
www.allitebooks.com

http://www.allitebooks.org

Service Oriented Architecture
with Java

Using SOA and web services to build powerful
Java applications

Binildas CA
Malhar Barai
Vincenzo Caselli

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Service Oriented Architecture with Java

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2008

Production Reference: 1180608

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847193-21-6

www.packtpub.com

Cover Image by Nik Lawrence (Nik.Lawrence@Jaama.co.uk)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors

Binildas CA

Malhar Barai

Vincenzo Caselli

Reviewer

Shyam Sankar S

Acquisition Editor

Bansari Barot

Technical Editor

Dhiraj Chandiramani

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Abhijeet Deobhakta

Indexer

Monica Ajmera

Proofreader

Petula Wright

Production Coordinator

Shantanu Zagade

Cover Work

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Malhar Barai is a senior systems analyst with Satyam Computer Services Ltd.,
one of India's leading IT services organizations. He has more than seven years of
experience in the industry working for leading organizations across India.

Malhar has interest in service-oriented technologies and application integration tools.
He has worked on EAI toolset of webMethods and Cast Iron, Java technologies.

You can catch him on various forums that deal with SOA and some of
the webMethods forums, or you can read about him on his blog
http://malharbarai.blogspot.com

He gets spurred by the daily challenges at work, finding solutions to the problems,
and trying his hand at improving processes and solutions.

I would like to acknowledge and dedicate this book to my parents
for being sources of inspiration and for guiding me on the right path
when it mattered the most. To Jalpa, my lovely wife for, being a
constant support and carving out a wonderful life for us. My
ex-manager Ajay Mulkalwar for his guidance and encouragement,
and the most important person—my soul, my sweet daughter
Preisha whose lovely smile makes my time wonderful…

www.allitebooks.com

http://www.allitebooks.org

Vincenzo Caselli graduated with a degree in electrical engineering in 1991 from
the University of Bologna. He has worked as an independent consultant and a
Java trainer for several Italian software houses since 1996. He began working as a
developer in Delphi and other visual IDE's with AS/400-based companies. Soon he
shifted his focus on Java and began to propose Swing client/server multi-layered
solutions to his customers. He also worked in the web development area with
several frameworks (Struts, Hibernate, Spring, JSF, and GWT) in different fields
(banking, manufacturing, healthcare, e-learning). Recently, he collaborated with
IBM in projects based on Eclipse RCP and SOA. He is interested in consultancy and
training activities aimed to improve the productivity and quality of the software
development process by using open-source products.

I would like to thank my wife Silvia and my daughter Linda for
being patient while I worked on this book. I also want to thank my
friend Luca Masini for his precious technical advice and help.

Binildas C. A. provides Technical Architecture consultancy for IT solutions. He
has more than 13 years of IT experience, mostly in Microsoft and Sun technologies.
Distributed Computing and Service Oriented Integration are his mainstream skills,
with extensive hands-on experience in Java and C#.NET programming. Binil holds
a Bachelor of Technology degree in mechanical engineering from the College of
Engineering, Trivandrum (www.cet.ac.in) and an MBA in systems management
from Institute of Management, Kerala (www.imk.ac.in). A well-known and a highly
sought-after thought leader, Binil has designed and built many highly scalable
middle-tier and integration solutions for several top-notch clients including Fortune
500 companies. He has been previously employed by multiple IT consulting firms
including IBS Software Services (www.ibsplc.com) and Tata Consultancy Services
(www.tcs.com), and he currently works for Infosys Technologies (www.infosys.
com) as a Principal Architect where he heads the J2EE Architects group servicing
Communications Service Provider clients.

Binil is a Sun Certified Programmer (SCJP), Developer (SCJD), Business Component
Developer (SCBCD) and Enterprise Architect (SCEA), Microsoft Certified
Professional (MCP), and Open Group (TOGAF8) Certified Enterprise Architecture
Practitioner. He is also a Licensed Zapthink Architect (LZA) in SOA. Besides
Technical Architecture, Binil also practices Enterprise Architecture.

When not in software, Binil spends time with wife Sowmya and daughter Ann in
'God's Own Country', Kerala (www. en.wikipedia.org/wiki/Kerala). Binil is a
long distance runner and is a national medalist in power lifting. You may contact
Binil at biniljava@yahoo.co.in or binil_christudas@infosys.com.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Shyam Sankar S is currently working as a Technical Architect with Allianz
Cornhill Information Services, Trivandrum. He has around 11 years of experience
in the IT industry and has worked in companies like IBS, Verizon, and Infosys. He
has been working on Java technologies since 1999 and has been the lead architect for
many JEE systems. Shyam, an Industrial Engineer from the University of Kerala, is
also a Sun Certified Enterprise Architect and a Sun Certified Java Developer.

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: The Mantra of SOA 5

Architecture 5
Application Architecture 7

Client-Server Architecture 8
1-Tier Application 9
2-Tier Application 9
3-Tier Application 10
N-Tier application 11

Enterprise Computing or Architecture 12
Business 13
Application 14
Information 14
Technical 15
The Design 15
Security 16
Administration 16

EA for Managers 16
EA for Developers 17

Analogy of SOA 19
Web Services for SOA 20
'Orientation' of Web Services 20

History of SOA 21
The SOA Bandwagon 21

Why SOA? 24
How SOA… 26

Summary 31

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Web Services and SOA 33
The SOA Approach 33
XML—Advantages and Disadvantages 35

XML Pitfalls 35
Introduction to Web Services, RESTful Services, and Other Transport with
XML 37

Basic SOA With XML Over HTTP Protocol 38
A Basic Java Implementation of POX-over-HTTP 42
REST—Exploiting the HTTP Protocol 47
SOAP 52

RPC and Document Based-WS: How to Communicate, Pros and Cons of
the Two Approach 55

RPC / Literal 56
Document / Literal 60
Document / Literal Wrapped 63

Why We Should Use Doc-WS? 64
The RPC Inheritance 64
The Document-Oriented Way 65

Document Style 65
Implementations: JAX-WS 2, Axis2, Spring-WS, and XFire/CXF 2.0 66

JAX-WS 2 66
Axis 2 67
Spring-WS 69
XFire / CXF 70

Summary 70
Chapter 3: Web Service Implementations 71

Web Service Using JAX-WS 2.0 72
JAX-WS 2.0—A Primer 72
Web Service Implementation in Java SE 6 73

Code Server and Client 73
Run the Server and Client 75

Web Service Implementation in Java EE Server 77
Install and Start the Server 77
Code Server and Client 78
Run the Server and Client 79

Web Service Using Apache Axis 81
Contract-First versus Contract-Last 81
Web Service Implementation in Axis 82

Code Server and Client 82
Run the Server and Client 89

Web Service Using Spring 91
Spring-WS—A Primer 91

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Web Service Implementation in Spring 92
Code Server and Client 92
web.xml 94
Run the Server and Client 96

Web Service Using XFire 97
Web Service Implementation in XFire 98

Code Server and Client 98
Run the Server and Client 100

Summary 101
Chapter 4: Data and Services—All Roads Lead to
Enterprise Service Bus 103

JDO 104
Why JDO? 104
JPOX—Java Persistent Objects 105
JDO Sample Using JPOX 105

BDOM for the Sample 106
Code BDOM Entities for JDO 106
Build and Run the JDO Sample 110

Data Services 113
Service Data Objects 114

Why SDO? 114
SDO Architecture 114
Apache Tuscany SDO 115
SDO Sample Using Tuscany SDO 116

Code the Sample Artifacts 116
Build and Run the SDO Sample 121

Service Component Architecture 123
What is SCA? 123
Apache Tuscany SCA Java 124
SCA Sample Using Tuscany SCA Java 124

Code the Sample Artifacts 124
Build and Run the SCA Sample 127

Message-Oriented Middleware 128
What is MOM? 128
Benefits of Using MOM 130

Enterprise Service Bus 131
EAI and ESB 131
Java Business Integration 134
OpenESB 134

Summary 136

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Chapter 5: Traditional Integration Technology 137
Case Study #1—Based on EAI 137

Customer Information 137
Business Need 137
Solution 138

Hub and Spoke Architecture 140
Goals Achieved 145

Goal #1—Integration between Internal Business Processes and Business Partners 145
Goal #2—Avoid Duplicity 145
Goal #3—Achieve Re-Usability, Flexibility, and Scalability 145
Goal #4—Platform Independence 146
Goal #5—Setting up Messaging Exchange 146
Goal #6—Less Manual Intervention 146
Goal #7—Cost Effective 146

EAI Drawbacks 146
Proprietary Architecture 147
Messaging Bottlenecks 147
Tight Coupling 147
Non-Flexible Architecture 147
Manpower 147

SOA to Rescue 147
Case Study #2—Based on SOA 149

Step One—Defining Organization Assets 150
Step Two—Generate Services 151

Information is eXtensible 152
Information Represented in Textual Form 153
Information is Structured 153
Platform Independency 153

Step Three—Model 157
Co-relation of Events 158
Co-relation of Services and Information 158

Step Four—Integrate 158
ESB—Enterprise Service Bus 158

Goals Achieved 160
Goal #1—Proprietary Architecture 160
Goal #2—Eliminating Messaging Bottlenecks 160
Goal #3—Loose Coupling of Applications 161
Goal #4—Flexible Architecture 161
Goal #5—Return On Investment (ROI) 161

Summary 162

Table of Contents

[v]

Chapter 6: Goals We Can Achieve with SOA 163
Loose Coupling 163
Reusability 167
Seamless Integration 168
Return on Investment (ROI) 168
Summary 169

Index 171

Preface
Service Oriented Architecture is mainly a mindset, an enterprise strategy whose
natural implementation is represented by web services. SOA is not a single product
or single reference architecture to be followed, but SOA is all about best practices,
reference architectures, processes, toolsets, and frameworks, along with many other
things which will help you and your organization to increase the responsiveness and
agility of your enterprise architecture. Standards and frameworks play a greater role
in enabling easy and widespread industry adoption of SOA.

This book will help you learn the importance of designing a sound architecture
for successful implementation of any business solution, different types of C/S
architecture, and various tenets of SOA, explaining the fundamentals and explaining
the advantage of using the Service Oriented Architecture in designing of the business
solution. From a basic XML-over-HTTP approach to the REST and SOAP protocols,
we get into the details of how web services can be implemented with various degrees
of complexity and flexibility using JAVA.

This book will explain the concepts of business layer that is 'The SOA core'. You
will also learn when SOA will define as an asset to your project with the help of
practical examples.

In the early years when the WS-approach began to emerge it suffered from
difficulties due to many factors, for instance, complex adoption process and poor
standardization. Now, with little effort times are mature for using this technology
and also getting great advantages, both immediate and as an investment for our
future works. The book concludes with the focus on explanation of these assets.

Preface

[2]

What This Book Covers
In Chapter 1 we will discuss the role of Architecture for successful implementation of
any business solution followed by brief discussion on different types of client-server
architecture and SOA.

In Chapter 2 we will examine the relationship between the SOA methodology and
the web service implementation basics. We will also discuss how XML can be used
as the common language to decouple the communication between web service
implementations and their consumer clients.

In Chapter 3 we will introduce major web service implementations available
specifically in the Java and J2EE world, WS using JAX-WS 2.0, WS using Apache
Axis, WS using Spring, and WS using XFire.

In Chapter 4 we shall see few emerging standards like SDO and SCA, addressing
from data integration to service and component integration.

In Chapter 5 we will look into a couple of case studies where one of the solutions is
based on principles of Enterprise Application Integration and in the second one we
shall build our solution based on SOA fundamentals.

In Chapter 6 we will explore in detail the advantages that the SOA approach can
lead to. Basically a concluding chapter discussing what we can and what we have
achieved with SOA approach.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "On the
other hand, having a filled item into the response is meaningful just for the
findById method."

A block of code will be set as follows:

public interface IHello{
 String sayHello (String name);
}

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

@XmlRootElement(name="ItemAction")
public class ItemAction{
 private String method;
 private Item item;
 ...
@XmlRootElement(name="ItemActionResponse")
public class ItemActionResponse {
 private String retCode
 private Item item;
 ...

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
so that we may develop titles that you get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/3216_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata are added to the list of existing errata. The existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

The Mantra of SOA
Today, we are living in a world, where 'the age of information technology' is erasing
the boundaries of cities, states, and countries. This age is all about M and A's and key
to the success of such partnerships would depend on how well current independent
resources of each of these entities is re-used. But the biggest challenge would be
aligning these independent solutions into components that can be re-used across
the enterprise.

The answer lies in "architecting" a design that would take care of inter-enterprise
communication in a scalable form. But before getting into that, let's first try to
understand the term 'architecture' in the broader sense. This is one of the most
under-valued but the most important building block for any solution.

Architecture
"Architecture" is a Holy Grail for any design solution. It shows the major components
of the software solution and serves as a blueprint for the entire design. It is like a core
to the design of complex software solution.

Solution
Design

Architecture

The Mantra of SOA

[6]

It can be defined as a representation group(s) of relationship between various
components of a complex software solution. The solution is decomposed into
smaller, self-describing components and represented as structural relationships
to provide a high-level overview of the entire system. The system is divided into
runtime elements, which in itself could have architecture as well.

Consumer

Presentation Layer(HTML, CSS)

Application Layer(WSDL, SOAP)

Data

Oracle Db2

Shown here is a typical architecture for a database driven, web-based solution. It
provides us with a high-level overview of the entire system. The consumer only has
a view of the 'presentation layer' and other layers are tightly encapsulated. Each
layer would have its own characteristics as well as its own architecture.

Architecture can be compounded as a logical set of decisions to describe the life
of the project. These decisions will have a cascading affect on the selection and
integration of components such as the selection of software, hardware, and
behavior of the system. A good architecture will also take care of the future needs
of the project.

But then, why is architecture so important? Without proper architecture in place, it
would be difficult to achieve the following:

Achieve our designed goal
Decompose our requirements into smaller entities
Quality solutions

•

•

•

Chapter 1

[7]

Change management
Re-usable or extendable solutions
Achieve business goals

Moving on from architecture, we will now dive into different architecture paradigms.

Application Architecture
At the most granular level in a system, you will always find sets of applications
running to achieve some business goals. These applications are developed using
different kinds of blueprints that we refer to as architecture. They provide an abstract
view of the entire application, or let us say a high-level overview of the system.

Application architecture can be considered as a representation of the structure
of components and the interaction between them in the system. They provide a
framework within which the business objectives are represented.

Java

MySQL

HTML/JSP

The previous figure shows a typical architecture of a web-based application. The
business requirements are converted into a high-level design where the:

First layer of 'HTML or JSP' acts as the presentation layer.
The business logic is encapsulated in the middle layer that could be built on
Servlets or EJB.
Finally, the data is handled in the third layer 'MySQL'

Each organization will have multiple application architectures, which would cater to
the need of different business goals. These applications could be web–based, or even
the custom client server applications.

•

•

•

•

•

•

The Mantra of SOA

[8]

Client-Server Architecture
The client-server architecture also known as two-tier architecture separates the client
from the server. Client is the system requesting a service from the provider (in our
case, server). The client will always initiate the request, which the server processes
and responds to. The client could send the request to one or more than one server
at a time.

Using this architecture, you can divide the responsibilities of the requester from the
provider. Earlier, as seen in monolithic systems, objectives were divided into smaller
pieces, and then tightly coupled into an application. Due to this, it was difficult to
process multiple clients. But, with the client-server architecture in place, business
process is done within the provider. This enables multiple clients to be plugged in at
the same time.

Large organizations usually have more than one application to support their
business goals. These are well supported by mainframes. Mainframes act as the core
business-processing unit with capacity to handle large chunks of data transactions.
Other computers in the organizations access the mainframe to achieve the business
goals. So in a way, the mainframes act as a server, and cater to different clients across
the organization. With the advent of monolithic computing, where applications were
tied to the data sources, the client-server architecture had become a welcome sign
for the industry.

The main advantage of the client-server architecture is that it is scalable. With
minimal performance impact, either the client or the server could be added.

Client-server architecture can be divided further into 1, 2, 3….n-tier architecture.
We will glance through each of these. The architecture is made up of three basic
layers—the presentation layer, the business layer, and the database or services layer.

Presentation layer is the one with which the client will interact. The consumer shall
either move through a click-based solution, or will input data into the front-end to
initiate the business process.

This layer could either be a thin or a fat client.

Business layer will enumerate the consumer action(s) and process the information
supplied by the 'presentation layer' to accomplish a business goal with a set of
business rules.

Data layer stores the data and logic that would be used to successfully achieve
business goals.

Chapter 1

[9]

1-Tier Application
The single tier application would have the three layers, that is, the presentation, the
business, and the data layer tightly coupled which runs out of a single processing
unit. The application is designed in a way that the interaction between the layers
is interwoven.

Business
Data

Presentation

Within the tenets of client-server architecture, the single tier application can share the
data layer in a multi-user environment and achieve the client-server capabilities. The
limitations of 1-tier application in client-server architecture are as follows:

Changes to the database, in case it is being edited by multiple users
Difficulty in scalability, as the application is running on a single machine.

2-Tier Application
Within the 2-tier application, the presentation and the business layer combine on the
client side, while the data layer acts as the server. This enables the business logic to
be separated from the data services.

The 2-tier application would generally consist of a 'fat' client and a 'thin' server – 'fat'
client because it will embed the presentation as well as the business logic of the
application, and a 'thin' server, as it will only cater to the data needs of the client.

Data

Presentation+Business

Server

Client

•

•

The Mantra of SOA

[10]

Another flavor of the 2-tier application can be a 'thin' client and a 'fat' server. This
would have the presentation logic served in the 'client'. The business logic and data
logic reside on the 'server'.

Business+Data

Presentation Client

Server

As the business logic was independent of the presentation logic, it enabled different
forms of GUI to connect to a particular business process. The GUI would be served
as a simple HTML application, or it could be any form of complex presentation logic.

3-Tier Application
Within a 3-tier application, the business layer would reside between the presentation
layer and the data layer. This enables the presentation logic to be independent of the
data layer, and all its communication will happen through the business layer only.

The business layer is usually multi-threaded so that multiple clients can access the
business process. Typically, these business processes take up client calls, convert
them to database queries, and then call the data layer. Subsequently, it will translate
the response from the data layer and pass it to the presentation layer.

Business

Presentation Client

Server

Data

Chapter 1

[11]

The critical advantages of the 3-tier application are:

The business layer can be multithreaded, which enables multiple clients to
access the business functions.
Enables the presentation layer to be light weight, as it does not have to take
care of the database queries.
The components in each layer are re-usable.
Each of the layers is easily scalable. Thus, it enables load balancing
and clustering.

N-Tier application
An n-tier application will usually have more layers than the 3-tier application.
Typically, the business logic from the middle layer would get structured in two
different layers. Some part of the business logic will reside in the application server
that connects to the data layer and the other part of the business logic shall remain in
a web server, which will connect to the presentation layer.

Web Server

Presentation Client

ServerApplication Server

Data

In a typical web-based solution, the client will have access to the business through a
browser. The browser in turn will call the business logic in the web-server. The web
server will subsequently transfer the calls to the application server, which effectively
sends the request to the data layer.

Advantages of having n-tier application:

N-tier application will offer the advantages of distributed computing.
Each of the tiers can reside in a different system.
The division of labor would help in reducing load from each of the tiers.
Higher code maintainability can be achieved, which will reduce the number
of errors.

•

•

•
•

•
•
•
•

The Mantra of SOA

[12]

Enterprise Computing or Architecture
Initially, solutions were designed to achieve certain set of goals only within the
organization. Those solutions were usually built on the principles of local
client-server architecture, that is, 2-tier or 3-tier architecture. But for large
organizations with growing businesses that spanned across geographical locations,
the localized solutions started to get redundant. A need was felt to design solutions
that could interact with each other, independent of any geographical boundaries.
These solutions had to be multi-tiered. In this context, we have to talk about the term
'enterprise computing'.

A large organization—with several functional entities such as HRD, Sales,
Marketing, IT, and Finance—is known as 'enterprise' in the computer industry
parlance. Each of these entities have their own set of business goals to achieve
through different software solutions.

HR Department

Marketing

Sales

Finance

IT

Enterprise

'Enterprise Computing' design makes it possible for these functional units to run on
shared environment and infrastructure. It enables each of the units to share common
data within the organization as well as with its trading partner.

The architecture used to design solution based on enterprise computing is 'enterprise
architecture'. This architecture helps organizations achieve business goals. At a
higher level, enterprise architecture can be divided into four layers:

Chapter 1

[13]

Strategy to accomplish the
business

Application Interfaces EAI,
EDI

IT Infrastucture viz.
hardware & software

Information Exchange

Business

Application

Information

Technical

Business
The first step to evolve good enterprise architecture is to model the business
processes that are directly dependent upon the business strategy.

Business logic can be set up as follows:

1. Capture business requirements
2. Analyze requirements
3. Define business strategy around the requirements
4. Model the process

The business requirement are captured and documented. The next step would be to
involve different business line managers, analyze the requirements, and then define
business strategies to achieve the goals as stated in the requirement document.
Finally, the business process model is designed to give an overall view of the entire
business process. It can be achieved through various business process model
(BPM) tools.

Let's take a contextual example of a local super store. The store caters to the
consumers through different business lines such as retail, procurement, HR, and IT.
Each of these service lines is inter-dependant. To retail a product, the procurement
has to be done. To procure a product, it has to be ordered, and to order a product
people are needed. The business process has to be designed considering all
these entities.

The Mantra of SOA

[14]

Application
Application will be needed in the organization to supply information to the business.
Application serves as a bridge between data and the business processes. To support
business goals, processes retrieve information through proprietary applications.

The applications are developed using their own reference architecture. This
architecture provides a view of the processes that would be defined during the
application development. These processes have a clear demarcation of their
activities. For example, the process to retrieve the data would be different from the
process to push the data to business.

Continuing from the super-store example we stated earlier, each of the business
lines within the store will have its own applications. These applications will in
turn communicate between themselves as well as use the information to achieve
their individual business goals. For instance, if a product has reached the re-order
level, business process are built to re-order the product. This process will use the
application to check the current quantity and the re-order. In case the product is sold,
it will reduce the quantity.

Business-Sell Product

Reduce Quantity(Sell) ApplicationRe-OrderCheck Quantity

Business

Information
Information
Database

Information
Just as a fish cannot live without water, an enterprise solution cannot exist without
information. Information is the critical building block to any enterprise solution. It
constitutes a major part of the solution, which the enterprise architect has to take
into consideration:

Data redundancy
Data re-use
Access control
Regular backups

•
•
•
•

Chapter 1

[15]

These checks help in maintaining the accuracy of data for business processes.

Technical
The success of any enterprise solution will depend upon the appropriate technical
decisions. Implementation of applications and the use of information will depend
upon the type of technical components being utilized.

The choice of hardware and software components will depend upon the current
infrastructure assets, and the correct alignment of the components in the business
processes. Traditional 3GL languages are still used in bigger enterprises where
performance is as critical as the business. But the new world prefers to use the
4GL languages.

The Design
The enterprise systems are designed in a way that all the business goals can be
shared by all the consumers, and at the same time it does remain abstract. The
sharing of info could be done with various supporting interfaces. For example,
where data needs to be exchanged, it can be done through XML interfaces. These
data can also be referenced through HTML or other UI systems.

Moving to 'enterprise computing' designs, the organization started to reap good
profits. Let's list the advantages of 'enterprise computing':

Information is exchanged over network(s).
It enables the concept of 'paperless' office, as all communication can be
routed over the internet, thus removing the dependence on standard mail,
fax, or even email.
Man-hours, consumed to do the menial tasks, are reduced.
The collaborative mechanism approach enables better and faster
supply-chain management
The turnaround time for moving the product from the manufacturing hub to
the store is vastly reduced.

Manufacture Warehouse WarehouseFreight StoreProducer Consumer

Data between each of the units can be exchanged faster, greatly reducing the
cost-to-carry.

•

•

•

•

•

•

The Mantra of SOA

[16]

Security
Now, when we talk about data exchange, the major hiccup comes in the form
of security. The sensitive data exchange has to be accomplished in a secure
environment, as the networks are open to intruders most of the times. This could
cause immeasurable losses to the enterprises. Security can be achieved through
various means such as using secured HTTP protocols, authentication, and proper
logging mechanism. It can help to catch leaks and send appropriate notifications,
access controls, or enable only a set of users to access the resources.

Administration
Further, with the growth in size of enterprise solutions, the need for administration
became very important. As the enterprise grew, so did the number of software and
hardware components. Any errors or inherent bug in the solution need careful
debugging and resolution process.

Many times, the software components would require an upgrade, which spanned
across the multitudes of business lines. So, application administration was required
to ease the task of upgrades and timely resolution of errors.

EA for Managers
The managers have a fair idea of the business process and the need for
improvement in various solutions. They are the people who run the business
and are single-handedly responsible for the continuous improvement of the system.
These improvement needs are guided by the goal to achieve continuous high quality
growth in each of the business systems.

To achieve it, managers always need to have an overview of the enterprise system,
which can be achieved by involving the managers during the design of the solutions.
The managers can get involved in the design with their inputs on the business goals,
and help to set up business rules to achieve these goals. These would be helpful in
case a system needed improvements, or while debugging any inherent issues.

Managers who are aware of the enterprise architecture give a greater fillip to the
organizations to achieve better quality and consistent growth, as they can relate the
architecture to the business goals better, using the data gained out of the system.
They can design various metrics out of the data to analyze the growth and address
any impediments in achieving their targets.

Chapter 1

[17]

EA for Developers
For developers, architecture is a ready resource to the way they understand the
business requirements. Successful enterprise solutions are a derivative of good
enterprise architecture. Depending on this understanding of the architecture,
decisions are made by the developers on:

Development milestones
Development strategies
Choice of proprietary software solution
Choice of hardware
Choice of manpower (for the technical leads)

A perfect blend of the above will result in the successful implementation of
enterprise solution vis-à-vis the enterprise goals.

But, EA solutions had its share of challenges. We will try to discuss some of the
common challenges faced by the organizations that were dependent on enterprise
architecture techniques to accomplish their business goals:

1. Proprietary Solutions: With the organization's business horizon growing,
it had to incorporate EA solutions that were traditionally being delivered
through proprietary software, or there was a wide use of proprietary
software either on the side of the organization, or its vendors. This led to
many more challenges in the dissemination of data between the concerned
parties, which ended up impacting the business goals and delivery timelines.

2. Point-to-Point Integration: EA solutions required applications within the
organization to communicate with vendor application for the exchange of
data without any human intervention. This required business process to
make a one-to-one connection with the vendor-side process.

Business
Process

Business
Process

Organization

Vendor Process

Vendor Process

Trading partner B

Trading partner A

•
•
•
•
•

www.allitebooks.com

http://www.allitebooks.org

The Mantra of SOA

[18]

Problems with Point-to-Point integration:

For large organizations, an increase in number of point-to-point
interface leads to chaotic maintenance issues.
It becomes difficult to re-use organizational business processes as they
are tightly coupled with vendor process.
It requires dedicated hardware connections to the vendor.
The ROI declines over the long term, because when each client is
added, the hardware and software connections have to be made. This
increases the infrastructure costs in the long term, as the number of
vendors increase.
Only one-way communication is possible including messaging.
Suppose the message sent by Vendor process has to be propagated to
the other vendor system, in this case a new solution will have to be set
up and maintained.

3. Technology: New technologies are arriving at a fast pace, and all of them
want to market themselves as the best solution providers. But this is the
place where organizations are thrown a lot of challenges. Although the
new technology will reduce the time to implement the business processes,
organizations have to estimate how it could affect the current processes. They
have to choose between upgradating and investment in the current systems,
or maintenance of the existing systems.
The cascading effect is seen in business processes that interact with trading
partners. With the change in technology of the business processes on either
side, the information flow and connections have to be reset. This will need
investment in the form of man-hours and, in some cases, additional
hardware resources.

4. Standards: Business processes being tightly coupled to the vendor processes,
information exchange follows a set of agreed standards between the two.
This leads to less openness and re-use of information. The challenge is to
convert the organization's meaning of a data item to various vendors' data
item. A shipping order should not be conceived differently between the two
vendors. A common standard for information exchange has to be set up,
which would translate the meaning across vendors.

•

•

•

•

•

Chapter 1

[19]

5. Mergers and Acquisitions: With rapid globalization, many organizations
are looking for opportunities to expand their businesses. So mergers and
acquisitions have become the order of the day. But for IT, these have become
one of the major challenges. There is a high need for either revamping the
current processes, or setting up additional infrastructure to develop new
offerings. There is a constant lack of cohesiveness between the business
processes, and the advantage of shared growth is lost. This loss can be seen
in multiple solutions for the same set of business processes such as in a
shipping order or a simple login mechanism.

This can have an effect on the business of the organizations. In the long term,
strategies have to be realigned to take advantage of the fast-paced growth.
Open standards have to be set by organizations, so that information can
be exchanged more easily. These will help in tiding over the current set of
challenges offered by EA. Organizations need newer strategies for:

Faster time to market
Meeting information exchange challenges
Loose coupling between the business processes
Re-use of infrastructure

For organizations that are truly bent on developing new strategies to achieve their
renewed set of goals, here comes SOA to their rescue.

Analogy of SOA
"We are building business processes around web services in our solution. So, we're
essentially developing a SOA-based solution". Well, this is the common perception
across the ranks within the organization, and at times even the architect would say it.
But is that really so?

Well, in our opinion, that's not true. Just because you are using web services, it
would be unfair to classify it as a SOA-based solution. So, what exactly constitutes
SOA? This has become a focal point in the various discussions that we're involved
in during our day-to-day life. Defining SOA is a challenge in itself. In a nutshell, we
need to understand that SOA is an architectural concept. To understand our point
of view on SOA, let us first go through web services and the 'orientation' of
web services.

•

•

•

•

The Mantra of SOA

[20]

Web Services for SOA
With the aim of re-using the business processing logic, and moving away from
point-to-point communication, a need was felt by organizations to promote
information across vendors. They were required to communicate over the web, using
a set of standards. So, processes were set up to be accessed over the web to execute
the business logic.

The communication was independent of the underlying technologies on either side.
Use of web services eliminates the issues of application servers, operating systems,
protocols, or devices. Regardless of the above, vendors can call the web service to
accomplish a set of tasks.

Business Logic

Legacy
Implementation

Composite Service

Service Implementation

Service Interface

'Orientation' of Web Services
We have been hearing about object-orientation for a long time. Extending the
concepts further, we try to explain the 'orientation' of web services. In a nutshell, it is
an enterprise solution with a plethora of business processes exposed as web service.
But each of this process has to be defined according to the business goals they are
supposed to achieve. Orientation is the process of mapping the business processes,
and enabling them to conform to the business goals.

Chapter 1

[21]

Application
Logic

Business
Process
Logic

Web services

The web services expose the business process and communicate with the Application
logic to accomplish a business task. These web services can be accessed within and
outside the organization.

We will go into the details of each of these in the 'Why SOA?' section.

History of SOA
SOA is not a solution, it is a practice.

The term SOA was first coined by Gartner analyst Yefim V. Natis in one of the
research papers in 1994. According to Yefim:

SOA is a software architecture that starts with an interface definition and builds the
entire application topology as a topology of interfaces, interface implementations, and
interface calls…

Despite being coined much earlier, SOA started to become a buzzword only in early
2000. With the advent of web services and WSDL compliant business process, SOA
started to become popular among technology enthusiasts.

The SOA Bandwagon
The fundamental of SOA is based upon:

Service
Message
Dynamic discovery
Web service

•

•

•

•

The Mantra of SOA

[22]

The fundamental approach of designing web services that offered the business logic
to be decomposed amongst disparate services, each of which was a distinct logical
unit but in entirety was part of a distributed enterprise solution. These logical units
are services.

The business logic gets encapsulated in a service. As seen earlier, a service can be an
independent logical unit or it can contain in itself other set of services, as shown in
figure 1. In case the service is used to call other sets of dependant services, to refer to
those services, they must contain the service descriptions. The service description in
its basic form contains the information of service name and location of the service
being called.

Service Y Service X

Service Description

These logical units though had to adhere to certain sets of communication standards
to enable information flow across the enterprise offerings in an understandable form.
The information is exchanged in the form of messages from the interface designed
within the system. The interface exposed by a service contains the service behavior
and messaging pattern. One of the basis of SOA being platform-neutral is that
messages are exchanged in XML formats so as to adhere to the concept.

Consumer Message

Service X

At a high level, SOA is formed out of three core components:

Service Provider (Service)
Service Consumer (Consumer)
Directory Services (enabled by Broker)

•

•

•

Chapter 1

[23]

ConsumerService

Broker

Publish Discover

Bind

From the preceding figure, we can see that:

The service provider offers business processes in the form of services.
The services offered by the provider are called by the consumer to achieve
certain sets of business goals.
The process of services being provided and consumed is achieved by using
directory services that lie between the provider and the consumer, in the
form of broker.

The service to be made available to the consumer is published to the directory
services in the broker. The consumer wanting to achieve the set of business goal(s)
will discover the service from the broker. If the service is found, it will bind to the
service and execute the processing logic.

This helps in achieving the objective of using SOA:

Loose coupling: The business process being decomposed into independent
services will help in bringing down the dependencies on a single process.
This in turn will help in faster processing time.
Platform-neutrality: XML-based message information flow enhances the
capability to achieve platform neutrality. These XML messages are based
on agreed XML schema, eliminating the need to set up other messaging
standards that can differ across platforms.

XML
Message

.NET Service

Java Service

•

•

•

•

•

The Mantra of SOA

[24]

Standards: The message flow across the enterprise is in the form of
globally accepted standards. The service only has to depend on the service
descriptions without worrying about the target standards and removing
the dependencies.
Reusability: The business logic being divided into smaller logical units, the
services can easily be re-used. These enhance the utilization of SOA-based
solution, which has a cascading affect on service delivery and execution.

Business
Process A

Business
Process B

Single Sign-on
Service

Scalability: Again, as the business processes are decomposed into smaller
units, adding new business logic is easy to accomplish. The new logic could
either be added as an extended unit of the current service, or it can also be
constructed as a new service.

Why SOA?
We have discussed above the concepts of SOA and the components that constitute
the design of architecture based on service orientation. In this section, we'll try to
determine the need for organizations to align their business process, and design it
according to service-oriented concepts, joining the SOA wagon wheel.

Integration: An SOA-based solution is usually based upon the principles of
inter-operability. The integration solutions thus offered are loosely coupled
and less complex. At the granular level, services are being used to interact
with vendors. The compounded benefit can be found in the lower cost of
integration development, as we move away from proprietary integrations
solutions to open standard-based solutions.
The ROI can be easily measured for integration solutions as the cost per
integration is drastically reduced by the use of SOA-based solution against
the traditional middleware solutions. Over the period of time, organizations
can move away from the current, expensive, integration solutions to
SOA-based vendor-neutral integration standards. It can be achieved by
standardizing the current service description and messaging solutions.

•

•

•

•

Chapter 1

[25]

Business Agility: One of the most important benefits of organizations
adopting SOA is felt by the increased agility within the systems. Though
agility is a non-quantifiable term, the inherent benefit is felt within the
organization's hardware and software assets.
The benefit in terms of software assets can be derived from SOA's ability to
re-use and simplify integrations. Unlike earlier days, where development of
new business process would take quite some time, the current business users
will find the development period getting shortened. This makes it easy to
accommodate changes, and the benefits of the same can be seen in the long
term, as the enterprise solution evolves over a period of time.
In terms of hardware benefits, due to the abstract use of services being
loosely coupled, they can be delegated across the domain and the results
can still be achieved. This helps in balancing the business processes load
across the organization, and the capabilities can be utilized better. Thus, a
remarkable improvement in the efficiency of business can be felt.
Assets Re-use: The foremost goal of a SOA-based solution is 're-use'. Most
of the earlier solutions were built-in a very tightly coupled or an isolated
environment. This made it very difficult to re-use the components of the
current solution.
SOA-based services were built in such a manner that, though the services
conformed to the current business requirement, they could still be re-used in
any composite service. As a result, organizations saw the benefits of re-use in
terms of a higher intial development period. But over time, the economics of
re-use got better of the development span. The economics of re-use was felt
in terms of faster integration and lower cost per integrations. Re-use also
enabled organization to put less money into asset growth, as the current
assets were being re-used effectively.
Increased ROI: With proper governance and compliance in place, and a
highly secured transaction environment, the adoption of SOA sees a definite
increase in terms of ROI.
With the integration solutions moving from expensive, tightly coupled,
standard-specific, vendor dependent to being loosely coupled,
vendor-neutral, open standard-based solutions, the cascading effect on
ROI is seen immediately. Over time, as organizations move away from
proprietary solutions to SOA-based solutions, the investment in integration
assets will surely dwindle.
Building solutions that are inherently re-usable helps organizations to build
and market the solutions in a rapid manner. This helps organizations to
improve their time-to-market, and improve efficiency with respect to
customer satisfaction, service, and effective use of manpower.

•

•

•

The Mantra of SOA

[26]

How SOA…
As a lot of organizations move towards adopting the SOA culture, the biggest issue
faced by them is the complexity of the solutions. The dismantling of the current
business processes into smaller services is a huge challenge in itself. SOA is a
natural improvement over the object-oriented (OO) and the component-based
development (CBD). So, it still retains some of the flavors from each of them.

The business processes are powered by small pieces of software known as
'components'. The business logic inside the components is based on the principles
of OO programming. These business processes are termed as 'services' in the analogy
of SOA.

The recipe for success of any SOA solution is to ensure the classification of business
processes into smaller units. You can either choose the top-down, the bottom-up, or
the middle-out approach.

Top-down: In a top-down approach, the business use cases are created,
which gives the specifications for the creation of services. This would ensure
that the functional units are decomposed into smaller processes and then
developed.
Bottom-up: Using the bottom-up approach, the current systems within the
organization are studied, and suitable business processes are identified for
conversion to services.
Middle-out: The middle-out approach acts as a spy, and tries to locate
suitable business processes that were left out by the other two approaches.

Service
From the above discussions, we can identify that 'services' are the core components
for the success of a SOA-based solution. We will try to explain the term in the
following discussion.

'Service' as a sole unit is an independent logical unit of a business process. The
business logic stands encapsulated into the service, and it interacts with the outer
world through the 'interface'. The services are designed to be flexible in terms of
addition of new business logic or change of logic. They should also be reusable, so
that other processes can use functionality. Services are published by the 'provider'
and they bind to the 'consumer' through the service 'handler'.

•

•

•

Chapter 1

[27]

The Service provider: The provider comes into action when the service is
invoked. Once the service is invoked, the provider will execute the business
logic. Messaging will depend upon the business logic, in case the consumer
expects a message after the execution of business process, the provider will
send out the reply.

Request

Response

Service Provider

The Service Consumer: The consumer would send out a message to the
provider in order to access the service. This is the requester. It would either
be done directly by a service-to-service call or through the directory services.
Services required for processing are identified by their service descriptions.
The same service can act as the provider as well as the requester of the serv-
ice. But this is seldom seen in practice. Here, we have extended the above
image further:

Request

Response

Service
Requestor

The Service Handler: The service handler acts as a collaboration agent
between the provider and the consumer. The handler contains the realization
logic, which will search the appropriate service provided and bind it to the
consumer request.

•

•

•

The Mantra of SOA

[28]

Once the service has been requested, it goes through various messaging
paths and, at times, into multiple handlers to finally accomplish the logic. The
handler usually routes the messages to the target system or sometimes does
some processing logic before forwarding the request to target system.

Request

Response

Service
Requestor

Service
Handler

WSDL—Service Description: Service Description carries information about
the service such as the input or output parameter, the location of the service,
port type, binding information, and so on.
This helps in locating the service when a consumer requests for the same.
This information is stored in the form of a WSDL (Web Service Definition
Language) document. In a nutshell, the WSDL document will have all the
information needed by the consumer to locate and execute the business logic
within the web service.
The WSDL can be classified in two different entities: abstract and concrete.
The abstract definition constitutes port and messages, whereas the concrete
definition will constitute the binding, port, and service information.
The messages are structured within the XSD (XML Schema Definition) and
processing rules are defined as part of policy within the WSDL.

Port, Service
Information

XSD

Policy

Service Description

•

Chapter 1

[29]

Messaging
Messaging in the SOA paradigm is one of the most important blocks. The
inter-service and inter-vendor sharing of information is done through messages.
SOA-based solutions have an exhaustive usage of messages. The messages are
designed in an agreed upon standard format to be used by services across the
SOA-based solution.

SOAP is the standard messaging protocol agreed upon by the industry as a means
of sharing information over networks. The information is stored in the form of XML
data within SOAP.

SOAP specification consists of:

Envelope
Header
Body

Envelope

Header

Body

Each SOAP message will consist of an envelope, header, and a body. The header will
contain information about the SOAP message and all the metadata required by the
message. This is, however, an optional element in the SOAP envelope.

The body contains the actual message required for execution of the web service at
the endpoints. The message conforms to the XML standards. The body also includes
information about faults—a way of error handling. A message can be added in case
an error occurs while processing. This field is also optional.

As part of the messaging framework, enterprise solution uses nodes for SOAP
messages to communicate across the platform.

Nodes
SOAP nodes are supposed to perform the processing logic on receiving a SOAP
message. The node is identified by an URI.

•

•

•

The Mantra of SOA

[30]

The nodes can be:

The SOAP intermediary
The sender of the SOAP message
The initiator of SOAP message

Message Node

Service

RPC Style
One of the most common messaging styles is the RPC (Remote Procedure Call)
mechanism. It enables developers to make a call to the remote services over
the HTTP.

For making RPC call, the payload within the envelope will represent the method
call. In the conventional way, the method name will be used for request and the
responses come in the form of "Response" being appended to the name– for example,
PurchRequest or PurchRequestResponse.

Message Path
It is the path taken by the message from the moment it was initiated by the request
till it reaches the target service.

Requestor

Massage

Massage

Message Path

Intermedairy

Provider

•

•

•

Chapter 1

[31]

The path starts from the service requester and moves towards the logical end of
the service. Message Path is important, as it will determine the flow of service and
address the concern of security, data management, and service management.

Many times, the message path is not pre-determined, and would depend upon the
number of intermediaries between the requester and the target.

More on WSDL and messaging style will be covered in the next chapter. This way,
we have addressed some of the tenets of working up on SOA.

Summary
In this chapter, we have covered:

1. Role of Architecture: This describes the importance of designing a sound
architecture for successful implementation of any business solution.

2. Client-Server Architecture: Different type of client-server architecture has
been offered for reference. They serve as prologue to the service-based
architecture.

3. SOA: We have tried to cover the various tenets of SOA, explaining the
fundamentals and explaining the advantage of using the service-oriented
architecture in designing a business solution.

Web Services and SOA
In this chapter, we will get into the details of SOA implementation and start
practicing in the domain of web services. We will see why XML is the right choice
for exchanging messages in an enterprise interoperable environment. Then, starting
from a sample set of service definitions, we will follow a top-down methodology to
develop our first basic web services. The process will be refined by applying the two
commonly used communication protocols (REST and SOAP).

A comparison between the two available styles of web services (RPC and Document)
will then be introduced and we will see how the latter is better and widely adopted.
In the last section, we will then go through a quick introduction to the most popular
web service implementation frameworks.

The SOA Approach
The first step in the path to the SOA is basically the expression of a very simple
approach: identifying the business functions that your applications are made of. Let's
analyze this phrase in detail:

Identifying: is the ability to find and isolate the software parts that provide
self-contained and atomic functionalities. This implies designing in a
modular way, that is divide ("et Impera", Romans would say) the logics of
your problem into small and well defined call specifications. We need to
build the boundaries of our software parts and contracts to use them, always
keeping in mind that a part that is re-usable in many contexts is sort of a
piece of gold. In a sense, we are simply leveraging the concept of "interface"
to a more abstract level, the business rule's level.
Business functions: refers to the fact that with SOA we are focusing on the
model-and-business layer (the M letter in MVC), and not the presentation
side (the View and Controller).What we are talking about here is exactly
"services". A well-designed service should be agnostic about the specific
presentations that it will serve.

•

•

Web Services and SOA

[34]

Applications are made of: a lot of software layers. Here, though, we want
to put the emphasis on the "s" of "applications". This is the "big leap" of the
SOA approach, going beyond the project we are facing just now, and making
a little effort in order to build a thing that will survive the single project
and will be eligible to be exploited in a wider scenario, that is, by several
applications, and over time.

Now, suppose we have accepted the above methodology and we have also designed
the services we need, what are the next steps? How do we implement them?

As a sample service, let's take the one which retrieves the list of all customers. That is
a very simple function. It has no input parameters and returns a list of objects.

How is the service consumer (the part of software that makes use of the service, for
example, on the User Interface side) expected to invoke the service and receive the
list of requested objects?

This can be done in different ways. Among them, the most popular are:

With platform native calls: As far as Java is concerned this may be
implemented through Remote Method Invocation (RMI), Sockets, Servlets,
or JMS.
With a distributed object communication middleware: CORBA or DCOM
are just some examples.
With a text-based communication protocol: This can be done by sending the
request as a text stream and obtaining a textual response containing the data.
This is the approach on which web services are based.

The first way is straightforward, but it has some drawbacks. It is tied to a common
language (the service and its consumer must share the same technology and
language—for example Java, .NET). Furthermore, the exchanged object's classes
must be the same version otherwise the communication will not happen.

Distributed object communication middleware have been a successful answer for a
considerable time span. CORBA in particular, thanks to its cross-platform nature, has
offered an evident asset where interoperability was needed.

The text-based approach implies, on the other side, a process of serialization
(conversion from object to a textual form) when the client sends the request, and
a process of deserialization (conversion from text to object) when received by the
server. A similar double process must happen then for the response flow.

The serialization and deserialization processes seem to add complexity to the
communication. But consider the advantage, a complete independence from
technologies and loose coupling between parts.

•

•

•

•

Chapter 2

[35]

The natural way to embed data in a textual form is definitely throughout XML.

XML—Advantages and Disadvantages
The eXtensible Markup Language was designed by the W3C (World Wide Web
Consortium) in 1998. It was designed exactly for data exchange purposes and has
demonstrated its strength over time.

The advantages that XML provides are significant. In fact, it is:

Structured
Portable
Extensible
Text format

XML Pitfalls
The tree-based structure of XML may lead to some apparent problems. A common
debate is about the fact that XML is not the best way to represent an arbitrary object
because of its limitations when it comes to sharing object references. Think about the
previous example. Imagine you have a number of customers in London, with the
above representation you would have an overhead of redundant data (a number of
identical "city" blocks), which is barely acceptable.

Indeed this example was made just to show a common misuse, where the attribute
<city> should be considered as an independent entity, rather than a value.

A better approach would be to handle the problem just like you would do with a
relational database that is moving repeated data outside of the main object and
embedding just a reference to them in the latter.

With a Stateful approach, the client could have retrieved the list of all "city" entities
at a previous stage. So when it calls the getAllCustomers service, this could return
just the city ids.

Listing 1—Stateful Approach
<Customers>
 <customer>
 <id>4</id>
 <name>Smith Ltd</name>
 <location>
 <address>39, Kensington Rd.</address>

•

•

•

•

Web Services and SOA

[36]

 <city>LND</city>
 </location>
 </customer>
 <customer>
 <id>7</id>
 <name>Merkx & Co.</name>
 <location>
 <address>39, Venice Blvd.</address>
 <city>LAX</city>
 </location>
 </customer>
 ...
</Customers>

On the other side, if we want to adopt a Stateless approach, in order to have a
self-contained service, we could embed in the response of all the needed lists of data.

Listing 2—Stateless Approach
<Entireresponse>
<cities>
 <city>
 <id>LND</id>
 <name>London</name>
 <country>UK</country>
 </city>
 <city>
 <id>LAX</id>
 <name>Los Angeles</name>
 <country>USA</country>
 </city>
</cities>

<customers>
 <customer>
 <id>4</id>
 ...
 <location>
 ...
 <city>LND</city>
 </location>
 </customer>
 <customer>
 <id>7</id>
 ...
 <location>

Chapter 2

[37]

 ...
 <city>LAX</city>
 </location>
 </customer>
 ...
</customers>
 </Entireresponse>

Introduction to Web Services, RESTful
Services, and Other Transport with XML
The previous section focused on the advantages that XML adoption brings in SOA
implementation, but no mention was made of web services. The terms SOA and web
services are sometimes mixed up in the same discussion at the risk of creating some
misunderstanding.

SOA is just a methodology, an architectural design choice. It has nothing to do with
technology or languages. In "Service Oriented Architecture", the first word is not
short for "Web Service"; it is just "Service" in its wider meaning. We can design the
service that retrieves the list of all items (or a subset filtered upon criteria) without
being involved in the technology implementation choice.

Designing by SOA is, in the end, designing the high-level interfaces of the business
rules of a given domain model.

At some point, however, an implementation choice must be made. Therefore, in
this paragraph we will explore some solutions, going from a simpler home-made
approach, to a complete and widely accepted standard technology (SOAP).

Before going ahead though, it is important to focus on a term that we will use very
often in this book.

The term is "protocol" and as we will discover soon, it can be used with
different meanings depending on the context. One crucial distinction is between
"Transportation (or layer) protocol" and "Communication protocol".

The first refers to the network protocol that transports the information. It may be
HTTP (a very common choice), but also may be SMTP (thus allowing asynchronous
data exchange) or JMS.

Communication protocol, instead, deals with the way we put and extract the
message into and from an XML document, and will be the main subject of
this section.

www.allitebooks.com

http://www.allitebooks.org

Web Services and SOA

[38]

At first, we will see how to build a very basic system where XML requests and
responses are exchanged through the HTTP protocol in a homemade manner. This
will help understand some communication mechanisms from the ground up.

Then, this approach will be standardized with the REST, getting to a still more basic
SOA implementation, but with a clean and well designed communication protocol.

Finally, with SOAP, we will go through a more complete and flexible solution with a
wide range of features.

Basic SOA With XML Over HTTP Protocol
The process of designing services yields to a number of results. First of all, it
produces a list of service definitions which is sometime referred to as a "Catalog of
Services". This, naturally, should not have the form of a flat list, but will be organized
into sections or "Functional Domains". So we could have, for example, the "Item",
"Order", and "Customer" functional domains. Under these functional domains, the
following services can be defined:

Item Functional domains are as follows:

insertItem
updateItem
deleteItemById
findItemById
findAllItems
findItemsByCriteria

Order Functional domains are as follows:

createOrder
findOrderById
findAllOrdersByCustomer

Often there will be the need for some "orthogonal" services. In fact,
some services could share common mechanisms, such as a control flow or
transaction handling.

Generally, at the beginning of any software design process, a common task is to
focus on the basic domain objects and their essential handling operations: Create
(or insert), Read (select), Update, and Delete. This is usually referred to as CRUD.
No matter which language you are using, which architecture is adopted, all projects
virtually have to deal with CRUD actions. In our case, a basic domain object is the
Item entity and the first four listed services are exactly the CRUD functions.

•
•
•
•
•
•

•
•
•

Chapter 2

[39]

Let's begin by analyzing and designing the services that handle the item domain. The
insertItem service, for example, could have the following form:

Create
Input Service Output

<Item>
 <id>0</id>
 <code>RX004</code>
 <description>
 Eth. Cable
 </description>
</Item>

=> insertItem =>

<Result>
 <retCode>
 OK
 </retCode>
 <id>137</id>
</Result>

The client who wants to use this service in order to insert a new item must provide
an XML message with the above input schema. Note that the item id has a zero
value, since it is assumed that the server will assign it and return to the client along
with a return code.

The other three CRUD actions could be modeled as follows:

Read
Input Service Output

<ItemId>
 <id>137</id>
</ItemId>

=> findItemById =>

<Item>
 <id>137</id>
 <code>
 RX004
 </code>
 <description>
 Eth. Cable 4 ft.
 </description>
</Item>

Update
Input Service Output

<Item>
 <id>137</id>
 <code>RX004</code>
 <description>
 Eth. Cable 4 ft.
 </description>
</Item>

=> updateItem =>

<Result>
 <retCode>
 OK
 </retCode>
 <id>137</id>
</Result>

Web Services and SOA

[40]

Delete
Input Service Output

<ItemId>
 <id>137</id>
</ItemId>

=> deleteItem =>

<Result>
 <retCode>
 OK
 </retCode>
 <id>0</id>
</Result>

The above design is just an example of the possible communication protocol we can
adopt. In fact, in this scenario, without constraints or patterns to follow, we are free
to decide the communication protocol. For example, we could find it better to have
a unique input-output pattern and a single entry point for all CRUD methods. Here
the input is a message with the service name embedded, along with the item object,
while the output is composed by a return code and an item object, as described in the
following figure.

Generic CRUD Action
Input Service Output

<ItemAction>
 <method>
 findById
 </method>
 <item>
 <id>137</id>
 <code></code>
 <description>
 </description>
 </item>
</ItemAction>

=> itemCrudService =>

<ItemActionResponse>
 <retCode>OK</retCode>
 <item>
 <id>137</id>
 <code>RX004</code>
 <description>
 Eth. Cable 4 ft.
 </description>
 </item>
</ItemActionResponse>

Here the advantage of having a single service for all CRUD actions has a price:
we have to provide a partially filled item object (with just the id attribute valued)
while invoking the service with findById and delete methods (in fact only the
insert and the update methods need to really pass the full-valued item object). On
the other hand, having a filled item into the response is meaningful just for the
findById method.

Chapter 2

[41]

However, the CRUD actions do not cover, generally, all the needed services. For
instance, in the Item domain, we also need a method that retrieves all the items or at
least a subset of them. A possible specification of this service could be the following:

Non-CRUD Action
Input Service Output

void input => findAllItems =>

<Items>
 <item>
 <id>137</id>
 <code>RX004</code>
 <description>
 Eth. Cable 4 ft.
 </description>
 </item>
 ...
</Items>

So far, we have explored a couple of feasible paths that the service designer may
follow. As you noticed, the communication protocol is completely up to you. There
are no guidelines, just your skill to abstract concepts.

Once we have settled for the communication protocol (may be one of the above or
yet another of your choice), we need to think about the layer protocol and its details.
The HTTP protocol is a very practical and flexible solution: we can send the XML
message as an HTTP request. This approach is also known as POX-over-HTTP,
where POX stands for Plain Old Xml.

In practice, we just need an XML translation library in order to transform the objects
written in our programming language into XML documents and vice versa. This
is all we need for implementing the services we have described above. But there
is more. We can even use different languages for implementing the client and the
server side as long as each layer adheres to the defined protocol. The XML document
is the key to decoupling parts, as shown in the following figure, where a possible
scenario is depicted:

Web Services and SOA

[42]

Web Service Decoupling

Client Java
Java request =>

Java response <=

Client .NET
.NET request =>

.NET response <=

Client Flash
Flash request =>

Flash response <=

X

M

L

Server Java
=> Java request
...processing...

<= Java response

A Basic Java Implementation of
POX-over-HTTP
Now, to complete the example, we will see how to implement the findById service
in the Java language. For the automatic binding, we decided to use the JAXB library.
This component is included into the latest Java 6 JDK. So if you use this version of
Java you do not need any additional jars. Otherwise, you will have to download
JAXB and add it explicitly to your server and client class paths. However, since
we will make use of Java Annotations, the following source code requires at least
a JDK 5 release in order to be compiled and executed. For the server side service
implementation, we adopted Tomcat 5.5. The implementation we are stepping
through is in fact made up of a simple Java Servlet.

Let's start with the classes that will be exchanged between the client and the server:
Item, ItemAction, and ItemActionResponse. There is very little indeed to say
about them; they are basic POJO (Plain Old Java Object) with a Java annotation that
has a key role in the process of XML serialization/deserialization.

Listing 3—XML Binding Annotations
@XmlRootElement(name="Item")
public class Item {
 private int id;
 private String code;
 private String description;
 ... getter/setter methods omitted ...

Chapter 2

[43]

@XmlRootElement(name="ItemAction")
public class ItemAction{
 private String method;
 private Item item;
 ...
@XmlRootElement(name="ItemActionResponse")
public class ItemActionResponse {
 private String retCode
 private Item item;
 ...

The following code represents our main goal: the service implementation. It is
implemented in the doPost() method of a Servlet that was mapped with the
url-pattern /itemCrudService in the application descriptor web.xml.

Listing 4—ItemCrudService Server Implementation
protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
{
 try{
 JAXBContext jaxbContext = JAXBContext.newInstance
 (ItemAction.class, ItemActionResponse.class);
 Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();
 //Receiving the XML request and transform it into a Java object
 ItemAction itemAction = (ItemAction)
 unmarshaller.unmarshal(request.getInputStream());
 //Do some action depending on the request content
 String method = itemAction.getMethod();
 //Prepare the response as a Java object
 ItemActionResponse itemActionResponse = new ItemActionResponse();
 if ("findById".equals(method)){
 int id = itemAction.getItem().getId();
 //Retrieve item (e.g. from db)
 Item item = new Item();
 item.setId(id);
 item.setCode("Item XYZ");
 item.setDescription("Description item XYZ");
 //Fill the response
 itemActionResponse.setRetCode("OK");
 itemActionResponse.setItem(item);
 }
 Marshaller marshaller = jaxbContext.createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);
 //The following line is not required, it was inserted

Web Services and SOA

[44]

 //just to see the content of the generated XML message
 marshaller.marshal(itemActionResponse, System.out);

 //Send the XML message to the client
 marshaller.marshal(itemActionResponse,
 response.getOutputStream());

 }
 catch (JAXBException e){
 throw new ServletException(e);
 }
}

We have just written a basic web service; the flow is clear:

1. Deserialize the XML request
2. Do the processing
3. Prepare and serialize the response

Please note that the above service can be invoked by any language or technology,
as long as the process of XML serialization or deserialization is available and the
communication protocol is known on the client side.

The Java code for testing the service is as follows:

Listing 5—ItemCrudService Client Request
//Prepare the request
ItemAction itemAction = new ItemAction();
Item item = new Item();
item.setId(26);
itemAction.setMethod("findById");
itemAction.setItem(item);
//Prepare and establish the connection with the service
URL url = new URL("http://localhost/SoaBookPoxHttp/itemCrudService");
HttpURLConnection con = (HttpURLConnection) url.openConnection();
con.setDoOutput(true);
//Set the HTTP request method
con.setRequestMethod("POST");
con.connect();
JAXBContext jaxbContext = JAXBContext.newInstance
 (ItemAction.class, ItemActionResponse.class);
Marshaller marshaller = jaxbContext.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);

//The following line is not required, it was inserted
//just to see the content of the generated XML message
marshaller.marshal(itemAction, System.out);

Chapter 2

[45]

//Send the XML request to the service
marshaller.marshal(itemAction, con.getOutputStream());

//Get the XML response from the service and deserialize it
Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();
ItemActionResponse itemActionResponse = (ItemActionResponse)
 unmarshaller.unmarshal(con.getInputStream());
//Show the response content
System.out.println("retCode="+itemActionResponse.getRetCode()+ "\r" +
 "id="+itemActionResponse.getItem().getId()+ "\r" +
 "code="+itemActionResponse.getItem().getCode()+
 "\r"+"description="+itemActionResponse.getItem()
 .getDescription());

As you see, on the client side, it is mandatory to have the visibility of all
the classes involved in the communication process (Item, ItemAction, and
ItemActionResponse). In this case, where Java is used both for service
implementation and client development, these classes were just copied from the
server side and dropped into the client project. In general, of course, this is not a
requirement (think about using different languages). The only requirement is having
objects that fit the serialization or deserialization process.

Using the above approach, in order to implement the findAllItems service, we
should create another servlet that does not need to retrieve any input and returns a
list of items:

Listing 6—findAllItems Service Implementation
protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
{
 try {
 JAXBContext jaxbContext = JAXBContext.newInstance
 (ItemList.class, Item.class);
 ItemList itemList = new ItemList();
 itemList.setList(new ArrayList());

 Item i1 = new Item();
 i1.set ... ;
 itemList.getList().add(i1);

 ... populate itemList ...

 Marshaller marshaller = jaxbContext.createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);

 //Just to see the content of the generated XML message
 marshaller.marshal(itemList, System.out);

Web Services and SOA

[46]

 //Send the XML message to the client
 marshaller.marshal(itemList, response.getOutputStream());

 }
 catch (JAXBException e) {
 throw new ServletException(e);
 }
}

Note that we also need to define the ItemList class:

Listing 7—ItemList Binding
import java.util.List;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name="ItemList")
public class ItemList {
 private List list;
 ...

While the correspondent client code may look like this:

Listing 8—findAllItems Service Client Request
URL url = new URL("http://localhost/SoaBookPoxHttp/findAllItems");
HttpURLConnection con = (HttpURLConnection) url.openConnection();
con.setRequestMethod("POST");
con.connect();

//Void Request

//Get Response
JAXBContext jaxbContext = JAXBContext.newInstance
 (ItemList.class, Item.class);
Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();
ItemList itemList = (ItemList)
 unmarshaller.unmarshal(con.getInputStream());
for (Iterator iterator = itemList.getList().iterator();
 iterator.hasNext();)
{
 Item item = (Item) iterator.next();
 System.out.println(item.getId()+" - "+ item.getCode()+" - "+
 item.getDescription());
}

Chapter 2

[47]

REST—Exploiting the HTTP Protocol
The Representational State Transfer (REST) is a web architectural style presented
by Roy Fielding back in 2000 in his doctoral thesis. The basic idea of REST is the full
exploitation of the HTTP protocol, in particular:

It focuses on Resources, that is, each service should be designed as an action
on a resource.
It takes full advantage of all HTTP verbs (not just GET and POST, but also
PUT and DELETE).

In the basic POX-over-HTTP example, which we saw previously, you may have
noticed that we assumed to use POST as HTTP verb. Although, we listed the
source code for just one out of the several services we defined, all of them can be
implemented using the same verb (not necessarily POST, any other method will do
the job right). Therefore, the idea is, why not exploit this transportation protocol
feature to map the usual CRUD and other methods in order to have a clearer
communication protocol?

An association between the four CRUD methods and the correspondent HTTP verbs
was therefore established and is shown in the following table:

HTTP verb CRUD action Action description
POST CREATE Save new resources
GET READ Read resources
PUT UPDATE Modify existing resources
DELETE DELETE Delete resources

Keeping in mind that the set of resources, each one with its values, represents the
State of the system, the following rules should be applied:

The State can be modified by verbs POST, PUT, and DELETE.
The State should never change as a consequence of a GET verb.
The verb POST should be used to add resources to the State.
The verb PUT should be used to alter resources into the State.
The verb DELETE should be used to remove resources from the State.
The communication protocol should be stateless, that is, a call should not
depend on the previous ones.

•

•

•

•

•

•

•

•

Web Services and SOA

[48]

All this may sound quite interesting, but what exactly is a "resource"? Basically, a
resource is a scope within which the four HTTP verbs can cover all requested actions.
Take for instance the Item domain we explored earlier. Well, that is a good candidate
to be treated as a resource. As you see in the implementation source (Listing 5), a
switch was introduced (in the if-then block) to do different actions depending on the
method name contained in the request. This conditional flow control can be avoided
and its role can be done by the HTTP verbs. Let's see how to do that in practice:

In order to create a new Item (the insertItem service), an XML document
containing the object can be sent to the server with the POST method, while the
response may be a generic outcome object:

Listing 9—Outcome Binding
@XmlRootElement(name="Outcome")
public class Outcome {
 private String retCode;
 private String retMessaget;
 ...
}

The service code will then be kept small and without the conditional flow
instructions for the action to be executed (compare with Listing 5):

Listing 10—REST CREATE Server Implementation
protected void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
{
 try{
 JAXBContext jaxbContext = JAXBContext.newInstance
 (Item.class, Outcome.class);
 Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();
 //Receiving the XML request and transform it into a Java object
 Item item = (Item) unmarshaller.unmarshal
 (request.getInputStream());
 System.out.println("Inserting item# "+item.getId());
 // ... insert item
 Marshaller marshaller = jaxbContext.createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);
 Outcome outcome = new Outcome();
 outcome.setRetCode("OK");
 outcome.setRetMessaget("Item was inserted successfully");

Chapter 2

[49]

 marshaller.marshal(outcome, response.getOutputStream());
 }
 catch (Exception e) {
 throw new ServletException(e);
 }
}

Please note that the above is a simple homemade implementation of the REST
protocol. We decided to use a basic servlet implementation in order to focus on
the key concepts of this communication protocol. However, there are several other
ways to adopt REST, for example, by using JAX-WS (which will be used next when
exploring SOAP) or with Axis 2.

Coming back to our example, the updateItem service can be implemented by
analogous source code with the only differences being the servlet method (doPut
instead of doPost) and, of course, the inner update action. Indeed, the REST
approach would recommend another difference that we will show a little ahead.

For the insert action, here is an example of the client code:

Listing 11—REST CREATE Client Request
Item item = new Item();
item.set...
//Prepare and establish the connection with the service
URL url = new URL("http://localhost/SoaBookREST/itemService");
HttpURLConnection con = (HttpURLConnection) url.openConnection();
con.setDoOutput(true);
//Set the HTTP request method
con.setRequestMethod("POST");
con.connect();
JAXBContext jaxbContext = JAXBContext.newInstance
 (Item.class, Outcome.class);
Marshaller marshaller = jaxbContext.createMarshaller();
marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);

//Send the XML request to the service
marshaller.marshal(item, con.getOutputStream());

//Get the XML response from the service and deserialize it
Unmarshaller unmarshaller = jaxbContext.createUnmarshaller();
Outcome outcome = (Outcome)
unmarshaller.unmarshal(con.getInputStream());

Web Services and SOA

[50]

As far as the deleteItem, findItemById, and findAllItems services are concerned,
the REST methodology suggests a slightly different communication protocol. In fact,
the above actions do not need to upload an XML document. They just have to pass
the object's id or nothing at all (in the findAllItems case). In these situations, the
called URI, along with the HTTP verb, contains all the information needed
to perform the actions. The samples of the REST requests are as shown in the
following table:

Verb URI sample Action
DELETE http://localhost/SoaBookREST/

itemService/14
Delete item #14

GET http://localhost/SoaBookREST/
itemService/14

Retrieve item #14

GET http://localhost/SoaBookREST/
itemService

Retrieve all items

As you can see, the HTTP request (verb plus URI) tells clearly what is happening,
or at least, what is the desired action. Note that now the URI may contain some
additional data (the id). So in the web descriptor, we must check to have an URL
pattern instead of an exact correspondence:

Listing 12—servlet Mapping Section in web.xml
 <servlet-mapping>
 <servlet-name>ItemService</servlet-name>
 <url-pattern>/itemService/*</url-pattern>
 </servlet-mapping>

Here is the service code for the last two actions:

Listing 13—REST READ Service Implementation
protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
{
 try{
 if (request.getPathInfo()==null){
 //findAllItems
 ItemList itemList = new ItemList();
 itemList.setList(new ArrayList());
 //retrieve all items
 ...
 itemList.getList().add(...);
 ...
 //Send the XML message to the client

Chapter 2

[51]

 JAXBContext jaxbContext = JAXBContext.newInstance
 (ItemList.class, Item.class);
 Marshaller marshaller = jaxbContext.createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);
 marshaller.marshal(itemList, response.getOutputStream());
 } else {
 //findItemById
 int id = (new Integer(request.getPathInfo().substring(1)))
 .intValue();
 //retrieve item by id (e.g. from a database)
 Item item = ...
 JAXBContext jaxbContext = JAXBContext.newInstance(Item.class);
 Marshaller marshaller = jaxbContext.createMarshaller();
 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);
 marshaller.marshal(item, response.getOutputStream());
 }
 }
 catch (Exception e) {
 throw new ServletException(e);
 }
}

As far as the update action is concerned, the REST style indeed suggests having the
object's id in the URI:

PUT http://localhost/SoaBookREST/itemService/14

In fact, this way, the HTTP request is self-explanatory (it reads "update item #14") in
accordance with the REST philosophy.

In general, if you need to create other non-CRUD services with the above technology,
the choice falls between:

1. Creating an ad-hoc servlet to be used with an appropriate HTTP verb
2. Re-using an existing servlet and verb with the introduction of some custom

logic in the request composition and parsing

Also consider that passing parameters into the request can be a practical alternative
to differentiate the control flow, although REST-purists do not like this approach. So,
the request could take the form:

 http://localhost/SoaBookREST/itemService?id=14

Web Services and SOA

[52]

REST purists may have a point here. In fact, this way we are introducing a
dependency on the parameter name (id), and somehow adding complexity to a
simple and linear style.

SOAP
The Simple Object Access Protocol (SOAP) is a web service standard
communication protocol defined by the W3C. It basically defines the structure of
the exchanged message, which is composed of an "envelope" with a "header" and a
"body". As you will see next, this protocol adds various levels of complexity. But it
also offers a wide range of powerful features, among which are:

Automatic generation of classes involved in the communication process
Automatic generation of the web service descriptor (WSDL)
Automatic generation of client classes starting from the service WSDL
Ability to be used with network protocols other than HTTP (for example,
SMTP or JMS)
Ability to encapsulate authentication mechanisms
Ability to establish a stateful conversation

In order to show you a straightforward implementation of the services of our domain
sample, we will use the JDK 6 embedded capabilities to define and publish web
services. In fact, while in the previous examples we exploited the JAXB component
to perform the automatic binding between XML documents and Java objects, here
we will make use of the JAX-WS library, which will increase the abstraction
level significantly.

Look how easy it is to create a couple of services such as insert and update:

Listing 14—JAX-WS Annotations
package com.packt.soajava.soap.service.item;

import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.xml.ws.Endpoint;
import com.packt.soajava.model.item.Item;
import com.packt.soajava.model.item.Outcome;

@WebService
public class ItemWs {

 @WebMethod
 public Outcome insert(Item item) {
 //Insert item ...
 System.out.println("Inserting item "+item.getId());

•

•

•

•

•

•

Chapter 2

[53]

 Outcome outcome = new Outcome();
 outcome.setRetCode("OK");
 outcome.setRetMessage("Item was inserted successfully");
 return outcome;
 }

 @WebMethod
 public Outcome update(Item item) {
 //Update item ...
 System.out.println("Updating item "+item.getId());
 Outcome outcome = new Outcome();
 outcome.setRetCode("OK");
 outcome.setRetMessage("Item was updated successfully");
 return outcome;
 }

As you see the abstraction level here allows a compact and neat source code, without
any part dealing with the serialization/deserialization process, just the essential
service code. The structure of a web service implemented with SOAP is quite
different from what we have seen with the other approaches so far. In fact with basic
POX-over-HTTP, we had to create several classes (servlets) for a single functional
domain (for example, Item domain), while using REST a single class was needed, but
only because our designed methods matched well with the four HTTP verbs. With
SOAP, we can have as many methods in a web service as we need, and each one is
independent from the other in its signature.

Publishing the above service requires some further steps. First of all, we need to
generate the classes involved in the communication process. This is performed by
the wsgen utility bundled with JDK 6. Just open a command shell, and run the
following line:

<JDK6_HOME>\bin\wsgen -cp <ProjectClassesRoot> -d <ProjectSourceRoot>
-keep com.packt.soajava.soap.service.item.ItemWs

The above command will generate the needed classes into the
<ProjectSourceRoot> (-d=destination directory) folder, given the specified full-
path ItemWs class and the classpath (-cp). Now, you should find a new package in
the project sources (com.packt.soajava.soap.service.item.jaxws), and inside it, there
should be four classes. In fact, for each defined web method, two classes will be
generated: one with the same name of the method (capitalized) and the other with
the same name concatenated with "Response".

The web service is now ready to be published. The JDK 6 makes available, mainly for
prototyping usage, a very easy way to do this. Just write and run a class that executes
the following line:

Endpoint.publish("http://localhost:8001/SoaBookSOAP_server/itemWs",
 new ItemWs());

Web Services and SOA

[54]

We have just published our web service at the specified URI. You may of course
change this URI in order to change the URL pattern or port.

How can we check if the service was published correctly? Point your browser to the
correspondent WSDL:

http://localhost:8001/SoaBookSOAP_server/itemWs?WSDL

What you are looking at is the automatically generated WSDL (Web Service
Definition Language). Its content represents the structure of the service, and it plays
a key role when it comes to have the client classes automatically generated.

The latter action can, in fact, be performed by the wsimport utility:

<JDK6_HOME>\bin\wsimport -d <ClientProjectSourceRoot>
 -p com.packt.soajava.soap.client.test.item
 -keep http://localhost:8001/SoaBookSOAP_server/itemWs?WSDL

With this command the needed classes will be created into the specified client source
folder (-d), using the given package name (-p), and retrieving the service structure at
the given URI. Among these classes we will find ItemWsService, the client factory of
the web service and ItemWs, an interface supported by the service proxy created by
the ItemWsService factory.

Now the client code can be as simple as this:

Listing 15—JAX-WS Sample Client
ItemWsService service = new ItemWsService();
ItemWs itemWs = service.getItemWsPort();

Item item1 = new Item();
item1.set ...
Outcome outcome = itemWs.insert(item1);

Note that any technology that supports SOAP can generate its own client
classes with an automatic process, starting from the published web service
descriptor (WSDL).

In the end, with the SOAP approach, we can keep a simple and neat code at both
ends of the communication process (the web service implementation and the end
client), while the hard work is done by the intermediate auto-generated classes.

Chapter 2

[55]

RPC and Document Based-WS: How to
Communicate, Pros and Cons of the
Two Approach
We have just seen how SOAP can leverage the developer's work by doing the entire
hard job behind the scenes. Indeed, we have not even seen the content of the XML
documents that client and server are exchanging. Well, this can be done using a
TCP/IP monitor utility (for example, Apache TCPMon).

Monitoring the request content of the client call, shown in listing 15, gives the
following results:

Listing 16—SOAP XML Request
<?xml version="1.0" ?>
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns1="http://item.service.soap.soajava.packt.com/">
 <soapenv:Body>
 <ns1:insert>
 <arg0>
 <code>XY</code>
 <description>xy desc</description>
 <id>26</id>
 </arg0>
 </ns1:insert>
 </soapenv:Body>
</soapenv:Envelope>

while the response content is as follows:

Listing 17—SOAP XML Response
<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:insertResponse
 xmlns:ns2="http://item.service.soap.soajava.packt.com/">
 <return>
 <retCode>OK</retCode>
 <retMessage>Item was inserted successfully</retMessage>
 </return>
 </ns2:insertResponse>
 </S:Body>
</S:Envelope>

Web Services and SOA

[56]

As you can see, the XML content of a SOAP message is structured as an envelope
which contains a mandatory body, while the header is optional. The content of the
body element represents the payload that is the exchanged XML document.

However, when dealing with SOAP, a wide range of options are available. In
our last example, we just adopted the default settings to keep things simpler
and straightforward.

You may have heard, for example, about binding style (RCP or Document) or use
(Encoded or Literal) or parameter style (Bare or Wrapped). In this paragraph, we
will explore these concepts with particular emphasis on the binding style.

Before getting into this analysis though, we should spend some time on WS-I. The
term stands for Web Service—Interoperability and represents a set of standards put
together in order to allow the process of exchanging data throughout web services
in a heterogeneous environment (for example, between Java and .NET). Of all the
combinations of binding style, use, and parameter style, only the following are WS-I
compliant, and we will concentrate exactly on them:

RPC / literal
Document / literal (bare or unwrapped)
Document / literal wrapped

The "encoded" value for the use attribute is prohibited by WS-I. With this value,
in fact, the data is serialized following the SOAP encoding described in Section 5
of SOAP 1.1 specification. Validating a SOAP encoded message against a WSDL
description is quite a hard work, and since the validation is a fundamental step
toward interoperability, only the use "literal" is allowed by WS-I.

RPC / Literal
One of the first architectural choices that has to be made when we decide to develop
SOAP web services is whether to use RPC or Document binding style. Remote
Procedure Call (RPC) is a generic mechanism throughout which is a procedure that
resides on a computer (or a virtual machine) can be called by a program running on a
different computer (or virtual machine). This paradigm has been around for decades
and was implemented by several technologies, among which, the most popular are
CORBA, DCOM, and RMI.

Despite the changes in technologies, an RPC call is always characterized by:

A remote address
A method (or operation) name

•

•

•

•

•

Chapter 2

[57]

A sequence of parameters
A synchronous response

Note that, aside from the first, it shares the same characteristics of a classic local
method call.

What does this old RPC paradigm have to do with SOAP and web services?
Well, quite a lot indeed. In fact, in the early days of its definition (before being
publicly published), SOAP was designed to support only RPC. It was, in a sense, a
standardized evolution of the various distributed programming technologies.

With some modification in the annotation of the web service we designed last, we
can switch it to RPC style (the JAX-WS default is "Document") and begin to explore
this approach.

Listing 18—SOAP RPC Style
@WebService
@SOAPBinding(style=SOAPBinding.Style.RPC)
public class ItemWs {

 @WebMethod
 public Outcome insert(@WebParam(name="itemParam") Item item,
 @WebParam(name="categoryParam") String category)
 {
 //Insert item ...

As you can see we have introduced another parameter, the category, and our
goal now is to insert an item into the specified category. We used the @WebParam
annotation to give a name to each method argument.

Now, let's publish the service (just run the class with the Endpoint.publish line, the
wsgen utility is not required in this case), import the client classes from the published
WSDL with wsimport utility, and make a client call:

 Outcome outcome = itemWs.insert(item1, "A");

If we monitor the request XML document, we will see the following structure:

Listing 19—SOAP RPC Request
 <soapenv:Body>
 <ans:insert xmlns:ans="http:// ... ">
 <itemParam>
 <code>XY</code>
 <description>xy desc</description>
 <id>26</id>
 </itemParam>

•

•

Web Services and SOA

[58]

 <categoryParam>A</categoryParam>
 </ans:insert>
 </soapenv:Body>

where we can recognize the typical RCP parts, that are the method name and the
sequence of parameters.

The correspondent WSDL (that may be seen throughout the TCP monitor or pointing
the browser to the URL (http://localhost:8001/SoaBookSOAP_RPC_server/
itemWs?WSDL) is listed here:

Listing 20—SOAP RPC WSDL
 <types>
 <xsd:schema>
 <xsd:import schemaLocation="http://127.0.0.1:8002/
 SoaBookSOAP_RPC_server/itemWs?xsd=1"
 namespace="http://item.service.
 soap.soajava.packt.com/"></xsd:import>
 </xsd:schema>
 </types>

 <message name="insert">
 <part name="itemParam" type="tns:item"></part>
 <part name="categoryParam" type="xsd:string"></part>
 </message>
 <message name="insertResponse">
 <part name="return" type="tns:outcome"></part>
 </message>

 <portType name="ItemWs">
 <operation name="insert" parameterOrder=
 "itemParam categoryParam">
 <input message="tns:insert"></input>
 <output message="tns:insertResponse"></output>
 </operation>
 </portType>

 <binding name="ItemWsPortBinding" type="tns:ItemWs">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http">
 </soap:binding>
 <operation name="insert">
 <soap:operation soapAction=""></soap:operation>
 <input>
 <soap:body use="literal" namespace=
 "http://item.service.soap.soajava.packt.com/">
 </soap:body>
 </input>

Chapter 2

[59]

 <output>
 <soap:body use="literal" namespace=
 "http://item.service.soap.soajava.packt.com/">
 </soap:body>
 </output>
 </operation>
 </binding>
 <service name="ItemWsService">
 <port name="ItemWsPort" binding="tns:ItemWsPortBinding">
 <soap:address location=
 "http://127.0.0.1:8002/SoaBookSOAP_RPC_server/itemWs">
 </soap:address>
 </port>
 </service>
 </definitions>

The schema location (<xsd:schema> block) is imported from URL:

http://127.0.0.1:8001/SoaBookSOAP_RPC_server/itemWs?xsd=1

and its content is the following:

Listing 21—SOAP RPC XSD
<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema xmlns:tns="http://item.service.soap.soajava.packt.com/"
xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://
item.service.soap.soajava.packt.com/" version="1.0">
 <xs:element name="Item" type="tns:item"></xs:element>
 <xs:element name="Outcome" type="tns:outcome"></xs:element>
 <xs:complexType name="item">
 <xs:sequence>
 <xs:element name="code" type="xs:string"
 minOccurs="0"></xs:element>
 <xs:element name="description" type="xs:string"
 minOccurs="0"></xs:element>
 <xs:element name="id" type="xs:int"></xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="outcome">
 <xs:sequence>
 <xs:element name="retCode" type="xs:string"
 minOccurs="0"></xs:element>
 <xs:element name="retMessage" type="xs:string"
 minOccurs="0"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>

Web Services and SOA

[60]

What should be noted here is that the schema defines only the complex type
parameters (Item and Outcome in our case). It does not give any information useful
to validate either the other simple parameters, or the rest of the SOAP message.
Therefore, a major problem in adopting RPC style is that, the exchanged XML
documents cannot be validated against an XML Schema Definition (XSD).

Let's explore the Document style and see if it overcomes this limit.

Document / Literal
This style is also known as Document "bare" or "unwrapped" and we will soon get
into the explanation of this term. For the moment the thing to pay attention to is
that, using JAX-WS, the default value for the parameter style is "wrapped". Hence, in
order to use the Document bare style, we have to set it explicitly.

Listing 22—SOAP Document style
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 parameterStyle=SOAPBinding.ParameterStyle.BARE)
public class ItemWs {
 @WebMethod
 public Outcome insert(@WebParam(name="itemParam") Item item,
 @WebParam(name="categoryParam") String category) {
 ...

Now, if we follow the usual steps in order to call this service from a client (again
skipping the wsgen step), we will get an error while importing the client classes from
the published WSDL.

error: operation "insert": more than one part bound to body

This is an error that will indeed help us understand the difference between an RPC
and a Document approach. What we should know is that WS-I only allows one child
in the body of a SOAP message. But what is the reason of such a specification?

The Document style represents a new and different paradigm: the service input is
"a document", not a request of the execution of a method with the correspondent
parameter value. This means that a single object should be passed, and this object
will be the sole input to the web service. The document will contain the information
needed to perform its processing, but there is nothing here like a method name or a
sequence of parameters. That is the reason why WS-I only allows one child.

Chapter 2

[61]

Therefore, in order to perform our task (inserting an item into a category) with a
Document, using WS-I compliant approach, we should refactor the service. We
should create a new object called, for instance, ItemInsertRequest, which wraps the
needed information (the item and the category). That is the reason of the name of this
style (bare or unwrapped): there is no wrapping object around the parts; it must be
created explicitly.

Listing 23—Request Wrapper
@XmlRootElement(name = "ItemInsertRequest")
public class ItemInsertRequest {
 private Item item;
 private String category;
 ...

and the web service refactorized in order to have just one parameter (the document
representing the request):

Listing 24—Web Service Using the Defined Wrapper
@WebMethod
public Outcome insert(@WebParam(name="itemInsertRequestParam")
ItemInsertRequest itemInsertRequest) {
 ...

In these conditions we will not get errors while generating the client classes with the
wsimport utility, and can finally make the refactorized client call:

Listing 25—SOAP Document Client Request
 ItemInsertRequest req = new ItemInsertRequest();
 req.setItem(item1);
 req.setCategory("A");
 Outcome outcome = itemWs.insert(req);

that will be forwarded with the following SOAP body:

Listing 26—SOAP Document XML Request
 <ns1:itemInsertRequestParam>
 <category>A</category>
 <item>
 <code>XY</code>
 <description>xy desc</description>
 <id>26</id>
 </item>
 </ns1:itemInsertRequestParam>

Web Services and SOA

[62]

Please note that, although the structure is indeed the same as with RPC style (see
listing 19), we are now dealing with a document instead of a method call while the
category and item are no more parameters, but just attributes of this document.

What should be noted instead about the WSDL is that, other than having just one part
inside the input message and having the style set to document, the attribute type has
gone missing and a correspondent element attribute has taken its place.

Listing 27—SOAP Document WSDL
 <message name="insert">
 <part element="tns:itemInsertRequestParam"
 name="itemInsertRequestParam"></part>
 </message>
 ...
 <binding name="ItemWsPortBinding" type="tns:ItemWs">
 <soap:binding style="document"

As far as the XML schema is concerned, it can now be used to validate the
entire document:

Listing 28—SOAP Document XSD
<xs:element name="Item" type="tns:item"></xs:element>
<xs:element name="ItemInsertRequest"
 type="tns:itemInsertRequest"></xs:element>
<xs:element name="Outcome" type="tns:outcome"></xs:element>
<xs:element nillable="true" name="insertResponse"
 type="tns:outcome"></xs:element>
<xs:element nillable="true" name="itemInsertRequestParam"
 type="tns:itemInsertRequest"></xs:element>
<xs:complexType name="itemInsertRequest">
 <xs:sequence>
 <xs:element name="category" type="xs:string"
 minOccurs="0"></xs:element>
 <xs:element name="item" type="tns:item"
 minOccurs="0"></xs:element>
 </xs:sequence>
</xs:complexType>
<xs:complexType name="item">
 <xs:sequence>
 <xs:element name="code" type="xs:string"
 minOccurs="0"></xs:element>
 <xs:element name="description" type="xs:string"
 minOccurs="0"></xs:element>
 <xs:element name="id" type="xs:int"></xs:element>
 </xs:sequence>
</xs:complexType>

Chapter 2

[63]

The main strength of Document/literal style is therefore the ability to allow the
validation of the whole XML document exchange.

With this approach, though, we have lost something the operation name is no more
present in the SOAP message. This may be a drawback in some situations, take for
instance the case where the message is transmitted over an asynchronous TCP/IP
protocol such as SMTP. The process of dispatching the message may be difficult, if
not impossible.

Another disadvantage of this style is that, if we are dealing with already developed
applications, a certain effort has to be taken into account in order to refactor both the
server and the client side code.

Document / Literal Wrapped
This style is the default in JAX-WS, and we have already made use of it in our very
first SOAP example (see Listing 14). The following annotation is in fact useless
with JAX-WS:

Listing 29—SOAP Document Wrapped Style
@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

Now, let's go back to the initial structure of the web service (before the refactoring
needed by the Document bare style):

Listing 30—SOAP Document Wrapped Web Service
@WebMethod
public Outcome insert(@WebParam(name="itemParam") Item item,
 @WebParam(name="categoryParam") String category) {

and follow the usual steps in order to make a client call (now the wsgen step
is required).

Well, now we will not get any error, even if we have more than one parameter, as in
RPC style. What does this style do to adhere to the Document style, without forcing
us to refactor our source code? It simply wraps (automatically, without our effort) the
method name and the parameters into a new object, whose name is the same of the
method itself.

Web Services and SOA

[64]

In fact, the body of the SOAP message is now in this form:

Listing 31—SOAP Document Wrapped XML Request
 <ns1:insert>
 <itemParam>
 <code>XY</code>
 <description>xy desc</description>
 <id>26</id>
 </itemParam>
 <categoryParam>A</categoryParam>
 </ns1:insert>

In conclusion, the Document / literal wrapped style gathers the advantages from
both Document and RPC approaches:

The SOAP message can be validated against an XML schema
The SOAP body contains only one child, and is thus WS-I compliant
Multiple parameters are allowed without any refactoring
The operation name is contained in the message

It is, in fact, the default when we use JAX-WS and in general a good choice for
most cases.

Why We Should Use Doc-WS?

The RPC Inheritance
In the previous paragraph, we introduced the difference between RPC and
Document style. At first, one can argue that, after all, examining the exchanged
messages and their WSDL, the two approaches are not that different, especially the
RPC and Document wrapped ones. Well, in a sense, this is true.

The difference is indeed more philosophical than practical, at least for most of us
accustomed for decades to the "method call" paradigm. We may have gone through
several programming languages and technologies, but we always could count on
a rock pillar that is of being able to call a method (sometimes named "procedure",
"function", or whatever) passing a sequence of parameters and (optionally) getting
the result.

In this scenario, when SOAP was initially conceived, web services were more or
less an extension of this model in order to allow the call of a remote procedure
(RPC) in a more standardized fashion. In fact, as mentioned before, the initial SOAP
specification was based upon RPC style.

•
•
•

•

Chapter 2

[65]

The Document-Oriented Way
Now, we intend to show how the Document approach is shifting the focus for a new
programming model that will arguably take the leading way in the future.

A document is similar to a message, that is, something to be "sent" or "forwarded" to
a destination which is designed to process it.

Document Style

Process A

Process C

Process B

Document B

Document A

Self-Containing Documents and Asynchronous Models
We should not focus on when this processing will take place, but must instead
ensure that the message contains all the information needed for the processing
itself. Therefore, the message should be a self-contained business document. This
is a fundamental prerequisite when dealing with an asynchronous transportation
protocol (for example SMTP or JMS, both supported by SOAP), but is anyway a good
practice even when not explicitly required.

Another situation where a self-contained business document is a requirement is
when a work-flow system is used. In fact, since the transitions inside a work-flow are
intrinsically asynchronous, the Document style fits well in this scenario.

Validating Capabilities
We have already highlighted one intrinsic advantage of this style: the capability to
perform a full validation of the exchanged documents against their correspondent
XML schemas.

Web Services and SOA

[66]

Loose Coupling
One of the major weaknesses of the RPC approach is the tight coupling that it
imposes on architectures. A change in a service method signature has an immediate
impact throughout the system, forcing the refactoring up to the client layer. With
Document style, the problem is drastically reduced since a change in the structure
of a message (like, adding a new attribute) does not affect the document exchange
mechanisms. On the other hand, a change in a back-end (internal) method signature
has generally no effect upon the messages structure.

This loose coupling, intrinsic in the Document style, leads to more robust and
reliable architectures that are easier to maintain, and having a modular aspect.

Interoperability
Finally, we have to consider the value of interoperability, which is the ability to work
together with different technologies and systems. This can be obtained primarily
by adhering to standard communication protocols and directives, with an eye
open though, to the market trends. The Document style is gaining consensus and is
largely adopted by most vendors. It is a matter of fact that both the Java reference
implementation of JAX-WS, along with most other Java WS implementations (see
Chapter 6), and the .NET platform use the Document style as the default setting.

Implementations: JAX-WS 2, Axis2,
Spring-WS, and XFire/CXF 2.0
In the path towards web services, we need to choose, at some point, the
implementation that we intend to adopt. The choice may depend upon a number
of factors. In this paragraph, we will examine some of the main implementation
focusing on their features and peculiarities in order to make the choice easier.

JAX-WS 2
We have indeed already been introduced to JAX-WS in the previous paragraphs.
What should be noted first, about this option, is that it is a specification (JSR-224),
rather than an implementation. In fact, its name stands for "Java API for XML Web
Services" and it follows the previous JAX-RPC (Java API for XML-based Remote
Procedure Call) specification.

Chapter 2

[67]

One of the main advantages of this choice is that its Reference Implementation is
included both into Java SE 6 and Java EE 5. Thus no external library is needed in
order to use it. If you adopt this embedded version, then you will be working with
the version 2.0 of the product, though, at the time of writing, it has reached version
2.1 as a separate implementation.

As far as the data binding model is concerned, it uses JAXB, while the XML parser
engine is the stream-based pull parser StAX (Streaming API for XML). This parsing
approach, where the client gets XML data only when requested, allows better
performances compared to a DOM-based approach, where the entire XML document
is parsed to obtain an in-memory object tree. In fact, not only is the requested
memory footprint smaller, but also there is the advantage of having the parser start
its process earlier.

JAX-WS supports both SOAP and REST communication protocols, though RESTful
services cannot take advantage of the automatic code generation (in contrast with the
SOAP/WSDL approach) since a standard for RESTful services description has not
yet been defined.

It strongly relies on the usage of annotations and supports a number of
transportation protocols, going beyond HTTP including SMTP and JMS.

Moreover the range of WS-* features covered is indeed wide. It goes from
WS-Security and Policy to WS-Atomic Transaction and WS-ReliableMessaging.

Finally, among its features, there is also the capability to build Stateful web services.

Axis 2
This tool is part of "Web Service Project @ Apache", a set of several projects that
cover various aspects related to the development and usage of web services. They
are for the majority implementations of protocols and specifications.

Axis2 is a complete re-factoring of the previous 1.x version, and upon its architecture
two different implementations were built, Axis2/Java and Axis2/C.

The SAX event-based XML parser used in the previous version has been replaced by
the pull-based StAX, which allows greater control over the document processing that
translates into higher efficiency and performances.

Indeed Axis2 uses AXIOM (AXIs Object Model), a light-weight object model for
XML processing, which is based on StAX and offers enhancing features.

Web Services and SOA

[68]

Axis2 can be used to develop both SOAP-based and RESTful web services. Also,
it supports Asynchronous (or Non-Blocking) web services invocation, which is
implemented by Callback mechanisms.

It has been designed with a modular and extensible architecture. The processes
of sending and receiving the SOAP messages are performed by two "Pipes" (or
"Flows"): the In Pipe and Out Pipe. Each pipe is designed to process the message
throughout a sequence of phases which can have pluggable "Handlers", there by
giving the whole architecture a high-level of extensibility. In fact, in addition to
built-in phases, there is the option to add User-defined phases with custom handlers
inside them, in order to perform new mechanisms or to override existing ones.

Another important level of Handlers grouping is the concept of Module. Each
module defines a set of handlers, and a descriptor of the phase rules. A handler can
specify not only the phase where it will perform its action, but also its execution
order inside the phase throughout the phase rules. In the Axis2 language, a module
is "available" when it is present in the system, though not active. The activation of a
module turns it to the "engaged" state, after which its handlers are placed into their
associated phases and enabled. Thus, it is easy, for example, to plug-in modules that
handle WS-* specifications such as WS-Security (Apache Rampart module) or
WS-Atomic Transaction (Apache Kandula2 module).

The data binding is not part of the core of Axis2, but it is provided by an extension
mechanism that allows the choice among ABD (Axis Data Binding), XMLBeans,
JAX-Me, and JibX. Also, the range of the transmission protocols supported is
complete (HTTP, TCP, SMTP, and JMS).

The default Axis2 installation procedure consists of deploying the "WAR
distribution" to the application server (for Tomcat (the declared recommended
container) and just copying the file into the CATALINA_HOME/webapps directory). This
will deploy the "axis2" web application (the Axis2 Administration Application) that
allows the addition and configuration of services and modules.

Please note that services, modules, phases, and handlers are configured in an
independent way with respect to the other deployed web applications. In other
words, if you have a set of deployed web applications, each with its own business
layer, you will not put a service into one of these web applications. Instead, it will
be defined and configured into axis2 application and therefore generally available to
every consumer (a client or another server application).

Also consider that every configuration made with the Axis2 Administration
Application will not be saved and will therefore be lost after a restart of Axis2
application. Now, the situation will go back to the manually edited configuration files.

Chapter 2

[69]

Alternatively, you can install the "standard binary distribution", which includes, in
addition to all the necessary jars, a number of command line tools for:

Generating the Java code from the WSDL file, and vice versa (java2wsdl and
wsdl2java).
Starting a simple standalone server (axis2server), where you can deploy
your services.
Starting a java application with the automatic loading of the entire needed
library (axis2).

Spring-WS
Spring Framework is certainly one of the more popular and interesting products
today available in the Java development area. It has definitely revolutionized the
approach to designing software projects. With its aspect-oriented philosophy, and
the introduction of the concept of "Inversion of Control (IoC)" or "Dependency
Injection", it has made the process of building the architecture of a J2EE application
easier and cleaner. But Spring is much more than an IoC container. It provides
out-of-the-box patterns and templates, and integrates well with a number of other
frameworks and tools, brings flexibility, modularity, and robustness.

This great community has made, among the others, its contribution to the web
services area, and its name is "Spring Web Services" or "Spring-WS".

Therefore, an immediate advantage in adopting this framework is the inheritance
of the Spring concepts and patterns, as well as, the re-use of the know-how you
may have already consolidated. The loose coupling between the service contract (or
interface) and its implementation is, for example, one of the first pros of this choice.

A mainstream web service recipe recommends starting the designing from the WSDL
(contract-first) rather than from the Java code. Spring-WS pushes this approach
further, driving the designer to start from the schemas (XSD) of the input and output
XML messages. The WSDL will then be automatically generated from the XSDs.

The XML handling can be configured to use a DOM-based library (W3C DOM,
JDOM, dom4j, XOM), SAX, StAX and XPath, while for XML binding, you can choose
between JAXB, Castor, XMLBeans, JiBX, and XStream.

Spring-WS has a powerful and flexible Message Dispatcher which can handle the
XML message distribution.

Particular care has been dedicated to the WS-Security aspects regarding
Authentication, Digital signatures, Encryption, and Decryption.

•

•

•

Web Services and SOA

[70]

XFire / CXF
XFire has been developed with the goal of obtaining better performance with respect
to Axis 1.x (the de facto standard at that time). In fact, it uses a fast object model
based on StAX.

It is simple and easy to use; it provides support for several binding libraries: JAXB,
Castor, and XMLBeans. But the default is Aegis Binding—a fast binding mechanism
with a small memory requirement.

XFire integrates well with many containers, among which are Spring and
PicoContainer (another Inversion-of-Control framework). A set of easy-to-use client
API makes it easy to build the client side, and to develop unit tests. The transports
supported are HTTP, JMS, and Jabber/XMPP.

Recently, XFire and another web service framework, Celtix, have converged to a new
product, CXF 2.0, which should be considered the continuation of XFire 1.x. The
goal of this new tool is to go further in the directions of high performances, and ease
of use.

CXF supports a number of protocols in addition to SOAP, including REST
(via Annotations) and CORBA. It adheres to several standards and
WS-* specifications.

Its focus is also on being made embeddable into other programs and pushes on the
code-first methodology instead of contract-first.

Summary
In this chapter, we examined the relationship between the SOA methodology and the
basics of web service implementation. We saw how XML can be used as the common
language to decouple the communication between web services implementations
and their consumer clients. From a basic XML-over-HTTP approach to the REST and
SOAP protocols, we got into the details of how web services can be implemented
with various degrees of complexity and flexibility. Further, while exploring the
options of the SOAP protocol, we dissected the difference between adopting an
RPC or a Document style. In particular, the Document style showed its advantages
over RPC. In fact, it is largely adopted as the default style by the majority of the web
service implementation frameworks.

Web Service
Implementations

In Chapter 2, we looked into samples demonstrating basic SOA with POX over HTTP
and we have also seen an introduction to SOAP. Today SOAP is so indispensible
a technology, and standard, as most of the B2B communications across trading
partners happen over this. Whether SOAP, as its name implies, is simple or not
is still disputed. However, one aspect which everyone agrees with is its open
standards-based nature and the industry wide support available in the form of tools
and frameworks. Almost all web services stacks adopts SOAP as the de-facto over
the wire protocol. This is true with many Java web services framework too. Now,
to implement your own web services in Java, or to access a third-party web service
from within your Java code, you need to understand the various options existing
today so that you can make decisions. This chapter is intended to introduce major
web service implementations available in the Java/J2EE world. So, we will cover the
following in this chapter:

WS using JAX-WS 2.0
WS using Apache Axis
WS using Spring
WS using XFire

We will have code samples and build files starting from scratch demonstrating how
to set up web services and how to access an existing web service using the above
web service implementations.

•

•

•

•

Web Service Implementations

[72]

Web Service Using JAX-WS 2.0
JAX-WS stands for Java API for XML Web Services. The JAX-WS 2.0 specification
replaces JAX-RPC 1.0 and is the next generation web services API-based on JSR 224.

JAX-WS 2.0—A Primer
The JAX-WS 2.0 project develops and evolves the code base for the reference
implementation of the JAX-WS specification and is available in the URL
https://jax-ws.dev.java.net/. At present the code base supports JAX-WS 2.0
and JAXWS 2.1.

The following list specifies new features implemented by JAX-WS 2.0:

Direct support for JAXB 2.0-based data binding
Support for the latest W3C and WS-I standards (e.g. SOAP 1.2, WSDL 1.2,
and SAAJ 1.3)
Standardized metadata for Java to WSDL (and vice versa) mapping
Ease-of-development features
Support for easier evolution of web services
Improved handler framework
Support for asynchronous RPC and non-HTTP transports

Another exciting feature of JAX-WS 2.0 is the support it has got within Java Platform,
Standard Edition 6 (Java SE 6). This means, JAX-WS 2.0-based code and components
can be executed from within a fully blown J2EE server infrastructure such as
Project GlassFish, or with just Java SE 6. This is indeed a great advantage for Java
developers, which has been previously enjoyed only by .NET developers (.NET stack
supports web services development in the light-weight manner).

JAX-WS 2.0 provides the following new APIs in the Java SE 6 platform to build web
applications and web services:

API Package
JAX-WS javax.xml.ws
SAAJ javax.xml.soap
WS Metadata javax.jws

•

•

•

•

•

•

•

Chapter 3

[73]

Web Service Implementation in Java SE 6
First things first and simple things foremost! In this section, you will not use any
application server or any third-party web server, but will use just Java SE 6 and its
tools to develop and deploy a simple web service.

Code Server and Client
As said earlier, we will start with our simple samples first. The code artifacts for our
first sample are placed in the folder ch03\01_JaxWS\JavaStandAlone.

The server is composed of three Java files kept in folder ch03\01_JaxWS\
JavaStandAlone\Server\src and are explained below:

IHello.java
IHello is a java interface and is shown here:

public interface IHello{
 String sayHello (String name);
}

HelloImpl.java
HelloImpl implements the business functionality to be exposed as web service. This
class realizes the preceding IHello interface:

import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import javax.jws.WebMethod;
@WebService(name="IHello", serviceName="HelloService")
@SOAPBinding(style=SOAPBinding.Style.RPC)
public class HelloImpl implements IHello{
 @WebMethod(operationName = "sayHello")
 public String sayHello(String name){
 System.out.println("HelloImpl.sayHello...");
 return "\nHello From Server !! : " + name;
 }
}

HelloImpl is annoted with javax.jws.WebService annotation. The @WebService
annotation defines the class as a web service endpoint. The javax.jws.soap.
SOAPBinding annotation specifies the mapping of the web service onto the SOAP
message protocol. HelloImpl declares a single method named sayHello, which
is annotated with the @WebMethod annotation. This annotation will expose the
annotated method to web service clients. In fact, the IHello interface is not
required while building a JAX-WS endpoint, but we have used it here as a good
programming practice.

Web Service Implementations

[74]

HelloServer.java
HelloServer is a main class which makes use of javax.xml.ws.Endpoint for
publishing the web service:

import javax.xml.ws.Endpoint;

public class HelloServer {
 public static void main(String args[]) {
 log("HelloServer.main : Creating HelloImpl...");
 IHello iHello = new HelloImpl();
 try{
 // Create and publish the endpoint at the given address
 log("HelloServer.main : Publishing HelloImpl...");
 Endpoint endpoint1 =
 Endpoint.publish("http://localhost:8080/Hello", iHello);
 log("HelloServer.main : Published Implementor...");
 }
 catch (Exception e) {
 System.err.println("ERROR: " + e);
 e.printStackTrace(System.out);
 }
 System.out.println("HelloServer Exiting ...");
 }
}

HelloClient.java
The Client is composed of one Java file kept in folder ch03\01_JaxWS\
JavaStandAlone\Client\src. The HelloClient is dependent on two auto
generated classes for example, HelloService and IHello. These classes will be auto
generated, when we will build the client later in this exercise. The following code of
client is straightforward:

public class HelloClient{
 public static void main(String args[]) {
 log("HelloClient.main : Creating HelloImpl...");
 HelloService helloService = null;
 IHello helloImpl = null;
 String gotFromServer = null;
 try{
 log("HelloClient.main : Creating HelloImplService...");
 if(args.length != 0){
 helloService = new HelloService(new URL(args[0]),
 new QName(args[1], args[2]));
 }
 else{
 helloService = new HelloService();
 }
 log("HelloClient.main : Retreiving HelloImpl...");

Chapter 3

[75]

 helloImpl = helloService.getIHelloPort();
 log("HelloClient.main : Invoking
 helloImpl.sayHello(\"Binil\")...");
 gotFromServer = helloImpl.sayHello("Binil");
 log("HelloClient.main : gotFromServer : " + gotFromServer);
 }
 catch (Exception e) {
 System.err.println("ERROR: " + e);
 e.printStackTrace(System.out);
 }
 }
}

You will first have to instantiate the HelloService, which has the required
plumping to connect to the web service. Then, you will get a reference to the port
using which you can invoke the remote web service.

Run the Server and Client
As a first step and if you haven't done it before, edit examples.PROPERTIES
provided along with the code download for this chapter and change the paths there
to match your development environment. The code download for this chapter also
includes a README.txt file, which gives detailed steps to build and run the samples.

To build the server and bring up the server in a single command, it is easy for you to
go to ch03\01_JaxWS\JavaStandAlone folder and execute the following command:

cd ch03\01_JaxWS\JavaStandAlone
ant server

Web Service Implementations

[76]

Once the server is up and running, you can execute ant client command in a
different prompt.

When we build the client, we also auto generate some client side artifacts out of the
deployed web service using the following ant task:

<target name="GenSrc">
 <exec executable="${env.JAVA_HOME}/bin/wsimport">
 <arg line="-keep
 -d build
 -p com.binildas.ws.javastandalone.simple
 -s ${gensrc} http://localhost:8080/Hello?WSDL"/>
 </exec>
</target>

The client code is dependent on these generated files. So, we can now build the client
codebase, and then send a web service request to the server. Any response received
from the server is printed to the console. The following commands build and run the
client in a single go.

cd ch03\01_JaxWS\JavaStandAlone
ant client

Chapter 3

[77]

Web Service Implementation in
Java EE Server
Let us now move on to an Enterprise Server and deploy a similar web service there.
For running the samples in this section, we will go with the Java EE 5 SDK Update
4 for Windows (java_ee_sdk-5_04-windows-nojdk.exe), which is available for
download at http://java.sun.com/javaee/downloads/index.jsp.

Install and Start the Server
If you already have the latest version of JDK installed in your machine, you may
choose to download the 'nojdk' version of the installable, or else you need to
download the 'Java EE + JDK' version. Double-click and install the Java EE Server
into some location in your hard drive (preferably to a file path with no spaces and
fancy characters).

To start the default domain of the Java EE Server, it is easy for you to select the Start
Default Server option from the Programs menu:

Start -> All Programs -> Sun Microsystems -> Java EE 5 SDK -> Start
Default Server

Now, you can verify whether your server is up by typing:

http://127.0.0.1:8080/

You will be able to see the Sun Java System Application Server 9.1_01 (build b09d-
fcs) welcome page.

You can also bring up the admin console by typing the following URL:

http://localhost:4848

Sometimes, you will also find it easy to start your server by going to the following
path and typing the following command:

cd %J2EE_HOME%\lib
asadmin-pause start-domain domain1

Web Service Implementations

[78]

Here, J2EE_HOME points to the root folder where you have deployed your
Java EE Server.

Code Server and Client
The server and client files are kept in the folder ch03\01_JaxWS\JavaEEServer\src
and are explained here:

HelloWebService.java
HelloWebService is again an annotated java class. The annotations have the same
meaning as in the earlier sample.

@WebService
public class HelloWebService{

 private static int times;

 public HelloWebService(){
 System.out.println("Inside HelloWebService.HelloWebService...");

Chapter 3

[79]

 }
 public String hello(String param){
 System.out.println("Inside HelloWebService.hello... - " +
 (++times));
 return "Return From Server : Hello " + param;
 }
}

Client.java
The code for the client is very simple and is shown here:

public class Client{
@WebServiceRef(wsdlLocation = "http://localhost:8080/
 HelloWebService/HelloWebServiceService?WSDL")
 static HelloWebServiceService service;
 public static void main(String[] args){
 Client client = new Client();
 client.test();
 }
 public void test(){
 try{
 HelloWebService helloWebServicePort =
 service.getHelloWebServicePort();
 String ret =
 helloWebServicePort.hello(System.getProperty(
 "user.name"));
 System.out.println("Hello result = " + ret);
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

Here, we use the javax.xml.ws.WebServiceRef annotation to declare a reference
to the deployed web service. @WebServiceRef uses the wsdlLocation element to
specify the URI of the HelloWebService's WSDL file. Then, the client gets a proxy
to the remote web service and invokes the web service method.

Run the Server and Client
Again, to keep things simple, we will not do standard packaging in this sample.
Instead, compile the web service class directly into the autodeploy directory of the
Java EE Server, %J2EE_HOME%\ domains\domain1\autodeploy.

Web Service Implementations

[80]

We can do the following steps in a single ant command:

Build the Server and Client
Deploy the Server into default domain
Run the client to send web service request to the server

For this, assuming your Java EE server is up and running, execute the
following command:

cd ch03\01_JaxWS\JavaEEServer
ant

The following figure shows what you can see in the console. Here, the client first
sends a request to the server and any response returned by the server is then printed
out in the client side console.

•

•

•

Chapter 3

[81]

The WSDL for the deployed web service would be available in the URL
http://localhost:8080/HelloWebService/HelloWebServiceService?WSDL

Web Service Using Apache Axis
Apache Axis is an implementation of the SOAP ("Simple Object Access Protocol")
submission to W3C. Axis is a reliable and stable base to implement Java Web
services, and there are many companies who use Axis for web services support in
their products. Moreover, there is a very active user community too for Axis. Axis
comes in two forms. for example, Axis 1.x and Axis 2. Axis 2 architecture is recent
as compared to the predecessor, and is a redesign of Axis 1.x supporting SOAP 1.2,
SOAP1.2, REST and more. There are many production deployments in 1.x code base
too. For our discussion, we will use Axis 1.3, which you can download from the URL
http://ws.apache.org/axis/java/releases.html.

Contract-First versus Contract-Last
There are two approaches commonly adopted for defining and implementing web
services, Contract-first and Contract-last. In the Contract-first approach, we start
with a web service contract, which is a WSDL file. We use tools to generate java
artifacts out of the WSDL file. These generated artifacts includes java interfaces and
implementation classes as well as any other web services plumbing related code.
Whereas in the Contract-last approach, you start with the Java code, and let the
WSDL be generated from that.

Even though, the approach to be adopted depends on many factors including the
context in which you are defining your web services, the Contract-first approach is
preferred in normal circumstances. But one practical difficulty in the Contract-first
approach is that creating a WSDL is not a trivial process and hence we may not be
able to do that easily without some special tool support. To deal with this difficulty,
there is a mixed approach which we can follow, whose steps are as follows:

Create the web service interface (Java interface) alone first
Generate WSDL out of this interface
Now follow the normal steps which you follow in the Contract-first approach

We will follow this mixed approach in our samples. Hence, you will be able to adopt
the samples here to follow either the Contract-first or the Contract-last approach by
doing simple changes to the build scripts.

•

•

•

Web Service Implementations

[82]

Web Service Implementation in Axis
We will use Axis 1.3, which is freely downloadable from the URL
http://ws.apache.org/axis/java/releases.html. Unzip the installation to a
suitable location in your hard drive and change the axis.home path in examples.
PROPERTIES to point to this location.

Different from the previous samples in this chapter, we will now build and package
the web services files as a standard web archive (.war). We would then require a
web server to deploy the web archive. We will use Apache Tomcat 6.x, which you
can again download freely from the URL http://tomcat.apache.org/.

Code Server and Client
We will implement the server in a Contract-first approach, but since we don't want
to hand code the WSDL, let's start with a Java interface. All the required files for this
sample are placed in the folder ch03\02_Axis\src. Let's look into these files one
by one.

IHelloWeb.java
IHelloWeb is a simple Java interface, which defines a business method as
shown here:

public interface IHelloWeb{

 public String hello(String param);
}

In the Contract-first approach, we start from a WSDL. As WSDL is language and
platform neutral, we are sure that the client and server implemented in the Contract-
first approach will be able to interoperate. But in our sample, we can start with a
Java interface and then generate WSDL. So, in order to make sure that this generated
WSDL is also compliant to interoperable standards, you need to pay attention to
the parameters and return types of the method declaration in the java interface.
Before you generate the WSDL make sure that the types in this Java interface can be
interpreted as standard, portable types in the WSDL too.

HelloWebService.java
Now we need to implement the web service. HelloWebService class will just do that.

public class HelloWebService implements IHelloWeb{

 private static int times;

 public HelloWebService(){
 System.out.println("Inside HelloWebService.HelloWebService...");

Chapter 3

[83]

 }

 public String hello(String param){
 System.out.println("Inside HelloWebService.hello... - " +
 (++times));
 return "Return From Server";
 }
}

Now, instead of creating the web service implementation class from scratch, we can
generate an implementation template class. Into this template, you can manually add
your business logic. OK, that is the method for your production deployments, but
for this sample, you don't need to do these manual steps. Instead, we will try to do
everything automatic using a smart ant build file.

build.xml
The build.xml file is important, since it takes you step by step, starting from a Java
interface through implementing business logic, and then packaging as a standard
web archive. So, we will reproduce the entire build file here.

<?xml version="1.0" ?>
<project default="all">

 <property file="../examples.properties"/>

 <property name="build" value="build"/>
 <property name="dist" value="dist"/>
 <property name="lib" value="lib"/>
 <property name="src" value="src"/>
 <property name="gensrc" value="gensrc"/>
 <property name="config" value="config"/>

 <property name="webapp.name" value="AxisEndToEnd"/>
 <property name="service.name" value="HelloWebService"/>
 <property name="wsdl" value="HelloWebService.wsdl"/>

 <property name="interface.package"
 value="com.binildas.apache.axis.AxisEndToEnd"/>
 <property name="interface.path"
 value="com/binildas/apache/axis/AxisEndToEnd"/>
 <property name="interface.class" value="IHelloWeb"/>

 <property name="implement.package"
 value="com.binildas.apache.axis.AxisEndToEnd"/>
 <property name="implement.path"
 value="com/binildas/apache/axis/AxisEndToEnd"/>
 <property name="implement.class" value="HelloWebService"/>

 <path id="classpath">
 <pathelement path="./build"/>

Web Service Implementations

[84]

 <fileset dir="${axis.home}/lib">
 <include name="*.jar"/>
 </fileset>
 </path>

 <target name="all" depends=" deploy, compileclient">
 </target>

 <target name="clean">
 <delete dir="${build}"/>
 <delete dir="${dist}"/>
 <delete dir="${lib}"/>
 <delete dir="${gensrc}"/>
 </target>

 <target name="init">
 <mkdir dir="${build}"/>
 <mkdir dir="${dist}"/>
 <mkdir dir="${lib}"/>
 <mkdir dir="${gensrc}"/>
 </target>

 <target name="copy">
 <copy todir="${lib}">
 <fileset dir="${axis.home}/lib">
 <include name="*.jar"/>
 </fileset>
 </copy>
 </target>

 <target name="precompile" depends="clean, init">
 <javac srcdir="${src}" destdir="build" classpathref="classpath">
 <exclude name="**/*Client*.java"/>
 </javac>
 </target>

 <target name="java2wsdl" depends="precompile">
 <java classname="org.apache.axis.wsdl.Java2WSDL" fork="true"
 failonerror="true">
 <arg value="-o"/>
 <arg value="${wsdl}"/>
 <arg value="-lhttp://localhost:8080/${webapp.name}/
 services/${service.name}"/>
 <arg value="${interface.package}.${interface.class}"/>
 <classpath>
 <path refid="classpath"/>
 <pathelement location="${build}"/>
 </classpath>
 </java>

Chapter 3

[85]

 </target>

 <target name="wsdl2java" depends="java2wsdl">
 <java classname="org.apache.axis.wsdl.WSDL2Java" fork="true"
 failonerror="true">
 <arg value="-o"/>
 <arg value="${gensrc}"/>
 <arg value="-s"/>
 <arg value="-S"/>
 <arg value="no"/>
 <arg value="-c"/>
 <arg value="${implement.package}.${implement.class}"/>
 <arg value="${wsdl}"/>
 <classpath>
 <path refid="classpath"/>
 <pathelement location="${build}"/>
 </classpath>
 </java>
 </target>

 <target name="implement" depends="wsdl2java">

 <delete>
 <fileset dir="${gensrc}/${implement.path}"
 includes="${implement.class}.java"/>
 </delete>

 <copy todir="${gensrc}/${implement.path}" overwrite="ture">
 <fileset dir="${src}/${implement.path}">
 <include name="${implement.class}.java"/>
 </fileset>
 </copy>
 </target>

 <target name="compile" depends="implement">
 <javac srcdir="${gensrc}" destdir="build"
 classpathref="classpath"/>
 </target>

 <target name="compileclient">
 <javac srcdir="${src}" destdir="build" classpathref="classpath">
 <include name="**/*Client*.java"/>
 </javac>
 </target>

 <target name="deploy" depends="compile, copy">

 <move todir="${config}" flatten="yes">
 <fileset dir="${gensrc}">
 <include name="**/*.wsdd"/>

Web Service Implementations

[86]

 </fileset>
 </move>

 <java classname="org.apache.axis.utils.Admin" fork="true"
 failonerror="true" dir="config">
 <arg value="server"/>
 <arg file="config/deploy.wsdd" />
 <classpath>
 <path refid="classpath"/>
 <pathelement location="build"/>
 </classpath>
 </java>

 <war destfile="dist/${webapp.name}.war" webxml="config/web.xml">
 <webinf dir="config">
 <include name="server-config.wsdd"/>
 </webinf>
 <lib dir="lib"/>
 <classes dir="build"/>
 </war>

 <delete dir="${lib}"/>

 </target>

</project>

Let us now understand the implementation of the web service step by step. We will
execute the following ant targets, in the same order.

clean: This will delete all temporary folders and any generated files in the
previous build.
init: This will create a few, new folders.
precompile: In this step, the aim is to compile the interface class.
java2wsdl: The java2wsdl will generate the WSDL from the precompiled
java interface. You can look at the URL http://ws.apache.org/axis/java/
reference.html to get an understanding of the options available in
this step.
wsdl2java: Now, we start our Contract-first process. As we have the
WSDL, we will use wsdl2java tools to create web service artifacts including
the implementation template class. These generated files are placed in a
folder, for example, gensrc. This step will also generate deploy.wsdd
and undeploy.wsdd, two files which will help us generate server side
deployment configurations later.

•

•

•

•

•

Chapter 3

[87]

implement: As mentioned previously, to avoid the manual process of
adding code to the generated implementation template, we already have
a Java file with the same name as the generated implementation template,
which contains the same Java class, HelloWebService, with the business
code implemented. So we will overwrite the generated file with the file
already present, which in effect is equivalent to adding business code to the
generated file.
compile: We will now compile all the generated files, including the web
service implementation class containing the business logic.
copy: This will bring all required axis libraries to a staging directory for
example, lib in our codebase, so that it is easy to package them into the
web archive.
deploy: In this step, we will use the org.apache.axis.utils.Admin class
to generate the deployment configuration file, server-config.wsdd, taking
deploy.wsdd as the input. We then create a standard web archive, which can
be readily deployed into your favorite web server.
compileclient: As a last step, we will compile the Client code too.

RpcClient.java
The RpcClient makes use of auto generated client side stub classes to invoke the
remote web service in an RPC style.

public class RpcClient{

 private static String wsdlUrl = "http://localhost:8080/
 AxisEndToEnd/services/HelloWebService?WSDL";
 private static String namespaceURI = "http://AxisEndToEnd.axis.
 apache.binildas.com";
 private static String localPart = "IHelloWebService";

 protected void executeClient(String[] args)throws Exception{

 IHelloWebService iHelloWebService = null;
 IHelloWeb iHelloWeb = null;
 if(args.length == 3){
 iHelloWebService = new IHelloWebServiceLocator(args[0],
 new QName(args[1], args[2]));
 }
 else{
 iHelloWebService = new IHelloWebServiceLocator(wsdlUrl,
 new QName(namespaceURI, localPart));
 }
 iHelloWeb = iHelloWebService.getHelloWebService();
 log("Response From Server : " + iHelloWeb.hello("Binil"));
 }

•

•

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Web Service Implementations

[88]

 public static void main(String[] args)throws Exception{

 RpcClient client = new RpcClient();
 client.executeClient(args);
 }
}

CallClient.java
We have provided one more client code called CallClient, which will use Axis and
SOAP APIs to invoke the web service in a document oriented manner.

public class CallClient {
 public static String wsURL =
 "http://localhost:8080/AxisEndToEnd/services/
HelloWebService?WSDL";
 public static String action = "HelloWebService";
 //SOAP Request - Not shown fully
 public static String msg = "<?xml version=\"1.0\"
 encoding=\"UTF-8\"?><soapenv:Envelope ...>";
 public static void test() throws Exception{
 InputStream input = new ByteArrayInputStream(msg.getBytes());
 Service service = new Service();
 Call call = (Call) service.createCall();
 SOAPEnvelope soapEnvelope = new SOAPEnvelope(input);
 call.setTargetEndpointAddress(new URL(wsURL));
 if (action != null) {
 call.setUseSOAPAction(true);
 call.setSOAPActionURI(action);
 }
 soapEnvelope = call.invoke(soapEnvelope);
 System.out.println("Response:\n" + soapEnvelope.toString());
 }
 public static void main(String args[]) throws Exception{
 CallClient callClient = new CallClient();
 if(args.length > 0){
 wsURL = args[0];
 }
 if(args.length > 1){
 action = args[1];
 }
 callClient.test();
 }
}

The document oriented web service request has not been fully shown in the code.
But you can look at the source code to view it fully.

Chapter 3

[89]

Run the Server and Client
The previous build.xml was a bit lengthy, and we again agree that the 10 steps
mentioned earlier to implement the web service are not trivial ones for a novice
user to execute. But believe it; we are going to do all those things with just one ant
command. So, save the above build.xml file so that you can re-use them in your
projects too.

To build the server side code, execute the following commands:

cd ch03\02_Axis
ant

The following figure shows the step-by-step execution of the build:

Web Service Implementations

[90]

At the end of the build, we will have the deployable web archive (AxisEndToEnd.
war) in the following location:

ch03\02_Axis\dist

You can now transfer this archive to the webapps folder of your web server and
restart your server. Assuming the deployment went fine, the WSDL for the web
service will be available now at the URL http://localhost:8080/AxisEndToEnd/
services/HelloWebService?WSDL.

You can now execute the client code to test your web service. Since we have
provided two versions of client code, there are two options for you to test the
web service.

To execute the RpcClient, execute the following commands:

cd ch03\02_Axis
ant runrpc

The following figure shows the RpcClient execution console where it prints out any
response received from the server:

To execute the CallClient, execute the following commands:

cd ch03\02_Axis
ant runcall

Chapter 3

[91]

The following figure shows the RpcClient execution console where it prints out any
response received from the server:

Web Service Using Spring
Spring has good support for Remoting. The main Remoting protocols Spring
supports are RMI, HTTP-based Remoting (using org.springframework.remoting.
httpinvoker.HttpInvokerServiceExporter), Hessian, Burlap, Spring support for
SOAP, and Spring-WS (Web Services). Since this chapter is concentrating on web
service implementations, let us look more into Spring support for SOAP and WS.

Spring-WS—A Primer
Spring-WS is available as a download different from core Spring from the site.
Spring-WS support Contract-first style of WS development. Hence, the developers
should be ready with the contract (WSDL) first to implement WS in Spring. This may
not be trivial for every developer, especially for those who cannot create a WSDL by
hand. The other alternative is to use some tools to author the contract, and then use
Spring-WS for implementation.

We have already seen how to develop WS in Axis. Now, what we need more from
Spring are its features such as:

Dependency Injection
Object Wiring

•

•

Web Service Implementations

[92]

And for the reasons mentioned earlier, we also need a mechanism to generate or
author the WSDL. Hence, to make the full process smooth and straightforward, we
can use a mixed approach—using both Axis and Spring together so that we get best
of both the worlds. We will see how to do that in this section.

Web Service Implementation in Spring
Since, we have already seen how to deploy an Axis web service, let us build on that
to integrate Spring with the sample.

Spring provides org.springframework.remoting.jaxrpc.
ServletEndpointSupport, which is a convenience base class for JAX-RPC servlet
endpoint implementations. It provides a reference to the current Spring application
context, so that we can do bean lookup or resource loading.

Code Server and Client
We will use the Server side codebase we have used for Axis sample with slight
variations. Hence, the code is repeated in this section. The server side code artifacts
are placed in the following folder ch03\03_Spring\WebService\src.

IHello.java
IHello is a simple business interface, with a single method hello. Since we want to
share this interface with clients too, we have placed this interface alone in a common
folder that is ch03\03_Spring\Common\src.

public interface IHello{

 String hello(String param);
}

IHelloWeb.java
Let us have an interface different from IHello to IHelloWeb, as our web service
interface. So, we shall generate our contract out of this interface only.

public interface IHelloWeb extends IHello{
}

HelloWebService.java
Different from our Axis sample, HelloWebService here extends
ServletEndpointSupport, so that we get a reference to the current Spring
application context.

Chapter 3

[93]

public class HelloWebService extends ServletEndpointSupport implements
IHelloWeb{

 private IHello iHello;

 public HelloWebService(){
 System.out.println("Inside HelloWebService.HelloWebService...");
 }

 protected void onInit() {
 System.out.println("Inside HelloWebService.onInit...");
 this.iHello = (IHello) getWebApplicationContext().
getBean("hello");
 }

 public void setHello(IHello iHello){
 this.iHello = iHello;
 }

 public String hello(String param){
 System.out.println("Inside HelloWebService.hello...");
 return iHello.hello(param);
 }
}

Here in the onInit method, we get a reference to Spring context to resolve the
bean with the name, hello. This bean refers to a different business bean, where we
implement our business code which is explained next.

Hello.java
Hello is a spring bean, which we configure in the applicationContext.xml. This
bean implements the business method.

public class Hello implements IHello{

 public Hello(){
 System.out.println("Inside Hello.Hello...");
 }

 public String hello(String param){
 System.out.println("Inside Hello.hello...");
 return "Hello " + param;
 }
}

Web Service Implementations

[94]

applicationContext.xml
The applicationContext.xml will have definitions of all Spring beans, and is
placed in the folder ch03\03_Spring\WebService\config.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.
springframework.org/dtd/spring-beans.dtd">
<beans>
 <bean id="hello" class="com.binildas.apache.axis.AxisSpring.Hello">
 </bean>
</beans>

web.xml
The web.xml placed in ch03\03_Spring\WebService\config will explain how
we can hook the Spring context to the current web application context. When we
package the web archive, we need to place the applicationContext.xml in the path
specified in the web.xml (/WEB-INF/).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/applicationContext.xml
 </param-value>
 </context-param>

 <servlet>
 <servlet-name>AxisServlet</servlet-name>
 <display-name>Apache-Axis Servlet</display-name>
 <servlet-class>
 org.apache.axis.transport.http.AxisServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>

Chapter 3

[95]

 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>

</web-app>

Client.java
Let us code the client too using Spring features, in a simple manner. Look at the code
to know how we can do that.

public class Client{
 private ApplicationContext ctx;
 private ClientObject clientObject;
 public Client(){
 String[] paths = {"/applicationContextClient.xml"};
 ctx = new ClassPathXmlApplicationContext(paths);
 clientObject = (ClientObject) ctx.getBean("clientObject");
 }
 public void finalize()throws Throwable{
 super.finalize();
 clientObject = null;
 ctx = null;
 }
 private void test1(){
 log(clientObject.hello("Binil"));
 }
 public static void main(String[] args)throws Exception{
 Client client = new Client();
 client.test1();
 }
}

The Client makes use of another spring bean, ClientObject. We wire this bean in a
second Spring configuration file, applicationContextClient.xml.

ClientObject.java
The ClientObject is just a helper bean.

public class ClientObject{
 private IHello helloService;
 public void setHelloService(IHello helloService) {
 this.helloService = helloService;
 }
 public String hello(String param) {
 return helloService.hello(param);
 }
}

Web Service Implementations

[96]

We inject a proxy to the remote web service into this bean. So, any calls can be
delegated to the web service. The proxy configuration and wiring is done in
applicationContextClient.xml.

applicationContextClient.xml
In applicationContextClient.xml, we configure both the ClientObject
bean and a proxy to the remote web service. To configure the proxy, you define
a JaxRpcPortProxyFactoryBean so that the proxy will implement the remote
interface. As you have chosen Axis to implement your Spring-based web service,
we will use Axis itself for the client side invocation too. So you must specify org.
apache.axis.client.ServiceFactory as the service factory class to use. Then you
also define other parameters for the JaxRpcPortProxyFactoryBean as shown in
following code listing:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
 <bean id="helloService" class="org.springframework.remoting.jaxrpc.
JaxRpcPortProxyFactoryBean">
 <property name="serviceFactoryClass">
 <value>org.apache.axis.client.ServiceFactory</value>
 </property>
 <property name="serviceInterface"
 value="com.binildas.apache.axis.AxisSpring.IHello"/>
 <property name="wsdlDocumentUrl"
 value="http://localhost:8080/AxisSpring/
 services/HelloWebService?wsdl"/>
 <property name="namespaceUri"
 value="http://AxisSpring.axis.apache.binildas.com"/>
 <property name="serviceName" value="IHelloWebService"/>
 <property name="portName" value="HelloWebService"/>
 </bean>
 <bean id="clientObject"
 class="com.binildas.apache.axis.AxisSpring.ClientObject">
 <property name="helloService" ref="helloService"/>
 </bean>

</beans>

Run the Server and Client
To build the server side code, execute the following commands:

cd ch03\03_Spring
ant

Chapter 3

[97]

The above command will build both the server and the client codebase. At the end
of the build, we will have the deployable web archive (AxisSpring.war) in the
following location:

ch03\03_Spring\WebService\dist

You can now transfer this archive to the webapps folder of your web server and
restart your server. Assuming the deployment went fine, the WSDL for the web
service will be available now at the URL http://localhost:8080/AxisSpring/
services/HelloWebService?wsdl.

You can now execute the clients' code to test your web service. To execute the Client,
execute the following commands:

cd ch03\03_Spring
ant run

The following figure shows the client side screenshot:

Web Service Using XFire
XFire is a new generation Java SOAP framework. XFire API is easy to use, and
supports standards. Hence XFire makes SOA development much easier and
straightforward. XFire is also highly performance oriented, since it is built on a low
memory StAX (Streaming API for XML) model. Currently, XFire is available in
version 2.0 under the name CXF.

Web Service Implementations

[98]

Web Service Implementation in XFire
You have already seen implementing web services in Axis and Spring, by creating
standard web archives and deploying them into web servers. Now, we will do a
similar exercise here, but in a relatively lightweight manner, using XFire. Here,
we assume you have already downloaded XFire 1.2.2 version from the URL
http://xfire.codehaus.org/Download, and have extracted it to the folder which
you can refer to in your examples.PROPERTIES file as xfire.home.

Code Server and Client
For our XFire sample, we have all the code organized in the folder ch03\04_XFire\
src. We will now look at them, one by one.

IHello.java
As usual, IHello is a simple Java business interface, defining a single method
sayHello.

public interface IHello{
 String sayHello(String name);
}

HelloServiceImpl
HelloServiceImpl is our web service implementation class, implementing
IHello interface.

public class HelloServiceImpl implements IHello{
 private static long times = 0L;
 public HelloServiceImpl(){
 System.out.println("HelloServiceImpl.HelloServiceImpl()...");
 }
 public String sayHello(String name){
 System.out.println("HelloServiceImpl.sayHello
 (" + (++times) + ")");
 return "HelloServiceImpl.sayHello :
 HELLO! You just said:" + name;
 }
}

web.xml
For XFire web services, we need to set up org.codehaus.xfire.transport.http.
XFireConfigurableServlet as the Servlet. We then route all URL requests of
pattern /services/ to XFireConfigurableServlet as shown in the web.xml.

Chapter 3

[99]

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <servlet>
 <servlet-name>XFireServlet</servlet-name>
 <display-name>XFire Servlet</display-name>
 <servlet-class>
 org.codehaus.xfire.transport.http.XFireConfigurableServlet
 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>XFireServlet</servlet-name>
 <url-pattern>/servlet/XFireServlet/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>XFireServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>

</web-app>

services.xml
The services.xml is the main XFire configuration file. Let us look into the sample
file and understand it in detail.

<beans xmlns="http://xfire.codehaus.org/config/1.0">
 <service>
 <name>Hello</name>
 <namespace>http://xfire.binildas.com</namespace>
 <serviceClass>com.binildas.xfire.IHello</serviceClass>
 <implementationClass>
 com.binildas.xfire.HelloServiceImpl
 </implementationClass>
 </service>
</beans>

The name element is required and denotes the name of the service as exposed to
the world. The optional namespace element specifies the target namespace for the
service. The serviceClass denotes the name of the object you wish to make into a
service, whereas the implementationClass denotes the implementation which you
wish to use when the service is invoked.

Web Service Implementations

[100]

Run the Server and Client
To build the server side code, execute the following commands:

cd ch03\04_XFire
ant

The above command will build both the server and the client codebase. At the end
of the build, we will have the deployable web archive (HelloXFire.war) in the
following location:

ch03\04_XFire\dist

You can now transfer this archive to the webapps folder of your web server and
restart your server. Assuming the deployment went fine, the WSDL for the web
service will be available now at the URL http://localhost:8080/HelloXFire/
services/Hello?wsdl.

You can now execute the clients' code to test your web service. To execute the Client
code, execute the following commands:

cd ch03\04_XFire
ant run

The following figure shows the client side screenshot:

Chapter 3

[101]

Summary
In this chapter, we concentrated on major web services implementation available in
the Java world, and while doing all this we covered the following:

JAX-WS 2.0: JAX-WS 2.0 is the reference implementation of the Java API for
XML web services (JAX-WS) specification. We have seen samples in JAX-WS
which can be deployed in Java EE Application Server or into Java SE 6.
Apache Axis: Axis is Apache open-source web service implementation with
many production deployments. We have seen a full-service deployment,
where we package the code artifacts into a standard web archive and then
deploy them into Apache Tomcat web server.
Spring: Spring provides dependency injection and bean wiring along with
other features, and we can develop web services using Spring core or Sring-
WS. The sample, in this chapter, uses Spring core to enhance the Axis web
service sample.
Xfire: Xfire is a new generation Java SOAP framework, which is easier and
straightforward for developing web services. The Xfire sample provided,
demonstrates how easy it is to build and deploy web services using Xfire.

•

•

•

•

Data and Services—All
Roads Lead to Enterprise

Service Bus
Having seen the basics of XML and XML-based services in the previous chapters,
we are now ready to look into the big picture of enterprise landscape and see how
all the pieces fit together. What is of interest for every enterprise user is information
and every information starts from the basic building block, data. Data can reside
in any data store, and can exist in many formats. Irrespective of that, you need to
bring data to your table, do some massaging with your business use cases, and
supply them as information. How do we do that in the SOA world, moving away
from the traditional JDBC or Object-relational mapping (OR mapping) styles? And
more interesting is, data can even exist in the form of services and if so, how do
we combine multiple services just like we combine data from multiple JDBC query
results? We are going to look at a couple of these aspects in this chapter, and we will
cover specifically:

JDO as an alternative to JDBC
Data Services and its role in SOA
Few emerging Data Services standards like SCA and SDO
Introducing Apache Tuscany
Introduction to message-oriented middleware (MOM)
Enterprise Service Bus (ESB)—The new architecture style
Introducing OpenESB

•

•

•

•

•

•

•

Data and Services—All Roads Lead to Enterprise Service Bus

[104]

JDO
You all are perfectly comfortable with JDBC or few OR-mapping frameworks at
least, like Hibernate or TopLink. Let us now look into a complementing standard
of accessing data from your data store using a standard interface-based abstraction
model of persistence in java that is, Java Data Objects (JDO). The original JDO (JDO
1.0) specification is quite old and is based on Java Specification Request 12 (JSR
12). The current major version of JDO (JDO 2.0) is based on JSR 243. The original
specifications were done under the supervision of Sun and starting from 2.0, the
development of the API and the reference implementation happens as an Apache
open-source project.

Why JDO?
We have been happily programming to retrieve data from relational stores using
JDBC, and now the big question is do we need yet another standard, JDO? If you
think that as software programmers you need to provide solutions to your business
problems, it makes sense for you to start with the business use cases and then do a
business analysis at the end of which you will come out with a Business Domain
Object Model (BDOM). The BDOM will drive the design of your entity classes,
which are to be persisted to a suitable data store. Once you design your entity classes
and their relationship, the next question is should you be writing code to create
tables, and persist or query data from these tables (or data stores, if there are no
tables). I would like to answer 'No' for this question, since the more code you write,
the more are the chances of making errors, and further, developer time is costly.
Moreover, today you may write JDBC for doing the above mentioned "technical
functionalities", and tomorrow you may want to change all your JDBC to some
other standard since you want to port your data from a relational store to a different
persistence mechanism. To sum up, let us list down a few of the features of JDO
which distinguishes itself from other similar frameworks.

Separation of Concerns: Application developers can focus on the BDOM
and leave the persistence details (storage and retrieval) to the JDO
implementation.
API-based: JDO is based on a java interface-based programming model.
Hence all persistence behavior including most commonly used features of
OR mapping is available as metadata, external to your BDOM source code.
We can also Plug and Play (PnP) multiple JDO implementations, which know
how to interact well with the underlying data store.

•

•

Chapter 4

[105]

Data store portability: Irrespective of whether the persistent store is
a relational or object-based file, or just an XML DB or a flat file, JDO
implementations can still support the code. Hence, JDO applications are
independent of the underlying database.
Performance: A specific JDO implementation knows how to interact better
with its specific data store, which will improve performance as compared to
developer written code.
J2EE integration: JDO applications can take advantage of J2EE features like
EJB and thus the enterprise features such as remote message processing,
automatic distributed transaction coordination, security, and so on.

JPOX—Java Persistent Objects
JPOX is an Apache open-source project, which aims at a heterogeneous persistence
solution for Java using JDO. By heterogeneous we mean, JPOX JDO will support any
combination of the following four main aspects of persistence:

Persistence Definition: The mechanism of defining how your BDOM classes
are to be persisted to the data store.
Persistence API: The programming API used to persist your BDOM objects.
Query Language: The language used to find objects due to certain criteria.
Data store: The underlying persistent store you are persisting your
objects to.

JPOX JDO is available for download at http://www.jpox.org/.

JDO Sample Using JPOX
In this sample, we will take the familiar Order and LineItems scenario, and expand
it to have a JDO implementation. It is assumed that you have already downloaded
and extracted the JPOX libraries to your local hard drive.

•

•

•

•

•

•

•

Data and Services—All Roads Lead to Enterprise Service Bus

[106]

BDOM for the Sample
We will limit our BDOM for the sample discussion to just two entity classes, that is,
OrderList and LineItem. The class attributes and relationships are shown in the
following screenshot:

OrderList
-number : int
-orderDate : Date

-items -Parent:Order
LineItem

-productId : string
-numberOfItems : int

1

The BDOM illustrates that an Order can contain multiple line items. Conversely,
each line item is related to one and only one Order.

Code BDOM Entities for JDO
The BDOM classes are simple entity classes with getter and setter methods
for each attribute. These classes are then required to be wired for JDO persistence
capability in a JDO specific configuration file, which is completely external to the
core entity classes.

OrderList.java
OrderList is the class representing the Order, and is having a primary key attribute
that is number.

public class OrderList{

 private int number;
 private Date orderDate;
 private Set lineItems;

 // other getter & setter methods go here

 // Inner class for composite PK
 public static class Oid implements Serializable{

 public int number;

 public Oid(){
 }

 public Oid(int param){
 this.number = param;
 }

 public String toString(){

Chapter 4

[107]

 return String.valueOf(number);
 }

 public int hashCode(){
 return number;
 }

 public boolean equals(Object other){

 if (other != null && (other instanceof Oid)){
 Oid k = (Oid)other;
 return k.number == this.number;
 }
 return false;
 }
 }
}

LineItem.java
LineItem represents each item container in the Order. We don't explicitly define a
primary key for LineItem even though JDO will have its own mechanism to do that.

public class LineItem{

 private String productId;
 private int numberOfItems;
 private OrderList orderList;

 // other getter & setter methods go here

}

package.jdo
JDO requires an XML configuration file, which defines the fields that are to be
persisted and to what JDBC or JDO wrapper constructs should be mapped to. For
this, we can create an XML file called package.jdo with the following content and
put it in the same directory where we have the entities.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "file:/javax/jdo/jdo.dtd">
<jdo>
 <package name="com.binildas.jdo.jpox.order">

 <class name="OrderList" identity-type="application"
 objectid-class="OrderList$Oid" table="ORDERLIST">
 <field name="number" primary-key="true">
 <column name="ORDERLIST_ID"/>
 </field>
 <field name="orderDate">

Data and Services—All Roads Lead to Enterprise Service Bus

[108]

 <column name="ORDER_DATE"/>
 </field>

 <field name="lineItems" persistence-modifier="persistent"
 mapped-by="orderList">
 <collection element-type="LineItem">
 </collection>
 </field>
 </class>

 <class name="LineItem" table="LINEITEM">
 <field name="productId">
 <column name="PRODUCT_ID"/>
 </field>
 <field name="numberOfItems">
 <column name="NUMBER_OF_ITEMS"/>
 </field>

 <field name="orderList" persistence-modifier="persistent">
 <column name="LINEITEM_ORDERLIST_ID"/>
 </field>
 </class>

 </package>
</jdo>

jpox.PROPERTIES
In this sample, we will persist our entities to a relational database, Oracle. We specify
the main connection parameters in jpox.PROPERTIES file.

javax.jdo.PersistenceManagerFactoryClass=org.jpox.jdo.
JDOPersistenceManagerFactory

javax.jdo.option.ConnectionDriverName=oracle.jdbc.driver.OracleDriver
javax.jdo.option.ConnectionURL=jdbc:oracle:thin:@127.0.0.1:1521:orcl
javax.jdo.option.ConnectionUserName=scott
javax.jdo.option.ConnectionPassword=tiger

org.jpox.autoCreateSchema=true
org.jpox.validateTables=false
org.jpox.validateConstraints=false

Chapter 4

[109]

Main.java
This class contains the code to test the JDO functionalities. As shown here, it creates
two Orders and adds few line items to each order. First it persists these entities and
then queries back these entities using the id.

public class Main{

 static public void main(String[] args){

 Properties props = new Properties();
 try{
 props.load(new FileInputStream("jpox.properties"));
 }
 catch (Exception e){
 e.printStackTrace();
 }

 PersistenceManagerFactory pmf =
 JDOHelper.getPersistenceManagerFactory(props);

 PersistenceManager pm = pmf.getPersistenceManager();
 Transaction tx = pm.currentTransaction();
 Object id = null;
 try{
 tx.begin();

 LineItem lineItem1 = new LineItem("CD011", 1);
 LineItem lineItem2 = new LineItem("CD022", 2);
 OrderList orderList = new OrderList(1, new Date());
 orderList.getLineItems().add(lineItem1);
 orderList.getLineItems().add(lineItem2);

 LineItem lineItem3 = new LineItem("CD033", 3);
 LineItem lineItem4 = new LineItem("CD044", 4);
 OrderList orderList2 = new OrderList(2, new Date());
 orderList2.getLineItems().add(lineItem3);
 orderList2.getLineItems().add(lineItem4);

 pm.makePersistent(orderList);
 id = pm.getObjectId(orderList);
 System.out.println("Persisted id : "+ id);

 pm.makePersistent(orderList2);
 id = pm.getObjectId(orderList2);
 System.out.println("Persisted id : "+ id);

 orderList = (OrderList) pm.getObjectById(id);
 System.out.println("Retreived orderList : " + orderList);

 tx.commit();

Data and Services—All Roads Lead to Enterprise Service Bus

[110]

 }
 catch (Exception e){
 e.printStackTrace();
 if (tx.isActive()){
 tx.rollback();
 }
 }
 finally{
 pm.close();
 }
 }
}

Build and Run the JDO Sample
As a first step, if you haven't done it before, edit examples.PROPERTIES provided
along with the code download for this chapter and change the paths there to match
your development environment. The code download for this chapter also includes a
README.txt file, which gives detailed steps to build and run the samples.

Since we use Oracle to persist entities, we need the following two libraries in
the classpath:

jpox-rdbms*.jar
classes12.jar

We require a couple of other libraries too which are specified in the build.xml file.
Download these libraries and change the path in examples.PROPERTIES accordingly.

To build the sample, first bring up your database server. Then to build the sample
in a single command, it is easy for you to go to ch04\jdo folder and execute the
following command.

cd ch04\jdo
ant

The above command will execute the following steps:

First it compiles the java source files
Then for every class you persist, use JPOX libraries to enhance the byte code.
As the last step, we create the required schema in the data store.

•

•

•

•

•

Chapter 4

[111]

Data and Services—All Roads Lead to Enterprise Service Bus

[112]

To run the sample, execute:
ant run

You can now cross check whether the entities are persisted to your data store. This is
as shown in the following screenshot where you can see that each line item is related
to the parent order by the foreign key.

Chapter 4

[113]

Data Services
Good that you now know how to manage the basic data operations in a generic way
using JDO and other techniques. By now, you also have good hands-on experience
in defining and deploying web services. We all appreciate that web services are
functionalities exposed in standard, platform, and technology neutral way. When
we say functionality we mean the business use cases translated in the form of useful
information. Information is always processed out of data. So, once we retrieve data,
we need to process it to translate them into information.

When we define SOA strategies at an enterprise level, we deal with multiple Line
of Business (LOB) systems; some of them will be dealing with the same kind of
business entity. For example, a customer entity is required for a CRM system as well
as for a sales or marketing system. This necessitates a Common Data Model (CDM),
which is often referred to as the Canonical Data Model or Information Model. In such
a model, you will often have entities that represent "domain" concepts, for example,
customer, account, address, order, and so on. So, multiple LOB systems will make
use of these domain entities in different ways, seeking different information-based
on the business context. OK, now we are in a position to introduce the next concept
in SOA, which is "Data Services".

Data Services are specialization of web services which are data and information
oriented. They need to manage the traditional CRUD (Create, Read, Update, and
Delete) operations as well as a few other data functionalities such as search and
information modeling. The Create operation will give you back a unique ID whereas
Read, Update, and Delete operations are performed on a specific unique ID. Search
will usually be done with some form of search criteria and information modeling,
or retrieval happens when we pull useful information out of the CDM, for example,
retrieving the address for a customer.

The next important thing is that no assumptions should be made that the data will
be in a java resultset form or in a collection of transfer object form. Instead, you are
now dealing with data in SOA context and it makes sense to visualize data in XML
format. Hence, XML Schema Definition (XSDs) can be used to define the format
of your requests and responses for each of these canonical data definitions. You
may also want to use ad hoc queries using XQuery or XPath expressions, similar
to SQL capabilities on relational data. In other words, your data retrieval and data
recreation for information processing at your middle tier should support XML tools
and mechanisms, and should also support the above six basic data operations. If so,
higher level of abstractions in the processing tier can make use of the above data
services to provide Application Specialization capabilities, specialized for the LOB
systems. To make the concept clear, let us assume that we need to get the order
status for a particular customer (getCustomerOrderStatus()) which will take the
customer ID argument. The data services layer will have a retrieve operation

Data and Services—All Roads Lead to Enterprise Service Bus

[114]

passing the customer ID and the XQuery or the XPath statement will obtain the
requested order information from the retrieved customer data. High level processing
layers (such as LOB service tiers) can use high-level interface (for example, our
getCustomerOrderStatus operation) of the Application Specialization using a web
services (data services) interface and need not know or use XQuery or XPath directly.
The underlying XQuery or XPath can be encapsulated, reused, and optimized.

Service Data Objects
Data abstraction and unified data access are the two main concerns that any SOA-
based architecture has to address. In the data services discussion, we talked a bit
about data abstraction, by first defining data around domain entities and then
decorating it with useful methods for data operations. Equally important is the issue
of accessing heterogeneous data in a uniform way.

Why SDO?
One of the main problems Service Data Objects (SDO) tries to solve is the issue
of heterogeneous manner of data management. By data management, we mean
data storage as well as operations on data lifecycle. SDO simplifies J2EE data
programming model thus giving application developers more time to focus on the
business problems.

SDO provides developers an API, the SDO API, and a programming model to
access data. This API lets you to work with data from heterogeneous data sources,
including RDBMS, entity EJBs, XML sources, web services, EIS data sources using
the Java Connector Architecture, and so on. Hence you as a developer need not be
familiar with a technology-specific API such as JDBC or XQuery in order to access
and utilize data. Instead, you can just use SDO API.

SDO Architecture
In SDO, data is organized as a graph of objects, called DataObject. A DataObject is
the fundamental component which is a representation of some structured data, with
some properties. These properties have either a single value or multiple values, and
their values can be even other data objects. Each data objects also maintains a change
summary, which represents the alterations made to it.

Chapter 4

[115]

SDO clients or consumers always use SDO programming model and API. This is
generic of technology and framework, and hence the developers need not know how
the underlying data they are working with is persisted. A Data Mediator Service
(DMS) is responsible for creating a data graph from data source(s), and also for
updating the data source(s) based on any changes made to a data graph. SDO clients
are disconnected from both the DMS and the data source.

A DMS will create a Data Graph, which is a container for a tree of data objects.
Another interesting fact is that a single data graph can represent data from different
data sources. This is actually a design model to deal with data aggregation scenarios
from multiple data sources. The data graphs form the basics of the disconnected
architecture of SDO, since they can be passed across layers and tiers in an
application. When doing so, they are serialized to the XML format.

A Change Summary contains any change information related to the data in the data
object. Change summaries are initially empty and are populated as and when the
data graph is modified.

Apache Tuscany SDO
Apache Tuscany SDO is a sub-project within open-source Apache Tuscany.

Apache Tuscany aims at defining an infrastructure that simplifies the development
of Service-Oriented application networks, addressing real business problems.
It is based on specifications defined by the OASIS Open Composite Services
Architecture (CSA) Member Section, which advances open standards that simplify
SOA application development.

Data and Services—All Roads Lead to Enterprise Service Bus

[116]

Tuscany SDO mainly provides implementations in Java and C++. Both are available
for download at: http://incubator.apache.org/tuscany/.

SDO Sample Using Tuscany SDO
SDO can handle heterogeneous data sources, but for the sample here, we will make
use of an XML file as a data source. The sample will read as well as write an XML
file, when the client program makes use of SDO API to do data operations.

Code the Sample Artifacts
The main artifacts for running the samples in SDO include an XSD schema file and
an XML instance file. Then we have two java programs, one which reads the XML
and another which creates an XML. We will look into these files first.

hr.xsd
The hr.xsd restricts the structure of an employee XML file, which can contain
multiple employees. Each employee can have a name, address, organization, and
office elements. Each of these elements can have sub-elements, which are as
shown here:

<?xml version="1.0"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns="http://www.binildas.com/apache/tuscany/sdo/sample"
targetNamespace="http://www.binildas.com/apache/tuscany/sdo/sample">

 <xsd:element name="employees">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="employee" maxOccurs="unbounded" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="employee">
 <xsd:annotation>
 <xsd:documentation>Employee
 representation</xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string" />
 <xsd:element ref="address" maxOccurs="2" />
 <xsd:element ref="organization" />
 <xsd:element ref="office" />

Chapter 4

[117]

 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="organization">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="name" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="office">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="address"/>
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:integer" />
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="address">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="street1" type="xsd:string"/>
 <xsd:element name="street2" type="xsd:string"
 minOccurs="0"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="stateAbbreviation"/>
 <xsd:element ref="zip-code"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="zip-code">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[0-9]{5}(-[0-9]{4})?"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

 <xsd:simpleType name="stateAbbreviation">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]{2}"/>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

Data and Services—All Roads Lead to Enterprise Service Bus

[118]

hr.xml
The hr.xml provided is fully constrained as per the above schema. For our sample
demonstration this XML file contains data on two employees as shown here:

<?xml version="1.0"?>
<employees xmlns="http://www.binildas.com/apache/tuscany/sdo/sample">
 <employee id="30379">
 <name>Binildas C. A.</name>
 <address>
 <street1>45 Bains Compound Nanthencode</street1>
 <city>Trivandrum</city>
 <state>KL</state>
 <zip-code>695003</zip-code>
 </address>
 <organization id="08">
 <name>Software</name>
 </organization>
 <office id="31">
 <address>
 <street1>101 Camarino Ruiz</street1>
 <street2>Apt 2 Camarillo</street2>
 <city>Callifornia</city>
 <state>LA</state>
 <zip-code>93012</zip-code>
 </address>
 </office>
 </employee>

 <employee id="30380">
 <name>Rajesh R V</name>
 <address>
 <street1>1400 Salt Lake Road</street1>
 <street2>Appartment 5E</street2>
 <city>Boston</city>
 <state>MA</state>
 <zip-code>20967</zip-code>
 </address>
 <organization id="15">
 <name>Research</name>
 </organization>
 <office id="21">
 <address>
 <street1>2700 Cambridge Drive</street1>
 <city>Boston</city>
 <state>MA</state>

Chapter 4

[119]

 <zip-code>20968</zip-code>
 </address>
 </office>
 </employee>
</employees>

ReadEmployees.java
Now, we are going to see SDO in action. In the ReadEmployees class shown below,
we first read the XML file, mentioned previously, and load it into a root DataObject.
A DataObject is a graph of other DataObjects. Hence, we can iterate over the graph
and get each item DataObject.

public class ReadEmployees extends SampleBase{

 private static final String HR_XML_RESOURCE = "hr.xml";
 public static final String HR_XSD_RESOURCE = "hr.xsd";

 public ReadEmployees(Integer commentaryLevel) {
 super(commentaryLevel,
 SampleInfrastructure.SAMPLE_LEVEL_BASIC);
 }

 public static void main(String[] args)throws Exception{

 ReadEmployees sample = new
 ReadEmployees(COMMENTARY_FOR_NOVICE);
 sample.runSample();
 }

 public void runSample () throws Exception{

 InputStream inputStream =
 ClassLoader.getSystemResourceAsStream(HR_XML_RESOURCE);
 byte[] bytes = new byte[inputStream.available()];
 inputStream.read(bytes);
 inputStream.close();

 HelperContext scope = createScopeForTypes();
 loadTypesFromXMLSchemaFile(scope, HR_XSD_RESOURCE);
 XMLDocument xmlDoc = getXMLDocumentFromString(scope,
 new String(bytes));
 DataObject purchaseOrder = xmlDoc.getRootObject();

 List itemList = purchaseOrder.getList("employee");
 DataObject item = null;
 for (int i = 0; i < itemList.size(); i++) {

 item = (DataObject) itemList.get(i);

 System.out.println("id: " + item.get("id"));
 System.out.println("name: " + item.get("name"));
 }
 }
}

Data and Services—All Roads Lead to Enterprise Service Bus

[120]

CreateEmployees.java
In the CreateEmployees class, we do the reverse process—we define DataObjects
in code and build the SDO graph. At the end, the root DataObject is persisted to a
file and also to the system output stream as shown in the following code.

public class CreateEmployees extends SampleBase {

 private static final String HR_XML_RESOURCE_NEW = "hr_new.xml";
 public static final String HR_XSD_RESOURCE = "hr.xsd";
 public static final String HR_NAMESPACE =
 "http://www.binildas.com/apache/tuscany/sdo/sample";

 public CreateEmployees(Integer commentaryLevel) {
 super(commentaryLevel, SAMPLE_LEVEL_BASIC);
 }

 public static void main(String[] args) throws Exception{

 CreateEmployees sample =
 new CreateEmployees(COMMENTARY_FOR_NOVICE);
 sample.runSample();
 }

 public void runSample() throws Exception{

 HelperContext scope = createScopeForTypes();

 loadTypesFromXMLSchemaFile(scope, HR_XSD_RESOURCE);
 DataFactory factory = scope.getDataFactory();
 DataObject purchaseOrder = factory.create(HR_NAMESPACE,
 "employees");

 DataObject employee1 = purchaseOrder.createDataObject(
 "employee");
 employee1.setString("id", "3457");
 employee1.set("name", "Cindy Jones");
 DataObject homeAddress1 = employee1.createDataObject("address");
 homeAddress1.set("street1", "Cindy Jones");
 homeAddress1.set("city", "Stanchion");
 homeAddress1.set("state", "TX");
 homeAddress1.set("zip-code", "79021");
 DataObject organization1 =
 employee1.createDataObject("organization");
 organization1.setString("id", "78");
 organization1.set("name", "Sales");
 DataObject office1 = employee1.createDataObject("office");
 office1.setString("id", "43");
 DataObject officeAddress1 = office1.createDataObject("address");
 officeAddress1.set("street1", "567 Murdock");

Chapter 4

[121]

 officeAddress1.set("street2", "Suite 543");
 officeAddress1.set("city", "Millford");
 officeAddress1.set("state", "TX");
 officeAddress1.set("zip-code", "79025");

 DataObject employee2 = purchaseOrder.createDataObject(
 "employee");
 employee2.setString("id", "30376");
 employee2.set("name", "Linda Mendez");
 DataObject homeAddress2 = employee1.createDataObject("address");
 homeAddress2.set("street1", "423 Black Lake Road");
 homeAddress2.set("street2", "Appartment 7A");
 homeAddress2.set("city", "Boston");
 homeAddress2.set("state", "MA");
 homeAddress2.set("zip-code", "20967");
 DataObject organization2 =
 employee2.createDataObject("organization");
 organization2.setString("id", "78");
 organization2.set("name", "HR");
 DataObject office2 = employee2.createDataObject("office");
 office2.setString("id", "48");
 DataObject officeAddress2 = office2.createDataObject("address");
 officeAddress2.set("street1", "5666 Cambridge Drive");
 officeAddress2.set("city", "Boston");
 officeAddress2.set("state", "MA");
 officeAddress2.set("zip-code", "20968");

 OutputStream stream = new FileOutputStream(HR_XML_RESOURCE_NEW);
 scope.getXMLHelper().save(purchaseOrder, HR_NAMESPACE,
 "employees", stream);
 stream.close();

 XMLDocument doc =
 scope.getXMLHelper().createDocument(purchaseOrder,
 HR_NAMESPACE, "employees");
 scope.getXMLHelper().save(doc, System.out, null);
 System.out.println();

 }
}

Build and Run the SDO Sample
To build the sample in a single command, it is easy for you to go to ch04\sdo folder
and execute the following command:

cd ch04\sdo
ant

Data and Services—All Roads Lead to Enterprise Service Bus

[122]

Now, you can execute the ReadEmployees class by executing:

ant read

Now, you can execute the CreateEmployees class by executing:

ant create

Chapter 4

[123]

Service Component Architecture
We have been creating IT assets in the form of programs and codes since many years,
and been implementing SOA architecture. This doesn't mean that we follow a big bang
approach and throw away all old assets in place of new. Instead, the success of any
SOA effort depends largely on how we can make the existing assets co-exist with new
architecture principles and patterns. To this end, Service Component Architecture
(SCA) aims at creating new and transforms existing, IT assets into re-usable services
more easily. These IT assets can then be rapidly adapted to changing business
requirements. In this section, we will introduce SCA and also look into some working
samples for the same.

What is SCA?
SCA introduces the notion of services and references. A component which
implements some business logic offers their capabilities through service-oriented
interfaces. Components may also consume functionality offered by other
components through service-oriented interfaces, called service references. If you
follow SOA best practices, you will perhaps appreciate the importance of
fine-grained tight coupling and coarse-grained loose coupling between components.
SCA composition aids recursive assembly of coarse-grained components out of
fine-grained tightly coupled components. These coarse-grained components can
even be recursively assembled to form higher levels of coarse-grained components.
In SCA, a composite is a recursive assembly of fine-grained components. All these
are shown in the SCA assembly model in the following screenshot:

Composite A

Component 2Component 1

Legend

Promoted
Service

Promoted
Reference
Service
Reference
Binding

Composite B

Component 4

Component 5

Component 3

Composite C

Component 7

Component 8

Component 6

Data and Services—All Roads Lead to Enterprise Service Bus

[124]

Apache Tuscany SCA Java
Apache Tuscany SCA is a sub-project within open-source Apache Tuscany, which
has got a Java implementation of SCA. Tuscany SCA is integrated with Tomcat, Jetty,
and Geronimo.

SCA Java runtime is composed of core and extensions. The core wires functional
units together and provides SPIs that extensions can interact with. Extensions
enhance SCA runtime functionality such as service discovery, reliability, support for
transport protocols, and so on.

Tuscany SCA Java is available for download at: http://incubator.apache.org/
tuscany/sca-java.html.

SCA Sample Using Tuscany SCA Java
The sample here provides a single booking service with a default SCA (java) binding.
The BookingAgentServiceComponent exercises this component by calling three
other components that is, FlightServiceComponent, HotelServiceComponent,
and CabServiceComponent as shown in the BookingAgent SCA assembly diagram
shown below:

Booking Agent

FlightService
Component

HotelService
Component

CabService
Component

BookingAgent
Service

Component

Code the Sample Artifacts
The sample consists of two sets of artifacts. The first set is the individual fine-grained
service components. The second set is the coarse-grained service component, which
wires the referenced fine-grained service components.

Chapter 4

[125]

Code Fine-Grained Service Components
There are three fine-grained service components whose code is self explanatory and
are listed below:

FlightServiceComponent
public interface IFlightService{

 String bookFlight(String date, int seats, String flightClass);
}

public class FlightServiceImpl implements IFlightService{

 public String bookFlight(String date, int seats, String
flightClass){
 System.out.println("FlightServiceImpl.bookFlight...");
 return "Success";
 }
}

HotelServiceComponent
public interface IHotelService{

 String bookHotel(String date, int beds, String hotelClass);
}

public class HotelServiceImpl implements IHotelService{

 public String bookHotel(String date, int beds, String hotelClass){
 System.out.println("HotelServiceImpl.bookHotel...");
 return "Success";
 }
}

CabServiceComponent
public interface ICabService{

 String bookCab(String date, String cabType);
}

public class CabServiceImpl implements ICabService{

 public String bookCab(String date, String cabType){
 System.out.println("CabServiceImpl.bookCab...");
 return "Success";
 }
}

Data and Services—All Roads Lead to Enterprise Service Bus

[126]

Code BookingAgent Service Component
BookingAgentServiceComponent depends on three referenced service components,
which are the fine-grained service components listed previously. They are initialized
by the dependency injection by the SCA runtime. Also, for the actual business
method invocation, the call is delegated to the referenced service components as
shown in the bookTourPackage method in the following code:

import org.osoa.sca.annotations.Reference;

public class BookingAgentServiceComponent implements IBookingAgent{

 private IFlightService flightService;
 private IHotelService hotelService;
 private ICabService cabService;

 @Reference
 public void setFlightService(IFlightService flightService) {
 this.flightService = flightService;
 }

 @Reference
 public void setHotelService(IHotelService hotelService) {
 this.hotelService = hotelService;
 }

 @Reference
 public void setCabService(ICabService cabService) {
 this.cabService = cabService;
 }

 public String bookTourPackage(String date,
 int people, String tourPack){

 System.out.println("BookingAgent.bookTourPackage...");

 String flightBooked =
 flightService.bookFlight(date, people, tourPack);
 String hotelBooked =
 hotelService.bookHotel(date, people, tourPack);
 String cabBooked = cabService.bookCab(date, tourPack);

 if((flightBooked.equals("Success")) &&
 (hotelBooked.equals("Success")) &&
 (cabBooked.equals("Success"))){
 return "Success";
 }
 else{
 return "Failure";
 }
 }
}

Chapter 4

[127]

Code BookingAgent Client
The BookingAgentClient first creates an instance of SCADomain and then gets a
reference of the BookingAgentServiceComponent using the name of the configured
service component. Then it executes the business method, bookTourPackage.

import org.apache.tuscany.sca.host.embedded.SCADomain;

public class BookingAgentClient{

 public static void main(String[] args) throws Exception {

 SCADomain scaDomain =
 SCADomain.newInstance("BookingAgent.composite");

 IBookingAgent bookingAgent =
 scaDomain.getService(IBookingAgent.class,
 "BookingAgentServiceComponent");

 System.out.println("BookingAgentClient.bookingTourPackage...");
 String result = bookingAgent.bookTourPackage(
 "20Dec2008", 5, "Economy");
 System.out.println("BookingAgentClient.bookedTourPackage : "
 + result);

 scaDomain.close();
 }
}

Build and Run the SCA Sample
To build the sample in a single command, it is easy for you to go to ch04\sca folder
and execute the following command:

cd ch04\sca
ant

Now, you can execute the BookingAgentClient program by executing:

ant run

Data and Services—All Roads Lead to Enterprise Service Bus

[128]

You can see that the BookingAgentServiceComponent will delegates calls to book
individual line items to the referred service components and if all the individual
bookings are done right, the overall transaction is "success". The following figure
shows the screenshot of such a success scenario:

Message-Oriented Middleware
Having seen some of the newer technology approaches in integrating data and
services, we now need to move on to the next stage of discussion on the different
platform level services available for integration. message-oriented middleware
(MOM) is the main aspect we need to discuss in this context.

What is MOM?
Just like using sockets for Inter-Process Communications (IPC), we use messaging
when multiple processes need to communicate with each other to share data. Of
course we can get the same effect when we use files or use a shared database for
data level integration. But at times we may also require other Quality of service
(QoS) features, a few amongst them will be described later. Thus, a MOM manages
the movement of messages between systems connected by a network in a reliable
fashion by separating the message sending step from the message receiving step so
that the message exchange takes place in a loosely coupled and detached manner.
The dynamics of message delivery in a MOM is shown in the following figure:

Chapter 4

[129]

Message Delivery over MOM

Send
TX

Receive
TX

D

ReceiverSender

D

D

Deliver
TX

Process 2Process 1
Legend

Data

TX

Message Store

Message

Delivery Channel

Transaction

Here, the message delivery happens in the following steps:

The sender process will just 'fire and forget' the message.
The MOM will 'store and forward' the message.
The receiver process will 'asynchronously receive' the message later.

•

•

•

Data and Services—All Roads Lead to Enterprise Service Bus

[130]

Since the entire process happens in stages, even if one of the players in one of these
stages is not ready for the message transmission, it won't affect the previous stages or
the players involved there.

Benefits of Using MOM
MOM will have a set of features which makes it different from other style of
communications such as RPC or Sockets, which may be required by some class of
applications. Let us now look into some of these features.

Asynchronous Style of communication: In MOM communications, a sender
application after sending the message need not wait for either the sending of
the message to complete or to get a response from the receiving applications.
Both these after effects can be affected later, perhaps in a different thread of
execution. This will increase application responsiveness.
Platform or Language level interoperability: The world is never ideal, and
we never have the luxury to always work with cutting edge technologies
alone or to chose the platform or language of choice of all interconnecting
systems. Sometimes there may be legacy systems, while sometimes there
may be SOA-based web service interfaces to interconnect. Whatever be the
case, a MOM allows them all to communicate through a common messaging
paradigm. This universal connectivity is sometimes called as the Message
Bus pattern.
Application down times: Applications interconnecting together can sit in
any geography or in any time zone, and all of them will have their own down
times too. Hence, if a sender application sends some message to a receiver
and the receiving application is not up at that time, the message shouldn't
get lost. Further, when the receiver comes up the next time, it should receive
the message once and exactly once. An MOM, with it's store and forward
capability will give the maximum flexibility for interacting systems to
exchange messages at their own pace.
Peak time processing and Throttling: For a receiving application, there may
be peak hours of the day during which it cannot process further request
messages. Any further processing might degrade even the undergoing
request processing. Hence, some kind of admission control or queuing up of
additional requests to be processed further is required. Such mechanisms are
the norm for a MOM with its store queues.

•

•

•

•

Chapter 4

[131]

Reliability: Message stores are introduced at multiple stages in the message
delivery path. At the sender's end and at the receiver's end, message stores
will guarantee staged message delivery which guarantees message reliability
in stages. So, if a step in the message delivery fails, the step can be replayed
retrieving the message again from the previous step (or previous stage
message store).
Mediating services: By using a MOM, an application becomes disconnected
from the other applications. One application needs to reconnect only
to the messaging system, not to all the other messaging applications it
need to interconnect with. The applications are thus loosely coupled, still
interconnected.

All the above features distinguish MOM from its counterpart styles of message
interactions, which we leverage in many architectural patterns such as the Enterprise
Service Bus, which we shall describe next.

Enterprise Service Bus
Enterprise Service Bus (ESB) is an architectural style for integrating systems,
applications, and services. ESB provides a technology stack which acts like
an integration bus to which multiple applications can talk. So, if two or more
applications need to talk to each other, they don't need to integrate directly, but
only need to talk to the ESB. The ESB will do the mediation services on behalf of
the communicating applications, which may or may not be transparent to these
communicating applications.

EAI and ESB
In order to understand ESB better, we need to understand the technical context
under which we have to discuss this concept. The context is Enterprise Application
Integration (EAI), which deals with the sharing of data and processes, amongst
connected systems in an enterprise. Traditionally, we have been doing EAI to do
integration. EAI defines connection points between systems and applications. But
when we consider integration in the context of SOA, we need to think more than just
integration—we need to think in terms of services and service-based integration.
Services expose standards, and if there is a way to leverage this standardization
in services in defining the integration points too, then it would open up new
possibilities in terms of standard connectors and adaptors.

•

•

Data and Services—All Roads Lead to Enterprise Service Bus

[132]

Before we get into the details of ESB, it makes sense to compare and contrast it with
other integration architectures as well. In EAI, the Point-to-Point, and the Hub and
Spoke architectures are frequently used in many bespoke solutions. They are used
in many vendor products too. These architectures are schematically shown in the
following figure:

Hub & Spoke EAI

LC: Leightweight Connector

Point to Point EAI

SC: Specific Connector

SC

SC

SC
SC

SC

SC

LC

LC

LC
LC

LC

LC

In Point-to-point, we define an integration solution for a pair of applications. At the
integration points, we have tight coupling, since both ends have knowledge about
their peers. Each peer combination need to have its own set of connectors. Hence, the
number of connectors increases as the number of applications increases. Whereas in
the Hub and Spoke architecture, we have a centralized hub (or broker) to which all
applications are connected. Each application connects with the central hub through
lightweight connectors. The lightweight connectors facilitates for application
integration with minimum or zero changes to the existing applications.

Chapter 4

[133]

Now, we will look into the Enterprise Message Bus and the Enterprise Service
Bus architectures.

A

A

A

A

A: Adaptor

Enterprise Message Bus Enterprise Service Bus

IC

IC IC

IC

IC: Intelligent Connector

The Enterprise Message Bus makes use of the MOM stack and toolset to provide
a common messaging backbone for applications to interconnect. Sometimes, the
applications have to use adapter which handles scenarios such as invoking CICS
transactions. Such an adapter may provide connectivity between the applications
and the message bus using proprietary bus APIs, and application APIs.

When you move from a traditional MOM to the ESB-based architecture, the major
difference is that the applications communicate through a Service Oriented
Architecture (SOA) backbone. This backbone is again built over the common MOM,
but it provides Intelligent Connectors. These Intelligent Connectors are abstract in
the sense that they only define the transport binding protocols and service interface,
not the real implementation details. They are intelligent, because they have logic
built-in along with the ESB to selectively bind to services at run time. This capability
enhances agility for applications by allowing late binding of services and deferred
service choice. Moreover, since these intelligent connectors are deployable in the ESB
runtime, they are even available as COTS (component off the shelf) libraries. This
means that the ESB will open up a market for vendors to build and sell connectors
for proprietary EIS systems, which will expose standard interfaces outside the ESB.

Data and Services—All Roads Lead to Enterprise Service Bus

[134]

Java Business Integration
Java Business Integration (JBI) provides a collaboration framework which provides
standard interfaces for integration components and protocols to plug into, thus
allowing the assembly of Service Oriented Integration (SOI) frameworks following
the ESB pattern. JBI is based on JSR 208, which is an extension of Java 2 Enterprise
Edition (J2EE) and is specific for JBI Service Provider Interfaces (SPI). SOA and SOI
are the targets of JBI and hence it is built around WSDL. Integration components can
be plugged into the JBI environment using a service model-based on WSDL.

For readers who would like to delve deep into Java Business Integration, you
are advised to refer to "Service Oriented Java Business Integration" by Binildas A.
Christudas ISBN: 1847194400 published by Packt Publishing, since we cannot cover
such a vast topic in a single section or in a single chapter in a book.

OpenESB
Project OpenESB is an open-source implementation of JSR-208 (JBI) hosted by Java.
net community and is available for download at https://open-esb.dev.java.
net/. OpenESB allows easy integration of web services thus creating loosely coupled
enterprise class composite applications.

OpenESB Architecture provides the following salient features, which distinguishes
itself from other closed ESB solutions available in the market today:

Application Server support: OpenESB has got good integration with
Glassfish application server, thus enabling the integration components to
leverage the reliability, scalability, resiliency, deployment, and management
capabilities of the application server.
Composite application support: In OpenESB, we can use BPEL and similar
composite application support tools to create composite applications which
are self-contained artifacts that contain other sub-artifacts.
Composite Application Editor: OpenESB comes with Composite Application
Editor that helps the user 'wire-together' and create new Composite
Applications from fine-grained services.
JBI Bus: The JBI Bus provides a pluggable infrastructure which can host a
set of integration component, which can integrate various types of IT
assets in the enterprise. The JBI bus provides an in-memory messaging bus
called the Normalized Message Router (NMR). It is through this NMR
the messages which are normalized and in standard abstract WSDL
format flows.

•

•

•

•

Chapter 4

[135]

Service Engines and Binding Components: JBI supports two types of
components, such as Service Engines and Binding Components. Service
Engines provide business logic and transformation services to other
components, as well as consume such services. Binding components provide
services external to the OpenESB environment available to the NMR.
Business Logic Units: These are processing units similar to a BPEL
component which can orchestrate the services available at the ESB and
provide higher level of business process functionality again at the ESB.
Global Service Collaboration Networks: OpenESB supports for a services
fabric style of service assembly which is a kind of service virtualization
which divides the organization's information assets into "Virtual
Services" without regard to the transport or binding protocol of the
actual implementation components.
Monitoring: OpenESB also provides the ability to centrally monitor, manage,
and administer the distributed runtime system of the ESB.

Another noticeable factor which advocates the popularity of OpenESB is the huge
list of components and library support available in the industry which can plug
easily into the OpenESB JBI infrastructure, a part of which is shown in the following
screenshot taken from the OpenESB website:

•

•

•

•

Data and Services—All Roads Lead to Enterprise Service Bus

[136]

Summary
SOA is not a single product or single reference architecture to be followed, but is all
about best practices, reference architectures, processes, toolsets, and frameworks
along with many other things which will help you and your organization increase
the responsiveness and agility of your enterprise architecture. Standards and
frameworks play a greater role in enabling easy and widespread industry adoption
of SOA. In this chapter, you have seen few emerging standards such as SDO and
SCA, addressing from data integration till service and component integration. Newer
architectural patterns such as ESB and Data Services provide you with a wider
framework upon which you can enable your integration points for open and flexible
information flow. In the next chapter, we will specifically look more into integration
with emphasis on these new architectural styles and patterns.

Traditional Integration
Technology

In this chapter, we will look into a couple of case studies, of which, the solutions for
one of the cases is based on the principles of EAI, while in the other, the solution is
based on SOA fundamentals.

In the concluding part of the case study based on EAI, we will look into the
drawbacks of EAI that we can overcome by using solution based on SOA.

Case Study #1—Based on EAI

Customer Information
The client is a major FMCG industry with stores and warehouses all over the
country. It sells various brands and serves millions of customers in a financial year.
The company has a mix of modern technology and legacy application that has been
serving its need over several years.

Business Need
The typical business model of the client is supply chain management. They ran the
business based on various in-house CRM and e-commerce monolithic solutions.
But the need to integrate the systems arose when the company started growing, and
it had various business partners. The business partners had to be integrated with
the business processes of that internal system, which until now were operating as
independent software solutions.

Traditional Integration Technology

[138]

Customer #1

Customer #2

STORE
Inventory

CLIENT
Information

ENTERPRISE

BILLING
Information

As we can see in the preceding figure, the internal processes of the enterprise run
independent of each other. The software that runs for each of these units of work
is less automated and needs a lot of manual intervention. Any change in the data
at stores has to be manually fed again at the shop floor for billing the customer
purchases. Also, some of the deployed solution had to be duplicated in each of the
systems to achieve identical results.

The core business needs of the client were:

Integration between internal business processes and business partners
Avoiding duplicity
Achieving re-usability, flexibility, and scalability
Platform independence
Setting up messaging exchange
Reducing manual intervention
Cost effectiveness

Solution
Before diving into the solution, we will talk a bit about EAI. We would take up each
of the term separately that is E, A, and I.

"E" in EAI is for Enterprise. Enterprise is analogous to an organization, which
constitutes different departments to achieve some business goal. To achieve a
business goal, the department will focus on delivering it based on fewer efforts,
lower costs, reusability, and so on.

•

•

•

•

•

•

•

Chapter 5

[139]

So here the "A", that is Application, comes into the picture. Departments use various
applications to get the product delivery-based on the above criteria. Say the purchase
department uses an application to keep track of the product inventory. But then
the purchase department also has to communicate with the sales department to
keep track of the products sold, so that whenever the re-order level of a product is
reached, they can go ahead. How will that be done?

Now, we shall talk about the "I" that is Integration. The applications between
the departments have to be integrated so that the information can be exchanged
whenever and wherever necessary.

We have tried to explain EAI, in one of the simplest forms. EAI in a nutshell would
be helpful in:

Communicating between two or more applications to fulfill a business goal.
Reducing cost and turnaround time, thereby increasing productivity.
Streamlining business process to achieve greater customer satisfaction.

As a solution for our organization, each of these heterogeneous systems had to
communicate and exchange messages. To do that, they had to be integrated. So it
was decided to implement the solution in the 'hub and spoke' architecture.

Store
Inventory

Broker
Hub

(Messaging
Exchange)

Client
Information

Publish

RDBMS
Subscribe

(HUB)

Billing
Information

Billing
Inventory

Billing
Portal

•

•

•

Traditional Integration Technology

[140]

Hub and Spoke Architecture
This is a fine example of a centralized architecture. In a system designed in a
'hub and spoke architecture', the hub acts as a centralized messaging server.
Applications act as spokes and are tied to the hub. Communication between each
of the application is through the hub. The important point to note is that, though an
application is tied to the hub, it can also act as a hub to other systems. This is shown
in the preceding image.

Designing the solution in a 'hub and spoke' architecture will be helpful for:

Message flow, as the hub acts as a server and all messages will pass
through it.
Communication pattern will be Publish-Server and Server-Subscribe.
All the messages queued up in the server and also to minimize loss of
message in case the subscribing application is down.

So, the organization started its efforts towards re-aligning the systems and
application according to EAI standards.

Step One—Identifying Applications (Spokes)
Not all organizations have the same type of applications. A certain number of
baseline business needs have to be determined so that a choice can be made as to
which of the business processes need to be optimized. They can be based on:

1. Number of transactions
2. Number of data interchange protocols
3. Type of application

Applications are determined based on the above parameters—the number of
transactions handled will be quite helpful for capacity planning for that node.
Conditional values are set in the hub to handle a certain number of transactions and
setup alert messages in case of inconsistent performance.

Another important parameter is the protocol. It is here where we define the manner
in which the data can be interchanged. For example, a certain system or application
would be either sending or receiving information through HTTP or SMTP. So the
exchange protocol is either HTTP or SMTP.

•

•

•

Chapter 5

[141]

The third important parameter is the type of application that needs to be part of
integration. The application type would determine the method of communication,
for example, the type of adapter that could be used. As an example, the application
could be custom software that would help the sales department keep track of
the inventory, or it could be a part of the SAP implementation taken up by the
organization recently. So here we can either choose a custom SAP adapter, or make a
choice of another adapter that can take information from this application.

ENTERPRISE

SALES PURCHASE

BILLING FINANCE

Custom

app.

SAP

Impl.

Custom

app.

SAP

Impl.

The list of applications that might be the part of the integration framework is now
determined and documented. As soon as we have the list of applications, we prod
further into each of these applications. Here, we will start determining the schema
that shall be required for the data to be exchanged. All the variable data types and
sizes are listed.

The second part shall contain relationship information for the database it interacts or
it might be connected to any other application for pre or post processing.

All the information is thus documented so that it can be of immense help while
building the framework.

Step Two—Messaging Hub
As a second step, we had to set up a messaging hub. The hub will help in the
exchange of information with the right set of applications. Proprietary message
broker tool was identified that would enable applications to publish and subscribe
messages. The message broker acts as a messaging hub. This hub will receive
information from the application that would either have to be published to a
particular application, or broadcast to all applications depending upon the set-up
rules. The hub would be helpful for:

Traditional Integration Technology

[142]

Transfer Information: The moment a piece of information, that is document(s), is
received by the hub, the content is studied in accordance with the schema. It will
check for the sender information and the receiver information. Once the details are
processed, the hub will pass the document to the receiver. In this scenario, each of
the documents will have the sender and receiver information.

Application A Application B

Sender

Receiver

Message
Broker

Document Repository and Registry: As soon as any document is received at the
hub, the information is stored in the database. The database will have information
about the sender, receiver, time of delivery, status of delivery, and other such
information. This information helps in keeping track of the document processing.

Messaging Hub

Message Store

DB

Process Management: Rules are set up to relay alerts, in case, a document processing
fails. This helps the organization manage processes in case of failures, and thereby
prevent losses, and take proactive measures to pre-empt recurrence. It can also help
in real-time monitoring of the flow of documents between the systems.

Chapter 5

[143]

Rules Engine: For each of the messages flowing across the hub, rules are set up for
delivery and storage of the messages. The document delivery could be set up and
storage can either be volatile or guaranteed. Depending on the storage type, the
hub will store the document in-memory (or in-memory and on disk). Based on a
business activity, notifications are set up for information to be fetched and delivered.
For example, let us say an 'Insert Notification' is set up on the sales table in the
database. So as soon as a row is inserted in the sales table, a notification will pick up
the required information and will pass it across to the other applications based on
integration setup.

Management Services: The hub setup is done using a UI provided by the broker
toolset. The main services provided by the UI are setting up of documents, rules,
and notifications. It can also be used to keep track of the document exchange. The
Publish-Subscribe values for the document can be tracked using the UI.

So the hub was set up for:

1. Integrating applications
2. Integrating database
3. Document or Information Exchange
4. Protocol setup

This brings us to the crux of the matter, how will the information from different
systems be exchanged. How will the information from an application sending XML
document be converted to database understandable values? Well, that is explained in
the next step.

Step Three—Identifying Adapter
The core medium for communication to any integration framework is through
adapters. It is through adapters that information is being exchanged between the
integrated applications, the spokes and the hub. The underlying mechanism adopted
by adapters varies with the provider. But basically, they help in transformation of the
information from documents into target understandable values.

Each of the adapters has sets of instructions that are hidden from the end users, but
which help in the exchange of information. The popular adapters are file adapters,
database adapters (for example, JDBC Adapters), and application adapters (for
example, SAP adapters). These adapters help to parse files, or get data from SAP
adapters, or execute database services. Choice of the adapter usually depends on the
type of source and the target.

Traditional Integration Technology

[144]

In our case, for database actions, we have used JDBC Adapters. The services offered
by the adapter help in:

1. Executing database actions of Insert, Update, and Delete
2. Setting up connection pools for connections re-use
3. Transformation of information that is, mapping decimal values to float data

type, and mapping date and time formats

SAP adapters were used for getting data from SAP implementation and integrating it
to the database. Similarly, from custom applications, data was published as flat files
and using flat file adapters, they were synced to the backend database tables. Also,
data between the custom application and SAP implementations were exchanged
using flat file and SAP adapters.

It would be needful to say that configuring these adapters with the applications
and the hub does require a fair bit of programming. The programming takes care of
handling the events and notifications. Also, various transformation services need to
be called to process data. Those services could either be built-in, or programmatically
created in case of a custom requirement. For huge applications, there could be loads
of mappings between variables. This is required to process the data in the target
understandable format.

When all the above steps are followed, the integration solution is set up. Voila!! Your
enterprise application integration solution is ready.

Store
Inventory

Adapter

Trading
Network Adapter

Trading
Partner

Broker
Hub

(Messaging
Exchange)

RDBMS

Adapter

Billing
Information

Client
Information Adapter Adapter

Chapter 5

[145]

The preceding image depicts integration between various systems in an enterprise.
Now, we can see that the systems, which were hitherto monolithic, can communicate
with each other. Also, external systems, say trading partners, communicate to the
message broker using 'Trading Network' setups and adapters.

Goals Achieved
With the re-organization of systems and the improvements in system design,
excellent results started flowing in. It helped in improved performance of business
transactions, efficient coordination, and productivity. This made the organization
achieve the goals that were initially set initially while designing the solution.

Goal #1—Integration between Internal Business
Processes and Business Partners
This was achieved using the 'hub and spoke' model, where the business processes
and partners interacted through the hub. The individual silos of systems were able to
communicate with each other using the hub.

Goal #2—Avoid Duplicity
With the applications communicating with each other, and a centralization of
the database, the duplicity of data was avoided to a great extent. Also, the need
for handling multiple transactions was eliminated because of the choice of
two-phased commits.

Goal #3—Achieve Re-Usability, Flexibility, and
Scalability
We achieved asset re-usability by having the integration services designed in a
way that it can perform multiple roles, for example, the file transfer service. Given
different parameters, the same service can transfer files across multiple systems.
These also helped in having a flexible approach to the system design, as the assets
could be moved, added, or phased out. So the new system was scalable in terms of
performance. It could handle multiple transactions, and had the capability of parallel
processing of transactions.

On the document level, the same was achieved using the semantic mappings of
each attribute. So data from the source was easily converted to the target
understandable formats.

Traditional Integration Technology

[146]

Goal #4—Platform Independence
The proprietary integration server could be installed and run on different OS. Saying
this, the spokes, that is the systems that were integrated, could run on any of the
platforms. The hub or the integration server was unaware of the target systems
platform, and all the communication between the source and the target was done
either through the standard adapter, or through the customized version of the
adapter. So, we could do away with the problems of the underlying platforms.

Goal #5—Setting up Messaging Exchange
The integration server is the core messaging hub for the system. All the messages
between the systems are routed through the hub. The standard message exchange
protocol is through SOAP or SMTP. To minimize the loss of message, the exchange
can be set-up to have a guaranteed delivery mechanism. This way, in case the target
system is down, the message gets queued up, and as soon as the target system comes
up, the message gets delivered.

Goal #6—Less Manual Intervention
Within the new design, the systems communicate with each other through the hub.
This gives us the flexibility to automate more business processes and add to the
integration world. The business processing could be purchase order processing,
wherein once the re-order level of an item is reached at the warehouse, the business
process would automatically raise a purchase request and send it to the business
partner. The manual intervention to check the re-order level, raising the purchase
request, and then mailing it to the partner is totally eliminated.

Goal #7—Cost Effective
Until the solution was implemented, the information between the disparate systems
was exchanged either manually, or by undergoing several pre- and post-processing
rules. Dependencies were hard to eliminate, and improving business was a challenge.
With the implementation of this solution, the turnaround time for the execution of
orders improved considerably thereby reducing overheads effectively. This in turn
made the business cost-effective.

EAI Drawbacks
The successful implementation of the new design did have its own share of
challenges. These challenges can be broadly categorized as follows:

Chapter 5

[147]

Proprietary Architecture
As we have seen earlier, most of the integration between the systems is done through
the proprietary adapters.

Messaging Bottlenecks
As we have seen, the message exchange between the systems is always through the
Hub. This creates a lot of maintenance issues for the hub. When the systems grow
bigger, and the number of transactions between the systems increases, the flow of
message grows tremendously, and a message bottleneck is reached. This could crash
the hub, leading to high expenses towards setting up a failover mechanism and
retrieving the lost messages. Moreover, much business is also lost.

Tight Coupling
Businesses are tied to each other through hubs and adapters. This creates a one-way
communication channel between the systems. Also, the strict mapping with the
hub will result in a tight coupling between the applications and the hub. Otherwise,
without the hub and the adapter, none of the systems can communicate with
each other.

Non-Flexible Architecture
Due to the tight coupling between the applications, a lot of dynamics would have
to be taken care of, when any new system is added. That would range between
investing on better integration server (hub), investing in adapter services, addition of
manpower, and also change in architecture, to involve the new system.

Manpower
The final, but among the most critical, hazards of an EAI-based approach is getting
experienced manpower, including a rare breed of architects, developers, and testers.
Developing a solution based on EAI requires expertise in different technical aspects.
Also, because they are proprietary tools, training requires a good amount
of investment.

SOA to Rescue
With more systems being added to the framework, the cost of maintenance had been
increasing gradually. To overcome these drawbacks, it was decided to move the
integration framework to a more flexible unit. In the subsequent part, we will explain
why SOA became the popular choice.

Traditional Integration Technology

[148]

In the earlier chapters, we have already seen what SOA is. So we won't look into it
again except to give a little foreword in case you are just looking at this chapter.

Let us emphasize once again on one particular statement– SOA is not a solution, it is
a practice. You really cannot put it under the category of a solution. It is a practice
which has to be implemented by each of the stakeholders in an enterprise. It is really
not easy to change the perception, but to seek out the maximum benefit out of an
SOA-based practice, a lot more groundwork has to be done. Firstly, the core of the
term has to be understood. Merely stating that it is a solution based on web service
will not qualify it to become an SOA-based approach.

In Chapter 4, we have categorically explained the terms, "services", "orientation", and
"architecture". As we did with EAI, we have to go into the details of each of these
terms. To put it briefly, we convert the business processes to "services", and expose
it to be "oriented" with its business goal. The software design "architecture" that
conforms to this is SOA.

getProductName()

getID()

Web services

Business
Logic

As we have seen above, two web services have been carved out from one of the sets
of business logic. The web services are an interface for the outside world, whereas
the dynamics of business is hidden inside the 'Business Logic'.

The three conceptual units that constitute an SOA-based solution are:

Service Provider (Service)
Service Consumer (Consumer)
Directory Services (enabled by Broker)

•

•

•

Chapter 5

[149]

You can see them in the following diagram, which explains the basic properties
of SOA:

Broker

Service Consumer
Bind

Publish Discover

We will try to base our solution on the principles stated earlier.

Case Study #2—Based on SOA
Now for the current scenario, we would like to design a solution based on SOA
instead of using proprietary EAI tool. The foremost need for the organization was to
break-up its current IT infrastructure. The departments had to be broken up further
based on the functionalities of each business unit. The business units had legacy
applications, monolithic software units, or a partially networked solution.

The main aspect of having a solution on SOA is:

Ease of use
Easily portable
Easily deployable
Easily scalable

At the end of the case study, we will try to analyze our solution and see how
successfully it has been implemented against each of the above aspects. As in the
earlier case study, we will try to break the solution designed here into a few steps.

•

•

•

•

Traditional Integration Technology

[150]

Step One—Defining Organization Assets
For the sake of designing solutions based on the tenets of SOA, we have to define
each of the organization assets, which are the different business functions of the
organization. These functions could be either a single process, or set of processes that
effectively help in achieving a business goal. The assets have to be very specific in
their definition, as one of the goals of SOA is about re-use of the assets. Each of the
assets would belong to a set of libraries that are part of a searchable registry
of services.

Also, the composite applications that are relevant to the execution of business logic
have to be identified. The success of the solution depends on how these applications
are designed to be scalable. The application could be made up of underlying business
logic, and a front-end that hides the execution logic from the users.

Stores

Front End

getProductId()

Product
Info

Sales

Front End

getProductId()

Product
Info

While considering a business function or sets of business functions to be an asset, we
clearly need to have an idea about the following factors:

Detailed business process
Volume of transactions
Dependencies on other assets

The business process was clearly detailed and documented. This was one basic tenet
of the entire solution, as each of the business process had to be known.

•

•

•

Chapter 5

[151]

We had to have an idea of the volume, a particular asset. The reason for the same
was to have a clear understanding of the operational performance issue that we
might have to face in the production environments, and a plan of action to mitigate
such issues.

The third foremost factor was the dependencies of each of the assets, as we know
that for achieving a business goal, various business processes have to be involved.
These processes may span over multiple assets. So, each of these dependencies were
documented for referencing while the services were being developed.

Step Two—Generate Services
Moving further, we need to define services out of the assets. Services are the mode
of communication with the other assets that might have the need to consume the
output of that service for further processing. In our opinion, for the creation of the
service, it has to undergo a few sets of rules.

For the first one, we need to have a clear definition of the business goal that needs
to be achieved. It has to be thought about quite clearly along with the list of
dependencies. Once that is done, the services need to be created. These services
would keep the business logic encapsulated. Then, it's time to deploy the services.

Define

- Get Product
Information

- Get Client ID

GetProdInfo()

InsertItem()

GetClientID()

GetProdInfo()

InsertItem()

GetClientID()

Develop Deploy

For the sake of preparing the design document for the entire solutions, each of the
assets was clearly identified, and so were the services that were associated with the
list of dependencies. Typically, each of the services are designed in such a way that
they could be re-used by other applications. Designing the services in such a way
made them 'interoperable', because it enabled them to communicate with other
services without looking at the backend business logic, the platform in which they
were developed, or the execution language.

Traditional Integration Technology

[152]

The services designed here were granular in nature, in the sense that each of the
services was typically carved out from the business functions. But, how will these
services communicate? There are few different ways to communicate as we have
seen in the earlier chapters. So, without digging into them, we chose one of the
best approaches.

We chose XML—eXtensible Markup Language as the messaging format between
each of the business functions. We have listed the advantages of XML in the earlier
chapter. We will recap it here briefly. The advantages of XML are:

Information is eXtensible
'Extensible' is the USP for an XML. The popularity of XML owes itself to the demand
of the industry to add on data into the current representation. This helps the
developers to re-use the current form of representation and save the development
time for the creation of additional data formats.

As tags represent each of the data functions, more tags could be added and
information can be handled with greater thrust on re-use.

<Departments>
 <department>
 <name>Purchase</name>
 <location>IL</location>
 …
 </departments>
 …
</Departments>

Now, in a real-life scenario, let's say the organization goes across the border and sets
up a 'purchase' department.

<Departments>
 <department>
 <name>Purchase</name>
 <country>United Kingdom</country>
 <location>London</location>
 …
 </departments>
 …
</Departments>

Chapter 5

[153]

Information Represented in Textual Form
The information to be exchanged is stored in a textual format instead of in any binary
forms of data. This makes it easily readable and understandable.

<Departments>
 <department>
 <name>Purchase</name>
 <location>IL</location>
 …..
 </departments>
 …..
</Departments>

As we noted in the listing above, the information is easily understandable in a way.
It can be easily deduced whether the information, if belonging to the 'purchase'
department, is located in 'IL'.

Information is Structured
The information stored within the XML is represented in a structured manner.
From the above listing, we can see that the information is properly nested, and
when any new department is to be listed, it can be easily represented. Also, if the
'purchase' department is started at any other location, the same can be represented in
the schema.

Platform Independency
Due to its textual form of representation, the information in an XML format can be
easily consumed by different technologies.

We will proceed further after representing the information in one of the most
common forms of information exchange. Now, the services that have been created
have to be identified by the consumers. How do we do that?

We decided to take the help of WSDL (Web Services Description Language) for
the purpose of identifying the public interface of the web service. WSDL gives the
ability to:

Locate services
Identify functions
Bind messages

•

•

•

Traditional Integration Technology

[154]

Typically a WSDL is represented in the following form:
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="ProductService"
 targetNamespace="http://www.criorg.com/wsdl/ProductService.wsdl"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://www.criorg.com/wsdl/ProductService.wsdl"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <message name="getProductName">
 <part name="prodName" type="xsd:string"/>
 </message>
 <message name="getProductId">
 <part name="prodId" type="xsd:int"/>
 </message>
 <portType name="Product_PortType">
 <operation name="getProduct">
 <input message="tns:getProductId"/>
 <output message="tns:getProductName"/>
 </operation>
 </portType>
 <binding name="Product_Binding" type="tns:Product_PortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getProduct">
 <soap:operation soapAction=""/>
 <input>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/
 soap/encoding/"
 namespace="urn:examples:productservice"
 use="encoded"/>
 </input>
 <output>
 <soap:body
 encodingStyle="http://schemas.xmlsoap.org/
 soap/encoding/"
 namespace="urn:examples:productservice"
 use="encoded"/>
 </output>
 </operation>
 </binding>
 <service name="Product_Service">
 <documentation>WSDL File for Product Service</documentation>
 <port binding="tns:Product_Binding" name="Product_Port">
 <soap:address
 location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 </service>
</definitions>

Chapter 5

[155]

The first part of the WSDL gives the definition of the schema, and other related
elements. In the second part, messages are defined. The inputs and the outputs of
the message along with the data type of each of them are presented. In the third
part, the port-type are presented, based on the schema. It presents us with the list of
operations that can be used for the particular web service. Then we have the binding
type defined. This will give us the binding style and the manner in which the
message would be transported. Finally, the endpoints will be shown. This will give
us the location of the web service to be called.

In this WSDL, we are trying to retrieve the product information based on the product
ID. We can generate similar WSDL for each of the business functions. The generation
of the WSDL was an automated process for which we used the Cape Clear's SOA
Editor toolkit.

Now that the WSDLs were generated, we had to design the transport mechanism
for the services. In simple terms, the protocols had to be defined for the services to
communicate. The bindings of the messages were decided on SOAP, which has the
capacity to be transported over simple HTTP or TCP. It can even be transported via
SMTP where asynchronous mode of messaging would be involved.

We will briefly look at the benefits of using SOAP:

Protocol portability
Capacity to generate WSDL and client classes automatically
Ability to handle stateful conversation

The type of SOAP message that shall be used is defined in the WSDL:

…
<binding name="Product_Binding" type="tns:Product_PortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
….

The SOAP message was represented as:

<binding name="b1" type="tns:pt1">
 <operation name="GetProductInfo">
 <soap:operation soapAction=
 "http://www.criorg.com/GetProductInfo"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="body"

•

•

•

Traditional Integration Technology

[156]

 use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="docs"
 type="text/html"/>
 </mime:part>
 <mime:part>
 <mime:content part="logo"
 type="image/gif"/>
 <mime:content part="logo"
 type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </output>
 </operation>
</binding>
<service name="ProductInfoService">
 <port name="ProductInfoPort"binding="tns:b1">
 <soap:address location="http://www.criorg.com/productinfo"/>
 </port>
</service>

Now, we have the entire services portfolio defined. The services part will generate
the web services, its relevant WSDL, and define the transport mechanism.

Services

Services

Services

Service
Registry

Description

WSDL

Requestor

Locate

SOAP
Binding

SOAP
Publish

Chapter 5

[157]

Step Three—Model
Once we had the service ready, we modeled the business processes of the
organization to match the goals that were defined by the services. Each of the defined
business processes was modeled.

We can use the several commercial design tools available to model the business
processes. These models gave us the exact idea of the information flow between the
systems. The model will encompass the following:

Business Processes
Relationships
Protocols
Service Providers
Service Consumers

Request Prod getProdID searchInDB

SMTP Prod Info DB

Start End

Shown in the preceding image is a typical business process that caters to the need of
'requesting product information'.

Process#1: Signals start of the process. This could be a trigger-based either on
specific conditions, or it could be a scheduled job.

Process#2: This is the requestor of the business function for getting information on
a product.

Process#3: This process will pass on a request to get the product with the product ID.

•

•

•

•

•

Traditional Integration Technology

[158]

Process#4: This process will search in the database for the production information
related to the product ID.

Process#5: The retrieved product information is wrapped in the messaging body.

Process#6: The message has to be sent to the consumer now. This is done using
SMTP protocol.

Process#7: Once the process is complete, it will signal an 'End' to the processing of
the model.

Proper design of a model is quite necessary, as it can help achieve the maximum
value out of the flow of information from within an enterprise solution. So, the
leveraging on integration of the services is deemed quite an important aspect for the
solution to succeed.

The advantage of using the model-based approach is:

Co-relation of Events
The orchestration of each of the services is dependant on a particular event, or some
set of events. When the model is designed, each of the event handlers is defined. This
gives an idea about the processes that will be involved in case any of the events
are triggered.

Co-relation of Services and Information
Information provided by any of the services could be consumed by a subsequent
service, or any other endpoint. The model design takes care of representing
the information within the services. This enables the users to check the state of
information at any given time.

Step Four—Integrate
As soon as the business models were defined, we had to integrate those so that
communication between the different business units could be possible. ESB is the
core to the integration of those services.

ESB—Enterprise Service Bus
ESB is the communication backbone of any SOA-based solution. It plays a vital role
in encompassing the solution, and is really the place through which the message
exchange takes place. ESB supports:

Chapter 5

[159]

Load Balancing: The tools that provide ESB service have special configuration
segments that would deal with load balancing of the processes. The services could be
deployed across multiple machines to achieve the same as well.

Transformation: The messages that are being processed consume and deliver
objects of different data types. XML being the de-facto standard helps us to tune the
information into the target understandable data type.

Message Portability: As we have seen, the provider of the data and the consumer
will have no inkling about the underlying technologies. It could be a .NET service
message being consumed by a service developed on Java, where even the OS
don't matter.

Presentation Logic

getProductInfo GetClientInfo

Enterprise Service Bus

Business
Logic

DB

Traditional Integration Technology

[160]

For the purpose of setting up an ESB, we decided to use 'OpenESB'. It is based upon
Java Business Integration (JBI) specification. The open-source community develops
OpenESB, and the NetBeans IDE supports it. Recently, the OpenESB v2.0 was
released as a preview version for the community. The new version allows the user
the following capabilities:

Loose Coupling
Greater Inter-operability
Greater Integration to other open-source services

This gives the users greater flexibility for development and deployment. It also helps
in moving away from the proprietary use of ESB, and hence in conforming to the
SOA standards of using less proprietary elements.

So now that we have the final solution ready, let's move ahead and analyze if the
goals we set initially have been achieved.

Goals Achieved
Here, we will try to analyze the solution we implemented against the goals that had
been set before embarking upon the journey to have a SOA solution.

Goal #1—Proprietary Architecture
By exposing the business functions as services, and through the maximum use of
open-source toolsets, we eliminated the need to have a proprietary architecture.
The consumers and producers being represented in BUS architecture act as a huge
advantage against the standard hub-spoke model of development. Use of services
also helped to move away from the proprietary adapter-based messaging.

Goal #2—Eliminating Messaging Bottlenecks
In the implementation of SOA solution, we shall be using the BUS as a medium of
communication between the applications. The entire message flow is through the
service bus. This gives the flexibility of load balancing and eliminates any
messaging bottlenecks.

Message

Message
Bus

•
•
•

Chapter 5

[161]

Goal #3—Loose Coupling of Applications
Due to the use of web services, the biggest gain in terms of portability is achieved.
The messages can be propagated across multiple systems, and with the use of our
friendly XML-based messaging, the dependency on the type of consumer application
is lost. Today, most of the applications can consume XML data. This way, you can
plug-in multiple systems and messages across the bus. This helps us to achieve loose
coupling between the applications. 'N' number of systems could be added without
affecting the current solution.

Goal #4—Flexible Architecture
A remarkable improvement in business is achieved by moving the messages across
the bus system. Multiple applications can be plugged in for achieving the goals of
integration. Also, with the use of WSDLs, we could do away with the configuration
of adapters. This saves a lot of development time by re-using the WSDLs for future
application message transactions.

Goal #5—Return On Investment (ROI) On Investment (ROI) (ROI)
With the maximum use of open-source application tools, benefits are seen on
the organization's profit. Even when business grows, organizations need not set
aside substantial amounts of money on infrastructure for maintaining proprietary
solutions. The cost of manpower training also reduces.

The cascading effect of all those is felt on the development of the solutions. It
helps organizations reduce their time to market, and helps them achieve
customer satisfaction.

In brief, developing a SOA-based solution helped us achieve:

Integration between internal business processes and business partners
Avoidance of duplicity
Re-usability, flexibility, and scalability
Platform independence
Improvement in messaging exchange performance
Lower manual intervention
Increased ROI

•

•

•

•

•

•

•

Traditional Integration Technology

[162]

Summary
In this chapter, we have covered:

1. EAI case study: Here, we tried to develop a solution for a major FMCG
industry. The various heterogeneous systems within the organization
were integrated.

2. EAI drawback: We briefly discussed the drawback of designing solution
based on EAI.

Goals We Can Achieve
with SOA

SOA is mainly a mindset, an enterprise strategy whose natural implementation
is represented by web services. In the early years, when the WS-approach began
to emerge, it suffered from difficulties due to many factors such as complex
adoption process and poor standardization. Now, the time has matured for using
this technology with little effort while getting great advantages, both immediate
and as an investment for our future works. In this chapter, we will go through the
advantages of loose coupling, which is a key concept for an effective modular and
extensible system. Then, we will show how SOA makes re-using easier with respect
to traditional approaches. Designing pluggable services also favors the integration
of processes, and guarantees a high degree of flexibility over time and technology
changes. Finally, we will see how all these advantages contribute to raise the ROI.

Loose Coupling
The concept of "coupling" in software development comes into play at many levels.
A common example is represented by the interface-implementation pattern, where
the interface (also referred to as "contract") aims to decouple itself from the specific
implementation(s). It can be generally defined as a measure of the dependencies
among components. The more tightly one component is dependent on another,
the more it is difficult to modify it without having to consider the impact of the
modification on the rest of the system.

Goals We Can Achieve with SOA

[164]

D
e
c
o
u
p

i
l

n
g

Keeping the overall measure of coupling low is therefore a good practice, maybe one
of the more important indicators of a well-designed architecture. A loose-coupled
system is easier to maintain, prone to evolving, and integrates better with other
applications. In a word, it's the key-point of a successful architecture.

As we had mentioned earlier, loose coupling in general, can be applied in several
ways in the programming field. One of the first examples of this pattern is the very
basic concept of "interface" that every object-oriented language provides. Defining
and using the interface in place of a concrete class (the implementation) is the first
step towards loose coupling. This way, we obtain an independence from the concrete
implementations of the interface. Hence, changing an implementation means no
impact over the existing code wherever the interface is used.

Another example of loose coupling is the "Dependency Injection" mechanism
provided by an Inversion of Control (IoC) container, such as Spring framework
or PicoContainer. In this case, the container configuration, usually expressed by an
XML file, allows us to "wrap" the various components together in a loose manner.
Not only are we free to switch from one component implementation to another,
but can also add or remove some orthogonal mechanisms (aspects) such as security
or interceptors, just to make some examples. All this can be done by changing the
configuration, without any modification of our code.

In the context of web services, though, the levels of loose coupling we can obtain
extend this reach far beyond. Among these decoupling goals we can find:

Platform independence: Thanks to the XML-based communication, we get
a language-neutral approach. Therefore, the server and client platforms are
completely independent (for example Java and .NET).

•

Chapter 1

[165]

WSDL language-neutral aspect and automatic code generation: Starting
the design of a web service from its WSDL (contract-first approach) is a
good practice since it allows us to have a language-neutral service definition.
Furthermore, the code is automatically generated into the specific language.
An example of automatic code generation from WSDL is shown in the
following figure:

.NET
classes

Java
classesWSDL

Document style: The independence from the platform can also be obtained
with CORBA or other RPC forms. Every RPC approach, however, means a
heavy impact over the existing code, when it comes to changing the signature
of a business method in the back-end. This is not a good practice, as back-
end methods should not be exposed. Document style instead means easier
maintenance and flexibility, since it involves thinking in terms of messages,
rather than distributed-objects. Hiding business methods through document
style is illustrated in the following figure:

Business
method A

Business
method B

D
e
c
o
u
p

i
l

n
g

Message

•

•

Goals We Can Achieve with SOA

[166]

Flexibility and Fault-tolerance: A change in the structure of an exchanged
object's class is generally a critical operation when it comes to distributed
applications. The overall impact is quite significant since the "actors"
involved in the communication must be updated with the latest class version.
This is not the case with web services. Thanks to the fact that objects are
serialized and deserialized to and from an XML stream, most structural
changes can be introduced with zero-impact. Let's take for instance the
sample code (Listing 30—SOAP Document wrapped web service) shown
in Chapter 2 in the "Document/literal wrapped" section and add a new
attribute, with correspondent getter/setter methods, in the class Outcome at
server side:

 public class Outcome {
 private String retCode;
 private String retMessage;
 private String other;
 ...
 }

The server module can now assign a value to the new attribute and the
clients that update to the new Outcome class can receive that value. But what
about the clients who do not update? Well, they will continue to work in
the same way. They will obviously not be receiving the new value, but the
deserialization process will not break. On the other side, we can remove an
attribute (for example, retMessage) in the server module, and have a
non-updated client receive a null value in this field,though still working.
Asynchronous communication: Another important web service feature
consists of being able to call a service in an asynchronous mode. This adds
another level of loose coupling, since the caller module gains independence
from the immediate availability of the called component, which for instance,
may not be under our control.

It should be noted that there may be cases where tight coupling is better. In fact,
low coupling has a price in terms of performance loss due to the introduction of
interfaces. Furthermore, tight coupling allows strong type-safe checking at design
time, which translates into robustness while loose coupling can only be checked
at run time. Generally, the advantages of loose coupling in terms of modularity,
flexibility, and scalability are considered to largely overcome its disadvantages.

•

•

Chapter 1

[167]

Reusability
Programming by components and libraries is functional to layering software
development and thus to re-using parts with a modular approach. The developer
takes already developed libraries (from within the company's repository or third-
party) and builds upon them.

In the same way, the web services approach is functional to layering business process
composition, since it allows the WS-developer to re-use already running developed
services. By re-using components, the developer uses libraries and the compiled
code should run as desired. Now, by re-using services, what is exploited is running
code. The re-used service, in fact, is presumably already serving other clients or other
"consumer" modules. Remember that one service may call another service, acting as
a client in that specific communication process.

The level of re-use of web services is one of the most significant indicators of a
successful SOA initiative. In other words, re-use provides high business value.
In fact, the higher the number of processes that re-use a service, lower the cost of
that service, and the easier it is to maintain and to test the code. High reusability
is a clear indicator of how good the service originally designed was. It is a sign
of the farsightedness of the analyst and designer teams. The service should be
as independent as possible from a specific application requirement, possibly
throughout, making extensive use of parameterization, or by decomposing it into
more fine-grained services. The goal is to make the service "survive" the scope
of one or few applications, and become generic enough to serve a wide range of
applications or business processes with a modular approach. Indeed, this result
is generally obtained as an effect of consistent investments into the quality of
development process and standardization aspects, where great effort can be spent in
the phase of designing new services.

A high number of services should not be regarded as a good indicator of SOA
success, but quite the opposite. It is the ratio between the number of business
processes built upon the services, and the number of used services that gives an
index of Reusability:

 Total number of Business Processes using Services Reusability index = ___
 Total number of Services

In the mid-to-long run, designing business processes or solutions can therefore
become a matter of assembling services rather than creating new ones.

Goals We Can Achieve with SOA

[168]

Seamless Integration
SOA is above all an integration-oriented design philosophy. It is a kind of approach
that has been around since the beginning of the programming era. Indeed a number
of legacy business functions, originally developed in COBOL or RPG, have been
written following this paradigm. Many such pieces of code have survived most
technology evolutions and are still running and often considered the most reliable
and stable part in some systems. Being developed as shareable independent units,
they can be seamlessly wrapped into web services today, and integrated in a SOA
environment, and then survive again.

This teaches us an important lesson that when designing an application that is not
intended to expose services, creating business functions with software as a service
(SaaS) methodology is a winning practice. Thinking modular and shareable is the
best insurance for our code, our work, and our design.

Integration may then happen at various levels. It can become a company's internal
need, where new applications can be built exploiting already developed services.
However, another interesting option is making a service available to others, thus
exposing it externally. This paves the way for a new IT frontier.

The Internet is adding a new value to its nature as a repository of contents,
explored by users through the browser. It is also becoming a container of business
services that can be used by applications or accessed, joined and assembled to create
new business processes. Manufacturers, suppliers, and customers (just to make an
example) are becoming aware of the huge potential to be realized from adopting a
service-oriented approach. This goes far beyond the Electronic Data Interchange
(EDI) standardization introduced years ago to allow the business-to-business (B2B)
data exchange. Now, the goals are the pluggability of services, and the overcoming of
the B2B boundaries down to the consumer side that is business-to-consumer (B2C).

Return on Investment (ROI)
From what we have discussed so far, it should be clear enough how SOA can lead to
a better ROI. Indeed, these chapters are very interlaced one to the other.

Loose coupling, in fact, means easier maintainability, and hence a saving in the
maintenance phase. But it also helps re-use, which translates into less work to be
done while developing new business processes. Seamless integration, on the other
hand, means reduced effort when it comes to putting together heterogeneous
subsystems that need to interact.

Chapter 1

[169]

Loose coupling: Minimize maintainability effort
Reuse: Exploit already developed services
Seamless Integration: Reduce integration work

As you can see all these aspects are inherent to saving, and this could by itself be
enough motivation to favor SOA adoption.

Saving, however, is not the only goal that SOA can lead to. It paves the way for new
business opportunities since companies can react quickly and effectively to their
customer's needs. Furthermore, the new development model, based on composition
and the assembling of already available services, will disclose huge potentials for the
business process designers.

Here is an analogy to help illustrate these potentials. Consider an exposed service
analogous to an Application Programming Interface (API) of an operating system
or a language. A set of API, possibly created by different third-parties, can be
exploited by a developer to build a complex application or a specialized library.
Similarly, a set of services from various sources can be used by a SOA designer
to create a business process application or specifically, more complex libraries of
services. This structured assembling process will not only boost the development
by a significant factor, but will also allow rapid adaptation against the changes and
evolution of the requirements.

Summary
In this chapter, we explored in detail the advantages that the SOA approach can
lead to. Thanks to loose coupling, we can design at a higher level of abstraction,
focusing on business concepts and actions, reducing the dependencies from the
specific service implementation. Re-using can leverage the already developed
services and therefore limit the development process to the creation of new services
and assembling the existing ones. These factors are, on the other hand, key elements
for a seamless integration within a flexible and adaptive information system. In the
end, we learned that designing by services can help to build a solid infrastructure
upon which we can plug our future projects. Nevertheless, we can also benefit from
immediate advantages, since breaking the business processes down to their modular
services allows for a better management, and opens the way to cooperation not only
within the company, but also on behalf of third-party subjects.

•

•

•

Index
A
Apache Axis 81
Apache Tuscany SCA Java 124
Apache Tuscany SDO 115
API 169
application architecture 7, 8
Application Programming Interface.

See API
architecture

about 5
need for 6, 7

Axis Data Binding (ABD) 68

B
BDOM

about 104
classes 106

bottom-up approach, SOA 26
business-to-business (B2B) 168
business-to-consumer (B2C) 168
Business Domain Object Model.

See BDOM

C
Canonical Data Model. See CDM
case study, EAI based. See EAI, case study
case study, SOA based. See SOA, case study
CBD 26
CDM 113
client-server architecture

1-tier application 9
2-tier application 9, 10
3-tier application 10

3-tier application, advantages 11
about 8
n-tier application 11
n-tier application, advantages 11

Common Data Model. See CDM
component-based development. See CBD
cots (component off the shelf) 133
Create, Read, Update, and Delete.

See CRUD
CRUD 113

D
Data Mediator Service. See DMS
data services 113, 114
decoupling, goals 164-166
DMS 115
Doc-WS

need for 64
document-oriented way

document style 65
document / literal wrapped

advantages, over document and RPC 64
document style, document-oriented way

asynchronous models 65
capabilities, validating 65
interoperability 66
loose coupling 66
self-contained documents 65

E
EA

challenges, faced by organization 17-19
for developers 17
for managers 16

[172]

EAI
about 131
case study 137
drawbacks 147
goals achieved 145, 146
hub and spoke architecture 132
point-to-point architecture 132
solution 140-145

EAI, case study
business needs 137, 138
customer information 137
drawbacks 146
goals achieved 145
solution 138

EAI, drawbacks
manpower 147
messaging bottlenecks 147
non-flexible architecture 147
proprietary architecture 147
tight coupling 147

EAI, goals achieved
business processes and business partners,

integrating 145
cost effective 146
data duplication, avoiding 145
flexibility 145
manual intervention, reducing 146
message exchange, setting up 146
platform independence 146
re-usability 145
scalability 145

EAI, solution
adapter, identifying 143-145
applications (spokes), identifying 140, 141
document repository and registory 142
hub and spoke architecture 140
information, transferring 142
management services 143
messaging hub 141
process management 142
rules engine 143

EAI and ESB
about 131
architecture 133, 134

Electronic Data Interchange (EDI) 168
Enterprise Application Integration. See EAI
enterprise computing

about 12
administration 16
advantages 15, 16
application 14
business 13
design 15
information 14
security 16
technical 15

Enterprise Service Bus. See ESB
ESB

about 131
benefits 158

eXtensible Markup Language. See XML

F
features, MOM 130, 131
features, OpenESB

application server support 134
binding components 135
business logic units 135
composite application editor 134
composite application support 134
global service collaboration networks 135
JBI bus 135
monitoring 135
service engines 135

G
goals achieved, SOA

loose coupling 164-167
Return on Investment (ROI) 168
reusability 167
seamless integration 168

H
HTTP protocol

exploiting, REST used 47, 49
hub and spoke architecture 140

I
implementation

Axis 2 67, 68
JAX-WS 2 66, 67

[173]

Spring-WS 69, 70
XFire / CXF 70

Information Model. See CDM
Inter-Process Communications. See IPC
Inversion of Control. See IoC
IoC 164
IPC 128

J
Java API for XML Web Services.

See JAX-WS
Java Business Integration. See JBI
Java Data Objects. See JDO
Java Persistent Objects. See JPOX
JAX-WS 72
JBI 134
JDO

about 104
features 104
JPOX 105
need for 104

JDO sample, JDOX used
jpox.PROPERTIES, BDOM class 108
LineItem.java, BDOM class 107
Main.java, BDOM class 109, 110
OrderList.java, BDOM class 106
package.jdo, BDOM class 107

JDO sample, JPOX used
BDOM, limiting 106
building 110
running 112

JPOX 105
JPOX JDO

data store 105
persistence API 105
persistence aspects 105
persistence definition 105
query language 105
website, for downloading 105

L
Line of Business. See LOB
LOB 113
loose coupling 164

M
Message-Oriented Middleware. See MOM
message path, SOA 30, 31
messaging, SOA

SOAP messaging protocol 29
middle-out approach, SOA 26
MOM

about 128-130
features 130

N
NMR 134
nodes, SOA 29
Normalized Message Router. See NMR

O
OpenESB

features 134

P
Plain Old Xml (POX) 41
POX over HTTP

implementation 42-46
protocol 37

Q
QoS 128
Quality of service. See QoS

R
Remote Procedure Call 56
Representational State Transfer. See REST
REST

HTTP protocol, exploiting 47-49
Return on Investment. See ROI
reusability 167
ROI 168
RPC 56
RPC and document based WS

about 55, 56
document / literal 60-63
document / literal wrapped 63, 64

[174]

RPC / literal 56-60
RPC inheritance 64
RPC style, SOA 30

S
SCA

about 123
Apache Tuscany SCA Java 124

SCA sample, Tuscany SCA Java used
about 124
BookingAgentClient 127
BookingAgent service component 126, 127
building 127
CabServiceComponent 126
FlightServiceComponent 125
HotelServiceComponent 125
running 128

SDO
Apache Tuscany SDO 115
architecture 114
need for 114

SDO sample, Tuscany SDO used
building 121
CreateEmployees.java 120, 121
hr.xml 118
hr.xsd 116, 117
ReadEmployees.java 119
running 122
sample artifacts, coding 116

seamless integration 168
service, SOA

service consumer 27
service handler 27
service provider 27
WSDL-service description 28

Service Component Architecture. See SCA
Service Data Objects. See SDO
Service Oriented Architecture. See SOA
Service Oriented Integration. See SOI
Service Provider Interfaces. See SPI
Simple Object Access Protocol. See SOAP
SOA

about 133
analogy 19
approach 33
approach, applications are made of 34

approach, business functions 33
approach, identifying 33
bandwagon 21-24
case study 149
components 22
dynamic discovery 23
fundamental 21
goals achieved 164-168
history 21
message 22
message path 30, 31
messaging 29
need for 24, 25
nodes 29
RPC style 30
service 22, 26
web services, orientation 20, 21
web services for 20

SOA, case study
co-relation of events, model-based

approach 158
co-relation of services and information,

model-based approach 158
ESB, benefits 159
extensible information 152
goals achieved 160
information, representing in textual form

153
integration 158
model-based approach, advantages 158
model-based approach, using 157
OpenESB, benefits 160
organization assets, defining 150, 151
platform independency 153
services, generating 151, 152
SOAP benefits 155, 156
structured information 153
WSDL 153, 155

SOA, goals achieved
flexible architecture 161
loose coupling of applications 161
messaging bottlenecks, eliminating 160
proprietary architecture 160
Return On Investment (ROI) 161

SOAP
benefits 155, 156
features 52

[175]

SOA with XML, over HTTP protocol
create function 39
CRUD functions 38
delete function 40
generic CRUD action 40
item functional domains 38
non-CRUD action 41
order functional domains 38
read function 39
update function 39

software as a service (SaaS) 168
SOI 134
SPI 134
Spring 91
Streaming API for XML (StAX) 67

T
top-down approach, SOA 26

U
update function 39

W
web service (WS) 71
web service, Apache Axis used

contract first versus contract last 81
implementing, in Axis 82, 83, 90

web service, implementing in Axis
client, coding 87, 88
client, running 90
server, coding 82, 86, 87
server, running 89

web service, implementing in Java EE server
client, coding 79
client, running 80
server, coding 78
server, installing 77
server, running 79
server, starting 77

web service, implementing in Java SE 6
client, coding 74
client, running 76
server, coding 73
server, running 75

web service, implementing in Spring
client, coding 95, 96
client, running 97
server, coding 92, 93
server, running 96

web service, implementing in XFire
client, running 100
server, coding 98, 99
server, running 100

web service, JAX-WS 2.0 used
implementing, in Java EE server 77
implementing, in Java SE 6 73
JAX-WS 2.0, features 72

web service, Spring used
implementing, in Spring 92, 97
Spring-WS 91

web service, XFire used
implementing, in XFire 98, 100

web services 37
Web Services Description Language.

See WSDL
WSDL

benefits 153, 155

X
XFire 97
XML

advantages 35
disadvantages 35

XML pitfalls
stateful approach 35
stateless approach 36

XML Schema Definition. See XSDs
XSDs 113

	Service Oriented Architecture with Java
	Table of Contents
	Preface
	Chapter 1: The Mantra of SOA
	Architecture
	Application Architecture
	Client-Server Architecture
	1-Tier Application
	2-Tier Application
	3-Tier Application
	N-Tier application

	Enterprise Computing or Architecture
	Business
	Application
	Information
	Technical
	The Design
	Security
	Administration

	EA for Managers
	EA for Developers
	Analogy of SOA
	Web Services for SOA
	'Orientation' of Web Services

	History of SOA
	The SOA Bandwagon

	Why SOA?
	How SOA…

	Summary

	Chapter 2: Web Services and SOA
	The SOA Approach
	XML—Advantages and Disadvantages
	XML Pitfalls

	Introduction to Web Services, RESTful Services, and Other Transport with XML
	Basic SOA With XML Over HTTP Protocol
	A Basic Java Implementation of POX-over-HTTP
	REST—Exploiting the HTTP Protocol
	SOAP

	RPC and Document Based-WS: How to Communicate, Pros and Cons of the Two Approach
	RPC / Literal
	Document / Literal
	Document / Literal Wrapped

	Why We Should Use Doc-WS?
	The RPC Inheritance
	The Document-Oriented Way
	Document Style

	Implementations: JAX-WS 2, Axis2, Spring-WS, and XFire/CXF 2.0
	JAX-WS 2
	Axis 2
	Spring-WS
	XFire / CXF

	Summary

	Chapter 3: Web Service Implementations
	Web Service Using JAX-WS 2.0
	JAX-WS 2.0—A Primer
	Web Service Implementation in Java SE 6
	Code Server and Client
	Run the Server and Client

	Web Service Implementation in Java EE Server
	Install and Start the Server
	Code Server and Client
	Run the Server and Client

	Web Service Using Apache Axis
	Contract-First versus Contract-Last
	Web Service Implementation in Axis
	Code Server and Client
	Run the Server and Client

	Web Service Using Spring
	Spring-WS—A Primer
	Web Service Implementation in Spring
	Code Server and Client
	web.xml
	Run the Server and Client

	Web Service Using XFire
	Web Service Implementation in XFire
	Code Server and Client
	Run the Server and Client

	Summary

	Chapter 4: Data and Services—All Roads Lead to Enterprise Service Bus
	JDO
	Why JDO?
	JPOX—Java Persistent Objects
	JDO Sample Using JPOX
	BDOM for the Sample
	Code BDOM Entities for JDO
	Build and Run the JDO Sample

	Data Services
	Service Data Objects
	Why SDO?
	SDO Architecture
	Apache Tuscany SDO
	SDO Sample Using Tuscany SDO
	Code the Sample Artifacts
	Build and Run the SDO Sample

	Service Component Architecture
	What is SCA?
	Apache Tuscany SCA Java
	SCA Sample Using Tuscany SCA Java
	Code the Sample Artifacts
	Build and Run the SCA Sample

	Message-Oriented Middleware
	What is MOM?
	Benefits of Using MOM

	Enterprise Service Bus
	EAI and ESB
	Java Business Integration
	OpenESB

	Summary

	Chapter 5: Traditional Integration Technology
	Case Study #1—Based on EAI
	Customer Information
	Business Need
	Solution
	Hub and Spoke Architecture

	Goals Achieved
	Goal #1—Integration between Internal Business Processes and Business Partners
	Goal #2—Avoid Duplicity
	Goal #3—Achieve Re-Usability, Flexibility, and Scalability
	Goal #4—Platform Independence
	Goal #5—Setting up Messaging Exchange
	Goal #6—Less Manual Intervention
	Goal #7—Cost Effective

	EAI Drawbacks
	Proprietary Architecture
	Messaging Bottlenecks
	Tight Coupling
	Non-Flexible Architecture
	Manpower

	SOA to Rescue

	Case Study #2—Based on SOA
	Step One—Defining Organization Assets
	Step Two—Generate Services
	Information is eXtensible
	Information Represented in Textual Form
	Information is Structured
	Platform Independency

	Step Three—Model
	Co-relation of Events
	Co-relation of Services and Information

	Step Four—Integrate
	ESB—Enterprise Service Bus

	Goals Achieved
	Goal #1—Proprietary Architecture
	Goal #2—Eliminating Messaging Bottlenecks
	Goal #3—Loose Coupling of Applications
	Goal #4—Flexible Architecture
	Goal #5—Return On Investment (ROI)

	Summary

	Chapter 6: Goals We Can Achieve With SOA
	Loose Coupling
	Reusability
	Seamless Integration
	Return on Investment (ROI)
	Summary

	Index

