Professional Expertise Distilled

Software Testing using
Visual Studio 2012

Satheesh Kumar N .52
Subashni S [PACKT] enferprise

PUBLISHING

http://www.allitebooks.org

Software Testing using
Visual Studio 2012

Learn different testing techniques and features of
Visual Studio 2012 with detailed explanations and
real-time samples

Satheesh Kumar N
Subashni S

enterprise

PUBLISHING
BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

Software Testing using Visual Studio 2012

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2010
Second Edition: July 2013

Production Reference: 1190713

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-954-0
www . packtpub. com

Cover Image by Artie Ng (artherngeyahoo. com.au)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Authors
Satheesh Kumar N

Subashni S

Reviewers
Ahmed llyas

Ken Tucker
Hulot
Kalyan

Acquisition Editor
Anthony Lowe

Lead Technical Editor
Mayur Hule

Technical Editors
Ruchita Bhansali

Krishnaveni Haridas
Pratik More
Anita Nayak

Larissa Pinto

Project Coordinator
Anugya Khurana

Proofreader
Dan McMahon

Indexer
Tejal Soni

Production Coordinator

Kyle Albuquerque

Cover Work
Kyle Albuquerque

[vww allitebooks.cond

http://www.allitebooks.org

About the Authors

Satheesh Kumar N holds a Bachelor’s degree in Computer Science engineering
and has around 17 years of experience in managing the software development life
cycle, developing live projects, and program management. He started his career by
developing software applications using Borland software products. He worked for
multiple organizations in India, the UAE, and the US. His main domain expertise is
in retail and he is currently working in Bangalore as a Program Delivery Manager for
the top retailer in UK. He is currently handling five agile scrum teams for delivering
the website features. His experience also includes implementation and customization
of Microsoft Dynamics for an automobile sales company in UAE. He works with the
latest Microsoft technologies and has published many articles on LINQ and other
features of .NET. He is a certified PMP (Project Management Professional).

He has also authored Software Testing using Visual Studio Team System 2008 and
Software Testing using Visual Studio 2010 for Packt Publishing.

I would like to thank my wife for helping me in co-authoring and
supporting me in all the ways to complete this book. I would also
like to thank my family members and friends for their continuous
support in my career and success.

[vww allitebooks.cond

http://www.allitebooks.org

Subashni S holds a Bachelor’s Degree in Computer Science engineering and

has around 15 years of experience in software development and testing life cycle,
project, and program management. She is a certified PMP (Project Management
Professional), CSTM (Certified Software Test Manager), and ITIL V3 Foundation
certified. She started her career as a DBA in Oracle 8i technology, and later
developed many software applications using Borland software products for a
multinational company based in Chennai, and then moved to Bangalore. She is
presently working for a multinational company, in the area of Project Management
for developing and testing projects. She is also currently working for one of the top
multinational companies headquartered at Austin, Texas.

She has also authored Software Testing using Visual Studio Team System 2008 and
Software Testing using Visual Studio 2010 for Packt Publishing.

I would like to thank my husband for helping me in co-authoring
and supporting me in all the ways to complete this book. I would
also like to thank my other family members and friends for their
continuous support in my career and success.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Ahmed Ilyas has a BENG degree from Napier University in Edinburgh, Scotland,
where he majored in software development. He has 15 years of professional
experience in software development.

After leaving Microsoft, he has ventured into setting up his consultancy company
offering the best possible solutions for a magnitude of industries and providing
real world answers to those problems, and only uses the Microsoft stack to build
these technologies and be able to bring in the best practices, patterns, and software
to his client base to enable long-term stability and compliance in the ever-changing
software industry. He has also tried to improve software developers around the
globe, pushing the limits in technology.

This went on to being awarded three times the MVP in C# by Microsoft for
“providing excellence and independent real world solutions to problems that
developers face.”

With the breadth and depth of the knowledge he has obtained not only from his
research, but also with the valuable wealth of information and research at Microsoft,
the motivation and inspirations come from this, with 90 percent of the world using at
least one form of Microsoft technology.

Ahmed Ilyas has worked for a number of clients and employers. With the great
reputation that he has, this has resulted in having a large client base for his
consultancy company, Sandler Ltd (UK) which includes clients from different
industries, from media to medical and beyond. Some clients have included him on
their “approved contractors/consultants” list which include ICS Solution Ltd and
has been placed on their “DreamTeam” portal and also CODE Consulting/EPS
Software (www.codemag.com) (based in USA).

[vww allitebooks.cond

http://www.allitebooks.org

Ahmed Ilyas has also been involved in the past in reviewing books for Packt
Publishing and wish to thank them for the great opportunity once again.

I would like to thank the author/publisher of this book for giving
me the great honor and privilege in reviewing the book. I would also
like to thank my client base and especially Microsoft Corporation
and my colleagues over there for enabling me to become a reputable
leader as a software developer in the industry, which is my passion.

Ken Tucker is a Microsoft MVP from 2003-2013. He has also worked for Seaworld
Parks and Entertainment.

I would like to thank my wife Alice-Marie.

Carlos Hulot has been working in the IT area for more than 20 years in different
capabilities, from software development, project management to IT marketing,
product development and management. Carlos has worked for multinational
companies such as Royal Philips Electronics, PricewaterhouseCoopers, and Microsoft.
Currently Carlos is working as an independent IT consultant. Carlos is a Computer
Science lecturer in two Brazilian universities. Carlos holds a Ph.D. in Computer
Science and Electronics from the University of Southampton, UK, and a B.Sc. in
Physics from University of Sao Paulo, Brazil.

[vww allitebooks.cond

http://www.allitebooks.org

Kalyan Bandarupalli is currently working in Oxford University, UK. His
professional career started as a software engineer and then senior software developer
and software architect. He is a senior consultant, who uses Microsoft technologies

to develop applications. Since 2003, he has been working as a Microsoft technology
developer.

He was far more concerned about the technical implementation of software, but

in the past few years focus has changed to more architectural implementation of
software. He recently (June 2008) started a blog (www. techbubbles. com), because
he wanted to share his learning experience to help other people learn about new
technologies in Microsoft software. This blog helps IT professionals and developers
around the world to develop applications using Microsoft technologies.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt Pub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
servicee@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[ﬂ] PACKT

http://PacktLib.PacktPub.com

®@

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read, and search across Packt’s entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Visual Studio 2012 Test Types 7
Software testing in Visual Studio 2012 8
Testing as part of software development life cycle 9
Types of testing 1"
Unit testing 12
Manual testing 14
Exploratory testing 15
Web performance tests 16
Coded Ul test 17
Load testing 18
Ordered test 20
Generic test 21
Test management in Visual Studio 2012 21
Introduction to testing tools 22
Test Explorer 25

Code coverage results 28
Microsoft Test Manager 28
Connecting to Team Project 29

Test Plans, Suites, and test cases 30
Defining test cases 31

Lab Center 32
Summary 33
Chapter 2: Test Plan, Test Suite, and Manual Testing 35
Test Plan 36
Test Suite and its types 41
Static Test Suites 42
Query-based Test Suites 44
Requirement-based Test Suites 45

Table of Contents

Running manual tests 47
Action recording 56
Shared steps and action recording for shared steps 59
Creating shared steps 59
Action recording for shared steps 62
Adding parameters to manual tests 62
Summary 66
Chapter 3: Automated Tests 67
Coded Ul tests from action recordings 68
Files generated for coded Ul test 73
CodedUITest1.cs 73
UIMap.Designer.cs 74
UlMap.cs 75
UiMap.uitest 76
Data-driven coded Ul test 80
Adding controls and validation to coded Ul test 82
Summary 88
Chapter 4: Unit Testing 89
Creating unit tests 90
Assert statements 93
Types of Assert statements 94
Assert 94
StringAsserts 107
CollectionAssert 111
AssertFailedException 119
UnitTestAssertionException 120
ExpectedExceptionAttribute 120
Unit Tests and Generics 123
Data-driven unit testing 126
Unit Testing using Fakes 132
Stubs 132
Shims 137
Difference between Stubs and Shims 137
Code coverage unit test 138
Blocks and lines 140
Excluding elements 141
Summary 142
Chapter 5. Web Performance Test 143
Creating the web performance test 145
Recording a test 146
Adding comments 152

Cleaning the recorded tests 153

Lii]

Table of Contents

Copying the requests 153
Adding loops 153
Web performance test editor 158
Web test properties 160
Web test request properties 161
Other request properties 164
Form POST parameters 164
QueryString parameters 165
Extraction rules 166
Validation rules 171
Transactions 174
Conditional rules 176
Toolbar properties 181
Add data source 181
Setting credentials 184
Add recording 185
Parameterize web server 186
Adding a web test plugin 189
Debugging and running the web test 191
Settings in the .testsettings file 192
General 192
Roles 194
Data and Diagnostics 195
Deployment 197
Setup and Cleanup Scripts 198
Hosts 199
Test Timeouts 199

Unit test 200
Web test 201
Running the test 203
Web Browser 204
Request 204
Response 205
Context 205
Details 206
Summary 207
Chapter 6: Advanced Web Testing 209
Dynamic parameters in web testing 210
Coded web test 212
Generating code from a recorded test 213
Transactions in coded tests 218
Custom code 219
Adding a comment 219
Running the coded web test 220
Debugging coded web test 222

[iii]

Table of Contents

Custom rules 224
Extraction rules 224
Validation rules 228

Summary 232

Chapter 7: Load Testing 233

Creating a Load Test 234

Load Test Wizard 236
Specifying a scenario 239
Counter sets 248
Run settings 250

Editing Load Tests 262
Adding context parameters 267

Storing results in the central result store 268

Running the Load Test 270

Analyzing and exporting Test Results 272
Graphical view 272
Summary view 275
Tables view 277
Detail view 279
Exporting to Microsoft Excel 280

Using Test Controller and Test Agents 288
Test Controller and Test Agent configuration 289

Summary 296

Chapter 8: Ordered and Generic Tests 297

Ordered tests 298
Creating an ordered test 298
Executing an ordered test 300

Generic tests 301
Creating a generic test 302
The summary results file 304

Summary 308

Chapter 9: Managing and Configuring Tests 309

Using Test settings 310
The General option 311
The Roles option 312
Data and Diagnostics 313
The Deployment section 316
Setup and Cleanup Scripts 317
The Hosts option 318
The Test Timeouts option 319
The Unit Test option 320

Editing the Test Run configuration file 322

[iv]

Table of Contents

The Web Test option 324
Configuring unit tests using the .runsettings file 325
Summary 326
Chapter 10: The Command Line 327
VSTest.Console utility 327
Running tests using VSTest.Console 328
The /Tests option 329
The /ListTests option 329
MSTest utility 330
Running a test from the command line 332
The /testcontainer option 332
The /testmetadata option 333
The /test option 334

The /unique option 335
The /noisolation option 336
The /testsettings option 336
The /resultsfile option 337
The /noresults option 337
The /nologo option 338
The /detail option 338
Publishing Test Results 339
The /publish option 339
The /publishbuild option 339
The /flavour option 340
The /platform option 340
The /publishresultsfile option 341
TCM command line utility 344
Importing tests to a Test Plan 345
Running tests in a Test Plan 349
Summary 352
Chapter 11: Working with Test Results 353
Test Runs and Test Results 354
Test as part of the Team Foundation Server build 358
Building reports and Test Results 363
Creating a work item from the result 365
Summary 367
Chapter 12: Exploratory Testing and Reporting 369
Exploratory testing 37
Reports using Team Foundation Server 379
Bug status report 379
Test case readiness report 379
Status on all iterations 380
Other out-of-the-box reports 380

[v]

Creating a report definition using Visual Studio 2012

382

Summary 390
Chapter 13: Test and Lab Center 391
Connecting to Team Project 392
Testing Center 394
Testing Center — Plan tab 395
Testing Center — Test tab 399
Testing Center — Track tab 402
Testing Center — Organize tab 405
Lab Center 408
Environments 408
Deployed environments 410
Summary 413
Index 415

Preface

The Microsoft Visual Studio 2012 suite contains several features to support the

needs of developers, testers, architects, and managers to simplify the development
process. Visual Studio 2012 provides different editions of the product such as
Professional, Premium, and Ultimate with different set of tools and features. Visual
Studio 2012 is tightly integrated with Team Foundation Server, a central repository
and configuration management system that provides version control, process
guidance and templates, automated builds, automated tests, bug tracking, work item
tracking, reporting, and support of the Lab Center and Test Center configurations.
The Microsoft Test Manager 2012 is a standalone tool used to organize Test Plans,
Manage test cases, and executing manual test cases.

Software Testing using Visual Studio 2012 helps software developers to get familiarized
with the Visual Studio tools and techniques to create automated unit tests, and to

use automated user interface testing, code analysis and profiling to find out more
about the performance and quality of the code. Testers benefit from learning more
about the usage of Testing tools, test case management techniques, working with
Test Results, and using Test Center and Lab center. This book also covers different
types of testing such as web performance test, load test, executing the manual test
cases, recording user actions, re-running tests using recording, test case execution,
capturing defects, and linking defects with requirements. Testers also get a high level
overview on using Lab Center for creating virtual environments for testing multiple
users and multiple location scenarios.

Visual Studio 2012 provides user interface tools such as Test Explorer, Test Results,
and Test Configuration to create, execute, and maintain the tests and Test Results in
integration with Team Foundation Server. This book provides detailed information
on all of the tools used for testing the application during the development and testing
phases of the project life cycle.

Preface

What this book covers

Chapter 1, Visual Studio 2012 Test Types, provides an overview of different types of
testing which helps testing the software applications through different phases of
software development. This chapter also introduces the tools and techniques in Visual
Studio 2012 for different testing types, Microsoft Test Manager 2012, and its features.

Chapter 2, Test Plan, Test Suite, and Manual Testing, explains the steps involved in
creating and managing the Test Plan, Test cases and Test Suite using Test Center in
Test Manager. This chapter also explains how to create manual tests by recording the
user actions and running the test with data inputs. Sharing the test recording across
multiple tests is also covered in this chapter.

Chapter 3, Automated Tests, provides a step-by-step approach to creating Coded Ul
test from user action recordings. It also explains the steps to execute the coded Ul
test through data source and adding validation and custom rules to the test.

Chapter 4, Unit Testing, explains the detailed steps involved in creating unit test
classes and methods for the code. Different type of assert methods and parameters
for testing the code, passing set of data from a data source and testing the code also
explained in detail. The mocking framework used for isolating the code and testing
it with the help of Shims and Stubs is also explained in detail.

Chapter 5, Web Performance Test, explains the basic way of web testing by recording the
user actions and creating a test out of it. Running the test using a data source, adding
parameters to the web tests, adding validation and extraction rules, adding looping
and branching mechanism to the recorded tests, and here configuring the settings
required for the Test Runs are some of the features explained as part of this chapter.

Chapter 6, Advanced Web Testing, explains the way of generating code out of the
recorded web tests explained in Chapter 5, Web Performance Test using the Generate
Code option. This is very much useful for customizing the test through the code,
adding additional logic to the test, adding custom validation and extraction rules.

Chapter 7, Load Testing, helps in simulating various numbers of users, network
bandwidths, combination of different web browsers, and different configurations.
In the case of web applications it is always necessary to test the stability and
performance of the application under huge data load and concurrent users. This
chapter explains the steps involved in simulating the real world scenario by using
Controllers and Agents. The details of analyzing and exporting the load Test Results
are also explained in this chapter.

[2]

Preface

Chapter 8, Ordered and Generic Tests, explains the way of testing the existing third
party tool or service which can also be run using the command line. Visual Studio
2012 provides a feature called ordered test to group all or some of these tests and
then execute the tests in the same order. The main advantage of creating the ordered
test is to execute multiple tests in an order based on the dependencies. Generic tests
are just like any other tests except that it is used for testing an existing third party
tool or service.

Chapter 9, Managing and Configuring Tests, explains the details of the test settings
file and the tools used for managing tests. The configuration includes deployment
details, setup and cleaning scripts, collecting data diagnostics information, unit test
and web test settings.

Chapter 10, The Command Line, explains the command line tools such as VSTest.
Console, MSTest, and TCM used for running the test with different options, then
collecting the output and publishing the results. Each of these commands is used for
specific purposes including backwards compatibility.

Chapter 11, Working with Test Results, explains the process of running the tests and
publishing the Test Results to the Team Project. Also covered in detail is to integrate
the tests as part of Team Foundation Server builds, Build reports and Test Results,
Creating work items from Test Results, and publishing the Test Results.

Chapter 12, Exploratory Testing and Reporting, explains the details of testing which
happens without any test cases and scripts and by only exploring the application
manually. This chapter also explains the details of accessing the Test Results and
publishing Test Results and reporting the same in a specific format. Accessing different
types of testing reports and creating new test reports are also explained in this chapter.

Chapter 13, Test and Lab Center, is useful for creating and organizing Test Plans
and test cases. Test plans can be associated to the requirements using Test Center.
The Lab Center helps in creating and configuring different virtual / physical
environments for the Test Runs, Test Settings such as defining the roles and
configuring the data and diagnostics information for the selected roles, configuring
the Test Controllers required for the test, and configuring the test library to store the
environment information.

[31]

Preface

What you need for this book

This book requires a basic knowledge on any of the versions of Visual Studio and
Team Foundation Server. The reader must be familiar with the Visual Studio IDE
and have basic knowledge of C#. The following tools are required in order to use the
code samples of the chapters in this book:

* Visual Studio 2012 Ultimate
* SQL Server Express (OR) SQL Server 2008 or higher version
* Team Foundation Server 2010/2012

* SQL Server Reporting services

Who this book is for

If you are a software developer, a tester or an architect who wishes to master the
amazing range of features offered by Visual Studio 2012 for testing your software
applications - then this book is for you.

This book assumes that you have a basic knowledge of testing software applications
and have good work experience of using Visual Studio IDE.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: “All the methods and classes generated
for the unit testing are inherited from the Microsoft.visualStudio.TestTools.
UnitTesting namespace.”

A block of code is set as follows:

[DataSource (“*“Microsoft.VisualStudio.TestTools.DataSource.CSV”,
“|DataDirectory|\\data.csv", “data#csv”, DataAccessMethod.Sequential),

DeploymentItem(“data.csv”), TestMethod]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: “The Test
Runs window displays all the tests based on the results availability at the location”.

[4]

Preface

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http: //www.packtpub.com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

[51]

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes

do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http: //www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http: //www.packtpub.com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

mailto:copyright@packtpub.com

Visual Studio 2012
Test Types

Software testing is one of the most important phases of the software development
life cycle (SDLC). Delivery of the software product is based on following good
SDLC practices of analysis, design, coding, testing, and by all means meeting

the customer requirements. The quality of the product is measured by verifying

and validating the product based on the defined functional and non-functional
requirements for product. The testing tools and techniques play an important role in
simulating the real-life scenarios and the user load required for verifying the stability
and reliability of the product. For example, testing a web application with 1,000
concurrent users is a very time consuming and tedious task, if we do it manually
considering the required resources. But the testing tools that are part of Visual Studio
2012 can simulate such scenarios and test it with limited resources and without
manual intervention during testing. Visual Studio 2012 provides tools to conduct
different types of testing, such as Unit testing, Load testing, Web testing, Ordered
testing, Generic testing, and Exploratory testing.

This chapter covers the following topics and provides a high-level overview of the
testing tools and techniques supported by Visual Studio 2012:

* Testing as part of the software development life cycle

* Types of testing

* Test management in Visual Studio 2012

* Testing tools in Visual Studio 2012

Visual Studio 2012 Test Types

Software testing in Visual Studio 2012

Before getting into the details of how to perform testing using Visual Studio 2012, let
us familiarize different tools provided by Visual Studio 2012 and its usage. Visual
Studio provides tools for testing as well as test management such as the Test List
Editor and the Test View. The Test Projects and the actual test files are maintained in
Team Foundation Server (TFS) for managing the version control of the source and
history of changes.

The other aspect of this chapter is exploring the different file types generated in
Visual Studio during testing. Most of these files are in the XML format, which are
created automatically whenever a new test is created.

For readers new to Visual Studio, there is a brief overview on each window we are
going to deal with throughout all or most of the chapters in this book. While we go
through the windows and their purposes, we can check the Integrated Development
Environment (IDE) and the tools integration with Visual Studio 2012.

Microsoft Visual Studio 2012 has different editions tailored to the needs. You need

to have the respective edition as prerequisite to use any of the testing features
explained in this book. The following table shows supported edition of Visual Studio
2012 for the testing features.

Testing Ultimate Premium Test Professional Professional
features with MSDN with MSDN Professional with MSDN
with MSDN
Unit testing ~ Yes Yes Yes Yes
Coded UI Yes Yes
test
Code Yes Yes
coverage
Manual Yes Yes Yes
testing
Exploratory ~ Yes Yes Yes
testing
Test case Yes Yes Yes

management

[8]

Chapter 1

Testing Ultimate Premium Test Professional Professional
features with MSDN with MSDN Professional with MSDN
with MSDN
Web Yes
performance
testing

Load testing Yes

Lab Yes Yes Yes
management

Microsoft Test Manager 2012 (MTM) is a standalone product from Microsoft, which
integrates with Team Foundation Server for test management. MTM is used in creating
and managing multiple Test Plans, cloning Test Plans, creating Test Suites, creating
manual test steps and test cases, and maintaining the same. MTM also provides
various reports for Test Plan results. In 2012 version, MTM has the new feature of
exploratory testing, maintaining records, and test steps during exploratory testing.

Lab environments can be created in MTM using the controller and agents. This is
required when running load tests with multiple agents.

Testing as part of software development
life cycle

The main objective of testing is to find the early defects in the SDLC. If the defect

is found early, then the cost will be lower than when the defect is found during

the production or in the implementation stages. Moreover, testing is carried out to
assure the quality and reliability of the software. In order to find the defect as soon
as possible, the testing activities should start early, that is, in the Requirement phase
of SDLC and continues till the end of the SDLC. The testing team should create the
test cases based on the defined requirements.

The Coding phase of the SDLC includes various testing activities to validate and
verify the functionality based on the design and the developer's code for the design.
The developers themselves conduct the tests. In case of Test driven development,
the test scripts and test scenarios are created first based on the requirement and the
code is developed.

[o]

Visual Studio 2012 Test Types

As soon as the developer completes the coding, the developer conducts the
unit testing

Unit testing: This is the first level of testing in the SDLC. The developer takes
the smallest piece or unit of testable code and determines whether the code
behaves exactly as expected. In object-oriented programming, the smallest
unit is a method which belongs to a class. The method usually has one or few
inputs and one output. Frameworks, drivers, Stubs and mock, or fake objects
are used to assist in unit testing.

Once the coding is complete for the agreed requirements, all the units are
integrated and the product is built as a single package. Then the other phases
or forms of testing are executed.

Integration testing: This type of testing is carried out between two or more
modules or functions along with the intent of finding interface defects
between them. This testing is completed as a part of unit or functional
testing, and sometimes becomes its own standalone test phase. On a larger
level, integration testing can involve putting together groups of modules and
functions with the goal of completing and verifying that the system meets
the system requirements. Defects found are logged and fixed later by the
developers. There are different ways of integration testing such as top-down
and bottom-up , which are as follows:

[e]

Top-down approach: This is the incremental testing technique which
begins with the top level modules followed by low-level modules.
The top-down approach helps in early detection of design errors
which helps in saving development cost and time as the design errors
can be fixed before implementation.

Bottom-up approach: This is exact opposite to the top-down
approach. In this case the low level functionalities are tested and
integrated first and then followed by the high level functionalities.

Umbrella approach: This approach uses both the top-down
and bottom-up patterns. The inputs for functions are integrated
in bottom-up approach and then the outputs for functions are
integrated in the top-down approach.

[10]

Chapter 1

System testing: This type of testing is used for comparing or verifying
the specifications against the developed system. The system test design is
derived from the design documents and is used in this phase for planning
and executing the tests. System testing is conducted after all the modules
are integrated and completed with Integration testing. To avoid repeating
the same process during multiple cycles of system testing, the tests are
automated using automation testing tools. Once all the modules are
integrated, several errors may arise because of dependencies and various
other factors. The defects are usually maintained using a defect tracking
tool and the development team prioritizes and fixes the defects. There are
different types of testing followed under system testing, but they differ from
organization to organization. Here are the common types of tests widely
followed in the industry:

° Sanity testing: Whenever there are some defect fixes to the existing
product and because of that a new build is created, sanity test is
conducted on that build instead of performing full testing on the
software. Sanity test is conducted to make sure that the existing
functionality of the product is not impacted or broken because of
the defect fixes.

° Regression testing: The main objective of this type is to determine
if defect fixes or any other changes have been successful and have
not introduced any new defects. This is also to verify if the existing
functionalities are not affected.

Types of testing

Visual Studio provides a range of testing types and tools for testing software
applications. The following are some of those types:

Unit test
Manual test
Exploratory test
Web test

Coded UI test
Load test
Ordered test

Generic test

[11]

Visual Studio 2012 Test Types

The unit testing tool is integrated along with Visual Studio and developers can use
any of the Visual Studio supported language to write the unit testing. The manual
test and exploratory test can be used during regression and is integrated with the
Test Manager tool to track the test cases and defects when the test is conducted.
Web Test and Coded Ul Test in Visual Studio is used for system testing to record
and playback the test steps. The load test tool is used during system testing cycle
for testing performance and stability of the application with user load, and is
integrated with Test Manager. The Generic test is again a part of the system
testing to test the third-party components and the ordered test is to enable the
testing order during Test Runs.

For all of the above testing types, Visual Studio provides tools to manage, order the
listing, and execute tests. The next few sections provide details of these testing tools
and the supporting tools for managing testing in Visual Studio 2012.

Unit testing

Unit testing is one of the earliest phases of testing the application. In this phase the
developers have to make sure that the unit of testable code delivers the expected
output. It is extremely important to run unit tests to catch defects in the early stage
of the software development cycle. The main goal of the unit testing is to isolate
each piece of the code or individual functionality and test if individual method

is returning the expected result for different sets of parameter values.

A unit test is a functional class method test by calling a method with the appropriate
parameters, exercises it and compares the results with the expected outcome to
ensure the correctness of the implemented code. Visual Studio 2012 has great
support for unit testing through the integrated automated unit test framework,
which enables developers to create and execute unit tests.

Visual Studio generates the test methods and the base code for the test methods.

It is the responsibility of the developer to modify the generated test methods and
customize the code for actual testing. The code file contains several attributes to
identify the Test Class, Test Method, and Test Project. These attributes are assigned
when the unit test code is created for the original source code. Here is the sample of
the unit test code:

[12]

Chapter 1

—Inamespace UnitTestProjectl

i
[TestClass]
= public class UnitTestl
1
[TestMethod]
= public woid TestAddNumbers()
1
string numberl = "18";
string number2 = "8";
double expectedTotal = 19;
SampleClass sample = new Sz eClass(numberl, number2});
double actualTotal = SampleClass.AddNumbers();
Assert.AreEqual(expectedTotal, actualTotal, "The total is incorrect”™);
}
}
i

Once a unit test is created for a testable unit of code, the developers can use it with
multiple combinations of input parameters to make sure the actual result is as per
the expected result.

All the methods and classes generated for the unit testing are inherited from

the Microsoft.VisualStudio.TestTools.UnitTesting namespace. This
namespace is only used when the default Visual Studio integrated testing tool is
used. This namespace contains many classes and attributes to provide enough
information for the test engine to determine data source, test execution, execution
order, deployment, and results.

Visual Studio also provides the flexibility to integrate unit testing tools such as Unit
and XUnit for which the adapters need to be installed. After installing the tool, the
respective namespaces can be used for generating calls and unit testing methods.

[13]

vww allitebooks.conl

http://www.allitebooks.org

Visual Studio 2012 Test Types

Manual testing

Manual testing is the oldest and simplest type of testing, but yet very crucial for
software testing. The tester would be writing the test cases based on the functional
and non-functional requirements and then test the application based on each written
test case. It helps us to validate whether the application meets various standards
defined for effective and efficient accessibility and usage.

Manual testing can be an alternative in the following scenarios:

* The tests are more complex or too difficult to convert into automated tests.
* There is not enough time to automate the tests.
* Automated tests would be time consuming to create and run.

* There are not enough skilled resources to automate the tests.
The tested code hasn't stabilized sufficiently for cost effective automation.

We can create manual tests by using Visual Studio 2012 very easily. A very
important step in manual testing is to document all the test steps required for the
scenario with supporting information in a separate file. Once all the test cases are
created, we should add the test cases to the Test Plan in order to run the test and
gather the Test Result every time we run the test. The Microsoft Test Manager tool
helps us in adding or editing the test cases to the Test Plan. The manual testing
features supported by Visual Studio 2012 are as follows:

* Running the manual test multiple times with different data by
changing parameters.

* Create multiple test cases using an existing test case and then
customize or modify the test.

* Sharing test steps between multiple test cases.
* Remove the test cases from the test if no longer required.

* Adding or copying test steps from Microsoft Excel or Microsoft
Word or from any other supported tool.

* Including multiple lines and rich text in manual test steps.
There are a lot of other manual testing features supported in Visual Studio

2012. We will see those features explained in Chapter 2, Test Plan, Test Suite,
and Manual Testing.

[14]

Chapter 1

Exploratory testing

Exploratory testing is an open approach to testing without any process and test
cases. The only known fact is the user story. The objective of this testing is to test
the existing application or feature, and to find any improvements required, defects,
broken links, and familiarize with the existing system. This type of testing has been
followed for many years, but there was no tool to support the testing and capture
the defects and steps. It was a tedious process to document the steps and capture
supporting screenshots.

The Microsoft Test Manager (MTM) has the new feature to perform the exploratory
testing and capture the screenshots, test steps, test case, comments, attachments, and
defects automatically. The testing actions are stored as test cases so that it is easy
while retesting.

To start exploratory testing, open the MTM and navigate to Testing Center | Test |
Do Exploratory Testing. Now by selecting a work item requirement and then
clicking on Explore work item will associate the recording of the test with the work
item. Any test cases or defects created during Exploratory session will automatically
get linked to the work item. The following screenshot shows a sample Exploratory
testing session started for a work item:

- O X

@ @ | @ | TeSﬁng Center A ‘ Plan Test Track Org’ SampleTeamProject » MyTestCenter

RunTests | Analyze TestRuns | Do Exploratory Testing | View Exploratory Test Sessions | Verify Bugs MNew « Opentems (0} «

d Do Exploratory Testing

To begin exploratory testing without any selected work items: | | Explore H

Perform tests using: Local machine (WNT-B45160Q1) Medify

To test specific work item(s), select work item(s) below

b Explore work item = l_’]’ Open T Unfiltered ~

Drag a column header here to group by that column,

| 1D Title Assigned To | State Area Path

4 Sum of two numbers » Explore work item SampleTeamProject
Explore work item with options

[§ Open

[15]

Visual Studio 2012 Test Types

During Exploratory testing, all actions performed on the screen are recorded except
the actions performed in MTM and Office applications. To change this setting,
configure the settings in the Test Plan properties.

A detailed walk-through the Exploratory testing is covered in Chapter 12, Exploratory
Testing and Reporting which talks about Exploratory testing and reporting.

Web performance tests

Web performance tests are used for testing the functionality and performance of

the web page, web application, website, web services, and a combination of all of
these. Web tests can be created by recording the HTTP requests and events during
user interaction with the web application. The recording also captures the web

page redirects, validations, view state information, authentication, and all the other
activities. All these are possible through manually building the web tests using Web
test. Visual Studio 2012 provides Web performance test features, which capture all
HTTP requests and events while recording user interaction and generating the test.

There are different validation rules and extraction rules used in Web performance
tests. The validation rules are used for validating the form field names, texts, and
tags in the requested web page. We can validate the results or values against the
expected result as per the business needs. These validation rules are also used for
checking the processing time taken for the HTTP request.

Extraction rules in Web performance tests are used for collecting data from the web
pages during requests and responses. The collection of these data will help us in
testing the functionality and expected result from the response.

Providing sufficient data for the test methods is very important for the success of
automated testing. Similarly for web tests we need to have a data source from which
the data will be populated to the test methods and the web pages will be tested.

The data source could be a database or a spread sheet or an XML data source or any
other form of data source. There is a data binding mechanism in Web tests which
takes care of fetching data from the source and provides the data to the test methods.
For example, a reporting page in a web application definitely needs more data to test
it successfully. This is also called the data-driven web test.

[16]

Chapter 1

Web tests can be classified into Simple Web test and Coded Web test. Both of these
are supported by Visual Studio.

* Simple Web tests: This includes generating and executing the test as per the
recording with a valid flow of events. Once the test is started, there won't be
any intervention and it won't be conditional.

* Coded Web tests: This is more complex, but provides a lot of flexibility.
These types of tests are used for conditional execution based on certain
values. Coded Web tests can be created manually or generated from a
web test recording and languages such as C# or VB.NET can be chosen
while generating the code. The generated code can be customized to better
control the flow of test events. A coded Web test is a powerful and highly
customizable test for the web requests.

Coded Ul Test

Coded Ul Tests (CUIT) are the automated way of testing the application user
interface. In any Ul intensive application, the functionality of the application is
verified manually through Ul and this happens after the development. Next time
there is any change to any of the backend functionality, the application should be
retested again. CUIT helps us in saving time spent testing through Ul multiple
times manually. CUIT Builder helps us in recording the Ul test step actions and
then generates code out of it. After the test is created, we can modify the code and
customize the actions and data values captured during recording.

A Coded Ul Test generates several supporting files as part of the testing. The UIMap
object represents the controls, windows, and assertions. Using these objects and
methods we can perform actions to automate the test. The coded Ul Test supporting
files are as follows:

* CodedUITest.cs: This file contains the test class, test methods, and assertions.

* UIMap.uitest: This is the XML model for UIMap class, which contains the
windows, controls, properties, methods, and assertions.

®* UIMap.Designer.cs: This contains the code for the UIMap.uitest XML file.

* UIMap.cs: All customization code for the Ul Map would go into this file.

[17]

Visual Studio 2012 Test Types

The following screenshot shows the Coded Ul Test with the default files created for

the test:

{

-lusing
using
using
using
using
using
using
using
using
using

CodedUITest2.cs & X
%3 UnitTestProjectl. CodedUTTest2

System;
system.Collections.Generic;
System.Text.RegularExpressions;
System.Windows.Input;
System.Windows.Forms;
System.Drawing;

- @ CodedUITest2()

Microsoft.VisualStudic.TestTools.UITesting;
Microsoft.VisualStudic.TestTecls.UnitTesting;

Microsoft.VisualStudic.TestTools.UITest

.Extensian;

keyboard = Microsoft.VisualStudio.TestTools.UITesting.Keyboard;

-lnamespace UnitTestProjectl

" <summary:
Summary description for CodedUITest2
/ </summary:

[CodedUITest]
public class CodedUITest2

1

public CodedUITest2()
{

1

[TestMethod]

public void CodedUITestMethodl()

1
// To generate code for this test
/{ For more information on genera
this.UIMap.RecordedMethodl();

¥

[additional test attributes]

Solution Explorer *OXx

@ e-2udm @A
Search Solution Explorer (Ctrl+;) R~
fa] Solution 'WebSite2' (3 projects)
b ClassLibraryl
4[] UnitTestProjectl
b J Properties
B =B References
P c* CodedUITest2.cs
Py UMap.cs
P A3 UMap.Designer.cs
P c# UnitTestl.cs
b & WebSite2

Solution Explorer | Team Explorer

-

Load testing

Load testing is a method of testing, which is used to identify the performance of
the application under maximum workload. In case of a desktop or a standalone
application, the user load is predictable, and thus easy to tune the performance, but

in case of a multiuser application or a web application, it is required to determine the
application behavior under normal and peak load conditions.

[18]

Chapter 1

Visual Studio provides a load test feature, which helps in creating and executing
load test with multiple scenarios. The following are the parameters set using the
load test wizard:

* Load Test Pattern: This defines the number of users and the user load pattern
to be followed during the test.

* Test Mix Model: This defines the model to be followed either by number of
tests or by number of virtual users, or based on the user pace or by order.

* Test Mix: This includes the tests to be part of the load tests.

* Browser Mix and Network Mix: These define the possible browsers and the
networks to follow while testing.

* Counter Sets: This defines the performance counters to collect from the load
Test Agents and the system.

* Run settings: This defines the duration of the Test Run.

If the application is a public-facing website or one with a huge customer base, then it
is better to perform load tests with real or expected scenarios. The Visual Studio load
test makes use of the Web test recording or the unit test during load Test Run.

The load test is always driven by the collection of Web and Unit tests. A web test
is used to simulate the scenario of concurrent users using the website and making
multiple HTTP requests. The load can be configured to start with a minimum
number of virtual users and then gradually increase the user count to check the
performance at multiple stages of user load until it reaches the peak user load.

A unit test can be included as part of the load test in case of testing the performance
of a service or individual method to find out the servicing capacity and threshold
for client requests. One good example would be to test the data access service
component that calls stored procedure from the backend database and returns the
results to the client application.

The load test captures the results of individual tests within the Test Run. This helps
us to identify the failed tests and debug and analyze them later. The results of all
load tests can be saved in a repository to compare the set of results and then take
necessary measures to improve performance.

Visual Studio has the Load test analyzer to provide the summary and details of Test
Runs from the load Test Result.

Load testing properties, working with tests, and analyzing the load Test Results are
explained in detail later in this book in Chapter 7, Load Testing.

[19]

Visual Studio 2012 Test Types

Ordered test

Ordered test is just a container which holds the order in which a sequence of tests
should be executed. All required tests should be ready and available to get added to
the ordered test. Each test is independent and there is no dependency here. It is just
the sequence of execution that is maintained in the ordered tests.

Test execution and results follow the sequence defined in the ordered test. The result
of individual test is maintained in the repository. We can check the results anytime
and analyze it.

Reordering the tests, adding new tests, and removing an existing test from the order
are all possible through the Ordered Test Editor in Visual Studio.

b website2 - O x
OrderedTestl.orderedtest 7 X =

O 2 test(s) added

Select project to view tests: Selected tests:
I[AII Loaded Tests] 'I Test Mame Project D T
ﬂCchECIUITEEtME... UnitTestProje.. UnitTestPr.
Available tests: & TestAddMumbers UnitTestProj UnitTestPr &
= » estAddMumbers UnitTestProje.. nitTestPr..
Test Mame Project D
<

i CodedUlTesthMeth UnitTestProjectl UnitTestProje
ﬁ GenericTestl UnitTestProjectl cusersisuba
ﬂ TestAddMumbers UnitTestProjectl UnitTestProje

[] Continue after failure

[20]

Chapter 1

An ordered test is the best way of controlling and running several tests in a
defined order.

Generic test

Generic test is useful in testing an existing executable file. It's the process of
wrapping the executable file as a generic test and then executing it. This type of
testing is very useful when testing a third party component without the source code.
If the executable requires any additional files for testing, the same can be added as
deployment files to the generic test. The test can be run using the Test Explorer or

a command-line command.

By using Visual Studio, we can collect the Test Results and gather code coverage
data too. We can manage and run the generic tests in Visual Studio just like other
tests. In fact, the Test Result output can be published to the Team Foundation Server
to link it with the code built used for testing.

Test management in Visual Studio 2012

Visual Studio has great testing features and management tools for testing. These
features are greatly improved from previous versions of Visual Studio. The Test
Impact View is the new test management tool added to the existing tools, such as
Test View, Test List Editor, Test Results, Code Coverage Results, and Test Runs
from the main IDE.

[21]

Visual Studio 2012 Test Types

Introduction to testing tools

Visual Studio provides tools to create, run, debug, and view results of your tests.
The following screenshot is the overview of the tools and windows provided by
Visual Studio for viewing the test and output details:

Team Explorer - Home == v O X || Test Explorer -

(] tar | @ SearchWorkltems P -|| @ [i= - Search P-
Home | SampleTeamProject M RunAll | Run.. =
L] - ’
ma My Work . 4 Failed Tests (2) TestAddNumbers
Request Code Review €3 TestAddNumbers 25 me

Source: UnitTestl.cs line 12
(® Pending Changes

€3 Test Failed - TestAddNumbers
Seurce Control Explorer 4 Passed Tests (1)

Message: Assert.AreEqual failed.

Work Items Expected:<19:. Actual:<18>. The total is

New Query 4 Not Run Tests (1) incorrect
W
Elapsed time: 25 ms
& -
iy Builds 4 StackTrace:
) Web Access UnitTestl.TestAddMumbers()
£} Settings

Code Coverage Results =
Subashni_Sachidanant WN7-B4516Q1 2012- - 2@ G £ & X

Hierarchy Mot Covered (Blocks) Mot Covered (% Blocks) Covered (Blocks) Covered (% Blocks)

b E§ Subashni_s. 186 9538 % 3 462 %

Test Runs =

Connect: J12\Projects\WebSite?\TestResults ~

Test Run Mame Status Owner
b Completed Runs (0) (C:\Users\subashni_sachidanant\Documents\Visual Studic 2012\Projects\WebSite2\TestResults)

Bk - G

Result Test Mame D Error Message

Let us create a new Test Project using Visual Studio 2012 and then test a sample
project to get to know about the tools and features:

[22]

Chapter 1

Open Visual Studio 2012 and create a new solution. Let's not get into the details of
sample application, AddNumbers, but create the Test Project and look at the features
of the tools and windows. The application referred throughout this chapter is a very
simple application for adding two numbers and showing the result.

Now in a similar way to adding the projects and code files to the solution, create the
Test Project and test files and add the Test Project to the solution.

Select the solution and add a project using the shortcut menu options Add | New
Project.... Then select the project type as Test from the list of project types under the
language. Next select a template from the list. Visual Studio 2012 has three templates
as follows:

Add New Project -8 [E3a]

b Recent MET Framework 4.5 ~ Sort by: Default ~ Search Installed Te P ~

4 Installed

CH# - Vi 2
| Ii_] Coded Ul Test Project Visual C# Type: Visual C#
4 Visual C# A project for Coded UI tests,
; cs
Windows EJ Unit Test Project Visual C2
Web
. C#
b Office EJ Web Performance and Load T...Visual C#
Cloud
Reporting
I SharePaint
Silverlight
WCF
Workflow
LightSwitch
I Other Languages

I Other Project Types

hndzlina Draicrtc
b Online
MName: CodedUITestProjectl
Location: Ch\Users\subashni_sachidanant\Documents'\Visual Studic 2012\Proje - . Browse... |

[0K H Cancel |

For the sample testing application, select the second option, Unit Test Project. This
option creates the project and also adds the unit test to the project.

[23]

Visual Studio 2012 Test Types

The first option creates a Coded UI Test to capture the Ul actions and controls,
and automate the testing by generating and customizing the code. The last option
is to record the user actions and re-run the recording to test with validations and
verification rules, use the recording to test the performance and stability of the
system under multiple user load.

s

Solution Explorer sl
a e@-al
Search Solution Explorer ({

af] Solution "WebSite2' {
b &[c#] ClassLibraryl
b &S Properties
P =B References
p v c* CodedUITest?
s LoadTestl.loa
G4= OrderedTest].
b agF UlMap.uitest
P &c# UnitTestl.cs
b 6 WebSite2

o B =

Layer Explo... | Solution Ex

I <l ¢

Build

Rebuild

Clean

Run Ceode Analysis

Scope to This

New Solution Explorer View
Calculate Code Metrics
Project Dependencies..,
Project Build Qrder...

Add

Add Reference..,

Add Service Reference..
Manage NuGet Packages...
View Class Diagram

Set as StartUp Project
Debug

Get Latest Version (Recursive)
Check Qut for Edit...

Check In...

Seurce Control

Cut

Ctrl+X

BB Y B o

o
0
e

New Item...
Existing Item...
MNew Folder
Unit Test...
Load Test...

Web Performance Test...

Coded UI Test...
Ordered Test
Generic Test
Windows Form...
User Control...
Component...

Class...

Ctrl+Shift+A
Shift+ Alt+A

Shift+Alt+C

The Context menu from the project has the option to choose new tests. The menu
provides six different options for creating and adding the tests. The following is the file
extension for each of the Visual Studio test types shown in the preceding screenshot:

* .vbor .cs: This extension is for all types of Unit Test and Coded UI Test.

* .generictest: This extension is for the Generic Test type.

* .loadtest: This extension is for the Load Test type.

* .webtest: This extension is for the Web Performance Test type.

[24]

Chapter 1

After selecting the test type, the test file gets created and added to the project with a
default name and extension. Open the properties and change the name as required.

The next step is to use the Test Explorer window to view and run the tests that
are created.

Test Explorer

The Test Explorer window helps us to run tests from multiple projects in a solution.
On building the Test Projects, the tests in each project appear in the Test Explorer
window. To open Test Explorer, navigate to Test | Windows | Test Explorer.

The tests are grouped into four different categories in Test Explorer, such as

Failed Tests, Passed Tests, Skipped Tests, and Not Run Tests as shown in the
following screenshot:

Test Explorer *AO X

(‘, I= . Search b~

Run All | Run.. =

4 Failed Tests (2)

4 Passed Tests (1)

v CodedUITestMethodl 30 sec

4 Mot Run Tests (1)
@ generictestl

CodedUITestMethodl
Source: CodedUITest2.cs line 27

@ Test Passed - CodedUITestMethodl
Elapsed time: 30 sec

[25]

Visual Studio 2012 Test Types

The Test Explorer window has the following options to run the tests:

Choose Run All.. to run all the tests in the solution

Choose Run... and then a group to run all the tests under that group

Select an individual test, open the Context menu, and then select Run
Selected Tests to run only the selected tests

G [EE - Search p-
Rum &All | Run. ~ |
4 Failed Ts Run Failed Tests

Run Mot Run Tests
Run Passed Tests
4 Passed 1 Repeat Last Run Ctrl+R, L

O Codet ;5 Analyze Code Coverage for All Tests
4 Not Run 1ests (1)

) generictestl

generictestl

Source: generictestl.generictest

[26]

Chapter 1

To view the details of the Test Run, select the test in the Test Explorer window.
The Details pane displays the details as follows:

Source: This is the source file name and the line number of the
test method.

Status: This is the test status whether it has passed or failed.

Message: If the test is failed, the detailed message of the failure is
also displayed.

Elapsed time: This is the time that the method took to run.

StackTrace: This is the stack trace information for the failed test.

Test Explorer *B X

S [EE - Search P -

Run Al | Run.. =

4 Failed Tests (2)

4 Passed Tests (1)

@ CodedUlTestMethodl 30 sec
4 Not Run Tests (1)

@ generictestl

TestAddMNumbers

Source: UnitTestl.cs line 12

€3 Test Failed - TestAddMumbers

Message: Assert.AreEqual failed. Expected:<19=,
Actual:<18>. The total is incorrect

Elapsed time: 14 ms

4 StackTrace:
UnitTest]l. TestAddMumbers()

[27]

Visual Studio 2012 Test Types

At any time if you double-click on the Test option or select Test and choose Open
Test, Visual Studio opens the source code of the selected test. This is very helpful
when starting to debug the code.

Code coverage results

Visual Studio provides this code coverage feature to find out the percentage of
code that is covered by the test execution. Through this window we can find out
the number of lines covered by the test in each method.

Select the test from the Test Explorer window, and then right-click on the test and
select Analyze Code Coverage for Selected Tests, or you can open the same by
navigating to Test | Windows | Code Coverage Results from the Menu option.
The following screenshot shows the code coverage results for the selected test. The
result window provides information such as number of code blocks not covered
by the test, percentage of code blocks not covered, covered code blocks, and the
percentage of covered code blocks from the selected assembly:

Code Coverage Results

Subashni_Sachidanant_WN7-B4516Q12012- - 2 &G 1 = X

Hierarchy Mot Covered (Blocks) Mot Covered (% Blocks) | Covered (Blocks) Cowvered (% Blocks)

. {186 95,38 % 9 462 %

Microsoft Test Manager

This is the new standalone product introduced, but this is not a part of Visual
Studio 2012 Premium. It is a part of Visual Studio Test Professional and Visual
Studio Ultimate. This is the functional testing tool, which provides the ability to
create and execute manual tests and collect the results. This tool works without
Visual Studio but does require a connection to the Team Foundation Server and
the Team Project.

[28]

Chapter 1

The Testing Center is used for creating Test Plans and creating Test Suites and test
cases for the Test Plans. We can also associate the requirements to the Test Plans.
The other features such as running the manual test and capturing the Test Results
and defects, tracking the Test Results using existing queries and creating custom
queries, organizing the test cases and shared steps for test cases, and maintaining
the test configurations , that are supported by Testing Center.

Lab Center is used to set up and create lab environments for the test execution.
The environments are created by using the Physical and Virtual machines with
set of configurations. Later the environment is deployed so that the test would be
conducted using the specified environment.

Connecting to Team Project

MTM should be connected to the TFS Team Project to create the Test Plans and test
cases. The first task in opening MTM is to connect to the TFS Team Project from the
Team Project collection , as shown in the following screenshot:

Connect to Your Team Project
4 T wn7-b4516q1
rl E DefaultCollection

ﬁu’ SampleTeamProject

4 Add server Connect now W

[29]

Visual Studio 2012 Test Types

Test Plans, suites, and test cases

The Test Plan window in the Testing Center allows the creation of new Test Suites,
test cases, and adding test cases based on requirements. Any number of test cases can
be created or added and configured through this window. The first step is to create the
Test Plan and Test Suite. Each Test Plan contains a set of Test Suites which helps us to
plan the testing effort. For example, we can create a Test Plan for each sprint, if we are
using agile methodology for the software development. The following screenshot has
one Test Plan (MytestPlan) with two Test Suites as Add Numbers Test and Second
Test Suite:

- O X

@ @ | A | Testing Center ~ Plan Test Track Organize MytestPlan

Contents | Properties New « OpenItems (2) »

@ Contents

‘_ Test suitez 1: Provision to enter the first i... (Requirement 1)

4 (B[} MytestPlan " Default configurations (1): Windows 7 and[E8 ~ State: o In progress ~
L= i

4 (B[} Add Numbers test j Open vj Add] New E3 X vj. Assign EZ Configurations

(# [2) 1: Provision to enter the first int:
=/ Bv ZFrovision to enter ME NSNS byag a column header here to group by that column.

® ﬁ:‘, 2: The Ul should have the provis

o . . H ID | Title Priarity | Configurations | Testers Area Path
() [2) 3 An action which should add th

() [2} Second Test Suite w14 Separate Ul elements 2 1 Satheeshkumar TestTeamProject

The next step is to create or add test cases to the suite. The requirements can be
added to the plan and then test cases can be associated to the requirements. In the
above example, three requirements are added to the first Test Suite, Add Numbers
Test and new test cases are associated with the requirements. These requirements
are available in TFS under the Team Project. If we follow the Application lifecycle
management and tools available in TFS then we should have the requirements
created as part of the requirements phase already.

[30]

Chapter 1

Defining test cases

The creation of a test case involves the definition of a lot of properties for it. Each
testing step and the expected result should be defined. The user scenarios, links, and
attachments can be associated to the test cases. The test case can be classified under
the specific area path and iteration path for the Team Project in TFS. Other properties
such as Assigned To, State, Priority, and Automation status can be set for the test
case as shown in the following screenshot:

- o X
@ @ ‘ @ | Testing Center ~ Plan Test Track Organize SampleTeamProject » MyTestCenter

Contents | Results Properties New « Open Items (1) +

ﬂ New Test Case 1*: Add numbers test with positive values leaSave and Close |

Add numbers test with positive values

Iteration SampleTeamProject

STATUS DETAILS

Assigned To Sachidanant, Subashni Automation status Not Automated
State Design Area SampleTeamProject
Priority 2

STEPS ~ SUMMARY TESTED BACKLOG ITEMS LINKS ~ ATTACHMENTS ASSOCIATED AUTOMATION

allInsertstep 5 M b | 28 Insert shared steps 4o Insert parameter 1|
B | Y Segoell - 12 - A
L] Action Expected Result

Ml Pprovision to enter the first number Text bax which accepts only number

-ﬂ Provision to enter the second number Ancther text box to enter the second value

M3 Action button ta get the addition result On click of the buttan, the two numberes should get added and displayed
-l Click here to add a step

Parameter Values

[31]

Visual Studio 2012 Test Types

Lab Center

The Lab Center in MTM helps us to create and configure different virtual / physical
environments for our Test Runs, test settings such as defining the roles and
configuring the data and diagnostics information for the selected roles, configuring
the Test Controllers required for the test, and configuring the test library to store the
environment information. The following screenshot shows the Lab Center without

any environment:

Test Settings

@ ® | @ | Lab Center

Environments

- 0 X

Library Controllers

New + Open Items (3) *

E Environments

Environment:

Description:

New ~

| MName Status |Ir1 use | Praject: Capabilities:

To create a physical environment, you must have a test
ntroller

where your test controller is installed.

t your system

To create virtual envirenments con
t agement for this team

We can see the details of these configurations later in Chapter 13, Test and Lab Center
which explains the features of Testing Center and Lab Center.

[32]

Chapter 1

Summary

There are lots of new testing features added to Visual Studio 2012 particularly

the coded Ul testing, manual testing using the Test Manager Standalone tool. The
manual testing is very well structured with lot of options and is handled separately
using the MTM tool. The MTM tool contains Testing Center and Lab Center, which
helps us to maintain the test cases, test configurations, and testing environments
required to simulate actual user load to test the application performance. This
chapter provides the high-level information on the tools and techniques available
and the new techniques added to Visual Studio 2012. Each of these testing techniques
is explained in detail in the coming chapters with detailed examples.

The next chapter explains the details of maintaining the test cases by creating Test
Plan, Test Suites, and then the test cases themselves. Action recording and creating
test cases for manual tests is also covered in detail in the next chapter.

[33]

[vww allitebooks.cond

http://www.allitebooks.org

Test Plan, Test Suite, and
Manual Testing

Manual testing is the simplest type of testing carried out by the testers without
using any automation tool. Manual test type is the best choice to be selected when
the test is too difficult or complex to automate. Cost and time are also the factors

to be considered when deciding between manual or automated tests. Tools such as
Microsoft Excel and Microsoft Word are very useful to create and manage test cases,
but more time is spent in maintaining the documents. The overall time spent in
manual testing and maintaining the test cases will be greater —and more expensive
as well. If any of the requirements change, new test cases should be created and the
new test should be executed including the existing test cases, to make sure the new
changes do not break any of the existing features.

Automated tests are good for regression testing to verify that no new defects are
introduced, but manual testing is the best way to find new defects. Additional
effort and knowledge is always required for automating the tests using scripts or
any automation tools. At the same time, the cost involved in re-running manual
tests is also high. To minimize these problems and difficulties in maintaining

the test cases, Microsoft introduced multiple features for manual testing and test
management with a separate testing framework and user interface, known as
Microsoft Test Manager (MTM).

MTM is the main entry point for test case authoring, management, execution,

and tracking. Maintaining the requirements, test cases, defects, and reports has
become much easier; all of this can be done using one single tool. MTM provides

an independent testing environment for the testers, without any dependency on
Visual Studio; it only needs a connection to the Team Project repository in Team
Foundation Server to maintain all information in the central repository. This chapter
covers the following topics in detail:

* Creating Test Plans, Test Suites, and test cases
* Types of Test Suites

Test Plan, Test Suite, and Manual Testing

* Executing manual tests and action recording
* Shared-steps creation and action recording for shared steps

* Parameterizing the manual test

Test Plan

Test Plan is created in MTM to group together settings, environment and
configurations that define your test conditions. Multiple Test Plans can be created
and each can have its own settings. Even though there are default settings for the
Test Plan, we can customize it as per the testing needs. The following screenshot
shows the Testing Center window from Test Manager through which the new Test
Plan can be created. Click on Add and provide the name for the new Test Plan.

The following screenshot shows two Test Plans with unique IDs and the Start date
and End date fields:

Testing Center
B Add Bz Copy Link
i IO Mame Start date End date

2 Employee Maint: e Testing 11/17/2012 11/30/2012
1 MyTestCenter 11/3/2012 11/30/2012

4 Change project Select plan P

[36]

Chapter 2

The Test Plan consists of multiple sections for customizing and setting the properties.
The general section is used for setting properties such as the name, description, area
path, iteration, start date, end date, owner, and state of the Test Plan. The next set of
properties is the run settings used for Manual and Automated runs. Specific roles and
environments that may be virtual or physical can be used. Diagnostic data adaptors
such as Action Log, Action Recording, EventLog, Network Emulation, Test Impact,
and others can be specified to define the data collected during the test execution.

The third set of settings is used to select builds based on build definition and
quality. The last one is for the configuration to choose the data adaptors for the Test
Run. The data adaptors collect the information from the machines where the test
cases are being executed.

The following screenshot shows a sample Test Plan with properties, area, and
iteration paths:

=0 X

@ @ | ‘@‘ | Testing Center hd ‘ Plan Test Track ’ SampleTeamProject » MyTestCenter

Contents | Results | Properties New v Open Items (1)

| TestPlan 1: MyTestCenter GaCopylink [fSaveandClose [@ @ X

Mame: MyTestCenter Qwner: Satheesh 2

Description: State: Active -

Start date: |11/3/2012 P
End date: | 11/30/2012 FF

Area path: SampleTeamProject Y

Tteration: SampleTeamProject
+ Run Settings
Manual runs: Automated runs:

Test settings: < Default> - Test settings: < Default> A

Test environment: | Nene ¥ Manage Test environment: | None ¥ | Manage

Builds: Configurations:
Filter for builds: Any definition or quality + In this plan: Windows § +
Build in use: None Modify

~ Links (0}

[37]

Test Plan, Test Suite, and Manual Testing

The Contents subsection under Plan is used for creating the Test Suite and test
cases and associating them with a Test Plan. Multiple Suites and test cases can be
associated with a single Test Plan. Requirements can be added to or associated
with a Test Plan, so that the test cases within the Test Plan can be related to the
requirements to enable easy tracing.

The following screenshot shows a Test Suite and test xase added to the Test Plan:

= 0O X
@ @ | @ | Testing Center v ‘ Plan =] } SampleTeamProject » MyTestCenter

Contents | Results | Properties MNew Openltems (1) «

@ Contents

[} New ~ |2 Add requirements vi . Testsuite: Suite One (Suite ID: 2)

Default configurations (1): Wind 8 -
4 (3 [2} MyTestCenter 5 ? : s

(¥ [} Suite One oiadd] New 3 A

Drag a column header here to group by that column.

| |order [ID |Title | Pricrity | Confi... | Te
el 1 Add numbers test with positive val... 2 1 Sar

The Test Results subsection under Plan shows the graphical and summary
information about the Test Results for the plan. The information includes Test
Suite-wise summary of active, passed, and failed tests. The following screenshot
shows three active and one passed tests from the result:

[38]

Chapter 2

@ @ ‘ @ | Testing Center ~ ‘ Plan Test Track Orgar}

s | Results | Properties New » Openkems (1) +

Qﬂ MyTestCenter - Test Results

Test Suites:

Test Configurations: Al ~

Test Result Summary Test Result Details | By Test Suite [E] Show data labels

MyTestCenter...

M 3 Active (75%) Suite One (Suite...

8 1 Passed (25%)

Failed Tests by ReasonFailed Tests by Analysis .

M Active |l Passed

0 Mone (0%) 0 None (0%)

Selecting the plan opens the Testing Center console, where Test Suites and test
cases can be created and associated with the Test Plan.

[39]

Test Plan, Test Suite, and Manual Testing

After the Test Plan is created, test cases can be created for it. On the right side

of the Test Manager tool, you can find the New option with multiple menu items
such as Bug, Impediment, Product Backlog Item, Shared Steps, Task, and Test
Case. Select the Test Case option, which opens a new section to enter the test

case details. Enter the required details such as the test case's description, status,

and other details. Supporting details such as Test Steps, Summary, Tested Backlog
Items, Links, Attachments, and Associate Automation can be added. The following
screenshot shows the first step in the creation of a test case:

- 0O X

@ @ | @ | TeSting Center ~ Plan Test Track Organize SampleTeamProject » Employee Mainten...

Queries | AssignBuild | Recommended Tests Mew » Openltems (2) v

ﬂ Test Case 8*: As a admin I should be able to add a new Employee SaCopyLink [Saveand Close [[2] @ %X

As a admin I should be able to add a new Employee

Iteration SampleTeamProject

STATUS DETAILS
Assigned To| Satheesh ~ Automation status Not Automated

State Design Area SampleTeamProject
Priority 2

STEPS SUMMARY TESTED BACKLOG ITEMS LINKS ~ ATTACHMENTS ASSOCIATED AUTOMATION

alllnsertstep 2@ M & 3 Insert shared steps 3 e Insert parameter)
B | Y Segoell - 12 - A
L] Action Expected Result

Ll Open the Insert Employee Details Page Page opens with options to enter the details

-ﬂ Enter the details for the New Emplayee Should be able to enter all the required deta\lsi

L3 Submit the details On Submit, the details should get added and the Employee should be added to the System
- Click here to add a step

Parameter Values

[40]

Chapter 2

Now the Test Plan and some test cases are ready. Let's look at the different types of
Test Suites.

Test Suite and its types

Test Suites are used for grouping and organizing the test cases under a Test Plan.
Grouping test cases within a Test Suite may help testers in running and reporting
all the tests under Test Suite, and to set the state of a Suite to indicate if it is planned,
in progress, or completed. test cases can be added to multiple Test Suites and Test
Plans. After creating the Test Plan, a default Test Suite is added as a root node to

the plan with the same name as that of Test Plan. This node contains all the other
Test Suites.

A new Test Suite can be created in three different ways:

» GStatic Test Suite

* Query-based Test Suite

* Requirement-based Test Suite
After creating the Test Suite, we can also customize the order of the test cases within
the Test Suite. Test Suites can also be copied from another Test Plan in the Team

Project repository. When you copy the Test Suite, the test cases are not copied but
the copied Suite references the same test cases.

[41]

Test Plan, Test Suite, and Manual Testing

Static Test Suites

The static Test Suite is like a folder that groups test cases or Test Suites. The root suite
itself is a static Test Suite. To create the Test Suite, select the Plan tab in MTM and then
the Contents link to view the Test Plan. Right-click on the Test Plan and choose New
suite from the context menu, then provide the name for the new static suite.

- O X
@ @ | ‘@‘ | Tesﬁng Center v ‘ Plan <] ’ SampleTeamProject » Emplo|

Contents | Results | Properties Mew «

@ Contents

[} New w | Addrequirements . Testsuite: Employee Mai
Default configurations (1): - State: o In progress =

3] g Err p|0)"EE Mair
3 Explore 3
MNew

Add test cases re to group by that column.

Mew test case

le |P‘ri0

New suite
New query-based suite
4 Add requirement to plan

Copy suite from another test plan

[42]

Chapter 2

On the right pane, we can see the option to add existing test cases and create new
test cases to add to the Test Suite. Choose the option Add as we have the test cases
added and available already. This brings up the Add Test Cases to Suite window,
which provides the flexibility to search for and choose from our test cases. Select
the required Cases from the list and choose the Add Test Cases option to add the
selected Cases to the Test Suite.

@ @ | @ ‘ Testing Center ~ Plan Test Track

Contents | Results | Properties
i 1 Contents

Add Test Cases to Suite

And/Or

And

Organize

- O X

SampleTeamProject » Employee Mainten...

MNew » Open Items (0) +

Field Operator Value
Work Item Type In Group Test Case Category

Team Project = B@Project

* Click here to add a clause

|Thefu|luwing 7 items are available for selection.

b Bun

| o

| Title

| Priority | Automati..

Area Path

w1
I E
wl5
w17
w18
19

Add numbers test with positive values

Testing with String input

Adding two numbers

Adding two numbers

As a admin I should be able to add a new Employee

As a admin I should be able to delete or remove an employee from the system

2

Not Auto...
Not Auto...
Not Auto...
Not Auto...
Mot Auto...
Not Auto...

SampleTeamProject
SampleTeamProject
SampleTeamProject
SampleTeamProject
SampleTeamProject
SampleTeamProject

| §_]10

As a admin I should be able to update existing Employee details

Not Auto...

SampleTeamProject

After adding the test cases to the Test Suite, the Test Suite can be assigned to the
testers and the order of test cases can also be changed.

[43]

Test Plan, Test Suite, and Manual Testing

Query-based Test Suites

Query-based Test Suite is all about defining the query and adding test cases to

the Test Suite based on the query result. Right-click on the Test Plan and select

the option Query based Test Suite from the context menu. Now, build a query to
fetch all priority 1 test cases from the list of available test cases. In the following
screenshot, we have three test cases available for the defined query. Provide a name
for the query and then choose the Create Test Suite option.

@ @ | @ | Testing Center ~ Plan Test Track Organize SampleTeamProject » Empl

Contents | Results | Properties New v Openltems (0) «

[#] Contents

Create a Query-Based Test Suite

Mame: ‘ Create/Update/Delete Employee details - Iquery based suite

And/Cr Field Operator Value
Team Project = @Project
And Work Item Type In Group Test Case Category
P And Priarity = 1

Click here to add a clause

» Run ERRNNT Ga A

Drag a column header here to group by that column.

I | Priority | Title Area Path

8 1 As a admin [should be ableto add a new Employee SampleTeamProject
9 1 As a admin [should be able to delete or remove an employee frem the system SampleTeamProject

10 1 As 3 admin [should be able to update existing Employee details SampleTeamProject

Query results: 3 results found.

Createtest suite || Don't create suite

The test cases from the result are added to the Test Suite and can be assigned to the
testers. The query can be, modified at any time, and configurations can also be set. If

the query is modified, the test cases added to the Test Suite also get modified, based
on the query result.

[44]

Chapter 2

Requirement-based Test Suites

In every Team Project, requirements are collected and maintained as product
backlogs, user stories, or requirements in the form of work items. A Requirement

Test Suite is created to group the test cases related to it and associate the Suite to
the requirement or work item.

The following screenshot shows the first step to create or add a requirement or a user
story. On the right side of the Test Manager tool, you can find the Product Backlog
Item menu option under the New link. Choose that option to open the section for
creating the user story or a new backlog item. Enter the details required for the
backlog item, such as STATUS, Details, Description, Acceptance Criteria, and other
supporting details, as shown in the following screenshot. The acceptance criteria
should be well defined because that is the base for the test cases and for testing.

- O X
@ @ | @ | Tesﬁng Center w7 ‘ Plan Test Tra(’ SampleTeamProject » Employee Mainten...

Contents | Results | Properties New v

\j New Product Backlog Item 7*: The System should pro [z Save and Close |

The System should provide an Ul to enter new Employee details and save it

Iteration SampleTeamProject

STATUS DETAILS
Assigned To Effort

State Mew Business Value
Reason New backlog item Area SampleTeamProject

Backlog Priority 1
DESCRIPTION STORYBOARDS TEST CASES TASKS ACCEPTANCE CRITERIA ~ HISTORY LINKS ATTACHMENTS

Segoe Ul -2 «~|B I Y| &LHE = Segoe UI -2 ~|/B I V| HE A
1. User Interface screen to enter employee details like 1. The Employee details saved to the system successfully

- Name and reflected back in the system
- Address

- Phone Number
- Department

- Occupation

- Gender

2. The user should be able to add a new employee
3. The user should be able to update the details of
an existing employee

[45]

Test Plan, Test Suite, and Manual Testing

After creating the user story in the form of a product backlog item, go back to

the Contents section and click on the Add requirements option, which opens the
query-based search section Add existing requirements to this test plan to get the
requirements. Define the query to get the correct requirements from the available
list. Click on Run to get the requirements based on the query defined. Select the
user story or the requirement from the list and click on Add requirements to plan.

@ @ | @ | TeSﬁng Center v ‘ Plan Test Tra::k’ SampleTeamPraoject » Emp

Contents | Results | Properties

@ Contents

Mew Open ltems (1) +

Add existing requirements to this test plan

And/Or Field Operator Value

Work Item Type In Group Requirement Category
And Team Project = @Project
And Area Path Under SampleTeamProject

And Backleg Pricrity = 1

|Thef0\|0wing item is available.

b Bun

| |ID |Title State |Iteration Path Area Path |

F 1 The System should provide an Ulto enter new Emplo... Approved SampleTeamProject SampleTeamProject

Add requirements to plan

[46]

Chapter 2

The Test Plan contents window should now list the new requirement-based Test
Suite. The name is actually the requirement and the icon is also different from
the other two Test Suite types. On the right pane, there are options to create new
test cases or to add test cases to the requirement. The following screenshot shows
three test cases for adding, deleting, and modifying employee details added to
requirement 11:

- 0O X
@ @ | @ | Testing Center wr ‘ Plan ’ SampleTeamProject » Employee Mainten...

Contents | Results | Properties

[p | Contents

. - X i he System shoul.

[&} Employee Maintenance Testing rations (1 Windows & ~
® [2) 11: The System should provide an Ul to enter new Emplc j‘ Open .,j Add] New [E3 X | of Assign [Configurations
® @ Create/Update/Delete Employee details - query based s

(® [} Functional test

Drag a celumn header here to group by that column,

| ‘) ‘ Title | Priority | Confi... |Area Path
w18 Az 3 adminIshould be able to add... 1 1 SampleTeamProj...

e]9 As a3 adminIshould be able to dele.. 1 SampleTeamProj...
w]10 As a adminIshould be able te upd... 1 SampleTeamProj...

The test cases added to the requirement can be assigned or configured as per
your needs.

Running manual tests

The Plan tab in Testing Center is used for creating the test cases, setting the
environments, and for grouping and linking the Test Cases, whereas the Test tab
in Testing Center is mainly used for running the test and capturing the results.

The test cases that are created under the Plan tab can be executed under Test or run
through the manual Test Runner. Running these tests is not only used for verifying
the functionality as per the requirement; a lot of other Test Result information can
be captured during the test as well. Information such as defects, connectivity issues,
security issues, test outcomes, screenshot images, and other comments can be
captured, along with the Test Run.

[47]

Test Plan, Test Suite, and Manual Testing

Open the Microsoft Test Manager and then the Testing Center window.

Select Plan from the main menu bar in Testing Center, for creating or verifying all
the test cases.

To execute/run the test cases created, select Test from the main menu bar in Testing
Center to open the Run Tests window. This window shows the list of all Test Suites
and test cases that we created. We can select all tests under the Test Suite or select an
individual test from the Test Suite and run that separately.

-0 X

@ @ | @ | Testing Center = Plan Test Track Organize SampleTeamProject » Employee Mainten...

RunTests | AnalyzeTestRuns | Do Exploratory Testing | View Exploratory Test Sessions | Werify Bugs New Open ltems (1) «
oy
Q r| Run Tests

Perform tests using: Local machine (WN7-B451601) Maedify

g’ Test suite: 11: The System should provide an U to enter new Em... (Requirement 11) Fm—

Employee Maintenance Testing

b Run ~ [Opentestecase @ o @ @

[}, 11: The System should provide an L
{Or. =|ID |Title | T. | Configurat... | Priority | Al

@ Create/Update/Delete Employee de
[z} Functional test = \\I‘)-‘Z\ctl‘.-e(i]

1 8 AsaadminIshould be able to add a new Employee 5. Windows 8
2 9 AsaadminIshould be able to delete or remove an employee from the sy... 5. Windows 8

3 10 As a admin Ishould be able to update existing Employee details S... Windows 8

The filter option on the left is used for filtering the Tests Suites based on tester or
other configurations for testing (based on the current environment). Select the Test
Suite or a particular test and run it. Running the Test Suite opens the tests in Test
Runner and lists the test case steps for the first test in the list.

[48]

Chapter 2

™Save and Close /™

As a admin I should be able to delete or rem... -\D
As a admin [should be able to update existin.., -J)

£ Start Test

[C] Create action recording

Mo recording available

The selected Test Suite in Test Runner shows three tests in total, as three tests were
added to the selected Test Suite, and the first in the list is for testing the Add new
Employee details screen. The window also displays the test steps in the first test.
You will see another small window, which has the option to start the Test Run and
to create action recording. If you choose to enable the action recording, the testing
actions will be captured and recorded, and can be replayed at any point in time to
verify the functionality. This action recording is also used for generating automated
testing code, and may be re-used in other tests if needed. This can be very useful in
case of multiple similar tests or common test steps, also called shared test steps.

[49]

Test Plan, Test Suite, and Manual Testing

Click on Start Test and follow the steps to start testing the application manually. The
following screenshot shows Test Runner with the test open, as well as the application
for which the test case is written. The first step in Test Runner shows what to test in
the application and what the expected result from the application is. The tester should
follow the steps and verify the expected result with the actual output.

M- - o

- /€ Employes - Windows Intemet Explerer provided by Dell Client Engineering Team IEI@
™5aveand Close ™™ L] @ X

@Q - \g, http://lacalhost:3062/Employes ‘ 47| x ||E| Google © |

Testlofl ~ o -~ |0~ T Faverites |

8* As a admin I should be able to add a new & Employes v B - 1 @ v Pagew Safetyr Toolsw @~ =
Employee r -

Wind

[£] EMPLOYEE MAINTENANCE
@n Y EE e - <

Open the Insert Employee Details Page ‘@ -

Expected: Employee
Page opens with options to enter the
details

First_Name | Last_Name | Middle_Name | Department | Occupation | Gender | City
2. Enter the details for the New Emplayee Y1) =

3. Submit the details ,{l) - First Name Last Mame T Manager Male Bangalo
@ End test Satheesh Kumar N I Architect Male Bangalo
Subha 5 hng SrManager | Female | Bangalo
Subashni 5 5 I Manager Female | Bangalo
+
< m | *
Mo recording available (0 €& Local intranet | Protected Mode: Off 43 v H100% v

[50]

Chapter 2

After verifying the result, the tester can mark the step as either pass or Fail, based
on the output. This option is on the right of each test step. The following screenshot
shows two steps passed successfully while the third step is in progress:

~angRrmea

+ Open the Insert Employee Detsils Page. & =
. Erter the detads for the New Employee. @ =
. Subenit the detaits

B, End test and mave o nest

2 Employee - Windows Intemet Exploder provided by Dell Client Engineening Team

] @\J' i8] titpe//localhost 3052 Tmployes Tnsert.a

i Favernes | g

& Employee

i ;
v | 4| X || Googis p

Bi - B -0 g - Pager Saetys Toose e

[#] EMPLOYEE MAINTENANCE

'

Add new Employee
Tirst_Mame Sathees
Last_lame
Mickdle_Rame

Department

Occupation
Gender Mo
City Bargacre
State kamatsks
Country

Phuae

o

€ Locel intranet | Protected Mode Of é HIN% -

[51]

Test Plan, Test Suite, and Manual Testing

Once all the steps are tested and completed, you can end the current test and move
to the next test using the option below Test Runner. After completing all the tests,
click on the Save and close option to close Test Runner and go back to Test Manager,
which will show the final status of the Test Run.

To see the details of each Test Run, select the test case from the right pane of the
Testing Center window, and open the Test Result window using the menu option
View Results. The result window shows the details for the selected test case, such as
test summary, analysis details, steps' status, attachments, and result history.

- & X

@ @ | @ | Testing Center ~ Plan Test Track Organize SampleTeamProject » Employee Mainten...

RunTests | AnalyzeTestRuns | Do Exploratory Testing | View Exploratory Test Sessions | Verify Bugs New v Openltems (3} v

@ Test Result for 8: As a admin I should be able to add a new Employee - 12/9/2012 4:21:56 PM CaCopyLink [gfSaveand Close [l [2] @ X

v Summary (Passed)
A Details

v Analysis

A Test Step Details

ra

Open the Insert Employee Details Page @

Expected:
Page opens with options to enter teh details

M

Enter the details for the New Employee @

Expected:
Should be sble to enter all the required details

3 Submit the details @

Expected:
On Submit, the details should get added and the Employee should be added to the System

~ Attachments (3)

iy Links (0)

A Result History (1 Results)

. Create bug
| | Resuit | Created date | Failure type | Resolution Notes Ru
@ Passed 12/9/2012 4:21:56... None None Sa
4 »
L — L ' —— T ——— ; e

[52]

Chapter 2

Going back to the Test Suite, select the test case for adding the absence details for
an employee from the list and run the test. Let us see the behavior in case of test
failure. To understand the concept of test failure, we look at a few mandatory fields
in this absence screen that are not properly configured to have the test fail:

"_',é Absence

[€] EMPLOYEE MAINTENANCE

< Back to home page

Add new Absence

AbsencelD
Max_Casual_Leave
Max_Privilege_Leave
Casuval_Leave_Taken
Privilege_Leave_Taken
Remaining_Casual Leave
Remaining_Privilege_Leave

Employee First Mame

[53]

Test Plan, Test Suite, and Manual Testing

Every employee needs to have their absence details entered into the system and the
balance of absence or leave should automatically get calculated by the system. The
current application has the provision to add absence details for the selected employee,
as shown in the previous screenshot. The employee absence screen, as shown in the
previous screenshot, accepts values for all the fields from the user, but there are few
fields such as AbsencelD, Max_Casual_Leave, and Max_Privilege_Leave, which
should be read-only. These should not accept any value from the user as the system
should automatically assign values to these fields. But as per the Test Result, the
read-only fields are accepting values from the user, which is a potential defect;

this needs to be logged as a defect by the tester to be fixed by the developer later.

(AR @ abcence - Windews Intemet Explorer provided by Dell Chiért Engirsering Team o w8
LRI () = [repocalhost 3052 Bbsence tnsert sprlEmeloyeciDs113 | 4| % || Googis p -

iy Favertes |y

& Absence B - B -0 g - Pager Saetys Tooke e

[EMPLOYEE MAINTENANCE

S BB B -
. Open the Employee lists screen @ -
. Choose the Emplayee to add new @ - Add new Absence
absence detady and chek on the View "
Absence link against the Employee List of validation errors

. Chckonlnsetoptiontoopenthe ddd @ *

new Absence details page « The Absencelld field fs required.
. Enter the required detais o - The Max_Casual_Leave fleld is required.
s The Max_Privilege_Leave field is required.
Expected:
Enter only the Lemve taken details and
clck on Insert AbseneelD
A The Insert fuils and it asking for the LA
Absercell and Max Casual and Max i =
Privilage Leave details a5 wel|
Max_Privilege_Leave
i The new absence details should get w- .
sdced and rempning Lesve should get Covrel_Licwrs_Vakon
caleulated
Privilege_Leave_Taken
Remaining_Casual_Leave
Remainng Privilege Leave
Employer FrstName
i Wi Local mtranet | Protected Mode: O oy BRIy v
-’ - Wil / = & T " o
Ty] o m o 4 ¥ o M 1 3l i
¢ | I | W] | Aman . mia,

[54]

Chapter 2

Test Runner includes an option to create a test defect record immediately after

the test step. Click on the Create bug option from the toolbar in Test Runner, which
opens the New Bug* screen, complete with the status of each step and the linked
work items such as requirements. You can also enter the other details such as
Assigned to, Area, Iteration, Priority, and Severity.

@ NewBug* folo]

<Enter title here>

fteration SampleTeamProject

STATUS DETAILS
Assigned To Effort
State New Severity 2 - High
Reason New defect reported Area SampleTeamProject
Backlog Priority

STEPSTOREPRODUCE SYSTEM TEST CASES TASKS ACCEPTANCE CRITERIA ~ HISTORY LINKS ~ ATTACHMENTS
Segoe Ll -2 «|B I U|% AdE-iZiE|=&3 @ o

™ Ny Emproyee =

Step Result Title
no.

1 Passed Open the Employee lists screen

Expected result
List of empleyees shewn en the screen

2 Passed Choose the Employee to add new absence details and click on the View
Absence link against the Employee

Expected result
Absence Details list is shown for the selected employes

3 Failed Click on Insert option to open the Add new Absence details page

Expected result
New Page is shown for entering the Absence details with Max Casual and Max
Privilage lesve pre populated

Comments: Add new Absence Page is shown but the Max Casusl and Max
Privilage is not prepopulated with any number

4 Failed Enter the required details

Expected result:
Enter only the Leave taken details and click on Insert

Comments: The Insert fails and it i asking for the AbsencelD and Max Casual
and Max Privilage Leave details as well
5 Failed The new absence details should get added and remaining Leave should -

4 3

Saveandglose | Save f| Close

Save and close the New Bug* window so that the defect is created. The defect is
automatically linked to the test case, and the user actions and any attachments
captured during the test are also saved and linked to the test case. If you click on
View Results for the test case, the Test Result window shows the summary of test,
test steps, attachments, defects raised during the test, and the result's history.

[55]

Test Plan, Test Suite, and Manual Testing

Action recording

Test Runner has the option to record the steps taken during manual testing, so that
they can be played back later whenever a re-test is required; this saves time and
effort by not working through a manual test every time. The action recording can be
activated during the course of manual testing. Later on, can playback the recording
to run through those test steps automatically.

Select the option Create action recording before starting the Test Run in the Test
Runner window. Then choose the option Mark test case result, as shown in the
following screenshot. Follow the steps and mark the Test Results and then end
the result. The following screenshot shows the test with all the steps having action
recording already. This is denoted by the orange color coding at the right end of
each test step and the message at the bottom of the Test Runner window that says
a recording is already available. The recording can be overridden by choosing the
recording option again while running the test in the future.

: M- o @ Employee Maintenance - Windows Internet Explorer provided by Dell Client.., EI@
dClose ™ T X -
[%*Save and Close T @ @\J - |g, http://Iocalhost:30¢ w | ‘y| X | ‘E’ Google £ -

Testlofl ~ i~ &~ o Favorites | gl

8 As a admin I should be able to add a new & Employee Maintenance fir ~ B - = b - Page~ Safety~
Employee — -

Windows 8
~ [€] EMPLOYEE MAINTENANCE

Py @ U W H e~ <

Open the Insert Employee Details Page @ -

Enter the details for the New Employee @ -
Submit the details @ -
Expected: Employee Information

On Submit, the details should get
added and the Employee should be
added to the System

Ji Action recording available 00:01:50 G Local intranet | Protected Mode: Off Sy v W10% -

[56]

Chapter 2

Next time while running the test, select the Play option in the Test Runner toolbar
to run the test step automatically (that is, using the actions from the recorded Test
Run). The details entered during last run will be re-used as well as the actions.

The Play option in the toolbar will play only the action for the current step in the test
case. But the Play all option (located below the Play option) will play all recorded
actions for the current test case. To run a group of test steps, select multiple test steps
and click on the Play option. The Preview option shows the text form of recording
for the selected test case.

If there is any error during playback of the test, due to unavailability of the
application or any other error, Test Runner will throw an error message similar to
the one shown in the following screenshot. It has an option to create a bug as well.

FSave and Close

‘ Playback Errer @
Testlofl = EN . [(:
: 0 Playback action failed
8 As a admin I should be able to add a new)
E | : : Failed action: Type 'Satheesh’ in 'First_Name' text box
mployee
plc find Error: The Internet Explorer window is not available.
Win
HHne Create bug...
x
Zp Play = @ Wl 9 5 - g
4 | Hide details Replay this action | | Skip and continue | | Stop playback
1. Open the Insert Employee Details Page
2. Enter the details for the New Employee 4 View:
3. Submit the detzils 7 @ Troubleshooting tips I Playback log _ Error details
Troubleshooting tips: o

Appearance: Playback of the action recerding fails.

Froblem: The error message is displayed because the automaticon playback has found
a control that is not in a valid state,

Solution: Perform the failed step manually and then choose Skip and continue,

on: Go to http://go.microsoft.com/fwlink/TLinkld=254561 for information on
available add-in for possible support. Skip and continue.

Eﬁ.ction recording available 00:01:50

[57]

Test Plan, Test Suite, and Manual Testing

Along with the Test Result capture, the screenshot of the current screen area, or the
error message, you can add additional documents (or files) as attachments to the test
step. Take the current environment's snapshot in case of only virtual environment
and add comments to the test to provide additional information. All these options
are available under the Test Runner toolbar. The following screenshot shows the
attachment, image, and a comment added to the test step:

™ 5ave and Close 1™

Testlofl v off ~ | O~
em should allow entering Absence details

for an existing Employ

Windows 8

Zp Play ~ @ I
Open the Employee lists screen

Choose the Employee to add new absence
details and click on the View Absence link
against the Employee

Click on Insert opticn to open the Add new
Absence details page

Expected:

New Page is shown for entering the Absence
details with Max Casual and Max Privilage
|eave pre populated

[l Screenshotl(TC12kerationlStep3).png *

- The Max Casual and Max Privilage leave
fields are not pre populated |

4. Enter the required details w -

5. The new absence details should get added and ‘{’_i,) -
remaining Leave should get calculated

@ End test

Mo recording available 00:03:2

Another option to capture the environment details is also available, but is only
enabled if the tests are run in a SCVMM environment.

[58]

Chapter 2

Shared steps and action recording for
shared steps

Shared steps are common test steps that are created and shared across multiple
manual tests, to avoid duplication of test steps and to maintain them at one place.
For example, the employee maintenance application might have multiple test cases
such as testing absence details, emergency contact details, payment details, and a few
other tests, for which the tester has to enter the employee details for every test case
run. To avoid this repetation and to save time and effort, the particular test step can
be made as a shared step which can then be used in all the required places.

Creating shared steps

Creating shared steps is just like creating a normal test step, but the Test Manager
provides a different option to create the shared step within the test case creation
window. The following screenshot shows the Test Suite with two test cases,

with both having the same first step: to open the browser and to go to the employee
list page.

- 0O X

@ @ | @ | Testing Center ~ ‘ Plan Test Track } SampleTeamProject » Employee Mainten...

RunTests | Analyze TestRuns | Do Exploratory Testing | View Exploratory Test Sessions | Verify Bugs New Open Items (2) »
Ty
Q »| Run Tests
Perform tests using: Local machine (WN7-B45160Q1) Modify

T Eitter ~ Q’ Test suite: 11: The System should pro... (Requirement11)

Employee Maintenance Testing b Run = | o) Viewresults |j' Opentestaase | @ > @ O

[} 11: The System should provide an Ul to enter nex

@ Create/Update/Delete Employee details - query
[&} Functional test B @ Failed (1)

2 12 System should allow entering Absence details for an existing Employee 5. W

=] @ Passed (1)

{or. «|ID |Title |T.]d

1 & Asaadminlshould be able to add a new Employee

[59]

Test Plan, Test Suite, and Manual Testing

The shared step is just another test step in the test case, but of the type shared.
Choose the test step as a shared step while adding steps to a test case. For example,
the first test case for employee details has several steps. One of these steps is opening
the browser and loading the first list page for the application, which is common for
all pages. This can be made as a shared step. The test case creation window has the
option to create test steps. Along with this, there are two more options: Insert shared
steps and Create shared steps and insert at the current insertion point.

@ @ | @ | Tesﬁng Center s ‘ Plan Test Track Or(l’ SampleTeamProject » Employee Mainten...

Run Tests | Analyze TestRuns | Do Exploratory Testing | View Ex ory Tes ions | Verify Bugs New w Open Iterr

As a admin I should be able to add a new Employee

Iteration SampleTeamProject

STATUS DETAILS
Assigned To Sachidanant, Subashni Automation status Not Automated

State Design Area SampleTeamProject
Priority 1

STEPS SUMMARY TESTED BACKLOG ITEMS LINKS ~ ATTACHMENTS ASSOCIATED AUTOMATION

sl Insertstep g M & 3§ Insertsharedsteps 3 @ teInsert parameter)

B 1 Y Segoell 12 o-A [CreatesharedstapsandinsertatthecurrentiﬂsartiunpUiﬂtl

L] Action Expected Result

-@ Open the Insert Employee Details Page Page opens with options to enter teh details

M2 Erter the details for the New Employee Sheuld be able to enter all the required details

M3 Submit the details On Submit, the details should get added and the Employee should be added to the
System

- Click here to add a step

The Create shared steps and insert at the current insertion point option asks for
a shared step's name and then replaces the selected steps with the new name. The
shared step will retain the details of the steps that got replaced with the shared
name. In the previous screenshot, Browse to the Employee Details Application is
a shared step that can be re-used in numerous other tests.

[60]

Chapter 2

To modify or update the shared step, use the option Open shared steps from the
toolbar. This opens a new window that contains the details of the shared test step,
and the editing process is the same as as any other test step.

Keep adding the required test steps and update the properties, but keep in mind
that this is a common test step that is going to be shared by multiple test cases.

Now the shared step is created and is ready to be re-used in multiple test cases.
Open the second test case which requires the same test step and highlight the step
above which the shared step is required. Choose the option Insert shared steps. This
opens the new window to filter and search for a particular shared step from the list.
Select the required one and click on Add shared step to get that added to the test
case. The shared step name gets added to the test case and the test step is re-used
when the Test Runs.

- 0O X

@ @ | @ | Testing Center n ‘ Plan Test Tra::k’ SampleTeamPraoject » Emplc Mainten...

Run Tests | TestRuns | Do Exploratory Testing | orato ns | Verify Bugs New v Openlte

ﬂ Test Case 12*: System should allow entering Absence de! SaCopylink [gfSaveand Close [[2]

System should allow entering Absence details for an existing Employee

Iteration SampleTeamProject

STATUS DETAILS
Assigned To Sachidanant, Subashni Automation status Mot Automated

State Design Area SampleTeamProject
Priority 2

STEPS SUMMARY TESTED BACKLOG ITEMS LINKS ~ ATTACHMENTS ASSOCIATED AUTOMATION

alllnsertstep g A ¥ M Insertsharedsteps 2 @ 1o [}
B /I U A

Action Expected Result

0
F] | Browse to the Employee Details
: Application
a2

Open the Employee lists screen

List of| 2hared 5tep: Browse to the Employee Details Application

Open the web browser and go to Employee list url
Choose the Employee to add new

absence details and click on the View
Absence link against the Employee

Click on Insert option to open the Add MNew Page is shown for entering the Absence details with Max Casual
new Absence details page and Max Privilage leave pre populated

Enter the required details Enter anly the Leave taken details and click on Insert

[61]

Test Plan, Test Suite, and Manual Testing

Action recording for shared steps

Shared step actions are recorded along with the rest of the test case actions. Run
the Test Suite or the test case from the Test Manager. Test Runner will load the
test steps including the shared step (which is a part of the test). Choose the Create
action recording option and then start the test as it was done before in the regular
test steps scenario.

The shared step will have two additional steps: one is to start the shared test and
the other is to start the test and record it. Choose the second option and enter all the
details so that it gets recorded as part of the shared test.

After entering all the details, mark the test as passed and end the shared test
recording using the option below the test step. Complete the remaining steps and
save the Test Result.

Now, the shared step as well as the shared step recording are ready. This action
recording will be available to all the tests that contain this shared test.

Adding parameters to manual tests

Parameters are useful for running the manual test multiple times — using different
sets of data, but without creating multiple copies of the test case. Parameters are
added to the actions or expected results for any test step. Select the test step of the
test case and keep adding the parameters using the Insert Parameter option. Each
set of values for the parameters is run as an individual iteration during the Test Run.
The other options available are to rename the parameter and to delete the parameter.
The following screenshot shows the test step for which the parameters are added:

[62]

Chapter 2

@ @ | @ | Testing Center ~ ‘ Plan Test Track Orga’ SampleTeamProject » Em|

RunTests | Analyze TestRuns | Do Exploratory Testing | View Exploratory s jugs MNew + Open Itel

B Test Case 8: As a admin I should be able to add a new Employee SaCopyLink [gfSaveand Close [d (2]

As a admin I should be able to add a new Employee

Iteration SampleTeamProject

STATUS DETAILS

Aszigned To Sachidanant, Subashni Automation status Not Automated
State Design Area SampleTeamProject
Priority 1

STEPS SUMMARY TESTED BACKLOG ITEMS LINKS ~ ATTACHMENTS ASSOCIATED AUTOMATION

ol Insertstep 2og M b 3§ Insertsharedsteps 3y (7 oy lnsert parameter)
B /I U A
Action Expected Result

Browse to the Employee Details Application
Open the Insert Employee Details Page Page opens with options to enter the details

@Phone @Country @5tate @City @Gender @0ccupation @Department Should be able to enter all the required
@First Mame @Last Name @Middle Name details

Submit the details On Submit, the details should get added and

#lam Comlanrmn chmeidd bm 2 ddad 2 hn Coorbmnn

Parameter Values

X Delete iteration ¥: Rename parameter 7 De

First_Name | Last_Mame Middle_MName Department Occupation

Subashni 5 T Dev Manager

Satheesh Kurnar Finance Manager

After entering a parameter, add its set of values. For each set of values, there will be
an iteration of the Test Run. These parameter values will be validated against the
fields while running the test in Test Runner. After saving the details, close the test
case and open the Test tab to run the test.

[63]

Test Plan, Test Suite, and Manual Testing

Run the test in the same way as previous tests and continue the steps in Test Runner
until the test step (where the parameters are present) is reached. The test step displays
the parameters and values against each parameter. Select the parameter value to copy
to the clipboard and use that to paste it on the respective field. You can mark the test
as pass or fail after testing the entire step, and then end the test. If there are multiple
set of values for the parameters, then continue all iterations before ending the test.
Save the test and close the Test Runner window.

m- - o 1€ Employee - Windows Internet Explorer p... EI@
E:‘Saveandclose - ﬁ @ X

@'\:j L4 |g, http://localhost:30¢ - | "f| A | | Google
Testl of 1: lteration 2 of 2 * 0 |ﬂ| - 0 o {;f Favorites | {5

3

8* As a admin I should be able to add a new @ Employes o~ - O

»

Windows 8

EMPLOYEE MAINTENANCE
Py ~@ U 9 |F g™~ 3 . < Back to home page
1. 4 Browse to the Employee Details Application

11 Open the web browser and go to @ - Add new Employee
Employee list url

2. Open the Insert Employee Details Page @ - First_Name Satheesh
3. @Phone @Country @State @City @Gender W~

@Occupation @Department @First_Name Las BN
@Last_Name @Middle_Name
Middle_Hame
Phone = S
Country = India Department Finance
State = TN
City = Chennai Occupation Manager
Gender = Male
Occupation = Manager Gender Male
Department = Finance
=+ First_Name = Satheesh City Chennai
Last_Mame = Kumar
Middle_MName = State ™

Expected: Click to copy the text to clipboard '
Should be able to enter all the requi
details

try India

4. Submit the details

@ End iteration

[64]

Chapter 2

Select the test case and open the Test results to get the results summary for all
iterations, with parameters and values used during testing.

=0 X

@ @ | @ | Testing Center ~ { Plan Test Track Orga’ SampleTeamProject » Employee Mainten...

Run Tests | stRuns | Do Exp ry Testing | View Exploratory Tes ns | Verify Bugs New w Openltems (3) v
@ Test Result for 8: As a admin [should be able to add a new Employ S3CopyLink [gfSaveand Close [(2] o %
v Summary (Passed)

A Details 4| @ lterstion2 =

v Analysis

1 Browse to the Employes Details Application

L1 Open the web browser and go to Employee list url

Expected:
The employee details application main page is displayed in the browser with option to go to Employee list, Absence details and
Emergency Contacts page

2 Open the Insert Employee Details Page

Expected:
Page opens with options to enter the details

3 @Phone @Country @State @City @Gender @Occupation @Department @First_Name @Last_ Name @Middle_Name

Expected:
Sheould be able to enter all the required details

City = Chennai
Country = India
Department = Finance
First_Mame = Satheesh
Gender = Male
Last_Name = Kumar
Middle_Name =
Occupation = Manager
Phone =

oo TR

The preceding screenshot shows the test summary of second-iteration testing for
the test case. The Test Step Details section shows the parameters and the values
used during testing.

[65]

Test Plan, Test Suite, and Manual Testing

Summary

The new version of manual testing in Test Manager 2012 has addressed a few issues
compared to the previous version of Visual Studio and has also added a number of
new features. The testers can now use the Microsoft Test Manager application
independently and start testing applications even without Visual Studio. Shared

steps and test recordings are great advantages for manual tests. As Test Manager is
integrated with Team Foundation Server, the Test Plan and test cases can be directly
created within Test Manager. Directly creating the defect from the Test Result will
make the tester's job easier; maintaining the traceability also becomes easier by linking
test cases with requirements or defects.

The next chapter explains the details of recording user actions in the user interface
and then generating code out of it. This helps the testers to customize the generated
code and automate the testing with parameters and rules. The coded UI Test Builder
in Visual Studio 2012 provides features that record the actions and generate the code.

[66]

Automated Tests

Automated test is a form of testing to record the manual testing steps and then
re-runs the recorded steps without performing the entire test manually again. The
other type is to write scripts using programming language to automate the service
level testing. Automating user interface (UI) testing was the biggest challenge but
nowadays a few tools provide the flexibility to record user actions and create a script
out of it. It is made simpler in Microsoft Visual Studio 2012. These tests are also
called coded Ul tests. The existing manual tests, test cases, and the action recordings
of the user interface tests are re-used for generating the automated tests and the code
files in the managed code (C# or VB.NET).

The UI controls can be added to the coded Ul test and then the properties and values
of controls can be verified using the Coded UI Test Builder feature. To conduct

the same test multiple times but with different sets of data, the coded UI test can be
made as a data-driven test by adding a data source to the test. The test would then be
called for each row of data in the data source.

The coded Ul test can be run directly from Visual Studio or Microsoft Test Manager
and can be linked to the requirements to determine the number of automated tests
for each requirement and also to gather the Test Results for the requirement.

Automated Tests

Coded Ul tests from action recordings

Action recording is a very useful feature for recording user actions and then creating
test scripts out of it. The test scripts can be customized or used as is to play back the
test instead of repeating the same test manually. Recording of actions is done using
the Test Runner. The details of creating and recording the user actions are covered as
part of Chapter 2, Test Plan, Test Suite, and Manual Testing which talks about Test Plans
and manual testing. This section explains the details of creating a coded UI test from
an existing action recording. The following image shows the successful completion of
action recording for the manual test.

M- — o
™Save and Close ™ - @ X

Testl of 1 : Iteration1 of 2 = ol ~ O~
8* As a admin I should be able to add a new
Employee
Window

B Pay @ Il 9 F vig vHE~ 3

Browse to the Employes Details Application

Open the Insert Employee Details Page

@Phone @Country @State @City @Gender
@Occupation @Department @First_Name
@Last Name @Middle_Name

Phone =

Country = India

State = KA

City = Bangalore

Gender = Female
Occupation = Dev Manager
Department = IT
First_MName = Subashni
Last_Mame =5
Middle_Mame =

=T = =T = =T =T =T =

Expected:
Should be able to enter all the required
details

4. Submit the details

&, End iteration and move to next

X Action recording available 00:01:50

[68]

Chapter 3

Follow these steps to create the coded UI test:

1. In Visual Studio, select the Test Project from the solution explorer, if the Test
Project already exists in the solution and then add a new test to the project
using the context menu.

Otherwise select Project from the main menu and then select Add Coded UI
Test from the list of options available.

” EmployeeMaintenance - Microsoft Visual Studio
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ARCHITECTURE ANALYZE WINDOW HELP

Q- i - & 4 AddUnit Test.. A i}
& Add Load Test..
E Test Explorer * oad e
& S [i= 2 Add Web Performance Test...
e T FF Add Coded Ul Test..
m

gearch iz Add Ordered Test
Run &1l | Run.. ‘A Add Generic Test

18 Add Windows Form...

"|':| Add User Control...

*3 Add Component...

P Not Run Tests

% Add Class... Shift+Alt+C
"'i Add New Data Source...

2. The selected Coded UI Test option will add the code file to the Test Project.
The code file will contain only the class with the codeduITest attribute,
a test method named CodeduITestMethodl with the attribute TestMethod
and a test context. All these methods are empty as the code for the test is not
yet generated.

[69]

Automated Tests

3.

After selecting the coded UI test menu, there are two options available for
creating the test. One is to Record actions, edit UI map or add assertions,
which is like starting everything from the beginning. The second option is to
Use an existing action recording for the manual test.

Generate Code for Coded Ul Test @

How do you want to create your coded Ul test?

) The code file for the coded Ul test has been added to your test project. To
generate code for this test, you can select from the options below.

Record actions, edit Ul map or add assertions

Perform tasks in your application and generate code for your actions.

Generate code that performs the same actions as the action recording that
is associated with the test case or shared steps.

QK H Cancel |

Choose the second option to use the existing action recording which was
recorded as part of manual testing in Chapter 2, Test Plan, Test Suite, and Manual
Testing. After choosing the Use an existing action recording, select the work
item using the Work Items Picker screen which is displayed. Use the filter
options to filter the manual test case for which the action recording is available.

[70]

Chapter 3

Project: ’SampleTeamP roject v]

Select cne of the following metheds te find available work items:
) Saved gueny: | <Select a Query> v| [j

@ IDs: 3

) Title contains: | |

and type: [AII Work Itern Types v]

Select items to add to the work item list:
ID & WorkItem Ty.. Title State Area Path

Test Case As a admin I should be able to add a new Employee Design SampleTeamProject

1 work itern(s) found.

4. Select the test case from this window will generate the code based on the
action recording.

[71]

Automated Tests

Additional files such as UIMap.uitest, UIMap.cs, and UIMap.Designer.cs are
created at the time of code generation. The main method codedUITestMethod1 ()
in the codeduITest1.cs file contains calls for the methods created for each action
while recording the user actions. The corresponding method definition is created
in the UIMap . Designer. cs file by the Coded UI Test Builder itself. The code below
contains the action methods generated under codeduITestMethod1 ():

This is the sample code for the action method in the class.

[DataSource ("Microsoft.VisualStudio.TestTools.DataSource.TestCase"
, http://my-machinel:8080/tfs/defaultcollection;SampleTeamProject
"8", DataAccessMethod.Sequential), TestMethod]
public void CodedUITestMethodl ()
{
// To generate code for this test, select
"Generate Code for Coded UI Test" from the shortcut menu
and select one of the menu items.
// For more information on generated code,
see http://go.microsoft.com/fwlink/?LinkId=179463
this.UIMap.BrowsetotheEmployeeDetailsApplication() ;
this.UIMap.OpentheInsertEmployeeDetailsPage () ;
this.UIMap.PhoneCountryStateCityGenderOccupationDepartment
First NameLast NameMiddle NameParams.UICountryEditText =
TestContext.DataRow ["Country"] .ToString() ;
this.UIMap.PhoneCountryStateCityGenderOccupationDepartment
First NameLast NameMiddle NameParams.UIStateEditText =
TestContext.DataRow ["State"] .ToString() ;
this.UIMap.PhoneCountryStateCityGenderOccupationDepartment
First NameLast NameMiddle NameParams.UICityEditText =
TestContext.DataRow ["City"] .ToString() ;
this.UIMap.PhoneCountryStateCityGenderOccupationDepartment
First NameLast NameMiddle NameParams.UIGenderEditText =
TestContext.DataRow ["Gender"] .ToString () ;
this.UIMap.PhoneCountryStateCityGenderOccupationDepartment

First NameLast NameMiddle NameParams.UIOccupationEditText
TestContext.DataRow ["Occupation"] .ToString() ;

this.UIMap.PhoneCountryStateCityGenderOccupationDepartment

First NameLast NameMiddle NameParams.UIDepartmentEditText

TestContext.DataRow ["Department"] .ToString () ;
this.UIMap.PhoneCountryStateCityGenderOccupationDepartment
First NameLast NameMiddle NameParams.UIFirst NameEditText

TestContext.DataRow["First Name"] .ToString() ;

[72]

Chapter 3

this.UIMap.PhoneCountryStateCityGenderOccupationDepartment
First NameLast NameMiddle NameParams.UILast NameEditText =
TestContext.DataRow["Last Name"] .ToString() ;
this.UIMap.PhoneCountryStateCityGenderOccupationDepartment
First NameLast NameMiddle Name () ;
this.UIMap.Submitthedetails () ;

}

The coded Ul test code generation creates several files and adds them to the Test
Project. We will now see the details of each file that gets generated.

Files generated for coded Ul test

While creating the coded Ul test, the Test Builder generates multiple files to map the
user interface, test methods, parameters, and assertions for all tests.

CodedUITest1.cs

The name of this file is generated based on the name of the test that is created. This
file can be modified any time. This file contains one public class with the name
CodedUITest1l, with the CodedulTest attribute added to the class so that this class
can be recognized as a test class. The name CodeduiTest1 is the default name chosen
by the system. If this file already exists, the system increments the number associated
with the name and then creates the file with the new name.

The class also contains two default properties, TestContext and UIMap.

The following screenshot shows the default properties:

= /1) <summary:
///Gets or sets the test context which provides
///information about and functionality for the current test run.
f//</summary>
+ public TestContext Test[untext[::
private TestContext testContextInstance;

¥ public UIMap UIMap[:]

private UIMap map;

[73]

Automated Tests

There are two additional methods which are commented out by default. A region
titled Additional test attributes contains these two optional methods, as shown in
the following screenshot:

-l#region Additional test attributes
—// You can use the following additional attributes as you write your tests:

///fUse TestInitialize to run code before running each test

//[TestInitialize()]

//public veid MyTelstInitialize()

1

£ // To generate code for this test, select "Generate Code for Coded UI Test"” from the shortcut menu and select one of the menu items.
H /f For more information on generated code, see http://go.microsoft.com/fwlink/?LinkId=179463

75

/#//Use TestCleanup to run code after each test has run
//[TestCleanup()]
//public void MyTestCleanup()

I /f To generate code for this test, select "Generate Code for Coded UI Test" from the shortcut menu and select one of the menu items.
I // For more information on generated code, see hittp://go.microsoft.com/fwlink/?LinkId=179463

#endregion

The MyTestInitialize () method is called once before any other test methods during
the Test Run. This is useful for initializing the tests and is identified as the initializer
using the attribute TestInitialize. Similarly the method MyTestCleanup () method
is called once after all the tests have been called, and this method is identified using the
attribute TestCleanup ().

UlMap.Designer.cs

The Coded Ul Test Builder automatically creates the code in this file when a test is
created. The file gets updated whenever the test is modified. This file contains a
UIMap class which has the attribute Generatedcode. All classes in this file are auto
generated codes and every class has the attribute GeneratedCode associated with it.
The UIMap class contains the definition of all the methods that were identified during
recording. Following are some of the methods captured during recording;

public void BrowsetotheEmployeeDetailsApplication/()
public void OpentheInsertEmployeeDetailsPage ()
public void Submitthedetails ()

[74]

Chapter 3

The definition of each method follows a defined structure. The structure contains
a summary of the method, a region at the top defining the variables, and then the
definitions of the method calls and properties. The following code shows the
definition for one of the method calls:

/// <summarys>

/// BrowsetotheEmployeeDetailsApplication - Shared Steps 14 -

Use 'BrowsetotheEmployeeDetailsApplicationParams' to pass
parameters into this method.

/// </summarys>

public void BrowsetotheEmployeeDetailsApplication()

{

#region Variable Declarations
HtmlHyperlink uIEmployeeHyperlink =
this.UIBlankPageWindowsInteWindow.
UIEmployeeMaintenanceDocument .UIEmployeeHyperlink;
#endregion

// Go to web page 'http://localhost:3062/' using new browser
instance
this.UIBlankPageWindowsInteWindow.LaunchUrl (new System.Uri
(this. BrowsetotheEmployeeDetailsApplicationParams.
UIBlankPageWindowsInteWindowUrl)) ;

// Click 'Employee' link
Mouse.Click (uIEmployeeHyperlink, new Point (17, 9));

UlMap.cs

This file contains the partial UIMap class but does not contain any properties or
methods initially. However, custom code can be included in the UIMap class to
customize the existing functionality or add new functionality.

[75]

Automated Tests

UiMap.uitest

This is an XML file which represents the structure of the coded UI test recording.
These include the actions, properties, and methods of the classes. The UlMap.
Designer.cs file contains definitions of all the methods that are generated by the
coded UI Builder. As the UIMap test files are generated by the Test Builder, it is not
advisable to edit the files directly, but rather to use the UIMap editor to work with
the methods. Every time there is a change to the recording or to the controls in the
recording the file is regenerated and overwrites the custom code, which is the reason
why we do not modify the generated code. The following screenshot shows the
editor with the list of recorded actions and the corresponding UI controls. The Click
'Employee' link is the action which corresponds to the UIEmployeeHyperLink.

w EmployeeMaintenance - UlMap.uitest

UlMap.uitest # X

- jm] x

P X I s 0e
Ul Actions

UI Control Map

4 2 BrowsetotheEmployeeDetailsApplication
Go to web page 'http://localhost:3062/" using new browser instance
Click 'Employee’ link
4 L Choosetherightemployeetodelete
Click 'Employee Maintenance’ document
Click 'Employee’ link
4 L DeletetheEmployee
Click 'Employee’ document
Click 'Delete’ link
Click 'Ok’ button in the browser dialog window
4 2= OpentheEmployeelistpage
Go to web page 'http://localhost:3062/" using new browser instance
4 & OpenthelnsertEmployeeDetailsPage
SharedStepsReferencelction

Click 'Insert new item’ link

P - Submitthedetails

4

P - PhoneCountryStateCityGenderOccupationDepartmentFirst MameLast_ NameMiddle_Na

Fi

O uMap
4 = CJUIEmployeeWindowsInterWindow
4 & UEmployeeDocument
A UllnsertnewitemHyperlink
4 EUICUntentPIaceHoIderl_Table
A UlDeleteHyperlink
= UlEmployeeDocumentl
4 [T UIBlankPageWindowsInteWindow

- EUIEmponeeMaintenanceDocument

L.\ UIEmployeeHyperlink

[76]

Chapter 3

The editor contains options to delete a method, rename the method, set properties,
split into a new method, move code to the UTMap . cs file, insert delays, and locate
controls. The following screenshot shows the properties window for one of the user
actions - in this case, to go to the web page:

UlMap.uitest ® X
APX ' &% O

Ul Actions UI Control Map

4 2= BrowsetotheEmployeeDetailsApplication 4 [JuiMap
4 » [UEmploye

Click 'Employee’ link
4 B Choosetherightemployeetodelete
Click 'Employee Maintenance’ do Microsoft.VisualStudio. TestTools.PowerTools UITestEditor.Model. Mavig - | 4 fg= UIC

Click 'Employee’ link 5
4 L DeletetheEmployee z

Click 'Employee’ document ;onhlnue On Errer -Ilf_alse
 Inzt
Click 'Delete’ link Fuinstance rue
UI Control UIMap.UIBlankPageWindowsInteWindow

Click 'Ok’ button in the browser d
N sren SRS M http://localhost:3062/

4 2= OpentheEmployeelistpage
Go to web page 'http://localhost:
4 2= OpenthelnsertEmployeeDetailsPa
SharedStepsReferencefction
Click 'Tnsert new item’ link
b Z- PhoneCountryStateCityGenderOctupanonoepar TS L_TaNTELAS T_TaTITe —TeETITE
P &= Submitthedetails

Url
The url to be started in the browser.

[77]

Automated Tests

The other main functionality in the editor is to move the code to the UIMap. cs file.
Initially the UIMap. cs file would be an empty class without any implementation.

If there is any customization required, it is not advisable to directly edit in the
designer.cs file, but the method can be moved to the UIMap. cs file and then the
customization can be done. Choosing the Move code to UIMap.cs option provides a
warning saying the method will be removed from the UIMap . uitest file and moved
to UIMap. cs and you will not be able to edit the method using coded UI test.

UIMap.uitest # >

UI Actions

4 - BrowsetotheEmployeeDetailsApplication
Go to web page "http://localhost: 3062/ using new browser instance
Click 'Employee’ link

4 & Choosetherightemployeetodelete
Click 'Employee Maintenance' document

Click 'Employee’ link

iz
Click 'Em) # Delete Del
Click 'Del
Click 'Ok' ¥ Rename
4 Z- OpentheEm El Move code to UMap.cs Ctrl+Alt+C
Go to wek ce

E_
4 2= Openthelns g, Properties Alt+Enter
ShEI'EdStE'.Jancl SIS ERe LT
Click Tnsert new item’ link
P E- PhoneCountryStateCityGenderOccupationDepartmentFirst_Namelast_NameMiddle_Name

b &= Submitthedetails

[78]

Chapter 3

Choosing the Move code to UIMap.cs option provides a warning saying the
method will be removed from UIMap.uitest and moved to the UIMap.cs file
and you will not be able to edit the method using coded Ul test, as shown in the
following screenshot:

UlMap.uitest & 2

P X iz p 53

UI Actions

4 2= BrowsetotheEmployeeDetailsApplication
Go to web page 'httpe//localhost:3062/ using new browser instance
Click 'Employee’ link

4 &= Choosetherightemployeetodelete
Click 'Employee Maintenance' document

Click 'Employee’ link

=
C'I_ L 'C 1 L | s -
g Microsoft Visual Studic 3
d

4 = Ope ' U

= Up . Ifyou move the code for method 'DeletetheErmployee, it will be

g __I_l removed from the 'UIMap.uitest’ file and moved to the

4 2 Opd "::"-.TEEtir'Ig"\.-::'xPr_'lE"\Er'l'lFl|l:.l}"EEMEintEr'IEr'ICE"-.C.DE|EE|UHEEtPFDjI':.C

1\ UIMap.cs' file. You will net be able to edit the method using the

5 Coded UL Test Editor anymore. Do you want to move the code ¥
d

P &= Phd

b E. Sub | oves || Mo

Once you confirm the code move, the method is removed from UIMap.uitest and
copied to UIMap.cs and is ready for customization.

[79]

Automated Tests

Data-driven coded Ul test

The coded Ul test that was created previously is for a given set of data captured during
test recording. Later on, the test may be required not only for one set of data but for
different sets of data and for multiple times. To achieve this, we parameterize each
field to get data from a data source during testing. Each row of data in the data source
is an iteration of coded UI test. When generating methods or assertions for the coded
Ul test, all constants in the recorded methods are parameterized into parameter classes.
In the previous code example, there is a BrowsetotheEmployeeDetailsApplication
method as shown in the following code:

/// <summary>
/// BrowsetotheEmployeeDetailsApplication - Shared Steps 14 -
Use 'BrowsetotheEmployeeDetailsApplicationParams' to pass
parameters into this method.
/// </summarys>
public void BrowsetotheEmployeeDetailsApplication()
{
#iregion Variable Declarations
HtmlHyperlink ulEmployeeHyperlink =
this.UIBlankPageWindowsInteWindow.
UIEmployeeMaintenanceDocument .UIEmployeeHyperlink;
#endregion

// Go to web page 'http://localhost:3062/' using new
browser instance
this.UIBlankPageWindowsInteWindow.LaunchUrl (new System.Uri
(this. BrowsetotheEmployeeDetailsApplicationParams.
UIBlankPageWindowsInteWindowUrl)) ;

// Click 'Employee' link
Mouse.Click (uIEmployeeHyperlink, new Point (17, 9));

}

For the above method the Coded Ul Test Builder creates the class as shown in
the following code and adds fields to the class for every constant value used
while recording.

public HtmlHyperlink UIEmployeeHyperlink

{

get

{

if ((this.mUIEmployeeHyperlink == null))

[80]

Chapter 3

this.mUIEmployeeHyperlink = new HtmlHyperlink (this) ;

#region Search Criteria
this.mUIEmployeeHyperlink.SearchProperties
[HtmlHyperlink.PropertyNames.Id] =
"ContentPlaceHolderl Menul HyperLinkl 2";
this.mUIEmployeeHyperlink.SearchProperties
[HtmlHyperlink.PropertyNames.Name] = null;
this.mUIEmployeeHyperlink.SearchProperties
[HtmlHyperlink.PropertyNames.Target] = null;
this.mUIEmployeeHyperlink.SearchProperties

[HtmlHyperlink.PropertyNames.InnerText] = "Employee";

this.mUIEmployeeHyperlink.FilterProperties
[HtmlHyperlink.PropertyNames.AbsolutePath] =
"/Employee/List.aspx";
this.mUIEmployeeHyperlink.FilterProperties
[HtmlHyperlink.PropertyNames.Title] = null;
this.mUIEmployeeHyperlink.FilterProperties
[HtmlHyperlink.PropertyNames.Href] =
"http://localhost:3062/Employee/List.aspx";
this.mUIEmployeeHyperlink.FilterProperties
[HtmlHyperlink.PropertyNames.Class] = null;
this.mUIEmployeeHyperlink.FilterProperties
[HtmlHyperlink.PropertyNames.ControlDefinition]
"id=ContentPlaceHolderl Menul HyperLinkl ";
this.mUIEmployeeHyperlink.FilterProperties
[HtmlHyperlink.PropertyNames.TagInstance] = "5";
this.mUIEmployeeHyperlink.WindowTitles.Add
("Employee Maintenance") ;
#endregion

}

return this.mUIEmployeeHyperlink;

}

#endregion

#region Fields
private HtmlHyperlink mUIEmployeeHyperlink;
#endregion

[81]

Automated Tests

Now the required test and test files are created. Let us create a data source in the
form of a . csv file and use it for the coded Ul test. The sample data in the .csv file is
shown in the following screenshot:

A B C D E F G H I J K
1 First_Name Last_Name Middle_Name Department Occupation Gender City State Country Phone
2 |Satheesh Kumar N IT Architect Male Bangalore Karnataka India 1112223334
3 Subashni S S IT Manager Female Bangalore Harnataka India 1112223335
4 Subha S IT SrManager Female Bangalore Harnataka India 1112223336

Select the test method from the class file and insert the data source attribute directly
in the code in the line immediately above the method. The earlier Version of Visual
Studio has the data source wizard to associate the data source to the test method. But
VS 2012 does not have the wizard. Just add the data source attribute and start using
the data columns and rows as follows:

[DataSource ("Microsoft.VisualStudio.TestTools.DataSource.CSV",
" |DataDirectory| \\data.csv", "data#csv", DataAccessMethod.Sequential),
DeploymentItem("data.csv"), TestMethod]

Save the changes to the CodedUITest1.cs file. Now right-click the coded UI test
in the code editor and choose Run Unit Test. After the test is run, the overall Test
Result for all iterations is displayed in the Test Results window.

If the codeduITest1 test is run now, the test would run for each row in the data
source. As there are three rows in the data source the test would run three times.
Even if one of these tests fails, the entire Test Result would fail.

What is shown in the preceding screenshot is only the CSV data source but there are
multiple other data sources, such as XML file, Microsoft Excel, test cases in Team
Foundation Server, and SQL Express.

Adding controls and validation to coded Ul test

Sometimes some kind of validation is required for UI controls. For example,

some of the controls in the UI should not be null. Use the Coded UI Test Builder

to generate code for the validation method that uses an assertion for a UI Control.
Add the Ul control to the existing Ul map file and generate the code to the existing
coded Ul test file.

[82]

Chapter 3

Open the Test Project and the coded Ul test file, which is named CodedUITest1.cs.
In the code file place the cursor on CodeduITestMethod1 (), right-click and select the
option Generate code for Coded UI Test and then choose Use Coded UI Test Builder.

public void CodedUITestMethodl()

t /1 To ge Generate Code for Coded Ul Test b B Use Coded Ul Test Builder... Ctrl+\, Ctrl+C
J// For m Refactor L E';: Use Existing Action Recording... Ctrl+t, Ctrl+4
this.UIM Organize Usings L
this.UIM .

N Generate Sequence Diagram... . .
this.UIM First_NamelLast_NameMiddle_NameParams.UICountryE
this.UTM "& Run Tests Ctrl+R, T (First_NamelLast_NameMiddle_NameParams.UIStateEdi
t h::Ls LUIM Debug Tests Cirl+R, Ctrl+T :F?rst_l'lame La st_NameH%ddle_Name Params.ULCityEdit
this.UIM First_NamelLast_NameMiddle NameParams.UIGenderEd

The Coded UI Test Builder opens with menu options for adding controls and
validations. Open the application and then open the Ul page for which we need to
add the validation logic. Keeping the Ul open, simply drag-and-drop the crosshair
from the Test Builder to the control on the UL The other option is to select the control
then keep the mouse pointer on the UI Control while pressing the Windows logo key
+ I to select the control at the mouse pointer.

1« M = @ B
Mailings Review &

. z - = 24 Fina -
Aa- | W A S : S M T laancene | aadbcede AaBbC AaBboe AAB ’% ¥ ”
-W.A-AD EFAEE = 5-0- Fhormsd | THodpaci. Hesdingl Heagng 2 Title s

nange
* | Siyles s | Select -
- et Explorer pr Team = o
Nrvigaticn - u - - i F g B
e @L_j" B hetpy locahet 81 Empleyee insert 23 T4 % | (B congr
] T & Favortes | g
8 Employee £~ B -0 m o Pager Sefeye Tock~ @ 7

[#] EMPLOYEE MAINTENANCE

Coded UT Test Bulder - Add Assertions: UlFirst Namefdit Tx

*
% M Add Ausertion -

Add new Employee B Property e
ControlDefinition iduContentPlacetolder] FormViewl ctid «

. : o

IsFassword False
Last_Mame o DefsubtTest 3
L = CopyPastedText
T R
Department u ReadOnly False B
= Madength 50
ODccupation 4 Generic
ClassName HemiTextBox
Gender FriendlyName First Name
)
Oty
State
UlMagp - Coded U1 Test Busder 7 X
Jl| Eountey e
q B e = ot
1 *
1l Dene WL Local intranet | Protected Mods: Off v ®lok v a
£ —— B
Pagedord | Word:195 | OB English s | B E.2 N 005 (=) L] i+

el [0 €=/ [®[E[a[H]m] e)

[83]

vww allitebooks.conl

http://www.allitebooks.org

Automated Tests

After selecting a control, the Add Assertions screen opens for the selected control.
The window displays all the properties of the selected control. Select the property

of the control to be validated and then click on the Add Assertion option. The
following image shows the window to select the assertion type, add the Comparison
Value for the validation, and to provide the Message on Assertion Failure.

Coded UI Test Builder - Add Assertions: UIFirst... ? X
<«

£} Property Value
Add assertion for: Text X

Comparator:

|1sNothiuil -

=

Comparisen Value:

UI Contrel Map

Message on Assertion Failure:

The Employee First name cannct be Null

QK I [Cancel

Just for testing purposes, let's add an IsNotNull assertion type for the first name

UI control for the Text property of the control. Click on Ok to add the assertion to
the test. Keep adding assertions for all validations required for the controls. Once all
required assertions are added, click on the Generate code option in the Test Builder
and provide name for the assert methods that were added. This option automatically
creates the code for assertions and adds the method definition and method calls to
the corresponding files.

[84]

Chapter 3

Coded UI Test Builder - Generate Code 7 X
Method Name:
(for example: MyMethod)
AssertMethod2 hd

Method Description:

This is the assert method for validating the null value for
employes first name|

Add and Generate

All assertion method definitions are added to the UIMap.Designer.cs file and
the method is called from the main method codedUITestMethod1l () in the
CodedUITestl.cs file. The following code shows the code for the assertion
generated in the designer file:

/// <summary>
// This is the assert method for validating the null value
for employee first name
/// </summarys>
public void AssertMethod2 ()
{
#region Variable Declarations
HtmlEdit ulIFirs t_NameEdit =
this.UIEmployeeWindowsInterWindow.UIEmployeeDocumentl.
UIFirst_NameEdit;
#endregion

// Verify that the 'Text' property of 'First Name'
text box is not equal to 'null’
Assert.IsNotNull (uIFirst NameEdit.Text,
"The Employee First Name cannot be Null");

[85]

Automated Tests

Now to test the assertion functionality, open the data source CSV file and empty the
values for the first name of all the employees in the file. Navigate to CodeduITest1
from the Test Explorer window and run the test. As there are three rows in the data
source, there will be three iterations of the test run, and all three will fail because the
first name is null in all rows. The test is checking for a not null value in the first name
field. So the entire test would fail because of the tests failure.

Now the required coded Ul testing is successful. One difficulty in this type of code
generation is the code maintenance. As we know that all the assertion codes and
the validation methods are added to the UIMap class, there is chance of this class file
growing to a larger size, if we keep on adding the controls and methods. To avoid
this situation, multiple UIMap files can be generated.

The application can be grouped into modules or logical subsets, and each UIMap file
mapped to one particular logical subset of the application. This logical grouping also
helps the tester to work on an individual module without affecting other areas of the
application. To create the logical grouping, first create a folder under Test Project.
Then select the folder and create a new item of type Coded UI Test Map from the
available templates as follows:

Add New Ftem - CodedUlT estProjectl (-5 |2zl
4 Installed Sort by: Default | Search Installed Templates (Ctrl+E) P~
4 Visual C# ltems K Basic Unit Test Visual C# ltems Type: Visual C# Items
ik AUl map for Coded UI Test. Use this to
Data -._c-“ Coded UI Test Visual C# Items split the definition of the user interface of
General A your application inte smaller logical units.
Web
Windows Forms A Generic Test Visual C# tems
WPF
Reporting *; Load Test Visual C# Items
Test 1—
Workflow A: Ordered Test Visual C# Items
. cH#
B Online A Unit Test Visual C# ltems

A@ Web Performance Test Visual C# Items

ﬁ Coded Ul Test Map Visual C# ltems

Mame: UIMapl .uitest

Add || Cancel

[86]

Chapter 3

Click on Add after providing a name for the new Map file. The Coded UI Test Builder
window will now appear after minimizing the Visual Studio window. Using the Test
Builder, keep recording the actions and creating the validations for the UI controls.
Make sure of adding controls and validation specific to the module for which the
map file is created. Generate the code using the option in the Test Builder after
completing the recording. You can see the new .uitest file and designer.cs files
added to the test under the new folder. The following image shows the new UIMap
files created under the new folder:

UIMapl.Designer.cs # X
#3 CodedUITestProject] CodedUITestMap.UIMapl Classes.UIMapl ~ @ AssertMethodl()

B Solution Explorer *Oax

/f <auto-generated> . & . -

I/ This code was generated by coded UI test builder. M e-ea@ © ‘ﬂ% N
:::"; Version: 11.0.8.0 Search Selution Explorer (Ctrl+;) P~
/I Changes to this file may cause incorrect behavior and will be lost if +fa] Solution ‘EmployeeMaintenance’ (5 projects)

I the code is regenerated. b il Solution Ttems

/i </auto-generated:> b +[#] ClassLibrarylforPlugln

F et 4 +[c¥] CodedUITestProjectl

b + S Properties
P =B References
{
B Service References

= using System;
using System.CodeDom.Compiler; 4 @] Coded UITest Map

—Inamespace CodedUITestProjectl.CodedUITestMap.UIMaplClasses

using System.Collections.Generic; 4 +FF UMapl.uitest

using System.Drawing; b+ UIMapl.cs

using System.Text.RegularExpressions; b 0‘@ UIMapl .Designer.cs
using System.Windows.Input; P+ c* CodedUITestl.cs

using Microsoft.VisualStudio.TestTools.UITest.Extension; b +c#* CodedUTestEmpDelete.cs
using Micreseft.visualstudio.TestTools. UITesting; +[X] EmpData.csv

using Microsoft.VisualStudio.TestTools.UITesting.HtmlControls;
using Microseft.VisualStudio.TestTools.UnitTesting;

using Keyboard = Microsoft.VisualStudio.TestTools.UITesting.Keyboard; P [CustomRules

using Mouse = Microsoft.VisualStudio.TestTools.UITesting.Mouse; b+ mployeeMaintenance
using MouseButtons = System.Windows.Forms.MouseButtons; b +[e#] EmployeeTestProject

b +ZF UMap.uitest

[GeneratedCode("Coded UITest Builder™, “11.8.58727.1%)]
] public partial class UIMapl

{

For any mapping that we create there are certain best practices to follow for easy
maintenance and successful Test Results, such as:

* Do not modify the UIMap.Designer.cs file as it is meant only for the Test
Builder to modify.

* Always use Coded Ul Test Builder to create all assertions and limit the
recording to few user actions.

* Use meaningful names for the UIMap files and the assertion methods to easily
identify and maintain the code and tests.

* Always re-record the user actions after any changes to the user interface.

[87]

Automated Tests

Summary

This chapter provides information on the new features added to the coded UI test

in Visual Studio 2012. The new version has the new editor to edit the UIMap.uitest
files, along with a few features to move the code and split the code to the map files.
The Test Builder is a very handy tool for selecting the controls, add assertion methods,
and generating code. This chapter also explained how to maintain multiple Map files
under different folders. The samples also explain having a data source to automate the
same test with different sets of data, without re-running the test manually for each set
of data.

The next chapter explains the details of testing the smallest piece of testable code
isolated from the remaining code. This is called the unit testing type which is
normally conducted by the developer to test the code independently.

[88]

Unit Testing

Unit testing is a type of testing or the technique to take the smallest piece of testable
code isolated from the remaining software in the application and then determine
whether it behaves as expected. Enterprise software applications usually comprises
of multiple methods and functions with multiple lines of code integrated together.
Identifying the piece of code that produces the defect is always a time-consuming
task and the cost involved is also high. It is always a good practice to test the code in
units and confirm the expectations before integrating the code module(s). Requiring
all code to pass the unit tests before they can be integrated ensures standards and
quality. It is the responsibility of the developer who has written the code to make
sure that each unit of code behaves exactly as expected. The code should also be
written in such a way that it can be tested independently. Another advantage is that
every time a defect is fixed or code is modified, you need not retest the entire module
or application. As long as the unit of code is tested and it produces the expected
result, it should be fine. Automating the tests would help in re-running the tests
whenever there is code change in any unit of code.

Visual Studio has the capability and feature to create, customize, and automate the
unit tests, irrespective of type of the method whether it is public or private. Unit
tests are just another class file, similar to any other class and method but having
additional attributes to define the type as test class and the test method. The unit
tests are created either manually by writing the code for class and methods, or by
generating the skeleton code using the Create Unit Tests option from the Context
menu and then customizing it.

The generated unit test code file contains special attributes assigned to the class and
methods in it. Test classes are marked by the TestClass () attribute and each test
method is marked with the TestMethod () attribute. Apart from these two, there
are many other attributes used for unit testing. After generating the unit test class
and methods, the Assert methods are used to verify the produced result with the
expected value.

Unit Testing

All unit test classes and methods are defined in the Microsoft.visualStudio.
TestTools.UnitTesting namespace. Any unit test created using Visual Studio
should include this namespace. One of the main classes is the TestContext, which
provides all the information for unit tests. This chapter covers the following topics
in detail:

* Creating unit tests

* Naming and general settings

* Assert statements and type of asserts
* String asserts and collection asserts

* Unit tests and generics

* Data-driven unit tests

* Code coverage for unit tests

Creating unit tests

There are two different ways of creating unit tests. One is the manually of writing

the entire code for the test, and the other is to generate the unit test code for the class
using Visual Studio and customizing it. To see how a test class is generated, consider
the following class library which is a very simple example of a total price calculation.

For creating a new class library in Visual Studio, click on New | Project under the
File menu option and select Class Library from the available Visual C# templates.

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace TestLibrary

{

public class Classl

{

public double CalculateTotalPrice (double quantity)

{

double totalPrice;
double unitPrice;

// Todo get unit price. For test let us hardcode it
unitPrice = 16.0;

totalPrice = unitPrice * quantity;

[90]

Chapter 4

return totalPrice;

public void GetTotalPrice()

{
int gty = 5;
double totalPrice = CalculateTotalPrice(qty);
Console.WriteLine ("Total Price: " + totalPrice);

}

Now the class file for total price calculation is coded, but needs to be unit tested.
Using the File | New | Project menu option, select the unit testing type from the list
and create a new project. In earlier versions of Visual Studio there used to be an easy
way of creating a unit Test Project with the option of right-clicking on the method
for which the Unit test has to be created. But that option is deprecated and no longer
available in this version of Visual Studio for various reasons.

The default class contains a default class in the name of UnitTestl and a test method
in the name of TestMethod1.

The following code shows a few test methods created for the methods in the class
library project. If the test method is incomplete and does not return a value yet,
keep it inconclusive until it is complete and ready to return a value for evaluation.

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
{
[TestClass ()]
public class ClasslTest
{
[TestMethod ()]
public void CalculateTotalPriceTest ()
{
Classl cls = new Classl();
double quantity = OF;
double expected = OF;
double actual;
actual = cls.CalculateTotalPrice (quantity) ;
Assert.AreEqual (expected, actual);

Assert.Inconclusive ("Verify the correctness of this tes
t method") ;

[91]

Unit Testing

[TestMethod ()]
public void GetTotalPriceTest ()

{

Classl cls = new Classl();
cls.GetTotalPrice() ;
Assert.Inconclusive ("Method that does not return a

value") ;

}

There are many attributes and properties available to the class and methods.

A test method:

* Must be decorated with the TestMethod () attribute

e Should return void

* Cannot have parameters

The following is the list of attributes used for test class and test methods:

Attributes

Description

TestClass ()

ClassInitialize()

ClassCleanup ()

TestInitialize ()

TestCleanup ()

TestMethod ()

To identify the unit test class within the file.

The method with this attribute is used for preparing

the class for the test. For example, setting up the
environment or collecting details which are required

for testing are handled within this method. The method
with this attribute is executed just before the first test in
the class; each test class can have only one method as the
class initializer.

The method with this attribute is used for cleaning or
destroying the objects used in the test. This method
is executed after all the tests in the class are run and
each test class can contain only one method as the
ClassCleanup method.

The method with this attribute is used for initializing or
running the code before each test.

This method is run after each test in the class. This is
similar to the ClassCleanup method but the difference
here is that the method is executed once after each test.

This attribute identifies the method to be included as
part of the test. This method has the unit test code for the
method in the original class file.

[92]

Chapter 4

It is recommended to use the TestCleanup and ClassCleanup methods instead

of the Finalizer method for all the test classes. The exceptions thrown from the
Finalizer method will not be caught, which will result in unexpected results. The
cleanup activity should be used for bringing the environment back to its original
state. For example, during testing we might have updated or inserted more records
to the database tables, or created a lot of files and logs. This information should

be removed once the testing is complete and the exceptions thrown during this
process should be caught and rectified. There are only a few initializing and cleanup
methods that can be used within the test class.

Assert statements

The assert statement is used for comparing the result from the original method

with the expected result, and then passing or failing the test based on the match.
Whatever the result produced by the method may be, the end result of the test
method depends on the return value of the assert method. The assert statement takes
care of setting the result. There are multiple overloaded methods supported by the
Assert statement to set the return value to Pass or Fail or Inconclusive. If the
assert statement is not present in the test method, the test method will always return
a pass value. If there are many assert statements in the test method, the test will be
in Pass state until one of the assert statements returns Fail.

In the preceding example, the test method calculateTotalPriceTest has two
assert statements Assert .AreEqual and Assert.Inconclusive. The Assert.
AreEqual statement has two parameters, one called expected, which is the expected
value returned by the CalculateTotalPrice method. The second parameter actual
is the actual value returned by the method. The Assert.AreEqual statement, which
is explained in detail in the next section, compares these two values and returns the
Test Result as pass if both the values match. It returns Fail if there is a mismatch
between these two values.

[TestMethod ()]

public void CalculateTotalPriceTest ()

{
Classl cls = new Classl(); // TODO: Initialize to an

//appropriate value

double quantity = 0F; // TODO: Initialize to an
//appropriate value

0F; // TODO: Initialize to an
//appropriate value

double expected

double actual;
actual = cls.CalculateTotalPrice (quantity) ;

[93]

Unit Testing

Assert.AreEqual (expected, actual);
Assert.Inconclusive ("Verify the correctness of this test
method.") ;

}

The test method also contains the Assert . Inconclusive statement to return the
result as Inconclusive if the test method is not complete. Remove this line if the
code is complete and returns the result. If the above code is running without
setting the value for the variables quantity and expected, the return would be
Inconclusive. Now set the value for quantity and expected as:

double quantity = 10F;

double expected 159F;

The returned result would be a Fail value because the actual value returned by the
method would be 160, while our expected value is 159. If you change the expected
value to 160 then the test would pass. The examples have shown only one Assert
type so far. There are many other asserts statements provided by the Visual Studio
unit test framework to support and do a complete unit test for various scenarios.

Types of Asserts

The Assert class supports both comparison and conditional testing capabilities.
The Microsoft.VisualStudio.TestTools.UnitTesting namespace contains all
these assert types. The actual and expected values are compared based on the type
of assert used and the result decides the test pass or failure state.

Assert

The assert class has many different overloaded methods for comparing the values.
Each method is used for a specific type of comparison. For example, an assert can
compare a string with a string, or an object with another object, but not an integer
with an object. Overloaded methods are methods with the same name, but with
additional or optional parameters added to the method. This is to change the
behavior of the method based on the need. For example, the assert method provides
an overloaded method to compare the values within a specified accuracy, which is
explained in detail when comparing double values.

[94]

Chapter 4

Consider the following simple Item class shown with three properties each with
different data types:

public class Item {
public int ItemID { get; set; }
public string ItemType { get; set; }
public double ItemPrice { get; set; }

}

The code shown here is a sample which creates a new Item object with values set for
the properties:

public Item GetObjectToCompare () {
Item objA = new Item();
objA.ItemID = 100;
objA.ItemType = "Electronics";
objA.ItemPrice = 10.99;
return objA;

}

Create a unit test for the above method and set the properties for the object, like in
the following code:

[TestMethod ()]

public void GetObjectToCompareTest ()

{
Classl target = new Classl();
Item expected = new Item();
expected.ItemID = 100;
expected.ItemType = "Electronics";
expected.ItemPrice = 10.39;
Item actual;
actual = target.GetObjectToCompare () ;
Assert.AreEqual (expected, actual);

}

With the above sample code and the unit test, we will look at the results of each
overloaded method in the Assert class.

[95]

Unit Testing

Assert.AreEqual

This is used for comparing and verifying actual and expected values. The following
are the overloaded methods for the Assert .AreEqual () method and the result for

the previous code samples:

Method

Description

Assert.AreEqual (Object,
Object) ;

Assert.AreEqual (Object,
Object, String)

Assert.AreEqual (Object,
Object, String, Object[])

Verifies if both the objects are equal.

The test fails because the actual and the
expected values are two different objects even
though the properties are the same.

Try setting expected = actual just before
the assert statement and run the test again; the
test would pass as both the objects are now
the same.

Used for verifying two objects and displays
the string message if the test fails. For example,
if the statement is like this:

Assert.AreEqual (expected, actual,
"Objects are Not equal")

The output of the test would be Assert.
AreEqual failed. Expected:<TestLibrary.
Item>. Actual:<TestLibrary.Item>. Objects are
not equal.

Used for verifying two objects and displays the
string message if the test fails; the formatting is
applied to the displayed message. For example,
if the assert statement is like this:

Assert.AreEqual (expected, actual,
"Objects {0} and {1} are not
equal", "ObjA", "ObjB")

The displayed message if the test

fails would be Assert.AreEqual

failed. Expected:<TestLibrary.Item>.
Actual:<TestLibrary.Item>. Objects ObjA
and ODbjB are not equal.

[96]

Chapter 4

Method

Description

Assert.AreEqual (String,
String, Boolean)

Assert.AreEqual (String,
String, Boolean, CultureInfo)

Assert.AreEqual (String,
String, Boolean, String)

Used for comparing and verifying two strings;
the third parameter is to specify whether to
ignore case or not. If the assert statement is
like this:

Assert.AreEqual (expected.ItemType,
actual.ItemType, false)

The test will pass only if both the values are the
same including the casing.

Used for comparing two strings specifying
casing to include for comparison including the
culture info specified; for example, if the assert
is like this:

Assert.AreEqual (expected.ItemType,
actual.ItemType, false, System.
Globalization.CulturelInfo.
CurrentCulture.EnglishName)

...and the property value for expected.
ItemType="electronics", then the result
would be:

Assert.AreEqual failed.
Expected:<electronics>. Case is different
for actual value:<Electronics>. English
(United States).

Used for comparing two strings specifying
whether to include casing, display the specified
message if the test fails; for example if the
statement is like this:

Assert.AreEqual (expected.ItemType,
actual.ItemType, false, "Both the
strings are not equal")

The Test Result would be Assert.AreEqual
failed. Expected:<electronics>. Case is
different for actual value:<Electronics>. Both
the strings are not equal.

[97]

Unit Testing

Method

Description

Assert.AreEqual (String,
String, Boolean, Culturelnfo,
String)

Assert.AreEqual (String,
String, Boolean, String,
Object [])

Assert.AreEqual (String,
String, Boolean, CulturelInfo,
String, Object[])

Used for comparing two strings specifying
casing and culture info to include for
comparison; displays the specified message if
the test fails; the following is an example:

Assert.AreEqual (expected.ItemType,
actual.ItemType, false, System.
Globalization.CultureInfo.
CurrentCulture.EnglishName, "Both
the strings {0} and {1} are not
equal", actual.ItemType, expected.
ItemType)

Used for comparing two strings specifying
the casing, the specified message is displayed
with the specified formatting applied to it; for
example if the statement is like this:

Assert.AreEqual (expected.ItemType,
actual.ItemType, false, "Both

the strings '{0}' and '{1}' are
not equal", actual.ItemType,
expected.ItemType) ;

The Test Result if the test fails would be Assert.
AreEqual failed. Expected:<electronics>. Case
is different for actual value:<Electronics>.
Both the strings 'Electronics' and 'electronics'
are not equal.

Used for comparing two strings specifying
casing and culture information to include for
comparison; displays the specified message

if the test fails; the specified formatters are
applied to the message to replace it with the
parameter values. The following is an example:

Assert.AreEqual (expected.ItemType,
actual.ItemType, false, System.
Globalization.CultureInfo.
CurrentCulture.EnglishName, "Both
the strings '{0}' and '{1}' are not
equal", actual.ItemType, expected.
ItemType) ;

If the test fails, it displays the message with
the formatters {0} and {1} replaced with
the values in actual . Itemtype and
expected.ItemType.

[98]

Chapter 4

Method Description
Assert.AreEqual (Double, These are the three different overloaded assert
Double, Double) methods for comparing and verifying the

Double values; the first and second parameter
values are the expected and actual values,

the third parameter is to specify the accuracy
within which the values should be compared.

_ The fourth parameter is for the message
Object []) and fifth is the format to be applied for the
message; for example, if the assert is like this:

Assert.AreEqual (Double,
Double, Double, String)

Assert.AreEqual (Double,
Double, Double, String,

Assert.AreEqual (expected.ItemPrice,
actual.ItemPrice, 0.5, "The values
{0} and {1} does not match within
the accuracy", expected.ItemPrice,
actual.ItemPrice) ;

The test would produce a result of: Assert.
AreEqual failed. Expected a difference no
greater than <0.5> between expected value
<10.39> and actual value <10.99>. The value
10.39 and 10.99 does not match within the
accuracy. Here the expected accuracy is 0.5 but
the difference is 0.6.

Assert.AreEqual (Single, This is very similar to the Double value
Single, Single) comparison shown previously but the values
here are of type Single; this method also
supports the message and the formatters to be
displayed if the test fails.

Assert.AreEqual (Single,
Single, Single, String)

Assert.AreEqual (Single,
Single, Single, String,

Object [])

Assert.AreEqual<T>(T, T,) These overloaded methods are used for
Assert.AreEqual<Ts (T, T comparing and verifying the generic type data;
String) the assertion fails if they are not equal and

displays the message by applying the specified

Assert.AreEqual<T>(T, T, formatters; for example, if the assert is like:

String, Object[])
Assert.AreEqual<Items> (actual,

expected, "The objects '{0}' and
"{1}' are not equal", "actual",
"expected")

The result if the test fails would be Assert.
AreEqual failed. Expected:<TestLibrary.
Item>. Actual:<TestLibrary.Item>. The
objects 'actual' and 'expected' are not equal.

[99]

Unit Testing

Assert.AreNotEqual

All the previously mentioned overloaded methods for Assert . AreEqual also applies
to Assert.AreNotEqual, the only difference being that the comparison is the exact
opposite of the AreEqual assert. For example, the following method verifies if the two
strings are not equal by ignoring the casing as specified by Boolean. The test fails if
they are equal and the message is displayed with the specified formatting applied to it:

Assert.AreNotEqual (String, String, Boolean, String, Object[])

The following code compares two strings and verifies whether they are equal or not:

Assert.AreNotEqual (expected.ItemType, actual.ItemType, false,
"Both the strings '{0}' and '{1}' are equal", expected.ItemType,
actual.ItemType) ;

If the string values are equal, the output of this would be:

Assert.AreNotEqual failed. Expected any value except:<Electronics>.
Actual:<Electronics>. Both the strings 'Electronics' and 'Electronics' are equal

Assert.AreSame

The following table shows different types of overloaded assert methods for the assert
type AreSame, which checks whether objects are same or not:

Method Description

Assert.AreSame (Object, Object) This method compares and verifies
whether both the object variables refer to
the same object; even if the properties are
the same, the objects might be different;
for example, the following test will pass
because the objects are the same.

List<string> firstLst = new
List<string> (3) ;

List<string> secondLst =
firstLst;

Assert.AreSame (firstLst,
secondLst) ;

Both objects A and B refer to the same
object and so they are the same.

[100]

Chapter 4

Method

Description

Assert.AreSame (Object,

String)

Assert.AreSame (Object,

String,

Object[])

Object,

Object,

This method compares and verifies
whether both object variables refer to
the same object; if not, the message

will be displayed; for example, the
following code compares the two objects
firstLst and secondLst:

List<string> firstLst = new
List<string>(3) ;

List<string> secondLst = new
List<string>(5) ;

Assert .AreSame (firstLst,
secondLst, "The objects are
not the same") ;

The test fails with the output Assert.
AreSame failed. The objects expected
and actual are not the same.

This method compares and verifies
whether both object variables refers

to the same object; if not, the message
will be displayed with the specified
formatting; for example, the following
code compares two objects firstLst
and secondLst:

List<string> firstLst = new
List<string>(3);

List<string> secondLst = new
List<string>(5) ;

Assert.AreSame (firstLst,
secondLst, "The objects
{0} and {1} are not same",
"firstLst", "secondLst");

The test fails with the output Assert.
AreSame failed. The objects firstLst and
secondLst are not same.

[101]

Unit Testing

Assert.AreNotSame

This Assert is used to verify that two objects are not the same. The test fails if the
objects are the same. The same overloaded methods for Assert . AreSame apply here,
but the comparison is the exact opposite. The following are the three overloaded
methods applied to Assert . AreNotSame:

® Assert.AreNotSame (Object, Object)

® Assert.AreNotSame (Object, Object, String)

® Assert.AreNotSame (Object, Object, String, Object[])
For example, the following code verifies if objects firstLst and secondLst are not

the same. If they are the same, the test fails with the specified error message with the
specified formatting applied to it:

List<string> firstLst = new List<strings>(5);

List<string> secondLst = firstLst);
Assert.AreNotSame (firstLst, secondLst, "The test fails because the
objects {0} and {1} are same", "firstLst", "secondLst");

The above test fails with the message Assert.AreNotSame failed. The test fails
because the objects firstLst and secondLst are same.

Assert.Fail

This assert is used for failing the test without checking any condition. Assert.Fail
has three overloaded methods:

Method Description
Assert.Fail () Fails the test without checking any condition.
Assert.Fail (String) Fails the test without checking any condition

and displays the message.

[102]

Chapter 4

Method

Description

Assert.Fail (String, Objectl[])

Fails the test without checking any condition
and displays the message with the specified
formatting applied to the message; for
example, the following code does not check
for any condition but fails the test and
displays the message:

Assert.Fail ("This method '{0}"
is set to fail temporarily",
"GetItemPrice") ;

The output for the preceding code would
be Assert.Fail failed. This method
'GetItemPrice' is set to

fail temporarily.

Assert.Inconclusive

This is useful in case the method is incomplete and cannot determine whether
the output is true or false. Set the assertion to be inconclusive until the method is
complete for testing. There are three overloaded methods for Assert . Inconclusive:

Method

Description

Assert.Inconclusive ()

Assert.Inconclusive (String)

Assert.Inconclusive (String,
Object [])

Assertion cannot be verified; set
to inconclusive.

Assertion cannot be verified; set to
inconclusive and displays the message.

Assertion cannot be verified; set to
inconclusive and displays the message
with the specified formatting applied
to it; for example, the following code
sets the assertion as inconclusive which
means neither true nor false.

Assert.Inconclusive ("This
method '{0}' is not yet ready
for testing", "GetItemPrice");

The output for the preceding code would
be Assert.Inconclusive failed. This
method 'GetltemPrice' is not yet ready
for testing.

[103]

Unit Testing

Assert.IsTrue

This is used for verifying if the condition is true. The test fails if the condition is false.
There are three overloaded methods for Assert . IsTrue:

Method Description

Assert.IsTrue () Used for verifying the condition; test fails if the
condition is false.

Assert.IsTrue (String) Used for verifying the condition and displays
the message if the test fails.

Assert.IsTrue (String, Verifies the condition and displays the message

Object[]) if the test fails; applies the specified formatting

to the message.

For example, the following code fails the test as
the conditions return false.

List<string> firstLst = new
List<string>(3);

List<string> secondLst = new
List<string>(5) ;

Assert.IsTrue (firstLst ==
secondLst, "Both {0} and {1}
are not equal", "firstLst",
"secondLst") ;

The output message for the preceding test
would be Assert.IsTrue failed. Both 'firstLst'
and 'secondLst' are not equal.

Assert.IsFalse

This is to verify if the condition is false. The test fails if the condition is true. Similar
to Assert.IsTrue, this one has three overloaded methods:

Method Description

Assert.IsFalse () Used for verifying the condition; test fails if the
condition is true.

Assert.IsFalse (String) Used for verifying the condition; displays the
message if the test fails with the condition true.

[104]

Chapter 4

Method

Description

Assert.IsFalse(String,
Object[])

Verifies the condition and displays the
message if the test fails with the condition
true and applies the specified formatting to
the message.

For example, the following code fails the test as
the condition returns true:

List<string> firstLst = new
List<string>(3);

List<string> secondLst = firstLst;
Assert.IsFalse(firstLst ==

secondLst, "Both {0} and {1} are
equal", "firstLst", "secondLst");

The output message for the above test would
be Assert.IsFalse failed. Both "firstLst" and
"secondLst" are equal

Assert.IsNull

This is used to verify whether an object is null. The test fails if the object is not null.
Given here are the three overloaded methods for Assert . IsNull.

Method

Description

Assert.IsNull (Object)
Assert.IsNull (Object, String)

Assert.IsNull (Object, String,
Object[])

Verity if the object is null.

Verify if the object is null; displays

the message if the object is not null and the
test fails.

Verify if the object is null and display the

message if the object is not null; apply the
formatting to the message.

For example, the following code verifies if the
object is null and fails the test if it is not null
and displays the formatted message:

List<string> firstLst = new
List<string>(3) ;
List<string> secondLst = firstLst;

Assert.IsNull (secondLst, "Object
{0} is not null", "secondLst");

The preceding code fails the test and displays
the error message Assert.IsNull failed. Object
"secondLst" is not null.

[105]

Unit Testing

Assert.IsNotNull

This is to verify if the object is null or not. The test fails if the object is null. This is the
exact opposite of the Assert.IsNull and has the same overloaded methods.

Method Description

Assert.IsNotNull (Object) Verifies if the object is not null.

Assert.IsNotNull (Object, Verifies if the object is not null, and

String) displays the message if the object is null
and the test fails.

Assert.IsNotNull (Object, Verifies if the object is not null and

String, Objectl[]) displays the message if the object is null;

applies the formatting to the message.

For example, the following code verifies if
the object is not null and fails the test if it is
null and displays the formatted message :

List<string> secondLst = null;
Assert.IsNotNull (secondLst,
"Object {0} is null",
"secondLst") ;

The preceding code fails the test and
displays the error message Assert.

IsNotNull failed. Object 'secondLst'
is null.

Assert.IsInstanceOfType

This method verifies whether the object is of the specified System. Type. The test fails
if the type does not match.

[106]

Chapter 4

Method

Description

Assert.IsInstanceOfType (Object,
Type)

Assert.IsInstanceOfType (Object,
Type, String)

Assert.IsInstanceOfType (Object,
Type, String, Objectl[])

This method is used for verifying whether
the object is of the specified System. Type.

For example, the following code verifies
whether the object is of type ArrayList:

Hashtable obj = new Hashtable() ;
Assert.IsInstanceOfType (obj,
typeof (ArrayList)) ;

The test fails as the ob3j object is not of type
ArrayList. The error message returned
would be like:

Assert.IsInstanceOfType failed.
Expected type:<System.Collections.
ArrayList>. Actual type:<System.
Collections.Hashtable>.

This is the overloaded method for
the preceding method with an
additional parameter; the third
parameter is the message to be
displayed in case the test fails.

The purpose of this method is same as
that of the preceding methods; but the
additional parameter is the formatter to be
applied on the error message displayed if
the test fails.

StringAsserts

This is another Assert class within the Unit test namespace Microsoft.
VisualStudio.TestTools.UnitTesting that contains methods for common
text-based assertions. stringAssert contains the following methods with additional
overloaded methods. Overloaded methods are the methods with the same name but
with additional or optional parameters to change the behavior of the method based
on the parameter values supplied to the method.

[107]

Unit Testing

StringAssert.Contains

This method verifies if the second parameter string is present in the first parameter
string. The test fails if the string is not present. There are three overloaded methods
for stringAssert.Contains. The third parameter specifies the message to be
displayed if the assertion fails, and the fourth parameter specifies the message
formatter to be applied on the error message for the assertion failure. The formatters
are the placeholders for the parameters values:

® StringAssert.Contains (String, String)
® StringAssert.Contains(String, String, String)

® StringAssert.Contains(String, String, String, Object[])

For example, the following code verifies if the Test string is present in the first
string. If not, the message is displayed with the specified format applied to it.

string find = "Testing";

StringAssert.Contains ("This is the Test for StringAsserts",
find, "The string '{0}' is not found in the first
parameter value", find);

The assertion fails with the specified error message added to its default message
as StringAssert.Contains failed. String 'This is the Test for StringAsserts' does
not contain string 'Testing'. The string 'Testing' is not found in the first
parameter value.

StringAssert.Matches

As the name suggests, this method verifies if the first string matches the regular
expression specified in the second parameter. These assert methods contain three
overloaded methods to display the custom error message and apply formats to the
message if the assertion fails:

® StringAssert.Matches (String, Regex)
® StringAssert.Matches (String, Regex, String)
® StringAssert.Matches(String, Regex, String, Object[])

For example, the following code verifies if the string contains any numbers between
0 and 9. If not, the assertion fails with the message specified with the formats.

Regex regEx = new Regex (" [0-9]");

StringAssert.Matches ("This is first test for StringAssert",
regEx, "There are no numbers between {0} and {1} in the
string", 0, 9);

[108]

Chapter 4

The error message would be StringAssert.Matches failed. String "This is first test
for StringAssert" does not match pattern '[0-9]'. There are no numbers between 0
and 9 in the string.

StringAssert.DoesNotMatch

This is the exact opposite of the StringAssert.Matches method. This assert method
verifies whether the first parameter string matches the regular expression specified
as the second parameter. The assertion fails if it matches. This assert type has three
overloaded methods to display the error message and apply the message formatting
to it, which is the place holder for the parameter values in the message:

® StringAssert.DoesNotMatch(String, Regex,)
® StringAssert.DoesNotMatch(String, Regex, String)

® StringAssert.DoesNotMatch(String, Regex, String, Object[])

For example, the following code verifies if the first parameter string does not
match with the regular expression specified in the second parameter. The assertion
fails if it does match and displays the specified error message with the formatting
applied to it.

Regex regEx = new Regex (" [0-9]");
StringAssert.DoesNotMatch ("This is 1st test for StringAssert",
regEx, "There is a number in the string");

The assertion fails with the error message StringAssert.DoesNotMatch failed.
String "This is 1st test for StringAssert" matches pattern "[0-9]". There is a number
in the string.

StringAssert.StartsWith

This is to verify whether a string in the first parameter starts with the value in the
second parameter. The assertion fails if the string does not start with the second
string. There are three overloaded methods to specify the error message to be
displayed and to specify the formatting to be applied to the error message:

® StringAssert.StartsWith(String, String)
® StringAssert.StartsWith(String, String, String)
® StringAssert.StartsWith(String, String, String, Object[])

[109]

Unit Testing

For example, the following code verifies if the first string starts with the specified
second parameter value. The assertion fails if it does not, and displays the specified
error message with the specified formatting.

string startWith = "First";

StringAssert.StartsWith("This is 1st test for StringAssert",
startWith, "The string does not start with '{o}'",
startWith) ;

The assertion fails with the error message StringAssert.StartsWith failed. String
"This is 1st test for StringAssert" does not start with string "First". The string does
not start with "First".

StringAssert.EndsWith

This is similar to the StringAssert.StartsWith method, but here, it verifies if the
first string ends with the string specified in the second parameter. The assertion fails
if it does not end with the specified string, and displays the error message. There are
three overloaded methods to specify the custom error message and the formatting;:

® StringAssert.EndsWith(String, String)

® StringAssert.EndsWith(String, String, String)

® StringAssert.EndsWith(String, String, String, Object[])
For example, the following code verifies whether the first string ends with the

specified string as the second parameter. The assertion would fail and display the
message with the specified format.

string endsWith = "Testing";

StringAssert.EndsWith("This is 1st test for StringAssert™",
endsWith, "'{0}' is not the actual ending in the string",
endsWith) ;

The error message displayed would be StringAssert.EndsWith failed. String "This
is 1st test for StringAssert" does not end with string "Testing". "Testing" is not the
actual ending in the string.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub. com. If you purchased this book
elsewhere, you can visit http: //www.packtpub.com/support and register to have
the files e-mailed directly to you.

[110]

http://www.PacktPub.com
http://www.PacktPub.com/support

Chapter 4

CollectionAssert

Visual Studio provides another type of assert through the namespace Microsoft.
VisualStudio.TestTools.UnitTesting, which helps to verify the objects that
implement the ICollection interface. The collections might be of the system collection
type or the custom collection type. These CollectionAssert compares and verifies
whether the objects implementing the ICollection interface returns the contents

as expected.

Consider the following lists. These lists are used in all the collection assert samples
featured in this section:

List<string> firstLst = new List<string>(3);
firstLst.Add ("FirstName") ;
firstLst.Add ("LastName") ;

List<string> secondLst = new List<strings>(3);
secondLst = firstLst;
secondLst .Add ("MiddleName") ;

List<string> thirdLst = new List<string>(3);
thirdLst.Add ("FirstName") ;

thirdLst.Add ("MiddleName") ;

thirdLst.Add ("LastName") ;

List<string> fourthLst = new List<strings>(3);
fourthLst.Add ("FirstName") ;
fourthLst .Add ("MiddleName") ;

The firstLst list has its maximum index as three, but has only two elements
added to it.

The secondLst list has its maximum index as three and firstLst is assigned to it
with an additional item MiddleName added to it.

The thirdLst list has its maximum index as three and contains three items in the list.

The fourthLst list also has three as its maximum index but contains only two items.

[111]

Unit Testing

CollectionAssert.AllitemsAreNotNull
These asserts verifies if any of the items in the collection is not null. The following
assertion would pass as none of the items is null in firstLst.

CollectionAssert.AllItemsAreNotNull (firstLst)

The assertion fails if a third item is added, like this:

firstLst.Add (null)

There are three overloaded methods to display the custom error message and to
specify the formatting for the message, if the assertion fails:

® CollectionAssert.AllItemsAreNotNull (ICollection)
® CollectionAssert.AllItemsAreNotNull (ICollection, String)

® C(CollectionAssert.AllItemsAreNotNull (ICollection, String,
Object [])

CollectionAssert.AreEquivalent

The CollectionAssert.AreEquivalent method verifies if both the collections
are equivalent. It means that even if the items are in different order within the
collections, the items should match.

CollectionAssert.AreEquivalent (thirdLst, secondLst) ;

In the example, notice that the MiddleName is the last item in the secondLst but
it is the second item in the thirdLst. But both collections have the same items,
so the assertion would pass. The following are the overloaded methods for
Collectionassert.AreEquivalent

® CollectionAssert.AreEquivalent (ICollection, ICollection)

® C(CollectionAssert.AreEquivalent (ICollection, ICollection,
String)

® C(CollectionAssert.AreEquivalent (ICollection, ICollection,
String, Object[])

[112]

Chapter 4

CollectionAssert.AreNotEquivalent

The CollectionAssert.AreNotEquivalent statement verifies if both first and
second parameter collections do not contain the same items. It means that the assert
fails even if one item in the first collection is not present in the second collection. In
the example, if we remove or replace one of the items from any of the two collections
secondLst or thirdLst, the assertion will pass as the items will not match.

thirdLst.Remove ("MiddleName") ;
thirdLst.Add ("FullName") ;
CollectionAssert.AreNotEquivalent (thirdLst, secondLst) ;

The following are the method syntax and the overloaded methods for the
CollectionAssert.AreNotEquivalent assert to SpeCify the custom error message
and the formatting for the message:

® CollectionAssert.AreNotEquivalent (ICollection, ICollection)

® C(CollectionAssert.AreNotEquivalent (ICollection, ICollection,
String)

® C(CollectionAssert.AreNotEquivalent (ICollection, ICollection,
String, Object[])

CollectionAssert.AllitemsArelnstancesOfType

This statement verifies if all the items in the collection are of the type specified in

the second parameter. The following code verifies if all the elements of the collection
thirdLst are of the string type. The assertion would pass as the items are string:

CollectionAssert.AllItemsAreInstancesOfType (thirdLst,
typeof (string))

The following are the syntax and the overloaded methods for the
CollectionAssert.AllItemsAreInstacesOfType assert, with parameters for
custom error messages and to specify the formats or the placeholders for the
parameter values in the message:

® CollectionAssert.AllItemsAreInstancesOfType (ICollection, Type)
® C(CollectionAssert.AllItemsAreInstancesOfType(ICollection, Type,
String)

® C(CollectionAssert.AllItemsAreInstancesOfType(ICollection, Type,
String, Object[])

[113]

Unit Testing

CollectionAssert.IsSubsetOf

This statement verifies whether the collection in the first parameter contains some
or all the elements of the collection in the second parameter. Note that all the

items of the first parameter collection should be part of the collection in the second
parameter. As per the example, the following assertion will pass as the items in the
fourthLst are the subset of items in the thirdLst:

CollectionAssert.IsSubsetOf (fourthLst, thirdLst)

The following are the syntax and the overloaded methods for the
CollectionAssert.IsSubsetOf assert:

® (CollectionAssert.IsSubsetOf (ICollection, ICollection)
® CollectionAssert.IsSubsetOf (ICollection, ICollection, String)

® C(CollectionAssert.IsSubsetOf (ICollection, ICollection, String,
Object [])

CollectionAssert.IsNotSubsetOf

This statement verifies whether the collection in the first parameter contains at least
one element which is not present in the second parameter collection. As per the
example, the following assertion would fail as the items in the fourthLst are the
subset of items in the thirdLst. It means that there are no items in fourthLst which
is not present in thirdLst.

CollectionAssert.IsNotSubsetOf (fourthLst, thirdLst)

Try adding a new element to the fourthLst which is not present in thirdLst such as:

fourthLst.Add ("FullName") ;

Now try the same CollectionAssert statement. The assertion would pass as the
fourthLst is not a subset of thirdLst collection.

The following are the syntax and the overloaded methods for the
CollectionAssert.IsNotSubsetOf assert to specify the custom error message and
the formats for error message:

® (CollectionAssert.IsNotSubsetOf (ICollection, ICollection)
® (CollectionAssert.IsNotSubsetOf (ICollection, ICollection,
String)

® (CollectionAssert.IsNotSubsetOf (ICollection, ICollection,
String, Object[])

[114]

Chapter 4

CollectionAssert.AllltemsAreUnique

Verifies whether the items in the collection are unique. The assertion would pass on
firstLst. The assertion fails if we add a third item, LastName, which duplicates an
existing item:

firstLst.Add ("LastName")
The syntax for this method and its two overloaded methods are given here. The
additional parameters are to specify the custom error message and formatting for
that error message:

® CollectionAssert.AllItemsAreUnique (ICollection)

® C(CollectionAssert.AllItemsAreUnique (ICollection, String)

® CollectionAssert.AllItemsAreUnique (ICollection, String,
Object [])

CollectionAssert.Contains

This assert verifies if any element of the collection specified as the first parameter
contains the element specified as the second parameter. The following assert would
pass as the FirstName is an element in the fourthLst collection:

CollectionAssert.Contains (fourthLst, "FirstName")

Custom error messages and formats for the assertion failure can be specified. This
assert has two overloaded methods in addition to the default method:

® C(CollectionAssert.Contains (ICollection, Object)

® CollectionAssert.Contains (ICollection, Object, String)

® C(CollectionAssert.Contains (ICollection, Object, String,
Object[])

CollectionAssert.DoesNotContain

This is the exact opposite of the CollectionAssert.Contains statement. This assert
verifies if any of the elements in the first parameter collection does not equal to the
value specified as the second parameter:

CollectionAssert.Contains (fourthLst, "Phone Number")

[115]

Unit Testing

Custom error messages and formatters for the assertion failure can be specified.
This assert has two overloaded methods in addition to the default method:

® C(CollectionAssert.DoesNotContain(ICollection, Object)
® CollectionAssert.DoesNotContain(ICollection, Object, String)

® CollectionAssert.DoesNotContain(ICollection, Object, String,
Object[])

CollectionAssert.AreEqual
This method verifies if both collections are equal in size. The following assertion fails
as the number of items added to the firstLst is different from the thirdLst:

CollectionAssert.AreEqual (firstLst, thirdLst)

The assertion would pass if we add the same number of items as firstLst to the
thirdLst, or assign the firstLst to thirdLst making both the arrays identical:

thirdLst = firstLst;
This assert type has six overloaded methods:

® CollectionAssert.AreEqual (ICollection, ICollection)
® CollectionAssert.AreEqual (ICollection, ICollection, IComparer)

® CollectionAssert.AreEqual (ICollection, ICollection, IComparer,
String)

® CollectionAssert.AreEqual (ICollection, ICollection, IComparer,
String, Object[])

® CollectionAssert.AreEqual (ICollection, ICollection, String)

® CollectionAssert.AreEqual (ICollection, ICollection, String,
Object[])

The parameters string and Object []1 and custom formats can be used for custom
error messages in case of assertion failure.

IComparer can be used if we have custom objects in the collection and we want to
use a particular property of the object for comparison. For example, if a collection
contains a list of Employee objects, having the FirstName, LastName, and
EmployeeID of each employee, we may want to sort and compare the elements in
the collection based on the FirstName of the employees. We may want to compare
the two collections containing the employees list based on the FirstName of the
employees. To do this, we have to create the custom comparer.

[116]

Chapter 4

Consider the following Employee class, which has an EmployeeComparer
class that compares the FirstName in the Employee implemented from the
IComparable interface:

public class Employee : IComparable

{

}

public string FirstName { get; set; }
public string LastName { get; set; }
public int ID { get; set; }

public Employee (string firstName, string lastName,
int employeelD)
{

FirstName = firstName;

LastName = lastName;
ID = employeelD;

public int CompareTo (Object obj)

{

Employee emp = (Employee)obj;

return FirstName.CompareTo (emp.FirstName) ;
}
public class EmployeeComparer : IComparer

{
public int Compare (Object one, Object two)
{
Employee empl = (Employee)one;
Employee emp2 = (Employee)two;
return empl.CompareTo (two) ;

Now create two collections of type List and add employees to the lists as shown
below. The first names of the employees are the same in both lists, but the last names
and the IDs vary, as shown in the following code:

List<Employee> EmployeesListOne = new List<Employees () ;
EmployeesListOne.Add (new TestLibrary.Employee ("Richard",
"King", 1801));
EmployeesListOne.Add (new TestLibrary.Employee ("James",

"Miller", 1408));
EmployeesListOne.Add (new TestLibrary.Employee ("Jim",

"Tucker", 3234));
EmployeesListOne.Add (new TestLibrary.Employee ("Murphy",

[117]

Unit Testing

"Young", 3954));

EmployeesListOne.Add (new TestLibrary.Employee ("Shelly",
"Watts", 7845));

List<Employee> EmployeesListTwo = new List<Employees () ;

EmployeesListTwo.Add (new TestLibrary.Employee ("Richard",
"Smith", 4763));

EmployeesListTwo.Add (new TestLibrary.Employee ("James",
"Wright", 8732));

EmployeesListTwo.Add (new TestLibrary.Employee ("Jim",
"White", 1829));

EmployeesListTwo.Add (new TestLibrary.Employee ("Murphy",
"Adams", 2984));

EmployeesListTwo.Add (new TestLibrary.Employee ("Shelly",
"Johnson", 1605)) ;

Now in the test method, use CollectionAssert.AreEqual to compare the
preceding collections.

CollectionAssert.AreEqual (EmployeesListOne, EmployeesListTwo, "The
collections '{0}' and '{1}' are not equal", "EmployeesListOne",
"EmployeesListTwo") ;

This assertion would fail because the objects in the collection are not the same. Even
if you update the employee object properties to be the same in both the collections,
it will fail because the objects are not the same. The error message would be the
specified custom message with the specified formatters.

But we can use the custom comparer we created to compare the collection objects
based on the FirstName element which is used in the comparer. We can create the
custom comparer on any of the object properties:

TestLibrary.Employee.EmployeeComparer comparer = new
TestLibrary.Employee.EmployeeComparer () ;

CollectionAssert.AreEqual (EmployeesListOne, EmployeesListTwo,
comparer, "The collections '{0}' and '{1}' are not equal",
"EmployeesListOne", "EmployeesListTwo") ;

The assertion would pass now as the comparison is done on the first name of the
elements in both the collection.

[118]

Chapter 4

ollectionAssert.AreNotEqual

This is similar to the CollectionAssert.AreEqual but this will verify if the
collections are not equal. This assert type also has multiple overloaded methods
similar to the CollectionAssert.AreEqual

® C(CollectionAssert.AreNotEqual (ICollection, ICollection)

® CollectionAssert.AreNotEqual (ICollection, ICollection,
IComparer)

® CollectionAssert.AreNotEqual (ICollection, ICollection,
IComparer, String)

® CollectionAssert.AreNotEqual (ICollection, ICollection,
IComparer, String, Objectl[])
® CollectionAssert.AreNotEqual (ICollection, ICollection, String)

® C(CollectionAssert.AreNotEqual (ICollection, ICollection, String,
Object [])

AssertFailedException

This is to catch the exception thrown when the test fails. This exception is thrown
whenever there is a failure in the assert statement.

The code in the following screenshot verifies if the fourthLst contains the string,
Phone Number. The assertion fails and the exception, AssertFailedException is
caught using the catch block. For this example, we will add the exception message
and a custom message to the test trace.

try
{

}

catch (AssertFailedException e)i

CollectionAssert.Contains(fourthLst, "Phone Number™);

{ S =+
Trace.WriteLine(e.Message); @
o Trace.Writeline("The fourth Iis 5 g base {System.Exception} {"Collecticnfsszert. Contains failed. "}
b F Message Q, - "Collectienfssert.Contains failed, "

@ MNon-Public members

100% =~ 4

[119]

Unit Testing

The preceding code clearly shows that the code has thrown the exception,
AssertFailedException, and is caught by the exception code block. Now the test will
pass because of the expected exception thrown by the test. The Test Result details will
show the details of the result. The following screenshot depicts the Test Result:

Test Explorer > 1x

S [- Search P - Show output from: Debug -
]]]]] The fourth list does not contain the string 'Phone Number'
K3 Streaming Video: Improving quality with . ™ The thread '<No Name>' (8x249c) has exited with code 8 (@x8)
The program '[9196] vstest.executionengine.exe: Program Trac
The program '[9196] wstest.executionengine.exe: Managed (v4.

Run All | Run.. = | Playlist: All Tests =

4 Passed Tests (1)
@ SampleTestmethodforAssertsTest 7 min
I* Mot Run Tests (18)

SampleTestmethodforAssertsTest
Source: UnitTestl.cs line 103
@ Test Passed - SampleTestmethodforAsser

Elapsed time: 7 min

UnitTestAssertionException

This is the base class for all unit test exceptions. If we have to write our own custom
Assertion class, we can inherit from UnitTestAssertionException to identify the
exceptions thrown from the test.

The code debug image with the exception shown in the previous section shows the
AssertFailedException which is derived from UnitTestAssertException.

ExpectedExceptionAttribute

This attribute can be used to test if any particular exception is expected from the code.
The attribute expects the exact exception that is expected to arise out of the code to be
specified as the parameter. Let's discuss this step-by-step with the help of an example.
The following code shows the custom exception which is derived from the application
exception. This custom exception does nothing, but just sets a message:

[120]

Chapter 4

namespace TestLibrary

{

class MyCustomException : ApplicationException

{

public string CustomMessage { get; set; }

public MyCustomException (string message)

{

CustomMessage = message;

}

The class contains a method which returns the total price, but throws the custom
exception with a message if the total price is less than zero.

public double GetTotalItemPrice (int count)
double price = 10.99;
double total;
total = count * price;
if (total < 0) {
throw new TestLibrary.MyCustomException ("the
total is less than zero");

}

return total;

}
Create a unit test method for the preceding method that returns the total item price:

[TestMethod ()]
public void GetTotalItemPriceTest ()
{
Classl target = new Classl();
int count = 0;
double expected = OF;
double actual;
actual = target.GetTotalltemPrice (count) ;
Assert.AreEqual (expected, actual);

[121]

Unit Testing

To test the preceding method, set the count to a value less than zero and run the test
from the Test Explorer window. The assertion will fail. For example, for a value of -1
the assertion will fail with the following message, which says the application thrown
by an exception is of type MyCustomException:

Test Explorer *OXx

S [iS - Search -

Run &ll | Run.. =

4 Failed Tests (1)
%) GetTotalltemPriceTest 75 ms
I Mot Run Tests (11}

GetTotalltemPriceTest
Source: UnitTestl.cs line 139

€3 Test Failed - GetTotalltemPriceTest

Message: Test method
UnitTestProjectl.UnitTestl.GetTotalltemPriceT
est threw exception:
TestLibrary.MyCustomException: Error in the
application.

Elapsed time: 75 ms
4 StackTrace:

Class1.GetTotalltemPrice(Int32 count)
UnitTestl.GetTotalltemPriceTest()

The error message was thrown by the original method, not the test method. But the
intention here is to test if the original method throws the expected exception. To
achieve that, add the ExpectedException attribute to the test method as follows and
run the test by setting different values for the variable count:

[122]

Chapter 4

[TestMethod ()]
[ExpectedException (typeof (TestLibrary.MyCustomException))]
public void GetTotalItemPriceTest ()
{

Classl target = new Classl();

int count = -1;

double expected = OF;

double actual;

actual = target.GetTotalItemPrice (count) ;

Assert.AreEqual (expected, actual);

}

The preceding test would pass as the method throws MyCustomException, which
means that the method resulted in an exception because of its total value, which is
less than zero.

Any exception can be included as an attribute to the Test method to verify if the
actual method throws the exception. This is very useful in case of very complex
methods, where there is a high possibility of getting exceptions such as divide by
zero, File 10, or file/folder access permissions.

Unit Tests and Generics

Generics in .NET Framework help us to design classes and methods without any
specific parameter types, allowing us to realize type safety at compile time. It means
we can continue working with the class in a type-safe way, but don't have to force it
to be of any specific type. Generics help us to re-use code and increase performance.
Generics are mostly used in place of collections such as ArrayList, Linked List,
Stacks, Queues, and other collections. This is because the collections can hold any
type of items, for example, an array list can be a list of integers or it can be a list of
strings. The following is an example of a generic method, which just accepts two
generic values and copies the first one into the second one:

public static void CopyIltems<Ts>(List<T> srcList, List<T>
destList)

{

foreach (T itm in srcList)

{

destList.Add (itm) ;

}

[123]

Unit Testing

Here, you can notice that the type is not specified anywhere. It is generic, which is
denoted by <T>. It can be an integer or string or any type that is identified when the
method is called. The following code shows an example using the copyItems generic
method. The first time CopyItems is called, the 1istSource collection passed as the
first parameter contains String items. The second time the CopyItems method is
called the 1istsrc collection contains items of type Employee object:

static void Main(string[] args)
{
List<string> listSource = new List<string>();
listSource.Add("Stringl") ;
listSource.Add("string2") ;
List<string> listDestination = new List<strings>();
Console.WriteLine ("Items count in listDestination before
copying items: {0} ", listDestination.Count) ;
CopyItems (listSource, listDestination) ;
Console.WriteLine ("Items count in listDestination after
copying items: {0} ", listDestination.Count) ;
Console.WriteLine ("") ;
List<Employee> listSrc = new List<Employees>() ;
listSrc.Add (new Employee (1001, "Employee 1001")) ;
listSrc.Add (new Employee (1002, "Employee 1002")) ;
listSrc.Add (new Employee (1003, "Employee 1003")) ;
List<Employee> listDest = new List<Employees> () ;
Console.WriteLine ("Items count in listDest before copying
items: {0} ", listDest.Count) ;
CopyItems (listSrc, listDest);
Console.WriteLine ("Items count in listDest after copying
items: {0} ", listDest.Count) ;

}

The result would be the copy of objects in the destination collection, which is the
second parameter, using the generic method. The output of the method after calling
the generic method will be as shown in the following screenshot:

[124]

Chapter 4

B CWindows'system32iemed exe EI@

count listDestination before copying items: B
count listDestination after copying items: 2

count listDest hefore copying itemsz: @
count listDest after copying items: 3

Unit testing for generic methods in Visual Studio is very simple. First create a Unit
Test Project if there isn't one, then right-click on the unit Test Project and add a
Generic Test to the project. You will notice that the generic test template is added

to the project with the default name GenericTestl.GenericTest. In the template,
under Specify an existing program (a test, test harness, or test adapter) to wrap as
a generic test, indicate the path and the file name of GenericExamplel.exe which is
the project executable. The executable file should be in the project output directory:

M EmployeeMaintenance = B x
GenericTest].GenericTest* & X -

A generic test is an existing program wrapped to function as a test in Visual Studio. For information about creating and executing a generic test, see Werking with Generic Tests.
Specify an existing program (a test, test harness, or test adapter) to wrap as a generic test:
C\Testing\ Apps\EmployeeMaintenance\GenericExamplel \bin\DebugGenericExamplel .exe
Example: MyTestHarness. exe
Run settings
LCommand-line arguments to pass to the generic test:
View Examples
Additional files to deploy with this generic test:

View Examples
Environment variables:

Variable

Value
Name

[125]

Unit Testing

Now the Test for generic is ready and can be run from the command line or using
the Test Explorer window.

The following screenshot shows the test output for the Generic test when run from
the Test Explorer window:

U=iERE = (o) 2 w EmployeeMaintenance - Test Output-generictestl-10-1 - B x
G [i= - Search P~ .
Test Output-generictestl-10-1 & X -
RunAll | Run.. =
Test Mame: generictestl

4 Passed Tests (1)
Test Result: @ Passed

@ generictestl 112 ms
P Mot Run Tests (12) Standard Output
Items count in listDestination before copying items: 0
Items count in listDestination after copying items: 2
generictestl Items count in listDest before copying items: 0

:) Items count in listDest after copying items: 3
Source; generictestl.generictest

@ Test Passed - generictestl
Elapsed time: 112 ms
Output Standard Error

Arguments can be passed to the Generic test while running the test. This can be
done by setting the argument value under the Command line arguments to pass
to the generic test section in the GenericTestl.GenericTest template. Save the file
and run the test from Test Explorer. This should return the result for the test by
taking the argument values.

To deploy additional files along with the generic test, choose the files using the Add
option under the Additional files to deploy with this generic test section.

Data-driven unit testing

This type of testing is useful in carrying out the same test multiple times with
different input data from a data source. The data source can have any number of
test records or data rows, and the test can be run successively for each row.

[126]

Chapter 4

Instead of passing each data row value to the test application and executing an entire
test for each data row, we link the test method to the data source. So when the test is
run, the test method is executed for each data row in the source.

This is similar to web testing or load testing, with a data source attached to the web
method parameters. This could be used in case of testing multiple user scenarios
with different user logins to check the access permission, or to validate the data
based on the user roles.

Let's consider one simple example of a method which takes the two parameters of
quantity and unit price. The result of the method will be to return the multiplied
value of these two values and apply a percentage of tax to it:

public double CalculateTotalPrice(double uPrice, int Qty)
{
double totalPrice;
double tax = 0.125;
totalPrice = uPrice * Qty + (uPrice * tax * Qty); //
return totalPrice;

}

Create a unit test for the preceding example. The unit test code would contain the
following code for the preceding method:

[TestMethod ()]
public void CalculateTotalPriceTest ()
{
Classl target = new Classl();
double uPrice = 0F;
int Qty = 0;
double expected = OF;
double actual;
actual = target.CalculateTotalPrice (uPrice, Qty);
Assert.AreEqual (expected, actual);

[127]

Unit Testing

The data source needs to be created before linking and binding it with the test
method and properties. The data source can be of different formats such as CSV,
XML, Microsoft Access, Microsoft SQL Server Database or Oracle Database, or any
other database. For this example, we will consider a csv file which has five records
each record with values for UnitPrice, Quanity, and ExpectedTotalPrice. The test
method expects two parameter values to be passed and returns the calculated value
to match and check with the expected value:

W TestLibrary - B X
:

UnitPrice,Quantity,ExpectedTotalPrice —

5.99,12,86.5856 -

2.49,5,13.944

2.99,25,83.72

3.29,5,18.7

5.69,9,57.3552

-

00% - 4 3

Add the CSV file to the Test Project to use as the data source for the test. The unit test
framework creates a TestContext object to store the data source information for a
data-driven test. The framework then sets this object as the value of the TestContext

property that we created. We can include this TestContext property to the unit test
class as follows:

private TestContext testContextInstance;
public TestContext TestContext

get { return testContextInstance; }

set { testContextInstance = value; }

}

[128]

Chapter 4

Add the data source attribute and specify the connection string and the name of

the table that you use in the test method. To use the csv file as the data source, add
the Microsoft.VisualStudio.TestTools.DataSource.CSV to the DataSource
attribute and specify the connection string followed by the table name. In this case
the CSV file name itself is the table name. The third parameter for the attribute is the
data access method which can be of the sequential or random type. Select sequential
to execute the test method with data rows in the order they are present in the source.

The testContextInstance.DataRow is used to fetch the value from the current
row for the current instance of the test. For example, if we have five rows in the

data source, there will be five different instances of tests for each row. The column
value from the current row is fetched using the testContextInstance.DataRow
and assigned to the required test. The following example uses the Assert .AreEqual
method to check if the actual value is as per the expected value from the data source.
Custom error messages can be used in the Assert method to display a specific
message if the test fails:

[DataSource ("Microsoft.VisualStudio.TestTools.DataSource.CSV",
"|DataDirectory|\\Data.csv", "Data#csv",
DataAccessMethod. Sequential), TestMethod ()]
public void CalculateTotalPriceTest ()
{
Classl target = new Classl();
double uPrice = 0F;
int Qty = 0;
double expected = OF;
double actual;
expected = Convert.ToDouble (testContextInstance.
DataRow ["ExpectedTotalPrice"]) ;
actual = target.CalculateTotalPrice (Convert.ToDouble
(testContextInstance.DataRow ["UnitPrice"]),

Convert.ToInt32 (testContextInstance.
DataRow ["Quantity"])) ;

Assert.AreEqual (expected, actual, "The expected value is
{0} but the actual value is {1}", expected, actual);

Trace.WriteLine ("Expected:" + expected + "; Actual:"+
actual) ;

[129]

Unit Testing

Now the test method is ready, with the data source and data fields bound within the
test method.

Build the solution and open the Test Explorer window to see the test method listed.
Select the test and run it. As per the data that is present in the data source which is
the CSV file, four out of five tests pass. One test fails because the actual is not equal
to the expected value. The summary of the Test Result displayed within the test
explorer is illustrated in the following screenshot:

Test Explorer * O x

S [iE ~ Search P~

4 Failed Tests (1) -
%) CalculateTotalPriceTest 43 ms
4 Mot Run Tests (4) -

CalculateTotalPriceTest

Source: ClasslTest.cs line 74

€3 Test Failed - CalculateTotalPriceTest
Elapsed time: 297 ms

€3 Test Failed - CalculateTotalPriceTest {Data Row 3)

Message: Assert.AreEqual failed. Expected:<18.7>. Actual:<18.424>.
The expected value is 18.7 but the actual value is 18.424

Elapsed time: 21 ms

4 StackTrace:
Class1Test.CalculateTotalPriceTest()

@ Test Passed - CalculateTotalPriceTest (Data Row 0)
Elapsed time: 24 ms
Cutput

@ Test Passed - CalculateTotalPriceTest (Data Row 1)
Elapsed time: < 1 ms

Cutput

@ Test Passed - CalculateTotalPriceTest (Data Row 2)
Elapsed time: < 1 ms

Output

@ Test Passed - CalculateTotalPriceTest (Data Row 4)
Elapsed time: < 1 ms

Output

[130]

Chapter 4

On running the test, the Test Explorer window shows the test execution progress
for each row in the data source. Once the test is completed for all of the rows in the
data source, we can see the overall Test Result based on the results of all individual
tests. If even one test fails, the end result of the Test Run will be a failure. To get the
Test Run to pass, all individual tests within the selected Test Run must pass.

The detailed output of each test is shown by clicking the output hyperlink below the
test output. The following screenshot shows one of the test output which shows the
actual and expected values from the test method, as shown in the following screenshot:

Test Explorer * 0 x Test Output—Calcul...st (Data Row 0)-4-2 =
S [tz - Search P~
Test Name: CalculateTotalPriceTest (Data Row 0)
Run All | Run.. =

Test Result: @ Passed
4 Failed Tests (1)

€3 CalculateTotalPriceTest 343 ms
4 Not Run Tests (4) hd

Standard Output

Debug Trace:
CalculateTotalPriceTest Expected:80.5056; Actual:80.5056

Source: ClasslTest.cs lime 74
€3 Test Failed - CalculateTotalPriceTest

Elapsed time: 297 ms

€ Test Failed - CalculateTotalPriceTest (Data Row

Message: Assert.AreEqual failed.
Expected:<18.7>. Actual: <18.424>. The
expected value is 18.7 but the actual value
is 18.424

Elapsed time: 21 ms

4 StackTrace:
Class1Test.CalculateTotalPriceTest()

@ Test Passed - CalculateTotalPriceTest (Data Row
Elapsed time: 24 ms
Output

@ Test Passed - CalculateTotalPriceTest (Data Row

Elapsed time: < 1 ms

Output

For failed tests, there are Source and StackTrace hyperlinks, which take you to the
line of code in the method which throws the error or fails the test.

[131]

Unit Testing

Unit Testing using Fakes

Microsoft Fakes, which requires Visual Studio 2012 Premium, is a fully featured
mocking framework used for isolating the code under test by replacing the other
parts of the application with Stubs and Shims. This is very useful in testing only the
small portion of the code under test without worrying about the other parts of the
application or component even if it fails. The Microsoft Fakes can Shim any .NET
method, including non-virtual and static methods in sealed types.

Stubs

The Stub type makes it easy to test code that consumes interfaces or non-sealed classes
with overridable methods. The default behavior can be dynamically customized for
each member by attaching a delegate to a corresponding property of a Stub.

To use Stubs, each component of the application should depend only on interfaces
and not on any other component. The Stub replaces another class with a substitute
that implements the same interface.

Let's build a sample application to calculate the total price for an item based on the
quantity and unit price. Let us start with the interface and a class with a method, but
no implementation in it except throwing the not implemented exception:

public interface ITotalPrice

{

decimal UpdateTotalPrice (int value) ;

}

public class TotalPrice : ITotalPrice

{

public decimal UpdateTotalPrice (int wvalue)

{

throw new NotImplementedException() ;

}

[132]

Chapter 4

Create a unit Test Project and add a unit test method for UpdateTotalPrice
method. We include an assert method to call and verify the output of the
UpdateTotalPrice method. The test would fail with the expected exception,
NotImplementedException.

S [i= - Search O - 3 TTotalPrice TotalPrice ~ @ UpdateTotalPrice(int value)
-lusing System;
Run All | Run.. = using System.Collections.Generic;
using System.Lling;
4 Failed Tests (1) using System.Text;
€3 TestUpdateTotalPrice 15 ms using System.Threading.Tasks;
P Not Run Tests (4) .
—Inamespace 'I'I'otalPr‘lcg
1
= public interface ITotalPrice
1
decimal UpdateTotalPrice(int value);
b
= public class TotalPrice : ITotalPrice
1
= public decimal UpdateTotalPrice(int value)
. 1
TestUpdateTotalPrice | throw new NotImplementedException();
Source: UnitTestl.cs line 12 }
i
€3 Test Failed - TestUpdateTotalPrice i
Message: Test method
TestTotalPrice.UnitTestl.TestUpdateTot
alPrice threw exception:
System.NotImpl tedException: The
method or operation is not
implemented.
Elapsed time: 13 ms
4 StackTrace:
TotalPrice.UpdateTotalPrice(Int32 valu:
UnitTestl.TestUpdateTotalPrice()
SOl Server Ohiect Fynlorer . Tect Fynlorer 100 of

To implement the method and test it, there are a few additional calls to be made to
calculate the price based on quantity, update total price, and to get the total price. To
do this, define a repository with a new interface and with methods:

public interface IRepository

{
void UpdateTotalPrice (int wvalue) ;
decimal GetTotalPrice() ;

[133]

Unit Testing

Now modify the test to take the repository in the constructor of the TotalpPrice
object. Use the Fakes framework to achieve this. Open the references of the Unit Test
Project, select the Unit Test Project reference and right-click on the reference.

Solution Explorer * O X

@ e-rendm &
Search Solution Explorer (Ctrl+;) P~

fa] Solution 'TestLibrary' (4 projects)
4 TestLibrary
b & Properties
P =B References
P Classl.cs
4 TestTotalPrice
b & Properties
4 | References
=B Microsoft.VisualStudio. Quality

=0 Systermn
O] TotalPrice
P c# UnitTestl.cs View in Object Browser
“ R Add Fakes Assembly
b S Properties
b =B References X Remove Del
P c# TotalPrice.cs & Properties Alt+Enter

B UnitTestProjectl

[134]

Chapter 4

Select the Add Fakes Assembly option from the Context menu. This will immediately
add a reference to the Microsoft.QualityTools.Testing.Fakes assembly and then
few seconds later, it will add a reference to a fake version of assembly.

Solution Explorer * O X

@ o-eudm SRR -

Search Solution Explorer (Ctrl+;) P~

fa] Solution 'TestLibrary' (4 projects)
f TestlLibrary
4 TestTotalPrice

b J Properties

4 | References

=B Microsoft.VisualStudio. Quality Tools.UnitTestFramework
u-B Systern
u-B TotalPrice
u-B TotalPrice.Fakes
4 fm] Fakes
|| TotalPrice.fakes
oo UnitTestl.cs
[TotalPrice
f UnitTestProjectl

[135]

Unit Testing

Open the test code and update the test with a Stub repository as follows:

[TestMethod]
public void TestUpdateTotalPrice ()

{

decimal unitPrice = 10.5M;
decimal totalPrice = 0.0M;

IRepository repository = new TTotalPrice.Fakes.

StubIRepository ()
{
GetTotalPrice = () =>
{
return totalPrice;
b
UpdateTotalPriceInt32 = value =>
{
totalPrice = unitPrice * wvalue;
}
bi

ITotalPrice totPrice = new TotalPrice (repository) ;
var actualTotalPrice = totPrice.UpdateTotalPrice(2);

Assert.AreEqual (21, actualTotalPrice);

}

The new fake assembly that was generated contains the Stub version of the classes,
both stubIRepository and StubITotalPrice. If the test is built and run, it would

fail again because of the exception. There is no implementation for the TotalPrice
class, but we can implement that as follows:

public class TotalPrice : ITotalPrice

IRepository _repository;

public TotalPrice (IRepository repository)
{

_repository = repository;

public decimal UpdateTotalPrice (int value)
{
_repository.UpdateTotalPrice (value) ;
return repository.GetTotalPrice() ;

[136]

Chapter 4

//throw new NotImplementedException () ;

}

Now build the project and run the test. The test will pass now as expected.

Although Stub types can be generated for interfaces and non-sealed classes with
overridable methods, they cannot be used for static or non-overridable methods.
To address these cases, the Fakes framework also generates Shim types.

Shims

A Shim modifies the compiled code at runtime to replace a method call. The method
call can be to any of the assemblies that cannot be modified, such as .NET assemblies.
We can use Shims to isolate the code from assemblies that are not a part of the solution.

Difference between Stubs and Shims

Shims

Stubs

Performance

Static methods and sealed
types

Internal types

Private methods

Interfaces and abstract
methods

Because of rewriting the
code at run time, it runs
slow.

Can be used

Can replace calls to private
methods if all the types on
the method signature are
visible.

Cannot instrument
interfaces and abstract
methods.

No performance overhead

Stubs are used only to
implement interfaces. Stub
types cannot be used for
static methods, non-virtual
methods, methods in sealed
types, and so on.

Can be used

Can replace only visible
methods.

Provides implementation
of interfaces and abstract
methods.

[137]

Unit Testing

Code coverage unit test

The Code coverage feature in Visual Studio has been simplified and provides lots
of information on coverage. It also provides different colors for coding the coverage
and a detailed report. Basically, code coverage is used to determine the percentage
of actual project code covered and tested as a part of unit testing. Covering a large
proportion of code is always better. The Code coverage analysis can be applied for
both managed and unmanaged code.

In the current and recent version of Visual Studio, the Code Coverage Results
option is merged along with the Test Explorer window. The results table shows the
percentage of the code that was run in each assembly, class, and method. The source
code editor also shows which code has been tested.

The Analyze Code Coverage option is available under the Test menu as well as in
the Test Explorer window. In order to check which line has been run or not, choose
the Show Code Coverage Coloring option from the results window. To alter the
colors and formats, choose Tools | Options and then use similar settings as follows:

optons o =
4 Environment - Show settings for:
General Text Editor v| | UseDefaults |
Add-in Security
AutoRecover Eent (bold type indicates fixed-width fonts): Size:
Documents Consolas - 10 -

Extensions and Updates

m

Find and Replace Display items: Item foregrounck:

Fonts and Colors Code Snippet Field (Selected) I Default -
Impoert and Export Settings Collapsed Text (Collapsed)

International Settings ':CHEPEF‘E' Ted '_:ExpﬂndEC'] Ttem background:
Keyboard Cellapsible Regicn —

. Comment |:| Default -
Quick Launch Compiler Error
Startup Coverage Not Touched Area [E]Bold

»

Tahs and Windows Coverage Partially Touched Area
Task List Coverage Touched Area Sample:
Web Browser 55 Comment
» Projects and Solutions €55 Keyword
3 N CS5 Property Name 2 ij = I::00(@xB811);
> Source Control 7 m b
. Text Editor S

[138]

Chapter 4

The screenshot shows the Code coverage analysis result for the unit testing samples
that was created for the previous sections. If the coverage is low, it means that more
analysis and investigation is required, and thus we need to write more tests to get
better coverage:

w TentLibeary - Mecrozolt Viual Studse Quick Launch {Crri G P = & X
E EOfT VIEW PROJECT BunD DEBLG TEAM SO TOOLS TEST ARCHITECTURE AMALYIE WINDOW HELP
o - B WP B Seat - Debug - S _ n
Test Explorer B x [Claiet % » Solution Explorer 3%
G [z - Search B - P Testtibrary.Classd =@ CalculateTotalPrice]doub - S e-frRAB
B oS ohation glorer fCHE o=
public double Calculatetotalerice(double untPrice, double quantity) | Sak s bl il s
&7 Sclution Testlibrany' (4 projects)
4 Failed Tests (2) double totalfrice; 4 [Testlibrary
2 CaleulsteTataiPriceTest double tax = @.12;

b & Propeties

© GetObjectTeCompareTest i totalPrice -’unﬂ‘lricr * quantity + (umtPrice * tax * quantity); ¥ o Raferivces

PR ; return totalPrice; R
4 GetTotalPriceTest Bms 4 [N TenTotsWPrice

4 Passed Tests (2) = public vaid GetTotalPrice(} b K Propetes

2 .) b o8 Beferences
O SenpleTestmethodfontssens... 6ms deibLe unleoELEe = 1918; » B Fakes
0 TestUpdateTotaPrice 3 ms int gty = 5;

double totalPrice - CalculateTotalbrice(unitPrice, qty);

Console Writeling("Total Price: = + totalPrice): b Propeties
]

B UnitTestles
4 [TotsPrice

b w8 References
TestUpdateTotalPrice = internal static bool MethodforInternalExample(string str) b o TemlPricecs
- { b S UnatTeutPropect
Source: UnitTertl.cs ine 13 bool result = falae;
@ Test Passed - TestUpdmeTotalPrice if (str == “return true”) result = true;

if (str = “return false”) result = false;

Elapsed time: M ms return result;

Subashni_Sachidanant WHT-BASI6QI 2013 - B & 1 | F| X

Hierarchy Mot Covered (Blocks) Hot Covered (% Blocks) Covered (Blochs)
o B Subashni an... | M X 106

43 testhd

Covered (% Blocks]

b %z Emplayee |0 0.0 % 10 10000 %

b % Empley... |0 [TE i3 100 %
bW tesmotalpricedi |0 000 % 1 10000 %

The coverage of the most recent run is shown in the results window. The Results
window has multiple options to view the results as follows:

* Previous Results: To view previous coverage results, use the drop-down list
at the top of the results window and choose a particular result.

* Export Results: This option generates a readable . coveragexml file, which
can be processed with other tools. This file can also be e-mailed to someone,
so that they can import it and see the coverage results. If they have the source
code, they will be able to see the coverage coloring as well.

* Import Results: The Import option is used to import the . coverage or
.coveragexml file exported earlier. After importing, the results are shown in
the results window. This is useful to import multiple results and do analysis
of differing coverage.

[139]

Unit Testing

* Merge Results: In some situations, different blocks in the code will get
executed based on the test data. To combine the results for all test data and
see it as one result, the merge option is used. For example, if the parameter
or the test data is passed as True, certain blocks will get executed. The
remaining would get executed if the test data is passed as False. To get the
consolidated coverage result, the coverage result from both the tests should
be imported and merged.

Blocks and lines

By default, the code coverage is counted in blocks. A block is a piece of code with
one entry and one exit point. The block is counted only if the control flows through
the block during the Test Run. The number of entry and exit points through the block
does not matter for the coverage.

By default, the results are shown by blocks but it can also be changed to lines by
using the Add/Remove columns option in the table header. Some users prefer count
of lines instead of blocks:

Code Coverage Results

Subashni_Sachidanant_WN7-B4516Q1 2013- ~ & G 1 X
Hierarchy Mot Covered (Bloc... | Not Covered (% Blocks) | Covered (Bloc.. | Covered (% Blocks) | Covered (Lines) | Covered (% Lines)
4 E Subashni_Sachidanant_... |26 18.70 % 106 80.30 % 128 86.49 %
4 B2 testlibrany.dll 1 385 % 25 9615 % 34 94,44 %
4 {} Testlibrary 1 385 % 25 96.15 % 34 94.44 %
I #z Employee 0 0.00 % 10 100.00 % 1 10000 %
I #z EmployeeE.. (0 0.00 % 3 100.00 % 5 100.00 %
> & testtotalprice.dll 0 0.00 % 14 100.00 % 22 10000 %
I = totalprice.dll 0 0.00 % 6 100.00 % 8 100.00 %
I = unittestprojectl.dll 25 2907 % 61 7093 % G4 78.05 %

The count of lines shows the coverage to the granular level whereas a block are
counted only once even if it contains several lines of code.

[140]

Chapter 4

Excluding elements

All blocks of code within the files and project are taken for consideration during
Code coverage analysis. In some cases, it may be neccessary to exclude one

or more blocks from the coverage altogether for various reasons. It could be

because of system-generated code or because the block may not be ready for the
coverage. In these circumstances add the System.Diagnostics.CodeAnalysis.
ExcludeFromCoverage attribute to those elements. Excluding a class does

not exclude its derived classes. For example, one of the code blocks named as
MethodforInternalExample is excluded using the ExcludeFromCoverage attribute
as shown in the following screenshot:

[Gomtcs s x|

L]

#3 TestLibrary.Classl - @, MethodfernternalExample(string str) -
%
= public void GetTotalPrice() -
{
double unitPrice = 10.5;
int qty = 5;
double totalPrice = CalculateTotalPrice(unitPrice, qty);
Console.WritelLine("Total Price: " + totalPrice);
h
[ExcludeFromCodeCoverage]
= internal static bool MethodforInternalExample(string str)
il
bool result = false;
if (str == "return true") result = true;
if (str == "return false") result = false;
return result;
= public Item GetObjectToCompare()
{
Item objA = new Item();
objA.ItemID = 168;
objA.ItemType = “"Electronics™;
objA.ItemPrice = 168.99; -
100% - 4 »
Code Coverage Results > o x
Subashni_Sachidanant_WN7-B4516Q1 2013- - 2 G 1 X
Hierarchy Mot Covered (Blocks) Mot Covered (% Blocks) Covered (Blocks) Covered (% Blocks)
4 &= testlibrany.dll 1 385 % 25 96.15 % -
4 {} Testlibrary |1 385 % 25 96,15 %
b #z Classl 1 769 % 12 9231 %
b #z Employee |0 0.00 % 10 100.00 %
b *3 Employ.. |0 0.00 % 3 100.00 %
I> &R testtotalprice.dll |0 0.00 % 14 100.00 %

Now the Code Coverage Results for the Class1 shows as 92.31% instead of 57.14%
last time.

[141]

Unit Testing

Summary

This chapter covers lot of new features that have been introduced in the new
version of Visual Studio along with assert statements that are used for unit testing.
The different ways of unit testing the application and analyzing the Test Results
using Test Explorer output summary were addressed. Important features such as
the Fakes framework and the usage of Stubs and Shims to isolate the tested code
from application was explained in this chapter. Data-driven test is one of the
important features to conduct the same test with different inputs without repeating
the test manually. There is lot of difference in code coverage feature in the latest
version of Visual Studio, which addresses the color coding of coverage, coverage on
the basis of number of lines, and import and export of coverage results.

The next chapter explains the recording of user actions and how to create tests out
of it. This is very helpful in re-running the test with different inputs using the same
recording. The Web Performance Test in Visual Studio not only helps in recording
actions but also to add extraction and validation rules for the testing.

[142]

Web Performance Test

This chapter explains the different ways of verifying the website responses for each
request and the website response in different scenarios such as slow network speed,
different browsers, or with different set of users at a given point in time. All these
factors affect the website's performance and the response time. Web performance
testing helps us to verify whether the website produces the expected result within
the expected response time, to identify the problems and rectify them before they
happen in an actual production environment, helps in finding out if the hardware
can handle the maximum expected requests at a time, or needs additional hardware
to handle the traffic and respond to multiple user requests.

Here are some of the main testing highlights that are performed on the web
applications for better performance and availability:

* Validation and verification test helps to verify the inputs or the expected
entries that satisfy the requirements. For example, if a field requires a date to
be entered, the system should check for the date validation and should not
allow the user to submit the page until the correct entry is made.

* Web page usability test is the method of simulating the practical user's
way of using the application in production and testing the same as per
requirements. This could be something like checking the help links, contents
in the page, checking the menu options, and their links, think times between
the pages, or the message dialogs in the pages.

* Security testing helps us verify the application response for different end
users based on the credentials and different other resources required from
the local system or a server in the network. For example, this could be
writing/reading the log information file in the network share.

* Performance testing verifies the web page responses as per expectations
based on the environment. This also includes stress testing and load testing
of the application with multiple user scenarios and the volume of data that is
explained in detail in Chapter 7, Load Testing.

Web Performance Test

* Testing web pages compatibility is the method of testing multiple browsers
based on the user requirements. The web page presentation depends on how
well the components are used and supported on different browsers that the
end users may choose.

* Testing web application using different networks is because of the user
location that varies based on from the user is accessing the system. The
performance and the accessibility of the applications are based directly on the
network involved in providing the web pages to the user. This is also a part
of performance testing. For example, it could be a local intranet or an Internet
with low network speed.

There are many other types of testing that can be performed as part of web
performance testing such as using different operating systems, using different
databases, or installing different versions of an operating system.

All these testing types, with many additional capabilities, are supported by Microsoft
Visual Studio. The dynamic web pages can be created by any of the supported .NET
languages through Visual Studio using the ASP.NET web project and web page
templates. Custom services, components, and libraries are used in the web application
to get the functionality and make it more dynamic. Other scripting languages and
technologies, such as JavaScript, Silverlight, and Flash are used in web pages for
validations and better presentation on the client machine. Once the web application

is ready, it needs to be deployed and tested to check if the web site functionalities

and qualities are satisfied as per requirements. To get to this point, Microsoft Visual
Studio provides tools for testing the web applications in different ways. One is to use
the user interface to record and then add the validation rules and parameters to make
it dynamic. The other way is to record the requests and then create the coded web test
for the recorded web test, and customize it using the code.

This chapter explains the basic way of web testing using Visual Studio and using the
features, such as adding rules and parameterization of dynamic variables. Microsoft
Visual Studio 2012 provides many new features to the web performance testing, such
as adding new APISs to the Test Results, keeping web performance Test Results in a
separate file, looping and branching, and new validation and extraction rules. This
chapter provides detailed information on features given in the following list:

* Creating a new web performance test

* Web performance test editor and its properties

* Web request properties, validations, and transactions

* Toolbar options and properties

* Performance session for testing

* Debugging and running the web performance test

[144]

Chapter 5

Creating the web performance test

The web performance test activates the web performance test recorder to record all

the actions performed while browsing the websites and adds it to the performance test.
Creating a performance web test is similar to creating any other test in Visual Studio.
The different ways to create a new web performance test are as follows:

1. Select the Test Project if there is one already added to the solution, right-click,
and choose Add.

2. Select the Web Performance Test option from the list of different test types
as shown in the following image:

Solution Explorer

@ o--udim #FE "

Search Solution Explorer (Ctrl+;) P~

+fa] Solution ‘Emplovsehaintenance’ (10 nrisctel
b @ Solutionker Xy Build
b +[#] ClassLibrary: Rebuild

P +[# CodedUlTes Clean
b +[c*] CustomRule
b + EmployeeM Run Code Analysis
b +[c#] EmployeeTe Scope to This
b +[c#] GenericExan MNew Soluticn Explorer View
b +[c#] TestLibrary .
b +[E# UnitTestProj Calculate Code Metrics
b +[c#] UnitTestProj Project Dependencies...
Project Build Order...
b + S Propertic .
b =B Referenc Add ' O MNewltem.. Ctrl+Shift+ A
+ 73 WebTest Add Reference... *3 Existing kem... Shift+ Alt+A
Add Service Reference... ‘@ Mew Folder
B Manage NuGet Packages... B Unit Test..
%3 View Class Diagram W& Load Test..
{E} Set as StartUp Project @ Web Performance Test...
Debug b ¥ Coded Ul Test...
= ChecklIn... I= Ordered Test
Source Control » A Generic Test
X cCut Ctrl+X t8 Windows Form...
ﬂ Uszer Control...
X Remove Del :’,] Component...
I Rename % Class... Shift+ Alt+C

Unload Project
c Open Folder in File Explorer

[145]

Web Performance Test

3. Once you select the Web Performance Test option, click on OK. A new test
will get created under the selected Test Project and a new instance of a web
browser opens. The left pane of the browser contains the Web Test Recorder
for recording the user actions.

4. If the Test Project is not added, select the Add New Project option from the

File menu and choose the Web Performance and Load Test Project type
from the list for Test Project templates, as shown in the following image:

Add Mew Project @
b Recent NET Framework 4.5 * Sortby: Default v & Search Installed Templates (C @ ~
4 Installed c# - -
EJ Coded UI Test Project Visual C# Type: Visual C=
-
4 Visual CF A project for Load and Web performance
- c#
Windows EJ Unit Test Project Visual C# tests.
Web
- C#
b Office EJ Web Performance and Load Test Project Visual C#
Cloud
Reporting
& SharePoint
Silverlight
Test
WCF
Workflow
LightSwitch
[TSR -
b Online
Marme: WebAndLoadTestProjectl
Location: C:\I’I’esting\Apps\EmponeeMaintenance |- Browse... |
Cencel_|

The above option will create the new project, add the web performance test
to the project, and then open the recorder as well.

Recording a test

The web test recorder is used mainly to record all the actions performed while
browsing the web pages. The recorder records all the requests made and responses
received while navigating through the web page.

The test scenario is created by navigating through the web pages and recording.
Once the scenario is created, build the scenario or customize it to make it more
dynamic using parameters and adding dynamic data source.

[146]

Chapter 5

As stated earlier, after starting the web performance test, a new browser window
opens with the web test recorder. The recorder has five different options discussed
as follows:

Record: This option is to start recording the web page requests.

Pause: This option is used to pause the recording. In some cases, recording
may not be required for all requests in the web application but we may have
to pause the recording and restart it for the forthcoming pages.

Stop: This option is to stop the recording session. Clicking on the Stop button
closes the browser and stops the session.

Add a Comment: This option is used for adding any additional comments to
the current request in the recording.

Clear all requests: This option is to clear out all the requests in the recording.
Sometimes, if there are any mistakes in the recording and you do not want to
continue but clear the recording to restart from the beginning, then use this
Clear all requests option.

Following is a screenshot that shows all these options available on the recorder:

'€ Blank Page - Windows Internet Explorer

o]l-=-]]

D) [e) T

V|‘?|A||EGDD”:‘E P -

5 Favorites | @ Blank Page Bi ~ B -~ o v Page~ Safety~ Took~ i@~
Web Test Recorder x -
Il Pause M Step | 2 | X
Go to your \Web site to start recording.
Recorded reguests will be shown here.
Done @ Internet | Protected Mode: On fa — W10% -

[147]

Web Performance Test

Before proceeding with web testing, create a sample web application for testing.

Consider a new employee creation page wherein the user has to provide information,
such as First Name, Last Name, Middle Name, Occupation, and Address. This is the
minimum information required to keep track of users in the website, which is common

in most of the websites. Consider the following simple web page for this example.

It contains a Save option which collects all the information entered by the user and
saves it to the database table. The user entries are validated as per the requirement,
which we will see through the examples in the subsections. The database is the SQL

Server Express database, with one table for storing all the information. The following

screenshot shows the database table for the sample application:

w EmployeeMaintenance - o X
dbo.Employee [Design] + X
4 Update ScriptFile dbe.Employee.sql =
Mame Data Type Allow Nulls Default 4 Keys (1)
=0 EmployeelD int 4] PE_Employee (Primary Key, Ch
First Marme nvarchar(50) [E] SiEstrH el
Indexes (0)
Last Mame nvarchar(50) [E Foreign Keys (0)
Middle Name nvarchar(50) Triggers (0)
Department nvarchar(50)
Occupation nvarchar(50]
Gender mvarchar(50)
City nvarchar(50)
State nvarchar(50)
Country nvarchar(50)
Phone int
= .
QDesign "t - m1sqL OE®
—|CREATE TABLE [dbeo].[Employee] | +
[EmployeeID] INT IDENTITY (188, 1) NOT NULL, a
[First Name] NWARCHAR (5@) NOT NULL,
[Last Name] NVARCHAR (5@) NOT NULL, -
100% ~ 4 4
m# Connection Ready | (LocalDB)\W110 | Satheesh-PC\Satheesh | C:\SATHEESH\SHARED\APP...

The Add new Employee web page from the sample application is shown here with
some required fields, including fields to show the validation error messages and the

Insert option to send the details and save it to the database:

[148]

Chapter 5

[][-E]]

QII|@ http://localhost O ~ B & X

File Edit View Faverites Tools Help

2 Employe

»

[€] EMPLOYEE MAINTENANCE

Add new Employee

First_Name
Last_MName

Middle_Name

m

Department
Occupation
Gender

City

State
Country

Phone

insert Lance

The application can be tested when it is hosted on a web server, or when it is running
on the local development web server within Visual Studio. The examples given in
this chapter are based on the local Visual Studio development server. The approach
is the same for hosted applications on a web server.

While using the Visual Studio local development web server, build the new web
project and keep it running. Get the web address from the running web application
which has the web address with a dynamic port assigned to it.

First, let us look at the features of the web performance test and then go into the
details of collecting information from a test and the actual testing.

[149]

Web Performance Test

Create a new web performance test which opens the new web test browser recorder
window. The web test tool opens the Microsoft Internet Explorer browser for the
recording as Internet Explorer is the default web browser for testing. Now in the
Address bar, enter the web page address and hit Enter. In this case it is going to

be http://localhost:3062/Employee/Insert.aspx (this is a test address using
the local web server and will vary based on the dynamic port assigned to it). If you
are planning to test the application from the hosted server, then record the test by
browsing the web pages from the hosted server. Whether it is hosted on server or a
local development server, the web application should be up and running for testing.
Once the web page is up, enter all the required details and click on Insert to save

the new employee details. Each row gets added to the tree view below the recorder
toolbar. All request details are recorded until the test is stopped or paused. To get the
correct test scenario, enter all required fields and perform a positive test so that there
are no error messages. After recording the scenario, perform invalid entries and test
the application.

After entering the URL and hitting Enter in the Address bar, the web page is loaded
on the right while the requests are captured on the left as they are recorded.

@ Employee - Windows Internet Explorer provided by Dell Client Engineering Team EI@

@n\;/l d |§, http://localhost:3062/Em| + | "?| A | |B Google Fe -

33

s Favorites (& Employee M- E ~ = o= ~ Pagev Safety~

Web Test Recorder < o

[Record m stop | % | X [€] EMPLOYEE MAINTENANCE

<

/Employee./List aspx
3062/Employee./Insert aspx

Add new Employee
First_Name Satheesh
Last_Hame Kumar
Middle_Name T

Department Information Technology

Occupation Delivery Manager
Gender Male
City Bangalore
State KA
Country India
Phone 1234567890
€ Local intranet | Protected Mode: Off fa - H100% ~

[150]

Chapter 5

Enter all request details and then click on the Insert button. Once the insert is
successful, stop the recording to complete the insert scenario. The web test shows
the recorded pages and the parameters captured while recording the insert page
as follows:

m EmployeeMaintenance - WebTest?.webtest - B X

WebTest2.webtest & X -
'A- B @ i 0hE e

B WebTest2

g http://localhost:3062/

gl http://localhost:3062/Employee/List.aspx

gl http:/flocalhost:3062/Employee/Insert.aspx

=g http:/flocalhost: 3062/ Employee/Insert.aspx

aﬁ Form Post Parameters

----- = _EVEMNTTARGET=ct005ContentPlaceHolderl SFormViewl Sct02

----- = _ EVENTARGUMENT={{SHIDDEML. _EVEMTARGUMENTY)

----- B VIEWSTATE={{SHIDDEN1._VIEWSTATE}}

----- = EVENTVALIDATION={{SHIDDEML. _ EVENTVALIDATION

----- =] ctlo0sContentPlaceHolderl SFormViewd Sctl045ct005_First_NameSTextBoxl = Satheesh

----- u’ﬁ ctil0SContentPlaceHolderl SFormViewl Scti045cti015_ Last MameSTextBoxl=Kumar

----- n’ﬁ ctl005ContentPlaceHolderl SFormViewl 5ctl045cti025_ Middle_MNamesTexdBoxd =M

----- =] ctl00SCententPlaceHolderl SFormViewl Scti045cti035_DepartmentSTextBoxl =Information Technelogy
----- =] ctl00SContentPlaceHolderl SFormViewl Sctl045cti04S_ OccupationSTextBoxl =Delivery Manager
----- u’ﬁ ctl005ContentPlaceHolderl SFormViewl 5ctl045ctl055_ GendersTextBoxl =Male

----- u’ﬁ ctl05ContentPlaceHolderl SFormViewl SctlD45ctl06s_ CitySTextBoxl=Bangalore

----- u’ﬁ ctl005ContentPlaceHolderl SFormViewl 5ctl045ctl075_ StateSTexdtBoxd = KA

----- u’ﬁ ctlI0SContentPlaceHolderl SFormViewl Sctll45ctl085_ CountrySTextBoxl =India

----- =] ctln0SContentPlaceHolderl SFormViewd 5ctl045ct095_PhoneSTedBoxl =1234567890

=@ — 0 Validation Rules

Three requests are captured during recording: one for the main page to select the
employee details page, second one is to select the Insert option to enter a new
employee's details, and the third one is to save the employee details and display the
mail screen. The details of these requests are displayed in the tree view. Expanding the
third root node in the tree view shows different values and strings passed through the
web page on clicking the Insert button which are captured under the folder Form Post
Parameters. Note that the event took place on clicking the Insert button in the web
page. All other details are the parameter values posted by the request.

[151]

Web Performance Test

There are different protocols used for sending these requests as follows:

* HTTP-GET: Hypertext Transfer Protocol-GET protocol appends the query
strings to the URL. The Query string is the name and the value pair that is
created out of the parameters and the data.

* HTTP-POST: Hypertext Transfer Protocol-POST protocol passes the name
and value pairs in the body of the HTTP request message.

* SOAP protocol is an XML-based protocol used for sending structured
information. This is mostly used by web services.

Recording shows that only the independent requests (GET or POST) are recorded,
not the dependent requests such as requests for getting images and other such
requests. These requests are reported only when the test is run, but during recording,
it will neither be shown nor captured.

When the web application is run, it dynamically generates data, such as session ID
and is sent through the Query String parameter values and Form Post parameter
values. The web performance test uses such generated parameter values by capturing
it from the HTTP response using an extraction rule, and then binding it to the HTTP
request. This is known as the promotion of dynamic parameters. Detection of dynamic
parameters happens immediately after finishing the web performance test recording.
On clicking the Stop button in the recorder window, notice a dialog window with the
message Detecting Dynamic Parameters and the progress bar. The dialog displays a
message as Did not detect any dynamic parameters for our sample site. If the dynamic
parameters are detected, a Promote Dynamic Parameters to Web Test Parameters
dialog box appears.

Adding comments

While recording the web page requests, some additional comments may be required
to be added to the recording about the page or the test. This comment could be any
text with additional information for reference. This is similar to the comments added
to the code during development. Sometimes it is required to add information about
the steps to be followed during the test. Basically comments are there to record the
information about the additional task required during the test, but could easily forget
to do. These comments can be added simply by clicking on the Add Comments
button in the Web Test Recorder toolbar.

[152]

Chapter 5

Cleaning the recorded tests

While recording the scenario, all user actions are recorded irrespective of the
application under test. Sometimes user navigates to other areas which is irrelevant
to the current test. The recording should be paused, not to record the request outside
of the current test. But, in case it is not paused during the recording, use the Delete
option to remove those requests from the recorded details.

Copying the requests

In some situations, same requests may be required to be tested multiple times, for
example, page refresh. To simulate this, copy the recorded request and paste it into
the recording list. The same request can be copied any number of times. Select the
request from the list from the tree view, right-click and Copy or use (Ctrl + C) and
then select the destination folder and right-click and choose Paste.

By copying the requests, the order of testing is also changed.
This is an easy way to change the order. Instead of copying,
* cut and paste the request to a different place just to change the
order. But be careful when changing the order in this way, that
s . .
dependent requests are not affected. For example, if request B is
dependent on request A, then do not move request B before A.
Take extra care while copying and changing the order of tests.

Adding Loops

Loop logic is very useful in running the same web request multiple times. Conditional
rules and properties can be set to verify whether any specified condition is met or not.
The loop logic can be added at the web performance test level or at the web request
level. The looping should be used to reproduce a user scenario but should not be used
to simulate the number of users.

Let's take the scenario of creating multiple temporary users or employees using

the user interface. One way of doing this is to create it manually by entering all the
details using the user interface and the other way is to use a data driven UI test

by feeding the data from the predefined data source with all user details. In either
case there is a good amount of manual work involved. The other best option is to
use the recording of a single user creation through UI, use the recording, and loop
the request for multiple times. Let's see the step-by-step approach of this feature to
create four users. The following steps use two context parameters to hold the values
and then use the parameters to increment the value and insert employee details:

1. Create the web performance test recording for inserting an employee's details
as shown in the previous examples.

[153]

Web Performance Test

2. Select the Web Performance Test option, right-click and then choose Add
Context Parameters. Add the parameter and set the value as User for the
First name. Add another parameter and set the value as 1. The second

parameter is to increment the value and set it as the last name to differentiate
between the users.

The following screenshot shows two context parameters added to the web test:

w ErmployeeMaintenance - WebTest2.webtest = = 2t

WebTest? webtest & X -
A- B9 6 aE A

@ WehTest2

..... @1 http://localhost:3062/

----- @1 http://localhost:3062/Employee/List.aspx

[j—--@—j http://localhost:3062/Employee/Tnsert.aspx

[]---éj http://localhost:3062/Employee/Insert.aspx

g
[@] Parameterl = Uszer
L..[@] Parameter2=1
- Validation Rules

[Tl
L]

3. Open the web test folder and expand the request that captures the insert
operation. The web performance test captures all the details under the Form
Post Parameters for the web request. Let's use the same details for multiple

user or employee creation, except the First Name and Last Name which will
differentiate the users or employees.

[154]

Chapter 5

4. Right-click and select the properties for the first name in Form Post Parameter.
Navigate to the first parameter as the Value property for the first name.
Similarly select the second parameter as the Value property for the Last Name
as shown in the following screenshot:

m EmployeeMaintenance - WebTest2. webtest - B X
WebTest2. webtest & X -
Z- e E a0 AEMA

2 WebTest2

----- g hitp://localhost:3062/

----- g hitp://localhost:3062/Employee/List.aspx

@il http://localhost:3062/Employes/Insert.aspx

S-gi) http://localhost:3062/Employee/Insert.aspx

Eﬂ Form Post Parameters

----- = _EVENTTARGET=ctli05ContentPlaceHalderl SFormViewd Sctlo2

----- = _EVENTARGUMENT={{SHIDDEMN1._EVEMTARGUMENT}}

----- = _VIEWSTATE={{SHIDDENL._VIEWSTATE}}

----- = _EVENTVALIDATION={{SHIDDENL. _EVENTVALIDATION}

----- U= cti003 ContentPlaceHolderl SFormViewl $cti04$cti00S_ First_Name$ TextBoxd ={{Parameterl }}
----- Dﬁ ctli05ContentPlaceHolderl SFormViewl Sctl045ct015_ Last MameSTextBoxl ={{Parameter?}}
----- m'% ctli05ContentPlaceHolderl SFormViewl $ctldd5ct025_ Middle_MameSTexdBod =

----- & ctliosContentPlaceHolderl SFarmViewl Sctld45cti035_Department$TextBoxl =Information Technology
----- = ctlosContentPlaceHolderl SFormViewl Sctl0d5cti04S_ Occupation$ TextBoxl = Delivery Manager
----- m'% ctlI05 ContentPlaceHolderl SFormViewl Sctl45ct055_ GenderSTextBoxl =Male

----- u'% ctl0SContentPlaceHolderl SFormViewl Sctil45ctl06s_ CitySTextBoxl =Bangalore

----- u'% ctl005ContentPlaceHolderl SFormViewl Sctl045ctil7 S StateSTextBoxl = KA

----- u'% ctl0SContentPlaceHeolderl SFormViewl Sctll45ct08S_ CountrySTextBoxl =India

----- u'% ctld05ContentPlaceHolderl SFormViewl Sctl45cti025_ PhonesTexdtBoxd 1234567830

-l Context Parameters

- Validation Rules

5. Now select the web request, right-click and choose the option Insert Loop....

[155]

Web Performance Test

6. A new window named Add Conditional Rule and Items to Loop pops up to
collect the details for the conditional looping. On the left of the screen there
are multiple rules listed and on the right the properties are displayed for the
selected rule on the left. Select the rule For Loop and set the properties as
following, so that the looping happens four times until the Parameter2 value
becomes 5.

Add Cenditional Rule and fterns to Loop IEI

Select 2 rule: Properties for selected rule:

2| |

€% Context Parameter Exists
€% Cookie Exists

€% Cookie Value Comparison 4 Options _

£ For Loop Max Murmnber of Iterations -1

£% Number Comparisen Advance Data Cursors False

€% Probakility Rule 4 Properties

€% Counting Loop Context Parameter Marme Parameterd

€% String Comparisen Comparison Operator <
Terminating Value, 5
[Initial Value .}
Increment Value 1

Initial Value
The context parameter is set to this value before the first loop iteration

Description for selected rule:

The rule represents a traditicnal "for” loop, The context parameter is initialized before the first loop iteration, The loop
statements get executed while the content of the context parameter satisfies the comparison with the provided value, The

Iterns in loop

Choose first item for loop

l http://localhost: 3062 /Employee/Insert.aspx -]
Choose last item for loop
l http://localhost: 3062 /Employee/Insert.aspx -]

l oK l ’ Cancel]

7. The looping is now added to the web request with the initialize, increment,
and the conditional values as shown in the following screenshot:

[156]

Chapter 5

n EmployeeMaintenance

ﬁ:a
m
o
%

B WebTest?
g http://lecalhost:3062/
g http://localhost3062/Employee/List.aspx

g http://localhost3062/Employee/Insert.aspx
ize to 1, Increment by 1, While {{P
; -ah) http://localhost:3062/Employes/Insert.aspx
B Context Parameters
B Validation Rules

8. Now everything is set for the looping of the same request with the incremental
value of Parameter2. Select the web performance test and run it. The Test Runs
with the Parameter2 value getting incremented every time the test is run. The
test stops when the context Parameter2 value becomes 5. The following image
shows the end result of having four new users or employees added to the stem:

« 2 B
@ Passed Click here to run again Internet Explorer 7.0 LAN Edit run settings
Request Status Total Time Request T.. Reques... Response Bytes
@ b &) hitp://loczlhost3062/ 200 OK 0.069 sec 0024 sec 0 326,858
@ b @) http://localhost:3062/Employee/List.aspx 200 OK 0.060 sec 0021 sec 0 385,227
@ b @ httpi/localhost3062/Employee/Insert.aspx 200 OK 0107 sec 0.084 sec 0 415,813
@ + B Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5) 4 Iterations Completed
@ 4 B Looplterationl Condition Met
(] 4 @ hitp://localhost:3062/Employee/Insert.aspx 302 Found 0.084 sec 0.027 sec 3944 136
V] b L http://localhost:3062/Employes/List.aspx 200 OK = 0.027 sec 0 387411
(v] 4 B Looplteration 2 Condition Met
(v] 4 g http://localhost:3062/Employee/Insert.aspx 302 Found 0.065 sec 0,020 sec 3944 136
] b 3 http://localhost:3062/Employee/List.aspx 200 OK = 0.020 sec 1] 389,599
@ 4 B Looplteration3 Condition Met
(v} 4 @) hitp://localhost:3062/Employee/Insert.aspx 302 Feund 0.086 sec 0.024 sec 3944 136
V] b L http://localhost:3062/Employes/List.aspx 200 OK = 0,029 sec 0 391,803
(v] 4 B Looplterationd Condition Met
(7] 4 g httpi//localhost:3062/Emplayes/Insert.aspx 302 Found 0059 sec 0014 sec 3,044 136
] b 3 http://localhost:3062/Employee/List.aspx 200 OK = 0022 sec a 393,983
! B Loop Iteration 5 Condition Mot Met
Web Browser ‘ Request | Respense I Context I DEtalIsl
-
Employee
First_Name | Last_Name | Middle_Name | Department Occupation Gender | City State | Country | Pho|
Edit Delete Details | Satheesh Kumar N Information Technology | Delivery Manager | Male Bangalore | KA India 1234
Edit Delete Details | User 1 Information Technology | Delivery Manager | Male Bangalore | KA India 1234
Edit Delete Details | User 2 Information Technology | Delivery Manager | Male Bangalore | KA India 1234
Edit Delete Details | User 3 Information Technology | Delivery Manager | Male Bangalore | KA India 1234
Edit Delete Details | User 4 Information Technology | Delivery Manager | Male Bangalore | KA India 1234
+ Insert new item -
4 1 +

[157]

Web Performance Test

If you check the web requests during the test, you will notice that the same
web request is called four times with only the Parameter2 value changing for

each iteration.

The following are some of the Conditional rules and items that can be looped:

Conditional rule

Rule description

Context parameter
exists

Cookie exists

Cookie value
comparison

For loop

Number comparison

Probability rule

Counting loop

String comparison

Test whether or not the specified context parameter exists in the
current context.

Test whether or not the specified cookie is set.

The condition is met when the provided string matches the value
of the specified cookie.

The rule represents a traditional For loop. The context parameter
is initialized before the first loop iteration. The loop statements
get executed while the content of the context parameter satisfies
the comparison with the provided value. The step value is
applied at the end of each loop iteration.

The condition is met when the value of the context parameter
satisfies the comparison with the provided value.

Randomly returns pass or fail based on the percentage provided.

Executes the requests contained in the loop a specified number
of times.

The condition is met when the provided string matches the
content of the provided context parameter.

The Items in loop section in the Add Conditional Rule and Items to Loop window
denotes the first and last web request within the loop out of all the recorded requests
in the order.

The web performance test that contains loop with a lot of iterations
may consume a lot of memory while running the test, as the web

Test Results are kept in the memory.
v

When the web performance test in a load test takes a long time to
run, it will have an impact on the test mix. The load test engine will
treat running the web performance test as a single iteration.

Web performance test editor

After recording all the requests, click on the Stop option in the Web Recorder pane
which stops recording and closes the browser window. Now the Web Test editor
window opens and the recorded details are shown in the Web Test editor window
as follows:

[158]

Chapter 5

o,

w EmployeeMaintenance - WebTest2.webtest - B X

WebTest2 webtest & X -

2 WebTest2

..... @ http://localhost: 3062/

----- @ http://localhost:3062/Employee/List.aspx
G-gd http://localhost:3062/Employee/Insert.aspx
[—jéJ http://localhost:3062/Employee/Insert.aspx
-l Form Post Parameters

28— Validation Rules

@ *s 6 . 4G Efdéa

----- = __EVENTTARGET=cHO0SContentPlaceHolderl SFormViewl Sctld2

----- = EVENTARGUMENT={{SHIDDEMN1._EVENTARGUMENT}}

----- o= _ VIEWSTATE={{SHIDDEMN1._VIEWSTATE}}

----- o= _ EVENTVALIDATIOM={{SHIDDEM1._EVENTVALIDATION}}

----- u’ﬁ ctl05ContentPlaceHolderl SFormViewl Sctl045ct1005_First_Name5TexdBoxl = 5atheesh

----- u’ﬁ ctl005ContentPlaceHolderl SFormViewl Sctl045cti015_ Last_MameSTextBoxl=Kumar

----- u’ﬁ ctl005ContentPlaceHolderl SFormViewl Sctl045cti025_ Middle MameSTexdtBoxl=MN

----- =] ctl00SContentPlaceHolderl SFormViewd Sctld45cti035_DepartmentSTextBoxl =Information Technology
----- =] ctl00SContentPlaceHolderl SFormViewd Sctl045cti04S_ OccupationSTextBoxl = Delivery Manager
----- u’ﬁ ctl0SContentPlaceHolderl 5SFormViewl Sctl045ctl055_ Gender$TextBoxd =Male

----- u’ﬁ ctil05ContentPlaceHolderl SFormViewl 5ctl045ct1065_ CitySTextBoxl =Bangalore

----- u’ﬁ ctl005ContentPlaceHolderl SFormViewl Sctl045cti0TS_ StateSTextBoxl =K4A

----- m’% ctll05ContentPlaceHolderl SFormViewl Sctl045ctlDB5__CountrySTextBoxl =India

----- =] ctl00SContentPlaceHolderl SFormViewd Sctl045cti095_PhoneSTextBoxd =1234567590

The editor shows the tree view of all the requests captured during recording. The Web
Test editor also exposes different properties of requests and the parameters for each
request. Using the editor, the Properties, Extraction, and Validation rules are set for
the web test and the requests. There are different levels of properties that can be set for
the recorded requests using the WebTest editor as follows:

Setting properties at the WebTest root level applies to the entire web test.
For example, setting user credentials and giving a description to the test.

Setting properties at the request level applies to the individual requests
within the web test. For example, timeout, think times, and recording results
properties on each request level.

Properties for request parameter apply to the requests using HTTP-POST
or HTTP-GET protocol. Each parameter in the request contains properties,
such as URL encodes, value, and name.

Extraction and validation rules are set for the responses to make sure the
request gets the expected results and are validated.

[159]

Web Performance Test

Apart from all these, the WebTest editor has a toolbar that provides different
functionalities, such as running the test, adding a new data source, and setting the
credentials and parameters which are explained in detail in the coming sections.

Web test properties

The following are the properties that can be set for a web test using the editor:

Property

Description

Description
Name

User Name

Password

PreAuthenticate

Proxy

Test ID

Stop On Error

Specifies the description for the current test.
The given name for the current web test.

Specifies the name of the user for this test, if predefined
users credentials are to be used, then this is associated
with the data source of any type such as a CSV file, XML
file, or a Database. A parameter defined within the web
test also can be used for user name.

Specifies or associates the password that corresponds to
the user in the Username field.

This is a Boolean field, which indicates whether the page
has to be authenticated on every request or not; only if
this property is set to True, the authentication header

is sent for each request, otherwise headers are sent, if
required; the default is True.

In some cases, the requested web pages in the test might
be outside the firewall which has to go through the proxy
server; this field is to set the proxy server name to be
used by the test.

The autogenerated, unique ID to identify the test. This ID
is generated while creating the test; this can be used to
define the test in coded web test. This property gets the
unique identifier when implemented in the derived class.

Informs the application whether to stop the test or

continue in case of any errors; if this value is true,
the execution of the entire test will stop in the first

occurrence of the error; default is True.

The following screenshot shows the properties window for the web test file:

[160]

Chapter 5

EbTest? webtest + X
L- @Bt &

8 4340

P WebTest2

g5 http://localhost:3062/

-gid http://localhost:3062/Employes/List.aspx

g http://localhost:3062/Employee/Insert.aspx

- & Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5
B Context Parameters

-l Validation Rules

J2 Respense URL

K Response Time Goal

Microsoft.VisualStudio. TestTools.Web5tress, TestCaselll

-

=_ 5

Descripticn

Mame WebTest?

Password

PreAuthenticate True

Proxy

Step On Error False

TestID a2chabTh-0b29-42ed-abc7-al2dcH

UserName | [=]

User Name

Type the name of a user for this Web test when you are using
credentials, Supports data binding.

Web test request prope

rties

The following are the properties of the requests within the web tests. If you select any
request from the tree view and open the properties, you can find these properties for

each request:

WebTest?. webtest = X
A - By

2y

AE A

45 D

2 WebTest2

: éﬂ http://localhost:3062/

g http://localhost3062/Employee/List.aspx

g http://localhost:3062/Employee/Insert.aspx

-& Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5
: - Context Parameters

E| B Validation Rules

J2] Response URL

Ji] Response Time Goal

Properties *OXx

Cache Control False

[=]

Enceding utf-8
Expected HTTP Status Code 0
Expected Response URL

Follow Redirects True
Method GET
Parse Dependent Requests True
Record Results True

Reporting Name

Response Time Geal (seconc 0

Think Time (seconds) 2
Timeout (secends) 300
Url http://localhost:3062/Employee/
Versicn 11
Cache Control

True indicates that the requests are cached, False indicates that
the requests are net cached,

[161]

Web Performance Test

Property

Description

Cache control

Encoding

Expected HTTP status code

Expected response URL

Follow redirects

Simulates the caching property of the web pages. The value
can be true or false. If it is set to True, caching is on and the
dependent requests are retrieved only once for subsequent
requests. For example, an image file used in web pages is
retrieved from the source only once and kept in the cache
and re-used for all the requests.

If the caching is turned off, then subsequent requests

of the same page is retrieved from the source for every
request. If it is an image, then the same image file will
be retrieved for every request even though it is the same
image. These properties are very useful in testing the
performance by turning the caching on and off and then
decide whether to keep it on or off.

This property is set to the main request, but not to the
dependent requests of the main requests.

The default value for this property is False.

Defaults to utf-8 as most of the HTTP requests are utf-8
encoding. It can be changed if a different encoding for the
texts is needed.

This is to set the expected status code for the request. For
example, if this request is not to be found on the server
then set this value to 404. The error code 404 denotes the
resource cannot be found. The default is set to 0, which
returns pass if the return status is in the 200 or 300 level and
returns fail if the return status is in the 400 or 500 level.

Sets the final URL response that is expected after the
current request and redirects, if any, are made. This is to
validate the response. The expected response is validated
using the validation rule.

If set to True, allows page redirects to be made by the
request and can be set to False to avoid redirects. If

set to True, then the request continues to its redirected
web page and verifies if the status is the code entered for
the Expected HTTP Status Code field. If it is false, the
redirects are not followed.

For example, if the values of the Expected HTTP Status
Code are set to any value between 200 and 300, and the
Follow Redirects are set to True, then the end result
status of the request after all redirects should be a success.

Status code with the 200 or 300 level is a pass while status
level with 400 or 500 is a failure.

[162]

Chapter 5

Property

Description

Method

Parse dependent requests

Record results

Response time goal
(Seconds)

Think time (Seconds)

Timeout (Seconds)

Version

Url

Used to set the request method used for the current
request. It can either be GET or POST.

Can be set to True or False to parse the dependent
requests within the requested page. For example, we may
not be interested in collecting the details for the images
loaded in the web page. So we turn off the requests for
loading the images by setting this to False. Only the
main request details will be collected.

There shouldn't be any confusion with this property and
the cache control property. Cache disables the loading of
the same page during subsequent requests after caching
the first occurrence of the request, but this property is to
completely set-off the dependent requests or to completely
turning them on.

This is a Boolean value to hold true if the performance
data has to be collected for this HTTP request. It is false if
the data is not required to be collected.

There are situations where the users need the application
to respond quickly without any delay. To test this
scenario, set this property to the expected maximum
response time and then test the pages to find out the ones
which do not meet the requirement. This value is specified
in seconds. The default value is 0, which means the
property is not set.

Sets the think time required by the user between pages.
This is not the exact time that the user can spend thinking,
but is a rough estimation. Also, this property is not very
useful for the normal single user web test. It is however
very useful in the case of load test where we can predict the
load including the think time of the user between the pages.

The recorder automatically records the think times at the
time of recording the test.

The expiry time for the request. This is the maximum time
for the request to respond back. If it doesn't return within
this limit, then the page gets timed out with the error

Sets the HTTP version to use for the request, which can
be 1.0 or 1.1. The default is 1.1 which is the normal or the
latest of the HTTP versions.

This is the URL address for the request.

[163]

Web Performance Test

Other request properties

Each request in the web test has its own properties, and each request may have
many dependent requests. Properties can be set at the request level and even at the
dependent request level. The properties are set based on the request submit method
GET or POST used for the requests. The validation and extraction rules can be used
to extract information from the request response.

Form POST Parameters

These are the parameters sent along with the request if the method used for the
request is POST. Recording of user actions in the form of web requests captures the
actual values of the parameters that were sent during request and all the entries are
sent to the server as Form POST Parameters.

* Name is generated dynamically during recording, and denotes the name of
the component used for collecting the data.

* Recorded Value is a read-only field with the value assigned while recording.

* URL Encode is a Boolean value which is set to True by default which
determines whether the Name and Value of the parameter should be URL
encoded or not. The default is True.

* Value is the actual parameter value which is set to the same value as
the recorded value, but can be changed later. This property also has the
flexibility to bind the field to a different data source, such as Database, XML
file, or a CSV File which is useful in the case of testing with different sources
of information and multiple runs with the different sets of data. The next
section covers more on how to add the new data source and map the form
tields to the data source fields.

The following screenshot shows the Middle Name field, without any value assigned
to it because there wasn't any value assigned while recording. But the tester can
change or provide a new value to this parameter by selecting the property and
modifying the value field:

[164]

Chapter 5

WebTest2.webtest & X
A- B E 20 AE WA
2 WebTest2
@) http://localhost:3062/
4 http:/flocalhost:3062/Employee/List.aspx
@) http://localhost:3062/Employes/Insert.aspx
-8 Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5)
g hitp://localhost:3062/Employee/Insert.aspx
=@l Form Post Parameters
BB _EVENTTARGET=ctiD0SContentPlaceHolderl SFormViewd Sctld2 Properties ~ 0 X
B _EVENTARGUMENT={{SHIDDEN1._EVENTARGUMENT}} Microsoft.VisualStudio. TestTools.WebStress.FormPostParameterUl -
5] _VIEWSTATE={{SHIDDEN1._VIEWSTATE}
5] _EVENTVALIDATION={SHIDDEN1._EVENTVALIDATION}}
{5 ctio0SContentPlaceHolderl SFormViewl $cti04SctiD0S_First NameSTextBoxl ={{Param| = Misc
] cti00SContentPlaceHolder] SFormView] Scti04SctiOlS_Last NameSTextBoxl={{Param| ~ fecorded Value N

] ctioosContentPlaceHolder] SFormView] Sct04Scti025_Middle NameSTextBoxd= | B Parameter

] cti0sContentPlaceHolder] SFormView] Sct04Scti03s_DepartmentSTetBoxd =Inform| ~ Name ctl00SContentPlaceHolder1 SFormView1Scti04Scti025_Middle_NameSTex|
] cti00sContentPlaceHolder] SFormView] Sct04Scti0ds_OccupationSTextBoxl =Deliver; URLEncode True

B cti00SContentPlaceHolder] SFormiew] Scti04Scti0ss_GenderSTedBaxl =Male [=]

& cti00SContentPlaceHolderl SFormViewl Scti04SctiDss_CitySTextBoxl =Bangalore
] cti00SContentPlaceHolderl SFormViewl ScHO4SctiD7S_ StateSTextBoxl =KA

& cti00SContentPlaceHolderl SFormViewl Scti045ctiD8S_ Country$TextBoxl=India

& cti00SContentPlaceHolder] SFormViewl Scti045ctiD95_PhoneST extBoxl =1234567890
B Context Parameters

=User Value

@1 Parameter2=1 Type the value of the form post parameter. Supports data binding.
B Validation Rules
:J Response URL

1 Response Time Goal

The set of properties varies based on the type of control used in the web page. For
example, using a File Upload control may require the file type property to be set for
the upload.

QueryString parameters

This is very similar to the Form POST Parameters. These query string parameters are
listed under the request which uses the QueryString method for the request.

WebTest2 webtest # X
W- @9 E 3 REMA
P WebTest2

(3. hitp/flocalnost3062/Employes/Editaspx

= QueryString Parameters Microsoft.VisualStudic. TestTools. WebStress. QueryStringPara, -
Loyt EmployeelD=440

2
----- éﬂ http:/flocalhest:3062/Employee/List.aspx
[http:/flocalhost:3062/Employee/Insert.aspx blams EmployeelD
@& Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5 Recorded Value
- Context Parameters Show Separate Request Res. False
[@ Parameterl=User URL Encode False
--[8] Parameter2=1 Value 440

=i Validation Rules
J& Response URL
. Jil Response Time Goal Recorded Value

The original recorded value of this parameter,

[165]

Web Performance Test

Setting properties values and usage of the QueryString parameters are same as the
Form POST Parameters properties, except the additional property which is Show
Separate Request Result. This is used for grouping the requests based on the value
of this query string parameter. This is very useful for load testing for grouping a
bunch of requests based on this field value. The default is False.

Extraction rules

Normally in any web applications, most of the web forms are interdependent in
which the request is based on the data collected from the previous request's response.
Each request from the web client receives the expected response from the server with
the expected data within it. The data from the response has to be extracted and then
passed on to the next request by passing the values by using query strings or values
persisted in the ViewState object or using the Hidden fields. Extraction rules are
useful for extracting the data or information from the HTTP response.

The sample application has web pages for new employee creation, selecting existing
employee information from a list, absence details of an employee, and a few other
web pages. For example, the user selects an employee from the list of available
employees to get the detailed information about that employee. In this case, once the
user selects a particular employee from the list, there needs to be a validation and
then the key values are passed to the next web request like EmployeeDetails page or
Absence request or EmergencyContacts details.

The key information is hidden somewhere in the request using the ViewState object
or the Hidden fields property of the web page. In this case, use the extraction rules to
extract the information and pass it on to the next request. Extract the information and
store it in the context parameter and use it globally across all the requests.

Visual Studio provides several built-in types of extraction rules. These rules are
helpful in extracting the values based on the HTML tags or based on the type of
fields available in the web form. Custom rules can also be built if the default set
of rules are not sufficient to extract the information. The following are the existing
extraction rule types:

[166]

Chapter 5

Add Extraction Rule

Select 2 rule:

Selected Opticn

i Tag Inner Texd|

Extract Attribute Value
Extract Form Field

Extract HTTP Header
Extract Regular Expression
Extract Text

Extract Hidden Fields

Description for selected rule:

Properties for selected rule:
A
2

4 Options

Context Parameter Name
4 Properties

Tag Mame

Attribute Name

Attribute Value

Remove Tags in Inner Text

Has Closing Tag

Collapse Extra White Space

Index

Context Parameter Name

The name of a test context variable to associate with the extracted

value,

Extracts the inner text from the specified HTML tag.

True
True
True

R (=

ok || conce |

The following table shows the extraction rule types, their description, and usage:

Rule type

Description

Selected Option

Tag Inner Text

Extract Attribute Value

Extract Form Field

Extracts the value based on the tag name and assign
the value to the context parameter. The Context
Parameter Name and Tag Name are the properties

for this option.

Uses the attribute name and the value parameter to
find the exact match of the attribute and extract the
inner text from that attribute. Very useful to extract
the inner text from the specified HTML tag.

Extracts the attribute value from the request page
based on the tag and the attribute name; uses the
optional matching attribute name and value within the
same tag to find out the required attributes easily; the
extracted value will be stored in the context parameter.

Extracts the value from one of the form fields in the
response page; the field name is specified here.

[167]

Web Performance Test

Rule type Description

Extract HTTP Header Extracts the HTTP message header value in the
response page.

Extract Regular Expression Extracts the value using a regular expression to find
the matching pattern in the response page.

Extract Text Extracts some text from the response page; the text is
identified based on its starting and ending value with
text casing as optional.

Extract Hidden Fields Extracts all the hidden field values from the response
page and assigns them to the context parameter.

The following screenshot is an example of using an extraction rule with a tag name.
The screenshot shows the sample image added to the employee maintenance web
pages. The image source is highlighted in the following code:

- <form id="forml” runat="server":
<hl class="DDMainHeader">
<img alt="Employee Details" runat="server" class="stylel"
src=“[)ynamicDataf’ContentJ’lfmagestmagel.gif" /> Employee Maintenance</a»</hl>
= <div class="DDNavigation">
<a runat="server” href="~/"»<img alt="Back to home page" runat="server” src="DynamicData/Conten
</div>

Add an extraction rule for the image that is present in the employee maintenance
web page. The following screenshot shows how to set the properties of Extraction
Rules. This extraction rule is created for a sample image used on the page. The
extraction rule is created against the Attribute Value to find the image source URL
used for the image and assign that to the context parameter:

[168]

Chapter 5

Add Extraction Rule

Select a rule:

[E] Selected Option

{# Tag Inner Text

[E] Extract Attribute Value

[& Extract Form Field

[& Extract HTTP Header

[E] Extract Reqular Expression
[E] Extract Text

[E] Extract Hidden Fields

R =X

Properties for selected rule:

4 Options

Context Parameter Mame ImageSource
4 Properties

Tag Mame img

Attribute Mame srC

Attribute Yalue

Remove Tags in Inner Text True

Has Clesing Tag True

Collapse Extra White Space True

Index -1

Context Parameter Name

The name of a test context variable to asscciate with the extracted
value,

Description for selected rule:

Extracts the inner text from the specified HTML tag.

[0K J ’ Cancel

Add as many rules as required, but you should make sure that Context Parameter
Names are unique across the application. They are like global variables used in

the application.

[169]

Web Performance Test

The following Test Run result shows that the test and the extraction rule are passed,
as the matching attribute and the value is extracted from the response:

WebTest? [2:51 PM] + WebTest2 webtest hd
s OES e B &

@ Passed Click here to run again Internet Explorer 7.0 LAN Edit run settings

Request Status Total .. Reques.. Reque.. Response..
@ o & httpi//localhost:3062/ 200 0K 0069 sec 0,039 sec 0 326,859
@ - &) http://localhost:3062/Employee/List.aspx 200 OK 0052 sec 0.013 sec 0 385,227
@ 4 &) http://localhost:3062/Employee/Edit.aspx 200 OK 0.061 sec 0.030 sec 0 419,830
(v] D) http://localhost: 3062/ WebResource.axd?d=XeCiQ8oObrM-54lw0OO1-nok 200 OK - 0,003 sec 0 22,346
(/] D) http://localhost:3062/Site.css 200 OK - 0,009 sec 0 3977
(/] DY http://localhost:3062/ WebResource.axd d= MMvd AbpZInATTYvELIsbU 200 OK - 0,005 sec 0 26,951
(v] D) http://localheost:3062/DynamicData/ Content/Tmages/Imagel .gif 200 0K - 0,005 sec 0 162
(v] D) http://localhost:3062/DynamicData/ Content/Images/back.gif 200 OK - 0003 sec 0 108
(/] D) http://localhost:3062/ SeriptResource.axd Fd=R2WuwlMzhajzMMeHpnSiD 200 OK - 0019 sec 0 319,604
@ b &) http://localhost:3062/Employee/List.aspx 200 0K 0113 sec 0,027 sec 0 385,227
@ b & hitpy//localhost:3062/Employee/Insert.aspx 200 OK 0.065 sec 0.017 sec 0 415813
9 p B Loop (Initialize te 1, Increment by 1, While {{Parameter2}} < 5) 4 Tterations !

Web Browser | Requestl Response | Context| Details |

Rules
Rule Type Result Parameters
@ Response URL Walidation Passed

@ Response Time Goal Validation Passed Tolerance=0
"=:_:=':'_5 Extract Attribute Value m TagMame=img, AttrnbuteName=src, MatchAttnbuteName=, MatchAttnbuteValue=Imag:

The Context details in the following screenshot show the extracted value from the
web response and the same is assigned to the ImageSource context parameter:

| Web Browser | Request | Response| Context | Details|
MNare Value -
$TotalAgents 1
S\WebTestlteration 1
SWebTestUserld 1
Parameterl User
Parameter2 1
-
4 3

By default, Visual Studio adds extraction rules for hidden fields automatically.
The references to the hidden fields are also automatically added to the form POST
Parameters and QueryString parameters.

In coded web tests, custom extraction rule can be added by deriving from the
ExtractionRule class.

[170]

Chapter 5

Validation rules

Every application has some sort of validations on the input and output data, for
example, a valid e-mail address, a valid username without any special characters,
or a valid password which is not less than six letters. All these validations are
performed using the validation rules set against the fields.

Validation rules are nothing but the defining rules against the information passed
through the requests and responses. All the data collected from the response is
validated against the defined rules. The test passes only if the validation rules are
satisfied, otherwise the test fails. For example, if the user has to enter a specific value or
if the user has to select a value from a set of predefined values list, then define these as
validation rules and use those against the values returned from the response fields.

Visual Studio provides a set of predefined rules for validations. These rules are used
for checking the texts returned by the web response.

For adding the validation rules, just right-click on the request and select the Add
Validation Rule option which opens the validation rule's dialog box. Select the type
of validation rule required and fill the parameters required for the rule, as shown in
the following screenshot:

Add Validation Rule -7 =]
Select a rule: Properties for selected rule:
Jil Selected Option
; 4 Opti o
J Responsze Time Goal ptions _
2l Form Field Level High
JE Find Text 4 Properties
Sl Maximum Request Time Tag Mame
J Required Attribute Value Attribute Name E
A Required Tag Attribute Value
J Respanse URL Expected Inner Text
Remove Tags in Inner Text True
Has Clesing Tag True
Collapse Extra White Space True =
Level
Sets the validation rule level. Only rules at or above the load test level
are executed when a Web test is run under load.

Descripticn for selected rule:

Validates that the specified expected inner text exists within the specified HTML tag.

oK l ’ Cancel

[171]

Web Performance Test

Validation rule type

Description

Selected Option

Tag Inner Text
Response Time Goal

Form Field

Find Text

Maximum Request Time

Validates that the specified option in the HTML select
tag is selected. The parameters are:

Select Tag Name
Expected Selected Option
Index

Ignore Case

Validates if the specified inner text exists within the
specified HTML tag.

Validates if the response time for the request is less than
or equal to the specfied goal.

The existence of the form field name and value is
verified using the following parameters:

Form Field Name
Expected Value

Verifies the existence of a specified text in the response
page using these parameters:

Find Text

Ignore Case

Use Regular Expression
Pass If Text Found

Verifies whether the request finishes within the specified
maximum request time using the parameter: Max
Request Time (milliseconds)

[172]

Chapter 5

Validation rule type

Description

Required Attribute Value

Required Tag

Response URL

This is similar to the extraction rules wherein the value
of the specific attribute is extracted using the tag and
the other attribute within the tag; but in validation
rules, we use the same tag to find whether the attribute
is returning the expected value; the parameters are

the same as the ones used in extraction rules but with
an additional field to specify the expected value. The
properties are:

Tag Name

Attribute Name
Match Attribute Name
Match Attribute Value
Expected Value

Ignore Case

Index

The string can be validated based on the occurrence
using the index value; to check any form field value in
the form, set the index value to -1. The test passes if any
one match is found.

This is used to verify if the specified tag exists in the
response; if there is a possibility of getting the same
tag a number of times in the response, you can set the
minimum occurrence value; the parameters are:

Required Tag Name
Minimum Occurrences

This is to verify whether the URL is same as the expected
URL; the property is the level for the response URL
which can be high, medium, or low.

Keep adding as many validation rules as required. If the number of rules increases,
the performance will degrade or the time taken for the test will also increase. Decide
which one is important in case of load testing and then add the rules as required.

In all the above rule types, there is a special parameter known as Level that can be
set to Low, Medium, or High. Use the Level property to control the execution of rules
in a request during the load test. The level does not denote the priority for the rule,
but it denotes when it should get executed based on the load test property. The load
test also has similar property, such as Low, Medium, or High.

[173]

Web Performance Test

Based on the following load test property, the rules with the corresponding levels
will run during the test:

e Low: All validation rules with the level Low will be run

e Medium: All validation rules with level Low and Medium will be run

* High: All validation rules with level Low, Medium, and High will be run

Based on the importance of the load test, set the level property of the rules.

Transactions

Transactions are very useful in grouping a set of activities. One example is to group
multiple requests to track the total time taken for the set of requests. This is also
helpful in collecting the timing of individual requests.

To create the set for transaction, just select the starting request or item and the
ending item so that all the requests inbetween will be a part of the transaction
including these two items.

To add a transaction, select the starting request from where the transaction should
start and then right-click and choose the Add Transaction option, as shown in the
following screenshot:

WebTest? webtest = X

'LA- B E & HE A

WebTest2
@@'} http://localhost:3062/ Add Transaction @
----- g http://localhost:3062/Employee/List.aspx
i g http://localhost:3062/Employee/Edit.aspx
[g http://localhost:3062/Employee/List.aspx
---@'—3 http:/flocalhest:3062/Employee/Insert.aspx Choaose first itern for transaction:
#-8 Loop (Initialize to 1, Increment by 1, While { ’http:fflocalhost:BOﬁZf _]
B Context Parameters
-l Validation Rules

Transaction name:

Transactionl

Choose last item for transaction:

[Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5] v]

The Transaction dialog box requires a name for the transaction, the request URL
for the first item and the request URL for the last item of the transaction. When

you choose both and click on OK, the transaction is added just before the first item
selected for the transaction and all the other requests between the first and last item
including first and last would be part of the transaction, as shown here:

[174]

Chapter 5

m EmployeeMaintenance - | x
WebTest2.webtest & X -
A- B9 d 3. AEME

P WebTest2

£

..... éﬂ http://localhost: 3062/

----- gl http://localhost:3062/Employes/List.aspx

g http://localhost:3062/Employee/Edit.aspx

----- g http://localhost:3062/Employee/List.aspx

gl http://localhost:3062/Employee/Insert.aspx

@& Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5
-l Context Parameters

-l Validation Rules

When the test is run, the total time taken for all the requests under the transaction is
also displayed as follows:

WebTest2 [16:48] & X QU I2RN a0 -
s 0 =l >PE

@ Passed Click heretorun again Internet Explorer 7.0 LAN Edit run settings

Request Status Total Time Request.. Request Bytes Response Bytes
0 4 = Transactionl 2.398 sec - 15,784 36,02,006
(/] b g http://localhost:3062/ 200 OK 0129 sec 0.079 sec 0 3,26,859
(/] I @ http//localhost:3062/Employes/List.aspx 200 OK 0.268 sec 0179 sec 0 4,02,767
(/] b g http://localhost:3062/Employee/Edit.aspx 200 OK 0.203 sec 0171 sec 0 419,830
(/] b g http://localhost:3062/Employee/List.aspx 200 OK 0103 sec 0.062 sec 0 4,02,767
(/] b g http://localhost:3062/Employee/Insert.aspx 200 OK 0145sec 0.013 sec 0 415813
9 & Loop (Initialize to 1, Increment by 1, While {{Parameter2}} <5) 4 Iterations
| WebB | Request | Response | Context | Details |
Test Results -
& Satheesh@SATHEESH-PC 2013-0 ~ | "g& Run ~ " Debug - ™ -G Ty GroupBy: [MNone] -
|9 Test run completed Results: 1/1 passed; Item(s) checked: 0

Result Test Name i) Error Message

%9 Passed WehbTest2 |c:\;atheesh\sh4

[175]

Web Performance Test

Conditional rules

Similar to the extraction and validation rules, conditional rules can be added to the
web requests to run the test based on the success or failure of the condition. This is
the if /then logic added to the requests based on the parameter values. For example,
a condition can be added to a web request to run only if the context parameter equals
to a specified value.

Select the web request to which the condition should be added and then right-click
and choose the option Insert Condition and then select the required rule from the
list. The following image is to add the String Comparison rule to the request.

st < f = —
- A Cancatonsl Bole and b , w7
- E%WE a0 BEMA 2=
2 WebTen2 Sebect rule: Fecgrtae Fr Lolec beed rude:
0 Transactiond % Context Pasarmeter Exists Cj |
alhost 3052 ¥ Cookie Bt
o + Properties
Ihast 3082 Emploryee /List g &2 Cockie Value Comparison = 5 0 . .
et 0K gy ik i 7 Last Request Cutcome Cohbee Pirunasa M pbedioaes

‘alhost 3EL EmployeelList asp 2 Last Responae Code Comparison Operator Equals

5@ bitpyecalhest3052 Employee Tnsert asp &} Humber Comparison I s rsthiarme
=B Loop (bnitiahre to), Increment by 1, While {[Parameter2[] < §) 1 Probatsity Rule Ignere Case True
& hitpiNccalhos ISl Employes Tnsert.aspx {2 wring Comparison Use eqular Expressicn Fale

~- il Foem Poss Parameters
_ﬁ EVENTTARGET = ctD0SContentPlaceHolder] $F ormViewl Sctl2
M _EVENTARGUMENT=([§HIDDENL,_EVENTARGUMENT])
JB _VIEWSTATE: {[SHIDDENL. _VIEWSTATE})
B _EVENTVALIDATION={ISHIDDEN]._EVENTVALIDATION])

Value
B conse . §_First_Marne§ Testleat 1 Vakisto hih ot e paranenes
B coons §_Last NameSTabad . F 2
B coonse 3F Middie
B cnotc e 5| Teq D for selected e
S conic _O =Delivery Marwgd. Th met when the provided string matches the content of the provided contert parsmeter,
JB anosc SF _GendesSTentBoud : Male
B ctionsc, SFoemVi CitySTeutBend =B,
B amosc SetEH ST _ hems in condition
o ctdic € Tetled zlnd Choase first item far condition
' s S A ey e

< i Contod Paraerctens
10 Pasameterd = User
081 Pacameter?sl
-0 Vabeation Rules
S0 Raperive URL
JH Respense Time Goal

;

e

[176]

Chapter 5

The condition is to verify if the context parameter Parameter] is equal to the expected
value to execute the request. If the condition fails then the request will not get executed
during the Test Run. After adding the condition, the web requests will be like the one
shown in the following screenshot with the if / then branch added to the request:

m EmployeeMaintenance - a x
WebTest?.webtest = X -
LA- B E a0 REMA

@ WebTest2

=-E2 Transactionl
wghd http:/flocalhost:3062/

g hitp://localhost:3062/Employee/List.aspx

g http://localhost:3062/Employee/Edit.aspx
: g http://localhost:3062/Employes/List.aspx
@ http://localhost:3062/Employee/Insert.aspx
EIE Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5
5B
EQ—J http://localhost:3062/Employee/Tnsert.aspx
ﬁ Form Post Pararmeters
= Context Parameters
----- (2] Parameterl=User
..[8] Parameter2=1
- Validation Rules

[177]

Web Performance Test

The web test request will not get executed because of the failure of the condition as
the parameter is not the same as expected. The following result shows the execution
of the condition and action based on the condition result:

WebTest? [18:11] = WebTest2 webtest -
B O M | = €3> B n
@ Passed Click hereto run again Internet Explorer 7.0 LAN Edit run settings
Request Status Total Time Request.. Response..
o 4 = Transactionl 1.436 sec - 19,32,956
o [éﬂ http://localhost:3062/ 200 0K 1048 sec 0100 sec 3,26,859
(/] b g http://localhost:3062/Employee/List.aspx 200 0K 0115sec 0044 sec 3,85,227
(v] I g http://localhost:3062/Employee/Edit.aspx 200 0K 0078 sec 0,028 sec 419,830
(/] b g http//localhost:3062/Employee/List.aspx 200 OK 0094 sec 0.037 sec 385,227
(/] b g http://localhost:3062/Employee/Insert.aspx 200 OK 0101sec 0.017 sec 415,813
o 4 B Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5) 4 Iterations Completed
(/] 4 B Loop keration 1 Condition Met
! 4 [F] I [{{Parameterl}} equals "UserFirstName"] Condition Mot Met
(—] @) http://localhost:3062/Employee/Insert.aspx Not Executed
(v] 4 B Loop lteration 2 Condition Met
1 4 [F] I ({{Parameterl}} equals "UserFirstName") Condition Mot Met
(—] & http://localhost:3062/Employee/Insert.aspx Mot Executed
(v] 4 3 Loop lteration 3 Condition Met
! 4 [E] ¥ ({{Parameterl}} equals "UserFirsthame"] Condition Mot Met
(—] @ http://localhost:3062/Employee/Insert.aspx Mot Executed
(/] 4« & Loop lteration 4 Condition Met
! 4 [E] ¥ ({{Parameterl}} equals "UserFirstName"] Condition Mot Met
@ @ http://localhost:3062/Employee/Insert.aspx Mot Executed
& Loop lteration 5 Condition Mot Met

Web Browser | Request | Response | Context I Detailsl

14 [T 3

Test Results
2 Satheesh@SATHEESH-PC 2013-00 -~ | " Run - "g% Debug - -G 7Y GroupBy: [Mone] -

|° Test run completed Results: 1/1 passed; Itemi(s) checked: 0

Result Test Name i Error Message
| I@o Passed | WebTest2 | c\sath eesh\sh4 |

The test passes but only the web request is not executed as the condition fails.

[178]

Chapter 5

There are multiple other conditional rules which will be useful for the web test
execution. The conditional rules are listed in the following table with descriptions:

Conditional rule Description
Context Parameter Test based on the existence of the context parameter.
Exists The properties are:

Context Parameter Name
Check for Existence

Cookie Exists Test based on the existence of the cookie with the following
properties:

Web Page URL
Cookie Name
Check for Existence

Cookie Domain Name (Optional)

Cookie Path (Optional)
Cookie Value The test execution is based on the matching value of the
Comparison Cookie. The previous rule is just to check the existence of the

cookie, but this rule is based on the following cookie value:
Web Page URL

Cookie Name

Comparison Operator

Value

Ignore Case

Use Regular Expression

Cookie Domain Name (Optional)

Cookie Path (Optional)
Last Request To execute the current request based on the outcome of the
Outcome previous request. If the previous request outcome is a failure

then the current request would be stopped. Following is the
property to set the condition:

Request Outcome

[179]

Web Performance Test

Conditional rule

Description

Last Response Code

Number Comparison

Probability Rule

String Comparison

The request execution is based on the response code of the last
request. There is a huge list of response codes to choose from,
as shown here:

4 Properties
Comparison Operator Equals
Response Code 200 - Ok
100 - Continue
101 - SwitchingProtocols

>l

m

201 - Created

202 - Accepted

203 - MenAuthoritativelnformation

204 - MoContent

205 - ResetContent

206 - Partial Content

300 - MultipleChoices

Do M A 301 - Mowed -

To check if the context parameter satisfies the comparison with
the provided number value. The properties are:

Context Parameter Name
Comparison Operator
Value

To set the random return of pass or fail value, based on the
percentage set in the properties. The properties are

Context Parameter Name
Percentage

To check if the context parameter value matches the specified
string value under properties. The properties are:

Context Parameter Name
Comparison Operator
Value

Ignore Case

Use Regular Expression

[180]

Chapter 5

There are a few other features, such as adding comments to the condition, adding
requests to condition, adding transactions to condition, adding loops to condition,
and adding another condition to condition. The condition rules can be added at any
level in the web test. Based on the situation and requirement of the test execution,
conditions can be utilized.

Toolbar properties

The Web Test editor comes along with a toolbar to configure the web tests. There
are different options, such as adding a data source, setting credentials, adding

a recording, adding plugins to the test, generating code for the web test, and
parameterizing web servers.

Add data source

Earlier sections of this chapter explained the usage of Form POST parameters and
QueryString parameters, and setting the value of parameters using the property.
Executing the test every time with a different set of data is a tedious process and

it requires changing the parameter values every time. If the test is to be conducted
with more number of users, it requires more time particularly in case of load and
performance testing. Visual Studio provides the feature of adding a data source and
binding the parameters to the data source so that the data is picked from the data
source for test.

Visual Studio supports different types of data sources, such as CSV file, database,
and XML file.

To add a new data source:

1. Select the Add Data Source option from the WebTest editor toolbar which
opens the New Test Data Source Wizard.

2. Name the data source and select the type of data source (Database, CSV,
or XML file).

[181]

Web Performance Test

3. Selecting the database type requires a connection which uses the OLE DB,
ODBC, SQL Server, or the Oracle data provider. For this example, select the
CSV file as the data source and in the next screen select the CSV file from the
file location. The following CSV file was created with all the details required

for new employee creation and kept ready for the example:

Choose a CSV file

i:_..) Select the CSV file the data source is based on

Preview data

Ci\Satheesh'\Shared\Apps\EmployeeMaintenance'\WebAndLoadTestProjectl \EmpData.csv

(]

First_Mame

Last_Mame Middle_Mame Department Occupation Gende

Kurnar M T Delivery Manager | Male
Manager Fernalg
Manager Fernalg

[-:Emiuus ” Next > H Finish

[o]

Once you select the file you can see the data in the Preview data grid.

5. Select Finish so that you can see the data source added to the Test Project.

[182]

Chapter 5

Any number of data sources can be added based on the requirement and sources of
data for testing.

The following screenshot shows two data sources, CSVFileDataSource created using
the CSV file and XMLDataSource created using the XML file:

w EmployeeMaintenance - B X
WebTest2.webtest + X -
'A- B E . AEMmA

2P WebTest2

-2 Transactionl
..... éﬂ http://localhost:3062/
----- éj http://localhosti3062/Employee/List.aspx
E]---é—j http://localhost:3062/Employee/Edit.aspx
----- éﬂ http://localhost:3062/Employee/List.aspx
E]---é—j http//localhosti3062/Employee/Insert.aspx
- & Loop (Initialize to 1, Increment by 1, While {{Parameter2}} < 5]
=¥ Data Sources
- @ CSVFileDataSource
-l Tables

m
= W XMLDataSource

-l Tables

.8 Employee

[l Context Parameters
[l Validation Rules

[183]

Web Performance Test

Once the data source is added, change the source of the Form POST or QueryString
parameter values. To do this, select the Form Post Parameter under the web request,
then right-click and choose Properties. In the Value property, select the data source
and select the corresponding field from the data source as follows:

WebTest3.webtest 7 X -~
A- E'sd $0 AEMWA
[P WebTest3

g :Ep:::o(a::Dsz:gg:;a:mp:Dyeafq_lst-:tspx Microsoft.VisualStudio. TestTools.WebStress.FormPostPa ~
pi//localhost:3062/Employes/Insert.aspx

=-gi) http://localhost:3062/Employes/Insert.aspx 2
Bﬁ Form Post Parameters 3 Misc
-l _EVENTTARGET=ctl00SContentPlaceHolderl SFormViewl Sctli2 oA REga s
£ __EVENTARGUMENT= i —
e _VIEWSTATE=/wEPDwUINjUxOTMOODUyD2QWAmMYPZBYCAgMPZBYCAggPZBYCAQEPZBYCZ Mame cti00$ContentPlaceHolder1§ PVt 2
u’a% __EVENTVALIDATION=/wEdAALBWYUM/wicorSaboGENZRokSSbuoFafd hBGCMIO cB coxd? XzC+F URL Encode True KEVPIL
-5 ctl00SContentPlaceHolderl SFormViewl $cti045cti00S_First_NameSTextBoxl ={{CSVFileDataSourd _ T [
u’,ﬂ ctiD0SContentPlaceHolderl SFormViewl Scti045cti01S Last MameSTextBoxl ={{CSVFileDataSourg — =sas z
Bl ctib0SContentPlaceHolderl SFormView] Scti043cti02S_Middle NameSTextBoxd =Nagarajan B Sihilebatatonis
5 ctl00SContentPlaceHolderl SFormView] $cti04Sct035_DepartmentSTextBoxl=Information Techi =B Emppata#(sv
5] ctl00SContentPlaceHolder] SFormViewl Scti04Scti0dS_OccupationSTextBoxl = Delivery Manager 8 First Name
= ctld0SContentPlaceHolderl SFormViewd Sctlid Sctld5S_ GenderSTextBoxl=Male g La.st,Name
B cti00SContentPlaceHolderl SFormViewd SctiD45ct06S_ CitySTextBaxl =Bangalore e E 7;*"1‘1'; NETE
] ctl00SContentPlaceHolderl SFormViewl Scti04SctiTS_ StateSTextBoxl=KA Type the val E OEFH ":.E"‘
-5 ctlD0SContentPlaceHolderl SFormViewl Scti4SctioBs_CountrySTextBoxl =India binding. ccupation
-l ctl00SContentPlaceHolderl SFormViewl $cti045cti098_PhoneSTextBoxl =1234567890 g Gender
-|-g® Data Sources B City
@ CSVFileDataSource [State
@ XMLDataSource -8 Country
=i Validation Rules . -8 Phone
J Response URL (- @ XMLDataSource
E Response Time Goal ‘_' i Dota Somree
E Refresh Columns
[

You can see the value assigned to the Form POST parameter. The first name
parameter is bound to the First_Name field in the selected data source as follows:
{{csvrileDataSource.EmpData#csv.First Name}}

Bind all the other fields to the data source and run the test. At run-time, these field
values are replaced with the exact value extracted from the CSV file and the Test
Runs successfully.

Setting credentials

This option is useful for setting specific user credentials to be used during the test
instead of current user credentials. Apply this user credential to test the page, which
uses basic authentication or integrated authentication. If the web requests needs

to be tested with multiple users credentials and if the user credentials are stored
somewhere, then use this as a data source for credentials and bind the credentials
field to these data source fields.

[184]

Chapter 5

Credentials are set using the option in the Web Performance Test editor toolbar.
Click on the Set Credentials option and enter the User Name and Password values.
If there is a data source already with these details, then click on the Bind... option

and choose the data source and the data source field for the user credentials for the
test page.

w EmployeeMaintenance - g x
WebTest3.webtest & X -
» o~ o =

A~ B9 @ & RS i

B WebTest3 Set Credentials
g http://localhost:3062/

[? =]
‘g http://localhost:3062/Emplo Name:

g http://localhost:3062/Emplo
g http://localhost:3062/Emplo Password:
g¥ Data Sources

7@ CSVFileDataSource
- XMLDataSource ’ OK] ’ Cancel]
Bﬂ Validation Rules

.. J2] Response URL —| DataBinding @

- J Response Time Goal

- CSVFileDataSource

- @ XMLDataSource

+U Add Data Source
E Refresh Columns

Cancel

Add recording

This option adds a new request recording to the existing test. Sometimes there could be
changes to the web pages, or new pages could be added to the web application because
of the requirement change. In this case, a new web page test needs to be recorded and
added to the existing web test. On clicking the option Add Recording in the Web
Performance Test editor toolbar, the recording window opens up for a new recording,.
Completion of the recording automatically adds the recorded requests to the existing
web test recording. This is also one of the ways to edit the existing recording.

[185]

Web Performance Test

Parameterize web server

Usually the recording of web tests happens based on one particular system or server
where the application is hosted. Sometimes while recording the actions, the web
requests are captured along with server names or with default local host and port
number. To run the same test in a different environment, all requests in the recording
needs to be updated with the new server or system name or the recording needs to
be redone with the new environment. To re-use the same recording across multiple
environments, Visual Studio provides a feature called Parameterize Web Servers in
which the web server name is changed dynamically by passing the parameter value
to the requests.

This is very useful when the application is tested for load testing, performance
testing, and integration testing where only the configuration changes.

To parameterize the web server in a web test:

1. Select the Parameterize Web Servers option in the Web Performance Test
editor toolbar. This option opens a dialog box that lists the different web
servers used by the web test. The list contains the context parameter names
and the web server URLs associated with the context parameter.

Parameterize Web Servers @
Context Parameter Mame Web Server LChange...
http://localhost:3062

OK] [Cancel

[186]

Chapter 5

2. Change the context parameter value to point to a different server by
choosing the Change... option after selecting the context parameter name
from the list. The new dialog box helps us to change the name and the
web server URL.

Change Web Server @

Context parameter name:
[WebServert|

@ Use Web server

Web server:
http://localhost:3062

) Use ASP.NET Development Server

3. If you plan to use the local ASP.NET development server, choose the
second option which says Use ASP.NET Development Server and
provide the local website path and the application root.

4. After changing the value, close the Parameterize Web Server dialog
box and notice the context parameter added to the web test under the
Context Parameters folder. The server address in all request URLs of the
web test are replaced with this new parameter, and the value is held by
the context parameter.

[187]

Web Performance Test

The following screenshot shows the web server parameter as WebServerl to
hold the server address:

w EmployeeMaintenance - B X

WebTest3.webtest & X =
'A- B'§ E L AE A

2 WebTest3

..... g {{WebServerl }l/

----- g {{\WebServerl }iEmployee/List.aspx
----- g {{\WebServerl }Employee/Insert.aspx
g {{WebServerl }/Employes/Insert.aspx
[-gg® Data Sources

---i C5VFileDataSource

AMLDataSource

@l Context Parameters

—
- Validation Rules

o JE] Response URL

T
m

Notice the context parameter used in the requests are within braces as in
{{WebServerl}}, which is replaced by the actual value at runtime.

Context parameters
There are different ways of creating context parameters:

* Context parameters can be created by just right-clicking on the Context
Parameters folder and selecting Add Context Parameter.

* The plugin can create the context parameter and assign the value in the event
that runs before the web test.

For example, the following plugin assembly code creates a new context
parameter for the current window, Country, and adds the parameter to the
web test. The code also assigns the Country value to the existing Form POST
Parameter field TextBoxCountry.

[188]

Chapter 5

//Sample plug-in assembly code to create new context parameter
public override void PreWebTest (object sender,
PreWebTestEventArgs e)
{
e.WebTest .Context ["CountryParameter"] =
System.Environment .UserName.ToString () ;
e.WebTest.Context ["ct100SContentPlaceHolderl
SFormViewl$ctl04$ctl08$ CountryS$TextBoxl"] =
e.WebTest .Context ["CountryParameter"] ;

}

When the web test is run, we can see the value assigned to the context parameter as
well as the Country text box form post parameter.

We can also have the context parameter added to the web test at design time and
assign the value at runtime using the plug-in.

Adding a web test plugin

A plugin is an external library or assembly created to include custom functionality
which can run along with the web test. Each plugin gets executed during each
iteration of the test. For example, collecting external information, such as the current
username, time taken for the test, and any other calculation required during the test
can all be part of the plugin class library.

The first step is to create the class library with a class containing the custom code.
The class must inherit from Microsoft.VisualStudio.TestTools.WebTesting.
WebTestPlugin and should implement the PreWebTest () and PostWebTest ()
methods. At least one of the following methods should be implemented:

e preWebTest (): This code will run before web test starts execution.

* PostWebTest (): This code runs after the completion of web testing.

After creating the class library and adding the custom code, compile the class library
project. The prewebTest method code collects the name of the user who has logged
in and the test start date and time. The PostwWebTest method calculates the total time
taken for the entire test and then displays the value as a comment to the web Test
Results section. The e .WebTest . Context contains the current context of the web
test. The parameters and properties for the current context can be accessed using the
e.WebTest .Context object.

[189]

Web Performance Test

The following screenshot shows the PrewebTest and PostWebTest methods and
accessing the context properties using e . WebTest . Context:

—Inamespace ClassLibrarylforPlugln

public class Classl : WebTestPlugin

{

public override void PreWebTest(object sender, PrellebTestEventirgs e)
{
/{ Record the Currently logged in user name
e.WebTest.Context["testCreatedUserName™] = System.Environment.UserName;
// Record the start time of the Web test
e.WebTest.Context["testStartTime"] = DateTime.Now;

}

public override wvoid PostWebTest(object sender, PostWebTestEventArgs e)

// Calculate the Total time taken for the Web test

e.WebTest.Context["testTotalTime"] = DateTime.Now - (DateTime)e.WebTest.Context["testStartTime"];

// Display the time as comment on the web test result window

e.WebTest.AddCommentToResult("Total Time taken for the test: ™ + e.WebTest.Context["testTotalTime"]);

}

Add this project reference to the Web Test project. Then select the Web Test project
and choose the Add Web Test Plugins option from the toolbar which lists the classes
within the assembly. On selection of the class, the class for the plugin gets added to
the Test Project:

w ErmployesMaintenance - B X
WebTest3.webtest B X -
Z - B'ed 4B LEMa

2 WebTest3
@) {{WebServerl I/

g {{WebServerl }lY/Employee/List.aspx
g8 {{WebServerl }lYEmployee/Insert.aspx
g8 {{WebServerl }l/Employee/Insert.aspx
[-¥ Data Sources
- Context Parameters
ﬁ Yalidation Rules
Eli Web Test Plug-ins

- [

[190]

Chapter 5

Now when the test is run, you can see the context variable added to each
request's context.

WebTest3 [13:20]

& O [m[a € 2 B

@ Passed Click here to run again Internet Explorer 7.0 LAN Edit run settings

Request Status Total Ti.. RequestT.. Request.. ResponseBy..

@ o & http://localhost3062/ 200 0K 0.943 sec 0.100 sec 0 3,26,859
@ b & hitp://localhost:3062/Employee/List.aspx 200 OK 1.200 sec 1.092 sec 0 409,437
@ o &) hitp://localhost:3062/Employes/Tnsert.aspx 200 OK 0.065 sec 0.017 sec 0 415813
@ o &) hitp://localhost:3062/Employes/Insert.aspx 302 Feund 0.215 sec 0,076 sec 3942 136
(v} G Total Time taken for the test: 00:00:02.7031250
| Web Browser | Request | Responsel Context | Details|

Mame Value -

testCreatedUserName

testStartTime 24-02-201313:20:14

Web5Serverl http://localhost:3062 -

1 3

The context variable created in PostWebTest method cannot be seen in the context
variables section, as it displays only the pre web test activities. For the purpose of
this sample, the total time taken context variable value is shown as a comment added
to the Test Result, as shown in the preceding image.

There are few other methods exposed by the webTestPlugin class other than the
PreWebTest and PostWebTest methods, such as PrePage, PostPage, PreRequest,
PostRequest, PreTransaction, and PostTransaction. All these methods are to
add custom code to include functionality before and after the activities.

Debugging and running the web test

After completing the web performance test recording, verify the test by running it
with the required parameters and inputs to make sure it is working fine without
any errors. There is a configuration file called . testsettings that supports running
and debugging the web test with different configurations. This file is created
automatically along with web performance and load tests.

[191]

Web Performance Test

Settings in the .testsettings file

Most of the assemblies built in .NET are associated with a common configuration file to
hold the general settings required for the application. Similarly the web performance
Test Project creates a test settings file by default with the extension .testsettings.

Local.testsettings is the default file name given to the test settings file as there is
no change to the configurations and there is no data diagnostics yet.

General

The General section in the settings file is used to rename the default file name and to
set the user defined scheme for the output file, instead of using the default scheme.
Additional details, such as a description about the test settings file can also be set in
this section:

* Name: Specifies the name for the settings file.

* Description: Provides a short description of the test configuration. In case
of maintaining multiple configuration files, we can use this field to briefly
describe the changes from the previous settings.

* Test Run naming scheme: When the test is run, the results are created and
stored under a specific name in the application results folder. By default,
the name is the current windows user name followed by the @ symbol, the
machine name, and the current date and time. The next option is to specify
the user defined scheme to use a prefix text and append with date/time
stamp. One of these options can be chosen to set the output file name format.

[192]

Chapter 5

The following screenshot shows the first option selected, which is to keep the
default naming scheme:

Test Settings

General

Roles

Data and Diagnostics
Deployment

Setup and Cleanup Scripts
Hosts

Test Timecuts

Unit Test

Web Test

General
Enter the name and the description of the test settings.

-2 [

MName:

Local

Description:
These are default test settings for a local test run.

@ Default naming scheme
Example: Satheesh@SATHEESH-PC 2013-02-25 16:42:03

() User-defined scheme

Close

[193]

Web Performance Test

Roles
This page helps to configure the test execution and data collection location for the
tests. There are three different methods of test execution as follows:

General

Roles

Data and Diagnostics
Deployment

Setup and Cleanup Scripts
Hosts

Test Timeouts

Unit Test

Web Test

Roles

Select where you would like to run tests and collect data

Test execution method: Centroller:

’Remoie execution v] Satheesh-PC v 1

Roles:

‘fl Add # Edit) Remove 8 Setasrole to run tests |
MName Rele te run tests

Desktop Yes

SQL Server

e

Agent attributes for selected role:
tl Add # Edit 2 Remove o Preview matching test agents |

Attribute name Attribute value

| saveds. |[Ay || Close |

* Local execution: Run the test locally and collect the test execution data locally

* Local execution with remote collection: Run the test locally and collect the

data remotely

* Remote execution: Run the test remotely and collect the data remotely

For remote execution of the test, select a controller for the Test Agents which
will be used for testing the application remotely.

To add roles to run the test and collect the data, click on Add under the Roles toolbar
and provide a name for the role, for example, Web Server, SQL Server, or Desktop
Client. Select the role that you want to run the test and then click on the option Set
as role to run the test. The other roles in the list will not run the test but will only be

used for collecting the data.

[194]

Chapter 5

To limit the agents that can be used for testing a role, add attributes to filter the
agents. Click on Add from the Agent attributes for the selected role toolbar and
then enter the attribute name and attribute value in the dialog box. Keep adding
any number of attributes.

Data and Diagnostics

This setting is for collecting the diagnostics information based on the roles that are
set for the tests. The data and diagnostics information should be selected based on
the needs whether it is a local system or a remote machine. Select the role and then
select the corresponding diagnostics adapter for the role to collect the information.
Click on the Configure option above the diagnostics list to configure the selected
diagnostic adapter.

If one or more data and diagnostics adapters are enabled for a role, then the Test
Controller will decide on which Test Agent to use for collecting the diagnostic
information. The following image shows the diagnostics selected for the local machine:

E:lr::ﬁ' Data and Diagnostics

Configure data diagnostic adapters for each role

Deployment
Setup and Cleanup Scripts Role

Hosts <Local machine only>
Test Timeouts
Unit Test
Web Test

Data and Diagnostics for selected role:

Configure |
MName Enabled it
ASP.NET Client Proxy for IntelliTrace and Test Impact

ASP.MET Profiler

O

Code Coverage (Visual Studio 2010)

Event Log

IntelliTrace

Metwork Emulation
saveds. || Apply | [Close

[195]

Web Performance Test

IntelliTrace is one of the diagnostics selected for the role. Select IntelliTrace
from the Data and Diagnostics section and click on the Configure option to open
the configuration page. Modify the configuration data here for the IntelliTrace

diagnostic data adapter:

IntelliTrace Detail

IntelliTrace Detail

Enter the configuration data for the IntelliTrace diagnostic data adapter.

R =

|| Modules I Processes I IntelliTrace Events | Advanced

@ IntelliTrace events only

I Reset to default configuration]

Collect the following IntelliTrace information while debugging:

Collects IntelliTrace events only, which has minimal effect on performance,

IntelliTrace events and call information

Collects call information, which can degrade application performance,

[T] Collect data from ASP.MET applications running on Internet Information Services

m

| ook || cane |

There are many other data adapters which can be used and configured. The
following table shows the different data adapters.

Diagnostic data adapter

Description

ASP.NET client proxy for
IntelliTrace and test impact
ASP.NET profiler

Code coverage
(VisualStudio 2010)

Event log

IntelliTrace

Network emulation

This data adapter allows us to collect information on the
Http calls from the client to the server.

This is useful to collect the performance data on ASP.
NET web applications.

This is used to analyze how much of the code is covered
by the test and this is only for compatibility with Visual
Studio 2010.

Useful to include the event log to log the information
while testing.

This is used to collect specific diagnostic trace
information in a trace file . itrace which is helpful in
reproducing and diagnosing the error in the code.

These settings are useful to emulate and test the
application under a particular network connection speed.

[196]

Chapter 5

Diagnostic data adapter Description

System information This setting is useful for including system information
from the machine where the test is running. The system
information is shown along with the Test Results.

Test impact This is useful to collect the method level information
while testing. On the other side this can also be used to
identify the tests which are affected by the code change.

Video recorder Video recorder settings are useful to record the session
while running the automated test. This helps to view
the user actions for coded Ul tests.

Deployment

Deployment settings are useful for specifying additional files or assemblies that go
along with the test deployment. This is a part of the configuration information for the
Test Project. Select additional files or folders using the Add File or Add Directory
option in the dialog box, as shown in the following screenshot:

Test Settings -7 |[==a]

General
Reles

Data and Diagnostics

Setup and Cleanup Scripts

Deployment

Deployment settings specify deployment location and any files to deploy in addition to the..

Enable deployment

Haosts Additional files and directories to deploy:
Test Timeouts <Solution Directory>\ClassLibranyl.dll Add Filew,
Unit Test

<Solution Directory>\Test.dll
Web Test

Add Directory..

Remove

Save As...] [Apply l ’ Close

[197]

Web Performance Test

In case of coded web tests, the additional deployment items can be added using the
DeploymentItem attribute. For example, the following code shows the deployment
of the library files as a part of deploying the test application:

[DeploymentItem("Test.dll")]
[DeploymentItem ("Common.dl1l")]
public class WebTestllCoded : WebTest

{
}

Setup and Cleanup Scripts

This property is to specify the script files that can be used before and after the test.
Some test scenarios require initial environment setup for the test and cleaning the
environment after the test to enable the other tests to run. These environment setups
are created using some special scripts and attaching that to the configuration file.
The following screenshot shows the script files that run before and after the Test
Run. The setEnvironment .bat file contains the script that takes care of setting the
environment for the test. The CleanTestFolder.bat is the file that contains the
script which executes after the test completion to clean up the environment.

Test Settings @

penera! Setup and Cleanup Scripts
Data and Diagnostics Specify the scripts to run before and after the test run.
Deployment S
Setup and Cleanup Scripts Sefup script
Hosts C\SatheeshScripts\SetEnvironment.bat E]
Test Timeouts
‘E‘J\fnel;-l'}ees;: Cleanup script:

C\Satheesh'Scriptsh Clea nTestFoIderlbat E]

I Save As...] [Apply l I Close

[198]

Chapter 5

The selected script should be supported to execute in the system that is selected for
the role.

Hosts

This specifies the host type for the test. For tests that cannot be hosted by the
specified host adapters, select either to run in the default host or not to run the test.

Test Settings L7 e
General Hosts
Rol
Dgtzsand Diagnostics Select the host where tests will run. The default host runs tests normally.

Deplayment For tests that cannot be hosted by the specified host adapters:

Setup and Cleanup Scripts
E S| © R in default host

Test Timeouts

Unit Test @ Do not run
Web Test
Host type:
[Default -

Run tests in 32 bit or 64 bit process:

[Force tests to run in 32 bit process v]

Save As.. l [Apply l ’ Close

Test Timeouts

Sometimes, the response for a request might take a very long time. The test application
or the user in real time cannot wait that long to get the response. By giving a timeout
period, the test would be aborted or marked as failed after waiting for the specified
duration. The duration can be specified in seconds, minutes, or hours. If the execution
of the test is not completed within the specified time, then the execution will be
stopped and marked as aborted or failed or both based on the chosen option.

[199]

Web Performance Test

Unit test

This option is used for configuring the dependent assemblies that are required for
the test.

The root folder is the location from where the assemblies are loaded. This location
would normally be the folder where the assemblies are installed, or it could be the
location where the assemblies are built in a development environment. If the location
is not set then the default would be the directory that contains the tests.

The following screenshot shows an example of choosing options for unit testing:

Test Settings @
g:lr:m Unit Test
[iata-antl Diagnostics Advanced options that let you configure where to find assemblies that your tests need to load.

Deployment . Root folder for the assemblies to be loaded:
Setup and Cleanup Scripts

Hests FeSystemDriveds\ Apps\EmployeeMaintenance' EmployeeMaintenancebin

Test Timecuts
Unit Test
Web Test Use the Load Context for assemblies in the test directory.
Folders to use when the tests are run:

‘i Add folder X

Path Use Load Context Jochade
sub-folders

» FeSystemDriveda\Apps\EmployeeMaintenance\TestLibra...

Additicnal folders to use when discovering tests:
‘i Add folder X

Include

Path sub-folders

| soves. |[apply [Close |

The checkbox Use the Load Context for assemblies in the test directory is selected
by default, which loads the assemblies into the correct context. It may be required
to uncheck this option in case of pointing to a root folder where a large number of
assemblies are present and the tests are not dependent on the load context. This will
help in improving the performance.

Folders to use when the tests are run would be the most frequently used option to
specify the location of the assemblies used from multiple places. Each path has a
couple of options as well. One is to specify that the directory should use load context
and the other option is to include the sub folders for discovery of assemblies.

[200]

Chapter 5

Web test

This section describes all the settings required for web testing. These settings are
applied only for web testing. Some of the properties will be overridden in case of

Additional folders to use when discovering tests option is also for discovering
the assemblies but very useful when the tests are run remotely, such as from Test
Manager or any other build-drop location.

load testing.
Test Settings R =
Senera Web Test
Data and Diagnostics Set the properties to contrel how Web tests are run,
Deployment = =
Setup and Cleanup Scripts 2 (s e
Hosts 1 s
Test Timeouts =
Unit Test (7) One run per data source row
Browser type:
’Intemet Explorer 7.0 A
[] Simulate think times
[7] Use request URL's directory as the default path for cookies.
’ Save As...] [Apply l ’ Close l

* Number of Run Iterations: This is to set the number of times the test has to
run. There are two options for this: one is to set it to a specific number of times,
which can be greater than 1. The second option is to set it to take the number
of rows available in the data source associated to the web test and run once per
row. This property does not apply to load test as load test is for the number of
users and scenarios, not for iterations.

[201]

Web Performance Test

* Browser Type: This property is to set the type of browser to use for the
requests. The drop-down menu contains the list of different browser types
to choose from.

There are a couple of other options to choose the simulation of the think times and to
use the request URL directory as the default path for cookies.

New test settings can be created instead of the default settings and can be made
active for automated tests. To create new test settings, select the solution from the
solution explorer, right-click and select Add New Item to choose an item from

the installed templates. There are three different categories of templates, such as
General, Performance, and Test Settings. Choose Test Settings from the category
and select the test settings from the available templates as follows:

Add Mew Item - Solution Items @
4 Installed | Sort by: Default | Search Installed Templates (Ctrl+E) P~

G | = :

Pe:Fera o Test Settings Test Settings Type: Test Settings

© Drmr‘lce Settings that determine how tests are

processed,

Narne: TestSettings2. testsettings
[add || Concel |

After adding the new test settings, edit the configurations required for testing. There
may be multiple test settings created in the solution but at any point, only one test
setting can be active. To pick the active setting, choose the settings file and then
right-click and choose Active Load and Web Test Settings.

[202]

Chapter 5

Running the test

When all the required settings are done and you have finished recording the required
requests, running the test is very simple. Before the test execution, define the required
context parameters, extraction, and validation rules and add the data sources and bind
the Form POST or QueryString parameters. Use the Run Test option in the WebTest
editor toolbar to start running the test.

Now you can see the test execution and the progress of each request in the web test
window. After completing the execution, the result window displays the success and
failure marks against each request. If any of the requests in the test fails, the entire
test is marked as failed. Here, the Test Result window shows the end result of one of
the tests.

Test Results *AX

@ Satheesh@®SATHEESH-PC 2013-0; - " Run - w60
@ Testrun completed Results: 1/1 passed; Item(s) checked: 0

Result Test Name D Error Message
Iﬁo Passed |WebTesB |c:\satheesh\shared\apps\emplci |

If there are multiple requests in the test, the Test Result details window shows the
result for each request. It shows the status of the request as well as the details of the
request, response, context, and the details of information gathered during the testing.
These details are shown as a tabbed page with details as shown here:

WebTest3 [18:25]

& O «> 2=

@ Passed Click hereto run again Internet Explorer9.0 LAN Edit run settings

Request Status Total Time Request Time Request Byt... Response Bytes
@ b &) hitp://localhost:3062/ 200 QK 0.255 sec 0142 sec 0 3,265,859
@ - & http//localhost:3062/Employes/List.aspx 200 OK 0.372 sec 0.098 sec 0 398,225
@ - & http//localhost3062/Employee/Insert.aspx 200 OK 1.313 sec 1.256 sec 0 415813
@ 4 & http://localhost:3062/Employee/Insert.aspx 302 Found 2482 sec 2325 sec 3942 136
(V] p L http://localhost:3062/Employee/List.aspx 200 OK = 0.094 sec 0 4,00,425

(V] G Total Tirme taken for the test: 00:00:04 9267578

Web Browser | Request | Response | Context | Details|

-
[€] EMPLOYEE MAINTENANCE i
< Back to home page
Employee
First_Name | Last_Name | Middle_Name | Department Occupation | Gender | City | State | Co
Edit Delete Details | Satheesh Kumar M Information Technology | Delivery Manager | Male | Bangalore | KA | Ind
4 [| r

[203]

Web Performance Test

Web Browser

This is the same web page used by the request. This tab displays the entire web page
used just to get the view of the request.

Request

The Request tab contains all the information about the request, such as Headers,
Cookies, QueryString parameters, and Form POST parameters as follows:

WebTest3 [18:25]

& O o2&

@ Passed Click here to run again Internet Explorer 9.0 LAN Edit run settings

Request Status Total Time Request Ti.. Request.. Response Bytes
@ o & hitp//localhost:3062/ 200 OK 0.255 sec 0142 sec 0 326,859 a
@ 1 & http://localhost:3062/Employee/List.aspx 200 OK 0.372 sec 0.098 sec 0 398,225
@ 1 & hitp//localhost:3062/Employee/Insert.aspx 200 OK 1.313 sec 1.256 sec 0 4,15,813
@ « ¢ hitp://localhost3062/Employee/Insert.aspx 302 Found 2482 sec 2,325 sec 3,942 136
(V] I L http://localhost:3062/Employes/List.aspx 200 OK = 0.084 sec 0 4,00,425
V] L7 Total Time taken for the test: 00:00:04 8267578 hd
| Web Browser | - {| Response | Context | Detaiks|

GET http://localhost:3062/Employee/List.aspx

Marme Value
4 Headers
B User-Agent Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0)
B Accept B
B Accept-lLanguage en-IN
B Accept-Enceding GZP
B referer http://localhost:3062/Employee/Insert.aspx
B Host localhost:3062
4 Cookies
B Cockie ASP.MET_Sessionld=moqglfppalhd hyntijnvieuf
QueryString Parameters
Form Post Parameters

[Show raw data

[204]

Chapter 5

Response

This tab section shows the response for the requested web page. The result is shown
as a plain HTML text with headers and the body of the web response. There is also
an option to view the response in an HTML editor.

Context

This section is very important to note as all the runtime details assigned to the test
are being captured and shown here. From the following image, you can notice the
values picked from the data source are assigned to the parameters values. Also, the
context parameters that were created just before Test Run and the values assigned
to the parameters during runtime are also shown here. This is the place to visually
verify all the values that are assigned to the context parameters and form fields.

WebTest3 [18:25]

4 O (== €« B H

@ Passed Click here te run again Internet Explorer 9.0 LAN Edit run settings

Request Status Total Time Request Ti... Request.. Response Bytes

@ b & http://localhost:3062/ 200 OK 0.255 sec 0142 sec 0 3,26,859
@ b &) http://localhost:3062/Employee/List.aspx 200 OK 0.372 sec 0.098 sec 0 398,225
@ b &) http://localhost:3062/Employee/Insert.aspx 200 OK 1.313 sec 1.256 sec 0 415,813
@ 4 & http://localhost:3062/Employee/Insert.aspx 302 Found 2482 sec 2.325 sec 3,942 136
() = http://localhost:306 plo pe 200 0.09 0 00
(V] G7 Total Time taken for the test: 00:00:04 9267578
| Web Browser | Request | Raponse| Context | Det,ails|

Mame Value -~

C5VFileDataSource.EmpData®csv.Gender Male

CSVFileDataSource.EmpData®csv.Last_Mame Kumar

C5VFileDataSource.EmpData#csv.Middle_Name N

CSVFileDataSource.EmpData#csv. Occupation Delivery Manager

C5VFileDataSource.EmpData®csv.Phone 1112223334

C5VFRileDataSource.EmpData#csv.State Karnataka

testCreatedUserName Satheesh

testStartTime 25-02-2013 18:25:47

WehServerl http://localhost:3062 7

4 4

[205]

Web Performance Test

Details

The Details tab shows the status of the rules that are executed during the test. The
following image shows that all the rules created as explained in the rules section has
executed successfully. The Details section also shows the type of the rule and the
parameter values fetched during test execution.

WebTest3 [18:25]

4 O (M) > P&

@ Passed Click here to run again Internet Explorer 9.0 LAN Edit run settings

Request Status Total Time Request Ti.. Request.. Response Bytes
@ o & hitpi//localhost:3062/ 200 OK 0.255 sec 0142 sec 0 3,26,859
@ 1 & http://localhost:3062/Employee/List.aspx 200 OK 0.372 sec 0.098 sec 0 398,225
@ 1 & hitp//localhost:3062/Employee/Insert.aspx 200 OK 1.313 sec 1.256 sec 0 4,15813
@ b) hitp://localhost3062/Employee/Insert.aspx 302 Found 2482 sec 2,325 sec 3,942 136

(V] L7 Total Time taken for the test: 00:00:04 8267578

| Web Browser | Request | Response | Context |: Details

Rules

Rule Type Result Parameters
0 Response URL Validation Passed

) Response Time Goal Validation Passed Tolerance=0
Exception

The toolbar in the web test window provides an option to re-run the test again. This is
useful to re-run the same test and find if there are any changes to the source data or the
configurations. There is another option to edit the run settings. This option opens the
same Web Test Run settings window used by the test settings. This is another shortcut
to change the web test settings for the current test.

[206]

Chapter 5

Summary

This chapter explained in detail about how web performance testing works, and how
the recording of web tests takes place for the web applications. We have learned the
usage of the different properties of web performance tests including copying the tests,
cleaning the unwanted recorded requests, and extracting the details from the request
whether it has Form POST parameters or QueryString parameters. This chapter also
explained about setting the rules for validating and extracting the details based on
certain conditions. The current version of Visual Studio has brought in a few new
features, such as adding loops and adding conditions to the requests which are very
useful for tests. Transactions are useful to group a set of similar requests and give it a
name. We have learnt how to include different data sources and map the fields to the
data source fields and also parameterize fields and web server names.

The final section of this chapter explained about executing the tests and collecting
the results. Some more advanced web testing features using custom code in tests are
covered in detail in the next chapter. The advanced web testing features comprise
generating code from the web test recording and then customizing the code as per
the need. The other features include debugging and adding custom rules to the code.

[207]

Advanced Web Testing

This chapter is a continuation of the previous chapter, which explained web
performance testing in detail including the recording and running of a testing
scenario based on user actions. There is another way of performing the same web
test using Visual Studio: by generating code from the action recording using the
Generate Code option in the Web Performance Test toolbar. The coded web
performance test is the .NET class that generates the sequence of web requests

in the order they were recorded. The class can be written in C# or Visual Basic.

It is possible to create such code by creating a new class file and using the namespace
Microsoft.VisualStudio.TestTools.WebTesting, which contains all classes
required for creating the web performance test. However, it is too complex to create
the test manually, compared to generating the code from the recording. Therefore,

it is suggested practice to convert the recorded web performance test. The testing is
the same whether it is done using the generated code or through normal web testing
using the user interface; the advantage is the flexibility of customizing the test by
using the .NET framework language. The generated code can be modified using the
language to add looping, conditions and branching, and also to add more requests
and to remove existing requests.

This chapter concentrates on explaining how to generate code from a recorded
test and then customizing it. The different sections within this chapter cover the
following topics:

* Generating code from a recorded test

* Adding transactions and comments

* Debugging a coded web test

* Adding custom rules to the test

Advanced Web Testing

Dynamic parameters in web testing

Most web applications generate data dynamically and send it via query string
parameter or form post parameter to subsequent requests. The current user session ID,
connection string, or parameter values to the called method are examples of dynamic
data. Web performance testing can identify and detect these dynamic parameters from
the request response and then bind it to other requests. This process is also known as
promoting dynamic data to dynamic parameters.

Dynamic parameters are automatically detected by the web performance test after
the web test recording is completed. Visual Studio web testing keeps track of the
requests and finds the hardcoded values, which can be replaced by dynamic
parameters. The advantage of using dynamic parameters is it enables us to pass
different values to the parameters and verify the test. The other reason is it lets

us avoid playback failures. If the recorded values are not promoted as dynamic
parameters, the playback of the test may fail as the values would stay static (as they
were captured during the recording and may not satisfy the current test conditions).

Once the web test recording is complete, Visual Studio provides the ablity to
extract values from the request and replace them with the parameters. This is the
same extraction rule that is explained in Chapter 5, Web Performance Test which is
about web performance test. But in this case, they are automatically added by the
web test. At the same time, the parameters are also added to subsequent requests.

For example, the following screenshot shows the recording of a website, which has
links to the employee and emergency contacts pages, by passing the query strings
and the session ID (which changes every time the test is run).

[210]

Chapter 6

| (& Emergency Contact

7.7 Favorites | 95 @) Free Hotmail @] Resource Requests - Curre... @] Resource Requests - Curre...

|
|_| - v [g v Pagev Safetyv Tools~ (@~ »I

Web Test Recorder g

Il Pause M Stop | 2 | b 4

[€] EMPLOYEE MAINTENANCE

.

-gh) hitp:/Aocalhost:52871/ < Back to home page
- hitp:/Aocalhost:52871/Employee./List aspx
: éﬂ http:/Aocalhost:52871/Employee,/Edit aspx
é—j http:/Aocalhost :52871/Employee,/ Edit aspx
-6 hitp://Aocalhast 52871 /EmergencyContact/List aspx Add new Emergency Contact
(g8 http:/ocalhost:52871/EmergencyContact/Insert aspx
Contact_MName
Address_2
City
State
Country
Phone_1
Phone_2
Employee Satheesh
Insert Cancel
eﬂ. Local intranet | Protected Mode: Off fa v ®100% v

When the recording is stopped, we can see the dialog saying Detecting dynamic

parameters.... During this time, all the values that can be changed to a web test

parameter are detected and listed.

[211]

Advanced Web Testing

Visual Studio lists the parameters that can be promoted to web test parameters
from normal hardcoded values, and allows the tester (who is recording the test)
to choose one. We can either choose OK to promote the parameters, or we can
Cancel the suggestion and keep it hardcoded.

Note that if we leave the parameters as is, the next playback of the test might fail
because the hardcoded value may not be valid.

Visual Studio also provides the option of detecting dynamic parameters outside
the recording, which means that there is an option in the toolbar to promote the
parameters after the completion of recording as well.

Coded web test

The coded web test generates the code for the sequence of web-test requests. The
main advantage is to add more complex features such as looping, adding more
requests, or adding any additional logic to the test using the NET programming
languages C# and Visual Basic. The recorded web test is simple, but the coded web
test gives more flexibility.

It is suggested practice that the web test should be recorded and then converted to
coded web test by defining the data sources, extraction rules, validation rules, and

binding the form post fields to the data source. This can let the tool generate the basic

code and concentrate on customizing it with additional features.

The other advantage of coded tests is full control of the test execution. It's just a class

file, which is created with the language of our choice (either C# or Visual Basic). Once

the class file is created, custom code can be included for the required functionality.

[212]

Chapter 6

Generating code from a recorded test

The web performance test editor provides the option to generate the code out

of a recorded web test and create the coded test. Select the recorded web test that
needs to be converted to code and then pick Generate Code from the editor toolbar.
This opens a dialog asking for a name for the test, as shown here:

w EmployeeMaintenance - o X

WebTestd.webtest ® X

A- B g d i HAE A
B WebTestd

BIEI Transactionl

g {{WebServerl }}/

g {{WebServerl }l/Employee/List.aspx
g {{WebServerl }}/Employee/Insert.aspx
g {{WebServerl }/Employee/Insert.aspx
g {{WebServerl }}/
[#-@¥ Data Sources

-l Context Parameters CEEaEEn =R Perfnn‘nanﬁl ug
=l Validation Rules

J3] Response URL The following name will be used for the Coded Web Performance test.

E Response Time Goal CodedTestforWebTestd
-l Web Test Plug-ins

[213]

Advanced Web Testing

Provide the name for the coded web test and click on OK to generate the file. The
file gets generated with the provided name and contains the code for the whole of
web performance test. The following screenshot shows part of the code from the
generated file:

w EmployeeMaintenance - 0 X
CodedTestforWebTestd.cs # X -
#3 WebAndLoadTestProject].CodedTestforWebTestd - | @, testPlugind -
St +

-

—Inamespace WebAndLoadTestProjectl
{
= using I:l

[DeploymentItem(“webandloadtestprojectl\\EmpData.csv™, “"webandloadtestprojectl™)]
[DataSource("DataSourcel”, "Microsoft.VisualStudic.TestTools.DataSource.CSV", "|DataDirectory|\\webandloadtestpr
[DataBinding("DataSourcel™, "EmpData#csv", "First_Name", "DataSourcel.EmpData#csv.First_Name™)]

(B
[DataBinding("DataSourcel”, "EmpData#csv", "Last Name", "DataSourcel.EmpData#csv.Last_Name")]
[0ataBinding("DataSourcel™, "EmpData#csv”, "Middle_Name", "DataSourcel.EmpDatasicsv.Middle_Name™)]
[DataBinding("DataSourcel”, "EmpDatasicsv", "Department™, "DataSourcel.EmpData#csv.Department™)]
[DataBinding(“DataSourcel™, "EmpData#csv”, "Occupation”, "DataSourcel.EmpData#csv.Occupation™)]
[DataBinding("DataSourcel”, "EmpData#icsv", "Gender"”, "DataSourcel.EmpData#csv.Gender™)]
[DataBinding(“Datasourcel”, "EmpData#csv”, "City", "DataSourcel.EmpDatafcsv.City”)]
[DataBinding("DataSourcel”, "EmpData#icsv", "State”, "DataSourcel.EmpData#icsv.State")]
[DataBinding(“DataSourcel™, "EmpData#csv”, "Country”, “"DataSourcel.EmpData#csv.Country™)]
[DataBinding("Datasourcel™, "EmpData#csv”, "Phone™, "DataSourcel.EmpData#csv.Phone”)]

= public class CodedTestforlebTest4 : WebTest

w

{
| private Classl testPlugin® = new Classi();
= public CodedTestforWebTest4()
i
this.Context.Add("WebServerl”, “"http://localhost:3862");
this.Prefuthenticate = true;
this.PreebTest += new EventHandler<PreiehTes ntArgs»(this.testPluging.PrewebTest);
this.PostlWebTest += new Ev gs»(this.testPlugin®.PostilebTest);
this.PreTransaction += v gs>(this.testPlugin@.PreTransaction);
this.PostTransaction tionEventArgs>(this.testPlugin®.PostTransaction);
this.PrePage += new s»(this.testPlugin@.PrePage);
this.PostPage += new EventHandler<PostPageEventArgs>(this.testPluging.PostPage);
}
=] public override IEnumerator<WebTestRequest> GetRequestEnumerator()
/f Tnitialize validation rules that annlw tn all reauests in the WehTest v
100% ~ 4 L3

The code in the previous screenshot uses the following additional namespaces,
which contain the classes required for web testing:

usingMicrosoft.VisualStudio.TestTools.WebTesting;
usingMicrosoft.VisualStudio.TestTools.WebTesting.Rules;

You can see that the first section of the code contains all deployment and data-source
information. This is the same information that is configured to the web test using the
WebTest editor. It defines the parameters for each field in the data source and binds
each field to the data-source column. Following are some of the attributes and classes
used in the generated code:

[214]

Chapter 6

DeploymentItem: This specifies whether the additional files should be
deployed as part of the deployment. In the previous example, the data
source file is added as a deployment item:

[DeploymentItem ('webandloadtestprojectl\\EmpData.csv',
'webandloadtestprojectl!')]

DataSource: This attribute specifies any datafile or database that is added
as the source of information for the fields. The source can be a CSV, XML,
or any other database. The attribute contains the name of the data source,
the connection string to access the data source, location, the mode of
accessing the data (such as Sequential, Random, or Unique), and the table
name to access. In the case of Microsoft Excel, each spreadsheet can represent
a table. For example, the following code block shows the data source
attribute for a CSV file:

[DataSource ('DataSourcel', 'Microsoft.VisualStudio.TestTools.
DataSource.CSV', '|DataDirectory|\\webandloadtestprojectl\\
EmpData.csv', Microsoft.VisualStudio.TestTools.
WebTesting.DataBindingAccessMethod.Sequential, Microsoft.

VisualStudio.TestTools.WebTesting.DataBindingSelectColumns.
SelectOnlyBoundColumns, 'EmpData#csv')]

DataBinding: This attribute denotes the field or fields bound to the
data-source column in the data-source table. For example, the following
code block denotes three fields: First Name, Last Name, and Middle Name.
The attribute contains the name of the data source, the table name to refer
within the source, the name for the field within the table, and the actual
field name in the data source table.

[DataBinding('DataSourcel', 'EmpDataffcsv', 'First Name',
'DataSourcel.EmpDataffcsv.First Name')]

[DataBinding ('DataSourcel', 'EmpDataffcsv', 'Last Name',
'DataSourcel.EmpDataffcsv.Last Name')]

[DataBinding ('DataSourcel', 'EmpDataf#fcsv', 'Middle Name',
'DataSourcel.EmpDataffcsv.Middle Name')]

webTest: This is the base class for all web tests. Coded web tests are directly
derived from this base class. In the example, the class WebTest4Coded is
derived from this webTest class.

[215]

Advanced Web Testing

* Web Test (constructor): This constructor is for initializing a new instance
of the class. It includes the context variables for the test, for example the
WebServerName. This is the main context variable which is used by all
the requests within the test and is replaced by the actual value during the
Test Run. The next thing is to set the credentials for the web test to run. It
can be set with credentials or pre-authenticated to run the test. All global
declarations with respect to the web test are done at the constructor level.

* PreWebTest and PostWebTest (for web tests and requests): These events
occur before and after the test. These events are mainly used for setting
the environment for the test before the Test Run and for cleaning the
environment after the test is completed.
this.PreWebTest += newEventHandler<PreWebTestEventArgss> (this.
testPlugin0O.PreWebTest) ;

this.PostWebTest += newEventHandler<PostWebTestEventArgs> (this.
testPlugin0.PostWebTest) ;

* PreTransaction and PostTransaction: These events are for web
transactions. These WebTestP1lugin methods handle events before and
after the transaction, associated with the web performance test. The
pPreTransaction callback is called just before starting the transaction in the
web performance test and the PostTransaction callback is called just after
the transaction is complete in the test.
this.PreTransaction += newEventHandler<PreTransactionEventArgss> (th
is.testPlugin0.PreTransaction) ;

this.PostTransaction += newEventHandler<PostTransactionEventArgss> (
this.testPlugin0O.PostTransaction) ;

* DPrePage and PostPage: These are the WwebtestP1lugin methods that handle
events before starting and just after completing the web page.
this.PrePage += newEventHandler<PrePageEventArgs> (this.
testPlugin0O.PrePage) ;

this.PostPage += newEventHandler<PostPageEventArgs> (this.
testPlugin0.PostPage) ;

[216]

Chapter 6

PreRequest and PostRequest: These are the WebtestPlugin methods that
handle events before starting after completing the HTTP request. Because these
events have to fire for every request in the web test, these methods are called
from the GetRequestEnumerator method.

this.PreRequest += newEventHandler<PreRequestEventArgss> (this.
testPlugin0.PreRequest)

this.PostRequest += newEventHandler<PostRequestEventArgss> (this.
testPlugin0O.PostRequest) ;

PreRequestDataBinding: This is the webtestPlugin method that is called
just before the data binding call.

PreWebTest, PostWebTest, PreTransaction, PostTransaction, PrePage,
PostPage, PreRequest, PostRequest, and PreRequestDataBinding are just
virtual methods. If not implemented, the base class method is called.

The following code screenshot shows the class derived from the WwebTestPlugin

class and a couple of methods overridden:

w EmployeeMaintenance - B x
Classl.cs # X -
#3 ClassLibrarylforPlugln.Classl ~ @ PostWebTest(object sender, PostWebTestEventArgs €) -
Husing l:l +
e
—Inamespace ClasslLibrarylforPlugln
{
= public class Classl : WebTestPlugin
= public override void PreWebTest(object sender, PrelebTestEventArgs e)
// Record the Currently logged in user name
e.WebTest. Context["testCreatedUserlame”™] = System.Environment.UserName;
// Record the start time of the Web test
e.ebTest. Context["testStartTime"] = DateTime.Now;
¥
= public override void PostWebTest(ocbject sender, PostWebTestEventArgs e)
// Calculate the Total time taken for the Web test
e.WebTest.Context["testTotalTime"] = DateTime.MNow - (DateTime)e.WebTest.Context["testStartTime"];
// Display the time as comment on the web test result window
e.WebTest.AddCommentToResult("Total Time taken for the test: " + e.WebTest.Context["testTotalTime"]);
¥
}
h -
100% ~ 4 4

[217]

Advanced Web Testing

The next part of the code defines the request, extraction rules, validation rules,
and the form post or the query string parameters. These parameter values are set
with values retrieved from the parameters bonded with the data-source fields. Part
of the code looks like this:

100 %

w EmployeeMaintenance

CodedTestforWebTestd.cs & X

X

“z WebAndLoadTestProjectl. CodedTestforWebTestd

WebTestRequest request4 = new WebTest

request4.ThinkTime = 4;
request4.Method = "POST";
request4.ExpectedResponselrl = (this.
FormPostHttpBody requestdBody = new
request4Body. FormPostParameters.Add("
request4Body . FormPostParameters. Add ("
request4Body . FormPostParameters. Add("

request4Body . FormPostParameters.Add("__|

request4Body.FormPostParameters. Add("
frequestaBody . FormPostParameters.Add(”
request4Body.FormPostParameters. Add(”
request4Body. FormPostParameters.Add("
request4Body . FormPostParameters. Add ("
request4Body . FormPostParameters. Add("
request4Body . FormPostParameters.Add("”
request4Body.FormPostParameters. Add("
request4Body.FormPostParameters. Add("
request4Body.FormPostParameters. Add(”
request4.Body = request4Body;

yield return requestd;

requestd = null;

-4

~ @ GetRequestEnumerator()

Request((this.Context["WebServer1”].ToString() + "/Employee/Insert.aspx"));

Context["WebServerl”].ToString() + "/Employee/List.aspx”);

FormPostHttpBody();

__EVENTTARGET", "ctle@$ContentPlaceHolderl$FormViewl%ctle2");

__EVENTARGUMENT", this.Context["$HIDDEN1. EVENTARGUMENT"].ToString());

_ VIEWSTATE", this.Context["SHIDDEN1. VIEWSTATE"].ToString());

EVENTWVALIDATION”, this.Context["$HIDDENL._ EVENTVALIDATION"].ToString())s
ctle@iContentPlaceHolder13FormViewlfctleddctleed_ First Name$TextBoxl", this.Context["DataSourcel.
ctleesiContentPlaceHolder13Formviewlfctledsctlols_ Last Name3TextBoxl", this.Context["DataSourcel.E
ctle@iContentPlaceHolder13FormViewlfctleasct1e2s_ Middle_Name$TextBoxl", this.Context["DataSourcel
ctle@iContentPlaceHolder1$Formviewl$ct1@45ct103$ Department$TextBox1", this.Context["DataSourcel.
ctle@iContentPlaceHolder1$FormViewl$ct1@4%ct184$_ Occupation$TextBox1", this.Context["DataSourcel.
ctle@iContentPlaceHolder1$FormViewl$ct1845ct185% Gender§TextBoxl"™, this.Context["DataSourcel.EmpD
ctleaiContentPlaceHolder1$FormViewl$ct1@45ct1069_ City$TextBox1", this.Context["DataSourcel.EmpDat
ctle@iContentPlaceHolder18Formviewlfctleddctle?d_ StatefTextBoxl”, this.Context["DataSourcel.EmpDa
ctleeiContentPlaceHolder13Formviewlfctledsctless_ CountrydTextBoxl", this.Context["DataSourcel.Empl
ctle@iContentPlaceHolder13FormViewlfct1@4%ct1@9%_ Phone$TextBoxl”, this.Context["DataSourcel.EmpDa

L L2

The first line defines the request and the rest of the code assigns the values to the
form post parameters.

The coded web test provides all the properties and requests of the web test, and can
be used to customize and add more functionality to it.

Transactions in coded tests

A transaction is a logical grouping of multiple requests in a web test. In web
performance test recording, we have seen the insertion of transactions into the
request set to collect the total time taken by all requests. The same thing can be
done here. Comments, conditions, further requests, branching and looping can
all be added at the transaction level. Following is some code, that begins the
transaction, requests two web pages, and then ends the transaction:

[218]

Chapter 6

this.BeginTransaction ('Transactionl') ;

WebTestRequest requestl = newWebTestRequest ((this.
Context ['WebServerl'] .ToString() + '/'));
requestl.ThinkTime = 3;
yieldreturn requestl;
requestl = null;

WebTestRequest request2 = newWebTestRequest ((this.
Context ['WebServerl'] .ToString() + '/Employee/List.aspx'));

request2.ThinkTime = 2;
yieldreturn request2;
request2 = null;

this.EndTransaction ('Transactionl') ;

Custom code

The main advantage of coded web tests is customizing the code generated from a
web performance test recording. For example, the following code adds a new web
test request with think time and request method to the web test, if the value of the
context parameter AddTestRequest is yes.

if (this.Context ['AddAbsenceforEmployee'] .ToString() == 'Yes')

{

WebTestRequest request6 = newWebTestRequest ((this.
Context ['WebServerName'] .ToString() + '/Absence/Insert.aspx'));

request6.ThinkTime = 4;
yieldreturn requesté;
request6 = null;

Adding a comment

The AddComment ToResult method is used for adding comments to the web test.
The code given here is an example for adding a comment to the Test Result from
the web test code:

this.AddCommentToResult ('Test custom comment added to the Web Test
through code') ;

[219]

Advanced Web Testing

Running the coded web test

Running or executing the coded web test is very simple and is very similar to
running other tests. Using the solution explorer, open the coded web performance
test and then from the code area, open the shortcut menu. Then, choose the option
to run the coded web performance test, as shown in the following screenshot:

m EmployeeMaintenance - B X
CodedTestforWebTestd.cs # X -
¥z WebAndLoadTestProjectl. CodedTestforWebTestd - %, testPlugind -
+ | f —m m - =+
Y
—Inamespace WebAndLoadTestProjectl
{
+ using D

'& Run Coded Web Performance Test

[DeploymentItem(“webandloadtestpra
Debug Coded Web Performance Test

[DataSource("DataSourcel™, "Micros

[DataBinding("DatasSourcel™, "EmpDa Generate Code for Coded UI Test 3
[PataBinding("DataSourcel”™, “EmpDa Refactor »
[DataBinding("DataSourcel™, "EmpDa . _
[DataBinding("DataSourcel”, "EmpDa Organize Usings "
[DataBinding("DataSourcel™, "EmpDa Generate Sequence Diagram...
[DataBinding("DataSourcel”, "EmpDa _ N
[DataBinding("DataSourcel”™, “EmpDa & Show on Code Map Ctrl+
[DataBinding("DataSourcel”, "EmpDa Show Related Items on Code Map 4
[DataBinding("DataSourcel”, "EmpDa ,
[DataBinding("DataSourcel™, "EmpDa & RunTests SR T

- public class CodedTestforkebTest4 Debug Tests Ctrl+R, Ctrl+T

The test can be re-run from the Test Results window as well, but will only appear
there after the first run of the test.

The result of the web test is shown in the Test Results window, similar to that
shown by the recorded web test. It shows the status of the test, and whether it has
successfully passed or failed, or has some errors:

Test Results * [X
2 Subashni_Sachidanant@WN7-HP - | " Run = "z Debug 2 -G T '

0 Test run completed Results: 1/1 passed; Item(s) checked: 0

Result Test Mame D Error Message
@Q Passed CodedTestforWebTestd |WebAndLnadTestPrnjecﬂ.CodedTestFanebTestﬂr

Output | Test Results | Test Runs

[220]

Chapter 6

To see the details of a Test Result, select the result from the Test Results window,
right-click and choose View Test Result Details, which opens a window depicting
the details about the coded web Test Run. This is the same result details window
that is shown for other types of tests:

CodedTestforWebTestd [12:58 AM]

& O > 2

@ Passed Click here to run again Intemnet Explorer 3.0 LAN Edit run settings

Request Status Total Time Request Ti... Request.. Response Bytes
(/] G Test custom comment added to the Web Test through code -
(V] 4 = Transactionl 0.075 sec = 0 735,935
(v] I @) http://localhost:3062/ 200 OK 0.031 sec 0.017 sec 0 326,859
(V] I @) hitp://localhost:3062/Employes/List.aspx 200 OK 0.044 sec 0.023 sec 0 409,076
(v] I g http://localhost:3062/Employes/Insert.aspx 200 OK 0.020 sec 0.006 sec 0 415,813
(V] b g http://localhost:3062/Employee/Insert.aspx 302 Found 0.047 sec 0.015 sec 3942 136
@ b & http://localhost3062/ 200 OK 0016sec 0.003 sec 0 326,850
(/] G Total Time taken for the test: 00:00:00.2964006
@ 4 Run2
(/] G Test custom comment added to the Web Test through code
0 . = Transactionl 0.049 zec - 0 735,935
(V] b g http://localhost:3062/Employee/Insert.aspx 200 OK 0.025 sec 0.007 sec 0 415,813
(V] b g http://localhost:3062/Employee/Insert.aspx 302 Found 0.050 sec 0.010 sec 3,920 136
@ b & hitp://localhost3062/ 200 OK 0021 sec 0,004 sec 0 326,859
(/] G Total Time taken for the test: 00:00:00.1560002
@ 4 Run2
(/] G Test custom comment added to the Web Test through code
(V] - 3 Transactionl 0.053 sec - i] 735935 ¥
: | Request | Response | Contextl Detai\s|

[€] EMPLOYEE MAINTENANCE N

< Back to home page

The result details window shows the result of each request in the web test. It also
shows information about the request, response, context parameters, and the rule
execution details for each request. You will notice that the additional comment added
to the web test is shown on top of each Test Run, and the comment added in the
PostWebTest event in the web test plug-in class is added after each web Test Run.

[221]

Advanced Web Testing

Since the code is normal C# code and the entire web test is a class file, debugging
is possible as is done for normal assemblies created in Visual Studio. This is very
helpful in getting the runtime information of the web test, requests, and the context
information from the web test, as shown:

CodedTestforWebTestd.cs # X -

#3 WebAndLoadTestProjectl CodedTestforWebTestd - @ GetRequestEnumerator() -

R T T G T ST o e S e 2 e s e Y T L

p— L — N i
request4Body.FormPostParameters.Add (" ctl@@%ContentPlaceHolderl$FormViewl$ctled4gctlaad First Name$TextBoxl", this.!+
request4Body.FormPostParameters. Add (" ctle@ContentPlaceHolderl$FormViewl$ctledsctlals_ Last_Name$TextBoxl"™, this.Co™
request4Body.FormPostParameters.Add("ctle@aiContentPlaceHolderl3FormViewl3ctlad4sctlazs_ Middle_Name3TextBox1l", this
request4Body.FormPostParameters.Add("ctle@fContentPlaceHolderl3FormViewl$ctle43ctla3s_ DepartmentiTextBoxl™, this.(
request4Body.FormPostParameters.Add (" ctle@@iContentPlaceHolderl$FormViewl$ctl@d43ctlads_ OccupationfTextBoxl™, this.(
request4Body.FormPostParameters.Add (" ctl@@fContentPlaceHolderl$FormViewl$ctla@4sctlass Gender$TextBoxl", this.Conte
request4Body.FormPostParameters . Add (" ctle@ContentPlaceHolderl$FormViewl$ctledsctlees_ City$TextBoxl", this.Contexd
request4Body.FormPostParameters.Add (" ctlea@iContentPlaceHolder13FormViewl$ctlad4sctlars_ StatefTextBoxl", this.Conte:
request4Body.FormPostParameters.Add("ctle@fContentPlaceHolderl3FormViewl$ctle43ctlass_ Country$TextBoxl"”, this.Coni
request4Body.FormPostParameters.Add (" ctl@@3ContentPlaceHolderl$FormViewl$ctl@43ctla9s_ Phonef$TextBox1", this.Conte:

[+ request4.Body = request4Body;
yield return requ - @ =
request4 = null; - Q-

=Y
WebTestRequest requél e S YH
yield return requesis @
requests = null;

@
// this.EndTransaction(g g
i Fe
L & Name Q - "ctld0$ContentPlaceHolderl SFormViewl Sctl04 Sctld0S_First_MameSTextBoxl"
s & UrlEncode true
L K Value Q - "Satheesh” =
@ 5@ Non-Public members
¢
(] -
100% ~ 4 @ »

Debugging coded web test

Visual Studio provides the feature to debug the .NET code using the integrated
debugger. As the coded web performance test generates code using one of the .NET
programming languages, debugging is very much possible. It is required to debug
the code in any application to verify the runtime behavior of the code and to fix any
issues that occur.

Select the coded web test from the solution explorer and open the test. Right-click

on the line of code and select the option to insert a new breakpoint. Repeat this for
all places wher breakpoints are required. From the code area of the test, right-click
to open the shortcut menu and choose the option to debug the code.

For example, the following screenshot shows the web test with a couple of
breakpoints at different locations. This option actually breaks the test execution
at the point where breakpoints are set.

[222]

Chapter 6

ndLoadTestProjectl.CodedTestforWebTestd - @ GetRequestEnumerator()

WebTestRequest requestl = new WebTestRequest((this.Context["wWebserverl"].Tostring() + "/"));
requestl.ThinkTime = 3;

[] lyield return requestlj

requestl = null;

WebTestRequest request2 = new WebTestRequest((this.Context["WebServerl"].ToString() + "/Employee/List.aspx"));
request2.ThinkTime = 2;

[] lyield return request2;

request2 = null;
this.EndTransaction("Transactionl™);

WebTestRequest request3 = new WebTestRequest((this.Context["WebServerl"].ToString() + "/Employee/Insert.aspx"));
request3.ThinkTime = 38;

ExtractHiddenFields extractionRulel = new ExtractHiddenFields();

extractionRulel.Required = true;

extractionRulel.HtmlDecode = true;

Ev:tr‘actlionRulEl.CcntEx‘tParamEtErNamE ="1";

request3.Ext @ =
(43 yield return r @@ base {Microsoft.VisualStudio. TestTools.WebTesting.ExtractionRule} {Microsoft.VisualStudio. TestTools.WebTesting.Ru
request3 = nul & ContedParameterame Q"1
& HtmiDecode rire

WebTestRequest
request4.Think
request4.Metho [@ Non-Public members

true

We can step through the code and find out the values for the context variables and
object properties. Different options are provided under the Debug menu option.

Step through the code and watch some of the object properties and attributes while
debugging. The following screenshot shows the debug information for the context
variables set at the end of the constructor code. It shows the values of those variables
added to the context and the other properties set for the context.

CodedTestforWebTestd.cs + X -
WebAndLoadTestProject].CodedTestforWebTestd ~ @ CodedTestforWebTestd() -
= public CodedTestforiebTest4() +|
{ -
this.Context.Add("WebServerl”, "http://localhost:3862");
this.PrefAuthenticate = true;
this.PreWebTest += new EventHandler<PreWebTestEventArgs»(this.testPlugin®.PrelebTest);
this.PostWebTest += new ntHandler<PostlWebTes g=>(this.testPlugin®.PostuebTest);
this.PreTransaction += new tHandler<PreTransac rgs»(this.testPlugin®.PreTransaction);
this.PostTransaction += new EventHandler<PostTransactionEventArgs:(this.testPlugin@.PostTransaction);
this.PrePage += new EventHandler<PrePageEventArgs>(this.testPlugin®.PrePage);
< ws.PostPage += new EventHandler(PostPagEEvEntArgs>(this_testpluginﬁ_PostPagE);|
=K =
} =e
a
= public ove & »~
T -
// Initi :
if ((thi ionLevel.Low
: (! 5)]
ey
this &
this = ate);
if ((thi & ionLevel.Low))
»
vali ¢ H
vali &
this : ionRule2.validate);
100% = o v 3
. L .
Locals : e X
B ®
Rlame ke w1 @ [0] {[WebServerl, http://localhost:3062]) Lang
@ this {WebAndload ;) g [1] {[testCreatedUserMame, Subashni_Sachidanant]} mlestPrcuecﬂ dll!WebAndLoadTestProjectl.CodedTestforW C#
[@ [2] {[testStartTime, 3/10/2013 1:35:18 AM]} de]
= ®@ [3] {[testTotalTime, 00:00:00.0156000]}

[223]

Advanced Web Testing

Similarly, we can step through the code line-by-line and find out if the current values
show the status of the objects and the properties. The following screenshot shows
another example of the PostWebTest event that refers to methods in the plugin
ClassLibrarylforPlugIn:

CodedTestforWebTestd.cs & X

#3 WebAndLoadTestProjectl CodedTestforWebTestd = @ CodedTestforWebTestd()
1

private Classl testPlugin® = new Classl();

= public CodedTestforWebTest4()
1
this.Context.Add("wWebServerl”, "http://localhost:3862");

this.Prefuthenticate = true;
this.PreWebTest += new EventHandler<PrellebTestEventArgs»(this.testPluging.PrelebTest);
[+ Ehis.PostNebTest += new EventHandler<PostWebTestEventArgs>(this.testPlugin®.PostWebTest);

this.Pr - &y

this.Postig @

this.PrePage | @

this.PostPag 5
=l &

} @ base {Microsoft.VisualStudio. TestTools.WebTesting. WebTestPlugin} {ClassLibrarylforPlugln.Classl} =

Custom rules

While generating the code for the recorded web test, Visual Studio creates the code
for the rules that we added. However, if more custom rules are to be added to the
web test, use the Microsoft.VisualStudio.TestTools.WebTesting namespace
and create a new rule class, which is derived from the base class. This new class
can be a part of the managed class library (which can be a plugin). This can be an
extraction rule or a validation rule.

Extraction rules

Extraction rules are used for extracting data from the responses received for web
requests. Data can be extracted from text fields, headers, form fields, attributes,

or from hidden fields. The new custom extraction rule is a new class file derived
from the base class ExtractionRule, which is in the namespace Microsoft.
VisualStudio.TestTools.WebTesting. Add a reference to the library Microsoft.
VisualStudio.QualityTools.WebTestFramework, which contains the base classes.
In the new class, implement the Extract method and build the custom rule as

per requirements. For example, the following screenshot of a code block shows a
CustomExtractionRule for extracting the parameter value from the request:

[224]

Chapter 6

b Employeehaintenance - CustomEdractionRule.cs* - O

CustomBxtractionRule.cs® & X
#3 CustomRules. CustomExtractionRule
Husing .|
“Inamespace CustomRules
{

= public class CustomExtractionRule : ExtractionRule

x

1

- @, NameValue

bk .

| // The name of the desired input field
private string NameValue;
= public string Name
{
get { return NameValue; }
set { NameValue = value; }

I
= public override void Extract(object sender, ExtractionSventArgs e)
if (e.Response.HtmlDocument != null)
foreach (HemlTag tag in e.Response.HtmlDocument.GetFilteredHtmlTags(new string[] { "input” }))
if (String.Equals(tag.GetAttributeValueAsString("name”), Name, StringComparison.InvariantCulturelgnoreCas

string formFieldvalue = tag.GetAttributeValueAsString(“value™);
if (formFieldvalue == null)
{
formFieldvalue = String.Empty;
}
// add the extracted value to the web performance test context
e.WebTest.Context.Add(this.ContextParameterName, formFieldvalue);
e.5uccess = true;
return;
}
by

// If the extraction fails, set the error text that the user sees
e.Success = false;
e.Message = String.Format(CultureInfo.CurrentCulture, “Parameter not Found: {@8}", Name);

H
H

W0% =~ 4

Define a property to specify the name of the parameter value to be extracted.

The extract method is used to extract the data. This method contains two
parameters: object and ExtractionEventArgs. The ExtractionEventArgs
parameter has the property response, which provides the response generated

by the request. This response contains the query string, attributes, and the HTML
documents, along with all the other details about the response. Once the test is run,
the extraction rule gets executed. In the example shown previously, the extract
method will find the specified parameter in the request and extract the value if a
match is found. The method returns a success or failure status along with the

message. The extracted value can be added as the context variable using the
following code:

e.WebTest .Context .Add (this.ContextParameterName, parameter.Value) ;

The context contains a key value pair, where the key is equal to
ContextParameterName and the value is the parameter value that is extracted.

[225]

Advanced Web Testing

The ExtractEventArgs object also contains a return value of either Success or
Failure, based on the extraction of the value. The following code block shows the
sample of an extraction rule that extracts the value of an input field with a given name:

publicoverridevoid Extract (object sender, ExtractionEventArgs e)

{

if (e.Response.HtmlDocument != null)

{

foreach (HtmlTag tag ine.Response.HtmlDocument.
GetFilteredHtmlTags (newstring([] { 'input' }))

{

if (String.Equals(tag.GetAttributeValueAsString('name'), Name,
StringComparison.InvariantCultureIgnoreCase))

{
stringformFieldValue = tag.GetAttributeValueAsString('value') ;
if (formFieldvValue == null)

{

formFieldvalue = String.Empty;

// add the extracted value to the web performance test context
e.WebTest.Context .Add (this.ContextParameterName, formFieldValue) ;
e.Success = true;

return;

}

// If the extraction fails, set the error text that the user sees

e.Success = false;
e.Message = String.Format (CultureInfo.CurrentCulture,
'Parameter not Found: {0}', Name);

}

With the code for the new extraction rule, added recompile the class library. Add the
class library reference to the web Test Project and include the namespace to the web
test code to make use of the new custom rule. Now, to create a new rule for the request
in the web test code, create a new instance of CustomExtractionRule (the class that is
created for the custom rule) and set the properties. The following screenshot contains
the sample for adding a new rule to the test to extract the First Name value from the
edit page and assign that to the param1 parameter:

CustomExtracticonRule extractionRuleMew = new CustomExtractionRule();
extractionRuleNew.Name = "ctl@@%ContentPlaceHolderl$FormViewlfctleddctl@ad First NameS$TextBoxl"™;
extractionRuleNew.ContextParameterName = "paraml”;

[226]

Chapter 6

When the coded web test is run, the Test Result window shows the extracted value
for the parameter, based on the success or failure of the execution rule during the
test. The following screenshots show the execution rule result:

CodedTestforWebTest5 [5:51 PM]

4 O [=[=] «e> B

b http://localhost:52871/Employee/Edit.aspx

M . o) hitne/fnralhact52R71 /Emnl Frit acm: N2 Fnund

NN24 e

0.015 sec
0010

@ Passed Click hereto runagain Internet Explorer9.0 LAN Edit run settings

Request Status Total Time Request Time Request Bytes Response Bytes
@ - &) hitp://localhost:52871/ 200 OK 0.037 sec 0.016 sec 0 326,859 &
@ b g http://localhost52871/Employes/List.aspx 200 OK 0.280 sec 0.248 sec

Web Browser | Request I Response I Cuntact‘ Details

Rules
Rule Type Result Parameters -
@ Validation RuleRespo... Validati.. Passed Tolerance=0
@) BxtractHiddenFields Extraction Passed ContextParameterName=1, Required=True, HtmlDecode=True
3 CustomExtractionRule Extraction Passed Name=cti00SContentPlaceHolderl SFormViewlScti045cti00S_First NameSTextBoxl, ContextParameterName= paraml -

Exception

The following screenshot shows the parameter value retrieved during the same

Test Run:

CodedTestforWebTestd [5:51 PM]

% O il
@ Passed Click hereto run again Internet Explorer 8.0 LAN Edit run settings
Request Status Total.. Reque.. Requ.. Response..

@ o & http://localhost52871/ 200 0K D.037 sec 0.016 sec 0 326,859
@ o & hitp://localhost52871/Employee/List.aspx 200 0K D.280 sec 0.243 sec 0 385,201
@ - &) hitp://localhost52871/Employee/Edit.aspx 200 0K D.031 sec 0.015 sec 0 419,799
@ 4 g hitp://localhost52871/Employee/Edit.aspx 302 FoundD.034 sec 0.010sec 7,145 136
(V] r b http://localhost52871/Employee/List.aspx 200 0K - 0,009 sec 0 385,201
@ © & http//localhost52871/ 200 0K D017 sec 0.003 sec 0 326,859
| Web Browser | Request | Rspunsel Context | Deta.i.ls|

MName Value -

SWebTestlteration 1

SWebTestlUserld 1

paraml Satheesh —

1 4

The same custom rule can also be used in the recoded web test. To add the custom
rule, open the webTest project and add a reference to the custom rule project.

[227]

Advanced Web Testing

Open the web test and select the request for which the new extraction rule should be
added. Expand the test recording, select the Extraction Rules folder for the request
and select the Add Extraction Rule option, which displays all the types of extraction
rules including the custom rule created:

e T, e

Select a rule: Properties for selected rule:

[E] SharePoint - Extract WebParts ListView Values 4l | =]
[E] SharePoint - Extract Text On Key

& SharePoint - Extract GUID ¢ Options

[E] SharePaint - Find Hrefs paraml

[E] SharePoint - Find Workflow Instanceld 4 FProperties

{# CustomExtractionRule Mame ctlD0SContentPlaceHolderl SFormViewlSd

Context Parameter Name

The name of a test context variable to associate with the extracted
a =G value,

Description for selected rule:

[ok || conca |

CustomExtractionRule is just like the other rules, but is custom-built for the
required functionality.

Validation rules

CustomValidationRule is very similar to the extraction rules. It is the custom code
derived from the ValidationRule base class. This class is present in the namespace
Microsoft.VisualStudio.Testtools.WebTesting. The new custom validation
rule can be created as a separate class library, which can be added to the web Test
Project when required.

The validation rule is to check if a particular value is found once or more in the
HTML responses. The response contains the attributes, parameters, hidden values,
in fact the entire response information in the HTML form.

[228]

Chapter 6

The validation rule has properties and methods similar to the ones in validate.

#3 CustornRules.CustomValidationRule ~ @ stringValueToFind -
#using l:| —
“Inamespace CustomRules -

{
[DisplayName("Custom Validation Rule 1")]
[Description("This validation rule is built for testing purpose™)]
= public class CustomvalidationRule : validaticnRule
public string stringValueToFind;
= public string StringvalueToFind
i
get { return stringValueToFind; }
set { stringvalueToFind = value; }
}
= public override void validate(ocbject sender, validationEventargs e)
{
string htmlDocument = string.Empty;
if (!string.IsNullOrEmpty(e.Response.Bodystring))
htmlDocument = e.Response.BodyString;
e.IsValid = htmlDocument.Equals(stringValueToFind, StringComparizon.CurrentCulturelgnoreCase);
e.Message = "The string Found Successfully”;
¥
if (le.Isvalid)
{
e.Message = String.Format("The string {8} is not found", stringValueToFind);
¥
l
}
+ public class CustomExtractionRule : Ext’acticnRule[:]
1 -
0o - 4 3

The validate method contains two parameters: object and ValidationEventArgs.
The validationEventArgs object contains the response property that provides the
response text for the request through which the string value can be found and the
response validated.

The RuleName and RuleDescription properties have become obsolete in this version
of Visual Studio but the DisplayName and Description attributes can be used on the
class to set the display name and description for the rule.

The validate method should set e.Isvalid to true if the validation succeeds; to
false if not. The following code snippet finds a string value in the document. At the
same time, e .Message should be set to a message based on the result, which will be
shown at the end of test in the result window.

The sample custom validation rule here uses a string to find the value from the
response during the Test Run.

[229]

Advanced Web Testing

Now, compile the custom rules library and add the reference to the project —similar
to the extraction rule —and include the required namespace. In the web test code,
create a new instance of this custom rule and set the properties. As per the following
code, the validation rule is added to find the string value Employee.

CustomValidaticnRule validationRuleMew = new CustomValidationRule();
validationRuleNew.StringValueToFind = "Employee™;
this.ValidateResponse 4= new EventHandler<ValidaticnEventArgs:(validationRuleNew.Validate);

Once the test is run, the rule gets executed and the result is added to the output.
The Test Result window shows the output of the validation rule, as shown here:

CodedTestforWebTest5 [7:37 PM]

h OmaE T wes B

€ Failed Click hereto run again Internet Explorer9.0 LAN Edit run settings

Request Status Total T.. Request.. Reques.. ResponseB..
@ 1 & hitp://localhost:52871/Employee/List.aspx 200 OK 0.048 sec 0032 sec 0 385,201 -
@ © & hitp://localhost:52871/Employes/Edit.aspx 200 OK 0.028 sec 0013 sec 0 419,793
@ 4 &2 http://localhest52871/Employee/Edit.aspx 302 Found 0.018 sec 0,010 sec 7139 136
(%] Ly http://localhost:52871/Employee/List.asp 200 OK - 0,008 sec 0 11,907
FA__) hito://localhost:52871/ 200 OK 0,004 sec 0,004 sec 0 2918 ¥
| Web Browser | Request | Response | Contact| Details |

Rules

Rule Type Result Parameters

@ validateResponselrl Yalidation Passed IgnoreCase=False

ustomValidationRule The string Employee is not found StringValueToFind=Employee

Exception

The expected string is not found in the request and the validation rule failed. Hence,
the test is also failed. The expected failure message is also shown in the result window.

[230]

Chapter 6

The custom rule can also be used in the recorded web test. To add the custom rule
library created previously, select the recorded web Test Project and add a reference
to the library. Open the web test and select the validation rules folder, right-click and
select the option Insert Validation Rule, which opens the dialog listing all types of
validation rules as shown in the following screenshot:

Select a rule: Properties for selected rule:

A Selected Option
| Tag Inner Text
E Response Time Goal
J Form Field
F Find Text
J&l Maximum Request Time StringValueToFind
| Required Attribute Value
A Required Tag
E Response URL
JZ SharePoint - Find Multiple Text Occurrences
J& SharePaint - Response URL
stom Validation Rule 1

Level

Sets the validation rule level. Only rules at or above the load test level
are executed when a Web test is run under load.

Description for selected rule:

This validation rule is built for testing purpose

Now, set the value of the StringValueToFind parameter to something, say Test.
Run the web test again and check the results. The result is based on the success or
failure of the validation rule.

You can have as many custom rules as required and they can be re-used across
multiple tests as well.

[231]

Advanced Web Testing

Summary

This chapter explained the advanced features of web testing, generating code out

of a recorded web test and customizing it based on requirements. The code can be
generated in .NET programming languages such as C# and Visual Basic. Custom
rules are the extension of built-in extraction and validation rules that come along with
web testing. Generating code out of recorded web testing gives more control to the
tester to customize. Other features such as looping, calling custom written methods
between the requests, adding transactions for requests, and adding additional data
sources can be included wherever they are required. Creating a separate class library
for the custom rules and making use of that in the web test is very beneficial for
customization and re-use.

The next chapter explains how to test an application for load and performance.
The load test uses the same recorded user actions, but different loads are configured
during testing and performance data is collected for analysis and reporting.

[232]

Load Testing

Load Test for an application helps the team to understand the applications
performance under various conditions. Different parameter values and conditions
are used to test the application performance under load.

A Load Test can simulate any combination of user numbers, network bandwidths,
web browsers, and configurations. In case of web applications it is always necessary
to test the application with different sets of users and browsers to simulate the
multiple requests that will be sent to the server simultaneously. The following figure
shows a sample real-time scenario with multiple users accessing the website using
different networks and different type of browsers from multiple locations.

&

User 1 User 2 User 3 User 4 User 5

Using IE 6.0.0 Using IE 7.0.0 Using Firefox 2.0 Using Pocket IE 3.0 Using Firefox 2.0
o access the Website to access the Website to access the Website to access the Website to access the Website

RN

% [—‘—ﬂ % l
)
Cable DSL 4
T1
AN Wireless Dial-up 56K

Website hosted on server

Load Testing

Load Tests can also be used for testing the data access performance but not limiting
to only web applications. The Load Test helps to identify application performance in
various capacities, application performance under light loads for a short duration,
performance with heavy loads, and with same load but different durations.

A Load Test uses a set of Controller and multiple agents. These are collectively
termed as rig. The agents represent computers at different locations, used for
simulating different user requests. The Controller is the central computer which
controls multiple agents. The Visual Studio Load Agent in the agent computers
generates the actual load for testing. Simulating multiple user logins and accessing
the web pages as per the recording and collecting the data from the test is the job of
agents. The Test Controller at the central computer controls these agents.

This chapter explains the creation of the Load Test scenarios and Load Testing the
application with detailed information on each of these topics:

* Creating a Load Test and using the Load Testing wizard

* Patterns and scenarios for Load Testing

* Editing a Load Test and adding parameters

* Storing Load Test Results

* Running a Load Test

* Working with Test Results and analyzing them

* Exporting Test Results to Microsoft Excel

* Using Test Controller and Test Agents

* Test Controller and Test Agent Configuration

Creating a Load Test

The Load Tests are created using the Load Test Wizard. Create the Test Project and
then add a new Load Test which opens the wizard, and guides with the required
configurations and settings to create the test. The test parameters and configuration
can be edited later on.

[234]

Chapter 7

Online web applications or websites are accessed by a large number of users from
different locations simultaneously. It is necessary to simulate this actual situation
and check the application performance before deploying the application to a live
server. Let's take a couple of web applications that we used in our previous chapters.
One is a simple web page that displays employee details and employee-related
details. The other application is the coded web test that retrieves employee details
and also submits new employee details to the system.

EmployeeDetailsTest [10:24 PM]

& O [m[a] > BB

@ Passed Click hereto run again Internet Explorer9.0 LAN Edit run settings

Request Status Total Ti.. Request.. Reques.. ResponseB...
@ - @ http://localhost:3062/ 200 QK 0051 sec 0,019 sec 0 326,859
@ 1 & http://localhost:3062/Employes/List.aspx 200 0K 0079 sec 0.018 sec 0 393,795
@ - & http//localhost:3062/Empleyes/Insert.aspx 200 OK 0044 sec 0,010 sec 0 415,813
@ 4 g httpi//localhost3062/Employee/Insert.aspx 302 Found 0102 sec 0.033 sec 3923 136
0 p http://lecalhost:3062/Employee/List.aspx 200 OK - 0.020 sec i] 385938

ek Browser ::| Request | Response | Context | Detailsl

[€] EMPLOYEE MAINTENANCE

< Back to home page

Employee Information

Absence

EmergencyContact

Employee

Using the preceding examples, this chapter explains different features of load testing
and the way to simulate the actual usage scenario with multiple users. The following
sections describe the creation of load testing, setting parameters, and testing the
application using Load Test.

[235]

Load Testing

Load Test Wizard

The Load Test Wizard windows helps to create a Load Test for your web and unit
tests. There are different steps to provide the required parameters and configuration
information for creating the Load Test. Select the Test Project and then navigate to

Add | Load Test... to add a Load Test to the Test Project.

Scope to This
Mew Sclution Explorer View
., Show on Code Map
Solution Explorer Calculate Code Metrics
M - Project Dependencies...

Search Solution Explor Project Build Order...
+fa] Solution Employ Add ‘O Newltem.. Ctrl+Shift+A
E ET'“"L?S I""-"l” Add Reference... O Existing em... Shift+ Alt+A

alee) LlassLibraryl Add Service Reference...
b & CodedUlTestl O [eolFtis
b &[] CustornRules # e ‘L& Unit Test...
3 EmployeeMa *3 View Class Diagram A Load Test...
b al Emplo.)reeTes L Set as StartUp Project i Web Performance Test...
b &[c¥ GenericExam| —
P +[€* ReportsAppli Debug Coded Ul Test...
b &l Testlibrary & Get Latest Version (Recursive) ‘1= Ordered Test
b & UnitTestProje ™ cpeck Out for Edit.. ‘A Generic Test
P sic UnitTestProjg Source Control 8 Windows Form...
4 7] WebAndLoad .

b & Properties o Cut Crl+¥ i1 User Control...

b =B Reference 1 Paste Ctrl+V 1 Component...

a(X] EmpData. % Remove Del % Class... Shift+ Alt+C
E
B I Rename
a0 Employee

[236]

Chapter 7

Adding the Load Test option opens the New Load Test Wizard window shown
as follows. The wizard provides multiple sections for defining the parameters and
configurations required for the Load Test.

Mew Load Test Wizard @

I ﬁ Welcome to the Create New Load Test Wizard

This wizard will walk you through the steps to create a load test that contains:

Scenaric
Load Pattern Aload test scenaric to which you will add tests,
Test Mix Model Aload pattern, test mix, browser mix and ngtwork mix.
Counter sets for target computers from which you will collect performance data,
Test Mix Run settings such as the duration of your test and a description.
Metwork Mix -
) When you have completed the wizard and clicked Finish, 2 load test is generated in the test project.
Browzer Mix You can add additional scenarios and edit the test in the Load Test Editer.

Counter Sets i X X
i Fer mere information press FL to select a related Help topic.
Run Settings

Click Mext to proceed.

Mext » l [Einish] [Cancel

The wizard contains four different sections with multiple pages, which are used to
collect the parameters and configuration information required for the Load Test.

[237]

Load Testing

The Welcome Page explains the different steps involved in creating a Load Test.
On selecting a step such as Scenario, or Counter Sets, or Run Settings, the wizard
collects the parameter information for the selected set option. Click on the required
option directly or keep clicking on Next and set all the parameters. Once all the
steps are over and all required details are provided for each step, click on Finish to
create the Load Test using the details submitted. To open the Load Test, expand the
solution explorer and double-click on the Load Test, LoadTest1 as it was named for
this example. Following is a screenshot of the sample Load Test:

w EmployeeMaintenance - B X

:
A - AED B O£
wa LoadTestl
Eﬂ Scenarios
ﬂ Test Mix
@ Browser Mix
=i=- Metwerk Mix
- (') Constant Load Pattern
Eﬂ Counter Sets
J-[& Application
-] ASP.MET
- MET Application
- 15
-] SharePoint 2010 WFE
- SQL
-] LoadTest
- Controller
[Agent
=l Run Settings
- Run Settingsl [Active]
-l Counter Set Mappings

The following detailed sections explain how to set the parameters in each step.

[238]

Chapter 7

Specifying a scenario

Scenarios are used for simulating the actual user tests. For example, for a public-facing
website the end user could be anywhere and the number of users could be anything,.
The bandwidth of the connection and the type of browsers used by the users also
vary. Some users might be using a high-speed connection and some a slow dial-up
one. But if the application is an Intranet application, the end users are limited to being
within the LAN network. The speed at which the users connect will also be constant
most of the time. The number of users and the browser used are the two main things
which differ in this case. The scenarios are created using combinations relevant to the
application under test. Enter the name for the scenario in the wizard page.

Multiple scenarios can be added to the test with each scenario having a different Test
Mix, Browser Mix, and Network Mix.

M EmployeeMaintenance = =

LoadTestl loadtest = X =

A RE B F

va LoadTestl -
=l Scenarics
Eﬂ Testh "00 Add Scenario...
----- & [3 L Add Tests..
..... 3]
E‘E {3 & Edit Test Mix...
o5 Eru:w:- B Edit Browser Mix...
..... @ [2. == Edit Network Mix...
""" Bl (2 % Open and Manage Results...
----- Bl (2
_____ =102 X cut Ctrl+X
Bl Metwn [Copy Ctrl+C
----- dk [2 M Delete Del
..... & [
- Ez '& Runload Test
,,,,, & [2 Run Selected Test(s)

> Const K& Manage Test Controllers
£l Counter Sets
@ Applicatir
i [ASP.NET
& MET Application -

& Properties Alt+Enter

[239]

Load Testing

The next few sections explain the parameters and the configuration required for the
test scenarios.

Knowing about think time

The think time is the time taken by the user to navigate between web pages. Providing
these times are useful for the Load Test to simulate the test accurately.

Mew Load Test Wizard @

I ﬁ Edit settings for a load test scenario

Welcome Enter a name for the load test scenario:

T

Load Pattern

Test Mix Model Think time profile

Test Mix @ Uze recerded think times
Metwork Mix 1 Use normal distribution centered on recorded think times
Browser Mix *) Do not uze think times
Counter Sets
Run Settings
Think time between test iterations: |0 | seconds

<previous || MNet> || Ensh | [concel

There are three different options to select the think times. Think times are very useful
in case if the recording is done in a high-speed machine but actual test is run in

the low configuration machine. The other reason is to provide enough time for any
background processing to complete before starting with the next step. The options
for think times are:

* Set the Load Test to use the actual think time recorded by the web test.

* The other option is to set the normal distribution of the think time between
the requests. The time slightly varies between the requests, but will be
realistic to some extent.

* The third option configures not to use the think times recorded between
the requests.

[240]

Chapter 7

The think times can also be modified for existing scenarios. To do this, select a scenario
and right-click on it and then select Properties to set the think time.

Microsoft.Visual5tudio TestTools.Web5Stress.5cenarioll -

=] &

Agents to Use
Apply Distribution to Pacing Delay True

Browser Mix (Collection)
Delay Start Time 00:00:00
Disable During Warmup False

IP Switching True
Maximum Test Iterations 0

Mame Scenariol
Metwork Mix (Collection)
Percentage of Mew Users 0

Test Mix (Collection)
Test Mix Type Based on the total number of tests
Think Profile On

Think Time Between Test Iterations L1

Think Time Between Test Iterations

Type the amount of time to wait before start of next iteration in seconds.

Now once the properties are set for the scenario, click on Next in the Load Test
Wizard to set parameters for the Load Pattern.

[241]

Load Testing

Defining the Load Pattern

Load pattern is used for controlling the user loads during the tests. The test pattern
varies based on the type of test. If it is a simple Intranet web application test or a unit
test, then a minimum number of users for a constant period of time is enough. But in
case of a public website, the numbers of users differ from time to time. In this case, it is
better to increase the number of users from a very low number to a maximum number
with a time interval. For example, have a user load of 10 but as the test progresses,
increase it by 10 after every 10 seconds of testing until the maximum user count
reaches 100. So at the 90th second the user count will reach 100 and the increment stops
and stays with 100 user load until the test completion.

Mew Load Test Wizard @

I ﬂ Edit load pattern settings for a load test scenario

Welcome Select a load pattern for your simulated load:
Scenario 71 Constant Load:
[LesdPattern] 5
User Count: B users
Test Mix Model -
Test Mix @ Step load:

101

Metwerk Mix Start user count: | users

Browser Mix 0=
Step duration: | szeconds

102

Counter Sets

Run Settings Step user count: users/step

Maximum user count: | users

I«Er&vinus H Next >]I T H —— J

This type of test with increment of users will help in analyzing the application
behavior at every stage with different user load.

Constant load

If this option is chosen then the load starts with the specified user count and maintains
it throughout the test duration.

* User Count: This is used to specify the number of user counts for simulation.

Step load

The Load Test starts with the specified minimum number of users and the count
increases constantly with the time duration specified, until the user count reaches to
the maximum specified.

[242]

Chapter 7

* Start user count: This option specifies the number of users to start with.

* Step duration: The time duration between the increase in user count from
one step to the next.

* Step user count: This option specifies the number of users to add to the
current user count.

* Maximum user count: This option specifies the maximum number of
user count.

The preceding screenshot shows the parameters set for the Load Pattern used for
the scenario. The next step in the wizard is to set the parameter values for Test Mix
Model and Test Mix for the scenario.

Defining the Test Mix Model

The Load Test model needs to simulate the end users number distribution. Before
selecting the test mix, the wizard provides a configuration page to choose the Test
Mix Model with four different options. They are based on the total number of tests,
virtual users, user pace, and test order.

The test mix contains different web tests, each with a differing number of tests per
user. The number of users is defined using load pattern.

MNew Load Test Wizard @

I ﬁ Select a test mix model for the load test

Welcome How should the test mix be modeled?) ‘ \E‘ }>£ b
Seenario © Based on the total number of test o 2 =
@ ased on E total numuber ol tests
Load Pattern a ‘)‘){ 5 >
_ () Baszed on the number of virtual users
Test Mix () Based on user pace [-]

) ey R S ——— . 5 >
Metwork Mix _) Based on sequential test crder] ‘ I‘)‘ >
Browser Mix & 5%

Counter Sets & 25%
Run Settings

This model of test mix determines which test is run
when a virtual user starts 2 test iteration. At the end of
the load test, the number of times that a particular test
was run matches the assigned test distribution. Follow
this model when you are basing the test mix on
tranzaction percentages in an IS log or in production
data,

< Previous H Mext =] i Finish] i Cancel

[243]

Load Testing

The next page in the wizard provides the option to select the tests and provide the
distribution percentage, or specify the users per hour for each test for the selected
model. The mix of tests is based on the percentages specified or the test per user
specified for each test.

Test Mix Model based on total number of tests

The next test to run is determined based on the selected number of times. The
number of times the Test Run should match the test distribution. For example, if the
test mix model is based on the total number of tests and if three tests are selected
then the distribution of tests will be like the one shown in the following screenshot.
The percentage shows the distribution for the selected tests.

Mew Load Test Wizard @

I ﬁ Add tests to a load test scenario and edit the test mix

Welcome Add one or more tests to the mic
Scenario Test Name % | Distribution H
Load Pattern 1 | Caleulate TotalPriceTest 34 & 1l
Test Mix Model
2 | EmployeeDetails\WebTest a3 " =
e
Network Mix H CodedUITestMethod 1 3 & [| (Ristribute
Browser Mix
Counter Sets
Run Settings

< Previous ” Next =] [FEinish] Cancel

[244]

Chapter 7

Test Mix Model based on number of virtual users

This model determines running particular tests based on the percentage of virtual
users. Selecting the next test to run depends on the percentage of virtual users
and also on the percentage assigned to the tests. At any point, the number of users
running a particular test matches the assigned distribution.

Test Mix Model based on user pace

This option runs each test for the specified number of times per hour. This model is
helpful when we want the virtual users to conduct their tests at regular pace.

Mew Load Test Wizard @

I ﬁ Add tests to a load test scenario and edit the test mix

Welcome Add one or more tests to the mix:
Scenario Test Name Tests Per User Per Hour Add...
Load Pattern 1 | Caleulate TotalFrics Test 0
e Remove
Test Mix Model
T -
U TestM 60
Nebwork Mic n CodedUITestMethod1 ol
Browser Mix
Counter Sets
Run Settings

< Previous ” Next »] ’ Einish] ’ Cancel

[245]

Load Testing

Test Mix Model based on sequential test order

With this option, the test will be conducted in the order the tests are defined. Each
virtual user will start performing the test one after the other in cycles, in the same
order the tests are defined, until the Load Test Run ends.

New Load Test Wizard @

I ﬁ Add tests to a load test scenario and edit the test mix

W -
Welcome Add one or more tests to the mix:

Scenario Test Name Add...

Lead Pattern

1 | Calculate TotalPrice Test
Test Mix Model L
IS

I, gt M
Network Mix a CodedUTestMethod1

Browser Mix
Counter Sets

Run Settings

< Previous ” Next =] [FEinish] [Cancel

Once the Test Mix Model is setup and complete, the next step is to define the
network mix and the distribution percentage.

[246]

Chapter 7

Defining the Network Mix

Click on Next in the wizard to specify the Network Mix values, to simulate the

actual network speed of our virtual users. The speed differs based on user location
and the type of network they use. It could be a LAN network, or cable, or wireless, or
dial-up. This step is useful to simulate actual user scenarios. When you add a network
type, it will be automatically set with an equal distribution to existing types, but this
can be modified as per the need. Here is the default distribution which shows 25
percent of the tests would be tested with each type of network selected.

New Load Test Wizard @

I ﬁ Add network types to a load test scenario and edit the network mix

Welceme Add one or more network types to the mix and specify a distribution:
Scenario Netwerk Type % | Distribution H Add
Lead Pattern 1 [LAN v] 5 o 0 _
Test Mix Model - I __em ove
reem 2 [Cable-D5L 1.5Mbps - 5 7 0
C NeworMx B[Intercontinental\'\fAN 1.5 Mbps v] 5 (5 [| [22t
e
Browser Mix g [BG '] s) O
Counter Sets
Run Settings
Total 100
< Previous] l Next =] [FEinish] [Cancel

The next step in the wizard is to set the Browser Mix parameters, which is explained
in the next sections.

[247]

Load Testing

Defining browser mix

The number of users and number of tests are now defined but there is always a
possibility that all the users may not use the same browser. To represent a mix of
different browser types, go to the next step in the wizard, select the browsers listed
and give a distribution percentage for each browser type.

Mew Load Test Wizard @

I ﬁ Add browser types to a load test scenario and edit the browser mix

Welcome Add ene or more browser types to the mix and specify a distribution:

Scenario Browser Type % | Distribution a
Load Pattern 1 [Internet Explorer 2.0 '] 5 o O
Test Mix Model I Semeve

2 [Chrome2 - 5 3 &

Test Mix Distribute
prmes s ©

Metwerk Mix n[=] s

I ¢ (oo = I 0
Counter Sets
Run Settings

Total 100
« Previous] l Next =] ’ FEinish] ’ Cancel

The test does not actually use the specified browser, but it sets the header information
in the request to simulate the same request through the specified browser.

Counter sets

Testing an application by Load Test includes application-specific performance
including the environmental factors. This is to know the performance of the other
services required for running the Load Test or accessing the application under

test. For example, the web application makes use of IIS and ASP.NET process and
SQL Server. VSTS (Visual Studio Team Server) provides an option to track the
performance of these supporting services using counter sets as part of a Load Test.
The Load Test itself collects the counter set data during the test and represents it as
a graph for easier analysis. The same data is also saved locally to analyze the results
later. The counter sets are common for all the scenarios in the Load Test.

[248]

Chapter 7

The counter set data is collected for the Controller and agents. Other systems which
are part of the load testing can also be added. Most of the time the application
performance is affected by the common services or the system services used. These
counter set results help to understand how the services are used during the test.

The Load Test Creation Wizard provides the option to add performance counters.
The wizard includes the current system by default and the common counter set for
the Controller and agents. The following screenshot shows the default settings for
adding systems to collect the counter sets during the Load Test.

Mew Load Test Wizard

Welcome
Scenaric
Lead Pattern
Test Mix Model
Test Mix
Metwork Mix
Erowser Mix

Run Settings

I ﬁ Specify computers to monitor with counter sets during load test run

Selected computers and counter sets will be added to the default run
settings

Computers and counter sets to monitor:

(-8 sl

Preview selections:

BT

= Application

{NET Applicaticn
& Is

-l MY-PC

i =] ASP.NET

=) NET Application
= 15

Centroller Computer

i[CJE SharePoint 2010 WFE =]l LoadTest
L sqL =] Controller
= B Agent Computers
@ Agent
Add Computer...] i Rermove] Computer Tags:
< Previous ” MNext =] ’ FEinish] ’ Cancel]

There is a list of default counters for any system that is added. The counters can be
selected from the default list. For example, the above image shows that data is to
be collected for ASP.Net, .Net Application, and IIS from My-PC. Using the Add
Computer... option, keep adding the computers on which the tests are running and
choose the counter sets for each system.

Once done with selecting the counter sets, most of the required parameters for the
Load Test are complete. The Load Test is now ready but running the test requires
few more parameters, and providing these is the last step in the wizard.

[249]

Load Testing

Run Settings

These settings are basically for controlling the Load Test Run to specify the
maximum duration for the test and the time period for collecting the data about the
tests. The following screenshot shows the options and the sample setting.

There are two options for the Test Run. One is to control it by a maximum time limit
and the other is to provide a maximum test iteration number. The Test Run will stop
once it reaches the maximum as per the option selected. For example, the following
screenshot shows a test set to run for 5 minutes.

The Details section is used to specify the rate at which the test data should be
collected, namely the Sampling rate, the Description, the Save Log on Test Failure
boolean, and the Validation level option. The Validation level option specifies the
rules that should be considered during the test. This is based on the level that is set
while creating the rules.

The Save Log on Test Failure option is used to capture and save the individual Test
Run details within the Load Test for the failed web or unit tests. This will help in
identifying the problems that occur while running the test within the Load Test but
not outside the context of Load Test.

Mew Load Test Wizard @

I ﬁ Review and edit run settings for a load test

Welcome Specify the length of the load test by:
Scenario @ Load test duration
Load Pattern Warmn-up duration (hh mm ss): 0 0 0
Test Mix Model ry ry =
= e Meds Bun duration (hh mm ss}: 0 b = 0
Test Mix
Network Mix _) Test iterations
Erowser Mix it
Counter Sets Details
T oo e 512 seconds
Description:
Save Log on Test Failure: True -
Yalidation level: High - inveke all validation rules ']

FEinish] ’ Cancel]

[250]

Chapter 7

Finish the wizard by clicking the Finish button, which actually creates the test with
all the parameters from the wizard and shows the Load Test editor, as shown in the

following screenshot:

m EmployeeMaintenance

EmployeeDetailsLoadTest.loadtest R X

W AD B £

%Y EmployeeDetailsLoad Test

=i Scenarios

E||’E‘| Scenariol
- Test Mix
-] Browser Mix

-l Metwork Mix

=i Counter Sets

-] ASP.NET

w-E& MNET Application

- 1S

ﬁ LoadTest

ﬁ Controller

ﬁ Agent

-l Run Settings

S B Run Settingsl [Active]

Eﬂ Counter Set Mappings

-l MY-PC
-l [CONTROLLER MACHINE]
-l [AGENT MACHINES]

[251]

Load Testing

The actual run settings for the Load Test contain the counter sets selected for each
system and the common run settings provided in the final wizard section. To know
more about what exactly these counter sets contain and what the options are to
choose from each counter set, select a counter set from the Counter Sets folder under
the Load Test. Right-click on it and select the Manage Counter Sets... option for
choosing more counters or adding additional systems. This option displays the same
window that was shown as the last window in the wizard.

M EmployeeMaintenance - n x

EmployeeDetailsLoadTest.loadtest 1 X -
B AD BF
& EmployeeDetailsLoadTest

Sl Scenarios

9@ Scenariol

. & Test Mix

&1 Browser Mix

o Metwork Mix

i Step Load Pattern

=

= Manage Counter Sets...
“n Add Custom Counter Set

P =

Open and Manage Results...

B 1) o) B

'L RunLoad Test

¢ g

& Properties Alt+Enter
o

E 0

)

Manage Test Controllers

I
v 7 [
3
[

i}
l}l,‘g

Counter Set Mappings

il MY-PC

- [l [CONTROLLER MACHINE]
B [AGENT MACHINES]

[252]

Chapter 7

We can also add additional counters to the existing default list.

For example, the following screenshot is the default list of categories under the .NET
application counter set, which is shown when you complete the wizard during Load
Test creation.

m EmployeeMaintenance - = =
Z- AL B F
L0 Step Load Pattern a

=il Counter Sets
-] ASP.NET
=
Eﬂ Counter Categories
@ Memary
-8 Metwork Interface
-] PhysicalDisk
-] Processor
-] Systern
-[M8] Process
MET CLR Intercp
MET CLRIT
MET CLR Loading
MET CLR LocksAndThreads
MET CLR Memaory
MET CLR Remoting
MET CLR Security

AEEEEEE

]
&
4

[253]

Load Testing

To add additional counter categories just right-click on the Counter Categories
folder under .NET Applications folder and select the Add Counters option, and
then choose the category you wish to add from the Performance category list. After

selecting the category select the counters from the list for the selected category and
select the instances you want from the list.

Pick Performance Counters

Computer:
MY-PC

Performance category:
| NET CLR Exceptions - |

() All counters () Allinstances

@ Select counters from list

@ Select instances from list

-
= of Exceps Thrown / sec LabAgentService A
of Filters / sec MsDtsSrer
= of Finallys / sec msmdsry
Throw To Catch Depth / sec QTAgentService =
QTDCAgent32
ReportingServicesbervice
sglservr
sqlservr=l
TF5BuildServiceHost

Description:

This counter displays the total number of exceptions thrown since the start =
of the application. These include both \MET exceptions and unmanaged
exceptions that get converted into MET exceptions e.g. null pointer -
reference exception in unmanaged code would get re-thrown in managed
code as 2 MET System.MullReferenceException; this counter includes both

-

[ok || cancel |

[254]

Chapter 7

The preceding image shows the .NET CLR Exceptions category selected, along with

counters such as number of exceptions

thrown and number of Filters per second.

The counter instances selected are devenv, LabAgentService, TFSBuildServiceHost,
and TFSJobAgent. After selecting the additional counters, click on OK, which adds
the selected counters to the existing list for the test. The additional counters added
are for the specific computer selected. There are many other performance categories
which you can choose from the Performance category drop-down as shown in the

following screenshot:

Pick Performance Counters

Computer:
MY-PC

Performance category:

(-7 (el

[.NET CLR Exceptions

MET CLR Exceptions

MET CLR Intercp

MET CLR Jit

MET CLR Leading

MET CLR LocksAndThreads
MET CLR Memory

MET CLR Metworking

JMET CLR Metworking 4.0.0.0
MET CLR. Remeting

MET CLR Security

MET Data Provider for Oracle
MET Data Provider for SglServer
MET Memcry Cache 4.0
APP_POOL_WAS

ASPLMET Applications
ASPMET Apps v2.0.50727
ASPLMET Apps v4.0.30319
ASP.MET State Service
ASPMET v2.0.50727
ASPMET +4.0,30319
Battery Status

BITS Met Utilization
Browser

L Cache

Client Side Caching
Databaze

Databasze ==» Instances
Databaze ==> TahkleClasses
Distributed Transaction Coordinator

ASP.MET

13

m

[255]

Load Testing

What is shown in the preceding screenshot is the existing counter sets. What if a
custom performance counter needs to be added to the run settings for the test?
Create a new counter by choosing the Add Custom Counter option in the context
menu that opens when you right-click on the counters sets folder. The following
screenshot shows a new custom performance counter added to the list.

w EmployeeMaintenance - Loa.. = O X (| Properties v AX

LoadTestl loadtest & X _ Microsoft.Visual5tudio. TestTools Web5Str -

2]
W RE B F ElL R
K LoadTestl o] ||F M
$5 TOaCes Marme Custom1

Eﬂ Scenarics

E|IE Scenariol

ﬂ Test Mix

B Browser Mix L

e Metwork Mix Type the name of the performance counter

L. Constant Load Pattern st

=l Counter Sets

E‘ Application

G- ASP.NET

[MET Application

- 05

E‘ SharePoint 2010 WFE

- SqL

E‘ LoadTest

E‘ Controller

E‘ Agent

1l Customl

-l Run Settings

a P Run Settingsl [Active]

mﬂ Counter Set Manninos

[256]

Chapter 7

Now select the counter, right-click on it and choose the Add Counters option and
select the category, and pick the counters required for the custom counter set. For
example, add counters to collect the Network Interface information, such as number

of bytes sent and received per second and the current bandwidth during the test.
Select these counters for the counter set.

Pick Performance Counters

w EmployeeMaintenance] Computer:

LoadTestl loadtest + X MY-PC v
e RER B £ Performance category:

- - [Netwnrklnterface -
- Scenarios

E||3 Scenariol 0 All counters () Allinstances

ﬂ Test Mix @ Select counters from list @ Select instances from list
] Browser Mix

) Bytes Received/sec Broadcom Metlink [TM] Fast Ethernet
== Netwark Mix Bytes Sent/sec Dell Wireless 1335 WLAN Mini-Card
- Constant Load Bytes Total/sec isatap{E7355314-22B0-4A00-9036-T6E4|
- Counter Sets Current Bandwidth isatap.{FAZ20EE91-E581-42C8-03ADC-CE3
E‘ Application Offloaded Connections |sa_tap.|0ca|._|an -)
& ASP.NET Cutput Queue Lr:ngt_h Microscft ‘u’lrtulal WiFi Miniport clapter
= ' o Packets Outbound Discarded Teredo Tunneling Pseudo-Interface
& MET Application Packets Outbound Errors
&= 15 Packets Received Discarded
El SharePoint 2010 Packets Received Errors -
= saL Description:

] LoadTest

= Bytes Received/sec is the rate at which bytes are received over each network »
& Controller

adapter, including framing characters. Metwork Interface\Bytes Received/sec

] Agent is 3 subset of Metwork Interface!\Bytes Total/sec.
e &l Customl
-l Run Settings s
BB Run Settingsl [Act
E-Jl Counter Set I [ok] [Lancel

[257]

Load Testing

To get the custom counter set as part of all systems for the Load Test, add this as
part of the run settings on all the systems. Select the Run Settings folder, right-click
and choose the Manage Counter Sets option from the context menu, and choose the
custom performance counter Custom1 shown under all available systems. The final
list of Run Settings would look as shown in the following screenshot:

w EmployeeMaintenance - Loa... ™= B x

:
A ABE B O£
=-& Customl -
Elﬁ Counter Categories
B@ Metwork Interface
aﬁ Counters
@l Bytes Received/sec
..[H] Bytes Sent/sec
@ Bytes Total/sec
..]8] Current Bandwidth
-l Run Settings
EI P Run Settingsl [Active]
- Counter Set Mappings
o | MY-pC
- Application
-] ASP.MET
El MET Application
@ s
(@] SharePoint 2010 WFE
- saL
T cion
-l [CONTROLLER MACHINE]
o LoadTest
&= Ceontroller
-l [AGENT MACHIMES]
@ ;:\gr;nt -

Keep adding all the custom counters and counter sets and select them for the systems
used for running the test.

[258]

Chapter 7

The main use of these counters is to collect the data during the test, but at the same
time they track the readings as well. The Load Test has an option to track the counter
data and indicate if it crosses the threshold values by adding rules to it, which are
explained in the coming section.

Threshold rules

The main use of the counters and counter sets are to identify the actual performance
of the current application under test, and the usage of memory and time taken for the
processor. Threshold limits can be set for the data collected during the test and the
test engine can alerted if it crosses the threshold limit. For example, alert is required
when the system memory is almost full. Also if any process takes more time than the
expected maximum time, the system should notify it so that immediate action can be
taken. These threshold rules can be set for each performance counter.

Select a performance counter and choose the Add Threshold Rule option, which opens
a dialog for adding the rules.

Mew Load Test Wizard @

I ﬁ Specify computers to monitor with counter sets during load test run

Welceme Selected computers and counter sets will be added to the default run
Scenaric settings
Load Pattern Computers and counter sets to moniton Preview zelections:
Test Mix Medel EYET] =@ My-pC
Test Mix = Application = ASP.NET
. &= ASP.MET = NET Application
Metwark Mix = NET Application i IS
Browser Mix = 15 Controller Computer
| Countersets | [CI&E sharePoint 2010 WFE & LoadTest
Rlun Settings L SaL = Controller
Agent Computers
il Agent
Add Computer...] l Remove] Computer Tags:
< Previous] I Next =] [FEinish] [Cancel

[259]

Load Testing

There are two different types of rules that can be added. One is to compare with
constant values, and the other is to compare the value with the derived value from
some other performance counter. The following rules explain different ways of
setting the threshold values.

Compare Constant: This is to used compare the performance counter value
with a constant value. For example, you may wish to generate a warning
threshold violation if the available Mbytes reaches to 200 and a critical
message if it is less than or equal to 100. The Alert If Over option can be set
to true or false, where True denotes that the violation would be generated

if the counter value is greater than the specified threshold value, and False
denotes that the violation would be generated if the counter value is less than
the specified threshold value.

In the following screenshot, the Warning threshold constant value is set to
200 to trigger the warning violation and the Critical threshold value is set to
100 for the critical violation message.

Compare Counters: This is used to compare the performance counter value
with another one. The functionality is otherwise similar to the first option.
But here the performance counter values are compared instead of comparing
it with constant.

Add Threshold Rule -7 =

Select a rule:

Fa| Compare Constant
4% Compare Counters

Description for selected rule:

Broperties for selected rule:
L
Dependent Counter
Dependent Computer
Dependent Category
Dependent Counter Mame
Dependent Instance
4 QOptions
Alert If Over True IZ|
4 Threshold Values
Warning Thresheld Value a
Critical Threshold Value 0

Alert If Over

True indicates that a thresheld viclation is generated if the perfermance
counter value is greater than the threshold value. False indicates that ...

Compare the value of a perfermance counter with the value derived frem ancther perfermance counter,

QK l l Cancel

[260]

Chapter 7

The preceding screenshot shows the options for adding Compare Counters to

the counter set. The warning and critical threshold values are constants, which is
multiplied by the dependent counter value and then compared with the current
counter value. For example, if the dependent counter value is 50 and if the constant
is set to 1.25 for warning threshold, then the violation will be raised when the current
counter value reaches a value of (50 * 1.25 =) 62.5.

The following screenshot shows an example of the threshold violation whenever the
value reaches above the constant defined in the rule.

EmployeeDetailsLoadTest [7:35 PM] >y B X
=] Graphs ER Tables H-14 @ G -
0 Received eror attempting to read results from the itory. View detailed results 15 threshold violations 148 errors
Counters [KE)‘Iﬂdi(EtDVS v] [Page Response Time -
1 100
[E] Cverall 0
[%] Scenaricl
B, Computers 500 500
S e X
00:00 i 0010 00:20 0030 0040 00:50 3'_.:0 00:00 JQ:-'_:I i 00:20 i 0020 0040 0050 0100
[System under Test '] [CUntrUHEr and Agents -
100 il 00
Q@ 9 o :
500 500
Overview 00:00 i 30:-'_3 i 30‘-23 i 30:-53 i DO‘;CI i 30:-53 i :I_DCI 00:00 0010 00:20 0020 0040 0050 0L-00
4 Configuration ; .
Counter Instance Category Computer Color Range Min Pax Avg, Last
Centreller Local run
Sampling Rate 00:05 4 W System under Test -
4 Requests | % Processor Tim _Tetal Processor MY-PC —_— & 451 93.8 76.6 688
Total Requests 146 v Available MByte: - Memory MY-PC —&— 10,000 1402 1415 1,408 1,402
Requests/Sec 243 w| Bytes Total/sec _Total Web Service MY-PC —a— 1,000 0 0 0 0
Failed Requests 145 v| Total Method Re _Total Web Service MY-PC —_— 0 0 a 0
Carhed Reanests 01 7! 4 Hd Controller and Agents
4 W2 2L Dy ooy Tim 0 Dr, cenr AV D 100 a43a 931 JAE Al -

You can see from the screenshot that there were fifteen threshold violations raised
during the Load Test Run as shown at the top summary information about the test.
The graph also indicates when the counter value had reached a value above the
constant defined in the rule. As the graph shows, the value has crossed the value 90,
which is more than the allowed limit defined in the rule. If the value is above the
warning level, it is indicated as yellow and it is red if it is above the critical threshold
value. These rules will not fail the test but will prompt an alert, if the values are
above the set thresholds.

[261]

Load Testing

Editing Load Tests

The Load Test can contain one or more scenarios for testing. These scenarios can be
edited any time during the design phase. To edit a scenario, select the scenario you
want to edit and right-click on it to edit the Test Mix, Browser Mix, or Network Mix
in the existing scenario, or add a new scenario to the Load Test. The context menu
has different options for editing as shown in the following screenshot:

M EmployeeMaintenance - B x
EmployeeDetailsLoadTest.loadtest A X -
B- AD B F

¥ EmployeeDetailsLoadTest -

=l Scenarios

|_:_|ﬂ Te 00 Add Scenario...
& A AddTests..
GBI BT & bt Test M.
Iy @] Edit Browser Mix...

..... B = Edit Network Mix...
""" B #. Open and Manage Results...

..... iy o Cut Ctrl+X
..... < O Copy Ctrl+C
""" & M Delete Del

'A Runload Test

ol Counter ¢ Run Selected Test(s)
E‘ ASPN & Manage Test Controllers

& MNET.
= Ei o Pru:upderties Alt+Enter

E||E| Memory
! =@ Counters -

[262]

Chapter 7

The Add Scenario... option will open the same wizard used for adding the first
scenario to the Load Test when the test was created. Keep adding the scenarios
as many as required for the test. The scenario Properties window also helps to
modify properties such as think profile, the think time between the test iteration,

and many more.
Properties * O X

Microsoft.VisualStudio. TestTools. WebStresz, Scenariolll -

[E]% | #

E General
flame T —

B Mix

Browser Mix (Collection)

Metwork Mix (Collection)

Test Mix (Collection]

Test Mix Type Based on the total num
B Options

Agents to Use
Apply Distribution to Pacing Delay True

IP Switching True
Maximum Test Iterations 0
Percentage of Mew Users 0
Think Prcfile Normal Distribution
Think Tire Between Test lterations 0
B Timing
Delay Start Time 00:00:00
Disable During Warmup False
Mame

Type a name for the scenaric.

[263]

Load Testing

The Add Tests... option is used for adding more tests to the test mix from the tests
list in the project. Adding a test also adjusts the distribution, but this can be edited

using the Edit Test Mix option.

The Edit Test Mix... option is used for editing the test mix in the selected scenario.
This option will open a dialog with the selected tests and distribution.

Edit Test Mix [~ 5| 3]

Test mix model:

’Test mix percentage based on the number of tests started VI
Test Mame % | Distributicn H
- EmployeeDetailsWebTest 50 & |
Remaove
2 | CalculateTotalPriceTest 50 o =
Total 100

Initialize and terminate tests

[Select an initialize test to execute before other tests for each virtual user:

] Select a terminate test to execute after other tests for each virtual user:

OK] ’ Cancel

The Edit Test Mix... option can be used to:

* Change the test mix model listed in the drop-down.
* Add new tests to the list and modify the distribution percentage.

* Select an initial test which executes before other tests for each virtual server.
The browse option next to it opens a dialog showing all the tests from the
project, from which we can select the initial test.

[264]

Chapter 7

* Similar to the initial test, we can choose a test as the final test to run during
the test execution. Same option is used here to select the test from the list of
available tests.

The Edit Browser Mix... option opens the Edit Browser Mix dialog from which you
can select a new browser to be included to the browser mix and delete or change the
existing browsers selected.

The Edit Network Mix... option opens the Edit Network Mix dialog from which you
can add new browsers to the list and modify the distribution percentages and also
can change or delete the existing network mix.

For changing the existing load pattern, select the load pattern under Scenarios and
open the properties window which shows the current patterns properties. You can
change or choose any pattern from the available ones in the list as shown in the
following screenshot. There are three different patterns available, namely Step,
Constant, and Global based.

Properties = 0O X | Properties ~ [X | Properties *Aax
Microsoft.VisualStudio.TestTools.WebStress.SteploadPre - Microsoft.VisualStudio TestTools WebStress.ConstantLo: ~ Microsoft.VisualStudio. TestTools.WebStress.LoadTestGo -
]2
] Load Pattern E Load Pattern B Load Pattern
[Peren— =P [O oo <] N o ted [<]
E Parameters B Parameters B Options
Initial User Count 10 Constant User Count 1 Lower Yalues Imply Higher Resour False
Maximum User Count 200 Stop Adjusting User Count When (False
Step Duration (seconds) 10 El Performance Counter
Step Ramp Time (seconds)] Category Processor
Step User Count 10 Computer MY-PC
Counter % Processor Time
Instance _Total
Bl Target Range for Performance Counter
High End a0
Low End 70
El User Count Limits
Initial User Count 10
Mazximum User Count 1000
Mazximum User Count Decrement 3
Mazximum User Count Increment 3
Minimum User Count 1
Pattern Pattern Pattern
The Load Pattern for the load test. Select Constant, Step, o The Load Pattern for the load test. Select Constant, Step, or The Load Pattern for the load test. Select Constant, Step, or
Goal Based. Goal Based, Goal Based.

The Step Load Pattern has an initial user count and a maximum user count, along
with a step duration and step user count. In the preceding screenshot, every 10
seconds the user count would be increased by 10 until the maximum user count
reaches 200.

The Constant Load Pattern has only one constant user count value. The user count
will remain the same throughout the test.

[265]

Load Testing

The Goal Based Load Pattern has lot of parameters to target a particular machine
and particular counter category and counter. Parameters can be set for initial user
count, minimum user count, maximuim user count, user count decrement, user count
increment and adjusting the user count.

There can be multiple Run Settings for Load Tests, but at any time only one can
be active. To make the run settings active, select Run Settings, right-click on it and
select Set as Active. The properties of your Run Settings can be modified directly
using the properties window. The properties that can be modified include logging,
results storage, SQL tracing, test iterations, timings, and the web test connections.

Properties A=
Microsoft.VisualStudic, TestT cols.WebStress. RunCenfigUl -

Description -
Maximum Errors per Type 1000
Maximum Request URLs Reported 1000
Maxirmum Thresheld Viclations 1000
MName Run Settings1
Run unit tests in application demain True
Validation Level High
El Logging
Maximum Test Logs 200
Save Log Frequency for Completed Tests 1]
Save Log on Test Failure True
El Results
Storage Type Database E
Timing Details Storage All Individual Details
B SQL Tracing
Maximum Trace File Count 2
Minirur Duration of Traced S5QL Operaticns 300
Rell over Trace Files True

5QL Tracing Cennect String
5QL Tracing Directory

5QL Tracing Enabled False
B Test Iterations
Test Iterations 100
Use Test Iterations False
= Timing
Cool-down Duraticn 00:00:00
Run Duraticn 00:01:00
Sample Rate 00:00:05
Warm-up Duration 00:00:00
Bl WebTest Connections
WebTest Connection Model Connection Per User
Storage Type

e way to store test results. Select none or database.
Th y to store test Its. Select latab

[266]

Chapter 7

Adding context parameters

We have seen the details of context parameters in Chapter 5, Web Performance Test.
Web tests can have context parameters which can be used in place of the common
values used across multiple requests. For example, multiple requests may have the
same web server name, which can be replaced by a context parameter. Whenever the
actual web server changes, then just change the context parameter value and it will
replace all the requests with the new server name during runtime.

The Load Test is created based on the web tests or unit tests are created already as part
of the project. There could be a context parameter like server name used in the web test
which is part of the Load Test. There is also a possibility that the server name could
change for the Load Test alone. In case of change in the context parameter for the Load
Test, the parameter already used as part of the web test should be overridden. To do
this, just add another context parameter to the Load Test with the same name as used
in the web test. The context parameter added to the Load Test will override the same
context parameter used in the web tests. To add new context parameter to the Load
Test, select Run Settings and right-click to choose the Add Context Parameter option,
which adds a new context parameter. For example, the context parameter used in the
web test has the web server value as:

this.Context .Add ("WebServerName", "http://localhost:3062");

Now to overwrite this in Load Tests, add a new context parameter with the same
name as shown in the following screenshot:

M EmployeeMaintenance - o x

EmployeeDetailsLoad Test.loadtest R X A

G- RB & F

¥a EmployeeDetailsLoadTest

=l Scenarics

=B Scenariol
[l Test Mix
B Browser Mix
=i= Metwork Mix

[l Counter Sets

£l Run Settings

&-p Run Settingsl [Active]
ﬂ Counter Set Mappings
-l Context Parameters

1) \WebServerhame=http://MyServer/

[267]

Load Testing

Storing results in central result store

All information collected during a Load Test Run is stored in the central result
store. The Load Test Results store contains all the data collected by the performance
counters and the violation information and errors that occurred during the

Load Test. The result store is the SQL server database created using the script
loadtestresultsrepository.sqgl which contains all the SQL queries to create

the objects required for the result store.

If there are no controllers involved in the test and if it is the local test, we can create
the result store SQL database using SQL Express. Running the script creates the

store using SQL Express. Running this script once on the local machine is enough

for creating the result store. This is a global central store for all the Load Tests in the
local machine. To create the store, open the Visual Studio Command Prompt and run
the command with the actual drive where you have installed the Visual Studio.

cd c:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE
In the same folder run the following command which creates the database store:
SQLCMD /S localhost\sqglexpress -i loadtestresultsrepository.sql

If you have any other SQL Server and if you want to use that to have the result
store then you can run the script on that server and use that server in connection
parameters for the Load Test. For example, if you have the SQL Server name as
sQLserverl and if the result store has to be created in that store then run the
command as follows:

SQLCMD /S SQLServerl -U <user name> -P <password> -i
loadtestresultsrepository.sql

All of these above commands create the result store database in the SQL Server.

[268]

Chapter 7

Object Explorer * 0 X
Connect~ 3§ 3J g “F EQ
= Lﬂ MY-PCIYPC (SQL Server 11.0.3128 -
= 1 Databases
[Systemn Databases
[Database Snapshots
| HAAPPSVEMPLOYEERAINTEN
|) LoadTest2010
ERT] LoadTest2012]
[Database Diagrams
1 Tables
LA Views
[Synonyms
[Programmakbility
1 Service Broker
A Storage
[Security s

m

If you are using a controller for the Load Tests, the installation of the controller itself
takes care of creating the results store on the controller machine. The controller can
be installed using the Microsoft Visual Studio Agents 2012 Product.

To connect to the SQL Server result store database select the Load Test option from
the Visual Studio IDE and then select the Manage Test Controllers... window.
This option will only be available on the controller machine. If the result store is

on a different machine or the controller machine, select the controller from the list
or select <Local-No controller>, if it is in the local machine without any controller.
Then select the Load Test Results store using the browse button and close the
Manage Test Controller window.

The controllers are used for administering the agent computers and these agents
plus the controller form the rig. Multiple agents are required to simulate a large
number of loads from different locations. All the performance data collected from all
these agents are saved at the central result store at the controller, or any global store
configured at the controller.

[269]

Load Testing

Running the Load Test

Load Tests are run like any other test in Visual Studio. Visual Studio also provides
multiple options for running the Load Test.

One is through the Load Test menu in Visual Studio. Select the Menu option and
then choose Run and Selected Test to run the tests that is currently selected.

The second is the inbuilt Run option in the Load Test editor toolbar. Open the Load
Test from the project which opens the Load Test editor. The toolbar for this Load
Test editor has the option to run the currently opened Load Test.

The third option is through the command line. This utility is installed along with
Visual Studio. Open the Visual Studio Command Prompt and from the folder where
the Load Test resides, run the command to start running the Load Test as shown:

mstest /testcontainer:LoadTestl.loadtest

In all the preceding cases of running Load Test through UI, the Load Test editor will
show the progress during the Test Run, but the command-line option does not show
this. Instead, it simply stores the result to the result store repository.

EA Developer Command Prompt for V52012 EI@

C:“Apps“EmployeeMaintenanceslebfindLoadTestProjectl*mstest Atestcontainer:Employe
eletailsLoadTest. loadtest

Microsoft (R)> Test Execution Command Line Tool Version 11.8.68315.1

Copyright <(c?> Microsoft Corporation. All rights reserved.

Loading EmployeeDetailsLoadTest.loadtest. ..
Starting execution...

Top Level Tests

employeedetailsloadtest . loadtest
test(s>» Passed. 1 Error

Test Run Warning.
Error

: G:sAppssEmploveeMaintenancesWebAndLoadTestProjectlisIestResults™8a
theeshkumar_MY-PC 2013-@5%-85 22_16_53.trx
Test Settings: Default Test Settings

It can be loaded later to see the Test Result and analyze it. Follow the given steps to
open the result for the tests that are already run:

1. Navigate to Menu | View | Other Windows | Test Results.

2. From the Connect drop-down select the location for the Test Results store.
On selecting this you can see the trace files of the last run tests getting loaded
in the window.

[270]

Chapter 7

Test Runs - M X
Connect: Employeeh"laintenance\TestResuIts|v X Disconnect
Test Run Mame - Status Owner
4 Completed Runs (25) (CVApps\EmployeeMaintenance\TestResults) -
@ Satheeshkumar@MY-PC 2013-05-05 23:18:58 | 0/1 passed, 1 failed MY-PCSatheeshkumar
@) Satheeshkumar@MY-PC 2013-05-05 23:18:22 | 1/1 paszed MY-PC\Satheeshkumar
€3 Satheeshkumar@MY-PC 2013-05-05 22:28:27 | 0/1 passed, 1 failed MY-PC\Satheeshkumar
€3 Satheeshkumar@MY-PC 2013-05-05 22:23:19 | 0/1 passed, 1 failed MY-PC\Satheeshkumar
i Satheeshkumar@BAY-PC 2013-05-05 221956 10/ naszed 1 failed WY-PO Sathesshkirmar

Output Test Results Test Runs

3. Double-click on the desired Test Runs shown in the window that connects
to the store repository and fetches the data for the selected Test Result and
presents in the Load Test window. The end result of the Load Test editor
window will look like the one shown as follows with all the performance
counter values and the violation points.

EmployeeDetailsLoadT est [11:19 PM]

ﬂSummary @Tables Q“Detail Eﬂ'h = Q' o";=| -

9 Test Completed 3 threzhold violations 146 errors
Counters ’Keylndicators v] Page Response Time -
100
& Cwerall m ||
Scnac A
l?l CENAro. 500 - a0
B3 Computers \
M) Errors N S —— "\ L
0000 0010 0020 0030 0040 0050 QLD 0000 OXID 0020 0030 0040 0050 OLOO

V] Controller and Agents

) &\—1) a\.
500) 500

/("‘L] -;\lsg—-—-é—-—ﬂd O
EVI VIR ;

000 0w 00z 00 5 0L0 0000 ODI0 0020 0030 0040 OBED {000
I I I I ...
Counter Instance Category Compu.. Color Range Min IMax Avg
vl Available.. - Memery MY-PC —=— 10,000 1,029 1,093 1,060 -
|l Bytes Tota.. _Total Web Ser.. MV-PC —a— 10,000 0 1118 273
vl Total IMet... _Total Web Ser.. MY-PC —_—] 0 0.4 0.15
4 g Controller and Agents
vl 0 Processor MY-PC 100 B85 9.7 246
lv| Available... - Memory MY-PC —=— 10,000 1,029 1,093 1,080

More details about the graph is given in the Graphical View subsection.

[271]

Load Testing

Analyzing and exporting Test Results

The Load Test Result contains loads of information about the test and various counter
data. All of these details are stored in the results repository store. The graph and
indicators shown during the Test Run contain only the most important cached results;
the actual detailed information is stored in the store. The result can be loaded later

from the store for analysis.

There are different ways to look at the Test Results using the options in the Load
Test Results window. There are four different views which can be switched any
time to look at the result. The following one is the graphical view of the Test Results.
The graphical view window contains different graphs shown for different counters.

Graphical view

The graphical view of the result gives a high-level view of the Test Result, but the
complete Test Result data is stored in the repository. By default, there are four different
graphs provided with readings. Select the drop-down and choose any other counter
reading for the graphical view.

EmployeeDetailsLoadTest [11:19 PM]

I summary | Graphs | B Tables @ Detail H-1 = fo 3 & o -
0 Test Ci leted 3 threshold viclations 146 errors
TEIES ’Keylndicators v] Page Response Time A
1 100
] Overall 1 Z'\ -
[®] Scenaricl w00 o .
Bg Computers \ // \\
] Errors R . —
00:00 0010 30“23 30‘.'33 30“43 30‘.'53 0100 00:00 DO:I'_:I 30:‘23 DO‘.ISZI 30“43 30‘.'53 0100
|| [} || 11
’System under Test v] Contrcller and Agents v]

TN i N
A A RS

o 0020 0030 0040 0050 0100 00:00 0010 0020 0030 0040 0050 01:00

00:00
|| [}

Counter Instance Categery Compu.. Color Range Min IMax Avg.
[l Available .. - Memory MY-PC —=— 10,000 1028 1,083 1,080 -
[Bytes Tota.. _Total Web Ser.. MY-PC —a— 10,000 0 1116 273
|wl Total Met.. _Total Web Ser... MY-PC —_—] Q 0.4 015

« [Controller and Agents

Processor
vl Available .. - Memory MY-PC —a— 10,000 1,029 1,083 1,060

[272]

Chapter 7

* Key Indicators: This graph shows the data collected for average response
time, JIT percentage, threshold violations per second, errors per second, and
the user load. The details about the graph are given below the four graphs
section, which describes the actual counter data collected during the test
with the corresponding color coding with minimum, maximum, and average
value for the counter.

* Page Response Time: This graph explains how long the response for each
request took in different URLs. The details are given below the graphs.

* System under Test: This is the graph, which presents the data about different
computers or agents used in test. The data includes readings such as the
available memory and the processing time.

* Controller and Agents: The last graph presents the details about the system
or machine involved in Load Test. The data collected would be the processor
time and the available memory.

The color coded lines in the graph has corresponding summary information in the grid
below the graphs area with the color legends. The details contain information such as
the counter name, category, range, min, max, and average readings for each counter.
The legends grid can be made visible or invisible using the option in the toolbar.

For example, in the preceding image you can see the graph Key Indicators on the
top-left of all the graphs. Different types of readings are plotted in different colors in
the graphs. The counters from this counter set are also presented in the table below
the graphs, with all the counters and the corresponding colors for the counter used in
the graph.

[273]

Load Testing

New graphs can be added to collect details for specific counters. Right-click on any
graph area and select the option Add Graph, which adds a new graph with the given
name. Now expand the counter sets and drag-and-drop the required counters on the
new graph so that the readings are shown in the graph as shown in the following
sample graph Graphl:

EmployeeDetailsLoadTest [11:19 PM]

ﬂSummary ﬂTables Q{Detail EH'E IZI)(Gv o’=‘_| a-

@ Test Compl 1 3 thresheld viclations 146 errors

Counters Graphl v" Page Response Time -
= [Metwork Interface - 1 :
[Bytes Received/sec

[Bytes Sent/sec 500 050
@ P b w =,

100

[Current Bandwidth . - e - : i i . .

@ OLItFILIt Queue LEI"Igth 00:00 00:10 00:20 0030 0040 050 0100 00:00 0010 00:20 00:30 0040 00:50 0100
[M] Packets Received/sec [[
] Packets Sent/sec ’System under Test '] ’Controller and Agents -

= PhysicalDisk

100 100

= [M] Process

RS Privileged Time

[®] = Processor Time 500 m 00

] 2 User Time / \\ /_ZL,/ \

[®] Handle Count =t e —

[M] Private Bytes 0000 0010 0020 OO0 00D OO0 010D 0000 OXI0 0020 0030 0040 0050 0100
L

] Thread Count I (| I (|
[®] Virtual Bytes

[Working Set Counter Instance Ca.. Co.. C.. Ra.. Min Max Avg.
= Bg Processor 4 M Graphl

[% Privileged Time vl % Privileged Time _Total Pro.. MY. -# 1. & 282 333 881

2 % Processor Time |E||% Processor Time _Total Pro... MY.. 1.B111 995 278

[% User Time vl %5 Uszer Time _Total Pro.. MY. 1.8 7.80 683 182
[Systern I ™ Page Response Time

I B System under Test

M Web Service
" I Hd Controller and Agents

4 »

The Graphl is the new graph added to the result with a few processor related counters
added to it. The counters and readings are listed in the table below the graphs.

[274]

Chapter 7

Summary view

The Summary view option in the Load Test editor window toolbar presents more
information on the overall Load Testing.

The most important information is the top five slowest pages and the top slowest
tests. The tests are ordered based on the average test time taken for each test and the
time taken for each page request.

Test Run Information: This section provides the overall Test Run details like
start date and time, end date and time, test duration, number of agents used
for the test and the settings used for the entire test.

Overall Results: Provides information such as the maximum user load,
number of tests per second, request count, pages per second and the average
response time during the Test Run.

Test Results: This section shows status information such as the number of
tests conducted for each test selected for Load Testing. For example, out of
100 tests run for the web test selected for Load Testing, the number of tests
passed and the number of tests failed.

Page Results: This section reports information about the different URLs used
during the test. This result gives the number of times a page is requested and
the average time taken for each page. The detail includes the test name to
which the URL belongs.

Transaction Results: The transaction is the set of tasks in the test. This section
in the Summary view shows information such as scenario name, test name,
the elapsed time for testing each transaction tests, and the number of times this
transaction is tested.

System under Test Resources: This section reports information about systems
involved in testing, the processor time for the test, and the amount of memory
available at the end of test completion.

Controller and Agents Resources: This section provides details of the
machines used as controller and agents for the test. Details such as processor
time percentage and the available memory after the test completion are

also displayed.

[275]

Load Testing

* Errors: This section details out the list of errors that occurred during the test,
information like the error type, subtype, and number of times the same error
has occurred during the test and the last message from the error stack.

EmployeeDetailsLoadTest [11:19 PM]

95% Page Time (zec)

= Graphs FH Tables Q; Detail k| 0"==|
0 Test Completed 2 thresheld viclations 146 errors
Load Test Summary
Test Run Information Key Statistic: Top 5 Slowest Pages
Load test name EmployeeDetailsLoadTest URL {Link to More Details)
Description http: {localhost: 30621 0,30
Start time 5/5/2013 11:1%: 10 FM http: /localhost: 3062 EmployeeInsert.as... 0.037
End time 5/5/2013 11:20:10 FM http: (flocalhost: 3062 Employeelist.aspx | 0.0040
Warm-up duration 00:00:00 http:/flocalhost: 3062 EmployeeInsert.as... 0
Duration 00:01:00
Controller Local run Key Statistic: Top 5 Slowest Tests
Mumber of agents 1 Name 95% Test Time (sec)
Run settings used Run Settings1 EmployeeDetailsWebTest 4.7
Overall Results
Max User Load 20
Tests/Sec 0.37
Tests Failed 22
Avg. Test Time (sec) 30.2
Transactions/Sec 0
Avg. Transaction Time (sec) 0
Pages/Sec 2,42
Ava, Page Time (sec) 0.026
Reguests/Sec 242
Reguests Failed 145
Regquests Cached Percentage v}
Avg. Response Time (sec) 0.031
Avg. Content Length (bytes) i]
~ Test Results
Mame Scenario Total Tests Failed Tests (% of total) Avg. Test Time (sec)
EmployeeDetailsWebTest Scenario 1 22 22 (100) 30.2
~ Page Results
URL {Link to More Details) Scenario Test Avg. Page Time (sec)
http: ocalhost: 3062f Scenariol EmployeeDetailsWebTest 0.078
http: {localhost: 3062 Fmployee Insert, aspyx {GET}: Scenariol | EmployeeDetailsWebTest 0.0087
http: /localhost: 3062 Employes List. aspx Scenariol EmployeeDetails\WebTest 0.0037
http: {localhost: 306 2 Employes/Insert. aspx {POST} Scenariol EmployeeDetails\WebTest 0
4 | i |

Count
42

41

m

We have seen the Summary view and the Graphical view and customizing the

Graphical view by adding custom graphs and counter to it. The tool bar provides

a third view to the results which is the tabular view.

[276]

Chapter 7

Tables view

The Tables view provides summarized Test Result information in a tabular format.
By default there are two tables shown on the right pane, with the table on top
showing the list of tests run and their run details like the test name, scenario name,
total number of tests run, number of tests passed, number of tests failed, and the test
time. The second table below the first one shows information on Errors that occurred
while testing. The details shown are the type of exceptions, subtype of the exception,
number of exceptions raised, and the detailed error messages.

EmployeeDetailsLoadTest [11:19 PM] *xAaXx

I Summary [Graphs %Detail H-1 &

0 Test Completed 3 threzhold viclations 146 errors

Counters ’TEStS ']
[Overall Test Scenario Total Passed Failed Tests/Sec Test Time 95% Test Time
M) Scenariol EmployeeDetails\WebTest Scenaricl 220 1} 220 0.44 0.2 417
= BF Computers

B My-PC

M) Errors

Errors -
Type Subtype Count Last Message

Total 146

Exception SocketException 122 The requested address is not valid in its context 127.0.0.1:3082
Exception WebTestExcep.., 22 Context parameter 'SHIDDENL,_EVENTARGUMENT' not found i
Exception LoadTestCoun... 1 The performance counter category "Active Server Pages' cannot
Exception MullReference.. 1 Object reference not set to an instance of an chject.

4 4

Both of these table headers are drop-downs which contain multiple options like
Tests, Errors, Pages, Requests, SQL Trace, Test Details, and Thresholds and
Transactions. You can select the option to get the results to be displayed in the
table. For example, the following screenshot shows the tabular view of the threshold
violations and the web pages during the test.

[277]

Load Testing

The Threshold violation table shows detailed information on each violation that
occurred during the test. The counter category, the counter name, the instance type,
and the detailed message explain the reason for the violation, showing the actual
value and the threshold value set for the counter.

The next table below Threshold shows the pages visited during the test and the
count of total visits per page, with other details such as the network used for testing
and the average, minimum, and median time taken for the page visits.

EmployeeDetailsLoadTest [11:19 PM]

I summary [Graphs |FH Tables | 35 Detail H-% - & -

0 Test Completed 3 threshold viclations 146 errors

Counters Thresholds -

[Overall Time Computer Category Counter Instance Message

[H] Scenariol 00:00:05 MY-PC Processor % Process.. 0 The value 98.67339 exceeds the critical thresheld value of 90.

= '—% Computers 00:00:05 MY-PC Processor % Process... _Total The value 33.5175% exceeds the critical threshold value of 90,
'—% MY-PC 00:00:15 MY-PC MET CLRIT % Timeinlit _Globall The value 76.07738 exceeds the critical threshold value of 50.

[H] Errors

Pages -
Page Scenario Test Metwork Total Avg. Min Median 90% -
localhest:3062/ Scenaricl EmployeeDetai.. 3G 10 0.082 0.0030 0,0050 0.29
localhost:3062/ Scenaricl EmployeeDetai.. Cable-.. 11 0.058 0.0040 0.0080 013
localhost:3062/ Scenaricl EmployeeDetai.. Interco.. 10 011 0.0030 0.0040 0.50
localhost:3062/ Scenaricl EmployeeDetai.. LAM 1 0.065 0.0030 0.0040 0.25
Insert.aspx{GET} Scenaricl EmployeeDetai.. 3G 10 0.0074 0.0030 0.0040 0.037
Insert.aspx{GET} Scenaricl EmployeeDetai., Cable-.. 10 00057 0.0030 0.0040 0.025
Insert.aspx{GET} Scenaricl EmployeeDetai.. Interco.. 10 0.018 0.0030 0.0040 015
Insert.aspx{GET} Scenaricl EmployeeDetai.. LAN 10 0.0038 0.0030 0.0040 0.0040

4 4

This view provides tabular details for the counters which can be selected from
the drop-down.

[278]

Chapter 7

Detail view

The Detail view tab shows the virtual user activity chart for the Load Test Run. The
chart shows the user load, load pattern, tests failed or aborted, or slow tests during
the load. This view contains three sections: one is to select the tests with color code
legends; the second section is to filter the results to show in the chart; the third is the

detailed chart.

EmployeeDetailsLoadTest [11:19 PM]

I summary [Graphs EF Tables k| =

@ Test Compl 1 3 thresheld viclations 146 errors
Details Legend Virtual User Activity Chart
Test -
D%—I— (Highlight errars)
] === {Highlight results with logs) Userld: 4
el - serld:
== EmployeeDetailsWebTest 2 Scenario: Scenariol
=] Test: EmployeeDetailsWebTest
= Outcome: Failed
£ Metwork: LAN
= — Start Time: 00:10.683
Duration: 28,631
gent: MY-PC
= Testlog]
Filter results 00:00.000 00:04.285 00:08571 00:12.857 00:17.142 00:21.428 00:25.714 00:29.999
] Show only results with logs
[7]5how successful results Reference graph: Graphl Zoom to time period From: 00:00 Tc:00:30
Show results with errors 9
Exception
SocketException ‘ i’
NebTestException .\\—‘ [. . -
MullReferenceException =
00:00 00:05 00:11 00:17 00:23 00:29 00:35 00:41 0047 00:53 00:59

Pointing to any of the line in the activity chart shows a tool tip message for the
selected user with all the activity details like virtual user ID, scenario, test name,
test outcome, network, start time of the test, duration for the test, and the agent on

which the test was run.

Multiple views of looking at the Load Test Result help in analyzing the result in a
better manner. This can help in further fine tuning the application to improve quality
and stability of the application.

[279]

Load Testing

Exporting to Microsoft Excel

Load Test Results can be exported to Excel using the Create Excel Report option in
the toolbar of the Load Test Result editor. When you choose this option, Microsoft
Excel opens with a wizard to name the report and configure the data required for
that report.

The other option is to open Microsoft Excel and select the Load Test Report option
available under the Load Test menu, as shown in the following screenshot. This
option directly connects to the Load Test data repository.

@lﬂ £ IR Bockl - Microsoft Excel = B R
mmnme Insert Page Layout Formulas Data Review View | Load Test | Team Gbe:l =

g o

Load Test ="

Report

Reports
Creates a new report against data in Load Test Results Store v
3 Load Test Report Addin F G H ! -
Press F1 for add-in help.

2

3 =
a

5

]

7

g

9
10 -
M 4 + M| Sheetl SheetZ - Sheet3 . ¥1 4] [| » [
Ready | |[FE@E 1w00% - [(+)

[280]

Chapter 7

The next step is to select the database for the Load Test. Connect to the server and
choose the database where all Load Test data is stored.

Generate a Load Test Report @

Select database which contains load tests

SRR

Server name (example Server\SQLExpress):
MY -PCVSQLEXPRESS

Database name:

ERVMSSQLL0, SQLEXPRESS\MSSQLIDATALOADTEST2010.MDH ~

[281]

Load Testing

The next step in report creation is to select the option either to create a new report
or use an existing report as a template, or editing an existing report. Let's choose the
first option which is the default to create a new report.

Generate a Load Test Report @
L]

How do you want to generate your report?

e

Select from one of the following:
@ Create a report
() Use an existing report as template

(7 Edit an existing report

[282]

Chapter 7

The next option is to select the type of report. There are two report types, one is to
Run comparison and the second type is to generate it through Trend.

Generate a Load Test Report @

What type of report do you want to generate?

)

Select from one of the following:
@ Run comparison

) Trend

[283]

Load Testing

Click on Next in the wizard then provide the report name, select the corresponding
Load Test from which the report has to be generated, and then provide a detailed
description for the new report.

Generate a Load Test Report @

L
L
.
.
.

Enter load test report details

Beport Mame:
TestReport

Load Test:

LoadTestd -

Descripticn:

This is to generate the report frem load test 4 »

[284]

Chapter 7

Clicking on Next in the wizard connects to the data repository and pulls the results for
the selected Load Test. For each Test Result the test runtime, test duration, user name,
and test outcome are shown in the list. Choose any of the two Test Results so that a
comparison report will be generated for the selected Test Results.

Generate a Load Test Report

Select the runs for your report

Select one or more runs to add to the report:

Time Duraticn User Outcome Descripticn -
9/4/2010 4:32 PM MY-PCh\Satheeshkumar Completed
9/4/2010 4:30 PM 00:01:00 MY -PC\Satheeshkumar Completed
[] 9/4/2010 4:16 P 00:01:00 MY -PC\ Satheeshkumar Completed E
[C] 97472010 4:11 PM 00:01:00 MY -PC\Satheeshkumar Completed
[C] 97472010 213 PM 00:01:00 MY -PC\Satheeshkumar Completed
[C] 9/4/2010 1:37 PM 00:01:00 MY -PC\Satheeshkumar Completed
] 9/4/2010 &:11 AM 00:01:00 MY-PC\Satheeshkumar Completed
] 9/4/2010 7:56 AM 00:01:00 MY-PC\Satheeshkumar Completed
] 9/3/20107:28 AM 00:01:00 MY-PC\Satheeshkumar Completed
] 9/3/2010 7:18 &AM 00:01:00 MY-PC\ Satheeshkumar Completed i
1 [T | 3

< Previous I [MNext =] Finish

[285]

Load Testing

The next step is to select the counters from the Test Results for the report as shown in
the following screenshot:

Generate a Load Test Report IEI

Select the counters for your report

Carr

Select one or more counters to add to the report:

»

(-] NET CLR Exceptions

71 7].MET CLR Interap

[C].MET CLRJIT

[T].MET CLR Loading

; [].MET CLR LocksAndThreads
[F].MET CLR Memary

[T].MET CLR Rerncting
[T].NET CLR Security

] ASP.NET

77 ASP.NET Applications
[]LoadTest:Errors
[#]LoadTest:Page
LoadTest:Request —

m

LoadTest:5cenaric

LoadTest:Test

| LoadTest: Transaction

V| Memary

7] Metwnrk Interface ~

[e H —

After selecting the required counters, click on Finish to complete the wizard and start
the generation of the actual report. Microsoft Excel starts gathering the information
from the repository and generates different reports in different worksheets.

There is an initial worksheet which shows Name, Description, and Table of
Contents for the reports.

[286]

Chapter 7

9= Bookl - Microsoft Excel - @ =

i@ ¥ Edit Runs

Load Test
Report

Reports
ALl -

Page layout Formulas Data Review View Load Test | Team

Edit Counters

fxl Reports
[a] B8 | ¢ [o | E F G H 1]

1 [Name: TestReport

2

3 |Description:

4 This is to generate the report from load test 4

5

5 Table of Contents

7

2 Runs in report

3 Runs

10
._Repar‘ts
12 Test Comparison
13 Page Comparison
14 Machine Comparison
15 Error Comparison

Jr[]] <

16
4 4 » M| 1.0 Table of Contents 1.1 Runs 1.2 Test Comparf | 4 [il]
Ready |

-
v
|[Eom e U @

The first report page following the Table of Contents page is the Runs sheet,

which shows two Test Results and indicates the type of the results. The first one is

considered as the baseline type and the second is the comparison run.

| H9-t-|< Bookl - Microsoft Excel = = =R
“_Home Insert Page Layout Formulas Data Review View Load Test Team & e o ER
i@ .} Edit Runs
Edit Counters
Load Test
Report
Reports
Al - fe | Back To Table of Contents v
A [8] c [o [e] F [¢ %
Back To Table of Contents I8
2 =
kM | 0ad Test Run Id B8 Load Test B Run Type Bl Time B buration B user [~ | Description [~ |
4 33 LoadTest4 Baseline 9/4/2010 16:30 0:01:00 MY-PC\Satheeshkumar
5 34 LoadTestd Comparison Run 9/4/2010 16:32 0:01:00 MY-PC\Satheeshkumar J
6
? w
M 4 » W[1.0 Table of Contents | 1.1 Runs . 1.2 Test Comparison .~ 1.31] 4 | i | » [
Ready | |lJ_ZQ 100% (-————(F)

[287]

Load Testing

The next four sheets show the comparison between the selected Test Results. The first
one is the Test Comparison sheet, which shows the comparison between the results,
the second is the Page Comparison sheet, the third is the Machine Comparison sheet
and the last sheet shows the Error Comparison sheet. The following screenshot shows
the page comparison between the test results.

The graph shows the average page response time, and the performance improvement
when compared to the baseline Test Result.

(EI=| o= Bookl - Microsoft Excel ‘ | - @ =
Home Insert Page Layout Formulas Data Review View Load Test Team Design <@ 9 = R
suM - K |- A
T D E F G H 1 J =
2
B - L
4 'fformance Regressions Top Performance Improvements
5
= MW Comparison Run M Baseline W Compsrison Run M Baseline
7
2 hitp:/flocalhost: 306 2/Employee finsert.aspx [POST}

[GET} hitp://localhost:3062/Employes/Listaspx

15 http://localhost:3062/
16
T T T T T T T T T 1 T T T T T T
17 002 002 002 002 002 002 002 002 002 002 0.00 0.05 0.10 0.15 0.20 0.25
13 Average Page Response Time (sec) Average Page Response Time (sec)
19
20
21
el Request ﬂ Baseline -Comparison Run ﬂ Response Goal -%Change from Baseline ﬂ%from Goal i
23 http://localhost:3062/Employee/Insert.aspx {GET} 0.02 0.02 - -3% -
24 hittp://localhost: 3062/ 0.28 0.26 7%
25 http://localhost:3062/Employee/List.aspx 0.07 0.05 - -
26 ‘hﬁp:/'j'lDcaIhusI:SUEZ/Empluyee/lnser‘l.aspx {POST} 0.06 0.04 - B
27 ol
Harm 1.3 Page Comparison 1.4 Machine Comparison 1.5 Error Comparison 2 Iﬂ 4 [[] » El
Enter | | EBEIE 100%

The report also shows the requests made by both results and the percent change

from baseline, which show some significant change in performance. These types of
reports are very helpful to compare Test Results and choose the best test. It also helps
us to configure the test better for better results. Once the report is generated, it can be
customized easily as per the need, as the report is generated directly in Microsoft Excel.

Using Test Controller and Test Agents

The Controller and Agents needs to be installed separately and configured as it
doesn't come by default with Visual Studio. To install the Controller and Agent,
the Visual Studio Agents installable is required and you must be a part of the
Administrators security group.

[288]

Chapter 7

Test Controller and Agent can be installed on the same machine where you have
Visual Studio Ultimate, or you can install in different machines and then configure
the settings appropriately.

Test Controller and Test Agent Configuration

Install Visual Studio Test Controller using the Visual Studio Agent installable.
Provide all the details and then finish the installation. Once the installation is
complete, select the Configure test controller now option to start configuration
for the controller. The Configure Test Controller dialog is displayed:

’@u Configure Test Controller EI@
Specify the logon account for the test controller service
Local System
@ This account: MY-PC\Satheeshkumar Test
Passward: sesssEBEBES

Your Windows Firewall will be configured to enable communication with the
test agents. More Information
~ | Team Project Collection

» | Load testing

Configure test controller for load testing
Configure the test controller to run load tests.
Create load test results database in the following SQL Server instance:
MY-PCWMYPC
Example: MyDBServer\SQLExpress

You can download SQL Server Express from here.

About | Apply Settings

Close

[289]

Load Testing

The first section in the configuration is the logon information. The user account
must be a member of the Administrators group and should also be part of the Test
Controller's user account to use the controller for testing.

You can register the controller with the Team Project collection in TFS to create
environments. Provide the Team Project collection URL in the next section.

The next step is to provide an SQL server instance name to store the Load Test
Results. It can be a local SQL Express or any other SQL instance, which you would
like to use for storing the Load Test Results. The service account can be used by all
agents to communicate with the controller. The details of the service account can be
provided as part of the project collection.

Either one of the preceding options can be used. Either register with the TFS project
collection or provide SQL instance to configure the Test controller Cor Load Test and
store the Test Results.

After configuring all required details, click on Apply Settings to open the
Configuration summary dialog that shows the status of each step required to
configure the Test Controller. Close the Configuration summary dialog and then
close the Configuration Tool.

=

“@ Cenfiguraticn summary @

#

@ Configured firewall exceptions for: 'Microsoft Visual Studio Test Controller’,
'File and Printer Sharing', "Microsoft Visual Studio Test Contraller - Test
Agent Download Service’,

i@ Mo change to local groups as they are already configured.

i@ Configured service successfully.

@ Updated service account successfully.

i@ Configured ACL successfully.

@ Removed this test controller from TFS Team Project Collection successfully.

& Restarted service successfully.

LA Cemfimrad laed fact Aatabara coseaccfulhe

A Configuration succeeded with warnings
For more details or troubleshooting, view log.

You may need to perform additional manual steps as mentioned here.

Close |

[290]

Chapter 7

Configuring Test Controller creates the data store in the selected SQL Server instance.
The next step is to install the agents using Visual Studio Agents 2012 setup.

Once the installation of Test Agent is complete, the Configure Test Agent dialog is
displayed. In the first section, provide the user details with which the service will run.

@ Cenfigure Test Agent EI@

Run test agent as a service
Log on as:
@ Metwork Service
*) User name: MY-PC\Satheeshkumar

Password: T

If you want to run tests that need to interact with the desktop, such as

coded Ul tests, run the test agent as an interactive process by clicking on | Run Options

"Run Options™.

Register with Test Controller

To run tests or collect data, enter the name of the test controller that will manage this test
agent.
Register this test agent with the following Test Contraller:
My-PC:6901
Example: MyCentroller6901

If the test agent is part of a virtual environment created using the Lab Center of Microsoft
Test Manager, you do not need to register the test agent with a test controller.

Your Windows Firewall will be configured to allow the test controller to communicate with
the test agents. For more information, see help online.

Customer Feedback options

Apply §eﬂings| [Close l

[291]

Load Testing

In case if the tests like coded Ul test has to interact with the desktop, click on Run
Options and then select the run option as Interactive process. In this mode, you can
run the automated tests that interact with the desktop such as coded Ul tests.

[

’a Configure Test Agent EI@

Run the test agent as:

| Service

The test agent will run as Windows service, This is the recommended mode when you need to
run automated tests that do not need to interact with the desktop.

® Interactive process
The test agent will run as an interactive process. In this mode, you can run automated tests that
need to interact with the desktop, such as coded UI tests.

For more information on these options, click here,

Mext I [Cancel

[292]

Chapter 7

In case of interactive process, there is an option to select Log on automatically. This
option encrypts the user credentials, stores them in the registry, and uses the details

to run the tests automatically after reboot.

Run test agent as a service

Log on as:

) Metwork Service

@ User name: MY-PC\Satheeshkumar
Password: sEsssEsRREES

If you want to run tests that need to interact with the desktop, such as

coded UI tests, run the test agent as an interactive process by clicking on | Run Options

"Run Options™.

Register with Test Controller

To run tests or collect data, enter the name of the test controller that will manage this test
agent.
Register this test agent with the following Test Contraller:
Why-PC
Example: MyController6901

If the test agent is part of a virtual environment created using the Lab Center of Microscft
Test Manager, you do not need to register the test agent with a test controller.

Your Windows Firewall will be configured to allow the test controller to communicate with
the test agents. For more information, see help enline.

Customer Feedback options

@ Configure Test Agent EIIEI

Apply Settings | l Close]

[293]

Load Testing

There is another option as Ensure screen saver is disabled, which should be selected
in the case of interactive process to avoid the interference of the screen saver in
interactive tests.

The next step is to register the agent with the Test Controller. Select the option Register
with Test Controller and then provide the name of the Controller to register this Test
Agent with the controller to collect the test data. If the Test Agent is part of a virtual
environment created using the Lab Center of Microsoft Test Manager, there is no
need of registering the Test Agent with the Test Controller. Click on Apply settings to
save the configuration. This opens the configuration summary screen which shows the
status of each step required to configure the Test Agent.

@ Configuration summary @

i@ Mo change to the Remote Desktop setting as Remote Desktop was already .
enabled on the machine.

@ Configured firewall exceptions for: 'Remote Desktop'.
@ Configured service successfully. |

@ Mo change to the test controller setting as this test agent was already
registered with the specified test controller.

@ Updated service account successfully,

n

@ Configured ACL successfully.
i@ Restarted service successfully.

@ Testagent connected to the test controller successfully.

@ Mo change to Network Emulation driver as it was already installed and

@ Configuration succeeded

For mare details or troubleshooting, view log.

Close |

Now we can use the Test Controller and Test Agent to perform the Load Test,
although we need to configure them first. Open the solution and right click on it

to add new item. Select Test Settings from the template and then add a new test
settings to the solution, which opens the dialog for the test settings. Enter the test
setting name, description, and choose the naming scheme in the General section and
then click on Roles. The Roles page is used to configure the controller and agents to
collect data and run the tests. Select the test execution method as Remote execution
and then select the Controller name from the Controller drop-down, which will
control the agents and collect the test data.

[294]

Chapter 7

Click on Roles to add different roles to run tests and collect data. The role could be

a Web Server or SQL Server. Each role uses a Test Agent that is managed by the
Controller. You can keep adding the roles. To select the role that you want to run the
test, click on Set as role to run tests. The other roles will not run the test but used for
data collection.

To limit the number of agents used for tests, set attributes and filters. Click on Add in
the attributes section and then enter the attribute name and value for the selected role.

General Roles

.

Dat and Diagnostics Select where you would like to run tests and collect data

Deployment X Test execution method: Controller:

Setup and Cleanup Scripts

Hosts ’Remote execution vl MY -PC| - W
Test Timeouts

Unit Test)

Web Test Roles:

*f Add & Edit) Remove 8 Setas role to run tests

Mame Rele te run tests

Web Server Yes

Agent attributes for selected role:
il Add # Edit) Remove 1) Preview matching test agents

Attribute name Attribute value

| Seveds. || apply || Close |

From the Data and Diagnostic page, we can define the diagnostic data adapter that
the role will use to collect the data. If there are more data and diagnostics selected for
the role and if there are available agents, the controller will make use of the available
agents to collect the data. To configure data and diagnostics, select a diagnostic and
click on Configure.

Complete the remaining parts of the test settings and apply them to complete
the process.

[295]

Load Testing

Now start creating the Load Test using the new test settings and then run the Load
Test. To load the Test Results collected by the controller, open the Load Test and
from the toolbar choose the Open and Manage Load Test Results option. After
selecting the options you can see the Test Results collected by the controller. To see
the details of each Test Result, double click on it which opens the Load Test analyzer
and show the details of the Test Result. The other option available is to import the
existing result from the trace file into the controller repository and to export the
results to a trace file repository from the controller.

Summary

This chapter explained the steps involved in creating a Load Test using sample web
tests and to set each parameter values in each step in the creation wizard. There is
always a chance to go back and edit the test to change the parameters set or add
additional counters and scenarios, which is explained in this chapter. Creating
custom performance counters, and including the same for load testing for different
systems and setting the threshold rules for counters are some of the other topics
covered. This chapter also explained different methods of running the tests and
collecting the test results. There are multiple ways of looking at the results using
Summary view, Graphical view, Tabular view, and Details view and it is useful to
analyze the Test Results. All these results can be stored in test repository created in
SQL Server. This chapter also explained the configuration of Controller and Agents
for the Load Test. Visual Studio also provides for the creation of Excel reports from
the Test Result repository which we have seen in detail in this chapter.

The next chapter explains the details of ordering the tests and introduces the Generic
test to test external components used in applications. Ordering the tests is useful in
case of multiple tests to be run and there is any dependency between the tests.

[296]

Ordered and Generic Tests

This chapter explains the details of creating and using the ordered and generic tests.
Previous chapters explained the creation of many tests including unit tests, manual
tests, web performance tests, coded web performance tests, and load tests. Visual
Studio provides the additional feature of grouping and ordering some or all of

these tests and then execute them in order; this is called an ordered test. The main
advantage of creating ordered tests is that it enables us to execute tests in an order
based on the dependencies. For example, a web test may be dependent on the results
produced by executing the unit test. So the unit test needs to be executed before
executing the web performance test.

Generic tests are just like any other tests except that they are used for running the
existing third-party tool or program that can also be run using the command line.
Let us create the sample tests in this chapter and see the usage of both generic and
ordered tests. This chapter covers the following sections:

* Creating an ordered test

* Executing an ordered test

* Creating a generic test

* Results file for a generic test

Ordered and Generic Tests

Ordered tests

The following screenshot shows the list of all the tests that are created under the Test
Project. The tests are independent and there is no link between the tests, but the output
of one test may be required for the other test to start.

Test Explorer *TBX

S [EE - Search P~

A Streaming Video: Improving quality with 1 =
Run All | Run.. = | Playlist: All Tests =

4 Not Run Tests (13)
@) CalculateTotalPriceTest
) CalculateTotalPricewithTaxTest
O CodedUlTestMethodl
) CodedUlTestMethodlforEmpDelete
@ CodedUlTestSampleMethodl
O generictestl
) generictestl
O GetObjectToCompareTest
) GetTotalltemPriceTest
@ GetTotalPriceTest
@ crderedtestl
) SampleTestmethodforfssertsTest
O TestMethod1
O TestMethodl
O TestMethod?

There are different types of tests, such as unit test and web performance test,
under the Test Project. Creating an ordered test and placing some of the dependent
tests in an order will help the test execution to happen in that order, without
breaking any dependencies.

Creating an ordered test

To create an ordered test, follow these steps:

1. Select the Test Project from Solution Explorer.

2. Right-click and select Add Ordered Test.

3. Select an ordered test from the types of tests listed.
4

Save the ordered test by choosing the Save option within the File menu.

[298]

Chapter 8

The ordered test will get created under the Test Project and the ordered test window
is shown, where we will select from the existing tests and put them in order. The
following screenshot shows different options for ordering the tests:

w EmployeeMaintenance - = =
OrderedTestl .orderedtest R X -
o 3 test(s) added
Select project to view tests: Selected tests:
’UﬂitTEStPVUJECﬂ '] Test Name Project D ’
i CalculateTotalP... UnitTestProjectl UnitTestProje
Available tests: i CalculateTotalP... UnitTestProjectl UnitTestProje
Test Name Project D i, TestMethod2 UnitTestProjectl UnitTestProje

dm CalculateTotalPric UnitTestProjectl UnitTestProjes
i CalculateTotalPric UnitTestProjectl UnitTestProje| | »
s, generictestl UnitTestProjectl h\appsiempl
i GetObjectToCom)UnitTestProjectl UnitTestProjes <
i, GetTotalltemPrice UnitTestProjectl UnitTestProjes
i, GetTotalPriceTest UnitTestProjectl UnitTestProjes
i SampleTestmethe UnitTestProjectl UnitTestProjes
i, TestMethod2 UnitTestProjectl UnitTestProje

4 » 4 »

Lontinue after failure

The first line is the status bar, which shows the number of tests selected for the
ordered test.

The Select project to view tests drop-down list has the option to choose any
particular Test Project, to display tests within it. This drop-down list has the default
value /All Loaded Tests, which displays all available tests under all projects.

The Available tests list displays all the tests from the selected Test Project in the
Projects drop-down list.

The Selected tests list contains the tests that are selected from the available tests list,
to be placed in order.

The two right and left arrows are used for selecting and unselecting the tests from
the Available tests list to the Selected tests list. Multiple tests can be selected by
pressing the Ctrl key and selecting the tests.

The up-down arrows on the right of the Selected Tests list are used for moving the
test up or down and setting the order for the testing.

[299]

Ordered and Generic Tests

The last option, the Continue after failure checkbox at the bottom of the window, is to
override the default behavior of the ordered tests, which is to abort the execution on
failure of any test. If the option Continue after failure is unchecked and if any test in
the order fails, then all remaining tests will get aborted.

Executing an ordered test

An ordered test can be run like any other test. Open the Test Explorer window and
select the ordered test from the list, then right-click and choose the Run Selected
Test option. Once the option is selected, the test execution starts, working through
the tests in the order in which they are placed. After the execution completes, the
Test Explorer window shows the status of the ordered tests. If any of the individual
tests in the list fail, the ordered test status would be Failed. The summary of Test Run
statuses for all tests in the ordered test is shown in following screenshot. The sample
application had three tests within the ordered test, but two of them failed and one
has passed. Overall, the ordered test's status is failed because of two test failures.

Test Explorer rBx

Q[- Search P~
A Streaming Video: Improving quality with unit tests and fakes -
Run All | Run.. ~ | Playlist : All Tests «

4 Failed Tests (1) orderedtestl

%) orderedtestl 563 ms Source: orderedtestl.orderedtest

P Mot Run Tests (15)
€3 Test Failed - 2- CalculateTotalPricewithTaxTest (orderedtestl)

Message: Assert.AreEqual failed. Expected:<12>. Actual:<22.5>.
Elapsed time: 65 ms
4 StackTrace:

UnitTestl.CalculateTotalPricewithTaxTest()

€3 Test Failed - 3- TestMethod?2 (orderadtestl)

Message: Assert.AreEqual failed. Expected:<16:>. Actual:<32>.
The expected is not equal to the actual

Elapsed time: 5 ms
4 StackTrace:
UnitTestl.TestMethod2()
€3 Test Failed - orderedtestl
Elapsed time: 475 ms

@ Test Passed - 1- CalculateTotalPriceTest (orderedtest1)

Elapsed time: 17 ms

[300]

Chapter 8

The Test Explorer window also provides detailed information about the tests run.
Select a test that is being run in the explorer to see it. This information includes the
link to the source code where the test fails, followed by test name and the message
from the test method for failure, the elapsed time for the test, and stack trace for the
test. The total duration of the ordered test is also shown next to the ordered test
failure status under the failed tests section.

Generic tests

Generic tests are a way to integrate external tests into Visual Studio. There could

be applications that use external components or services, which need to be tested

as part of the whole system testing. In this case, the external component details are
not exposed and the internal logic is also unknown. In order to test these third-party
components, generic tests in Visual Studio act as wrappers for testing these external
components within the boundary of Visual Studio. Once it is wrapped, the generic
tests run just like any other test, through Visual Studio IDE.

The external component test should adhere to the following conditions, to be
categorized under generic tests in Visual Studio:
* It must be run from the command line

* The component must return a Boolean value of either True or False when
executed in the command line

* It should return detailed results for internal tests within the component

[301]

Ordered and Generic Tests

Creating a generic test

This is similar to any other test in Visual Studio. Right-click on the Test Project in

Solution Explorer and add a generic test. A new window opens to set the values or
parameters for the generic test.

n EmployeeMaintenance

GenericTestl .GenericTest* -+

A generic test isan existing program wrapped to functicn as a test in Visual Studio. For information about creating and executing a generic test, see V!

Specify an existing program (a test, test harness, or test adapter) to wrap as 2 generic test:
<Enter File Name Here.»

Example: MyTestHarness.exe

Run settings

Command-line arguments to pass to the generic test:

View Examples
Additional files to deploy with this generic test:

View Examples
Environment variables:

Variable
Mame

Value

Working directory:

FeTestOutputDirectory ¥
Redirect standard cutput and standard error to test result
Exit test run if run duration (in milliseconds) exceeds 3600000

Results Settings

Summary results file:

26T estOn bt Nirectnnea < Fater summary file name heres
4

The new window denotes that all the required values are for executing another
test application or function from the command line by passing parameters. For a
command-line execution, we may have to set the environment variables and the
execution parameters, set the working directory, copy or deploy some files, and set
the output directory and the file. All these details can be set using the generic test.

[302]

Chapter 8

The following table explains the different options and their use:

Parameters for Generic Test Description

Specify an existing program This is the name and path of the application or
function to be executed at the command line. There
is a browse button to the right of the textbox for
finding and selecting the application.

Command-line arguments to pass This is the place to specify the command-line

to the generic test parameters required for the application. These
parameters are dependent on the application's
expected value.

Additional files to deploy with this In some cases, additional files may be required
generic test for the test execution. Add or remove the selected
files in the list using the option to the right of
the textbox.

Environment variables If the application under test uses any environment
variables for the execution, set those environment
variables here.

Working directory This is to set the current working directory in the
command line before actually running the test
application in the command line.

Redirect standard output and While executing the test application, instead of

standard error to Test Result displaying all the results at the command prompt,
the results can be redirected to the output file, just
as we do during normal command-line commands.

Exit test run if run duration (in This is to limit the wait time for Visual Studio to

milliseconds) exceeds move on to the next test in the list or quit. These
numbers denote milliseconds and the default is
60 minutes.

Summary results file This is helpful in case the third-party test

application can write the Test Results to a
summary results file, which is an XML file. This
is the name and path of the XML file in which the
output results should be written. If the number of
tests in the application is high, it will be easy to
track the result of these individual tests by having
the results in XML file; not only the result but also
detailed information of the Test Result would be
written to this file.

[303]

Ordered and Generic Tests

The following is an example of a generic test that executes the Test . exe application,
which is a third-party test application capable of writing the output to the XML

file. The command-line parameter for this application is also provided along with
the supporting file to be deployed, which is the Readme . txt file. You can see the
output .xml file, which is used to store the output details of the test by Test . exe.

b EmployeeMaintenance - B x

GenericTest2.GenericTest® # X

Specify an existing program (a test, test harness, or test adapter) to wrap as a generic test:

C\Apps\Samples| Test.exe :]

Example: MyTestHarness exe

Run settings

Command-line arguments to pass to the generic test:

View Examples
Additional files to deploy with this generic test:

C\AppsiSamples' Suppert.dll Add..
C\AppsiSamplest Testexe

View Examples
Environment variables:

Variable

Value
Mame

Working directory:

C\Apps\EmployeeMaintenance Z]

Redirect standard output and standard eror to test result
Exit test run if run duration (in milliseconds) exceeds 3600000
Results Settings

Summary results file:
C\TestingOutputoml]

View Examples N

The summary results file

When we execute this generic test, the third-party Test . exe will get executed at
the command prompt. The generic test by Visual Studio will get the result back
from the third-party Test . exe application, which is a single test. But we do not
know how many tests are executed internally within the test, and it is not easy to
track the results of all the tests of the third-party application using the generic test.
But Visual Studio supports the third-party application with a summary results file,
which can be used by the application to write the details of the internal Test Results.

[304]

Chapter 8

Third-party applications can make use of the class file, which can be generated

by using the schema file provided by Visual Studio. The schema file is located at
the Visual Studio command line. If Visual Studio is installed in the default c: then
the path would be ¢:\Program Files\Microsoft Visual Studio 10.0\Xml\
Schemas\SummaryResult .xsd.

E® Developer Command Prempt for V52012 EI@

H:“Program Files“Microsoft Uisual Btudio 11 _85EmlsSchemas>dir summ._ *
Uplume in drive H is Windows?
Uolume Serial Mumber is BB4B-566F

Directory of H:“Program Files“Microsoft Uisual Studio 11.8“Eml~Schemnas

12122011 B1:46 PM 2,984 SummaryResult _ xsd
1 File<{s) 2,984 hytes
8 Dirds> 1.861,.378.848 hytes free

H:“Program Files“Microszoft Uisuwal Studio 11._8“EmlsSchemas>

The class file can be generated from this schema file using the xsd. exe utility on any
.NET-supported languages. The following code snippet is an example for generating
the default SummaryResult.cs class file from an XSD file. The output folder should
exist before the command is run. c: \Apps\Samples is the output folder used in the
following sample:

Xsd SummaryResult.xsd /c /l:cs /out:c:\temp

BX Developer Command Prompt for V52012 EI@

H:“Program Files“Microsoft Uisuwal Studio 11.60%EmlsSchemas>xsd SummaryResult.xsd
e #lics sout:ic:\AppssSamples

Microsoft (R> ¥ml Schemas-Datalypes support utility

[Microsoft (R> .NET Framework. Uersion 4.8.303192.1792%1]

Copyright ¢(C> Microsoft Corporation. All rights reserved.

Writing file ’'c:“AppssSamples~SummaryResult.cs’.

H:“Program Files“Microsoft Uisual Studio 11.85Eml“Schemas>_

[305]

Ordered and Generic Tests

The class file is a C# file as we have specified C# as the language in the
command-line parameter (as /1:cs). The generated output file would look
similar to the following screenshot:

m EmployeeMaintenance - SummaryResult.cs - B X
TN G EDIEHT RS GenericTest? GenericTest -
SummaryResult ~ | % testNameField -
=
=
using System.Xml.Serialization; -
Bl]
[/{ <remarks/>
[System.Codelom.Compiler.GeneratedCodeAttribute("xsd"”, "4.8.38319.17929")]
[System.SerializableAttribute()]
[System.Diagnostics.DebuggerstepThroughfAttribute()]
[System.ComponentModel.DesignerCategoryAttribute(" code™)]
[System.Xml.Serialization.XmlTypeAttribute(AncnymousType=true)]
[System.Xml.Serializaticon.XmlRootAttribute(Namespace="", IsNullable=false)]
public partial class SummaryResult
[/ <remarks/>
[System.Codelom.Compiler.GeneratedCodeAttribute("xsd"”, "4.8.38319.17929")]
[System.SerializableAttribute()]
#public enum testResultType
'/ <remarks/>
[System.Codelom.Compiler.GeneratedCodeAttribute("xsd"”, "4.8.38319.17929")]
[System.SerializableAttribute()]
[System.Diagnostics.DebuggerstepThroughAttribute()]
[System.ComponentModel.DesignerCategoryAttribute(" code™)]
[System.Xml.Serialization.XmlTypeAttribute(AnonymousType=true)]
public partial class SummaryResultInnerTest
e
100% - A »

There are two classes as SummaryResult and SummaryResultInnerTest each
contain the same methods. SummaryResult collects the overall summary of the Test
Run and summaryResultInnerTest collects the details of the individual tests within
the application under test. The following screenshot shows multiple methods within
the SummaryResultInnerTest class:

[306]

Chapter 8

100 %

w EmployeeMaintenance - SummaryResult.cs*

ST T ELTCT XA Bl GenericTest2 . GenericTest

x

1

SummaryResultinnerTest ~ W testResultField

System.ComponentModel .DesignerCategoryAttribute(" code™

¥ p B gory:
System.Xml.Serialization.Xml eAttribute{Anon us e=true
y P ymous lyp

Slpublic partial class SummaryResultInnerTest {

private string testNameField;

private testResultType testResultField;
private string errorMessageField;
private string detailedResultsFileField;

‘¢ <remarks/>

public string TestName l:l

fiY < ’e1'a’<5_.-" kS

public testResultType TestResult I:l

/// <remarks/>

public string ErrerMessage I:l

f/f «<remarks/>
public string DetailedResultsFile l:l

4

LE

The third-party tool can make use of this class file to write the Test Result details, or
the test application should take care of writing the Test Result details into the XML file
based on the XML schema used. The results output XML file should look like this:

<?xml version='1.0' encoding='utf-8'?>
<SummaryResult>

<TestName>Third party test Application</TestNames>
<TestResult>Failed</TestResult>
<InnerTests>

<InnerTest>

<TestName>Testl</TestName>
<TestResult>Failed</TestResult>

<ErrorMessage>Test is unsuccessful</ErrorMessage>
<DetailedResultsFile>C:\Testing\TestlResults.txt</

DetailedResultsFile>
</InnerTest>

</InnerTests>

</SummaryResult>

[307]

Ordered and Generic Tests

In the previous example, the XML file shows the summary Test Result as well as
the inner test results. The failed test in the sample writes detailed information about
the Test Result to the text file. Writing into the log file should be taken care of by the
third-party test application, in the required format.

Summary

The section on ordered test explained how to order the tests and execute them in

the same order irrespective of their type. The section on generic test explained the
ways of executing third-party tests within Visual Studio and showed the tests results
collected within the tests.

The next chapter covers the details of test configurations using the test settings file to
configure and collect the diagnostic data. It also delves into the tasks of defining roles,
deployments, defining the host and URL, defining the scripts for setup and cleanup for
Test Runs, configurations required for web and unit tests, and much more.

[308]

Managing and
Configuring Tests

In Visual Studio, the solution uses the default environment and common
configuration for all the tests under the solution. The configuration is used for
controlling the test execution based on multiple factors. All the time, it is less likely
that the test would be executed based on a single configuration file. For example,
automated tests running in a different machine may have to use data adapters to
collect different data. The network configuration varies based on system configuration
and network speed. During these times, the settings can be customized and
configured using a file with the extension as testsettings in Visual Studio 2012.

The testsettings file is used to define the roles to be used for a Test Run,
configure to collect diagnostic data during Test Run, and to control Test Runs on
multiple machines.

In Visual Studio 2012, the testsettings file is no longer used for unit tests; rather,
runsettings is used for custom configurations. runsettings is used for Test Runs
to configure settings such as deployment directory and code-coverage analysis.

The testsettings file must be used for web performance tests, load tests, and
coded Ul tests. Use runsettings for unit tests to configure deployment and code
coverage. This chapter covers the following sections under test settings file for
different test types:

* General

* Roles

* Data and Diagnostics

* Deployment

* Setup and Cleanup Scripts

* Hosts

Managing and Configuring Tests

e Test Timeouts
e Unit Tests
e Web Tests

The last section explains about configuring unit test using the runsettings file and
editing the sections of a configuration file.

Using Test settings

Configuring a test requires the testsettings file to be added to the solution as a
prerequisite. More than one testsettings file can be added, but only one can be
active at any time. To add a testsettings file, select the solution and right-click and
choose Add and then New Item from the context menu. Select Test Settings from
the Add New Item window. After adding the settings, right-click on the settings and
choose Active Load and Web Test Settings to enable the settings for load and web
performance tests.

¢ Open
Open With...

Scope to This
Mew Solution Explorer View

Active Load and Web Test Settings

H Cut Ctrl+X
ol Copy Ctrl+C
2 Remove Del

I Rename

& Properties Alt+Enter

Use the TEST menu and select Test Settings and then the Select Test Settings File
option to select the file that is already created.

[310]

Chapter 9

TEST ARCHITECTURE LOADTEST AMNALYZE WINDOW HELP
Run 3
Debug 4
Playlist »
Test Settings * 4 Run Tests After Build
SEERLLd i g L} Select Test Settings File
Profile Test Default Processor Architecture r
Windows >

There are multiple tabs or sections within the settings file for different types of
configurations, based on the test types.

The General option

This is the general page to specify the Name and provide a Description for the
settings. It also provides a feature to change the naming scheme of the Test Results
files. By default, it takes the current user name and the name of the machine with the
run date and time added to the file name. User-defined custom schemes can also be
set for the Test Result name. Current date timestamp can be added to the file name
by choosing the option to append the value as shown in the following screenshot.

Test Settings @
[General [P

Roles

Data and Diagnostics
Deployment

Setup and Cleanup Scripts

Enter the name and the description of the test settings.

MName:

Hosts Trace and Test Impact

Test Timeouts Descrintion:

Unit Test Zescription:

Web Test These are test settings for Trace and Test Impact.

() Default naming scheme

@ User-defined scheme
Example: Demo (2013-04-21 16:02:04)
Prefix text: Demao
Append date-time stamp

[saveas. |[appy | [close

[311]

Managing and Configuring Tests

The Roles option

This is to check whether the test has to be run on the local machine or on a remote
machine. It is set to run on the local machine by default. To run on a remote machine,
provide the names of the controller and the agents along with the roles for the

test. The remote machine could be a controller or an agent, but a single controller
controls and collects data from multiple agents. The Roles page is used to configure
the controller and the agents to collect the data and to run the tests. The details of
configuring controllers and agents are explained in Chapter 7, Load Testing which
talks about load testing. Select the Test Execution Method as Remote execution and
then select the Controller name field from the Controller drop-down list, which will
control the agents and collect the test data.

Click on Roles to add different roles to run tests and to collect data. The role can

be Web Server or SQL Server. Each role uses a Test Agent that is managed by the
controller. You can keep adding roles. To select the role that you want to run the test
with, click on Set as role to run tests. The other roles will not run the test, but will be
used for data collection.

To limit the number of agents used for tests, we can set attributes and filter. Click
on Add in the Agent attributes for selected role section and then enter the attribute
name and value for the selected role.

Test Settings @

General Roles
.
Dtancl Diagnostics Select where you would like to run tests and collect data
Deployment . Test execution method: Controller:
Setup and Cleanup Scripts
Hosts ’Remote execution '] HOME-PC T d
Test Timecuts
Unit Test)
Web Test o

g Add S Edit)(Remove ‘-..EI Set as role to run tests

Mame Role to run tests
SQL Server

Agent attributes for selected role:

eéy'»E,'i\c_IcI # Edit)(Remove _-'aEre.fiav matching test agents

Attribute name Attribute value
RAM =1 GB True

Save As... Cloze

[312]

Chapter 9

The names and values for the attributes of roles decide which agent should be used
for testing.

Data and Diagnostics

From the Data and Diagnostics page, we can define the diagnostic data adapter that
the role uses to collect data. If there are multiple data and diagnostics selected for the
role, and if there are available agents, the controller will make use of the available
agents to collect data. To configure each data and diagnostic, select the diagnostic
and click on Configure to open the dialog and configure the selected diagnostics.

The roles defined as a part of the Roles section are displayed for the selection of
diagnostics. Select each role from the list and then choose the diagnostics for the
selected role. The diagnostics list is displayed only if the controller has any agents
with the matching role. For example, the following screenshot shows that the Web
Server role does not have an agent that matches the selection criteria defined

by the attributes:

est Settings [B[]

oenera! Data and Diagnostics

Cenfigure data diagnostic adapters for each role
Deployment

Setup and Cleanup Scripts Role

Hosts Web Server

Test Timeouts
Unit Test
Web Test

SQL Server

Data and Diagnostics for selected role:

You must be connected to a test controller that has test agents available that match the
selection criteria for the role.

Save As...] | Apply | I Close

[313]

Managing and Configuring Tests

But in case of a second role, which is SQL Server, the data and diagnostics is enabled
as the controller has a matching agent, as shown in the following screenshot:

General Data and Diagnostics
Roles

Configure data diagnestic adapters for each role
Deployment

Setup and Cleanup Scripts
Hosts Web Server
Test Timeouts
Unit Test
Web Test

Role

Data and Diagnostics for selected rele:

& Configure |

Mame Enabled

ASP.NET Clid SMfIUre JovelliTrace and TestImpact

ASP.MET Profiler

Event Log

IntelliTrace

Metwerk Emulaticn

System Information

o]
RRS|EE] = (==

| svems. [sy]|

To go into the advanced configuration for the selected diagnostic, choose the
Configure option from the Data and Diagnostics section to open the dialog and
configure the details. The following sample shows the configuration for the selected
Event Log Detail:

[314]

Chapter 9

Event Log Detail @

Event Log Detail
Enter the configuration data for the Event Log diagnoestic data adapter.

Event Logs to Collect

Application
[T Hardware Events |
[Internet Explorer

1

Event Types to Collect
Error

Failure Audit

[] Infermaticn

[Success Audit
\Warning

Maximum entries to log per test

5000 =

-

7] Collect events from test cases that are run as part of ancther test

[Fleset to default configuration] l QK] ’ Cancel]

The configuration screen provides the option to choose the event logs to collect

event types and the maximum entries to log per test. Similarly, other diagnostic
can be configured as well.

[315]

Managing and Configuring Tests

The Deployment section

Use this section to configure the files and folders to be deployed along with the
application. Whatever is specified here are considered as additional files that are
deployed along with the application files.

Test Settings @

Senera! Deployment

Data and Diagnastics Deployment settings specify deployment location and any files to deploy in addition to the...
Setup and Cleanup Scripts

Haosts Additional files and directories to deploy:
Test Timeouts

: <5olution Directery>"Common.dll Add File...
Unit Test <Solution Directory>\Test.dll
Web Test
Add Directory...

| seveds. || pply || Close |

There is a checkbox option as Enable deployment, used to enable or disable the
deployment. By default, it is checked.

[316]

Chapter 9

Setup and Cleanup Scripts

In this section, script files are specified to run before and after running the test.

This is useful in setting the environment for running the test and also in cleaning
up the files or other objects used during testing. These scripts for all the tests under
the solution. So, we should take extra care while writing them — it should be written
in such a way that it should work with all types of tests.

Test Settings @I
gceln:r”' Setup and Cleanup Scripts
[iata-.ancl Diagnostics Specify the scripts to run before and after the test run,
Deployment et
Setup and Cleanup Scripts Setup seript:
Haosts Ci\Testing\EmployeeMaintenancel Startup.psl E]
Test Timeouts
Unit Test AT
Weh Tect Cleanup script:
Ci\Testing\EmployeeMaintenancet Cleanup.psl E]
Save As...] [Apply l l Close

[317]

Managing and Configuring Tests

The Hosts option

There are two options here. One is to select the default host and the other is not to
run. This page is for specifying the default host for the tests to run. To run tests in the
same process as ASP.NET, select ASP.NET from the host types. Notice that the other
required detail section is enabled upon selecting ASP.NET. Provide details such as
the URL of to the test, which would point to the application URL. The next step is to
configure if the test has to run with the use of ASP.NET development server or using
local IIS. If you choose the option to run using a local development server, you need
to provide the website path and the web application root. In case of IIS, we don't
have to provide the detail as it would be picked from the system itself.

Test Settings

General

Roles

Data and Diagnostics
Deployment

Sr:tuE and Cleanui Scriits

Test Timeouts
Unit Test
Web Test

Hosts

Enter the URL of the page to test, select the Web server, and enter Web server-zpecific infor...

For tests that cannct ke hosted by the specified host adapters:
@ Run in default hest

) Do not run

Host type:

R =

[ASP.NET

Run tests in 32 bit or 84 bit process:

’Forceteststo run in 32 bit process

URL to test:

http://localhost:3062/

@ Run tests in ASP.MET Development Server
Path to Web =ite:

Ch\ Testing\EmployeeMaintenance\ EmployeeMaintenance

Web application roct:

Browse...

hitp://localhost:3062/]

() Run tests in IS

]

Apply || Close |

All these details are set as attribute values for test methods while creating the Test
Project and generating the test methods.

[318]

Chapter 9

The Test Timeouts option

These values are specified to set the time limit for the Test Run. The test may take
more time than usual because of various factors in the system. We cannot wait to
complete the test. There are situations where some tests might take more time than
expected because of many other factors such as environmental issues. In that case,
set the maximum time limit after which the test would stop and the testing completes.
If it exceeds the limit, the run will be aborted. There are two options for setting the
time limit:

* Abort a Test Run if its total execution time exceeds: This is to set the total
test runtime limit irrespective of the number of tests and their types. The
entire test will abort after exceeding the limit.

* Mark an individual test as failed if its execution time exceeds: This is to
specify the time limit for an individual test. This applies to all types of tests in
the run. On exceeding the time of an individual test, the test will be marked
as failed and the subsequent tests in the list will continue to run. The timeout
property set for the test using test properties will override the default
timeout set here.

Test Settings @

General Test Timeouts
Roles

Data and Diagnostics
Deployment
Setup and Cleanup Scripts

Default timeout per test will be overridden if timeout value is set as a test property. Test Ru...

[Abort a test run if its total execution time exceeds:
Haosts

Unit Test ENE
Web Test -

Mark an individual test as failed if its execution time exceeds:

0 hours
305 minutes
01 seconds

Save Az... Close

[319]

Managing and Configuring Tests

The time limit can be specified in hours, minutes, and seconds, or all three. The time
limit includes the Setup and Cleanups Scripts used in the Test Run. These are the tests
with the attributes AssemblyInitializeAttribute, ClassInitializeAttribute,
AssemblyCleanUpAttribute, and ClassCleanUpAttribute specified for the
assembly or a class within the assembly.

The Unit Test option

This is where you configure the folders where the assemblies reside for the unit test
and the folder to use when the Test Runs. There is another option to configure the
additional folders for tests.

In the Root folder for the assemblies to be loaded section, select the folder where
the environment variables and other additional assemblies that are required for
the unit test are present. This is the base folder where the unit test will look for any
additional information required for the testing.

The Use the Load Context for assemblies in the test directory. option is checked

by default, which is used to load all assemblies in load context. This option can

be unchecked in case there are many assemblies and it is not required to load all
assemblies with load context and the test is also not dependent on loading them with
load context.

The Folders to use when the tests are run option is used to specify additional folders
to look for any assemblies during the execution of tests. There are two additional
options along with the folder path. Use Load Context is the first option, which is a
checkbox to specify if the directory should use load context for the assemblies. The
second option is to include subfolders to find the assemblies during test execution.
The following screenshot shows the sample unit test configuration:

[320]

Chapter 9

Seners! Unit Test

Data and Diagnostics Advanced opticns that let you configure where to find assemblies that your tests need te le...
Deployment . Root folder for the assemblies to be loaded:

Setup and Cleanup Scripts

Hosts ZeSystemDrivea\ Testing EmployeeMaintenance l Browse... I
Test Timeouts

- . .
Web Tect Use the Load Centext for assemblies in the test directory,

Folders to use when the tests are run:

i B Add folder X

Path Use Load Context Include sub-folders

Additional folders to use when discovering tests:

i B Add folder 3%
Path Include sub-folders
|_ HSystemDrive?\Workspace

| sovess. || Apply || Close |

The Additional folders to use when discovering tests: option is used to provide
a folder path when executing the tests remotely. Remote execution of test happens
if it is an automated test by Test Manager or Team Build. These paths are used

for discovering assemblies during test execution, either by MSTest or by the

Test Controller.

[321]

Managing and Configuring Tests

Editing the Test Run configuration file

The test configuration file stores all configuration information that was set in the
previous sections. The editor or the window that we used in the previous section
takes care of writing the information to a file. It is a normal XML file that can be edited
manually if sufficient information about the change required is available. Additional
care should be taken about the formatting and syntax of the text while updating.

To open the test configuration file using the XML editor, select the test configurations
file from the solution explorer, and right-click and select the option Open with. Then,
choose any XML file editor or notepad from the list. The XML file contains all the
information that was set using the editor. The following code block shows the sample
test settings XML file:

<?xml version="1.0" encoding="UTF-8"?>

<TestSettings name="TestSettingforLoadTest" id="6dla7bad-a7a9-4c88-
920e-fe97¢c2567242" xmlns="http://microsoft.com/schemas/VisualStudio/
TeamTest/2010">

<Description>These are default test settings for a local test run.</
Descriptions>

<Deployment>

<DeploymentItem filename="Common.dll" />
<DeploymentItem filename="Test.dll" />
</Deployment >

<RemoteController name="HOME-PC" />
<Execution location="Remote">

<Hosts type="ASP.NET">

<AspNet name="ASP.NET" executionType="WebDev" urlToTest="http://
localhost:3062/">

<DevelopmentServer pathToWebSite="C:\Testing\EmployeeMaintenance\
EmployeeMaintenance" webApplicationRoot="http://localhost:3062/" />
</AspNet >

</Hosts>

<TestTypeSpecifics>
<UnitTestRunConfigtestTypeId="13cdc9d9-ddb5-4fa4-a97d-d965ccfc6d4b">

<AssemblyResolution applicationBaseDirectory="%SystemDrive%\Testing\
EmployeeMaintenance">

<TestDirectoryuseLoadContext="true" />
<RuntimeResolution>
<Directory path="%SystemDrive%\Testing" includeSubDirectories="true"

/>

[322]

Chapter 9

</RuntimeResolution>

<DiscoveryResolutions>

<Directory path="%SystemDrive%\Workspace" includeSubDirectories="true"
/>

</DiscoveryResolution>

</AssemblyResolutions>

</UnitTestRunConfig>

</TestSettings>

Start editing the XML file in the editor if you are familiar with the syntax; sections
and the required information is available.

Editing the deployment section

The following code section identifies the additional files to be deployed along with
the application:

<Deployment>

<DeploymentItem filename="Test.dll" />
<DeploymentItem filename="Common.dll" />
</Deployment >

To include additional files, simply edit them and add the file with the correct
attribute. The following code snippet shows an additional file added to the section:

<Deployment>

<DeploymentItem filename="Test.dll" />
<DeploymentItem filename="Common.dll" />
<DeploymentItem filename="Readme.txt" />
</Deployment >

Readme. txt is the additional file added to the deployment item section. Edit the
XML only if there is no IDE and you are familiar with XML syntax and formatting.

[323]

Managing and Configuring Tests

The Web Test option

Web tests require some specific settings in order to run. The web test can be run in
different browsers and with different sets of data. This page has the option to specify
the required settings.

Using the first option Fixed run count, specify the number of run iterations. It would
be a fixed run based on the count specified, or it can be One run per data source row.
If the number of run iterations is fixed, the test will run for the specified number of
times. If it is mentioned as one row per data source row, the test will run for each
row in the data source attached to the test.

Test Settings @

General Web Test

Roles . .
Dats and Disgnostics Set the properties to control how Web tests are run.

Deployment

Setup and Cleanup Scripts
Hosts 1 =
Test Timeouts =

@ Fixed run count

Unit Test) One run per data source row
Web Test
Browser type:
’Intern et Explorer 8.0 -

[Simulate think times

[] Use request URL's directory as the default path for cookies.

| seveas. || Ay || close |

The second option is for selecting the Browser type used for testing. The page also
has the option to simulate think times. Think times are the time spent in between
any two test actions. There is another new option Use request URL's directory as
the default path for cookies to store the cookies in the same path as the URL.

[324]

Chapter 9

Configuring unit tests using the
-runsettings file

Visual Studio 2012 has a new configuration file with the extension runsettings,
which is mainly used for unit tests. The testsettings file can still be used for
unit tests, if the test is run using MSTest adapters created using previous versions
of Visual Studio. The runsettings file can be used with any of the adapters for
extensibility, using Visual Studio 2012, such as .NUnit and xUnit are few of the
extensible unit test frameworks used in Visual Studio 2012. The testsettings file
in Visual Studio 2012 is mainly used for load and web performance tests and any
tests deployed to lab environments. Using runsettings for unit test is much faster
than using the testsettings file.

There is no IDE to create the runsettings file, but it is just an XML file with
configurations similar to testsettings. Just add an XML file to the solution
and then rename it runsettings. Open the XML file and add the configurations
manually. The XML content would look similar to what is shown in the
following screenshot:

” EmployeeMaintenance - g x

Filel.runsettings +

<?wml version="1.8" encoding="utf-8">
—l<RunSettings>
-l <RunConfiguration>
<ResultsDirectory>.\Results</ResultsDirectory>
<TargetPlatform»x86</TargetPlatform:
<TargetFrameworkVersion>Framework45</TargetFrameworkVersion>
</RunConfiguration:
-] <DataCollectionRunSettings>
= <DataCollectors>
= <DataCollector friendlyName="Code Coverage" uri="dataccllector://Micros
= <Configuration>
= <CodeCoverage>
= <ModulePathss
= <Exclude>
<ModulePath». *CPPUnitTestFramework.*</ModulePath>
</Exclude>
</ModulePaths>
</CodeCoverage>
</Configuration>
</DataCollector>

[E 1 K]

</DataCollectors>

</DataCollectionRunsSettings>

=l <MSTest>

<MapInconclusiveToFailed>True</MapInconclusiveToFailed>
<CaptureTracelutput>false</CaptureTraceOutput:>
<DeleteDeploymentDirectoryAfterTestRunIsCompletesFalse</DeleteDeploymentD
<DeploymentEnabled»False</DeploymentEnabled>

</M5Test>

</RunSettings>

00% =~ 4 4

[325]

Managing and Configuring Tests

There are different sections within the runsettings file:

ResultsDirectory is used to specify the directory where the Test Results
would be placed.

The TargetFrameworkVersion section is used to specify the version of the
framework that is used for executing the tests.

TargetPlatformis used to specify if it is a x86 or a x64 platform.

TreatTestAdapterErrorsAsWarnings is a Boolean value that is set to true
or false, to show any errors as warnings.

The DataCollectors section is used to specify the settings for diagnostic
data adapters. Diagnostic data adapters are used to collect additional
information about the system, environment, and the application under test.

The code coverage data collector is used to create a log with information
on application code covered by test. This is the only adapter that can be
customized using runsettings.

Summary

This chapter explained about editing the test configuration using the configuration
editor supported by Visual Studio 2012. There are multiple configuration options
for different types of tests. This chapter also explained the new runsettings file
for unit testing. This file was introduced in Visual Studio 2012 and can be edited
like a normal XML file. There are multiple adapters and data collectors that can be
specified in the runsettings file, to collect diagnostic data information and code
coverage data during testing.

The next chapter explains the command-line commands and the tools to run and
publish the tests without using the Visual Studio IDE. Command-line instructions
are very useful in scheduling tests and running the tests in batch.

[326]

10

The Command Line

Visual Studio supports many testing features, and provides an IDE for testing and
running the tests as explained in previous chapters. It is very simple to run tests
from Test Explorer user interface and view the results, or re-run the test from the
Test Results window. Other than the IDE support, Visual Studio provides command
line options to execute or run the tests that were created using the IDE. This option
is very handy when executing the tests from other applications, or scheduling
automated testing.

In this chapter, multiple command line tools are explained in detail to use for running
the tests with different options and then collecting the output. Visual Studio 2012
provides three different command line utilities to execute the tests and they are

as follows:

* VSTest.Console: This command line utility is for running the automated
unit tests and coded Ul tests from the command line.

* MSTest: This command line utility is for running the automated tests,
viewing Test Results from Test Runs, and saving the results to Team
Foundation Server. MSTest is also used for the compatibility with Visual
Studio 2010.

* TcM: This command line utility is used for importing automated tests into
Test Plan, running tests from Test Plan, and viewing lists of test items.

VSTest.Console utility

In Visual Studio 2012, the vSTest . Console command line utility is used for
running the automated unit test and coded Ul test. vSTest . Console is an optimized
replacement for MSTest in Visual Studio 2012.

Command Line

There are multiple options for the command line utility that can used in any order
with multiple combinations. Running the command vSTest . Console /2 at the
command prompt shows the summary of available options and the usage message.
These options are shown in the following screenshot:

B Developer Command Prompt for V52012 =] @

C:SProgram FilesS\HMicrosoft Uisual Studio 11.8:vstest.console o7
Microsoft (R} Test Execution Command Line Tool Uersion 11.8.51i1@6
Copyright (c) Mlcrosoft Corporation. All rights reserved.

Usage: wstest.console.exe [TestFileMames]l [Options]
Description: Runs tests from the specified files.
Cptions:

[TestFileMames]))
Run tests from the specified files. Separate multiple test file
by spaces.

Examples: ngtestp»oqect dall
ytestproject.dll myothertestproject.exe

'Settings:{Settings Filel .
Settings to use when running tests.

Tests: (Test Hames > . . .
un tests with names that match the provided values. To provide multiple
ualues, separate then b¥ COMMAS .
Examples: /Tests:TestMethodl
/Tes. :TestMethodl, testHe thod2

/EnableCodeCouerage
ables data dlagnostlc adapter 'CodeCouerag * in the test run. Default
settlngs are use t specified using settings file.

/InIsolatlon .
Runs the tests_in_an isolated process. This makes vstest.console,exe
process less likely to be stopped on an error in the tesis, but tests
rmay run slower.

/UseUslextenslons . .
rnakes wvstes t console.exe process use or skip the USIX extensions
1nsta11ed(1f anyl} in the test run.
Example slseVsixExtensions: true

/Platfurn {Platform typel .
Target platform architecture to _be used for test execution.
Ualld values are xB6, x64 and ARM.

' Framework: {Framework Uersionl
Target .Het Framework wversion to be used for test execution.
Ualid values are Franework3S, Frameworkdd and Frameworkdd

/TestcaseF11ter-<Ex ressiony

Ruy tests that match the given expression.

(Expresslon) iz of the format (?Poper yro eratur(ualue)[.&(Expresslon)]
where Operator is one_ of (Operato has cont ns”’
semantics and is ap, llcable for string Propertles like DisplauNamel.
Paventhesis (» can use Eo roup sub-expressions.

Examples: /TestCaseFllter' Priowrity=

/TestCaseFil ter: (FullgﬂuallfledNane"nghtly
iHame=MuTes tHe thod>"

-
Display this usage message.

" logger : (Logger UrisFriendlyName?> .
S logger for test results, Foxr exan le, to 109 results into a
Ulsual Studio Test Results File (TRX} use ogder: trx. .
To publish test results to Team Foundation Seruer use TfsPublisher as shown below
Exanpl / ?? TfsPublisher;
ection={team project collection url>;
Bul 1dMane ('hulld name ¥
o ¥roiect name
"Any CPU">]
to "Debug" 1

/LlstTests <{File Hamel
sts discovered tests from the given test container.

/LlstDlscouere)s
sts installed test discoverers.

/LlstExecutors
sts installed test executors.

/LlstLuggexs
sts installed test loggers.

ListSettingsProviders . .
Lists installed test settings providers.

To run tests in_ the sane ¥rucess:
ustest.console.exe tes d11

To run tests in separate process:
ustest. console exe sinlsolation tests.dll

To run tests with additional settings such as ta collectors:
>vstest.console.exe tests.dll /Settings: Local RunSettlngs

C:“Program Files“Microsoft Uisual Studio 11.8:

Running tests using VSTest.Console

Running the test from the command prompt requires the expected parameters to
be passed based on the options used along with the command. Some of the options
available with vSTest . Console command are explained in the next few sections:

[328]

Chapter 10

The /Tests option

This command is used to select particular tests from the list of tests in the test file.
Specify the test names as parameters to the command, and separate the tests using
commas when multiple tests are to be run. The next screenshot shows a couple of
test methods that run from the test file:

EX Developer Command Prompt for V52012 =0 @

rosof t heesh\Shared\ngps\EnplogeeMalnte
“bi \Debug\UnlttestP)oJectl dl] =8 hod2,GetTotalltemPriceTest
xecutlon Command Li T ol U ' -8.

of t Corporation. Rl

ry, please wait.

mPrice Test

Equal failed. Expected:{16>. fActual:{32>. The expected is not egqual to the actual

at UnitTestProjectl. UnltTestl TestMethod2{(> in c:“Satheesh“Shared“Apps:EnprloyeeMaintenance™lnitTe
stP)DJectl\UnltT stl.es:line
Total tests: 2. Passed: 1. Failed: 1. Skipped: 8.
Test execution time: 8.1587 Seconds
[C: “Program Files“Microsoft Visual Studio 11.83

The output shows the Test Run result for each of the tests along with the messages,
if any. The summary of the tests is also shown at the end of the results sections with
the time taken for the test execution.

The /ListTests option

This command is used to list all available tests within the test file. The following
screenshot lists the tests from one of the Test Project file:

EA Developer Command Prempt for V52012 === @

:sProgram Files“Microsoft Uisual Studio 11.8vustest.console C:MSatheesh
Enplngeeﬁalntenance\ﬂnltTestProJectl\hln\Dehug\UnlttestPrnJect

sts
chrogoft (R} Test Execution Command Line Tool Version 11 a.51186.1
Copuright (¢} Microsoft Corporvation. All rights reserve

The following Tests avre available:
CalculatelotalPriceTest
CalculateTotalPricewi thTaxTest

GetTotalPriceTest
GetObijectToCompareTest

Sam leTestnethndfnnﬁssertsTest
GetTotallItemPriceTest
TestMethodZ

C:“Program Files“Microsoft Visual Studio 11.8>

The next one is another command line utility, MSTest, which is used to run any
automated tests.

[329]

Command Line

MSTest utility

To access the MSTest tool, add the Visual Studio install directory to the path or open
the Visual Studio Group from the Start menu, and then open the Tools section

to access the Visual Studio command prompt. Use the command MSTest from the
command prompt.

The MSTest command expects the name of the test as parameter to run the test. Just
type MSTest /help or MSTest /? at the Visual Studio command prompt to get help
and find out more about options.

The following table lists the different parameters that can be used with MSTest and
the description of each parameter and its usage:

Option Description

/help This option displays the usage message for all
parameters type /? or /h.

/nologo This option disables the display of startup banner
and the copyright message.

/testcontainer: [file name] This option loads a file that contains tests;
multiple test files can be specified to load multiple
tests from the files, for example:

/tescontainer:mytestproject.dll
/testcontainer:loadtestl.loadtest

/maxpriority: [priority] This option execute the tests with priority less

/minpriority: [priority] than or equal to the value:

/minpriority:0 /maxpriority:2.
/category This filter is used to select tests and run, based

on the category of each test. We can use logical

operators (& and !) to construct the filters, or we

can use the logical operators (| and &!) to filter

the tests.

/category:Priorityl - any tests with

category as priorityl.

/category: "Priorityl&MyTests'-

any tests with multiple categories as priorityl

and Mytests.

/category: "Priorityl|Mytests" -

Multiple tests with category as either Priorityl

or MyTests.

/category:"Priorityl&!MyTests" -

Priority1 tests that do not have category MyTests.

[330]

Chapter 10

Option

Description

/testmetadata: [file name]

/testsettings: [file name]

/resultsfile: [file name]

/testlist: [test list path]

/test: [file name]

/unique

/noisolation

/noresults

/detail: [property id]

This option loads a metadata file. For example,
/testmetadata:testprojectl.vsmdi.

This option uses the specified test settings file.
For example, /testsettings:mysettings.
testsettings.

This option saves the Test Run results to the
specified file. for example,

/resultsfile:c:\temp\myresults.trx.

The test list to run as specified in the metadata
file; you can specify this option multiple times to
run more than one test list. For example,

/testlist:checkintests/clientteam.

This is the name of a test to be run; you can
specify this option multiple times to run more
than one test.

This option runs a test only if one unique match is
found for any given /test.

This option runs a test within the MSTest . exe
process. This choice improves Test Run speed,
but increases risk to the MsTest process.

This option does not save the Test Results in a
TRX file; the choice improves Test Run speed, but
does not save the Test Run results

This parameter is used for getting value of
additional property along with the test outcome.
For example, the following command with the
property is to get the error message from the
Test Result:

/detail:errormessage

[331]

Command Line

In addition to these options, there are many other options which can be used with
MSTest if Team Explorer is used:

Option Description

/publish: [team project collection Publishes results to the Team
url] Project Collection
/testconfigname: [config name] The name of the pre-existing test

management configuration to
associate with the published run

/testconfigid: [config id] The ID of the pre-existing test
management configuration to
associate with the published run

/publishbuild: [build name] The build identifier to be used to
publish Test Results
/publishresultsfile: [file name] The name of the Test Results file to be

published; if none is specified, use the
file produced by the current Test Run

/teamproject: [team project name] The name of the Team Project to which

the build belongs; specify this when
publishing Test Results

/platform: [platform] The platform of the build against which
to publish the Test Results

/flavor: [flavor] The flavor of the build against which to
publish Test Results

/buildverification: [yes/no] The parameter is optional. Identifies the

test as a build verification run. Default
value is Yes.

The following section shows the running of some of the command line commands
using MSTest:

Running a test from the command line

MSTest is only for automated tests. Even if the command is applied to a manual test,
the tool will remove the non-automated test from the Test Run.

The /testcontainer option

The /testcontainer option requires the filename as parameter which contains
information about tests that must be run. The /testcontainer file is an assembly
that contains all the tests under the project, and each of the projects under a solution
has its own container for the tests within the projects.

[332]

Chapter 10

For example, the next screenshot shows the list of tests within the container
unittestprojectl.dll. MSTest executes all the tests within the container
and shows the result as well. The summary of the Test Result is as shown in
the next screenshot:

B Developer Command Prompt for V52012 = (== @

C:“Program Files“Microsoft Uisuwal Studio 11.8>mstest stestcontainer:C:Satheesh-JH
Shared~Apps:EnployeeMaintenance~UnitTestProjectixbin Debugsunittestprojectli.dll
Microsoft (R> Test Execution Command Line Tool Uersion 11.8.58727.1

Copyright ¢c?» Microsoft Corporation. All rights reserved.

Loading C:“Satheesh“Shared“Apps~EmployeeMaintenance“UnitTestProjectlsxbin“Debug*u
nittestprojectl.dll...
Starting execution...

m

Top Level Tests
Inconclusive UnitTestProjectl.UnitTestl.CalculateTotalPriceTest
Failed UnitTestProjectl.UnitTestl.CalculateTotalPricewithlaxTest
Failed UnitTestProjectl.UnitTestl.GetObjectToCompareTest
Passed UnitTestProjectl.UnitTestl.GetTotalltemPricelest
Inconclusive UnitTestProjectl . UnitTestl . GetTotalPriceTest
Pazssed UnitTestProjectl.UnitTestl.SamnpleTestmethodforAssertsTest

Failed UnitTestProjectl.UnitTestl.TestMethod2
2,7 testd{s) Passed, 2 Inconclusive. 3 Failed

Inconclusive
Failed
Pazzed

file: GC:“Program Files“Microsoft Uisuwal Studio 11.0\TestBResults~Sathees
‘h_SATHEESH-PC 2013-84-86 23_18_37.trx
Test Settings: Default Test Settings

C:\Program Files“Microsoft Uisual Studio 11.0> Y.

First, the MsTest will load all the tests within the project, then start executing
them one by one. The result of each Test Run is shown but the detailed Test Run
information is stored in the test trace file. The trace file can be loaded in Visual
Studio to get the details of the Test Result.

The /testmetadata option

The /testmetadata option is used for running tests in multiple Test Projects under
a solution. This is based on the metadata file, which is an XML file that has the list of
all the tests created under the solution.

The /testcontainer option is specific to a Test Project, whereas /testmetadata is
for multiple test containers with the flexibility of choosing tests from each container.

[333]

Command Line

The /test option

There are instances where running all the tests within a test container is not required.
To specify only the required tests, use the /test option with the /testmetadata
option or the /testcontainer option. For example, the following command runs
only the codedurTest1 test from the list of all tests:

B Developer Command Prompt for V52012 EI@

C:“Program Files“Microsoft Visuwal Studio 11.8>mstest ~testcontainer:C:“Satheesh
Shared“Apps“EnployeeMaintenance~CodedUITestProjectisbin“Debug~CodedUITEstProject
1.d11l stest:CodedUITestl

Microsoft (R)> Test Execution Command Line Tool Version 11.8.58727.1

Copyright ¢c) Microsoft Corporation. All rights reserved.

Loading G:~Satheesh~Shared“Apps:EmployeeMaintenance~CodedUITestProjectisbin“Debu

g»\CodedUITEstProjectl . .dll...
Starting execution...

Summary

Test_Run Failed.

Rezults file: C:s\Program Files“Microsoft Uiszwal Studio 11.8~TestResults-Sathees
h_SATHEESH-PC 20813-04-87 B8_58_42 . trx
Test Settings: Default Test Settings

C:“Program Files“Hicrosoft Uiswnal Studio 11.@3

Top Level Tests

i CodedUITestProjectl.CodedUITestl.CodedUITestMethodl
B-1 test{s> Passed. 1 Failed

The /test option can be used along with /testmetadata or /testcontainer, but not
both. There are different usages for the /test option:

Any number of tests can be specified using the /test option multiple times
against the /testmetadata or /testcontainer option.

The name used against the /test option is the search keyword of the fully
qualified test names. For example, if there are test names with fully qualified
names such as:

UnitTestProjectl.UnitTestl.CalculateTotalPriceTest

UnitTestProjectl.UnitTestl.CalculateTotalPricewithTaxTest
UnitTestProjectl.UnitTestl.GetTotalPriceTest

And if the command contains the option /test:UnitTestProjectl, then all of the
preceding three tests will run as the name contains the UnitTestProjectl string in
it. Even though we specify only the name to the /test option, the result will display
the fully qualified name of the tests run in the results window.

[334]

Chapter 10

The /unique option

The /unique option will make sure that only one test which matches the given
name, is run. In the preceding examples, there are different tests with the string
UnitTestProjectl in its fully qualified name. Running the following command
executes all the preceding tests:

mstest /testcontainer:c:\Satheesh\Shared\Apps\EmployeeMaintenance\
UnitTestProjectl\bin\debug\unittestprojectl.dll /test:Unittestprojectl

But if the /unique option is specified along with the preceding command, the MSTest
utility will return the message saying that more than one test was found with the same
name. It means that the test will be successful only if the test name is unique.

BN Developer Command Prompt for V52012 |£|E|ﬂ—hj

C:“Program Files“\Microzoft Uisual Studio 11 _@>mstest rtestcontainer:C: Satheezh\JP
Shared“Apps“EmployeeMaintenancesUnitTestProjectishinsDebugsunittestprojectl . dll
stest:UnitlestProjectl ~unigue

Microsoft (R> Test Execution Command Line Tool Uersion 11.8.58727.1

Copyright <c)> Microsoft Corporation. All rights reserved.

Loading C:“Satheesh~Shared-Apps EnployeeMaintenancesUnitTestProjectisbin~Debug>u
nittestprojectl dl1l...

Test UnitTestProjectl is not wunigue. [t maps to more than one test.

Starting execution...

Mo tests to execute.

C:=~Program Files“Microsoft Uisual Studio 11.8>_

The following command will execute successfully as there is only one test with the
name GetTotalItemPriceTest.

IC:\PPogram Files“Microsoft Uisual Studio 11.BXmstest Atestcontainer:C:“Satheesh™
Shared~Apps~EmployeeMaintenancesUnitTestProjecti~hinsDebugsunittestprojectl.dll
stest:gettotalitempricetest Aunigue
Microgsoft (R> Test Execution Command Line Tool Version 11.8.58727.1
Copyright <{c> Microsoft Corporation. All rights reserved.

.Loading C:xSatheeshs\Shared-AppssEmnployeeMaintenancesUnitTestProjectisbinsDebugu
nittestprojectl_dll...
Starting execution...

Rezsults Top Level Tests

UnitTestProjectl . UnitTestl.GetTotalltemPriceTest
1-1 testd{s> Passed

Test RBun Completed.
Passed

1
Results file: C:“Program Files“Microszoft Uisuwal Studio 11.8“TestResults Sathees
h_SATHEESH-PC 2013-84-87 81_23_22 trx
Test Settings: Default Test Settings

C:“Program Files“\Microsoft Uisual Studio 11.8>

[335]

Command Line

The /noisolation option

The /noisolation option runs the tests within the MStest . exe process. This choice
improves the Test Run speed, but increases risk to the MSTest . exe process.

Usually, the tests are run in a separate process that is allocated with separate memory
from the system. By launching the MSTest . exe process with the /noisolation option,
we avoid having a separate process created for the test.

The /testsettings option

The /testsettings option is used to specify the Test Run to use a specific test
settings file. If the settings file is not specified, MSTest uses the default settings file.
The following example forces the test to use the TestSettings1 settings file:

R Developer Command Prompt for V52012 |£|E|é]

C:“Program Files“Microsoft Uisual Studieo 11.8>M3Test Atestcontainer:C:“Satheesh"
Shared~Apps“EnployeeMaintenance~UnitTestProjectixbin“Debug*UnitTestProjectli.dll
{testsettings:C:\Satheesh\ShaPed\ﬂpps\EmpluyeeHaintenance\TestSettingsi.testsett
ings

Microsoft (R> Test Execution Command Line Tool Version 11.8.58727.1

Copyright <c> Microsoft Corporation. All rights reserved.

Loading C:“Satheesh“Shared“Apps“EmnployeeMaintenance~TestSettingsl.testsettings..

ioading C:»Satheesh“Shared“Apps“EmployeeMaintenance~UnitTestProjecti~bin“Debug-l
nitTestProjectl.dll...
Starting execution...

Hezults

Inconclusive Un1tTe“tP ojectl.UnitTestl.CalculateTotalPriceTest

Failed UnitTestProjectl.UnitTestl.CalculateTotalPricewithTaxTest
Failed UnitTestProjectl . UnitTestl . GetObjectToCompareTest

Passed UnitTestProjectl.UnitTestl.GetTotalltemPriceTlest
Inconclusive UnitTestProjectl.UnitTestl.GetTotalPricelest

Passed UnitTestProjectl . UnitTestl . SampleTestmethodforfAzsertsTest
Failed UnitTestProjectl.UnitTestl.TestMethod2

2,7 test(s? Passed. 2 Inconclusive., 3 Failed

Test Run Failed.
Inconcluszive
Failed
Passed

Results file: C:“\Program Files“Microsoft Uisuwal Studio 11.8%\TestResults>Sathees
h_SATHEESH-PC 2013-A4-A7 13 19 13.trx
Test Settings: TestSettingsl

C:“Program Files“Microsoft Uisual Studio 11.83>_

[336]

Chapter 10

The /resultsfile option

In all the command executions, the MSTest utility stores the Test Results to a trace
file. By default, the trace file name is assigned by MSTest using the login user ID,
the machine name, and the current date and time. This can be customized to store
the Test Results in a custom trace file using the /resultsfile option. For example,
the next screenshot shows the custom trace file named as customtestresults.trx:

<
Bl Developer Command Prompt for V52012 |i‘£|_g—hj

C:“Program Files“Microsoft Uisuwal Studio 11.8>MS8Test Atestcontainer:C:“Satheeshy
Shared~Apps“~EmnployeeMaintenance~UnitTestProjectisbinsDebugsUnitTestProjectli.dll
“testsettings :C:sSatheesh“Shared“Apps~EmployeeMaintenance~TestSettingsl.testsett
ings sresultsfile:c:“8atheeshcustomtestresult.trx

Microsoft (R» Test Execution Command Line Tool Version 11.8.58727.1

Copyright ¢c) Microsoft Corporation. All rights reserved.

Loading GC:»Satheesh“Shared“Apps~EmployeeMaintenance~TestSettingsl.testsettings..

iuading GC:xBatheesh“Shared“Apps“EmployeeMaintenance~UnitTestProjectlxbin“Debug U
nitTestProjectl. dll...
Starting execution...

Top Level Tests
Inconclusive i ctl.UnitTestl.CalculateTotalPricelest
Failed i ectl _UnitTestl.CalculateTotalPricewithTaxTest
Failed UnitTestProjectl.UnitTestl.GetObjectToCompareTest
Passed UnitTestProjectl.UnitTestl.GetTotall temPriceTest
Inconclusive UnitTestProjectl . UnitTestl . GetTotalPriceTest
Passed UnitTestProjectl . UnitTestl . SamplelestmethodforAssertsTest
Failed UnitTestProjectl.UnitTestl .TestMethod2
2,7 test(s) Passed. 2 Inconclusive, 3 Failed

Test Run Failed.
Inconclusive
Failed
Passed

file: c:~Satheezsh™customtestresult.trx
Test Settings: TestSettingsl

The preceding screenshot shows the Test Results stored at the c: \satheesh location
in the results file, customtestresult.trx.

The /noresults option

The /noresults option informs the MSTest application not to store the Test Results
to the TRX file. This option increases the performance of the test execution.

[337]

Command Line

The

/Inologo option

The /nologo option is to inform the MsTest tool not to display the copyright
information that is usually shown at the beginning of the Test Run.

The

The /detail option is used for collecting the property values from each Test Run
Each Test Result provides information about the test such as error messages,
me, end time, test name, description, test type, and many more. The /detail

result.
start ti

/detail option

option is useful to get the property values after the Test Run. For example, the

following screenshot shows the start and end time of the Test Run, and also the type

of the

Test Run:

Bl Developer Command Prompt for V52012 |ﬂ|ﬁ]

C:“Program Files“Microsoft Visual Studio 11.8>MS8Test ~testcontainer:G:sSatheesh-JH
Shared“Apps“EmployeeMaintenancesUnitTestProjectisbinsDebugslUnitTestProjectl.dll
“testsettings:C:inBatheesh Shared \Apps EmployeeMaintenance~TestSettingsl. testsett
ings Aresultsfile:zc:“Batheesh“customtestresultl.trx sdetail:starttime ~sdetail:zen
dtime rdetail:testtype

Microsoft (R> Test Execution Command Line Tool Uersion 11.8.58727.1

Copyright (c> Microsoft Corporation. All rights reserved.

m

Loading C:»Satheesh~Shared~Apps:EnployeeMaintenance~TestSettingsl.testsettings..

ioading C:xnSatheeshShared“Apps EmnployeeMaintenances~UnitTestProjectisbinDebuglU
nitTestProjectl . dll...
Starting execution...

Results Top Level Tests

Inconclusive UnitTestProjectl.UnitTestl.CalculateTotalPriceTest

[testtype]l = Unit Test

[starttime] = B?7-B4-2013 BB:11:2@

[endtime] = A7-B4-2013 B8:11:29

Failed UnitTestProjectl.UnitTestl.CalculateTotalPricewithTaxTest

[testtype] = Unit Test

[starttime] = A?7-B4-2013 BB:11:2@

[endtime] = B7-B4-2813 B8:11:21

Failed UnitTestProjectl.UnitTestl . GetObjectToCompareTest

[testtype]l = Unit Test

[starttime] = A7-B4-2013 BB:11:21

[endtime] = B7-B4-2813 BB:11:21

Passzed UnitTestProjectl.UnitTestl_GetTotalltemPriceTest

[testtype]l = Unit Test

[starttime] = B?7-B4-2013 BB:11:21

[endtime] = A7-A4-2813 BB:11:21

Inconclusive UnitTestProjectl.UnitTestl.GetTotalPricelest

[testtype]l = Unit Test

[starttime] = B?7-B4-2013 BB:11:21

[endtime] = B7-B4-2013 B8:11:21

Passed UnitTestProjectli.UnitTestl.SampleTestmethodforfissertsTest
= Unit Test
= B7-84-2813 B88:11:21

[endtime] = A7-B4-2013 B8:11:21

i UnitTestProjectl.UnitTestl . _TestMethod2

[testtype] = Unit Test

[starttime] = A7-B4-2013 BB:11:21

[endtime] = B7-B4-2813 B8:11:21

2,7 test(s> Passed. 2 Inconclusive, 3 Failed

Test Run Failed.
Inconclusive
Failed
Passed

c:~Satheesh custonmtestresultl.trx
Test Settings: TestSettingsl

IC:“\Program Files“Microsoft Uisual Studio 11_8>_ %

[338]

Chapter 10

The /detail option can be specified multiple times to get multiple property values
after the Test Run.

Publishing Test Results

Publishing Test Results is valid only if Team Explorer is installed, and if Visual Studio
is connected to the Team Foundation Server (TFS). This is to publish the test data
and results to the TFS Team Project. Please refer to Microsoft Developer Network
(MSDN) for more information on installing and configuring TFS and Team Explorer.

Test Results can be published using the command line utility and the various options
along with the utility. The /publish option with MSTest will first run the test, and
then set the flavor and platform for the test before publishing the data to the TFS.
Some of these options are mandatory for publishing the Test Run details.

The following are the different publishing options for the command line MSTest tool:

The /publish option

The /publish option should be followed by the uniform resource identifier (URI)
of the TFS, if the TFS is not registered in the client. If it is registered, just use the
name of the server to which the Test Result has to be published, as shown in the
following command:

/publish: [server name]
Refer to the following examples:

* If the TFS Server is not registered in the client, then:
/publish:http://MyTFSServer ()

* If the TFS Server is registered with the client, then:

/publish:MyTFSServer

The /publishbuild option

The /publishbuild option is used for publishing the builds. The parameter value is
the unique name that identifies the build from the list of scheduled builds.

[339]

Command Line

The /flavour option

Publishing the Test Rresults to TFS requires /f1lavor as mandatory. Flavor is a string
value that is used in combination with the platform name, and should match with
the completed build that can be identified by the /publishbuild option. The MSTest
command will run the test, and then set the flavor and platform properties, before
publishing the Test Run results to the TFS:

/flavour: [flavour string value]
For example:

e /flavor:Release

e /flavor:Debug

The /platform option

This is a mandatory string value used in combination with the /f£1lavor option which
should match the build option.

/platform: [string value]
For example:

* /platform:Mixed Platforms
* /platform:NET
* /platform:Win32

The /publishresultsfile option

MSTest stores all the Test Results in the default trace files with the extension . trx.
Using the /publishresultsfile option, the Test Results file can be published to TFS
using the output/trace option. The name of the file is the input to this option. If the
value is not specified, MSTest will publish the current Test Run trace file to TFS.

/publishresultsfile: [file name string]

For example, to publish the current Test Run trace file, use the
/publishresultsfile option.

To publish the Test Result, one can use a combination of different options we saw in
previous sections, along with the option /publishresultsfile.

[340]

Chapter 10

The Test Results from the results file are published to the build output of the solution.
The steps involved in publishing are to create the test, create a build definition, build
the solution, execute the test, and then publish the result to the build output.

Step 1 — create/use existing Test Project

The following screenshot contains the solution EmployeeMaintenance. The solution
contains a Test Project WebAndLoadTestProjectl with a web test WebTest2. The
following screenshot shows the Test Project named WebAndLoadTestProjectl:

Solution Explorer *OX
@ e--am AR
Search Solution Explorer (Ctrl+;) P~

aha] Solution 'EmployeeMaintenance’ (10 projects)
b g Solution tems
a[c# ClassLibrarylforPlugln
i[c#] CodedUITestProjectl
a[e#] CustomRules
E EmployeeMaintenance
sL] EmployeeTestProject
a[c#] GenericExamplel
a[c#] Testlibrary
a[c#] UnitTestProjectl
[UnitTestProject3
a[c#] WebAndLoadTestProjectl
b & M Properties
P =B References

a[¥] EmpData.csv

all Employeesxml

52 WebTestl webtest

WebTest2.webtest

=

A VOV OV T T OV TV

aJi¥ WebTest3.webtest
5 WebTestd. webtest

Selution Explorer | Team Explorer = Class View

[341]

Command Line

Step 2 - running the test

On running the web test, by default the Test Result is stored in the trace file <file
name>.trx.

WebTest2.webtest 7 X -

G- @Yed oz AE
P ety

IEI Transactionl

@¥ Data Sources

B Context Parameters

-l Validation Rules

J& Response URL

E Response Time Goal

Output Test Results # X Test Runs hd
% o Satheesh@SATHEESH-PC 2013-0: - 'A Run - Debug ~
a Test run failed Results: 0/1 passed; Item(s) checked: 1

Result

v/ B Failed

Test Name 1D
WebTest2

Error Message

c\satheesh'\shared\apps\empld 4 primary requests, 0 depend

Step 3 — creating a build

The /build service in Team Foundation Server has to be configured with a controller
and agents. Each build controller manages a set of build agents. Unfortunately, the
steps and the details behind creating the build types will not be covered in this book as
it would be too long to discuss it. The following screenshot shows the /build service
configured with controller and agents:

i Team Foundation Server Administration Console =

File Help
4 || Satheesh-PC
4 _ﬁl Application Tier
.a!ﬁ Team Project Collections
F Lab Management
:jﬁ“ﬁ Build Configuration
i Logs

Build Configuration

4 [} Additional Taols and Compaonents
ﬁ’ul Visual SourceSafe Upgrade
ﬁ’u! PreEmptive Analytics

Build Service configured for http://localhost:8080/tfs/defaultcollection as LocalService .

Satheesh-PC - Started on http://satheesh-pc:3191/Build/vd.1/5ervices as LocalService
Restart | Stop | Properties | Unregister

) Events: 2 informational in the last 24 hours

Each Build Contreller manages a set of Build Agents, Each Build Agent must be assigned
to a Build Controller, but the Controller does not have to be on the same host machine.

Mew Agent...

ﬂ7 Satheesh-PC - Controller - Ready
+3(y) Controller - Properties | Delete | Disable | Restart

Satheesh-PC - Agentl - Ready
() Agent for ‘Satheesh-PC - Controller' - Properties | Delete | Disable | Restart

Last Refresh: 11-04-2013 15:12:19

[342]

Chapter 10

To create the build definition using the Team Explorer, navigate to the Build
definitions in Builds folder, under Team Project. Select new build definition,

and then configure the options by choosing the projects in TFS and the local folder.
In one of the steps, you can see the following screenshot for selecting the project and
setting the configuration information for the build process:

w EmployeeMaintenance - B x
MNewBuildDefinitionl + X -
General Team Foundation Build uses a build process template defined by a Windows Workflow (XAML) file, The behavior of
T this template can be customized by setting the build process parameters provided by the selected template.

rigger
Workspace)
Build process template:
Build Defaults

_ Default Template v Show details
Process

Retention Policy
Build process parameters:

4 1. Required -

o Build Build $/TeamProject1/EmployeeMaintenance/EmployeeMaintenan

Basi:

utemated Tests Run tests in test sources matching **test™.dll, Target platform: 'X86"
Build Mumber Format S{BuildDefinitionMame]_S{DateryyyyMMdd)S{Rev:.r)
Clean Workspace All
Legging Verbosity MNormal
Perform Code Analysis AsConfigured
> Source And Symbol Server Settings Index Sources
4 3. Advanced
> Agent Settings Use agent where Name=" and Tags is empty; Max Wait Time: 04:00:00
Analyze Test Impact True
Associate Changesets and Work Items True
Create Work Item on Failure True
Disable Tests False -
2. Basic

There are different configuration sections such as Required, Basic, and Advanced,
from where the project can be selected to include as part of this build definition
setting such as build file formats, Agents Settings, work item creation on build
failure, and other configurations.

Step 4 - building the project

Now that the project is created, configurations and properties are set, and we are
ready to run the test, we will build and publish the Test Results. Select the New
build definition and start the build queue process. The build service takes care of
building the solution by applying the build definition, and on completion the result
section shows the build summary.

[343]

Command Line

Step 5 — publishing the result

So far, the test is run and the result is saved in the trace file, and also we have built
the project using the build definition. The Test Run results should be published to
the build. There are multiple options used for publishing the Test Results using the
MSTest command line tool. The following command in the next screenshot publishes
the Test Result to the specified build:

EX Developer Command Prompt for V52012 |£|E‘é]

C:\Program Files“Microsoft Uisuwal Studio 11.8>mstest spublishresultsfile:"C:»5at

heesh\Shared“Apps“EnployeeMaintenance~TestResults 8atheesh_SATHEESH-PC 2813-#A4-1

1 16_27_08 . trx" spublish:"http:/-Satheesh-PC:8880/tfs DefaultCollection' ~publis

thbuild:NewBuildDefinitionl 28138411.1 Ateamproject:TeamProjectl Aplatform:"Any C
U ~flavor:-Releaze

Microsoft (R} Test Execution Command Line Tool Uersion 11.A.58727.1

Copyright <c?» Microsoft Corporation. All rights reserved.

Waiting to publish...
Publizshing results of test pun Satheesh@SATHEESH-PC 2813-84-11 16:27:08 to http:
*#Satheesh-PC:8A8B tfz-DefaultCollection...

Publish completed successfully.

C:\Program Files“Microsoft Uisuwal Studio 11.8>

The command line options used in the preceding screenshot shows the Test Result
trace file, TFS Team Project, and build against which the Test Result should be
published. The command line also has the platform and the flavor values matching
the build configurations.

After publishing the Test Results, if you open the build file, the test information along
with the build summary is shown in the build summary. The information also contains
a link to the trace file.

TCM command line utility

TCM is the command line utility used for importing automated tests to the Test Plan,
running the test from the Test Plan, and then viewing a of tests and IDs corresponding
to them. This utility is very useful if the IDE is not available. The /help or /?
command is used to get the syntax and parameters for the tool. Following are the
syntax and parameters for the tcm. exe tool:

[344]

Chapter 10

tcm

tcm
tcm

tcm

tcm
tcm

tcm

Bl Developer Command Prompt for V52012 |E|E|éj

Type tcm help <command name?> for command line description.

\Uhen you »un any tcm command. yow must either specify
l“collection-teamprojectcollectionurl steamproject:project on the command line
or you can specify values for these options in the tcm.exe.config file.

Commands =

C:“Program Files“Microsoft Uisuwal Studio 11.8>

bugfieldmapping Imports or exports the mappings of auto generated bug
fields

configs Lists test configurations
plans Lists test plans

»un Creates,. deletes. lists, aborts, publishes.
exports, or runs a group of tests.

suites Provides operations to list and clone test suites
testenvironments Lists test environments

testcase Imports testcases from a specified assembly or a test file

Importing tests to a Test Plan

A few automated tests were created in previous chapters such as automated unit
tests, but it was all through Visual Studio. There wasn't any test case for the unit
test, and running the test case was also from Visual Studio IDE. This section explains
how to import the tests to a Test Plan and create the test cases automatically while
importing through the command line.

The Test Plans are created using the Test Manager to group the Test Suites and test
cases. The following screenshot shows a few Test Plans created for the Team Project
TeamProjectl:

esting Center

Mame Cwner End date

MasterTestPlanl Satheesh 18-04-2013
Sprintl TestPlan Satheesh 20-04-2013
Sprint2TestPlan Satheesh 20-04-2013

4 Change project Cancel

[345]

Command Line

The EmployeeMaintenance solution contains the unit Test Project

UnitTestProjectl with a few methods out of which there are methods such as
CalculateTotalPriceTest () and CalculateTotalPricewithTaxTest () with
their category defined as Totalprice. So far there are no test cases defined in any of
the Test Plans in the Test Manger for these tests. Refer to the following screenshot:

w EmployeeMaintenance - UnitTestl.cs - = 2X
:
“3 UnitTestProjectl. UnitTestl ~ W testContextlnstance -
=Inamespace UnitTestProjectl —
i -
[TestClass]
= public class UnitTestl
i
private TestContext testContextInstance;
+ public TestContext TestContextlIl
[TestCategory("TotalPrice™), TestMethod()]
= public void CalculateTotalPriceTest()
1
Testlibrary.Classl cls = new TestlLibrary.Classi();
double gquantity = 2F;
double expected = 32F;
double actual;
actual = cls.CalculateTotalPrice(quantity);
Assert.AreEqual(expected, actual);
b
[TestCategory(“"TotalPrice™}, TestMethod()]
= public void CalculateTotalPricewithTaxTest()
1
Classl target = new Classl();
double uPrice = 18F;
int iQty = 2;
double expected = 12F;
double actual;
actual = target.CalculateTotalPricewithTax{uPrice, iQty);
Assert.AreEqual(expected, actual);
¥
-
100% - 4 3

[346]

Chapter 10

For any tests created using Visual Studio, the TcM utility can be used to import it to
the Test Plan in Test Manager as test cases. The following command imports all tests
with the category defined as Totalprice from the UnitTestProjectl assembly into
the Team Project TeamProjectl. The category is defined to the tests to group it from
all other available tests within the assembly. Refer to the following screenshot:

EX Developer Command Prompt for V52012 |iﬂlﬁ

C:“Satheesh \Shared“Apps~“EmployeeMaintenancesUnitTestProjectishinsDebug>tcm testc
lase scollection:"http:/sSatheesh-PC:808B/tfs/DefaultCollection” steamproject:Tealls
mProjectl Aimport Astorage:""C:“Satheesh~Shared~Appz~EmployeeMaintenance~UnitTest
ProjectisbinsDebugsUnitTestProjectl.dll" ~scategory:"TotalPrice"

CalculateTotalPriceTest
CalculateTotalPricewithTaxTest

2
a
a
a
a
2

C:“Satheesh"\Shared“Apps~EmployeeMaintenancesUnitTestProjectisbinsDebug>_

The command execution result shows the summary of the import, along with the
names of the tests matching the command parameters.

[347]

Command Line

Connect to the TeamProjectl using Test Manager and open any of the Test Plans
within the project. On the Contents tab under the Plan option in Testing Center,
click on Add from the toolbar in Test Suite section on the right. This will open up a
new window to search for any available test cases to add to the Test Suite. By default,
the Test Plan is the Test Suite, if no other Test Suite is created for the plan. In the

new window, just click on the Run option to perform the default search with default
parameters. You may notice that the search result shows two test cases in the name
of the test methods which were imported from the Test Project. The test cases are
named after the test method itself. Select either or both of the test cases and add them

to the Test Suite.

@ ® | @ | Testing Center ~ ‘ Plan Test

Contents | Results | Properties

@ Contents

- O X

Track

Or’ TeamProjectl » Sprintl TestPlan

New Open ltems (0) «

Add Test Cases to Suite

Query Type: | Flat List (Default)

And/Or Field Operator
Team Project =
And Work Itemn Type In Group

Click here to add a clause

Value
@Project

Test Case Category

p Run

Drag a column header here to group by that column.

._E Column options | [] Open 53 Create cop

, | Create test case from bug

{1 | Title

Assigned To | Area Path

3 CalculateTotalPriceTest
4 CalculateTotalPricewithTaxTest

Query results: 2 results found.

Satheesh TeamProjectl

Satheesh TeamProjectl

s o

[348]

Chapter 10

After adding the test case to the Test Suite and Test Plan, open the test case using the
Open toolbar option. There won't be any step except the name of the test case and few
other details. Include the details of the test steps to the test case, if required.

- O X
@ @ | @ | Testing Center ~ Plan Test Track Organize TeamProject] » Sprintl TestPlan

Contents | Results | Properties New Open Items (1) «

¢j Test Case 3: CalculateTotalPriceTest S3Copy Link [fSaveand Close [(2] @ X

CalculateTotalPriceTest

Iteration TeamProjectl

STATUS DETAILS
Assigned To Satheesh Automation status Automated

State Design Area TeamProjectl
Priority 4
STEPS SUMMARY TESTED BACKLOGITEMS LINKS ~ ATTACHMENTS ASSOCIATED AUTOMATION

all Insert step %8 Insert shared steps

Action Expected Result

= Click here to add a step

Parameter Values

Now the test is available, and the test case is added to the Test Suite.

Running tests in a Test Plan

The tests cases associated with the tests can be run using the TcM command line
utility without using the IDE. Whenever a test is run using the Tcw, it requires
additional information such as the environment and roles within the environment.

Running the test case using TCM requires Test Points or the Test Suite, and the
configuration information. TcM requires the IDs of the Test Plan, Test Suite, and
configuration. The TcM command line can be used to retrieve all these details.

[349]

Command Line

To list all configurations from the Team Project, the TcM command is like the
following result:

&Y Developer Command Prompt for V52012 | == -thl

e
SNProgram Files“Microsoft Uiszuwal Studio 11 _B>tcm configs ~list ~collection:="htt
p:/sSatheesh—-PC:8888/tf sz DefaultCollection” ~teamproject:TeamProjectl

Windows B

C:“\Program Files“Microsoft Uisuwal Studio 11.8>_

The following is the command and output for listing all the Test Plans within the
Team Project:

&R Developer Command Prompt for VS2012 |£|E‘é]

C:“Program Files“Microsoft Uiszuwal Studio 11 _B>tcm plans ~list “collection:"http:
#Satheesh-PC:8888/tfs DefaultCollection"” Ateamproject:TeamProjectl

MasterTestFlanl
SprintiTestPlan
Sprint2TestPlan

C:“\Program Files“Microsoft Uisuwal Studio 11.8>_

To list all the Test Suites within the Plan, use the following TcM command with the
options as shown in the next screenshot along with the Plan ID, collection, and the
Team Project name. Use the Plan ID from the previous command output:

EX Developer Command Prompt for VS2012 |E|E‘é]

C:“Program Files“Microsoft Uisuwal Studio 11.8>tcm suites ~list ~planid:2 /collec
tion:"http: ~Satheesh-PC:8880-tfs DefaultCollection” Ateamproject:TeamProjectl

SprintiTestPlan

C:“\Program Files“Microsoft Uisuwal Studio 11.8>_

Use the Config ID, Plan ID, and the Suite ID collected by using the TcM utility from
the collection and the Team Project to run the test. This will create a run as shown in
the following screenshot:

[350]

Chapter 10

r 5

&R Developer Command Prompt for VS2012 = | B S

C:“Program Files“Microsoft Uiszuwal Studio 11_B>tcm run Acreate Atitle:"TCHM Run Te
st"” splanid:2 ssuiteid:3 ~configid:1l settingsname:"testsettingsl.testsettings" /|
collection:"http:/ Satheesh-PC:8888-/tfs-DefaultCollection’ steamproject:TeamProj
ectl

Run created with ID: 3.

C:\Program Files“Microsoft Uisuwal Studio 11.8>

The Test Run is created and the result can be viewed in Test Manager for analysis.
Open the Test Manager and select the option Test under Testing Center. Select
Analyze Test Runs from the menu bar. The Analyze Test Runs window shows
the Test Runs for the Test Plan. The following screenshot shows a detailed view of
the Test Run. The test is still in progress but you can see the test cases and the other
details provided at the command:

- 0O X

@ @ ‘ @ ‘ Testing Center ~ Plan Test Track Organize TeamProjectl » SprintlTestPlan

RunTests | Analyze TestRuns | Do Exploratory Testing | View Exploratory Test Sessions | Verify Bugs MNew v Openltems (1) +
e} ; Test Run 3: TCM Run Test “3Copy Link [fSaveand Close [[2]

A Summary ((3) Waiting for Test Controller -

Title: | TICM Run Test Test settings:

Owner: Satheesh Test environment:
Date started: 13-04-201316:16:15 Test controller:
Date completed: <Mo date> Stop run Build:

Run type: Automated Test run log:

Comments:

A Results Overview (2 Tests)

Current State of Tests Failed Tests by Reason Failed Tests by Analysis

. M 2 1n progress (100%) 0 None (0%) 0 None (0%)

i ID State Error message Analysis owner | Failure type Resolution Configuration

= (D Pending (2)
3 Pending CalculateTotalPriceTest Satheesh Windows 8
4 Pending CalculateTotalPricewithTaxTest Satheesh Windows 8

4

~ Attachments (0)

[351]

Command Line

a The Test Agent needs to be set up to run as a process instead of
s a service to run the automated tests to interact with desktop.

Summary

This chapter explained the use of multiple command line utilities such as vSTest .
Console, MSTest, and TcM for running the tests. These tools are very handy when
there is no IDE. Lots of features are covered using the command line utility when
compared to the earlier versions of Visual Studio. The vSTest . Console utility
comes with multiple options to run automated tests such as unit tests and Coded
Ul tests. The MSTest utility provides options for backward compatibility along
with multiple options to run automated tests and publish the results to the Team
Foundation Server. The TcMm utility is used for importing tests and creating test
cases automatically to Test Plans. This utility is very useful, and saves lot of manual
activities with Test Manager. Overall these utilities provide lot of features at the
command line, and remove the IDE dependency.

The next chapter explains the details of running the test with multiple options and
using the results window to get the details of Test Run.

[352]

11

Working with Test Results

Visual Studio 2012 provides multiple options to run the tests and collect the results.
One is through the command-line utilities, and the other is through the IDE features
such as the Test Explorer, Test Runs, and Test Results windows. The Test Explorer
window lists the available tests and helps in running the tests, as well as getting the
summary result of a recent test. The Test Runs window connects to the controller,
and then collects the summary of all Test Runs. The Test Runs window displays all
the tests based on the results availability at the location. To get the detailed result
information, the Test Run result should be connected, and on double-click of the Test
Run, the results are displayed in the Test Results window. Opening the Test Run
from the results window provides detailed information of the test.

The Test Result can be added as part of the Team Foundation Server (TFS) 2012
automated build, so that the automated build after the new code check-in can be
verified against the existing functionality. The build process takes care of compiling
the latest checked-in code, and creating the project output files and deployment files.
If the tests are included as part of the build, the build service will run the tests after
building the code, and then produce the Test Results in a similar fashion to the Test
Run and Test Explorer. The Test Results are stored separately in trace files under the
test results folder.

The Test Results window helps in creating defects based on the test output, and
then adds to the TFS as a work item of type defect. The overall Test Result can also
be published directly to the TFS, and associated to the code builds available in the
Team Foundation Server. Following are the main topics that would be covered in
this chapter:

* Testing as part of Team Foundation Server build
* Building reports and Test Result

* Creating work item from Test Result

* Publishing Test Results

Working with Test Results

Test Runs and Test Results

All tests with Test Results stored in the trace files are displayed in the Test Runs
window. The following screenshot shows the Test Runs window, which shows the
status of the test, and the link to Test Result details. The test name is same as the Test
Result, . trx filename created during the Test Run.

Test Runs - H X

Connect: mployeeMaintenance!\TestResults - X Disconnect

Test Run Name + Status Owner

4 Completed Runs (7) (C\Apps\EmployeeMaintenance\TestResults)
@ Satheeshkumar@MY-PC 2013-04-27 19:15:02 1/1 passed MY -PC\Satheeshkumar
@ Satheeshkumar@MY-PC 2013-04-27 19:14:47 0/1 passed MY -PC\Satheeshkumar
@) Satheeshkumar@MY-PC 2013-04-27 19:12:43 1/1 passed MY-PC Satheeshkumar
@) Satheeshkumar@MY-PC 2013-04-27 19:10:54 1/1 passed MY -PC\Satheeshkumar
€3 Satheeshkumar@MY-PC 2013-04-27 19:08:19 0/1 passed, 1 failed MY-PCY Satheeshkumar
0 Satheeshkumar@MY-PC 2013-04-27 18:43:09 1/1 passed MY-PCY Satheeshkumar
€3 Satheeshkumar@MY-PC 2013-04-27 18:31:57 0/1 passed, 1 failed MY-PCh Satheeshkumar

Output Test Results Test Runs

From the Test Runs window, individual tests can be opened in the Test Results
window to see a summary and details of the results. Double-click on any of the tests
from the Test Runs window to open the results. The summary is shown initially, but
double-clicking on the summary opens the details of the Test Result. The following
screenshot shows the sample Test Run result summary of the test.

Test Results * O X
[F|= 2 Sotheeshkumar@MY-PC2013-04 - " Run - "3 Debug - R
ﬂ Test run completed Results: 1/1 passed; Item(s) checked: 0

Rezult Test Mame D Error Mg

WebTestd chappsiemployeemaintenance\webandloadtestprojectl

4 4
Qutput | Test Results | Test Runs

[354]

Chapter 11

On double-clicking the Test Result in the Test Results window, another window
will be opened, which provides Test Run details such as Web Browser, Request,
Response, Context, and other details, as shown in the following screenshot:

WebTestd [7:15 PM] * A X
& O > 2

@ Passed Click here to run again Internet Explorer 9.0 LAM Edit run settings

Request Status Total Ti.. RequestT.. Request.. Response Byt..
@ 1 @ http://localhost:3062/Employee/List.aspx 200 0K 0,128 sec 0.047 sec 0 409,212
@ o &) http//localhost3062/Employee/Tnsert.aspx 200 0K 0.064 sec 0.014 sec 0 415,813
@ 4 g http://localhost3062/Employes/Insert.aspx 302 Found 0.208 sec 0.090 sec 3914 136
o b B http//localhost:3062/Employee/List.aspx 200 0K = 0.054 sec a 409,212

Web Browser | Request | Response | Context | Detailsl
|€] EMPLOYEE MAINTENANCE -

< Back to home page

m

Employee
First_Name | Last_Name | Middle_Name | Department Occupation Gender | City
Edit Delete Details | Satheesh Kumar M Information Technology | Delivery Manager | Male Bangal
Edit Nalata Natsils Cathaack Kirm=r Mznsrsizsn in Malivars Manznar | Mala Rana=l
3

4| i |

[355]

Working with Test Results

The Test Results window not only displays the summary of the Test Result, but also
features other options such as running the test again, debugging the Test Run, and
showing the run details. The following screenshot shows the test Result Summary
window, which shows the start time and end time of the test, test settings file used,
run result, and who initiated the test.

Satheeshkumar@MY-PC 2013-04-27 19:15:02

—| Result Summary

Test run name: Satheeshkurmar@MyY-PC 2013-04-27 19:15:02
Fun result: @) 171 tests passed 0 failed 0 skipped

Test settings: Testhettingsl

Submitted by MY-PC\Satheeshkumar

Started on: 4/27/2013 7:15:03 PM

Completed on: 4/27/2013 7:15:16 PM

There could be multiple actions planned based on the Test Result. In case if the test
fails, a defect should be raised to resolve the issue with the test failure; a task should
be created for the developer who is going to work on fixing it; a code review task
should be created to make sure the fix is correct and that standards are followed,
this should also go as part of the backlog items; and a test case should be created to
retest the fix and make sure the test will not fail again. All of these can be done right
from the Test Results window, without going away, and then opening a new tool.
Right-click on the Test Result, choose the Create Work Item option, and then select
the type of work item.

[356]

Chapter 11

Test Results v [X
%8 P Satheeshkumar@MY-PC 2013-04 - "ZE Run - " Debug - >-G6 1
€3 Testrun failed Results: 0/1 passed: Item(s) checked: 0

Result Test Name D Error Mesg
| ® Failed - sancssmalanssa aintenancehtestresults\satheeshkumar 4 primary 1

View Test Results Details

View Run
a4 Open Test 3
Output | Code Cc Create Work Item > Task]
Add to Work Itemn... Bug
0 Copy Ctrl+C Code Review Request
R Select Al Ctrl+A Code Review Response
00 Add/Remove Columns... Feedback Request
= Feedback Response

Code Coverage Results
Impediment

Product Backlog Item
Shared Steps
Test Case

Selecting the option to create a task will prompt for publishing the Test Result, if it is
not published already. Publishing the Test Result to the build would help the team to
understand which build has the issue and the error details as well.

Test Results *OX
2 Satheeshkumar®MY-PC2013-04 - | " Run ~ " Debug - R "
ﬁ Test run failed Results: 0/1 passed; Itemi(s) checked: 0

Result Test Mame D Error Mess
DI&@@ Failed webtest? |c:\apps\employeemaintenance\testresuIts\satheeshkumal4 primary

Test Run Not Vet Published
Y Publishing test results shares them with your team and makes them available for

1 W' inclusicn in team project reperts. To publish test results now, click Yes. To publish test 4
Cutpud results later, or not at all, click Mo.

Do you want te publish your results now?

[] Do net show this dialeg box again

ve || e

[357]

Working with Test Results

The Publish Test Results window lists all the Test Runs which were not published
to the Team Project. Choose the Rest Run which needs to be published, and then
select the build number from the list of all available builds to associate the Test Run
result with the build.

Publish Test Results @
Select the test run results you would like te publish to the project database
Test Run Cwner Data Size (M... Date Completed i

[[] Satheeshkumar@MY-PC 2013-04-27 18:14:47 MY-PC\Satheeshku... 0.25 4/27/2013 7:14:57 PM

[[] Satheeshkumar@MY-PC 2013-04-27 18:12:43 MY-PC\Satheeshku... 012 4/27/2013 7:12:58 PM

[[] Ssatheeshkum V-PC 2013-04-27 19:10:54 MY-PC\Satheeshku.. 013 013 7:11:08 PM

[] satheeshkum V-PC 2013-04-27 19:08:19 MY-PC\Satheeshku.. 0,05 013 7:08:36 P |~
Satheeshkum V-PC 2013-04-27 18:43:08 MY-PC\Satheeshku.. 013 013 6:43:23 PM
Satheeshkumar@MY-PC 2013-04-27 18:31:57 MY-PC\Satheeshku.. 030 4/27/20136:3211 PM

] mn b
Aszociated build number: Build flavor:

EmployeeMaintenance 201304272 v‘ I;i\n}f CPU, Debug 7‘

[ok][cance |

The following section explains the process of creating the build definition for the
project, and then configuring the test along with the build.

Test as part of the Team Foundation
Server build

The Team Foundation Server is the place to maintain the source code for projects,
Test Projects included. Let's say there is a class library project and a Unit Test
Project for the class library, and both are checked into the Team Foundation Server.
Whenever there is a change or fix in the code and if the code is checked in to TFS,
the build service within TFS should start the project and solution with the newly
checked-in code; and after completion of the build, the Test Project has to run to
verify that the fix is producing the expected result. The whole process after the
check-in can be automated using Visual Studio.

The Team Foundation Server provides explicit build service to build the Team
Projects. The build service should be configured so that the service makes use of
the controller and the agents for the build process.

[358]

Chapter 11

i} Team Feundation Server Administration Console EI@
File Help
a [| My-PC]

4 I7 Application Tier Build Configuration Refresh

.a‘ﬁ Team Project Collections
3 Lab Management
i Build Configuration

=
Qo Logs Build Service configured for http://localhost:8080/tfs/defaultcollection as LocalService .
4 ff} Additional Tools and Compenents
fft Visual SourceSafe Upgrade My-PC - Started on http://my-pc:9191/Build/vd.1/5ervices as LocalService
ﬁj!' PreEmptive Analytics Restart | Stop | Properties | Unregister

o Events: 2 informaticnal in the last 24 hours

Each Build Centroller manages a set of Build Agents, Each Build Agent must be assigned
to a Build Controller, but the Controller does not have to be on the same host machine.

Mew Agent...

ﬂ_ My-PC - Controller - Ready
HJ») Controller - Properties | Delete | Disable | Restart

= My-PC - Agentl - Ready
{» Agent for 'My-PC - Controller' - Properties | Delete | Disable | Restart

Last Refresh: 4/27/2013 9:39:31 PM

Once the build service is configured and ready for creating the build definitions,

we can use the Team Explorer window to create build definition for projects. Build
definition is the configuration, and creation of build with required details such as the
solution or project name, location, and references. It also includes the configuration of
build agents, if multiple machines are used. The following screenshot shows the build
project, which contains the class library project and the Test Project for the class library.

Source Control Explorer

‘c";q N whXx & va& 9 T & N - Workspace: MY-PC -
Source location: gl S/TeamProjectl/EmployeeMaintenance/EmployeeMaintenance/EmployeeTestProject -
Folders ¥ || Local Path: CA\Apps\EmployeeMaintenanceEmployeeTestProject
4 &% my-pc\DefaultCollection [Name « Pending Ch... | User Latest | Last!™
4 & TeamFl'rcjectl ﬁPropertiE: Yes 4720,
e T tfrnce
!) B UlMap Files Yes 4420,
4 @ EmployeeMaintenance B
b B ClassLibranylforPlugln © CodedUlTestl.cs Yes 4720,
I Bl CodedUITestProjectl (X]EmpData.csv U= 4/20,
b @ CustomRules [#) Employeesxml Yes 4720,
I Bl EmployeeMaintenance [EmployeeTestPreject.csproj Ves 422,
| & EmployeeTestProject.csproj... Yes 4/20,
b M GenericExamplel & GenericTestl.GenericTest Yes 4720,
bl packages ¥ LoadTestl loadtest Yes 420,
b [l Testlibrary 4% LoadTest? loadtest Yes 4720,
b [l UnitTestProjectl ¥ | oadTestd loadtest Yes 420,
I m UnitTectProiectd Ml b

[359]

Working with Test Results

The build project automates the process of collecting the latest code from source
control and compiling the project files, and then building the project. If the build
succeeds, the same service can also start running the Test Project after compiling.
Creating the build definition involves multiple steps, namely selecting the project,
trigger timings, controller name, and a few other process parameters and retention
policies for the output. Navigate to Team Explorer | Home | Builds | New Build
Definition in order to create a new build definition for projects.

m EmployeeMaintenance - B X
EmployeeMaintenance + X -
.
General Working felders:
Trigger Status Source Control Folder Build Agent

Active 5/ TeamProjectl/EmployeeMaintenance S(Sourcelir)
Build Defaults $/TeamProjectl/EmployeeMaintenance/EmployeeMaintenance m

Process Click here to enter a new working folder

Retenticn Policy

The option shown in the previous screenshot is one of the steps involved in creating
the build definition: selecting the solution files to build. It can be multiple or a single
solution. During the build process, all the latest code files under this solution folder
will be compiled and built.

The next major configuration section is the Process section, through which the
projects and tests to include as part of the build can be configured. There are three
different parts of configuration such as Required, Basic, and Advanced.

* Required: This section is used to include the projects or items to be built as
part of the build process.

* Basic: This section is used for selecting the automated tests, and then set the
arguments and priority for testing.

[360]

Chapter 11

* Advanced: This section is used to select a particular agent for building
the projects, set the option to create work items on test failure, arguments,
and platform, and then drop the location to place the output files.

w EmployeeMaintenance = g x
EmployeeMaintenance & X -
General Team Foundation Build uses a build process template defined by a Windows Workflow (<AML] file. The behavior of

™ this template can be customized by setting the build process parameters provided by the selected template.
rigger

Source Settings
Build Defaults

m Default Template (v Show details

Retention Policy

Build process template:

Build process parameters:

4 1. Required -
> Items to Build Build $/TeamProjectl/EmployeeMaintenance/Employs
4 2, Basic
4 Automated Tests Run tests in test sources matching **test™.dll using s¢
4 1, Test Source Run tests in test scurces matching ™\ test™ dll using setti
Fail Build On Test Failure False
> Run Settings Run settings from $/TeamProject1/EmployeeMainten:
Target platform for test execution. Xa6
Test Case Filter Name=CalculateTotalPriceTest
Test Run Name
Test Sources Spec *\test™.dll
Build Mumber Format S{BuildDefinitionMame)_S{DatenyyyMMdd)S(Revir)
Clean Workspace All
Legging Verbosity Mermal
Perform Code Analysis AsConfigured
> Source And Symbol Server Settings Inclex Sources
4 3. Advanced
> Agent Settings Use agent where Name=" and Tags is empty; Max Wait T
Analyze Test Impact True
Associate Changesets and Work Items True
Create Work Item on Failure True
Disable Tests False
Get Version
L Label Sources True i
Test Case Filter
Use the specified filter to select tests to run based on filter criteria. You can use the format
<property>0Operator<value> to construct your filter where Operator is one of =, != or ~ (Operator ~ has 'con...

The Test Case Filter option is used for filtering a test or set of tests from all the
available tests. The other filter option available is the Test Run Name to get the exact
test to run. The Run Settings file is used to choose the custom settings file for the run.

[361]

Working with Test Results

The next section is the Advanced section, which is used for setting the Maximum
Agent Execution Time and Maximum Agent Reservation Wait Time options,

and then choosing the agent by agent name and tag. The other configurations that
can be set include Analyze Test Impact, Associate Changesets and Work Items,
Create Work Item on failure, Get Version of code, and lastly specifying the Private
Drop Location option.

w EmployeeMaintenance - EmployeeMaintenance - g X
EmployeeMaintenance # -
General Tearn Foundation Build uses a build process template defined by a Windows Worldflow (CAML) file. The
L behavior of this template can be customized by setting the build process parameters provided by the selected
Trigger template.

Source Settings .
Build process template:
Build Defaults

Default Template v Show details
rocess

Retention Policy

Build process parameters:

> Spurce And Symbol Server Settings Index Sources -
4 3, Advanced
4 Agent Settings Uze agent where Name=" and Tags is empty: Max Wai
Maximum Agent Execution Time 00:00:00
Maximum Agent Reservation Wait Time 04:00:00
Mame Filter *
Tag Compariscn Operator MatchExactly
Tags Filter
Analyze Test Impact True
Associate Changesets and Work Items True
Create Work Item con Failure True
Disable Tests False
Get Version
Label Sources True
MSBuild Arguments
MSBuild Multi-Proc True
MSBuild Platform Auto
Private Drop Location
Solution Specific Build Cutputs Falze -
Agent Settings
Specify the Name and/or Tags (and other properties) that will be used to select an appropriate Agent for
the build.

Once we set the process-related configuration, the next thing is to set the Retention
Policy option for the Test Results. There is another section Trigger, which is used

for configuring the build schedule to start the build process. It can also be set to run
manually, so that the check-ins does not trigger the build. The continuous integration
build (happens on every check-in), rolling builds (which accumulates the files until the
previous build completes), and gated check-in (if the files submitted merge and build
successfully), schedule the build to run at a particular time daily, weekly, or every day.

[362]

Chapter 11

Once all these configurations are set, the build definition is ready to be scheduled.

The build process helps the team to determine that the check-in from the developers
has broken the build or failed the test. The check-in policies and the gated check-in
help to guard the code base.

Building report and Test Result

Select the build definition from the Team Explorer, and then queue new build for

the selected build definition. Visual Studio takes the source code for the solution
from TFS, builds the projects and reports on them immediately. The report is also
saved in TFS for future reference. Each and every step is reported in the build report.
It consists of getting the source for the project, compiling the projects, compiling the
Test Project, and running the Test Project (if it is set to run after the build). The report
also includes the overall build status. When the tests are run directly from Visual
Studio, the Test Run status is also reported and the Test Results are stored in a similar
way. The following screenshot is the sample of the build Summary report.

M EmployeeMaintenance - a x

:
EmployeeMalntena nce_20130427.2 - Build partially succeeded

View Summary

Open Drop Folder |D|agn“t|fs -‘ <No Quality Assigned> - | Actions -

Satheeshkumar triggered EmployeeMaintenance (TeamProjectl) for changeset 7

Ran for 27 seconds (My-PC - Controller), completed 19.5 hours ago

Latest Activity

Build last modified by LOCAL SERVICE 19.5 hours ago.

Request Summary

Section Key: CheckInOutcome
Request 2, requested by Satheeshkumar 19.5 hours ago, Completed Section Prionty: 150

Summary

Debug | Any CPU
b 0 errorls), 7 warning(s)
P §/TeamProjectl/EmployeeMaintenance/EmployeeMaintenance/EmployeeMaintenance.sin compiled
4 € 2 test runs completed - 50% average pass rate (50% total pass rate)
Satheeshkumar@MY-PC 2013-04-2 1 of 1 test(s) passed
4 €3 Sathesshkumar@MY-PC 2013-04-27 18:31:57, 0 of 1 test(s) passed
showing 1 of 1 failure(s)
» WebTest2 failed.

Mo Code Coverage Results

Other Errors and Warnings
b 4 errorls), 1 warning(s)

Impacted Tests

No tests were impacted

4

[363]

Working with Test Results

The preceding screenshot shows that the build has failed with a few warnings
and errors in running the tests. There are seven warnings in building the solution
files, and then there are four errors and one warning in running the test as part of
the build. The Summary section of the report shows that the two Test Runs are
completed, which is the same result published from the Test Results window as
explained in the previous section.

Summary

Debug | Any CPU
I* 0 error(s), 7 warning(s)
I* §/TeamProjectl/EmployeeMaintenance/EmployeeMaintenance/EmployeeMaintenance.sin compiled
4 €3 2 test runs completed - 50% average pass rate (50% total pass rate)
Satheeshkumar@MY-PC 2013-04-27 18:43:09, 1 of 1 test(s) passed
4 EB Satheeshkumar@MY-PC 2013-04-27 18:31:57, 0 of 1 test(s) passed
showing 1 of 1 failure(s)
P WebTest2 failed.
No Code Coverage Results

Other Errors and Warnings

I 4 error(s), 1 warning(s)

The build Summary report also has URL link to View Log, Open Drop Folder, and
Delete Build. The detailed log information provides the detailed steps involved in

building the project and the test execution as part of build. The Test Result also has
the URL link, which opens the result in the Test Results window.

[364]

Chapter 11

Creating a work item from the result

A work item in the Team Foundation Server refers to a unit of work with definite
start and end. It could be just an item, which is a task; or a defect, which is a work
item of type Bug, or it could be an issue or a requirement item.

The work item of type Bug is used to raise defect against test failure or error while
running the test. Right-click and choose the work item of type Bug from the Context
menu. This opens the window to create the new defect with some default values such
as the test name, iteration, severity, state, and reason. All these details can be modified,
and other details can be added to provide additional information about the test failure.

m EmployeeMaintenance = m|
New Bug3*® & X -
W Save Work Item

MNew Bug 3 : WebTest2:

Fe
WebTest2:
Iteration TeamProjectl
STATUS DETAILS
Assigned To Effort
State Mew Severity 3 - Medium
Reason Mew defect reported Area TeamProjectl
Backlog Priority
STEPS TO REPRODUCE ~ SYSTEM TEST CASES ~ TASKS ACCEPTANCE CRITERIA ~ HISTORY LINKS ~ ATTACHMENTS
Segoe Ul -2 - B I Y &HE - - - -
e
4 »

[365]

Working with Test Results

The defect gets added to the Team Project under the TFS. It is very good that Visual
Studio provides the option to create test case from here too. Selecting the Context
menu option to create the test case, opens a new Test Case window with a few default
values. Interestingly, the test case also contains the Test Result and Test Run details as
attachment. This would really help the team to analyze the issue quickly, and then fix
it. The following screenshot shows the test case with attachment of results.

m EmployeeMaintenance

- (| >
Mew Test Case 4™ 4 X -
W Save Work tem
New Test Case 4 : WebTest2:
-
WebTest2:
Iteration TeamProjectl
STATUS DETAILS
Assigned To Satheeshkumar Automation status Not Automated
State Design Area TeamProjectl
Priority 2

STEPS SUMMARY TESTED BACKLOG ITEMS LINKS ~ ATTACHMENTS ASSOCIATED AUTOMATION
& o= Add Il Save Copy.. X

Mame Size Date Attached Comments
tmpl970.tmp.trx 22 KB

WebTest2.webtestResult 256 KB

Test WebTest2 in run Satheeshkumar@MY-PC 2013-04-27 18:3...

Test WebTest2 in run Satheeshkumar@MY-PC 2013-04-27 18:3...

There are other options such as Code Review Request, Code Review Response,
Feedback Request, Feedback Response, Impediment, Product Backlog Item,
Shared steps, and Test Case. All these are work items of different type.

[366]

Chapter 11

Summary

The Test Run and Test Results windows provide the summary and detailed view

of every Test Run. The Test Results window has different options to import, export,
and publish the test to the Team Foundation Server, and then run the details window
to get more information about the Test Run. The Test Result window also provides
the option to look at the details of the Test Run with error messages and stack trace
for the failed tests. Visual Studio provides the feature to directly log the defect in the
TFS. The result can be published and associated to the build report, so that the team
can get the details of the test along with the build. This would be easy for the team to
analyze and identify the issue for the test failure. Multiple work items can be created
directly from the Test Results window, which is an added advantage.

The next chapter explains the new exploratory testing feature introduced in Test
Manager 2012. This testing is a free flow of testing conducted on the application
without any predefined test cases. It also covers predefined reporting, and creating
new reports to look at the Test Results.

[367]

12

Exploratory Testing
and Reporting

The previous chapter, Working with Test Results, explained about different types

of testing methods and running these tests using Visual Studio 2012. There is one
other new type of testing in Visual Studio, which helps testers to work without any
dependency on test cases or tools, which is called exploratory testing. Exploring
the application and testing on your own is called the exploratory testing. This type
of testing is a free flow of testing the application without any predefined test steps
or scripts. Test Manager 2012 provides the option to perform exploratory testing
and capture actions, steps, and screenshots to track activities. The only drawback of
exploratory testing was reproducing the steps and actions, but with the use of Test
Manager 2012, this can be automated, which helps the test steps to be reproducible.
Test case is automatically created using the recording. This is very helpful when
redoing the test later if there are any code fixes.

The Test Results and Test Run windows in Visual Studio are used in getting details
of the Test Results. The Test Result summary window provides the summary of
results summary for the selected test after the Test Run. But how do we get the
collective information about all the tests run based on specific parameters? Visual
Studio 2012 integrated with Team Foundation Server 2012 provides built-in reports
to get collective information on all the tests run. There are several reports to get
information about the work items, Team Project builds, and task level status of the
project. These reports are very useful in analyzing the project quality and status at
any time.

Exploratory Testing and Reporting

The most recent version of Team Foundation Server (TFS) comes with different
process templates, such as Visual Studio Scrum 2.1, Microsoft Solutions Framework
(MSF) for Agile Software Development v6.1, and MSF for Capability Maturity Model
Integration (CMMI) Process Improvement v6.1 that can be used for the Team Project.
Each of these process templates contains a number of predefined reports. The Team
Project is the central data store for multiple projects. The data store maintains all
information about projects including source code, build details, and tests. The Team
Explorer is the user interface for getting details about the work items, Test Results,
and builds.

TFS and Visual Studio 2012 integrate with the SQL Server reporting/analysis
services to create and manage reports. SQL Server is the default data store used by
TFS 2012 to maintain all information about projects, including the source code, tests,
reports, documents, and build information. Whenever a new Team Project is created,
a set of predefined reports from the selected process template is created and viewed
under the Reports folder in Team Explorer. All these reports can be customized
based on your needs. Alternatively, new reports can be created and shared to the
other projects.

Creating reports for Team Project can be done by using any tool that connects to a
relational database or analysis database, such as Microsoft Excel or Visual Studio
Report Designer. Excel is easier to use, but provides less functionality compared to
Report Designer. Some of the important features provided by Report Designer are:

* Detailed reporting

* Sharing reports using Team Explorer

* Updating existing reports

* Faster report retrieval and management
All these reports include a feature to export and print the current report. The report
can be exported in different formats such as XML, CSV, TIFF, PDF, and Excel files.

They also have a print option that comes along with the report to print the current
report result for the selected parameters.

[370]

Chapter 12

This chapter provides detailed information on the following features that can be
used along with TFS integration with Visual Studio 2012.

* Exploratory testing using Test Manager
* Reports available from Team Foundation Server

* Creating report definitions using Visual Studio 2012

Exploratory testing

The Testing Center in Microsoft Test Manager contains two new features to do the
exploratory testing and to view exploratory sessions that have already been. To begin
exploratory testing there are few options.

One is to just start exploring the application without selecting any work items.
Simply click on the Explore option in the Do Exploratory Testing window. This is
appropriate in the case of there being no backlog stories or requirement work items
created. The exploratory test session will not be associated to any of the existing
requirements in this case.

The second option is to start exploring the application by selecting a work item.
This will associate the actions, recordings, test cases, images, and errors to the
selected work item. Any task in software development is associated with a
requirement in the form of a work item or requirement backlog. This is mainly to
link and track the defects, test cases, comments, code fixes along with requirement.
Select a work item from the list and click on Explore work item to start the testing.

- 0O X

! @ @ | @ | Testing Center ~ Plan Test Track Organize TeamProjectl » Plan A

RunTests | Analyze TestRuns | Do Exploratory Testing | View Exploratory Test Sessions | Verify Bugs Mew Open Items (0) «

d Do Exploratory Testing

To begin exploratory testing without any selected work items: | Explore H

Perform tests using: Local machine (MY-PC) Medify

To test specific work item(s), select work item(s) below
b Exploreworkitem + [§ Open 7 Unfiltered =

[b Exploreworkitem |1n.

ke V‘1 Explore selected work items] Assigned To | State Area Path

4 Employee Details Screen Subashni Mew TeamProjectl
5 Capture Absence Details for an Employee Mew TearmnProjectl
G Capture Emergency Contect Details for an E... Mew TeamProjectl

[371]

Exploratory Testing and Reporting

Another way of exploring the application is to select the option Explore work item
with options which opens a new window to choose environment information to
associate with the requirement. This includes the build information and session

information such as test settings.

@ ©) | A | Testing Center ~

RunTests | A estRuns | Do Exploratory Testing

\j Do Exploratory Testing

| Explore Options
Build in use:
" Build cenfiguration:

Exploratery sessions
Test settings:

Environment:

Plan

Vien

- 0O X

Test Track Organ ize TeamProjectl » Plan A

s | Verify B

x
EmployeeMaintenance_20130427.3 «

Platform: Any CPU, Flavor: Debug =

Local Test Run -

| MNone - ‘

[372]

Chapter 12

Select the work item from the list and choose the third option of exploring with
options. A new window which is similar to the web test recorder opens with options
to start the testing, create a bug, create test case, and to add a screenshot. Only the
Start option will be enabled, the other options will only be enabled after exploratory
testing of the application has started. At the top of the window is the work item
selected for testing.

ause W Endtesting | RS

4 Employee Details Screen

L] Recording

[373]

Exploratory Testing and Reporting

Start the testing and open the browser to launch the application under testing.

The recorder starts recording all your actions, and also contains a text area where
comments can be added and notes taken. The following screenshot shows a screenshot
of the current screen under test added to the text area. To do this, click on Add
screenshot, move the mouse over the screen and drag the area of the screen to be
captured as a screenshot.

' Pause W Endtesting | Ry

4 Employee Details Screen

&

Create bug Create test case Add screenshot -

EMPLOYEE MAINTEMAMCE
] .

Edit #ntry from table Employves
Tirst_fisme satlwzh

Lt Bixme Fuma:

Firkl_Ramme:

It

rrapin

Loawder

fiby

State

Lawdiry

Mo
AEwCECTN
Brergurrtoibls Ve Bl

¥ Bugs (0]
b Test Cases (0)

) Recording 00:05:07

[374]

Chapter 12

If any defects are found while testing the application, just click on Create bug from
the options listed above in the recorder window. This will pause the recording and
open the New Bug window to log the defect. The STEPS TO REPRODUCE area lists
the last ten steps followed during testing. This can be modified using the Change
steps option available at the top of the text area. Click on the Save and close button
to create a defect only, and return to the recording process. Alternatively, click on the
Save and create test button to save the defect with the current details and also create
a new test case for the current exploratory test.

Phone Mumber field accepts blank in Employee Details Page
lenation TeamProjectl

STATUS DETARS
To Subsshri
[T Sevirt 3 - Medum
Hew defect reported TeamPreject]
STEPSTOREPRODUCE SvSTEM TESTCASES TASKS ACCEFTANCECRITERIA HISTORY LINKS ATTACHMENTS
L Chiek Tt bk
)
Paused (“B .
Close the dialeg windiw ta proceed, S ———
2. Chek 'Cancel’ hnk
LmergencyContacts
= -
i
3. Click Nest page’ bution
4 Puge i .-.‘(v:)!

Save and create test Save and close Close

[375]

Exploratory Testing and Reporting

Enter the required details in the new test case window then save and close. You may

notice that the bug and test case are created and added to the recording window.
Comments are also shown in the text area.

T Pause W Endtesting W

4 Employee Details Screen
£ 2 A
#
| i
Create bug Create test case Add screenshot =

EMPLOYEE MAINTEMANCE

L Cul O

Edit entry from table Employes

Firsl_Plame et
Last Mame wrear
Hiddle_Fams

Departimeat

Renter
oy
Shate
Cawriry
Paens
FREPEERS:

Frwsqenrploatacts s Csjane o

Bug 7 created
Test Case 8 created

*Bugs (1]

> Recording 00:03:52

If the exploratory testing is complete, click on the End Testing option at the top of
the recording window. This option closes the recorder and opens the Testing Center
showing the details of the completed session. The summary shows the start and
completed date time, test settings used for the test, build associated to the testing,
the owner, and the work item with which this exploratory testing is associated.

[376]

Chapter 12

The Bugs section contains all the bugs raised during the testing session. It provides
options to open each bug to see the details, create a new test case, and link to a test
case. If the test case was not created during the testing, an existing test case can be
linked to the defect using this option.

The Test Cases section lists the test case to which the testing session is associated. The
Notes section shows the details entered, screenshots taken and notes added to the text
area of the recorder are shown in this section.

The following screenshot shows the details of an exploratory test session with details
captured in each section:

- 0 X

@ @ | ‘@ | Testing Center ~ Plan Test Track Organize TeamProjectl » Plan A

RunTests | Analyze TestRuns | Do Exploratory Testing | View Exploratory Test Sessions | Verify Bugs New v Openltems (1} v
d Session 2: Exploratory test session started on 4/29/2013 6:01:41 PM SaCopylink |gfSaveand Close [(2] o X

~ Summary ((¥) Completed - 1
Title: Exploratory test session started on 4/29/2013 6:01:41 PM
Work item tested: Employee Details Screen
Cwner: Satheeshkumar Test settings: Local Test Run
Duration: 00:03:57 Build: EmployeeMaintenance_20130427.3
Date started: 4/29/2013 6:01:41 PM Test machine: MY-PC
Date completed: 4/29/2013 6:19:58 PM
~ Bugs (1)
w Test cases (1)

~ Motes

{A_Attachments (6)

=] 4 Add

| Name Comment

Screenshotl_2013-04-29T12_33_55.png Screenshotl_2013-04-20T12_33_55.png

Systeminformation_2013-04-29T12_41_46.xml System Information from MY-PC

TC2_Actionlog_2013-04-29T12 41 46.txt Log file that contains all the user actions for the selected applications when the test was run.
ActionLogSliced_2013-04-29T12_41_46.html HTML log file that contains the sliced set of user actions for the selected applications.
Systeminformation.xml System Information from MY-PC

TC2_Actionlog.bd Leg file that contains all the user actions for the selected applications when the test was run.

[377]

Exploratory Testing and Reporting

The Attachments section contains the full details required for detailed analysis of
the testing session. The section contains multiple attachments, such as screenshots,
log information, system information, and an action log in HTML format which has
screenshots of each step as well. This section has loads of information which helps
the team get to the root cause of any issues occurring during testing. Additional
information can also be added to this section. The following screenshot shows one
of the action logs captured during testing:

- 0O X

@ @ | @‘ | Testing Center ~ Plan Test Track Organize TeamProjectl = Plan A

RunTests | Analyze TestRuns | Do Exploratory Testing | View Exploratory Test Sessions | Verify Bugs MNew Open ltems (1) =

\j Session 2: Exploratory test session started on 4/29/2013 6:01:41 I aCopyLink |ZfSaveand Close | (2] @ %

v Summary ((¥) Completed -)

» Bugs (1}

.!fj Open |,] Create test case] Link to test case

| 1D Title

j TC2_Acticnleg.bd - Netepad
File Edit Format View Help

~ Test cases (1) Go _to web page 'http://Tocalhost:3062/" using new browser instance
Click '"Employee' Tinl

. Click 'Insert new item' Tink

|z Open Type 'Satheesh' in '"First_Wame' text box
Type 'Kumar' in 'Last_Name' text box

| 1D Title Click 'Middle_Name' text box

Type "IT' in 'Department’ text bhox

Type 'Manager' in 'Occupation' text box
Type 'Male’ in 'Gender' text box

Type 'Bangalore' in 'City' text box

w Motes Type 'KA' in 'State' text box

Type 'India' in 'Country' text box

» Attachments (6) Type '12345867830' in 'Phone’ text box

Click "Insert' Tink

7 Phone Mumber field accef

8 Enter details in Employee

- ﬂ "'U Click "Edit' Tink
[Open Save As U Add | Click 'Cancel’ Tink
uor Click 'Mext page' button
C

C

: Mame

ick 'Next page' button

Tick 'Last page' button
Click 'Edit’ Tink

Screenshotl_2013-04-29T12_33_55. Type '' in 'Phone’ text box

(. Click 'Update' Tink
Systeminformation_2013-04-29T12 Click 'Last page’ button
TC2_ActionLog_2013-04-20T12_41 | C€Tick "Edit' Tink

ActionlogSliced_2013-04-29T12 41|

Systeminformation.xml System Information from MY-PC

TC2_ActionLog.bet Leg file that contains all the user actions for the selected applications when the testw...

The View Exploratory Test Sessions window displays a list of all conducted sessions.
This window provides options to open the selected session in order to look at the
details and to delete the selected session if it is not useful.

[378]

Chapter 12

Reports using Team Foundation Server

TFS has several built-in reports readily available for the selected process template.
Some of these reports are specific to defects, and some are specific to testing while
others are common to work items. These reports collect metrics based on the work
items, Test Results, and builds. Each report has filter options to select the iteration,
area, time period, work item types, and states. The following sections explain a few
of the out-of-the-box reports available in TFS.

Bug status report

This report is used to track progress in the overall bug status, such as new bugs,
resolved bugs, and closed bugs. The report shows the cumulative count of bugs based
on priority, severity, and state of the bugs. The details for the report can be filtered
using start and end dates, iteration and area paths, bug state, priority, and severity.

This report is very useful to get an overview of the status of the testing phase, such
as how soon defects are getting fixed and tested, the priority of defects being fixed
and closed, the defects count based on severity and priority, and the module which
is showing the most defects which can be useful in determining the quality of work.

The report provides a detailed graphical view by plotting the number of active, closed,
and resolved defects against a timeline. At a given time the report will show the total
count of defects based on the state.

The other pie chart displays active bugs by priority or severity with legends that show
the priority/severity values.

Active/Resolved Bugs by Assignment is a horizontal bar chart that displays the total
bugs assigned to team members and the total bugs resolved by them.

Test case readiness report

This report is useful to determine the readiness of the test cases for execution. This
report can be generated once the team starts defining the test cases. A test case has
three different states, Design, Ready, and Closed. The test case is directly assigned
with Design status once a team member starts defining the test. It becomes ready only
when the test case is complete, reviewed, and approved by the team. It gets closed only
after the testing. The Design and Ready statuses of the test case provides information
on how quickly the team is creating test cases and getting them ready for execution.

[379]

Exploratory Testing and Reporting

This report contains an area graph to show the number of test cases in Design and
Ready status over a period of time. The main objective of this report is to show how
many test cases are ready to be run, how many are still incomplete, when would the
test cases be ready, and would that be before the end of the iteration.

This report also provides filters to generate the report based on iteration date range,
area, priority, and state.

Status on all iterations

This report is very useful to track the progress through projects with multiple
iterations. This report provides a graphical view of the number of stories closed,
progress in hours for each iteration, and number of bugs per iteration. To get
accurate reports, the project team should plan the iterations, user stories, area and
defect logging in such a way that everything is tracked and on time.

The number of stories denotes user stories that are closed.

The progress in hours shows horizontal bars which show the original estimate,
actual hours, and then the hours remaining based on the roll-up of hours defined for
tasks. The tasks are created during the project schedule, and include the duration
and start and end date planned for completion. This report is generated based on the
task allocation and the tasks planned for each iteration.

The bugs with the numeric values and bars denote the number of active, resolved,
and closed defects within each iteration for the project.

These reports help us to determine the health of the project at any time. For example,
an unhealthy project is one in which the user stories are not closed within the
iteration, or if there is a wide difference between the estimated and actual hours, or
the number of defects and defect rate are not decreasing after multiple iterations.

A healthy project would be the one with better progress on all of the iterations and
within the estimated schedule.

Other out-of-the-box reports

These are the reports readily available for determining the project status and quality:

* Bug status report: This report provides the total bug count based on the
severity, priority, and state to track progress in resolving and closing bugs.

[380]

Chapter 12

Bug trends report: This report is used for tracking the bugs that are
discovered and resolved over time. This is very useful in larger teams
working towards discovering new bugs, and resolving and closing bugs.

Reactivations report: It is used to determine how effectively the team is
fixing the bugs. Reactivation refers to reopened bugs that were resolved or
fixed prematurely.

Build quality indicators report: It is used to collect the test coverage, code
churn, and bug counts for a specific build. This is helpful to find the quality
of a build before releasing the code.

Build success over time report: It summarizes the build and Test Results
for a set of build definitions for one or more projects over time. The reports
provide day-by-day information for builds failed, builds succeeded with no
tests, tests failed, tests passed with low coverage, and builds passed.

Build summary report: It provides information about Test Results, test
coverage, code churn, and other details of each build.

Burn down and burn rate report: It shows the trend of how much work
is completed and how much remains over a period of time. Burn rate
specifies the rate at which the work is completed and the required rate for
remaining work.

Remaining work report: It is useful to track the progress of work and
identify if the task completion is on track or is there any delay.

Stories overview report: It lists all user stories and how much work each
story requires. Also provides the completed work status, status of tests for
the story, and bugs raised against each story.

Stories progress report: It shows the status and progress of tasks defined to
implement the story.

Unplanned work report: It determines the work that is added at a later
point to the iteration after the start of an iteration. These works are called
unplanned work to distinguish them from work and tasks planned before
the start of the iteration. The work could be a new requirement or test case,
or any type of new work item.

Test case readiness report: It is to identify how many test cases are defined
and ready to execute.

Test Plan progress report: It is used to determine how much of the testing is
complete and how much remains to be done. Also provides information on
how many tests have passed, failed, and blocked. This report is useful to find
out if the testing will be complete on time or not.

[381]

Exploratory Testing and Reporting

Creating a report definition using Visual
Studio 2012

Visual Studio has a built-in report wizard that creates a report definitions file
associated with report viewer control. The wizard provides the steps to define a
report by specifying report data, organizing the data into row and column groups
in a tablix data region, selecting a layout format and choosing a style.

Open Visual Studio and navigate to File | New | Project, which opens the project
templates. Select Reports Application from the Reporting Templates, which will
open the Report Wizard.

Mew Project @
P Recent .NET Framework 4.5 ~ Sort by: Default ~ Search Installed Te P ~

4 Installed == . .
Sul| Reports Application Visual C2 Type: Visual C#
.

4 Templates A project for creating an application with a
4 Visual C# Windows user interface and a Report

Windows

Web

Cloud

Reporting
I SharePoint

Silverlight

b Online

Marne: ReportsApplication2

Location: C\Apps\EmployeeMaintenance - | Browse...

Solution: HAd 5 =olfon ! |-

Solution name: Cr

OK | | Cancel

[382]

Chapter 12

The first step is to define the dataset to use from the data source. The wizard provides
the list of all data sources: Database, Service, Object, and SharePoint. Select the
required data source as shown in the following screenshot and continue by selecting
Database as the source for this example.

Data Source Configuration Wizard &I&J

ii) Choose a Data Source Type

Where will the application get data from?

" © § g

Database Service Object SharePoint

Lets you connect to a database and choose the database objects for your application.

e

[383]

Exploratory Testing and Reporting

The next step is to select the database model which could be a Dataset or Entity
Data Model to determine the type of data objects to be used by the application,
as shown in the following screenshot. Select Dataset and click on Next as shown
in the following screenshot:

Data Source Configuration Wizard &I_g—hj

ii} Choose a Database Model

What type of database model do you want to use?

.

Dataset Entity Data
Model

The database model you choose determines the types of data objects your application code uses, A dataset file will
be added to your project.

< Previous H Nexdt =] Cancel

Next, we must select or create a new connection to be used by the application to
connect to the database. The selection of database is based on the information that is
required for the report. In this case, the database would be the TFS database where the
Test Results are stored. Based on the selection, the corresponding connection string
will be added to the application configuration. There will be a confirmation message
with the connection string name to save to the application configuration file. The
connection string would look like the one shown in the following screenshot:

[384]

Chapter 12

w EmployeeMaintenance - o x
.
<?xml version="1.8" encoding="utf-8" ?» —
El<configuration:> -
El <configSections»
</configSectionss|
=l <connectionStrings:
= <add name="ReportsApplication2.Properties.Settings.Tfs_DefaultCollectionConnectionstring”
connectionstring="Data Source=MY-PC\SQLEXPRESS;Initial Catalog=Tfs_DefaultCollection;Integrated Security=True"
provideriame="System.Data.SqlClient” />
</connectionstrings>
= <startup>
<supportedRuntime version="v4.8" sku=".NETFramework,Version=v4.5" />
</startup>
<fconfiguration>
-
100% -~ 4 »

After a successful connection, choose the database objects from the database. The
objects are Tables, Views, Stored Procedures, and Functions. Provide a name for
the dataset or leave it as the default and click on the Finish button to proceed with
the next step in the wizard.

Data Seurce Configuration Wizard @

im Choose Your Database Objects

Which database chjects do you want in your dataset?
> D@]“ Tahles
> D Views
> [[1 & stored Procedures
> [C1fx Functions

DataSet name:
Tfs_DefaultCollectionDatatet

[385]

Exploratory Testing and Reporting

The next step in the wizard is to set the new dataset and its properties such as Data
source and the datasets from the available datasets list.

The datasets list contains the objects from the chosen database. Once the Data source
and dataset is selected, Fields on the right shows a list of all available fields from the
selected dataset. Provide a name for the new dataset for the report and click on the
Next button to proceed with the wizard.

Report Wizard @
Dataset Properties
Choose the Dataset
MName: Fields:
Datasetl Field Mame Type Name B
Partitionld System.Int32
TestRunld System.Int32 L
TestResultld System.Int32 T
TestCaseld System.Int32
Data source: Configurationld System.Int32
Tfs_DefaultCollectionDataset v [mew. TestPaintld SystzmInt32
CreationDate System.DateTime
LastUpdated System.DateTime
Cutcame System.Byte
State System.Byte
o ErrariMessage System.5tring
fvailable datasets: DateStarted System.DateTime
|th_TestResuIt - DateCompleted System.DateTime
Curation System.Intad il
wee | [cone

[386]

Chapter 12

The Arrange fields section is for grouping fields into Row groups, Column groups,
and detail rows for the data region as shown in the following screenshot. Based on
the Row groups and Column groups the region displays the data in grid layout.

Report Wizard

Arrange fields

Available fields

Partitionld
TestRunld
TestResultld
TestZaseld

TestPointld
CreationDate
LastUpdated
Cutcome
State
Errorklessage
Datestarted

Curation

Canfigurationld

DateCompleted

m

= Row groups

j Column groups

= Values

TestResultld
TestRunld
TestCaseld
State

Sumi(TestRunld) -

Arrange fields to group data in rows, columns, or both, and choose values to display. Data expands across the
page in celumn groups and down the page in row groups, Use functions such as S5um, Avg, and Count on th..,

(]

Resolutionstateld
Comment

Cwiner

Priarity

TestCaseTitle kT

TestCaseTitle
Pricrity

< Back H Mext =]’ Cancel

[387]

Exploratory Testing and Reporting

On the next screen, choose the layout for the report. The layout defines the place where
the totals, subtotals, and aggregates should be shown in the report.

Report Wizard @
Choose the layout
If you choose to show subtotals and grand totals, you can place them above or below the group, Stepped reports show hierarchical

structure with indented groups in the same column,

Options: Preview

[show subtatals and grand taotals

Test Result TestRunId TestCasel |State Test CaseTi Priority TestRun Id
[TestResultd [TestRunkl] [TestCaseld] [State] [TestCaseTitle [Priority] [Sum (TestRunk

EBlocked, subtotal below

EBlocked, subtotal above

Stepped, subtotal above

Expand/collapse groups

< Back][Next =][Cancel

The final step is to define the style for the report. Select any specific style from the list
of available styles as shown in the following screenshot. A preview of the style will be
shown on the right pane.

Report Wizard @I
Choose a style

Styles feature different fonts and color schemes, but do not affect the basic layout. Vou can
customize the style after you finish the wizard,

Styles: Preview

Corpoarate

Forest

Generic TestRun Id TestCasel State TestCq
W [TestResulti] [TestRunid] [TestCaseld] [State] [TestCa

Slate

[< Back H Finish =] [Cancel

[388]

Chapter 12

After selecting the style, the report is created and added to the project. Run the project
to see the result.

m EmployeeMaintenance - Microsoft Visual Studio Quick Launch (Ctrl+Q) P =] x

FILE EDIT WIEW PROJECT BUILD DEBUG TEAM SQL FORMAT TOOLS TEST ARCHITECTURE LOAD TEST ANALYZE
WINDOW ~ HELP

Qe - B-ald 9 - P Internet Explorer -~ Debug -~ A _

Forml.cs [Design]® + > [FELLa W T (0ET0T)) ~ Solution Explorer > I x

o e-enaBd
Search Solution Explorer (Ctrl+;) P~

o5 Forml [

of = | . 100% 2 Find vfa] Solution '‘EmployeeMaintenance’ | «

b B Solution ftems
&[] ClassLibrarylforPlugln
odedUITestProjectl
a[c#] CustormnRules
'ﬁg EmployeeMaintenance
P &[c#] EmployeeTestProject
GenericExamplel
4 +[c¥] ReportsApplication2
b + & Properties
[=B References
+¢ App.config
4 +[5 Forml.cs
b +33 Forml Designer.cs
+7 Forml.resx
b *2z Forml
P +c* Program.cs
+ [Reportl.rdic
4 + gl Tfs_DefaultCollectionDataSe v
4 >
Solution Explorer Team Explorer

v v v v

éi Tfs_DefaultCollectionDataSet i—J thl_TestResultBindingSource F tbl_TestResultTableAdapter

The report can be modified by dragging and dropping fields from the dataset and
defining the layout. The previous example is a very simple example using fields

directly from the table. Reports are very flexible to create complex reporting from
the available datasets.

Reporting is not limited to Visual Studio; other reporting tools such as Report Builder
can create the report layout and structure by accessing the SQL Server database.
Using Microsoft Excel, reports can be generated by creating pivot tables and pivot
charts and pulling the data from the SQL analysis service. Once the pivot table is
created, customize the report based on the columns. To get connected to SQL Server
database or an analysis service database, the user must have access to read the data
from the database to use in the Excel report.

[389]

Exploratory Testing and Reporting

Summary

This chapter explained some of the new exploratory testing features in Microsoft Test
Manager 2012. This is very useful if the team does not have any test cases defined.
Exploratory testing also helps the tester to capture screenshots, log defects, and create
test cases while testing. The exploratory session recording is very useful in retesting
the defect area of the application after any code fix. Visual Studio in combination with
TFS has built-in reports and queries to get the details from the TFS data store. Using
a SQL Server reporting service and Visual Studio 2012, it is very easy to create and
customize reports. The SQL Server analysis service is useful to create the historical
data store and based on that the reports are created easily. Even if the user does not
have Visual Studio or reporting services installed on the machine, the report can
easily be created and customized using Microsoft Excel. New reports can also be
deployed to the reporting server so that the reports are available for the other project
team members.

The next chapter explains the Testing Center and Lab Center features in Microsoft
Test Manager 2012. The Testing Center is useful for creating and maintaining the
test cases under Test Plans and Test Suites, whereas the Lab Center is useful in
simulating environments for testing.

[390]

15

Test and Lab Center

Microsoft Test Manager 2012 is a standalone test management tool from Microsoft.
Compared to its previous version, the latest one contains multiple new features.
The Test Manager works along with the Team Foundation Server to associate the
test activities with the Team Projects. Test Manager contains two activity centers
such as Test Center and Lab Center. Any number of Test Plans can be created for a
Team Project. All activities within the Test Manager are associated with a Test Plan.

The Testing Center is useful in creating and managing test cases for manual and
automated tests. Test Manager is useful in planning the testing effort which includes
creating Test Plans, Test Suites, Test Configurations, and test cases with test steps.
These Test Plans and test cases can be created and used for both manual and
automated tests.

The Lab Center is useful in working with the Physical and Virtual testing labs
to simulate the actual environment to test the application. To create Test Plans,
test cases, and Lab Environments, the Test Manager tool has to be connected to
the Team Project in Team Foundation Server.

The following topics are covered in detail in this chapter:

* Connecting to Team Project
* Testing Center - Plan, Test, Track, and Organize

* Lab Center - Simulating environments for load testing

Test and Lab Center

Connecting to Team Project

The Test Manager tool has to be connected to the Team Foundation Server (TFS)

to associate all Test Plans, Test Suites, Environments, and Test Result with the Team
Project. These tools help in organizing and tracking the overall testing effort for a
project. The following screenshot shows the steps involved in connecting to the TFS
and selecting Team Collection and Team Project from TFS. Selecting the Team Project
will associate the plans and settings created in Test Center and saved in the database
with the Team Project.

Connect to Your Team Project
4 @ my-pc

+ B Collection2

v B Collection3

4 T DefaultCollection
W TeamProject?
5] TeamProject3

4 Add server Connect now P

The collection is the group of Team Projects, and each Team Project contains multiple
Test Plans which are associated to the test cases and test activities.

[392]

Chapter 13

If the Test Manager is not connected to the Team Project in TFS, click on the Add
server option as shown in the preceding screenshot to connect to the Team Project.
On clicking the Add server option, a new window to add TFS is displayed as shown
in the following screenshot:

Add Team Foundation Server
Enter the Tearn Foundation Server name or URL that you want to add.
If you do not know the name, contact your administrator,

Preview: http:/,

4 Cancel Add #

The same Add Team Foundation Server window will also get displayed on opening
the Test Manager to connect to the TFS for the first time. Once the server is validated,
the Test Manager will show the Project Collections and the Team Projects within
those collections.

[393]

Test and Lab Center

Testing Center

After selecting the Team Project, next comes the selection of a Test Plan from the
Team Project, or alternatively creating a new Test Plan. The following image has
a previously-created Test Plan ready for selection and to create all test cases. The
window also has an option to copy the URL for opening the Test Plan option in
the Testing Center window, by passing the selection processes. For example, the
URL for the first Test Plan in the list would look like mtm: //my-pc:8080/tfs/
defaultcollection/p:TeamProjectl/Testing/testplan/connect?id=1 that
would directly open the Test Plan when you browse it.

- O X

@ @ | @ | Testing Center ~ ‘ Plan Test Track ’ TeamProjectl » Plan A

Contents | Results | Properties New = Open Items (0) =

@ Contents

[l New - g Test suite: Plan A (Suite ID: 1)
Py -E-E Plan A Default configurations (1): Windows8 ~ State: o In progress =

® &‘, 4: Employee Details Screen ...j Add] New] f

Drag a column header here to group by that column.

| |Order |ID | Title | Priority | Confi...

After selecting the Test Plan, the Testing Center opens with existing Test Suites
and test cases. It will be blank if nothing is created yet. The Test Center has multiple
tabs such as Plan, Test, Track, and Organize. The Testing Center tool also contains
shortcuts to create new work items such as Bug, Impediment, Product Backlog
Item, Shared Steps, Task, and Test Case. Other shortcuts such as choosing another
Test Plan or going back to the home page is also available.

* Plan: This tab contains all the features needed to create Test Suites and test
cases. Adding new plans or associating existing requirements to the Test
Plan tab is possible from this tab.

[394]

Chapter 13

* Test: This tab contains features to select a particular test case and then
running the test.

* Track: This tab used for building queries to know the status of the Tests.
The Testing Center provides multiple queries by default which can be used
directly or can be customized it to create your own.

* Organize: This tab is used to organize or manage Test Plans, Configurations,
Test Cases and Shared Steps for test cases.

Testing Center — Plan tab

This tab contains three subtabs such as Contents, Results, and Properties. The
Contents tab lists all available Test Suites and test cases associated to the Test Suite.
The left pane shows the list of all Test Suites and on the right the corresponding test
cases for the selected suite are shown. Each Test Plan can have any number of Test
Suites and each Test Suite can have any number of test cases. The right-hand side
pane shows the current configuration selected for the Test Plan and the requirement
associated to this Test Suite.

- o X
@ @ | @ | Testing Center ~ ‘ Plan Test Track Organi;} TeamProjectl » Plan A

Contents | Results | Properties New w Open

@ Contents

= 4 Q, Test suite: 4: Employee Details Scre (Requirement 4)
P -E-E—j Plan A =" Default configurations (1): Windows 8 ~ State: o In progress =

.E.ﬁ:‘, 4: Employee Details Screen vj Add] Mew

Drag a column header here to group by that column.

{1 o |Title | Priority | Confi... | Testers

wl8 Enter details in Employee details pa... 2 1 Satheeshkumar

[395]

Test and Lab Center

There is also a progress bar which shows the current stage and progress of the Test
Suite. There are different types of Test Suites. One is to create a Test Suite and then add
test cases to it, and the other is to create Test Suite based on the query to filter the test
cases and add to the Test Suite. For example, the preceding screenshot contains the test
cases which are created new or manually added to the suite. Test cases can be added or
removed from the Test Suite any time. The following screenshot contains the Test Suite
which is created based on a query to select Priority 2 Test Cases from all available test
cases in the Test Plan.

- O X
@ @ | ‘@ | Testing Center ~ Plan Test Track Organize TeamProjectl » Plan A

Contents | Results | Properties MNew - Open Items (0)

@\. Contents

Fl ‘E‘g Plan &
) &) 4 Employee Details Screen W] A Editquery .7 E/

Ea. Test suite: Priority 2 Test Cases (Suite ID: 8)
Default configurations (1): Windows8 ~ State: o In progress =

AT c .
() [5: Capture Absence Details foran Em Drag a column header here to group by that column,

) [2) % Employee Emergency Contact Deti

i Ord j) Titl Priority | Confi,
.@.@ Priority 2 Test Cases | | il ‘ | = | r|or|ty| o

ell 2 Test Emergency Contact Details for an Employee 2 1
wl2 8 Enter details in Employee details page and validate the fields 2 1

[396]

Chapter 13

The other option is to add requirements to the Test Plan. Adding or linking
requirements to the test case would help us know the test cases which would get
affected in case of any requirement change. Also it becomes easy to find the related
test cases and testing scenarios for that requirement. The following screenshot shows
the selection of a requirement from the existing requirements list and adding it to the
Test Plan.

@ @ | @ | Testing Center ~ ‘ Plan Test Tra::k’ Team

Contents | Results | Properties New Open Ite

@_, Contents

Add existing requirements to this test plan

Query Type: | Flat List (Default)

And/Or Field Operator Value
Team Project = @Project
b And - Area Path TearmnProjectl
And Work Item Type = Product Backlog Irem

Click here to add a clause

F Run ._E Column options |j Open B3 Create copy |] Create test case from bug

Drag a column header here te group by that column.

{0 | Title | Assigned To | Area Path

Employee Details Screen Subashni TeamProjectl
Capture Absence Details for an Employee TeamProjectl
Capture Emergency Contect Details for an Employee TeamProjectl
Employee Emergency Contact Details TeamProjectl

Add requirements to plan

Query results: 4 results found (1 currently selected).

[397]

Test and Lab Center

The second option under the Testing Center tool is to view the Test Results of the
test cases associated to the suites and plan. The result contains the Test Results
Summary and a horizontal graph which shows the number of test cases within
each Test Suite. This section also shows the number and percentage of failed tests.

- O X
@ @ | @ | Testing Center ~ Plan Test Track Organize TeamProjectl » Plan A

Contents | Results | Properties New Open Items (1) +
¢! PlanA- TestResuits

Test Suites: Multiple ~

Test Configurations: Al =

Test Result Summary Test Result Details | By Tect Suite Show data labels

4: Employee Details Screen...

M 3 Active (100%) est Cases (Suite ID: 8)

Failed Tests by ReasonFailed Tests by Analysis

0 None (0%) 0 None (0%)

There is an option to filter the Test Suites within the Test Plan to list only the results
for selected Test Suites. The above screenshot shows the value as Multiple which
means that multiple suites within the Test Plan are selected to show the summary.
There is another option to show the result details either by Suite Name or by Tester.

The third option is to set the properties for Test Plan. The Properties section provides
a few configuration options to use for Manual and Automated Test Runs. The Test
Plan can be associated with a build as well. The other common properties such as
Area, Iteration, Start, and End Date for the plan can be set. The Run Settings section
is used to choose the required settings file and the environment from the available
list for the manual and automated tests.

Additional sections such as Links are also available to add any external URLs and
comments to the Test Plan.

[398]

Chapter 13

Testing Center — Test tab

This Test tab contains five different subtabs such as Run Tests, Analyze Test Runs,
Do Exploratory Tests, View Exploratory Test Sessions, and Verify Bugs.

The first tab, Run Tests is used for running the test cases and capturing the Test
Results. Whichever test cases added to the plan are listed in the left pane. The right
pane lists the options to view Test Result and the status of each run for the test case.
Select the test case and start running the test with different run options such as
choosing a different build configuration, test settings, and environment. After the
Test Run, the Test Result details can be viewed from here.

- O X

@ @ | o | Testing Center ~ Plan Test Track Organize TeamProjectl » Plan A

RunTests | AnalyzeTestRuns | Do Exploratory Testing | View Exploratory Test Sessions | Verify Bugs MNew - Open Items (0) «

Ty

¢_|_r'_| Run Tests

Perform tests using: Local machine (MY-PC) Modify Build: EmployeeMaintenance 201304272 ¥ New

T Filter~ g Test suite: Priority 2 Test Cases (Suite ID: 8)
Fl Plan A .
& b Run =~ v_é\u’iew results lj' Opentestcase & @ @ @
&‘, 4: Employee Details Screen (1)
@ Priority 2 Test Cases (2) | Order |ID ‘Title |Tester | Configurati... = | Priority |Automated

B (@ Passed (1)

1 2 Test Emergency Con... Satheesh
= @ Failed (1)

Run

Run with options

2 8 Enter details in Empl... Sathees
2 View results

Open test case

Reset test to active
Pass test

Fail test

Block test

Selecting the test case and running the test will open the window for recording the
test actions and result for each step in the test case. Recording the test actions is
optional but can be very useful for automating the test. With the use of the recording
window we can play, pause, and stop the test any time. Each step will show the
actual test step and the expected result for the test step. There is a context menu
option to set the test manually as pass or fail based on the Test Result.

[399]

Test and Lab Center

The second tab Analyze Test Runs is very useful for comparing and analyzing
multiple Test Runs. The list contains the history of Test Runs and there is a filter to
limit the number of runs listed. Open any Test Run to get more details on individual

results for further analysis.

- 0O X

@ '@ | @ | Testing Center ~ ‘ Plan Test Tra::k’ TeamProjectl » Plan A

‘ Run Tests | Analyze Test Runs | Do Exploratory Testing | View Exploratory Tes ,-’ New w

a _%; Analyze Test Runs

|j' Open X @ View: | Manual runs ~ || Start date range: | Last 14 days -

Drag a column header here to group by that column,

| Test Status |ID | State Owner | Run title | Build number | Create:

@ 9) Completed Satheeshkumar Priority 2 Test Cases (.. EmployeeMaintenance_2... 5/1/201
Q g @ Meeds investigation Satheeshkumar Priority 2 Test Cases (... EmployeeMaintenance 2. 5/1/201
(] 7 v} Completed Satheeshkumar 4: Employee Details 5. EmployeeMaintenance_2... 5/1/201

The third and fourth tab are to do with exploratory testing and viewing the
exploratory test session details. This was explained in detail in the previous chapter
with examples. This is one of the new features added to Test Manager 2012 to
perform testing without prior details on any test cases defined.

[400]

Chapter 13

The last tab Verify Bugs under the Test tab is used to verify bugs created as part
of the Test Runs. Use the Open option to open the defect and get more details on
defect. The verify option provides the opportunity to re-run the test case and test

steps to verify the defect. The corresponding test case for the defect can be looked at
from this window.

- 0 X

@ @ | @ | Testing Center ~ ‘ Plan Test Tra::} TeamProjectl » Plan A

‘ Run Tests | Analyze TestRuns | Do Exploratory Testing | View E-::pln:nratn:nr_-,rTest!’ New w

@ Verify Bugs

Perform tests using: Local machine (MY-PC) Modify

,_.-r}:'New jOpen ‘L%: Verify - Ij'Opentestcase View: Custom w | Filter

Drag a column header here to gra Rerun associated test result to verify bug flxl

| D | Title | Assigned To | State | Created Date

1 WebTest2: Few mandatory fields accepts blank
7

New 4/28/2013 4:28:49 PM
Phone Mumber field accepts blank in Employee Detail... Subashni New 4/29/2013 6:13:41 PM

New test cases can be created and there is an option to change the machine or
environment for the Test Run, to verify the defect in multiple other environments.

[401]

Test and Lab Center

Testing Center — Track tab

The Track tab in Testing Center is used for keeping track of the activities and getting
the current status of Test Runs, work on items using queries, assign builds with
plans, and getting the test recommendation based on build comparison.

The first subtab Queries provides multiple built-in queries which are ready to
execute. Custom queries can be built based on a few parameters in order to get the
status of defects and Test Runs. For example, the Product Backlog query is an inbuilt
query which fetches the list of all active backlog items within the Team Project. The
queries can be customized and refined with required parameters as per the needs.
New queries can also be built and saved under the My Queries folder which is only
meant for the current user who is creating it. The following image shows the result set
for the query to return the product backlog items.

@ @ | @ | Testing Center ~ n

| Recommended Tests

Plan Test Track Organize TeamProjectl » Plan A

Queries | Assign Build MNew w Open ltems (1) =

5 Queries: Preduct Backlog |iSave and Close o]

-
3 Newguery ~ 13 [K And/Cr Field Operator Walue

4 [TeamProjectl Team Project = @Project

4 [My Queries

= New query {

Work Itern Type In Group Microsoft. RequirementCategony

Tteration Path = @Project
= Shared Queries

State In Mew, Approved, Committed

Or Iteration Path Under EProject

= Feedback

And State In

3 Current Sprint {

“Z Product Backlog Mew, Approved
And Lrea Path Under @Project

Filters for linked work items
Value

And/Or Field

Or
And

> Linking Filters

Operator

Tteration Path Under @Project

State In MNew, Approved

'@) _'_j Column options

| Work Item Type

Backlog Pr... | Title

Product Backlog Item
Product Backlog Item
Product Backlog Item

Query results: 6 results found.

Employee Details Screen
Capture Absence Details for an Employee
Capture Emergency Contect Details for an |

-

3

[402]

Chapter 13

Three different queries can be created using the following options:

* New query: This query is used to create a simple query that returns a list

of items.

* New direct links query: This query is used to return work items, and the

items linked to each of those work items.

* New tree query: This query is used to return the set of work items which are

multi-tiered.

These are the same types of queries which can also be created using Visual Studio.

The next tab is the Assign Build tab which is used for assigning a new builds to the
plan. If the development team has done some defect fixes and this is reflected in the
new build then the testing should happen against the new build instead of old build.
To make this change, assign the new build to the Test Plan so that the tests are carried
over and new defects are logged against the new build. The associated work items list
shows the updated work items between the builds. Based on the changes, the team can

decide on which build to take for testing.

@ @ | @ | Testing Center ~ Plan Test Track

Queries | AssignBuild | Recommended Tests

féﬂ Assign Build

Filter for buildst EmployeeMaintenance Modify

Build in use: EmployeeMaintenance 20130427.2

Available builds: |EmponeeMaintenance_2013042?.3 (Late... v| View | Assign to plan

Associated work items between selected builds:

Work Item Type ~

- O X

Organize TeamProjectl » Plan A

MNew Open Items (1) «

| |ID |Title Work Item Type + | State Changeset

Associated build

[403]

Test and Lab Center

The next tab Recommended Tests provides an interesting feature which recommends
what are all the tests that needs to be re-run based on the changes that has gone in as
part of the new build. Because of some requirement change, or design change, or code
change, some of the tests need to be re-run to make sure the functionality is not broken.
Choose the build from the available builds list to compare and get the differences of
the work that went in. This helps the tool to identify the changes and corresponding
tests for the change and then provide the recommendations for re-runs.

- 0O X

@ @ | @ | Testing Center ~ ‘ Plan Test } TeamProjectl »

Queries | Assign Build | Recommended Tests New v Openltems (0) w
=9 Recommended Tests

Filter for builds: EmployeeMaintenance Modify
Build in use: EmployeeMaintenance_20130427.2 Modify

Previous build to compare: | EmployeeMaintenance_20130427.1 -

Recommended tests: Recommended tests Related work items

dh)

| Title Last run date 4 | Last result

There is an option to get the related work items as well. Again, this is to get the
modified work items between the builds.

[404]

Chapter 13

Testing Center — Organize tab

The Organize tab in Test Center is used for maintaining and managing the Test
Plans, Test Configurations, test cases, and shared steps for test cases. This tab
contains four different subtabs to manage all of these.

The first subtab Test Plan Manager is used for setting or modifying different
properties of the Test Plans.

The second tab is for managing and modifying the configurations. Multiple
configurations can be created based on different parameters such as Operating
System, Browser version, and other system variables.

- O X
@ @ | o | Testing Center ~ ‘ Plan Test Track Organi.} TeamProjectl » Plan A

Test Plan Manager | Test Configuration Manager | Test Case Manager | Shared Steps Manager New Open Itemns (0) «

Q Test Configuration Manager

. Manage Configuration Variables

uz MNew configuration variable ¥

MName | Description

Operating System Default operating systems
Browser Default browsers Allowed values
¥ Windows 7

Windows 8

Windows Vista

Windows XP
* -

Save configuration variables Don't save

[405]

Test and Lab Center

The next tab is the Test Case Manager where all the test cases in the Test Plan are
displayed. Select any of the test cases from the list and modify it, or create a copy of
the selected test case using the options in the toolbar. Instead of getting the list of all
test cases, filter can be set to limit the test cases in the list. The following screenshot
shows filtered test cases list from the available work items.

- O X

@ (—:)) | o | Testing Center ~ Plan Test Track Organize TeamProjectl » Plan A

Test Plan Manager | Test Configuration Manager | Test Case Manager | Shared Steps Manager New » Open Items (0)
Q Test Case Manager

w1 New [§ Open L3 Create copy T Filtered

Drag a column header here to group by that column.

{1 | Priority | Title Assigned To Area Path

2 2 Test Emergency Contact Details for an Employee Satheeshkumar TeamProjectl
8 2 Enter details in Employee details page and validate the fields Satheeshkumar TeamProjectl

The next tab is Shared Steps Manager, which is for creating and maintaining the test
cases which is shared across many test cases. These are called shared steps because
of the nature of providing common steps which can be re-used across multiple test
cases. For example, opening the web browser and navigating to the main page is the
common activity to start the test. This can be created as one shared step and re-used
across multiple test cases.

[406]

Chapter 13

- O X
@ @ | @ | Testing Center - ‘ Plan Test } TeamProjectl » Plan A

‘ Test Plan Manager | Test Configuration Manager | Test Case Manager | ’ Mew w

Shared Steps Manager

New [§ Open 23 Create copy 7 Create action recording T Unfiltered =

Drag a column header here to group by that column.

{10 | Priority | Title Assigned To Area Path

i 10 2 Initial steps to start the testing Satheeshkumnar TeamProjectl

All of these activities performed in Testing Center are saved to the Team Foundation
Server store and associated to the selected Team Project. All of these tabs in Testing
Center are not dependent on Visual Studio or any other tool except TFS for data
storage. As long as the Team Project is available in TFS, it is enough to capture the
test steps and test cases for the Team Project.

[407]

Test and Lab Center

Lab Center

Microsoft Test Manager even provides features for managing and using virtual
machines for testing applications. The Lab Center in Test Manager is used for
managing the Test environments, Test Settings, and Controllers for testing. The Lab
Management in Visual Studio is integrated with System Center Virtual Machine
Manager (SCVMM) to manage multiple physical computers that host virtual
machines. Each environment consists of one or more virtual machines for each role
required for the application. The Lab Management tool can be used to deploy the
application to these environments and then to run the tests.

Environments

Creating a collection of Virtual machines created and managed within the lab is called
a virtual environment. The integration of Lab Management with the SCVMM enables
us to deploy and test our applications on these virtual machines. TFS builds can be
scheduled to build the application and deploy and test on these environments.

In Microsoft Test Manager, the Lab tab in Lab Center provides access to the virtual
environments deployed on the host groups of a Team Project. A host group is a
collection of physical computers on which virtual environments can be created.

The new environment option opens a wizard to configure the machines with roles to
create the environment. The image below shows the process of adding new machines
and assigning a role to the machine. There are multiple roles available as shown in
the image. The wizard also helps in setting some properties to the machine which
help during environment creation and application deployment. Once the wizard is
complete, the last step verifies the connection to the actual machines and validates
the requirement.

[408]

Chapter 13

@ @ | @ ‘ Lab Center Lab Test Settings Library Controllers

Environments New v Openlter

E ‘Open environment*: NewEnv |iSaveand Close [[2] @

‘Add machines that are already set up and assign a role to each machine. Use the role to select which machine will run tests or

Steps
collect diagnostic data.

Typeand name
Selected machines

& Mach
& Machines 43 Add machine X

Machine properties

Advanced

Summary :‘ Ej
Verification =

MY-PC Satheesh-PC
Web Server I:":
Database Server
Desktop Client
Domain Controller
Server

Web Client
Enter the user name and P2t yyep, server Administrators group on all the selected machines, For
workgroup machines use \«

Username: MY-PC\Satheeshkumar

Password: esesssse

Domain: ~ MY-PC

<Previous || Ned> Cancel

The following picture shows a simple environment with one machine added to it and
the role of that machine is to provide support as a web server.

=0 X

@ @ | A ‘ Lab Center Test Settings Library Controllers

Environments New

E Environments

g New 1-.11_., Deploy Ij Open X H «* Connect - Environment: Mark In Use' ¥

Description:

:| Name - | Status ‘In use | Loc... ‘ Owner Type

= Type: Standard (1)

iNewEny |3 Ready

[409]

Test and Lab Center

The Library tab in Lab Center is used for maintaining and storing the virtual
environments and templates that are used to create the new environments.

Deployed environments

A deployed environment is a collection of virtual machines that is located on a
Team Project host group. A deployed environment can be running or stopped.

From the Lab tab, connect to the individual machines through Environment Viewer,

and create and store virtual machines and templates in the Team Project Library.
Deployed environments can be created using any of the following sources:

* Using one or more virtual machine templates
* Using stored virtual machines or templates
* Using stored environments

* Using stored environment from a combination of stored virtual machines
or templates

* Using one or more deployed virtual machines
Lab Management environments enables testers to perform the following:

* Store a snapshot of the environment that saves the state of all virtual
machines in the environment at any point in time

e Start and stop the virtual machines

* Run multiple copies of environment that are stored in Library

The other tabs in Lab Center are the Test Settings tab and the Library configuration
tab. The Test settings tab helps in creating multiple test settings. Define the roles and

data diagnostics information for the test in test settings.

[410]

Chapter 13

= 0O X

C(—) @ ‘ @ ‘ Lab Center = ‘ Test Settings Library Cont|}

Test Settings Manager MNew « Open Items (1) «

New test settings 2*: Setting2CollectTestimpact [iSave and Close |

Summary

Gensial Name: Setting2CollectTestlmpact

Roles Description:
Data and
Diagnostics

Summary

Role: Local
Data and diagnostics
Action Log

Systern Information
Test Impact

< Previous Finish || Cancel |

Later on while deploying the virtual machine, the role can be used to choose the
corresponding virtual machine to run the tests. The preceding image shows the new
settings created to collect the Test Impact diagnostics information.

[411]

Test and Lab Center

The Controllers tab is used to manage the controllers used for the environment. You
can select a controller from the list and change the configuration as well. The Test
Controller manages the Test Agents to run the tests, and communicates what each
agent should do.

-0 X

@ @ | @ | Lab Center Test Settings Library Controllers

Test Controller Manager MNew «

\jé Test Controller Manager

E E Test Controller: My-PC
3 My-PC

Load 5QL Database

Test Agents
(®) Offline [Restart ;2] Cenfigure

| Status | Envircnment

Ready NewEnv

You can configure and monitor Test Controllers and any registered Test Agent using
the Test Controller Manager option in the Lab Center section. To remove any of

the Test Agents from the list, simply make it offline so that it won't be available for
any of the test activities. Use the Restart option to restart the selected agent if there
are any new deployments or change in settings. Click on Configure and change

the configuration information for the selected agent, if required. For example, Load
distribution can be changed during the test load.

[412]

Chapter 13

Summary

The Test Center and Lab Center have a few new additions in Test Manager 2012.
Test Center is very useful in managing Test Plans, Test Suites, configurations, and
test cases; running the tests; and creating and maintaining shared steps. Any Test
Plan can be cloned as it is and then customized without modifying the original plan.
Analyzing the Test Runs and verifying the test by re-running it can be very useful
for the testers as there is no dependency and it can be done within the Testing Center
itself. Queries are an added advantage to get the status and progress from Test
Manager itself.

The Lab Center is very useful in creating and configuring multiple environments
using the Physical and Virtual Machines and deploying the environments for testing
purposes. All these tools work without the support of Visual Studio but do require

a connection to the TFS. This helps the testers to have independent test tool to carry
out all test activities.

With this chapter the book comes to an end. Overall, the chapters in this book started
explaining the basics of testing, including multiple new features added to Visual
Studio 2012 from its previous version. A couple of new features such as Coded

Ul test and exploratory testing are very good additions to Visual Studio 2012 and

are also explained well in this book. The Test Manager is the standalone testing

tool which is used for managing the Test Plan, Test Suites, and Test Cases, and

Test Executions as well. Integrating Visual Studio 2012 with TFS and maintaining
the configuration has also been explained, along with publishing the Test Results.
Overall this book has covered the end-to-end testing of applications and managing
the Test Results as well.

[413]

Symbols

/detail option 338
/flavour option 340
/ListTests option 329
/noisolation option 336
/nologo option 338
/platform option 340
/publishbuild option 339
/publish option 339
/publishresultsfile option
about 340
build, creating 342, 343
existing Test Project, creating 341
existing Test Project, using 341
project, building 343
result, publishing 344
test, running 342
/resultsfile option 337
runsettings file
used, for configuring unit tests 325, 326
/[testcontainer option 332
/[testmetadata option 333
/[test option 334
testsettings file
settings 192
/[testsettings option 336
/Tests option 329
/unique option 335

A

action recording, coded UI test 68-73
AddCommentToResult method 219
Assert 94

Index

Assert.AreEqual

about 96

overloaded methods 96-99
Assert.AreNotEqual 100
Assert.AreNotSame

about 102

overloaded methods 102
Assert.AreSame

about 100

overloaded methods 100, 101
Assert class 94
Assert.Fail

about 102

overloaded methods 103
AssertFailedException 119, 120
Assert.Inconclusive

about 103

overloaded method 103
Assert.IsFalse

about 104

overloaded methods 104
Assert.IsInstanceOfType

about 106

overloaded methods 107
Assert.IsNotNull

about 106

overloaded methods 106
Assert.IsNull

about 105

overloaded methods 105
Assert.IsTrue

about 104

overloaded methods 104
assert statements 93, 94
automated tests 35, 67

B

browser mix
defining 248
bug status report 379, 380
bug trends report 381
build quality indicators report 381
build success over time report 381
build summary report 381
burn down and burn rate report 381

C

C# 17
Capability Maturity Model
Integration (CMMI) 370

ClassCleanup() method 92,93
ClassInitialize() method 92
code

generating, from recorded test 213-217
code coverage

about 8,28, 138, 139

blocks 140

elements, excluding 141

lines 140
coded test

transactions 218
coded UI test
CodedUlITestl.cs file 73, 74
Coded Ul Test Builder 67
CodedUlITest.cs file 17
Coded UI Tests (CUIT)

about 8,17, 67

creating 69, 72, 73

controls, adding 82-87

files 73

from action recording 68-73

supported files 17

validations, adding 82-87
coded web test

about 17,212

advantage 219

debugging 222-224

running 220, 221
coding phase 9
CollectionAssert 111
CollectionAssert.AllltemsAreln-

stancesOfType

about 113

overloaded methods 113
CollectionAssert.AllltemsAreNotNull

about 112

overloaded methods 112
CollectionAssert.AllltemsAreUnique

about 115

overloaded methods 115
CollectionAssert.AreEqual

about 116

overloaded methods 116, 117
CollectionAssert.AreEquivalent

about 112

overloaded methods 112
CollectionAssert. AreNotEqual

about 119

overloaded methods 119
CollectionAssert. AreNotEquivalent

about 113

overloaded methods 113
CollectionAssert.Contains

about 115

overloaded methods 115
CollectionAssert.DoesNotContain

about 115

overloaded methods 116
CollectionAssert.IsNotSubsetOf

about 114

overloaded methods 114
CollectionAssert.IsSubsetOf

about 114

overloaded methods 114
comments

adding, to recording 152

adding, to web test 219
conditional rules

about 176-178

Context Parameter Exists 179

Cookie Exists 179

Cookie Value Comparison 179

Last request Outcome 179

Last Response Code 180

Number Comparison 180

Probability Rule 180

String Comparison 180
Constant load option 242
Constant Load Pattern 265

[416]

context parameters
adding 267
creating 188, 189
Controller 234
controls
adding, to coded Ul test 82-87
counter sets, Load Test Wizard 248
custom rules
about 224
extraction rules 224-228
validation rules 228-231

D

Data and Diagnostics setting, .testsettings
file 195-197

Data and Diagnostics, test settings 313-315
DataBinding attribute 215
data driven coded Ul test 80, 82
data-driven unit testing 126-131
DataSource attribute 215
data sources

adding 181, 184
deployed environment 410, 412
DeploymentItem attribute 215
Deployment section, test settings 316
Deployment setting, .testsettings file 197
detail view, Test Results 279
dynamic parameters, web testing 210, 211

E

ExpectedExceptionAttribute 120, 122,123
exploratory testing
about 8,15, 16, 369-378
drawback 369
extraction rules
about 166, 224, 227, 228
Extract Attribute Value 167
Extract Form Field 167
Extract Hidden Fields 168
Extract HTTP Header 168
Extract Regular Expression 168
Extract Text 168
Selected Option 167
Tag Inner Text 167
extract method 225

F

Fakes
about 132
used, for unit testing 132

files, Coded Ul Tests (CUIT)

CodedUITestl.cs file 73,74
UlIMap.cs file 75
UlMap.Designer.cs file 74
UiMap.uitest file 76-78
Finalizer method 93
Form POST Parameters 164, 165

G

General option, test settings 311
General section, .testsettings file 192, 193
generics

about 123

and unit tests 123-126
generic tests

about 21, 297, 301

creating 302, 304

parameters 303

summary results file 304-308
Goal Based Load Pattern 266
graphical view, Test Results

about 272

Controller and Agents 273

Key Indicators 273

Page Response Time 273

System under Test 273

H

Hosts option, Test settings 318

Hosts, .testsettings file 199

Hypertext Transfer Protocol-GET (HTTP-
GET) 152

Hypertext Transfer Protocol-POST (HTTP-
POST) 152

ICollection interface 111

IComparer 116

Integrated Development
Environment (IDE) 8

[417]

integration testing
about 10
bottom-up approach 10
top-down approach 10
umbrella approach 10

L

Lab Center
about 29, 32, 391, 408
deployed environment 410, 412
environments 408, 410
lab management 9
Lab Management environments 410
Load Pattern
about 242
constant load 242
defining 242
step load 242
Load Test
about 233, 234
context parameters, adding 267
creating 234, 235
editing 262-265
running 270
load testing 9, 18,19
Load Test Wizard
about 236, 238
counter sets 248, 249
Run Settings 250-259
scenarios, specifying 239
loop logic 153

manual testing 8, 14, 35
manual tests

action recording 56-58

parameters, adding 62-65

running 47-55
Microsoft Developer Network (MSDN) 339
Microsoft Excel

about 35

Test Results, exporting to 280-288
Microsoft Solutions Framework (MSF) 370
Microsoft Test Manager 2012 (MTM) 9, 391
Microsoft Test Manager (MTM)

about 15, 28, 35

connecting, to TFS project 29
Microsoft.VisualStudio.TestTools.UnitTest-

ing namespace 13, 90
Microsoft.VisualStudio.TestTools.WebTest-
ing namespace 209

Microsoft Word 35
MSTest utility

/noisolation option 336

/nologo option 338

options 330, 331, 332

/platform option 340

/publishbuild option 339

/publish option 339

/publishresultsfile option 340

/resultsfile option 337

/testcontainer option 332

/testmetadata option 333

/test option 334

/ testsettings option 336

/unique option 335

about 327, 330

used, for running tests 332
MyTestCleanup() method 74
MyTestInitialize() method 74

N

Network Mix
defining 247

(0

ordered tests
about 20, 298
creating 298-300
executing 300, 301
Organize tab, Testing Center 405-407
out-of-box reports
about 380
bug status report 380
bug trends report 381
build quality indicators report 381
build success over time report 381
build summary report 381
burn down and burn rate report 381
reactivations report 381

[418]

remaining work report 381
stories overview report 381
stories progress report 381
test case readiness report 381
Test Plan progress report 381
unplanned work report 381
overloaded method, Assert class
Assert.AreEqual 96-99
Assert.AreNotEqual 100
Assert.AreNotSame 102
Assert. AreSame 100, 101
Assert.Fail 102
Assert.Inconclusive 103
Assert.IsFalse 104
Assert.IsInstanceOfType 106, 107
Assert.IsNotNull 106
Assert.IsNull 105
Assert.IsTrue 104
overloaded methods, CollectionAssert
CollectionAssert. AllltemsAreln-
stancesOfType 113
CollectionAssert. AllltemsAreNotNull 112
CollectionAssert.AreEqual 116-118
CollectionAssert.AreEquivalent 112
CollectionAssert. AreNotEqual 119
CollectionAssert. AreNotEquivalent 113
CollectionAssert.Contains 115
CollectionAssert.DoesNotContain 115
CollectionAssert.IsNotSubsetOf 114
CollectionAssert.IsSubsetOf 114
overloaded methods, StringAsserts
StringAssert.Contains 108
StringAssert.DoesNotMatch 109
StringAssert.EndsWith 110
StringAssert.Matches 108
StringAssert.StartsWith 109

P

parameters

adding, to manual tests 62-65
parameters, generic tests 303
Pivot chart 389
Pivot table 389
Plan tab, Testing Center 395-398
PostPage method 216
PostRequest method 217

PostTransaction event 216
PostWebTest event 216

PrePage method 216
PreRequestDataBinding method 217
PreRequest method 217
PreTransaction event 216
PreWebTest event 216

Q

Query-based Test Suite 44
QueryString parameters 165, 166

R

reactivations report 381
recorded request
copying 153
recorded test
code, generating from 213-218
recorded tests
cleaning 153
recording
comments, adding to 152
regression testing 11
remaining work report 381
report
building 363, 364
report definition
creating, Visual Studio 2012 used 383-89
Report Designer
features 370
Requirement-based Test Suites 45-47
Result store 268, 269
Roles option, test settings 312, 313
Roles setting, .testsettings file 194
runsettings file 309
Run Settings, Load Test Wizard
about 250-259
threshold rules 259-261

S

sanity testing 11

scenarios, Load Test Wizard
browser mix, defining 248
Load Pattern, defining 242

[419]

Network Mix, defining 247
specifying 239
Test Mix Model, defining 243-246
think time 240, 241
SDLC 7,9
settings, .testsettings file
Data and Diagnostics 195-197
Deployment 197
General section 192, 193
Hosts 199
Roles 194
Setup and Cleanup Scripts 198
Test Timeouts 199
Unit Test 200
Web Test 201, 202
Setup and Cleanup Scripts section, test set-
tings 317
Setup and Cleanup Scripts setting, .testset-
tings file 198
shared steps
about 59
action, recording 59, 62
creating 59-61
shared test steps 49
Shims
about 137
versus Stubs 137
Simple Web tests 17
SOAP protocol 152
Software Development Life Cycle. See
SDLC
software testing 8, 9
Static Test Suite 42,43
Status on all iterations report 380
Step load option 242
Step Load Pattern 265
stories overview report 381
stories progress report 381
StringAssert.Contains
about 108
overloaded methods 108
StringAssert.DoesNotMatch 109
StringAssert.EndsWith 110
StringAssert.Matches 108
StringAsserts 107
StringAssert.StartsWith 109
Stubs

about 132-137
versus Shims 137
summary results file, generic tests 304-308
summary view, Test Results
about 275
Controller and Agents Resources 275
Errors 276
Page Results 275
System under Test Resources 275
Test Results 275
Test Run Information 275
Transaction Results 275
System Center Virtual Machine
Manager (SCVMM) 408
system testing 11

T

tables view, Test Results 277, 278
TCM 327,344
tcm.exe tool 344
Team Foundation Server 2012 369
Team Foundation Server (TFS)
about 8, 339, 353, 358, 359, 370, 392
built-in reports 379
Team Project
Test Manager tool, connecting to 392, 393
test
recording 146-151
running 203-206
Test Agents
configuring 289-295
using 288
test case
about 369
adding, to Test Plan 38
defining 31
test case management 8
test case readiness report 379, 381
Test Center 391
TestClass() method 92
TestCleanup() method 92, 93
Test Controller
about 234
configuring 289-295
using 288
Test Explorer 25-27, 353

[420]

Test Impact View 21
testing
about 9
highlights 143, 144
Testing Center
about 394
Organize tab 405-407
Plan tab 397, 398
Test tab 399-401
Track tab 402-404
testing tools 22
testing types
about 11,12
Coded Ul Tests (CUIT) 17
exploratory testing 15, 16
generic test 21
load testing 18, 19
manual testing 14
ordered test 20
unit testing 12, 13
web performance tests 16
TestInitialize() method 92
Test List Editor 8
test management 21
Test Manager 2012 369
Test Manager tool
about 392
connecting, to Team Project 392, 393
TestMethod() method 92
Test Mix Model
based on number of virtual users 245
based on sequential test order 246
based on total number of tests 244
based on user pace 245
defining 243
Test Plan
about 30, 36, 37
Test Case, adding 38, 40
tests, importing to 345-349
tests, running in 349-351
Test Suite, adding 38-40
Test Plan progress report 381
Test Project

creating, Visual Studio 2012 used 22-24

Test Results
about 353-358
analyzing 272

building 363, 364
detail view 279
exporting 272
exporting, to Microsoft Excel 280-288
graphical view 272-274
publishing 339
summary view 275, 276
tables view 277, 278
work item, creating from 365, 366
Test Run configuration file 322, 323
Test Runner 68
Test Runs 353-358
tests
as part of Team Foundation Server build
358-363
importing, to Test Plan 345-349
recorded request, copying 153
running, in Test Plan 349-351
running, MSTest utility used 332
running, VSTest.Console used 328
Test settings
Data and Diagnostics page 313-315
Deployment section 316
General option 311
Hosts option 318
Roles option 313
Setup and Cleanup Scripts section 317
Test Timeouts option 319, 320
Unit Test option 320, 321
using 310, 311
Web Test option 324
testsettings file 309
Test Suite
about 30, 41
adding, to Test Plan 38
Query-based Test Suites 44
Requirement-based Test Suites 45-47
Static Test Suites 42
types 41
Test tab, Testing Center 399-401

Test Timeouts option, Test settings 319, 320

Test Timeouts, .testsettings file 199
Test View 8
TFS project
MTM, connecting to 29
think time 240
threshold rules 259-261

[421]

toolbar properties, web performance test
editor
about 181
data source, adding 181, 184
parameterize web server 186
recording, adding 185
user credentials, setting 184
web test plug-in, adding 190, 191
Track tab, Testing Center 402-404
transactions 174

U

UIMap.cs file 17, 75
UIMap.Designer.cs file 17, 74
UIMap.uitest 17
UiMap.uitest file 76-79
uniform resource identifier (URI) 339
UnitTestAssertionException 120
unit testing
about 8,10, 12,13, 89
Fakes used 132
unit testing, Fakes
Shims 137
Stubs 132-137
Unit Test option, Test settings 320, 321
unit tests
and generics 123-126
configuring, .runsettings file used 325, 326
creating 90-92
Unit Test, .testsettings file 200
unplanned work report 381

\"

Validate method 229
validation rules
about 171, 228-231
Find Text 172
Form Field 172
Maximum Request Time 172
Required Attribute Value 173
Required Tag 173
Response Time Goal 172
Response URL 173
Selected Option 172
Tag Inner Text 172

validations

adding, to coded UI test 82-87
VB.NET 17
virtual environment 408
Visual Studio 2012

software testing 8, 9

testing features 8, 9

test manamgement 21

Test Project, creating 22-24

used, for creating report definition 382-389
Visual Studio Load Agent 234
VSTest.Console utility

/ListTests option 329

/ Tests option 329

about 327, 328

used, for running tests 328

w

web performance test editor
about 158, 159
conditional rules 176-180
toolbar properties 181
web performance testing 9
web performance tests
about 16, 145
creating 145, 146
loops, adding 153-158
Web Performance Test toolbar 209
web server
parameterizing, in web test 186, 188
WebTest class 215
WebTest constructor 216
web testing
dynamic parameters 210, 211
Web Test option, test settings 324
web test plug-in
adding 189-191
web test recorder
about 146
Add a Comment option 147
Clear all requests option 147
Pause option 147
Record option 147
Stop option 147
web test request properties
about 161

[422]

Expected HTTP status code 162
extraction rules 166-170
Follow redirects 162
Form POST Parameters 164, 165
QueryString parameters 165, 166
Record results 163
Response time goal(Seconds) 163
transactions 174
Url 163
validation rules 171,173

Web tests
Coded Web tests 17
comment, adding 219
debugging 191
properties, setting for 160
running 191
Simple Web tests 17

Web Test, .testsettings file 201, 202

work item

creating, from Test Results 365, 366

X

xsd.exe utility 305

[423]

. (I
enterprise
professional expertise distilled

PUBLISHING

Thank you for buying
Software Testing using Visual Studio 2012

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www . packtpub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

enterprise 8

professional expertise distilled

PUBLISHING

Visual Studio 2012
Cookbook

Visual Studio 2012 Cookbook
ISBN: 978-1-84968-652-5 Paperback: 272 pages

50 simple but incredibly effective recipes to
immediately get you working with the exciting
features of Visual Studio 2012

1. Take advantage of all of the new features
of Visual Studio 2012, no matter what your
programming language specialty is!

2. Get to grips with Windows 8 Store App
development, .NET 4.5, asynchronous coding
and new team development changes in this
book and e-book

3. A concise and practical First Look Cookbook
to immediately get you coding with Visual
Studio 2012

Microsoft Visual Studio
LightSwitch Business
Application Development

Jayaram Krishnasw:

Microsoft Visual Studio
LightSwitch Business

Application Development
ISBN: 978-1-84968-286-2 Paperback: 384 pages

A jump-start guide to application development with
Microsoft's Visual Studio LightSwitch

1. A hands-on guide, packed with screenshots
and step-by-step instructions and relevant
background information — making it easy to
build your own application with this book
and ebook

2. Easily connect to various data sources
with practical examples and easy-to-follow
instructions

3. Create entities and screens both from scratch
and using built-in templates

Please check www.PacktPub.com for information on our titles

enferprise &

professional expertise distilled

PUBLISHING

Visual Studio 2012 and .NET 4.5

Expert Development Cookbook
ISBN: 978-1-84968-670-9 Paperback: 380 pages

Over 40 recipes for successfully mixing the powerful
capabilities of .NET 4.5 and Visual Studio 2012

1. Step-by-step instructions to learn the power of
.NET development with Visual Studio 2012

Visual Studio 2012 and .NET 4.5
Expert Development Cookbook 2. Filled with examples that clearly illustrate

how to integrate with the technologies and
frameworks of your choice

3. Each sample demonstrates key conceptsto build
your knowledge of the architecture in a practical
and incremental way

Abhishek Sur

Visual Studio 2010 Best Practices
ISBN: 978-1-84968-716-4 Paperback: 280 pages

Learn and implement recommended practices for the
complete software development lifecycle with Visul
Studio 2010

1. This book and e-book detail a large breadth of
recommended practices in Visual Studio

Visual Studio 2010 Best Practices 2. Consolidated reference of varied practices
including background and detailed
implementations, great for inexperienced and
experience developers alike

Peter Ritchie _ 3. A guidelines-based set of practices for
all aspects of software development
from architecture to specific technologies
to deployment

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Visual Studio 2012
Test Types
	Software testing in Visual Studio 2012
	Testing as part of Software Development Life Cycle
	Types of testing
	Unit testing
	Manual testing
	Exploratory testing
	Web performance tests
	Coded UI Test
	Load testing
	Ordered test
	Generic test

	Test management in Visual Studio 2012
	Introduction to testing tools
	Test Explorer
	Code coverage results

	Microsoft Test Manager
	Connecting to Team Project
	Test Plans, suites, and test cases
	Defining test cases
	Lab Center

	Summary

	Chapter 2: Test Plan, Test Suite, and Manual Testing
	Test Plan
	Test Suite and its types
	Static Test Suites
	Query-based Test Suites
	Requirement-based Test Suites

	Running manual tests
	Action recording

	Shared steps and action recording for shared steps
	Creating shared steps
	Action recording for shared steps

	Adding parameters to manual tests
	Summary

	Chapter 3: Automated Tests
	Coded UI tests from action recordings
	Files generated for coded UI test
	CodedUITest1.cs
	UIMap.Designer.cs
	UIMap.cs
	UiMap.uitest

	Data-driven coded UI test
	Adding controls and validation to coded UI test

	Summary

	Chapter 4: Unit Testing
	Creating unit tests
	Assert statements
	Types of Asserts
	Assert
	StringAsserts
	CollectionAssert
	AssertFailedException
	UnitTestAssertionException
	ExpectedExceptionAttribute

	Unit Tests and Generics
	Data-driven unit testing
	Unit Testing using Fakes
	Stubs
	Shims
	Difference between Stubs and Shims

	Code coverage unit test
	Blocks and lines
	Excluding elements

	Summary

	Chapter 5: Web Performance Test
	Creating the web performance test
	Recording a test
	Adding comments
	Cleaning the recorded tests
	Copying the requests
	Adding Loops

	Web performance test editor
	Web test properties
	Web test request properties
	Other request properties
	Form POST Parameters
	QueryString parameters
	Extraction rules
	Validation rules
	Transactions

	Conditional rules
	Toolbar properties
	Add data source
	Setting credentials
	Add recording
	Parameterize web server
	Adding a web test plug-in

	Debugging and running the web test
	Settings in the .testsettings file
	General
	Roles
	Data and Diagnostics
	Deployment
	Setup and Cleanup Scripts
	Hosts
	Test Timeouts
	Unit Test
	Web Test

	Running the test
	Web Browser
	Request
	Response
	Context
	Details

	Summary

	Chapter 6: Advanced Web Testing
	Dynamic parameters in web testing
	Coded web test
	Generating code from a recorded test
	Transactions in coded tests
	Custom code
	Adding a comment
	Running the coded web test

	Debugging coded web test
	Custom rules
	Extraction rules
	Validation rules

	Summary

	Chapter 7: Load Testing
	Creating a Load Test
	Load Test Wizard
	Specifying a scenario
	Counter sets
	Run Settings

	Editing Load Tests
	Adding context parameters

	Storing results in central result store
	Running the Load Test
	Analyzing and exporting Test Results
	Graphical view
	Summary view
	Tables view
	Detail view
	Exporting to Microsoft Excel

	Using Test Controller and Test Agents
	Test Controller and Test Agent Configuration

	Summary

	Chapter 8: Ordered and Generic Tests
	Ordered tests
	Creating an ordered test
	Executing an ordered test

	Generic tests
	Creating a generic test
	The summary results file

	Summary

	Chapter 9: Managing and
Configuring Tests
	Using Test settings
	The General option
	The Roles option
	Data and Diagnostics
	The Deployment section
	Setup and Cleanup Scripts
	The Hosts option
	The Test Timeouts option
	The Unit Test option
	Editing the test run configuration file

	The Web test option
	Configuring unit tests using the
.runsettings file

	Summary

	Chapter 10: A Command Line
	VSTest.Console utility
	Running tests using VSTest.Console
	The /Tests option
	The /ListTests option

	MSTest utility
	Running a test from the command line
	The /testcontainer option
	The /testmetadata option
	The /test option
	The /unique option
	The /noisolation option
	The /testsettings option
	The /resultsfile option
	The /noresults option
	The /nologo option
	The /detail option

	Publishing Test Results
	The /publish option
	The /publishbuild option
	The /flavour option
	The /platform option
	The /publishresultsfile option
	Step 1 – create/use existing test project

	TCM command line utility
	Importing tests to a Test Plan
	Running tests in a Test Plan

	Summary

	Chapter 11: Working with Test Results
	Test runs and test results
	Test as part of the Team Foundation
Server build
	Building report and test result
	Creating a work item from the result

	Summary

	Chapter 12: Exploratory Testing
and Reporting
	Exploratory testing
	Reports using Team Foundation Server
	Bug status report
	Test case readiness report
	Status on all iterations
	Other out-of-the-box reports

	Creating a report definition using Visual Studio 2012
	Summary

	Chapter 13: Test and Lab Center
	Connecting to Team Project
	Testing Center
	Testing Center – Plan tab
	Testing Center – Test tab
	Test Center – Track tab
	Test Center – Organize tab

	Lab Center
	Environments
	Deployed environments

	Summary

	Index

