",
 "album":"hibiscus",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 cflowers3250.jpg",
 "title":"Hibiscus 1",
 "about":"Red"}, {
 "id": "11",
 "album":"hibiscus",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 cflowers2631.jpg",

Taking your Application Offline

300

 "title":"Hibiscus 1",
 "about":"Pink"}, {
 "id": "12",
 "album":"hibiscus",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 cflowers5645.jpg",
 "title":"Hibiscus 1",
 "about":"Maroon"}, {
 "id": "13",
 "album":"hibiscus",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 cflowers0577.jpg",
 "title":"Hibiscus 1",
 "about":"Pink"}, {
 "id": "14",
 "album":"hibiscus",
 "url":"http://www.pictures.vg/vgflowers/400x300/
 cflowers3224.jpg",
 "title":"Hibiscus 1",
 "about":"Bright Red"
 }]
}

3.	 Create and open a new file named ch08.css and paste the following code into it:
#images-view .x-panel-body{
 background: white;
 font: 11px Arial, Helvetica, sans-serif;
}
#images-view .thumb{
 background: #dddddd;
 padding: 3px;
}
#images-view .thumb img{
 height: 60px;
 width: 80px;
}
#images-view .thumb-wrap{
 float: left;
 margin: 4px;
 margin-right: 0;
 padding: 5px;
}
#images-view .thumb-wrap span{
 display: block;
 overflow: hidden;

Chapter 8

301

 text-align: center;
}

#images-view .x-view-over{
 border:1px solid #dddddd;
 background: #efefef url(images/row-over.gif) repeat-x left top;
 padding: 4px;
}

#images-view .x-item-selected{
 background: #eff5fb url(images/selected.gif) no-repeat
 right bottom;
 border:1px solid #99bbe8;
 padding: 4px;
}
#images-view .x-item-selected .thumb{
 background:transparent;
}

4.	 Update the index.html file.

5.	 Deploy and access it from the device of your choice.

How it works...
In the preceding code, we defined a model Flower. Then, we created two stores:
onlineStore and offlineStore. onlineStore is of type ajax and loads the order data
from the flowers.json file. offlineStore is bound to the HTML5 localStorage.

onlineStore is bound to the data view and we registered a handler for the load event
on the onlineStore. The handler function saves all the orders into the local storage and
binds the data view to the offlineStore. While adding a model to the local storage, we
called the setUrl method on the model to set the Sencha IO cloud service to get dataUrl
corresponding to an image URL. Another alternative to using Sencha IO is to have our own
server-side implementation which can convert an image URL to a data URL. After the image
is loaded, id and dataUrl are passed to the setPhotoUrl callback method. The callback
method then sets the URL on a model to dataUrl received from the Sencha IO service and
updates the model in the local storage. The dataUrl mechanism allows us to persist the
image locally without worrying about the browser caching, the expiry time, and so on.

Taking your Application Offline

302

In order to switch to the offline mode, we used the timeout technique and the exception
handler binds the data view with offlineStore and loads the data from there.

You may learn more about Sencha IO at the following URLs:
http://www.sencha.com/products/io/

http://www.sencha.com/learn/how-to-use-src-sencha-io/

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

ff The recipe named Loading data through AJAX using AjaxProxy in Chapter 5

ff The recipe named Creating models in Chapter 5

ff The recipe named Designing a custom view using DataView in Chapter 1

ff The recipe named Using XTemplate for advanced templating in Chapter 4

ff The recipe named Storing your data offline in this chapter

Application caching
So far, we have seen how to detect the online/offline mode and store the data and images
locally. The last thing left is to cache the application code, so that they are downloaded locally
and are available for offline use. In this recipe, we will go through the steps to achieve it.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Chapter 8

303

How to do it...
Carry out the following steps:

1.	 Create and open a new file named touch.manifest and paste the following code
into it:
CACHE MANIFEST

#version 0.14

index.html

touch-charts/sencha-touch.js
touch-charts/resources/css/sencha-touch.css

ch08/ch08.css
ch08/ch08_01.js

2.	 Modify the index.html file to include the manifest file as follows:
<html manifest="touch.manifest">

3.	 Add the following to the mime.types file of Apache Web Server:
text/cache-manifest manifest

4.	 Deploy and access it from the device of your choice.

How it works...
The steps outlined use the Cache Manifest to instruct the browser to cache the resources
listed in the touch.manifest file. To the manifest file, we added a #version line, which we
update whenever we make any changes to the code. This is added to overcome the problem
of resource (JavaScript files) not being reloaded if there are no changes in the manifest file.
Afterwards, we added a new MIME type support to our Apache Web Server by extending
the mime.types file. You may have to check the specifics related to your web server and
configure the MIME type accordingly.

Once the manifest file is created and the support is added to the web server, we added the
manifest attribute to the <html> tag where we specified our manifest file. In this way, the
browser will load the manifest file and all the resources listed inside it.

Taking your Application Offline

304

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Setting up the browser-based development environment in
Chapter 1

ff The recipe named Setting up the production environment in Chapter 1

9
Engaging Users by

Responding to Events

In this chapter, we will cover:

ff Handling Touch Events

ff Handling Scroll Events

ff Handling Tap Events

ff Handling Double Tap Events

ff Handling TapHold Events

ff Handling Swipe Events

ff Handling Pinch Events

ff Handling Drag Events

Introduction
Key to building the interactive and responsive UI is event handling. The greater the number of
events available, the better the interaction between the user and the application. For example,
if we are dragging an element on the screen and if the underlying platform happens to only
raise two events—one at the beginning of the drag and one at the end of the drag—then we
only get two chances to interact with the element and use the corresponding handlers to
respond to those events. However, imagine if the platform also raises the event while the
element is on the move. In this way, we can also show the trajectory to the user to show how
the element is moving from the starting point to the end point.

Engaging Users by Responding to Events

306

So far in different chapters, we have looked at different events raised by the components and
we handled some of them. When a web application is used on the touch device, it typically
interprets the mouse events to provide the required interactivity. This may put limitations on
the user experience as these events are normalized across different devices, and may not
utilize the events being offered by the touch device. Additionally, it is not possible to handle
the concurrent input even if the device offers multiple touch points. In this chapter, our focus
will be on the touch specific events. We will see what are the touch specific events raised
by the framework and how can we handle them to respond. The framework implements the
Touch Events specification defined by the W3 Consortium. For more details, you may refer to
http://www.w3.org/TR/touch-events.

Handling Touch Events
This recipe talks about four touch specific events: touchstart, touchdown, touchmove,
and touchend and also explains how to handle them.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Create a new folder named ch09 in the same folder where we created the ch01 and ch02
folders. We will be using this new folder in which to keep the code.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch09_01.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 this.handleEvent = function(e) {
 console.log(e.type);
 }

 var pnl = new Ext.Panel({
 id:'main-panel',
 fullscreen: true,
 monitorOrientation: true,
 layout: 'fit',

http://www.w3.org/TR/touch-events
http://www.w3.org/TR/touch-events

Chapter 9

307

 defaults: {
 border: false
 }
 });

 var touchPnl = Ext.getCmp('main-panel');
 touchPnl.mon(touchPnl.el, {
 touchstart: this.handleEvent,
 touchend: this.handleEvent,
 touchmove: this.handleEvent,
 touchdown: this.handleEvent,
 scope: this
 });

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the device of your choice.

Handling Scroll Events
When the scrolling is enabled on a component in Sencha Touch, the framework fires the scroll
related events that we use to scroll the content. This recipe lists out the scroll related events
and shows how to handle them.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Add the following handler functions inside the Ext.onReady in ch09_01.js:
 this.handleScrollEvent = function(e) {
 console.log('scroll');
 }

 this.handleScrollstartEvent = function(e) {
 console.log('scrollstart');
 }

Engaging Users by Responding to Events

308

 this.handleScrollendEvent = function(e) {
 console.log('scrollend');
 }

2.	 Set scroll: 'vertical' property to the panel initialization:
 var pnl = new Ext.Panel({
 id:'main-panel',
 fullscreen: true,
 scroll: 'vertical',
 monitorOrientation: true,

3.	 Add the following code after the component reference is retrieved using the Ext.
getCmp method:
 touchPnl.scroller.mon('scrollstart',this.
 handleScrollstartEvent);
 touchPnl.scroller.mon('scroll',this.handleScrollEvent);
 touchPnl.scroller.mon('scrollend',this.handleScrollendEvent);

4.	 Deploy and access it from the device of your choice.

Handling Tap Events
This recipe shows the available tap events and ways to handle them.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Add the following events and their handlers to the list of events that we had added on
the panel element in the first recipe:
 singletap: this.handleEvent,
 tap: this.handleEvent,

2.	 Deploy and access it from the device of your choice.

Chapter 9

309

Handling Double Tap Events
Similar to double-click on the desktop, there is a doubletap event available which can be
used to show more details about the tapped element. This recipe shows the event and ways
to handle it.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Add the following code after the component reference is retrieved using the Ext.
getCmp method:
 doubletap: this.handleEvent,

2.	 Deploy and access it from the device of your choice.

Handling TapHold Events
On the touch devices, users can tap and hold their finger in that position. This fires a specific
event named taphold. This recipe shows how to handle this event. We may use this to
enable the dragging of the item. While working with the column charts, we saw how this event
is handled to provide the gesture, which allows us to switch between the stacked and grouped
modes of the chart.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Engaging Users by Responding to Events

310

How to do it...
Carry out the following steps:

1.	 Add the following events and their handlers to the list of events that we had added on
the panel element in the first recipe:
 taphold: this.handleEvent,
 tapcancel: this.handleEvent,

2.	 Deploy and access it from the device of your choice.

Handling Swipe Events
Touch devices are sensitive enough to differentiate between swipe and drag and they raise
different events to indicate each of these actions. Here we will see what event is raised in the
case of swipe and how we handle it.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Add the following code after the component reference is retrieved using the Ext.
getCmp method:
 swipe: this.handleEvent,

2.	 Deploy and access it from the device of your choice.

Handling Pinch Events
Pinch is an interesting user action available on touch screens. A user can typically maximize
or minimize the content/image using pinch events. There are a different set of pinch events
which the Sencha Touch framework provides that we can use to implement some really great
interaction. Here we will look at the available list of events related to pinch and how to handle
them.

Chapter 9

311

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Add the following code after the component reference is retrieved using the Ext.
getCmp method:
 pinch: this.handleEvent,
 pinchstart: this.handleEvent,
 pinchend: this.handleEvent,

2.	 Deploy and access it from the device of your choice.

Handling Drag Events
When an element is dragged on the screen, the framework gives us different events to
indicate that the drag has started, the item is on the move, and the drag has ended. In this
recipe, we will look at the drag specific events.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Add the following code after the component reference is retrieved using the Ext.
getCmp method:
 dragstart: this.handleEvent,
 drag: this.handleEvent,
 dragend: this.handleEvent,

2.	 Deploy and access it from the device of your choice.

10
Increased Relevance

Using Geolocation

In this chapter, we will cover:

ff Finding out your location

ff Auto update of your location

ff Tracking direction and speed

ff Hooking up Google Maps with your application

ff Working with the Google Maps options

ff Mapping Geolocation on Google Maps

Introduction
Imagine how good it would be to build an application which can automatically determine the
user mobile location and provide local searches such as suggests places of interest, hotels,
nearest police station, and so on. Imagine how the user would feel if, after determining their
location, we display the relevant information and the routes on a map, which gives clear
directions on how to reach a place. Another example could be providing an application which
can tell my average speed while I am jogging or an application which can help track the fleet
of trucks, provide a route map which is less congested, send an SOS message to a friend with
my location details, and so on.

All of this is feasible and possible with the newly introduced Geolocation specification from the
W3 Consortium (http://dev.w3.org/geo/api/spec-source.html).

This specification provides us the required objects, methods, and events to get the location
detail and work with it.

Increased Relevance Using Geolocation

314

In this chapter, we will look at the classes provided by the Sencha Touch framework to work
with Geolocation. The classes implement the W3C Geolocation specification. Additionally, we
will see how to work with Google Maps and complement it with Geolocation.

Sencha Touch wraps Google Maps Javascript APIs, outlined in http://code.google.com/
apis/maps/documentation/javascript/, into a convenient class, which we will be
making use of in this chapter.

Finding out your location
W3C's Geolocation specification is implemented by the Ext.util.GeoLocation class in
Sencha Touch. In this recipe, we will look into the class and see how to learn about our
device location.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Create a new folder named ch10 in the same folder where we had created the ch01 and
ch02 folders. We will be using this new folder in which to keep the code.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch10_01.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var geo = new Ext.util.GeoLocation({
 autoUpdate: false,
 listeners: {
 locationupdate: function (geo) {
 alert('New latitude: ' + geo.latitude + ' : longitude : '
 + geo.longitude + ' @ ' + geo.timestamp);
 },
 locationerror: function (geo,
 bTimeout,
 bPermissionDenied,
 bLocationUnavailable,
 message) {
 if(bTimeout){

Chapter 10

315

 alert('Timeout occurred.');
 }
 if (bPermissionDenied){
 alert('Permission denied.');
 }
 if (bLocationUnavailable) {
 alert('Location unavailable.');
 }
 }
 }
 });

 geo.updateLocation();

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the device of your choice. You will see a message showing
the longitude and latitude of your location, as shown in the following screenshot:

How it works...
In the preceding code, we created an instance of the Ext.util.GeoLocation class with
autoUpdate set to false. This means that the browser will not watch for a change in
location. The update is fired manually by calling the updateLocation method on the geo
object. Additionally, on the geo object, listeners have been set up for the locationupdate
and locationerror events. The locationupdate event is fired when the location is
updated. The framework passes the object representing the location information at that
instance in time. The geo object contains the following fields:

ff latitude

ff longitude

Increased Relevance Using Geolocation

316

ff timestamp

ff accuracy

ff altitude

ff altitudeAccuracy

ff heading

ff speed

Out of the preceding listed properties, latitude, longitude, timestamp, and accuracy
will be provided. However, other properties can be null based on the device on which we are
using the API.

If any errors occur while trying to get the updated location information, the framework fires the
locationerror event where it indicates the following three types of errors:

1.	 The operation timed-out

2.	 User does not have permission

3.	 Location information is not available

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS based-development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

Auto-update of your location
In some applications, manual updating of location may not be desirable, for example, if your
application is expected to update the location periodically to show the path in which a vehicle
is moving. In this recipe, we will see how to configure the Ext.util.GeoLocation class
to have the location automatically updated and how to control the frequency with which the
location update should be attempted.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

Chapter 10

317

How to do it...
Carry out the following steps;

1.	 Set the following properties on the Ext.util.GeoLocation class while
instantiating:
autoUpdate: true,
timeout: 5000, //5 sec

2.	 Deploy and access it from the device of your choice.

How it works...
Setting autoUpdate to true no longer requires the application code to call the
updateLocation method, explicitly. The location is updated automatically and the
locationupdate or locationerror event is fired based on whether the update operation
was successful or not.

The timeout property allows us to control how frequently the location update will be
attempted. It accepts the time in milliseconds, for example, in the preceding code snippet, we
set the value to 5000 milliseconds (5 sec). This is a useful property if you want to save your
mobile's battery, as frequent updates will eat it up.

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up Blackberry-based development environment in
Chapter 1

ff The recipe named Finding out your location in this chapter

Tracking direction and speed
The GeoLocation object in Sencha Touch provides properties which we can use to figure
out the direction and the speed at which we are moving. This could be useful in applications
where you may want to suggest to the user the nearest petrol pump based on his direction. In
this recipe, we will look at the use of related properties.

Increased Relevance Using Geolocation

318

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 In the locationupdate event handler, add the following line of code:
alert('Heading: ' + geo.heading + ': Speed:' + geo.speed);

2.	 Deploy and access it from the device of your choice.

How it works...
The preceding code uses the two important properties of the GeoLocation class: heading
and speed. The heading property gives the direction of the travel of the device. It is specified
in non-negative degrees between 0 and 359. The angle is returned with respect to the real
North. If the device is stationary, the value of this property is undefined.

The speed property gives the current ground speed of the device and the value will be in
meters per second. If the device is stationary, the value of this property is 0.

These two properties are optional and may not be available on every device. If these
properties are not supported on a device, their value will be null. For example, on Android,
the values returned are null. On such devices, we can derive these values using the
longitude, latitude, and timestamp.

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Finding out your location in this chapter

Chapter 10

319

Hooking up Google Maps with your
application

Google provides the map service and also the APIs to integrate it into our application. Sencha
Touch has wrapped it inside a component named Ext.util.Map, which provides the
complete map related functionality. It uses Google Maps' JavaScript APIs, internally, to provide
us a working map component. In this recipe, we will see how to make use of the Map class.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch10_02.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var pnl = new Ext.Panel({
 fullscreen: true,
 items : [
 {
 xtype : 'map'

 }
]
});

 }
});

2.	 Update the index.html file.

3.	 Add the following to the index.html file to include Google Maps, JavaScript APIs:
<script type="text/javascript" src="http://maps.google.com/maps/
api/js?sensor=true"></script>

Increased Relevance Using Geolocation

320

4.	 Deploy and access it from the device of your choice. You will see a screen showing
Google Maps with its default longitude and latitude set to Palo Alto, as shown in the
following screenshot:

How it works...
In the preceding code, we created a panel and added a map component to it using the
xtype: 'map'. Usage of this xtype leads to the instantiation of the Ext.util.Map class,
which wraps Google Maps inside it. It initializes the Google Maps class with the following
default map options:

ff Map center is set to the location of Palo Alto (latitude—37.381592,
longitude—122.135672)

ff Map type is set to ROADMAP

ff Zoom level is set to 12

Chapter 10

321

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

Working with Google Maps options
In the previous recipe, we looked at the default map options set by the Ext.util.Map class.
In your application, say you are building an application to show forest, mountains, and rivers
around a particular place. In this case, you will have to set the map options according to your
application need. This recipe will show us how to achieve this.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Edit the ch10_02.js file and add the mapOptions property as shown in the
following code:
Ext.setup({
 onReady: function() {

 var pnl = new Ext.Panel({
 fullscreen: true,
 items : [
 {
 xtype : 'map',
 mapOptions: {
 center: new google.maps.LatLng(17.22, 78.28),
 mapTypeId: google.maps.MapTypeId.TERRAIN,
 zoom: 10
 }
 }
]
});
 }
});

Increased Relevance Using Geolocation

322

2.	 Deploy and access it from the device of your choice. You will see a screen showing
Google Maps with its default longitude and latitude set to 78.28 and 17.22,
respectively, as shown in the following screenshot:

How it works...
In the preceding code, we set the mapOptions property on the Ext.util.Map class, which
accepts the mapOptions config that the Google Maps API can take. We specified three
properties: center, mapTypeId, and zoom. To the center property, we set the latitude
and longitude of a location that will be used to center the map. The longitude and latitude
specified here are of Hyderabad, India. The mapTypeId property is set to TERRAIN, so that in
our application we can show mountains, forest, and rivers around the center location. Using
zoom we set the map zoom level to 10.

Chapter 10

323

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Hooking up Google Maps with your application in this chapter

Mapping Geolocation on Google Maps
So far in this chapter, we have looked at the Ext.util.GeoLocation and Ext.util.
Map classes of Sencha Touch to see how to get the location and how to display a map. In
this recipe, we will put these two pieces together, so that the location information from the
GeoLocation class can be used on the Map class in rendering the information on the map.
This can then be used, for example, to highlight the nearest restaurants on the map, based on
the current location.

Getting ready
Make sure that you have set up your development environment by following the recipes
outlined in Chapter 1.

How to do it...
Carry out the following steps:

1.	 Create and open a new file named ch10_03.js and paste the following code into it:
Ext.setup({
 onReady: function() {

 var geo = new Ext.util.GeoLocation({
 autoUpdate: true,
 listeners: {
 locationupdate: function (geo) {
 var map = Ext.getCmp('google-map-id');
 map.update(geo);
 },
 locationerror: function (geo,
 bTimeout,
 bPermissionDenied,
 bLocationUnavailable,

Increased Relevance Using Geolocation

324

 message) {
 if(bTimeout){
 alert('Timeout occurred.');
 }
 if (bPermissionDenied){
 alert('Permission denied.');
 }
 if (bLocationUnavailable) {
 alert('Location unavailable.');
 }
 }
 }
 });

 var pnl = new Ext.Panel({
 fullscreen: true,
 items : [
 {
 xtype: 'map',
 id: 'google-map-id',
 geo: geo,
 mapOptions: {
 mapTypeId: google.maps.MapTypeId.TERRAIN,
 zoom: 10
 }
 }
]
});

 }
});

2.	 Update the index.html file.

3.	 Deploy and access it from the device of your choice. You will see a screen showing a
Google map with the location set as per the longitude and latitude values returned by
the Geolocation API, as shown in the following screenshot:

Chapter 10

325

How it works...
In the preceding code, we created the GeoLocation instance with autoUpdate set to true
and also a panel with a map. We have given an ID to the map component—
google-map-id—which we use in the locationupdate event listener on the
GeoLocation object. This then gets the map component and calls the update method on
it to update the map with the new location information. Though the complete geo object is
passed to the update method, it only uses the longitude and latitude properties of it.
This way the location information fetched from the GeoLocation is passed on to the Map to
get them working together.

Increased Relevance Using Geolocation

326

See also
ff The recipe named Setting up the Android-based development environment in

Chapter 1

ff The recipe named Setting up the iOS-based development environment in Chapter 1

ff The recipe named Setting up the Blackberry-based development environment in
Chapter 1

ff The recipe named Finding out your location in this chapter

ff The recipe named Hooking up Google Maps with your application in this chapter

Index
Symbols
<div> element 102
<fieldset> element 63
<form> element 38
<input> form field 38
 element 102
<select> form field 38
<tpl> tag 109, 113
 element 102

A
ActionSheet component

creating 193
enterAnimation property 196
enter property 196
using 193, 194
working 195

activeItem 87
Address model 166
ADT Plugin 8, 15
advanced templating

XTemplate, using 107-109
aggressive timeout

using 286
AjaxProxy 183

about 167
used, for loading data through AJAX 175, 177

allowMultiple property 217
Android-based development environment

setting up 10-16
working 15

Android SDK
about 8
downloading 10
installing 10

animations
about 234
animation duration 236
cube 235
direction 236
fade 235
flip 235
pop 235
postponing 236
reverse direction 236
slide 235
types 234
wipe 235

Apache Ant
downloading 19
installing 19

append method 106
Apple Developer Portal 17
application

cross-domain URL, using 183
Google Map, connecting with 319, 320
initializing, Ext.Application class used 28
offline mode, detecting 284
tweaking, for configuring using profile 29, 30

Application class
features 31

area chart
legend config, adding 248
legend text, changing 249
working with 245-247

associated model
used, for saving data 142

association
used, for relating models 163-165

audio component
about 237

328

used, for playing sound 237, 238
working 239

autoLoad property 151
autoUpdate 317
autoUpdateComponentProfiles 32

B
badge 192
bar chart

about 249
generating 249, 251
spacing between bars, changing 251
working 251

basic HTML templating
Template, used 102-106

beforeorientationchange listener 35
behavior

adding to existing component, plugins used
230-232

belongsTo association 166
Blackberry-based development environment

setting up 18, 19
working 20

Blackberry SDK 8
BlackBerry WebWorks SDK

downloading 19
browser-based development environment

setting up 21, 22
button component

about 190
badge, using 192
icon, using 192
using 191
working with 190

C
caching

offline application 302, 303
card layout

about 84
default active item, changing 87
used, for building wizards 84-87

cardSwitchAnimation 219
Carousel

about 197
direction, changing 201

implementing 197-200
orientation 200
working 200

changeName method 136
chart support

adding, to application 242-244
checkboxes

about 58
creating 58, 59

checkbox group
about 58
creating 58, 59

ClientProxy 167
column chart

about 252
creating 252, 253

compile method 106
component behavior

overriding 228, 229
component vertical alignment 94
conditional view

rendering, XTemplate used 111-113
Connection.NONE 285
Connection object 285
container

about 69
Carousel 69
FieldSet 69
form 69
item, hiding/showing 83
item, inserting at specific position 82
item, removing 82
items, adding at runtime 78-80
keeping lightweight 72-74
layout, using 74
NestedList 69
Panel 69
Sheet 69
TabPanel 69
Toolbar 69

create method 135
cross-domain URL

using, in application 183-186
custom validation

defining 160, 161
entering, in e-mail form field 46
working 162, 163

329

custom view
designing, DataView used 114-118
orientation change, handling 119

D
data

filtering 182, 183
grouping 181, 182
loading through AJAX, AjaxProxy used 175,

177
persisting, LocalStorageProxy used 172
sorting 178, 179

data array 146, 211
data infrastructure

about 133
models, creating 133

data model
used, for loading form 137-141

data types
auto 135
boolean 135
date 135
float 135
int 135
string 135

dataUrl 301
DataView component

about 102, 195, 224
used, for designing custom view 114-118

dateFormat property 135
DatePicker

about 212
used, for working with date picker form field

47
date picker form field

default date, setting to current date 48
default date, setting to particular date 49
picker date range, setting 49
slot order, changing 49
working 48
working with, DatePicker used 47

default active item
changing 87

default message
changing 160

defaultType config property 221

defaultValue property 135
determineProfile() method 32
device

detecting 24, 25
device location

searching 314, 315
device-supported features

detecting 26, 27
direction

tracking 317, 318
displayField 53, 146
dockedItems property 89
dock items

using, with panel 76, 77
dock layout

using 88, 89
dock panel 88
DOM events 114
donut effect 263, 270
double tap events

handling 309
drag events

handling 311

E
Eclipse 3.3 8
Eclipse ADT Plugin

downloading 10
installing 10

elements, Sencha Touch application
animating 234, 235

e-mail form field
custom validation, entering 46
working 47

enterAnimation property 215
enter property 215
event handling 305
events

double tap events 309
drag events 311
pinch events 310
scroll events 307
swipe events 310
tap events 308
taphold events 309
touch events 306

330

exclusion 159
existing component capability

extending 225-228
exitAnimation property 215
exit property 215
Ext.Application class

about 28
working 29

Ext.Anims class 235
Ext.Carousel class 200
Ext.Container class

about 69, 72
diagrammatic representation 70

Ext.data.Field 135
Ext.DataView class 117
Ext.Element 234
extend property 137
Ext.extend method 224
Ext.form.DatePicker class 48
Ext.form.Email class 47
Ext.form.FieldSet class 63
Ext.form.Search class 45
Ext.form.Select class 52
Ext.form.Spinner class 56
Ext.form.Text class 61
Ext.getBody() method 217
Ext.getCmp() () method 51
Ext.layout.Layout class

about 71
diagrammatic representation 71

Ext.lib.Component class 225
Ext.ModelMgr.create method 135
Ext.ModelMgr.registerType 135
Ext.override method 229
Ext.Panel class

about 72
dock items, using 76, 77
layouts, using 78
used, for creating application 75, 76

Ext.regModel 135
Ext.setup API 16
Ext.supports class 27
Ext.util.GeoLocation class 315, 323

configuring 316
Ext.util.Map class 320-323
Ext.util.Observable class 232

F
fade animation 215
field

grouping, FieldSet used 62, 63
hiding/showing 51

fields array 135
FieldSet

about 62, 63
instructions, adding 63
used, for grouping fields 62, 63

FieldSet class 63
filtered data

displaying 119-123
filter method 183
filter property 113
firstName field 206
fit layout

about 90
used, for fitting into container 90
using 90
working 91

flex option, HBox layout 92
flex option, VBox layout 95
flight mode 283
form

creating, FormPanel used 39-42
loading, data model used 137-141
validating 65-67

format 159
formatWithWordBreak method 225
formBase

custom display value, using 52
form data

saving, associated model used 142
FormPanel

checkbox and checkbox group 58
date picker form field 47
e-mail form field 46
fields, grouping 62
post-submission handling 43
search field 44
select field 51
Slider form field 54
spinner form field 55
standardSubmit 43
submitOnAction, setting to false 43

331

toggle field 57
used, for creating form 39-42

form.reset() 42
form.show() 42
form.sumbit() 43

G
gauge chart

about 261
creating 261, 262
donut effect 263
needle, displaying 263

Geolocation
mapping, on Google Map 323-325

GeoLocation class 317, 318
geo object

accuracy 316
altitude 316
altitudeAccuracy 316
heading 316
latitude 316
longitude 315
speed 316
timestamp 316

getGroupString 206
getProfile() method 31
getUser() method 167
Google API 186
Google Map

connecting, with application 319, 320
Google Map Javascript APIs 314
Google Map options

working with 321, 322
groupDir property 182
groupField property 182
group of bars

displaying 254, 255
group of columns

displaying 254, 255

H
handler function 65
hasMany association 166
HBox layout

about 92
component vertical alignment 94

flex configuration 92
flex option 92
layout items, in reverse order 94
used, for arranging items horizontally 92, 93
working 93

heading property 318
hidden property 50
hide method 51
HTML5 e-mail field 47
HTML5 localStorage 301
HTML <select> 48

I
icon 192
iconAlign 192
iconCls 192
images

storing offline 292-301
inclusion 159
indexBar

used, for navigating list of data 207, 208
initComponent method 224, 232
in-memory data

accessing, MemoryProxy used 172-175
iOS-based development environment

setting up 16, 17
working 18

item detail
displaying 259, 260
highlighting 259, 260

items
adding, to container at runtime 78-81
arranging horizontally, HBox layout used 92,

93
arranging vertically, VBox layout used 95-97
grouping 204, 206
hiding/showing 83
inserting, at specific position 82
removing 82

items array 113

J
JSBuilder 23
JSON data

converting into models, JsonReader used
148-150

332

JSON (JavaScript Object Notation)
URL 38

JsonReader
used, for converting JSON data into models

148-150

L
layout

about 71
pre-defined values 71
using, with panel 78

layout property 74
layouts

card layout 84
dock layout 88
fit layout 90
HBox layout 92
mixing 98, 99, 100
VBox layout 95

line chart
area, filling 266
creating 264-266
smooth curves 267

List component
about 201
entries, sorting 204
used, for managing data list 201-203

list of data
items, grouping 204, 206
managing, List component used 201-203
navigating, indexBar used 207, 208

list of nested data
working with, NestedList used 209, 211

loadData method 228
LocalStorageProxy

about 167
used, for persisting data 172

location
updating automatically 316, 317

locationerror event 315, 316
locationupdate event 315
locationupdate event handler 318

M
many-to-one association 166
Map class 319

mapOptions config 322
mapOptions property 322
mapTypeId property 322
maxLength property 61
MemoryProxy

about 167
used, for accessing in-memory data 172-174

model
about 132
creating 133, 134
extending 136, 137
methods, adding 136
relating, association used 163-165
validation 156
validation, using 157

ModelMgr 135
model property 146
monitorOrientation property 119
multiple views

switching between, SegmentedButton used
215, 217

MyString class 225
MyUser 137

N
navigation function 87
navigator.onLine 285
nested data

records, fetching from 151
NestedList component

back button, displaying 212
displayField property, using 212
label property, using 212
text property, using 212
used, for working with list of nested data 209,

211
new component

creating 222-224
next() method 87
number

spinning, spinner form field used 55

O
offline application

aggressive timeout, using 286
caching 302, 303

333

images, storing offline 292-301
offline data storing 287-291
offline mode, detecting 284, 285

offline data storing 287-291
offline mode

about 283
detecting 284, 285

offlineStore 291
onlineStore 291
onRender 225
ontouchstart 27
orderList 291
orientation change

responding 33, 34
orientationchange event 33, 119, 224

P
panel.getLayout() 87
paymentDate field 156
Payment model 156
phoneAndroid function 31
phoneBlackberry function 31
PhoneGap

downloading 10
installing 10

PhoneGap 1.0.0 8
PhoneGap support 284
PhotoAlbum component 224
photoPnl 228
Picker component

about 212
align property 215
animation, changing 215
bottom position 215
position, changing 215
slid animation 215
slot text, aligning 215
using 212, 213
working 214

pickerObj parameter 214
picker property 49
pie chart

creating 268-270
donut effect 270
pie, highlighting 274
pie length 270

pies, grouping 272, 273
pies, rotating 271

Pinch 310
pinch events

handling 310
placeholder

about 45
using 45

plugin
about 230
used, for adding behavior to existing compo-

nent 230-232
plugins property 232
pre-defined validations

exclusion 157
format 157
inclusion 157
length 157
presence 157

pre-defined values, layout
auto 71
card 71
dock 71
fit 71
hbox 71
vbox 71

prev() method 87
printWithLineBreak method 228
production environment

setting up 22-24
profile

applying, at application launch 31
prototype 228
Proxy 132
proxy types

AjaxProxy 167
ClientProxy 167
LocalStorageProxy 167
MemoryProxy 167
ScriptTagProxy 167
ServerProxy 167
SessionStorageProxy 167

R
radar chart

about 275

334

creating 275-277
different marker, using 278

Reader 132
records

adding, to store 146, 147
fetching, from nested data 151

response metadata
working with 152

run method 235

S
scatter chart

about 279
working with 279-282

ScriptTagProxy 167, 183
scroll events

handling 307, 308
search form field

creating 44
placeholder, using 45
working 45
working with 44

SegmentedButton component
about 215
multiple pressed buttons 217
renderTo property 217
toggle event 217
used, for switching between multiple views

215, 217
working 217

select field
about 38
custom display value, using 53
working 52
working with 51

selectionchange event 195, 224
selectionchange handler 194
selectionchange listener 129
Sencha Touch

about 8, 10
ActionSheet component 193
audio component 237
button component 190
Carousel 197
component behavior, overriding 228, 229
container 69

data infrastructure 133
existing component capability, extending 225-

228
form, validating 65
Geolocation, working with 314
List component 201
mobile applications, building 283, 284
Model 132
NestedList component 209
new component, creating 222-224
Picker component 212
Proxy 132
Reader 132
SegmentedButton component 215
Store 133
Tab panel 217, 219
toolbar component 220
Writer 132

Sencha Touch 1.1.0 library 8
Sencha Touch application

about 234
area chart 245
bar chart, generating 249, 251
chart support, adding 242-244
column chart, creating 252, 253
elements, animating 234
gauge chart, creating 261, 262
group of bars, displaying 254, 255
group of columns, displaying 254, 255
item detail, displaying 259, 260
item detail, highlighting 259, 260
line chart, creating 264-266
pie chart, creating 268-270
radar chart, creating 275, 277
scatter chart, working with 279-282
stacked and grouped orientation, switching

between 256, 257
sencha-touch-debug.js file 16
Sencha Touch library

extracting 8
ServerProxy 167
session specific data

persisting, SessionStorageProxy used
168-170

SessionStorageProxy
about 167

335

used, for persisting session specific data
168, 170

setActiveItem method 87
setProfilesOnLaunch property 31
setUrl method 301
setUser() method 167
showInLegend property 248
show method 51
singleSelect 129
slid animation 215
slider form field

using 54
value, changing 54

slotOrder property 49
sorting information

customizing 180
sending, to server 180

sortParam property 180
sound

playing, audio component used 237, 238
speed

tracking 317, 318
speed property 318
spinner form field

used, for spinning number 55
values, cycling 56

Spket plugin 10
Spket website

URL 10
stacked and grouped orientation

chart state, resetting 258
gesture, changing 258
switching between 256, 257

standardSubmit 43
store

about 133
record, adding 146, 147
working with 142-146

store.load() 171
submit() method 42
successProperty 153
Sun JDK Version 1.5 8
swipe events

handling 310

T
tabBarDock property 219
Tab panel

about 217-219
card switch animation 219
tab bar, positioning at bottom 219
working with 218, 219

tap events
handling 308

taphold events
handling 309

Template
about 102
compiling 106, 107
used, for basic HTML templating 102-106
values, formatting 107

text area
about 60, 61
input characters, limiting 61
using 60, 61

Text field class
about 38, 60
input characters, limiting 61
using 60, 61

timeout property 286, 317
Toggle field class

about 38
using 57

toolbar component
about 220
defaultType config property 221
non-button components, adding 221
using 220, 221
working 221
xtype 221

totalProperty 153
Touch.book.ux namespace 232
touch events

handling 306, 307
touchdown 306
touchend 306
touchmove 306
touchstart 306

336

TreeStore 211
typical offline application 284

U
updateLocation method 315, 317
Url field class 38
useClearIcon 43
user action

responding to 124-129
User class 137
User model 146
users.json file 150

V
validations

using 157
working 158

value
changing, Slider form field used 54

valueField 146
VBox layout

flex option 95
used, for arranging items vertically 95-97

video component
about 239-241
using 239-241

videos
working with 239-241

W
W3C Geolocation specification 314
W3 Consortium 306

URL 313

Webkit CSS properties
about 235
URL 235

WebKit engine 21
wizards

building, card layout used 84-87
Writer 132

X
Xcode

downloading 17
installing 17

XCode 4 8
XML data

converting into models, XmlReader used 153-
156

XmlReader
used, for converting XML data into models

153-156
XTemplate

about 102
compiling 110
used, for advanced templating 107, 108
used, for conditional view rendering 111-113
working 109

xtype approach 38
xtype property 221
xtype-searchfield 45

Y
yearFrom property 49
yearTo property 49
YUI Compressor 23

Thank you for buying
Sencha Touch Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android 3.0 Application
Development Cookbook
ISBN: 978-1-84951-294-7 Paperback: 272 pages

Over 70 working recipes covering every aspect of
Android development

1.	 Written for Android 3.0 but also applicable to
lower versions

2.	 Quickly develop applications that take advantage
of the very latest mobile technologies, including
web apps, sensors, and touch screens

3.	 Part of Packt's Cookbook series: Discover tips and
tricks for varied and imaginative uses of the latest
Android features

jQuery Mobile First Look
ISBN: 978-1-84951-590-0 Paperback: 216 pages

Discover the endless possibilities offered by jQuery
Mobile for rapid Mobile Web Development

1.	 Easily create your mobile web applications from
scratch with jQuery Mobile

2.	 Learn the important elements of the framework
and mobile web development best practices

3.	 Customize elements and widgets to match your
desired style

4.	 Step-by-step instructions on how to use jQuery
Mobile

Please check www.PacktPub.com for information on our titles

PhoneGap Beginner's Guide
ISBN: 978-1-84951-536-8 Paperback: 328 pages

Build cross-platform mobile applications with the
PhoneGap open source development framework

1.	 Learn how to use the PhoneGap mobile
application framework

2.	 Develop cross-platform code for iOS, Android,
BlackBerry, and more

3.	 Write robust and extensible JavaScript code

4.	 Master new HTML5 and CSS3 APIs

5.	 Full of practical tutorials to get you writing code
right away

Flash Development for
Android Cookbook
ISBN: 978-1-84969-142-0 Paperback: 372 pages

Over 90 recipes to build exciting Android applications
with Flash, Flex, and AIR

1.	 The quickest way to solve your problems with
building Flash applications for Android

2.	 Contains a variety of recipes to demonstrate
mobile Android concepts and provide a solid
foundation for your ideas to grow

3.	 Learn from a practical set of examples how to
take advantage of multitouch, geolocation, the
accelerometer, and more

4.	 Optimize and configure your application for
worldwide distribution through the Android Market

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Gear up for the Journey
	Introduction
	Setting up the Android-based development environment
	Setting up the iOS-based development
environment
	Setting up the Blackberry-based
development environment
	Setting up the browser-based development environment
	Setting up the production environment
	Detecting the device
	Finding information about features that are supported in the current environment
	Initializing your application
	Tweaking your application to configure itself using profiles
	Responding to the orientation change

	Chapter 2: Catering to your Form Related Needs
	Introduction
	Getting your form ready with FormPanel
	Working with search
	Putting custom validation in the e-mail field
	Working with dates using DatePicker
	Making a field hidden
	Working with the select field
	Changing the value using Slider
	Spinning the number wheel using Spinner
	Toggling between your two choices
	Checkbox and Checkbox group
	Text and TextArea
	Grouping fields with FieldSet
	Validating your form

	Chapter 3: Containers and Layouts
	Introduction
	Keeping the container lightweight
	Working with panel
	Adding items to a container at runtime
	Building wizards using CardLayout
	Panel docking using DockLayout
	Fitting into the container using FitLayout
	Arranging your items horizontally using HBoxLayout
	Arranging your items vertically using
VBoxLayout
	Mixing layouts

	Chapter 4: Building
Custom Views
	Introduction
	Basic HTML templating using Template
	Using XTemplate for advanced templating
	Conditional view rendering using XTemplate
	Designing a custom view using DataView
	Showing the filtered data
	Responding to the user action

	Chapter 5: Dealing with Data and Data Sources
	Introduction
	Creating models
	Loading the form using a data model
	Working with Store
	Converting incoming JSON data into models using JsonReader
	Converting incoming XML data into models using XmlReader
	Validations in models
	Defining the custom validation
	Relating models using association
	Persisting session specific data using
SessionStorageProxy
	Persisting data using LocalStorageProxy
	Accessing in-memory data using
MemoryProxy
	Loading data through AJAX using AjaxProxy
	Sorting of the data
	Data grouping
	Filtering data
	Using a cross-domain URL in your
application

	Chapter 6: Adding the Components
	Introduction
	Working with Button
	Creating a sheet of buttons with
ActionSheet
	Carousel
	Managing a list of data using List
	Grouping items in a List
	Navigating through a list of data using
indexBar
	Working with a list of nested data using NestedList
	Picking your choice using Picker
	Switching between multiple views using SegmentedButton
	Working with Tab panels
	Quicker access to application features
using Toolbar
	Creating a new component
	Extending an existing component capability
	Overriding a component behavior
	Adding behavior to an existing component using plugins

	Chapter 7: Adding Audio/Visual Appeal
	Introduction
	Animate me!
	Ding-dong! You have a message!
	Working with videos
	Adding the chart support to your app
	Working with an area chart
	Generating a bar chart
	Creating a column chart
	Showing a group of bars and columns
	Switching between stacked and grouped
orientation
	Highlighting and displaying an item detail
	Creating a gauge chart
	Creating a line chart
	Creating a pie chart
	Rotating the pies
	Grouping the pies
	Highlighting a pie
	Using a radar chart
	Using a scatter chart

	Chapter 8: Taking your Application Offline
	Introduction
	Detecting offline mode
	Storing your data offline
	Storing your images offline
	Application caching

	Chapter 9: Engaging Users by Responding to Events
	Introduction
	Handling Touch Events
	Handling Scroll Events
	Handling Tap Events
	Handling Double Tap Events
	Handling TapHold Events
	Handling Swipe Events
	Handling Pinch Events
	Handling Drag Events

	Chapter 10: Increased Relevance Using Geolocation
	Introduction
	Finding out your location
	Auto update of your location
	Tracking direction and speed
	Hooking up Google Maps with your
application
	Working with Google Maps options
	Mapping Geolocation on Google Maps

	Index

