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preface
What can graphs—the things with edges and vertices, not the things with axes and tick
marks—do and how can they be used with Spark? These are the questions we try to
answer in this book.

 Frequently it is said, “Graphs can do anything,” or at least, “There are a bunch of
different things you can do with graphs.” That says nothing, of course, so in this book
we show a number of specific, real-life ways you can apply graphs and talk about how
to implement such solutions in Spark GraphX.

 A lot of technology buzzwords are applicable to this book: Big Data, Hadoop,
Spark, graphs, machine learning, Scala, and functional programming. We break it all
down for you. Even though we end up in some fairly advanced areas, we don’t assume
anything more than an ability to program in some language such as Java.

 This chart from Google Trends shows the relative interest in these buzzwords
through early 2016:

2005 2007 2009 2011 2013 2015

Big Data

Hadoop

Machine learning

Apache Spark
Edges and vertices
xi



PREFACExii
 Note that for the generic terms spark and graphs we had to substitute the overly spe-
cific Apache Spark and edges and vertices, but the trends can still be seen. A couple of
these technologies, machine learning and graphs, have long histories within academic
computer science and are attracting new interest in the commercial realm as the avail-
ability of Big Data is now mainstreaming these technologies. If you studied these tech-
nologies in school as theory, the world is ready now for you to put them into practice.

 A lot of companies, including the ones we work for and have worked for in the
past, have put Spark—though not necessarily GraphX—into production. This makes
it more than just a little convenient when embarking on prototyping graph solutions
to try GraphX first. If you have a Spark cluster already, or if you decide to spin up a
Spark cluster in the cloud, such as with Databricks or Amazon, you can get started
with graphs without having to set up a new graph-specific cluster or technology, and
you can use your Spark skills in the GraphX API. As more and more applications of
graphs hit the newsstands—from rooting out terrorist networks on Twitter to fraud
detection in credit card transaction data—GraphX becomes an easy platform choice
for trying them out.

 In this book, we simultaneously take on two ambitious goals: to cover everything
possible about Spark GraphX, and to assume little to no expertise about any of the
technologies represented by the aforementioned buzzwords. The biggest challenge
was the hefty amount of prerequisites to get into GraphX—specifically, Spark, Scala,
and graphs. Other challenges were the extensive GraphX API and the many different
ways graphs can be used. The result is an In Action book that differs a bit from others:
it takes a while to get started, with the first five chapters laying the groundwork, and
there are a number of interesting examples rather than one that gradually gets built
up over the course of the book. In books about other technologies the reader might
come with a problem to solve; this book attempts to demystify graphs by showing pre-
cisely what problems graphs can solve. And it does so without assuming a lot of back-
ground knowledge and experience.
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about this book
With Spark GraphX in Action we hope to bring down to earth the sometimes esoteric
topic of graphs, while explaining how to use them from the in-memory distributed
computing framework that has gained the most mindshare, Apache Spark.

Who should read this book
We assume the reader has no previous knowledge of Spark, Scala, and graphs, but we
move so quickly through the material that previous exposure to at least one of these
would be helpful. We attempt to be particularly gentle with our use of Scala. We pro-
vide a brief introduction to Scala in chapter 3 and Scala tips throughout the book
whenever a new Scala concept is introduced (these are listed in appendix D). In fact,
we have recommended this book as a concise introduction to Scala, pointing to chap-
ter 3, the Scala tips, and appendix D.

 In addition, we completely avoid the mathematical proofs that are common in col-
lege courses in graph theory. Our focus is on graph algorithms and applications, and
sometimes we pull in graph structure terminology as needed.

 We target version Spark/GraphX 1.6 in this book.
 The intended reader is someone who has a lot of development experience in

some programming language such as Java, but graphs lend themselves so naturally to
illustrations that non-developers will be able to glean ideas about what graphs can be
used for.
xiv



ABOUT THIS BOOK xv
How this book is organized
This book is divided into three parts. Part 1 consists of three chapters that cover the
prerequisites to using Spark GraphX. The four chapters in part 2 cover standard and
expected ways to use GraphX, and the three chapters in part 3 are on advanced topics.

 We also could have divided the book into two parts, with the first five chapters cov-
ering the prerequisites and basic GraphX API, and the last five chapters covering ways
to apply GraphX.

 Here’s a run-down of the ten chapters:

 Chapter 1 sets the stage with what Big Data, Spark, and graphs are, and how
Spark GraphX fits into a processing data flow. Chapter 1 is a mini-book unto
itself—not in length, but in its breadth of overview.

 Chapter 2 is a very brief, hands-on demonstration of using GraphX—no experi-
ence required.

 Chapter 3 covers the prerequisites of Spark, Scala, and graphs.
 Chapter 4 discusses how to do basic Spark GraphX operations and presents the

two main methods of implementing custom GraphX algorithms: Map/Reduce
and Pregel.

 Chapter 5 illustrates how to use the numerous algorithms built into GraphX.
 Chapter 6 is where something outside the API is finally covered. Here we take

some of the classic mid-20th century graph algorithms and show how they can
be implemented in GraphX.

 Chapter 7 is a lengthy and ambitious chapter on machine learning. Normally
this would require a book unto itself, but here we cover machine learning with-
out assuming any prior knowledge or experience and quickly ramp up to
advanced examples of supervised, unsupervised, and semi-supervised learning.

 Chapter 8 shows how some operations can be done in GraphX that one might
assume would come built into a graph-processing package: reading RDF files,
merging graphs, finding graph isomorphisms, and computing the global clus-
tering coefficient.

 Chapter 9 shows how to monitor performance and see what your GraphX appli-
cation is doing. It then shows how to do performance tuning through tech-
niques like caching, checkpointing, and serializer tuning.

 Chapter 10 describes how to use languages other than Scala with GraphX (but
strongly advises against it) and also discusses how to use tools that complement
GraphX. It demonstrates Apache Zeppelin notebook software with GraphX to
provide visualization of graphs inline with an interactive notebook shell. The
third-party tool Spark JobServer can be used to convert GraphX from a
mere batch graph processing system to an online database of sorts. Finally,
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GraphFrames is a library on GitHub (developed by some of the developers of
GraphX) that uses Spark SQL DataFrames rather than RDDs to provide a conve-
nient and high-performing way to query graphs.

We also include four appendixes in the book. Appendix A addresses installing Spark
and appendix B gives a brief overview of Gephi visualization software. In appendix C
you’ll find a number of online resources for additional information about GraphX
and where to go to keep up with latest developments. Finally, appendix D lists the
Scala tips given throughout the book. 

 Anyone new to Spark, Scala, or graphs should progress through the first five chap-
ters linearly. After that, you can pick and choose topics from the last five chapters.

 Anyone who is expert in Spark, Scala, and graphs but new to GraphX can skip
chapter 3 and probably also chapter 5.

About the code
The source code for this book is available for download from manning.com at https://
www.manning.com/books/spark-graphx-in-action.

 For the most part, the code presented in this book and available for download is
intended to be used with the interactive Spark shell. Thus, the .scala extension is tech-
nically a misnomer, as these files can’t be compiled with the scalac compiler.

 Some examples are meant to be conventionally compiled and executed, and these
are always accompanied by a pom.xml for Maven or by a .sbt for sbt (Simple Build
Tool).

 This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. 

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the book.
In rare cases, even this was not enough, and listings may include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

 The code for the examples in this book can be downloaded from the publisher’s
website at www.manning.com/books/spark-graphx-in-action.

Author Online
Purchase of Spark GraphX in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/books/spark-
graphx-in-action. This page provides information on how to get on the forum once you
are registered, what kind of help is available, and the rules of conduct on the forum.

www.manning.com/books/spark-graphx-in-action
http://www.manning.com/books/spark-graphx-in-action
http://www.manning.com/books/spark-graphx-in-action
https://www.manning.com/books/spark-graphx-in-action
https://www.manning.com/books/spark-graphx-in-action


ABOUT THIS BOOK xvii
 Manning’s commitment to our readers is to provide a venue where a meaningful
dialog between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the authors some challenging questions lest their interest stray!

 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

About the authors
MICHAEL MALAK has been writing software since before comput-
ers could be purchased in stores preassembled. He has been
developing in Spark for two Fortune 200 companies since early
2013 and often gives presentations, especially in the Denver/
Boulder region of Colorado where he lives. You can find his per-
sonal technical blog at http://technicaltidbit.com.

ROBIN EAST has worked as a consultant to large organizations for
more than 15 years, delivering Big Data and content intelligence
solutions in the fields of finance, government, healthcare, and
utilities. He is a data scientist at Worldpay, helping them deliver
their vision of putting data at the heart of everything they do.
You can find his other writings on Spark, GraphX, and machine
learning at https://mlspeed.wordpress.com.
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about the cover illustration
The figure on the cover of Spark GraphX in Action is captioned “Man from Šibenik, Dal-
matia, Croatia.” The illustration is taken from a reproduction of an album of Croatian
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by the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were
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Part 1

Spark and graphs

Graphs—the things composed of vertices and edges, not graphs from
Algebra class—carry a mystique about them. They seem to be very powerful, yet
what can be done with them is a bit of a mystery. Part of the problem is that the
answer “graphs can do anything” says precisely nothing. Right off in chapter 1,
we suggest a broad categorization of different types of graphs found in the
world. In the last third of chapter 3 we illustrate graph terminology.

 Apache Spark is a distributed computing system growing in popularity due to
its speed. GraphX is Spark applied to graphs, and chapter 1 describes how
GraphX fits into a data processing workflow. In chapter 2, you’ll actually get
hands on with PageRank, the algorithm that launched Google.

 Chapter 3 is a crash course in the three foundational technologies required
for this book: Spark, Scala, and graphs.





Two important technologies:
Spark and graphs
It’s well-known that we are generating more data than ever. But it’s not just the indi-
vidual data points that are important—it’s also the connections between them.
Extracting information from such connected datasets can give insights into numer-
ous areas such as detecting fraud, collecting bioinformatics, and ranking pages on
the web. 

 Graphs provide a powerful way to represent and exploit these connections.
Graphs represent networks of data points as vertices and encode connections
through edges between pairs of vertices. Graphs can be used to model such diverse
areas as computer vision, natural language processing, and recommender systems. 

This chapter covers
 Why Spark has become the leading Big Data 

processing system

 What makes graphs a unique way of modeling 
connected data

 How GraphX makes Spark a leading platform for 
graph analytics
3



4 CHAPTER 1 Two important technologies: Spark and graphs
 With such a representation of connected data comes a whole raft of tools and tech-
niques that can be used to mine the information content of the network. Among the
many tools covered in this book, you’ll find PageRank (for finding the most influen-
tial members of the network), topic modeling with Latent Dirichlet Allocation (LDA),
and clustering coefficient to discover highly connected communities.

 Unfortunately, traditional tools used for the analysis of data, such as relational
databases, are not well suited to this type of problem. Table-oriented frameworks such
as SQL are cumbersome when it comes to representing typical graph notions such as
following a trail of connections. Furthermore, traditional methods of data processing
fail to scale as the size of the data to be analyzed increases.  

 A solution is at hand with graph processing systems. Such systems supply data mod-
els and programming interfaces that provide a more natural way to query and analyze
graph structures. Graph processing systems provide the means to create graph struc-
tures from raw data sources and apply the processing necessary to mine the informa-
tion content therein.

 Apache Spark is the Big Data processing alternative that has all but supplanted
Hadoop, the open source data processing platform that ushered in the era of Big
Data. Easily scaling to clusters of hundreds of nodes, Spark’s in-memory data process-
ing can often outperform Hadoop many times over. 

 GraphX is the graph processing layer on top of Spark that brings the power of Big
Data processing to graphs—graphs that would be too large to fit on a single machine.
People started using Spark for graphs long ago, including with the predecessor Bagel
module, but with GraphX we now have a standardized way to do so, and it also pro-
vides a library of useful algorithms. 

 Here are some of the many reasons why you may want to use Spark GraphX:

 You already have Spark data processing pipelines and want to incorporate
graph processing.

 You’re curious about the power of Spark and/or GraphX.
 You’re among the many for whom graph data has become important.
 Your graph data is too large to fit on a single machine.
 Either you don’t need multiple applications accessing the same data store or

you plan to add a REST server to Spark; for example, with the add-on originally
by Ooyala called Spark Job Server.

 Either you don’t need database-type transactions or you plan on using a graph
database such as Neo4j or Titan in conjunction with GraphX.

 You already have a Spark cluster available to your application.
 You would like to use the concise, expressive power of Scala.

1.1 Spark: the step beyond Hadoop MapReduce
This section discusses Big Data in relation to Spark and graphs. Big Data is a major
challenge for data science teams, in part because a single machine is unlikely to have
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the power and capacity to run processing at the scale required. Moreover, even sys-
tems designed for Big Data, such as Hadoop, can struggle to process graph data effi-
ciently due to some of the properties of that data, as you’ll see later in this chapter. 

 Apache Spark is similar to Apache Hadoop in that it stores data distributed across
a cluster of servers, or nodes. The difference is that Apache Spark stores data in mem-
ory (RAM) whereas Hadoop stores data on disk (either a spinning hard disk drive or a
solid-state drive (SSD)), as shown in figure 1.1.

DEFINITION The word node has two distinct uses when it comes to graphs and
to cluster computing. Graph data is composed of vertices and edges, and in
that context node is a synonym for vertex. In cluster computing, the physical
machines that comprise the cluster are also known as nodes. To avoid confu-
sion, we refer to graph nodes/vertices only as vertices, which is also the termi-
nology adopted by Spark GraphX. When we use the word node in this book,
we mean strictly one physical computer participating in cluster computing.

Besides differing in where data is processed during computation (RAM versus disk),
Spark’s API is much easier to work with than the Hadoop Map/Reduce API. Combined

Small data

Disk

RAMData

Disk

RAMData

Disk

RAMData

Disk

RAMData

Disk

RAMData

Big data – Spark

Big data – Hadoop

Data Disk

Data Disk

RAM

RAM

Data Disk

Data Disk

RAM

RAM

Figure 1.1 Big Data is data that is too big to fit on a single machine. Hadoop and Spark are 
technologies that distribute Big Data across a cluster of nodes. Spark is faster than Hadoop alone 
because it distributes data across the RAM in the cluster instead of the disks.



6 CHAPTER 1 Two important technologies: Spark and graphs
with the conciseness of Scala, the native programming language of Spark, a ratio of
100:1 for the number of Hadoop Map/Reduce Java lines of code to Spark Scala lines
of code is common.

 Although this book uses Scala primarily, don’t worry if you don’t know Scala yet.
Chapter 3 provides a jumpstart into Scala, and all along the way we explain the tricks
and terse, arcane syntax that are part and parcel of Scala. But deep familiarity with at
least one programming language—such as Java, C++, C#, or Python—is assumed.

1.1.1 The elusive definition of Big Data

The idea of Big Data has gotten a lot of hype. The ideas trace back to the 2003 Google
Paper on the Google File System and the 2004 Google paper on Map/Reduce, and
these inspired the development of what is now Apache Hadoop.

 The term Big Data has a lot of competing definitions, and some claim it has by now
lost all meaning, but there is a simple core and crucial concept it still legitimately
embodies: data that’s too large to fit on a single machine.

 Data sizes have exploded. Data is coming from website click streams, server logs,
and sensors, to name a few sources. Some of this data is graph data, meaning it’s com-
prised of edges and vertices, such as from collaborative websites (aka Web 2.0 of which
social media is a subset). Large sets of graph data are effectively crowdsourced, such as
the body of interconnected knowledge contained in Wikipedia or the graph repre-
sented by Facebook friends, LinkedIn connections, or Twitter followers.

1.1.2 Hadoop: the world before Spark

Before we talk about Spark, let’s recap how Hadoop solves the Big Data processing
problem, because Spark builds on the core Hadoop concepts described in this section.

 Hadoop provides a framework to implement fault-tolerant parallel processing on a
cluster of machines. Hadoop provides two key capabilities:

 HDFS—Distributed storage
 MapReduce—Distributed compute

HDFS provides distributed, fault-tolerant storage. The NameNode partitions a single
large file into smaller blocks. A typical block size is 64 MB or 128 MB. The blocks are
scattered across the machines in the cluster. Fault-tolerance is provided by replicating
each block of the file to a number of nodes (the default is three, but to make the dia-
gram simpler, figure 1.2 shows a replication factor of two). Should a node fail, render-
ing all the file blocks on that machine unavailable, other nodes can transparently
provide the missing blocks. This is a key idea in the architecture of Hadoop: the
design accommodates machine failures as part of normal operations.

 MapReduce (see figure 1.3) is the Hadoop parallel processing framework that pro-
vides parallel and distributed computation. MapReduce allows the programmer to
write a single piece of code, encapsulated in map and reduce functions that are exe-
cuted against the dataset residing on HDFS. To achieve data locality, the code is
shipped (in .jar form) to the data nodes, and the Map is executed there. This avoids
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consuming network bandwidth to ship the data around the cluster. For the Reduce
summary, though, the results of the Maps are shipped to some Reduce node for the
Reduce to take place there (this is called shuffling). Parallelism is achieved primarily
during the Map, and Hadoop also provides resiliency in that if a machine or process
fails, the computation can be restarted on another machine.

The MapReduce programming framework abstracts the dataset as a stream of key-
value pairs to be processed and the output written back to HDFS. It’s a limited para-
digm but it has been used to solve many data parallel problems by chaining together
MapReduce read-process-write operations. Simple tasks, such as the word counting in
figure 1.3, benefit from this approach. But iterative algorithms like machine learning
suffer, which is where Spark comes in.

1.1.3 Spark: in-memory MapReduce processing

This section looks at an alternative distributed processing system, Spark, which builds
on the foundations laid by Hadoop. In this section you’ll learn about Resilient Distrib-
uted Datasets (RDDs), which have a large role to play in how Spark represents graph
data.

 Hadoop falls down on a couple of classes of problems: 
 Interactive querying
 Iterative algorithms

NameNode

Data node 2Data node 1 Data node 3

b2b1b3 b2b1 b3

Figure 1.2 Three data blocks distributed with replication factor 2 across a Hadoop Distributed File 
System (HDFS)

Map Reduce

"ERROR Disk full…" 1

4
"FATAL Error writing…" 1

"ERROR Input error…" 2

"INFO Msg rcvd…" 0

Figure 1.3 MapReduce is the processing 
paradigm used by both Hadoop and Spark. 
Shown is a MapReduce operation to count 
the number of times “error” appears in a 
server log. The Map is (normally) a one-to-
one operation that produces one 
transformed data item for each source 
data item. The Reduce is a many-to-one 
operation that summarizes the Map 
outputs. Both Hadoop and Spark use the 
MapReduce paradigm.
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Hadoop is good for running a single query on a large dataset, but in many cases, once
we have an answer, we want to ask another question of the data. This is referred to as
interactive querying. With Hadoop, this means waiting to reload the data from disk and
process it again. It’s not unusual to have to execute the same set of computations as a
precursor to subsequent analysis.

 Iterative algorithms are used in a wide array of machine learning tasks, such as Sto-
chastic Gradient Descent, as well as graph-based algorithms like PageRank. An itera-
tive algorithm applies a set of calculations to a dataset over and over until some
criterion has been met. Implementing such algorithms in Hadoop typically requires a
series of MapReduce jobs where data is loaded on each iteration. For large datasets,
there could be hundreds or thousands of iterations, resulting in long runtimes.

 Next you’ll see how Spark solves these problems. Like Hadoop, Spark runs on a
cluster of commodity hardware machines. The key abstraction in Spark is a Resilient
Distributed Dataset (RDD). RDDs are created by the Spark application (residing in
the Spark Driver) via a Cluster Manager, as shown in figure 1.4.

 An RDD consists of distributed subsets of the data called partitions that can be
loaded into memory on the machines across the cluster.

Driver node

Cluster manager

Worker node 2Worker node 1

Executor 1

Data

Executor 2

Data

Executor 1

Data

Executor 2

Data

Spark program
(holds the SparkContext)

Distributed storage (HDFS, S3, etc.)

Figure 1.4 Spark provides RDDs that can be viewed as distributed in-memory arrays.
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IN-MEMORY PROCESSING

Spark performs most of its operations in RAM. Because Spark is memory-based, it’s
more suited to processing graphs than Hadoop Map/Reduce because Map/Reduce
processes data sequentially, whereas RAM is by nature random-access.

 The key to Spark’s usefulness in interactive querying and iterative processing is its
ability to cache RDDs in memory. Caching an RDD avoids the need to reprocess the
chain of parent RDDs each time a result is returned.

 Naturally, this means that to take advantage of Spark’s in-memory processing, the
machines in the cluster must have a large amount of RAM. But if the available memory
is insufficient, Spark will spill data back to disk gracefully and continue to work.

 A Spark cluster needs a place to store data permanently. That place needs to be a
distributed storage system, and options include HDFS, Cassandra, and Amazon’s S3.

1.2 Graphs: finding meaning from relationships
Graphs can be used to represent naturally occurring connected data, such as the fol-
lowing:

 Social networks 
 Mobile phone systems 
 Web pages on the internet

Limited for decades to the realm of academia and research, graphs have over the past
few years been adopted by organizations from Silicon Valley social media companies to
governmental intelligence agencies seeking to find and use relationship patterns in their
data. Graphs have now even entered the popular lexicon, with Facebook introducing its
Graph Search, intelligence agencies publicly calling for the need to “con-
nect the dots,” and the old internet meme/game called the Six Degrees of
Kevin Bacon. Even the now-universal and ubiquitous icon for share on
social media and smartphone cameras is that of a miniature graph:

 One of the most common uses for graphs today is to mine social
media data, specifically to identify cliques, to recommend new connections, and to sug-
gest products and ads. Such data can be big—more than can be stored on a single
machine—which is where Spark comes in: it stores data across multiple machines par-
ticipating in a cluster.

 Spark is well-suited to handling graph data for another reason: it stores data in the
memory (RAM) of each computer in the cluster, in contrast to Hadoop, which stores
data on the disk of each computer in the cluster. Whereas Hadoop can handle
sequential access of data, Spark can handle the arbitrary access order needed by a
graph system, which has to traverse graphs from one vertex to the next.

 GraphX is not a database. Instead, it’s a graph processing system, which is useful,
for example, for fielding web service queries or performing one-off, long-running
standalone computations. Because GraphX isn’t a database, it doesn’t handle updates
and deletes like Neo4j and Titan, which are graph databases. Apache Giraph is
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another example of a graph processing system, but Giraph is limited to slow Hadoop
Map/Reduce. GraphX, Giraph, and GraphLab are all separate implementations of
the ideas expressed in the Google Pregel paper. Such graph processing systems are
optimized for running algorithms on the entire graph in a massively parallel manner,
as opposed to working with small pieces of graphs like graph databases. To draw a
comparison to the world of standard relational databases, graph databases like Neo4j
are like OLTP (Online Transaction Processing) whereas graph processing systems like
GraphX are like OLAP (Online Analytical Processing).

 Graphs can store various kinds of data: geospatial, social media, paper citation net-
works, and, of course, web page links. A tiny social media network graph is shown in
figure 1.5. “Ann,” “Bill,” “Charles,” “Diane,” and “’Went to gym this morning’” are ver-
tices, and “Is-friends-with,” “Wrote-status,” and “Likes-status” are edges. 

1.2.1 Uses of graphs

It’s well-known that we are now living in a world where we are generating more data
than ever before. We are collecting more data points with richer content from an ever-
expanding variety of sources. 

 To take advantage of this situation, organizations big and small are also putting
data analysis and data mining at the heart of their operations—a move that some have
dubbed the data-driven business. But data is not just getting bigger, it’s more connected.
This connectedness is what gives data its richness and provides ever greater opportu-
nities to understand the world around us. Graphs offer a powerful way to represent
and exploit these connections.

 What forms does this connected data take? Start with one of the most well-known
connected datasets: the World Wide Web. At a simplistic level, the web consists of bil-
lions of pages of metadata, text, images, and videos, and every page can point to one
or more of the other pages using a link tag. 

Bill

Ann

is-friends-with

Charles

Diane

is-friends-with
is-friends-with

wrote-status

likes-status

“Went to gym this morning”

Figure 1.5 If Charles shares his status with friends of friends, determining the list 
of who could see his status would be cumbersome to figure out if you only had 
tables or arrays to work with.
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As figure 1.6 shows, you can represent these pages and links as a graph. You can then
use the structure of the graph to provide information on the relative authority of each
page. You can visualize this as each page providing a vote for each page it points to.
But not all pages are equal; you might imagine that a page on a major news site has
more importance than a posting by an unknown blogger. This is the problem that’s
solved by the PageRank algorithm, as you will see in chapter 5, and it has many more
applications beyond ranking web pages.

  The graphs we have looked at so far have captured links between pages; there is
either a link or no link. We can make the graphs richer if we have more information
about the connection. A typical example would be ratings information. When you give
a 5-star rating to a movie on Netflix, not only do you create a connection between
yourself and the movie, you also assign a value to that connection. 

 Movie ratings aren’t the only value that can be applied to connections in graphs.
Dollar values in the analysis of financial fraud, distances travelled between cities, and
the traffic carried across a network of mobile phone stations are other examples of
ways to enhance the richness of the connections represented in graphs.

 Even if the connections between data points don’t have a measurable value, there
is still valuable information that can be captured in the graph. Take a social media site
as an example. Each profile could store details of where a person went to school, and
as before, this represents a connection between the person and the school. If we cap-
ture other information, such when they attended the school, that additional informa-
tion can be represented in the graph. Now when we want to show friend
recommendations to our user, we can make sure we don’t show them the class of ’96
when they are in the class of ’83.

Page Page

Page Page

Page Page

Each web page contains
links to other pages which
can be represented as edges
in the graph. 

The vertices of 
the graph are
the web pages

Figure 1.6 The links between web pages can be represented as a graph. The structure of the 
graph provides information about the relative authority, or ranking, of each page.
www.allitebooks.com

http://www.allitebooks.org
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 Graphs existed long before social networking. Other uses for graphs include

 Finding the shortest route in a geo-mapping app
 Recommending products, services, personal contacts, or media based on other

people with similar-looking graphs
 Converting a tangle of interconnected topics into a hierarchy for organizational

schemes that require a hierarchy (computer file system folders, a class syllabus,
and so forth)

 Determining the most authoritative scholarly papers

1.2.2 Types of graph data

What kind of data can you put into a graph? The usual answer “anything” is not very
helpful. Figure 1.7 shows some different types of data that can be represented by a
graph:

 Network
 Tree
 RDBMS-like data
 Sparse matrix
 Kitchen sink

A network graph can be a road network as shown in figure 1.7, a social network, or a
computer network. A tree graph has no cycles (loops). Any RDBMS can be converted
into a graph format; an employee RDBMS is shown converted into a graph. But this
would only be useful if some graph algorithms are needed, such as PageRank for com-
munity detection or minimum spanning tree for network planning.

 As discussed in chapter 3, every graph has an associated adjacency matrix. This pow-
erful concept has an important implication: that a graph is just an alternative data
structure and not something magical. Some algorithms, which might otherwise have
to deal with unwieldy matrices, can take advantage of the more compressed represen-
tation of a graph, especially if the alternative is a sparse matrix. SVD++, discussed in
chapter 7, is an example of such an algorithm.

 Attempts have been made to create kitchen sink graphs to encode all of human
knowledge. The Cyc project is an example that attempts to encode all of human com-
mon sense into a graph. The YAGO (Yet Another Great Ontology) project has the
slightly more modest goal of encoding an ontology (dictionary, hierarchy, and rela-
tionships) that represents everything in the world. Sometimes people think artificial
intelligence will automatically result from such an ambitious graph. That doesn’t hap-
pen, but such graphs are useful for assististing natural language processing projects of
reasonable goals.
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on-project

on-project
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Network Tree

RDBMS-like Sparse matrix
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Bird Mammal

Ann

Organism

Princess Bride

Pride and Prejudice

Kitchen sink

<Entity>

<Person>

<Continent>

<North America><George Washington>

<Country>

instance-of

instance-of

contained-inpresident-of

is-spelled is-spelled

“U.S.” “United States of America”

instance-of

<Geographical Entity>

subclass-of

subclass-of
subclass-of

subclass-of

Figure 1.7 Different types of data that can be represented by graphs
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1.2.3 Plain RDBMS inadequate for graphs

If you were to try to represent a graph in an RDBMS—or arrays of objects, if you’re not
familiar with SQL—you would probably have one table (or array) of vertices and
another table of edges. The table of edges would have foreign keys (references) to the
vertices table so that each edge would refer to the two vertices in connects. This is all
well and good, provided you don’t need to query deeply in the graph.

 In the example graph in figure 1.5, suppose we want to find out who can see
Charles’s status “Went to gym this morning.” If Charles shared it only with direct
friends, then finding who can see it—who Charles’ direct friends are—would be easy
to do with a table structure. But suppose Charles shared his status with friends of
friends; then to reach Ann would require hopping through the tables. In terms of
SQL, we would have to join the edge table to itself. If we wanted the Six Degrees of
Kevin Bacon, we would have to join the edge table to itself six times within the same
SQL query.

 What is common to problems that can be modeled as graphs is that we are focus-
ing as much on the connections between entities as on the entities themselves. In
many cases we want to traverse the connections to find things such as friends-of-
friends-of-friends in social networks, cascades of retweets on Twitter, or the common
component in a network of failed computers. 

 Furthermore, not all connections are created equal. Suppose we are analyzing sur-
veillance data on a known criminal and his many associates and connections. We want
to identify those people most likely to provide us with information, but it doesn’t make
sense to investigate everybody who has some connection; we want to prioritize by some
sort of metric that measures the strength of the connection. One such metric could be
the number of times a week that contact is made. Graphs allow us to assign a value or
weight to each connection and then use that weighting in subsequent processing.

1.3 Putting them together for lightning fast 
graph processing: Spark GraphX
GraphX is a layer on top of Spark that provides a graph data structure composed of
Spark RDDs, and it provides an API to operate on those graph data structures. GraphX
comes with the standard Spark distribution, and you use it through a combination of
the GraphX-specific API and the regular Spark API.

 Spark originated out of AMPLab at the University of California, Berkeley in 2011
and became a top-level Apache project in 2014. Not everything from AMPLab is part of
the official Apache Spark distribution. And to operate, Spark requires two major
pieces shown in the bottom two gray layers of figure 1.8: distributed storage and a clus-
ter manager. In this book, we assume HDFS for the distributed storage and not having
a cluster manager, which is running Spark on a single computer; this is sometimes
called pseudo-distributed mode for test and development.
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NOTE Because GraphX is fully part of the base Spark package from Apache,
version numbers for Spark Core and its base components, including GraphX,
are synchronized.

1.3.1 Property graph: adding richness

We’ve seen that graphs in the real world contain valuable information beyond simply
the connection between a vertex and an edge. Graphs are rich with data, and we need
a way to represent this richness.

 GraphX implements a notion called the property graph. As shown in figure 1.9, both
vertices and edges can have arbitrary sets of attributes associated with them. The attri-
bute could be something as simple as the age of a person or something as complex as
an XML document, image, or video. 

 GraphX represents a graph using 2 RDDs, vertices and edges. Representing graphs
in this way allows GraphX to deal with one of the major issues in processing large
graphs: partitioning.

HDFS, Cassandra, S3, etc.

Spark

Spark SQL
MLlib Spark

streamingGraphX

Mesos, YARN, or Spark Standalone

= Apache Spark
= AMPLab

Tachyon

Figure 1.8 The Spark stack. Some components, including GraphX, come with Spark. Others, such 
as HDFS and YARN, are part of Apache Hadoop. In the last category, Tachyon comes from AMPLab 
at the University of California, Berkeley. Most of MLlib stands alone on top of Spark Core, but a 
couple of its algorithms make use of GraphX under the covers.
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ID Name Age

1001733 Bill 29

ID Name Age

1000329 Charlie 35

ID Name Age

1001863 Diana 41

ID Name Age

1002738 Eddie 36

ID Name Age

1000365 Fred 19

ID Name Age

1001786 Ann 23

In a property graph
each vertex has
additional attributes
as well as an Identifier

Src Dest Weight

1001733 1001786 2.37

Src Dest Weight

1001733 1000329 3.91

Src Dest Weight

1001786 1000329 5.37

Src Dest Weight

1000365 1002378 7.23Src Dest Weight

1000365 1001863 6.43

Src Dest Weight

1002378 1002378 3.72

Edges are identified
by their source and
destination

Edges also have
attributes

Figure 1.9 Both vertices and edges in a property graph contain additional attributes.
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1.3.2 Graph partitioning: graphs meet Big Data

If we have a graph too large to fit in the memory of a single computer, Spark lets us
divide it among multiple computers in a cluster of computers. But what’s the best way
to split up a graph?

The naïve way, and the way in which it was done for many years, was to assign different
vertices to different computers in the cluster. But this led to computational bottle-
necks because real-world graphs always seem to have some extremely high-degree ver-
tices (see figure 1.10). The vertex degrees of real-world graphs tend to follow the
Power Law (see the sidebar on the following page).

DEFINITION The word degree also has two meanings when it comes to graphs.
Earlier we used it in the context of the Six Degrees of Kevin Bacon, meaning
the number of hops, or edges, from one actor to another, where an edge
means the two actors appeared in the same film. But the degree of a vertex is
completely different: it’s the combined number of edges going out of or com-
ing into a particular vertex. We won’t be referring to Kevin Bacon anymore,
so we’ll use the word hop for those types of uses going forward, and degree only
in the context of a vertex and the number of edges incident to it.

Partitioning a graph by vertices is called edge-cut because it’s the edges that are getting
cut. But a graph processing system that instead employs vertex-cut, which evenly distrib-
utes the edges among the machines/nodes, more evenly balances the data across the
cluster. This idea came from research in 2005, was popularized by a graph processing
system called GraphLab (now called PowerGraph), and was adopted by GraphX as the
default partitioning scheme.

@CNN
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@U3

@U4

@U5

@U6

@U7
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@U14
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@U10
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Figure 1.10 A graph with a high-degree vertex
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 GraphX supports four different partitioning schemes for edges, described in sec-
tion 9.4. GraphX partitions vertices independently of edges. By avoiding piling all the
edges from a high-degree vertex onto a single machine, GraphX avoids the load
imbalance suffered by earlier graph processing systems and graph databases.

Power Law of Graphs
Graphs in the real world have been found to obey the Power Law, which in the context
of ranking the vertices by degree (intuitively, by popularity) means that the most pop-
ular vertex will be, say, 40% more popular than the second most popular vertex, which
in turn will be 40% more popular than the third most popular vertex to it, and so on.

In this context of ranking, it is also known as Zipf’s Law. These are the realities of
graphs, and distributing graph data by the vertex-cut strategy balances graph data
across a cluster. Spark GraphX employs the vertex-cut strategy by default.

@
CNN

@
SomeOtherStation

@
SomeActress

@
SomeSinger

…
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1.3.3 GraphX lets you choose: graph parallel or data parallel

As we’ve seen, GraphX stores a graph’s edges in one table and vertices in another.
This allows graph algorithms implemented in GraphX to efficiently traverse graphs as
graphs, along edges from one vertex to another, or as tables of edges or vertices (see
figure 1.11). This latter mode of access permits efficient bulk transforms of edge or
vertex data.

Although GraphX stores edges and vertices in separate tables as one might design an
RDBMS schema to do, internally GraphX has special indexes to rapidly traverse the
graph, and it exposes an API that makes graph querying and processing easier than
trying to do the same in SQL.

1.3.4 Various ways GraphX fits into a processing flow

GraphX is inherently a batch-processing system. It doesn’t integrate with Spark
Streaming, for example (at least not in any straightforward way). There isn’t one
cookie-cutter way to use GraphX. There are many different batch processing data
flows into which GraphX can fit, and the data flows in figures 1.12 and 1.13 cover
some of these.

Ann

Bill

Charles

Diane

“Went to gym this morning”

Vertex table

Is-friends-with

Is-friends-with

Is-friends-with

Likes-status

Wrote-status

Edge table

Figure 1.11 GraphX facilitates data access for either graph-parallel or 
data-parallel operations.
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Spark core
(usually) GraphX

In this common workflow, a graph is transformed into a new graph (for example, vertices or edges may
have new property values). An example of this is PageRank covered in sections 2.3 and 5.1.

Distributed
storage
(HDFS,
S3, etc.)

Distributed
storage
(HDFS,
S3, etc.)

Spark core
(usually) GraphX 12345

Some graph algorithms, like the Global Clustering Coefficient from section 8.4,
output only a global metric that describes the whole graph.

Distributed
storage
(HDFS,
S3, etc.)

Spark core
(usually) GraphX

Other graph algorithms, like Connected Components from section 5.4, output subgraphs.

Distributed
storage
(HDFS,
S3, etc.)

Spark core
(usually) GraphX

“cat”
Machine learning algorithms implemented in GraphX , such as SVD++ (section 7.2), output a

machine learning “model” which can then be used by themselves to make “predictions” – that is,
when raw data is input into the model, the model itself outputs some data or label.

Distributed
storage
(HDFS,
S3, etc.)

Figure 1.12 Various possible GraphX data flows. Because GraphX’s capabilities for reading graph data 
files are so limited, data files usually have to be massaged and transformed using the  Spark Core API 
into the graph format that GraphX uses. The output of a GraphX algorithm can be another graph, a 
number, some subgraphs, or a machine learning model.
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1.3.5 GraphX vs. other systems

Graph systems can be divided into two broad categories: graph processing systems and
graph databases. Many are memory-based, and some even support cluster computing.
Spark GraphX is a graph processing system rather than a graph database. A graph data-
base has the great advantage of providing database transactions, a query language, and
easy incremental updates and persistence, but if it’s a disk-based graph database, it
doesn’t have the performance of a fully in-memory graph processing system like

MLlib

MLlib

MLlib has a couple of algorithms that make use of
GraphX behind the scenes, such as Latent Dirichlet

Allocation (LDA), from section 7.3.1.

GraphX output can augment machine learning “vectors” with other,
conventionally generated, “feature” values. These vectors can be used to train

a conventional MLlib model. An example of this to perform spam detection
is covered in section 7.3.2.

Distributed
storage
(HDFS,
S3, etc.)

GraphX

Spark core
(usually) GraphX

Distributed
storage
(HDFS,
S3, etc.)

“cat”

“cat”

Figure 1.13 Data flows that involve using MLlib, the Spark machine learning component. A couple of 
algorithms use GraphX behind the scenes, but GraphX can also be used alongside any MLlib algorithm.
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GraphX. Graph processing systems are useful, for example,  for fielding web service
requests or performing one-off, long-running standalone computations.

 Most graph analytics tasks require other types of processing as well. Graph analyt-
ics is usually one part of a larger processing pipeline. Often there’s a need to generate
a graph from raw data—say, from CSV or XML files. To generate the required property
graph attributes, we may have to join data from another table. Once the graph pro-
cessing task is completed, the resulting graph may need to be joined with other data.
For example, we could use PageRank to find the most influential people in a social
network. We could then use sales data from an RDBMS to find customers who are both
influential and high-value to select the most promising recipients of a marketing pro-
motion. Spark makes it easy to compose complex pipelines using both data-parallel
and graph-parallel processing.

 If you have a system that’s already using Spark for other things and you also need
to process graph data, Spark GraphX is a way to efficiently do that without having to
learn and administer a completely different cluster technology, such as a separate dis-
tributed graph database. Because of GraphX’s fast processing, you can even couple it
to a graph database such as Neo4j and realize the best of both worlds: database trans-
actions on the graph database and fast processing when you need it.

 Apache Giraph is another example of a graph processing system, but again,
Giraph is limited to slow Hadoop Map/Reduce. GraphX, Giraph, and GraphLab are
all separate implementations of the ideas expressed in the Google Pregel paper.
Neo4j, Titan, and Oracle Spatial and Graph are examples of graph databases. Graph
databases have query languages that are convenient for finding information about a
particular vertex or set of vertices. Pregel-based graph processing systems, in contrast,
are bad at that and instead are good at executing massively parallel algorithms like
PageRank. Now, GraphX does have the Spark REPL Shell, which provides an interac-
tive command line interface into GraphX (as opposed to having to compile a pro-
gram every time), and this speeds along development of GraphX applications and
algorithms—but given the current syntax, it’s still too cumbersome for querying, as
shown in section 3.3.4.

 GraphX is still young, and some of its limitations stem from the limitations of
Spark. For example, GraphX datasets, like all Spark datasets, can’t normally be shared
by multiple Spark programs unless a REST server add-on like Spark JobServer is used.
Until the IndexedRDD capability is added to Spark (Jira ticket SPARK-2365), which is
effectively a mutable (that is, updatable) HashMap version of an RDD (Resilient Dis-
tributed Dataset, the foundation of Spark), GraphX is limited by the immutability of
Spark RDDs, which is an issue for large graphs. Although faster for some uses, GraphX
is often slower than systems written in C++, such as GraphLab/PowerGraph, due to
GraphX’s reliance on the JVM.
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1.3.6 Storing the graphs: distributed file storage vs. graph database

Because GraphX is strictly an in-memory processing system, you need a place to store
graph data. Spark expects distributed storage, such as HDFS, Cassandra, or S3, and
storing graphs in distributed storage is the usual way to go.

 But some use GraphX, a graph processing system, in conjunction with a graph
database to get the best of both worlds (see figure 1.14). GraphX versus Neo4j is a fre-
quent debate, but for some use cases, both are better than one or the other. The open
source project Mazerunner is an extension to Neo4j that offloads graph analytics such
as PageRank to GraphX.

1.4 Summary
 Graphs are a natural and powerful way to model connected data.
 Like Hadoop, Spark provides a Map/Reduce API (distributed computation)

plus distributed storage. The main difference is that Spark stores data in RAM
throughout the cluster, whereas Hadoop stores data on disk throughout the
cluster.

 GraphX builds on the foundations of Spark to provide flexible and efficient
graph-parallel processing.

 Spark also provides data-parallel processing that makes it ideal for real-world
Big Data problems that often call for both graph-parallel and data-parallel pro-
cessing.

 GraphX isn’t a graph database and isn’t suited to querying individual vertices or
small groups of vertices. Rather, it’s a graph processing system suited for mas-
sively parallel algorithms such as PageRank.

 Types of graph data include network, tree, relational, kitchen sink, and the
graph equivalent to a sparse matrix.

 Graph algorithms include PageRank, recommender systems, shortest paths,
community detection, and much more.

GraphX

Spark

GraphX

Spark
Or

HDFS, S3, etc.

(a) (b)

Neo4j

HDFS

Figure 1.14 The conventional and by far most common way for GraphX to store its 
data is out to HDFS or to some other distributed storage system (a). Some, however, 
use the power of a full-fledged graph database, and realize the best of both worlds: 
transactions in a graph database and fast processing in GraphX (b).



GraphX quick start
The Spark Shell is the easiest way to quickly start using Spark and is a great way to
explore graph datasets. No compilation is necessary, which means you can focus on
running commands and seeing their output. Even though Spark Shell uses Scala as
its programming language, there’s no need to worry if you haven’t used Scala
before. This chapter will guide you every step of the way.

 The chapter is intended to walk you through the steps of working with GraphX
without delving into the details. You’ll download some sample graph data consist-
ing of bibliographic citations. Using the Spark Shell, you’ll quickly determine
which paper has been cited the most frequently. More interestingly, you’ll invoke
the PageRank algorithm built into GraphX to find the “most influential” paper in
the graph network. In subsequent chapters, we’ll see what’s going on under the
covers.

This chapter covers
 Finding graph data to play with

 First steps with GraphX using the Spark Shell

 Invoking the PageRank algorithm
24
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2.1 Getting set up and getting data
Although normally you would write a Spark program in Scala (or Java or Python),
compile it, and submit it to a Spark cluster, Spark also offers the Spark Shell, which is
an interactive shell where you can quickly test out ideas.

 The first thing to do is to install Spark (this is covered in Appendix A if you haven’t
done this already).

 Now, assuming you have Spark installed, type

spark-shell

That assumes the spark/bin directory is in your path (which it is if you’re using the
Cloudera QuickStart VM). Otherwise, you’ll first need to cd to the spark/bin direc-
tory and then type ./spark-shell. You should see something like this:

[mmalak@localhost bin]$ ./spark-shell
Welcome to

____              __
/ __/__  ___ _____/ /__

    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.0

/_/

Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_60)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.

scala>

You’ll notice toward the end that the Spark Shell helpfully alerts you that the variable
sc is available. The Spark Shell instantiates an org.apache.spark.SparkContext for
you with the variable name sc. SparkContext is our handle to the Spark world, pro-
viding the entry point to much of Spark’s functionality (as you’ll see later). In this chap-
ter, you’ll need SparkContext to load data into Spark.

 The next step is getting some data to work with. Perhaps you have your own. But in
this chapter you’ll download some data from the Stanford Network Analysis Project
(SNAP) at http://snap.stanford.edu/data.

 You’ll use the Arxiv-HEP-TH (high energy physics theory) citation network dataset
(not to be confused with the collaboration network also available there), available for
download from http://snap.stanford.edu/data/cit-HepTh.html. It’s a little over 1 MB
compressed as cit-HepTh.txt.gz; it decompresses to 6 MB. The start of this cit-HepTh
.txt looks like this:

# Directed graph (each unordered pair of nodes is saved once):
# Paper citation network of Arxiv High Energy Physics Theory category
# Nodes: 27770 Edges: 352807
# FromNodeId  ToNodeId
1001    9304045
1001    9308122
1001    9309097

Many lines of log output not shown here

More log lines not shown here

http://snap.stanford.edu/data
http://snap.stanford.edu/data/cit-HepTh.html
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1001    9311042
1001    9401139
1001    9404151
1001    9407087
1001    9408099

Comment lines begin with #, and each data line represents one edge of the graph,
with the vertex IDs of the source and destination vertices. In this case, each vertex ID
refers to a particular physics paper listed in the companion file cit-HepTh-
abstracts.tar.gz, which you can optionally download if you want to try to match up
these bare numbers with something tangible. In the context of a paper citation, the
source vertex is the newer paper, and the destination vertex is the older paper being
cited by the newer paper.

 This happens to be the file format recognized by GraphX.

NOTE The other major standard graph file format is called Resource Descrip-
tion Framework (RDF), along with derivatives such as N3 (Notation 3). As of
Spark 1.6, GraphX doesn’t have the built-in capability to read RDF. Chapter 8
shows you how to read RDF, but for now, we’ll stick with the simpler format of
edge lists of vertex IDs.

2.2 Interactive GraphX querying using the Spark Shell
Now we’ll use the Spark Shell to load the HEP-TH dataset and query it. With a few lines
of code you’ll discover which paper in the dataset was the most frequently cited.
Because the data remains loaded into memory, the next section shows how to perform
further analytics on the dataset. This ability to undertake interactive querying is one
of the key features of Spark.

DEFINITION The Spark Shell is an example of a REPL, which stands for Read-
Eval Print Loop. A REPL is an interactive shell where each line of code you
enter is executed (evaluated) immediately, and the result displayed in the
console. Scala, Python, and other languages commonly have REPLs now, and
the Spark REPL builds on the Scala REPL. Read, Eval, Print, and Loop are the
names of the four LISP programming language primitives used to implement
the first interactive LISP shell in the 1960s.

To avoid worrying about paths, copy cit-HepTh.txt into the same directory as spark-
shell:

1 cp cit-HepTh.txt into the same directory as spark-shell.
2 ./spark-shell.
3 Now, with three lines entered into the Spark Shell, we can find the most-

referenced paper:
import org.apache.spark.graphx._
val graph = GraphLoader.edgeListFile(sc, "cit-HepTh.txt")
graph.inDegrees.reduce((a,b) => if (a._2 > b._2) a else b)
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We’ll enter these lines one-by-one and explain each one as we go:
scala> import org.apache.spark.graphx._
import org.apache.spark.graphx._

scala>

SCALA TIP Scala uses the underscore character in about a dozen different dis-
tinct ways. All the ways are some sort of wildcard or placeholder capacity,
which makes it seem like the underscore has one solitary meaning. But it
doesn’t. Just because you’ve seen and understood how an underscore was
used in one context, don’t assume it means the same thing in a new context.

Scala’s import is similar to a Java import. Here Scala uses an underscore as a wildcard,
whereas Java uses an asterisk for the same purpose. After you enter each line, the REPL
responds with some output on the next line. In the case of import statements, you get
a confirmation of the input. If there’s an error, you get some feedback on the source
of that error: 

scala> val graph = GraphLoader.edgeListFile(sc, "cit-HepTh.txt")
14/12/14 23:04:06 INFO MemoryStore: ensureFreeSpace...
graph: org.apache.spark.graphx.Graph[Int,Int] =
 org.apache.spark.graphx.impl.GraphImpl@15721cbd

scala>

What happened? GraphLoader is the GraphX library object, imported in the previous
step. GraphLoader contains a method edgeListFile that loads a graph from a text file
in edge-list format—exactly what we need for our purposes. edgeListFile takes two
parameters, where the first parameter is the SparkContext that was created for us ear-
lier and the second parameter is the file path of the edge-list file. Because we copied
cit-HepTh.txt into the current directory before starting Spark Shell, we can reference
it by name.

 The Spark Shell tells us it successfully created a variable called graph of type
org.apache.spark.graphx.Graph[Int,Int]. Figure 2.1 looks at that line in more
detail.

Many log lines 
not shown

Every variable in Scala is either val
(constant, like Java’s final) or var
(variable). Good Scala programmers try
to make everything val whenever possible,
as immutable data is preferred when
doing functional programming.

Recall that sc is that SparkContext
that the Spark Shell helpfully created
for us upon startup.

val graph = GraphLoader.edgeListFile(sc, "Cit-HepTh.txt")

graph is the name of the value
(variable) and could contain an
optional type definition.

Figure 2.1 Creating a graph object 
from a file in edge-list format
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NOTE graph is the name of the value (variable) being declared here, but
where is the type? Scala is statically typed but uses inferred typing. The Scala
compiler knows what type to make graph due to the return type of the edge-
ListFile() method, and that return type is org.apache.spark.graphx
.Graph. Once the compiler makes its decision, the type for graph can never
change. Scala isn’t an interpreted scripting language like Perl, though it
might look like one due to its brevity. Perl’s variables can change types while
the program is running. Scala is a strictly and statically typed language, but it’s
not wordy.

Spark now has the HEP-TH graph loaded into memory, so let’s look in more detail at
that last line:

graph.inDegrees.reduce((a,b) => if (a._2 > b._2) a else b)

We call the inDegrees method on the graph object to obtain an RDD of VertexID/
in-degree pairs (note that in Scala we don’t need to provide parentheses if a method
has no arguments). For now think of an RDD as an array. 

 An RDD has a reduce method that takes a function as input. The function passed
to reduce expects to receive as input two elements from the RDD and returns a single
value. The reduce method then repeatedly calls the function on pairs of elements
from the RDD until only a single value is left. This single value is returned from the
reduce method.

 Rather than separately define a function to give to reduce, we’ve taken advantage
of Scala’s anonymous functions (see figure 2.2). We’ll look at anonymous functions in
more detail in the next chapter, but for now, you only need to know that functions can
be passed as parameters into other functions and that we can define functions inline
without having to bother with a separate declaration. The output of reduce will end
up being the (VertexID, in-degree) of the full RDD that has the maximum in-degree.

The parameters to the
anonymous function are
two (VertexId, outdegree)
pairs, in Scala referred to
as a Tuple2 type.

Body of the function.
Anonymous function that
takes two (VertexId, outdegree)
pairs and picks the one with
the larger outdegree.

(a,b) => if (a._2 > b._2) a else b

The => sign
separates the
parameter list from
the function body.

_2 is the property
name for the
second value in a
Tuple2.

The value returned by
the function is the last
executed statement. In
this case either a or b.

Figure 2.2 Defining an 
anonymous function
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When we enter that line into the Spark Shell, it gives us the ID of the theoretical phys-
ics paper that’s most frequently cited:

scala> graph.inDegrees.reduce((a,b) => if (a._2 > b._2) a else b)
14/12/14 23:50:56 INFO SparkContext: Starting job: ...
14/12/14 23:50:59 INFO SparkContext: Job finished: reduce at
 <console>:18, took 3.16079562 s
res0: (org.apache.spark.graphx.VertexId, Int) = (9711200,2414)

scala>

As you can see, paper ID 9711200 (the 200th paper from November 1997) was cited
the most—by 2,414 other papers, to be exact. But take a look at the breakdown of that
line of code for everything that’s going on there.

 We were able to get the most cited paper with only three lines of code, one of
which was an import, and the last two of which we could have combined into a single
line if we really wanted to show off.

 But this example hasn’t taken advantage of the power of graphs. We could have
done this in SQL on a relational database using a GROUP BY. In the next section, we’ll
use the power of GraphX by using its PageRank algorithm on this same data.

2.3 PageRank example
In this section you’ll learn how easy it is to run PageRank, one of the best-known algo-
rithms in graph processing. Although Larry Page of Google invented the PageRank
algorithm (hence the name) to rank webpages on the World Wide Web, the algorithm
can be used to measure the influence of vertices in any graph. Before applying Page-
Rank to our theoretical physics citation network, though, note that one thing lurks
behind the scenes. Let’s take a look at the vertices of our graph:

scala> graph.vertices.take(10)
res2: Array[(org.apache.spark.graphx.VertexId, Int)] = Array((9405166,1),
 (108150,1), (110163,1), (204100,1), (9407099,1), (9703222,1),
 (9709148,1), (9905115,1), (103184,1), (211245,1))

NOTE For the rest of the book, we’lll omit all the log lines that Spark Shell
spews out and won’t mention that we’re omitting them. Whenever you see a
Spark Shell interaction, assume that a bunch of log output isn’t shown.

You might have expected that the vertices in the graph would be the vertex IDs from
the cit-HepTh.txt file. They’re Scala pairs where the second number of the pair is
always the number 1. As discussed in Chapter 3, GraphX is natively a property graph
processor, which means it allows vertices and edges to have their own properties.
Here, the 1 values are the properties of the vertices, and these 1 values are arbitrarily
attached to the vertices by that GraphLoader.edgeListFile() function we used—so
the vertices have some properties, even though they have no meaning. GraphX can
handle vertices with properties, but edge-list files have no properties.

Many log lines 
not shown
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We bring this up now because the pageRank() method of Graph returns a new Graph,
where each vertex has a property of type Double and is the PageRank for that vertex.
This is a key idea in Spark: existing graph structures aren’t updated. Instead, a trans-
formation takes place on an existing graph to create a new graph, as shown in figure 2.3.

 What does pageRank() do? It assigns to each vertex a number (a Double) that is a
measure of how “influential” that vertex is in the overall network. Chapter 5 discusses
exactly how PageRank works, but for now, let’s see how easy it is to run PageRank on
an existing graph using GraphX:

scala> val v = graph.pageRank(0.001).vertices
v: org.apache.spark.graphx.VertexRDD[Double] = VertexRDD[1264] at RDD at
 VertexRDD.scala:58

The value 0.001 passed to pageRank() is the tolerance, a parameter that sets the trade-
off between speed and accuracy of the final result. If we set it too high, we’ll stop the
algorithm too early and our results won’t be that accurate; too low, and the algorithm
will continue on for too long without adding anything to the accuracy of the results.

 Now look at the first 10 vertices of our PageRank graph:

scala> v.take(10)
res3: Array[(org.apache.spark.graphx.VertexId, Double)] =
 Array((9405166,1.336783076434938), (108150,0.5836164464324066),
 (110163,0.15), (204100,0.19080382117882116),
 (9407099,0.8271044254712047), (9703222,0.16521611205688394),
 (9709148,0.22176221523472583), (9905115,0.38267418598941183),
 (103184,0.20437621370972553), (211245,0.2298299371239072))

Those floating point numbers are the PageRanks; as you can see, for at least the first
10, they range from 0.15 up to 1.34.

Graph.pageRank()

0.15

0.21

0.49

0.21

0.15

0.72

1

1

1

1

1

1

Figure 2.3 Running pageRank() creates a new graph where the vertex attributes 
are the PageRank values.
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 Now let’s run reduce() on v to find the vertex with the highest PageRank:

scala> v.reduce((a,b) => if (a._2 > b._2) a else b)
res4: (org.apache.spark.graphx.VertexId, Double) =
 (9207016,85.27317386053808)

The paper with ID 9207016 is the most influential, at least according to the PageRank
algorithm. If you’ve downloaded the abstracts archive as well, you can locate the
abstract for paper 9207016 using a search tool. The paper in question turns out to be
from 1992, “Noncompact Symmetries in String Theory,” by Jnan Maharana and John
H. Schwarz.

Chapter 5 discusses the PageRank algorithm in much more detail.

2.4 Summary
 Spark Shell can be used for interactive querying and to quickly explore graph

datasets.
 Many existing graph datasets are stored in edge-list format and can be loaded

with GraphLoader.edgeListFile.
 PageRank can be run on a graph using the graph.pageRank() method. The

graph returned by pageRank contains the PageRanks in the vertex data.
 Graphs in GraphX are immutable. Transformations of graphs return new

graphs.
www.allitebooks.com

http://www.allitebooks.org


Some fundamentals
Using GraphX requires some basic knowledge of Spark, Scala, and graphs. This
chapter covers the basics of all three—enough to get you through this book in case
you’re not up to speed on one or more of them.

 Scala is a complex language, and this book ostensibly requires no Scala knowl-
edge (though it would be helpful). The bare basics of Scala are covered in the first
section of this chapter, and Scala tips are sprinkled throughout the remainder of
the book to help beginning and intermediate Scala programmers.

 The second section of this chapter is a tiny crash course on Spark—for a more
thorough treatment, see Spark In Action (Manning, 2016). The functional program-
ming philosophy of Scala is carried over into Spark, but beyond that, Spark is not
nearly as tricky as Scala, and there are fewer Spark tips in the rest of the book than
Scala tips.

This chapter covers
 Scala philosophy, functional programming, and 

basics like class declarations

 Spark RDDs and common RDD operations, 
serialization, and Hello World with sbt

 Graph terminology
32
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 Finally, regarding graphs, in this book we don’t delve into pure “graph theory”
involving mathematical proofs—for example, about vertices and edges. We do, how-
ever, frequently refer to structural properties of graphs, and for that reason some
helpful terminology is defined in this chapter.

3.1 Scala, the native language of Spark
The vast majority of Spark, including GraphX, is written in Scala—pretty much every-
thing inside Spark is implemented in Scala except for the APIs to support languages
other than Scala. Because of this Scala flavor under the hood, everything in this book
is in Scala, except for section 10.2 on non-Scala languages. This section is a crash
course on Scala. It covers enough to get you started and, combined with the Scala tips
sprinkled throughout the book, will be enough for you to use Spark. Scala is a rich,
deep language that takes years to fully learn.

 We also look at functional programming because some of its ideas have had a
strong influence on the design of Spark and the way it works. Although much of the
syntax of Scala will be intelligible to Java or C++ programmers, certain constructs,
such as inferred typing and anonymous functions, are used frequently in Spark pro-
gramming and need to be understood. We cover all the essential constructs and con-
cepts necessary to work with GraphX.

 Its complexity is not without controversy. Although Scala affords power, expressive-
ness, and conciseness, that same power can sometimes be abused to create obfuscated
code. Some companies that have attempted to adopt Scala have tried to establish cod-
ing standards to limit such potential abuses and emphasize more explicit and verbose
code and more conventional (purists would say less functional) programming styles,
only to find that incorporating third-party Scala libraries forces them to use the full
gamut of Scala syntax anyway, or that their own team of Java programmers weren’t
able to become fully productive in Scala. But for small high-performance teams or the
solo programmer, Scala’s conciseness can enable a high degree of productivity.

3.1.1 Scala’s philosophy: conciseness and expressiveness

Scala is a philosophy unto itself. You may have heard that Scala is an object-functional
programming language, meaning it blends the functional programming of languages
like Lisp, Scheme, and Haskell with the object-oriented programming of languages
like C++ and Java. And that’s true. But the Scala philosophy embodies so much more.
The two overriding maxims of the designers and users of Scala are as follows:

1 Conciseness. Some say that it takes five lines of Java code to accomplish the
same thing as one line of Scala.

2 Expressiveness sufficient to allow things that look like language keywords and
operators to be added via libraries rather than through modifying the Scala
compiler itself. Going by the name Domain Specific Languages (DSL), exam-
ples include Akka and ScalaStorm. Even on a smaller scale, the Scala Standard
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Library defines functions that look like part of the language, such as &() for Set
intersection (which is usually combined with Scala’s infix notation to look like A
= B & C, hiding the fact that it’s just a function call).

NOTE The term infix commonly refers to the way operators are situated
between the operands in a mathematical expression—for example, the plus
sign goes between the values in the expression 2 + 2. Scala has the usual
method-calling syntax familiar to Java, Python, and C++ programmers, where
the method name comes first followed by a list of parameters surrounded by
round brackets, as in add(2,2). However Scala also has a special infix syntax
for single argument methods that can be used as an alternative.

Many Scala language features (besides the fact the Scala is a functional programming
language) enable conciseness: inferred typing, implicit parameters, implicit conver-
sions, the dozen distinct uses of the wildcard-like underscore, case classes, default
parameters, partial evaluation, and optional parentheses on function invocations. We
don’t cover all these concepts because this isn’t a book on Scala (for recommended
books on Scala, see appendix C). Later in this section we talk about one of these con-
cepts: inferred typing. Some of the others, such as some of the uses of underscore, are
covered in appendix D. Many of the advanced Scala language features aren’t covered
at all in this book. But first, let’s review what is meant by functional programming.

3.1.2 Functional programming

Despite all the aforementioned language features, Scala is still first and foremost a
functional language. Functional programming has its own set of philosophies: 

 Immutability is the idea that functions shouldn’t have side-effects (changing sys-
tem state) because this makes it harder to reason at a higher level about the
operation of the program.

 Functions are treated as first-class objects—anywhere you would use a standard
type such as Int or String, you can also use a function. In particular, functions
can be assigned to variables or passed as arguments to other functions.

 Declarative iteration techniques such as recursion are used in preference to
explicit loops in code.

IMMUTABLE DATA: VAL

When data is immutable—akin to Java final or C++ const—and there’s no state to
keep track of, it makes it easier for both the compiler and the programmer to concep-
tualize. Nothing useful can happen without state; for example, any sort of input/out-
put is by its nature stateful. But in the functional programming philosophy, the
programmer out of habit cringes whenever a stateful variable or collection has to be
declared because it makes it harder for the compiler and the programmer to under-
stand and reason about. Or, to put it more accurately, the functional programmer
understands where to employ state and where not to, whereas in contrast, the Java or
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C++ programmer may not bother to declare final or const where it might make
sense. Besides I/O, examples where state is handy include implementing classic algo-
rithms from the literature or performance-optimizing the use of large collections.

 Scala “variable” declarations all start off with var or val. They differ in just one
character, and that may be one reason why programmers new to Scala and functional
programming in general—or perhaps familiar with languages like JavaScript or C#
that have var as a keyword—may declare everything as var. But val declares a fixed
value that must be initialized on declaration and can never be reassigned thereafter.
On the other hand, var is like a normal variable in Java. A programmer following the
Scala philosophy will declare almost everything as val, even for intermediate calcula-
tions, only resorting to var under extraordinary situations. For example, using the
Scala or Spark shell:

scala> val x = 10
x: Int = 10

scala> x = 20
<console>:12: error: reassignment to val

 x = 20
   ^

scala> var y = 10
y: Int = 10

scala> y = 20
y: Int = 20

IMMUTABLE DATA: COLLECTIONS

This idea of everything being constant is even applied to collections. Functional pro-
grammers prefer that collections—yes, entire collections—be immutable. Some of
the reasons for this are practical—a lot of collections are small, and the penalty for
not being able to update in-place is small—and some are idealistic. The idealism is
that with immutable data, the compiler should be smart enough to optimize away the
inefficiency and possibly insert mutability to accomplish the mathematically equiva-
lent result. 

 Spark realizes this fantasy to a great extent, perhaps better than functional pro-
gramming systems that preceded it. Spark’s fundamental data collection, the Resilient
Distributed Dataset (RDD), is immutable. As you’ll see in the section on Spark later in
this chapter, operations on RDDs are queued up in a lazy fashion and then executed
all at once only when needed, such as for final output. This allows the Spark system to
optimize away some intermediate operations, as well as to plan data shuffles which
involve expensive communication, serialization, and disk I/O.

IMMUTABLE DATA: GOAL OF REDUCING SIDE EFFECTS

The last piece of the immutability puzzle discussed here is the goal of having functions
with no side effects. In functional programming, the ideal function takes input and
produces output—the same output consistently for any given input—without affecting
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any state, either globally or that referenced by the input parameters. Functional com-
pilers and interpreters can reason about such stateless functions more effectively and
optimize execution. It’s idealistic for everything to be stateless, because truly stateless
means no I/O, but it’s a good goal to be stateless unless there’s a good reason not to be.

FUNCTIONS AS FIRST-CLASS OBJECTS

Yes, other languages like C++ and Java have pointers to functions and callbacks, but
Scala makes it easy to declare functions inline and to pass them around without hav-
ing to declare separate “prototypes” or “interfaces” the way C++ and Java (pre-Java 8)
do. These anonymous inline functions are sometimes called lambda expressions.

 To see how to do this in Scala, let’s first define a function the normal way by declar-
ing a function prototype:

scala> def welcome(name: String) = "Hello " + name
welcome: (name: String)String

Function definitions start with the keyword def followed by the name of the function
and a list of parameters in parentheses. Then the function body follows an equals
sign. We would have to wrap the function body with curly braces if it contained several
lines, but for one line this isn’t necessary.

 Now we can call the function like this:

scala> welcome("World")
res12: String = Hello World

The function returns the string Hello World as we would expect. But we can also write
the function as an anonymous function and use it like other values. For example, we
could have written the welcome function like this:

(name: String) => "Hello " + name

To the left of the => we define a list of parameters, and to the right we have the func-
tion body. We can assign this literal to a variable and then call the function using the
variable:

scala> var f = (name: String) => "Hello " + name
scala> f("World")
res14: String = Hello World

Because we are treating functions like other values, they also have a type—in this case,
the type is String => String. As with other values, we can also pass a function to
another function that is expecting a function type—for example, calling map()on a
List as shown at the top of the next page.

 Scala intelligently handles what happens when a function references global or
local variables declared outside the function. It wraps them up into a neat bundle with
the function in an operation behind the scenes called closure. For example, in the fol-
lowing code, Scala wraps up the variable n with the function addn() and respects its
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subsequent change  in value, even though the variable n falls out of scope at the com-
pletion of doStuff():

scala> var f:Int => Int = null
f: Int => Int = null
scala> def doStuff() = {

|   var n = 3;
|   def addn(m:Int) = {
|     m+n
|   }
|   f = addn
|   n = n+1
| }

doStuff: ()Unit
scala> doStuff()
scala> f(2)
res0: Int = 6

ITERATION DECLARATIVE RATHER THAN IMPERATIVE

If you see a for-loop in a functional programming language, it’s because it was shoe-
horned in, intended to be used only in exceptional circumstances. The two native
ways to accomplish iteration in a functional programming language are map() and
recursion. map() takes a function as a parameter and applies it to a collection. This
idea goes all the way back to the 1950s in Lisp, where it was called mapcar (just five
years after FORTRAN’s DO loops).

 Recursion, where a function calls itself, runs the risk of causing a stack overflow.
For certain types of recursion, though, Scala is able to compile the function as a loop
instead. Scala provides an annotation @tailrec to check whether this transformation
is possible, raising a compile-time exception if not.

 Like other functional programming languages, Scala does provide a for loop con-
struct for when you need it. One example of where it is appropriate is coding a classic
numerical algorithm such as the Fast Fourier Transform. Another example is a recur-
sive function where @tailrec cannot be used. There are many more examples.

A list of objects can easily
be created in Scala using
the List constructor.

Anonymous function that takes a String
and returns a String. This function is
a parameter to the map() function.

List("Rob", "Jane", "Freddie").map((name) => "Hello" + name).foreach(println)

The map() function takes a function
as a parameter and applies the function
to each element of the input collection,
resulting in a new collection containing
the transformed elements.

The foreach() function
takes a function as a parameter
and applies the function to each
element of the output from map().
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 Scala also provides another type of iteration called the for comprehension, which is
nearly equivalent to map(). This isn’t imperative iteration like C++ and Java for loops,
and choosing between for comprehension and map() is largely a stylistic choice. 

3.1.3 Inferred typing

Inferred typing is one of the hallmarks of Scala, but not all functional programming
languages have inferred typing. In the declaration

val n = 3

Scala infers that the type for n is Int based on the fact that the type of the number 3 is
Int. Here’s the equivalent declaration where the type is included:

val n:Int = 3

Inferred typing is still static typing. Once the Scala compiler determines the type of a
variable, it stays with that type forever. Scala is not a dynamically-typed language like
Perl, where variables can change their types at runtime. Inferred typing is a conve-
nience for the coder. For example,

val myList = new ListBuffer[Int]();

In Java, you would have had to type out ArrayList<int> twice, once for the declara-
tion and once for the new. Notice that type-parameterization in Scala uses square
brackets—ListBuffer[Int]—rather than Java’s angle brackets.

 At other times, inferred typing can be confusing. That’s why some teams have
internal Scala coding standards that stipulate types always be explicitly stated. But in
the real world, third-party Scala code is either linked in or read by the programmer to
learn what it’s doing, and the vast majority of that code relies exclusively on inferred
typing. IDEs can help, providing hover text to display inferred types.

 One particular time where inferred typing can be confusing is the return type of a
function. In Scala, the return type of a function is determined by the value of the last
statement of the function (there isn’t even a return). For example:

def addOne(x:Int) = {
    val xPlusOne = x+1.0
    xPlusOne
}

The return type of addOne() is Double. In a long function, this can take a while for a
human to figure out. The alternative to the above where the return type is explicitly
declared is:

def addOne(x:Int):Double = {
    val xPlusOne = x+1.0
    xPlusOne
}
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TUPLES

Scala doesn’t support multiple return values like Python does, but it does support a
syntax for tuples that provides a similar facility. A tuple is a sequence of values of mis-
cellaneous types. In Scala there’s a class for 2-item tuples, Tuple2; a class for 3-item
tuples, Tuple3; and so on all the way up to Tuple22. 

 The individual elements of the tuple can be accessed using fields _1, _2, and so
forth. Now we can declare and use a tuple like this:

scala> val t = Tuple2("Rod", 3)
scala> println(t._1 + " has " + t._2 + " coconuts")
Rod has 3 coconuts

Scala has one more trick up its sleeve: we can declare a tuple of the correct type by sur-
rounding the elements of the tuple with parentheses. We could have written this:

scala> val t = ("Rod", 3)
scala> println(t._1 + " has " + t._2 + " coconuts")
Rod has 3 coconuts

3.1.4 Class declaration

There are three ways (at least) to declare a class in Scala.

JAVA-LIKE

class myClass(initName:String, initId:Integer) {
    val name:String = initName
    private var id:Integer = initId
    def makeMessage = {

"Hi, I'm a " + name + " with id " + id
    }
}
val x = new myClass("cat", 3)

Notice that although there’s no explicit constructor as in Java, there are class parame-
ters that can be supplied as part of the class declaration: in this case, initName and
initId. The class parameters are assigned to the variables name and id respectively by
statements within the class body. 

 In the last line, we create an instance of myClass called x. Because class variables
are public by default in Scala, we can write x.name to access the name variable. 

 Calling the makeMessage function, x.makeMessage, returns the string:

Hi, I’m a cat with id 0 

SHORTHAND

One of the design goals of Scala is to reduce boilerplate code with the intention of
making the resulting code more concise and easier to read and understand, and class
definitions are no exception. This class definition uses two features of Scala to reduce
the boilerplate code:

class myClass(val name:String, id:Integer = 0) {
    def makeMessage = "Hi, I'm a " + name + " with id " + id

Everything is public 
by default in Scala.



40 CHAPTER 3 Some fundamentals
}
val y1 = new myClass("cat",3)
val y2 = new myClass("dog")

Note that we’ve added the val modifier to the name class parameter. The effect of this
is to make the name field part of the class definition without having to explicitly assign
it, as in the first example.

 For the second class parameter, id, we’ve assigned a default value of 0. Now we can
construct using the name and id or just the name.

CASE CLASS

case class myClass(name:String, id:Integer = 0) {
    def makeMessage = "Hi, I'm a " + name + " with id " + id
}
val z = myClass("cat",3)

Case classes were originally intended for a specific purpose: to serve as cases in a Scala
match clause (called pattern matching). They’ve since been co-opted to serve more gen-
eral uses and now have few differences from regular classes, except that all the vari-
able members implicitly declared in the class declaration/constructor are public by
default (val doesn’t have to be specified as for a regular class), and equals() is auto-
matically defined (which is called by ==).

3.1.5 Map and reduce

You probably recognize the term map and reduce from Hadoop (if not, section 3.2.3
discusses them). But the concepts originated in functional programming (again, all
the way back to Lisp, but by different names).

 Say we have a grocery bag full of fruits, each in a quantity, and we want to know the
total number of pieces of fruit. In Scala it might look like this:

class fruitCount(val name:String, val num:Int)
val groceries = List(new fruitCount("banana",5), new fruitCount("apple",3))
groceries.map(f => f.num).reduce((a:Int, b:Int) => a+b)

map() converts a collection into another collection via some transforming function
you pass as the parameter into map(). reduce() takes a collection and reduces it to a
single value via some pairwise reducing function you pass into reduce(). That func-
tion—call it f—should be commutative and associative, meaning if reduce(f) is
invoked on a collection of List(1,2,7,8), then reduce() can choose to do
f(f(1,2),f(7,8)), or it can do f(f(7,1),f(8,2)), and so on, and it comes up with
the same answer because you’ve ensured that f is commutative and associative. Addi-
tion is an example of a function that is commutative and associative, and subtraction is
an example of a function that is not.

 This general idea of mapping followed by reducing is pervasive throughout func-
tional programming, Hadoop, and Spark.

Name is set to "cat" and id to 3.
Name is set to "dog" and id to 0.

With case 
classes, 
there’s no 
need for the 
new keyword.



41Scala, the native language of Spark
UNDERSCORE TO AVOID NAMING ANONYMOUS FUNCTION PARAMETERS

Scala provides a shorthand where, for example, instead of having to come up with the
variable name f in groceries.map(f => f.num), you can instead write

groceries.map(_.num)

This only works, though, if you need to reference the variable only once and if that
reference isn’t deeply nested (for example, even an extra set of parenthesis can con-
fuse the Scala compiler).

THE _ + _ IDIOM

_ + _ is a Scala idiom that throws a lot of people new to Scala for a loop. It is fre-
quently cited as a tangible reason to dislike Scala, even though it’s not that hard to
understand. Underscores, in general, are used throughout Scala as a kind of wildcard
character. One of the hurdles is that there are a dozen distinct uses of underscores in
Scala. This idiom represents two of them. The first underscore stands for the first
parameter, and the second underscore stands for the second parameter. And, oh, by
the way, neither parameter is given a name nor declared before being used. It is short-
hand for (a,b) => (a + b). (which itself is shorthand because it still omits the types,
but we wanted to provide something completely equivalent to _ + _). It is a Scala idiom
for reducing/aggregating by addition, two items at a time. Now, we have to admit, it
would be our personal preference for the second underscore to refer again to the first
parameter because we more frequently need to refer multiply to a single parameter in
a single-parameter anonymous function than we do to refer once each to multiple
parameters in a multiple-parameter anonymous function. In those cases, we have to
trudge out an x and do something like x => x.firstName + x.lastName. But Scala’s
not going to change, so we’ve resigned ourselves to the second underscore referring
to the second parameter, which seems to be useful only for the infamous _ + _ idiom.

3.1.6 Everything is a function

As already shown, all functions in Scala return a value because it’s the value of the last
line of the function. There are no “procedures” in Scala, and there is no void type
(though Scala functions returning Unit are similar to Java functions returning void).
Everything in Scala is a function, and that even goes for its versions of what would oth-
erwise seem to be classic imperative control structures.

IF/ELSE

In Scala, if/else returns a value. It’s like the “ternary operator” ?: from Java, except
that if and else are spelled out:

val s = if (2.3 > 2.2) "Bigger" else "Smaller"

Now, we can format it so that it looks like Java, but it’s still working functionally:

def doubleEvenSquare(x:Int) = {
    if (x % 2 == 0) {

val square = x * x
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2 * square
    }
    else

x
}

Here, a block surrounded by braces has replaced the “then” value. The if block gives
the appearance of not participating in a functional statement, but recall that this is
the last statement of the doubleEvenSquare() function, so the output of this if/else
supplies the return value for the function.

MATCH/CASE

Scala’s match/case is similar to Java’s switch/case, except that it is, of course, func-
tional. match/case returns a value. It also uses an infix notation, which throws off Java
developers coming to Scala. The order is myState match { case … } as opposed to
switch (myState) { case … }. The Scala match/case is also many times more pow-
erful because it supports “pattern matching”—cases based on both data types and
data values, not to be confused with Java regular expression pattern matching—but
that’s beyond the scope of this book.

 Here’s an example of using match/case to transition states in part of a string
parser of floating point numbers:

class parserState
case class mantissaState() extends parserState
case class fractionalState() extends parserState
case class exponentState() extends parserState
def stateMantissaConsume(c:Char) = c match {
    case '.' => fractionalState
    case 'E' => exponentState
    case _ => mantissaState
}

Because case classes act like values, stateMantissaConsume('.'), for example,
returns the case class fractionalState.

3.1.7 Java interoperability

Scala is a JVM language. Scala code can call Java code and Java code can call Scala
code. Moreover, there are some standard Java libraries that Scala depends upon, such
as Serializable, JDBC, and TCP/IP.

 Scala being a JVM language also means that the usual caveats of working with a JVM
also apply, namely dealing with garbage collection and type erasure.
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3.2 Spark
Spark extends the Scala philosophy of functional programming into the realm of dis-
tributed computing. In this section you’ll learn how that influences the design of the
most important concept in Spark: the Resilient Distributed Dataset (RDD). This sec-
tion also looks at a number of other features of Spark so that by the end of the section
you can write your first full-fledged Spark program.

3.2.1 Distributed in-memory data: RDDs

As you saw in chapter 1, the foundation of Spark is RDD. An RDD is a collection that
distributes data across nodes (computers) in a cluster of computers. An RDD is also
immutable—existing RDDs cannot be changed or updated. Instead, new RDDs are cre-
ated from transformation of existing RDDs. Generally, an RDDs is unordered unless it
has had an ordering operation done to it such as sortByKey() or zip().

 Spark has a number of ways of creating RDDs from data sources. One of the most
common is SparkContext.textFile(). The only required parameter is a path to a
file:

val file = sc.textFile("path/to/file.txt")
println(file.count)

The object returned from textFile() is a type-parameterized RDD: RDD[String].
Each line of the text file is treated as a String entry in the RDD.

 By distributing data across a cluster, Spark can handle data larger than would fit on
a single computer, and it can process said data in parallel with multiple computers in
the cluster processing the data simultaneously.

Type erasure in a nutshell
Although most Java programmers will have had to deal with garbage collection, often
on a daily basis, type erasure is little more esoteric.

When Generics were introduced into Java 1.5, the language designers had to decide
how the feature would be implemented. Generics are the feature that allows you to
parameterize a class with a type. The typical example is the Java Collections where
you can add a parameter to a collection like List by writing List<String>. Once
parameterized, the compiler will only allow Strings to be added to the list.

The type information is not carried forward to the runtime execution, though—as far
as the JVM is concerned, the list is still just a List. This loss of the runtime type
parameterization is called type erasure. It can lead to some unexpected and hard-to-
understand errors if you’re writing code that uses or relies on runtime type identifica-
tion. In this context of ranking, it is also known as Zipf’s Law. These are the realities
of graphs, and distributing graph data by the vertex-cut strategy balances graph data
across a cluster. Spark GraphX employs the vertex-cut strategy by default.

textFile() returns an RDD[String] 
where each line is an entry in the RDD.

count returns the number of lines in the file.
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By default, Spark stores RDDs in the memory (RAM) of nodes in the cluster with a rep-
lication factor of 1. This is in contrast to HDFS, which stores its data on the disks (hard
drives or SSDs) of nodes in the cluster with typically a replication factor of 3 (figure 3.1).
Spark can be configured to use different combinations of memory and disk, as well as
different replication factors, and this can be set at runtime on a per-RDD basis.

 RDDs are type-parametrized similar to Java collections and present a functional pro-
gramming style API to the programmer, with map() and reduce() figuring prominently.

 Figure 3.2 shows why Spark shines in comparison to Hadoop MapReduce. Iterative
algorithms, such as those used in machine learning or graph processing, when imple-
mented in terms of MapReduce are often implemented with a heavy Map and no
Reduce (called map-only jobs). Each iteration in Hadoop ends up writing intermediate
results to HDFS, requiring a number of additional steps, such as serialization or
decompression, that can often be much more time-consuming than the calculation.
On the other hand, Spark keeps its data in RDDs from one iteration to the next. This
means it can skip the additional steps required in MapReduce, leading to processing
that is many times faster.

3.2.2 Laziness

RDDs are lazy. The operations that can be done on an RDD—namely, the methods on
the Scala API class RDD—can be divided into transformations and actions. Transforma-
tions are the lazy operations; they get queued up and do nothing immediately. When
an action is invoked, that’s when all the queued-up transformations finally get
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Figure 3.1 Hadoop configured with replication factor 3 and Spark configured with replication 
factor 2.
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executed (along with the action). As an example, map() is a transformation, whereas
reduce() is an action. These aren’t mentioned in the main Scaladocs. The only docu-
mentation that lists transformations versus actions is the Programming Guide at
http://spark.apache.org/docs/1.6.0/programming-guide.html#transformations. The
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Figure 3.2 From one iteration of an algorithm to the next, Spark avoids the six steps 
of serialize, compress, write to disk, read from disk, decompress, and deserialize.

http://spark.apache.org/docs/1.6.0/programming-guide.html#transformations
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key point is that functions that take RDDs as input and return new RDDs are transfor-
mations, whereas other functions are actions.

 As an example:

val r = sc.makeRDD(Array(1,2,3))
val r2 = r.map(x => 2*x)
val result = r2.reduce(_ + _)

Figure 3.3 shows how the original array is transformed into a number of RDDs. At this
point the transformations are queued up. Finally, a reduce method is called to return
a value; it isn’t until reduce is called that any work is done.

Well, queued isn’t exactly the right word, because Spark maintains a directed acyclic
graph (DAG) of the pending operations. These DAGs have nothing to do with
GraphX, other than the fact that because GraphX uses RDDs, Spark is doing its own
DAG work underneath the covers when it processes RDDs. By maintaining a DAG,
Spark can avoid computing common operations that appear early multiple times.

CACHING

What would happen if we took the RDD r2 and performed another action on it—say, a
count to find out how many items are in the RDD? If we did nothing else, the entire
history (or lineage) of the RDD would be recalculated starting from the makeRDD call. 

 In many Spark processing pipelines, there can be many RDDs in the lineage, and
the initial RDD will usually start by reading in data from a data store. Clearly it doesn’t
make sense to keep rerunning the same processing over and over. 

 Spark has a solution in cache() or its more flexible cousin persist(). When you
call cache (or persist,) this is an instruction to Spark to keep a copy of the RDD so
that it doesn’t have to be constantly recalculated. It’s important to understand that the
caching only happens on the next action, not at the time cache is called. We can
extend our previous example like this:

No computation takes place; map() 
transformation is queued up.

reduce() is an action, so both map() 
and reduce() take place on this line.

r r2

Result

Map

Reduce
1
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2

4

6

=>
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rdd rdd

Make RDD
21 3

Figure 3.3 A simple RDD constructed 
from an array transformed by a map-
reduce operation



47Spark
val r = sc.makeRDD(Array(1,2,3))

val r2 = r.map(x => 2*x).cache

val result = r2.reduce(_ + _) 

val count  = r2.count

Chapter 9 looks in more detail at when and how to use cache/persist.

3.2.3 Cluster requirements and terminology

Spark doesn’t live alone on an island. It needs some other pieces to go along with it
(see figure 3.4).

As mentioned in appendix A and elsewhere, having distributed storage or a cluster
manager isn’t strictly necessary for testing and development. Most of the examples in
this book assume neither.

 The pros and cons of each technology are beyond the scope of this book, but to
define terms, standalone means the cluster manager native to Spark. Such a cluster can
usually be effectively used only for Spark and can’t be shared with other applications
such as Hadoop/YARN. YARN and Mesos, in contrast, facilitate sharing an expensive
cluster asset among multiple users and applications. YARN is more Hadoop-centric
and has the potential to support HDFS data locality (see SPARK-4352), whereas Mesos is
more general-purpose and can manage resources more finely.

 Terminology for the parts of a standalone cluster is shown in figure 3.5. There are
four levels:

 Driver
 Master
 Worker
 Task

The driver contains the code you write to create a SparkContext and submit jobs to
the cluster, which is controlled by the Master. Spark calls the individual nodes
(machines) in the cluster workers, but in these days of multiple CPU cores, each worker
has one task per CPU core (for example, for an 8-core CPU, a worker would be able to
handle 8 tasks). Tasks are each single-threaded by default.

No computation takes place even 
though cache() has been called.

The computation takes place due 
to the action reduce().

The elements of r2 are counted without 
having to re-execute the whole pipeline.

Distributed Storage

• HDFS
• Cassandra
• S3
• Other cloud storage vendors

• Standalone
• YARN
• Mesos

Cluster Manager
Figure 3.4 Spark requires two 
major pieces to be present: a 
distributed file system and a 
cluster manager. There are 
options for each.
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One final term you’ll run into is stage. When Spark plans how to distribute execution
across the cluster, it plans out a series of stages, each of which consists of multiple
tasks. The Spark Scheduler then figures out how to map the tasks to worker nodes.

3.2.4 Serialization

When Spark ships your data between driver, master, worker, and tasks, it serializes your
data. That means, for example, that if you use an RDD[MyClass], you need to make
sure MyClass can be serialized. The simplest and easiest way to do this is to append
extends Serializable to the class declaration (yes, the good old Serializable Java
interface, except in Scala the keyword is extends instead of implements), but it’s also
the slowest.

 There are two alternatives to Serializable that afford higher performance. One
is Kryo, and the other is Externalizable. Kryo is much faster and compresses more
efficiently than Serializable. Spark has first-class, built-in support for Kryo, but it’s
not without issues. In earlier versions of Spark 1.1, there were many major bugs in
Spark’s support for Kryo, and even as of Spark 1.6, there are still a dozen Jira tickets
open for various edge cases.

 Externalizable allows you to define your own serialization, such as forwarding
the calls to a serialization/compression library like Avro. This is a reasonable
approach to getting better performance and compression than Serializable, but it
requires a ton of boilerplate code to pull it off.

 This book uses Serializable for simplicity, and we recommend it through the pro-
totype stage of any project, switching to an alternative only during performance-tuning.

3.2.5 Common RDD operations

MAP/REDUCE

You’ve already seen a couple examples of map/reduce in Spark, but here’s where we
burst the bubble about Spark being in-memory. Data is indeed held in memory (for
the default storage level setting), but between map() and reduce(), and more gener-
ally between transformations and actions, a shuffle usually takes place.

Port 7077

Worker node

Task Task

Worker node

Task Task

Driver

Mastermain() {
    sc = new SparkContext();

Figure 3.5 Terminology for a standalone cluster. Terminology for YARN and Mesos clusters 
varies slightly.
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A shuffle involves the map tasks writing a number of files to disk, one for each reduce
task that’s going to need data (see figure 3.6). The data is read by the reduce task, and
if the map and reduce are on different machines, a network transfer takes place.

 Ways to avoid and optimize the shuffle are covered in chapter 9.

KEY-VALUE PAIRS

Standard RDDs are collections, such as RDD[String] or RDD[MyClass]. Another major
category of RDDs that Spark explicitly provides for is key-value pairs (PairRDD). When
the RDD is constructed from a Scala Tuple2, a PairRDD is automatically created for
you. For example, if you have tuples consisting of a String and an Int, the type of the
RDD will be RDD[(String, Int)] (as mentioned earlier, in Scala the parenthesis nota-
tion with two values is shorthand for a Tuple2). 

 Here’s a typical way that a PairRDD is constructed:

val r = sc.makeRDD(Array("Apples", "Bananas", "Oranges"))
val pairrdd = r.map(x => (x.substring(0,1), x)).cache

The transformation is shown in Figure 3.7.

Worker node Worker node Worker node

Map task

Reduce task

Map task

Reduce task

Map task

Reduce task

Figure 3.6 Spark has to do a shuffle between a map and a reduce, and as of 
Spark 1.6, this shuffle is always written to and read from disk.

Anonymous function pass
to map outputs a (String
String) tuple with type 
PairRDD[(String, String)]

Apples

Bananas

Oranges

Apples

Oranges

RDD

A

B

O

A

O

Apples

Bananas

Oranges

Apples

Oranges

PairRDD

Key Value

Map

Figure 3.7 A simple RDD[String] 
converted to PairRDD[(String, 
String)]
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In the Tuple2, the first of the two values is considered the key, and the second is con-
sidered the value, and that’s why you see things like RDD[(K,V)] throughout the
PairRDDFunctions Scaladocs.

 Spark automatically makes available to you additional RDD operations that are spe-
cific to handling key-value pairs. The documentation for these additional operations
can be found in the Scaladocs for the PairRDDFunctions class. Spark automatically
converts from an RDD to a PairRDDFunctions whenever necessary, so you can treat
the additional PairRDDFunctions operations as if they were part of your RDD. To
enable these automatic conversions, you must include the following in your code:

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

You can use either a Scala built-in type for the key or a custom class, but if you use a
custom class, be sure to define both equals() and hashCode() for it.

 A lot of the PairRDDFunctions operations are based on the general combine-
ByKey() idea, where first items with the same key are grouped together and an opera-
tion is applied to each group. For example, groupByKey() is a concept that should
resonate with developers familiar with SQL. But in the Spark world, reduceByKey() is
often more efficient. Performance considerations are discussed in chapter 9.

 Another PairRDDFunctions operation that will resonate with SQL developers is
join(). Given two RDDs of key-value pairs, join() will return a single RDD of key-value
pairs where the values contain the values from both of the two input RDDs.

 Finally, sortByKey() is a way to apply ordering to your RDDs, for which ordering is
otherwise not guaranteed to be consistent from one operation to the next. For primi-
tive types such as Int and String, the resulting ordering is as expected, but if your key
is a custom class, you will need to define a custom compare() function using a Scala
implicit, and that is out of scope of this book.

OTHER USEFUL FUNCTIONS

zip() is an immensely useful function from functional programming. It’s another way
(besides map() and recursion) to avoid imperative iteration, and it’s a way to iterate
over two collections simultaneously. If in an imperative language you had a loop that
accessed two arrays in each iteration, then in Spark these collections would presum-
ably be stored in RDDs and would zip() them together (see figure 3.8) and then per-
form a map() (instead of a loop).

 A common use of zip in functional programming is to zip with the sequential inte-
gers 1,2,3,…. For this, Spark offers zipWithIndex().

 There are two other useful functions to mention here. union()appends one RDD to
another (though not necessarily to the “end” because RDDs don’t generally preserve
ordering). distinct() is yet another operation that has a direct SQL correspondence.
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MLLIB

MLlib is the machine-learning library component that comes with Spark. But besides
machine learning, it also contains some basic RDD operations that shouldn’t be over-
looked even if you’re not doing machine learning:

 Sliding window—For when you need to operate on groups of sequential RDD ele-
ments at a time, such as calculating a moving average (if you’re familiar with
technical analysis in stock charting) or doing finite impulse response (FIR) filter-
ing (if you’re familiar with digital signal processing (DSP)). The sliding() func-
tion in mllib.rdd.RDDFunctions will do this grouping for you by creating an
RDD[Array[T]] where each element of the RDD is an array of length of the spec-
ified window length. Yes, this duplicates the data in memory by a factor of the
specified window length, but it’s the easiest way to code sliding window formulas.

 Statistics—RDDs are generally one-dimensional, but if you have RDD[Vector],
then you effectively have a two-dimensional matrix. If you have RDD[Vector]
and you need to compute statistics on each “column,” then colStats() in
mllib.stat.Statistics will do it.

3.2.6 Hello World with Spark and sbt

sbt, or Simple Build Tool, is the “make” or “Maven” native to Scala. If you don’t already
have it installed, download and install it from www.scala-sbt.org (if you’re using the
Cloudera QuickStart VM as suggested in appendix A, then it’s already installed). Like
most modern build systems, sbt expects a particular directory structure. As in listings 3.1
and 3.2, put helloworld.sbt into ~/helloworld and helloworld.scala into ~/helloworld
/src/main/scala. Then, while in the helloworld directory, enter this command:

sbt run

You don’t need to install the Scala compiler yourself; sbt will automatically download
and install it for you. sbt has Apache Ivy built in, which does package management sim-
ilar to what Maven has built-in. Ivy was originally from the Ant project. In helloworld

rdd1

4.3 5.2 6.7 7.0 8.1

rdd2

2.4 3.5 4.0 5.9 6.4

rddout

(4.3,2.4) (5.2,3.5) (6.7,4.0) (7.0,5.9) (8.1,6.4)

zip()

Figure 3.8 zip() combines two RDDs so that 
both sets of data can be available in a subsequent 
(not shown) single map() operation.

http://www.scala-sbt.org
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.sbt in the following listing, the libraryDependencies line instructs sbt to ask Ivy to
download and cache the Spark 1.6 Jar files (and dependencies) into ~/.ivy2/cache.

scalaVersion := "2.10.5"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.6.0"

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf

object helloworld {
  def main(args: Array[String]) {
    val sc = new SparkContext(new SparkConf().setMaster("local")

.setAppName("helloworld"))
    val r = sc.makeRDD(Array("Hello", "World"))

r.foreach(println(_))
sc.stop

  }
}

When creating applications that use GraphX, you will also need to add the following
line to your sbt file to bring in the GraphX jar and dependencies:

libraryDependencies += "org.apache.spark" %% "spark-graphx" % "1.6.0"

3.3 Graph terminology
This book avoids graph “theory.” There are no proofs involving numbers of edges and
vertices. But to understand the practical applications that this book focuses on, some
terminology and definitions are helpful.

3.3.1 Basics

In this book we use graphs to model real-world problems, which begs the question:
what options are available for modeling problems with graphs?

DIRECTED VS. UNDIRECTED GRAPHS

As discussed in chapter 1, a graph models "things" and relationships between "things."
The first distinction we should make is between directed and undirected graphs,
shown in figure 3.9. In a directed graph, the relationship is from a source vertex to a
destination vertex. Typical examples are the links from one web page to another in the
World Wide Web or references in academic papers. Note that in a directed graph, the
two ends of the edge play different roles, such as parent-child or page A links to page B.

 In an undirected graph, our edge has no arrow; the relationship is symmetrical.
This is a typical type of relationship in a social network, as generally if A is a friend of
B, then we are likely to consider B to be friend of A. Or to put it another way, if we are
six degrees of separation from Kevin Bacon, then Kevin Bacon is six degrees of separa-
tion from us.

Listing 3.1 helloworld.sbt

Listing 3.2 hellworld.scala
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One important point to understand is that in GraphX, all edges have a direction, so
the graphs are inherently directed. But it’s possible to treat them as undirected graphs
by ignoring the direction of the edge. 

CYCLIC VS. ACYCLIC GRAPHS

A cyclic graph is one that contains cycles, a series of vertices that are connected in a
loop (see figure 3.10). An acyclic graph has no cycles. One of the reasons to be aware of
the distinction is that if you have an algorithm that traverses connected vertices by fol-
lowing the connecting edges, then cyclic graphs pose the risk that naive implementa-
tions can get stuck going round forever.

One feature of interest in cyclic graphs is a triangle—three vertices that each have an
edge with the other two vertices. One of the many uses of triangles is as a predictive
feature in models to differentiate spam and non-spam mail hosts.

UNLABELED VS. LABELED GRAPHS

A labeled graph is one where the vertices and/or edges have data (labels) associated
with them other than their unique identifier (see figure 3.11). Unsurprisingly, graphs
with labeled vertices are called vertex-labeled graphs; those with labeled edges, edge-
labeled graphs.  

Directed graph Undirected graph

Figure 3.9 All graphs in GraphX are inherently 
directed graphs, but GraphX also supports 
undirected graphs in some of its built-in 
algorithms that ignore the direction. You can do 
the same if you need undirected graphs.

Acyclic graph Cyclic graph

Figure 3.10 A cyclic graph is one that has 
a cycle. In a cyclic graph, your algorithm 
could end up following edges forever if you’re 
not careful with your terminating condition.

Unlabeled graph Labeled graph

Bill
loves

likes
Charles

Ann
Figure 3.11 A completely unlabeled graph 
is usually not useful. Normally at least the 
vertices are labeled. GraphX’s basic 
GraphLoader.edgeListFile() supports 
labeled vertices but only unlabeled edges.



54 CHAPTER 3 Some fundamentals
We saw in chapter 2 that when GraphX creates an Edge with GraphLoader.edge-
ListFile(), it will always create an attribute in addition to the source and destination
vertex IDs, though the attribute is always 1. 

 One specific type of edge-labeled graph to be aware of is a weighted graph. A
weighted graph can be used, for example, to mode the distance between towns in a
route-planning application. The weights in this case are edge labels that represent the
distance between two vertices (towns).

PARALLEL EDGES AND LOOPS

Another distinction is whether the graph allows multiple edges between the same pair
of vertices, or indeed an edge that starts and ends with the same vertex. The possibili-
ties are shown in figure 3.12. GraphX graphs are pseudographs, so extra steps must be
taken if parallel edges and loops are to be eliminated, such as calling groupEdges() or
subgraph().  

BIPARTITE GRAPHS

Bipartite graphs have a specific structure, as shown in figure 3.13. The vertices are
split into two different sets, and edges can only be between a vertex in one set and a
vertex in another—no edge can be between vertices in the same set. 

Simple graph Multigraph Pseudograph

Figure 3.12 Simple 
graphs are undirected 
with no parallel edges 
or loops. Multigraphs 
have parallel edges, 
and pseudographs also 
have loops.

Indianapolis Colts

Denver BroncosPeyton Manning

Arizona Cardinals

Tampa Bay Buccaneers

Jake Plummer

Seattle Seahawks

Edgerrin James

Bipartite graph

Indianapolis Colts

Denver BroncosPeyton Manning

Arizona Cardinals

Tampa Bay Buccaneers

Jake Plummer

Seattle Seahawks

Edgerrin James

Non-Bipartite graph

Figure 3.13 Bipartite graphs frequently arise in social network analysis, either in group membership 
as shown here, or for separating groups of individuals, such as males and females on a heterosexual 
dating website. In a bipartite graph, all edges go from one set to another. Non-bipartite graphs cannot 
be so divided, and any attempt to divide them into two sets will end up with at least one edge fully 
contained in one of the two sets.
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Bipartite graphs can be used to model relationships between two different types of
entities. For example, for students applying to college, each student would be mod-
eled by vertices in one set and the colleges they apply to by the other set. Another
example is a recommendation system where users are in one set and the products they
buy are in another.

3.3.2 RDF graphs vs. property graphs

Resource Description Framework (RDF) is a graph standard first proposed in 1997 by
the World Wide Web Consortium (W3C) for the semantic web. It realized a mini-
resurgence starting in 2004 with its updated standard called RDFa. Older graph data-
base/processing systems support only RDF triples (subject, predicate, object), whereas
newer graph database/processing systems (including GraphX) support property
graphs (see figure 3.14).

Due to its limitations, RDF triples have had to be extended to quads (which include
some kind of ID) and even quints (which include some kind of so-called context).
These are ways of dancing around the fact that RDF graphs don’t have properties. But
despite their limitations, RDF graphs remain important due to available graph data,
such as the YAGO2 database derived from Wikipedia, WordNet, and GeoNames.

 For new graph data, property graphs are easier to work with.

New York, NY Bill
New York, NY

Charles
San Diego, CA

Ann
Detriot, MI

loves
2013-11-17

likes
2012-02-20

San Diego, CA

Bill

Charles

2012-02-20

Likes-properties

Loves-properties

2013-11-17

Detroit, MI

loves-date

likes-date

subject

lives-in
loves

likes

object

object

lives-in

lives-in

subject

RDF graph Property graph

Figure 3.14 Without properties, RDF graphs get unwieldy, in particular when it comes to edge 
properties. GraphX supports property graphs, which can contain vertex properties and edge properties 
without adding a bunch of extra vertices to the base graph.
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3.3.3 Adjacency matrix

Another way graph theorists represent graphs is by an adjacency matrix (see figure 3.15).
It’s not the way GraphX represents graphs, but, separate from GraphX, Spark’s MLlib
machine learning library has support for adjacency matrices and, more generally,
sparse matrices. If you don’t need edge properties, you can sometimes find faster-
performing algorithms in MLlib than in GraphX. For example, for a recommender sys-
tem, strictly from a performance standpoint, mllib.recommendation.ALS can be a bet-
ter choice than graphx.lib.SVDPlusPlus, although they are different algorithms with
different behavior. SVDPlusPlus is covered in section 7.1.

3.3.4 Graph querying systems

There are dozens of graph querying languages, but this section discusses three of the
most popular ones and compares them to stock GraphX 1.6. Throughout, we use the
example of “Tell me the friends of friends of Ann.”

SPARQL
SPARQL is a SQL-like language promoted by W3C for querying RDF graphs:
SELECT ?p

{
    "Ann" foaf:knows{2} ?p
}

CYPHER

Cypher is the query language used in Neo4j, which is a property graph database.

MATCH (ann { name: 'Ann' })-[:knows*2..2]-(p)
RETURN p

TINKERPOP GREMLIN

Tinkerpop is an attempt to create a standard interface to graph databases and process-
ing systems—like the JDBC of graphs, but much more. There are several components
to Tinkerpop, and Gremlin is the querying system. There is an effort, separate from

Ann
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Diane

“Went to gym this morning”
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0

0

0

0

1

0

0

0

0
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0
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0

0

0

1

1

0

Bill

CharlesAnn

Diane

“Went to gym this morning”

“Went to gym this morning”
Diane

Charles
Bill

Ann

Figure 3.15 A graph and its equivalent adjacency matrix. Notice that an adjacency 
matrix doesn’t have a place to put edge properties.
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the main Apache Spark project, to adapt Gremlin to GraphX. It’s called the Spark-
Gremlin project, available on GitHub at https://github.com/kellrott/spark-gremlin.
As of January 2015, the project status was “Nothing works yet.”

g.V("name", "ann").out('knows').aggregate(x).out('knows').except(x)

GRAPHX
GraphX has no query language out of the box as of Spark GraphX 1.6. The GraphX
API is better suited to running algorithms over a large graph than to finding some spe-
cific information about a specific vertex and its immediate edges and vertices. Never-
theless, it is possible, though clunky:

val g2 = g.outerJoinVertices(g.aggregateMessages[Int](
  ctx => if (ctx.srcAttr == "Ann" && ctx.attr == "knows") ctx.sendToDst(1),
  math.max(_,_)))((vid, vname, d) => (vname, d.getOrElse(0)))
g2.outerJoinVertices(g2.aggregateMessages[Int](
  ctx => if (ctx.srcAttr._2 == 1 && ctx.attr == "knows") ctx.sendToDst(2),
  math.max(_,_)))((vid, vname, d) => (vname, d.getOrElse(0))).
  vertices.map(_._2).filter(_._2 == 2).map(_._1._1).collect

This is far too complex to dissect in this chapter, but by the end of part 2 of this book,
this miniature program will make sense. The point is to illustrate that GraphX, as of
version 1.6.0, does not have a quick and easy query language. Two things make the
preceding code cumbersome: looking for a specific node in the graph and traversing
the graph exactly two steps (as opposed to one step or, alternatively, an unlimited
number of steps bound by some other condition).

 There is some relief, though. In chapter 10 you’ll see GraphFrames, which is a
library on GitHub that does provide a subset of Neo4j’s Cypher language, together
with SQL from Spark SQL, to allow for fast and convenient querying of graphs.

3.4 Summary
 Doing GraphX has a lot of prerequisites: Scala, Spark, and graphs.
 Scala is an object-functional programming language that carries not only the

functional philosophy, but also its own philosophy that includes conciseness 
and implementing features in its library rather than the language itself.
 Spark is effectively a distributed version of Scala, introducing the Resilient Dis-

tributed Dataset (RDD).
 GraphX is a layer on top of Spark for processing graphs.
 Graphs have their own vocabulary.
 GraphX supports property graphs.
 GraphX has no query language in the way that graph databases do.

https://github.com/kellrott/spark-gremlin




Part 2

Connecting vertices

GraphX has a large API with a number of built-in algorithms. But not all
of the API is well-documented. Chapter 4 walks you through how to do basic
operations in GraphX, including the cornerstone operations like pregel(),
which is modeled after Google’s Pregel graph system.

 Chapter 5 covers the core algorithms that GraphX provides, such as Page-
Rank, and discusses how each can be used to solve a real-world problem.

 After all that groundwork covered in the first five chapters, chapters 6 and 7
are where we finally really start putting GraphX into action. Chapter 6 shows
how to implement some of the classical graph algorithms, such as Minimum
Spanning Tree, in GraphX. You’ll also see an example of what Minimum Span-
ning Trees can be used for.

 Machine learning has become pervasive. Although Spark’s MLlib is the pri-
mary way to do machine learning on Spark, graph-oriented machine learning
can be done with GraphX. In the extensive chapter 7 you’ll learn the basics of
machine learning on up through recommender systems (like those used by Net-
flix or Amazon) and document classification. Then you’ll see how to combine
MLlib together with GraphX in a spam-detection example.





GraphX Basics
Now that we have covered the fundamentals of Spark and of graphs in general, we
can put them together with GraphX. In this chapter you’ll use both the basic
GraphX API and the alternative, and often better-performing, Pregel API. You’ll
also read and write graphs, and for those times when you don’t have graph data
handy, generate random graphs.

4.1 Vertex and edge classes
As discussed in chapter 3, Resilient Distributed Datasets (RDDs) are the funda-
mental building blocks of Spark programs, providing for both flexible, high-
performance, data-parallel processing and fault-tolerance. The basic graph class in
GraphX is called Graph, which contains two RDDs: one for edges and one for verti-
ces (see figure 4.1).

This chapter covers
 The basic GraphX classes

 The basic GraphX operations, based on 
Map/Reduce and Pregel

 Serialization to disk

 Stock graph generation
61
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One of the big advantages of GraphX over other graph processing systems and graph
databases is its ability to treat the underlying data structures as both a graph, using
graph concepts and processing primitives, and also as separate collections of edges
and vertices that can be mapped, joined, and transformed using data-parallel process-
ing primitives.

 In GraphX, it’s not necessary to “walk” a graph (starting from some vertex) to get
to the edges and vertices you’re interested in. For example, transforming vertex prop-
erty data can be done in one fell swoop in GraphX, whereas in other graph-processing
systems and graph databases, such an operation can be contrived in terms of both the
necessary query and how such a system goes about performing the operation.

 You can construct a graph given two RDD collections: one for edges and one for
vertices. Once the graph has been constructed, you can access these collections via the
edges() and vertices() accessors of Graph.

 Because Graph defines a property graph (as described in chapter 3), each edge
and each vertex carries its own custom properties, described by user-defined classes. 

 In the UML diagram in figure 4.2, VD and ED serve as placeholders for these user-
defined classes. Graph is a type-parameterized generic class Graph[VD,ED]. For exam-
ple, if you had a graph showing cities and their population size as vertices connected
by roads, one representation would be Graph[Long,Double], where the vertex data
attribute is a Long type for the population size and the edge type a Double for the dis-
tance between cities.
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Figure 4.1 A GraphX Graph object is composed of two RDDs: one for the vertices and one 
for the edges.
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You always have to supply some type of class for VD or ED, even if it’s Int or String. It
could be considered a slight limitation in GraphX that there is no inherent support
for a “property-less” graph, because the closest you can come is to, for example, make
Int the type parameter and set every edge and vertex to the same dummy value.

 GraphX defines VertexId to be of type 64-bit Long. You have no choice in the mat-
ter. Notice that Edge contain VertexIds rather than references to the vertices (which
are the (VertexId,VD) Scala Tuple2 pairs). That’s because graphs are distributed
across the cluster and don’t reside within a single JVM, and an edge’s vertices may be
physically residing on a different node in the cluster!

 To construct a graph, we can call Graph() as if it were a constructor. The example
in listing 4.1 (see page 65) constructs the same graph we saw in chapter 1. We’ll use
this same graph (see figure 4.3) throughout this chapter in other examples.    

Tuple2

VD

Graph

VertexID VertexRDD

T1:VertexID
T2:VO

VD:(custom user class)
ED:(custom user class)

RDD
T:(VertexID, VD

VD:

EdgeRDD
ED:1

1 1
2

Edge

1

x

x
RDD
T:Edge(ED)

ED

ED:

Figure 4.2 UML diagram of GraphX’s Graph and its dependencies. Note that GraphX defines VertexId to 
be a type synonym of a 64-bit Long.

UML cheat sheet
If your UML is a little rusty, here’s a quick legend to interpret figure 4.1:

Generic
2

Subclass

Aggregation (reference)

Composition (ownership

Composition with multiplicity
annotation (here, owns 2 copies of)

Class

T:Type
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Bill

Ann

is-friends-with

Charles

Diane

is-friends-with
is-friends-with

wrote-status

likes-status

“Went to gym this morning”

Figure 4.3 Example graph to be constructed and used throughout this chapter

The other (object) half of the Scaladocs
Don’t miss out on the “other half” of the Scaladocs. For example, the Graph class
and the Graph object each have their own APIs.

APIs for
Classes

APIs for
Objects

Here, the API for the Graph
object (as opposed to the
Graph class) is being shown
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import org.apache.spark.graphx._

val myVertices = sc.makeRDD(Array((1L, "Ann"), (2L, "Bill"),
 (3L, "Charles"), (4L, "Diane"), (5L, "Went to gym this morning")))

val myEdges = sc.makeRDD(Array(Edge(1L, 2L, "is-friends-with"),
 Edge(2L, 3L, "is-friends-with"), Edge(3L, 4L, "is-friends-with"),
 Edge(4L, 5L, "Likes-status"), Edge(3L, 5L, "Wrote-status")))

val myGraph = Graph(myVertices, myEdges)

myGraph.vertices.collect

res1: Array[(org.apache.spark.graphx.VertexId, String)] = Array((4,Diane),
(1,Ann), (3,Charles), (5,Went to gym this morning), (2,Bill))

SCALA TIP Using the Scala keyword object (as opposed to class) defines a
singleton object. When such a singleton object has the same name as a class,
it’s called a companion object. Graph from the GraphX API is an example of a
class that has a companion object, and as shown in the sidebar, each has its
own API. A companion object, besides being a place where apply() can be
defined (for example, to implement the Factory pattern), is also a place
where functions akin to Java static functions can be defined.

SCALA TIP When a Scala class or object has a method called apply(), the
apply can be omitted. Thus, although Graph() looks like a constructor, it’s an
invocation of the apply() method. This is an example of using Scala’s
apply() to implement the Factory pattern described in the book Design Pat-
terns by Gamma et al (Addison-Wesley Professional, 1994).

SPARK TIP In GraphX tutorials you’ll often see parallelize() instead of
makeRDD(). They are synonyms. makeRDD() is your author Michael Malak’s
personal preference because he feels it is more descriptive and specific.

Listing 4.1 constructed the graph that was shown in figure 4.3. You can also get the
edges, as shown in the following listing.

myGraph.edges.collect

res2: Array[org.apache.spark.graphx.Edge[String]] = Array(Edge(1,2,
is-friends-with), Edge(2,3,is-friends-with), Edge(3,4,is-friends-with),

Edge(3,5,Wrote-status), Edge(4,5,Likes-status))

Being regular (unordered) RDDs, the vertex and edge RDDs aren’t guaranteed any
particular order.

 You can also use the triplets() method to join together the vertices and edges
based on VertexId. Although Graph natively stores its data as separate edge and vertex

Listing 4.1 Construct a graph as shown in figure 4.3

Listing 4.2 Retrieve the edges from the just-constructed graph
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RDDs, triplets() is a convenience function that joins them together for you, as
shown in the following listing.

myGraph.triplets.collect

res3: Array[org.apache.spark.graphx.EdgeTriplet[String,String]] =
Array(((1,Ann),(2,Bill),is-friends-with),
((2,Bill),(3,Charles),is-friends-with),
((3,Charles),(4,Diane),is-friends-with),
((3,Charles),(5,Went to gym this morning),Wrote-status),
((4,Diane),(5,Went to gym this morning),Likes-status))

The return type of triplets() is an RDD of EdgeTriplet[VD,ED], which is a subclass
of Edge[ED] that also contains references to the source and destination vertices associ-
ated with the edge. As shown in figure 4.4, the EdgeTriplet gives access to the Edge
(and the edge attribute data) as well as the vertex attribute data for the source and
destination vertices. As you will see, having easy access to both the edge and vertex
data makes many graph-processing tasks easier.

Listing 4.3 Get a triplet(s) version of the graph data
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Figure 4.4 The triplets() method  is a 
convenience function that allows easy access 
to both edge and vertex attributes.
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 Table 4.1 shows some of the useful fields available on EdgeTriplet.

4.2 Mapping operations
The real meat of GraphX Map/Reduce operations is called aggregateMessages()
(which supplants the deprecated mapReduceTriplets()), but to get our feet wet, let’s
first look at the much simpler mapTriplets(). Doing so will also serve to introduce
another important idea in GraphX. Many of the operations we’ll look at in this book
return a new Graph that’s a transformation of the original Graph object. Though the
end result might be the same as if we had transformed edges and vertices ourselves
and created a new Graph, we won’t benefit from optimizations that GraphX provides
under the covers. 

4.2.1 Simple graph transformation

To the graph constructed in the previous section, let’s add an annotation to each “is-
friends-with” edge whenever the person on the initiating side of the friendship has a
name that contains the letter a. How will we add this annotation? By transforming the
Edge type from String to a tuple (String, Boolean) as shown in the next listing. The
EdgeTriplet class comes in handy here as we need access to both the edge attribute
and the attribute for the source vertex.

myGraph.mapTriplets(t => (t.attr, t.attr=="is-friends-with" &&
t.srcAttr.toLowerCase.contains("a"))).triplets.collect

res4: Array[org.apache.spark.graphx.EdgeTriplet[String,(String, Boolean)]]
 = Array(((1,Ann),(2,Bill),(is-friends-with,true)),
((2,Bill),(3,Charles),(is-friends-with,false)),
((3,Charles),(4,Diane),(is-friends-with,true)),
((3,Charles),(5,Went to gym this morning),(Wrote-status,false)),
((4,Diane),(5,Went to gym this morning),(Likes-status,false)))

The resulting graph is shown in figure 4.5. Note that our original graph, myGraph
(without the extra Boolean annotation on each edge), is still around. And, actually, the

Table 4.1 Key fields provided by EdgeTriplet

Field Description

Attr Attribute data for the edge

srcId Vertex id of the edge's source vertex

srcAttr Attribute data for the edge’s source vertex

dstId Vertex id of the edge's destination vertex

dstAttr Attribute data for the edge’s destination vertex

Listing 4.4 Add Boolean annotation to edges indicating a condition
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graph in the figure isn’t permanent in any sense of the word because we didn’t bother
to capture it into a Scala val or var before handing it off immediately to triplets().

 Although mapTriplets() can optionally take two parameters, here we used the
first parameter, an anonymous function that takes as input an EdgeTriplet and
returns as output our new Edge type of the Tuple2 of (String,Boolean).

SCALA TIP If you don’t declare the return type of an anonymous function,
Scala will infer the type by the type of what you are returning. In the preced-
ing example, if we wanted to ask the Scala compiler to double-check our
intentions (as well as document the types to the human reader of our code),
we could have instead written this:

myGraph.mapTriplets((t => (t.attr, t.attr=="is-friends-with" &&
t.srcAttr.toLowerCase.contains("a"))) :

(EdgeTriplet[String,String] =>
Tuple2[String,Boolean]) )

.triplets.collect

There’s a similar mapVertices() API call that allows you to transform the Vertex class
on the fly, similar to how mapTriplets() allows you to change the Edge class. You can
explore mapVertices() on your own.

4.2.2 Map/Reduce

Many graph processing tasks involve aggregating information from around the local
neighborhood of a vertex. By neighborhood we mean the associated edges and vertices
around a vertex. You’ll see examples of aggregating information from the local neigh-
borhood in the next chapter when we look at some of the classic graph algorithms,
such as triangle counting. 

DEFINITION A triangle occurs when one vertex is connected to two other verti-
ces and those two vertices are also connected. In a social media graph showing
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Figure 4.5 We opted to change the Edge type, compared to figure 4.3, as part of the 
way we invoked mapTriplets(). Whereas the Edge type was String in figure 4.3, 
this resulting graph’s Edge type is the Tuple2 of type (String,Boolean).
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which people are friends, a triangle occurs when people who are my friends
are also friends with each other. We could say that how many triangles a per-
son is involved with gives a sense of how connected the community is around
that person.

To identify whether a vertex is part of a triangle, you need to consider the set of edges
that connect to that vertex, the set of vertices at the other end of those edges, and
whether any of the associated vertices also have an edge between them. For each ver-
tex this involves considering information in its neighborhood.

 We’ll leave triangle counting to the next chapter and look at a simpler example
that will allow us to concentrate on some of the key concepts underlying processing
and aggregating information from the neighborhood of a vertex. This idea has strong
parallels with the classic Map/Reduce paradigm (see chapter 1). Much like in
Map/Reduce, we’ll define transformations (map) that are applied to individual struc-
tures in the neighborhood of the vertex. Then the output from those transformations
will be merged to update the vertex information (reduce).  

 Our example will count the out-degree of each vertex—for each vertex, the count
of edges leaving the vertex. To do this we’ll process each vertex indirectly by acting on
the edges and their associated source and destination vertices. Rather than explicitly
counting edges coming out of each vertex we’ll get the edges to “emit” a message to
the relevant source vertex, which amounts to the same thing. Aggregating these mes-
sages gives us the answer we want. 

 The following listing uses the aggregateMessages() method and is all we need to
carry out this task in GraphX.

myGraph.aggregateMessages[Int](_.sendToSrc(1), _ + _).collect

res5: Array[(org.apache.spark.graphx.VertexId, Int)] = Array((4,1), (1,1),
(3,2), (2,1))

The array returned contains pairs (Tuple2s) that show us the ID of the vertex and the
vertex’s out-degree. Vertex #4 has only one outgoing edge, but vertex #3 has two.

 How did it do that? To understand what this code is doing, we’ll break it down into
its constituent parts. First here’s the method signature for aggregateMessages:

  def aggregateMessages[Msg](
sendMsg: EdgeContext[VD, ED, Msg] => Unit,
mergeMsg: (Msg, Msg) => Msg)

    : VertexRDD[Msg]

The first thing to note is the type parameterization of the method: Msg (short for mes-
sage, and you’ll see why in a moment). The Msg type represents the answer we want to
generate; in this case, we want a count of edges emanating from a vertex, so Int is the
appropriate type to parameterize aggregateMessages. 

Listing 4.5 Using aggregateMessages[]() to compute the out-degree of each vertex
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SCALA TIP With all the type inference the Scala compiler does for you, you
might expect it to be able to infer the type parameter for aggregate-
Messages[]() based on the return type of the anonymous function it takes as
its first parameter. After all, they’re  both declared as type Msg in the function
declaration for aggregateMessages[](). The reason the Scala compiler can’t
infer the type in this case is because Scala is a left-to-right compiler, and the
anonymous function appears (slightly) later in the source code than the
name of the function you’re invoking.

The two parameters to aggregateMessages, sendMsg and mergeMsg, provide the trans-
formation and reduce logic. 

SENDMSG

sendMsg is a method that takes an EdgeContext as parameter and returns nothing
(recall from earlier chapters that Unit is the Scala equivalent of Java’s void). Edge-
Context is a type-parameterized class similar to EdgeTriplet. EdgeContext contains
the same fields as EdgeTriplet but also provides two additional methods for message
sending:

 sendToSrc—Sends a message of type Msg to the source vertex.
 sendToDst—Sends a message of type Msg to the destination vertex.

These two methods are the key to how aggregateMessages works. A message is noth-
ing more than a piece of data sent to a vertex. For each edge in the graph, we can
choose to send a message to either the source or the destination vertex (or both).
Inside the sendMsg method the EdgeContext parameter can be used to inspect the val-
ues of the edge attributes and the source and destination vertices as part of the logic.
For our example, we’re counting how many edges exit from a vertex, so we’ll send a
message containing the integer 1 to the source vertex.

MERGEMSG

All the messages for each vertex are collected together and delivered to the mergeMsg
method. This method defines how all the messages for the vertex are reduced down to
the answer we’re looking for. In the example code, we want to sum each 1 that’s sent
to the source vertex to find the total number of outgoing edges. That is what the _
anonymous function using + does.

 The result of applying mergeMsg for each of the vertices is returned as a Vertex-
RDD[Int]. VertexRDD is an RDD containing Tuple2s consisting of the VertexId and
the mergeMsg result for that vertex. One thing to notice is that since vertex #5 didn’t
have any outgoing edges, it won’t receive any messages and therefore doesn’t appear
in the resulting VertexRDD.

CLEANING UP THE RESULTS

Interpreting these raw VertexIds is inconvenient, so let’s join with the original verti-
ces to get the human-readable names. In the following listing we use Spark RDD
join(), which is a method from PairRDDFunctions.
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myGraph.aggregateMessages[Int](_.sendToSrc(1),
 _ + _).join(myGraph.vertices).collect

res6: Array[(org.apache.spark.graphx.VertexId, (Int, String))] =
Array((4,(1,Diane)), (1,(1,Ann)), (3,(2,Charles)), (2,(1,Bill))

SPARK TIP Whenever you have an RDD of Tuple2, Spark provides an auto-
matic conversion when needed from RDD[] to PairRDDFunctions[] under
the assumption that the Tuple2 is a key/value pair (K,V). join() is one of
many functions that become available for RDD[Tuple2]s. The conversion is
automatically available in the REPL, but in a compiled Scala program you
need to import org.apache.spark.SparkContext._ (in addition to the regu-
lar import org.apache.spark.SparkContext).

Well, that’s a little verbose. We don’t need those VertexIds anymore, so we can get rid
of them by using the map() method of RDD. Then we can use the swap() method of
Tuple2 to swap the order within each pair so that the human-readable vertex name
appears before its out-degree numerical value, for the purposes of providing pretty
output, as shown in the following listing.

myGraph.aggregateMessages[Int](_.sendToSrc(1),
 _ + _).join(myGraph.vertices).map(_._2.swap).collect

res7: Array[(String, Int)] = Array((Diane,1), (Ann,1), (Charles,2),
(Bill,1))

Now for some final mopping up. How can we get back that missing vertex #5? By using
rightOuterJoin() instead of join(), as shown in the following listing.

myGraph.aggregateMessages[Int](_.sendToSrc(1),
 _ + _).rightOuterJoin(myGraph.vertices).map(_._2.swap).collect

res8: Array[(String, Option[Int])] = Array((Diane,Some(1)), (Ann,Some(1)),
 (Charles,Some(2)), (Went to gym this morning,None), (Bill,Some(1)))

Ugh! What is all that Some and None stuff? Well, outer joins can give null or empty
fields when there’s no corresponding record in the joining table. It’s Scala’s way of
avoiding problems with null (though it still does have null for when you need it, and
often there’s no way around it when you need to interface with Java code). Some and
None are values from Scala’s Option[], and to get rid of them we can use the
getOrElse() method from Option[]. In the process, we have to dig inside our
Tuple2, so we won’t be able to use the convenience of swap() anymore, as shown in
the following listing.

Listing 4.6 RDD join() to match up VertexIds with vertex data

Listing 4.7 map() and swap() to clean up output

Listing 4.8 rightOuterJoin() instead of join() to pull in “forgotten” vertices
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myGraph.aggregateMessages[Int](_.sendToSrc(1),
 _ + _).rightOuterJoin(myGraph.vertices).map(
 x => (x._2._2, x._2._1.getOrElse(0))).collect

res9: Array[(String, Int)] = Array((Diane,1), (Ann,1), (Charles,2), (Went to 
gym this morning,0), (Bill,1))

SCALA TIP Using Option[] instead of null in Scala opens up a world of pos-
sibilities for more functional programming because Option[] can be consid-
ered a mini-collection (containing either zero or one element). Functional
programming constructs such as flatmap(), for comprehensions and partial
functions, can be used on Option[]s, whereas they can’t be used on nulls.

4.2.3 ITERATED MAP/REDUCE

Most algorithms involve more than a single step or iteration. aggregateMessages can
be used to implement algorithms where we continuously update each vertex based
only on information obtained from neighboring edges and vertices.

 To see this idea in action, we’ll implement an algorithm that finds the vertex with
the greatest distance from its ancestor in the graph. At the end of the algorithm we
hope to have each vertex labeled with the farthest distance from an ancestor. 

 We’ll assume our graphs don’t have cycles (cycles occur when we have edges that
go around from one vertex and eventually loop back to the same vertex). Dealing with
cyclic graphs usually makes for added complexity in our algorithms, and we’ll show
you some strategies for dealing with those later on.

 First we define the sendMsg and mergeMsg functions that will be called by aggregate-
Messages. We define them up front rather than as anonymous functions in the body of
the aggregate messages function, as sometimes the code can become a little cluttered. 

 The common way to express iteration in functional programming is through
recursion, so next we’ll define a helper recursive function, propagateEdgeCount,
which will continuously call aggregateMessages (see the following listing).

// sendMsg  function that will be given to aggregateMessages.
// Remember this function will be called for each edge in the
// graph.  Here it simply passes on an incremented counter.    
def sendMsg(ec: EdgeContext[Int,String,Int]): Unit = {
  ec.sendToDst(ec.srcAttr+1)
}

// Here we define a mergeMsg function that will be called
// repeatedl for all messages delivered to a vertex. The end
// result is the vertex will contain the highest value, or
// distance, over all the messages
def mergeMsg(a: Int, b: Int): Int = {
  math.max(a,b)
}

Listing 4.9 Option[]’s getOrElse() to clean up rightOuterJoin() output

Listing 4.10 Iterated (via recursion) Map/Reduce to find distance of furthest vertex
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def propagateEdgeCount(g:Graph[Int,String]):Graph[Int,String] = {
  val verts = g.aggregateMessages[Int](sendMsg, mergeMsg)
  val g2 = Graph(verts, g.edges)
  // Let’s see whether the updated graph has any new information
  // by joining the two sets of vertices together – this results
  // in Tuple2[vertexId, Tuple2[old vertex data, new vertex data]]
  val check = g2.vertices.join(g.vertices).

map(x => x._2._1 - x._2._2).
reduce(_ + _)

  if (check > 0)
    propagateEdgeCount(g2)
  else
    g
}

In this listing, propagateEdgeCount() adds 1 to the distance traveled so far and sends
that to the destination vertex of each edge. The destination vertex then does a max()
across all the distance messages it receives and makes that the new distance for itself. 

 An important point to note is that we define when to stop the recursion by com-
paring the original graph and the updated graph after each iteration. When there’s
no difference between the graphs, we stop. Note that the reduce(_ + _) check works
because we know that the new distance between vertices must be at least as big as the
old distance and therefore the difference must be non-negative; we can’t have a situa-
tion where we add a negative to a positive and get a zero that way.

TIP Alternatively, for better performance, we could avoid doing the join()
completely by adding another vertex property—a Boolean that indicates
whether the value has been updated. Then we can reduce() on that Boolean
and not involve the VertexRDD from the previous iteration in our recursion
exit condition.

Now we have the recursive pump primed, we need to invoke it. We’ll feed in our
myGraph graph, but first we need to initialize it. This is a key question for any iterative
algorithm: how do we start? We need to think of the task in terms of what information
we know for each vertex at the start and what answer we’ll want at the end. We’re look-
ing for an integer value that tells us the farthest distance we would have to travel. At
the start we have no idea about the distance, so we’ll set each vertex to zero and have
the algorithm gradually diffuse new information across the graph:

Generate new set of vertices … … and generate updated version of
graph containing the new info.

Look at each element of the joined 
sets of vertices and calculate the 
difference between them. If there is no 
difference we get zero.

Continue recursion if 
graph has changed.

Add up all the differences—if all the 
vertices are the same, the total is zero.

No change so return the graph 
originally passed into our function.
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val initialGraph = myGraph.mapVertices((_,_) => 0)
propagateEdgeCount(initialGraph).vertices.collect

res10: Array[(org.apache.spark.graphx.VertexId, Int)] = Array( (1,0), (2,1)), 
(3,2), (4,3), (5,4) )

Vertex #5 has the longest distance to an ancestor vertex, which is a distance of 4.
 You’ve seen how quick it is to implement an iterative algorithm. The key point is to

think how information (“messages”) can be delivered across edges and accumulated
to reach the answer you’re looking for.

4.3 Serialization/deserialization
You saw how to read in edge pairs in chapter 2 using GraphX’s GraphLoader API. But
that data had neither vertex properties nor edge properties, and one of the main
advantages of GraphX is that it handles property graphs. Here we provide some cus-
tom code to read and write property graphs in binary and JSON formats. The RDF for-
mat, a standard format for graphs of “triples” (not property graphs), is shown in
chapter 8.

4.3.1 Reading/writing binary format

In this section, we read and write a standard Hadoop sequence file, which is a binary
file containing a sequence of serialized objects. The Spark RDD API function save-
AsObjectFile() saves to a Hadoop sequence file, relying upon standard Java serializa-
tion to serialize the vertex and edge objects, as shown in the following listing.

myGraph.vertices.saveAsObjectFile("myGraphVertices")
myGraph.edges.saveAsObjectFile("myGraphEdges")
val myGraph2 = Graph(
    sc.objectFile[Tuple2[VertexId,String]]("myGraphVertices"),
    sc.objectFile[Edge[String]]("myGraphEdges"))

SPARK TIP Despite its name, saveAsObjectFile() saves to multiple files in a
directory, with one file per Spark partition inside that directory. The parame-
ter you pass in is the name of that directory.

Although our simple graph uses String as the vertex and edge property classes,
because the preceding technique uses Java Serializable, it generalizes to handle any
complex class you might want to attach to vertices or edges. Substitute the class name
for String in the type parameter for objectFile[]().
The preceding code doesn’t specify a file system, so it saves to the local file system. In
a real Spark cluster, prepend the destination directory name with the appropriate URI
prefix; for example, hdfs://localhost:8020/myGraphVertices.

Listing 4.11 Round-trip persisting to and reading from file

To save to HDFS instead, use
"hdfs://localhost:8020/myGraphVertices".
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SAVING TO A SINGLE FILE: THE CHEATER WAY

To avoid the multiple part files when saving to HDFS or S3 using saveAsObjectFile(),
you can cheat by adding a coalesce(1,true), such as the following:

myGraph.vertices.coalesce(1,true).saveAsObjectFile("myGraphVertices")

The downside of this trick is that the entire RDD has to fit inside a single partition,
meaning it has to fit inside a single executor. That’s fine for experimenting with small
graphs, but not in production with big graphs.

SAVING TO A SINGLE FILE: THE RIGHT WAY

Assuming you’re working in HDFS, the right way to produce a single file is to first allow
Spark to create the part files (which it does in parallel) and then, as a second step,
merge them into a single file. There are two ways to do this: at the command line or
through the Hadoop Java API.

 For the following example, first make sure you’re saving to HDFS rather than the
local file system. The following URL assumes use of the Cloudera Quickstart VM; it will
be different for other environments:

myGraph.vertices.saveAsObjectFile(
  "hdfs://localhost:8020/user/cloudera/myGraphVertices")

To merge the part files contained in the myGraphVertices directory, one option is to
use the command line, which reads the HDFS part files and creates a single file on the
local file system:

hadoop fs -getmerge /user/cloudera/myGraphVertices myGraphVerticesFile

 The API equivalent to getmerge is called copyMerge(), which has the option for
the destination to be HDFS, as shown in the following listing.

Serialization of GraphX objects
In the Spark core, everything has to be serializable so that objects can be serialized
and transmitted to worker nodes. Java Serializable is the default, but Spark has
first-class integration with Kryo, a more efficient serialization alternative. Prior to
Spark 1.0, Kryo had lots of problems with Spark, and as of Spark 1.6, there are still
several dozen Kryo-related Jira tickets open. A third serialization option is to use Java
Externalizable and implement your own serialization scheme—or, more likely, del-
egate to a third-party library such as Avro or Pickling—but this route is far from trans-
parent and clean. Thankfully, Spark’s saveAsObjectFile() provides another last-
ditch opportunity for tuning via compression. After the objects are serialized, they can
optionally be run through a codec. Even though Serializable doesn’t compress,
saveAsObjectFile() can still perform compression post-serialization.
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import org.apache.hadoop.fs.{FileSystem, FileUtil, Path}
val conf = new org.apache.hadoop.conf.Configuration
conf.set("fs.defaultFS", "hdfs://localhost")
val fs = FileSystem.get(conf)
FileUtil.copyMerge(fs, new Path("/user/cloudera/myGraphVertices/"),
  fs, new Path("/user/cloudera/myGraphVerticesFile"), false, conf, null)

SCALA TIP You can combine multiple imports from the same package on the
same line by enclosing the multiple class names in curly braces.

You’re still stuck with two files: one for vertices produced by the preceding code, and
one for edges (created similarly). To truly create a single file, you can choose to per-
sist the triplets instead with graph.triplets.saveAsObjectFile(), but note that this
would be a wastel of disk space because full vertex data would be repeated for every
edge that uses that vertex. In this example, saving triplets to a single file would take
about 20 times as much disk space as saving the edges and vertices separately in two
files.

 If you’re using S3 instead of HDFS, the hadoop fs -getMerge command line and
the Hadoop API copyMerge() won’t work. There are various shell scripts and GUI-
based tools found on the Web that accomplish the same thing for S3.

4.3.2 JSON format

If you prefer to serialize to a human-readable format, you can use a JSON library. In
the realm of Scala for JSON, wrappers around the venerable Jackson library for Java
are popular. The wrapper Jerkson was popular until it was abandoned in 2012. In its
place, Jackson has since released jackson-module-scala. Its syntax is not as concise as
most Scala libraries, but it works. Although Jackson is already available in the Spark
REPL, we need to do the following in listing 4.13 at the OS command line to make
jackson-module-scala also available there.

wget http://repo1.maven.org/maven2/com/fasterxml/jackson/module/

➥ jackson-module-scala_2.10/2.4.4/jackson-module-scala_2.10-2.4.4.jar
wget http://repo1.maven.org/maven2/com/google/guava/guava/14.0.1/

➥ guava-14.0.1.jar
./spark-shell --jars jackson-module-scala_2.10-2.4.4.jar,guava-14.0.1.jar

Note that the version numbers given (Scala 2.10 and Jackson 2.4.4, and its depen-
dency Guava 14.0.1) are specific to Spark 1.6. If you’re using a different version of
Spark, find out which version of Scala it’s using from the banner when you start up the
REPL and which version of Jackson and Guava it’s using from the Maven pom.xml. In
Spark 1.6, the version numbers of all the dependent jars are centralized into the root
pom.xml in the Spark source tree. The version of jackson-module-scala has to match
the version of Jackson that Spark is built with.

Listing 4.12 Saving to a single file in HDFS using the Hadoop Java API

Listing 4.13 Command line commands to use jackson-module-scala in the REPL
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 First we look at how to use Jackson to serialize the graph to JSON using the features
of Spark we’ve looked at so far. Then we introduce a new feature, mapPartitions,
which can give significant performance improvement in some situations.

 Once you have the REPL set up, go ahead and once again create myGraph as in list-
ing 4.1. Then you might naively serialize to JSON, as shown in the following listing.

myGraph.vertices.map(x => {
    val mapper = new com.fasterxml.jackson.databind.ObjectMapper()
    mapper.registerModule(

com.fasterxml.jackson.module.scala.DefaultScalaModule)
    val writer = new java.io.StringWriter()
    mapper.writeValue(writer, x)
    writer.toString
}).coalesce(1,true).saveAsTextFile("myGraphVertices")

NOTE The output file is itself not JSON-compliant; rather, each line within
the file is valid JSON. This is more conducive to distributed storage and dis-
tributed processing than trying to put commas at the end of every line except
for the last line and putting open and close brackets at the beginning and end
of the file.

Notice that for every vertex, we’re constructing an entirely new JSON parser! For such
purposes, the Spark API provides an alternative to map() called mapPartitions().
This is what we do in the better performing version in listing 4.15.

SPARK TIP Whenever you have heavyweight initialization that should be
done once for many RDD elements rather than once per RDD element, and if
this initialization, such as creation of objects from a third-party library, cannot
be serialized (so that Spark can transmit it across the cluster to the worker
nodes), use mapPartitions() instead of map(). mapPartitions() provides
for the initialization to be done once per worker task/thread/partition
instead of once per RDD data element.

import com.fasterxml.jackson.core.`type`.TypeReference
import com.fasterxml.jackson.module.scala.DefaultScalaModule

myGraph.vertices.map(x => {
    val mapper = new com.fasterxml.jackson.databind.ObjectMapper()
    mapper.registerModule(

com.fasterxml.jackson.module.scala.DefaultScalaModule)
    val writer = new java.io.StringWriter()
    mapper.writeValue(writer, x)
    writer.toString
}).coalesce(1,true).saveAsTextFile("myGraphVertices")

myGraph.vertices.mapPartitions(vertices => {
    val mapper = new com.fasterxml.jackson.databind.ObjectMapper()

Listing 4.14 Naïve approach to serialize to JSON

Listing 4.15 Better performing way to serialize/deserialize to/from JSON
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    mapper.registerModule(DefaultScalaModule)
    val writer = new java.io.StringWriter()
    vertices.map(v => {writer.getBuffer.setLength(0)

mapper.writeValue(writer, v)
writer.toString})

}).coalesce(1,true).saveAsTextFile("myGraphVertices")

myGraph.edges.mapPartitions(edges => {
    val mapper = new com.fasterxml.jackson.databind.ObjectMapper();
    mapper.registerModule(DefaultScalaModule)
    val writer = new java.io.StringWriter()
    edges.map(e => {writer.getBuffer.setLength(0)

mapper.writeValue(writer, e)
writer.toString})

}).coalesce(1,true).saveAsTextFile("myGraphEdges")

val myGraph2 = Graph(
    sc.textFile("myGraphVertices").mapPartitions(vertices => {

val mapper = new com.fasterxml.jackson.databind.ObjectMapper()
mapper.registerModule(DefaultScalaModule)
vertices.map(v => {
    val r = mapper.readValue[Tuple2[Integer,String]](v,

new TypeReference[Tuple2[Integer,String]]{})
    (r._1.toLong, r._2)
})

    }),
    sc.textFile("myGraphEdges").mapPartitions(edges => {

val mapper = new com.fasterxml.jackson.databind.ObjectMapper()
mapper.registerModule(DefaultScalaModule)
edges.map(e => mapper.readValue[Edge[String]](e,
    new TypeReference[Edge[String]]{}))

    })
)

SCALA TIP If you need to use a reserved Scala keyword, surround it with a
backtick on either side (`—also known as the grave accent character). This
comes up often when using Java libraries in Scala.

Notice that due to a weakness in Jackson, we had to read in the vertex IDs as Integers
and then convert them to Longs. This limits vertex IDs to the 2 billion range. Also
notice that Jackson made us repeat the vertex and edge property class type parameters
(String, in this case) twice each for readValue[](), so if you use a custom class,
replace it in both places. Finally, as with the binary example, when using a distributed
file system, remember to eliminate the coalesce(1,true).

4.3.3 GEXF format for Gephi visualization software

Gephi is a powerful open source graph visualization tool, and GEXF is its native XML
format. In this section, we serialize to .gexf, as shown in the following listing and in fig-
ure 4.6. Gephi is open source and free to download from gephi.github.io. Its use is
described in appendix B.
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def toGexf[VD,ED](g:Graph[VD,ED]) =
    "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" +
    "<gexf xmlns=\"http://www.gexf.net/1.2draft\" version=\"1.2\">\n" +
    "  <graph mode=\"static\" defaultedgetype=\"directed\">\n" +
    "    <nodes>\n" +

g.vertices.map(v => " <node id=\"" + v._1 + "\" label=\"" +
v._2 + "\" />\n").collect.mkString +

    "    </nodes>\n" +
    "    <edges>\n" +
    g.edges.map(e => "      <edge source=\"" + e.srcId +

"\" target=\"" + e.dstId + "\" label=\"" + e.attr +
"\" />\n").collect.mkString +

    "    </edges>\n" +
    "  </graph>\n" +
    "</gexf>"

val pw = new java.io.PrintWriter("myGraph.gexf")
pw.write(toGexf(myGraph))
pw.close

SCALA TIP Sometimes the REPL gets confused about when you want to con-
tinue a line of code to the next line, such as when you end a line on a plus
sign for string concatenation. In those cases, enter paste mode by entering
the command :paste. Exit paste mode by pressing Ctrl-D.

Listing 4.16 Export to GEXF for Gephi visualization software

Figure 4.6 The generated .gexf file loaded into Gephi
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4.4 Graph generation
If you don’t have graph data available, the GraphGenerators object can generate
some random graphs for you. This approach can be useful when you need to test out
some ideas about a graph function or an algorithm and you need to get something
working quickly. One of them, generateRandomEdges(), is a helper function for the
main graph-generating functions; it’s not that useful on its own because it takes as a
parameter a single vertex ID from which all the generated edges will emanate. But
let’s take a look at the four full graph generators that are available in Spark 1.6.

4.4.1 Deterministic graphs

The first two graph structures we cover are non-random: the grid and the star. The fol-
lowing listings assume you’ve already done import org.apache.spark.graphx._. For
example, util.GraphGenerators refers to org.apache.spark.graphx.util.Graph-
Generators.

GRID GRAPH

A grid graph has a specific configuration of vertices and edges that are laid out as if in a
2-D grid or matrix. Each vertex is labeled with the row and column of its position in the
grid (for example, the top left vertex is labeled (0,0)). Then each vertex is connected to
its neighbor immediately above, below, left, and right. The following listing demon-
strates how to create a 4x4 grid graph. The layout of the graph is show in figure 4.7.

val pw = new java.io.PrintWriter("gridGraph.gexf")
pw.write(toGexf(util.GraphGenerators.gridGraph(sc, 4, 4)))
pw.close

Listing 4.17 Generate a grid graph

(0, 0)

(1, 0)

(0, 1)

(1, 1)

(0, 2)

(2, 0)

(1, 2)

(2, 2) (2, 3)

(1, 3)

(0, 3)

(2, 1)

(3, 1)
(3, 0)

(3, 2)
(3, 3)

Figure 4.7 A generated 
gridGraph() visualized in Gephi. 
There is no randomness to a grid 
graph; the grid is always complete.
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STAR GRAPH

A star graph has one vertex connected by edges
to all other vertices—there are no other edges
in the graph. As figure 4.8 shows, the name
comes from its star-like layout.

 The graph is generated by calling GraphGen-
erators.starGraph with the number of vertices
as the second parameter to the method. Vertex
0 is always the center of the star, so the call
GraphGenerators.starGraph(sc, 8) in the fol-
lowing listing results in a graph with Vertex 0
connected to 7 other vertices.

val pw = new java.io.PrintWriter("starGraph.gexf")
pw.write(toGexf(util.GraphGenerators.starGraph(sc, 8)))
pw.close

4.4.2 Random graphs

GraphX provides two ways to generate graphs randomly: a single-step algorithm
(called log normal) that attaches a particular number of edges to each vertex, and a
multistep procedural algorithm (called R-MAT) that generates graphs that are closer
to what is found in the real world.

DEGREE-BASED: LOG NORMAL GRAPH

The log normal graph focuses on the out-degrees of the vertices in the graphs it gen-
erates. It ensures that if you take a histogram of all the out-degrees, they form a log
normal graph, which means that log(d) forms a normal distribution (Gaussian bell
shape), where the ds are the vertex degrees. The following listing incorporates the
code from listing 4.5 that counted the out-degrees, and as you can see, there are a lot
of vertices of degree 6, with it tailing off to the left (lower-degree vertices) and a lon-
ger tail to the right (higher-degree vertices). Figure 4.9 shows a possible output graph.

val logNormalGraph = util.GraphGenerators.logNormalGraph(sc, 15)
val pw = new java.io.PrintWriter("logNormalGraph.gexf")
pw.write(toGexf(logNormalGraph))
pw.close
logNormalGraph.aggregateMessages[Int](
    _.sendToSrc(1), _ + _).map(_._2).collect.sorted

Res11: Array[Int] = Array(2, 3, 4, 6, 6, 6, 6, 8, 9, 9, 9, 10, 10, 13, 14)

Listing 4.18 Generate a star graph

Listing 4.19 Generate a log normal graph

2nd parameter to logNormalGraph specifies
the number of vertices in the resulting graph.

Figure 4.8 A generated starGraph() 
visualized in Gephi. Like gridGraph(), 
it is not random.
www.allitebooks.com

http://www.allitebooks.org
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PROCEDURAL-BASED: R-MAT GRAPH

R-MAT, which stands for recursive matrix, is intended to simulate the structure of typical
social networks. As opposed to the “degree-based” approach of the earlier logNormal-
Graph(), rmatGraph() takes a “procedural” approach. It adds edges one at a time into
quadrants of the graph (and quadrants within quadrants, and so on), based on prede-
termined probabilities for each quadrant, as shown in the following listing. A possible
output graph is shown in figure 4.10.

val pw = new java.io.PrintWriter("rmatGraph.gexf")
pw.write(toGexf(util.GraphGenerators.rmatGraph(sc, 32, 60)))
pw.close

Listing 4.20 Generate an R-MAT graph

Figure 4.9 A generated 
logNormalGraph() visualized in Gephi. 
The only constraint in logNormalGraph() 
is the out-degree of each vertex, and 
otherwise there are no restrictions on where 
edges are placed. Some edges have the 
same source and destination vertices. And 
some pairs of vertices have multiple parallel 
edges, represented in the Gephi visualization 
(which does not render parallel edges 
directly) by darker edges and larger 
arrowheads.

2nd and 3rd parameters to rmatGraph are the requested
number of vertices and edges respectively—number of

vertices is rounded up to the next power of 2.

Figure 4.10 rmatGraph’s recursive quadrant 
subdivision leaves some relative loner vertices and 
also makes for some groups of vertices having a 
high number of interconnections.
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rmatGraph assumes the number of vertices
passed in as a parameter is a power of 2. If it’s
not, rmatGraph rounds it up to the next power
of 2 for you. It needs the number of vertices to
be a power of 2 for the recursive quadrant sub-
division, as shown in figure 4.11. rmatGraph
starts out by laying the vertices out in a grid
(the non-grid layout in figure 4.10 is caused by
Gephi trying to make the resultant graph look
nice) and then randomly places edges one by
one, choosing vertices based on probabilities
arising from the recursive quadrants. Some
vertices may by chance end up with zero
edges, which is why the Gephi rendering in
figure 4.10 shows only 16 vertices, even
though listing 4.20 specifies 32 vertices.

4.5 Pregel API
Section 2.3 states that complete algorithms can be built by repeated application of
aggregateMessages. This is such a common requirement that GraphX provides an
API based on Google’s Pregel to accomplish such iterative algorithms in a concise
manner. It is so concise that an entire algorithm can be expressed with a single Pregel
call. In fact, many of GraphX’s pre-canned algorithms are implemented in terms of a
single Pregel call.

 GraphX’s Pregel API provides a concise functional approach to algorithm design.
It also provides some performance benefits through caching and uncaching interme-
diate data sets; getting this right is generally tricky for programmers and relieves them
of the burden of having to deal with low-level performance tuning. 

 In GraphX the implementation of Pregel is a form of Bulk Synchronous Parallel
(BSP) processing. As its name suggests, BSP is a parallel processing model developed
in the 1980s. BSP is not specifically designed for graph processing, but when Google
implemented its graph processing framework, Pregel, it used the principles behind
BSP. Google’s Pregel is the inspiration for Spark’s own Pregel API.

 As shown in figure 4.12, the algorithm is decomposed into a series of supersteps,
with each superstep being a single iteration. Within each superstep, per-vertex calcula-
tions can be performed in parallel. At the end of the superstep, each vertex generates
messages for other vertices that are delivered in the next superstep. Due to the synchro-
nization barrier, nothing from a subsequent superstep gets executed until the current
superstep is fully completed. Unlike some general purpose, low-level libraries for dis-
tributed high-performance computing, the synchronization in the Pregel API is han-
dled automatically for you by GraphX.

a

a b

c

c d

b
d

c d

Figure 4.11 Recursive quadrants from the 
2004 paper “R-MAT: A Recursive Model for 
Graph Mining” by Chakrabarti et al. GraphX 
uses the hard-coded probabilities a=0.45, 
b=0.15, c=0.15, d=0.25.
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One of the benefits of having a framework like this is that it’s useful to have a high-
level abstraction that lets you specify program behavior that can then be efficiently
parallelized by the framework.

 Figure 4.13 shows how the Pregel API processes a single superstep in more detail.
The messages sent in the previous superstep are grouped together by vertex and
processed by a “merge message” (mergeMsg) function so that each vertex is associated
with a single merged message (unless the vertex wasn’t sent any messages). The
mergeMsg function works in exactly the same way as the mergeMsg function used by
aggregateMessages: it must be commutative and associative so that it can repeatedly
process pairs of messages to arrive at a single result for each vertex.

 Unlike aggregateMessages, though, the result of mergeMsg doesn’t update the ver-
tex directly but is passed to a vertex program that takes a vertex (both the VertexID
and the data) and the message as input and returns new vertex data that’s applied by
the framework to the vertex.

Processing proceeds
in supersteps
separated by a
synchronization
barrier.

Parallel processing
of messages at
vertices during
each superstep

Passing of messages
to other vertices
synchronized across
the barrier

Figure 4.12 BSP allows processing in parallel within a superstep. Messages are then generated and 
delivered for the next superstep. The next superstep does not begin until the current superstep is 
completed and all messages are delivered to the next superstep. This is illustrated by the 
synchronization barriers.
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In the last step of the superstep iteration, each vertex gets to send a message along
each of its out-edges. The vertex can also choose not to send a message; if the destina-
tion vertex doesn’t receive any messages from its source vertices, it will no longer be
considered for processing in the next superstep. The logic for this decision is encapsu-
lated in a sendMsg function. Figure 4.14 shows the complete flow of the Pregel
method call.

 Now that you have an idea of how this works, let’s see what the Pregel method sig-
nature looks like:

def pregel[A]
(initialMsg: A,
maxIter: Int = Int.MaxValue,
activeDir: EdgeDirection = EdgeDirection.Out)

(vprog: (VertexId, VD, A) => VD,
sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A)

    : Graph[VD, ED]

As with aggregateMessages, the method is type-parameterized by the message (A)
that will be received and delivered by each vertex. Unlike aggregateMessages,
though, pregel does some extra work for you by returning a new Graph object rather
than a VertexRDD.

Messages delivered from
vertices in the previous
superstep are combined
to a single message by a
custom mergeMsg function.

The custom vprog method
decides how to update the
vertex data based on the
message received from
mergeMsg.

The custom sendMsg
function decides which
vertices will receive
messages in the next
superstep.

Previous superstep Next superstepCurrent superstep

A

B D

C

mergeMsg vprog

Figure 4.13 Messages for a vertex from the previous superstep are processed by the mergeMsg 
and vprog functions to update the vertex data. The vertex then sends messages to be delivered in 
the next superstep.



86 CHAPTER 4 GraphX Basics
Group :VD’s by
Edge and add
in srcId, destId,
and edgeAttr
to create
:EdgeTriplets

Group :A’s by
VertexId and
reduce/merge/
aggregate

:VD:VertexId :A

initialMsg:A

Initial graph

(:VertexId,:A)(:VertexId,:A) (:VertexId,:A)

:VD

:A :A

:A

Vertex program

:EdgeTriplet

Send messages

Merge messages

Stop
?

Figure 4.14 Flow of GraphX Pregel API
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SCALA TIP Notice that the function has two sets of parameters. In Scala you
can split parameters up into multiple parameter lists. You can invoke the func-
tion by providing all the parameters, although you have to use the syntax of
surrounding each list of parameters in its own set of parentheses. This is how
we call pregel in the upcoming example. Alternatively, you can use partial
function application. For example, you could do val p = Pregel(g,0)_ (note
the underscore is required when using partial application). Then at some
later point, you could do p(myVprog, mySendMsg, myMergeMsg). Later still,
you could reuse p again for some other similar Pregel invocation.

The first set of parameters defines some settings or algorithm parameters. initialMsg
is a value that will be delivered to the vertex to kick-start the processing. Often this is
some sort of zero value that represents our lack of knowledge at the beginning of the
algorithm. 

 maxIter defines how many iterations or supersteps will be carried out. Some algo-
rithms have convergence guarantees that ensure an accurate answer will be reached
within a reasonable number of iterations. But many algorithms don’t give this guaran-
tee, giving rise to the possibility that the algorithm will continue forever. In this latter
case, it’s definitely a good idea to specify a number smaller than the default Int.Max-
Value!

 The second set of parameters defines the three functions already outlined: vprog,
sendMsg, and mergeMsg. These define the behavior we want to encode into the algo-
rithm. The introduction to this section mentioned that Pregel provides similar func-
tionality to the iterated MapReduce using aggregateMessages. There are some subtle
differences between the two that we will call out here.

 First, aggregateMessages only requires two functions to define its behavior: send-
Msg and mergeMsg. What’s the purpose of this vertex program, vprog? It provides
greater flexibility in defining the logic. In some cases, the message and the vertex data
type are the same, and only some simple logic is required to update the graph with a
new value. 

 In other cases, the message and the vertex data will be different types. An example
is the implementation of LabelPropagation, discussed in detail in the next chapter.
LabelPropagation returns a Graph whose vertex data is a VertexId, but the message
type is a Map relating VertexIDs to Long – Map[VertexId, Long]. The Map message
passed to the vertex program is interrogated to find the VertexId with the highest
Long value, and this is the ID that is used to update the vertex data.

 The other key difference is the form of the sendMsg function signature, compared
in table 4.2. Recall that EdgeTriplet contains information on an edge and its two ver-
tex endpoints. EdgeContext adds two additional methods, sendToSrc and sendToDst.
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You may ask why there is this difference. The answer is that Pregel still relies on the
deprecated mapReduceTriplets method to do its work and hasn’t been updated to
use aggregateMessages. The work to implement Pregel using aggregateMessages is
being tracked in SPARK-5062.

 The following listing shows the iterated MapReduce example of listing 4.10, con-
verted to Pregel.

val g = Pregel(myGraph.mapVertices((vid,vd) => 0), 0,
activeDirection = EdgeDirection.Out)(
(id:VertexId,vd:Int,a:Int) => math.max(vd,a),
(et:EdgeTriplet[Int,String]) =>

Iterator((et.dstId, et.srcAttr+1)),
(a:Int,b:Int) => math.max(a,b))

g.vertices.collect

res12: Array[(org.apache.spark.graphx.VertexId, Int)] = Array((4,3), (1,0),
(3,2), (5,4), (2,1))

SCALA TIP You always have the option of using named parameters. Sometimes
this can make the code easier to read. Other times, if there are several param-
eters with default values, some such parameters can be skipped if in your
function invocation you use named parameters for the later parameters.

The terminating condition for Pregel is that there are no more messages to be sent. In
each iteration, if an edge’s vertices did not receive messages from the previous itera-
tion, sendMsg will not be called for that edge. The activeDirection parameter to Pre-
gel specifies this filter. For an edge with vertices srcId and destId,

 EdgeDirection.Out—sendMsg gets called if srcId received a message during the
previous iteration, meaning this edge is considered an “out-edge” of srcId.

 EdgeDirection.In—sendMsg gets called if dstId received a message during the
previous iteration, meaning this edge is considered an “in-edge” of dstId.

 EdgeDirection.Either—sendMsg gets called if either srcId or dstId received a
message during the previous iteration.

 EdgeDirection.Both—sendMsg gets called if both srcId and dstId received mes-
sages during the previous iteration.

In the vertex distance example, we used EdgeDirection.Out because the vertex dis-
tance algorithm follows the edge directions of the graph. Once it reaches the “end” of
the directed graph, it terminates.

Table 4.2 sendMsg function signature in aggregateMessages and Pregel

aggregateMessages Pregel

EdgeContext[VD, ED, Msg] => Unit EdgeTriplet[VD, ED] => Iterator[(VertexId, A)]

Listing 4.21 Pregel to find distance of furthest vertex
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 If the graph has cycles, we have to be more careful because we’re likely to run into
situations where a group of vertices continuously sends and receives messages without
termination. One thing we can do to deal with this situation is use the maxIterations
parameter to ensure that our algorithm terminates in a reasonable amount of time. 

 Another approach is to try and detect situations where the algorithm is looping
around and not doing any useful new work. For example, the ShortestPaths algorithm
discussed in the next chapter progressively updates a map with vertices reachable
from the current vertex. The sendMsg function only issues messages if there’s new
information to be added to the map that wouldn’t have already been seen by the mes-
sage target. 

4.6 Summary
 Pregel and its little sibling aggregateMessages() are the cornerstones of

graph processing in GraphX.
 Most of the canned algorithms that come with GraphX are implemented in

terms of Pregel.
 Because the terminating condition for Pregel is that no messages happen to be

sent, algorithms that require more flexibility for the terminating condition have
to be implemented using aggregateMessages() instead.

 Because GraphX doesn’t have built-in API functions to read and write property
graphs (only to read in an edge list), we showed code to do that.

 If you don’t have data to work with, the GraphX API provides ways to generate
both random and deterministic graphs.



Built-in algorithms
In chapter 4 you learned about the foundational GraphX APIs that enable you to
write your own custom algorithms. But there’s no need for you to reinvent the
wheel in cases where the GraphX API already provides an implemented standard
algorithm. In this chapter, we describe some of those basic algorithms and discuss
which situations they can be used in:

 PageRank
 Personalized PageRank
 Triangle Count
 Shortest Paths
 Connected Components
 Strongly Connected Components
 Label Propagation

This chapter covers
 Algorithms that come with the GraphX API

 Detecting clusters within graphs: PageRank, Shortest 
Paths, Connected Components, Label Propagation

 Measuring connectedness of a graph or subgraph with 
Triangle Count 

 Measuring the connectedness of a subset of users in a 
social network graph and finding isolated populations
90
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We wait until chapter 7 to cover SVDPlusPlus, one of the more useful and advanced
built-in algorithms.

5.1 Seek out authoritative nodes: PageRank
Chapter 2 covered an example invoking the PageRank algorithm, which was originally
invented to rank web pages for a search engine, but there we used it to find influential
papers in a citation network. Generally speaking, PageRank can be used to find the
“important” nodes in almost any graph. Here we go more in depth into PageRank:
what it does under the covers and parameters and different ways of invoking it. Note
that PageRank is patented by Stanford University and trademarked by Google.

5.1.1 PageRank algorithm explained

PageRank is a way to measure the “authority” of vertices in a graph. We saw an exam-
ple of this in chapter 2 where we measured the influence of scientific papers from
within a collection of bibliographic citations. Although the original application of
PageRank was to assign an authority number to each web page a search engine
crawler encounters, PageRank can be used on any directed graph to establish the
authority of every node in the graph. Other applications include ranking key people
in a social network graph based on people-to-people connections, ranking influencers
in a social network based on a graph of “shares,” and employing several advanced
machine-learning techniques, such as collaborative filtering and semantic relevance.

 A simplistic alternative to PageRank is to measure the in-degrees at each vertex,
similar to the way we calculated the out-degrees in section 4.2.2. The GraphX API even
provides an outDegrees() function to compute the out-degrees without any addi-
tional code. Many people mistakenly believe that such a number of “inbound links” is
all PageRank is. PageRank is much more.

 PageRank seeks to optimize a recursive formula and is based not on the number of
vertices that have edges which point to the vertex in question, but on the PageRanks
of those vertices.

 Although the definition of PageRank is recursive, its
implementation is a straightforward iterative computa-
tion. Figure 5.1, adapted from the 1999 PageRank paper
by Page and Brin, “The PageRank citation ranking: Bring-
ing order to the web,” illustrates the algorithm.

 The algorithm can be described as follows:

1 Initialize vertices with a starting PageRank of 1/N,
where N is the number of vertices in the graph.

2 Loop:
a For each vertex, transmit a PageRank of 1/M

along each outbound edge, where M is the out-
degree of the vertex.

A
0.4

B
0.2

C
0.4

0.2

0.2
0.20.4

Figure 5.1 PageRank 
iteration. This particular 
iteration is also a steady and 
final state of the algorithm 
because after the 
redistribution of PageRank 
among the vertices, the 
resulting vertex PageRanks 
end up with the same values.
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b At each vertex receiving incoming PageRanks from adjacent vertices, sum
these up and make that the new PageRank for the vertex.

c If PageRanks haven’t significantly changed across the graph since the previ-
ous iteration, then exit.

5.1.2 Invoking PageRank in GraphX

As we saw in chapter 2, GraphX has already implemented PageRank; we didn’t need
to code up the algorithm described in the previous subsection. In this section, you’ll
see two different ways to invoke PageRank and some of the parameters.

OBJECT-ORIENTED VS. OBJECT-BASED WAYS TO INVOKE PAGERANK

GraphX provides two ways to invoke PageRank: object-oriented and object-based. In
chapter 2, we invoked the pageRank() function from our Graph object, which is the
object-oriented way. The pageRank() function is a function of GraphOps, and Graph
automatically creates a GraphOps and provides a conversion of itself to GraphOps
whenever needed, much in the same way that an RDD will convert itself to a PairRDD as
needed, as we saw in section 4.2.2. The relationships between the various classes are
shown in figure 5.2.

TIP To find out all the methods you can invoke on an instance of Graph, be
sure to look at the GraphOps API documentation in addition to the docs for
Graph.

The other way of invoking PageRank—the object-based way—is to call the run()
method of the singleton object org.apache.spark.graphx.lib.PageRank, passing in
the graph as the first parameter. This is what the pageRank() method of GraphOps
does. Which way to invoke PageRank is a matter of style; for example, if you’re already
performing a number of operations on your graph, the object-oriented style allows
you to chain it as an additional operation.

Graph

GraphOps

+pageRank()

PageRank

+run(graph:Graph)
+runUntilConvergence(graph:Graph)

Graph

+graphToGraphOps(): implicit

<<compainion object>>
ED:(custom user class)
VD:(custom user class)

ED:(custom user class)
VD:(custom user class)

Figure 5.2 The companion object Graph contains an implicit (automatic) 
conversion from Graph to its corresponding GraphOps, so all of the operations 
available in GraphOps can be invoked as if those operations were declared in the 
Graph class. GraphOps contains a pageRank() method, but it calls run() from 
the PageRank singleton object, passing in the graph as the first parameter.
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FIXED NUMBER OF ITERATIONS (“STATIC”) VS. TOLERANCE EXIT CONDITION (“DYNAMIC”)
For each of the two invocation means (object-oriented and object-based), there’s
another choice to be made: whether to exit after a specified number of iterations or to
continue iterating (potentially forever) and exit only after a tolerance condition has
been met. The GraphX API documentation calls the former static and the latter
dynamic.

 Whereas the static versions take a parameter numIter (number of iterations), the
dynamic versions take a parameter tol (tolerance). If a vertex’s PageRank didn’t
change by more than tol between the previous iteration and the current iteration, it
will pull itself out of the algorithm, neither distributing its PageRank to its neighbors
nor paying attention to PageRank being sent to it by its neighbors. tol is also used to
determine when the overall algorithm stops: if no vertex in the entire graph changes
by more than tol, the algorithm terminates.

 When we used tol in chapter 2, we picked a value of 0.001, which is on the high
side for quick algorithm termination. For more precise results, pick a smaller value,
such as 0.0001.

THE RANDOM RESET PROBABILITY

All four variations (object-oriented versus object-based and static versus dynamic) take
an additional parameter, resetProb, which the API documentation also refers to as
alpha. This resetProb parameter corresponds to what the 1998 Brin and Page paper,
“The Anatomy of a Large-Scale Hypertextual Web Search Engine,” refers to as a damp-
ing factor. You specify resetProb in the range [0,1], and it represents a sort of mini-
mum PageRank value.

 Conceptually, resetProb corresponds to the probability that an imaginary web
surfer will suddenly visit a random page on the web instead of following one of the
outbound links prescribed by the web page that the surfer is currently visiting. This is
useful for accounting for sinks—web pages that have inbound links but no outbound
links. resetProb ensures that all pages always have some minimum PageRank, and
also the (1-resetProb) in the preceding formula dampens the contribution of the
incoming PageRanks from the adjacent vertices. It is as if imaginary outbound edges
are added from all sink vertices to every other vertex in the graph, and to keep things
fair, this same thing is done to the non-sink vertices as well.

NOTE The resetProb used in GraphX is the same as 1-d described in the
PageRank literature, where d is the damping factor. The PageRank literature
recommends a value of 0.85 for the damping factor, and the GraphX docu-
mentation recommends a value of 0.15 for resetProb.

 The following formula incorporates resetProb to compute the new PageRank for
a vertex v:

v'PageRank resetProb 1 resetProb–( )+
uPageRank

uOutdegree
-------------------------

u having outbound edge into v
=
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resetProb is in some sense a hack. For a true, ideal PageRank, resetProb should be
set to zero; however, doing so leads to longer convergence times and can also lead to
degenerate results: clusters of self-interconnected components getting all the Page-
Rank, and the mainstream highly connected vertices getting zero as their PageRank.
An example of what can happen is shown in figure 5.3.

Based on the name resetProb, you might think a random number generator is
involved. Although in some implementations of PageRank a random number genera-
tor is employed, in the GraphX implementation it’s strictly deterministic, and reset-
Prob is treated as a constant. An example of an implementation that uses a random
number generator is one that uses the Monte Carlo technique to estimate PageRank
in a shorter amount of computation time.

5.1.3 Personalized PageRank

Suppose that instead of ranking web pages you want to recommend people on a social
network. Such recommendations should be tailored to the user looking for other peo-
ple; the user is more likely to be interested in other people who aren’t too far away on
the graph.

 Personalized PageRank is a variation on PageRank that gives a rank relative to a
specified “source” vertex in the graph. Conceptually, the imaginary web surfer (or
social network graph wanderer) described in the previous section, when suddenly
deciding to visit another vertex, will always land on the specified source vertex. Within
GraphX, this concept of an imaginary web surfer is implemented by enforcing a mini-
mum PageRank only on the specified source vertex; the PageRanks of all the other
vertices are allowed to fall to zero (for example, if they have no inbound links).

 In chapter 2 you saw PageRank run on a network of paper citations. In that exam-
ple, the paper “Noncompact Symmetries in String Theory” had the highest Page-
Rank. In the following listing, we specify the source vertex to be 9207016, the ID of
that paper.

Strongly
connected component

OutIn

Figure 5.3 The real-world graph of web pages is said to resemble a bow-tie. With a damping 
factor of 1.0 (resetProb of .0.0), all the PageRanks would get trapped in the “OUT” 
vertices, and all the “IN” vertices would be left with a PageRank of 0.
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import org.apache.spark.graphx._
val g = GraphLoader.edgeListFile(sc, "cit-HepTh.txt")
g.personalizedPageRank(9207016, 0.001)
.vertices
.filter(_._1 != 9207016)
.reduce((a,b) => if (a._2 > b._2) a else b)

res1: (org.apache.spark.graphx.VertexId, Double) =
  (9201015,0.09211875000000003)

When we look up ID 9201015 in the abstracts from the SNAP site, we see it’s “An Algo-
rithm to Generate Classical Solutions for String Effective Action.” According to the
Personalized PageRank algorithm, this is the most important paper from the perspec-
tive of the paper “Noncompact Symmetries in String Theory.”

 The GraphX implementation of Personalized PageRank is limited in a couple of
ways compared to implementations on other systems. First, only one source vertex can
be specified. If specifying a group of vertices was allowed, this would permit, for exam-
ple, finding the most important person to a group of people, such as 1992 Harvard
alumni. Second, the weight for each source vertex cannot be specified; in the GraphX
implementation it’s hard-coded to 1.0, meaning the minimum PageRank for a vertex
is either one of two extremes: 0 for vertices other than the source vertex, or 1.0 *
resetProb for the source vertex. This isn’t a big limitation right now, when GraphX
only allows specifying a single source vertex, but when GraphX gains the capability in
the future to specify multiple source vertices, being able to specify weights indepen-
dently for each source vertex will allow one to conceptually specify some kind of affin-
ity or importance to the rest of the vertices in the set of source vertices.

5.2 Measuring connectedness: Triangle Count
Where PageRank measured the influence of individual vertices, counting triangles
can measure the connectedness of a graph or subgraph—how, collectively, the vertices
together influence each other. For example, in a social network, if everyone influ-
ences everyone else—if everyone is connected to everyone else—there will be a lot of
triangles.

 A triangle is what it sounds like: three vertices that are all connected with edges.
But there can be some subtleties when dealing with directed graphs, as GraphX does.
When counting triangles, GraphX treats the graph as if it were undirected, ignoring
the edge directions (see figure 5.4), collapsing duplicate edges into one, ignoring
direction, and eliminating loop edges from a vertex back to itself.

Listing 5.1 Personalized PageRank to find the most important related paper

Figure 5.4 When counting triangles, GraphX doesn’t 
care about edge direction. These are both triangles, even 
though the triangle on the left forms a cycle and the 
triangle on the right has a dead end.
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5.2.1 Uses of Triangle Count

The more triangles a graph or subgraph has, the more connected it is. This property
can be used to identify cliques (parts of the graph that have a lot of interconnections),
provide recommendations, and identify spammers. It’s not always the case that more
connectedness is always better. A fully connected graph, where every vertex connects
to every other vertex, conveys no information about connectedness (though edge and
vertex properties could still carry information). Sometimes a lack of connectedness
identifies valuable vertices within the graph; for example, a research paper (“Visualiz-
ing the Signatures of Social Roles in Online Discussion Groups” by Welser et al) shows
that those who answer questions on online forums are often loners with weak connec-
tions to a large number of other forum participants, leading to few triangles. Those
helpful loner question-answerers may have edges to a bunch of unrelated question-
askers, but those loners aren’t part of any dense networks of people, so few triangles
are formed (and only when question-askers happen to also be connected to each
other). When trying to identify valuable question-answerers, a tell-tale sign might be a
low Triangle Count.

 Triangle Count serves as one factor in two other metrics known as the clustering
coefficient and the transitivity ratios. These are more complicated to compute because
they involve more than counting triangles. But being ratios, they’re scaled/normal-
ized with a denominator, making it easy to compare connectedness of graphs of differ-
ent sizes. As of version 1.6, GraphX doesn’t have algorithms built in to compute the
clustering coefficient or transitivity ratio. Chapter 8 shows how to compute the global
clustering coefficient.

5.2.2 Slashdot friends and foes example

Here we’ll show an example of using Triangle Count to measure connectedness
among various arbitrary subsets of users of Slashdot.org, the popular technology news
and discussion site started in 1997. SNAP, the same Stanford repository of graph data
we used in chapter 2, has an anonymized edge list of Slashdot “friends” and “foes.” On
Slashdot, a user reading comments can tag authors of forum comments as friends or
foes to be reminded of that opinion the next time the user encounters a comment
written by the same author. Even though the SNAP Slashdot data is anonymized—the
vertex IDs don’t match real-life Slashdot user IDs—the vertex IDs still appear to be in
increasing order; longer-term users have lower vertex IDs.

 In this data, the vertex IDs start at 0 and go up to over 70,000. We’ll break this up
into seven sets of 10,000 vertices each. That means we’ll lose a lot of edges, namely the
ones from one subgraph to another. We’ll count the number of triangles within each
of the seven subgraphs and see if there is a trend over time. Because long-term users
tend to have interacted with each other often, there should be a high degree of inter-
connectedness. We would expect to see the first subgraph of 10,000 to be a tight-knit,
highly connected group, and the second subgraph of 10,000 to have connections
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divided between themselves within this second subgraph and with the well-respected
users in the first subgraph. But remember, we’re discarding those edges from the sec-
ond subgraph to the first subgraph when we cut out each subgraph. Continuing on,
we would expect the third subgraph to have even fewer triangles.

NOTE In Spark 1.6 and earlier, triangleCount() imposed a couple of severe
prerequisites on the graph: first, the graph has to be partitioned by one of the
PartitionStrategy options described in section 9.4. Second, if there are any
duplicate edges (two or more edges between the same two particular verti-
ces), those duplicate edges have to point in the same direction. The GraphX
documentation overstates this latter requirement; it says that all edges must
be in canonical order, pointing from the lower-numbered vertex ID to the
higher-numbered vertex ID. This is usually the easiest way to transform a
graph to meet the second requirement, but if, for example, your graph has
no duplicate edges, there’s nothing to worry about (except for the partition-
ing from the first requirement). Jira ticket SPARK-3650, not targeted to any
specific Spark release (as of Spark 1.6), would lift these requirements.

To get started, download the Slashdot friend and foe edge data from http://snap
.stanford.edu/data/soc-Slashdot0811.html and uncompress it. Then from the Spark
Shell, do what’s shown in the following listing.

val g = GraphLoader.edgeListFile(sc, "soc-Slashdot0811.txt").cache
val g2 = Graph(g.vertices, g.edges.map(e =>

if (e.srcId < e.dstId) e else new Edge(e.dstId, e.srcId, e.attr))).
    partitionBy(PartitionStrategy.RandomVertexCut)
(0 to 6).map(i => g2.subgraph(vpred =

(vid,_) => vid >= i*10000 && vid < (i+1)*10000).
    triangleCount.vertices.map(_._2).reduce(_ + _))
res1: scala.collection.immutable.IndexedSeq[Int] = Vector(1352001, 61376,
10865, 3935, 1384, 786, 658)

Listing 5.2 Triangle Counts on Slashdot friend and foe data

Subgraphs in GraphX
Taking a subgraph in GraphX is straightforward. The subgraph() method of Graph
takes two parameters: an edge predicate function and a vertex predicate function.
Both are not required; you can specify one. The edge predicate function is presented
with every edge in the graph and must return true or false—true if the edge is to
be a part of the subgraph. It’s similar with the vertex predicate function. If the edge
predicate function filters out all edges to and from a vertex, that vertex remains in the
subgraph as a naked vertex with no edges. If the vertex predicate function filters out
one or both of the vertices from an edge, that edge doesn’t make it into the subgraph.

http://snap.stanford.edu/data/soc-Slashdot0811.html
http://snap.stanford.edu/data/soc-Slashdot0811.html
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SCALA TIP Scala allows two different syntaxes for invoking functions. One is
the familiar Java-style, with the preceding period and parameters inside the
parentheses. In the other, the period and the parentheses are omitted. Scala
allows this if the function has zero parameters (where it’s called suffix nota-
tion) or one parameter (where it is called infix notation). Stylistically, Scala
programmers typically leave off parentheses whenever possible, especially
when a function has no side effects (leaves the underlying object
unchanged). In the preceding diagrammed line of code, to is a function of
scala.Int (of which the zero (0) preceding it is an instance) and the subse-
quent 6 is its parameter. to is not a Scala keyword but merely part of the Scala
standard library, and documentation on to can be found in the API documen-
tation page on scala.Int.

The portion of the computation of g2 that ensures edge vertex IDs are in ascending
order will be unnecessary once SPARK-3650 is fixed.

 Our hypothesis was confirmed: each succeeding subgraph of 10,000 vertices had a
lower triangle count.

 In this simple example, we didn’t care about Triangle Counts on a per-vertex basis,
but such information is useful when considering local connectedness as opposed to
global graph connectedness.

Shorthand way to construct a
scala.collection.immutable.Range.
Pumping a Range into a map() is a functional
alternative to an imperative for loop.

Yet another distinct use of underscore in Scala.
Here it stands for a parameter we don’t care about.

This anonymous function takes two parameters. It
looks like a Tuple2, but it’s really the Scala syntax for
an anonymous function taking two distinct parameters.

vpred is the second parameter to
subgraph() and we omitted the first
parameter (accepting its default value
of a function that always returns true)
so we have to specify the second
parameter by name.

(0 to 6).map(i => g2.subgraph(vpred =
(vid,_) => vid >= i*10000 && vid < (i+1)*10000)

triangleCount() actually calculates a Triangle Count on
a per-vertex basis, returning a Graph[Int,ED]. Here we
sum up all the Triangle Counts (stored in the vertex attribute,
which we retrieve via _._2) over all the vertices.

triangleCount.vertices.map(_._2).reduce(_ + _))
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 As with PageRank, there’s an object-based TriangleCount version as well in the
graphx.lib package.

5.3 Find the fewest hops: ShortestPaths
The ShortestPaths algorithm built into GraphX counts the number of hops (not
using any distance values that may be attached to the edges) and returns the distance
in terms of number of hops (not a full path of how to get from one vertex to another).

 You might be tempted, based on the name, to use this to plot driving routes on a
map, but an algorithm that uses distance values on edges will be covered in section 6.2.

 An example where you would want to count hops is counting the shortest number
of “friends” edges from each vertex in a social network graph to get to “Fred Marple.”
Or, because the GraphX API supports passing in a list of vertices known as landmarks,
the shortest distance from each vertex in the graph to any of those could be com-
puted—for example, anyone in the class of ’79. An example from another domain is
counting network hops in a computer network to the nearest tier-one node.

 For a simple example, using the example graph from figure 1.5 and constructed in
the Spark Shell in listing 4.1, the code in listing 5.3 computes the shortest number of
hops from each vertex in the graph to Charles. Note that even though the algorithm is
formally named “shortest paths,” from an API perspective, the GraphX implementa-
tion only returns the shortest distances. The result is shown in figure 5.5.

lib.ShortestPaths.run(myGraph,Array(3)).vertices.collect
res2: Array[(org.apache.spark.graphx.VertexId, 

org.apache.spark.graphx.lib.ShortestPaths.SPMap)] = Array((4,Map()), 
(1,Map(3 -> 2)), (3,Map(3 -> 0)), (5,Map()), (2,Map(3 -> 1))) 

Note that ShortestPaths can be invoked only in the object-based style, as there is no
corresponding method in Graph or GraphOps.

Listing 5.3 Invoking ShortestPaths

Bill

Ann

is-friends-with

Charles

Diane

is-friends-with
is-friends-with

wrote-status

likes-status

“Went to gym this morning”

2

1

2 0

1 3

4

5

Figure 5.5 ShortestPaths finds the number of hops (shown in the squares) from 
every vertex to a particular specified vertex (in this case, vertex #3). It does not take 
into account any edge weights (which might, for example, represent distances on a 
map), and it only returns the number of hops, not any routes on how to achieve that 
shortest distance.
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5.4 Finding isolated populations: Connected Components
Connected Components can find cliques in social network graphs and “partitioning”
in a data center network. The Connected Components algorithm is relevant for both
directed and undirected graphs. The code to construct the graph in figure 5.6 and
find its Connected Components is shown in the following listing.

val g = Graph(sc.makeRDD((1L to 7L).map((_,""))),
    sc.makeRDD(Array(Edge(2L,5L,""), Edge(5L,3L,""), Edge(3L,2L,""),

Edge(4L,5L,""), Edge(6L,7L,"")))).cache
g.connectedComponents.vertices.map(_.swap).groupByKey.map(_._2).collect
res3: Array[Iterable[org.apache.spark.graphx.VertexId]] = Array(
CompactBuffer(1), CompactBuffer(6, 7), CompactBuffer(4, 3, 5, 2))

connectedComponents returns a new Graph object with the same structure as the input
graph. Connected Components are identified by the lowest vertex ID in the compo-
nent, and this value is assigned as an attribute to each vertex. We have the result
shown in table 5.1.

As with PageRank and some of the other built-in algorithms, there are both object-
oriented and object-based ways to invoke GraphX’s Connected Components imple-
mentation. 

Listing 5.4 Invoking connectedComponents()

Table 5.1 Connected Components are identified by the lowest vertex ID.

Component ID Component members

1 1

2 2, 3, 4, 5

6 6, 7

2

5

3 4

7

1 6

Figure 5.6 This one graph of 7 vertices and 5 edges has three Connected Components. 
If this graph data were from a social network, each Connected Component would be 
considered a clique.
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5.4.1 Predicting social circles

Now that you’ve seen how easy it is to generate Connected Components in GraphX,
let’s put the algorithm to work on a real-world dataset. Not only will we get to run the
Connected Components algorithm we’ve looked at, we’ll also see how to import data,
manipulate it into the structure that we need, and output the results in a particular
format. We’ll use a dataset derived from Facebook that was used in a 2014 Kaggle data
science competition.

 Kaggle (www.kaggle.com) hosts competitions in which a dataset is provided for
download and the participants are set a task to predict a certain outcome for each
record in the dataset. Over the course of the competition, competitors get to submit
their predictions, which are scored for their accuracy compared to some ground truth
known only to the competition organizers. At the end of the competition, the compet-
itor with the best score wins, with prizes ranging from cash to job offers.

 We’re going to use data from the Learning Social Circles from Networks competi-
tion. The data was collected from a small number of Facebook users who had supplied
information on friends in their network. In addition to the graph of their network,
each contributing user was asked to allocate their friends to one or more social circles.
A social circle is some grouping of the user’s friends that made sense to that user. For
example, it could be colleagues at work, people from the same school, or a group of
friends they socialize with. What constitutes a social circle was left up to the user. Cir-
cles could overlap, be completely contained by one or more other circles, and could
even be empty.

 The aim of the competition was to use the network information to get the best pre-
diction of how users would be grouped into circles. Clearly there are numerous ways
that we could tackle the problem, but we’ll use a simple approach of finding con-
nected components within the graph of each user’s connections. Our prediction of
what circles each user has and how friends are allocated to those circles are then the
Connected Components.

GETTING THE KAGGLE DATA ON SOCIAL NETWORKS

To download the data from Kaggle, you’ll need to set up an account with Kaggle. Once
you’ve done that, navigate to www.kaggle.com/c/learning-social-circles/data. This
page lists a number of files, but you want the one called egonets.zip. You’ll be asked to
accept the competition rules even though the competition has ended, so go ahead and
accept. Unzip the file and have a look at the directory—we saved the egonets folder
underneath a folder structure called socialcircles/data, as shown in figure 5.7.

NOTE The term egonet comes from a paper by Julian McAuley and Jure Lesk-
ovec from Stanford in which they describe individual users as egos and users’
connections as alters. All very Freudian!

http://www.kaggle.com
http://www.kaggle.com/c/learning-social-circles/data
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The dataset is anonymized so that each contributing user is given an ID, and you’ll
find an egonet file for each user. Open one up and look at its contents. We’ve chosen
3077.egonet because it is small enough to display on the page; here are its contents:

3078: 3085 3089
3079: 3082
3080: 3089
3081: 3085 3083 3089
3082: 3079 3086 3089
3083: 3085 3081 3089
3084: 
3085: 3083 3078 3081 3088 3089
3086: 3082
3087: 
3088: 3085 3089
3089: 3085 3080 3083 3078 3082 3081 3088

The egonet file lists each of the user’s friends and, for each of those friends, who their
connections are. There is one row for each of the user’s friends (again anonymized
and given numeric IDs). The format is

Friend-id: Space-seperated list of connection-ids

Figure 5.7 The egonets folder contains 111 egonet files, one for each user.
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User 3077 has 12 friends (IDs 3078 to 3089). Friend 3078 is connected to two of 3077’s
other friends, 3085 and 3089. Friends 3084 and 3087 seem to be loners in the group
who aren’t connected to any of 3077’s friends. Figure 5.8 shows a graph of these con-
nections. In this instance we have one big graph for everyone but 3084 and 3087 and
singleton vertices for the two loners. We should find three connected components
which will form the basis for three social circles. Other egonets have a more compli-
cated structure.

READING FOLDER CONTENTS WITH WHOLETEXTFILES 
Our task is to read in each of the egonet files, create a graph from the friends and
their connections, find the connected components, and output the resulting social
circles.

 As with many real-world problems, we have to accept the input in the format it is
given to us and convert that input into the structures we need to create graphs. In this
case, the input data is not in a single convenient file but rather is scattered across the
files of a directory. Luckily we can use a method on SparkContext called wholeText-
Files to read the contents of a folder into an RDD:

val egonets = sc.wholeTextFiles("socialcircles/data/egonets")

wholeTextFiles returns a PairRDD with one element for each file; the key is the
folder path to the file, and the value is the contents of the file (see figure 5.9). 

FINDING SOCIAL CIRCLES

Listing 5.5 shows the full code to read in the input, generate the social circles, and
output the predictions to the console. Once wholeTextFiles has loaded the egonets
directory into an RDD called egonets, we generate two arrays, egonets_numbers and
egonets_edges, using a map operation on each element of egonets. 

3080

3089

3088

3078

3085

3083

3087

3082

3086

3084

3079 3081

Figure 5.8 The egonet for user 
3077 forms three connected 
components: two single-vertex 
components (vertices 3084 and 
3087) and one large component 
(all the other vertices).
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The first map operation uses a method we define called extract. This uses a regular
expression to extract the user ID from the filename.

SCALA TIP Regular expressions (or regexes) can be created by appending r
to the end of a string. Regexes are usually a pain to write in Java because every
backslash has to be delimited by another backslash. For this reason, Scala pro-
vides “raw” strings using a triple-quoting syntax as used in the example.
Finally Scala regexes provide “extractor” methods that allow you to designate
variables that a matching regex will populate. The code val Pattern(num) = s
populates the num variable with the group matching the string s.

The second map expression calls a helper method, make_edges, which parses each
egonet file’s contents to create edges between each friend connection. Another
helper method, get_circles, creates a graph of the egonet using Graph.fromEdge-
Tuples. Once we have the graph, we call connectedComponents to derive the social
circles (see the following listing). 

// returns the userId from a file path with the format
//   <path>/<userId>.egonet
def extract(s: String) = {
    val Pattern = """^.*?(\d+).egonet""".r
    val Pattern(num) = s
    num
}

Listing 5.5 Find and list social circles

Key: File path

egonet/0.egonet

sc.wholeTextFiles

1: 146 189 229 201 204 60  …
752: 146 191 229 201 204 60 215 35 …
…

egonet/239.egonet 240: 283 241 334 285 309
241: 283 334 242 273 285 240 …
…

egonet/345.egonet 346: 572 506 496 518 470 519 468  …
347: 560 577 506 496 476 458 518  …
…

egonet/611.egonet 612: 846 730 739 635 823 755 …
613: 812 834 720 845 661 838 782 …
…

… …

egonet/850.egonet 851: 998 988 1076 866 959 1088  …
852: 903 939 1079 1050 883 1039 …
…

Value: File contents

Figure 5.9 A folder path is passed to wholeTextFiles to generate a PairRDD with the file path 
as the key for each element and the file contents for the value. This is both good performing and a 
convenient way to read a directory of text files, resulting in all the data being in a single RDD.
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// Processes a line from an egonet file to return a
// Array of edges in a tuple
def get_edges_from_line(line: String): Array[(Long, Long)] = {
    val ary = line.split(":")
    val srcId = ary(0).toInt
    val dstIds = ary(1).split(" ")
    val edges = for {

dstId <- dstIds
if (dstId != "")

} yield {
(srcId.toLong, dstId.toLong)

}

// A subtle point: if the user is not connected to
// anyone else then we generate a "self-connection"
// so that the vertex will be included in the graph
// created by Graph.fromEdgeTuples.
if (edges.size > 0) edges else Array((srcId, srcId))

}

// Constructs Edges tuples from an egonet file 
// contents 
def make_edges(contents: String) = {
    val lines = contents.split("\n")
    val unflat = for {

line <- lines
    } yield {

get_edges_from_line(line)
    }
    // We want an Array of tuples to pass to Graph.fromEdgeTuples
    // but we have an Array of Arrays of tuples. Luckily we can
    // call flatten() to sort this out.
    val flat = unflat.flatten
    flat
}

// Constructs a graph from Edge tuples
// and runs connectedComponents returning
// the results as a string
def get_circles(flat: Array[(Long, Long)]) = {
    val edges = sc.makeRDD(flat)
    val g = Graph.fromEdgeTuples(edges,1)
    val cc = g.connectedComponents()

cc.vertices.map(x => (x._2, Array(x._1))).
reduceByKey( (a,b) => a ++ b).
values.map(_.mkString(" ")).collect.mkString(";")

}

val egonets = sc.wholeTextFiles("socialcircles/data/egonets")
val egonet_numbers = egonets.map(x => extract(x._1)).collect
val egonet_edges   = egonets.map(x => make_edges(x._2)).collect
val egonet_circles = egonet_edges.toList.map(x => get_circles(x))
println("UserId,Prediction")
val result = egonet_numbers.zip(egonet_circles).map(x => x._1 + "," + x._2)
println(result.mkString("\n"))

Splits string into array of its 
parts based on a delimiter, 
like String.split() in Java

Scala for comprehension
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SCALA TIP A for comprehension is like a map() combined with a filter(). The
syntax starts off with something like x <- myCollection, which is similar to
enhanced for-loops introduced in Java 5. Immediately following is an
optional guard which acts like the filter(). Finally comes the yield {} which
acts like the function passed into a map(); the difference is that what would be
the function parameter of the function passed into map() is declared at the
beginning of the for comprehension.

The competition requires a particular format for predictions. Each social circle is rep-
resented as a space-separated list of user IDs, and each social circle is separated by a
semicolon (;). The code we use to do this is as follows:

In this example, we have output the user ID and the social circles in the format
required for the competition; but the choice of output depends on what subsequent
use we want to make of the information. Spark allows you to easily push the data to an
external database, output to a real-time system, or even integrate into a more exten-
sive machine-learning pipeline.

5.5 Reciprocated love only, please: 
Strongly Connected Components
For directed graphs, sometimes we might want to eliminate dead ends from our com-
ponents. In social networks, Strongly Connected Components can form a basis for a
recommendation engine if other aspects are added to the engine. Another applica-
tion is ensuring that in a state machine there are no dead ends where the state
machine could get stuck. They are also useful in building optimizing compilers for
when they do data flow analysis to identify expressions that never get used and would
otherwise be wastefully computed.

Each vertex is assigned
the lowest vertex id in
the component.

Converts each array
into a string where
the elements are
separated by spaces,
resulting in a new
RDD[String].

Convert the RDD
to an array

Creates new PairRDD
with one element for
each key (connected
component). The ++
syntax appends one
array to another.

cc.vertices.map(x=> (x._2, Array(x_1))).
reduceByKey( (a,b) => a ++ b).
values.map(_.mkString(" ")).
collect.mkString(";")

Convert array
to semi-colon (;)
separated string

Map vertices RDD to new PairRDD.
Key is the connected component ID
and the value is a single-valued
array containing the Vertex ID.
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Invoking stronglyConnectedComponents() is similar to invoking connected-

Components() except that a parameter numIter is required. Assuming g is defined as in
the previous section, the following listing finds its Strongly Connected Components.

g.stronglyConnectedComponents(10).vertices.map(_.swap).groupByKey.
map(_._2).collect

res4: Array[Iterable[org.apache.spark.graphx.VertexId]] = Array(
CompactBuffer(4), CompactBuffer(1), CompactBuffer(6), CompactBuffer(7),
CompactBuffer(3, 5, 2))

5.6 Community detection: LabelPropagation
To identify close-knit communities within a graph, GraphX provides the label propa-
gation algorithm (LPA) as described by Raghavan et al in their 2007 paper “Near lin-
ear time algorithm to detect community structures in large-scale networks.” The idea
is to have densely connected groups of vertices form a consensus on a unique label
and so define communities.

DEFINITION Many iterative algorithms are guaranteed to get closer to a partic-
ular result on each iteration of the algorithm; they converge. With algorithms
that have this property, it’s reasonable to run the algorithm for as many itera-
tions as required and use a tolerance test to exit the algorithm when they’re
“close enough.” Algorithms that don’t converge could continue forever with-
out converging, so we need to specify an upper limit on the number of itera-
tions that will be run. Inevitably in this situation there is a trade-off between
the accuracy of the end result and the time the algorithm takes to run.

Unfortunately, LPA often doesn’t converge. Figure 5.11 shows an example of non-
convergence—the graph in step 5 is the same as in step 3, and the algorithm contin-
ues forever ping-ponging between the two graphs that look like steps 4 and 5. For that
reason, GraphX only provides a static version that runs for a number of iterations you
specify and doesn’t provide a dynamic version with a tolerance-terminating condition.

Listing 5.6 Invoking stronglyConnectedComponents()

2

5

3 4

7

1 6

Figure 5.10 In Strongly Connected Components, every vertex is reachable from 
every other vertex in the component. Within a Strongly Connected Component, no 
vertex can act as a dead end.
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Despite its name, LPA is also not applicable to the use case of propagating classifica-
tions of vertices—propagating labels from vertices of known classification to vertices
of unknown classification. Section 7.3 explores this use case, called semi-supervised
learning.

 LPA, in contrast, uses as its initial labels the vertex ID, as shown in step 0 of figure 5.11
(see the following listing). LPA doesn’t care about edge direction, effectively treating
the graph as an undirected graph. The flip-flopping of two sets of labels that is shown
in steps 3 through 5 in figure 5.11 is illustrated in a similar example in the original
Raghavan paper.

val v = sc.makeRDD(Array((1L,""), (2L,""), (3L,""), (4L,""), (5L,""),
 (6L,""), (7L,""), (8L,"")))
val e = sc.makeRDD(Array(Edge(1L,2L,""), Edge(2L,3L,""), Edge(3L,4L,""),
 Edge(4L,1L,""), Edge(1L,3L,""), Edge(2L,4L,""), Edge(4L,5L,""),
 Edge(5L,6L,""), Edge(6L,7L,""), Edge(7L,8L,""), Edge(8L,5L,""),
 Edge(5L,7L,""), Edge(6L,8L,"")))
lib.LabelPropagation.run(Graph(v,e),5).vertices.collect.
 sortWith(_._1<_._1)
res5: Array[(org.apache.spark.graphx.VertexId, 

org.apache.spark.graphx.VertexId)] = Array((1,2), (2,1), (3,1), (4,2), 
(5,4), (6,5), (7,5), (8,4))

5.7 Summary
 GraphX’s built-in algorithms range widely in their usefulness, power, and appli-

cability.
 PageRank is useful for a number of different applications beyond ranking web

pages for a search engine.

Listing 5.7 Invoking LabelPropagation
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Step 0
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1
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Figure 5.11 The LPA algorithm often doesn’t converge. Step 5 is the same as step 3, meaning 
that steps 3 and 4 keep repeating forever.
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 Personalized PageRank is useful for ranking “people you may know” in a social
network.

 Triangle Count can serve as a gross measure for connectedness, but another
measure to be introduced in chapter 8, the Global Clustering Coefficient, has
the advantage of always being within the range of 0 to 1, facilitating compari-
sons between graphs of different sizes.

 Connected Components and Strongly Connected Components can find social
circles in social networks.

 GraphX’s Label Propagation is less useful because it rarely converges.



Other useful
graph algorithms
In chapter 5 you learned the foundational GraphX APIs that will enable you to
write your own custom algorithms. But there’s no need for you to reinvent the
wheel in those cases where the GraphX API already provides an implemented stan-
dard algorithm. There are some algorithms that have been historically associated
with graphs for decades but are not in the GraphX API. This chapter describes
some of those classic graph algorithms and discusses which situations they can be
used in.

 These classic graph algorithms were invented in the 1950s, long before Spark or
any other sort of parallel computing. They are iterative in nature—for example,
they add one edge at a time to the solution. GraphX’s Pregel API isn’t a good match
because it operates on all the vertices simultaneously. The power of GraphX’s paral-
lel processing is still being used, though, because each step in these algorithms

This chapter covers
 Standard graph algorithms that GraphX doesn’t 

provide out of the box

 Shortest Paths on graphs with weighted edges

 The Traveling Salesman problem

 Minimum Spanning Trees
110
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involves some kind of graph-wide search. You’ll see how to use GraphX’s iterative
Map/Reduce facilities (aggregateMessages() together with outerJoinVertices())
to implement and parallelize these algorithms that were originally designed for serial
computation.

 The first of the three algorithms described in this chapter, Shortest Paths with
Weights, fills a glaring hole in the GraphX API, which only provides a shortest-paths
algorithm that assumes each edge has a weight of 1. Shortest Paths with Weights allows
route planning on a map where each edge weight represents the distance between its
two vertices (representing cities).

 The second algorithm, called the Travelling Salesman, finds a path through a
graph that hits every vertex. This algorithm is useful for package/mail delivery and
other logistics applications.

 The third and final algorithm, Minimum Spanning Tree, overlays a tree (a graph
with no cycles) over the top of the graph where the sum of its edge weights is less than
any other possible spanning tree. Although this sounds abstract (and is, in fact, one of
the first algorithms presented in a graph theory course), it’s useful for routing utilities
and has other non-intuitive uses, such as creating hierarchical scientific or biblio-
graphic taxonomies.

6.1 Your own GPS: Shortest Paths with Weights 
Today, we take for granted the GPS capability in our smartphones and map apps. But
how do they do it? Edsger Dijkstra figured it out in 1956, and this section implements
a Spark version of that algorithm.

 Section 5.3 showed GraphX’s implementation of finding shortest-path lengths for
graphs with unweighted edges, but Dijkstra’s algorithm finds the shortest-path lengths
for graphs with weighted edges (see figure 6.1). When way-finding on a geographical
map, the vertices represent cities or road intersections, and the edge weights repre-
sent road distances.
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Figure 6.1 Example graph data and distances from vertex A after having been run through 
Dijkstra’s algorithm. Given a graph with edge weights on the left, Dijkstra’s algorithm annotates 
each vertex with a “shortest distance from vertex A.” Graph data credit: the graph data comes from 
the Wikipedia article on Kruskal’s algorithm (which, incidentally, is implemented in the last section 
of this chapter), which the contributor contributed to the public domain.



112 CHAPTER 6 Other useful graph algorithms
The Dijkstra algorithm calculates path distance from one particular vertex to every
other vertex in the graph. It can be described like this:

1 Initialize the starting vertex to distance zero and all other vertices to distance
infinity.

2 Set the current vertex to be the starting vertex.
3 For all the vertices adjacent to the current vertex, set the distance to be the

lesser of either its current value or the sum of the current vertex’s distance plus
the length of the edge that connects the current vertex to that other vertex. For
example, in figure 6.1, after the first iteration, vertex D has a value of 5, and ver-
tex B has a value of 7. In the second iteration, there is a candidate alternative to
get from A to D, which is through B, but that has a total path length of 16, so D
keeps its old value of 5.

4 Mark the current vertex as having been visited.
5 Set the current vertex to be the unvisited vertex of the smallest distance value. If

there are no more unvisited vertices, stop.
6 Go to step 3.

There are many variations of Dijkstra’s algorithm, including versions for directed ver-
sus undirected graphs. The implementation in the following listing is geared toward
directed graphs.

import org.apache.spark.graphx._
def dijkstra[VD](g:Graph[VD,Double], origin:VertexId) = {
  var g2 = g.mapVertices(
    (vid,vd) => (false, if (vid == origin) 0 else Double.MaxValue))

  for (i <- 1L to g.vertices.count-1) {
    val currentVertexId =

g2.vertices.filter(!_._2._1)
.fold((0L,(false,Double.MaxValue)))((a,b) =>
   if (a._2._2 < b._2._2) a else b)
._1

    val newDistances = g2.aggregateMessages[Double](
ctx => if (ctx.srcId == currentVertexId)

ctx.sendToDst(ctx.srcAttr._2 + ctx.attr),
(a,b) => math.min(a,b))

    g2 = g2.outerJoinVertices(newDistances)((vid, vd, newSum) =>
(vd._1 || vid == currentVertexId,
math.min(vd._2, newSum.getOrElse(Double.MaxValue))))

  }

g.outerJoinVertices(g2.vertices)((vid, vd, dist) =>
(vd, dist.getOrElse((false,Double.MaxValue))._2))

}

Listing 6.1 Dijkstra Shortest Paths distance algorithm
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SPARK TIP The RDD API unfortunately doesn’t include a minBy() function
like regular Scala collections do, so a cumbersome and verbose fold() had to
be used in the preceding code to accomplish the same thing.

In this implementation, we stoop to using a var (for g2) instead of a val because this
is an iterative algorithm. When we initialize g2, we throw away any vertex data in the
original g and attach our own: a pair of a Boolean and a Double. The Boolean indi-
cates whether the vertex has been visited yet. The Double is the distance from the ori-
gin to that vertex.

 As of GraphX 1.6 all graphs are immutable, so the only way to “update” these ver-
tex values in our algorithm is to create a new graph. When we compute newDistances,
we have to add that onto our graph g2 with outerJoinVertices(), which creates a
new graph. We assign that new graph back to g2, relying on JVM garbage collection to
get rid of the old graph that was in g2.

 As the last line of the function, which is the return value, we restore the original ver-
tex properties by adding the final results from g2 onto the original g with outer-
JoinVertices. In the process we make the type of the vertex properties for the return
graph have an extra level of information; instead of VD, the vertex property type is a
Tuple2[VD,Double], where the Double contains the distance output from Dijkstra’s
algorithm.

 The Pregel API would not have been easy to use due to the concept of the “current
vertex,” which for each iteration is the global overall minimum. The Pregel API is
more suited for algorithms that treat all vertices as equals. The next listing shows how
to execute our new dijkstra() function with the graph from figure 6.1.

val myVertices = sc.makeRDD(Array((1L, "A"), (2L, "B"), (3L, "C"),
  (4L, "D"), (5L, "E"), (6L, "F"), (7L, "G")))
val myEdges = sc.makeRDD(Array(Edge(1L, 2L, 7.0), Edge(1L, 4L, 5.0),
  Edge(2L, 3L, 8.0), Edge(2L, 4L, 9.0), Edge(2L, 5L, 7.0),
  Edge(3L, 5L, 5.0), Edge(4L, 5L, 15.0), Edge(4L, 6L, 6.0),
  Edge(5L, 6L, 8.0), Edge(5L, 7L, 9.0), Edge(6L, 7L, 11.0)))
val myGraph = Graph(myVertices, myEdges)

dijkstra(myGraph, 1L).vertices.map(_._2).collect

res0: Array[(String, Double)] = Array((D,5.0), (A,0.0), (F,11.0), (C,15.0),
 (G,22.0), (E,14.0), (B,7.0))

These are the values shown in figure 6.1. But wait a minute—how would you know the
path sequence to get to any of these destination vertices? The algorithm computes the
distances, but not the paths.

 The following listing adds the common embellishment of keeping track of the
paths every step of the way by adding a third component to the vertex tuple, a Scala
List that accumulates breadcrumbs.

Listing 6.2 Executing the Shortest Path distance algorithm
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import org.apache.spark.graphx._
def dijkstra[VD](g:Graph[VD,Double], origin:VertexId) = {
  var g2 = g.mapVertices(
    (vid,vd) => (false, if (vid == origin) 0 else Double.MaxValue,

List[VertexId]()))

  for (i <- 1L to g.vertices.count-1) {
    val currentVertexId =

g2.vertices.filter(!_._2._1)
.fold((0L,(false,Double.MaxValue,List[VertexId]())))((a,b) =>
   if (a._2._2 < b._2._2) a else b)
._1

    val newDistances = g2.aggregateMessages[(Double,List[VertexId])](
ctx => if (ctx.srcId == currentVertexId)

ctx.sendToDst((ctx.srcAttr._2 + ctx.attr,
ctx.srcAttr._3 :+ ctx.srcId)),

(a,b) => if (a._1 < b._1) a else b)

    g2 = g2.outerJoinVertices(newDistances)((vid, vd, newSum) => {
val newSumVal =
newSum.getOrElse((Double.MaxValue,List[VertexId]()))

(vd._1 || vid == currentVertexId,
math.min(vd._2, newSumVal._1),
if (vd._2 < newSumVal._1) vd._3 else newSumVal._2)})

  }

g.outerJoinVertices(g2.vertices)((vid, vd, dist) =>
(vd, dist.getOrElse((false,Double.MaxValue,List[VertexId]()))

.productIterator.toList.tail))
}

SCALA TIP The “operator” (Scala purists call them functions, even though
they look like operators) :+ is a Scala List function that returns a new list with
an element appended. Scala List has a large number of similar operators for
prepending or appending lists or elements, and these are listed along with
the other Scala List functions in the Scaladocs for List.

dijkstra(myGraph, 1L).vertices.map(_._2).collect

res1: Array[(String, List[Any])] = Array((D,List(5.0, List(1))),
 (A,List(0.0, List())), (F,List(11.0, List(1, 4))),
 (C,List(15.0, List(1, 2))), (G,List(22.0, List(1, 4, 6))),
 (E,List(14.0, List(1, 2))), (B,List(7.0, List(1))))

That’s much better. Now you can know the shortest path to take to get to any of the
other vertices.

Listing 6.3 Dijkstra’s Shortest Path algorithm with breadcrumbs

Listing 6.4 Executing the Shortest Path algorithm that uses breadcrumbs



115Travelling Salesman: greedy algorithm 
6.2 Travelling Salesman: greedy algorithm 
The travelling salesman problem tries to find the shortest path through an undirected
graph that hits every vertex. For example, if a salesperson needs to visit every city in a
region, they would like to minimize the total distance traveled.

 Unlike the shortest path problem in the previous section, there is no easy, straight-
forward, deterministic algorithm to solve the travelling salesman problem. Note that
travelling salesman is a well-known math problem; the term was coined in the 1930s, so
that term is used here rather than inclusive language.

 The problem is of a class of problems known as NP-
hard, which means it can’t be solved in an amount of time
that is a polynomial with respect to the number of vertices
or edges. It is, rather, a combinatorial optimization prob-
lem that would require an exponential amount of time to
solve optimally. Instead of trying to find the optimum, var-
ious approaches use heuristics to come close to the opti-
mum. The implementation shown in figure 6.2 uses the
greedy algorithm, which is the simplest algorithm but it
also gives answers that can be far from optimal and don’t
necessarily hit all the vertices. (If hitting every vertex is a
requirement, the algorithm might produce no acceptable
answer at all.) This algorithm is called greedy because at
every iteration it grabs the immediate shortest edge with-
out doing any kind of deeper search.

 The greedy algorithm can be improved without much additional coding by iterat-
ing and rerunning the whole algorithm with different starting vertices, picking from
the resulting solutions the one that goes to all the vertices and is the shortest. But the
implementation shown in listing 6.5 only does one execution of the greedy algorithm
for a given starting vertex passed in as a parameter.

 The approach of the greedy algorithm is simple:

1 Start from some vertex.
2 Add the adjacent edge of lowest weight to the spanning tree.
3 Go to step 2.

def greedy[VD](g:Graph[VD,Double], origin:VertexId) = {
  var g2 = g.mapVertices((vid,vd) => vid == origin)

    .mapTriplets(et => (et.attr,false))
  var nextVertexId = origin
  var edgesAreAvailable = true

  do {
    type tripletType = EdgeTriplet[Boolean,Tuple2[Double,Boolean]]

    val availableEdges =

Listing 6.5 Travelling Salesman greedy algorithm
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Figure 6.2 The greedy 
approach to the Travelling 
Salesman problem is the 
simplest, but it doesn’t 
always hit all the vertices. In 
this example, it neglected to 
hit vertex G.
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g2.triplets
.filter(et => !et.attr._2

&& (et.srcId == nextVertexId && !et.dstAttr
|| et.dstId == nextVertexId && !et.srcAttr))

    edgesAreAvailable = availableEdges.count > 0

    if (edgesAreAvailable) {
val smallestEdge = availableEdges
  .min()(new Ordering[tripletType]() {

override def compare(a:tripletType, b:tripletType) = {
Ordering[Double].compare(a.attr._1,b.attr._1)

}
   })

nextVertexId = Seq(smallestEdge.srcId, smallestEdge.dstId)
.filter(_ != nextVertexId)(0)

g2 = g2.mapVertices((vid,vd) => vd || vid == nextVertexId)
.mapTriplets(et => (et.attr._1,

et.attr._2 ||
  (et.srcId == smallestEdge.srcId
   && et.dstId == smallestEdge.dstId)))

    }
  } while(edgesAreAvailable)

  g2
}

greedy(myGraph,1L).triplets.filter(_.attr._2).map(et=>(et.srcId, et.dstId))
.collect

res1: Array[(org.apache.spark.graphx.VertexId,
 org.apache.spark.graphx.VertexId)] = Array((1,4), (2,3), (3,5), (4,6),
 (5,6))

SCALA TIP type is a convenient way to alias types at compile time to prevent
having to type out long types over and over again. It’s similar to typedef in
C/C++, but there’s no equivalent in Java. type in Scala also has another use—
to introduce abstract type members in traits—but that’s beyond the scope of
this book.

Here we stoop to using three vars. The third one is for loop control because Scala has
no break keyword (although there is a simulation of break in the standard library). In
this implementation, during the looping the graph g2 has different vertex property
types and a different edge property type than for g that was passed in. The vertex
property type is Boolean, indicating whether the vertex has been incorporated into
the solution yet. The edge property type is similar, except the edge weight is carried
along as well because it’s used by the algorithm; specifically, the Edge attribute type is
Tuple2[Double,Boolean] where the Double is the edge weight and the Boolean indi-
cates whether the edge has been incorporated as part of the solution.

 The computation of availableEdges checks edges in both directions. This is what
makes the algorithm treat graphs as if they were undirected. All GraphX graphs are
directed in reality, with a source and a destination. Any implementation in GraphX of
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other algorithms meant for undirected graphs would have to take similar precautions
of checking both directions.

 Similar to the Shortest Paths algorithm in the previous section, we had to create a
new graph at the end of the iteration due to the immutability of graphs in GraphX.
For each iteration, the algorithm needs to set the Boolean on one vertex and the
Boolean on one edge, but nevertheless, a new graph has to be created. Also similar to
the Shortest Paths algorithm, the Pregel API would not be a good choice here because
the greedy Travelling Salesman algorithm adds one edge at a time (to one vertex); it
isn’t treating all vertices equally.

 The resulting graph finally returned by greedy is in perhaps not the most conve-
nient form for the caller. We didn’t bother to glom back on the original vertex proper-
ties from g. The reason we didn’t is that we would have had to join the edge properties
from g and g2 together, and GraphX provides no automatic way to do that. We do it in
the next section, but it requires more than a line of code, which is a lot for Scala.

6.3 Route utilities: Minimum Spanning Trees
Minimum Spanning Trees sound abstract and not use-
ful, but they can be considered to be like the Travel-
ling Salesman problem where you don’t care if you
have to backtrack (and where backtracking is free
of cost). One of the most immediate applications is
routing utilities (roads, electricity, water, and so on)
to ensure that all cities receive the utility, at mini-
mum cost (for example, minimum distance, if the
edge weights represent distance between cities).
There are some non-obvious applications of Mini-
mum Spanning Trees as well, including the cre-
ation of taxonomies among a collection of similar
items, such as animals (for scientific classification)
or newspaper headlines. See figure 6.3.

 Listing 6.6 is an implementation of Kruskal’s algorithm. Again, the example graph
used throughout this chapter is the same as the example graph on the Wikipedia page
of Kruskal’s algorithm, and because that Wikipedia page illustrates the execution of
the algorithm through a sequence of graph illustrations, you can see exactly how the
following implementation works.

 Even though Kruskal’s algorithm is greedy, it does find one of the Minimum Span-
ning Trees (there may be more than one Spanning Tree that has the same total
weight). Finding a Minimum Spanning Tree isn’t a combinatorial problem. Kruskal’s
algorithm is called greedy because at every iteration it grabs the edge of lowest weight.
Unlike the Travelling Salesman greedy algorithm, the result is mathematically prov-
ably a Minimum Spanning Tree. See figure 6.4.
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Figure 6.3 A Minimum Spanning Tree 
is a tree (a graph with no cycles) that 
covers every vertex of an undirected 
graph, of minimum total weight (sum 
of the edge weights).
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Unlike the Travelling Salesman algorithm in the previous section, Kruskal’s algorithm
doesn’t build up the tree by extending out an edge at a time from some growing tree.
Rather, it does a global search throughout the graph to find the edge with the least
weight to add to the set of edges that will eventually form a tree. The algorithm can be
described like this:

1 Initialize the set of edges that will eventually comprise the resulting minimum
spanning tree to be empty.

2 Find the edge of smallest weight throughout the whole graph that meets the fol-
lowing two conditions and add it to the result set:
a The edge isn’t already in the result set of edges.
b The edge doesn’t form a cycle with the edges already in the result set of edges.

3 Go to step 2, unless all vertices are already represented in the result set of edges.

The second condition (b) in step 2 is the tricky one. Finding a cycle is easy for a
human to comprehend, but it’s not immediately obvious how to describe it to a com-
puter. There are a few approaches we could have taken. We could find the shortest
path (for example, by invoking GraphX’s built-in ShortestPaths, described in section
5.3) for every candidate edge (which is all or almost all of them in the beginning) and
then discard from consideration those edges whose vertices already have a path
between them. Another approach, which is the one taken in listing 6.6, is to call
GraphX’s built-in connectedComponents(), described in section 5.4. This gives vertex
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Figure 6.4 Iteration steps of Kruskal’s algorithm to find a Minimum Spanning Tree. In each iteration, 
the whole graph is searched for the unused edge of lowest weight. But there’s a catch: that edge 
can’t form a cycle (as a tree is what is being sought).
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connectivity information across the whole graph in one fell swoop. If the two vertices
of an edge belong to the same connected component of the result tree so far, then
that edge is ineligible for consideration because adding it to the result set would cre-
ate a cycle.

def minSpanningTree[VD:scala.reflect.ClassTag](g:Graph[VD,Double]) = {
  var g2 = g.mapEdges(e => (e.attr,false))

  for (i <- 1L to g.vertices.count-1) {
    val unavailableEdges =

g2.outerJoinVertices(g2.subgraph(_.attr._2)
.connectedComponents
.vertices)((vid,vd,cid) => (vd,cid))

.subgraph(et => et.srcAttr._2.getOrElse(-1) ==
et.dstAttr._2.getOrElse(-2))

.edges

.map(e => ((e.srcId,e.dstId),e.attr))

    type edgeType = Tuple2[Tuple2[VertexId,VertexId],Double]

    val smallestEdge =
g2.edges
.map(e => ((e.srcId,e.dstId),e.attr))
.leftOuterJoin(unavailableEdges)
.filter(x => !x._2._1._2 && x._2._2.isEmpty)
.map(x => (x._1, x._2._1._1))
.min()(new Ordering[edgeType]() {
   override def compare(a:edgeType, b:edgeType) = {

val r = Ordering[Double].compare(a._2,b._2)
if (r == 0)

Ordering[Long].compare(a._1._1, b._1._1)
else

r
   }
 })

    g2 = g2.mapTriplets(et =>
(et.attr._1, et.attr._2 || (et.srcId == smallestEdge._1._1

 && et.dstId == smallestEdge._1._2)))
  }

  g2.subgraph(_.attr._2).mapEdges(_.attr._1)
}

minSpanningTree(myGraph).triplets.map(et =>
 (et.srcAttr,et.dstAttr)).collect

Res2: Array[(String, String)] = Array((A,B), (A,D), (B,E), (C,E), (D,F),
 (E,G))

SCALA TIP Sometimes when using Scala generics it’s necessary to declare the
type parameters to be of scala.reflect.ClassTag. This is due to JVM type-
erasure at runtime. In listing 6.6, the type VD is needed at runtime and not
only at compile-time for the call to subgraph().

Listing 6.6 Minimum Spanning Tree
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In this implementation, the only type change we make to the graph during iteration is
to add a Boolean to the Edge properties to indicate whether that edge is part of the
result set of edges for the Spanning Tree.

 All the tricky magic happens in the assignment to unavailableEdges. After first
subsetting the graph to be those edges already in the growing result set of edges, we
run it through connectedComponents(). We then take those component IDs and glom
them onto the regular vertex data with outerJoinVertices(). Then we say that an
edge is unavailable if its two vertices belong to the same connected component. Those
component IDs could be conceptually null (in Scala-speak, Option[VertexId] could
be None) due to the way outerJoinVertices() works. If a vertex isn’t part of the grow-
ing result set of edges, then it’s free and clear, and we prevent such edges from being
declared unavailable by saying None is equivalent to a component ID of –1 or –2.
–1 and –2 were intentionally chosen to be not only invalid vertexIds but also differ-
ent from each other so that an edge with both vertices not already part of the growing
result set of edges would be considered still available.

 The computation of smallestEdge contains that conceptual join on edges that
we said earlier in this chapter was messy because GraphX doesn’t have an edge join
built in. We’ll convert the edges to a Tuple2[Tuple2[VertexId, VertexId], Tuple2
[Double, Boolean]] and then use the regular RDD leftOuterJoin() (not to be con-
fused with the GraphX-specific join()s and outerJoin()s). leftOuterJoin() will
treat the Tuple2[VertexId, VertexId] as a single entity and key off that when it per-
forms the join. After the leftOuterJoin(), the data type has five parts and looks like
figure 6.5.

 After removing the edges unavailable for consideration, the subsequent map()
then extracts only the two pieces of information we care about: the pair of VertexIds
and the edge weight. The override def compare first compares the edge weights, and
if those are equal, breaks the tie by comparing to see which VertexId is less. This is to
make the execution deterministic and repeatable and to match the results in the

srcId

Tuple2[Tuple2[VertexId, VertexId],
Tuple2[Tuple2[Double, Boolean],

Option[Tuple2[Double, Boolean]]]]

((1,4),((5.0,true),Some((5.0,true))))

dstId Edge
weight

Whether
edge is
part of the
result set

Option[]
resulting from
leftOuterJoin()

Same edge information. We only
really care whether the Option[]
is Some or None as that indicates
whether the edge is available for
consideration. We test this with the
Option[] method isEmpty().

Figure 6.5 The data type after the leftOuterJoin() of listing 6.6.
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Wikipedia example, because that is apparently how they broke ties. If you don’t care
about repeatability or matching Wikipedia (if you don’t care about trying to make
sure your program is matching that known working implementation), you can replace
the override def compare body with Ordering[Double].compare(a._2,b._2).

 The return value of minSpanningTree() is the tree itself rather than the whole
graph. The edge property type (Edge attribute) is restored to be the weight; the tem-
porary Boolean is stripped off.

6.3.1 Deriving taxonomies with Word2Vec 
and Minimum Spanning Trees 

One way to look at Minimum Spanning Trees is to see them as extracting (in some
sense) the most important connections in the graph. By removing the less important
edges we make the graph sparser, reducing it to its essentials. This section shows you
how to use machine learning and graph processing to turn a simple list of uncon-
nected terms—in this case, a list of animal names—into a connected taxonomy using
Minimum Spanning Trees (MSTs).

 MSTs can’t do all the work, though; we’ll also get some help from a natural language-
processing tool called Word2Vec. Word2Vec lets us assign distances between each of
our terms so that we can build a weighted graph of the connections between the terms.
We can then run Minimum Spanning Tree on the graph to reveal the most important
connections. 

UNDERSTANDING WORD2VEC 
Word2Vec is a natural language-processing algorithm that turns a text corpus (a col-
lection of text documents) into a set of n-dimensional vectors that represent each dis-
tinct word in the corpus. Each word in the corpus is represented by a vector in the
set. See figure 6.6.

 What’s useful about the vectors that Word2Vec generates is that words that are
semantically similar tend to be close together. We can use a measure of similarity called
cosine similarity to assign a number to how similar those words are. Cosine similarity
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2,000,000 rows from
training corpus 300 columns

300-dimensional
vector space
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Michelin Michelin
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Figure 6.6 Words are extracted from the training corpus and processed by the Word2Vec algorithm 
to produce an n-dimensional vector for each word—here, n is 300. Semantically similar words, such 
as Michelin and Firestone, are close together.
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ranges from 1 (similar) through 0 (not similar) to –1. We then turn cosine similarity
into cosine distance by subtracting from 1: 

cosine distance = 1 - cosine similarity 

Now we have a measure where similar words have small distances between them and
less similar words have larger distances. 

 Models trained with Word2Vec usually require large amounts of data to be effec-
tive. Luckily there are already a number of well-regarded pre-trained models that can
be used. For this task we’ll use the model trained on a subset of Google News (100 bil-
lion words). Even though Spark’s machine learning library, MLlib, contains an imple-
mentation of the Word2Vec algorithm, it doesn’t yet have the functionality to load the
binary format Google News model. Instead, we’ve pre-calculated cosine distance for
every pair of names in the animal list and stored the results in a comma-separated vari-
able file. The file, called animal_distances.txt, is included as part of the code down-
load for this chapter. If you open up the file, you should see the following in the first
few lines: 

sea_otter,sea_otter,-0.000000 
sea_otter,animal,0.638965 
sea_otter,chicken,0.860217 
sea_otter,dog,0.705229 
sea_otter,aardvark,0.767667 
sea_otter,albatross,0.770162 

The file is in comma-separated format with three columns of data. Each row contains
a single pair of terms and their cosine distance.  There are around 224 different ani-
mal names in the list. 

Creating the distances file 
Because Spark MLlib doesn't yet have the ability to load Word2Vec models created
by other implementations of Word2Vec, we use the Python library Gensim. If you want
to use Word2Vec to generate the distance file yourself, you will need to follow the
installation instructions at https://radimrehurek.com/gensim/install.html. Typically
this involves using easy_install 
easy_install -U gensim 

or pip: 
pip install --upgrade gensim 

Then you will need to download the Google News model from the link on the page at
https://code.google.com/p/word2vec/. Be warned: the file is several GBs in size. 

Now we are ready to generate the distances. We start with a list of 200 animal terms
that are in the file animal_terms.txt in the code download for this chapter:

from gensim.models import Word2Vec 
model = Word2Vec.load_word2vec_format( 

https://radimrehurek.com/gensim/install.html
https://code.google.com/p/word2vec/
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CREATING THE MINIMUM SPANNING TREE 
We now use the list to build a graph of the connections between each animal based on
the distances derived from the GoogleNews Word2Vec model. 

DEFINITION A complete graph is one where every vertex has an edge with
every other vertex. The number of edges e in the graph as a function of the
number of vertices v is e = n(n – 1)/2 

Each animal is a vertex, and the connections between animals are weighted edges. Each
edge corresponds to the cosine distance between the vector representation of each ani-
mal. Because we generate an edge for every pair of animals, our graph is complete. 

 Listing 6.7 shows the code to build the graph and generate the Minimum Span-
ning Tree. We use the toGexf() method developed in chapter 4 to write the tree to a
file that can be opened for visualization by Gephi. With more than 200 vertices, the
tree is rather big, so we show a portion of the graph in figure 6.7. 

val dist = sc.textFile("animal_distances.txt") 
val verts = dist.map(_.split(",")(0)).distinct.
    map(x => (x.hashCode.toLong,x))
val edges = dist.map(x => x.split(",")).
    map(x => Edge(x(0).hashCode.toLong,

x(1).hashCode.toLong,
x(2).toDouble)) 

Listing 6.7 Building the distances graph 

    'GoogleNews-vectors-negative300.bin',  
    binary=True) 
f = open('animal_terms.txt') 
animals = f.read().splitlines() 
animals = [x.lower() for x in animals if x.lower() in 

model.vocab.keys()] 
f.close()
f = open('animal_distances.txt','w')
f.truncate()
for i in range(0, len(animals)):
  for j in range(i, len(animals)): 

f.write('%s,%s,%1.6f\n' %
(animals[i], animals[j],

 1 - model.similarity(animals[i], animals[j]))) 
f.flush()
f.close()

The output is the file animal_distances.txt that is used to build the distances graph. 

animal_distances.txt has animal names in
columns 0 and 1, we choose column 0 and apply

distinct method to ensure unique vertices.

Calling hashCode and 
converting to Long is one 
way to allocate a VertexID 
to each vertex.
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val distg = Graph(verts, edges) 
val mst = minSpanningTree(distg)
val pw = new java.io.PrintWriter("animal_taxonomy.gexf") 
pw.write(toGexf(mst)) 
pw.close 

This example shows how we can derive accurate semantic connections between a set
of terms. We used an example of animal names, but a similar approach could be used
for other areas with large corpuses of unstructured text, such as medical literature or
reports of companies listed on global stock exchanges. 

6.4 Summary
 Many of the classic graph algorithms don’t lend themselves to implementation

with Pregel. We looked at custom implementations of Shortest Paths with
Weights, Travelling Salesman, and Minimum Spanning Tree.

 A Minimum Spanning Tree “sparsifies” a graph, reducing it to its essentials.
 Spark allows you to easily combine graph processing with other machine learn-

ing algorithms, as we showed in the creation of an animal taxonomy.

Call our Minimum Spanning 
Tree algorithm!

Curlew

Lapwing

Chough

Dunlin

Dotterel

Finch

Wren

Woodpecker

Bluejay

Crow

Nightingale Starling

Sparrow

Jay

Figure 6.7 A section of the animal 
taxonomy Minimum Spanning Tree 
showing connections between birds.



Machine learning
Machine learning is a subset of the broader field of artificial intelligence (AI) that
deals with predicting data given some body of reference data, such as predicting
whether you might like the film The Empire Strikes Back given that you liked the film
Star Wars.

 Even though it’s a subset of AI, machine learning is an enormous topic. There
are dozens of different categories of machine learning algorithms and hundreds of
standard machine learning algorithms, covering many different use cases and
employing varying techniques. Many of the algorithms use matrices as their pri-
mary data structure, but some use graphs instead. The MLlib component of Spark
focuses on the matrix-based machine learning algorithms, though it does make use
of GraphX for a couple of its algorithms. The overlap between MLlib and GraphX
goes in the other direction, too: GraphX includes one machine learning algorithm,
SVDPlusPlus, for recommender systems.

This chapter covers
 Machine learning using graphs

 Supervised learning: movie recommender system, spam detection

 Unsupervised learning: document clustering, image segmentation 
via clustering

 Semi-supervised learning: graph generation from numeric vectors

 Using Spark MLlib with GraphX
125
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 This chapter covers the only three (as of Spark 1.6) machine learning algorithms
built on GraphX: SVDPlusPlus (Singular Value Decomposition) for product recom-
mendations, LDA (Latent Dirichlet Allocation) for topic identification from a collec-
tion of documents, and Power Iteration Clustering (PIC) for general-purpose data
clustering. The latter two are invoked through MLlib. We also describe how one of the
matrix-based algorithms in MLlib can be applied to graphs. We show that using a
graph representation of the input data can add to the predictive power of a standard
machine learning algorithm. Finally, we show a custom algorithm for performing
what is called semi-supervised learning, which in some ways is the most interesting appli-
cation of graphs to machine learning.

 The first section describes the usual first way to break up the huge subject of
machine learning: into supervised, unsupervised, and semi-supervised learning. Sub-
sequent sections show how to use individual algorithms for particular applications and
scenarios. A deep understanding of machine learning would allow you to better select
algorithms and tweak them and their parameters for different applications, but that is
beyond the scope of this book. Peter Harrington’s book Machine Learning in Action
(Manning, 2012) is a good start for delving deeper. Kim Falk’s book Practical Recom-
mender Systems (Manning, 2016) provides a much deeper and more general treatment
than the brief overview given here, in section 7.2, of a single recommender algorithm.

7.1 Supervised, unsupervised, 
and semi-supervised learning 
In this section, we break up the subject of machine learning into three categories and
in later sections we show examples of each. At first glance, machine learning can be
broken into two broad categories: supervised learning and unsupervised learning.
Later, some clever folks came up with ways to get the best of both worlds with semi-
supervised learning.

What is “artificial intelligence?”
The quest for human-level capability in computers has been going on since the
1950s. The exaggerated claims of success over the decades have led to fatigue
regarding the term and several resulting “AI winters” where AI research funding and
interest dried up. Early attempts at AI involved searching a state space or employing
heuristics, statistics, or symbolic logic. These had limited success. Machine learning
is concerned with the optimization of a problem. With this goal, which is more modest
than emulating human-level intelligence, machine learning has seen success and
widespread adoption in the era of Big Data. Due to the stigma associated with the
term AI, those in the field of machine learning tend to avoid that term these days.

Even those who are trying to achieve human-level intelligence in machines today
avoid the term AI. Instead, they prefer terms like Artificial General Intelligence (AGI) or
Artificial Superintelligence (ASI). It seems like these days AI refers only to 1970s-style
approaches to AI. But in terms of academic definitions, machine learning is a subset
of AI.
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 Figure 7.1 illustrates the difference between supervised learning and unsupervised
learning. In supervised learning we are provided with data on different things we want
to predict; for example whether an image is of a cat or a dog. We call this labeled data
because we are provided with a label—“cat” or “dog”—for each image and can train
an algorithm to predict the label for a previously unseen image.

Training data

Testing data

“Cat”

“Cat”

What is this?

“Dog”

Supervised learning

“Dog”

Dog? Cat?

Predict

Unsupervised learning

Figure 7.1 Unsupervised learning clusters similar data together, but doesn’t know how to 
attach any labels.
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By contrast, unsupervised learning is carried out where we don’t know what the data
contains; it groups similar things together, but we don’t necessarily know what those
groupings mean. Unsupervised learning is generally of this clustering type of applica-
tion, but there are many different applications of supervised learning, including classi-
fication, time series prediction, and recommender systems.

 For both supervised and unsupervised learning, the goal is to train a machine
learning model. Once we have a trained model, we can use it to predict based on new
incoming data. In figure 7.1, for the supervised learning model, the unknown image
of a cat is predicted to have the label “cat.” The model may or may not be correct all
the time. The percentage of time a machine learning model is correct is called its
accuracy. For the unsupervised learning model, the labels it will be able to output as
predictions will be either red circles (perhaps labeled automatically by the algorithm
as “Group 1”) or blue squares (perhaps “Group 2”) rather than a human-readable
label like “cat” because the model was trained on unlabeled data.

 The advantage of unsupervised learning is that unlabeled data is much easier and
cheaper to come by. You can scrape it off the web in an automated fashion. Labeled
data, in contrast, requires human labor.

 The algorithms and applications discussed in this chapter can be broken up like this:

Supervised Learning
 Movie recommendation with SVDPlusPlus
 Web spam detection with LogisticRegressionWithSGD

Unsupervised Learning
 Topic grouping with LDA

 Graph construction from K-Nearest Neighbors
 Image segmentation with PIC

Semi-supervised Learning
 Labeling data with semi-supervised learning

7.2 Recommend a movie: SVDPlusPlus
The field of recommender systems is one of the most familiar applications of machine
learning. If you’re shopping for books or films, which ones might you like based on
past purchase history? Or perhaps based on your similarity to other shoppers?

 This section shows how to use the sole machine learning algorithm (as of Spark
1.6) contained entirely within GraphX, called SVDPlusPlus. Like all recommender sys-
tem algorithms, SVDPlusPlus is a form of supervised learning.

 Assume that we’re tasked with developing a recommender system that recom-
mends movies, and we have past ratings by users who rate movies they’ve watched on a
scale from one to five stars. This can be expressed as a bipartite graph, as shown in fig-
ure 7.2, where the vertices on the left are the users, the vertices on the right are the
movies, and the edges are the ratings. The dashed edge represents a prediction to be
made: what rating would Pat give Pride and Prejudice?
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An alternative representation of the problem is as an adjacency matrix. Generally,
data for a recommender system forms a sparse matrix, as shown in figure 7.3, where
most of the entries in the matrix have no data. Internally, SVDPlusPlus converts the
input graph into a sparse matrix representation. A lot of the terminology surrounding
SVDPlusPlus is in reference to the matrix representation as opposed to the graph rep-
resentation.

A recommender system is an example of supervised learning because we’re given a
bunch of data of known movie ratings and are asked to predict an unknown rating for
a given pair of a user and an item (such as a movie). There are two major ways that
machine learning researches have attacked this problem.

 The first major approach is the straightforward and naïve approach: for the user in
question, Pat, find other users with similar likes and then recommend to Pat what
those other users like. This is initially how Netflix handled recommendations. It is
sometimes called the neighborhood approach because it uses information from neighbor-
ing users in the graph. A shortcoming of this approach is that we may not find a good
matching user, as in the case with Pat. It also ignores lurking information we might be
able to glean about movies in general from other, possibly dissimilar, users.

 The second major approach is to exploit latent variables, which avoid needing an
exact user match. This may sound like an obscure term, but it’s a simple concept, as
illustrated in figure 7.4. With latent variables, each movie is identified with a vector
that represents some characteristics of that movie. In our example with two latent
variables, each movie is identified with a rank 2 vector (for our purposes this is a
vector of length 2). Even though figure 7.4 draws Star Wars as being only Science
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Figure 7.2 Recommending movies. What is the 
estimate for how Pat will rate Pride and Prejudice? 
(Edge labels represent ratings of one to five stars, 
and vertex numbers are vertex IDs we’ll use later 
instead of the text names.)

Items

Users

John
Ann

Richard
Pat

Pride and Prejudice
Princess Bride

Star Wars

5

5

4

4

5

4

5

2

?

Figure 7.3 Sparse matrix representation of the graph 
represented in figure 7.2. The matrix is called sparse 
because not every matrix position has a number. In our 
tiny example, there are only four positions missing 
numbers (including the one with the question mark), but 
in a typical large example of, say, a million users and a 
hundred thousand items, almost all the positions would 
be empty. Recommender systems, including 
SVDPlusPlus, often internally use the matrix 
representation of the graph.
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Fiction/Fantasy, in reality it is associated with a vector of length 2 that indicates the
degree to which it is a Science Fiction/Fantasy movie and the degree to which it is a
Romance movie. We would expect the first number to be high and the second num-
ber to be low, though probably not zero. 

 The reason we use the term latent is that these variables aren’t contained directly in
our input ratings data; the algorithm will “infer” that certain films have common char-
acteristics from the pattern of user likes and dislikes.

In this second major approach of using automatically identified latent variables,
global information gets used. Even for users dissimilar from Pat, their likes and dis-
likes contribute to this latent variable information for each movie, and this is indi-
rectly used when a recommendation is made for Pat. A weakness of this approach,
though, is that it doesn’t use local information as well as the first, naïve, approach. For
example, if Pat’s best friend has the exact same likes and dislikes as Pat, then we
should recommend to Pat whatever movies Pat’s best friend has watched that Pat
hasn’t watched. The first approach based on finding similar users would do this, but
this second approach based on latent variables would not.

 The SVD++ algorithm uses the latent variable approach but improves over previous
such algorithms by going beyond the values of the ratings themselves and also finding
a role for implicit information. Implicit information is provided by the fact that
whether a user rates a movie at all, even if it is a low rating, has value in determining
the characteristics of the movie. For example, a user may have given a low rating to
The Phantom Menace compared to other science fiction movies. Nonetheless, the fact it
has been rated at all suggests that it has something in common with other moves the
user has rated

 SVD++ was introduced in a 2008 paper called “Factorization Meets the Neighbor-
hood: a Multifaceted Collaborative Filtering Model” by Yehuda Koren, and is linked
from the Scaladocs for Spark GraphX SVDPlusPlus. Not only is it a readable paper,
providing background on recommender system approaches, it also contains impor-
tant definitions, concepts, and formulas because the Spark documentation on SVD-
PlusPlus is so sparse. Besides introducing SVD++, the paper also describes an
extension that further enhances the quality of the recommendations by combining

Star Wars

Science Fiction/Fantasy

Princess Bride

Pride and Prejudice

Romance

Figure 7.4 Although in our example we don’t get 
genre information with our data, latent variables
can automatically infer genre or something close 
to it. The algorithm doesn’t know the actual label 
“Romance,” but infers that The Princess Bride and 
Pride and Prejudice are similar in some 
unspecified way. We have suggested human-

appropriate labels in this illustration, but there are no such labels, human-applied or otherwise, for latent 
variables. It is somewhat of a mystery how algorithms pick latent variables; it could be something other 
than what we would call genre—it could be something like “a Harrison Ford movie,” a quirky sub-genre 
like “steampunk comedy,” or an age-related issue like “rough language.”
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information from neighboring users and items. With this extension, it uses all three
techniques simultaneously: latent variables, implicit information, and neighborhood
(again, the standard SVD++ algorithm is the latent variables together with the implicit
information). We break down enough of the Koren paper here for you to be produc-
tive, but if you want to dig more deeply, you can look it up.

 Listing 7.1 shows how to use the graph from figure 7.2 to train an SVDPlusPlus
machine learning model. The input to the algorithm is an EdgeRDD that represents
the graph rather than a Graph object itself. As usual, we run the algorithm by calling
the run() method of the algorithm object (in this case SVDPlusPlus), and once it has
run its course, we are returned two values that represent a model from which predic-
tions can be made.  

import org.apache.spark.graphx._

val edges = sc.makeRDD(Array(
  Edge(1L,11L,5.0),Edge(1L,12L,4.0),Edge(2L,12L,5.0),
  Edge(2L,13L,5.0),Edge(3L,11L,5.0),Edge(3L,13L,2.0),
  Edge(4L,11L,4.0),Edge(4L,12L,4.0)))

val conf = new lib.SVDPlusPlus.Conf(2,10,0,5,0.007,0.007,0.005,0.015)

val (g,mean) = lib.SVDPlusPlus.run(edges, conf)

SCALA TIP Although Scala doesn’t support multiple return values in a first-class
way as, for example, Python does, Scala provides a special val declaration syn-
tax to break up a tuple (such as one returned by a function) and assign its
components to individual values (variable names).

The Conf parameters, along with recommended values, are broken out in table 7.1.
The biases referenced in the table descriptions for gamma1 and gamma6 are specific to
the SVD++ type algorithms and are described later in this section.

DEFINITION The four parameters γ1, γ2, λ6, and λ7 from the Koren paper
(what GraphX SVDPlusPlus.Conf calls gamma1, gamma2, gamma6, and gamma7)
are examples of machine learning hyperparameters. Some have suggested that
that’s a fancy word for “fudge factors.” Hyperparameters are settings to the
machine learning system that are set before training begins. Tuning hyper-
parameters is done empirically. Knowing how to set them in advance is diffi-
cult, so you have to take the advice of those who have used the algorithm on
other applications or experiment on your own with your own application.

In this example, we have set rank to 2 under the premise that there are two genres for
our three movies. Again, that means that in the algorithm’s internal latent variable

Listing 7.1 Invoking SVDPlusPlus with the data from figure 7.2

Construct EdgeRDD for 
graph in Figure 7.2

Specify hyperparameters for
algorithm (see table 7.1)Run SVD++ algorithm returning model—an enriched 

version of input graph and mean rating for dataset
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vectors for each movie, they will be of length 2, with the first number indicating
degree of (perhaps) Science Fiction/Fantasy and the second number indicating (per-
haps) Romance. With a much larger dataset there would be many more movies, and a
typical setting for rank would be 10, 20, or even over 100.

 Those are the input parameters. Listing 7.2 shows how to create a prediction from
the model returned by SVDPlusPlus.run. It defines a function pred(), which takes as
input the two model parameters along with the IDs for the user and the movie we want
to predict. In this case we invoke the function to predict the rating Pat would give to
Pride and Prejudice by passing in the ID for Pat and for the movie. In this case, the
model predicts a rating of 3.95 stars.

def pred(g:Graph[(Array[Double], Array[Double], Double, Double),Double],
 mean:Double, u:Long, i:Long) = {

  val user = g.vertices.filter(_._1 == u).collect()(0)._2
  val item = g.vertices.filter(_._1 == i).collect()(0)._2
  mean + user._3 + item._3 +
    item._1.zip(user._2).map(x => x._1 * x._2).reduce(_ + _)
}
pred(g, mean, 4L, 13L)

SCALA TIP The combination of zip(), map(), and reduce() is a Scala idiom
to compute the dot product.

Table 7.1 The Conf parameters

Parameter Example Description

Rank 2 Number of latent variables.

maxIters 10 Number of iterations to execute; the more iterations, the closer the 
machine learning model is able to converge to its ideal solution, and the 
more accurate its predictions will be.

minVal 0 Minimum rating (zero stars).

maxVal 5 Maximum rating (five stars).

gamma1 0.007 How quickly biases can change from one iteration to the next. γ1 from the 
Koren paper, which recommends 0.007.

gamma2 0.007 How quickly latent variable vectors can change. γ2 from the Koren paper, 
which recommends 0.007.

gamma6 0.005 Dampener on the biases, to keep them small. λ6 from the Koren paper, 
meaning lambda6 would have been a more appropriate variable name. 
Koren recommends 0.005.

gamma7 0.015 The degree to which the different latent variable vectors are permitted to 
interact. λ7 from the Koren paper, meaning lambda7 would have been a 
more appropriate variable name. Koren recommends 0.015.

Listing 7.2 pred() function and invoking it



133Recommend a movie: SVDPlusPlus
NOTE Part of the initialization of SVDPlusPlus uses a random number gener-
ator, so the exact prediction answers will vary every time SVDPlusPlus is exe-
cuted on the same input data.

You can use the pred() from the listing as is. But if you want a deeper insight into how
the model works, seeing how it’s constructed is helpful. First we show the SVD++ formula
from the Koren paper. Then we break down the return value from GraphX’s SVDPlus-
Plus to see how it relates to the formula. Finally, we match up the variables in Koren’s for-
mula with the SVDPlusPlus return value to come up with the pred() function.

 From the Koren paper, the prediction formula looks like this:

To make a prediction, we need to use the model returned from our invocation to
SVDPlusPlus. As we saw in listing 7.1, SVDPlusPlus returned two values wrapped in a
tuple: a graph and a Double value representing the mean rating value over the entire
graph (that would be μ in the preceding formula). The edge attribute values of this
graph are the same edge attribute values of the original graph passed into SVDPlus-
Plus—namely, the known user ratings. The vertices of this returned graph, though,
are a complicated Tuple4:

r̂ui μ bu bi qT
i pu N u( ) 1– 2⁄ yj

j N u( )∈
+

 
 
 

R u( ) 1– 2⁄ ruj buj–( )wij
j R u( )∈
 N u( ) 1– 2⁄ cij

j N u( )∈
+ + + + + +=

Predicted 
rating, that 
we are trying 
to calculate 
from user u 
to user i

Level 1: Mean 
and Biases

Level 2: Latent 
Variables

Level 3: Fine-grained 
adjustments (not used in 
GraphX’s SVDPlusPlus)

Bias adjustment 
for user u, in case 
u rates items 
skewed higher 
(or lower) than μ

Bias 
adjustment 
for item i

Latent variable 
vector for item i

Latent variable 
vector for user u

A second per-item 
vector that conveys 
item-to-item 
relationships

Number of 
items rated by 
user u

Overall average 
rating from all 
ratings 
between all 
users and all 
items



134 CHAPTER 7 Machine learning
Now that we know the formula and what we get as output from GraphX’s SVDPlus-
Plus, we can see how to put it together to define a pred() function that calculates the
predicted rating for user u and item i. The return value of pred() is the sum of the
first four of the five elements of the Koren formula. The fifth is omitted because
GraphX’s SVDPlusPlus doesn’t implement the “third level” of the algorithm, which is
the fine-grained adjustments that take into account the neighborhood effects.

7.2.1 Explanation of the Koren formula

You can use pred()and be able to incorporate an SVDPlusPlus-based recommender
system into your project. But if you would like further explanation of the Koren for-
mula, the rest of this section describes it.

LEVEL 1: BIASES

The overall mean μ is over all known ratings. In our case, where movie ratings range
from 0 to 5 stars, we would expect μ to be 2.5, but it’s probably not exactly that
because there is likely an overall bias up or down that users have when they rate;
either users as a whole tend to rate high or they tend to rate low.

 Similarly, each individual user has a bias. One particular user may be a curmud-
geon and consistently rate everything low. Such a user would have a negative bias bu
that gets added to every rating that we predict for that user. Each movie also has an
associated bias. If everyone hates a movie, then when we predict a rating for a user
who has not yet rated it, we need to bring that predicted rating down. This is encoded
in the bias variable bi.

LEVEL 2: LATENT VARIABLES

Again, the number of latent variables is determined by the Rank parameter set in the
Conf object. In the prediction formula, all the latent variables are in the vector pu,
which is of length Rank.

 The rest of what is labeled as Level 2 in the prediction formula is related to what
Koren calls implicit feedback, and specifically in this case which movies users bothered to
rate. Koren explains that which movies a user bothers to rate (apart from the actual rat-
ing values) carries information that can be used to make more accurate predictions.

Tuple4[Array[Double], Array[Double], Double, Double]

pu if this is a user 
vertex; otherwise, qi 
for an item vertex

yi if this is an item vertex; 
otherwise, for a user vertex it’s

pu N u( ) 1– 2⁄ yj

j n u( )∈
+

bu if this is a user 
vertex; otherwise, bi 
for an item vertex

if this is a user 
vertex; otherwise,
  for an item vertex

N u( ) 1– 2⁄

N i( ) 1– 2⁄
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This information is carried by the variable yj, and in the formula it’s weighted by the
inverse square root of the total number of items the user rated.

LEVEL 3: ITEM-TO-ITEM SIMILARITY

As mentioned, GraphX’s SVD++ doesn’t implement the third level, the neighborhood
similarity approach. For neighborhood similarity, the Koren paper prefers user item-
to-item similarity rather than user-to-user similarity. The wij weights in the first half of
the third level of the prediction formula indicate how similar item i is to item j. The
second half of the third level of the prediction formula takes into account implicit
feedback in a manner similar to the implicit feedback term in level 2.

7.3 Using GraphX With MLlib
The MLlib component of Spark contains a number of machine learning algorithms.
This section shows how to use two of those that use GraphX under the covers, as well
as how to use one of the matrix-based MLlib supervised learning algorithms in con-
junction with a graph.

 Although SVDPlusPlus is the only machine learning algorithm wholly in the
GraphX component of Spark, two other algorithms, Latent Dirichlet Allocation
(LDA) and Power Iteration Clustering (PIC), were similarly built on top of GraphX,
but it was ultimately decided that they would be part of MLlib rather than GraphX.
We show an example of using LDA, which is unsupervised learning, for determining
topics in a collection of documents. And we show an example of using PIC, also unsu-
pervised learning, for segmenting an image, which is useful for computer vision.

 Then, for a different application—that of detecting web spam—we show how
another MLlib algorithm, LogisticRegressionWithSGD, which is not normally associ-
ated with graphs at all, can be used together with GraphX’s PageRank to enhance web
spam detection.

7.3.1 Determine topics: Latent Dirichlet Allocation

Suppose you have a large collection of text documents and you want to identify the
topics covered by each document. That is what LDA can do, and in this subsection we
assign topics to a collection of Reuters news wire items from the 1980s. LDA is unsu-
pervised learning, where the topics aren’t specified in advance but rather fall out from
the clustering it performs.

 MLlib’s LDA is built on GraphX to realize computational efficiencies, even though
it neither takes graphs as input nor outputs graphs. As its name suggests, LDA is based
on latent variables. The latent variables in this case are “topics” automatically inferred
by the LDA algorithm. These topics are characterized by words associated with the
topic, but don’t carry any explicit topic name. Typically, a human will examine the
words for each topic and come up with a sensible name to attach to each topic. An
example of this is shown in figure 7.5, where some such sensible names have been
tacked on to each topic word list.
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Once LDA identifies the topics, it scores each document against each topic. This is a
basic principle and assumption behind LDA: that each document expresses to some
extent all the topics simultaneously, not merely one or two.

EXAMPLE: CLASSIFY REUTERS WIRE NEWS ITEMS

LDA expects a collection of documents as input. As output it provides a list of topics
(each with its own list of associated words), as well as how strongly each document is
associated with each of those topics.

 In this example, we download Reuters wire news items from 1987 and use LDA to
infer the topics and tell us how each document scores in each of the topics. Listing 7.3
shows how to download this data from the University of California, Irvine’s Knowledge
Discovery in Databases Archive, and then how to clean this data using Linux/OSX
shell commands. To do the cleaning, it uses a lot of tricks with tools like sed and tr. If
you aren’t familiar with these commands, you can seek out a book or web resource
that explains them. The Reuters data is in the form of SGML, which is a kind of a pre-
decessor to HTML. For each news item, we’re interested in the text between the
<BODY> and </BODY> tags. For convenient Spark processing of a text file, we want it to
be one news item per line (so some of the resulting lines are fairly long).

Infer
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Figure 7.5 Latent Dirichlet Allocation. The topics are the latent variables and are determined 
automatically by the algorithm. The names of those topics shown in the thin strips are human-inferred 
and human-applied; the algorithm has no inherent capability to name the topics. Each document 
expresses each latent variable (topic) to a varying degree.
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wget https://archive.ics.uci.edu/ml/machine-learning-databases/

➥ reuters21578-mld/reuters21578.tar.gz
tar -xzvf reuters21578.tar.gz reut2-000.sgm
cat reut2-000.sgm | tr '\n' ' ' | sed -e 's/<\/BODY>/\n/g' |

➥ sed -e 's/^.*<BODY>//' | tr -cd '[[:alpha:]] \n' >rcorpus

Although this accomplishes the brunt of the data-cleansing work, there is still some
document prep work to be done. Spark’s implementation of LDA expects documents
to be in the form of bags of words, a common representation in machine learning.
When creating a bag of words, we first filter out stop words, words that are so common
they carry little specific meaning.

Having a good set of stop words is important for LDA so that it doesn’t get distracted
by irrelevant terms. However, in bagsFromDocumentPerLine() in listing 7.4, instead of
a good set of stop words, we filtered out short words—those containing five characters
or less—together with the word Reuter. We also eliminated variations in uppercase ver-
sus lowercase by mapping everything to lowercase.

 Note also in bagsFromDocumentPerLine() that everything inside after the split()
is a plain old Scala collection (not an RDD), so that, for example, the groupBy() is a
Scala collection method as opposed to the similar groupByKey() method available on
Spark RDDs.

 In terms of what Spark’s LDA expects as input, it’s expecting not the raw Strings,
but rather integer indices into a global vocabulary. We have to construct this global
vocabulary, which is called vocab in the next listing. We made vocab local to the driver
instead of keeping it as an RDD. You’ll notice a flatMap() as part of the computation
of vocab. This is a common functional programming operation, explained in the next
sidebar.

Listing 7.3 Downloading and cleaning the Reuters wire news items
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1. Filter out stop words
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Figure 7.6 Bag of words representation of a document.
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import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.clustering._
import org.apache.spark.rdd._

def bagsFromDocumentPerLine(filename:String) =
  sc.textFile(filename)
    .map(_.split(" ")

  .filter(x => x.length > 5 && x.toLowerCase != "reuter")
  .map(_.toLowerCase)
  .groupBy(x => x)
  .toList
  .map(x => (x._1, x._2.size)))

val rddBags:RDD[List[Tuple2[String,Int]]] =
  bagsFromDocumentPerLine("rcorpus")

val vocab:Array[Tuple2[String,Long]] =
  rddBags.flatMap(x => x)

 .reduceByKey(_ + _)
 .map(_._1)
 .zipWithIndex
 .collect

def codeBags(rddBags:RDD[List[Tuple2[String,Int]]]) =
  rddBags.map(x => (x ++ vocab).groupBy(_._1)

.filter(_._2.size > 1)

.map(x => (x._2(1)._2.asInstanceOf[Long]
.toInt,

x._2(0)._2.asInstanceOf[Int]
.toDouble))

.toList)
 .zipWithIndex.map(x => (x._2, new SparseVector(

vocab.size,
x._1.map(_._1).toArray,
x._1.map(_._2).toArray)

.asInstanceOf[Vector]))

val model = new LDA().setK(5).run(codeBags(rddBags))

SPARK TIP Spark defines something called Vector in the org.apache
.spark.mllib.linalg package, which has nothing to do with Java’s Vector in
the java.util package. As the package name suggests, Spark’s Vector is spe-
cific to MLlib. It is abstract and has two concrete implementations: Dense-
Vector and SparseVector.

During the computation of vocab, after the flatmap, we’re left with a collection of
Tuple2[String,Int] items from all the documents mixed together, meaning there are
some duplicates. For example, there might be a ("commerce", 3) and a ("commerce",
2) in the RDD at that point after the flatmap because perhaps “commerce” appeared
three times in, say, document 5 and twice in document 12. We only want a unique list
of words, and we don’t care about the counts, so we dump the counts and then do a
distinct().

Listing 7.4 Running LDA on the Reuters wire news items
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With vocab established, we can prepare the data to be in the format that Spark’s LDA
expects. codeBags() does two things: the first half converts from String vocabulary
words to their corresponding vocab index values, and the second half converts to
SparseVector, which is a format LDA can handle.

 To convert to vocab index values, the first half of codeBags() conceptually does
the equivalent of a SQL INNER JOIN or Spark RDD join(). But each element of rdd-
Bags is merely a Scala List, which has no join(). We have to dance around this lack of

flatMap()
Although the name flatMap() originated with Scala, it has counterparts in other
functional programming languages because it addresses a common problem.
Whereas map() transforms every element of the input into an element of the output,
flatMap()transforms every element into a sequence of zero, one, or many ele-
ments. Each of the sequences is then “flattened” into a single sequence. In many
ways flatMap() is like a map() followed by a flatten() (though not precisely for
some cases involving mixed data types). Spark provides its own flatMap() for
RDDs, and its use in helping create a global vocabulary is illustrated here.

In this particular case, the x => x nullifies the map part of flatMap(), making it
more like a flatten(). But although Scala has flatten(), Spark RDDs don’t have
a separate flatten(), and we have to use flatMap(x=>x) instead.

flatMap() is useful even for data that looks one-dimensional because the function
you pass in as its parameter has the opportunity to convert each element into its own
collection. For example, an alternative way to build up the vocabulary could be
sc.textFile("rcorpus").flatMap(_.split(" ")) because this would explode
each document into individual words and then collapse that into a single list of words
(representing all the documents combined), all in one fell swoop.

flatMap(x => x)

rddBags
RDD[List[String]]

rddBags.flatMap(x => x)
RDD[String]

RDD

List futures
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market

quarter
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a join capability in Scala by instead concatenating the two arrays with the ++ operator,
doing a groupBy(), and filtering out all the groups that didn’t pick something up
from both lists.

 To put everything into the format that Spark’s LDA expects, the second half of
codeBags() does two things: it converts the bags of words to SparseVectors and it
assigns a document ID to each document using zipWithIndex().

 Because our full global vocab has over 8,000 entries, we don’t want to have to have
a memory-consuming 8,000-element vector for each “document” (Reuters news story)
in our collection. Each news story consists of a few dozen distinct words, so storing all
those thousands of zeros (representing the words not in the document) would be a
waste of memory. For that reason we prefer to use SparseVector over DenseVector.

 In executing LDA, we specify that we want to classify the documents into five topics
with setK(5). The return value of run() is a machine learning model, which has sev-
eral methods that give us the information we’re seeking: what words characterize each
topic, and for each document, how much each topic represents it.

 In examining the returned model, we first specify to describeTopics() that we
want to see the top six words associated with each topic (recall that we specified five
topics when we ran LDA):

model.describeTopics(6).map(_._1.map(vocab(_)._1))
res1: Array[Array[String]] = Array(
  Array(profit, company, billion, president, products, treasury),
  Array(market, japanese, billion, international, brazil, american),
  Array(billion, january, december, government, quarter, growth),
  Array(company, shares, exchange, common, interest, securities),
  Array(tonnes, prices, production, billion, exports, system))

Now, let’s look at the topics for the first document. Because topicDistributions()
scrambles the order of the documents, we have to use filter() to get to the docu-
ment with document ID of zero to get to the first document:

model.asInstanceOf[DistributedLDAModel].topicDistributions
.filter(_._1 == 0).collect

res2: Array[(Long, org.apache.spark.mllib.linalg.Vector)] = 
Array((0,[0.050547152608283755,0.05217337794656473,0.041732176735789286,

0.0418304122726957,0.8137168804366666]))

SPARK TIP The typecast to DistributedLDAModel is necessary only due to a
weakness in the Spark REPL. It would be unnecessary if you were writing code
to be compiled.

The last topic resonates most strongly in this first document—it’s at 0.81, whereas
none of the other four topics breaks 0.10. What this first topic is about can be gleaned
from the describeTopics() done previously: it’s about import/export and commodi-
ties stories. Interestingly, if you look at the original story at the top of the reut2-
000.sgm, you’ll see it doesn’t talk directly about import, export, or commodities, but
rather about how weather patterns are affecting cocoa crops. The last topic is indeed
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the closest match, but it’s not immediately obvious based on matching exact keywords.
This is the result of the latent variables at work for us.

 So far we’ve characterized the documents from the training set. But how about
using this trained-up LDA model to predict topics for previously unseen documents?
To do that, we must first convert our model from a DistributedLDAModel, which is
stored across the cluster, to a LocalLDAModel, which is stored entirely within the
driver, because the prediction function is available only on LocalLDAModel.

 For a test document, we use a more recent Reuters story, “Monsanto seeks higher
sales in Mexico, pending GMO corn decision” from October 27, 2015. If reuters.com
doesn’t change its CSS too much, these shell commands should isolate and extract the
story text:

wget http://www.reuters.com/article/2015/10/28/

➥ mexico-monsanto-idUSL1N12S00D20151028 -O Mexico
cat Mexico | tr '\n' ' ' |

➥ sed –e 's/^.*midArticle_start">//;s/<script.*$//;s/<[^>]*>//g' |

➥ tr -cd '[[:alpha:]] \n' >Mexico2

Then to convert model to a LocalLDAModel and predict topics:

model.asInstanceOf[DistributedLDAModel].toLocal.topicDistributions(codeBags(b
agsFromDocumentPerLine("Mexico2"))).collect

res3: Array[(Long, org.apache.spark.mllib.linalg.Vector)] = Array(
(0,[0.20745026733300995,0.1957256951092684,0.1664498204599232,
0.17574123052282312,0.25463298657497535]))

All these values are painfully close to 0.2, suggesting that our model, trained on 1980s
Reuters stories, isn’t that great at predicting for a 2015 Reuters story. Evidently vocab-
ulary and topics have changed over the intervening 30 years. But the last topic is the
highest at 0.25. The last topic is, again, about import/export, which this story is
indeed about.

HOW LDA USES GRAPHS IN ITS IMPLEMENTATION 
As our use of LDA has demonstrated, there’s no indication that graphs are being used
under the covers. If you’d like to know how using graphs can speed algorithm perfor-
mance, this subsection discusses—at a high level, without delving deeply into the
details—how Spark’s LDA implementation uses graphs. For greater detail, see the
2009 paper “On Smoothing and Inference for Topic Models” by Asuncion et al.

 As of Spark 1.6, its LDA can use one of two different algorithms: either the Expectation-
Maximization (EM) algorithm, which is the default and is graph-based, or the Online
Variational Bayes algorithm. We discuss EM here. EM is used to solve probabilistic equa-
tions when there are unknown or hidden variables, such as the latent variables in LDA’s
model. LDA establishes a system of probability equations, such as the probability that a
particular word is in a particular topic and the probability that a particular word is in a
particular document.

 To solve this system of equations, the two major steps of EM, namely expectation
and maximization, operate in a tick-tock fashion similar to how K-Means works, if
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you’re familiar with that. In the expectation step, a guess or estimate is made for some
of the variables. Then, in the maximization step, the resulting error is computed, and
those estimated variables receive some correction. This process is run for a number of
iterations and the guess made in the expectation step will get ever closer to the true
probabilities.

 What does this have to do with graphs?

Although Expectation-Maximization, which solves a system of probabilistic equations,
is not inherently a graph algorithm, Spark’s implementation of LDA uses GraphX to
realize computational efficiencies. It’s similar to how Spark’s implementation of
SVD++, discussed in section 7.1, uses a graph instead of a sparse matrix. These efficien-
cies for EM arise in LDA because any given document uses only a tiny subset of the
global corpus vocabulary. The idea is illustrated in figure 7.7. As a result, when com-
puting summations, only the relevant terms are summed, and steps such as multiply-
by-zero-and-add, which otherwise might be taken in a non-graph implementation, are
skipped entirely.

LDA PARAMETERS

Table 7.2 lists the four major parameters to Spark’s LDA, which have getters and set-
ters available on the constructed LDA() object.  

Table 7.2 LDA Parameters

Name Default Description

k 10 Number of topics.

maxIterations 20 Exact number of iterations to execute (that  is, numIterations might 
have been a more descriptive name).

alpha 50/k + 1 Document concentration, should be > 1.0 for EM. Higher values corre-
spond to documents represented by most or all of the topics.

Tonnes

Market

Billion

Thousands of vertices
for thousands of words
in corpus vocabulary

News story “First Quarter Imports Review”

News story “January market activity”

Government

…

Figure 7.7 Not every word in the corpus vocabulary 
is used in every document. A graph representation 
realizes computational efficiency.
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The recommended values for alpha and beta come from the 2004 paper “Finding Sci-
entific Topics” by Griffiths and Steyvers, with an additional +1 adjustment recom-
mended by the aforementioned 2009 Asuncion paper.

7.3.2 Detect spam: LogisticRegressionWithSGD

We’re sure most readers are familiar with spam email, but there are a number of other
types of spam as well. In this section we consider web spam—web pages that contain sim-
ilar types of content to those of spam emails, with the spammers using alternative tech-
niques to try to trick us into browsing to their pages. Usually this involves manipulating
search engine rankings so their pages are listed high up on a search results page. The
success of this spamming attempt rests on the fact that the unsuspecting search engine
user has a tendency to click on the first few links on the search engine page.

 Typical techniques for achieving this high ranking involve link farms, clusters of
apparently normal web pages controlled by spammers that happen to have links
pointing to the spam web page. For this application of detecting spam web pages,
instead of relying completely on graph processing, we’ll combine PageRank with one
of the general-purpose (non-graph-based) MLlib algorithms for supervised learning,
LogisticRegressionWithSGD (Stochastic Gradient Descent).

 A lot of the more straightforward spam detection approaches use only some kind
of regression like LogisticRegressionWithSGD, with no assistance from a graph. This
applies machine learning to the web pages as independent entities without consider-
ing their linked interconnections. Such a non-graph approach can’t directly detect
the link farms shown in figure 7.8.

 Logistic Regression is similar to the more commonly known Linear Regression. In
Linear Regression, the output, or predicted, value is a floating point number. In Logis-
tic Regression, the predicted value is instead an integer that represents which of a
small set of labels the example belongs to. In our case, we have two possible labels:
“spam” and “not spam.” In Logistic Regression (and Linear Regression), each exam-
ple item (in our example, each web page) has a feature vector, which is a vector of float-
ing point numbers, where each floating point number represents a feature. A feature is
a machine learning term meaning a measure of some aspect of the example. In our
case, we have three features: the number of times the word free occurs in the web page,
the number of times the word earn occurs in the web page, and something called the
Truncated Page Rank of the web page. In a full-fledged spam detector, there would be
hundreds of spam “trigger words,” but in our simple example we are using only two
such trigger words: free and earn.

beta 1.1 Topic concentration, must be > 1.0 for EM. Higher values correspond to 
topics represented by most or all of the words, while for a lower value 
topics will key off a few words.

Table 7.2 LDA Parameters (continued)

Name Default Description
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The term Truncated Page Rank comes from the 2006 paper “Link-Based Characteriza-
tion and Detection of Web Spam” by Becchetti et al. The motivation is to detect link
farms by removing the influence of the first immediate layer of vertices from a Page-
Rank calculation to form this modified Page Rank calculation. The Becchetti paper
describes taking snapshots of various iterations of the PageRank calculations, normal-
izing these values, and differencing them in order to come up with the Truncated
Page Rank. 

 Here, we take an even simpler and more basic approach. We run PageRank
twice—once with one iteration and another time with five iterations—and ratio these
two PageRanks for each vertex. The motivation for this is that we expect a spam page
to have a different topology—a difference in the structure of its link graph—com-
pared to a normal page. We hope to capture this difference with our Truncated Page
Rank feature.

 Supervised learning, in general, needs a training set and a testing set. Our training
set is in figure 7.8 and listing 7.5, and our testing set is in figure 7.9 and listing 7.9. To
run our graph vertex data through LogisticRegressionWithSGD, we first have to put
it into the format it expects, which is an RDD of LabeledPoints. A LabeledPoint is the
feature vector together with its human-supplied label. Remember, in supervised learn-
ing, during training, we give the machine learning algorithm the answers. These
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Figure 7.8 Web spam training data. Each vertex represents a web page, with the number 
of times the spam words free and earn occur, and a human-based determination of whether 
the page is spam. By augmenting the spam word data with PageRank data, link farms can 
be detected to assist in spam determination.
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labels are the answers. The hope is that if trained sufficiently, then when we present
the trained machine learning model with new data, it can predict the label—that when
presented with a web page it hasn’t seen before, it should be able to determine
whether it is a spam web page.

import org.apache.spark.graphx._
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD

val trainV = sc.makeRDD(Array((1L, (0,1,false)), (2L, (0,0,false)),
  (3L, (1,0,false)), (4L, (0,0,false)), (5L, (0,0,false)),
  (6L, (0,0,false)), (7L, (0,0,false)), (8L, (0,0,false)),
  (9L, (0,1,false)), (10L,(0,0,false)), (11L,(5,2,true)),
  (12L,(0,0,true)),  (13L,(1,0,false))))

val trainE = sc.makeRDD(Array(Edge(1L,9L,""), Edge(2L,3L,""),
  Edge(3L,10L,""), Edge(4L,9L,""), Edge(4L,10L,""), Edge(5L,6L,""),
  Edge(5L,11L,""), Edge(5L,12L,""), Edge(6L,11L,""), Edge(6L,12L,""),
  Edge(7L,8L,""), Edge(7L,11L,""), Edge(7L,12L,""), Edge(7L,13L,""),
  Edge(8L,11L,""), Edge(8L,12L,""), Edge(8L,13L,""), Edge(9L,2L,""),
  Edge(9L,13L,""), Edge(10L,13L,""), Edge(12L,9L,"")))

val trainG = Graph(trainV, trainE)

Our graph vertices from this listing have only two of the three features (count of
“free” and count of “earn”) together with the human-applied label (“true” or “false” in
regards to whether it is spam). But the vertices are missing the third feature, namely
the Truncated Page Rank. Listing 7.6 calculates the Truncated Page Rank and bundles
it together with the rest of the vertex data into the LabeledPoint that Logistic-
RegressionWithSGD expects. The augment() function we define there conducts a
three-way join between three RDDs—the vertex data, the PageRank of one iteration,
and the PageRank of five iterations—and boils it all down into a LabeledPoint, taking
the ratio of the two PageRanks in the process. LabaledPoint requires the feature val-
ues to be in a Vector, and in this case we opt to go with DenseVector rather than
SparseVector because our feature vectors have no holes—no missing values—and it’s
more convenient to list out all the feature values.

import org.apache.spark.graphx.lib.PageRank
import org.apache.spark.mllib.linalg.DenseVector
import org.apache.spark.mllib.regression.LabeledPoint

def augment(g:Graph[Tuple3[Int,Int,Boolean],String]) =
g.vertices.join(

PageRank.run(trainG, 1).vertices.join(
PageRank.run(trainG, 5).vertices

    ).map(x => (x._1,x._2._2/x._2._1))
  ).map(x => LabeledPoint(
    if (x._2._1._3) 1 else 0,
    new DenseVector(Array(x._2._1._1, x._2._1._2, x._2._2))))

Listing 7.5 Constructing the training set graph of figure 7.8

Listing 7.6 Preparing the data for Logistic Regression
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NOTE Even though LabeledPoint.label is defined as a Double, Logistic
Regression only expects whole numbers starting from zero: 0.0, 1.0, 2.0, and
so on. LabeledPoint is also used in Spark’s linear regression, and that’s why
its label is defined as a Double.

Now let’s train up our Logistic Regression model, as shown in the following listing. Here,
we arbitrarily chose to execute LogisticRegressionWithSGD with 10 iterations. In gen-
eral, though, SGD can sometimes take hundreds of iterations to converge properly.

val trainSet = augment(trainG)
val model = LogisticRegressionWithSGD.train(trainSet, 10)

We now have a Logistic Regression model called model. Now what? Well, the most
important thing the model gives us is a function called predict(), which takes a fea-
ture vector and returns what it thinks is the most suitable label. We could try some of
the vertices out one at a time from our training set or test set. But what we usually do
in machine learning is to try them all out at once. perf() in the following listing mea-
sures the performance, or the accuracy, of our model by comparing the human-
applied labels to what model.predict() comes up with.

import org.apache.spark.rdd.RDD

def perf(s:RDD[LabeledPoint]) = 100 * (s.count -
s.map(x => math.abs(model.predict(x.features)-x.label)).reduce(_ + _)) /
s.count

perf(trainSet)
res3: Double = 92.3076923076923

Ideally, we might hope to get 100% or close to it when we run our training set through
the model, but 92% isn’t terrible. Running the training set through the model it was
trained on is cheating, but it’s a good sanity test to make sure we didn’t do something
completely wrong. Now let’s run our test dataset, which is shown in figure 7.9 and in
the next listing.   

Listing 7.7 Training the Logistic Regression model

Listing 7.8 Measuring the performance of the Logistic Regression model
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Figure 7.9 Test dataset
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val testV = sc.makeRDD(Array((1L, (0,1,false)), (2L, (0,0,false)),
  (3L, (1,0,false)), (4L, (5,4,true)), (5L, (0,1,false)),
  (6L, (0,0,false)), (7L, (1,1,true))))

val testE = sc.makeRDD(Array(Edge(1L,5L,""), Edge(2L,5L,""),
  Edge(3L,6L,""), Edge(4L,6L,""), Edge(5L,7L,""), Edge(6L,7L,"")))

perf(augment(Graph(testV,testE)))
res4: Double = 85.71428571428571

On the test dataset, our trained model performed at 86%. Not nearly as high as is typ-
ically expected for machine learning, but not absolutely terrible. The reason our
model isn’t doing so well is due to the small number of vertices (web pages) in the
training dataset, and to the small number of features—we should have hundreds of
features corresponding to hundreds of spam trigger words. A decent size training set
would have at minimum 100,000 example web pages. The performance of both the
training and test datasets missed one label in each case, so there aren’t even any other
possible percentage numbers we could have hit short of hitting the full 100%—yet
another symptom of running on such small data sizes.

7.3.3 Image segmentation (for computer vision) 
using Power Iteration Clustering

In section 7.3.1, you saw clustering of documents. In this section, we show how to clus-
ter pixels in an image using unsupervised learning. Using this technique we can
address a problem in computer vision called image segmentation. The idea is to try and
assign one of a number of labels to each pixel in an image. Figure 7.10 shows the
idea—we want to assign the labels “lion” and “background” to each pixel in the image
on the left. One possible segmentation is shown in the image on the right. By cluster-
ing image pixels and then assigning to each cluster one of two (or a few) possible col-
ors, the image can be segmented in a similar way to figure 7.10. 

Listing 7.9 Constructing the test data graph and evaluating its performance

Figure 7.10 Original image (shown in black and white in this book) is on the left, and after 
segmentation on the right. The low resolution is to allow it to run on a single 4GB machine. The number 
of clusters has to be set in advance, and here the default of two was used.
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To cluster, each pixel is represented as a position in the red/green/blue cube, as
shown in figure 7.11, and the clustering algorithm finds the two clusters.

 The clustering algorithm, called Power Iteration Clustering (PIC), is built into
Spark MLlib even though it takes a GraphX Graph as its input. The graph it takes as
input is expected to be completely connected (every vertex connected to every other
vertex), where the edge weight represents a “distance” between the two vertex values.

 In this case, we take as our feature vector (red, green, blue) and use a simple cosine
similiarity to be our similarity metric. We convert each pixel into a vector of length
three. The 2010 paper, “Power Iteration Clustering” by Frank Lin and William Cohen,
where PIC was introduced, recommends using cosine similarity.

Red

Blue

Green

Grass pixels

Lion pixels

Figure 7.11 The pixels are in a three-
dimensional vector space—each vector 
has three numeric components (red 
intensity, green intensity, and blue 
intensity)—and the clustering algorithm 
finds the two clusters.

Cosine similarity
One way to measure the similarity between two vectors A and B is called the cosine similarity.
Conveniently, the cosine similarity is always in the range [–1,1] (because you take cos(θ) to
be the similarity measure rather than θ), where 1 means A and B are most similar (equal) and
–1 means A and B are most dissimilar (pointing in opposite directions). A value of 0, inciden-
tally, means A and B are orthogonal (at a right angle to each other).
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Now that you’ve seen finding similar pixels, you’ll see the code that implements this.
In the following code there is a lambda expression (an inline function) that turns out
to be too complex for the Spark REPL to handle correctly, so we compile a standalone
program usng sbt as described in chapter 3. We give the sbt file first in listing 7.10 and
the Scala code in listing 7.11. Create a directory under your spark home directory
called PIC and save the sbt file to this directory with a name like PIC.sbt. Then create
the scala file (PIC.scala) under the directory structure PIC/src/main/scala. Compile
and package the code using the command

sbt package

If successful, this will create a jar file under the directory structure PIC/target/scala-
2.10. The program can be executed from the spark home directory with the following
command:

bin/spark-submit PIC/target/scala-2.10 <jar file>

The code expects the input file (an image file 105053.jpg) to be in the same directory
and creates a segmented image as output (out.png) like in figure 7.10. This image file
is contained within the Berkeley Segmentation Data Set, which can be downloaded
here:

wget  https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

➥BSDS300-images.tgz

A lot of the code is using the Java image-handling APIs and attempting to minimize
the memory footprint on the driver (instead preferring to use memory on the workers
in the cluster). For example, the red, green, and blue values are expanded from the
packed Int only after the Ints have been put into an RDD. On the other end, data is
sorted and packed into Arrays while still in RDDs, prior to the collect(), which sends
the data back to the driver.

 But buried in listing 7.11 are two new concepts intertwined, and one of them is
extremely subtle and tricky. The r.cartesian(r) performs a Cartersian product on
the RDD r. That creates an RDD of Tuple2s representing every possible permutation of
taking two values from r.

Cartesian product

If you have an RDD, say val myRDD:RDD[Int] = sc.make-
RDD(Array(5,8,9)), which has three elements, then the
Cartesian product of myRDD with itself has 32 = 9 elements
and is an RDD of Tuple2[Int,Int], as shown here:

(5,5)

(5,8)

(5,9)

(8,5)

(8,8)

(8,9)

(9,5)

(9,8)

(9,9)
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We use this Cartesian product because we need to compute the similarity between
every pixel with every other pixel.

scalaVersion := "2.10.5"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.6.0"
libraryDependencies += "org.apache.spark" % "spark-graphx_2.10" % "1.6.0"
libraryDependencies += "org.apache.spark" % "spark-mllib_2.10" % "1.6.0"

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.mllib.clustering.PowerIterationClustering
import org.apache.spark.graphx._

import java.awt.image.BufferedImage
import java.awt.image.DataBufferInt
import java.awt.Color
import java.io.File

import javax.imageio.ImageIO

object PIC {
  def main(args: Array[String]) {
    val sc = new SparkContext(new SparkConf().setMaster("local")

.setAppName("PIC"))
    val im = ImageIO.read(new File("105053.jpg"))
    val ims = im.getScaledInstance(im.getWidth/8, im.getHeight/8,

  java.awt.Image.SCALE_AREA_AVERAGING)
    val width = ims.getWidth(null)
    val height = ims.getHeight(null)
    val bi = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB)
    bi.getGraphics.drawImage(ims, 0, 0, null)
    val r = sc.makeRDD(bi.getData.getDataBuffer

.asInstanceOf[DataBufferInt].getData)
.zipWithIndex.cache

    val g = Graph.fromEdges(r.cartesian(r).cache.map(x => {
def toVec(a:Tuple2[Int,Long]) = {
val c = new Color(a._1)
Array[Double](c.getRed, c.getGreen, c.getBlue)

}
def cosineSimilarity(u:Array[Double], v:Array[Double]) = {
val d = Math.sqrt(u.map(a => a*a).sum * v.map(a => a*a).sum)
if (d == 0.0) 0.0 else
u.zip(v).map(a => a._1 * a._2).sum / d

}
Edge(x._1._2, x._2._2, cosineSimilarity(toVec(x._1), toVec(x._2)))

    }).filter(e => e.attr > 0.5), 0.0).cache
    val m = new PowerIterationClustering().run(g)
    val colors = Array(Color.white.getRGB, Color.black.getRGB)
    val bi2 = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB)

m.assignments

Listing 7.10 PIC.sbt for image segmentation

Listing 7.11 PIC.scala for image segmentation
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.map(a => (a.id/width, (a.id%width, colors(a.cluster))))

.groupByKey

.map(a => (a._1, a._2.toList.sortBy(_._1).map(_._2).toArray))

.collect

.foreach(x => bi2.setRGB(0, x._1.toInt, width, 1, x._2, 0, width))
    ImageIO.write(bi2, "PNG", new File("out.png"));
    sc.stop
  }
}

Now comes the extremely tricky part. We use zipWithIndex() to number the pixels to
keep track of them. But we are careful and cache() right after the zipWithIndex(). If
we didn’t, there’s a chance that Spark would end up performing the zipWithIndex()
twice (because everything is lazy), with the second time coming up with a different
ordering! In a comment to Jira ticket SPARK-3098, Matei Zaharia indicated that the
randomness was by design to speed shuffle performance and that ordering within
RDDs is not guaranteed.

SPARK TIP If an RDD is based on a zipWithIndex() and participates in a self-
join (for example join() to itself or cartesian() to itself), then do a
cache() after the zipWithIndex() but before the self-join in order to lock in
the ordering of the RDD.

After the Cartesian product result is converted into an RDD of Edges, that RDD of
Edges is reduced in size because we don’t need all of them. We only keep around
those Edges that have a similarity of 0.5 or higher. Besides reducing the size of the
RDD so that PIC will run faster, another reason is that PIC requires that all similarities
be zero or higher, so at the same time we’re eliminating those Edges with a similarity
of between –1 and 0 that would confuse the PIC algorithm.

 PIC is a general-purpose clustering algorithm. Here we used it to cluster pixels with
the ultimate goal of image segmentation. But PIC can be used for any clustering task,
provided you have a way to measure similarity from any data element to another.

7.4 Poor man’s training data: 
graph-based semi-supervised learning
Now that you’ve seen examples of both supervised learning and unsupervised learning,
it’s time to embark on semi-supervised learning, which combines the best of both worlds.
Although supervised learning has the advantage of predicting human-understandable
labels (because it was trained with labeled data), the disadvantage is the time required
for a human to label all that training data. That’s expensive. Because unsupervised
learning is trained with unlabeled data, vastly larger training datasets are easier to
come by.

 The general approach behind semi-supervised learning is to first perform unsu-
pervised learning on the unlabeled data. This provides some structure that can be
applied to the labeled data. Then this enhanced labeled data can be trained using
supervised learning to generate more powerful models.
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 In this section, we handle the situation where we have a bunch of data points in a
multi-dimensional space, such as a 2-D plane, a 3-D cube, or a higher dimension. The
axes of such a space could represent any variable: temperature, test scores, popula-
tion, and so forth. The idea is that we’re trying to attach class labels to points in this
space under the assumption that similar points will be clustered together. 

 For example, in the case of a cable TV and internet provider, a 2-D plane could be
constructed with axes for hours of television watched versus gigabytes of data trans-
ferred. We could then distinguish some categories—for example, heavy TV, heavy
internet, and heavy users of both. 

 By generating a graph to fit these data points, boundaries between these classes of
users can be determined. As it turns out, identifying these clusters of similar users will
boost the power of our prediction algorithm when we apply it to new data points.

 To implement this idea, we’ll first implement a K-Nearest Neighbors graph con-
struction algorithm (not to be confused with the K-Nearest Neighbors algorithm for
computing a prediction, which is different and not covered in this book), which will
serve as our unsupervised learning piece, and apply it to a dataset, the vast majority of
which is unlabeled. Then we’ll implement a simple label propagation algorithm that
propagates the labels to surrounding unlabeled vertices. Finally, we’ll implement a
simple knnPredict() function that when given a new data point, predicts which class
(label) it belongs to.

NOTE Many machine learning algorithms are prefixed with the letter  K.
Generally this refers to a parameter in the model which is conventionally
named K and needs to be chosen by the user. The actual meaning of K
depends on each specific algorithm, although there are classes of algorithm
that all use K in a similar way. For example, in the clustering algorithms,
K-Means and K-Medians, K is the number of clusters that we’re asking the
algorithm to generate. In K-Nearest Neighbors algorithms, we infer some-
thing about a point by looking at a number of the most similar points. In this
case, we have to choose K, the number of most similar points.

Figure 7.12 shows the starting condition, and figure 7.13 shows what it looks like after
both the K-Nearest Neighbors and semi-supervised learning label propagation algo-
rithms have run. These horseshoe-shaped clusters of data are the classic counterexam-
ple of where the K-Means algorithm fails—another type of clustering algorithm (not
related at all to K-Nearest-Neighbors). K-Means is focused on finding centers of clus-
ters and gets confused by long, stringy chains of points. But because this approach of
using K-Nearest Neighbors for graph construction can follow such chains, it doesn’t
get confused by this type of data.
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Figure 7.12 Starting condition: a bunch of points in two-dimensional space, 
almost all of them unlabeled, with the exception of two labeled points
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Figure 7.13 After both the K-Nearest Neighbors graph construction algorithm 
and the semi-supervised learning label propagation algorithm have run
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7.4.1 K-Nearest Neighbors graph construction

Spark does not (as of version 1.6) contain an implementation for the K-Nearest
Neighbors algorithm. That’s the subject of Jira ticket SPARK-2335.

 Conceptually, finding the K-Nearest Neighbors is trivially simple. For every point,
find its K-Nearest Neighbors out of all the other points and extend edges to those
points. This naïve, brute-force approach is shown in listing 7.12.

import org.apache.spark.graphx._

case class knnVertex(classNum:Option[Int],
pos:Array[Double]) extends Serializable {

  def dist(that:knnVertex) = math.sqrt(
    pos.zip(that.pos).map(x => (x._1-x._2)*(x._1-x._2)).reduce(_ + _))
}
def knnGraph(a:Seq[knnVertex], k:Int) = {
  val a2 = a.zipWithIndex.map(x => (x._2.toLong, x._1)).toArray
  val v = sc.makeRDD(a2)
  val e = v.map(v1 => (v1._1, a2.map(v2 => (v2._1, v1._2.dist(v2._2)))

.sortWith((e,f) => e._2 < f._2)

.slice(1,k+1)

.map(_._1)))
   .flatMap(x => x._2.map(vid2 =>

Edge(x._1, vid2,
1 / (1+a2(vid2.toInt)._2.dist(a2(x._1.toInt)._2)))))

  Graph(v,e)
}

The problem is performance. For each of the n points, n distances have to be com-
puted, and then these n distances have to be sorted, at a cost of n log n. That’s n2 log
n. All those various K-Nearest Neighbor algorithms are attempting to solve the prob-
lem more efficiently. But because it’s a non-polynomial problem (no algorithm can be
constructed to solve it in any reasonable amount of time), they all come up with
approximate solutions. We look at such an approximate approach, and one suited to
Spark’s distributed processing, later in this subsection.

 But first look at listing 7.12. If you’d like to try it out, listing 7.13 will generate the
data shown in figure 7.14, and listing 7.14 is a special export to the Gephi .gexf file
format tailored to our knnVertex that outputs color and position tags. Listing 7.15
executes the algorithm and the export to .gexf. Here we choose k=4 for K-Nearest
Neighborhood. 3 or 4 are typical values for k.

import scala.util.Random

Random.setSeed(17L)
val n = 10
val a = (1 to n*2).map(i => {
  val x = Random.nextDouble;
  if (i <= n)

Listing 7.12 Brute force K-Nearest Neighbors

Listing 7.13 Generate example data
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    knnVertex(if (i % n == 0) Some(0) else None, Array(x*50,
20 + (math.sin(x*math.Pi) + Random.nextDouble / 2) * 25))

  else
    knnVertex(if (i % n == 0) Some(1) else None, Array(x*50 + 25,

30 - (math.sin(x*math.Pi) + Random.nextDouble / 2) * 25))
})

The core of listing 7.12 is in the computation of e, which is an RDD of Edges that we
pass into Graph() to create the return value graph. And within this computation, we
can see the n2 nature of the computation. There is an outer RDD.map() (performed
on v, the RDD of vertices) and an inner Array.map() (performed on a2, the Array ver-
sion of v). For each vertex, we compute and sort all the distances and pick off the k
with shortest distance (we ignore index 0, because that’s the same vertex as itself with
distance zero). When we construct the actual Edge() at the end, we use the Edge attri-
bute to store the inverse of the distance. This will be used in the semi-supervised learn-
ing label propagation but isn’t needed for K-Nearest Neighbors itself.

 The use of flatMap() in listing 7.12 is a non-trivial use of it: it is effectively doing
both a map() (to transform each collection of distant vertices into a collection of
Edges)  and a flatten() (to make a single collection of Edges out of the collection of
collections of Edges).

import java.awt.Color
def toGexfWithViz(g:Graph[knnVertex,Double], scale:Double) = {
  val colors = Array(Color.red, Color.blue, Color.yellow, Color.pink,

Color.magenta, Color.green, Color.darkGray)
  "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" +
  "<gexf xmlns=\"http://www.gexf.net/1.2draft\" " +

"xmlns:viz=\"http://www.gexf.net/1.1draft/viz\" " +
"version=\"1.2\">\n" +

  "  <graph mode=\"static\" defaultedgetype=\"directed\">\n" +
  "    <nodes>\n" +

g.vertices.map(v =>
    "      <node id=\"" + v._1 + "\" label=\"" + v._1 + "\">\n" +
    "   <viz:position x=\"" + v._2.pos(0) * scale +

"\" y=\"" + v._2.pos(1) * scale + "\" />\n" +
    (if (v._2.classNum.isDefined)

" <viz:color r=\"" + colors(v._2.classNum.get).getRed +
"\" g=\"" + colors(v._2.classNum.get).getGreen +
"\" b=\"" + colors(v._2.classNum.get).getBlue + "\" />\n"

else "") +
    "      </node>\n").collect.mkString +
  "    </nodes>\n" +
  "    <edges>\n" +
  g.edges.map(e => "      <edge source=\"" + e.srcId +

"\" target=\"" + e.dstId + "\" label=\"" + e.attr +
"\" />\n").collect.mkString +

  "    </edges>\n" +
  "  </graph>\n" +
  "</gexf>"
}

Listing 7.14 Custom export (with layout) to Gephi .gexf for knnVertex-based graphs
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val g = knnGraph(a, 4)

val pw = new java.io.PrintWriter("knn.gexf")
pw.write(toGexfWithViz(g,10))
pw.close

TOWARD A DISTRIBUTED K-NEAREST NEIGHBORS ALGORITHM

Of the various approximate K-Nearest Neighbors graph construction algorithms out
there, most are geared toward conventional serial processing rather than distributed
parallel processing. A notable exception that does do distributed processing is from
the 2012 Microsoft Research paper, “Scalable k-NN graph construction for visual
descriptors” by Wang et al.

 That paper includes a lot of optimizations for distributed computing, but here
we’ll take and implement one of their many ideas and ignore the rest. It won’t do
their paper justice, but it’ll put us on a path toward a more practical K-Nearest Neigh-
bors implementation for Spark.

 The first key insight from the Wang paper, and the only one we adapt, is to break
the space up into grids and perform the brute-force K-Nearest Neighbor graph con-
struction algorithm on each cell in the grid. In figure 7.14, the space is variously bro-
ken up into 3x3 grids (in the first of the two dividings, the last grids have zero width or
height). If we then say m=3, the complexity is cm2(n/m2)(n/m2)log(n/m2) =
c(n/m)2log(n/m2), where c is the number of different grids we use.

 This is the simple approach we’ll take. Again, the full algorithm described in the
Wang paper is much more sophisticated, such as its use of Principal Component Anal-
ysis (PCA) to determine the grid orientation (breaking the space up into parallelograms

Listing 7.15 Execute K-Nearest Neighbors on the example data and export to .gexf
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Figure 7.14 Distributed K-Nearest Neighbor graph construction. Divide the space into grids and perform brute-
force K-Nearest Neighbor graph construction within each grid cell. To avoid missing edges that would cross a cell 
boundary, vary the grid and run again, and take the union of the two edge sets.
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instead of squares), using many random grids, and coalescing directed edges into undi-
rected edges.

 For implementing in Spark, we want to map each grid cell onto a separate execu-
tor (task). This can be done by paying attention to Spark RDD partitioning.

 Listing 7.16 uses groupByKey() to shuffle the data to partitions, as shown in figure
7.14, and then uses mapPartitions() to do the brute-force K-Nearest Neighborhood
edge generation within each cell. mapPartitions() allows us to capture up front (into
the variable af) that full subset of vertices inside that grid cell—say there are d vertices
in the grid cell—and then compute the d2 distances and complete the K-Nearest
Neighborhood edge generation.

RDD Partitioning (and mapPartitions())
At a fundamental level, RDDs are distributed datasets, and how Spark decides to dis-
tribute the data among the nodes in the cluster depends on the RDD’s partitioner.
The default partitioner is the HashPartitioner, which hashes the key in Tuple2
[K,V] key/value pairs, sending RDD data elements with equal keys to the same
node. This assumes the RDD is composed of key-value pairs in the first place (like
those that PairRDDFunctions operate on). But if it’s a plain, old RDD with no keys,
then Spark makes up random keys before running it through the HashPartitioner.

As described in section 9.3, GraphX adds another layer of abstraction to partitioning.
But under the covers, GraphX is merely controlling partitioning via HashPartitioner
and setting hidden keys to ensure HashPartitioner puts RDD elements where it
wants it to.

But when making a copy of the edges RDD or vertices RDD—recall that RDDs are
immutable, and any operations done on them make copies—we may opt to apply
our own partitioning for performance or algorithmic purposes. A convenient side
effect of groupByKey() is that data is shuffled and repartitioned by key. This can
sometimes obviate having to create a custom partitioner, which involves subclass-
ing Partitioner and overriding member functions.

Partitioning is something that happens behind the scenes, and we normally don’t
need to worry about it. But if we want to specify exactly where data goes, either for
performance or algorithmic purposes, then we need to pay attention. An important
means of making good use of partitions is through the mapPartitions() function.

mapPartitions() lets you deal with all the data in a partition in the form of a Scala
collection. This lets you do any expensive setup and teardown—such as creating a
database cursor or instantiating and initializing a parser object—once in each exec-
utor before that executor goes to work on its portion of the RDD. If you were to try to
do this using RDD’s map(), that expensive operation would be done once per data
element instead of once per partition.
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The result of executing this approximate K-Nearest Neighborhood graph generation
algorithm on the example data, followed by executing the semi-supervised learning
label propagation algorithm described in the next subsection, is shown in figure 7.15.

def knnGraphApprox(a:Seq[knnVertex], k:Int) = {
  val a2 = a.zipWithIndex.map(x => (x._2.toLong, x._1)).toArray
  val v = sc.makeRDD(a2)
  val n = 3
  val minMax =

v.map(x => (x._2.pos(0), x._2.pos(0), x._2.pos(1), x._2.pos(1)))
.reduce((a,b) => (math.min(a._1,b._1), math.max(a._2,b._2),

math.min(a._3,b._3), math.max(a._4,b._4)))
  val xRange = minMax._2 - minMax._1
  val yRange = minMax._4 - minMax._3

  def calcEdges(offset: Double) =
v.map(x => (math.floor((x._2.pos(0) - minMax._1)

/ xRange * (n-1) + offset) * n
+ math.floor((x._2.pos(1) - minMax._3)

/ yRange * (n-1) + offset),
x))

.groupByKey(n*n)

.mapPartitions(ap => {
val af = ap.flatMap(_._2).toList
af.map(v1 => (v1._1, af.map(v2 => (v2._1, v1._2.dist(v2._2)))

.toArray

.sortWith((e,f) => e._2 < f._2)

.slice(1,k+1)

.map(_._1)))
    .flatMap(x => x._2.map(vid2 => Edge(x._1, vid2,

1 / (1+a2(vid2.toInt)._2.dist(a2(x._1.toInt)._2)))))
    .iterator

})

  val e = calcEdges(0.0).union(calcEdges(0.5))
.distinct
.map(x => (x.srcId,x))
.groupByKey
.map(x => x._2.toArray

  .sortWith((e,f) => e.attr > f.attr)
  .take(k))

.flatMap(x => x)

  Graph(v,e)
}

SPARK TIP The RDD function union(), unlike SQL UNION, doesn’t eliminate
duplicates. You have to call distinct() right afterward if you want unique val-
ues in your resulting RDD.

Listing 7.16 Distributed, approximate K-Nearest Neighborhood graph generation
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Note that in order to get the groupByKey() to partition and shuffle the way we expect
it to, we had to use its optional parameter to specify the number of partitions. If we
didn’t, then groupByKey() might combine some of the small partitions into one if
they’re small. Because it affects our algorithm, in this case we want to insist on the
larger number of partitions. We specify the maximum it could be (n*n), and if there
happen to be fewer (if some of the grid cells are empty), groupByKey() will use as
many partitions as keys that exist.

 Also note that due to the preceding, the parameter passed into the function we
supply to mapPartitions() is technically not for a single key. It’s a collection contain-
ing multiple keys. Because we assume we’re getting a single key for the partition, we
start off with a flatMap() on that parameter to eliminate that extra level of nesting.

 When we calculate e at the end, the set of edges, we union() the two sets of edges
from the two possible grids shown in figure 7.14. Because that may result in more than
k edges for any given vertex, we trim that list down with the groupByKey(), map(),
flatMap() sequence of function calls. The comparator in the sortWith() is a greater-
than rather than the usual less-than because the edge attributes are the reciprocals of
the distances rather than the distances themselves.
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Figure 7.15 Result of executing both the approximate distributed K-Nearest Neighborhood 
algorithm and the semi-supervised learning label propagation algorithm from the next section. 
There are only about two-thirds as many edges in this one. Compared to the exact result 
shown in figure 7.13, one vertex, number 13, was misclassified, and another vertex, number 
12, wasn’t classified at all. But the benefit of the approximate result is that it does it with 
distributed computing and can be performed on large graphs.
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7.4.2 Semi-supervised learning label propagation

What we have done so far is extract some structure from all the points in our dataset
without worrying about what label we’re going to apply to them. Figure 7.16 shows the
structure we’ve built up. Our two labeled points are colored—vertex 9 (light red) and
vertex 19 (dark blue)—but most of our points have no labels associated with them and
remain medium grey. We resolve this now by implementing a label propagation algo-
rithm to assign a label to all those grey vertices. We then show how this fully labeled
model can be used to predict the label for new unlabeled data point.

 Now we’re ready to implement the label propagation, which is in listing 7.17. We
discussed Spark’s built-in label propagation algorithm in chapter 5, where we
explained how the algorithm takes a dataset of already labeled vertices and attempts
to identify and label communities through a label-consensus process. 

 By contrast, what we present in this chapter is a means of propagating labels from
a few known labeled vertices to a much larger selection of unlabeled vertices by using
the graph structure built by our unsupervised learning. It also takes into account edge
distances, weighting nearby vertices more heavily. The result is an algorithm that
almost always converges.

 The algorithm can be described as follows:

1 For each edge emanating from a labeled vertex, send that vertex’s label
together with the edge weight (the reciprocal of the edge length) to both the
source and destination of the edge.
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Figure 7.16 The graph that results from applying our distributed, approximate, unsupervised 
learning algorithm. Now there is structure, but unlabeled vertices remain unlabeled.
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2 For each vertex, add up the scores on a by-class (by-label) basis. If the vertex is
not one of the vertices with a pre-known, fixed label, then assign the winning
class (label) to the vertex.

3 If no vertices changed labels, or if maxIterations is reached, then terminate.

We use aggregateMessages() (together with joinVertices()) rather than Pregel()
because the terminating condition in Pregel() is when no messages are sent any lon-
ger. Here, we always send a labeled vertex’s label back to itself to ensure that perma-
nently labeled vertices can retain their label. We can’t use Pregel() in this code.

 Note that the gist of this algorithm is that it treats the graph as an undirected
graph. The actual implementation treats source and destination slightly differently in
its attempt to ensure that permanently labeled vertices never switch their label, but
conceptually labels can travel in either direction along the edge.

 Figure 7.17 on page 163 illustrates iteration by iteration the application of this
algorithm to the perfect K-Nearest Neighborhood graph from figures 7.12 and 7.13.

SCALA TIP The operator -> is shorthand for establishing a key-value pair in a
Scala HashMap. For those familiar with PHP, this is similar to PHP’s array initial-
ization using =>.

import scala.collection.mutable.HashMap
def semiSupervisedLabelPropagation(g:Graph[knnVertex,Double],

  maxIterations:Int = 0) = {
  val maxIter = if (maxIterations == 0) g.vertices.count / 2

else maxIterations

  var g2 = g.mapVertices((vid,vd) => (vd.classNum.isDefined, vd))
  var isChanged = true
  var i = 0

  do {
    val newV =

g2.aggregateMessages[Tuple2[Option[Int],HashMap[Int,Double]]](
ctx => {
  ctx.sendToSrc((ctx.srcAttr._2.classNum,

if (ctx.dstAttr._2.classNum.isDefined)
HashMap(ctx.dstAttr._2.classNum.get->ctx.attr)

else
HashMap[Int,Double]()))

  if (ctx.srcAttr._2.classNum.isDefined)
    ctx.sendToDst((None,

HashMap(ctx.srcAttr._2.classNum.get->ctx.attr)))
},
(a1, a2) => {
  if (a1._1.isDefined)
    (a1._1, HashMap[Int,Double]())
  else if (a2._1.isDefined)
    (a2._1, HashMap[Int,Double]())
  else

Listing 7.17 Semi-supervised learning label propagation
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    (None, a1._2 ++ a2._2.map{
case (k,v) => k -> (v + a1._2.getOrElse(k,0.0)) })

}
)

    val newVClassVoted = newV.map(x => (x._1,
if (x._2._1.isDefined)
x._2._1

else if (x._2._2.size > 0)
Some(x._2._2.toArray.sortWith((a,b) => a._2 > b._2)(0)._1)

else None
    ))

    isChanged = g2.vertices.join(newVClassVoted)
.map(x => x._2._1._2.classNum != x._2._2)
.reduce(_ || _)

    g2 = g2.joinVertices(newVClassVoted)((vid, vd1, u) =>
(vd1._1, knnVertex(u, vd1._2.pos)))

    i += 1
  } while (i < maxIter && isChanged)

  g2.mapVertices((vid,vd) => vd._2)
}

PREDICTION

Now that the graph is trained up for semi-supervised learning, we can use it now to
“predict” labels. Given a point with (x,y) coordinates, to which class (label) does it
belong? Listing 7.18 contains code for a dead-simple prediction function. It finds the
closest labeled vertex (regardless of whether it was originally labeled or got its label as
a result of the propagation) and returns that value. Technically, this is implementing
K-Nearest Neighbors prediction (not to be confused with K-Nearest Neighbors graph
construction) with k=1.

 Listing 7.19 shows invoking this simple knnPredict() on a model produced by list-
ing 7.17’s semiSupervisedLabelPropagation().

def knnPredict[E](g:Graph[knnVertex,E],pos:Array[Double]) =
g.vertices
.filter(_._2.classNum.isDefined)
.map(x => (x._2.classNum.get, x._2.dist(knnVertex(None,pos))))
.min()(new Ordering[Tuple2[Int,Double]] {

override def compare(a:Tuple2[Int,Double],
b:Tuple2[Int,Double]): Int =

a._2.compare(b._2)
    })
   ._1

Listing 7.18 Prediction function to use the semi-supervised learned graph
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val gs = semiSupervisedLabelPropagation(g)
knnPredict(gs, Array(30.0,30.0))
res5: Int = 0

Listing 7.19 Execute semi-supervised learning label propagation and use it to predict a
class (label) for a particular (x,y) coordinate of (30.0,30.0)
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Figure 7.17 Iterations of semi-supervised learning label propagation applied to the perfect K-Nearest Neighbors 
example
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7.5 Summary
 All three major types of machine learning can be done with GraphX: super-

vised, unsupervised, and semi-supervised.
 The subject of machine learning is vast, and GraphX and MLlib provide a select

set of algorithms.
 GraphX’s SVDPlusPlus can be used to build a recommender system, a form of

supervised learning.
 MLlib’s Latent Dirichlet Allocation, a form of unsupervised learning that uses

GraphX under the covers, can be used to assign topics to documents.
 MLlib’s Logistic Regression, a matrix-based form of supervised learning that

doesn’t use graphs at all, can be used in conjunction with PageRank to detect
web spam.

 MLlib’s Power Iteration Clustering, another form of unsupervised learning but
which takes a graph as input, can be used to segment an image for computer
vision.

 Neither GraphX nor MLlib has semi-supervised learning built in, but an exam-
ple of semi-supervised learning can be achieved via a combination of K-Nearest
Neighbors graph construction and an intuitive label propagation.

Machine learning is an advanced subject—the most advanced in this book. The next
chapter covers some more standard graph algorithms along with some of their appli-
cations, which are somewhat along the lines of chapter 6, but more contemporary
than the old classics from chapter 6.



Part 3

Over the arc

Part 3 covers the missing pieces and documentation. In chapter 8, you’ll see
algorithms you might expect to be part of the GraphX API but that aren’t as of
Spark 1.6. From reading standard RDF format graph data to merging graphs, the
algorithms in chapter 8 plug some of those holes.

 Chapter 8 also covers how to use IndexedRDD, which is like the HashMap of
RDDs. We go through an example showing how it can speed up performance.

 Finally, you’ll see an example of identifying likely missing data from Wikipe-
dia using ideas from graph isomorphisms—finding pieces of graphs that are simi-
lar to each other.

 Chapter 9 is all about putting GraphX into production and doing debugging
and performance tuning. It steps you through tools like DAG Visualization and
the History Server, and provides a concrete set of tools like caching, checkpoint-
ing, and serializer tuning to improve the performance of your Spark GraphX
application.

 In chapter 10, you’ll see how to use languages other than Scala. The combi-
nation of Apache Zeppelin and d3.js lets you visualize graphs inline in a note-
book, an interactive shell that can show graphics inline. The ability to see graphs
immediately without having to write out a separate file is powerful, provided you
don’t need to fine-tune the rendering parameters. We also cover how to use
Spark Job Server, which almost lets you treat GraphX as a database instead of a
graph processing system. Finally, a library from GitHub called GraphFrames
allows convenient and high-performance querying through the languages SQL
and Cypher.





The missing algorithms
You’ve seen examples of reading graph data from edge list files in earlier chapters.
RDF is another important file format used for many existing file formats. This chap-
ter shows you how to read in this file format and use this knowledge to make use of
the YAGO3 dataset.

 Aside from the classic graph algorithms from chapter 6, there are other slightly
more modern algorithms that one comes to expect in a graph database or graph
processing system. Some of these are missing—not implemented yet (or at least not
commonly available in either the official Apache Spark distribution as of Spark 1.6
or even from spark-packages.org).

 In this chapter, you’ll see how to implement some of these algorithms. You’ll
also see how to use IndexedRDD for performance gains. IndexedRDD was originally

This chapter covers
 Reading RDF files

 Merging graphs

 Filtering out isolated vertices

 Using IndexedRDD for performance gains

 Taking a simplistic approach to finding graph 
isomorphisms

 Computing the global clustering coefficient
167
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written by one of the main GraphX code contributors but never merged into the
Apache Spark distribution. 

8.1 Missing basic graph operations
This section lays the groundwork for the next, which is about reading RDF files.
Before reading RDF files, though, we need to look at a couple of basic graph opera-
tions that GraphX doesn’t provide (as of Spark 1.6). The first is taking subgraphs in a
common sense fashion, and the second is merging two graphs together.

8.1.1 Common sense subgraphs

When we introduced GraphX’s subgraph() in a sidebar in section 5.2, we indicated
that it would leave an isolated vertex whenever you filtered out all that vertex’s edges
(see figure 8.1). That can be inconvenient. Often you know which edges you want to
keep and which you want to filter out, and you don’t want to have to figure out which
vertices need to stay for the edges you want to keep.

 The next listing provides a function to filter out those singleton (isolated) vertices
after you’ve executed subgraph() with a function to filter edges. We’ll use this func-
tion in section 8.3 on simplistic graph isomorphisms.

import scala.reflect.ClassTag

def removeSingletons[VD:ClassTag,ED:ClassTag](g:Graph[VD,ED]) =
  Graph(g.triplets.map(et => (et.srcId,et.srcAttr))

.union(g.triplets.map(et => (et.dstId,et.dstAttr)))

.distinct,
g.edges)

Listing 8.1 Delete isolated vertices: handy for after having called subgraph()

has-blocked

has-blocked has-blocked

Ann

Diane

is-friends-with

is-friends-with Bill

Charles

1

24

3

has-blocked

Ann

Diane

is-friends-with

is-friends-with Bill

Charles

1

24

3

Figure 8.1 If you use GraphX’s subgraph() to keep only the is-friends-with edges, it leaves straggler vertices 
like Diane (on the right).
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To remove the singletons, this listing uses the fact that the vertices in the information
returned by triplets() all participate in edges—any singleton vertices have no edges
and so won’t be returned by triplets(). It gets all the source vertices from triplets()
and union()s that with all the destination vertices from a second invocation of
triplets(). Then with a distinct() set of vertices, it returns a new Graph constructed
with those vertices and the original set of edges.

 The following listing shows the function in action on the graphs from figure 8.1.
The output shows the vertices for the original subgraph, including the singleton ver-
tex for Diane, followed by the vertices for the graph after running removeSingletons.

val vertices = sc.makeRDD(Seq(
(1L, "Ann"), (2L, "Bill"), (3L, "Charles"), (4L, "Dianne")))
val edges = sc.makeRDD(Seq(
Edge(1L,2L, "is-friends-with"),Edge(1L,3L, "is-friends-with"),
Edge(4L,1L, "has-blocked"),Edge(2L,3L, "has-blocked"),
Edge(3L,4L, "has-blocked")))  
val originalGraph = Graph(vertices, edges)
val subgraph = originalGraph.subgraph(et => et.attr == "is-friends-with")

// show vertices of subgraph – includes Dianne
subgraph.vertices.foreach(println)

// now call removeSingletons and show the resulting vertices
removeSingletons(subgraph).vertices.foreach(println)

The vertices for the original graph, subgraph, should look like this, Diane included:

(4,Dianne)
(3,Charles)
(2,Bill)
(1,Ann)

After removeSingletons, the result looks like this:

(3,Charles)
(2,Bill)
(1,Ann)

8.1.2 Merge two graphs

If you have two graphs with vertex type of String, it’s sometimes useful to merge two
such graphs on common vertex names, as shown in figure 8.2. Merging means treating
equally named vertices from the two graphs as the same vertex and merging the adja-
cent edges together for those vertices. All the other vertices and edges that are unique
to one graph or the other are also brought in. This is useful if you have two graphs
constructed from two different data sources and you want to make one big graph out
of them to do further analysis.

Listing 8.2 The removeSingletons function in action
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<Aristotle>

<Socrates>

<Plato> +

=

<influences>

<influences>

<influences>

<influences>

<hasGender>

<male>

<hasGender>

<male>

<Aristotle>

<Plato>

rdf:type

rdf:type

rdf:type
<wordnet_philosopher>

<Socrates>

<Aristotle>

<Plato>

rdf:type

rdf:type

rdf:type
<wordnet_philosopher>

<Socrates>

Figure 8.2 Merging two graphs together based on commonly named vertices is a useful operation 
that isn’t built into GraphX (as of Spark 1.6).
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The next listing shows how it can be done. The function takes two graphs that we want
to merge and returns a single graph with any common vertices merged.

import org.apache.spark.graphx._

def mergeGraphs(g1:Graph[String,String], g2:Graph[String,String]) = {
  val v = g1.vertices.map(_._2).union(g2.vertices.map(_._2)).distinct

.zipWithIndex
  def edgesWithNewVertexIds(g:Graph[String,String]) =

g.triplets
.map(et => (et.srcAttr, (et.attr,et.dstAttr)))
.join(v)
.map(x => (x._2._1._2, (x._2._2,x._2._1._1)))
.join(v)
.map(x => new Edge(x._2._1._1,x._2._2,x._2._1._2))

  Graph(v.map(_.swap),
edgesWithNewVertexIds(g1).union(edgesWithNewVertexIds(g2)))

}

First, it constructs a common vertex dictionary in v. The procedure is to generate an
RDD of the vertex attributes for the first input graph using the code g1.vertices
.map(_._2). We then do the same for the second input graph. The two RDDs are con-
catenated with a union, and we take a distinct to generate an RDD with a unique set
of vertex attributes from across the graph. Finally, we generate new IDs for each vertex
using zipWithIndex. For our example in figure 8.2, it would look something like this:

(Plato, 0)
(Aristotle, 1)
(wordnet_philosophers, 2)
(Socrates, 3)
(male,4)

The nested function edgesWithNewVertexIds() translates a graph’s set of edges to
the new vertexIds in v, and this is used on both input graphs g1 and g2. The ultimate
return value is a graph with the translated edges from both g1 and g2 (along with the
vertices from v).

 The following listing shows the function in action on the graphs from figure 8.2.
The output from running this code will be a list of all the vertices and their connec-
tions in the merged graph.

val philosophers = Graph(
sc.makeRDD(Seq(
    (1L, "Aristotle"),(2L,"Plato"),(3L,"Socrates"),(4L,"male"))),
sc.makeRDD(Seq(
    Edge(2L,1L,"Influences"),
    Edge(3L,2L,"Influences"),
    Edge(3L,4L,"hasGender"))))

Listing 8.3 Merge two graphs into one

Listing 8.4 Using mergeGraphs on the philosopher graphs
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val rdfGraph = Graph(   
    sc.makeRDD(Seq(

(1L,"wordnet_philosophers"),(2L,"Aristotle"),
(3L,"Plato"),(4L,"Socrates"))),

    sc.makeRDD(Seq(
Edge(2L,1L,"rdf:type"),
Edge(3L,1L,"rdf:type"),
Edge(4L,1L,"rdf:type"))))

val combined = mergeGraphs(philosophers, rdfGraph)

combined.triplets.foreach(
t => println(s"${t.srcAttr} --- ${t.attr} ---> ${t.dstAttr}"))

The output should look like this:

Socrates --- Influences ---> Plato
Plato --- Influences ---> Aristotle
Socrates --- hasGender ---> male
Plato --- rdf:type ---> wordnet_philosophers 
Aristotle --- rdf:type ---> wordnet_philosophers 
Socrates --- rdf:type ---> wordnet_philosophers

SCALA TIP Scala provides syntactic sugar of "${myVar}" to avoid writing out
long string concatenations for formatted output.

8.2 Reading RDF graph files
Although GraphX has the power to represent property graphs, there is quite a bit of
graph data out there that’s represented only in terms of triples. A triple consists of a
subject, predicate, and object. In terms of GraphX, the subject and object are vertex
String properties, and the predicate is an edge property. There are various standard
file formats to store triples, such as RDF (Resource Description Framework) and N3
(Notation 3). 

One well-known set of RDF data is YAGO3 (Yet Another Great Ontology) from the Max
Planck Institute in Germany. YAGO3 is derived from Wikipedia, WordNet, DBPedia,
GeoNames, and other sources and is an attempt to create a universal kitchen-sink ontol-
ogy. The full YAGO3 data set encompasses over 500 million triples consuming 90 GB,
and a miniscule subset is shown in figure 8.3. There are many varied uses of YAGO3
involving some sort of natural language processing and finding relationships between
concepts expressed in text. Section 8.3 shows a simplistic use of YAGO3—finding miss-
ing or inconsistent data in Wikipedia—which is possible because YAGO3 is derived
largely from Wikipedia.

<Socrates>
<hasGender>

<male>

Subject ObjectPredicate

Figure 8.3 An example of an RDF triple
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8.2.1 Matching vertices and constructing the graph

In this subsection, we show a basic technique for reading an RDF file. YAGO3 is avail-
able for download as a few dozen .tsv files (tab-separated files). Here are a couple of
example lines from the file yagoFacts.tsv:

<id_10silts_1sv_1rii7g7>  <Plato>   <influences>  <Aristotle>
<id_10silts_p3m_zkjp59>   <Plato>   <hasGender>   <male>

The first column is an ID that we’ll ignore. The second column is the subject, the third
the predicate, and the fourth the object. Notice that there are no vertex IDs. The main
task when reading an RDF file is to generate vertex IDs from the vertex names.

 In the next, a vertex dictionary is first created in v. Then through a complex
sequence of join()s and map()s, the vertex names are translated into vertex IDs using
v. In the final map(), an Edge instance is constructed for each computed triple.

def readRdf(sc:org.apache.spark.SparkContext, filename:String) = {
  val r = sc.textFile(filename).map(_.split("\t"))
  val v = r.map(_(1)).union(r.map(_(3))).distinct.zipWithIndex
  Graph(v.map(_.swap)

r.map(x => (x(1),(x(2),x(3))))
.join(v)
.map(x => (x._2._1._2,(x._2._2,x._2._1._1)))
.join(v)
.map(x => new Edge(x._2._1._1, x._2._2, x._2._1._2)))

}

Because it can be difficult to mentally keep track of anonymous Scala tuples nested
three-deep, figure 8.4 illustrates the motion of the data.

Listing 8.5 Read a tab-separated RDF file

Create dictionary of unique vertices using similar 
approach used in mergeGraphs function

Another mergeGraphs trick—turn
vertex-name-to-ID RDD into a

VertexRDD by swapping pair elements

(SubjectName, (Predicate, ObjectName))

(SubjectName, ((Predicate, ObjectName), SubjectId))

(ObjectName, (SubjectId, Predicate))

(ObjectName, ((SubjectId, Predicate), ObjectId))

Edge(SubjectId, Predicate, ObjectId)

r.map(x => (x(1),(x(2),x(3))))

.join(v)

.map(x => (x._2._1._2,(x._2._2,x._2._1._1)))

.join(v)

.map(x => new Edge(x._2._1._1, x._2._2, x._2._1._2)))

Figure 8.4 Data flow representation of listing 8.5. First the Predicate (source) vertex string name is translated 
to a vertex ID and then the Object (destination) vertex is. Finally an Edge() is constructed with these two vertex 
IDs plus the original edge String attribute.
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As an example of using readRdf(), download the file from YAGO3 called yago-
Types.tsv:

wget http://resources.mpi-inf.mpg.de/yago-naga/yago/download/

➥ yago/yagoTypes.tsv.7z

Then decompress the .7z file format. The specifics will vary for your particular OS, but
for CentOS (which is the OS of the Cloudera QuickStart VM recommended in appen-
dix A), it would be the following:

wget http://packages.sw.be/rpmforge-release/

➥ rpmforge-release-0.5.2-2.el6.rf.i686.rpm
sudo rpm -ivh rpmforge-release-0.5.2-2.el6.rf.i686.rpm
sudo yum install p7zip
7za e yagoTypes.tsv.7z

Now, yagoTypes.tsv is a 1.5 GB file, and if you’re running the Spark REPL locally, it only
defaults to allocating 500 MB in the JVM. Therefore, for performance (and to have it
succeed), you’ll want to launch the Spark REPL with the --driver-memory option for
more memory, as well as with the --driver-cores option to use all the cores on your
machine (4 is shown next for an Intel i5 processor, but go ahead and bump that up to
8 if, for example, you know you have an Intel i7 processor):

./spark-shell --driver-memory 2g --driver-cores 4

Once you’re in the Spark REPL, after entering in the code for readRdf(), it’s just

val gTypes = readRdf(sc, "yagoTypes.tsv")

You can then download another one of the YAGO3 files:

wget http://resources.mpi-inf.mpg.de/yago-naga/yago/download/

➥ yago/yagoSimpleTaxonomy.tsv.7z

Now you can use the mergeGraphs() in the Spark REPL to read in this second file and
merge it with the first:

val gSimpleTaxonomy = readRdf(sc, "yagoSimpleTaxonomy.tsv")
val gMerged = mergeGraphs(gTypes, gSimpleTaxonomy)

Finally, download the yagoFacts file:

wget http://resources.mpi-inf.mpg.de/yago-naga/yago/download/

➥ yago/yagoFacts.tsv.7z

8.2.2 Improving performance with IndexedRDD, the RDD HashMap

You may have noticed that the performance of reading these larger YAGO3 files is not
too peppy. There’s a way to speed it up, perhaps by 30%, by using IndexedRDD, a
library developed by AMPlab and available from spark-packages.org.
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 As of Spark 1.6, IndexedRDD is not part of the Apache Spark distribution. Ankur
Dave, one of the original major contributors to GraphX, developed IndexedRDD in
2014 (around the time of the Spark 1.0 release) as a way to improve GraphX perfor-
mance. Jira ticket SPARK-2365, which is to merge IndexedRDD into the official Apache
Spark distribution, has not yet been targeted for any particular future release of Spark.

 IndexedRDDs have two major features over regular RDDs. First, as the name sug-
gests, they’re indexed and act similar to HashMaps from Java and other languages.
Second, they’re mutable. It is this mutability that makes them particularly attractive
for incorporation into GraphX, as at present any small change to a graph necessitates
creating a whole new graph. The indexing makes IndexedRDDs particularly attractive
to the Spark SQL component of Spark. But integrating IndexedRDD into Spark so
deeply would require a lot of testing because it changes the fundamental assumption
of RDD immutability, which Spark uses to manage RDD lineages, laziness, checkpoints,
and other core features of Spark.

 When we wrote that IndexedRDDs act like HashMaps, that wasn’t quite right.
They’re better because, as shown in figure 8.5, under the covers they use search tries (a
specific kind of search tree) instead of a hash map. The linear scans that worker nodes
perform for conventional RDDs are fine for map()s on the entire collection of data
items in an RDD, but not so great for join()s.

 As listing 8.5 contains two join()s, we can improve the performance by converting
to use IndexedRDDs instead. The improved version is shown in listing 8.6. Indexed-
RDD’s have an innerJoin() function instead of join() as in conventional RDDs.
IndexedRDD’s innerJoin() takes a second parameter list with one parameter—
namely, a function to perform a map operation. We can’t make use of this map conve-
nience because we want to discard the key we’re joining on (the subject name or
object name), and IndexedRDD forces the key back on to its return result. To make
innerJoin() act like the join() we’re familiar with, we need to pass in the function
(id, a, b) => (a, b) because that’s what join() produces for the value portion of the
key-value pairs it generates.

 You may have noticed that we structured this listing as a standalone program
rather than a code snippet that you can enter into the Spark REPL. There’s a reason
for that. We need to bring in IndexedRDD as an external Jar, and adding an external
Jar to the command line when launching the Spark REPL can be tricky and tedious
when that Jar depends on other Jars. It’s easier to use a dependency manager such as
Apache Ivy (which is built into sbt) or Maven, and to then build an assembly Jar (also
known as a fat Jar, or Jar with dependencies). Maven should be familiar to Java pro-
grammers, and here we use Maven rather than sbt because its assembly plug-in
doesn’t require tweaking or external configuration. Listing 8.7 has the pom.xml file,
which should go into a directory ~/readrdf, and listing 8.6 should go into a file
~/readrdf/src/main/scala /readrdf.scala.
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import org.apache.spark.graphx._
import org.apache.spark.{SparkContext, SparkConf}

import edu.berkeley.cs.amplab.spark.indexedrdd.IndexedRDD
import edu.berkeley.cs.amplab.spark.indexedrdd.IndexedRDD._

Listing 8.6 Read a tab-separated RDF file, performance improved with IndexedRDD

Driver program

IndexedRDD

HashPartitioner

Worker node

RDD partition

Worker node

B D

I “DO” “DA”

“BID” “BIG”

B D

I “DO” “DA”

“BID” “BIG”

RDD partition

Driver program

RDD (conventional)

HashPartitioner

Worker nodeWorker node

RDD partition

Data

RDD partition

Linear scan

Data

Figure 8.5 To find one particular data item by key in an RDD is a two-step process. First, the Spark 
driver uses the RDD’s HashPartitioner to identify which worker/partition the data item is in, and then 
the worker node finds the data item in the RDD partition that it is on. The difference between an 
IndexedRDD and a conventional RDD is in this second step. For an IndexedRDD, the worker node uses 
a search try, and for a conventional RDD, the worker node performs a linear scan. Note that even 
though search tries are a kind of graph, IndexedRDD uses a custom, efficient, non-distributed 
implementation and doesn’t use distributed GraphX Graphs to implement them.
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object readrdf {
  def readRdfIndexed(sc:SparkContext, filename:String) = {
    val r = sc.textFile(filename).map(_.split("\t"))
    val v = IndexedRDD(r.map(_(1)).union(r.map(_(3))).distinct

.zipWithIndex)
    Graph(v.map(_.swap),

  IndexedRDD(IndexedRDD(r.map(x => (x(1),(x(2),x(3)))))
   .innerJoin(v)((id, a, b) => (a,b))
   .map(x => (x._2._1._2,(x._2._2,x._2._1._1))))
   .innerJoin(v)((id, a, b) => (a,b))
   .map(x => new Edge(x._2._1._1, x._2._2, x._2._1._2)))

  }

  def main(args: Array[String]) {
    val sc = new SparkContext(

new SparkConf().setMaster("local").setAppName("readrdf"))
    val t0 = System.currentTimeMillis
    val r = readRdfIndexed(sc, args(0))
    println("#edges=" + r.edges.count +

    " #vertices=" + r.vertices.count)     
    val t1 = System.currentTimeMillis
    println("Elapsed: " + ((t1-t0) / 1000) + "sec")
    sc.stop
  }
}

If Maven isn’t already installed (it comes preinstalled on the Cloudera QuickStart VM
recommended in appendix A), use your favorite search engine to find instructions on
how to install it for your particular OS. Once it’s installed, compile with the following:

cd ~/readrdf
mvn clean package

To launch the compiled program, change to the Spark bin directory (from which you
normally launch spark-shell) and use spark-submit instead:

./spark-submit --class readrdf --master local[4] --driver-memory 2g

➥ ~/readrdf/target/graphx-readrdf-1.0-SNAPSHOT-jar-with-dependencies.jar

➥ yagoTypes.tsv

Using IndexedRDD improves the runtime performance by about 30% in this example.
You can compare it yourself by dropping in the original readRdf() function from list-
ing 8.5 into the readrdf object in listing 8.6 and calling that from main() instead of
readRdfIndexed(), as shown in the following listing.

<project xmlns="http://maven.apache.org/POM/4.0.0" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 
http://maven.apache.org/maven-v4_0_0.xsd">

  <modelVersion>4.0.0</modelVersion>
  <groupId>com.manning</groupId>

Listing 8.7 pom.xml for listing 8.6

Force Spark to evaluate 
the lazy graph.

The input RDF file
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  <artifactId>graphx-readrdf</artifactId>
  <version>1.0-SNAPSHOT</version>
  <packaging>jar</packaging>

  <repositories>
    <repository>

<id>SparkPackagesRepo</id>
<url>http://dl.bintray.com/spark-packages/maven/</url>

    </repository>
  </repositories>

  <dependencies>
    <dependency>

<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.5.0</version>

    </dependency>
    <dependency>

<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_2.10</artifactId>
<version>1.6.0</version>

    </dependency>
    <dependency>

<groupId>amplab</groupId>
<artifactId>spark-indexedrdd</artifactId>
<version>0.3</version>

    </dependency>
    <dependency>

<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.10.5</version>

    </dependency>
  </dependencies>

  <build>
    <plugins>

<plugin>
<groupId>org.scala-tools</groupId>
<artifactId>maven-scala-plugin</artifactId>
<version>2.15.0</version>
<executions>
  <execution>
    <goals>

<goal>compile</goal>
<goal>testCompile</goal>

    </goals>
  </execution>
</executions>

</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<version>2.5.5</version>
<configuration>
  <descriptorRefs>
    <descriptorRef>jar-with-dependencies</descriptorRef>
  </descriptorRefs>
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</configuration>
<executions>
  <execution>
    <phase>package</phase>
    <goals>

<goal>single</goal>
    </goals>
  </execution>
</executions>

</plugin>
    </plugins>
  </build>
</project>

8.3 Poor man’s graph isomorphism: 
finding missing Wikipedia infobox items
One of the most interesting uses of graphs is for finding graph isomorphisms, which
identify two portions of a graph that are similar in structure to each other and then
use that to infer something about the second portion by using information from the
first portion.

 For example, figure 8.6 illustrates an example from YAGO-like data.

YAGO data is notoriously incomplete because it’s derived from Wikipedia, which
depends on volunteer human editors, who devote an amount of time that varies by
how interesting a topic, or even a particular item within a topic, is. We could use
graph isomorphisms to detect inconsistencies within YAGO data.

 First some background about how YAGO uses Wikipedia data. The YAGO graph
edges that denote classification, the rdf:type edges, come from the Categories at the
bottom of a Wikipedia page. These are accumulated into the yagoTypes.tsv file. The
YAGO graph edges that denote facts such as “<exports>” and “<isLocatedIn>” come
from the Infobox in the upper right corner of a Wikipedia page. These are accumu-
lated into the yagoFacts.tsv file.

rdf:type

<exports>

<exports> <exports>

<aircraft>
<exports>

<Countries>

<Canada>

rdf:type

<France>

<chemical>

?

Figure 8.6 The subgraph formed by 
the three vertices <France>, 
<Countries>, and <aircraft> is said 
to be isomorphic to the subgraph 
formed by the three vertices 
<Canada>, <Countries>, and 
<aircraft>. Not only are the edges in 
the same locations, but the edge 
attributes are the same. From this, 
could we infer that Canada also 
exports chemicals?
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 On a Wikipedia page, both the Categories and the Infobox are manually edited by
volunteer human editors and are subject to a high level of inconsistency.

 Graph isomorphisms are powerful, but implementing such an algorithm is beyond
the scope of this book. Instead, we’re going to cheat. Instead of looking for arbitrary
graph structures (of arbitrary size), we’re going to look only for “<exports>” edges and
guess which other “<exports>” edges might be missing. We’re taking advantage of the
fact that the subject of “<exports>” is almost certainly a country, so we don’t need to
look for the edge that points up to “<Countries>”. We’re also taking advantage of the
fact that the object of “<exports>” is almost certainly a product type. By looking only for
“<exports>” edges, it’s like we’re getting some matching of larger subgraphs for free.

 Notice also that by looking only for “<exports>” edges, we’re in effect looking at a
bipartite graph, from countries to products (see chapter 3 for more on bipartite
graphs). The fact that we have a bipartite graph suggests the use of a recommender
engine, and here we’ll use SVDPlusPlus that was covered in chapter 7.

 Our approach is to create the bipartite graph by subsetting only the “<exports>”
edges out of the full YAGO graph and then train an SVDPlusPlus machine learning
model on that. We’ll find out the highest recommendation from this model, and that
will suggest some information that might be missing from Wikipedia. The data flow we
use, shown in figure 8.7, encompasses the next four code listings.

 This example uses the Spark REPL launched with increased memory. We don’t
need to use spark-submit and Maven. First, as shown in listing 8.8, we read YAGO, cre-
ate the bipartite graph, and use that as input to SVDPlusPlus to create the machine
learning model. Because SVDPlusPlus expects a “rating” value (for example, one to
four stars for a movie review), we assign a value of 1.0 for each rating. The absence of
an “<exports>” edge is an implicit 0.0 rating.

val gf = readRdf(sc, "yagoFacts.tsv").subgraph(_.attr == "<exports>")
val e = gf.edges.map(e => Edge(e.srcId, e.dstId, 1.0))
val (gs,mean) = lib.SVDPlusPlus.run(e,

new lib.SVDPlusPlus.Conf(2,10,0,5,0.007,0.007,0.005,0.015))

Next, we need a list of all possible exports, which we compute from all countries’
exports combined together (we’re not considering exports that no country in the
world exports yet). In this example we’re only going to look for potential missing
exports for a single country, Canada. The next listing generates an RDD, vr, that con-
tains all the possible exports that Canada doesn’t already export (which are removed
by subtractByKey() where “subtract” refers to a set operation). Note that this listing
relies on removeSingletons() from listing 8.1.

Listing 8.8 Train SVDPlusPlus model on “<exports>” edges from YAGO
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val gc = removeSingletons(gf.subgraph(et => et.srcAttr == "<Canada>"))
val vr = e.map(x => (x.dstId,""))

  .distinct
  .subtractByKey(gc.vertices)
  .map(_._1)

Listing 8.9 Compute vr, the list of potentially missing exports for Canada

Train SVDPlusPlus
recommender
system model

Potential Canadian
exports

The potential
Canadian exports,

now scored

Top scoring
(most likely)

export not currently
represented in

YAGO3/Wikipedia

Listing 8.6

Listing 8.7

Listing 8.8

Listing 8.9

yagoFacts.tsv

vr:VertexRDD[VertexId]

<Canada>
<exports>

<aircraft>

<France>
<exports>

<aircraft>

<France>
<exports>

<chemical>

<electronic_equipment>

r:RDD[Tuple2[String,Double]]

(<grain>,1.45)

(<electronic_equipment>,1.70)

(<wool>,1.06)

pred()

Figure 8.7 Data flow to find the most likely possible export from Canada that wasn’t in Wikipedia 
when YAGO3 took a snapshot of it
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The idea is to run every item from vr through the SVDPlusPlus model we’ve created.
Recall that the SVDPlusPlus model consists of two values, a graph and a double value
(representing the mean), and that in chapter 7 we provided a pred() function to pre-
dict the “rating given by Canada” for every possible export. One would naturally think
to call vr.map() where the function passed into the map calls pred(). But we can’t
pass gs, computed in listing 8.6, into vr.map().

SPARK TIP The function passed into a map() can’t reference a Graph or even
an RDD. The reason is that to initiate a map() on the Spark cluster, Spark cre-
ates a closure (discussed in chapter 3), which means Spark ships all needed
local variable data to the cluster along with the command to perform the
map(). Spark won’t bundle an RDD into a closure. Alternatives include a) con-
verting the RDD to an Array in a local variable and relying on Spark to bundle
that into a closure, b) using the Spark broadcast variable feature to broadcast
such an array to the cluster in advance, or c) using a join(), if applicable, to
create a single RDD out of the two RDDs (the one map() is being called on,
and the one used by the function passed into map()).

Instead, the next listing provides a replacement for the pred() from chapter 7. This
pred() takes a plain old Scala Map rather than a Graph as its parameter. The compan-
ion function vertexMap() converts the graph output from SVDPlusPlus into such a
Scala map.

def pred(v:Map[VertexId, (Array[Double], Array[Double], Double, Double)],
 mean:Double, u:Long, i:Long) = {

  val user = v.getOrElse(u, (Array(0.0), Array(0.0), 0.0, 0.0))
  val item = v.getOrElse(i, (Array(0.0), Array(0.0), 0.0, 0.0))
  mean + user._3 + item._3 +
  item._1.zip(user._2).map(x => x._1*x._2).reduce(_ + _)
}

def vertexMap(g:Graph[(Array[Double], Array[Double],
Double, Double),Double]) =

g.vertices.collect.map(v => v._1 -> v._2).toMap

The following listing computes the most recommended export from Canada that
might be valid yet missing from Wikipedia.

val vm = vertexMap(gs)
val cid = gf.vertices.filter(_._2 == "<Canada>").first._1
val r = vr.map(v => (v,pred(vm,mean,cid,v)))

val maxKey = r.max()(new Ordering[Tuple2[VertexId, Double]]() {
  override def compare(x: (VertexId, Double), y: (VertexId, Double)): Int = 

Ordering[Double].compare(x._2, y._2)
})._1

Listing 8.10 map()-friendly SVDPlusPlus prediction function and helper

Listing 8.11 Find most likely Canadian export not in Wikipedia
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gf.vertices.filter(_._1 == maxKey).collect

res0: Array[(org.apache.spark.graphx.VertexId, String)] =
 Array((1721488,<wordnet_electronic_equipment_103278248>))

The top recommendation for a missing edge in Wikipedia (based on the YAGO data)
for a Canadian export is “electronic equipment.” Anecdotally, we know the Canadian
company Research In Motion exports Blackberry devices. But to look at it statistically,
first take a look at the full list of exports that YAGO does have for Canada:

grep "<exports>" yagoFacts.tsv | grep "<Canada>"
<id_1wrx1wu_dv6_1pgb7a4> <Canada> <exports> <wordnet_aluminum_114627820>
<id_1wrx1wu_dv6_j2l8e6>  <Canada> <exports> <wordnet_electricity_111449907>
<id_1wrx1wu_dv6_t6wmo1>  <Canada> <exports> <wordnet_lumber_114943580>
<id_1wrx1wu_dv6_jhowo0>  <Canada> <exports> <wordnet_natural_gas_114960090>
<id_1wrx1wu_dv6_s9bzqx>  <Canada> <exports> <wordnet_aircraft_102686568>
<id_1wrx1wu_dv6_12fzkgg> <Canada> <exports> <wordnet_plastic_114592610>

Then, according to www.worldstopexports.com/canadas-top-exports/2502, the top 10
should be as follows:

1 Oil—US$128,926,515,000 (27.2% of total exports)
2 Vehicles—$59,753,479,000 (12.6%)
3 Machines, engines, pumps—$32,600,025,000 (6.9%)
4 Gems, precious metals, coins—$21,518,760,000 (4.5%)
5 Electronic equipment—$13,639,592,000 (2.9%)
6 Plastics—$13,192,128,000 (2.8%)
7 Wood—$12,686,263,000 (2.7%)
8 Aircraft, spacecraft—$12,409,459,000 (2.6%)
9 Aluminum—$8,865,363,000 (1.9%)

10 Cereals—$8,774,059,000 (1.8%)

The YAGO data was correct in listing aluminum, aircraft, wood, and plastics, yet failed
to mention aircraft, which was above all of those.

 This was a single recommendation. In reality, instead of looking for only maxKey, as
in listing 8.11, a threshold for the predicted rating should be chosen, and all recom-
mended edges above that threshold should be examined.

 Note also that by using SVDPlusPlus as a poor man’s graph isomorphism detector,
a major benefit was realized unrelated to graph isomorphisms. As discussed in chapter
7, SVDPlusPlus models latent variables, meaning SVDPlusPlus is inferring some kind
of virtual graph nodes that aren’t in the graph. To see how that played out in this exam-
ple with Canada and electronic equipment, grepping reveals that the only other coun-
try YAGO has for exporting electronic equipment is Liechtenstein. Then grepping for
Liechtenstein’s exports, the only other one listed is “<hardware>”, which isn’t even
listed as one of Canada’s exports. It seems SVDPlusPlus must have created a latent vari-
able that says hardware is similar to lumber, and therefore Canada’s exports must be
similar to Liechtenstein’s.

http://www.worldstopexports.com/canadas-top-exports/2502
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8.4 Global clustering coefficient: compare connectedness
In chapter 5 you saw GraphX’s built-in Triangle Count as a way to measure connected-
ness. Another way to measure connectedness, the global clustering coefficient, is bet-
ter in that it always returns a number between 0 and 1, making it possible to compare
the connectedness of different sized graphs. For example, to compare the connected-
ness in a social network of Yale graduates versus Harvard graduates, you could directly
compare the global clustering coefficients, even though those two sets would have a
different number of graduates. A downside of the global clustering coefficient com-
pared to, say, the Triangle Count, is that computing the global clustering coefficient is
more computationally intensive. The global clustering coefficient is not to be con-
fused with the related local clustering coefficient.

 The global clustering coefficient is defined like this:

A triplet in this case is a set of three vertices that have two or three edges among them.
If there are three edges, then it’s a triangle, and this is called a closed triplet. If there are
only two edges, then it’s called an open triplet. Triplets are counted for each vertex and
then added all together; this means that a triangle will count as three closed triplets
because each of the three vertices will have one closed triplet associated with it. This is
illustrated in figure 8.8.

Listing 8.12 defines a function clusteringCoefficient that takes a Graph object as
input and returns the global clustering coefficient. To compute the global clustering
coefficient in GraphX, we use a single iteration of aggregateMessages() to allow each
vertex to compile a complete list of all its neighboring vertices.

# of closed triplets
total # of triplets (open or closed)
---------------------------------------------------------------------------

1

23

4

| {1-2-3, 2-3-1, 3-1-2} |

| {1-2-3, 2-3-1, 3-1-2, 1-3-4, 2-3-4} |
= 0.6

Figure 8.8 Example of computing the global clustering coefficient. There are three closed 
triplets associated with the one triangle: one closed triplet associated with vertex 1, one 
with vertex 2, and one with vertex 3. There are two open triplets associated with vertex 3, 
namely 1-3-4 and 2-3-4.



185Global clustering coefficient: compare connectedness

et 
h. 
import scala.reflect.ClassTag
def clusteringCoefficient[VD:ClassTag,ED:ClassTag](g:Graph[VD,ED]) = {
  val numTriplets =

g.aggregateMessages[Set[VertexId]](
et => { et.sendToSrc(Set(et.dstId));

et.sendToDst(Set(et.srcId)) },
(a,b) => a ++ b) // #A

.map(x => {val s = (x._2 - x._1).size; s*(s-1) / 2})

.reduce(_ + _)

  if (numTriplets == 0) 0.0 else
g.triangleCount.vertices.map(_._2).reduce(_ + _) /

numTriplets.toFloat
}

Here we use a Scala Set, which is similar to sets in other languages (they automatically
eliminate duplicates, which has the effect of automatically filtering out parallel edges
for us). In the function we pass into aggregateMessages() for the mergeMsg parame-
ter, we use the Set operator named ++, which performs a set union. As a final bit of fil-
tering, we exclude loop edges (edges that start and end with the same vertex) because
we don’t want to count these as triplets. We do this with the x._2 - x._1 expression,
where the minus (-) is a Set function to perform set differencing. That expression
removes the vertexId of (x._1) from the set of neighboring vertices (x._2).

 Once we have a set of neighboring vertices for each vertex, computing the total
number of triplets (open and closed) for that vertex is a simple combinatoric combi-
nation of “n choose 2”:

For the denominator, we use GraphX’s built-in Triangle Count. That counts triangles
on a per-vertex basis, and when we sum up all those triangles with reduce(_ + _), it
ends up counting each triangle three times—which is exactly what we need for the
global clustering coefficient formula.

 As an example, download the anonymized Facebook data from the Stanford Net-
work Analysis Project:

cd ~/Downloads
wget https://snap.stanford.edu/data/facebook.tar.gz
tar xzvf facebook.tar.gz

Of the many data sets, we use the first one, set 0 (listing 8.13). The 0.edges file is in a
format that can be read directly using GraphX’s GraphLoader. By reviewing the 0.feat-
names file, we see that feature 77 is gender, so we extract that and convert it to a Bool-
ean as we read the file 0.feat with sc.textFile.

Listing 8.12 Global clustering coefficient

aggregateMessages function generates a 
VertexRDD, where each vertex contains a s
of the IDs of vertices it shares an edge wit

n
2 

  n!
2! n 2–( )!
----------------------

n n 1–( )
2

------------------= =
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import org.apache.spark.graphx._
val g = GraphLoader.edgeListFile(sc, System.getProperty("user.home") +
  "/Downloads/facebook/0.edges")
val feat = sc.textFile(System.getProperty("user.home") +
  "/Downloads/facebook/0.feat").map(x =>
  (x.split(" ")(0).toLong, x.split(" ")(78).toInt == 1))
val g2 = g.outerJoinVertices(feat)((vid,vd,u) => u.get)

clusteringCoefficient(g2)
res1: Double = 0.8517387509346008

clusteringCoefficient(g2.subgraph(_ => true, (vid,vd) => vd))
res2: Double = 0.8881188035011292

clusteringCoefficient(g2.subgraph(_ => true, (vid,vd) => !vd))
res3: Double = 0.8304622173309326

There’s a difference in the connectedness between all the males in this anonymized
Facebook data versus between all the females. Because even the gender data was ano-
nymized, we don’t know the real-life meaning of gender=1 versus gender=0.

8.5 Summary
 A number of algorithms one might expect from a graph processing system

aren’t present in GraphX.
 GraphX’s subgraph() leaves isolated vertices, but we showed code to clean

them up.
 Merging graphs is useful when a graph, such as YAGO3, comes broken up in

multiple smaller graphs.
 RDF is a standard file format, and we showed code to parse and match the ver-

tex names to construct a GraphX graph.
 Graph isomorphisms are a powerful way to find relationships and derive value

from “kitchen sink” type graphs like YAGO3. Using a recommender system is a
cheap way to identify some simple graph isomorphisms.

 The global clustering coefficient measures connectedness, similar to GraphX’s
built-in Triangle Count, but in a way that returns a normalized value between 0
and 1. This makes it easier to compare connectedness between graphs of differ-
ent sizes.

Listing 8.13 Example using the global clustering coefficient



Performance
and monitoring
Most of the examples we’ve looked at so far have been small-scale. They would run
on one machine and complete their processing without requiring a large amount
of computing resources. But one of the key reasons to use Apache Spark is to take
advantage of its distributed processing model. Spark’s ability to distribute data and
processing across a cluster of many machines is the key to its capacity to run the
type of processing we’ve discussed on large datasets.

 Once you have a cluster with plenty of resources and have installed Apache
Spark, getting your Spark application to run on a large dataset is still likely to
require some planning, configuration, and possibly some troubleshooting. In this

This chapter covers
 Monitoring Spark applications

 Performance-related configuration options

 Tuning your application for maximum 
performance

 Using graph partitioning to boost large-scale 
processing
187
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chapter, we take you through the steps necessary to run your application successfully
and discuss where to go for troubleshooting information if things don’t go according
to plan. In the course of this we’ll provide you with a deeper understanding of the
Spark processing model, which will be essential to knowing which of the many config-
uration “knobs” need twiddling. 

9.1 Monitoring your Spark application
You’ve sourced and explored your data, written and tested your code, and now you
want to run your graph algorithm on real-world Big Data. How do you ensure that
your application runs as quickly as possible—or even runs at all?

 Spark comes with an array of different APIs and configuration settings that you can
use to extract the maximum performance. Before spending too much time attempt-
ing to tune Spark and your application, it’s essential to have a clear understanding of
how Spark runs your application.

 Monitoring is an essential aspect of understanding the performance of Spark
applications and is a key tool for troubleshooting issues. Spark provides a number of
user interfaces that allow you to track what’s going on in your application. First we
explore a few core concepts that you need to get under your belt, and then we dive
into the various monitoring tools provided by Spark.

9.1.1 How Spark runs your application

What happens when a Spark driver program executes an action such as count or
reduce or writes the output of a graph’s RDDs to disk (for example, when using one of
our graph output routines from chapter 4)? This section discusses in detail how Spark
executes some simple jobs and how we can see what’s happening under the hood
using Spark’s monitoring tools. Later on we’ll use this knowledge to understand what
Spark is doing to execute large jobs that are run on Spark. The skills learned in this
section will be essential for choosing the correct tuning options when diagnosing and
troubleshooting your application. 

 Figure 9.1 shows an example of a job that reads in a text file, filters out lines with a
particular word, and then displays the lines in lowercase. In so doing we’ll create a
chain of three RDDs and then call an action (collect) on the final RDD. The Spark
driver will analyze the chain of RDDs required to generate the output and create a job
that “contains” the operations that will be performed on the worker nodes.

 A job consists of one or more stages, which are collections of operations to be per-
formed on the data. Recall that the data in an RDD is split up into partitions that are
operated on by different worker nodes in the cluster. A stage is created to contain a
sequence of operations that can be executed on the data within each partition with-
out the need to access data in other partitions. In our example of a map and a filter,
we need one stage because the transformations filter and map are applied in isola-
tion to each element of the initial RDD, as shown in figure 9.1.
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For many jobs though, the data needs to be shuffled across partitions to achieve the
desired result. One example is groupByKey. Elements with the same key may be spread
across a number of partitions. To group them by key we need all elements with the
same key to end up together in the same partition. Spark will split the processing
before and after the shuffle into two different stages.

DEFINITION When the processing must be split across multiple stages like
this, the point in the data flow where the split occurs is called the shuffle
boundary. Transformations that give rise to shuffles are called wide transforma-
tions (in comparison to narrow transformations that don’t).

 An example is shown in figure 9.2 and in the following listing.

val rdd = sc.makeRDD(1 to 10000)
rdd
  .filter(_ % 4 == 0)
  .map(Math.sqrt(_))
  .map(el => (el.toInt,el))
  .groupByKey
  .collect 

The groupByKey forces Spark to create two stages. For more complex code there can
be a large number of stages to produce a single result.

Listing 9.1 Transformations that require multiple stages

makeRDD

Stage 0

val rdd1 = sc.textFile("LICENSE")

val rdd3 = rdd2.map(_.toLowerCase)
rdd3.collect // action that initiates job

val rdd2 = rdd1.filter(_ contains "Apache")

filter

map

Figure 9.1 A job involving filter and map operations only requires a single stage. 
Each operation is performed in isolation on each element of the initial RDD.

“1 to 10000”: Scala-based way to generate 
collection of integers in a particular range

“Narrow” transformations only 
operate on data within a partition.

groupByKey: a “wide” transformation, elements to be 
gathered from across different partitions via “shuffle”
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As figures 9.1 and 9.2 show, each stage is a collection of one or more operations—or
to give their official name, tasks. 

DEFINITION A task is the smallest unit of work in Spark. A task represents work
that is scheduled for processing on one of the Spark worker nodes. 

Consider, for example, the Spark job in listing 9.1 and assume it operates on data in
four partitions. When the first stage is executed, the processing is carried out in four
tasks distributed across the worker nodes. When a worker node executes a task, it
applies the stage operations (in this case, map and filter operations) to its subset of
the data. The task outputs are then supplied to the next stage—in this case, a group-
ByKey. Usually this means the data must be shuffled—written to disk and then read
over the network so that data elements that must be processed together exist on the
same worker node.

 Because the processing on the data is confined to that defined by a stage (and
therefore doesn’t require data from any other partition), processing of tasks can be
carried out in parallel. 

EXECUTORS: WHERE THE WORK HAPPENS

We’ve talked about tasks being executed on worker nodes, but we need to discuss one
more concept that relates to how worker nodes execute tasks.

makeRDD

Stage 5 Stage 6

// this creates a need to
// shuffle data across
// partitions
.groupByKey
.collect

val rdd = sc.makeRdd(1 to 10000)

  .map(el => (el.toInt,el))

  .map(Math.sqrt(_))

rdd
  .filter(_ % 4 == 0)

filter

map

map

groupByKey

Figure 9.2 Operations such as groupByKey that require data to be examined across 
partitions cause a shuffle to take place across stage boundaries.
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An executor is a process started on a worker node that will run for the lifetime of the
application. The executor’s job is to run tasks submitted by the application. Each
executor is dedicated to one particular application, so if you have two or more appli-
cations running, you will have multiple executors running on the same worker node.

 Each Spark application requests a number of executors from the cluster manager
when it starts up (see figure 9.3). The executors’ primary role is to receive and process
the tasks given to them by the job scheduler running in the driver program that cre-
ated the SparkContext. When the Spark application is finished, the executors are no
longer needed.

 When the SparkContext is created, it will be configured with a target number of
resources (CPU cores and memory) to use. When the SparkContext negotiates the
creation of executors with the cluster manager, it will request enough executors to
provide the target resources. Section 9.2 looks at the options for configuring and tun-
ing cluster resources.

9.1.2 Understanding your application runtime with Spark monitoring

Spark provides a number of tools that can be used to understand how Spark executed
a completed job or even to examine the progress of an in-flight job. This section looks
at some of the key features of the Application UI, a web-based monitoring app that will
become your go-to tool for diagnosing application problems.

Driver program

Cluster manager

Worker node

Executor

TaskTask

Worker node

Executor

TaskTask

SparkContext

Driver program creates a
SparkContext that contacts the
cluster manager to request
executor resources.

Cluster manager
requests executors
from worker nodes.

Driver sends tasks
to the executor.

Figure 9.3 The driver program creates the SparkContext that negotiates with the 
cluster manager to create executors on the worker nodes. The SparkContext contains a 
job scheduler (not shown) that distributes tasks to the executors.
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APPLICATION UI
When a SparkContext is created in your application, it creates a web UI to display the
various elements of the application. By default, the web server will be created on port
4040, but if an application is already running on that port it will try successive ports
(4041, 4042, and so on). 

 Note that spark-shell creates a SparkContext for you automatically, so the appli-
cation UI is available as soon as the shell is open. When you compile and build your
own application (demonstrated in chapter 3), you are responsible for creating a
SparkContext; in this case, the Application UI is only available after you’ve created the
SparkContext.

 Let’s rerun our first GraphX program from chapter 2 and see what information
the application UI gives us. The program used the CitHep-Th.txt file located in the
same directory where we ran the program:

scala> import org.apache.spark.graphx._
import org.apache.spark.graphx._

scala> val graph = GraphLoader.edgeListFile (sc, "Cit-HepTh.txt")
graph: org.apache.spark.graphx.Graph[Int,Int] = 

org.apache.spark.graphx.impl.GraphImpl@16120270

scala> graph.inDegrees.reduce((a,b) => if (a._2 > b._2) a else b)
res0: (org.apache.spark.graphx.VertexId, Int) = (9711200,2414)

When you navigate to the application UI (for example, http://<yourhost>:4040), you
will be taken initially to a screen with five tabs:

 Jobs
 Stages
 Storage
 Environment
 Executors

In this section we look at what information the Jobs, Stages, and Environment screens
display, including the incredibly useful Event Timeline and DAG Visualization graphi-
cal tools. (The Storage and Executors screens are covered in subsequent sections.)
The screen defaults to the Jobs tab. After you’ve run the program, you should see
something similar to figure 9.4. 

 The Jobs tab displays a list of all the jobs that have been run during the lifetime of
the application. A number of attributes are displayed for each job, as shown in table 9.1.
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Table 9.1 Attributes of the Job list screen

Attribute Description

Job ID The first job is assigned the ID of 0 and then is incremented for each successive 
job.

Description Each job is identified by a combination of the action being executed and the 
source code location.

Submitted The time the job was submitted.

Duration The time the job took to complete.

Stages The total number of stages needed to complete the job and the number success-
fully run. For a successfully completed job, both these measures will be the same, 
but for a running job you can get an idea of how close the job is to completion.

Tasks Each Stage is composed of a number of tasks. This column gives a graphical rep-
resentation of the total number of tasks in all stages for the job and how many 
have completed.

Application-level
statistics

Link to open up the event
timeline visualization

Job execution statistics for the reduce
action, including duration of the job and
the number of stages and tasks completed

Figure 9.4 The Jobs tab lists all the actions that have been (or are being) executed in the 
application. The screenshot shows information about timings and duration for two jobs that have 
been run. The columns are described in more detail in table 9.1.
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Ignore line
that don
have tw
numbers
In figure 9.4 you can see that the reduce action took 0.5 seconds to complete and
involved 3 stages with a total of 6 tasks. But what is the count action in Job 0—where
did that come from? It turns out this comes from a quirk of the implementation of the
GraphLoader.fromEdgeFile method. Lets restart the spark-shell and construct the
graph ourselves by creating an EdgeRDD from the Cit-HepTh.txt file and passing this to
Graph.fromEdges: 

import org.apache.spark.graphx._
val edgelist = sc.textFile("Cit-HepTh.txt")
val edges = edgelist

    .filter(!_.startsWith("#"))
    .map(_.split("\\s"))
    .filter(_.size > 1)
    .map(line => Edge(line(0).toLong, line(1).toLong, 1))

val g = Graph.fromEdges (edges, 1)
g.inDegrees.reduce((a,b) => if (a._2 > b._2) a else b)

This code explicitly reads the input file and constructs the same graph as
GraphLoader.edgeListFile. If you look at the Jobs tab in the application UI (figure
9.5), you should now see one job for the reduce action. This is because unlike edge-
ListFile, we don’t throw in a count of the edges.

 As you can see already, the application UI is a great way to investigate what is hap-
pening with your application. 

 Lets go back to our original example that had two jobs and see what information
Spark provides about the Stages that the job creates. You could click the Stages tab to
see all the Stages created by the application, but to be honest when you have a lot of
jobs being executed in your application, the Stages tab can get a little cluttered. Usu-
ally when you’re debugging or tuning an application, you’re interested in what’s hap-
pening for each individual job and what’s happening to the stages and tasks that make

Ignore comment lines in 
input file starting with #.

Each line should be two 
numbers separated by tab.

s
’t
o
.

Turn each line into an
GraphX Edge—returns

an EdgeRDD.

The new code only
creates one job.

Figure 9.5 Jobs tab now 
shows one job.
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up that job. If we go back to the Jobs tab and click the reduce at <console>:x link,
the Application UI displays a Stages view for that job, as shown in figure 9.6.

 The “Details for Job x” screen lists all the stages for the selected job. The attributes
of each Stage are shown in table 9.2.

Table 9.2 Attributes of the Stages list screen

Attribute Description

Stage ID The first stage is assigned the ID of 0 and then is incremented for each 
successive stage created by the SparkContext.

Description Each stage is named for the action that initiated the job (such as reduce 
or count) or the transformation that generated a shuffle boundary.

Submitted The time the stage was scheduled for processing by the Scheduler.

Duration The elapsed time to process the stage.

Each stage of the job
is listed with important
execution statistics.

A key part of understanding
the performance of your job
is the amount of data read in
and out as well as the amount
of data sent between
shuffle boundaries.

This screen lists stages
executed for the job but is
part of the Jobs reporting.

Links to access the Event
Timeline and DAG
Visualization tools

Figure 9.6 Stages list for the reduce job. Note the tab strip still has “Jobs” highlighted.
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This view lets you concentrate on what’s happening for a single action. You can get
some insight into the parallelism of the action using the Submitted and Duration col-
umns. But things would be much easier with a visual display of when Stages and Tasks
are executed, something Spark provides with the Event Timeline and DAG Visualiza-
tions, which are discussed in the following sections.

VISUALIZE JOB EXECUTION WITH EVENT TIMELINE

Although raw numbers for times and durations can be useful for understanding how
your application is being run, nothing beats a good visual display of the data. This is
especially true when your application increases in complexity and your datasets
become bigger.

 If you’re running Spark 1.4 or later, you can take advantage of two new visualiza-
tion features:

 Event Timeline
 DAG Visualization

We look at Event Timeline in this section and DAG Visualization in the next.
 The Event Timeline is available in each of the jobs, stages, and tasks and shows

slightly different information in each one. Figure 9.7 shows the jobs timeline. It gives a
general overview of when executors were started for your application and in the sec-
tion below a timeline of when jobs are run.

Tasks This column gives a graphical representation of the total number of 
tasks for the stage and how many have completed.

Input Amount of data read in by all the tasks in the stage.

Output Amount of data written by all the tasks in the stage.

Shuffle Read The amount of shuffle data read from preceding stages in the DAG.

Shuffle Write Amount of shuffle data delivered for subsequent stages.

Table 9.2 Attributes of the Stages list screen (continued)

Attribute Description

Figure 9.7 The Jobs timeline: a second executor is started at around 14:22. Four jobs are run on one 
executor; one job was run after the second executor had been started.
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When you click a Job to view the Stages that have run, you’ll see a timeline for the
Stages. This view is particularly useful for understanding the runtime relationship
between Stages—which ones will be run in parallel and which must wait for earlier
Stages to complete.

 Figure 9.8 shows the Stages timeline for our first GraphX program. Notice that the
two stages that load and create the Edge and Vertex RDDs are run in parallel, but the
reduce Stage must wait for completion of these earlier Stages before starting to execute.

 It should also be apparent that the Vertex RDD Stage takes longer to execute than the
Edge RDD Stage (labelled as mapPartitions at GraphImpl.scala in the timeline). If
you’re trying to tune the runtime for the job, improving the efficiency of the Edge RDD
Stage is unlikely to have an impact on the overall runtime—mapPartitions at
VertexRDD.scala and reduce are the critical sections of code in this particular example.

Clicking a stage link takes you to the Stage details page that displays metrics for all the
tasks that make up the Stage. It includes a timeline showing when tasks were pro-
cessed by executors.

 A key design goal for Spark applications is to try to ensure the maximum amount
of parallelism is achieved for your job. After all, you want all those CPUs and memory
you’ve paid for to be utilized.

Figure 9.8 The Stages timeline shows you which stages Spark can run in parallel.
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 Figures 9.9 to 9.11 show the timelines for different executions of the same task. In
each case, the application was configured to request a different number of CPU cores
from the cluster.

You would expect to see that as the number of CPU cores increases, the level of paral-
lelism increases. In situations where you expect an application to be running faster
than it is, it’s useful to look at the actual  level of parallelism that you get as shown
through the tasks event timeline. You can then easily measure the impact of configura-
tion or code changes that you apply during tuning, some of which are discussed in the
following sections.

In figure 9.10, four cores are available to the application, so there are almost always
four tasks running in parallel. In figure 9.11, the same idea is repeated with six cores
running six tasks in parallel.

Figure 9.9 Stage details event timeline showing the timeline of task execution. Notice that only 
two tasks are ever executed in parallel.

Figure 9.10 Stage details event timeline over four cores—parallelism has increased to use all the 
cores.
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One more thing to note is that the display helpfully color-codes the task timeline bars
to distinguish different types of activity or wait time associated with the task:

 Scheduler Delay—Before a task can be processed by an executor, the scheduler
must send it the code to execute. This is the time to ship the task across the net-
work from the scheduler to the executor and then to get the result back.

 Task Deserialization Time—The time the executor spent deserializing the code
before it can start execution.

 Shuffle Read Time—The time waiting on network transfers if the task needed to
read shuffled data from a previous stage.

 Executor Computing Time—The time spent executing the task code, including
reading from HDFS or other data sources.

 Shuffle Write Time—The time to write out shuffle data to be read by the next
stage.

 Result Serialization Time—The time taken for the executor to serialize any results
before sending back to the driver code.

 Getting Result Time—The time taken to ship the results back to the driver code.

DAG VISUALIZATION

We’ve already seen that RDDs are chained together by transformations and that call-
ing an action method on an RDD invokes a Spark job that reads in data from parent
RDDs and applies the transformations to produce a result. It’s natural for Spark code
to contain a large number of chained RDDs, often with a fairly complex structure.
Understanding how this structure plays out at runtime can be a challenge—which is
where the DAG Visualization tool comes in handy. 

 Each RDD in the chain is derived from one or more parent RDDs, so we can think
of the RDD as a vertex in a graph; the connection between a parent and child RDD can

Figure 9.11 Stage details event timeline over six cores.
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be thought of as an edge. The resulting graph is directed because parent RDDs can
only pass data onto child RDDs; data can’t flow in the opposite direction. Ultimately, a
number of “root” RDDs generate the initial data, either from filesystems or other data
sources such as databases or streaming data sources such as Kafka.

 Finally this “execution” graph is acyclic (meaning no cycles in the graph) because
we never have a situation where an RDD earlier in the chain has a parent that is fur-
ther down the chain. The term used for such structures is directed acyclic graph (DAG).

 The DAG Visualization feature—which is available for the whole job, and also for a
specific stage—provides a neat graphical display of the RDDs and their connections.
You’ve already seen examples of the display in figures 9.1 and 9.2. Another example is
shown in figure 9.12.

 The visualization of the DAG for a Spark job is useful for seeing the overall flow of
a job and gives a quick visual indication of where RDD caching, a key performance
technique, is taking place. Section 9.3 covers caching in more detail.

 The visualization of a single stage is most useful for identifying the data sources for
the root RDDs. In the case of file-based data, it provides an indication of the path to
the underlying data.

Stage 4 Stage 5

partitionBytextFile

Stage 3 (skipped)

DAG Visualization

textFile

partitionBy

mapPartitions

mapPartitionsWithIndex

mapPartitions

mapPartitions

mapPartitions

mapPartitionsWithIndex

mapPartitions zipPartitions

Figure 9.12 DAG visualization for an example Spark job. Notice that RDDs that have been cached 
have their stage marked “skipped”—Spark will read the RDD data from a cache rather than 
recalculate the RDD.
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ENVIRONMENT TAB

The Environment screen (figure 9.13) provides a list of the various properties and
classpath entries that have been set for the driver program. These can be useful for
diagnosing issues where you want to be sure what a particular property has been set to.
Note that if you’re running spark-shell or spark-submit locally (you’ve set master
to local or local[n]), then a single executor is created for you inside your driver
JVM; in this case, the properties exposed by the Environment tab are also shared by
the executor. 

 In all other cases, executors will be created in other JVMs, likely on other
machines. Each worker will create a web UI to provide information on the executors it
manages. Therefore, you will need to use the Worker node UIs to examine a specific
executor’s environment information.

9.1.3 History server

The Application UI lives and dies with the SparkContext created by the application.
Once the application that created the SparkContext finishes (or you call Spark-
Context.stop), the Application UI is no longer available. This means you won’t be

Figure 9.13 The Spark Environment tab (accessed from the Environment tab at the top of the browser screen)
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able to diagnose issues after the application ends or compare execution history across
a number of runs. This problem is addressed by the history server.

  The history server is a long-lived web application that monitors a directory for event
logs created by multiple Spark applications and reconstructs the application metrics
and the associated UI. The history server UI for the application will be exactly the
same as if you had looked at the Application UI before the SparkContext disappeared.

 To use this feature you first need to decide where you will run the history server.
The easiest way is to run it on the same machine that your driver program runs on.
You then need to ensure that a directory is created for applications to log events to. By
default, the directory is /tmp/spark-events, so go ahead and create the directory path.

 Once the directory is set up, the history server can be started using the following
command (issued from the SPARK_HOME directory):

./sbin/start-history-server.sh

This starts a web server listening on port 18080. 
 You need to ensure that spark.events.enabled is set to true for all Spark applica-

tions you’re running. One way to do that is to append --conf "spark.eventLog
.enabled=true" to the spark-shell or spark-submit command line, like this:

 spark-shell --conf "spark.eventLog.enabled=true"

This will cause the application to log events to the default directory /tmp/spark-
events. When the Spark application closes, the events will remain in the event logging
directory. To see the application in the history server, open a web browser and point it
to the history server address and port (for example, http://localhost:18080 if you
browse from the machine where you started the history server).

 The initial screen (see figure 9.14) shows a list of all completed applications
logged to the events directory. 

 Clicking a link takes you to the Application UI for that application as if the applica-
tion’s SparkContext were still running. From this point, you can investigate the appli-
cation as shown in the previous sections describing the Application UI. 

Figure 9.14 Spark history server UI containing two complete Spark applications
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To write logs to another directory outside the /tmp directory, add the following con-
figuration option to spark-shell:

--conf "spark.eventLog.dir=/logs/test-events"

Then start the history server like this:

./sbin/start-history-server.sh /logs/test-events

To write logs to HDFS (as a distributed Big Data storage layer, it’s an obvious choice for
storing application logs), use the prefix hdfs:/// (for example, hdfs:///logs/
spark-events).

TIP If you configure spark-shell (or spark-submit) to write logs to a direc-
tory that doesn’t exist, you’ll get a NullPointerException in the Spark-
Context initialization, causing the application to fail. If you find your Spark
application won’t start up after configuring event logging, check to make sure
the directory has been created.

9.2 Configuring Spark
The primary aim of a parallel processing system like Spark is to utilize the processing
power—the CPU cores—as fully as possible while ensuring that sufficient memory is
available to each executor. If there’s only one user of the system at any one time, this is
relatively easy to achieve. But if cluster resources must be shared with other users, a bit
more work and planning is involved. This section covers the configuration options
available to achieve these goals. 

 Spark can be deployed into three different cluster environments:

 Standalone
 Mesos
 YARN

We concentrate on the standalone cluster manager that comes as part of the Spark
application. If your target environment is Mesos or YARN, much of the configuration
is similar, but you’ll need to work with your cluster administrator to identify the rele-
vant configuration.

NOTE The phrase cluster manager is used in the Spark documentation as a
generic reference to the service (or set of services) that provide cluster
resources to your application. When using the standalone cluster manager,
the service that negotiates cluster resources is referred to as the Spark
Master—you can use these two phrases interchangeably.

Out of the box, if you run bin/spark-shell with no other parameters, you get a non-
clustered environment, where both the driver and a single executor run within the
same Java Virtual Machine (JVM). By default, this setup will have 512 MB of memory
and will allocate all the CPU cores of your machine to Spark. These resources are
shared between the driver and the executor.
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 Though this setup works fine for small datasets and for initial exploratory work, if
you’re working with large datasets you’ll want to run your jobs on a multi-node cluster.
Spark clusters can range from a handful of machines up to hundreds or even thou-
sands of machines for a large cluster. Each machine in the cluster will usually run a
single worker JVM process that can spawn one or more executor JVMs on the same
machine. As we’ve already seen, it is the executors that carry out your requests.

 To utilize the Spark cluster, you start your driver program (spark-submit or
spark-shell) as usual but supply a cluster URL as follows (where <master-host> is
the name of the machine running the Spark Master):

bin/spark-shell --master spark://<master-host>:7077

The Spark Master will negotiate cluster resources (in the form of executor processes)
from the worker nodes. Without any further parameters on the command line, this
will start executors on each worker node, taking all the CPU cores on the machine and
allocating 1 GB of RAM to each executor. Because we would normally want to allocate
as much memory as there is available on each worker node (after all, that’s one of the
primary advantages of using Spark), we can add an extra parameter to specify the
memory we want for each executor. Let’s assume our worker nodes have 32 GB each.
We can allocate 31 GB on each machine (Spark reserves 1 GB for the OS) using the
--executor-memory parameter:

spark-shell --master spark://<master-host>:7077 --executor-memory 31g

Figure 9.15 shows this configuration for a four-node cluster.

Driver program

Cluster manager

Worker node

Executor
31 GB

Worker node

Executor
31 GB

Worker node

Executor
31 GB

Worker node

Executor
31 GB

SparkContext

Cluster manager
sends request to
each worker node.

Driver requests
executors with
31 GB of memory.

Figure 9.15 31 GB memory allocated to 
each executor in the cluster
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We don’t recommend having large JVM heap sizes—say, greater than 64 GB—because
large garbage collection times start to become a problem. In many cases, the
machines being used in production Spark clusters have memory sizes of 256 GB, 512
GB, or more. To prevent executor heap sizes greater than 64 GB, you need a number
of smaller executors on each machine. You can achieve that using appropriate settings
for --executor-memory and --executor-cores.

 Suppose you have worker machines with 256 GB of memory and 24 CPU cores. Ide-
ally, we want four executors on each machine with each executor limited to 63 GB
memory and six CPU cores:

spark-shell --master spark://<master-host>:7077 --executor-memory 63g 
--executor-cores 6

Figure 9.16 shows this new configuration. Note that we gave 63 GB of memory to each
executor, not 64 GB; Spark only allows a maximum 255 GB to be allocated on each
machine (256 GB less 1 GB for the OS).

SPARK TIP When configuring the memory and cores for your executors, it’s
useful to use the Master and Worker UIs typically on ports 8080 and 8081
respectively. These will give details of the memory and cores available for the
cluster and each of the executors respectively.

Driver program

Cluster manager

Worker node

63 GB
6 CPUs

63 GB
6 CPUs

63 GB
6 CPUs

63 GB
6 CPUs

Worker node

63 GB
6 CPUs

63 GB
6 CPUs

63 GB
6 CPUs

63 GB
6 CPUs

Worker node

63 GB
6 CPUs

63 GB
6 CPUs

63 GB
6 CPUs

63 GB
6 CPUs

Worker node

63 GB
6 CPUs

63 GB
6 CPUs

63 GB
6 CPUs

63 GB
6 CPUs

SparkContext

Cluster manager
sends request to
each worker node.

Driver requests
executors with
63 GB of memory
and 6 cores.

Figure 9.16 Multiple 63 GB executors 
on each machine in the cluster
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9.2.1 Utilizing all CPU cores

Now that we have our cluster configured to make the maximum amount of CPU and
memory resources available, we still need to ensure that we make full use of them.
The next section covers memory usage, looking at caching and persistence. This sec-
tion looks at maximizing CPU usage.

 Using the parameters to spark-shell or spark-submit, we can ensure that mem-
ory and CPUs are available on the cluster for our application. But that doesn’t guaran-
tee that all the available memory or CPUs will be used.

 As you’ve seen, Spark processes a stage by processing each partition separately. In
fact, only one executor can work on a single partition, so if the number of partitions is
less than the number of executors, the stage won’t take advantage of the full resources
available. Figure 9.17 shows an example.

TIP You can call RDD.partitions.size to find out how many partitions your
RDD has.

In this case, a large number of vertices and edges will be packed into a single Spark
partition. One way to resolve this problem is to use the repartition method on the
RDD to supply a recommended new number of partitions:

val rdd = …
rdd.repartition(20)

Executor

EdgeRDD

Executor Executor Executor

Edge list files pack a
large number of edges
into a small amount of
disk space.

EdgeRDD created
from file of edges

All edges end up in
a single partition.

Edge list file

# edges
1171 5013
1912 7912
2251 3821
…

Edge 1171->5013
Edge 1912->7912
Edge 2251->3821
…

Partition

Figure 9.17 All edges have been loaded into a single partition, so only one of the four executors 
will process the resulting graph.
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What determines the number of partitions? You’ve seen that RDDs are built into a
chain of processing by transformations; the number of partitions for a RDD is based
on the number of partitions in its parent RDD. 

 Eventually we reach an RDD without a parent. These are typically RDDs created
from file or database storage. In the case of reading from HDFS, the number of parti-
tions will be determined by the size for each HDFS block.

 As a general rule, you want to ensure that you have at least as many partitions as
cores. In fact, having two or three times as many partitions as cores is usually fine, due
to Spark’s low scheduling latency compared to Hadoop.

9.3 Spark performance tuning
Up to now, the discussion has concentrated on how Spark executes application code
and how to configure Spark to efficiently utilize the computing resources available.
But in order to make the best use of Spark’s features, you should consider a number
of tuning techniques. This section takes you through each one, describing when the
technique should be used and giving the steps necessary to implement it.

9.3.1 Speeding up Spark with caching and persistence

We’ve already covered how Spark uses the notion of an RDD to embody a dataset. In
addition, we’ve discussed the fundamentals of how Spark implements a chain of com-
putations over an RDD: transformations are embedded in a chain of RDDs but only
evaluated when an action is called. At this point, datasets are loaded from storage or
databases, computations are performed, and results are returned. What happens if we
repeatedly call actions on the RDD?

RDD PERSISTENCE

By default, an RDD doesn’t retain the values it has computed. Instead, if another
action is called on the chain of RDDs, the entire chain is recomputed. In some cases,
this is fine. But for many machine learning and graph processing tasks, it’s a problem.
The algorithm will usually be iterative, executing many times on the same RDD, often
resulting in time wasted continually reloading the data and repeating computations.
Even worse, the algorithm will often proceed by building ever-longer chains of RDDs.

 It seems like we need a way to make use of all the memory available across the clus-
ter to store the results of RDDs. This is the purpose of caching (one type of persistence
supported by Spark).

 You can cache an RDD into memory by calling the cache method on the RDD
object. The following code when executed in the spark-shell counts the number of
lines in the file and then displays the contents of the file:

val filename = "..."
val rdd1 = sc.textFile(filename).cache
rdd1.count
rdd1.collect
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Without the cache method, the file is read from storage when each action is called,
resulting in the file being read twice. By calling the cache method, the first action
(count) causes the RDD to keep the values it has calculated in memory. The RDD then
uses the cached values for calculating the second action (collect).

 Even if we build new RDDs by transformation of the cached RDD, the cached values
will still be used. The following code will display all the comment lines (lines starting
with #):

val rdd2 = rdd1.filter(_.startsWith("#")) 
rdd2.collect

Because rdd2 is derived from the cached rdd1, it shouldn’t be necessary to reread the
file from storage because rdd1 has already cached its values in memory.

NOTE The cache method acts as a flag to say the RDD should be cached but
doesn’t cause the RDD to be cached at that point. Caching occurs the next
time the RDD is computed.

PERSISTENCE LEVELS

As mentioned, caching is one type of persistence. Table 9.3 shows some of the other
persistence levels supported by Spark.

Each of the persistence methods is represented by one of the StorageLevel objects
defined by the singleton object StorageLevel. For example, calling rdd.persist
(StorageLevel.MEMORY_AND_DISK) sets up the RDD for memory and disk caching.
The cache method itself is implemented as a call to rdd.persist(StorageLevel
.MEMORY_ONLY). Section 3.3 covers MEMORY_ONLY_SER and MEMORY_AND_DISK_SER
in more detail.

Table 9.3 Common persistence levels supported by Spark

Level Description

MEMORY_ONLY Store the RDD as Java objects in the JVM. If the RDD doesn’t fit in 
memory, some partitions won’t be cached and will be recomputed on 
the fly each time they’re needed. This is the default storage level.

MEMORY_AND_DISK Store the RDD as Java objects in the JVM. If the RDD doesn’t fit in 
memory, store the partitions that don’t fit on disk and read them from 
disk as needed.

MEMORY_ONLY_SER Store the RDD as serialized Java objects. Usually more space-efficient 
than unserialized objects but more CPU-intensive to read and write.

MEMORY_AND_DISK_SER Similar to MEMORY_ONLY_SER storage level, the RDD is stored as seri-
alized Java objects, but if the RDD doesn’t fit in memory, some parti-
tions are evicted from memory and written to disk to be read as 
needed.

DISK_ONLY Store the RDD partitions on disk rather than in memory. Useful if RDDs 
are much larger than available memory, and reading from source will be 
more time-consuming than reading from local disk.
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NOTE Additional persistence levels MEMORY_ONLY2, MEMORY_AND_DISK2,
and so on are available that will replicate the RDD to other cluster nodes to
provide fault-tolerance. That takes us beyond the scope of this book, but if
interested you should consult a book such as Spark in Action by Petar Zečević
and Marko Bonaći (Manning, 2016) that deals with Spark fault-tolerance in
more depth.

GRAPH PERSISTENCE

You’ve seen that Spark constructs a Graph object from RDDs of vertices and edges.
Whenever we call operations on the Graph object, such as mapVertices or aggregate-
Messages, the Graph operates on the underlying RDDs.

 The Graph class provides cache and persist convenience methods that call the
persist methods of the underlying vertex and edge RDDs.

UNPERSIST AT THE RIGHT TIME

Though it may seem that caching is something so good it should be used everywhere,
too much of a good thing can leave you wanting less of it.

 As you cache more and more RDDs, the memory available will decrease. Eventually
Spark will start evicting partitions from the cache (using a least-recently-used algo-
rithm). You could let Spark do the job on its own, but by caching more objects than
you need, excessive JVM garbage collection times become unavoidable. That’s why it’s
usually desirable to call the unpersist method on the RDD when caching is no longer
needed.

 For iterative algorithms, this often results in the following method-calling pattern
inside the algorithm loop:

 Call cache or persist on the Graph.
 Materialize the Graph by calling an action, which results in the underlying RDDs

being cached..
 Execute the rest of the algorithm body.
 unpersist the RDD at the end of the loop. 

 You’ll see an example of this in the next section on checkpointing.

TIP One of the benefits of using the Pregel API is that it deals with caching
and uncaching for you.

WHEN NOT TO USE CACHING

Just because you can cache an RDD in memory doesn’t mean you should blindly do so.
Depending on how many times the dataset is accessed and the amount of work
involved in doing so, recomputation can be faster than the price paid by the increased
memory pressure.

 It should go without saying that if you only read a dataset once, there’s no point in
caching it as this will make your job slower, especially if you use the serialized persis-
tence options.
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9.3.2 Checkpointing

A common pattern in graph algorithms is to update the graph with new data calcu-
lated during each iteration. What this means in practice is that the chain of Vertex
and/or Edge RDDs that constitute the graph becomes longer and longer.

DEFINITION When an RDD is formed from a chain of ancestor RDDs, we say
the path from the RDD to the root RDD is its lineage.

The next listing shows an example of this. It’s a simple algorithm that generates a new
set of vertices and updates the graph. The algorithm runs for a fixed number of itera-
tions as controlled by the variable iterations. 

val iterations = 500
var g = Graph.fromEdges (sc.makeRDD(

  Seq(Edge(1L,3L,1),Edge(2L,4L,1),Edge(3L,4L,1))),1)
for (i <- 1 to iterations) {
   println("Iteration: " + i)
   val newGraph: Graph[Int, Int] = 

g.mapVertices ((vid,vd)  => (vd * i)/17)
g = g.outerJoinVertices[Int, Int](newGraph.vertices) { 

(vid, vd, newData) => newData.getOrElse(0) 
}

}
g.vertices.collect.foreach(println)

Each call to joinVertices in this code adds a new RDD to the chain of Vertex RDDs.
 Clearly we need to use caching to ensure that we don’t have to recalculate the

chain of RDDs on each iteration, but this doesn’t change the fact that we have an ever-
lengthening list of object references, from each RDD to its parent.

 One consequence of this is that if we run a large number of iterations, we’ll eventu-
ally hit a StackOverflowError in the code. A typical example is obtained if iterations
is set to 500 in the code we ran.

 Checkpointing is a feature provided by RDDs and inherited by Graph, designed to
address the problem of long RDD lineages. The next listing demonstrates how to set
up and call checkpointing. The code will now successfully run, outputting vertices for
the resulting graph.

sc.setCheckpointDir("/tmp/spark-checkpoint")
var updateCount = 0
val checkpointInterval = 50

Listing 9.2 A simple iterative graph update algorithm

Listing 9.3 A simple iterative graph update algorithm with checkpointing

Call is necessary, otherwise 
no subsequent checkpoint 
call has any effect.

Record how many 
updates have occurred …

… because we will only 
checkpoint every 50 updates.
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def update(newData: Graph[Int, Int]): Unit = {
  newData.persist()
  updateCount += 1
  if (updateCount % checkpointInterval == 0) {
    newData.checkpoint()
  }
}

val iterations = 500
var g = Graph.fromEdges (sc.makeRDD(Seq(Edge(1L,3L,1),

Edge(2L,4L,1),Edge(3L,4L,1))),1)
update(g)
g.vertices.count
for (i <- 1 to iterations) {
  println("Iteration: " + i)
  val newGraph: Graph[Int, Int] =

g.mapVertices ((vid,vd) => (vd * i)/17)
  g = g.outerJoinVertices[Int, Int](newGraph.vertices) { 
  (vid, vd, newData) => newData.getOrElse(0) }
  update(g)

g.vertices.count
}
g.vertices.collect.foreach(println)

Marking an RDD for checkpointing will result in the RDD being saved to a file inside a
checkpoint directory, and the connection to the chain of parent RDDs being cut.
Marking a Graph for checkpointing will result in the underlying Vertex and Edge
RDDs being checkpointed.

 You can set the checkpoint directory by calling SparkContext.setCheckpointDir
and specifying a path on shared storage, such as HDFS.

 As the listing shows, you must call checkpoint before any action is called on the
RDD. Because checkpointing is a relatively costly activity (after all, we are writing the
graph to disk), it’s generally a good idea to only checkpoint as often as necessary to
avoid errors—often this can be as infrequently as once every 100 or so iterations.

NOTE One option to speed up checkpointing is to checkpoint to Tachyon
instead of to a standard file system. Tachyon, from AMPLab, is a “memory cen-
tric fault-tolerant distributed file system, which enables file sharing at memory-
speed across cluster frameworks, such as Spark.”

9.3.3 Reducing memory pressure with serialization

Memory pressures are often one of the prime causes of poor performance and fail-
ures in Spark applications. Generally these problems manifest themselves as frequent,
time-consuming JVM garbage collections and “Out of Memory” errors. Checkpointing
won’t help here because it doesn’t relieve memory pressure. Instead, one of the first
things you should think about is persisting your Graph objects using serialization. 

DEFINITION Data serialization is about transforming the JVM representation of
object instances into a byte-stream representation that can be used to transport

update method called every 
time graph is updated, caching 
and checkpointing as necessary.

Call update method 
after every update 
to graph and then 
materialize—
otherwise nothing 
is cached or 
checkpointed.
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the object across the network to another JVM process. The object can then be
“deserialized” from the byte-stream representation back into an object
instance in the other JVM. Spark uses serialization for network transfers and
also for caching objects in memory.

 Using serialization means using the following serialization StorageLevels in the
persist method:

 StorageLevel.MEMORY_ONLY_SER

 StorageLevel.MEMORY_AND_DISK_SER

Using serialization saves space at the expense of an increase in CPU necessary to serial-
ize and deserialize objects.

USING KRYO SERIALIZER

The default serializer used in Spark is the JavaSerializer, which uses the standard
but rather inefficient Java serialization framework. In general, it’s better to use the
Kryo serializer. Kryo is an open source Java serialization framework that provides fast
and efficient serialization. 

 You can configure Spark to use the Kryo serializer by setting the spark.serializer
parameter to org.apache.spark.serializer.KryoSerializer. One way to do this is
on the command line, like this:

spark-shell --conf 
➥ "spark.serializer=org.apache.spark.serializer.KryoSerializer"

This can become tedious for repeated use. An alternative is to create a conf directory
and add a file called spark-defaults.conf. Put any spark parameters (like spark
.serializer) in this file using standard properties file syntax (using a hard tab to sep-
arate the property name from the property value):

spark.serializer  org.apache.spark.serializer.KryoSerializer

For best performance, Kryo requires you to register classes with the serializer—other-
wise, class names are written out with the serialized object bytes, leading to less-
efficient serialization. Spark provides automatic registration for classes used by the
Spark framework, but if you define custom classes in your application, those classes
will need to be registered manually by calling SparkConf.registerKryoClasses. The
following listing shows how to do this for a custom class, Person.

import org.apache.spark.storage.StorageLevel

case class Person(name: String, age: Int)

val conf = new SparkConf()
conf.set("spark.serializer",

"org.apache.spark.serializer.KryoSerializer")

Listing 9.4 Using Kryofine a
stom
erson
class. To set Spark configuration 

parameters we need a SparkConf 
object passed to SparkContext.

Configuration 
required to use 
the Kryo serializer
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conf.registerKryoClasses(Array(classOf[Person]))
val sc = new SparkContext (conf)
val rdd = sc.makeRDD(1 to 1000000).

    map(el => Person("John Smith", 42))
rdd.persist(StorageLevel.MEMORY_ONLY_SER) 
rdd.count

CHECKING THE SIZE OF YOUR RDDS

When you tune your application, you’ll often find that you need to know how big your
RDDs are. This can be tricky because the size of objects in a file or database often has
little relation to how much memory the object will take up. 

 One useful trick is to cache the RDD in memory and then use the Storage tab of
the Application UI to record the size of the RDD. This idea also comes in handy when
trying to measure the impact of configuring serialization.

9.4 Graph partitioning
Chapter 1 mentions partitioning strategy as being one of the advantages of GraphX—
how it can do vertex cuts (partition edges into groups) instead of the more straightfor-
ward sharding of edge cuts (partition vertices into groups). But when you first construct
a graph, either with Graph.apply() (invoked with the syntax Graph()) or the
GraphLoader, the graph is “unpartitioned.” EdgeRDD and VertexRDD have their own stan-
dard RDD partitioning, but the graph as a whole isn’t partitioned in any logical fashion.

 This can lead to poor performance; moreover, some methods such as groupEdges()
and triangleCount() require the graph to be partitioned to work correctly.

 Partitioning is accomplished via the partitionBy() method, and it takes one of
the PartitionStrategys as a parameter. To see the list of available Partition-
Strategys in the API docs, look at the object PartitionStrategy as opposed to the
class/type PartitionStrategy. The four partitioning strategies (shown in figure
9.18) are as follows:

 RandomVertexCut—Usually the best strategy unless you have a reason to use
one of the others. It’s one of the two that uses vertex cut instead of edge cut. It
optimally balances workload but is blind to communication costs.

 CanonicalRandomVertexCut—Same as RandomVertexCut except duplicate
edges between any pair of vertices are assured to be in the same partition. But if
your graph doesn’t have any such duplicate edges, it can hurt performance
when an algorithm needs to access the attribute of an edge that is on the perim-
eter of a partition.

 EdgePartition1D—Ensures that all edges for a vertex are on the same partition.
 EdgePartition2D—Takes the edge adjacency matrix and divides it up into tiles.

It has the downside that it is designed to work on a number of partitions that is
a perfect square (4, 9, 16, and so forth). If the number of partitions is not a per-
fect square, it rounds up to the nearest perfect square and allocates on the
smaller number of partitions, resulting in a workload imbalance.

Registers custom class 
with Kryo—more than 
one class can be 
specified in the array.
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Because vertices are partitioned independently of edges, there is no guarantee that an
edge’s two vertices will be available in the same partition (in fact, it is highly unlikely).
Usually, Spark has to serialize edges and vertices to make EdgeTriplets. The
PartitionStrategy, which affects only edges, allows a trade-off between load balanc-
ing (the two random strategies) and efficient access of groups of neighboring edges
(the two edge partition strategies).

9.5 Summary
 All Spark applications operate as a series of jobs that are split into stages. Each

stage creates executable tasks that perform processing on one partition of an
RDD.

 Familiarity with the Spark Application UI is essential to understanding how your
application is performing. The Jobs listing and detail screens provide raw stats
for time and duration of jobs, stages, and tasks. The Event Timeline provides a
visual insight into application performance.

 Tuning options include caching, checkpointing, serialization, and partitioning.
 Caching is a valuable tool when the same data is being queried repeatedly. By

caching the data in memory, Spark avoids having to recreate the data from
source each time it needs it. Different caching levels give you control over
where the data is cached (in memory or on disk) and also whether cached data
is serialized.

 Serialization provides better use of memory at the cost of additional CPU time
when the data is accessed. Spark’s default serializer is JavaSerializer, which
uses the inefficient Java serialization framework. For fast and efficient serializa-
tion, we recommend you use the open source KryoSerializer instead. 

 Certain data access patterns in Spark can create long chains of RDDs, resulting
in StackOverflowErrors. This often occurs in iterative algorithms where a
graph is repeatedly updated. To avoid this situation, you should checkpoint reg-
ularly. But you need to trade off the cost of checkpointing, so typically regularly
means every 50 to 100 iterations.



Other languages and tools
So far we’ve done only Scala, and for visualization we’ve used only Gephi. In this
chapter, you’ll see how to use other languages supported by Spark. Although Spark
supports other languages, their support from GraphX is limited at best. You’ll also
see how to visualize graphs using d3.js and Apache Zeppelin, which is notebook
software similar to Mathematica, IPython Notebook, and Jupyter. A notebook has
the advantage of combining a REPL-like interactive interface with visualization in
one place.

 Throughout this book we’ve repeated that GraphX is not a graph database. Well,
with the addition of the external tool Spark Job Server, which adds a REST interface
to Spark, one can almost have a (very) lightweight database using GraphX.

This chapter covers
 Using Java 7 and 8 rather than Scala with GraphX

 Status of Python and R interfaces to GraphX

 Using Apache Zeppelin and d3.js to visualize 
graphs as an alternative to Gephi

 Gaining almost-a-database capabilities with Spark 
Job Server

 Using GraphFrames
216
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 Finally, you’ll see how to use the library GraphFrames, developed by some of the
same people who developed GraphX, which makes querying graphs easier and faster
than with GraphX.

10.1 Using languages other than Scala with GraphX
Although Scala is the native language of Spark, there are various reasons why one may
want to use one of the other languages supported by Spark: personal preference, team
or corporate preference, security, compatibility with preferred libraries, to name a few.
As of the Spark 1.6 release, it’s possible to use GraphX with Java 7 and Java 8, but there
are no APIs provided for Python or R, and the APIs for Java are not easy to use. A true
Java-friendly API for GraphX is the subject of Jira ticket SPARK-3665, which is not tar-
geted for a particular release (as of Spark 1.6). There are several reasons why you might
want to use Java with GraphX, but ease of use is not one of them. If you’re considering
using Java with GraphX because you’re more familiar with Java than Scala, you’ll want
to rethink that decision. You have to write ten times as much code for Java as for Scala,
a lot of it with obscure constructs. Plus, there is no REPL that comes with Java.

 There are two other reasons to use Java that might make sense:

 Corporate mandate
 Compatibility with byte code tools such as Fortify that don’t work as well with

the myriad of .class byte code files generated by Scala

The first section on Java 7 covers all the intricacies of working with Java and GraphX.
The lambda capabilities of Java 8 don’t help very much with GraphX, and the section
on Java 8 covers the limited places where Java 8 lambdas help. The last section pro-
vides details on the possibility of Python and R bindings being added to GraphX, but
in short, they’re not part of Apache Spark as of Spark 1.6.

10.1.1 Using GraphX with Java 7

In this section, we take the edge count example from section 4.2.3 and convert it to
Java. Because Java doesn’t come with a REPL, we need a pom.xml file for Maven, and
we start with that.

 The pom.xml in listing 10.1 is not surprising. There’s one little nicety hidden in
the inclusion of the exec-maven-plugin, and that’s cleanupDaemonThreads being set
to true. This allows the program to be executed with mvn exec:java and Maven
won’t complain about remaining Spark threads hanging around after shutdown.

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

Listing 10.1 pom.xml
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  <groupId>com.manning</groupId>
  <artifactId>graphx-propagate-edge-count</artifactId>
  <version>1.0-SNAPSHOT</version>

  <dependencies>
    <dependency>

<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.10</artifactId>
<version>1.5.1</version>

    </dependency>
    <dependency>

<groupId>org.apache.spark</groupId>
<artifactId>spark-graphx_2.10</artifactId>
<version>1.5.1</version>

    </dependency>
  </dependencies>

  <build>
    <plugins>

<plugin>
<groupId>org.codehaus.mojo</groupId>
<artifactId>exec-maven-plugin</artifactId>
<version>1.2.1</version>
<executions>
  <execution>
    <goals>

<goal>java</goal>
    </goals>
  </execution>
</executions>
<configuration>
  <mainClass>EdgeCount</mainClass>
  <cleanupDaemonThreads>false</cleanupDaemonThreads>
</configuration>

</plugin>
    </plugins>
  </build>

</project>

The first thing you’ll notice about the Java code in listing 10.2 is its length. Some of it
is from the large number of imports needed to handle the Java/Scala interoperability,
and some of it is from the more verbose syntax for constructing the example
myVertices and myEdges. But there’s also quite a bit of complicated code to handle
the lambdas. The lambdas associated with the Spark Core calls map() and reduce()
toward the end of the propagateEdgeCount() function aren’t too bad. That’s because
the developers behind Apache Spark spent a lot of time making writing lambdas in
Java for Spark Core as easy as possible. They didn’t do so for GraphX.

 The lambdas for Spark Core are instances of o.a.s.api.java.Function (where
o.a.s. is an abbreviation for org.apache.spark), o.a.s.api.java.Function2, and
so on, where Function is a lambda taking one parameter, Function2 is a lambda tak-
ing two parameters, and so forth.



219Using languages other than Scala with GraphX
 In contrast, the lambdas for Spark GraphX are instances of scala.Function1,
scala.Function2, and so on. If you look at the Javadocs (as opposed to the regular
ScalaDocs) for GraphX, you’ll see these in the signatures of functions like
Graph.mapVertices(). But instantiating Function1, Function2, and so forth directly
in Java is next to impossible due to the dozens of functions (most of which contain a $
sign somewhere in the name) you’d be required to override. That’s why the Scala
library provides scala.runtime.AbstractFunction1, scala.runtime.Abstract-

Function2, and so forth for the convenience of Java programmers. With these, you
only have to override the apply() function you’re interested in. But wait, even that’s
not good enough for our needs, because Spark is not only functional, it’s also distrib-
uted. Lambdas for Spark also need to be serializable, which AbstractFunction1,
AbstractFunction2, and so on are not. We define SerializableFunction1 and
SerializableFunction2 toward the top of the following listing and use those
throughout instead of AbstractFunction1, AbstractFunction2, and so forth.

import java.io.Serializable;
import java.util.Arrays;
import java.util.List;

import scala.Tuple2;
import scala.reflect.ClassTag;
import scala.reflect.ClassTag$;
import scala.runtime.AbstractFunction1;
import scala.runtime.AbstractFunction2;
import scala.runtime.BoxedUnit;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.*;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.graphx.*;
import org.apache.spark.rdd.RDD;
import org.apache.spark.storage.StorageLevel;

public class EdgeCount {
  // sendMsg and mergeMsg supplied to aggregateMessages()need to be
  // both Scala (for GraphX API) and Serializable (for Spark)
  static abstract class SerializableFunction1<T1,R>
    extends AbstractFunction1<T1,R> implements Serializable {}

  static abstract class SerializableFunction2<T1,T2,R>
    extends AbstractFunction2<T1,T2,R> implements Serializable {}

  public static void main(String[] args) {
    JavaSparkContext sc = new JavaSparkContext(

new SparkConf().setMaster("local").setAppName("EdgeCount"));

    JavaRDD<Tuple2<Object, String>> myVertices =
sc.parallelize(Arrays.asList(new Tuple2<Object,String>(1L, "Ann"),
new Tuple2<Object,String>(2L, "Bill"),

Listing 10.2 EdgeCount.java
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new Tuple2<Object,String>(3L, "Charles"),
new Tuple2<Object,String>(4L, "Diane"),
new Tuple2<Object,String>(5L, "Went to gym this morning")));

    JavaRDD<Edge<String>> myEdges = sc.parallelize(Arrays.asList(
new Edge<String>(1L, 2L, "is-friends-with"),
new Edge<String>(2L, 3L, "is-friends-with"),
new Edge<String>(3L, 4L, "is-friends-with"),
new Edge<String>(4L, 5L, "Likes-status"),
new Edge<String>(3L, 5L, "Wrote-status")));

    Graph<String,String> myGraph = Graph.apply(myVertices.rdd(),
myEdges.rdd(), "", StorageLevel.MEMORY_ONLY(),
StorageLevel.MEMORY_ONLY(), tagString, tagString);

    Graph<Integer,String> initialGraph = myGraph.mapVertices(
new SerializableFunction2<Object,String,Integer>() {
public Integer apply(Object o, String s) { return 0; }

},
tagInteger, null);

    List<Tuple2<Object,Integer>> ls = toJavaPairRDD(
propagateEdgeCount(initialGraph).vertices(), tagInteger).collect();

    for (Tuple2<Object,Integer> t : ls)
System.out.print(t + " ** ");

    System.out.println();

    sc.stop();
  }

  // Must explicitly provide for implicit Scala parameters in various
  // function calls
  private static final ClassTag<Integer> tagInteger =
    ClassTag$.MODULE$.apply(Integer.class);
  private static final ClassTag<String> tagString =
    ClassTag$.MODULE$.apply(String.class);
  private static final ClassTag<Object> tagObject =
    ClassTag$.MODULE$.apply(Object.class);

  // sendMsg
  private static final SerializableFunction1<

EdgeContext<Integer, String, Integer>, BoxedUnit> sendMsg =
    new SerializableFunction1<

EdgeContext<Integer, String, Integer>, BoxedUnit>() {
public BoxedUnit apply(EdgeContext<Integer, String, Integer> ec) {
ec.sendToDst(ec.srcAttr()+1);
return BoxedUnit.UNIT;

}
    };

  // mergeMsg
  private static final SerializableFunction2<Integer, Integer, Integer>
    mergeMsg = new SerializableFunction2<Integer, Integer, Integer>() {

public Integer apply(Integer a, Integer b) {
return Math.max(a,b);

}
    };
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  private static <T> JavaPairRDD<Object,T>
toJavaPairRDD(VertexRDD<T> v, ClassTag<T> tagT) {

    return new JavaPairRDD<Object,T>((RDD<Tuple2<Object,T>>)v,
    tagObject, tagT);

  }

  private static Graph<Integer,String> propagateEdgeCount(
Graph<Integer,String> g) {

    VertexRDD<Integer> verts = g.aggregateMessages(
sendMsg, mergeMsg, TripletFields.All, tagInteger);

    Graph<Integer,String> g2 = Graph.apply(verts, g.edges(), 0,
StorageLevel.MEMORY_ONLY(), StorageLevel.MEMORY_ONLY(),
tagInteger, tagString);

    int check = toJavaPairRDD(g2.vertices(), tagInteger)
.join(toJavaPairRDD(g.vertices(), tagInteger))
.map(new Function<Tuple2<Object,Tuple2<Integer,Integer>>,

Integer>() {
 public Integer call(Tuple2<Object,Tuple2<Integer,Integer>> t) {
   return t._2._1 - t._2._2;
 }
})
.reduce(new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer a, Integer b) {return a+b;}
});

    if (check > 0)
return propagateEdgeCount(g2);

    else
return g;

  }
}

There are other API changes to note:

 JavaSparkContext instead of SparkContext.
 Object instead of VertexId. If you need to compare the values, you’ll have to

cast the Object to Long at those places you need to.
 parallelize() instead of makeRDD().
 parallelize() only works on Lists and not Arrays.

Due to lambdas always needing to return a value and the lack of Unit in Java, Scala
provides the singleton scala.runtime.BoxedUnit.UNIT for that purpose.

 A lot of Scala niceties aren’t available in Java. One that’s quickly missed is default
parameters. Every single parameter has to be supplied in calling the GraphX Java
APIs. For example, the call to Graph.apply() to create the graph takes seven parame-
ters instead of two as in Scala. To fill all these parameters, it’s often necessary to con-
sult with the ScalaDocs to see what the defaults were.

 Some of those default parameters are the implicit ClassTags that Scala automati-
cally supplies. In Java, you have to compute and supply them manually every time.

 Also missed are the automatic conversions between RDD and PairRDD (or in the
case of Java, between JavaRDD and JavaPairRDD). That’s why we wrote a helper func-
tion toJavaPairRDD() to force that conversion where we needed it.
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10.1.2 Using GraphX with Java 8

Many think of Java 8 as introducing elements of Scala-like functional programming to
Java. But Java 8 lambdas only help with the Spark Core, and in listing 10.2 the only
Spark Core lambdas were the map() and reduce() used to compute the variable
check. The next listing shows the computation of check using Java 8 lambdas.

    int check = toJavaPairRDD(g2.vertices(), tagInteger)
.join(toJavaPairRDD(g.vertices(), tagInteger))
.map(t -> t._2._1 - t._2._2)
.reduce((a,b) -> a+b);

10.1.3 Whether GraphX may gain Python or R bindings in the future

Python bindings to GraphX are the subject of Jira ticket SPARK-3789, which as of the
Spark 1.6 release has not been targeted for a particular Spark release. As for R bind-
ings, an AMPLab developer suggested on the Apache Spark User mailing list on
August 6, 2015 that although it might make sense to expose to R programmers inter-
faces to high-level algorithms like PageRank, it might not make sense to expose the
entire GraphX API. GraphFrames, covered in section 10.4, do offer Python bindings.

10.2 Another visualization tool: Apache Zeppelin plus d3.js
Instead of having a separate Spark REPL and Gephi to visualize graphs, the combina-
tion of Apache Zeppelin and d3.js can give you the powerful capability of visualizing
graphs inline in a REPL-like notebook. The only downside is that tweaking the visual-
izations requires some knowledge of d3.js and JavaScript, which are outside the scope
of this book. But we provide you with some code here to get you started. The visualiza-
tions this starting point gives you may be good enough as quick visualizations, and you
can use Gephi if you need something more sophisticated.

 The notebook concept is a powerful one started by Mathematica and later imitated
by IPython Notebook, which is now known as Jupyter. Zeppelin is a variation on the
theme, except that it comes with Spark built in, making it trivial to download and be
productive immediately. Figure 10.1 shows how the notebook concept allows you to
interleave Spark commands with visualizations.

 To get started, download Zeppelin from https://zeppelin.apache.org and then
perform the following steps at the Linux command line (you may need to change the
version numbers):

tar -xzvf zeppelin-0.5.6-incubating-bin-all.tgz
./zeppelin-0.5.6-incubating-bin-all/bin/zeppelin-daemon.sh start
xdg-open http://localhost:8080

This last step opens up a web browser to port 8080. From the browser page, click “Cre-
ate new note.”

Listing 10.3 EdgeCount.java fragment converted to Java 8 lambdas

https://zeppelin.apache.org
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Like most other modern notebook software, Zeppelin supports inline JavaScript, and
that means it can use the d3.js visualization library for JavaScript. Listing 10.4 shows
how to do some basic visualization, the results of which are shown in figure 10.1. To
customize it further (such as by adding edge labels, positioning the vertex labels, or
adding arrowheads for directed graphs), you’ll need to customize the JavaScript code.
The book D3.js in Action by Elijah Meeks (Manning, 2015) may be of some help.

import org.apache.spark.graphx._
import scala.reflect.ClassTag
def drawGraph[VD:ClassTag,ED:ClassTag](g:Graph[VD,ED]) = {
val u = java.util.UUID.randomUUID
val v = g.vertices.collect.map(_._1)
println("""%html
<div id='a""" + u + """' style='width:960px; height:500px'></div>
<style>
.node circle { fill: gray; }
.node text { font: 10px sans-serif;

text-anchor: middle;
fill: white; }

line.link { stroke: gray;
    stroke-width: 1.5px; }

Listing 10.4 drawGraph in d3.js JavaScript and Scala

Figure 10.1 Zeppelin is like the Spark REPL except that visualizations can be displayed inline.



224 CHAPTER 10 Other languages and tools
</style>
<script src="//d3js.org/d3.v3.min.js"></script>
<script>
var width = 960, height = 500;

var svg = d3.select("#a""" + u + """").append("svg")
    .attr("width", width).attr("height", height);

var nodes = [""" + v.map("{id:" + _ + "}").mkString(",") + """];
var links = [""" + g.edges.collect.map(
  e => "{source:nodes[" + v.indexWhere(_ == e.srcId) + "],target:nodes[" +

v.indexWhere(_ == e.dstId) + "]}").mkString(",") + """];

var link = svg.selectAll(".link").data(links);
link.enter().insert("line", ".node").attr("class", "link");

var node = svg.selectAll(".node").data(nodes);
var nodeEnter = node.enter().append("g").attr("class", "node")

nodeEnter.append("circle").attr("r", 8);

nodeEnter.append("text").attr("dy", "0.35em")
 .text(function(d) { return d.id; });

d3.layout.force().linkDistance(50).charge(-200).chargeDistance(300)
   .friction(0.95).linkStrength(0.5).size([width, height])
   .on("tick", function() {

link.attr("x1", function(d) { return d.source.x; })
  .attr("y1", function(d) { return d.source.y; })
  .attr("x2", function(d) { return d.target.x; })
  .attr("y2", function(d) { return d.target.y; });

node.attr("transform", function(d) {
return "translate(" + d.x + "," + d.y + ")";

});
   }).nodes(nodes).links(links).start();
</script>
""")
}

 If you paste the code from the listing into a Zeppelin cell, you can test it out in
another cell with something like this:

drawGraph(org.apache.spark.graphx.util.GraphGenerators.rmatGraph(sc,32,60))

The code from listing 10.4 is a mix of Scala and JavaScript, and in order to inject the
vertex and edge data into the JavaScript, in the Scala code it does a bit of code gener-
ation of JavaScript. To fine-tune the layouts, you can play with the parameters set fol-
lowing the d3.layout.force(), documented at https://github.com/mbostock/
d3/wiki/Force-Layout. It doesn’t require a great deal of JavaScript knowledge to
tweak the colors and canvas size, but label positioning, arrowheads, and so on are
probably going to require d3.js expertise.

https://github.com/mbostock/d3/wiki/Force-Layout
https://github.com/mbostock/d3/wiki/Force-Layout
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10.3 Almost a database: Spark Job Server
The entirety of this book has been about how GraphX is a graph processing system
rather than a database. It does processing in batch (as a “job”) on graph data and spits
out a result at the end.

 Well, given the hammer of Spark that a growing number of developers and enter-
prises have in their toolbox, it’s possible to fashion something that slightly resembles a
database using GraphX. It won’t have anything like transactions or locking, but it may
be good enough for your purposes.

 In early 2014, the streaming video technology company Ooyala started a GitHub
project called Spark Job Server for the purpose of sharing RDDs. Spark Job Server
deserves its own chapter, if not its own book, but in this section we’ll show a quick
example of using it with GraphX.

 For the reason behind why Spark Job Server was created, consider developers new
to Spark. They often say to themselves: Well, I’ve got all this great data stored in RDDs—
how can I share it among multiple applications? You can’t, because an RDD is tied to a
SparkContext, and the SparkContext is tied to a particular JVM application. You can’t
share RDDs unless you’re using Spark Job Server (for now—at least until long-standing
Jira ticket SPARK-2389 gets resolved). Figure 10.2 shows how Spark Job Server maintains
the single SparkContext and allows incoming REST calls to use that sole SparkContext.

 With a GraphX graph loaded into Spark Job Server, multiple applications can
“query” this common graph. That can be useful even for a single application if the
Spark cluster is a being used in cluster mode rather than client mode. Cluster versus
client mode is out of scope for this book, but suffice it to say that in cluster mode the
application doesn’t maintain hold of the SparkContext, so for a cluster used in cluster
mode, Spark Job Server can allow a single application to reuse an RDD (or Graph) over
and over again without having to submit a new Spark job and reload the data from dis-
tributed storage.

Spark JobServer

Cluster manager

Worker node

SparkContext

Worker node

Worker node

Worker node

Application 1
REST

Application 2

Application 3

REST

REST

Figure 10.2 Spark Job Server maintains the SparkContext, which in turn has its associated RDD 
references and allows multiple applications to share the same SparkContext and share the same 
RDDs. A graph of reference data can be loaded up into a Spark Job Server job, and multiple applications 
can “query” this reference graph. Even providing a way to update the graph is not out of the question.
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10.3.1 Example: Query Slashdot friends degree of separation

In this example of using Spark Job Server to provide a static set of graph data that can
be queried, we show how to install and launch Spark Job Server, how to build a .jar
that can be loaded in Spark Job Server, and how to issue REST calls against it. We use
the same dataset from SNAP as in section 5.2.2—the Slashdot friends and foes data-
set—and we provide the ability to query, given two Slashdot user ID numbers, the
degrees of separation (as in Kevin Bacon) between those two users.

INSTALL AND LAUNCH SPARK JOB SERVER

First, make sure there isn’t a Spark Job Server already running. With old versions of
the Cloudera QuickStart VM, you might find an obsolete Spark Job Server running.
You can kill that with the following:

sudo pkill -f spark-jobserver
sudo rm -r /tmp/spark-jobserver

Next we’ll clone the Spark Job Server GitHub repository and choose the branch that
corresponds to Spark 1.4.1. At the time of this writing, that’s the most recently named
branch. You may want to use the master branch instead if you can ascertain which ver-
sion of Spark it’s targeting.

git clone https://github.com/spark-jobserver/spark-jobserver.git
cd spark-jobserver
git checkout jobserver-0.6.0-spark-1.4.1
sed -i '/spark-core/a "org.apache.spark" %% "spark-graphx" % sparkVersion,'

➥ project/Dependencies.scala
sbt
reStart

DOWNLOAD THE SLASHDOT DATA

Next, get the Slashdot data and put it in our home directory:

cd ~
wget http://snap.stanford.edu/data/soc-Slashdot0811.txt.gz
gzip -d ~/soc-Slashdot0811.txt.gz

BUILD THE CUSTOM JOB SERVER JOB JAR

To build the custom job jar, we use sbt, as shown in listing 10.5. As with other sbt-based
projects like those in this book, the .scala file in listing 10.6 goes into the
src/main/scala directory. Ensure that the Spark version numbers and the Spark Job
Server version number match the version numbers in the Spark Job Server branch
name selected earlier.

scalaVersion := "2.10.4"
resolvers += "Job Server Bintray" at

➥ "https://dl.bintray.com/spark-jobserver/maven"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.4.1"

Listing 10.5 sjsslashdot.sbt
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libraryDependencies += "org.apache.spark" %% "spark-graphx" % "1.4.1"
libraryDependencies += "spark.jobserver" %% "job-server-api" % "0.6.0" % 

➥ "provided"

import org.apache.spark.SparkContext
import org.apache.spark.graphx._
import org.apache.spark.graphx.lib.ShortestPaths

import com.typesafe.config.Config

import spark.jobserver._

object Degrees extends SparkJob {
  val filename = System.getProperty("user.home") + "/soc-Slashdot0811.txt"
  var g:Option[Graph[Int,Int]] = None

  override def runJob(sc:SparkContext, config:Config) = {
    if (!g.isDefined)

g = Some(GraphLoader.edgeListFile(sc, filename).cache)

    val src = config.getString("src").toInt

    if (g.get.vertices.filter(_._1 == src).isEmpty)
-1

    else {
val r = ShortestPaths.run(g.get, Array(src))

.vertices

.filter(_._1 == config.getString("dst").toInt)

if (r.isEmpty || r.first._2.toList.isEmpty) -1
else r.first._2.toList.head._2

    }
  }

  override def validate(sc:SparkContext, config:Config) = SparkJobValid
}

Then it’s simple to build:

sbt package

LOAD JOB JAR

To interface with Spark Job Server requires making REST calls. Here you’ll use curl to
make REST calls, but normally you would do this under control of, for example, a Java
or Scala program.

 The following code submits the job jar to Spark Job Server and gives it the label sd.
Then it asks Spark Job Server to create a SparkContext called sdcontext:

curl --data-binary @/home/cloudera/sjsslashdot/target/

➥ scala-2.10/sjsslashdot_2.10-0.1-SNAPSHOT.jar localhost:8090/jars/sd
curl -d "" 'localhost:8090/contexts/sdcontext'

Listing 10.6 sjsslashdot.scala
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SOME EXAMPLE QUERIES

Interrogating our “database” involves more REST queries. The code in sjsslashdot
.scala is set up to tell us the degrees of separation between any two given users. In the
next bit of code we find out that Slashdot users 0 and 1000 are separated by two
degrees of separation. Note that we’re throwing a couple of Spark Job Server flags
into the REST parameters that you normally wouldn’t use in production. First, we set
sync=true for a synchronous call; normally in the REST world for a long-executing
function, you would make an asynchronous call and poll for its completion. Second,
along with that, we specify a longish timeout of 100 milliseconds:

curl -d '{"src":0, "dst":1000}' 'localhost:8090/jobs?appName=sd

➥ &classPath=Degrees&context=sdcontext&sync=true&timeout=100'
{
  "result": 2
}

As expected, a user to himself/herself is zero degrees of separation:

curl -d '{"src":1000, "dst":1000}' 'localhost:8090/jobs?appName=sd

➥ &classPath=Degrees&context=sdcontext&sync=true&timeout=100'
{
  "result": 0
}

Sometimes the chains can be quite long:

curl -d '{"src":77182, "dst":77359}' 'localhost:8090/jobs?appName=sd

➥ &classPath=Degrees&context=sdcontext&sync=true&timeout=100'
{
  "result": 10
}

10.3.2 More on using Spark Job Server

We could say much more about Spark Job Server. For example, Spark Job Server rep-
resents a single point of failure. It has no redundancy built in. You could try running a
Spark Job Server on two machines with a load balancer in front, but you’d need to
ensure all your jobs were completely stateless. All of the state operated on by your job
would have to be derived from a combination of distributed storage (HDFS) files and
data/state sent as part of the REST request.

 Spark Job Server provides a facility for creating “named RDDs” that we didn’t use
earlier—we kept the RDD in a Scala var, which is simpler if you don’t need the named
RDD facility.

 Finally, there’s the override validate() that we stubbed out above. This can be
used, for example, to determine whether your job is ready to accept requests before
issuing a long-running request.

 The example laid out in this section is a read-only example. If you want to provide
an updatable graph, you would have to roll your own synchronization/locking mecha-
nism. But using Spark Job Server with GraphX is a way of avoiding (if you want to)
standing up another cluster such as Neo4j.
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10.4 Using SQL with Spark graphs with GraphFrames
Looking ahead to the future of graphs on Spark, a new graphing library called Graph-
Frames, which is not part of Spark as of Spark 1.6, promises better performance and
easier querying. It provides a lot of the same functionality as GraphX, but adds the
ability to query using a combination of the languages Cypher (from Neo4j) and SQL.
In this section we show basic usage, look at performance, and expand chapter 8’s
poor-man’s graph isomorphisms into something a little more complex.

 GraphFrames makes use of the Spark SQL component of Spark and its DataFrames
API. DataFrames offers much better performance than the RDDs that GraphX uses
because of two optimization layers that Spark SQL provides, known as Catalyst and
Tungsten. Catalyst is the original AMPLab name of Spark SQL, but now refers to the
database-style query plan optimizer part of Spark SQL. Tungsten is another, newer layer
introduced in Spark 1.4 that speeds up memory access by doing direct C++ style
memory access using the direct memory API that bypasses the JVM, known as
sun.misc.unsafe.

 For a deeper dive into Spark SQL, see Spark in Action by Petar Zečević and Marko
Bonaći (Manning, 2016). For those familiar with Python, GraphFrames exposes a
Python API right from the beginning, but as with using Python Spark SQL, knowing
SQL is still required.

 In this version of GraphFrames, for Map/Reduce type operations there’s an
AggregateMessagesBuilder class, which serves a similar purpose to GraphX’s
aggregateMessages(), but there’s no Pregel API. GraphFrames’s strength is in query-
ing graphs rather than the massively parallel algorithms that are GraphX’s forte, but it
would require benchmarking to determine which is faster for which application.
GraphX has the optimization of maintaining routing tables internally between verti-
ces and edges so that it can form triplets quickly. But GraphFrames has the Catalyst
and Tungsten performance layers that GraphX doesn’t have.

GraphFrames

Spark SQL

GraphX

Spark core (RDDs)

Tungsten

DataFrames

Catalyst

Figure 10.3 Because GraphFrames is based on DataFrames rather than RDDs, it’s much faster than 
GraphX due to the Catalyst and Tungsten performance layers built into Spark SQL. Catalyst, the query 
optimizer, and Tungsten, the direct memory manager that bypasses the JVM, can be considered turbo-
charger add-ons. GraphX has no way to optimize join()s, for example, and must go through the JVM 
for all memory operations.
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10.4.1 Getting GraphFrames, plus GraphX interoperability

As of Spark 1.6, GraphFrames is out on GitHub. In later versions, GraphFrames may
be available on spark-packages.org (see appendix C) or as part of the Apache Spark
distribution itself. To download and build the precise version used in this book, exe-
cute the following commands (for more information about Git, see Git in Practice by
Mike McQuaid [Manning, 2014]):

cd ~
git clone https://github.com/graphframes/graphframes.git
cd graphframes
git checkout b9f3a30
sbt package

Then, to launch the Spark REPL with the GraphFrames jar:

./spark-shell --jars ~/graphframes/target/scala-2.10/graphframes_2.10-0.0.1-
SNAPSHOT.jar

The fundamental graph type in GraphFrames is the GraphFrame. A GraphFrame con-
tains two DataFrames from Spark SQL (see figure 10.4), where vertices is expected to
have a data column called id and edges is expected to have data columns called src
and dst. Additional user columns for vertex and edge properties can be added.

 The GraphFrames API provides functions to convert GraphFrames to and from
GraphX Graphs. For example, assuming myGraph has been defined in the Spark Shell
as from listing 4.1

import org.graphframes._
val gf = GraphFrame.fromGraphX(myGraph)
val g = gf.toGraphX

Note, though, that when converting back into GraphX, the parameterized VertexRDD
and EdgeRDD are based on Row from Spark SQL rather than on any user-defined type-
safe data type.

Graph

VertexRDD

ED:(custom user class)
VD:(customer user class)

VD:

EdgeRDD
ED:

GraphFrame

vertices : DataFrame edges : DataFrame

Figure 10.4 Whereas the fundamental graph type in GraphX is Graph, in GraphFrames it’s 
GraphFrame. The parameterized type system isn’t used in GraphFrames—rather there’s a convention 
(enforced at runtime) where columns in the DataFrames are expected to have particular names.
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EXAMPLE: TRIANGLE COUNT

Although GraphFrames is generally much faster than GraphX, the exceptions, at least
as of this version of GraphFrames, are the built-in algorithms. That’s because this ver-
sion of GraphFrames converts the GraphFrame to a GraphX Graph and forwards the
call to GraphX. Assuming the graph g2 is defined as from listing 5.2, the next listing
shows the performance difference in the Triangle Count algorithm between Graph-
Frames and GraphX.

import org.graphframes._
val gf = GraphFrame.fromGraphX(g2)
def time[A](f: => A) = {
  val s = System.nanoTime
  val ret = f
  println("time: " + (System.nanoTime-s)/1e9 + "sec")
  ret
}

time { g2.triangleCount.vertices.map(_._2).reduce(_ + _) }
time: 3.562754321sec  

res0: Int = 2592813

time { gf.triangleCount.run.vertices.groupBy().sum("count")
 .collect()(0)(0).asInstanceOf[Long] }

time: 6.493085995sec  

res1: Long = 2592813

This code uses the DataFrame functions groupBy() and sum() to do the aggregation,
but in the next subsection you’ll see how to use SQL.

10.4.2 Using SQL for convenience and performance

In this section, we’ll see how implementing functions in GraphFrames is not merely
convenient due to SQL but also results in faster execution times. In section 8.5, we
tackled reading RDF files, a standard file format for graph “triplets.” From a GraphX
perspective (and GraphFrames, as well), the challenge is assigning vertex IDs and
matching vertex names with the made-up vertex IDs—because RDF files have no ver-
tex IDs in them, only vertex labels. To accomplish this, the readRdf() from listing 8.5
has lots of complicated join()s and remappings. When implemented in Graph-
Frames, the code is not only simpler and easier, but the performance is also improved
by a factor of eight, as shown in the next listing.

import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
def readRdfDf(sc:org.apache.spark.SparkContext, filename:String) = {
  val r = sc.textFile(filename).map(_.split("\t"))
  val v = r.map(_(1)).union(r.map(_(3))).distinct.zipWithIndex.map(

Listing 10.7 Benchmarking Triangle Count in GraphFrames

Listing 10.8 readRdf() rewritten in GraphFrames
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x => Row(x._2,x._1))
  // We must have an "id" column in the vertices DataFrame;
  // everything else is just properties we assign to the vertices
  val stv = StructType(StructField("id",LongType) ::

StructField("attr",StringType) :: Nil)
  val sqlContext = new org.apache.spark.sql.SQLContext(sc) 
  val vdf = sqlContext.createDataFrame(v,stv)
  vdf.registerTempTable("v")
  val str = StructType(StructField("rdfId",StringType) ::

StructField("subject",StringType) ::
StructField("predicate",StringType) ::
StructField("object",StringType) :: Nil)

  sqlContext.createDataFrame(r.map(Row.fromSeq(_)),str)
    .registerTempTable("r")

  // We must have an "src" and "dst" columns in the edges DataFrame;
  // everything else is just properties we assign to the edges
  val edf = sqlContext.sql("SELECT vsubject.id AS src," +

"   vobject.id AS dst," +
"   predicate AS attr " +
"FROM   r " +
"JOIN   v AS vsubject" +
"  ON   subject=vsubject.attr " +
"JOIN   v AS vobject" +
"  ON   object=vobject.attr")

  GraphFrame(vdf,edf)
}

In this listing there is still some use of RDDs. This is because as of Spark 1.6, Data-
Frames don’t have zip() or zipWithIndex() and trying to convert back and forth
between RDDs and DataFrames would result in slower performance. Adding zip() to
DataFrame is the subject of Jira ticket SPARK-7460.

10.4.3 Searching for vertices with the Cypher subset

In section 3.3.4 you saw how much easier it is to use the Cypher query language from
the Neo4j graph database technology to answer the question “Show me the friends of
the friends of Ann” (for example, in the graph that’s repeated in figure 10.5). To
attempt the query in GraphX required several lines of dense code, whereas in query
languages such as Cypher, it only required one or two lines of simple query code.

Bill

Ann

is-friends-with

Charles

Diane

is-friends-with
is-friends-with

wrote-status

likes-status

“Went to gym this morning”
Figure 10.5 Example myGraph 
from listing 4.1, shown here again
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QUERYING MYGRAPH FROM LISTING 4.1
GraphFrames supports a limited subset of Cypher that makes such queries easy. The sub-
set of Cypher that GraphFrames supports doesn’t allow vertex or edge names to be
matched; it only allows the miniature graph structures to be queried. Querying on vertex
and edge names has to be a second step using standard Spark SQL-querying facilities.

 Then, assuming myGraph from listing 4.1 has been loaded into the Spark REPL,
the following listing finds the friends of the friends of Ann.

val gf = GraphFrame.fromGraphX(myGraph)
gf.find("(u)-[e1]->(v); (v)-[e2]->(w)")
  .filter("e1.attr = 'is-friends-with' AND " +

  "e2.attr = 'is-friends-with' AND " +
  "u.attr='Ann'")

  .select("w.attr")
  .collect
  .map(_(0).toString)
res2: Array[String] = Array(Charles)

The ()-[]->() syntax is intended to invoke a graph diagram, where the () are sup-
posed to represent vertices and the edge label is contained with the []. Putting a vari-
able placeholder name inside the () or [] is optional, but if you do, it gives you the
option to query against it in a subsequent Spark SQL query. Also, variable placeholder
names that are repeated in () for vertices refer to same vertex, creating a graph struc-
ture. An example of this is shown in figure 10.6.

This code is much simpler than trying to use aggregateMessages() from GraphX,
which is intended for massively parallel graph computation, not for finding particular
graph vertices or graph fragments.

DIFFERENCES IN TRIPLETS() BETWEEN GRAPHFRAMES AND GRAPHX
GraphFrames does provide a triplets() function, but as you might assume, it
returns a DataFrame rather than an RDD. The implementation behind Graph-
Frames.triplets is surprisingly simple. With the string constants expanded out, and
assuming gf is a GraphFrame, the implementation is the following aesthetically pleas-
ing Cypher code:

gf.find("(src)-[edge]->(dst)")

Listing 10.9 Finding the friends of the friends of Ann using the Cypher subset

u
e1 e2

v w
Figure 10.6 The graph fragment represented by the Cypher 
syntax (u)-[e1]->(v); (v)-[e2]->w. This will find all graph 
fragments that match this structure—specifically, where the 
destination vertex of the first edge matches the source vertex of 
the second edge.
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Now if you execute triplets() from the Spark REPL on gf (derived from myGraph)
from the previous subsection, you get something that seems a little complicated:

scala> gf.triplets.show
+--------------------+-----------+--------------------+

|                edge|        src|                 dst|
+--------------------+-----------+--------------------+
|[1,2,is-friends-w...|    [1,Ann]| [2,Bill]|
|[2,3,is-friends-w...|   [2,Bill]| [3,Charles]|
|[3,4,is-friends-w...|[3,Charles]| [4,Diane]|
|  [3,5,Wrote-status]|[3,Charles]|[5,Went to gym th...|
|  [4,5,Likes-status]|  [4,Diane]|[5,Went to gym th...|
+--------------------+-----------+--------------------+

Each column in the resulting DataFrame is a structure (struct). Structures were intro-
duced in SQL:1999, which in the world of SQL means it’s a “new” feature, relative to
the better-known parts of SQL. Spark SQL DataFrames do handle structures, but—as
of Spark 1.6—not always in a friendly way. For example, to retrieve the edge attribute,
you have to know it’s called attr and is of type String. You have to explicitly refer-
ence it by name and explicitly cast it to its type:

scala> gf.triplets.select("edge.attr").map(_(0).toString).collect
res3: Array[String] = Array(is-friends-with, is-friends-with,
is-friends-with, Wrote-status, Likes-status)

There’s no way to convert the edge struct into a List of attributes, for example, or
into a Scala Tuple or Map.

10.4.4 Slightly more complex isomorphic searching on YAGO

In section 8.3, we identified information potentially missing from Wikipedia by plug-
ging a set of edges from the YAGO graph into the recommender algorithm SVD++. We
saw, based on pairs of (country, exported item) pairs extracted from the larger YAGO
graph, that Canada should probably be associated with exporting electronics.

 With the power of the Cypher subset language, we can search not for only pairs of
vertices but also for triangles. Specifically, we can search for triangles with a missing
edge, as shown in figure 10.7.

<influences> <influences>

<influences>

<Immanuel_Kant>

<Plato> <Michel_Foucault>
? Figure 10.7 A potentially 

missing edge from Wikipedia, 
found using Cypher
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In this example, we again use the file yagoFacts.tsv, but consider people (philoso-
phers, poets, artists, and so on) who influence one another, as indicated by the edge
“<influences>.” We look for highly influential people like Plato who statistically influ-
ence directly those who are influenced indirectly. In listing 10.10, absent (aliased as
table a) is a DataFrame containing all the triangles with the missing third edge, and
present (aliased as table p) is a DataFrame containing all the triangles with all three
edges. The code to compute absent introduces the Cypher operator ! (exclamation
point), which looks for missing edges.

 Prior to executing the next listing, first pare down the size of the yagoFacts.tsv file
by using grep to retain only the lines containing “<influences>”:

grep "<influences>" yagoFacts.tsv >yagoFactsInfluences.tsv

val in = readRdfDf(sc, "yagoFactsInfluences.tsv")

in.edges.registerTempTable("e")
in.vertices.registerTempTable("v")

val in2 = GraphFrame(in.vertices.sqlContext.sql(
"SELECT v.id," +
" FIRST(v.attr) AS attr," +
" COUNT(*) AS outdegree " +
"FROM   v " +
"JOIN   e " +
"  ON   v.id=e.src " +
"GROUP BY v.id").cache,

in.edges)

val absent = in2.find("(v1)-[]->(v2); (v2)-[]->(v3); !(v1)-[]->(v3)")
absent.registerTempTable("a")

val present = in2.find("(v1)-[]->(v2); (v2)-[]->(v3); (v1)-[]->(v3)")
present.registerTempTable("p")

absent.sqlContext.sql(
  "SELECT v1 an," +
  "   SUM(v1.outdegree * v2.outdegree * v3.outdegree) AS ac " +
  "FROM   a " +
  "GROUP BY v1").registerTempTable("aa")

present.sqlContext.sql(
  "SELECT v1 pn," +
  "   SUM(v1.outdegree * v2.outdegree * v3.outdegree) AS pc " +
  "FROM   p " +
  "GROUP BY v1").registerTempTable("pa")

absent.sqlContext.sql("SELECT an," +
" ac * pc/(ac+pc) AS score " +
"FROM   aa " +
"JOIN   pa" +
"  ON   an=pn " +
"ORDER BY score DESC").show

Listing 10.10 Using Cypher and graph isomorphisms to find missing Wikipedia info
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The results to this last query, shown next, show that Plato is the most influential in
terms of also directly influencing everyone he indirectly (by two degrees of separa-
tion) influences. In the computation, we used a scoring formula. The core of that
scoring formula, pc/(ac+pc), is a straight percentage of complete triangles divided by
total number of (both complete and incomplete) triangles. Then we threw in a multi-
plication by ac. This is a heuristic we made up to give favor to well-known people.

+--------------------+--------------------+
|                  an|               score|
+--------------------+--------------------+
|  [7662,<Plato>,102]| 3.822406412297308E7|
|[10648,<Aristotle...|3.2961326121938106E7|
|[4959,<Immanuel_K...|2.6445857520978764E7|
|[2961,<Georg_Wilh...|2.1092802441273782E7|
|[9304,<Baruch_Spi...|1.4513392385496272E7|
|[12217,<René_Desc...|1.2407118036818413E7|
|[12660,<Johann_Wo...|1.0109121178397963E7|
|[11895,<Jean-Jacq...|   9081581.748842742|
|[11615,<Gottfried...|   7146037.710399863|
|[2025,<Friedrich_...|  6897244.1896990575|
|[1082,<William_Sh...|   4168778.144288711|
|[11034,<Adam_Smit...|  4100936.5022027283|
|[1121,<John_Locke...|   3868447.819527024|
|[1566,<Heraclitus...|  3616900.3025887734|
|[3746,<Karl_Marx>...|   3575419.671920321|
|[10954,<Søren_Kie...|   3143375.914849735|
|[7322,<David_Hume...|  3122089.3473657905|
|[8540,<Arthur_Sch...|   2978239.727690162|
|[3186,<Ibn_Tufail...|   2234249.031615453|
|[8267,<Epicurus>,24]|  1812594.4073720106|
+--------------------+--------------------+
only showing top 20 rows

In the final query, we restrict it to Plato (identified by vertex ID 7662 as reported in the
preceding results) and find people from the “absent” table (which represents trian-
gles with the third leg absent). Again, we strive to prefer well-known people by prefer-
ring all three vertices in the triangle to have high degree. Notice how easy it is in SQL
to calculate the vertex degree. In considering this final query’s results for potentially
missing edges emanating from Plato, the top two candidates are Marx and Sartre. But
these two intentionally took stances opposite to Plato’s, so it’s not consistent with Wiki-
pedia’s usage of “influences” to say they were influenced by him. The third person on
the list, Foucault, spoke favorably of Plato’s Letters, but more from the standpoint of
an analysis, given his own already-decided philosophy. It’s questionable whether it’s
appropriate to apply the “<influences>” edge in this case:

absent.sqlContext.sql(
  "SELECT v1.attr, " +
  "   v3.attr, " +
  "   SUM(v1.outdegree * v2.outdegree * v3.outdegree) AS score " +
  "FROM   a " +
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    "WHERE  v1.id=7662 " +
    "GROUP BY v1.attr, v3.attr " +
    "ORDER BY score DESC").collect

res24: Array[org.apache.spark.sql.Row] = Array([<Plato>,<Karl_Marx>,7139388],
[<Plato>,<Jean-Paul_Sartre>,3143640], [<Plato>,<Michel_Foucault>,2871606],
[<Plato>,<Gilles_Deleuze>,2689128], [<Plato>,<Henri_Bergson>,2179128], 

[<Plato>,<Maurice_Merleau-Ponty>,2088450]...

A possible improvement to the scoring system might be to penalize the search when-
ever the birth dates are vastly different. After all, is it fair to say a philosopher from the
ancient world can directly “influence” someone who has already adopted a modernist
philosophy? Doing such a search would involve bringing in the YAGO file yagoDate-
Facts.tsv and merging it with the yagoFacts graph, and then searching for more com-
plex graph fragments that also involve the edge type “<wasBornOnDate>.”

10.5 Summary
 Scala is the native language of Spark and GraphX.
 Using GraphX from Java 7 is complex and requires ten times as much code as

Scala.
 Using GraphX from Java 8 requires only slightly less code than from Java 7

because Java 8 lambdas can only be used straightaway in a couple of places.
 It is unknown as of Spark 1.6 whether and when GraphX will support R and

Python, the other two languages Spark supports.
 The combination of Zeppelin and d3.js provides a powerful notebook capabil-

ity that’s the equivalent of the REPL but with inline graph visualization.
 Further tweaking of graph visualization requires knowledge of d3.js or falling

back to using Gephi.
 Spark Job Server adds a REST interface to Spark, which means that when used

with GraphX, graph data can be kept around in RDDs, and an almost-database
can be cobbled together.

 GraphFrames is a new library that makes it easier to query graphs for particular
vertices or graph fragments using a combination of SQL and a subset of Cypher.

 GraphFrames, because it is built on Spark SQL, performs well due to the optimi-
zation layers, known as Catalyst and Tungsten, that are built into Spark SQL.
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Installing Spark

Using Spark typically means first having 1) Hadoop installed and 2) a cluster of
machines to run them on. The simplest scenario is if you’re doing GraphX work for
your job and your job already has a Hadoop/Spark cluster set up that you can use.
If that’s not the case, this appendix is for you. It describes various options where
you don’t necessarily need either Hadoop or a cluster of machines.

 The three options described in this appendix are as follows:

1 On a local virtual machine—Cloudera QuickStart VM (with Hadoop and Spark
preinstalled and ready to use).

2 On your Linux or OS X laptop, desktop, or VM—Hadoop is not necessary.
3 In the cloud—Amazon Web Services.

A few developers prefer to do all development on virtual machines, and this appen-
dix reflects that not-too-common bias. (In this context, we mean VMs hosted on one’s
laptop using VMWare Player or VirtualBox, not VMs in the cloud.) Multiple VMs
allow one to easily work on multiple projects, each with their own environments, ver-
sions of Java, versions of Scala, OS versions, and so on. And VMs are easy to hand over
to colleagues and team members. As a final benefit, VMs allow one to copy and paste
to/from the host OS where email client, familiar tools, and data files reside.

This appendix covers
 The quickest ways to get started in Spark

 Using virtual machines (VMs) to run Spark

 Using Amazon Web Services / Elastic Map/Reduce 
to run Spark
238
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 Using Spark directly on Windows is strongly discouraged, even by the Spark team,
although it is supposed to be possible using Cygwin. Using Spark directly on Mac OS X
is much better, of course, due to OS X having ancestry in BSD UNIX. Still, our prefer-
ence is to run Spark in a VM running CentOS, which is a “community” clone of Red
Hat Enterprise that in 2014 gained support from Red Hat itself. Red Hat and deriva-
tives/clones such as CentOS and Oracle Linux are used in many enterprises, so devel-
oping in Spark on CentOS ensures an environment close to what many organizations
are doing in production.

A.1 On a local virtual machine: CDH QuickStart VM
The option that (usually) requires minimum effort is to download the Cloudera
QuickStart VM. It’s available for three different VM host software packages: VMWare,
VirtualBox, and KVM. Each sports different features and different licensing. We use
VirtualBox the most because it’s GPL and can be used for free, even for commercial
purposes. We haven’t used KVM because it requires Linux to be the host OS, and our
host OS is usually Windows or OS X.

 By using the Cloudera QuickStart VM, you get Cloudera’s Hadoop package (called
CDH) preinstalled, which automatically starts when the VM starts. Because CDH has
included Spark and GraphX, you get GraphX as part of this VM.

 To use this VM, you’ll need the following:

 At least 8 GB of physical RAM because the VM requires 4 GB

 A fast enough Internet connection (or enough patience) to download the 3 GB
compressed (.7z) file

 Your BIOS configured to allow hosting of 64-bit guest VMs

This last one is tricky. For security reasons, many if not most computers have disabled
by default the capability to host 64-bit guest VMs, even though they are 64-bit comput-
ers and are able to run 64-bit base operating systems. First, if you don’t know how to
enter the BIOS settings screen for your computer, you may need to Google that for
your particular laptop or desktop computer. Second, if you’re unable to find the
option to allow hosting of 64-bit guest VMs once you’re in the BIOIS settings screen,
you may need to Google the keywords “BIOS VT-x” (for Intel processors) or “BIOS
AMD-V” (for AMD processors) in conjunction with the model name of your computer.

 Once you’ve launched the Cloudera QuickStart VM, to log in, use the following
credentials:

 Username: cloudera
 Password: cloudera

A major downside of the Cloudera QuickStart VM is that because it brings up all the
Hadoop services automatically, you’re left with only 800 MB of free memory in the
default 4 GB configuration of the VM. This is limiting due to the manner of immutable
data in which Spark works in general, and GraphX in particular; the largest practical
dataset you can use is about 30 MB. Another disadvantage, compared to using AWS or a
physical cluster of multiple machines, is that you’ll see limited parallelism, the hallmark
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of Spark. Spark will parallelize over the multiple cores of a single-CPU computer, but
you won’t see the massive speedup for extremely large datasets that Spark is famous for.

A.1.1 VirtualBox tweaks

If you’re opting for the VirtualBox version of the Cloudera QuickStart VM, here are
some tips and tweaks:

 Use “Import” rather than “New” or “Open” to initially load the VM into Virtual-
Box after you download and uncompress it. This can be confusing to those who
are used to VMWare.

 Within the VirtualBox Manager window, you can set various settings for the VM:
 The QuickStart VM defaults to one core. Because today’s computers have 4, 8,

or even more cores, increase this via System > Processor > Processors.
 If your computer has more than 8 GB of RAM, increase the memory allotted to

the VM via System > Motherboard > Base Memory. A good guideline is to sub-
tract 4 GB from your physical RAM (for example, if your computer has 16 GB of
physical RAM, set the VM to use 12 GB).

 Copying and pasting between the VM and your host OS is extremely useful, yet
it’s disabled by default. Change it to “Bidirectional” via General > Advanced >
Shared Clipboard.

 Sharing files is also useful. Add a shared directory via Shared Folders. Click the
folder icon with the plus sign to create a new shared directory. For Windows, for
example, you can use “C:\” for “Folder Path” and “c” (lowercase) for “Folder
Name.” Then, once you’ve launched the VM, from a terminal shell you would
do the following:

sudo mkdir /c
sudo mount -t vboxsf c /c

A.1 Onto your laptop and Hadoopless: Linux or OS X
The dirty secret is that you don’t really need Hadoop to run Spark. Let us qualify that:
if your “cluster” consists of a single node, you definitely don’t need Hadoop. The only
thing Spark uses Hadoop for is reading and writing files, and if all the Spark processes
have access to a common file system (namely, your plain old local file system), then
there’s no need for a distributed store like HDFS, Cassandra, or Amazon S3.

 As a matter of simplicity, if your main goal is to become familiar with the GraphX
API and not necessarily to operate on huge datasets and performance-tune them, then
installing Spark by itself onto a UNIX-like operating system (Linux or OS X) is per-
fectly acceptable.

 The scenarios where this would be applicable are as follows:

 Your laptop or desktop has Linux as its base OS.
 Your laptop or desktop is set up to dual-boot (for example, using Grub or

BootIt Bare Metal) into different operating systems, one of which is Linux.
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 Your laptop or desktop has OS X as its base OS.
 You’ve created a custom VM with Linux as the VM’s OS (see next section).
 You’re using a VM in the cloud—for example, Amazon AWS, Azure, or even a

web-hosting company VM.

You can download “pre-built” versions of Spark from the Apache website, pre-built for
various versions of Hadoop (Hadoop 1.x, Hadoop 2.x, MapR, and so forth). Because
in this option we won’t use Hadoop at all, it doesn’t matter which one you pick. As
long as you don’t try to read or write HDFS files, you’ll be fine.

 Download the Spark tgz file, uncompress it, and you’re ready to go. To use only the
Spark Shell, you don’t even need Scala installed, just Java. To build Spark programs in
Scala, though, you’ll need to install Scala.

A.1.1 On a custom local virtual machine

Combining the preceding two ideas—to be both Hadoopless and on a virtual
machine—is another convenient option, with the following advantages:

 Without HDFS and other Hadoop services running, you gain an extra gigabyte
or two compared to using the pre-built Cloudera QuickStart VM.

 Compared to the option of installing Spark as your computer’s (or VM in the
cloud’s) base OS, a VM has the benefits described at the beginning of this
appendix.

Creating a VM from scratch is non-trivial. It’s a lot of steps—selecting the right
options, tweaking a lot of things—that are out of the scope of this book but that you
can Google. Or you can try to find a pre-built VM for the virtual machine host software
of your choice and for the Linux flavor of your preference and download that.

A.1 In the cloud: Amazon Web Services
Amazon Web Services provides dozens of different cloud services, the most well-
known of which are S3 for storage and EC2 for elastic compute. For the purposes of
Hadoop and Spark, Amazon offers Elastic MapReduce (EMR). EMR allows you to man-
age S3 and EC2 resources to bring up an entire Hadoop cluster (with or without
Spark).

 The advantage of AWS EMR over the options described previously is that you can
actually run on a cluster, realize the benefit of parallelization, handle large datasets,
and become familiar with developing Spark applications for YARN and submitting
Spark applications to a YARN-powered cluster.

 The obvious downside is that AWS isn’t free. The other downside is that if you use
the AWS automatic Spark cluster, there’s no way to pause it. It has to be completely
destroyed every time you would otherwise want to walk away and pause it. There’s no
way as of the time of writing to pause an AWS Spark cluster to prevent billing. That
means you have to be conscientious and save your work on S3. But there’s no way, for
example, to leave data stored in the REPL and come back to it later.



appendix B
Gephi visualization software

Chapter 4 contains code to generate .gexf files, the native file format of Gephi.
Downloading and installing Gephi from http://gephi.github.io is straightforward
(it’s available for OS X, Windows, and Linux), but its user interface can be intimi-
dating at first. This appendix points you to the most important UI elements—
enough to get you started—and you can then explore the remaining rich set of fea-
tures on your own.

B.1 Laying out your environment
Gephi has dockable windows, much like an IDE. Figure B.1 is how we used Gephi
when generating some of the diagrams in this book. The three dockable windows
to choose from the Window drop-down menu are shown in figure B.2. Once
they’re displayed, drag and drop them to the arrangement shown in figure B.1.

Figure B.1 Gephi’s dockable window layout
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You’ll notice the Graph tab, which, given its
position and name, seems like an important tab,
but it’s for doing processing on the graph.
Because we’re typically doing graph processing
in GraphX and are interested in Gephi for its
visualization capability, you should ignore the
Graph tab at first.

B.2 Basic recipe
Here’s the basic loop of steps you’ll typically do
to visualize:

1 Adjust something in the Layout or Preview
Settings window.

2 Click the Refresh button in the Preview
Settings window.

3 Pan the Preview window via right-click-
drag and adjust zoom via the buttons at
the bottom of the Preview window.

B.3 Key settings
Gephi has a lot of options. This section covers some of the more useful ones.

B.3.1 Layout window

Here you can choose a layout algorithm and its parameters. Some layout algorithms
are incremental (they tweak what has already been laid out) and some start from
scratch. You’ll want to choose a “start from scratch” algorithm first and then tweak it
with an “incremental” algorithm only if necessary. The available algorithms are shown
in figure B.3. Usually, Force Atlas is a good starting point because it reliably produces
reasonable results.

Incremental

Typical good
starting point

Also incremental

Figure B.3 Available layout algorithms from the drop-down list inside the Layout window. The 
ones we haven’t labeled as Incremental are all first-class layout algorithms that perform a 
complete layout from scratch. The incremental ones nudge around an already-laid-out graph.

Figure B.2 The three windows to choose 
from the Window drop-down menu
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For small graphs, you may need to first adjust “Repulsion strength” (or “Optimal dis-
tance” in other algorithms) to a much larger number, as highlighted in figure B.4.
Gephi is designed to handle very large graphs with hundreds or thousands of vertices,
and its default settings provide for very short edges. For graphs with a dozen or a few
dozen vertices, you’ll want to make the edges longer by increasing “Repulsion
strength” or “Optimal distance.”

After making any setting adjustment in the Layout window, click the Run button (seen
in figure B.4) and then click the Refresh button in the Preview Settings window.

B.3.2 Preview Settings window

Important settings in the Preview Settings window are highlighted in figure B.5.

NOTE Gephi uses the term nodes to mean vertices. In this book, we’ve used
nodes to mean computers participating in a cluster for cluster computing.

May need to vastly increase
Repulsion Strength (or Optimal
Distance in other algorithms)
for smaller graphs

Figure B.4 Key adjustment so that small graphs don’t end up as a tiny, scrunched-up bunch
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Tick this if your
vertices have properties

Untick this to set font size
in absolute terms (if your
graph is small)

Untick this to set edge
thickness in absolute
terms (if your graph
is small)

Set to custom to nail
down the edge color
(if your graph is small)

Click the refresh button
after every change in either
the layout window or this
Preview Settings window 

May need to vastly
increase for small
graphs

Tick this if your edges
have properties

Figure B.5 Key Preview Settings window settings
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Resources:

where to go for more
C.1 Spark

The number of books on Spark finally started growing in 2015—six years after
Spark development first began. But Spark development is still moving fast, and the
best resources are online.

Apache mailing lists

As with any open source project, especially one from Apache, the mailing lists are
the best sources of information, and subscribing to them—and asking questions
when you can’t find answers on the web—should be considered the minimum you
have to do. The mailing lists are known as user@spark.apache.org and
dev@spark.apache.org. You can subscribe to them from https://spark.apache.org
/community.html.

Databricks forums

Databricks is the commercialization of Spark that offers a commercial product of a
Spark notebook in the cloud. But the forums on www.databricks.com aren’t limited
to only the commercial product. As a large percentage of the commits to Apache
Spark come from Databricks, the Databricks forums also contain a lot of general-
purpose information about Spark, including future plans that pertain to the open
source Apache Spark as well as the commercial Databricks product.

Conference and meetup videos

There are four major sources of Spark videos. None should be overlooked; they are
all outstanding. Spark is moving fast, and watching these videos on your smart-
phone while on the treadmill or as a bedtime story is sometimes the only way to
keep up:

1 Spark Summit (West, East, and Europe)
2 AMPLab AMPCamp
3 Bay Area Spark Meetup
4 O’Reilly Strata Conference (West and East)
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Jira

If staying current with Spark is important to you, there’s no substitute to following the
Spark Jira. Create an Apache Jira account if you don’t already have one, list all the
issues every day in reverse chronological order, and click Watch for the issues that are
important to you. That way you can know what new features, bug fixes, performance
improvements, architectural changes, and support for third-party systems (file sys-
tems, cluster managers, database connectors, compression formats, serialization
schemes, and so on) are coming down the way—and, more importantly, which ver-
sions they’re being targeted for.

 There are some long-standing gems of planned features buried within Jira from
the early days that are still being worked on or planned for, so, as painful and time-
consuming as it may sound, the first time you list Spark Jira tickets, it’s probably worth
your while to go through all of those that are still open.

Twitter

If you think Twitter is just about celebrities and that nothing useful could possibly be
expressed in 140 characters, you’re in for a surprise.

 There’s a lot on Twitter in terms of Big Data, data science, and machine learning.
You can regard Twitter as a link aggregator to hot or important blog posts, news sto-
ries, or Git repositories.

spark-packages.org

Because the developers of Apache Spark are reluctant to overload the official distribu-
tion with too many features and sub-packages, they set up the website spark-packages
.org. Available add-on packages are broken up into categories such as machine learn-
ing, graphs, Python, and so on.

AMPLab

Spark came out of AMPLab, and AMPLab continues to develop new modules that work
with Spark, as well as some other brand-new technologies unrelated to Spark. Modules
that come out of AMPLab have a tendency to either be incorporated directly into the
Apache Spark distribution (such as GraphX, Catalyst, which became Spark SQL, and
SparkR) or at least semi-officially supported, such as Tachyon.

Google Scholar Alerts

You’re likely familiar with Google Alerts, which sends you an email whenever a page is
updated. But there’s something completely different called Google Scholar Alerts,
part of scholar.google.com, which sends an email whenever a new paper is published
that cites a paper you’re tracking.

 If you set Google Scholar Alerts on some of the seminal Spark papers, such as Matei
Zaharia’s “Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory
Cluster Computing” or Gonzalez et al’s “GraphX: Graph Processing in a Distributed

http://spark-packages.org
http://spark-packages.org
scholar.google.com
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Dataflow Framework,” you can keep track of the latest advances in academia before
they become commercialized.

Author blogs

If you do all that  we’ve suggested so far, you won’t need to read these blogs. But if you
want to save time and read only a distilled version of what’s coming in the future for
Spark, Big Data, data science, and machine learning—at least through Michael
Malak’s personal crystal ball—then his blogs are good resources:

 http://technicaltidbit.com
 http://datascienceassn.org/blogs/michaelmalak

C.2 Scala
The best Scala resources are books. Some Scala books are quite long. But because
Scala has so many tricks, an alternative is to get the ones that are encyclopedias of
tricks:

 Scala Cookbook by Alvin Alexander (O’Reilly, 2013)
 Scala Puzzlers by Andrew Phillips (Artima, 2014)

C.3 Graphs
There are tons of books on graph theory, many of them highly theoretical, either for
use as college textbooks or for use by researchers. Practitioners, however, may find the
following useful:

 Graph-Based Natural Language Processing and Information Retrieval by Rada Mihal-
cea and Dragomir Radev (Cambridge University Press, 2011)

 Graph Databases by Ian Robinson et al (O’Reilly, 2015)

http://technicaltidbit.com
http://datascienceassn.org/blogs/michaelmalak
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List of Scala tips in this book

This book is not intended to teach you Scala, but rather provides Scala tips along
the way to help you along, under the assumptions that Scala may not be your first
and most familiar language and that you may not have seen all the requisite Scala
tricks before. For books on learning Scala, see appendix C.

 Below is a list of the Scala tips sprinkled throughout the book:

CHAPTER 2
 Underscores mean different things in different places… 27

CHAPTER 4
 The object keyword… 65
 The apply() method… 65
 Type inference of return values… 68
 Type parameter for generics cannot be inferred… 70
 The Option[] class… 72
 Multiple imports on same line… 76
 Backticks to escape reserved words… 78    
 Pasting blocks of code into the REPL… 79
 Multiple parameter lists… 87 
 Named parameters… 88

CHAPTER 5
 Optional parentheses on function invocation… 98
 Regex and “raw” strings… 104
 For comprehensions… 106

CHAPTER 6
 List operator +: for appending… 114
 The type keyword… 116
 ClassTag… 119

CHAPTER 7
 Multiple return values   131
 Dot product idiom using zip(), map(), and reduce()… 132
 HashMap initialization using ->… 161

CHAPTER 8
 Formatted output using "${myVar}"… 172
249





index

Symbols

_ + _ idiom 41
:+ operator 114
() function 70
@tailrec annotation 37
# character 26
+: operator 114
++ operator 140
<exports> edges 180
=> charater 36
-> operator 161
->() syntax 233
${myVar} 172

Numerics

2-D plane 152
2-item tuples 39
3-D cube 152
3-item tuples 39

A

AbstractFunction1, AbstractFunction2 219
accuracy 128
actions 44
acyclic graphs 53, 200
addition 40
adjacency matrix 12, 56
aggregateMessages() function 67, 69, 72, 83, 

111, 161, 184, 209, 229, 233
AggregateMessagesBuilder class 229
AGI (Artificial General Intelligence) 126
AI (artificial intelligence) 125–126

algorithms 90–124
Connected Components

overview 100–106
predicting social circles using 101–106

convergent 107
Dijkstra 112
EM (Expectation-Maximization) 141
greedy 115–117
incremental 243
iterative 7–8, 44
K-Means 152
Kruskal’s 111, 117–118
LabelPropagation 107

Minimum Spanning Tree
deriving taxonomies with Word2Vec 

and 121–124
general discussion 117–124

missing from GraphX 167–186
basic graph operations 168–171
global clustering coefficient 184–186
graph isomorphism 179–183
reading RDF graph files 172–177

Online Variational Bayes 141
PageRank 91–95

invoking in GraphX 92–94
overview 91
Personalized 94–95

R-MAT 81–83
shortest paths with weights 111–114
ShortestPaths 99
strongly connected components 106–107
SVD++ 128–135

biases 134
item-to-item similarity 135
latent variables 134–135

Traveling Salesman 115, 117–118
251
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algorithms (continued)
Triangle Count 95–99

Slashdot friends and foes example 96–99
uses of 96

alpha (PageRank parameter) 93
Amazon Web Services. See AWS
AMPLab 14, 246–247
angle brackets 38
anonymous functions 28, 36
Apache Giraph. See Giraph
Apache Ivy. See Ivy
Apache mailing lists 246
Apache Maven. See Maven
Apache Zeppelin. See Zeppelin
application runtime, monitoring Spark applica-

tion and 191–201
application UI 192–196
directed acyclic graph visualization 199–200
Environment tab 201
visualizing job execution with event timeline

196–199
apply() function 65, 219
Array.map() function 155
ArrayList 38
Artificial General Intelligence. See AGI
artificial intelligence. See AI
ASI (Artificial Superintelligence) 126
assembly jar 175
Attr field 67
author blogs 248
AWS (Amazon Web Services) 241

B

backticks 78
bags of words 137
Bay Area Spark Meetup video 246
Becchetti paper 144
biases, SVDPlusPlus algorithm and 134
Big Data 247

defining 6
graph use with 17–43

binary format, reading and writing 74–76
BIOS settings, for VirtualBox 239
bipartite graphs 54, 128, 180
bow-tie graph 94
BSP (Bulk Synchronous Parallel) 83

C

cache() function 46, 151, 207–208
caching and persistence 207–209

graph persistence 209
persistence levels 208
RDD persistence 207–208

unpersist method 209
when not to use caching 209

CanonicalRandomVertexCut 213
cartesian() function 151
case class 40
CDH (Cloudera’s Hadoop package) 239–240
CentOS 174
checkpointing 209–211

Checkpoint directory 210–211
lineage 210
RDD chain 210
StackOverflowError 210
Tachyon 211

class declaration, in Scala 39–40
case class 40
Java-like 39
shorthand 39–40

class variables 39
ClassTag 119, 221
cleanupDaemonThreads (Maven POM tag) 217
closed triplet 184
closure 36
cloud, installing Spark in 241
Cloudera QuickStart VM 75, 226
Cloudera’s Hadoop package. See CDH
cluster computing 5, 21
cluster manager 8, 14–15, 47, 191, 203

SparkMaster 203
Standalone 203

cluster mode 225
clusteringCoefficient function 184
clusters 47
collect() function 149, 188
collections 35
colStats() function 51
combineByKey() function 50
comma-separated format 122
companion object 65
complete graph 123
conference videos 246
configuring Spark 203–207

CPU 204–206
executor-cores 205
executor-memory 204–205
garbage-collection 205
Memory 204–205
spark.serializer 212

Connected Components algorithm
overview 100–106
predicting social circles using 101–106

finding social circles 103–106
getting Kaggle data on social networks

101–103
reading folder contents with 

wholeTextFiles 103
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connectedComponents() function 100, 104, 118, 
120

convergent algorithm 107
copyMerge() function 75–76
cosine similarity 121, 148
CPU cores, utilizing all 206–207
custom partitioner 157
cyclic graphs 12, 53
Cypher query language

overview 56
searching for vertices with Cypher subset

232–234
differences in triplets() between Graph-

Frames and GraphX 233–234
querying MyGraph from listing 4.1 233

D

d3.js 222–224
d3.layout.force() function 224
DAG (directed acyclic graph) 46, 192, 199–200

DAG Visualization 192, 199–200
damping factor, in PageRank 93
data files 20
data flows 20–21
data locality 6, 47
data serialization 211
data sizes 6
data types 42
database 9–10, 21–23, 56, 225–228
Databricks forums 246
DataFrames 230
data-parallel operations 19
declarative iteration 37–38
def keyword 36
degrees 17
DenseVector 138, 140, 145
describeTopics function, LDA 140
Details for Job x screen 195
deterministic graph generation 80–81

grid graph 80
star graph 81

digital signal processing. See DSP
Dijkstra algorithm 112
dijkstra() function 113
directed acyclic graph. See DAG
directed graphs 52–53
DISK_ONLY level 208
distinct() function 50, 138, 158, 169
distributed storage files 23, 47
DistributedLDAModel 141
Domain Specific Languages. See DSL
driver program, creates SparkContext 191
--driver-cores option 174

--driver-memory option 174
DSL (Domain Specific Languages) 33
DSP (digital signal processing) 51
dst column 230
dstAttr field 67
dstId field 67

E

Edge attribute 116, 121, 155
edge predicate function 97
edge property 116, 121
edge weight 111, 116, 120
Edge() function 155, 173
EdgeContext parameter 70, 87
edge-cut 17
EdgeDirection (Both, Either, In, Out) 88
edge-labeled graphs 53
edgeListFile() method 27–28, 194
EdgePartition1D 213
EdgePartition2D 213
EdgeRDD 131, 213, 230
edges column 230
edges, in graphs 54
edges() function 62
EdgeTriplets 87, 215
egonet 101, 103
EM (Expectation-Maximization) algorithm 141
EMR (Elastic MapReduce) 241
Environment tab 201
event timeline, visualizing job execution with

196–199
exec-maven-plugin 217
execution graph 200
Executor Computing Time color-code 199
executor process 191
--executor-memory parameter 204
executors 190–191
explicit constructors 39
Externalizable 48

F

Factory pattern 65
fat jar 175
feature vector 143–144, 146, 148
filter() function 106, 140
flatMap() function 72, 137, 139, 155, 159
flatten() function 139, 155
for comprehension 38, 106
Force Atlas graph visualization layout 243
formatted output 172
functions, as first-class objects 36–37
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G

generateRandomEdges() function 80
generics type parameterization 38, 43, 70, 119
Gephi visualization software 242–245

basic recipe 243
GEXF format for 78–79
key settings 243–245

Layout window 243–244
Preview Settings window 244

laying out environment 242–243
getOrElse() method 71
Getting Result Time color-code 199
GEXF format 78–79, 154
Giraph 9, 22
global clustering coefficient 184–186
Google News word2vec model 122
Google Pregel paper 10, 22
Google Scholar Alerts 247–248
graph analytics 23
Graph class 61, 209
graph database, vs. distributed file storage 23
graph isomorphisms 167–168, 179, 183, 186
graph layout, for visualization 243–244
Graph object 62, 64, 67, 85, 92, 100, 209
graph processing systems 4, 10, 18, 21–22
Graph tab 243
Graph.apply() function 213, 221
Graph.fromEdgeTuples 104
Graph.mapVertices() function 219
graph.triplets.saveAsObjectFile() function 76
Graph() function 63, 155
GraphFrames with Spark graphs, using SQL 

with 229–237
getting GraphFrames 230–231
isomorphic searching on YAGO 234–237
searching for vertices with Cypher subset

232–234
differences in triplets() between Graph-

Frames and GraphX 233–234
querying MyGraph from listing 4.1 233

using SQL for convenience and 
performance 231–232

GraphFrames.triplets 233
GraphGenerators object 80
GraphGenerators.starGraph 81
GraphLab 17
GraphLoader 27, 29, 53–54, 74, 185, 194, 213
GraphOps 92
graph-parallel operations 19
graphs 9–14, 54

acyclic 53
adjacency matrix 56
bipartite 54
bow-tie 94

cyclic 53
deterministic graph generation 80–81

grid graph 80
star graph 81

directed 52–53
graph isomorphism 179–183
graph persistence 209
graph querying systems 56–57

Cypher 56
GraphX 57
SPARQL 56
Tinkerpop Gremlin 56–57

graph-based semi-supervised learning 151–164
K-Nearest Neighbors graph

construction 154–159
label propagation 160–164

labeled 53–54
LDA, implementation of 141–142
merging 169
operations missing in GraphX API 168–171

common sense subgraphs 168–169
merging two graphs 169–171

parallel edges and loops in 54
partitioning 17–43, 213–215
persistence 209
property graphs 55
random graph generation 81–83

log normal graph 81–82
R-MAT (recursive matrix) graph 82–83

RDBMS inadequate for 14
RDF graph files, reading 55, 172–177

improving performance with IndexedRDD 
library 174–177

matching vertices and constructing 
graph 173–174

storing 23
types of data in 12
undirected 52–53
unlabeled 53–54
uses of 10–12

GraphX 29, 57
graph generation 80–83

deterministic graphs 80–81
random graphs 81–83

mapping operations 67–74
cleaning up results 70–71
Map/Reduce 68–74
simple graph transformation 67–68

Pregel API 83
processing flow and 19–21
Python bindings to 222
R bindings to 222
serialization and deserialization 74–79

GEXF format for Gephi visualization 
software 78–79
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GraphX, serialization and deserialization 
(continued)

JSON format 76–78
reading and writing binary format 74–76

using with Java 7 217–221
using with Java 8 222
using with MLlib 135–151

detecting spam using 
LogisticRegressionWithSGD 143–147

determining topics using Latent Dirichlet 
Allocation 135–143

image segmentation using power iteration 
clustering 147–151

vertex and edge classes 61–67
vs. other systems 21–22

greedy algorithm 115–117
grid graphs 80
gridGraph() function 81
groupBy() function 137, 231
groupByKey() function 50, 137, 157, 159, 189
groupEdges() function 54, 213

H

hadoop fs -getMerge command line 76
hash map RDD 175
hashCode() function 50
HashMap initialization 161
HashPartitioner 157
HDFS (Hadoop Distributed File System) 7
Hello World in Scala 36
higher-degree vertices 17, 81
history server 201–203

event logging 202
hop 17
horseshoe-shaped clusters 152
hyperparameters 131

I

id column 230
if/else, in Scala 41–42
image segmentation, using power iteration 

clustering 147–151
immutable data 34–36
implicit feedback, in recommender system

134–135
incremental algorithms 243
inDegrees method 28
IndexedRDD library 22, 174–177
infix notation 34, 98
inherently directed graphs 53
in-memory MapReduce processing 7–9
innerJoin() function 175

installing Spark 238–241
in cloud 241
on local virtual machine 239–240
onto laptop 240–241

interactive querying 8–9, 26–29
isomorphic searching, on YAGO 234–237
isomorphism, graph 179–183
item-to-item similarity, SVDPlusPlus algorithm 

and 135
iterative algorithms 7–8, 44
Ivy 51–52, 175

J

jackson-module-scala 76
jar file 149
jar with dependencies 175
Java 7, using with GraphX 217–221
Java 8, using with GraphX 222
Java Externalizable 75
Java Serializable 75
Java Virtual Machine. See JVM
JavaPairRDD 221
JavaRDD 221
JavaSerializer 212
JavaSparkContext 221
Jira 247
Jira ticket SPARK-2335 154
Jira ticket SPARK-2365 22, 175
Jira ticket SPARK-2389 225
Jira ticket SPARK-3098 151
Jira ticket SPARK-3650 97–98
Jira ticket SPARK-3665 217
Jira ticket SPARK-3789 222
Jira ticket SPARK-4352 47
Jira ticket SPARK-5062 88
Jira ticket SPARK-7460 232
job execution

duration 193
job execution statistics 193
visualizing with event timeline 196–199

Job Scheduler 191
Jobs tab 192–195
Jobs timeline 196
join() function 50, 70, 139, 151, 175, 182, 229
joinVertices() function 161, 210
JSON format 76–78
JVM (Java Virtual Machine) 203

K

Kaggle data 101–103
key-value pairs 49–50
kitchen sink graphs 12
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K-Means algorithm 152
K-Nearest Neighbors graph construction 154–159
knnPredict() function 152, 162
Koren paper 131–133, 135
Kruskal’s algorithm 111, 117–118
Kryo 48, 75, 212

L

label propagation algorithm. See LPA
labeled data 127, 151
labeled graphs 53–54
LabeledPoint 144–146
lambda expressions 36
landmarks 99
laptop, installing Spark on 240–241
latent variables 129–131, 135–136, 141
Layout window, Gephi visualization software

243–244
LDA (Latent Dirichlet Allocation) 4, 126,

135–143
classifying Reuters wire news items 136–141
describeTopics function 140
graph use in implementation of 141–142
parameters 142–143

leftOuterJoin() function 120
left-to-right compiler 70
libraryDependencies sbt keyword 52
limited parallelism 239
Linear Regression 143
link farms 143–144
list append operator +: 114
local virtual machine, installing Spark on

239–240
LocalLDAModel 141
log normal graph 81–82
Logistic Regression 143, 145–146
LogisticRegressionWithSGD 128, 135, 143–147
logNormalGraph() function 82
loops, in graphs 54
lower-degree vertices 81
LPA (label propagation algorithm) 87, 107

M

machine learning 20, 128, 213–215
data flows 20–21
graph-based semi-supervised learning 151–164

K-Nearest Neighbors graph
construction 154–159

label propagation 160–164
LDA 4, 126, 135–143

classifying Reuters wire news items 136–141
graph use in implementation of 141–142
parameters 142–143

PIC 126, 135, 148
supervised, unsupervised, and semi-supervised 

learning 126–128
SVD++ recommender system 128–135

biases 134
item-to-item similarity 135
latent variables 134–135

using GraphX with MLlib 135–151
detecting spam using 

LogisticRegressionWithSGD 143–147
determining topics using Latent Dirichlet 

Allocation 135–143
image segmentation using power iteration 

clustering 147–151
machines 47
makeRDD() function 65
many-to-one operation 7
map() function 36, 38, 40–41, 44, 106, 182, 218
Map/Reduce

iterated 72–74
overview 68–71

map/reduce 48–49
mapcar 37
map-only jobs 44
mapPartitions() function 77, 157, 159, 197
mapping operations

Map/Reduce
iterated 72–74
overview 68–71

simple graph transformation 67–68
MapReduce operation 7, 9, 46
mapReduceTriplets() function 67, 88
mapTriplets() function 67–68
mapVertices() function 68, 209
match/case, in Scala 42
Maven 217
maxIterations 161
maxIters parameter 87, 132
Mazerunner 23
meetup videos 246
MEMORY_AND_DISK level 208
MEMORY_AND_DISK_SER level 208
MEMORY_AND_DISK2 level 209
MEMORY_ONLY level 208
MEMORY_ONLY_SER level 208
MEMORY_ONLY2 level 209
memory, reducing memory pressure with 

serialization 211–213
checking size of RDDs 213
using Kryo serializer 212

mergeGraphs 171
mergeMsg function 70, 72, 84, 185
merging graphs 169
Mesos 47
minBy() function 113



257INDEX
Minimum Spanning Trees. See MSTs
minSpanningTree() function 121
MLlib, using with GraphX 135–151

detecting spam using 
LogisticRegressionWithSGD 143–147

determining topics using Latent Dirichlet 
Allocation 135–143

image segmentation using power iteration 
clustering 147–151

mllib.rdd.RDDFunctions 51
mllib.recommendation.ALS 56
mllib.stat.Statistics 51
monitoring Spark application 188–203

application runtime and 191–201
application UI 192–196
directed acyclic graph visualization 199–200
Environment tab 201
visualizing job execution with event 

timeline 196–199
history server 201–203

MSTs (Minimum Spanning Trees)
deriving taxonomies with Word2Vec and

121–124
general discussion 117–124

multigraphs 54
multiple imports 76
multiple parameter lists 87
multiple return values 131
myEdges 218
myGraph 77, 230
myVertices 218

N

N3 (Notation 3) 172
named parameters 88
NameNode partitions 6
narrow transformations 189
neighborhood approach 68, 129
Neo4j 23
network graph 10, 12
nodes 5, 47, 244
non-bipartite graphs 54
non-polynomial problem 154
NP-hard 115
numIter parameter 93, 107

O

O’Reilly Strata Conference video 246
object keyword 52, 65
object-based API calls 64, 92
object-functional programming language 33
OLTP (Online Transaction Processing) 10
one-dimensional matrix, RDD as 51

one-to-one operation 7
Online Variational Bayes algorithm 141
open triplet 184
Optimal distance in Gephi 244
Option class in Scala 71–72
optional parentheses, in Scala function calls 98
org.apache.spark.graphx.Graph 28
org.apache.spark.graphx.lib.PageRank 92
org.apache.spark.graphx.util.GraphGenerators

80
org.apache.spark.mllib.linalg package 138
org.apache.spark.serializer.KryoSerializer 212
outDegrees() function 91
outerJoinVertices() function 111, 113, 120

P

PageRank algorithm 91–95
invoking in GraphX 92–94

fixed number of iterations (static) vs. toler-
ance exit condition (dynamic) 93

object-oriented vs. object-based ways to 
invoke 92

random reset probability 93–94
overview 91–92
Personalized 94–95

pageRank() method 30, 92
PairRDDFunctions class 49–50, 70, 92, 103, 157, 

221
parallel edges and loops 54
parallelize() function 65, 221
partial function application 87
partition eviction 209
partitionBy() method 213
partitioning

CanonicalRandomVertexCut 213–214
edge cuts 213–214
EdgePartition1D 213–214
EdgePartition2D 213–214
of graphs 8, 17–43, 213–215
partitionBy method 213–214
PartitionStrategy object 213, 215
RandomVertexCut 213–214
vertex cuts 213–214

partitions 206–207
PartitionStrategy 97, 213–215
:paste command 79
pattern matching, in Scala match clause 40, 42
performance tuning 207–213

caching and persistence 207–209
graph persistence 209
persistence levels 208
RDD persistence 207–208
unpersist method 209
when not to use caching 209
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performance tuning (continued)
checkpointing 210–211
reducing memory pressure with 

serialization 211–213
checking size of RDDs 213
using Kryo serializer 212

persist() function 46, 212
PIC (Power Iteration Clustering) 126, 135,

147–151
pom.xml file 175, 217
Power Law 18
PowerGraph 17
Pregel API 83, 110, 113, 117, 209
Pregel() function 83, 85, 161
Preview window 243
property graphs 15, 55, 62
pseudo-distributed mode 14
pseudographs 54
Python bindings to GraphX 222

Q

Query Slashdot example 226–228
querying

graphs, systems for 56–57
Cypher 56
GraphX 57
SPARQL 56
Tinkerpop Gremlin 56–57

using Spark Shell 26–29

R

R bindings to GraphX 222
RAM (random access memory) 5
random graph generation 81–83

log normal graph 81–82
R-MAT (recursive matrix) graph 82–83

RandomVertexCut 213
Rank parameter 132, 134
raw strings 104
RDBMS (relational database management 

systems) 14
RDD.map() function 155
RDD.partitions.size 206
rdd.persist(StorageLevel.MEMORY_AND_DISK)

208
rdd.persist(StorageLevel.MEMORY_ONLY) 208
RDD[Array[T]] 51
RDD[MyClass] 49
RDD[String] 49
RDDs (Resilient Distributed Datasets) 7–8, 35, 

43–45
checking size of 213

cluster requirements and terminology and
47–48

common operations 48–51
key-value pairs 49–50
map/reduce 48–49
MLlib 51
other useful functions 50

laziness of 44–47
persistence 207–208
serialization and 48
split up into partitions 188

RDF (Resource Description Framework) 26, 55, 
172

Read-Eval Print Loop. See REPL
readRdf() function 174, 177, 231
readRdfIndexed() function 177
recursion 34, 37
recursive matrix 82
reduce method 6, 28, 46
Reduce node 7
reduce() function 40–41, 44, 73, 218
reduceByKey() function 50
Refresh button, Gephi software 243–244
regular expressions 104
relational database management systems.

See RDBMS
removeSingletons() function 169, 180
repartition method 206
REPL (Read-Eval Print Loop) 26
replication factor 44
Repulsion strength in Gephi 244
reserved keywords 78
resetProb parameter, PageRank 93
Resilient Distributed Datasets. See RDDs
Resource Description Framework. See RDF
resources 246–248

graphs 248
Scala 248
Spark 246–248

AMPLab 247
Apache mailing lists 246
author blogs 248
Conference and meetup videos 246
Databricks forums 246
Google Scholar Alerts 247–248
Jira 247
spark-packages.org 247
Twitter 247

REST 22, 216, 225–228
Result Serialization Time color-code 199
Reuters wire news items, example of classifying

136–141
rightOuterJoin() function 71
R-MAT algorithm 81–83
rmatGraph() function 83
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Run button, Gephi software 244
run() function 92, 131, 140

S

saveAsObjectFile() function 74–75
sbt (Simple Build Tool) 51–52, 149
sc. SparkContext handle 25
sc.textFile 185
Scala List method 114
Scala programming language

class declaration 39–40
case class 40
Java-like 39
shorthand 39–40

everything as a function 41–42
functional programming and 34–38

declarative iteration 37–38
functions as first-class objects 36–37
immutable data 34–36

idioms
_ + _ 41
dot product 132

inferred typing 38–39, 68, 70
Java interoperability 42
keywords

def 36
extends 48
if/else 41–42
match/case 42
object 52, 65

apply() funtion 65
type 116
val 35, 40

as constructor parameter modifier 40
var 35

language constructs
backticks 78
for comprehension 38, 106
formatted output 172
generics type parameterization 38, 43, 70, 

119
multiple imports 76
multiple parameter lists 87
multiple return values 131
named parameters 88
optional parentheses 98
raw strings 104
regular expressions 104
underscore character

anonymous function parameters 41
many uses of 27, 34
partial function application 87
unused parameter 98

map and reduce 40–41
_ + _ idiom 41

overview 33–34
resources 248
standard library 34

ClassTag 119, 221
HashMap initialization 161
Int range operator to 98
list append operator +: 114

tips, index of 249
scala.Function1 219
scala.Function2 219
scala.reflect.ClassTag 119
scala.runtime.AbstractFunction1 219
scala.runtime.AbstractFunction2 219
scala.runtime.BoxedUnit.UNIT 221
Scala/Hello World 36
Scheduler Delay color-code 199
search tries 175–176
semantic web 55
semi-supervised learning 108, 126–128, 153, 155, 

158–159, 162–163
semiSupervisedLabelPropagation() function 162
sendMsg function 70, 72, 85, 87–89
sendToDst method 70, 87
sendToSrc method 70, 87
sequence files 74
SerializableFunction1, SerializableFunction2 219
serialization 48, 74–79

GEXF format for Gephi visualization 
software 78–79

JSON format 76–78
reading and writing binary format 74–76
reducing memory pressure with 211
reducing memory pressure with 

serialization 213
checking size of RDDs 213
using Kryo serializer 212

SGD (Stochastic Gradient Descent) 8, 143
shortest paths with weights 111–114
ShortestPaths algorithm 89, 99, 117–118
shuffle 7, 189

boundary 189, 195
event timeline 199
groupByKey 157
iterative map

reduce, in 45, 48–49
Shuffle Read 196
Shuffle Write 196
wide and narrow transformations 189

shuffle boundary 189, 195
Simple Build Tool. See sbt
singleton object 65
Slashdot friends and foes example 96–99
sliding() function 51
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SNAP (Stanford Network Analysis Project) 25, 96, 
185

social circles, predicting using Connected 
Components 101–106

finding social circles 103–106
getting Kaggle data on social networks 101–103
reading folder contents with wholeTextFiles

103
social media 6
sortByKey() function 43, 50
sortWith() function 159
spam label 143
spam, detecting using 

LogisticRegressionWithSGD 143–147
Spark 43–52

cluster manager 8, 14–15, 47, 191, 203
configuring 203–207
driver 8, 47–48, 188
how runs applications 188–191
RDDs (Resilient Distributed Datasets) 43–45

cluster requirements and terminology 
and 47–48

common operations 48–51
laziness of 44–47
serialization and 48

resources 246–248
AMPLab 247
Apache mailing lists 246
author blogs 248
conference and meetup videos 246
Databricks forums 246
Google Scholar Alerts 247–248
Jira 247
spark-packages.org 247
Twitter 247

sbt (Simple Build Tool) 51–52
stack 15

Spark Core API 20
Spark GraphX. See GraphX
Spark JobServer 22, 216, 225–226, 228
Spark Shell

interactive GraphX querying using 26–29
overview 24–25
REPL 22

Spark Summit video 246
SPARK_HOME directory 202
spark.events.enabled 202
spark.serializer parameter 212
spark/bin directory 25
SparkConf.registerKryoClasses 212
SparkContext parameter 27
SparkContext.setCheckpointDir 211
SparkContext.stop function 201
SparkContext.textFile() function 43
spark-defaults.conf file 212

Spark-Gremlin project 57
spark-packages.org 247
spark-shell 192, 194, 201–204, 206–207, 212
spark-submit 201, 203–204, 206
SPARQL 56
sparse matrix 12, 23, 129, 142
SparseVector 138–140, 145
SQL, using with Spark graphs with 

GraphFrames 229–237
getting GraphFrames 230–231
isomorphic searching on YAGO 234–237
searching for vertices with Cypher subset

232–234
differences in triplets() between Graph-

Frames and GraphX 233–234
querying MyGraph from listing 4.1 233

using SQL for convenience and 
performance 231–232

square brackets 38
src column 230
srcAttr field 67
srcId field 67
SSD (solid-state drive) 5
StackOverflowError 210
Stage details page 197
Stages 188

duration 195
Stages tab 194
standalone Spark cluster mode 47
Stanford Network Analysis Project. See SNAP
star graphs 81
static functions 65
static typing 38
statistics 51
Stochastic Gradient Descent. See SGD
stop words 137
Storage Tab 192
StorageLevel.MEMORY_AND_DISK_SER 212
StorageLevel.MEMORY_ONLY_SER 212
storing, graphs 23
stronglyConnectedComponents() function 107
subgraph() function 54, 97, 119, 168, 186
subgraphs 20
subtractByKey() function 180
subtraction 40
suffix notation 98
sum() function 231
sun.misc.unsafe 229
supersteps 83
supervised learning 126–128
SVDPlusPlus (GraphX implementation of SVD++ 

algorithm) 128–135
biases 134
Conf object 134
Conf parameter 131
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SVDPlusPlus (GraphX implementation of SVD++ 
algorithm) (continued)

item-to-item similarity 135
latent variables 134–135
model 180, 182

swap() function 71
synchronization barrier 83

T

tab-separated files 173
task 190
Task Deserialization Time color-code 199
taxonomies, deriving with Word2Vec and 

MSTs 121–124
ternary operator 41
textFile() function 43
Tinkerpop Gremlin 56–57
tips, Scala index of 249
/tmp/spark-events directory 202
toGexf() method 123
toJavaPairRDD() function 221
tol (tolerance) 93
topicDistributions() function 140
trained model 128, 147
transformations on RDDs 44, 189

narrow 189
wide 189

transitivity ratios 96
Traveling Salesman algorithm 115, 117–118
tree graph 12
triangle 68
Triangle Count algorithm 95–99

Slashdot friends and foes example 96–99
uses of 96

triangleCount() function 97, 213
triples 172
triplet 184
triplets() function

GraphFrames 233–234
GraphX 65–66

Truncated Page Rank 143–145
.tsv files 173
tuning 207–213

caching 207
checkpointing 210–211
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