
www.allitebooks.com

http://www.allitebooks.org

Sphinx Search
Beginner's Guide

Implement full-text search with lightning speed and accuracy
using Sphinx

Abbas Ali

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Sphinx Search
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused, directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2011

Production Reference: 1100311

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849512-54-1

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Abbas Ali

Reviewers

Paul Grinberg

Kevin Horn

Acquisition Editor

Eleanor Duffy

Development Editor

Roger D'souza

Technical Editor

Aaron Rosario

Indexers

Tejal Daruwale

Monica Ajmera Mehta

Editorial Team Leader

Aanchal Kumar

Project Team Leader

Priya Mukherji

Project Coordinator

Sneha Harkut

Proofreader

Jonathan Russell

Graphics

Nilesh Mohite

Production Coordinator

Melwyn D'sa

Cover Work

Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Abbas Ali has over six years of experience in PHP Development and is a Zend Certified PHP
5 Engineer. A Mechanical Engineer by education, Abbas turned to software development just
after finishing his engineering degree. He is a member of the core development team for the
Coppermine Photo Gallery, an open source project, which is one of the most popular photo
gallery applications in the world.

Fascinated with both machines and knowledge, Abbas is always learning new programming
techniques. He got acquainted with Sphinx in 2009 and has been using it in most of his
commercial projects ever since. He loves open source and believes in contributing back to
the community.

Abbas is married to Tasneem and has a cute little daughter, Munira. He has lived in Nagpur
(India) since his birth and is in no rush to move to any other city in the world. In his free time
he loves to watch movies and television. He is also an amateur photographer and cricketer.

Abbas is currently working as Chief Operating Officer and Technical Manager at SANIsoft
Technologies Private Limited, Nagpur, India. The company specializes in development of
large, high performance, and scalable PHP applications.

For feedback and suggestions, you can contact Abbas at:

Web : http://www.abbasali.net/contact/

Twitter: @_abbas

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

My wife Tasneem and sweet little daughter Munira were patient throughout my writing
adventure, and I want to thank them for giving me tremendous support and quiet space
to work at home. I would also like to thank my mother for her moral support.

My inspiration was Dr. Tarique Sani, CTO of SANIsoft, who is my employer, mentor, and guru.
I would like to thank him for his support and exchange of technical know-how. I would also
like to thank my colleagues at SANIsoft who encouraged me in my endeavor.

I would also like to thank all the reviewers and editors who worked patiently with me. A
special thanks to Aaron Rosario who worked sleepless nights during the final editing phase.

Richard Phillips of Utilitas Knowledge Management Limited, London, introduced me to
Sphinx while I was working on one of his projects in 2009. He deserves special thanks and
acknowledgment.

Last, but not the least; I would like to thank my brother who has been an inspiration all
my life.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Paul Grinberg is an electrical engineer with a focus on embedded firmware design. As
part of his work he has utilized many techniques that traditionally fall outside of his field,
including a number of scripting languages. While learning PHP, Paul started contributing to
the MediaWiki project by writing a number of extensions. One of those extensions was the
Sphinx Search extension to improve the search capability of the MediaWiki engine.

I would like to thank Svemir Brkic, who is the co-author of the Sphinx
Search extension for MediaWiki. I would also like to thank my wife for her
understanding, flexibility, and support for my hobbies.

Kevin Horn has a B.S. in Mechanical Engineering from Texas A&M University and has been
creating web applications since 1998, when he accidentally became a web developer after
running out of money for college. He's worked under almost every job title in the IT field,
though he always seems to come back to programming. Despite working with a number of
different languages, there's no doubt that his favorite is Python, as he will tell anyone who
will listen (and some who won't).

Kevin lives in North Texas with his wife, two sons, and a couple of canine interlopers.

Kevin currently works as a semi-freelance programmer both through his own company
and others. In his not-so-copious free time, he works on various open source Python
projects, reads a truly ridiculous amount of fiction, and tries to figure out how to raise
his offspring properly.

Thanks to the Packt team for making the process of reviewing my first
book pretty darn painless. I'd also like to thank my wife, kids, and friends
for putting up with me staring at the computer screen, when they'd much
rather I be doing something else.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books. 

Why Subscribe?
•	 Fully searchable across every book published by Packt

•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1

Chapter 1: Setting Up Sphinx	 7
What you need to know	 8
Different ways of performing a search	 8

Searching on a live database	 8
Searching an index	 9

Sphinx—a full-text search engine	 10
Features	 10
A brief history	 10
License	 11

Installation	 11
System requirements	 11
Sphinx on a Unix-based system	 12

Time for action – installation on Linux	 12
Options to the configure command	 13
Known issues during installation	 14
Sphinx on Windows	 14

Time for action – installation on Windows	 14
Sphinx on Mac OS X	 15

Time for action – installation on a Mac	 15
Other supported systems	 16

Summary	 17

Chapter 2: Getting Started	 19
Checking the installation	 19
Full-text search	 21

What is full-text search?	 21
Traditional search	 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Time for action – normal search in MySQL	 21
MySQL full-text search	 24
Advantages of full-text search	 25
When to use a full-text search?	 25

Overview of Sphinx	 25
Primary programs	 25

Time for action – Sphinx in action	 26
Data to be indexed	 30
Creating the Sphinx configuration file	 31
Searching the index	 31

Why use Sphinx for full-text searching?	 32
Summary	 33

Chapter 3: Indexing	 35
What are indexes?	 35

Indexes in Sphinx	 36
Index attributes	 37

Types of attributes	 37
Multi-value attributes (MVA)	 38

Data sources	 38
How to define the data source?	 39
SQL data sources	 39

Creating Index using SQL data source (Blog)	 41

Time for action – creating database tables for a blog	 42
Time for action – populate the database tables	 43
Time for action – creating the Sphinx configuration file	 45
Time for action – adding attributes to the index	 50
Time for action – Adding an MVA to the index	 53

xmlpipe data source	 56
xmlpipe2 data source	 56

Indexing with schema defined in XML stream	 57

Time for action – creating index (without attributes)	 57
Time for action – add attributes to schema	 62

Indexing with schema defined in configuration file	 67

Time for action – create index with schema defined in configuration file	 67
Summary	 71

Chapter 4: Searching	 73
Client API implementations for Sphinx	 73
Search using client API	 74
Time for action – creating a basic search script	 74

Matching modes	 79

Table of Contents

[iii]

Time for action – searching with different matching modes	 80
Boolean query syntax	 86

Time for action – searching using Boolean query syntax	 87
Extended query syntax	 90

Time for action – searching with extended query syntax	 90
Filtering full-text search results	 95
Time for action – filtering the result set	 95
Weighting search results	 99
Time for action – weighting search results	 99
Sorting modes	 102
Grouping search results	 103
Summary	 104

Chapter 5: Feed Search	 105
The application	 105

Tools and software used while creating this application	 106
Database structure	 106

Time for action – creating the MySQL database and tables	 106
Basic setup	 108

Time for action – setting up the feeds application	 108
Add feed	 111

Time for action – creating a form to add feeds	 111
Saving the feed data	 114

Time for action – adding code to save feed	 114
Indexing the feeds	 117

Time for action – create the index	 117
Check for duplicate items	 122

Time for action – adding code to avoid duplicate items	 122
Index merging	 124

Time for action – adding the delta index	 124
Search form	 126

Time for action – creating the search form	 126
Perform the search query	 128

Time for action – adding code to perform a search query	 128
Applying filters	 133

Time for action – adding code to filter the results	 133
Time for action – showing search form prefilled with last submitted data	 134

Re-indexing	 137
Summary	 137

Table of Contents

[iv]

Chapter 6: Property Search	 139
The application	 139

Tools and software used while creating this application	 140
Database structure	 141

Time for action – creating the MySQL database and structure	 141
Initial data	 144

Time for action – populating the database	 144
Basic setup	 145

Time for action – setting up the application	 145
Adding a property	 149

Time for action – creating the form to add property	 149
Indexing the properties	 155

Time for action – creating the index	 155
Simple search form	 158

Time for action – creating the simple search form	 158
Full-text search	 160

Time for action – adding code to perform full-text search	 160
Advanced search	 163

Time for action – creating the Advanced search form	 163
Ranged filters	 167

Time for action – adding ranged filters	 167
Geo distance search	 172

Time for action – creating the search form	 172
Add geo anchor	 174

Time for action – adding code to perform geo distance search	 174
Summary	 179

Chapter 7: Sphinx Configuration	 181
Sphinx configuration file	 181

Rules for creating the configuration file	 182
Data source configuration	 184

SQL related options	 184
Connection options	 184
Options to fetch data (SQL data source)	 186

Configuration file using advanced options	 187
Time for action – creating a configuration with advanced source options	 187

MS SQL specific options	 189
Index configuration	 190

Distributed searching	 190
Set up an index on multiple servers	 190

Table of Contents

[v]

Time for action – creating indexes for distributed searching	 191
Set up the distributed index on the primary server	 194

Time for action – adding distributed index configuration	 195
Distributed searching on single server	 197

charset configuration	 198
Data related options	 199
Word processing options	 201

Morphology	 201

Time for action – using morphology for stemming	 202
Wordforms	 204

Search daemon configuration	 204
Indexer configuration	 207
Summary	 208

Chapter 8: What Next?	 209
SphinxQL	 209

SphinxQL in action	 209
Time for action – querying Sphinx using MySQL CLI	 210

SELECT	 212
Column list clause	 212
SHOW WARNINGS	 215
SHOW STATUS	 216
SHOW META	 216

Use case scenarios	 217
Popular websites using Sphinx	 218
Summary	 218

Index	 219

Preface
This book will serve as a guide to everything that you need to know about running a Sphinx
Search Engine. In today's world, search is an integral part of any application; a reliable
search engine like Sphinx Search can be the difference between running a successful and
unsuccessful business. What good is being on the web if no one knows you are there? It's
easy to build a proficient search engine, with Sphinx Search: Beginners Guide at hand.

What this book covers
Chapter 1, Setting Up Sphinx is an introduction to Sphinx. It guides the reader through the
installation process for Sphinx on all major operating systems.

Chapter 2, Getting Started demonstrates some basic usage of Sphinx in order to test its
installation. It also discusses full-text search and gives the reader an overview of Sphinx.

Chapter 3, Indexing teaches the reader how to create indexes. It introduces and explains
the different types of datasources, and also discusses different types of attributes that can
comprise an index.

Chapter 4, Searching teaches the reader how to use the Sphinx Client API to search indexes
from within PHP applications. It shows the reader how to use the PHP implementation of the
Sphinx Client API.

Chapter 5, Feed Search creates an application that fetches feed items and creates a Sphinx
index. This index is then searched from a PHP application. It also introduces delta indexes
and live index merging.

Chapter 6, Property Search creates a real world real estate portal where the user can add a
property listing and specify different attributes for it so that you can search for properties
based on specific criteria. Some advanced search techniques using a client API are discussed
in this chapter.

Preface

[2]

Chapter 7, Sphinx Configuration discusses all commonly used configuration settings for
Sphinx. It teaches the reader how to configure Sphinx in a distributed environment where
indexes are kept on multiple machines.

Chapter 8, What Next? discusses some new features introduced in the recent Sphinx release.
It also shows the reader how a Sphinx index can be searched using a MySQL client library.
Lastly, it discusses the scenarios where Sphinx can be used and mentions some of the
popular Web applications that are powered by a Sphinx search engine.

Who this book is for
This book is for developers who are new to Sphinx Search. All code examples use PHP but the
underlying logic is the same for any other web scripting language.

Conventions
In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action – heading
1.	 Action 1

2.	 Action 2

3.	 Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz – heading
These are short multiple choice questions intended to help you test your own understanding.

Preface

[3]

Have a go hero – heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use
of the include directive."

A block of code is set as follows:

searchd options (used by search daemon)
searchd
{
 listen = 9312
 log = /usr/local/sphinx/var/log/searchd.log
 query_log = /usr/local/sphinx/var/log/query.log
 max_children = 30
 pid_file = /usr/local/sphinx/var/log/searchd.pid
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 source blog {
 # source options
}

index posts {
 # index options
}

Any command-line input or output is written as follows:

$ mkdir /path/to/your/webroot/sphinx

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "clicking on the Next button
moves you to the next screen".

Warnings or important notes appear in a box like this.

Preface

[4]

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Setting Up Sphinx

Search is by far the most important feature of an application where data is
stored and retrieved. If it hadn't been for search, Google wouldn't exist, so we
can imagine the importance of search in the computing world.

Search can be found in the following types of applications:

�� Desktop applications: Where you are the primary, and most often, the only user

�� Web applications: Where the application or website is used and visited by
many users

For desktop applications, search is a quick way of locating files. Most desktop applications
are not data-oriented, that is, they are not meant to organize and display information. They
are rather meant to perform certain tasks, making search a secondary feature.

When using a web application, more often than not, the search becomes a means to
navigate the website and look for things that we are interested in, things which are
otherwise hidden deep inside the site's structure. Search becomes more important if the
web application is full of rich-text content such as blogs, articles, knowledge bases, and so
on; where a user needs the search functionality to find a particular piece of information.

In this chapter we will:

�� Discuss different ways to search for data

�� See how Sphinx helps us in achieving our goal

�� Learn how to install Sphinx

So let's get on with it...

Setting Up Sphinx

[8]

What you need to know
For this chapter, it is important that you know basic Linux commands (if you intend to install
sphinx on a Linux machine). If you use Windows then you should have a basic idea of how to
install programs in Windows.

Different ways of performing a search
Searching can be done in different ways but here we will take a look at the two most
commonly used methods.

Searching on a live database
Whenever your application is dealing with some kind of data, a database is generally
involved. There are many databases (both free and commercial) available in the market.
Here are a few of the free and open source database servers available:

�� MySQL

�� PostgreSQL

�� SQLite

We will be using MySQL throughout this book since Sphinx supports
MySQL by default, and it's also the most popular database when it comes
to web development.

A live database is one that is actively updated with the latest version of data. At times you
may use one database for reading and another for writing, and in such cases you will sync
both the databases occasionally. We cannot call such a database 'live', because when reading
from one database, while data is being written to the other database, you won't be reading
the latest data.

On the other hand, whenever reading from and writing to the database takes place in
real-time, we call it a live database.

Let's take an example to understand how search works in the case of a live database.

Assume that we have two database tables in our MySQL database:

�� users

�� addresses

Chapter 1

[9]

The users table holds data such as your name, e-mail, and password. The addresses table
holds the addresses belonging to users. Each user can have multiple addresses. So the users
and the addresses table are related to each other.

Let's say we want to search for users based on their name and address. The entered search
term can be either the name or part of the address. While performing a search directly on
the database, our MySQL query would look something like:

SELECT u.id, u.name
 FROM users
 AS u LEFT JOIN addresses AS a ON u.id = a.user_id
 WHERE u.name LIKE '%search_term%'
 OR a.address LIKE '%search_term%' GROUP BY u.id;

The given query will directly search the specified database tables and get the results. The
main advantage of using this approach is that we are always performing a search on the
latest version of the available data. Hence, if a new user's data has been inserted just before
you initiated the search, you will see that user's data in your search results if it matches your
search query.

However, one major disadvantage of this approach is that an SQL query to perform such a
search is fired every time a search request comes in, and this becomes an issue when the
number of records in the users table increases. With each search query, two tables are
joined. This adds overhead and further hinders the performance of the query.

Searching an index
In this approach, a query is not fired directly on a database table. Rather, an index is created
from the data stored in the database. This index contains data from all the related tables.
The index can itself be stored in a database or on a file system.

The advantage of using this approach is that we need not join tables in SQL queries each
time a search request comes in, and the search request would not scan every row stored
in the database. The search request is directed towards the index which is highly optimized
for searching.

The disadvantage would be the additional storage required to store the index and the time
required to build the index. However, these are traded off for the time saved during an actual
search request.

Setting Up Sphinx

[10]

Sphinx—a full-text search engine
No, we will not discuss The Great Sphinx of Giza here, we're talking about the other Sphinx,
popular in the computing world. Sphinx stands for SQL Phrase Index.

Sphinx is a full-text search engine (generally standalone) which provides fast, relevant,
efficient full-text search functionality to third-party applications. It was especially created to
facilitate searches on SQL databases and integrates very well with scripting languages; such
as PHP, Python, Perl, Ruby, and Java.

At the time of writing this book, the latest stable release of Sphinx was v0.9.9.

Features
Some of the major features of Sphinx include (taken from http://sphinxsearch.com):

�� High indexing speed (up to 10 MB/sec on modern CPUs)

�� High search speed (average query is under 0.1 sec on 2 to 4 GB of text collection)

�� High scalability (up to 100 GB of text, up to 100 Million documents on a single CPU)

�� Supports distributed searching (since v.0.9.6)

�� Supports MySQL (MyISAM and InnoDB tables are both supported) and
PostgreSQL natively

�� Supports phrase searching

�� Supports phrase proximity ranking, providing good relevance

�� Supports English and Russian stemming

�� Supports any number of document fields (weights can be changed on the fly)

�� Supports document groups

�� Supports stopwords, that is, that it indexes only what's most relevant from a given
list of words

�� Supports different search modes ("match extended", "match all", "match phrase"
and "match any" as of v.0.9.5)

�� Generic XML interface which greatly simplifies custom integration

�� Pure-PHP (that is, NO module compiling and so on) search client API

A brief history
Back in 2001, there weren't many good solutions for searching in web applications. Andrew
Aksyonoff, a Russian developer, was facing difficulties in finding a search engine with
features such as good search quality (relevance), high searching speed, and low resource
requirements - for example, disk usage and CPU.

Chapter 1

[11]

He tried a few available solutions and even modified them to suit his needs, but in vain.
Eventually he decided to come up with his own search engine, which he later named Sphinx.

After the first few releases of Sphinx, Andrew received good feedback from users.
Over a period of time, he decided to continue developing Sphinx and founded Sphinx
Technologies Inc.

Today Andrew is the primary developer for Sphinx, along with a few others who joined the
wagon. At the time of writing, Sphinx was under heavy development, with regular releases.

License
Sphinx is a free and open source software which can be distributed or modified under
the terms of the GNU General Public License (GPL) as published by the Free Software
Foundation, either version 2 or any later version.

However, if you intend to use or embed Sphinx in a project but do not want to disclose the
source code as required by GPL, you will need to obtain a commercial license by contacting
Sphinx Technologies Inc. at http://sphinxsearch.com/contacts.html

Installation
Enough talking, let's get on to some real action. The first step is to install Sphinx itself.

System requirements
Sphinx was developed and tested mostly on UNIX based systems. All modern UNIX based
operating systems with an ANSI compliant compiler should be able to compile and run
Sphinx without any issues. However, Sphinx has also been found running on the following
operating systems without any issues.

�� Linux (Kernel 2.4.x and 2.6.x of various distributions)

�� Microsoft Windows 2000 and XP

�� FreeBSD 4.x, 5.x, 6.x

�� NetBSD 1.6, 3.0

�� Solaris 9, 11

�� Mac OS X

Note: The Windows version of Sphinx is not meant to be used on production servers. It
should only be used for testing and debugging. This is the primary reason that all examples
given in this book will be for Linux-based systems.

Setting Up Sphinx

[12]

Sphinx on a Unix-based system
If you intend to install Sphinx on a UNIX based system, then you need to check the following:

�� C++ compiler (GNU GCC works fine)

�� A make program (GNU make works fine)

�� The XML libraries libexpat1 (name may be different on non Ubuntu distro) and
libexpat1-dev (If you intend to use the xmlpipe2 data source)

Time for action – installation on Linux
1.	 Download the latest stable version of the sphinx source from

http://sphinxsearch.com/downloads.html.

2.	 Extract it anywhere on your file system and go inside the extracted sphinx
directory:

$ tar -xzvf sphinx-0.9.9.tar.gz

$ cd sphinx-0.9.9

3.	 Run the configure utility:

$./configure --prefix=/usr/local/sphinx

4.	 Build from the source:

$ make

It will take a while after you run the make command as it builds the binaries
from the source code.

5.	 Install the application (run as root):

$ make install

What just happened?
We downloaded the latest release of Sphinx and extracted it using the tar command. We
then ran the configure command which gets the details of our machine and also checks
for all dependencies. If any of the dependency is missing, it will throw an error. We will take
a look at possible dependency issues in a while.

Once we are done with configure, the make command will build (compile) the source
code. After that, make install will actually install the binaries to respective location as
specified in --prefix option to the configure.

Chapter 1

[13]

Options to the configure command
There are many options that can be passed to the configure command but we will take a
look at a few important ones:

�� --prefix=/path: This option specifies the path to install the sphinx binaries. In
this book it is assumed that sphinx was configured with --prefix=/usr/local/
sphinx so it is recommended that you configure your path with the same prefix.

�� --with-mysql=/path: Sphinx needs to know where to find MySQL's include and
library files. It auto-detects this most of the time but if for any reason it fails, you can
supply the path here.

�� --with-pgsql=/path: Same as –-with-mysql but for PostgreSQL.

Most of the common errors you would find while configuring sphinx are related to missing
MySQL include files.

This can be caused either because Sphinx's auto detection for MySQL include path failed, or
MySQL's devel package has not been installed on your machine. If MySQL's devel package
is not installed, you can install it using the Software Package Manager (apt or yum) of your
operating system. In case of Ubuntu, the package is called libmysqlclient16-dev.

If you intend to use Sphinx without MySQL then you can use the configure
option --without-mysql.

Setting Up Sphinx

[14]

You need to follow pretty much the same steps if PostgreSQL include files are missing. In this
book we will be primarily using MySQL for all examples.

Known issues during installation
Listed next are a few errors or issues that may arise during Sphinx's installation make can
sometimes fail with the following error:

/bin/sh: g++: command not found

make[1]: *** [libsphinx_a-sphinx.o] Error 127

This may be because of a missing gcc-c++ package. Try installing it.

At times you might get compile-time errors like:

sphinx.cpp:67: error: invalid application of `sizeof' to

 incomplete type `Private::SizeError<false>'

To fix the above error try editing sphinx.h and replace off_t with DWORD in a typedef for
SphOffset_t.

#define STDOUT_FILENO fileno(stdout)

#else

typedef DWORD SphOffset_t;

#endif

One drawback of doing this would be that you won't be able to use full-text indexes larger
than 2 GB.

Sphinx on Windows
Installing on a Windows system is easier than on a Linux system as you can use the pre-
compiled binaries.

Time for action – installation on Windows
1.	 Download the Win32 binaries of Sphinx from http://www.sphinxsearch.com/

downloads.html. Choose the binary depending on whether you want MySQL
support, or PostgreSQL support, or both.

2.	 Extract the downloaded ZIP to any suitable location. Let's assume it is extracted to
C:\>sphinx.

Chapter 1

[15]

3.	 Install the searched system as a Windows service by issuing the following command
in the Command Prompt:

C:\sphinx\bin\searchd –install –config C:\sphinx\sphinx.conf –
servicename SphinxSearch

This will install searchd as a service but it won't be started yet. Before starting the
Sphinx service we need to create the sphinx.conf file and create indexes. This will
be done in the next few chapters.

What just happened?
Installing Sphinx on windows is a straight-forward task. We have pre-compiled binaries
for the windows platform, which can be used directly.

After extracting the ZIP, we installed the Sphinx service. We need not install anything
else since binaries for indexer and search are readily available in the C:\sphinx\bin
directory.

The use of binaries to create indexes and the use of the searchd service to search will be
covered in the next few chapters.

At the time of writing this book, the Windows version of Sphinx is not meant to
be used in production environment. It is highly recommended to use the Linux
version of Sphinx in your production environment.

Sphinx on Mac OS X
Installation on a Mac is very similar to how it is done on Linux systems. You need to build it
from source and then install the generated binaries.

Time for action – installation on a Mac
1.	 Download the latest stable version of the sphinx source from

http://sphinxsearch.com/downloads.html.

$ tar -xzvf sphinx-0.9.9.tar.gz

$ cd sphinx-0.9.9

2.	 Run the configure utility:

$./configure –prefix=/usr/local/sphinx

www.allitebooks.com

http://www.allitebooks.org

Setting Up Sphinx

[16]

3.	 If you are on a 64 bit Mac then use the following command to configure:

LDFLAGS="-arch x86_64" ./configure --prefix=/usr/local/sphinx

$ make

$ sudo make install

4.	 Next, run the make command:

$ make

5.	 Finally, run the following command to complete your configuration:

 $ sudo make install

What just happened?
We downloaded the Sphinx source and extracted it using the tar command. We then
configured Sphinx and built it using the make command. The options to configure
are the same as we used while installing Sphinx in Linux.

The only notable difference between installation on Linux and Mac is that if your Mac is 64
bit, your configure command is changed slightly as given above.

Other supported systems
Above we learned how to install Sphinx on Linux, Windows, and Mac. However, these are
not the only systems on which Sphinx can be installed. Sphinx is also supported on the
following systems:

�� FreeBSD 4.x, 5.x, 6.x

�� NetBSD 1.6, 3.0

�� Solaris 9, 11

Installation procedure for the above mentioned systems is more or less similar
to how it is done on a Linux system.

Chapter 1

[17]

Summary
In this chapter:

�� We saw the different ways to perform search

�� We got to know about Sphinx and how it helps in performing searches

�� We took a look at some of Sphinx's features and its brief history

�� We learned how to install Sphinx on different operating systems

By now you should have installed Sphinx on your system and laid the foundation for
Chapter 2, Getting Started, where we will get started with Sphinx and some basic usage.

2
Getting Started

Now that we have installed Sphinx, let's move forward and take a look at
different search techniques and get acquainted with the different utilities
Sphinx has to offer.

In this chapter we will take a dive into full-text search and look at different
advantages of it. We will then see how Sphinx utilizes full-text search and also
learn about indexer, search and searchd utilities that come along with
Sphinx. We will also see a very basic example of how Sphinx works.

Make sure that you have installed Sphinx using the steps mentioned
in Chapter 1, Setting Up Sphinx before proceeding.

Checking the installation
Before we proceed any further, let's first check whether Sphinx was properly installed on
our system. As we had used the --prefix configure option during installation, all Sphinx
binaries and configuration files must have been placed in one single directory, that is, the
one which was specified with --prefix.

We are assuming that you have installed Sphinx on a Linux machine. If everything went fine
then a directory /usr/local/sphinx should have been created on your system. It should
be structured in the same way as the following screenshot.

Getting Started

[20]

I have used a Linux (Ubuntu 10.04) machine for all the examples shown in this
book. Further, I presume that you have installed Sphinx with the configure
option --prefix=/usr/local/sphinx

You can see that we have a few binary files in bin directory and few configuration files in
the etc directory. Then we have the var directory that will hold the actual index data and
search logs. We will look at all of these in details in later chapters.

To test whether the Sphinx binary is working first change your directory to bin:

$ cd /usr/local/sphinx/bin

Then issue the command./indexer:

You can see that it outputs some information along with the version of Sphinx being
installed, which in our case is 0.9.9.

The output above confirms that we are good to go, so let's move forward

Chapter 2

[21]

Full-text search
Sphinx is a full-text search engine. So, before going any further, we need to understand what
full-text search is and how it excels over the traditional searching.

What is full-text search?
Full-text search is one of the techniques for searching a document or database stored on a
computer. While searching, the search engine goes through and examines all of the words
stored in the document and tries to match the search query against those words. A complete
examination of all the words (text) stored in the document is undertaken and hence it is
called a full-text search.

Full-text search excels in searching large volumes of unstructured text quickly and effectively.
It returns pages based on how well they match the user's query.

Traditional search
To understand the difference between a normal search and full-text search, let's take an
example of a MySQL database table and perform searches on it.

It is assumed that MySQL Server and phpMyAdmin are already installed on your system.

Time for action – normal search in MySQL
1.	 Open phpMyAdmin in your browser and create a new database called myblog.

2.	 Select the myblog database:

Getting Started

[22]

3.	 Create a table by executing the following query:

CREATE TABLE `posts` (
`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
`title` VARCHAR(255) NOT NULL ,
`description` TEXT NOT NULL ,
`created` DATETIME NOT NULL ,
`modified` DATETIME NOT NULL
) ENGINE = MYISAM;

Queries can be executed from the SQL page in phpMyAdmin. You can find
the link to that page in the top menu.

4.	 Populate the table with some records:

INSERT INTO `posts`(`id`, `title`, `description`, `created`,
`modified`) VALUES
(1, 'PHP scripting language', 'PHP is a web scripting language
originally created by Rasmus Lerdorf', NOW(), NOW()),
(2, 'Programming Languages', 'There are many languages available
to cater any kind of programming need', NOW(), NOW()),
(3, 'My Life', 'This post is about my life which in a sense is
beautiful', NOW(), NOW()),
(4, 'Life on Mars', 'Is there any life on mars?', NOW(), NOW());

5.	 Next, run the following queries against the table:

SELECT * FROM posts WHERE title LIKE 'programming%';

The above query returns row 2.

SELECT * FROM posts WHERE description LIKE '%life%';

The above query return rows 3 and 4.

SELECT * FROM posts WHERE description LIKE '%scripting language%';

Chapter 2

[23]

The above query returns row 1.

SELECT * FROM posts WHERE description LIKE '%beautiful%' OR
description LIKE '%programming%';

The above query returns rows 2 and 3.

phpMyAdmin

To administer MySQL database, I highly recommend using a GUI interface
tool like phpMyAdmin (http://www.phpmyadmin.net). All the above
mentioned queries can easily be executed in phpMyAdmin and the results
are displayed in a user friendly manner.

What just happened?
We first created a table posts to hold some data. Each post has a title and a
description. We then populated the table with some records.

With the first SELECT query we tried to find all posts where the title starts with the word
programming. This correctly gave us the row number 2. But what if you want to search for
the word anywhere in the field and not just at that start? For this we fired the second query,
wherein we searched for the word life anywhere in the description of the post. Again this
worked pretty well for us and as expected we got the result in the form of row numbers 3
and 4.

Now what if we wanted to search for multiple words? For this we fired the third query
where we searched for the words scripting language. As row 1 has those words in its
description, it was returned correctly.

Until now everything looked fine and we were able to perform searches without any hassle.
The query gets complex when we want to search for multiple words and those words are not
necessarily placed consecutively in a field, that is, side by side. One such example is shown
in the form of our fourth query where we tried to search for the words programming and
beautiful in the description of the posts. Since the number of words we need to search for
increases, this query gets complicated, and moreover, slow in execution, since it needs to
match each word individually.

Getting Started

[24]

The previous SELECT queries and their output also don't give us any information about the
relevance of the search terms with the results found. Relevance can be defined as a measure
of how closely the returned database records match the user's search query. In other words,
how pertinent the result set is to the search query.

Relevance is very important in the search world because users want to see the items with
highest relevance at the top of their search results. One of the major reasons for the success
of Google is that their search results are always sorted by relevance.

MySQL full-text search
This is where full-text search comes to the rescue. MySQL has inbuilt support for full-text
search and you only need to add FULLTEXT INDEX to the field against which you want to
perform your search.

Continuing the earlier example of the posts table, let's add a full-text index to the
description field of the table. Run the following query:

ALTER TABLE `posts` ADD FULLTEXT (
`description`
);

The query will add an INDEX of type FULLTEXT to the description field of the posts table.

Only MyISAM Engine in MySQL supports the full-text indexes.

Now to search for all the records which contain the words programming or beautiful
anywhere in their description, the query would be:

SELECT * FROM posts WHERE
 MATCH (description) AGAINST ('beautiful programming');

This query will return rows 2 and 3, and the returned results are sorted by relevance. One
more thing to note is that this query takes less time than the earlier query, which used LIKE
for matching.

By default, the MATCH() function performs a natural language search, it attempts
to use natural language processing to understand the nature of the query and then
search accordingly.

Chapter 2

[25]

Full-text search in MySQL is a big topic in itself and we have only seen the tip
of the iceberg. For a complete reference, please refer to the MySQL manual
at http://dev.mysql.com/doc/.

Advantages of full-text search
The following points are some of the major advantages of full-text search:

�� It is quicker than traditional searches as it benefits from an index of words that is
used to look up records instead of doing a full table scan

�� It gives results that can be sorted by relevance to the searched phrase or term, with
sophisticated ranking capabilities to find the best documents or records

�� It performs very well on huge databases with millions of records

�� It skips the common words such as the, an, for, and so on

When to use a full-text search?
�� When there is a high volume of free-form text data to be searched

�� When there is a need for highly optimized search results

�� When there is a demand for flexible search querying

Overview of Sphinx
Sphinx is an external solution for database search, which means that it runs outside the
main database used for your application. It takes data from the database and creates indexes
that are stored on a file system. These indexes are highly optimized for searching and your
application uses an API to search the indexes.

Sphinx interacts with the database using a data source driver which comes along with
Sphinx. You need to specify which data source driver should be used by Sphinx in its
configuration file.

Primary programs
As shown at the beginning of this chapter, Sphinx is shipped with some binary programs
which were installed at /usr/local/sphinx/bin directory. Let's take a look at two
principal programs that are used by Sphinx for indexing and searching purposes.

�� indexer: This program is used for indexing and re-indexing full-text indexes. By
default, Sphinx reads the configuration file at /usr/local/sphinx/etc/sphinx.
conf to know what and how to index. We will be dealing with sphinx.conf in
more detail during later chapters.

Getting Started

[26]

�� searchd: This is the daemon used for searching the indexes. It requires a client to
access the Sphinx API. There are a number of searchd client API implementations
available for Sphinx.

Enough talking about Sphinx, now let's see it in action…

Time for action – Sphinx in action
Let's see an example of how Sphinx works. We will create an index and then search it using
the Sphinx command line utility as well as the PHP client implementation. So let's begin:

1.	 Firstly, create a MySQL database named test, if it is not already there:

CREATE DATABASE test;

Sphinx ships with a sample configuration file and a sample database table to be used
for demo purposes. The SQL for the table is located at /usr/local/sphinx/etc/
example.sql and it contains the following SQL:

DROP TABLE IF EXISTS test.documents;

CREATE TABLE test.documents
(
 id INTEGER PRIMARY KEY NOT NULL AUTO_INCREMENT,
 group_id INTEGER NOT NULL,
 group_id2 INTEGER NOT NULL,
 date_added DATETIME NOT NULL,
 title VARCHAR(255) NOT NULL,
 content TEXT NOT NULL
);

REPLACE INTO test.documents (id, group_id, group_id2, date_added,
title, content) VALUES
 (1, 1, 5, NOW(), 'test one', 'this is my test document number
one. also checking search within phrases.'),
 (2, 1, 6, NOW(), 'test two', 'this is my test document number
two'),
 (3, 2, 7, NOW(), 'another doc', 'this is another group'),
 (4, 2, 8, NOW(), 'doc number four', 'this is to test groups'
);

DROP TABLE IF EXISTS test.tags;

CREATE TABLE test.tags
(
 docid INTEGER NOT NULL,

Chapter 2

[27]

 tagid INTEGER NOT NULL,
 UNIQUE(docid,tagid)
);

INSERT INTO test.tags VALUES
 (1,1), (1,3), (1,5), (1,7),
 (2,6), (2,4), (2,2),
 (3,15),
 (4,7), (4,40);

You can copy the SQL and paste it in your phpMyAdmin interface to run the SQL or
execute the following command to import the SQL from the command line in Linux:

$ mysql -u root < /usr/local/sphinx/etc/example.sql

2.	 Next, create the configuration file (you may need the permissions to create the file):

$ cd /usr/local/sphinx/etc
$ cp sphinx-min.conf.dist sphinx.conf

Now edit sphinx.conf in your favorite editor (you may need to change the
permissions of the file to be able to modify it).

The first block of the file looks something like this:

source src1
{
 type = mysql

 sql_host = localhost
 sql_user = test
 sql_pass =
 sql_db = test
 sql_port = 3306	 # optional, default is 3306

 sql_query = \
 SELECT id, group_id, UNIX_TIMESTAMP(date_added)
 AS date_added, title, content \
 FROM documents

 sql_attr_uint = group_id
 sql_attr_timestamp = date_added

 sql_query_info = SELECT * FROM documents WHERE id=$id
}

Getting Started

[28]

3.	 Change the value of sql_host, sql_user, sql_pass and sql_db as per your system:

 sql_host = localhost
 sql_user = myuser
 sql_pass = mypass
 sql_db = test

If you have not installed the Sphinx at /usr/local/sphinx then you will need to
modify the paths of the following options as well:

�� path

�� log

�� query_log

�� pid_file

4.	 Now run the indexer:

$ /usr/local/sphinx/bin/indexer --all

This will give output as shown in the following screenshot

If you have installed Sphinx at a location other than /usr/local/sphinx, then you
need to use the -c /path/to/sphinx.conf option in the previous command.

5.	 Next, let's query the index to see if it works:

$ /usr/local/sphinx/bin/search test

Chapter 2

[29]

To query the index from our PHP scripts, we first need to start the searchd daemon

$ /usr/local/sphinx/bin/searchd

To run searchd commands, you need to be the root user. You can either
switch to root user using the su - command, or you could prefix all searchd
commands with sudo.

6.	 Now, go to the directory where you extracted the Sphinx tarball during installation
(in Chapter 1, Setting Up Sphinx) and run the command as shown here:

$ cd /path/to/sphinx-0.9.9

$ php api/test.php test

Getting Started

[30]

The command will output the search results, which confirms that searchd is working
properly and we can search from our applications using the client API.

What just happened?
We created an index from the data stored in a MySQL table. We then used Sphinx's search
utility to search for the test term in the index. The results showed that Sphinx is working
properly and that the index we created was fine.

The major difference between search results by MySQL and Sphinx is that Sphinx does not
return the actual data but only the document id. Using these document IDs, we need to
fetch the actual data (from its source) to display it. Along with the document id, Sphinx also
returns all the attributes and weight of each document. The higher the weight, the higher
the relevance of that document with the search query.

We then used the PHP implementation of the Sphinx Client API to search for the same test
term, but this time from within a PHP script.

Data to be indexed
The first thing we did was to create a MySQL database and then import the sample data in to
it. This gave us the data as shown in the following screenshot:

Throughout this book, the dates and times shown may differ from what you
would have in your database or index. So don't worry about that.

Chapter 2

[31]

Creating the Sphinx configuration file
Sphinx creates an index based on the options defined in the Sphinx configuration file sphinx.
conf. This file is divided into different sections:

�� source: This section holds all the settings related to the source of the data to be
indexed, which in our case is a MySQL database.

�� index: This section holds options which tell Sphinx where and how to save the index.
These options are used during indexing-time.

�� indexer: This section holds options for the indexer program.

�� searchd: This section holds the options used while searching the index.

In this chapter we will not go into great detail about all the options used in the configuration
file. However, a few options to look for are:

�� sql_*: These options are there to tell Sphinx about different MySQL settings; such as
username, password, the database to use, and the port to use.

�� sql_query: This option holds the query that will be fired in order to get the data
from the MySQL database.

Once the configuration file is ready, index can be created by issuing the following command.

$ /usr/local/sphinx/bin/indexer –all

During the indexing operation, some information is displayed in the console such as what
configuration file is being used by the indexer, how many documents were found, how
much time it took to index, and other related information.

To run indexer commands, you need to be the root user. You can either
switch to root user using the su - command, or you could prefix all indexer
commands with sudo.

Searching the index
Sphinx provides a command-line utility search which comes in handy to quickly query
the index that we created earlier. However, this utility should only be used for testing
purposes. In the production environment one should always use the searchd and its
client API implementation.

$ /usr/local/sphinx/bin/search test

Getting Started

[32]

The output of the search command gives us the results that matched the search term
test. The result shows us the document id and weight, amongst other information for
the queried term.

Similar information is displayed when we use the PHP client API to search.

Have a go hero
We created a very basic example to see how Sphinx works; however, you can extend
and explore this by:

�� Adding a few more records to the documents table

�� Re-indexing the documents table

�� Searching with different search phrases and examining the returned results
and their weights

Why use Sphinx for full-text searching?
If you're looking for a good Database Management System (DBMS), there are plenty
of options available with support for full-text indexing and searches, such as MySQL,
PostgreSQL, and SQL Server. There are also external full-text search engines, such as Lucene
and Solr. Let's see the advantages of using Sphinx over the DBMS's full-text searching
capabilities and other external search engines:

�� It has a higher indexing speed. It is 50 to 100 times faster than MySQL FULLTEXT
and 4 to 10 times faster than other external search engines.

�� It also has higher searching speed since it depends heavily on the mode, Boolean vs.
phrase, and additional processing. It is up to 500 times faster than MySQL FULLTEXT
in cases involving a large result set with GROUP BY. It is more than two times faster
in searching than other external search engines available.

�� As mentioned earlier, relevancy is among the key features one expects when using
a search engine, and Sphinx performs very well in this area. It has phrase-based
ranking in addition to classic statistical BM25 ranking.

�� Last but not the least, Sphinx has better scalability. It can be scaled vertically
(utilizing many CPUs, many HDDs) or horizontally (utilizing many servers), and this
comes out of the box with Sphinx. One of the biggest known Sphinx cluster has over
3 billion records with more than 2 terabytes of size.

Chapter 2

[33]

In one of his presentations, Andrew Aksyonoff (creator of Sphinx) presented the following
benchmarking results. Approximately 3.5 Million records with around 5 GB of text were used
for the purpose.

MySQL Lucene Sphinx

Indexing time, min 1627 176 84

Index size, MB 3011 6328 2850

Match all, ms/q 286 30 22

Match phrase, ms/q 3692 29 21

Match bool top-20, ms/q 24 29 13

Apart from a basic search, there are many features that make Sphinx a better solution for
searching. These features include multivalve attributes, tokenizing settings, wordforms,
HTML processing, geosearching, ranking, and many others. We will be taking a more
elaborate look at some of these features in later chapters.

Summary
In this chapter:

�� We learned how to check whether Sphinx was installed properly or not. We saw the
directory structure Sphinx creates to store its binary files, configuration files, and
other data.

�� We then learned what full-text search is and what its advantages over normal search
are. We also saw how full-text search has been implemented in MySQL with an
example. We saw the syntax of an SQL query used to search a full-text indexed field
in MySQL.

�� We have also seen why to use Sphinx, an external search engine, instead of
database's native full-text support. We saw how Sphinx excels in many ways, and
outperforms most of the databases and external search engines available today.

�� Lastly we saw how to create an index using the indexer utility, and then how to
search that index from the command line as well as other applications using client
API implementations.

Having armed ourselves with all the basics we need to know, we are ready to start creating
indexes with more options available to us.

3
Indexing

This chapter is all about indexes and how to create them in Sphinx. Indexes are
the most important component when using Sphinx.

In this chapter we shall:

�� See what indexes are and how they help in searching. We will also learn how they
are created by using Sphinx's indexer utility.

�� We will learn what data sources are and what different types are available in Sphinx.

So let's get on with it...

What are indexes?
Wikipedia defines a database index as follows:

A database index is a data structure that improves the speed of data retrieval
operations on a database table at the cost of slower writes and increased
storage space.

Let's use an example to understand this. A library has a catalog of all the books at its disposal.
If you want to look for a particular book, you will quickly search through the catalog instead of
searching through every isle or shelf for that book. The catalog acts as an index of all the books.

www.allitebooks.com

http://www.allitebooks.org

Indexing

[36]

In the computing world an index is something similar. It saves you the trouble of having to
search through every record in the database. Instead, you speed up your query by searching
a subset of data that is highly optimized for quick reference. This set of data is called an
index and it is separate from the original data stored in the database.

To give you a better picture of this, the following table relates a Library to a Database.

Library Database

Library is a collection of books Database is a collection of data

To find a book, you go through every row of the
shelves

To find a match, you go through every record in
the database table

To facilitate searching, a library maintains a
catalog

To facilitate searching, a database maintains
indexes

It is easy to refer to a catalog to figure out
where to find a book

It is easy to refer to an index to find out a record

When a new book is added, the librarian has to
update the catalog

When a new record is inserted, the index has to
be updated

The drawback of creating an index is that it requires additional space to store the index and
additional time to create it as well. However, the speed we gain while searching overshadows
these drawbacks by miles.

Indexes in Sphinx
Indexes in Sphinx are a bit different from indexes we have in databases. The data that Sphinx
indexes is a set of structured documents and each document has the same set of fields. This
is very similar to SQL, where each row in the table corresponds to a document and each
column to a field.

Sphinx builds a special data structure that is optimized for answering full-text search
queries. This structure is called an index and the process of creating an index from
the data is called indexing.

The indexes in Sphinx can also contain attributes that are highly optimized for filtering.
These attributes are not full-text indexed and do not contribute to matching. However,
they are very useful at filtering out the results we want based on attribute values.

There can be different types of indexes suited for different tasks. The index type, which
has been implemented in Sphinx, is designed for maximum indexing and searching speed.

The indexes are stored in a file on the file system as specified in the Sphinx configuration file.
In the previous chapter it was /usr/local/sphinx/var/data/test1.

Chapter 3

[37]

Index attributes
Attributes in an index are used to perform additional filtering and sorting during search. They
are basically additional values linked to each document in the index.

Let's try to understand the attributes using an example. Suppose you want to search through
a catalog of books stored in the index. You want the results to be sorted by the date on
which the book was published and then by the cost of the book. For this you need not put
the date and cost of the book in the full-text index. You can specify these two values as
attributes and then sort the results of you search query by these attributes. These attributes
will play no role in searching but will play a major role in sorting the search results.

Attributes play some role in relevancy when SPH_SORT _EXPR sort
mode is used

Another use of attributes would be to filter the search results. You can filter your results
for the specified date range so that only those books that were published in the given time
period are returned.

Another good example to understand the attributes would be a blogging system. Typically
only the title and content of a blog post needs to be full-text searchable, despite the fact that
on many occasions we want the search to be limited to a certain author or category. For such
cases we can use attributes to filter the search results, and we can return only those posts
whose author (or category) attribute in the index is the same as the selected author
or category filter.

So, full-text search results can not only be processed based on matching documents,
but on many other document attributes as well. It is possible to sort the results purely
based on attributes.

One other important characteristic of attributes is that they are returned in search results
while the actual indexed data is not. When displaying search results, you may use the
returned attribute values as it is, while for displaying the full-text data you need to get
it from the original source.

Types of attributes
The data on the basis of which the documents should be filtered can be of various types.
To cater to this and for more efficient filtering, attributes can be of the following types:

�� Unsigned integers (1 bit to 32 bit wide)

�� Floating point values (32 bit, IEEE 754 single precision)

�� String ordinals --enable-id64

Indexing

[38]

�� UNIX timestamps

�� Multi-value attributes (MVA)

Attribute names are always case insensitive. They are stored in the index but cannot be
searched as full-text.

Multi-value attributes (MVA)
MVAs are a special type of attribute in Sphinx that make it possible to attach multiple values
to every document. These attributes are especially useful in cases where each document can
have multiple values for the same property (field).

In our previous example of a blog post, each post can have multiple tags associated with
it. Now if you want to filter the search based on tags, MVAs can be used in this case. For
example, a post has php, programming, and opensource as tags, and if we use an MVA to
hold these values, then filtering a search by any of those three tags would return the same
post (and any other posts with the same tags).

MVAs are specified as lists and its entries are limited to unsigned 32-bit integers. The list
itself is not limited and an MVA can hold any number of entries for each document, as long
as RAM permits.

Search results can be filtered or grouped by MVA but cannot be sorted by MVA.

Data sources
The source of the data that is to be indexed is called a data source. The data can generally
come from very different sources such as SQL databases, plain text files, HTML documents,
web services, mailboxes, and so on.

Sphinx cannot directly connect to a data source and fetch the required data. For different
sources Sphinx requires different code to prepare the data for indexing. The code that does
this job is called as data source driver (or data source for brevity).

Sphinx is available with pre-built data source drivers for MySQL and PostgreSQL databases.
These drivers can connect to the database using Sphinx's native C/C++ API to run queries and
fetch the data. The retrieved data is then indexed and stored in the indexes.

Chapter 3

[39]

Another driver called xmlpipe2 (and xmlpipe which is now deprecated) is shipped with
Sphinx. This driver executes the specified command and reads the data from its stdout.
The data is expected in a predefined XML structure. This data source is very useful when
indexing data from non-conventional sources such as mailboxes, web service, plain text files,
and so on. This data source can also be used to get the data from a database.

Data sources are defined in Sphinx configuration files and there can be multiple sources per
index. Multiple sources are processed sequentially in the very same order in which they were
specified in the index definition. The data (thus documents) from all the sources are merged
as if they were coming from a single source.

In this book we will be going through the following data sources in detail:

�� MySQL data source

�� xmlpipe data source

How to define the data source?
Data sources are defined in the Sphinx configuration file (in our case /usr/local/sphinx/
etc/sphinx.conf). The data source block looks something like:

source name
{
 # Source options
 type = mysql
 …….
 …….
}

We need to provide a name to each source followed by the source options. The type option
specifies whether the data source is MySQL or PostgreSQL, or xmlpipe or xmlpipe2. We will
be looking at the respective data source options, which are dependent on the type, later in
the chapter.

SQL data sources
As mentioned earlier, Sphinx ships with two SQL data sources: MySQL and PostgreSQL. Let's
see how we can use these data sources to create indexes that can later be searched using
the searchd daemon.

All our examples will use MySQL as the source database. However, there
shouldn't be any major difference in defining a source for PostgreSQL.

Indexing

[40]

Let's start by understanding how the MySQL data source worked in the example we saw in
Chapter 2, Getting Started.

The data source configuration was as given next:

source src1
{
 type = mysql

 sql_host = localhost
 sql_user = test
 sql_pass =
 sql_db = test
 sql_port = 3306	 # optional, default is 3306

 sql_query = \
 SELECT id, group_id, UNIX_TIMESTAMP(date_added) AS date_added,
title, content \
 FROM documents

 sql_attr_uint = group_id
 sql_attr_timestamp = date_added

 sql_query_info = SELECT * FROM documents WHERE id=$id
}

In this case we named the data source as src1. We specified that we will be using MySQL as
the source database with the help of the type option.

The next few options like sql_host, sql_user, sql_pass, sql_db and sql_port were
used to define the connection parameters for connecting to the MySQL database.

Now let's understand what sql_query is used for. This option is used to specify the main
SQL query that will fetch the data from the database. This is a mandatory option if you are
using an SQL data source and there can only be one main query per source.

Select as many fields in the query as you want to be included in the index. However,
document ID must be the very first field and it must be a unique unsigned positive integer.
In this case the id field of the documents table will be treated as document id in the
created index.

Chapter 3

[41]

Document ID should be the first field in the SQL query and it must be a unique
unsigned non-zero, non-negative integer number. If you are using multiple
sources for an index then the document IDs must be unique across all sources.

All the fields (except document ID) selected by the query are, by default, treated as full-text
fields in the created index. If you want one or more fields to act as attributes in the index
then you can do so with the help of the sql_attr_* option. In the previous example, we
declared group_id to be an attribute of type unsigned integer and date_added to be an
attribute of type timestamp. The following options can be used to declare different types
of attributes:

�� sql_attr_unit: Unsigned integer attribute (32 bit)

�� sql_attr_bool: Boolean attribute

�� sql_attr_bigint: Signed integer attribute (64 bit)

�� sql_attr_timestamp: Unix timestamp attribute

�� sql_attr_str2ordinal: Ordinal string number attribute

�� sql_attr_float: Floating point attribute

�� sql_attr_multi: Multi-valued attribute (MVA)

As we had inserted four rows in the documents table, the query will retrieve all the four
rows and create the index with id as document id, title and content as full-text fields,
group_id as an unsigned integer attribute, and date_added as timestamp attribute.

When a search is performed on the index, the search term is matched against title and
content fields, while the two attributes can be used for sorting and filtering.

The last option in the source configuration is sql_query_info and this is optional. This
option only applies to MySQL source type. It is used by the CLI search utility to fetch and
display document information. The $id macro is required and it expands to the queried
document ID. By default the CLI search utility will display only the attributes stored in the
index for the matched documents. If you want to display the actual text that was full-text
indexed or any other information related to the matched document, the sql_query_info
option comes in handy.

Creating Index using SQL data source (Blog)
Now let's take a look at how to create indexes using a MySQL data source. We will
understand this with the help of a small blogging application.

We are going to assume that our blogging application has some frontend to manage the
posts, authors, and categories. We will only deal with the database part of it.

Indexing

[42]

We will assume that each blog post is written by one author and it can be assigned multiple
categories. Also, the same category can be assigned to multiple blog posts.

Our aim is to create an index for blog posts that can be searched from within our application.
We will create indexes in steps, and our first step would be to create a simple index with only
full-text indexed fields and no attributes. Next we will try to add simple attributes so that
search can be filtered based on authors and date. Lastly we will try our hand at multi-value
attributes (MVAs) and see what configuration options to use in order to add them to the index.

Creating a simple index without any attributes
Let's create an index that would essentially work in a very similar way to the database table
itself. It will have two full-text indexed fields: title and content.

Time for action – creating database tables for a blog
1.	 Create the database by executing the following query:

CREATE DATABASE myblog

2.	 Create the posts table:

CREATE TABLE `myblog`.`posts` (
`id` INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY ,
`title` VARCHAR(255) NOT NULL ,
`content` TEXT NOT NULL ,
`author_id` INT UNSIGNED NOT NULL ,
`publish_date` DATETIME NOT NULL
) ENGINE = MYISAM;

3.	 Create the authors table:

CREATE TABLE `myblog`.`authors` (
`id` INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY ,
`name` VARCHAR(50) NOT NULL
) ENGINE = MYISAM;

4.	 Create the categories table:

CREATE TABLE `myblog`.`categories` (
`id` INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY ,
`name` VARCHAR(50) NOT NULL
) ENGINE = MYISAM;

Chapter 3

[43]

5.	 Create the posts_categories table:

CREATE TABLE `myblog`.`posts_categories` (
`post_id` INT UNSIGNED NOT NULL ,
`category_id` INT UNSIGNED NOT NULL ,
PRIMARY KEY (`post_id` , `category_id`)
) ENGINE = MYISAM;

What just happened?
We created a database to hold the tables needed for our blog application. We then created
the following tables:

�� posts: Table to store the actual post's content.

�� authors: Table to store the author's names. Each post belongs to one author and
an author can have many posts.

�� categories: Table to store the category names. Each post can belong to multiple
categories and each category can have multiple posts.

�� posts_categories: Table to store the relationship between posts and
categories.

Time for action – populate the database tables
Populate all the tables with some dummy data. Make sure that you maintain the proper
relationships in all the tables by inserting correct foreign keys in their respective fields.

INSERT INTO `posts` (`id`, `title`, `content`, `author_id`, `publish_
date`) VALUES
(1, 'Electronics For You', 'EFY- Electronics For You is a magazine for
people with a passion for Electronics and Technology. Since the first
issue in 1969, EFY has delivered the best in Product Reviews, Hardware
and Software comparisons, Technical News, Analysis, Electronics news,
about Products, Components, Computer Hardware,Power Supply, Industry

Indexing

[44]

Automation, Circuit Designing provided by electronicsforu.com.', 2,
'2010-08-02 10:29:28'),
(2, 'What is PHP?', 'PHP Hypertext Preprocessor (the name is a
recursive acronym) is a widely used, general-purpose scripting
language that was originally designed for web development to produce
dynamic web pages.', 3, '2010-03-09 10:31:01'),
(3, 'Nintendo', 'Games that are easy to play and fun for anyone.
Nintendo are one of them major players in gaming world. They also
develop computer games these days.', 4, '2010-01-05 10:39:21'),
(4, 'Sony PlayStation - Full of life', 'Sony Playstation is one of
the leading gaming console of modern times. They are fun to play and
people of all age groups enjoy it.', 1, '2010-08-17 10:48:23'),
(5, 'Namespaces in PHP 5.3', 'One of the most significant and welcome
features added in PHP 5.3 was that of namespaces. While this has been
around in other programming languages, namespaces have finally found
their place starting with PHP 5.3.', 2, '2010-04-19 10:50:11'),
(6, 'Leadership Skills', 'Leadership skill is the key to success in
any field, be it software industry, automobile industry or any other
business.', 2, '2009-02-09 10:55:32'),
(7, 'Ruby on Rails', 'RoR is a rapid web application development
framework. It was one of the first framework for developing web
applications.', 4, '2010-08-13 13:44:32'),
(8, 'Sphinx search engine', 'Sphinx was created by Andrew Aksyonoff
and it can be used along with any programming language.', 1, '2009-04-
13 13:46:11');

INSERT INTO `authors` (`id`, `name`) VALUES
(1, 'Amit Badkas'),
(2, 'Aditya Mooley'),
(3, 'Rita Chouhan'),
(4, 'Dr.Tarique Sani');

INSERT INTO `categories` (`id`, `name`) VALUES
(1, 'Programming'),
(2, 'Games'),
(3, 'Electronics'),
(4, 'PHP'),
(5, 'Search'),
(6, 'Misc');

INSERT INTO `posts_categories` (`post_id`, `category_id`) VALUES
(1, 1),
(1, 2),

Chapter 3

[45]

(1, 3),
(2, 1),
(2, 4),
(3, 2),
(3, 3),
(4, 2),
(4, 3),
(5, 1),
(5, 4),
(6, 6),
(7, 1),
(8, 1),
(8, 5);

What just happened?
We populated the database tables with some data. Later on we will index this data and
search it using Sphinx.

In the real world this would be an application with some web frontend to manage the blog
posts. Here we won't be looking into how to build that frontend as we are just focusing on
the search part for now.

Time for action – creating the Sphinx configuration file
1.	 Create the file /usr/local/sphinx/etc/sphinx-blog.conf with the

following content:

source blog
{
 type = mysql

 sql_host = localhost
 sql_user = root
 sql_pass =
 sql_db = myblog

 sql_query = SELECT id, title, content FROM posts

 sql_query_info = SELECT id, title FROM posts WHERE ID=$id
}

index posts

Indexing

[46]

{
 source = blog
 path = /usr/local/sphinx/var/data/blog
 docinfo = extern
 charset_type = sbcs
}

indexer
{
 mem_limit = 32M
}

2.	 Run the following command to create the index:

$ /usr/local/sphinx/bin/indexer --config /usr/local/sphinx/etc/
sphinx-blog.conf --all

3.	 Now test the index by searching from the command line search utility:

$ /usr/local/sphinx/bin/search --config /usr/local/sphinx/etc/
sphinx-blog.conf php

Chapter 3

[47]

What just happened?
We created a configuration file /usr/local/sphinx/etc/sphinx-blog.conf, which is
later used by Sphinx to create an index.

The first block in the configuration file defines the data source named blog which is of
type mysql. We provided values for the options to connect to the database and a query
(sql_query) which fetches all the records from the database for indexing. The last option in
the configuration file is sql_query_info, which is used to display additional information
related to the searched documents. Because of this we see the id and title in the
search results.

The next block in the configuration file defines index. The index will be saved at /usr/
local/sphinx/var/data/blog on the file system.To create the actual index we used
the indexer program. indexer takes the path of the config file as the argument.

If the config file path is not mentioned then it tries to search for it at the
default location which is /usr/local/sphinx/etc/sphinx.conf.

Another argument we passed was --all which says that all indexes defined in the
configuration file should be indexed. In our case there was just one index and we had named
it posts.

Indexing

[48]

There are a number of arguments that can be passed to the indexer. To view a list of all the
arguments issue the following command:

$ /usr/local/sphinx/bin/indexer

The last thing we did was perform a search for the term "php", which returned two
documents. This concluded that our index is working fine.

The search utility used to perform the search is one of the helper tools
available to quickly test the index from the command line without writing the
code to connect to the searchd server and process its response.

search is not intended to be used in a client application. You should use
searchd and the bundle client APIs to perform a search from within your
application. We will be taking a look at how to use searchd and a client API to
perform search in Chapter 4, Searching.

Similar to the indexer program, search also takes a number of arguments. Since we
were not using the default configuration file, we passed the path of configuration file as an
argument to the search command. The search term, that is "php", should always be last in
the list of arguments.

$ /usr/local/sphinx/bin/search

Chapter 3

[49]

The indexing workflow
Indexing works in the same fashion with all the SQL drivers. When indexer is run, a
database connection is established using the credentials provided in the configuration file.
After that, the main query, the sql_query is fired to fetch the data to be indexed. Once this
is done the connection to the database is closed and the indexer does the sorting phase.

Indexing

[50]

Adding attributes to the index
The index we created for the blog posts is all good and fine, but it only works for full-text
searching. What if we want to filter the results by author or date? That can't be done with
the index that we created earlier. To solve this problem, Sphinx offers special fields in the
index called attributes.

Let's add attributes to our index to hold the author_id and publish_date.

Time for action – adding attributes to the index
1.	 Modify the file /usr/local/sphinx/etc/sphinx-blog.conf to add the code

as highlighted next:

source blog
{
 type = mysql

 sql_host = localhost
 sql_user = root
 sql_pass =
 sql_db = myblog

 sql_query = \

 SELECT id, title, content, UNIX_TIMESTAMP(publish_date) \

 AS publish_date, author_id FROM posts

 sql_attr_uint	 = author_id

 sql_attr_timestamp	 = publish_date

 sql_query_info = SELECT id, title FROM posts WHERE ID=$id
}

index posts
{
 source = blog
 path = /usr/local/sphinx/var/data/blog
 docinfo = extern
 charset_type = sbcs
}

Chapter 3

[51]

indexer
{
 mem_limit = 32M
}

Backslashes (\) used for sql_query are just for clarity. The complete query
can be written in one single line.

2.	 Run the indexer again to re-index the data:

$ /usr/local/sphinx/bin/indexer --config /usr/local/sphinx/etc/
sphinx-blog.conf --all

3.	 Search for all posts containing the term php, written by Aditya Mooley (author_id
= 2):

$ /usr/local/sphinx/bin/ search --config /usr/local/sphinx/etc/
sphinx-blog.conf -f author_id 2 php

Indexing

[52]

What just happened?
We modified the sphinx-blog.conf file, and changed the sql_query to fetch the
author_id and publish_date along with other fields. We also added two new options;
sql_attr_unit and sql_attr_timestamp to specify the two attributes. author_id is
an unsigned integer, while publish_date is TIMESTAMP.

After that we re-indexed using the indexer command and this overwrote the previously
created index file at /usr/local/sphinx/var/data/blog.

Now to filter our results by author_id, we specified the –f option to the search command
that stands for filter. We filtered the results so that only those documents whose author_id
attribute is 2 are returned.

Filtering on timestamp attributes will be covered in Chapter 4, Searching, as
that cannot be done using command line search utility.

Similarly if you want to filter the search results so that all documents, which contain the
term "programming" but written by Amit Badkas (author_id 1) are returned—issue the
following command:

$ /usr/local/sphinx/bin/search --config /usr/local/sphinx/etc/sphinx-
blog.conf -f author_id 1 programming

Adding an MVA to the index
We have already discussed filtering our results by authors. It was straight-forward since
each post has only one author. However, what if we want to filter our results by categories?
Remember, each post can be in one or more categories and we can only assign one value
to an attribute. MVA comes to our rescue in these scenarios. As discussed earlier, an MVA
can hold multiple values and we can filter our posts based on any of the categories they
belong to.

Chapter 3

[53]

Time for action – Adding an MVA to the index
1.	 Once again modify the sphinx-blog.conf file to add/modify the options as

highlighted next:

source blog
{
 type = mysql

 sql_host = localhost
 sql_user = root
 sql_pass =
 sql_db = myblog

 sql_query = \
 SELECT id, title, content, UNIX_TIMESTAMP(publish_date) \
 AS publish_date, author_id FROM posts

 sql_attr_uint = author_id
 sql_attr_multi = uint category_id from query; \

 SELECT post_id, category_id FROM posts_categories

 sql_attr_timestamp = publish_date

 sql_query_info = SELECT id, title FROM posts WHERE ID=$id
}

index posts
{
 source = blog
 path = /usr/local/sphinx/var/data/blog
 docinfo = extern
 charset_type = sbcs
}

indexer
{
 mem_limit = 32M
}

Indexing

[54]

2.	 Run the indexer again to re-index the data:

$ /usr/local/sphinx/bin/indexer --config /usr/local/sphinx/etc/
sphinx-blog.conf ––all

3.	 Search for all posts containing the term "language" and having the category "Search"
(category_id = 5):

$ /usr/local/sphinx/bin/ search --config /usr/local/sphinx/etc/
sphinx-blog.conf -f category_id 5 language

What just happened?
We added a new option in source configuration called as sql_attr_multi. This option
is used to declare the Multi valued attribute (MVA). This attribute only applies to SQL
source types.

sql_attr_multi allows us to attach more than one value to an attribute. The format in
which this option is declared is as follows:

sql_attr_multi = ATTR-TYPE ATTR-NAME 'from' SOURCE-TYPE [;QUERY]
[;RANGE-QUERY]

The option's parameters are as follows:

�� ATTR-TYPE: Is uint or timestamp

�� SOURCE-TYPE: Is 'field', 'query', or 'ranged-query'

�� QUERY: Is an SQL query executed to fetch all docid, attribute value pairs

�� RANGE-QUERY: Is SQL query used to fetch min and max ID values, similar to
sql_query_range, which we will see later on

Chapter 3

[55]

We declared sql_attr_multi as:

sql_attr_multi = uint category_id from query; \
 SELECT post_id, category_id FROM posts_categories

This means that category_id is a uint attribute and will hold multiple values as returned
by the query. The query that follows will get all the categories associated with the current
post, such as the current document ID.

Let's search for all posts with any of the words from the string "web games php" having
category "Programming" (category_id 1) and written by Rita Chouhan (author_id 3).

$ /usr/local/sphinx/bin/ search --config /usr/local/sphinx/etc/sphinx-
blog.conf -a -f category_id 1 –f author_id 3 web games php

The previous search query returned the document ID 2 as the result. In the search query we
used filters on two fields: author_id and category_id, and also used an option –a that
specifically searched for any word from the given phrase.

The search result also shows us the number of documents Sphinx found for each word and
the number of times (hits) each word appeared in those documents.

Filtering without searching for a specific phrase
At times we may want to only filter the results without performing a full-text search. For
example: Find all posts with category PHP having any title or content, and written by any
author. In such a case we don't have a specific search term, but we only want to filter by the
category_id attribute. To achieve this we can issue a search command, as demonstrated in
the following screenshot, without passing any search term:

$ /usr/local/sphinx/bin/ search --config /usr/local/sphinx/etc/sphinx-
blog.conf -f category_id 4

Indexing

[56]

As we wanted to search for all posts having category PHP, we didn't pass the search term and
just filtered the results by category_id. This gave us two documents with category_id
= 4.

xmlpipe data source
xmlpipe data source enables users to implement their own data source drivers. At times we
cannot use an SQL data source because the data might be coming from sources such as text
files, mailboxes, RSS feeds, and so on. In such cases we can implement a custom driver using
xmlpipe data source.

xmlpipe data source is limited to two fixed fields and two fixed attributes, and
above all, it is deprecated in favor of the xmlpipe2 data source explained in the
next section.

We won't be going into the nitty-gritty of xmlpipe data source, instead, we will see how
xmlpipe2 data source works in greater detail.

xmlpipe2 data source
xmlpipe2 is preferred over the older xmlpipe data source. It lets you pass arbitrary full-text
and attribute data to Sphinx in a custom XML format. When the data source is configured to
use xmlpipe2, indexer executes the given command and opens a pipe to its stdout. A well
formed XML stream is then expected as the output of the command.

The XML schema (set of fields and attributes) can be defined either in the configuration file
or the XML stream itself.

Chapter 3

[57]

Indexing with schema defined in XML stream
Let's see how the xmlpipe2 data source is configured and what XML the indexer expects at
the stdout of the given command.

We are going to continue with the same blog example as used in the SQL data
sources section earlier in this chapter.

Firstly, let's see how to index the posts table without any attributes.

Time for action – creating index (without attributes)
1.	 Create a new Sphinx configuration file at /usr/local/sphinx/etc/sphinx-

blog-xmlpipe2.conf with the following options:

source blog
{
 type = xmlpipe2
 xmlpipe_command = /usr/bin/php /home/abbas/sphinx/makeindex.php
}

index posts
{
 source = blog
 path = /usr/local/sphinx/var/data/blog-xmlpipe2
 docinfo = extern
 charset_type = utf-8
}

indexer
{
 mem_limit = 32M
}

2.	 Create the PHP script /home/abbas/sphinx/makeindex.php (this script can be
anywhere on your machine).

<?php
// Database connection credentials
$dsn ='mysql:dbname=myblog;host=localhost';
$user = 'root';
$pass = '';

// Instantiate the PDO (PHP 5 specific) class

Indexing

[58]

try {
 $dbh = new PDO($dsn, $user, $pass);
} catch (PDOException $e){
 echo'Connection failed: '.$e->getMessage();
}

// We will use PHP's inbuilt XMLWriter to create the xml structure
$xmlwriter = new XMLWriter();
$xmlwriter->openMemory();
$xmlwriter->setIndent(true);
$xmlwriter->startDocument('1.0', 'UTF-8');
// Start the parent docset element
$xmlwriter->startElement('sphinx:docset');

// Start the element for schema definition
$xmlwriter->startElement('sphinx:schema');

// Start the element for title field
$xmlwriter->startElement('sphinx:field');
$xmlwriter->writeAttribute("name", "title");
$xmlwriter->endElement(); //end field

// Start the element for content field
$xmlwriter->startElement('sphinx:field');
$xmlwriter->writeAttribute("name", "content");
$xmlwriter->endElement(); //end field

$xmlwriter->endElement(); //end schema

// Query to get all posts from the database
$sql = "SELECT id, title, content FROM posts";

// Run a loop and put the post data in XML
foreach ($dbh->query($sql) as $post) {
 // Start the element for holding the actual document (post)
 $xmlwriter->startElement('sphinx:document');
 // Add the id attribute
 $xmlwriter->writeAttribute("id", $post['id']);

 // Set value for the title field
 $xmlwriter->startElement('title');
 $xmlwriter->text($post['title']);
 $xmlwriter->endElement();//end title

Chapter 3

[59]

 // Set value for the content field
 $xmlwriter->startElement('content');
 $xmlwriter->text($post['content']);
 $xmlwriter->endElement();// end content

 $xmlwriter->endElement();// end document
}

$xmlwriter->endElement();// end docset

// Output the xml
print $xmlwriter->flush();
?>

3.	 Run the indexer to create the index:

$ /usr/local/sphinx/bin/indexer --config /usr/local/sphinx/etc/
sphinx-blog-xmlpipe2.conf --all

4.	 Test the index by searching for "programming":

$ /usr/local/sphinx/bin/search --config /usr/local/sphinx/etc/
xmlpipe2.conf programming

Indexing

[60]

What just happened?
The xmlpipe2 data source needs an option xmlpipe_command, which should be the
command to be executed, that streams the XML on its stdout. In our case, we are using the
PHP script /home/abbas/sphinx/makeindex.php to create the well-formed XML. This
script is executed using the PHP CLI located at /usr/bin/php.

You may put the PHP script anywhere on your file system. Just make sure to
use the correct path in your configuration file.

To determine the path to PHP CLI, you can issue the following command:

$ which php

No other option is required in the data source configuration if we are specifying the schema
in the XML itself.

Next we created the PHP script which outputs the well-formed XML. In the script we first
connected to the database and retrieved all posts using the PHP 5 native PDO driver. We
created the XML structure with the help of PHP's XMLWriter class.

An explanation of how the PHP code works is beyond the scope of this book.
Please refer to the PHP Manual (http://www.php.net/manual/) for
more details.

The output (text truncated for brevity) of our PHP script looks something like this:

<?xml version="1.0" encoding="UTF-8"?>
<sphinx:docset>
 <sphinx:schema>
 <sphinx:field name="title"/>
 <sphinx:field name="content"/>
 </sphinx:schema>
 <sphinx:document id="1">
 <title>Electronics For You</title>
 <content>EFY- Electronics For You is a magazine for people with a
passion for Electronics and Technology...</content>
 </sphinx:document>
 <sphinx:document id="2">
 <title>What is PHP?</title>
 <content>PHP Hypertext Preprocessor...</content>
 </sphinx:document>

Chapter 3

[61]

<!-- ... remaining documents here ... -->

</sphinx:docset>

The XML structure is pretty much self explanatory. We specified the schema (fields
and attributes to be added to the index) at the top using the <sphinx:schema> element.
It is compulsory to declare the schema before any document is parsed. Arbitrary fields
and attributes are allowed, and they can occur in the stream in arbitrary order within
each document.

<sphinx:schema> is only allowed to occur as the very first sub-element in
<sphinx:docset>. However, it is optional and can be omitted if settings
are defined in configuration file.

If the schema is already declared in the configuration file then there's no need to declare it in
the XML structure. In-stream schema definition takes precedence and if there is no in-stream
definition, then settings from the configuration file will be used.

Any unknown XML tags, such as the tags, which were neither declared as fields nor as
attributes, will be ignored and won't make it to the index.

The following are the XML elements (tags) used in the previous code snippet. They are
recognized by xmlpipe2:

�� sphinx:docset: Mandatory top-level element. It contains the document set for
xmlpipe2.

�� sphinx:schema: Optional, must occur as the first child of docset or never occur at
all. It contains field and attribute declarations, and defines the document schema. It
overrides the settings from the configuration file.

�� sphinx:field: Optional, child of sphinx:schema. It declares a full-text field and its
only recognized attribute is name, which specifies the element name that should be
treated as a full-text field in the subsequent documents.

�� sphinx:document: This is a mandatory element which holds the actual data to
be indexed. It must be the child of the sphinx:docset element. This element can
contain arbitrary sub-elements with field and attribute values to be indexed (as
declared either in sphinx:schema or configuration file). The compulsory known
attribute of this element is id. It must contain the unique integer document ID.

Indexing

[62]

Once the index stands created, we perform a search for the usual way using the command
line utility.

We don't get extra information like title in search results output since that
was SQL data-source specific. sql_query_info was used to fetch that extra
information and that cannot be used with xmlpipe2 data source.

Now, let's see how to define attributes in sphinx:schema so that the same goes in
our index.

Time for action – add attributes to schema
1.	 Modify /home/abbas/sphinx/makeindex.php file and make the changes as

highlighted next:

<?php
// Database connection credentials
$dsn ='mysql:dbname=myblog;host=localhost';
$user = 'root';
$pass = '';

// Instantiate the PDO (PHP 5 specific) class
try {
 $dbh = new PDO($dsn, $user, $pass);
} catch (PDOException $e){
 echo'Connection failed: '.$e->getMessage();
}

// We will use PHP's inbuilt XMLWriter to create the xml structure
$xmlwriter = new XMLWriter();
$xmlwriter->openMemory();
$xmlwriter->setIndent(true);
$xmlwriter->startDocument('1.0', 'UTF-8');
// Start the parent docset element
$xmlwriter->startElement('sphinx:docset');

// Start the element for schema definition
$xmlwriter->startElement('sphinx:schema');

// Start the element for title field
$xmlwriter->startElement('sphinx:field');
$xmlwriter->writeAttribute("name", "title");
$xmlwriter->endElement(); //end field

Chapter 3

[63]

// Start the element for content field
$xmlwriter->startElement('sphinx:field');
$xmlwriter->writeAttribute("name", "content");
$xmlwriter->endElement(); //end field

// Start the element for author_id attribute

$xmlwriter->startElement('sphinx:attr');

$xmlwriter->writeAttribute("name", "author_id");

$xmlwriter->writeAttribute("type", "int");

$xmlwriter->endElement(); //end attribute

// Start the element for timestamp attribute

$xmlwriter->startElement('sphinx:attr');

$xmlwriter->writeAttribute("name", "publish_date");

$xmlwriter->writeAttribute("type", "timestamp");

$xmlwriter->endElement(); //end attribute

// Start the element for multi valued category_id attribute

$xmlwriter->startElement('sphinx:attr');

$xmlwriter->writeAttribute("name", "category_id");

$xmlwriter->writeAttribute("type", "multi");

$xmlwriter->endElement(); //end attribute

$xmlwriter->endElement(); //end schema

// Query to get all posts from the database

$sql = "SELECT id, title, content, author_id, UNIX_
TIMESTAMP(publish_date) AS publish_date FROM posts";

$posts = $dbh->query($sql);

// Run a loop and put the post data in XML

foreach ($posts as $post) {

 // Start the element for holding the actual document (post)
 $xmlwriter->startElement('sphinx:document');
 // Add the id attribute
 $xmlwriter->writeAttribute("id", $post['id']);

 // Set value for the title field
 $xmlwriter->startElement('title');
 $xmlwriter->text($post['title']);
 $xmlwriter->endElement();//end title

Indexing

[64]

 // Set value for the content field
 $xmlwriter->startElement('content');
 $xmlwriter->text($post['content']);
 $xmlwriter->endElement();// end content

 // Set value for the author_id attribute

 $xmlwriter->startElement('author_id');

 $xmlwriter->text($post['author_id']);

 $xmlwriter->endElement();// end attribute

 // Set value for the publish_date attribute

 $xmlwriter->startElement('publish_date');

 $xmlwriter->text($post['publish_date']);

 $xmlwriter->endElement();// end attribute

 // Find all categories associated with this post

 $catsql = "SELECT category_id FROM posts_categories "

 . " WHERE post_id = {$post['id']}";

 $categories = array();

 foreach ($dbh->query($catsql) as $category) {

 $categories[] = $category['category_id'];

 }

 // Set value for the category_id attribute

 // Multiple category ids should be comma separated

 $xmlwriter->startElement('category_id');

 $xmlwriter->text(implode(',', $categories));

 $xmlwriter->endElement();// end attribute

 $xmlwriter->endElement();// end document
}

$xmlwriter->endElement();// end docset

// Output the xml
print $xmlwriter->flush();
?>

2.	 Run the indexer to re-create the index:

$ /usr/local/sphinx/bin/indexer --config /usr/local/sphinx/etc/
sphinx-blog-xmlpipe2.conf ––all

Chapter 3

[65]

3.	 Search for posts containing the word "programming" and having category "PHP"
(category_id 4).

$ /usr/local/sphinx/bin/search --config /usr/local/sphinx/etc/
sphinx-blog-xmlpipe2.conf -f category_id 4 programming

What just happened?
We modified our PHP script, which streams the XML, to include the attribute definition as
well as attribute values. We included the following attributes:

�� author_id: Uint

�� publish_date: Timestamp

�� category_id: Multi valued attribute (MVA). We provided multiple category IDs as
a comma separated value.

The new XML stream looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<sphinx:docset>
 <sphinx:schema>
 <sphinx:field name="title"/>
 <sphinx:field name="content"/>
 <sphinx:attr name="author_id" type="int"/>

 <sphinx:attr name="publish_date" type="timestamp"/>

Indexing

[66]

 <sphinx:attr name="category_id" type="multi"/>

 </sphinx:schema>
 <sphinx:document id="1">
 <title>Electronics For You</title>
 <content>EFY- Electronics For You is a magazine for people with a
passion for Electronics and Technology…</content>
 <author_id>2</author_id>

 <publish_date>1280725168</publish_date>

 <category_id>1,2,3</category_id>

 </sphinx:document>
 <sphinx:document id="2">
 <title>What is PHP?</title>
 <content>PHP Hypertext Preprocessor...</content>
 <author_id>3</author_id>

 <publish_date>1268110861</publish_date>

 <category_id>1,4</category_id>

 </sphinx:document>

<!-- ... remaining documents here ... -->

</sphinx:docset>

The new XML element used here is sphinx:attr which is an optional element, and if present,
must be a child of sphinx:schema. This element is used to declare an attribute of the
document in the index. Known attributes of this sphinx:attr element are:

�� name: Specifies the name that should be treated as an attribute in the subsequent
documents.

�� type: Specifies the attribute type. The possible values of this attribute are int,
timestamp, str2ordinal, bool, float, and multi.

�� bits: Specifies the bit size for int attribute and value values are 1 to 32.

�� default: Specifies the default value that should be used if the attribute's respective
element is not present in the document.

Don't confuse yourself with an attribute of XML element and an attribute in the index.

For example: <sphinx:attr name="author_id">

Here the XML element attribute is name, while the attribute that goes into the index
is author_id.

Chapter 3

[67]

After making the necessary changes in makeindex.php, we re-created the index. There was
no need to make any changes in the configuration file as the schema was defined in the XML
itself instead of configuration file.

With attributes in place, we performed a search for posts containing the word
"programming" and having category as "PHP", or in other words, filtered the results by
category_id.

Indexing with schema defined in configuration file
Now let's see how to define the schema (fields and attributes) in the Sphinx configuration file,
instead of defining it in the XML stream. This is very similar to what we did when we used SQL
data sources and defined the attributes in the source block of the configuration file.

Time for action – create index with schema defined
in configuration file
1.	 Modify /usr/local/sphinx/etc/sphinx-blog-xmlpipe2.conf and include

the fields and attributes definition in the source block:

source blog
{
 type = xmlpipe2
 xmlpipe_command = /usr/bin/php /home/abbas/sphinx/makeindex.php

 xmlpipe_field = title

 xmlpipe_field = content

 xmlpipe_attr_uint = author_id

 xmlpipe_attr_timestamp = publish_date

 xmlpipe_attr_multi = category_id

}

index posts
{
 source = blog
 path = /usr/local/sphinx/var/data/blog-xmlpipe2
 docinfo = extern
 charset_type = utf-8
}

indexer
{
 mem_limit = 32M
}

Indexing

[68]

2.	 Modify the makeindex.php script and remove the sphinx:schema element along
with all its sub-elements:

<?php
// Database connection credentials
$dsn ='mysql:dbname=myblog;host=localhost';
$user = 'root';
$pass = '';

// Instantiate the PDO (PHP 5 specific) class
try {
 $dbh = new PDO($dsn, $user, $pass);
} catch (PDOException $e){
 echo'Connection failed: '.$e->getMessage();
}

// We will use PHP's inbuilt XMLWriter to create the xml structure
$xmlwriter = new XMLWriter();
$xmlwriter->openMemory();
$xmlwriter->setIndent(true);
$xmlwriter->startDocument('1.0', 'UTF-8');
// Start the parent docset element
$xmlwriter->startElement('sphinx:docset');

// Query to get all posts from the database
$sql = "SELECT id, title, content, author_id, UNIX_
TIMESTAMP(publish_date) AS publish_date FROM posts";
$posts = $dbh->query($sql);
// Run a loop and put the post data in XML
foreach ($posts as $post) {
 // Start the element for holding the actual document (post)
 $xmlwriter->startElement('sphinx:document');
 // Add the id attribute
 $xmlwriter->writeAttribute("id", $post['id']);

 // Set value for the title field
 $xmlwriter->startElement('title');
 $xmlwriter->text($post['title']);
 $xmlwriter->endElement();//end title

 // Set value for the content field
 $xmlwriter->startElement('content');
 $xmlwriter->text($post['content']);
 $xmlwriter->endElement();// end content

Chapter 3

[69]

 // Set value for the author_id attribute
 $xmlwriter->startElement('author_id');
 $xmlwriter->text($post['author_id']);
 $xmlwriter->endElement();// end attribute

 // Set value for the publish_date attribute
 $xmlwriter->startElement('publish_date');
 $xmlwriter->text($post['publish_date']);
 $xmlwriter->endElement();// end attribute

 // Find all categories associated with this post
 $catsql = "SELECT category_id FROM posts_categories WHERE
post_id = {$post['id']}";
 $categories = array();
 foreach ($dbh->query($catsql) as $category) {
 $categories[] = $category['category_id'];
 }
 // Set value for the category_id attribute
 // Multiple category ids should be comma separated
 $xmlwriter->startElement('category_id');
 $xmlwriter->text(implode(',', $categories));
 $xmlwriter->endElement();// end attribute

 $xmlwriter->endElement();// end document
}

$xmlwriter->endElement();// end docset

// Output the xml
print $xmlwriter->flush();
?>

3.	 Create the index using the indexer:

$ /usr/local/sphinx/bin/indexer --config /usr/local/sphinx/etc/
sphinx-blog-xmlpipe2.conf --all

Indexing

[70]

What just happened?
We added the schema definition, and the declaration of fields and attributes that goes into
index, in the configuration file itself.

To define a field we used the xmlpipe_field option and to define an attribute we used the
xmlpipe_attr_* option. The following are some of the attribute options that can be used:

�� xmlpipe_attr_uint: For unsigned integers. Syntax matches that for sql_attr_
uint.

�� xmlpipe_attr_bool: For Boolean attributes. Syntax matches that for sql_attr_
bool.

�� xmlpipe_attr_timestamp: For UNIX timestamp attributes. Syntax matches that
for sql_attr_timestamp.

�� xmlpipe_attr_str2ordinal: For string ordinal attributes. Syntax matches that
of sql_attr_str2ordinal.

�� xmlpipe_attr_float: For floating point attributes. Syntax matches that of sql_
attr_float.

�� xmlpipe_attr_multi: For Multi Valued Attributes (MVA).

We then removed the <sphinx:schema> element from the XML stream by modifying our
makeindex.php script.

If the schema is defined at both places, that is, in the configuration file as well as
the XML stream then schema in XML stream takes precedence.

No other change was required in the XML stream.

Chapter 3

[71]

Summary
In this chapter:

�� We saw what indexes are and how they are used in Sphinx

�� We learned about fields and the different kind of attributes that go into the index

�� We took a look at how to create the Sphinx configuration file

�� We learned about SQL data source and xmlpipe data source

�� We learned how to use different kind of attributes so that we can filter
our search results

In the next chapter we will see how to use the Sphinx API to search from within your
application. We will use the same index used in this chapter and fire queries from our
PHP application to get the results.

4
Searching

In the previous chapter we learned how to create indexes. Now let's see how to
search those indexes from within your applications.

In this chapter we will learn how to use the Sphinx API to issue search queries
from your PHP applications. We will examine different query syntaxes and learn
about weighting, sorting, and grouping our search results.

We will be using the indexes created in Chapter 3, Indexing and write search queries to
search those indexes.

Client API implementations for Sphinx
Sphinx comes with a number of native searchd client API implementations. At the time
of writing this book, Sphinx came with PHP, Python, and Java implementations. Some
third-party open source implementations for Perl, Ruby, and C++ are also available.

All APIs provide the same set of methods and they implement the same network protocol.
As a result, they more or less all work in a similar fashion, they all work in a similar fashion.

All examples in this chapter are for PHP implementation of the Sphinx API.
However, you can just as easily use other programming languages.

Sphinx is used with PHP more widely than any other language.

Searching

[74]

Search using client API
Let's see how we can use native PHP implementation of Sphinx API to search. We will
be using the index and configuration file created in Chapter 3, Indexing. We will add a
configuration related to searchd and then create a PHP file to search the index using
the Sphinx client API implementation for PHP.

Time for action – creating a basic search script
1.	 Add the searchd config section to /usr/local/sphinx/etc/sphinx-blog.

conf:

source blog {
 # source options
}

index posts {
 # index options
}

indexer {
 # indexer options
}

searchd options (used by search daemon)
searchd
{
 listen = 9312
 log = /usr/local/sphinx/var/log/searchd.log
 query_log = /usr/local/sphinx/var/log/query.log
 max_children = 30
 pid_file = /usr/local/sphinx/var/log/searchd.pid
}

Chapter 4

[75]

2.	 Start the searchd daemon (as root user):

$ sudo /usr/local/sphinx/bin/searchd -c /usr/local/sphinx/etc/
sphinx-blog.conf

3.	 Copy the sphinxapi.php file (the class with PHP implementation of Sphinx API)
from the sphinx source directory to your working directory:

$ mkdir /path/to/your/webroot/sphinx

$ cd /path/to/your/webroot/sphinx

$ cp /path/to/sphinx-0.9.9/api/sphinxapi.php ./

4.	 Create a simple_search.php script that uses the PHP client API class to search
the Sphinx-blog index, and execute it in the browser:

<?php
require_once('sphinxapi.php');
// Instantiate the sphinx client
$client = new SphinxClient();
// Set search options
$client->SetServer('localhost', 9312);
$client->SetConnectTimeout(1);
$client->SetArrayResult(true);

// Query the index
$results = $client->Query('php');

// Output the matched results in raw format
print_r($results['matches']);

Searching

[76]

5.	 The output of the given code, as seen in a browser, will be similar to what's shown in
the following screenshot:

Chapter 4

[77]

What just happened?
Firstly, we added the searchd configuration section to our sphinx-blog.conf file
(created in Chapter 3, Indexing). The following options were added to searchd section:

�� listen: This options specifies the IP address and port that searchd will listen
on. It can also specify the Unix-domain socket path. This options was introduced in
v0.9.9 and should be used instead of the port (deprecated) option. If the port part
is omitted, then the default port used is 9312.

Examples:

�� listen = localhost

�� listen = 9312

�� listen = localhost:9898

�� listen = 192.168.1.25:4000

�� listen = /var/run/sphinx.s

�� log: Name of the file where all searchd runtime events will be logged. This is an
optional setting and the default value is "searchd.log".

�� query_log: Name of the file where all search queries will be logged. This is an
optional setting and the default value is empty, that is, do not log queries.

�� max_children: The maximum number of concurrent searches to run in parallel.
This is an optional setting and the default value is 0 (unlimited).

�� pid_file: Filename of the searchd process ID. This is a mandatory setting. The
file is created on startup and it contains the head daemon process ID while the
daemon is running. The pid_file becomes unlinked when the daemon is stopped.

Once we were done with adding searchd configuration options, we started the searchd
daemon with root user. We passed the path of the configuration file as an argument to
searchd. The default configuration file used is /usr/local/sphinx/etc/sphinx.conf.

After a successful startup, searchd listens on all network interfaces, including all the
configured network cards on the server, at port 9312. If we want searchd to listen on
a specific interface then we can specify the hostname or IP address in the value of the
listen option:

listen = 192.168.1.25:9312

The listen setting defined in the configuration file can be overridden
in the command line while starting searchd by using the -l command
line argument.

Searching

[78]

There are other (optional) arguments that can be passed to searchd as seen in the
following screenshot:

searchd needs to be running all the time when we are using the client API.
The first thing you should always check is whether searchd is running or not,
and start it if it is not running.

We then created a PHP script to search the sphinx-blog index. To search the Sphinx index, we
need to use the Sphinx client API. As we are working with a PHP script, we copied the PHP
client implementation class, (sphinxapi.php) which comes along with Sphinx source, to
our working directory so that we can include it in our script. However, you can keep this file
anywhere on the file system as long as you can include it in your PHP script.

Throughout this book we will be using /path/to/webroot/sphinx as the
working directory and we will create all PHP scripts in that directory. We will
refer to this directory simply as webroot.

We initialized the SphinxClient class and then used the following class methods to set up
the Sphinx client API:

�� SphinxClient::SetServer($host, $port)—This method sets the searchd
hostname and port. All subsequent requests use these settings unless this method
is called again with some different parameters. The default host is localhost and
port is 9312.

Chapter 4

[79]

�� SphinxClient::SetConnectTimeout($timeout)—This is the maximum time
allowed to spend trying to connect to the server before giving up.

�� SphinxClient::SetArrayResult($arrayresult)—This is a PHP client API-
specific method. It specifies whether the matches should be returned as an array
or a hash. The Default value is false, which means that matches will be returned in
a PHP hash format, where document IDs will be the keys, and other information
(attributes, weight) will be the values. If $arrayresult is true, then the matches
will be returned in plain arrays with complete per-match information.

After that, the actual querying of index was pretty straightforward using the
SphinxClient::Query($query) method. It returned an array with matched results, as well as
other information such as error, fields in index, attributes in index, total records found, time
taken for search, and so on. The actual results are in the $results['matches'] variable.

We can run a loop on the results, and it is a straightforward job to get the actual document's
content from the document ID and display it.

Matching modes
When a full-text search is performed on the Sphinx index, different matching modes can be
used by Sphinx to find the results. The following matching modes are supported by Sphinx:

�� SPH_MATCH_ALL—This is the default mode and it matches all query words, that is,
only records that match all of the queried words will be returned.

�� SPH_MATCH_ANY—This matches any of the query words.

�� SPH_MATCH_PHRASE—This matches query as a phrase and requires a
perfect match.

�� SPH_MATCH_BOOLEAN—This matches query as a Boolean expression.

�� SPH_MATCH_EXTENDED—This matches query as an expression in Sphinx internal
query language.

�� SPH_MATCH_EXTENDED2—This matches query using the second version of
Extended matching mode. This supersedes SPH_MATCH_EXTENDED as of v0.9.9.

�� SPH_MATCH_FULLSCAN—In this mode the query terms are ignored and no
text-matching is done, but filters and grouping are still applied.

Searching

[80]

Time for action – searching with different matching modes
1.	 Create a PHP script display_results.php in your webroot with the following code:

<?php
// Database connection credentials
$dsn ='mysql:dbname=myblog;host=localhost';
$user = 'root';
$pass = '';

// Instantiate the PDO (PHP 5 specific) class
try {
 $dbh = new PDO($dsn, $user, $pass);
} catch (PDOException $e){
 echo'Connection failed: '.$e->getMessage();
}
// PDO statement to fetch the post data
$query = "SELECT p.*, a.name FROM posts AS p " .
 "LEFT JOIN authors AS a ON p.author_id = a.id " .
 "WHERE p.id = :post_id";
$post_stmt = $dbh->prepare($query);

// PDO statement to fetch the post's categories
$query = "SELECT c.name FROM posts_categories AS pc ".
 "LEFT JOIN categories AS c ON pc.category_id = c.id " .
 "WHERE pc.post_id = :post_id";
$cat_stmt = $dbh->prepare($query);

// Function to display the results in a nice format
function display_results($results, $message = null)
{
 global $post_stmt, $cat_stmt;
 if ($message) {
 print "<h3>$message</h3>";
 }
 if (!isset($results['matches'])) {
 print "No results found<hr />";
 return;
 }
 foreach ($results['matches'] as $result) {
 // Get the data for this document (post) from db
 $post_stmt->bindParam(':post_id',
 $result['id'],
 PDO::PARAM_INT);

Chapter 4

[81]

 $post_stmt->execute();
 $post = $post_stmt->fetch(PDO::FETCH_ASSOC);

 // Get the categories of this post
 $cat_stmt->bindParam(':post_id',
 $result['id'],
 PDO::PARAM_INT);
 $cat_stmt->execute();
 $categories = $cat_stmt->fetchAll(PDO::FETCH_ASSOC);

 // Output title, author and categories
 print "Id: {$posmt['id']}
" .
 "Title: {$post['title']}
" .
 "Author: {$post['name']}";
 $cats = array();
 foreach ($categories as $category) {
 $cats[] = $category['name'];
 }
 if (count($cats)) {
 print "
Categories: " . implode(', ', $cats);
 }
 print "<hr />";
 }
}

2.	 Create a PHP script search_matching_modes.php in your webroot with the
following code:

<?php
// Include the api class
Require('sphinxapi.php');
// Include the file which contains the function to display results
require_once('display_results.php');

$client = new SphinxClient();
// Set search options
$client->SetServer('localhost', 9312);
$client->SetConnectTimeout(1);
$client->SetArrayResult(true);

// SPH_MATCH_ALL mode will be used by default
// and we need not set it explicitly
display_results(
$client->Query('php'),
'"php" with SPH_MATCH_ALL');

Searching

[82]

display_results(
$client->Query('programming'),
'"programming" with SPH_MATCH_ALL');

display_results(
$client->Query('php programming'),
'"php programming" with SPH_MATCH_ALL');

// Set the mode to SPH_MATCH_ANY
$client->SetMatchMode(SPH_MATCH_ANY);

display_results(
$client->Query('php programming'),
'"php programming" with SPH_MATCH_ANY');

// Set the mode to SPH_MATCH_PHRASE
$client->SetMatchMode(SPH_MATCH_PHRASE);

display_results(
$client->Query('php programming'),
'"php programming" with SPH_MATCH_PHRASE');

display_results(
$client->Query('scripting language'),
'"scripting language" with SPH_MATCH_PHRASE');

// Set the mode to SPH_MATCH_FULLSCAN
$client->SetMatchMode(SPH_MATCH_FULLSCAN);

display_results(
$client->Query('php'),
'"php programming" with SPH_MATCH_FULLSCAN');

3.	 Execute search_matching_modes.php in a browser (http://localhost/
sphinx/search_matching_modes.php).

What just happened?
The first thing we did was created a script, display_results.php, which connects to the
database and gathers additional information on related posts. This script has a function,
display_results() that outputs the Sphinx results returned in a nice format. The code is
pretty much self explanatory.

Chapter 4

[83]

Next, we created the PHP script that actually performs the search. We used the following
matching modes and queried using different search terms:

�� SPH_MATCH_ALL (Default mode which doesn't need to be explicitly set)

�� SPH_MATCH_ANY

�� SPH_MATCH_PHRASE

�� SPH_MATCH_FULLSCAN

Let's see what the output of each query was and try to understand it:

display_results(
 $client->Query('php'),
 '"php" with SPH_MATCH_ALL');

display_results(
 $client->Query('programming'),
 '"programming" with SPH_MATCH_ALL');

The output for these two queries can be seen in the following screenshot:

Searching

[84]

The first two queries returned all posts containing the words "php" and "programming"
respectively. We got posts with id 2 and 5 for "php", and 5 and 8 for "programming".

The third query was for posts containing both words, that is "php programming", and it
returned the following result:

This time we only got posts with id 5, as this was the only post containing both the words of
the phrase "php programming".

We used SPH_MATCH_ANY to search for any words of the search phrase:

// Set the mode to SPH_MATCH_ANY
$client->SetMatchMode(SPH_MATCH_ANY);

display_results(
 $client->Query('php programming'),
 '"php programming" with SPH_MATCH_ANY');

The function call returns the following output (results):

As expected, we got posts with ids 5,2, and 8. All these posts contain either "php" or
"programming" or both.

Chapter 4

[85]

Next, we tried our hand at SPH_MATCH_PHRASE, which returns only those records that
match the search phrase exactly, that is, all words in the search phrase appear in the same
order and consecutively in the index:

// Set the mode to SPH_MATCH_PHRASE
$client->SetMatchMode(SPH_MATCH_PHRASE);

display_results(
 $client->Query('php programming'),
 '"php programming" with SPH_MATCH_PHRASE');

display_results(
 $client->Query('scripting language'),
 '"scripting language" with SPH_MATCH_PHRASE');

The previous two function calls return the following results:

The query"php programming" didn't return any results because there were no posts
that match that exact phrase. However, a post with id 2 matched the next query:
"scripting language".

The last matching mode we used was SPH_MATCH_FULLSCAN. When this mode is used the
search phrase is completely ignored, (in our case "php" was ignored) and Sphinx returns all
records from the index:

// Set the mode to SPH_MATCH_FULLSCAN
$client->SetMatchMode(SPH_MATCH_FULLSCAN);

display_results(
 $client->Query('php'),
 '"php programming" with SPH_MATCH_FULLSCAN');

www.allitebooks.com

http://www.allitebooks.org

Searching

[86]

The function call returns the following result (for brevity only a part of the output is shown in
the following image):

SPH_MATCH_FULLSCAN mode is automatically used if empty string is passed
to the SphinxClient::Query() method.

SPH_MATCH_FULLSCAN matches all indexed documents, but the search query still applies
all the filters when sorting and grouping. However, the search query will not perform any
full-text searching. This is particularly useful in cases where we only want to apply filters
and don't want to perform any full-text matching (For example, filtering all blog posts
by categories).

Boolean query syntax
Boolean mode queries allow expressions to make use of a complex set of Boolean rules to
refine their searches. These queries are very powerful when applied to full-text searching.
When using Boolean query syntax, certain characters have special meaning, as given in the
following list:

�� &: Explicit AND operator

�� |: OR operator

�� -: NOT operator

�� !: NOT operator (alternate)

�� (): Grouping

Let's try to understand each of these operators using an example.

Chapter 4

[87]

Time for action – searching using Boolean query syntax
1.	 Create a PHP script search_boolean_mode.php in your webroot with the

following code:

<?php
// Include the api class
require_once('sphinxapi.php');
// Include the file which contains the function to display results
require_once('display_results.php');

$client = new SphinxClient();
// Set search options
$client->SetServer('localhost', 9312);
$client->SetConnectTimeout(1);
$client->SetArrayResult(true);

display_results(
$client->Query('php programming'),
'"php programming" (default mode)');

// Set the mode to SPH_MATCH_BOOLEAN
$client->SetMatchMode(SPH_MATCH_BOOLEAN);

// Search using AND operator
display_results(
$client->Query('php & programming'),
'"php & programming"');

// Search using OR operator
display_results(
$client->Query('php | programming'),
'"php | programming"');

// Search using NOT operator
display_results(
$client->Query('php -programming'),
'"php -programming"');

// Search by grouping terms
display_results(
$client->Query('(php & programming) | (leadership & success)'),
'"(php & programming) | (leadership & success)"');

Searching

[88]

// Demonstrate how OR precedence is higher than AND
display_results(
$client->Query('development framework | language'),
'"development framework | language"');

// This won't work
display_results($client->Query('-php'), '"-php"');

Execute the script in a browser (the output shown in next section).

What just happened?
We created a PHP script to see how different Boolean operators work. Let's understand the
working of each of them.

The first search query, "php programming", did not use any operator. There is always an
implicit AND operator, so "php programming" query actually means: "php & programming".
In second search query we explicitly used the & (AND) operator. Thus the output of both the
queries were exactly same, as shown in the following screenshot:

Our third search query used the OR operator. If either of the terms get matched whilst using
OR, the document is returned. Thus "php | programming" will return all documents that
match either "php" or "programming", as seen in the following screenshot:

Chapter 4

[89]

The fourth search query used the NOT operator. In this case, the word that comes just after
the NOT operator should not be present in the matched results. So "php –programming"
will return all documents that match "php" but do not match "programming" We get results
as seen in the following screenshot:

Next, we used the grouping operator. This operator is used to group other operators.
We searched for "(php & programming) | (leadership & success)", and this
returned all documents which matched either; "php" and "programming" or "leadership"
and "success", as seen in the next screenshot:

Searching

[90]

After that, we fired a query to see how OR has a precedence higher than AND. The query
"development framework | language" is treated by Sphinx as "(development)
& (framework | language)". Hence we got documents matching "development &
framework" and "development & language", as shown here:

Lastly, we saw how a query like "-php" does not return anything. Ideally it should have
returned all documents which do not match "php", but for technical and performance
reasons such a query is not evaluated. When this happens we get the following output:

Extended query syntax
Apart from the Boolean operators, there are some more specialized operators and modifiers
that can be used when using the extended matching mode.

Let's understand this with an example.

Time for action – searching with extended query syntax
1.	 Create a PHP script search_extended_mode.php in your webroot with following

code:

<?php
// Include the api class
Require_once('sphinxapi.php');
// Include the file which contains the function to display results
Require_once('display_results.php');

$client = new SphinxClient();
// Set search options
$client->SetServer('localhost', 9312);
$client->SetConnectTimeout(1);
$client->SetArrayResult(true);

Chapter 4

[91]

// Set the mode to SPH_MATCH_EXTENDED2
$client->SetMatchMode(SPH_MATCH_EXTENDED2);

// Returns documents whose title matches "php" and
// content matches "significant"
display_results(
$client->Query('@title php @content significant'),
'field search operator');

// Returns documents where "development" comes
// before 8th position in content field
display_results(
$client->Query('@content[8] development'),
'field position limit modifier');

// Returns only those documents where both title and content
// matches "php" and "namespaces"
display_results(
$client->Query('@(title,content) php namespaces'),
'multi-field search operator');

// Returns documents where any of the field
// matches "games"
display_results(
$client->Query('@* games'),
'all-field search operator');

// Returns documents where "development framework"
// phrase matches exactly
display_results(
$client->Query('"development framework"'),
'phrase search operator');

// Returns documents where there are three words
// between "people" and "passion"
display_results(
$client->Query('"people passion"~3'),
'proximity search operator');

// Returns documents where any of the
// two words from the phrase matches
display_results(
$client->Query('"people development passion framework"/2'),
'quorum search operator');

2.	 Execute the script in a browser (the output is explained in the next section).

Searching

[92]

What just happened?
For using extended query syntax, we set the match mode to SPH_MATCH_EXTENDED2:

$client->SetMatchMode(SPH_MATCH_EXTENDED2);

The first operator we used was field search operator. Using this operator we can tell Sphinx
which fields to search against (instead of searching against all fields). In our example we
searched for all documents whose title matches "php" and whose content matches
"significant". As an output, we got posts (documents) with the id 5, which was the only
document that satisfied this matching condition as shown below:

@title php @content significant

The search for that term returns the following result:

Following this we used field position limit modifier. The modifier instructs Sphinx to select
only those documents where "development" comes before the 8th position in the content
field, that is, it limits the search to the first eight positions within given field.

@content[8] development

And we get the following result:

Next, we used the multiple field search operator. With this operator you can specify which
fields (combined) should match the queried terms. In our example, documents are only
matched when both title and content matches "php" and "namespaces".

@(title,content) php namespaces

Chapter 4

[93]

This gives the following result:

The all-field search operator was used next. In this case the query is matched against all
fields.

@* games

This search term gives the following result:

The phrase search operator works exactly same as when we set the matching mode to
SPH_MATCH_PHRASE. This operator implicitly does the same. So, a search for the phrase
"development framework" returns posts with id 7, since the exact phrase appears in its
content.

"development framework"

The search term returns the following result:

Searching

[94]

Next we used the proximity search operator. The proximity distance is specified in words,
adjusted for word count, and applies to all words within quotes. So, "people passion"~3
means there must be a span of less than five words that contain both the words "people"
and "passion". We get the following result:

The last operator we used is called as a quorum operator. In this, Sphinx returns only those
documents that match the given threshold of words. "people development passion
framework"/2 matches those documents where at least two words match out of the four
words in the query. Our query returns the following result:

Using what we have learnt above, you can create complex search queries by combining any
of the previously listed search operators. For example:

@title programming "photo gallery" –(asp|jsp) @* opensource

The query means that:

�� The document's title field should match 'programming'

�� The same document must also contain the words 'photo' and 'gallery' adjacently in
any of the fields

�� The same document must not contain the words 'asp' or 'jsp'

�� The same document must contain the word 'opensource' in any of its fields

There are few more operators in extended query syntax and you can see their examples at
http://sphinxsearch.com/docs/manual-0.9.9.html#extended-syntax.

Chapter 4

[95]

Filtering full-text search results
In most cases, full-text searching alone didn't serve our purpose. We had to filter the results
based on the document attributes. For example, when searching blog posts, you might want
to provide a filter wherein only posts from a certain category are returned. In such scenarios
the result filtering methods of the client API comes handy. Let's take a look.

Time for action – filtering the result set
1.	 Create a PHP script search_filter.php in your webroot containing the following

code:

<?php
// Include the api class
Require_once('sphinxapi.php');
// Include the file which contains the function to display results
Require_once('display_results.php');

$client = new SphinxClient();

$client->SetServer('localhost', 9312);
$client->SetConnectTimeout(1);
$client->SetArrayResult(true);

$client->SetMatchMode(SPH_MATCH_ANY);
// Returns all documents which match "programming games
electronics"
display_results(
$client->Query('programming games electronics'),
'all posts matching "programming games electronics"');

// Filter by ID
$client->SetIDRange(1, 4);

// Same as above but with ID based filtering
display_results(
$client->Query('programming games electronics'),
'above query with ID based filtering');

// Reset the ID based filter
$client->SetIDRange(0, 0);

// Filter the posts by author's Aditya Mooley and Dr.Tarique Sani
$client->SetFilter('author_id', array(2, 4));

Searching

[96]

display_results(
$client->Query('programming games electronics'),
'posts filtered by author');

// Filter the posts by category Games
$client->SetFilter('category_id', array(2));
display_results(
$client->Query('programming games electronics'),
'posts filtered by categories');

// Filter the posts by publish_date using range filter
$client->SetFilterRange(
'publish_date',
strtotime('2010-01-01'),
strtotime('2010-01-30'));

display_results(
$client->Query('programming games electronics'),
'posts filtered publish date range');

2.	 Run the script in a browser (the output is explained in the next section).

What just happened?
We used the Sphinx client API's filtering methods to filter our search results. In all our above
queries we searched for the same set of terms, such as "programming games electronics",
but with different filters.

The first search query returned all results without any filtering. Before issuing the second
search query we used the SetIDRange($min, $max) method. This method filters out the
results based on the minimum and maximum ID values passed to it. So in our case we only
got those documents whose ID were in between one and four. The un-filtered and filtered
results are as shown in the following screenshot:

Chapter 4

[97]

After that, we reset our ID range filter by passing 0 as minimum and maximum values.
We then filtered our search results by author. We filtered them so that we only get posts
by Aditya Mooley (author_id 2) and Dr.Tarique Sani (author_id 4).

$client->SetFilter('author_id', array(2, 4));

The filter returns the following result:

Searching

[98]

SetFilter($attribute, $values, $exclude=false) takes three parameters. The
first is the attribute on which the filtering should be done. The second is an array of integer
values to be filtered, meaning documents matching any of these values will be returned. The
third parameter is an optional Boolean parameter, and if passed as true will actually exclude
the values passed, instead of including them.

Next we filtered results based on category_id, which is an MVA. Filtering on normal
and MVA attributes works in a similar fashion, as far as calling the SetFilter() method
is concerned. If the attribute is MVA, then it matches all those documents where any of
the values stored in the MVA field matches any of the passed values. The filter returns the
following result:

We previously searched for all posts that are in category 'Games' (category_id 2). Since
category_id is an MVA, it holds multiple values, and if any of those values matches 2 then
that document is returned.

The filter set for author was not reset when we filtered by category, and hence
both the filters were applied. The results were filtered by author as well as
category. So our final result returned those posts whose author is either Aditya
Mooley or Dr.Tarique Sani, and whose category is Games.

To filter the results based on a range of values we used the
SetFilterRange($attribute, $min, $max, $exclude=false) method. All
parameters are self explanatory. We filtered our search results so that we only get those
posts that were published between 1st January 2010 and 30th January 2010.

$client->SetFilterRange('publish_date', strtotime('2010-01-01'),
strtotime('2010-01-30'));

Chapter 4

[99]

The ranged filter returned the following result:

There are more methods available to filter search results:

�� SetFilterFloatRange ($attribute, $min, $max, $exclude=false
)—Works similar to SetFilterRange() but for float range values

�� SetGeoAnchor ($attrlat, $attrlong, $lat, $long)—Used for
filtering based on geolocation (explained in later chapters)

Weighting search results
Weighting decides which document gets priority over other documents and appear at the
top. In Sphinx, weighting depends on the search mode. Weight can also be referred to as
ranking. There are two major parts which are used in weighting functions:

�� Phrase rank: This is based on the length of Longest Common Subsequence (LCS)
of search words between document body and query phrase. This means that the
documents in which the queried phrase matches perfectly will have a higher phrase
rank and the weight would be equal to the query word counts.

�� Statistical rank: This is based on BM25 function which takes only the frequency of
the queried words into account. So, if a word appears only one time in the whole
document then its weight will be low. On the other hand if a word appears a lot in
the document then its weight will be higher. The BM25 weight is a floating point
number between 0 and 1.

Time for action – weighting search results
1.	 Modify display_results.php (created earlier) and add the code as highlighted

next:

 if (count($cats)) {
 print "
Categories: " . implode(', ', $cats);
 }

 print "
Weight: " . $result['weight'];

 print "<hr />";

Searching

[100]

2.	 Create a PHP script search_weighting.php in your webroot containing the
following code:

<?php
// Include the api class
require('sphinxapi.php');
// Include the file which contains the function to display results
require_once('display_results.php');

$client = new SphinxClient();

$client->SetServer('localhost', 9312);
$client->SetConnectTimeout(1);
$client->SetArrayResult(true);

$client->SetMatchMode(SPH_MATCH_ANY);
display_results(
$client->Query('php language framework'),
'MATCH ANY');

$client->SetMatchMode(SPH_MATCH_BOOLEAN);
display_results(
$client->Query('php | framework'),
'BOOLEAN');

$client->SetMatchMode(SPH_MATCH_EXTENDED2);
display_results(
$client->Query('@* php | @* framework'),
'EXTENDED');

3.	 Execute the script in a browser.

What just happened?
We added code to show the weight in display_results.php. We then created a script
to see how the weights are calculated when different matching modes are used.

In all modes, per-field weighted phrase ranks are computed as a product of LCS and per-field
weight is specified by the user. The default value of per-field weight is 1 and they are always
integer. They can never be less than 1.

You can use SetFieldWeights($weights) API method to set per-field
weight. $weights should be an associative array mapping string field names
to integer value.

Chapter 4

[101]

When SPH_MATCH_ANY is used, Sphinx adds a count of matching words in each field and
before that weighted phrase ranks are additionally multiplied by a value big enough to
guarantee that higher rank in any field will make the match ranked higher, even if it's field
weight is low.

SPH_MATCH_BOOLEAN is a special case, wherein no weighting is performed at all and every
match weight is set to 1.

The last mode we saw was SPH_MATCH_EXTENDED2, in which the final weight is a sum of
weighted phrase ranks and BM25 weight. This sum is then multiplied by 1,000 and rounded
to an integer. This is shown in the following screenshot:

Sphinx's motto is to present results with better sub-phrase matches, and perfect matches are
pulled to the top.

At the time of writing this book ranking mode can be explicitly set for SPH_
MATCH_EXTENDED2 matching mode using the SetRankingMode() API
method.

Searching

[102]

Sorting modes
At times you might want to sort the results by values other than relevance. The Sphinx API
provides SetSortMode($mode, $sortby="") method which can be used to set the sort
mode other than relevance, which is the default sort mode.

The following sorting modes are available in Sphinx:

�� SPH_SORT_RELEVANCE: Sorts by relevance in descending order, that is, best
matches first

�� SPH_SORT_ATTR_DESC: Sorts by an attribute in descending order, that is, bigger
attribute values first

�� SPH_SORT_ATTR_ASC: Same as SPH_SORT_ATTR_DESC, but sorts in ascending
order

�� SPH_SORT_TIME_SEGMENTS: Sorts by time segments (last hour/day/week/month),
in descending order, and then by relevance in descending order

�� SPH_SORT_EXTENDED: Sorts by SQL-like combination in ASC or DESC order

�� SPH_SORT_EXPR: Sorts by an arithmetic expression

Examples:

// Sort by relevance. Second parameter is not required in this case.
$client->SetSortMode(SPH_SORT_RELEVANCE);

// Sort by author_id in descending order
$client->SetSortMode(SPH_SORT_ATTR_DESC, 'author_id');

// Sort by time segments i.e. first the results
// will be sorted based on publish date and then on relevance.
$client->SetSortMode(SPH_SORT_TIME_SEGMENTS, 'publish_date');

// Extended sort: Sort by weight desc and id asc which
// is same as sorting by relevance
$client->SetSortMode(SPH_SORT_EXTENDED, '@weight DESC, @id ASC');

// Sort by category_id desc and weight asc
$client->SetSortMode(SPH_SORT_EXTENDED, 'category_id DESC @weight
ASC');

Chapter 4

[103]

Grouping search results
At times we may need to group our search results by an attribute. For example, to show
monthly statistics about our blog posts we will need to group the posts by publish_date,
or to show count of books by a particular author we will need to group the search results
by author.

Sphinx offers a grouping mode which is enabled with SetGroupBy() API call. All matches
are assigned to different groups based on group-by value when grouping is used.

Different functions are available to compute the group-by value:

�� SPH_GROUPBY_DAY: Extracts year, month, and day in YYYYMMDD format from the
timestamp attribute

�� SPH_GROUPBY_WEEK: Extracts year and first day of the week number in YYYYNNN
format from timestamp

�� SPH_GROUPBY_MONTH: Extracts year and month in YYYYMM format from
timestamp

�� SPH_GROUPBY_YEAR: Extracts year in YYYY format from timestamp

�� SPH_GROUPBY_ATTR: Attribute value is used for grouping

The function to be used for grouping is:

SetGroupBy ($attribute, $func, $groupsort="@group desc")

The first parameter is the attribute name on which the grouping should be done. The second
parameter is the function grouping order to be used (one of the name mentioned above).
And finally, the third parameter is a clause that controls how the groups will be sorted. Its
syntax is similar to that shown in the example for the SPH_SORT_EXTENDED sorting mode
earlier. The third parameter is optional.

The final search result set contains one best match per group. Grouping function value
and per-group match count are returned as long as attributes names @groupby and
@count respectively.

Example:

$client->SetMatchMode(SPH_MATCH_ANY);
$client->SetGroupBy('author_id', SPH_GROUPBY_ATTR);
$results = $client->Query('php language framework games electronics');

print_r($results);

Searching

[104]

The output of the script can be seen in the following screenshot:

Summary
With the index (that we created in Chapter 3, Indexing as a base), in this chapter:

�� We wrote different search queries

�� We saw how PHP's implementation of the Sphinx client API can be used in PHP
applications to issue some powerful search queries

�� We also saw how to filter our search results by different attributes

�� Lastly, we saw how to rank, sort, and group the search results by different attributes

In the next chapter we will build a practical application from the ground up, which will
involve search using Sphinx.

5
Feed Search

I hope the earlier chapters got you warmed up and laid a solid foundation
so that you can add a rock solid, fast, and accurate search engine to your
applications.

In this chapter we will create our first functional application, which will use the
Sphinx search engine as the backend to service search queries. We will start
from scratch and build the complete application in PHP.

In this chapter we shall:

�� Create a form to add feed title and its URL

�� Create a Sphinx configuration file with xmlpipe2 data source

�� Create a PHP script to fetch the feed items and output the XML to the
Sphinx indexer

�� Create a search form to input query and display the search results

So let's get on with it...

The application
First, let's understand what we are going to accomplish in this chapter. We will create an
application wherein you can add feed URLs. These feeds will then be periodically fetched
and indexed using Sphinx.

We will create some MySQL database tables to store feed information. However, we will not
store the description of feed items in our database. The description will be stored in a Sphinx
index so that full-text search queries can be issued against the index.

Feed Search

[106]

We will then create search form wherein a user can enter a search phrase, author, and also
select multiple categories. On submission of the form we will perform a search on the Sphinx
index and filter the results as per the categories selected.

The search results (feed items) will then be shown in the ascending order of relevance.

Tools and software used while creating this application
�� PHP 5.3.2

�� Apache 2.2.14

�� MySQL 5.1.14

�� Sphinx 0.9.9

�� phpMyAdmin (to manage database)

�� Ubuntu 10.04 LTS

�� Firefox 3.6

�� SimplePie version 1.2+

It is not mandatory that you should use the exact same version of the software listed here,
although you should have PHP 5.x+.

It is assumed that the reader has a basic knowledge of HTML, CSS, and PHP. It
is beyond the scope of this book to explain the code written in HTML and PHP.

Database structure
The first thing we need to do is create the database to be used by the application. We will
also need to chalk out and create the different tables that will be needed. Let's do it.

Time for action – creating the MySQL database and tables
1.	 Open phpMyAdmin and create a database sphinx_feeds. You can use an existing

database as well.

2.	 Import the following SQL to create the database tables:

CREATE TABLE `categories` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(100) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `name` (`name`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

Chapter 5

[107]

CREATE TABLE `feeds` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 `url` varchar(255) NOT NULL,
 `last_modified` datetime DEFAULT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE `items` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `title` varchar(255) NOT NULL,
 `guid` varchar(32) NOT NULL,
 `link` varchar(255) NOT NULL,
 `pub_date` datetime NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE KEY `guid` (`guid`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

What just happened?
We created a new database which will be used by our PHP application. We then created the
following tables:

�� categories: This table will hold the category names. A category is a collection of
items sharing common attributes. Each item in the feed has one or more category
assigned to it. New categories will get added to this table as and when they are
found in the feed items. The data stored in this table will be used to populate the
select box which, will be used for filtering the search results by categories.

�� feeds: This table will store the feed URLs. While indexing, we will query this table
to fetch all feed URLs whose data needs to be fetched and indexed.

�� items: This table will store the feed items, that is, title and link. We will display the
item titles in the search results.

The following screenshots demonstrate how each of the tables will be created:

categories:

Feed Search

[108]

feeds:

items:

Basic setup
Lets create the directory that will hold our application files and other dependencies, such
as the Sphinx API class and SimplePie feed parser. We will also be creating a few scripts that
will act as helpers in our application and will contain some common code re-used throughout
the application.

Time for action – setting up the feeds application
1.	 Create a directory feeds in your webroot, that is, /path/to/webroot/feeds:

$ mkdir /path/to/webroot/feeds

2.	 Create the /path/to/webroot/feeds/views directory:

$ mkdir /path/to/webroot/feeds/views

3.	 Copy the sphinxapi.php file from the Sphinx source directory to the feeds
directory:

$ cp /path/to/sphinx-0.9.9/api/sphinxapi.php /path/to/webroot/
feeds/

Chapter 5

[109]

4.	 Get the latest version of SimplePie RSS parser from http://simplepie.org/,
extract the archive in any directory of your file system and copy the simplepie.
inc file from the extracted archive to the /path/to/webroot/feeds directory:

$ cp /path/to/simplepie/simplepie.inc /path/to/webroot/feeds/

5.	 Create the file /path/to/webroot/feeds/init.php with the following code:

<?php
/**
 * File: /path/to/webroot/feeds/init.php
 */
// Database connection credentials
$dsn ='mysql:dbname=sphinx_feeds;host=localhost';
$user = 'root';
$pass = '';
// Instantiate the PDO (PHP 5 specific) class
try {
 $dbh = new PDO($dsn, $user, $pass);
} catch (PDOException $e){
 echo'Connection failed: '.$e->getMessage();
}

// Array to hold variables to be used in views
$viewVars = array();

/**
 * Method to fetch the contents of a view (THTML) file and return
the contents.
 * The html string returned by this method is then placed in the
master layout.
 *
 * @param string $view Name of the view file to be fetched and
parsed.
 *
 * @return string HTML contents specific to the passed view
 */
function get_view($view)
{
 global $viewVars;
 // Start the output buffering so that the html output of the
view is not sent
 // to the browser immediately.
 ob_start();
 // Include the view file which outputs the HTML
 include("views/$view.thtml");

Feed Search

[110]

 // Get the view contents in a variable i.e. whatever the above
view outputs,
 // it gets stored in a variable
 $contents = ob_get_contents();
 // Clean the buffer
 ob_end_clean();
 return $contents;
}//end get_view()

/**
 * Method to render the page.
 * This method along with get_view() acts as a very simple
templating
 * engine and separates the view logic from our php (business)
logic.
 *
 * @param string $view Name of the view file to be rendered
 */
function render($view)
{
 $contents = get_view($view);
 include('views/layout.thtml');
}//end render()

What just happened?
We created a project folder at /path/to/webroot/feeds. This will be our base directory,
and will hold all files or directories related to our 'Feed Search' project.

After that we created the /path/to/webroot/feeds/views directory. This directory will
hold our application's HTML template files. We will be creating these template files as we
progress through this chapter.

We then copied the PHP implementation class of the Sphinx client API to our working
directory. This class will be used for searching from within the PHP script.

As we will be fetching feeds and indexing its data, we will need to parse the feed RSS XML.
For this we will use a third-party open source library called SimplePie. We downloaded the
library and extracted its archive. We copied simplepie.inc to our working directory.

Lastly, we created a PHP script, /path/to/webroot/feeds/init.php, which will be
included in all other PHP scripts. This script initializes the database connection and also
contains a few methods used to render the HTML output.

Chapter 5

[111]

We are going to use PHP 5's PDO class for database interaction.

The structure of your working directory (/path/to/webroot/feeds) will look like this:

Add feed
Let's move forward and create a form to add feed URLs. The form will ask the user for a feed
title and feed URL.

Time for action – creating a form to add feeds
1.	 Create the master layout at /path/to/webroot/feeds/views/layout.thtml:

<!-- File: /path/to/webroot/feeds/views/layout.thtml -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><html>
<head>
<title>Feed Search</title>
<link rel="stylesheet" type="text/css" href="style.css" />
</head>
<body>
 <div id="header">
 <h1>Feed search using Sphinx</h1>
 </div>
 <div id="nav">

 Search
 Add Feed

 </div>
 <div id="content">
 <?php echo $contents; ?>
 </div>
</body>
</html>

Feed Search

[112]

2.	 Create /path/to/webroot/feeds/style.css:

/** File: /path/to/webroot/feeds/style.css **/
body {
 font-family: verdana,arial,sans-serif;
 font-size: 12px;
 margin: 0;
 overflow: auto;
}
#header {
 text-align: center;
 background-color: #606060;
 color: #ffffff;
 height: 70px;
 padding-top: 5px;
}
#nav ul {
 list-style: none;
 padding: 5px;
 margin: 0px;
}
#nav ul li {
 display: inline;
 padding: 5px 10px 5px 10px;
 border-right: 1px solid;
}
#nav {
 background-color: #000000;
 color: #ffffff;
}
#nav a {
 color: #ffffff;
 text-decoration: none;
 font-weight: bold;
}
#content {
 padding: 10px;
}
div.input {
 padding: 5px;
}
label {
 width: 100px;
 text-align: right;

Chapter 5

[113]

 display: block;
 float: left;
}
.information {
 color: #28630B;
}

3.	 Create a file /path/to/webroot/feeds/add.php with the following content:

<?php
/**
 * File: /path/to/webroot/feeds/add.php
 */
include('init.php');

// If we have data in POST then get it from there else initialize
// to empty strings
$viewVars['name'] = !empty($_POST['name']) ? $_POST['name'] : '';
$viewVars['url'] = !empty($_POST['url']) ? $_POST['url'] : '';

// Render the view
render('add');

4.	 Create the view for the form at /path/to/webroot/feeds/views/add.thtml:

<!-- File: /path/to/webroot/feeds/views/add.thtml -->
<form action="add.php" method="post">
 <fieldset>
 <legend>Add Feed</legend>
 <div class="input">
 <label>Feed Name: </label>
 <input type="text" name="name"
 value="<?php echo $viewVars['name']; ?>" />
 </div>
 <div class="input">
 <label>Feed Url: </label>
 <input type="text" name="url"
 value="<?php echo $viewVars['url']; ?>" />
 </div>
 <div class="input">
 <label> </label>
 <input type="submit" name="submit" value="Add" />
 </div>
 </fieldset>
</form>

Feed Search

[114]

5.	 Open add.php in a browser (http://localhost/feeds/add.php).

What just happened?
We first created a master HTML layout template for our application. All our pages will use
this layout. We then added some CSS styles so that our web page looks pretty.

After that, we created our main script, add.php, which will be executed through a browser.
We added code to include the init.php, which initiated the database connection, and to
render the view that contains the HTML for form creation. In the form, we added two fields
for the feed name and feed URL.

Saving the feed data
The form that we just created won't do anything when you submit it. Now let's add code to
save the form's content to the feeds database table. While saving we will also check if a feed
URL already exists in our database and reject the duplicates.

Time for action – adding code to save feed
1.	 Add the code to save form data in /path/to/webroot/feeds/add.php as shown

in the following highlighted code:

<?php
/**
 * File: /path/to/webroot/feeds/add.php
 */
include('init.php');

// If we have data in POST then get it from there else initialize

Chapter 5

[115]

// to empty strings
$viewVars['name'] = !empty($_POST['name']) ? $_POST['name'] : '';
$viewVars['url'] = !empty($_POST['url']) ? $_POST['url'] : '';

// Check if form is submitted and if we have a feed name and url

// then save the data

if (!empty($_POST['name']) && !empty($_POST['url'])) {

 // First check if the feed being added is already in our
 database

 $stmt = $dbh->prepare("SELECT id FROM feeds WHERE url = :url");

 $stmt->bindParam(':url', strip_tags(

 $viewVars['url']),

 PDO::PARAM_STR);

 $stmt->execute();

 $result = $stmt->fetch(PDO::FETCH_ASSOC);

 // If this is not a duplicate item then only add it

 if (empty($result)) {

 $stmt = $dbh->prepare("INSERT INTO feeds SET name = :name,
 url = :url");

 $stmt->bindParam(':name', strip_tags($viewVars['name']),
 PDO::PARAM_STR);

 $stmt->bindParam(':url', strip_tags($viewVars['url']),
 PDO::PARAM_STR);

 $stmt->execute();

 $viewVars['success'] = true;

 $viewVars['name'] = '';

 $viewVars['url'] = '';

 } else {

 $viewVars['error'] = 'This feed has already been added';

 }

}

// Render the view
render('add');

2.	 Modify the view file and add code to show the success message:

<!-- File: /path/to/webroot/feeds/views/add.thtml -->
<form action="add.php" method="post">

 <?php if (!empty($viewVars['success'])): ?>

 <div class="information">Feed saved successfully</div>

 <?php endif; ?>

 <?php if (!empty($viewVars['error'])) : ?>

Feed Search

[116]

 <div class="error"><?php echo $viewVars['error']; ?></div>

 <?php endif; ?>

 <fieldset>
 <legend>Add Feed</legend>
 <div class="input">
 <label>Feed Name: </label>

3.	 Open the add.php file in browser and enter the data as shown in the following
screenshot (you may use any name and a valid feed URL).

4.	 Click on Add to save the feed data.

5.	 Similarly, add a few more feeds. I added the following:

�� Packt Publishing—http://www.packtpub.com/rss.xml

�� Drupal.org—http://drupal.org/node/feed

�� Tech Crunch—http://feeds.feedburner.com/TechCrunch

What just happened?
In this exercise, we added the code to save the feed name and URL in the feeds database
table. In add.php we checked if the form had been posted and then saved the data in
the database.

If a feed is added to the database, a success message is shown above the form. This was
done by modifying the add.thtml view and checking for the presence of a success variable.

Lastly, we did some data entry work by adding four different feeds.

http://www.packtpub.com/rss.xml
http://drupal.org/node/feed
http://feeds.feedburner.com/TechCrunch

Chapter 5

[117]

If you now open your database (through phpMyAdmin), you will see that the data has been
saved there:

Indexing the feeds
Now that we have the feed URL saved in our database, let's create a script to fetch the feed
items and put them in a Sphinx index.

Time for action – create the index
1.	 Create the Sphinx configuration file at /usr/local/sphinx/etc/feeds.conf

with the following content:

source feeds
{
 type = xmlpipe2
 xmlpipe_command = /usr/bin/php /path/to/webroot/feeds/
makeindex.php
 xmlpipe_field = title
 xmlpipe_field = description
 xmlpipe_field = author
 xmlpipe_attr_timestamp = pub_date
 xmlpipe_attr_multi = category_id
}

index feed-items
{
 source = feeds
 path = /usr/local/sphinx/var/data/feed-items
 charset_type = utf-8
}

indexer
{
 mem_limit = 64M
}

Feed Search

[118]

2.	 Create the PHP script, /path/to/webroot/feeds/makeindex.php, to stream
the XML required for indexing:

<?php
require('init.php');
require('simplepie.inc');

// Instantiate the simplepie class
// We will use simplepie to parse the feed xml
$feed = new SimplePie();
// We don't want to cache feed items
$feed->enable_cache(false);
$feed->set_timeout(30);

// We will use PHP's inbuilt XMLWriter to create the xml structure
$xmlwriter = new XMLWriter();
$xmlwriter->openMemory();
$xmlwriter->setIndent(true);
$xmlwriter->startDocument('1.0', 'UTF-8');

// Start the parent docset element
$xmlwriter->startElement('sphinx:docset');

// Select all feeds from database
$query = "SELECT * FROM feeds";
$feeds = $dbh->query($query);

// Run a loop on all feeds and fetch the items
foreach ($feeds as $row) {
 // Fetch the feed
 $feed->set_feed_url($row['url']);
 $feed->init();

 // Fetch all items of this feed
 foreach ($feed->get_items() as $item) {
 $id = $item->get_id(true);
 $query = "INSERT INTO items (title, guid, link, pub_date)
VALUES (?, ?, ?, ?)";
 $stmt = $dbh->prepare();
 // Params to be binded in the sql
 $params = array(
 $item->get_title(),
 $id,
 $item->get_permalink(),
 $item->get_date('Y-m-d H;i:s'),

Chapter 5

[119]

);
 $stmt->execute($params);

 // Start the element for holding the actual document (item)
 $xmlwriter->startElement('sphinx:document');
 // Add the id attribute which will be the id of the last
 // record inserted in the items table.
 $xmlwriter->writeAttribute("id", $dbh->lastInsertId());

 // Set value for the title field
 $xmlwriter->startElement('title');
 $xmlwriter->text($item->get_title());
 $xmlwriter->endElement();//end title

 // Set value for the description field
 $xmlwriter->startElement('description');
 $xmlwriter->text($item->get_description());
 $xmlwriter->endElement();// end description

 // Set value for the author field
 $xmlwriter->startElement('author');
 // If we have the author name then get it
 // else it will be empty string
 if ($item->get_author()) {
 $author = $item->get_author()->get_name();
 } else {
 $author = '';
 }
 $xmlwriter->text($author);
 $xmlwriter->endElement();// end author

 // Set value for the publish_date attribute
 $xmlwriter->startElement('pub_date');
 $xmlwriter->text($item->get_date('U'));
 $xmlwriter->endElement();// end attribute	

 // Get all categories of this item
 $categories = $item->get_categories();
 $catIds = array();
 // If we have categories then insert them in database
 if ($categories) {
 // Insert the categories
 foreach ($item->get_categories() as $category) {
 $catName = $category->get_label();

Feed Search

[120]

 $stmt = $dbh->prepare(
 "INSERT INTO categories (name) VALUES (?)");
 $stmt->execute(array($catName));
 $catIds[] = $dbh->lastInsertId();
 }
 }

 // Set value for the category_id attribute
 // Multiple category ids should be comma separated
 $xmlwriter->startElement('category_id');
 $xmlwriter->text(implode(',', $catIds));
 $xmlwriter->endElement();// end attribute

 $xmlwriter->endElement();// end document
 }
}
$xmlwriter->endElement();// end docset

// Output the xml
print $xmlwriter->flush();

3.	 Run the indexer command to create the index (as root):

$ /usr/local/sphinx/bin/indexer -c /usr/local/sphinx/etc/feeds.
conf feed-items

4.	 Test the index from the command line:

$ /usr/local/sphinx/bin/search -c /usr/local/sphinx/etc/feeds.conf
development

You will get a different set of results depending on the
feeds you added and the current items in those feeds.

Chapter 5

[121]

What just happened?
As always, the first thing we did was to create the Sphinx configuration file. We defined the
source, index, and indexer blocks with necessary options.

For indexing the feed items we will use the xmlpipe2 data source. We chose xmlpipe2
over an SQL data source because the data is coming from a non-conventional source (feed),
and we do not store the feed items (description) in our database.

We defined the fields and attributes in the configuration file. The following fields and
attributes will be created in the index:

�� title: Full-text field to hold the title of the feed item

�� description: Full-text field to hold the description of the feed item

�� author: Full-text field to hold the author name

�� pub_data: Timestamp attribute to hold the publish date of the feed item

�� category_id: MVA attribute to hold categories associated with a feed item

The XML will be streamed by a PHP script, which we will create at /path/to/webroot/
feeds/makeindex.php. The index will be saved at /usr/local/sphinx/var/data/
feed-items.

After that, we created the PHP script makeindex.php, which streams the XML required by
Sphinx to index the feed data. We used SimplePie to fetch the feeds and parse it into PHP
objects so that we can loop over the data and save it in our database.

In makeindex.php, we wrote code to fetch all feed URLs stored in the feeds database table
and then fetch each feed one by one. We are storing the feed title, guid (unique identifier
for the item and comes along with the item in the feed XML), and link in the items table.
We need to do this to show the feed title and link in our search results page.

Feed Search

[122]

We are also storing the data: categories associated with the items. We will need the category
names to build the drop-down on a search page (for filtering purposes).

Apart from storing the data in the database, we also created the XML structure and data, as
required by Sphinx, to create the index. This XML is then flushed at the end of the script.

Everything looks fine—right? Well there is one flaw in our PHP script which streams the XML.
We are going to run the indexer once everyday to fetch feed items. However, what if the
same items are returned on consecutive runs? What if the same category name is being used
by different items? We certainly don't want to duplicate the data. Let's see how to rectify this.

Check for duplicate items
Let's modify the file which streams the XML and add code so that it doesn't include an item
in the XML that has already been indexed. For this we will use the unique guid field and
before considering it for indexing, check if an item with the same guid already exists in the
items table. Let's do it.

Time for action – adding code to avoid duplicate items
Modify /path/to/webroot/feeds/makeindex.php and add the following code (only
the concerned portion of code is shown for brevity):

// Run a loop on all feeds and fetch the items
foreach ($feeds as $row) {
 // Fetch the feed
 $feed->set_feed_url($row['url']);
 $feed->init();

 // Fetch all items of this feed
 foreach ($feed->get_items() as $item) {
 $id = $item->get_id(true);

 // Check if an item with same id (guid) exists in our database

 $stmt = $dbh->prepare("SELECT id FROM items WHERE guid = ?");

 $stmt->execute(array($id));

 // If the item already exists

 // we will skip it and continue to the next item

 if ($stmt->rowCount()) {

 continue;

 }

 $query = "INSERT INTO items (title, guid, link, pub_date)

Chapter 5

[123]

 VALUES (?, ?, ?, ?)";
 $stmt = $dbh->prepare($query);
 // Params to be binded in the sql

 // If we have categories then insert them in database
 if ($categories) {
 // Insert the categories
 foreach ($item->get_categories() as $category) {
 $catName = $category->get_label();

 // Check if this category already exists

 $query = "SELECT id FROM categories WHERE name = ?";

 $stmt = $dbh->prepare($query);

 $stmt->execute(array($catName));

 // If this category already exists then..

 if ($stmt->rowCount()) {

 $result = $stmt->fetch(PDO::FETCH_ASSOC);

 // Push it in an array to be used outside the loop

 $catIds[] = $result['id'];

 continue;

 }

 $stmt = $dbh->prepare("INSERT INTO categories (name)
 VALUES (?)");
 $stmt->execute(array($catName));
 $catIds[] = $dbh->lastInsertId();
 }
 }

What just happened?
We added code to check if the item being inserted already exists in our table. We used the
unique guid for this purpose. guid is unique across all feeds (as per the RSS definition).
If a feed item already exists in our database, we simply skipped it.

We did something similar for categories. If a category already exists in our categories
table then we need not enter it again. Instead we fetched its id, and used this id in the
MVA value for the feed item. So categories are shared across feeds.

However, we still have an issue: when the indexer is run the second time, it will overwrite
the previously indexed data. So whenever we run the indexer, the index will get
overwritten by the latest feed items. However, we don't want to lose old data (feed items).

For this, we will use a technique called index merging.

Feed Search

[124]

Index merging
Index merging is more efficient than indexing the data from scratch, that is, all over again. In
this technique we define a delta index in the Sphinx configuration file. The delta index always
gets the new data to be indexed. However, the main index acts as an archive and holds data
that never changes.

In our Feed Search application the feed-items index will act as the main index. We will create
this index only once, that is, the first time we run the indexer. We will add a delta index
called feed-items-delta, which will be used for successive indexer runs. So the delta index
will always hold the new feed items, while the main index will hold the archived ones.

After running the indexer for delta, we will merge the delta with the main index. This is
done using the indexer command itself. The next time delta is indexed, we will again get
only the new items in it. This way our main index will keep getting appended with new data
as and when delta is merged with it.

Let's see the main+delta scheme in action.

Time for action – adding the delta index
1.	 Modify the configuration file, /usr/local/sphinx/etc/feeds.conf, and add

the following (highlighted) code:

source feeds
{
 type	 = xmlpipe2
 xmlpipe_command = /usr/bin/php /path/to/webroot/feeds/
makeindex.php
 xmlpipe_field = title
 xmlpipe_field = description
 xmlpipe_field = author
 xmlpipe_attr_timestamp = pub_date
 xmlpipe_attr_multi = category_id
}

source feeds-delta : feeds

{

}

index feed-items
{
 source = feeds
 path = /usr/local/sphinx/var/data/feed-items
 charset_type = utf-8

Chapter 5

[125]

}

index feed-items-delta : feed-items

{

 source = feeds-delta

 path = /usr/local/sphinx/var/data/feed-items-delta

}

indexer
{
 mem_limit = 64M
}

2.	 Run the indexer on feeds-items-delta index (as root):

$ /usr/local/sphinx/bin/indexer –c /usr/local/sphinx/etc/feeds.
conf feed-items-delta

3.	 Run the command to merge the delta index with the main index:

$ /usr/local/sphinx/bin/indexer –c /usr/local/sphinx/etc/feeds.
conf --merge feed-items feed-items-delta

What just happened?
We added a second source and index definition in our Sphinx configuration file. This index
acts as the delta index. We derived the delta from our main index. The syntax we used for
extending the main index was:

source feeds-delta : feeds

Feed Search

[126]

The syntax will define a source feeds-delta and all options will be inherited from the
source feeds. This is somewhat similar to class inheritance in OOP. We can overwrite any
option in feeds-delta, extending the index works in a similar fashion.

We didn't overwrite any option in the delta source. However, we overwrote the source and
path options in feed-items-delta index.

Next, we ran the indexer to create delta index. This time only new feed items were fetched
(in makeindex.php) and indexed in the delta. So delta holds only the new items, while old
items are held in the main index.

Following this we ran the indexer once again, but this time the motive was to merge the
delta with the main index:

$ /usr/local/sphinx/bin/indexer –c /usr/local/sphinx/etc/feeds.conf
--merge feed-items feed-items-delta

We used the --merge option of the indexer, and provided the names of feed-items and
feed-items-delta, as destination and source indexes respectively.

Once both our main and delta indexes are configured, we will run the indexer on delta
every time we want to fetch new items, and then merge the delta with the main. We will
only perform search on the main index since it will contain all the items.

Search form
We now have the index ready with us. We need a frontend to perform the search on this
index. So what are we waiting for? Let's build the search form. We will give the ability to
enter a search term, an author name, and select the categories. Author name and category
selection will be optional.

On specifying the search term, we will run a full-text search against our index and present
the search results returned by Sphinx. If author name or categories have been specified,
then we will filter the search results based on the same characteristics.

Time for action – creating the search form
1.	 Create a script /path/to/webroot/feeds/search.php with the

following content:

<?php
/**
 * File: /path/to/webroot/feeds/search.php
 */
include('init.php');

Chapter 5

[127]

// Get all the categories and their ids
// This will be used to build the categories filter drop down
$query = "SELECT id, name FROM categories ORDER BY name";
foreach ($dbh->query($query) as $row) {
 $viewVars['cat_list'][$row['id']] = $row['name'];
}

// Render the page
render('search');

2.	 Create the view for the search page at /path/to/webroot/feeds/views/
search.thtml:

<!-- File: /path/to/webroot/feeds/views/search.thtml -->
<form action="search.php" method="post">
 <fieldset>
 <legend>Search Feeds</legend>
 <div class="input">
 <label>Search for:</label>
 <input type="text" name="q" value="" />
 </div>
 <div class="input">
 <label>Author:</label>
 <input type="text" name="author" value="" />
 </div>
 <div class="input">
 <label>Category:</label>
 <select multiple="true" size="10" name="categories[]">
 <?php foreach ($viewVars['cat_list'] as $id => $name): ?>
 <option value="<?php echo $id; ?>">
 <?php echo $name; ?></option>
 <?php endforeach; ?>
 </select>
 </div>
 <div class="input">
 <label> </label>
 <input type="submit" value="Search" name="search" />
 </div>
 </fieldset>
</form>

Feed Search

[128]

3.	 Open search.php in a browser.

What just happened?
We created a basic form to specify the search phrase, author name, and select multiple
categories. We built the categories select box using the category labels we have in our
database table.

Search will be performed against different fields as given next:

�� Search for: Required. Full-text search against and description of feed items.

�� Author: Optional. Full-text search against author name in addition to the above.

�� Category: Optional. Filter results by the selected categories in addition to the above.

Perform the search query
The form we created does nothing but render different fields. Let's give it some life by adding
the code that performs a search against the Sphinx index and displays the results. We will
use a PHP implementation of the Sphinx Client API to perform search queries.

Time for action – adding code to perform a search query
1.	 Modify the Sphinx configuration file /var/local/sphinx/etc/feeds.conf and

add section for searchd:

Other options (not shown for brevity)

Chapter 5

[129]

index feed-items-delta : feed-items
{
 source = feeds-delta
 path = /usr/local/sphinx/var/data/feed-items-delta
}

indexer
{
 mem_limit = 64M
}

searchd

{

 listen = 9312

 log = /usr/local/sphinx/var/log/feeds-searchd.log

 query_log = /usr/local/sphinx/var/log/feeds-query.log

 max_children = 30

 pid_file = /usr/local/sphinx/var/log/feeds-searchd.pid

}

2.	 Stop the searchd daemon (as root). You need to do this only if searchd is
already running:

$ /usr/local/sphinx/bin/searchd -c /path/to/sphinx.conf --stop

3.	 Start the searchd daemon (as root):

$ /usr/local/sphinx/bin/searchd –c /usr/local/sphinx/etc/feeds.
conf –i feed-items

4.	 Modify search.php and add the following (highlighted) code:

<?php
/**
 * File: /path/to/webroot/feeds/search.php
 */
include('init.php');

// Get the data from post if form is submitted

// else initialize variables to empty strings

$q = !empty($_POST['q']) ? $_POST['q'] : '';

Feed Search

[130]

$author = !empty($_POST['author']) ? $_POST['author'] : '';

$categories = !empty($_POST['categories']) ? $_POST['categories']
: array();

// Perform the search if we have a search term

if (!empty($q)) {

 do_search($q, $author, $categories);

}

// Get all the categories and their ids
// This will be used to build the categories filter drop down
$query = "SELECT id, name FROM categories ORDER BY name";
foreach ($dbh->query($query) as $row) {
 $viewVars['cat_list'][$row['id']] = $row['name'];
}

// Render the page
render('search');

/**

 * Method to perform the search

 *

 * @param string $q Fulltext search query

 * @param string $author Name of the author

 * @param array $categories Id of the categories for filtering

 */

function do_search($q, $author, $categories)

{

 global $dbh, $viewVars;

 // Include the api class

 require_once('sphinxapi.php');

 $client = new SphinxClient();

 // Set search options

 $client->SetServer('localhost', 9312);

 $client->SetConnectTimeout(1);

 $client->SetArrayResult(true);

 // Set the mode to SPH_MATCH_EXTENDED2

 $client->SetMatchMode(SPH_MATCH_EXTENDED2);

 // Match the search term against title and description

 $query = "@(title,description) ($q)";

Chapter 5

[131]

 // Fire the search query against feed-items index (main index)

 $viewVars['results'] = $client->Query($query, 'feed-items');

 $viewVars['items'] = array();

 // Get the item title and link for the matches

 if (!empty($viewVars['results']['matches'])) {

 foreach ($viewVars['results']['matches'] as $match) {

 $itemIds[] = $match['id'];

 }

 $query = "SELECT id, title, link FROM items WHERE id IN (" .
implode(',', $itemIds) . ")";

 $stmt = $dbh->prepare($query);

 $stmt->execute();

 while ($item = $stmt->fetch(PDO::FETCH_ASSOC)) {

 $viewVars['items'][$item['id']] = $item;

 }

 }

}//end do_search()

5.	 Modify the search.thtml view and add code to display the results:

<!-- File: /path/to/webroot/feeds/views/search.thtml -->
<!-- Code truncated for brevity -->

 <div class="input">
 <label> </label>
 <input type="submit" value="Search" name="search" />
 </div>
 </fieldset>
</form>

<div class="results">

<?php if (isset($viewVars['results']) &&
empty($viewVars['items'])): ?>

 <div class="information">No matching items found!!!</div>

<?php endif; ?>

<?php

if (!empty($viewVars['items'])) {

 print '<div class="information">Total '.$viewVars['results']
['total_found'].' items found</div.';

 print '';

 foreach ($viewVars['results']['matches'] as $match) {

Feed Search

[132]

 print '

 '

 .$viewVars['items'][$match['id']]['title'].'';

 }

 print '';

}

?>

</div>

6.	 Reload search.php in your browser put any term in the Search for field, and
click on the Search button. I searched for 'development' as demonstrated in the
following screenshot:

What just happened?
We first added the searchd configuration options to the Sphinx configuration file. We
specified where to create the log files and what port to listen at. After that, we stopped the
searchd instance, which was already running. We then started the searchd daemon and
passed the option -c to it so that only the feed-items (main) index is served.

After that, we modified the search.php script and added code to handle the posted
form. We used the SPH_MATCH_EXTENDED2 match mode so that we can supply a query
expression. To search against title and description fields we used @(title,description)
($q) expression. This expression reads: 'search all those documents where title and
description matches the query'.

Chapter 5

[133]

Once we get the results from Sphinx, we fetched the respective item's title and link from
the feeds table. The document ID returned by Sphinx is the same as the primary key in our
feeds table.

In the view, we added code to loop through the results and display a list of items hyperlinked
to their original pages.

Applying filters
We still haven't added code to perform a search against author name and filter the results by
selected categories. So let's do that now.

Time for action – adding code to filter the results
1.	 Modify the function do_search() in search.php and add the following

highlighted code:

function do_search($q, $author, $categories)
{
 global $dbh, $viewVars;
 // Include the api class
 require('sphinxapi.php');

 $client = new SphinxClient();
 // Set search options
 $client->SetServer('localhost', 9312);
 $client->SetConnectTimeout(1);
 $client->SetArrayResult(true);

 // Set the mode to SPH_MATCH_EXTENDED2
 $client->SetMatchMode(SPH_MATCH_EXTENDED2);
 // Match the search term against title and description
 $query = "@(title,description) ($q)";

 // If we have author then match it against author field

 if (!empty($author)) {

 $query .= "@author $author";

 }

 // If categories were selected then filter the results

 if (!empty($categories)) {

 $client->SetFilter('category_id', $categories);

 }

Feed Search

[134]

 // Fire the search query against feed-items index (main index)
 $viewVars['results'] = $client->Query($query, 'feed-items');
 $viewVars['items'] = array();

 // Get the item title and link for the matches
 if (!empty($viewVars['results']['matches'])) {
 foreach ($viewVars['results']['matches'] as $match) {
 $itemIds[] = $match['id'];
 }
 $query = "SELECT id, title, link FROM items
 WHERE id IN (" . implode(',', $itemIds) . ")";
 $stmt = $dbh->prepare($query);
 $stmt->execute();
 while ($item = $stmt->fetch(PDO::FETCH_ASSOC)) {
 $viewVars['items'][$item['id']] = $item;
 }
 }
}//end do_search()

What just happened?
We added code to include author in the search query if a user has entered the author name
in the search form. The final search query looks something like this:

@(title,description) ($q) @author $author

The search query will match $q against the title and description, and in addition to this
the author field should also match $author.

The second bit of code filters the results by categories. So, only those results that match the
full-text query and have the selected categories assigned to them will be finally returned by
Sphinx.

We have one final addition to complete our Feed Search application.

Time for action – showing search form prefilled with
last submitted data
1.	 Add the following highlighted code in search.php:

// Perform the search if we have a search term
if (!empty($q)) {
 do_search($q, $author, $categories);
}

Chapter 5

[135]

// Get all the categories and their ids
// This will be used to build the categories filter drop down
$query = "SELECT id, name FROM categories ORDER BY name";
foreach ($dbh->query($query) as $row) {
 $viewVars['cat_list'][$row['id']] = $row['name'];
}

// Assign the search parameters to view variable

$viewVars['q'] = $q;

$viewVars['author'] = $author;

$viewVars['categories'] = $categories;

// Render the page
render('search');

2.	 Modify search.thtml and change or add the following highlighted code:

 <div class="input">
 <label>Search for:</label>

 <input type="text"

 name="q" value="<?php echo $viewVars['q']; ?>" />

 </div>
 <div class="input">
 <label>Author:</label>

 <input type="text"

 name="author" value="<?php echo $viewVars['author']; ?>" />

 </div>
 <div class="input">
 <label>Category:</label>
 <select multiple="true" size="10" name="categories[]">
 <?php foreach ($viewVars['cat_list'] as $id => $name): ?>

 <?php

 $selected = '';

 if (in_array($id, $viewVars['categories'])) {

 $selected = ' selected';

 }

 ?>

 <option value="<?php echo $id; ?>"<?php echo $selected;
?>><?php echo $name; ?></option>

 <?php endforeach; ?>
 </select>
 </div>

Feed Search

[136]

3.	 Reload the search page and try different search queries. Also, try entering author
name and selecting one or more categories.

What just happened?
To give the finishing touches to our application we added code to show the form prefilled
with the submitted parameters when search results are displayed.

The final search will look like the following screenshot:

We searched for the term facebook against the title and description of feed items.
Additionally, we specified that search query should also match jason or leena against the
author field. So, only those items that are authored either by jason or leena will be returned.

Next we filtered the items by Facebook category. So the final result will contain only those
items which have Facebook category assigned to them.

Chapter 5

[137]

Re-indexing
We now have the index ready with us, and we also have the frontend to perform the search.
To fetch new feed items and index them we need to run the following commands at regular
intervals:

$ /usr/local/sphinx/bin/indexer –c /usr/local/sphinx/etc/feeds.conf feed-
items-delta --rotate

$ /usr/local/sphinx/bin/indexer -c /usr/local/sphinx/etc/feeds.conf
--merge feed-items feed-items-delta --rotate

--rotate option is required as the index is already being served by searchd. This option
creates a second index with the .new suffix, parallel to the first, and in the same place. Once
the indexing is complete, indexer notifies the searchd and searchd attempts to rename
the existing index to include .old suffix, and renames .new by removing .new to replace
the existing index.

Have a go hero – trying different search queries
Try adding new feed URLs and re-indexing multiple times. Try different search queries.
You can use all the operators mentioned in the Extended Query Syntax section of
Chapter 4, Searching.

Summary
In this chapter:

�� We tried our hand at a practical application that uses a Sphinx backend to perform
the core task of searching

�� We used PHP for creating an application that fetches different feeds and stores the
feed item data in a Sphinx index

�� We created a search form that acts as the frontend for searching.

�� We learned how to create indexes in the main+delta scheme and how to re-index

In the next chapter we will take up another practical application that will involve some
advance features of Sphinx.

6
Property Search

In the previous chapter we saw a very simple application that performed a
full-text search on the feed items. In this chapter we will create a more
advanced application. So pull up your socks, and get ready to build a complex
search application that will search through real estate property listings.

In this chapter we shall:

�� Create a form to add properties

�� Create a form to perform simple full-text search on properties

�� Create an advanced search form

�� Create a form to perform geo-location based searching

So let's get on with it...

The application
This application will search a database of real estate properties. We will create this
database and populate it with some data. A property will have the following associated
information (fields):

�� Property type

�� Description

�� Price

�� City

�� Address

Property Search

[140]

�� Zip code

�� Number of bedrooms

�� Number of bathrooms

�� Property area

�� Year in which the property was built

�� Geo-coordinates of the property

�� Amenities

We will be creating different search forms; such as a simple, an advanced, and a geo location
based search. These forms will have the following characteristics:

�� Simple: A city based filter and full-text search with different weights assigned to
each field. We will have a drop-down from which the user can select the city, and
a text box to enter search keywords.

�� Advanced: A purely filter based search. We will also use ranged filters in this form.
A user will be able to specify the type of property, budget, minimum number of
bedrooms, minimum area, and the age of the property as search criteria.

�� Geo location: In this form we will ask for coordinates of the location and search
for all nearby properties.

Tools and software used while creating this application
We will be using the following software and tools to build this application:

�� PHP 5.3.2

�� Apache 2.2.14

�� MySQL 5.1.14

�� Sphinx 0.9.9

�� phpMyAdmin (to manage the database)

�� Ubuntu 10.04 LTS

�� Firefox 3.6

We will be building this application on the same lines as we did in the previous chapter.
We will use the same HTML/CSS to build our views.

Chapter 6

[141]

Database structure
Let's get started by creating the database structure. Firstly, we will need a table to hold the
property's data; such as type, description, price, number of bedrooms, and so on. We will
call this table properties.

Each property will be located in a city. It will make sense to normalize the city data so that
the same city can be used for multiple properties. To do this, we will create a table cities
and relate it to the properties table.

We will also need to associate amenities (parking, swimming pools, gardens, and so on) to
properties. Again we will normalize amenities and keep it in its own table. An amenity can
be associated with multiple properties and a property can have multiple amenities. To create
such an association we will create a table amenities_properties.

Time for action – creating the MySQL database and structure
1.	 Open phpMyAdmin and create a database sphinx_properties. You can use an

existing database as well.

2.	 Import the following SQL to create the database tables:

CREATE TABLE IF NOT EXISTS `amenities` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE IF NOT EXISTS `amenities_properties` (
 `amenity_id` int(11) NOT NULL,
 `property_id` int(11) NOT NULL,
 PRIMARY KEY (`amenity_id`,`property_id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE IF NOT EXISTS `cities` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(255) NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

CREATE TABLE IF NOT EXISTS `properties` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `type` enum('1','2') NOT NULL DEFAULT '1',
 `transaction_type` enum('1','2','3') NOT NULL DEFAULT '1',
 `description` text NOT NULL,

Property Search

[142]

 `price` int(11) NOT NULL,
 `city_id` int(11) NOT NULL,
 `address` text NOT NULL,
 `zip_code` varchar(10) NOT NULL,
 `bedrooms` int(2) NOT NULL,
 `bathrooms` int(2) NOT NULL,
 `area` float(10,2) NOT NULL,
 `built_year` int(4) NOT NULL,
 `latitude` float(5,2) DEFAULT NULL,
 `longitude` float(5,2) DEFAULT NULL,
 `date_added` datetime NOT NULL,
 PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;

What just happened?
We created a new database sphinx_properties, which will be used by our application
with the following database tables:

�� amenities: This table holds the name of all the amenities related to properties.
Search results can be filtered by amenities.

�� amenities_properties: This table holds the data which links a particular
amenity to different properties. Each property can have multiple amenities and each
amenity can be assigned to multiple properties.

�� cities: This table holds the names of cities. Each property will belong to a city and
search results can be filtered by cities.

�� properties: This is the main table that holds the data related to a property. The
following fields are added to this table:

�� type: Whether the property is Residential (1) or Commercial (2).

�� transaction_type: Whether the property is listed for Sale (1), Rent (2),
or for a Paying Guest (3).

�� description: A description of the property.

�� price: The price of the property. (We are keeping this as an integer field.)

�� city_id: City where this property is located.

�� address and zip_code: Address of the property.

�� bedrooms, bathrooms, and area: Characteristics of the property.

�� built_year: Year in which this property was built.

�� latitude and longitude: Geo location of this property.

Chapter 6

[143]

The following screenshots demonstrate what the database structure will look like:

amenities table:

amenities_properties table:

cities table:

properties table:

Property Search

[144]

Initial data
Now that we have the database structure ready, let's populate the tables with some data.

Frontend for the application

Ideally, you would have a frontend to populate all these tables in a real world
application. It is beyond the scope of this book to create a complete frontend
for the application.

Time for action – populating the database
Import the following SQL to populate amenities and cities tables:

--
-- Dumping data for table `amenities`
--

INSERT INTO `amenities` (`id`, `name`) VALUES
(1, 'Parking'),
(2, 'Swimming Pool'),
(3, 'Garden'),
(4, 'Elevator'),
(5, 'Club House'),
(6, 'Watchman');

--
-- Dumping data for table `cities`
--

INSERT INTO `cities` (`id`, `name`) VALUES
(1, 'Nagpur'),
(2, 'Mumbai'),
(3, 'New Delhi'),
(4, 'London'),
(5, 'New York'),
(6, 'Hyderabad');

What just happened?
We populated the amenities and cities tables with some data. We did not populate
the properties table, as we will be creating a simple form to add a property in the
next exercise.

Chapter 6

[145]

Basic setup
We will use the exact same setup as we did in Chapter 5, Feed Search, and you can use the
same directory structure and common files, such as init.php.

Time for action – setting up the application
1.	 Create a properties directory in your webroot, /path/to/webroot/

properties:

$ mkdir /path/to/webroot/properties

2.	 Create the /path/to/webroot/properties/views directory:

$ mkdir /path/to/webroot/properties/views

3.	 Copy the sphinxapi.php file from the Sphinx source directory to the properties
directory:

$ cp /path/to/sphinx-0.9.9/api/sphinxapi.php /path/to/webroot/
properties/

4.	 Create the file /path/to/webroot/properties/init.php with the following
code:

<?php
/**
 * File: /path/to/webroot/properties/init.php
 */
// Database connection credentials
$dsn ='mysql:dbname=sphinx_properties;host=localhost';
$user = 'root';
$pass = '';

// Instantiate the PDO (PHP 5 specific) class
try {
 $dbh = new PDO($dsn, $user, $pass);
} catch (PDOException $e){
 echo'Connection failed: '.$e->getMessage();
}

// Array to hold variables to be used in views
$viewVars = array();

/**
 * Method to fetch the contents of a view (thtml) file
 * and return the contents.

Property Search

[146]

 * The html string returned by this method is then
 * placed in the master layout.
 *
 * @param string $view Name of the view file to be fetched.
 *
 * @return string HTML contents specific to the passed view
 */
function get_view($view)
{
 global $viewVars;
 // Start the output buffering so that the html output of the
 // view is not sent to the browser immediately.
 ob_start();
 // Include the view file which outputs the HTML
 include("views/$view.thtml");
 // Get the view contents in a variable i.e. whatever the
 // above view outputs, it gets stored in a variable
 $contents = ob_get_contents();
 // Clean the buffer
 ob_end_clean();
 return $contents;
}//end get_view()

/**
 * Method to render the page.
 * This method along with get_view()
 * acts as a very simple templating
 * engine and separates the view logic
 * from our php (business) logic.
 *
 * @param string $view Name of the view file to be rendered
 */
function render($view)
{
 $contents = get_view($view);
 include('views/layout.thtml');
}//end render()

5.	 Create the master layout at /path/to/webroot/properties/views/layout.
thtml:

<!-- File: /path/to/webroot/properties/views/layout.thtml -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>

Chapter 6

[147]

<head>
<title>Property portal</title>
<link rel="stylesheet" type="text/css" href="style.css" />
</head>
<body>
 <div id="header">
 <h1>Property search using Sphinx</h1>
 </div>
 <div id="nav">

 Home
 Advanced Search
 Geolocation Search
 Add property

 </div>
 <div id="content">
 <?php echo $contents; ?>
 </div>
</body>
</html>

6.	 Create /path/to/webroot/properties/style.css:

/** File: /path/to/webroot/properties/style.css **/
body {
 font-family: verdana,arial,sans-serif;
 background-color: #F7F5F2;
 font-size: 12px;
 margin: 0;
 overflow: auto;
}
#header {
 text-align: center;
 background-color: #606060;
 color: #ffffff;
 height: 70px;
 padding-top: 5px;
}
#nav ul {
 list-style: none;
 padding: 5px;
 margin: 0px;
}
#nav ul li {

Property Search

[148]

 display: inline;
 padding: 5px 10px 5px 10px;
 border-right: 1px solid;
}
#nav {
 background-color: #000000;
 color: #ffffff;
}
#nav a {
 color: #ffffff;
 text-decoration: none;
 font-weight: bold;
}
#content {
 padding: 10px;
}
div.input {
 padding: 5px;
}
label {
 width: 110px;
 text-align: right;
 display: block;
 float: left;
}
.information {
 color: #28630B;
}

What just happened?
As in the previous chapter, we created a common PHP file, init.php, which will
be used to initialize database connection and contains a few other methods to render
the output.

We also created an HTML layout and stylesheet to render the output as a nice looking
web page.

The files created in this exercise were not explained in great detail as they are
similar to those created in Chapter 5, Feed Search. You should refer to this for
further explanation.

Chapter 6

[149]

At this point your directory structure will look like the following screenshot

Adding a property
The next step would be to create a form that will facilitate adding new properties. This form
will have fields to specify property details; such as the type of property, city, amenities, and
so on.

Time for action – creating the form to add property
1.	 Create a file /path/to/webroot/properties/add.php with the following

content:

<?php
/**
 * File: /path/to/webroot/properties/add.php
 */
include('init.php');
// Get the list of cities
$query = "SELECT id, name FROM cities";
foreach ($dbh->query($query) as $row) {
 $viewVars['cities'][$row['id']] = $row['name'];
}

// Get the list of localities
$query = "SELECT id, name FROM localities";
foreach ($dbh->query($query) as $row) {
 $viewVars['localities'][$row['id']] = $row['name'];
}

// Get the list of amenities
$query = "SELECT id, name FROM amenities";
foreach ($dbh->query($query) as $row) {
	 $viewVars['amenities'][$row['id']] = $row['name'];
}

// If form is submitted then save the data
// We aren't doing any validation but in a real

Property Search

[150]

// web application you should.
if (!empty($_POST['description'])) {
 // Query to insert the property
 $query = "INSERT INTO
 properties
 SET
 type = :type,
 transaction_type = :transaction_type,
 description = :description,
 price = :price,
 city_id = :city_id,
 address = :address,
 zip_code = :zip_code,
 bedrooms = :bedrooms,
 bathrooms = :bathrooms,
 area = :area,
 built_year = :built_year,
 latitude = :latitude,
 longitude = :longitude,
 date_added = :date_added";

 $stmt = $dbh->prepare($query);

 $params = array(
 ':type' => strip_tags($_POST['type']),
 ':transaction_type' =>
 strip_tags($_POST['transaction_type']),
 ':description' => strip_tags($_POST['description']),
 ':price' => (int)$_POST['price'],
 ':city_id' => (int)$_POST['city_id'],
 ':address' => strip_tags($_POST['address']),
 ':zip_code' => strip_tags($_POST['zip_code']),
 ':bedrooms' => (int)$_POST['bedrooms'],
 ':bathrooms' => (int)$_POST['bathrooms'],
 ':area' => (float)$_POST['area'],
 ':built_year' => (int)$_POST['built_year'],
 ':latitude' => (float)$_POST['latitude'],
 ':longitude' => (float)$_POST['longitude'],
 ':date_added' => date('Y-m-d H:i:s'),
);
 // Execute the statement
 $stmt->execute($params);
 // Get the property id to be used for related amenities
 $property_id = $dbh->lastInsertId();

Chapter 6

[151]

 // Insert the amenities
 foreach ($_POST['amenities'] as $amenity) {
 $query = "INSERT INTO
 amenities_properties
 SET
 amenity_id = :amenity_id,
 property_id = :property_id";

 $stmt = $dbh->prepare($query);
 $params = array(
 ':amenity_id' => (int)$amenity,
 ':property_id' => (int)$property_id,
);
 $stmt->execute($params);
 }
 $viewVars['success'] = true;
}
// Render the view
render('add');

2.	 Create the view for the form at /path/to/webroot/properties/views/add.
thtml:

<?php if (!empty($viewVars['success'])): ?>
 <div class="information">Property saved successfully</div>
<?php else: ?>
<form action="add.php" method="post">
 <fieldset>
 <legend>Add Property</legend>
 <div class="input">
 <label>Type: </label>
 <input type="radio" name="type" value="1" /> Residential

 <input type="radio" name="type" value="2" />Commercial
 </div>
 <div class="input">
 <label>Transaction Type: </label>
 <input type="radio" name="transaction_type" value="1" /> Buy

 <input type="radio" name="transaction_type" value="2" />
 Rent

 <input type="radio" name="transaction_type" value="3" /> PG
 </div>

Property Search

[152]

 <div class="input">
 <label>Description: </label>
 <textarea name="description" rows="5" cols="30"></textarea>
 </div>
 <div class="input">
 <label>Price ($): </label>
 <input type="text" name="price" size="5" />
 </div>
 <div class="input">
 <label>City: </label>
 <select name="city_id">
 <?php foreach ($viewVars['cities'] as $id => $name): ?>
 <option value="<?php echo $id; ?>">
 <?php echo $name; ?></option>
 <?php endforeach; ?>
 </select>
 </div>
 <div class="input">
 <label>Address: </label>
 <textarea name="address"></textarea>
 </div>
 <div class="input">
 <label>Zip Code: </label>
 <input type="text" name="zip_code" size="5" />
 </div>
 <div class="input">
 <label>Bedrooms: </label>
 <input type="text" name="bedrooms" size="1" />
 </div>
 <div class="input">
 <label>Bathrooms: </label>
 <input type="text" name="bathrooms" size="1" />
 </div>
 <div class="input">
 <label>Amenities: </label>
 <select name="amenities[]" size="5" multiple>
 <?php
 foreach ($viewVars['amenities'] as $id => $name): ?>
 <option value="<?php echo $id; ?>">
 <?php echo $name; ?>
 </option>
 <?php endforeach; ?>
 </select>
 </div>

Chapter 6

[153]

 <div class="input">
 <label>Area: </label>
 <input type="text" name="area" size="4" />
 </div>
 <div class="input">
 <label>Built Year: </label>
 <select name="built_year">
 <option value="0">Under Construction</option>
 <?php
 $year = date('Y');
 for ($i = $year; $i >= $year - 200; $i--) {
 ?>
 <option value="<?php echo $i; ?>">
 <?php echo $i; ?></option>
 <?php } ?>
 </select>
 </div>
 <div class="input">
 <label>Latitude: </label>
 <input type="text" name="latitude" size="3" />
 </div>
 <div class="input">
 <label>Longitude: </label>
 <input type="text" name="longitude" size="3" />
 </div>
 <div class="input">
 <label> </label>
 <input type="submit" name="submit" value="Add" />
 </div>
 </fieldset>
</form>
<?php endif; ?>

Property Search

[154]

3.	 Open add.php in a browser and add a property with some dummy data,as
demonstrated in the following screenshot:

What just happened?
We created a PHP script, add.php, in our webroot to add properties. The PHP code
is self explanatory.

Next, we created the view, in which we added the HTML form to input data for different
fields related to a property.

Chapter 6

[155]

Data validation

In our code we didn't add any sort of validations. In a real world application you
should always add some validations to make sure that form data is not tainted
and the field values are what we expected.

Now that we have the form to add a new property, go ahead and add a few dummy
properties. For latitude and longitude values you might want to refer to Google maps
http://maps.google.com.

Indexing the properties
The next step in our application is to index the data using Sphinx's indexer tool. We will
be creating three separate forms for searching, but the same index will be used by all three
search forms.

Time for action – creating the index
1.	 Create the Sphinx configuration file at /usr/local/sphinx/etc/properties.

conf with the following content:

source properties-source
{
 type = mysql
 sql_host = localhost
 sql_user = root
 sql_pass =
 sql_db = sphinx_properties
 sql_query_range = SELECT MIN(id), MAX(id) FROM properties
 sql_range_step = 1000
 sql_query = SELECT id, type, \
 transaction_type, description, \
 price, city_id, bedrooms, bathrooms, area, \
 address, zip_code, built_year, \
 (latitude * PI() / 180) AS latitude, \
 (longitude * PI() / 180) AS longitude, \
 UNIX_TIMESTAMP(date_added) AS date_added \
 FROM properties
 WHERE id >= $start AND id <= $end
 sql_attr_uint = type
 sql_attr_uint = transaction_type
 sql_attr_uint = price
 sql_attr_uint = city_id

Property Search

[156]

 sql_attr_uint = bedrooms
 sql_attr_uint = bathrooms
 sql_attr_float = area
 sql_attr_uint = built_year
 sql_attr_float = latitude
 sql_attr_float = longitude
 sql_attr_timestamp = date_added
 sql_attr_multi = uint amenity_id from query; \
 SELECT property_id, amenity_id FROM amenities_
properties
}

index properties
{
 source = properties-source
 path = /usr/local/sphinx/var/data/properties
 charset_type = utf-8
}

indexer
{
 mem_limit = 32M
}

searchd
{
 listen = localhost:9312
 log = /usr/local/sphinx/var/log/searchd.log
 query_log = /usr/local/sphinx/var/log/query.log
 max_children = 30
 pid_file = /usr/local/sphinx/var/log/searchd.pid
}

2.	 Run the indexer command to create the index (as root):

/usr/local/sphinx/bin/indexer -c /usr/local/sphinx/etc/properties.
conf --all

Chapter 6

[157]

What just happened?
We created the Sphinx configuration file and defined the source and indexer in it. We are
using a MySQL database for this application and defined the source options accordingly.

For the first time ever, we used the following options to configure the source. Let's have a
look at what each of these options are:

�� sql_query_range: Is used for ranged document queries. Ranged queries are very
useful when indexing lots of data, that is, when the number of records to index goes
into millions. This option takes a query that must fetch the minimum and maximum
document IDs which will be used as range boundaries. It must return exactly two
integer fields in the same order.

It is because of the ranged query that Sphinx populates two macros, $start and
$end, and we need to use: - in sql_query, which fetches the actual data. These
two macros help in setting up the right conditions to fetch the documents.

�� sql_range_step: Specifies the steps in document IDs interval. For example, if min
and max IDs returned by the sql_query_range are 55 and 150 respectively, and
if the sql_range_step is 40, indexer will call sql_query three times with the
following substitutions for the $start and $end macros:

�� $start = 55, $end = 94

�� $start = 95, $end = 134

�� $start = 135, $end = 150

So our data gets fetched in three queries instead of one. This is useful if you have
lots of records and fetching them all at once may lock MyISAM tables for longer
periods, or reduce the performance because of big result sets.

We fetched all data related to properties in sql_query. The geo coordinates,
latitude and longitude, are converted from decimal to radians in the query itself.
We divide the decimal value by 180/pi. Sphinx needs them in radians to perform
a geo location search (explained more clearly in Geo distance search later
in this chapter).

�� sql_attr_float was used to specify the attribute with floating point value. We
defined amenity as an MVA because each property can have one or more associated
amenities.

The remaining blocks in the configuration file are pretty straightforward and we had used the
same settings in our earlier applications.

Lastly, we ran the indexer to create the index.

Property Search

[158]

Simple search form
Now let's move on to the crux of our application, the search form. We will start by
building a simple search form, wherein the user can select a city and enter a search
keyword. This is what most real estate portals provide on their home page, commonly
known as a quick search.

Time for action – creating the simple search form
1.	 Create a script /path/to/webroot/properties/index.php with the following

content (this will be our home page):

<?php
/**
 * File: /path/to/webroot/properties/index.php
 */
include('init.php');

// Get the list of cities
$query = "SELECT id, name FROM cities";
foreach ($dbh->query($query) as $row) {
 $viewVars['cities'][$row['id']] = $row['name'];
}

// Get the query and city from form (if submitted)
$q = !empty($_POST['q']) ? $_POST['q'] : '';
$city = !empty($_POST['city_id']) ? $_POST['city_id'] : '';

$viewVars['q'] = $q;
$viewVars['city_id'] = $city;
render('index');

2.	 Create the view for the form at /path/to/webroot/properties/views/
index.thtml:

<form action="index.php" method="post">
 <fieldset>
 <legend>Search</legend>
 <div class="input">
 <label>City: </label>
 <select name="city_id">
 <?php foreach ($viewVars['cities']
 as $id => $name): ?>
 <?php
 $selected = '';

Chapter 6

[159]

 if ($id == $viewVars['city_id']) {
 $selected = ' selected';
 }
 ?>
 <option value="<?php echo $id; ?>"
 <?php echo $selected; ?>>
 <?php echo $name; ?></option>
 <?php endforeach; ?>
 </select>
 </div>
 <div class="input">
 <label>Search: </label>
 <input type="text" name="q"
 value="<?php echo $viewVars['q']; ?>" />
 </div>
 <div class="input">
 <label> </label>
 <input type="submit" name="submit" value="Search" />
 </div>
 </fieldset>
</form>

What just happened?
We created a form with two fields: a drop-down box to select the city and a textbox to enter
the keyword for search.

Search results will be filtered based on the selected city and the search keyword will be
matched against the full-text description, address, and zip_code fields.

We have not added the code to perform the actual search query at this point. If you open
the index.php page in a browser, you will see a search form like the following screenshot:

Property Search

[160]

Full-text search
Now let's implement the actual search logic. The keywords entered will be matched against
the full-text index and the results will be filtered based on the selected city.

Time for action – adding code to perform full-text search
1.	 Start the searchd daemon (as root):

$ /usr/local/sphinx/bin/searchd –c /usr/local/sphinx/etc/
properties.conf

2.	 Modify index.php and add the following (highlighted) code:

<?php
/**
 * File: /path/to/webroot/properties/index.php
 */
include('init.php');

// Get the list of cities
$query = "SELECT id, name FROM cities";
foreach ($dbh->query($query) as $row) {
 $viewVars['cities'][$row['id']] = $row['name'];
}

$q = !empty($_POST['q']) ? $_POST['q'] : '';
$city = !empty($_POST['city_id']) ? $_POST['city_id'] : '';

// If we have the search term

if (!empty($q)) {

 // Include the api class

 require_once('sphinxapi.php');

 $client = new SphinxClient();

 // Set search options

 $client->SetServer('localhost', 9312);

 $client->SetConnectTimeout(1);

 $client->SetArrayResult(true);

Chapter 6

[161]

 // Set the mode to SPH_MATCH_ANY

 $client->SetMatchMode(SPH_MATCH_ANY);

 // Weights for each field

 $weights = array(

 'description' => 1,

 'address' => 10,

 'zip_code' => 50,

);

 $client->SetFieldWeights($weights);

 if (!empty($city)) {

 $client->SetFilter('city_id', array($city));

 }

 $viewVars['results'] = $client->Query($q);

}

$viewVars['q'] = $q;
$viewVars['city_id'] = $city;
render('index');

3.	 Modify the index.thtml view and add code to display the results:

<!-- File: /path/to/webroot/properties/views/index.thtml -->

 <div class="input">
 <label> </label>
 <input type="submit" name="submit" value="Search" />
 </div>
 </fieldset>
</form>

<div class="results">

<?php if (isset($viewVars['results']) &&
empty($viewVars['results']['matches'])): ?>

 <div class="information">No matching properties found!!!</div>

<?php endif; ?>

<?php

if (!empty($viewVars['results']['matches'])) {

 print '<div class="information">Total '.$viewVars['results']
['total_found'].' properties found</div>';

 print '';

 foreach ($viewVars['results']['matches'] as $match) {

Property Search

[162]

 print '<a href="view.php?id=' . $match['id']

 . '">Listing #' . $match['id'] .', '

 . $match['attrs']['bedrooms'] . ' Bedrooms '

 . $match['attrs']['area']. 'sq feet, $'

 . $match['attrs']['price']. '';

 }

 print '';

}

?>

</div>

4.	 Reload the index.php page in your browser, select any city and search for a term
(this depends on the data you provided while adding properties).

What just happened?
Firstly, we started the searchd daemon. If the daemon is already serving another
configuration file, then you first need to stop the daemon and then start it for this
configuration file. If you try to start two instances of searchd, with the same port assigned
to the listen option, then you will get an error as shown next:

FATAL: failed to lock pid file '/usr/local/sphinx/var/log/searchd.
pid': Resource temporarily unavailable (searchd already running?)

We then modified the index.php file and added code to handle the search form
submission. We used SPH_MATCH_ANY matching mode and set weights for each individual
fields. We assigned the following weights to the fields:

�� description—1

�� address—10

�� zip_code—50

Chapter 6

[163]

We assigned the least weight to description and the highest weight to the zip_code
field. This was done so that if a keyword matches the zip_code of a document, then that
document gets the highest rank, and thus, the zip_code field is assigned the maximum
weight. Then comes address and description in that order. We chose the weights so
that there is maximum difference between the weights of description and zip_code.
The higher the difference, the higher the weightage.

We used the SetFieldWeights()API method, which binds per-field weights by name.
The parameter passed to this method is an associative array, mapping string field names
to integer weights.

The default value for weight given to each field is 1 and the specified weights must be a
positive 32 bit integer.

After adding the search logic, we modified the view to add HTML code in order to display
the results.

Have a go hero – try setting different field weights
In add.php, try your hand by setting different weights for each field. See how it affects the
ranking of results.

Also try other matching modes and see which mode works best for you. Of course, you
would first need to add quite a few properties to make the search worthwhile.

Advanced search
Now, let's jump on to a comprehensive search form which will essentially filter search results
based on all the attributes; such as city, price, number of bedrooms, area, and so on.

We will build the advanced search form step by step, that is, we will add one filter at a time.

Time for action – creating the Advanced search form
1.	 Create a script /path/to/webroot/properties/search.php with the

following content:

<?php
/**
 * File: /path/to/webroot/properties/search.php
 */
include('init.php');

// Get the list of cities
$query = "SELECT id, name FROM cities";

Property Search

[164]

foreach ($dbh->query($query) as $row) {
 $viewVars['cities'][$row['id']] = $row['name'];
}

// Render the view
render('search');

2.	 Create the view for the search page at /path/to/webroot/properties/views/
search.thtml:

<form action="advanced_search.php" method="post">
 <fieldset>
 <legend>Advanced search</legend>
 <div class="input">
 <label>City: </label>
 <select name="city_id">
 <?php foreach ($viewVars['cities'] as $id => $name):?>
 <option value="<?php echo $id; ?>">
 <?php echo $name; ?></option>
 <?php endforeach; ?>
 </select>
 </div>
 <div class="input">
 <label>Type: </label>
 <input type="radio" name="type" value="1" checked />
 Residential

 <input type="radio" name="type" value="2" /> Commercial
 </div>
 <div class="input">
 <label>Transaction Type: </label>
 <input type="radio"
 name="transaction_type" value="0" checked /> Any

 <input type="radio" name="transaction_type" value="1" /> Buy

 <input type="radio"
 name="transaction_type" value="2" /> Rent

 <input type="radio" name="transaction_type" value="3" /> PG
 </div>
 <div class="input">
 <label> </label>
 <input type="submit" name="submit" value="Search" />
 </div>
 </fieldset>
</form>

Chapter 6

[165]

3.	 Create a script /path/to/webroot/properties/advanced_search.php, with
the following content:

<?php
/**
 * File: /path/to/webroot/properties/advanced_search.php
 */
include('init.php');

$city_id = !empty($_POST['city_id']) ? $_POST['city_id'] : '';
$type = !empty($_POST['type']) ? $_POST['type'] : '';
$transaction_type = !empty($_POST['transaction_type']) ? $_
POST['transaction_type'] : '';

if (!empty($type)) {
 // Include the api class
 require_once('sphinxapi.php');

 $client = new SphinxClient();
 // Set search options
 $client->SetServer('localhost', 9312);
 $client->SetConnectTimeout(1);
 $client->SetArrayResult(true);

 // Set the mode to SPH_MATCH_FULLSCAN
 // We won't do any full-text search but just filtering
 $client->SetMatchMode(SPH_MATCH_FULLSCAN);

 // Set the type filter
 $client->SetFilter('type', array($type));
 // If we have city filter
 if (!empty($city_id)) {
 $client->SetFilter('city_id', array($city_id));
 }
 // If we have transaction type filter
 if (!empty($transaction_type)) {
 $client->
 SetFilter('transaction_type', array($transaction_type));
 }

 $viewVars['results'] = $client->Query('');
}
render('advanced_search');

Property Search

[166]

4.	 Create the view to display search results at /path/to/webroot/properties/
views/advanced_search.thtml:

<div class="results">
<?php if (isset($viewVars['results']) &&
empty($viewVars['results']['matches'])): ?>
 <div class="information">No matching properties found!!!</div>
<?php endif; ?>
<?php
if (!empty($viewVars['results']['matches'])) {
 print '<div class="information">
 Total '.$viewVars['results']['total_found'].
 ' properties found</div>';
 print '';
 foreach ($viewVars['results']['matches'] as $match) {
 print '<a href="view.php?id=' . $match['id']
 . '">Listing #' . $match['id'] .', '
 . $match['attrs']['bedrooms'] . ' Bedrooms '
 . $match['attrs']['area']. 'sq feet, $'
 . $match['attrs']['price']. '';
 }
 print '';
}
?>
</div>

What just happened?
We started off by creating a form with three search filters: City, Type, and Transaction Type.
The form will be posted on advanced_search.php, which will do the actual searching and
display the results.

The form appears as seen in the following screenshot:

Chapter 6

[167]

After that, we created advanced_search.php and added code to perform the search using
the Sphinx client API class. We used SPH_MATCH_FULLSCAN matching mode since we only
want to perform filtering rather than a full-text search on all documents.

To filter the search results by city, type, and transaction_type, we used the
SetFitler() method. We didn't pass any term to Query() as we are not performing a
full-text scan and only doing filtering. We added code so that SetFilter() is only called if
the respective field has been posted from the form. Lastly, we created the view to display the
search results. At this point, try performing searches by selecting different cities, type, and
transaction type.

Ranged filters
We want to give a user the ability to perform searches on properties whose price ranges
between the specified minimum and maximum values. Similarly, we want to give the user
ability to specify a minimum number of bathrooms and bedrooms that the property should
have. For searching on ranges of values, we need to use Sphinx's ranged filters. Let's move
forward and add ranged filters for different attributes.

Time for action – adding ranged filters
1.	 Modify /path/to/webroot/properties/views/search.thtml as highlighted

in the following code:

<!-- File: /path/to/webroot/properties/views/search.thtml -->

 <input type="radio"
 name="transaction_type" value="2" /> Rent

 <input type="radio"
 name="transaction_type" value="3" /> PG
 </div>

 <div class="input">

 <label>Budget ($): </label>

 <input type="text" name="min_price" size="5" /> to

 <input type="text" name="max_price" size="5" />

 </div>

 <div class="input">

 <label>Min Bedrooms: </label>

 <input type="text" name="bedrooms" size="1" />

 </div>

 <div class="input">

 <label>Min Bathrooms: </label>

Property Search

[168]

 <input type="text" name="bathrooms" size="1" />
 </div>
 <div class="input">
 <label>Min Area: </label>
 <input type="text" name="area" size="4" />
 </div>
 <div class="input">
 <label>Max Age: </label>
 <select name="built_year">
 <option value="0">Under Construction</option>
 <option value="<?php echo date('Y'); ?>">
 Current Year</option>
 <?php
 for ($i = 1; $i <= 200; $i++) {
 ?>
 <option value="<?php echo date('Y') - $i; ?>">
 <?php echo $i; ?> Years</option>
 <?php
 }
 ?>
 </select>
 </div>

 <div class="input">
 <label> </label>
 <input type="submit" name="submit" value="Search" />
 </div>
 </fieldset>
</form>

2.	 Modify /path/to/webroot/properties/advanced_search.php and add
code to set ranged filters (as highlighted):

<?php
/**
 * File: /path/to/webroot/properties/advanced_search.php
 */
include('init.php');

$city_id = !empty($_POST['city_id']) ? $_POST['city_id'] : '';
$type = !empty($_POST['type']) ? $_POST['type'] : '';
$transaction_type = !empty($_POST['transaction_type']) ? $_
POST['transaction_type'] : '';
$min_price = !empty($_POST['min_price']) ? $_POST['min_price'] :
0;

$max_price = !empty($_POST['max_price']) ? $_POST['max_price'] :
0;

$bedrooms = !empty($_POST['bedrooms']) ? $_POST['bedrooms'] : '';

$bathrooms = !empty($_POST['bathrooms']) ? $_POST['bathrooms'] :

Chapter 6

[169]

'';

$area = !empty($_POST['area']) ? $_POST['area'] : '';

$built_year = !empty($_POST['built_year']) ? $_POST['built_year']
: 0;

if (!empty($type)) {
 // Include the api class
 require('sphinxapi.php');

 $client = new SphinxClient();
 // Set search options
 $client->SetServer('localhost', 9312);
 $client->SetConnectTimeout(1);
 $client->SetArrayResult(true);

 // Set the mode to SPH_MATCH_FULLSCAN
 // We won't do any full-text search but just filtering
 $client->SetMatchMode(SPH_MATCH_FULLSCAN);

 // Set the type filter
 $client->SetFilter('type', array($type));
 // If we have city filter
 if (!empty($city_id)) {
 $client->SetFilter('city_id', array($city_id));
 }
 // If we have transaction type filter
 if (!empty($transaction_type)) {
 $client->SetFilter('transaction_type', array($transaction_
type));
 }
 // If we have both min and max price for the budget

 if (!empty($min_price) && !empty($max_price)) {

 $client->SetFilterRange('price', (int)$min_price,

 (int)$max_price);

 }

 // We will assume that max bedrooms can be 10000

 if (!empty($bedrooms)) {

 $client->SetFilterRange('bedrooms', $bedrooms, 10000);

 }

 if (!empty($bathrooms)) {

 $client->SetFilterRange('bathrooms', $bedrooms, 10000);

 }

Property Search

[170]

 // We will assume that max are can be 99999999.00

 if (!empty($area)) {

 $client->SetFilterFloatRange('area', (float)$area,

 99999999.00);

 }

 // If we have built year then set the range

 if (!empty($built_year)) {

 // Range will be from selected year to current year

 $client->SetFilterRange('built_year', $built_year,

 date('Y'));

 } else {

 // If Under Construction is selected

 //then year attr should be 0

 $client->SetFilter('built_year', array(0));

 }

 $viewVars['results'] = $client->Query('');
}
render('advanced_search');

What just happened?
We modified the search form and added search (filter) fields for; budget, minimum
number of bedrooms and bathrooms, minimum area of the property, and maximum
age of the property.

We then modified the advanced_search.php script and added code to collect the form
data and apply the respective filters.

Let's try to understand each filter:

�� Budget: It is made up of minimum price and maximum price. We want to filter the
properties that fall under this range. For this we used the SetFilterRange()
method. That method takes the attribute name as the first argument, and the next
two arguments as minimum and maximum values for the range boundary.

�� Bedrooms and Bathrooms: Again we used the SetFilterRange() method
and passed the value from the form as minimum and kept 10,000 as maximum.
Thus we will get only those properties that have at least those many bedrooms or
bathrooms. Here we have assumed that maximum number of bedrooms
or bathrooms that any property can have is 10,000 (you can adjust this as per
your needs).

Chapter 6

[171]

�� Min Area: We used the SetFilterFloatRange() method in this case. This
method works similar to SetFilterRange(), with the only difference being
that the former should be used for float values and the latter for integer values
(attributes).

�� Max Age: The last filter we added was for the maximum age of the property.
We have the built_year attribute in the index that holds the year in which the
property was built. That attribute holds the value of 0 if the property is under
construction. We used conditional logic and applied the correct method to either
filter on ranged values or filter for specific value.

The Advanced search form (with all the ranged filters) now looks like the following screenshot:

Have a go hero – adding filter for amenities
We added filters for most of the attributes in the previous exercise. The only one remaining
was amenities, which is a multi-valued attribute in our index.

Go ahead and add a multi select drop-down box in the search form and add related code
to filter the search results by amenities. The final search form should appear as seen
in the next screenshot:

Property Search

[172]

Geo distance search
The last part of our application is a search form, wherein we can enter the geo coordinates and
specify the radius within which the search should be performed. The results should show only
those properties which fall under that radius from the specified location (coordinates).

Time for action – creating the search form
1.	 Create a script /path/to/webroot/properties/geo_search.php with the

following content:

<?php
/**
 * File: /path/to/webroot/properties/geo_search.php
 */
include('init.php');

// Get the data from form (if submitted)
$latitude = !empty($_POST['latitude']) ? $_POST['latitude'] : '';
$longitude = !empty($_POST['longitude']) ? $_POST['longitude'] :
'';
$radius = !empty($_POST['radius']) ? $_POST['radius'] : 5;

// Set the variables for view
$viewVars['latitude'] = $latitude;
$viewVars['longitude'] = $longitude;
$viewVars['radius'] = $radius;

render('geo_search');

2.	 Create the view for the geo search page at /path/to/webroot/properties/
views/geo_search.thtml:

<!-- File: /path/to/webroot/properties/views/geo_search.thtml -->
<form action="geo_search.php" method="post">
 <fieldset>
 <legend>Geo Location Search</legend>
 <div class="input">
 <label>Latitude: </label>
 <input type="text" name="latitude"
 value="<?php echo $viewVars['latitude']; ?>" />
 </div>
 <div class="input">
 <label>Longitude: </label>
 <input type="text" name="longitude"

Chapter 6

[173]

 value="<?php echo $viewVars['longitude']; ?>" />
 </div>
 <div class="input">
 <label>Within: </label>
 <select name="radius">
 <?php for ($i = 5; $i <= 30; $i += 5): ?>
 <?php
 $selected = '';
 if ($i == $viewVars['radius']) {
 $selected = ' selected';
 }
 ?>
 <option value="<?php echo $i; ?>"
 <?php echo $selected; ?>>
 <?php echo "$i Kms"; ?>
 </option>
 <?php endfor; ?>
 </select>
 </div>
 <div class="input">
 <label> </label>
 <input type="submit" name="submit" value="Search" />
 </div>
 </fieldset>
</form>

What just happened?
We created a form with fields able to specify the latitude, longitude, and select a radius (in
Kilometers). When opened in a browser, the form appears as follows:

Property Search

[174]

Add geo anchor
Now the last step remaining is adding the code to perform a geo distance based search. So
let's do it.

Time for action – adding code to perform geo distance search
1.	 Modify /path/to/webroot/properties/geo_search.php and add the

following (highlighted) code:

<?php
/**
 * File: /path/to/webroot/properties/geo_search.php
 */
include('init.php');

// Get the data from form (if submitted)
$latitude = !empty($_POST['latitude']) ? $_POST['latitude'] : '';
$longitude = !empty($_POST['longitude']) ? $_POST['longitude'] :
'';
$radius = !empty($_POST['radius']) ? $_POST['radius'] : 5;

// If we have coordinates then perform the search

if (!empty($latitude) && !empty($longitude)) {

 // Include the api class

 require_once('sphinxapi.php');

 $client = new SphinxClient();

 // Set search options

 $client->SetServer('localhost', 9312);

 $client->SetConnectTimeout(1);

 $client->SetArrayResult(true);

 // Set the mode to SPH_MATCH_FULLSCAN

 $client->SetMatchMode(SPH_MATCH_FULLSCAN);

 // Convert the latitude and longitude to radians

 $lat = $latitude * (M_PI / 180);

 $lon = $longitude * (M_PI / 180);

 $client->SetGeoAnchor('latitude', 'longitude', $lat, $lon);

 $rad = $radius * 1000.00; //Convert to meters

 // Set the filter on magic @geodist attribute

Chapter 6

[175]

 $client->SetFilterFloatRange('@geodist', 0.0, $rad);

 // Sort the results by closest distance

 $client->SetSortMode(SPH_SORT_EXTENDED, '@geodist ASC');

 $viewVars['results'] = $client->Query('');

}

// Set the variables for view
$viewVars['latitude'] = $latitude;
$viewVars['longitude'] = $longitude;
$viewVars['radius'] = $radius;

render('geo_search');

2.	 Modify /path/to/webroot/properties/views/geo_search.thtml and add
code to display the search results (as highlighted):

<!-- File: /path/to/webroot/properties/views/geo_search.thtml -->

 <div class="input">
 <label> </label>
 <input type="submit" name="submit" value="Search" />
 </div>
 </fieldset>
</form>
<div class="results">

<?php if (isset($viewVars['results']) &&
empty($viewVars['results']['matches'])): ?>

 <div class="information">No matching properties found!!!</div>

<?php endif; ?>

<?php

if (!empty($viewVars['results']['matches'])) {

 print '<div class="information">

 Total '.$viewVars['results']['total_found'].

 ' properties found</div>';

 print '';

 foreach ($viewVars['results']['matches'] as $match) {

 $distance = round($match['attrs']['@geodist'] / 1000, 2);

 print '<a href="view.php?id=' . $match['id']

 . '">Listing #' . $match['id'] .', '

 . $match['attrs']['bedrooms'] . ' Bedrooms '

 . $match['attrs']['area']. 'sq feet, $'

 . $match['attrs']['price'].

Property Search

[176]

 ' (' . $distance . ' Kms away)';

 }

 print '';

}

?>

</div>

What just happened?
We modified geo_search.php and added code to handle the search form submission.
We used the SPH_MATCH_FULLSCAN matching mode as we only want to filter the
documents (without performing full-text search).

To find properties within the selected radius we used the SetGeoAnchor() method.
This method sets the anchor point for geosphere distance calculations. It takes four
arguments in the following order:

1.	 $attrlat: String with the name of the attribute (in index) holding the value
for latitude.

2.	 $attrlong: String with the name of the attribute (in index) holding the value
for longitude.

3.	 $lat: Float value specifying the anchor point for latitude.

4.	 $long: Float value specifying the anchor point for longitude.

The latitude and longitude values, both in SetGeoAnchor() and the
index attribute data, should be in radians.

Whenever an anchor point is set, a magic attribute @geodist is attached to the search
results. A magic attribute means that Sphinx adds this attribute to the result set even though
it was not in the index. This attribute holds the geosphere distance between the given
anchor point, and the point specified by the latitude and longitude attributes from each
match (document). If you print the results array, as returned by Sphinx, you will see the
magic attribute.

Chapter 6

[177]

From the previous screenshot you can see that @geodist is attached to the matched
document. Once this is done, you can use the magic attribute, just as you would any other
attribute, and filter or sort your search results by that attribute.

We filtered the search results using SetFilterFloatRange() on the @geodist attribute.
The value of @geodist in matched documents is in meters, hence we converted the value of
radius from the form (which is in kilometer) to meters.

We also sorted the search results by the @geodist attribute in ascending order, so that we
see the nearest properties at the top. For this we used the SetSortMode() method and
used SPH_SORT_EXTENDED mode, which should be used for any magic attribute.

Property Search

[178]

Finally, we modified the view and added code to display the search results. We also added
code to show the distance of the matched property from the anchor point.

Have a go hero – adding the delta index using the index
merging technique

We used only one index in this property search application. Whenever new properties are
added you will have to re-index the whole thing. Re-indexing the already indexed properties
can be avoided by implementing the delta index technique that we used in Chapter 5, Feed
Search (Index merging section).

Go ahead and create a delta index and modify the sql_query option in the source for delta
index so that only those records that are new are fetched. You may want to use the sql_
query_pre option for marking the records to be indexed, and sql_query_post_index
for marking the records that were indexed.

Refer to Chapter 5, Feed Search, for delta indexing and merging.

Chapter 6

[179]

Summary
In this chapter:

�� We saw some more API methods and explored them. We created an application to
search a properties database.

�� We created a simple Search form to perform a full-text search on properties and
filter them by city. We used different field weights, so that results are sorted with
closest matches at the top.

�� We also created an Advanced search form where we implemented a lot of filters.

�� We learned how to use ranged filters.

�� We created a search form for Geo Location Search. We saw how Sphinx
makes it easy to find locations within the specified radius if the index contains
geographical coordinates.

In the next chapter we will learn about the Sphinx configuration file and explore some
advanced configuration options.

7
Sphinx Configuration

In the earlier chapters we dealt with Sphinx and learnt how it works. We
created several indexes and wrote different types of search applications. While
doing so we saw the most frequently used Sphinx configuration options.

In this chapter, we will see some more configuration options that will allow
you to tailor Sphinx to your needs. There are numerous configuration options
available to make Sphinx work exactly the way you want it to. All these are
defined in the heart of Sphinx, that is, its configuration file.

Sphinx configuration file
Sphinx has to be configured before we can start using it to create indexes or search. This is
done by creating a special configuration file that Sphinx reads while creating an index and
searching. The configuration file can be placed anywhere in the file system. The file contains
options written in a special format as follows:

section_type1 name {
 option11 = value11
 option12 = value12
 option13 = value13
}

section_type2 name {
 option21 = value21
 option22 = value22
 option23 = value23
}

Sphinx Configuration

[182]

Each section has a name and some options, as seen in the previous code snippet.
A configuration file can have the following types of sections:

�� source: Defines the source to fetch the data to be indexed

�� index: Defines the index properties such as where to save, which charset to use,
and so on

�� indexer: Specifies options to be used by the indexer utility

�� searchd: Defines the properties of the search daemon, that is, the Sphinx API

Rules for creating the configuration file
What follows are the rules for creating a Sphinx configuration file:

�� The source and index sections should have a name.

�� The indexer and searchd sections should not have any name.

�� source and index can be defined multiple times in a configuration file. However,
no two sources or indexes should have the same name.

�� Source and index can be extended (as done in OOP) using the colon (:) operator.
An example would be source delta : main, which means that delta extends
main.

�� There can only be one indexer and one searchd section in the configuration file.

�� The indexer section is optional. The searchd section is compulsory when using
the client API. The source and index sections are compulsory.

�� Section names can only have letters, numbers, hyphens, and underscores.
No spaces.

�� You can use # to write single line comments.

�� You can give any name to your configuration file and save it anywhere on your file
system. However, it is a good practice to save all configurations in a single directory.

Let's take a look at a few valid and invalid configuration files:

Valid configuration file

source blog {
 type = mysql
 sql_query = SELECT id, name FROM users
 #...
}

index blog {
 source = blog

Chapter 7

[183]

 path = /path/to/save/index
}

source childblog : blog {
 sql_query = SELECT id, name FROM users WHERE id > 40
}

index childblog : blog {
 source = childblog
 path = /path/to/save/childindex
}

indexer {
 mem_limit = 32M
}

searchd {
 listen = localhost:9312
}

Don't worry about the options inside each section. We will take a look at them
later in this chapter

The next configuration file is invalid and Sphinx will throw errors when you try to create
the index.

source blog app {
 #...
}

index blog {
 #...
}

index blog {
 #...
}

searchd blog-daemon {
 #...
}

Sphinx Configuration

[184]

The following errors can be found in the configuration file:

�� source name contains spaces

�� Two indexes have the same name

�� searchd has a name

If you are developing a web application, save your configuration file
outside the webroot. It is recommended to save it in a directory that
is not world readable.

Now that we know how to create a Sphinx configuration file and basic rules to create
the configuration sections, let's proceed and see what different options can be specified
in each section.

Data source configuration
The source section is used to define the data source in the configuration file. We learned
about data sources in Chapter 3, Indexing. Now let's see different configuration options that
can be specified in the source section of the configuration file.

In this chapter, we will only see those options that are used more often
than others and were not already covered in earlier chapters. For complete
reference please visit http://sphinxsearch.com/docs/manual-
0.9.9.html#conf-reference.

SQL related options
We have already seen how to use the basic options; such as sql_host, sql_user,
sql_pass, and sql_db. There are a few more options that you may need sooner or later.

Connection options
The following options can be used to establish the database connection.

sql_port
If you are using a non-standard port for your database server, then this option is used to
specify that port. The default values are; 3306 for mysql source type and 5432 for pgsql type.

Chapter 7

[185]

sql_sock
For local database server, sql_host = localhost, you can specify a UNIX socket name.
The default value is empty, which means that it will take the value from client library settings.

odbc_dsn
The DSN string used in ODBC connections. This only applies to odbc source types and is
mandatory if that source type is being used.

Let's create a few sample configuration files with different connection settings.

Here's a sample source configuration for MySQL with local server:

source src {
 type = mysql
 sql_host = localhost
 sql_user = abbas
 sql_pass = passwd
 sql_db = mydb
 sql_sock = /my/custom/path/mysql.sock
}

As shown in the example, at times we may need to explicitly direct Sphinx to where we want
it to look for the socket file.

The MySQL client library will only connect over a UNIX socket if the host is
specified as "localhost". If you have specified a remote host or 127.0.0.1,
then the connection is established over TCP/IP and sql_sock is ignored. A
UNIX socket connection is faster than TCP/IP.

Here is a sample with remote host:

source src {
 type = mysql
 sql_host = 192.168.1.5
 sql_user = abbas
 sql_pass = passwd
 sql_db = mydb
 sql_port = 3006
}

Sphinx Configuration

[186]

We used a remote host and specified the IP address. In addition, the remote SQL server
is running on a non-default port and, as a result, we were needed to specify the port in
sql_port.

sql_port is not mandatory if using remote host. It should only be used
if the host is running on a non-default (3306) port.

Options to fetch data (SQL data source)
In earlier chapters, we have seen the following options to fetch the data when using an SQL
data source:

�� sql_query: Main query to fetch the data to be indexed.

�� sql_query_range: Used for ranged document fetches. This query must return the
maximum and minimum document IDs.

�� sql_range_step: Specified the range query steps.

Now let's see some other advanced options.

sql_query_pre
The query specified against this option is executed before executing the main sql_query.
This query is called as pre-fetch query.

There can be multiple sql_query_pre in a source definition. If more than one pre-
fetch query is specified, then they are executed in the order of their appearance in the
configuration file.

All results returned by sql_query_pre are ignored. pre query is generally used to set
encoding that the server will use for the rows that it returns, and this encoding must be the
same as specified in the index section of the Sphinx configuration file.

Another common use of the pre query is to mark the records that are going to be indexed,
or to update some internal counter. If any errors are returned by the pre-fetch query, they
are reported as errors and indexing is terminated.

sql_query_post
This query gets executed immediately after the main sql_query completes successfully.
This query is called a post-fetch query. If any errors are returned by this query, they are
reported as warnings and indexing is not terminated.

As with sql_query_pre, post-fetch query's results are also ignored.

Chapter 7

[187]

sql_query_post should not be used to make any permanent updates to
the database. This is because, when this query is executed, indexing is still not
complete and it may fail at a later point.

sql_query_post_index
This query is executed after indexing is completed successfully. This query is called a
post-index query. Any errors produced by this query are reported as warnings and
indexing is not terminated. Results returned by this query are ignored.

A macro, $maxid, can be used in this query, and this macro expands to the maximum
document ID that was fetched during the indexing.

sql_ranged_throttle
This is the time period (in milliseconds) for which the indexer should sleep between ranged
fetches. This option comes into play only when using sql_range_query. By default no
throttling is done.

This option is particularly useful in those cases where the indexer may impose too much
load on the database server. A carefully selected throttle period will cause the indexer to
sleep for that period of time after each ranged query step.

Configuration file using advanced options
Let's see an example configuration file using the options that we discussed.

Time for action – creating a configuration with advanced
source options
1.	 Create a database (or use an existing one) with the following structure and data:

CREATE TABLE `items` (
`id` INT NOT NULL AUTO_INCREMENT PRIMARY KEY ,
`title` VARCHAR(255) NOT NULL ,
`content` TEXT NOT NULL ,
`created` DATETIME NOT NULL
) ENGINE = MYISAM ;

CREATE TABLE `last_indexed` (
`id` INT NOT NULL
) ENGINE = MYISAM ;

INSERT INTO `last_indexed` (

Sphinx Configuration

[188]

`id`
)
VALUES (
'0'
);

2.	 Add a few rows to the items table so that we get some data to index.

3.	 Create the Sphinx configuration file /usr/local/sphinx/etc/sphinx-src-
opt.conf with the following content:

source items
{
 type = mysql
 sql_host = localhost
 sql_user = root
 sql_pass =
 sql_db = sphinx_conf
 # Set the charset of returned data to utf8
 sql_query_pre = SET NAMES utf8

 # Turn of the query cache
 sql_query_pre = SET SESSION query_cache_type = OFF
 sql_query_range = SELECT MIN(id), MAX(id) FROM items \
 WHERE id >= (SELECT id FROM last_indexed)
 sql_range_step = 200

 # Pause for 1000 millisecond (1 sec) between each ranged fetch
 sql_ranged_throttle = 1000

 sql_query = SELECT id, title, content, created FROM \
 items WHERE id > (SELECT id FROM last_indexed) \
 AND id >= $start AND id <= $end

 # Update the last indexed which will be $maxid
 sql_query_post_index = UPDATE last_indexed SET id = $maxid

 sql_attr_timestamp = created
}

index items
{
 source = items
 path = /usr/local/sphinx/var/data/items

Chapter 7

[189]

 charset_type = utf-8
}

4.	 Run the indexer command:

$ /usr/local/sphinx/bin/indexer –c /usr/local/sphinx/etc/sphinx-
src-opt.conf --all

What just happened?
We just created two database tables:

�� items—to hold the actual data

�� last_indexed—to hold the id of last indexed item

We then created a configuration file with options, so that main data is fetched in steps of
200, and there is a pause of 1,000 milliseconds (1 second) between each step. This can be
easily verified by the output of the indexer command, which shows the time taken as 2.013
seconds. In my items table I had 201 rows, so the indexer paused once before starting for
the first time and then after the first 200 records.

We used pre-query to set the encoding that the server will use for the rows it returns.
We also turned off query caching in pre-query since indexer is not going to run frequently.

Lastly, we used sql_query_post_index to increment the id of the last indexed document
in the last_indexed database table. This is useful for the next indexing, where the main
query only fetches those rows which are not already indexed.

MS SQL specific options
The following are a few MS SQL server-specific options

mssql_winauth
This option specifies whether or not to use the account credentials of a currently logged in
windows user. This is an optional Boolean option and its default value is 0.

Sphinx Configuration

[190]

mssql_unicode
This option specifies whether to ask for Unicode or single byte data when querying the MS
SQL server. This option must be same as specified in charset_type option in the index
section of the configuration file.

To index Unicode data, you must set charset_type in the index
section to utf-8 and mssql_unicode to 1 in the source section.

This is an optional Boolean option and its default value is 0.

Index configuration
The next mandatory section of the configuration file is the index section. This section
defines how to index the data and identifies certain properties to look for before indexing
the data.

There can be multiple indexes in a single configuration file and an index can extend another
index as was done in Chapter 5, Feed Search, when we created a main and delta indexing
and searching schemes.

There is another powerful searching scheme that should be used if you are indexing billions
of records and terabytes of data. This scheme is called distributed searching.

Distributed searching
Distributed searching is useful in searching through a large amount of data, which if kept
in one single index would cause high query latency (search time), and will serve a fewer
number of queries per second.

In Sphinx, the distribution is done horizontally, that is, a search is performed across different
nodes and processing is done in parallel.

To enable distributed searching you need to use type option in the index section of the
configuration file and set its value to distributed.

Set up an index on multiple servers
Let's understand the distributed searching scheme using an example. We will use the same
database as we did in our previous exercise. We will use two servers for distribution.

In our example we assume the following:

�� First (primary) server's IP is 192.168.1.1

Chapter 7

[191]

�� Second server's IP is 192.168.1.2

�� The database is served from first (192.168.1.1) server and both servers use the
same database

�� The search query will be issued on the first server

�� Both servers have Sphinx installed

The set up would appear similar to the next schematic:

Time for action – creating indexes for distributed searching
1.	 Create the configuration file on the first server (192.168.1.1) at /usr/local/

sphinx/etc/sphinx-distributed.conf with the following content:

source items
{
 type = mysql
 sql_host = localhost
 sql_user = root
 sql_pass =
 sql_db = sphinx_conf
 # Query to set MySQL variable @total
 #which holds total num of rows
 sql_query_pre = SELECT @total := count(id) FROM items
 # Set a variable to hold the sql query
 # We are using CONCAT to use a variable in limit clause
 # which is not possible in direct query execution
 sql_query_pre = SET @sql = CONCAT('SELECT * FROM items \
 limit 0,', CEIL(@total/2))
 # Prepare the sql statement

Sphinx Configuration

[192]

 sql_query_pre = PREPARE stmt FROM @sql
 # Execute the prepared statement. This will return rows
 sql_query = EXECUTE stmt
 # Once documents are fetched, drop the prepared statement
 sql_query_post = DROP PREPARE stmt

 sql_attr_timestamp = created
}

index items
{
 source = items
 path = /usr/local/sphinx/var/data/items-distributed
 charset_type = utf-8
}

2.	 Run the indexer command to index the data:

$ /usr/local/sphinx/bin/indexer –c /usr/local/sphinx/etc/sphinx-
distributed.conf items

3.	 Create the sphinx configuration on the second server (192.168.1.2) at /usr/
local/sphinx/etc/sphinx-distributed-2.conf with the following content:

source items
{
 type = mysql
 # we will use remote host (first server)
 sql_host = 192.168.1.1
 sql_user = root
 sql_pass =
 sql_db = sphinx_conf
 # Query to set MySQL variable @total
 # which holds total num of rows
 sql_query_pre = SELECT @total := count(id) FROM items
 # Set a variable to hold the sql query
 # We are using CONCAT to use a variable in limit clause
 # which is not possible in direct query execution

Chapter 7

[193]

 sql_query_pre = SET @sql = CONCAT('SELECT * FROM items \
 limit ', CEIL(@total/2), ',', CEIL(@total/2))
 # Prepare the sql statement
 sql_query_pre = PREPARE stmt FROM @sql
 # Execute the prepared statement. This will return rows
 sql_query = EXECUTE stmt
 # Once documents are fetched, drop the prepared statement
 sql_query_post = DROP PREPARE stmt

 sql_attr_timestamp = created
}

index items-2
{
 source = items
 path = /usr/local/sphinx/var/data/items-2-distributed
 charset_type = utf-8
}

4.	 Run the indexer on the second server:

$ /usr/local/sphinx/bin/indexer –c /usr/local/sphinx/etc/sphinx-
distributed-2.conf items-2

What just happened?
Firstly, we created a configuration on our primary server. This same server has the database
and will also host the distributed searching index. However, initially we defined a normal
index which uses an SQL source for indexing.

In our source definition we fetched only half the rows from the items table. For this we
fired a few pre-queries to set the limit and prepare an SQL statement. The following are an
explanation of each pre-query:

�� First pre-query: Selects the total number of rows from the items table and puts the
count in a variable @total.

�� Second pre-query: Sets a string variable holding the query to be executed.
The @total variable is concatenated after the limit. The query string will look
like—SELECT * FROM items LIMIT 0,101.

Sphinx Configuration

[194]

�� Third pre-query: Prepares the statement to be executed based on the query string
formed above.

The statement is then executed in the main query, returning the required number of
rows. In my case, I had 201 rows in the items table. The index created on the primary
(192.168.1.1) server will contain the first 101 rows (as shown in the output of the
indexer command).

We then ran the indexer thus creating an index with half the amount of data. The
remaining half of the rows will be indexed on the second server.

Next, we created a similar configuration file on the second server (192.168.1.2). Since
both servers will use the same database, we configured the source on the second server
to use the database on the primary server . We did this by specifying 192.168.1.1 as the
value to the host option.

To connect to the MySQL server on 192.168.1.1 from 192.168.1.2,
proper privileges should be assigned on 192.168.1.1. This can easily be
done using a tool such as phpMyAdmin.

We used the same trick again(as in the configuration of the first server) to get the second
half of the rows. The final query that got executed for fetching the data was SELECT *
FROM items LIMIT 101, 101.

Use MySQL stored procedure

Instead of writing so many pre-queries, we could have created a stored
procedure to fetch the data in the main query. The stored procedure would
set the @total variable and prepare the statement, execute it, and return
the results.

So, we created indexes on two different servers. The first server has half the data indexed
and the second server has the remaining data. Now let's proceed and create a distributed
index that will use two indexes to perform a search.

Set up the distributed index on the primary server
The next step is to add a distributed index to the configuration file of the primary server.
Let's do it.

Chapter 7

[195]

Time for action – adding distributed index configuration
1.	 Modify /usr/local/sphinx/etc/sphinx-distributed.conf on the primary

server (192.168.1.1) and add a new index definition as shown:

index master
{
 type = distributed

 # Local index to be searched
 local = items

 # Remote agent (index) to be searched
 agent = 192.168.1.2:9312:items-2
}

Modify the configuration files on both 192.168.1.1 and 192.168.1.2 servers,
and add the searchd section as shown:

searchd
{
 log = /usr/local/sphinx/var/log/searchd-distributed.log
 query_log = /usr/local/sphinx/var/log/query-distributed.log
 max_children = 30
 pid_file = /usr/local/sphinx/var/log/searchd-distributed.pid
}

2.	 Start the searchd daemon on the primary server (make sure to stop any previous
instance):

$ /usrl/local/sphinx/bin/searchd -c /usr/local/sphinx/etc/sphinx-
distributed.conf

3.	 Start the searchd daemon on the second server (make sure to stop any previous
instance):

$ /usrl/local/sphinx/bin/searchd -c /usr/local/sphinx/etc/sphinx-
distributed-2.conf

What just happened?
We added a second index definition in our configuration file on the primary server. This index
will be used for distributed searching. We named this index as master and used the type
option to define it as a distributed index.

Sphinx Configuration

[196]

The master index contains only references to other local and remote indexes. It cannot be
directly indexed and is used only for search purposes. You should rather re-index the indexes
that master references (In our case, the items index on the first server and the items-2
index on the second server).

To reference local indexes, indexes on the same machine or configuration file, local option
is used. To reference remote indexes, the agent option is used. Multiple local and remote
indexes can be referenced. For example:

local = items
local = items-delta

agent = 192.168.1.2:9312:items-2,items-3
agent = myhost:9313:items-4

We defined two local and two remote indexes. The syntax for specifying a remote index
using TCP connection is:

hostname:port:index1[,index2[,...]]

Syntax for specifying a local UNIX connection is:

/var/run/searchd.sock:index4

We also added searchd configuration section in both the configuration files. Now, if you
want to perform a distributed search, you should fire the query against the master index
as follows:

<?php
require_once('sphinxapi.php');

$client = new SphinxClient();

$client->SetServer('192.168.1.1', 9312);
$client->SetConnectTimeout(1);
$client->SetArrayResult(true);

$results = $client->Query('search term', 'master');

When you send a query to searchd using the client API (as shown in the previous code
snippet), the following will occur:

�� searchd connects to the configured remote agents

�� It issues the search query

�� It searches all local indexes sequentially (at this time, remote agents are searching)

�� searchd retrieves the remote agents' (index's) search results

Chapter 7

[197]

�� It merges results from local and remote indexes and removes any duplicates

�� Finally, the merged results are sent to the client

�� When you get the results in your application, there is absolutely no difference
between results returned by a normal index and a distributed index

As we just saw, scaling Sphinx horizontally is a breeze and even a beginner can do it.

What follows are a few more options that can be used to configure a distributed index.'

agent_blackhole
This option lets you issue queries to remote agents and then forget them. This is useful for
debugging purposes since you can set up a separate searchd instance and forward the
search queries to this instance from your production instance, without interfering with
the production work. The production server's searchd will try to connect and query the
blackhole agent, but it will not wait for the process or results. This is an optional option
and there can be multiple blackholes:

agent_blackhole = debugserver:9312:debugindex1,debugindex2

agent_connect_timeout
The remote agent's connection timeout in milliseconds. It's an optional option and its default
value is 1000 ms (1 second):

agent_connect_timeout = 2000

This option specifies the time period before searchd should give up connecting to a
remote agent.

agent_query_timeout
The remote agent's query timeout in milliseconds. It's an optional option and its default
value is 3000 ms (3 seconds):

agent_query_timeout = 5000

This option specifies the time period before searchd should give up querying
a remote agent.

Distributed searching on single server
The example we saw in the previous section used two different servers. The same example
can be built on one server with little modifications to the configuration files. All references
to the second server (192.168.1.2) should be replaced with the primary server
(192.168.1.1).

Sphinx Configuration

[198]

The other important change would be the port on which searchd listens. The configuration
file for the secondary server should use a different port for listening than the primary server.
The same should be reflected in the agent option of master index.

charset configuration
The next set of options in the index section are charset related options. Let's take a look
at them.

charset_type
You can specify the character encoding type using this option. The two character encodings,
which are widely a used character set, that can be used with Sphinx are UTF-8 and Single
Byte Character Set (SBCS).charset_type is optional and default value is sbcs. Another
known value that it can hold is utf-8.

The specified encoding is used while indexing the data, parsing the query and generating
the snippets:

charset_type = utf-8

charset_table
This is one of the most important options in Sphinx's tokenizing process that extracts
keywords from the document text or query. This option controls which characters are
acceptable and whether to remove the case or not.

There are more than a hundred thousand characters in Unicode (and 256 in sbcs) and the
charset table holds the mapping for each of those characters. Each character is mapped
to 0 by default, that is, the character does not occur in keywords and it should be treated as
a separator. charset_table is used to map all such characters to either themselves, or to
their lower case letter so that they are treated as a part of the keyword. charset_table
can also be used to map one character to an entirely different character.

When you specify the charset_type as sbcs then the charset_table being used
(internally) is:

'sbcs' defaults for English and Russian
charset_table = 0..9, A..Z->a..z, _, a..z, \
 U+A8->U+B8, U+B8, U+C0..U+DF->U+E0..U+FF, U+E0..U+FF

And when utf-8 charset type is used then the table being used is:

'utf-8' defaults for English and Russian
charset_table = 0..9, A..Z->a..z, _, a..z, \
 U+410..U+42F->U+430..U+44F, U+430..U+44F

Chapter 7

[199]

Default charset table for sbcs and utf-8 can be overwritten in the index section of the
configuration file.

The format for specifying the charset_table is a comma-separated list of mappings
(as shown in the previous snippet). You can specify a single character as valid, or map
one character to its lowercase character or to another character. There are thousands of
characters and specifying each one of them in the table would be a tedious task. Further, it
will bloat the configuration file and will be unmanageable. To solve this issue Sphinx lets you
use syntax shortcuts that map a whole range of characters at once. The list is as follows:

�� a—declares a single character as allowed and maps it to itself.

�� A->a—declares A as allowed and maps it to the lowercase a. Lowercase a itself is
not declared as allowed.

�� A..Z—declares all characters in the range (A to Z) as allowed and maps them to
themselves. Use a..z for lowercase range.

�� A..Z->a..z—declares all characters in the range A to Z as allowed and maps them
to lowercase a to z range. Again, lowercase characters are not declared as allowed
by this syntax.

�� A..Z/2—declares odd characters in the range as allowed and maps them to the
even characters. In addition, it declares even characters as allowed and maps them
to themselves. Let's understand this with an example. A..Z/2 is equivalent to the
following:

A->B,B->B,C->D,D->D,E->F,F->F,....,Y->Z,Z->Z

Unicode characters and 8-bit ASCII characters must be specified in the
format U+xxx, where xxx is the hexadecimal codepoint number for
the character.

Data related options
On many occasions you may want to limit the type of data to be indexed either by words
or length. You may also want to filter the incoming text before indexing. Sphinx provides
many options to handle all these things. Let's take a look at some of these options.

stopwords
You may want to skip a few words while indexing, that is, those words should not go in
the index. Stopwords are meant for this purpose. A file containing all such words can be
stored anywhere on the file system and its path should be specified as the value of the
stopwords option.

Sphinx Configuration

[200]

This option takes a list of file paths (comma separated). The Default value is empty.

You can specify multiple stopwords files and all of them will be loaded during indexing. The
encoding of the stopwords file should match the encoding specified in the charset_type.
The format of the file should be plain text. You can use the same separators as in the indexed
data because data will be tokenized with respect to the charset_table settings.

To specify stopwords in the configuration file:

stopwords = /usr/local/sphinx/var/data/stopwords.txt
stopwords = /home/stop-en.txt

And the contents of the stopwords file should be (for default charset settings):

the into a with

Stopwords do affect the keyword positions even though they are not indexed. As an
example; if "into" is a stopword and a document contains the phrase "put into hand",
and another document contains "put hand"; then when an exact phrase "put hand"
is searched for, it will return only the later document, even though "into" in the first
document is stopped.

min_word_len
This option specifies the minimum length a word should have to be considered as a
candidate for indexing. Default value is 1 (index everything).

For example: If min_word_len is 3, then the words "at" and "to" won't be indexed .
However; "the", "with", and any other word whose length is three or greater than three
will be indexed:

min_word_len = 3

ignore_chars
This option is used when you want to ignore certain characters. Let's take an example of a
hyphen (-) to understand this. If you have a word "test-match" in your data, then this would
normally go as two different words, "test" and "match" in the index. However, if you specify "-"
in ignore_chars, then "test-match" will go as one single word ("testmatch") in the index.

The syntax for specifying ignore_chars is similar to charset_table
but it only allows you to declare the characters and not to map them. In
addition, ignored characters must not be present in the charset_table.

Example for hyphen (whose codepoint number is AD):

ignore_chars = U+AD

Chapter 7

[201]

html_strip
This option is used to strip out HTML markup from the incoming data before it gets indexed.
This is an optional option and its default value is 0, that is, do not strip HTML. The only other
value this option can hold is 1, that is, strip HTML.

This option only strips the tags and not the content within the tags. For practical purposes
this works in a similar way to the strip_tags() PHP function:

html_strip = 1

html_index_attrs
This option is used to specify the list of HTML attributes whose value should be indexed
when stripping HTML.

This is useful for tags, such as and <a>, where you may want to index the value of
the alt and title attributes:

html_index_attrs = img=alt,title; a=title;

html_remove_elements
This option is used to specify the list of HTML elements that should be completely removed
from the data, that is, both tags and their content are removed.

This option is useful to strip out inline CSS and JavaScript if you are indexing HTML pages:

html_remove_elements = style, script

Word processing options
We often use a variant of the actual word while searching. For example, we search for "run"
and we intend that the results should also contain those documents that match "runs",
"running", or "ran". You must have seen this in action on search websites such as Google,
Yahoo!, and so on. The same thing can be achieved in Sphinx quite easily using morphology
and stemming.

Morphology is concerned with wordforms and it describes how words are pronounced. In
morphology, stemming is the process of transforming words to their base (root) form, that
is, reducing inflected words to their stem.

Morphology
Some pre-processors can be applied to the words being indexed to replace different forms of
the same word with the base (normalized) form. Let's see how.

Sphinx Configuration

[202]

The following exercise assumes that your data (items table) has the word "runs"
in one or more records. Further,"run" and "running" are not present in the
same record where "runs" is present.

Time for action – using morphology for stemming
1.	 Create the Sphinx configuration file /path/to/sphinx-stem.conf as follows:

source items
{
 type = mysql
 sql_host = localhost
 sql_user = root
 sql_pass =
 sql_db = sphinx_conf
 sql_query = SELECT id, title, content, created FROM items
 sql_attr_timestamp = created
}

index items
{
 source = items
 path = /usr/local/sphinx/var/data/items-morph
 charset_type = utf-8
 morphology = stem_en
}

2.	 Run the indexer command:

$/usr/local/sphinx/bin/indexer –c /path/to/sphinx-stem.conf items

3.	 Search for the word run using the command line search utility:

$/usr/local/sphinx/bin/search –c /path/to/sphinx-stem.conf run

Chapter 7

[203]

4.	 Search for the word running:

$/usr/local/sphinx/bin/search –c /path/to/sphinx-stem.conf running

What just happened?
We created a configuration file to test the morphology option with the value stem_en.
We then indexed the data and ran a few searches. Let's try to understand the results.

Firstly we searched for the word run. None of the records in our items table have the word
run. But even then we got a document in the search results. The reason for this is that
documentID 1 has the word runs in one of its fields, and when runs is normalized, it
becomes "run". As we used the stem_en morphology pre-processor, all English words are
normalized to their base form. Thus "runs" becomes "run".

Similarly in our second search command, we searched for the word running. We again got
the same documentID 1 in the result because running is normalized to "run"; and then a
search is done, thus returning documentID 1.

morphology
As we saw in the previous example, Sphinx supports applying morphology pre-processors
to the indexed data. This option is optional and the default value is empty, that is, it does
not apply any pre-processor.

Sphinx comes with built-in English and Russian stemmers. Other built-in pre-processors are
Soundex and Metaphone. The latter two are used to replace words with phonetic codes.
Phonetic codes of different words are equal if they sound phonetically similar. For example,
if you use Soundex morphology when your indexed data contains the word "gosh", and
someone searches for the word "ghosh", then it will match "gosh". This is because these
two words are phonetically similar and have the same phonetic code.

Multiple stemmers can be specified (comma separated) and they are applied in
the order that they are listed. Processing stops if one of the stemmers actually
modifies the word.

One more option related to morphology is min_stemming_len.

Sphinx Configuration

[204]

min_stemming_len
This option lets us specify the minimum word length at which the stemming is enabled.
The default value is 1 and everything is stemmed.

This option is particularly useful in those cases where stemming does not give you the
desired results.

Wordforms
There may be occasions where you want to replace a word with an altogether different
word when indexing and searching. For example, when someone searches for "walk", the
record with "runs" should match, although the two words are quite different. This cannot be
accomplished by stemming (morphology).

Wordforms comes to rescue in such a situation. Wordforms are dictionaries applied after
tokenizing the incoming text by charset_table rules. These dictionaries let you replace
one word with another. An Ideal case of usage is bringing different forms of a word to a
single normal form. Wordforms are used both during indexing and searching.

Dictionary file for the wordforms should be in a simple plain text format with each line
containing source and destination wordforms. the Same encoding should be used for the
wordforms file as specified in the charset_type. An example wordform file is shown below.

Here's an example wordform file:

walks > runs
walked > walk
play station 3 > ps3
playstation 3 > ps3

To specify the wordform file in the index section of the configuration file you should use the
wordforms option:

wordforms = /path/to/wordforms.txt

Wordforms are applied prior to stemming by using morphology pre-processor. If
a word is modified by the wordforms then stemmers will not be applied at all.

Search daemon configuration
When searching the index from your application, you will be using Sphinx Client API. This API
is accessed using the search daemon, searchd, that comes bundled with the Sphinx package.
We have seen some basic searchd options in earlier chapters. Now let's elaborate them.

Chapter 7

[205]

listen
As we have previously observed, this option lets you specify the IP and port where searchd
will listen on. The syntax for listen is:

listen = (address ":" port | path) [":" protocol]

Let's understand this with a few examples:

listen = localhost
listen = 192.168.1.1
listen = 9313
listen = domain:9315
listen = /var/run/sphinx.s

�� In the first example only hostname was specified. In this case searchd will listen on
your default port, that is 9312.

�� The second example is also similar in that we replaced hostname with IP address.

�� In the third example we specified only the port number. Thus searchd will listen on
port 9313 on all available interfaces.

�� In the fourth example, searchd will listen only on one interface (denoted by
hostname) and the port 9315.

�� In last example, a UNIX socket path is given to listen on.

UNIX-domain sockets are not supported on Windows.

You can specify multiple listen directives, and searchd will listen on all specified ports and
sockets for the client connections. If no listen option is specified then searchd listens on all
interfaces at port 9312.

log
This option specifies the path of the file where our searchd events are logged. The default
file is searchd.log:

log = /var/log/searchd.log

query_log
If specified, this option lets you log the search queries in the specified file, as follows:

query_log = /var/log/query.log

Sphinx Configuration

[206]

read_timeout
This option specifies the time period in seconds, before a network read timeout occurs. The
default value is 5 seconds, after which searchd will forcibly close the client connections that
fail to send a query within five seconds:

read_timeout = 3

client_timeout
This option specifies the maximum time in seconds, to wait between requests when using
persistent connections. Default value is five minutes, or 3,600 seconds:

client_timeout = 2400

max_children
This option specifies the maximum number of concurrent searches to run in parallel.
The default value is 0, which means unlimited connections:

max_children = 50

This option is particularly useful to control the server load.

pid_file
This is a mandatory option to specify the searchd process ID file name. PID is always
re-created and locked when searchd is started, and is unlinked when searchd is shutdown.

Example:

pid_file = /usr/local/sphinx/var/searchd.pid

max_matches
This option specifies the maximum amount of best matches that the daemon keeps in RAM
for each index. The default value is 1,000. Best matches equates to the top matches sorted
by specified criteria.

This option is used to limit the RAM usage. Let's understand this with an example. If your
query matches 100,000 documents then you would hardly show all those matches. It is a
general practice to show only the top few hundred documents. However, all those 100,000
documents will still occupy some space in the RAM, even though you need only a few
hundred from them. To tackle this max_matches is used. Max_matches forces searchd to
only keep as many matches in RAM as specified.

This limit can be overridden from the API call using the SetLimits() method. However,
you can only set the limit to a lower number in the API call than defined in the configuration
file, and setting the limit to higher number than max_matches is prohibited:

max_matches = 2000

Chapter 7

[207]

seamless_rotate
This option, if enabled, prevents searchd from stalling while rotating huge indexes to the
precache. The default value is 1, that is, it is enabled.

Index files that contain the data for attributes, MVA, and keywords, are always precached. If
an index is rotated without seamless rotate being enabled, then it tries to use very little RAM
and will take some amount of time doing the following:

�� All new queries are temporarily rejected

�� searchd waits for all running queries to finish

�� The old index is deallocated and index files are renamed

�� New index files are renamed and required RAM is allocated

�� New index attribute and dictionary data is preloaded to the RAM

�� searchd resumes serving queries from new index

If there are a lot of attributes or substantial dictionary data, then the preloading step could
take some amount of time (several minutes) in case of large fields.

This can be solved by enabling seamless rotate which does the following:

�� New index RAM storage is allocated

�� New index attribute and dictionary data is asynchronously preloaded to RAM

�� On success, the old index is deallocated and both indexes' files are renamed

�� On failure, the new index is deallocated

�� At any given time, queries are served from either the old or new index copy

Seamless rotate has a few drawbacks in that it uses higher peak memory during the rotation.
For example: seamless_rotate = 1

Indexer configuration
These set of options are used when running the indexer command to create indexes.

mem_limit
This option specifies the maximum RAM usage limit that the indexer will not exceed.
The default value is 32M.

The memory limit can be specified either in bytes, kilo bytes, or mega bytes:

mem_limit = 33554432 # 32 MB

Sphinx Configuration

[208]

Here's an example (in kilo bytes):

mem_limit = 32768K

Here's an example (in mega bytes):

mem_limit = 32M

max_iops
This option specifies the maximum IO calls per second for I/O throttling. The default value is
0, which means unlimited:

max_iops = 50

max_iosize
This option specifies the maximum IO call size in bytes for I/O throttling. The default value is
0, which means unlimited:

max_iosize = 1048576

max_xmlpipe2_field
This option specifies the maximum length of an xmlpipe2 field. Default value is 2M:

max_xmlpipe2_field = 4M

With this we come to the end of configuration options. We left out some options
intentionally and those can be referred to in the Sphinx manual (http://sphinxsearch.
com/docs/current.html).

Summary
In this chapter we learned:

�� The basics of creating a Sphinx configuration file

�� How to configure the data source to use SQL as well as xmlpipe2 sources

�� How to configure Sphinx for distributed searching

�� How to use morphology, wordforms, and other data processing options

�� How to configure the search daemon and get the most out of it

8
What Next?

So far we have learned pretty much everything about Sphinx and its usage. In
this chapter we will explore a few of the newer features that were introduced in
recent versions of Sphinx.

We will also see what scenarios Sphinx is useful in, and list a few popular
websites that use Sphinx to power their search engines.

SphinxQL
Programmers normally issue search queries using one or more client libraries that relate to
the database on which the search is to be performed. Some programmers may also find it
easier to write an SQL query than to use the Sphinx Client API library.

SphinxQL is used to issue search queries in the form of SQL queries. These queries can be
fired from any client of the database in question, and returns the results in the way that a
normal query would. Currently MySQL binary network protocol is supported and this enables
Sphinx to be accessed with the regular MySQL API.

SphinxQL in action
Let's take an example of MySQL CLI client program and see how we can use it to query
Sphinx. We will use the same database and configuration file that we created in Chapter 7,
Sphinx Configuration (for distributed searching).

What Next?

[210]

The following exercise uses the items database table from
Chapter 7, Sphinx Configuration.

Time for action – querying Sphinx using MySQL CLI
1.	 Create the file /usr/local/sphinx/etc/sphinx-ql.conf and add the

following code:

source items
{
 type = mysql
 sql_host = localhost
 sql_user = root
 sql_pass =
 sql_db = sphinx_conf
 sql_query = SELECT id, title, content, \
 UNIX_TIMESTAMP(created) AS created FROM items
 sql_attr_timestamp = created
}

index items
{
 source = items
 path = /usr/local/sphinx/var/data/items-ql
 charset_type = utf-8
}

searchd
{
 listen = localhost:9306:mysql41
 log = /usr/local/sphinx/var/log/ql-searchd.log
 query_log = /usr/local/sphinx/var/log/ql-query.log
 pid_file = /usr/local/sphinx/var/log/ql-searchd.pid
}

2.	 Create the index by running the indexer utility:

$/usr/local/sphinx/bin/indexer –c /usr/local/sphinx/etc/sphinx-ql.
conf --all

3.	 Start the searchd daemon:

$/usr/local/sphinx/bin/searchd –c /usr/local/sphinx/etc/sphinx-ql.
conf

Chapter 8

[211]

4.	 Connect to the MySQL CLI program:

$mysql –u dbuser –pdbpass –h localhost –P 9306

5.	 The previous command will connect to the MySQL server at localhost
on port 9306.

6.	 Issue the following query from MySQL CLI:

mysql>SELECT * FROM items WHERE MATCH ('search term');

7.	 The previous query will return the following results:

What just happened?
Firstly, we created a new configuration file to index the items database table. We put the
following value for the listen option in searchd section of the configuration.

listen = localhost:9306:mysql41

This line in the configuration enables the MySQL protocol support, and configures Sphinx so
that when MySQL client is started at port 9306, it will use the Sphinx as the server.

What Next?

[212]

mysql41 is the name of the protocol handler to be used when searchd
listens on 9306 port. mysql41 is used for MySQL v4.1 up to at least v5.1.

This new access method is supported in addition to the native Sphinx API. You can specify
more than one listen options in the searchd section, so that one uses the native API and
other the serves the MySQL:

listen = localhost:9312
listen = localhost:9306:mysql41

We then started the searchd daemon and connected to MySQL CLI. While starting MySQL
CLI we used port 9306 , the same port where Sphinx is listening. You would notice that when
MySQL gets connected it shows the Sphinx version against the "Server Version", and not the
actual MySQL server version. This means that MySQL CLI will now fire queries against Sphinx
instead of MySQL server.

After that we fired the following query:

mysql>SELECT * FROM items WHERE MATCH ('search term');

The query syntax is similar to the MySQL full-text search query syntax. SphinxQL supports the
following SQL statements:

�� SELECT

�� SHOW WARNINGS

�� SHOW STATUS

�� SHOW META

Let's see the usage of each of these.

SELECT
The SphinxQL syntax adds several Sphinx specific extensions to the regular SQL syntax. Usage
of @ symbol for fields in the index and OPTION clause are few Sphinx specific extensions. In
addition, there are a few omissions, such as SphinxQL, which does not support JOINs.

Column list clause
Column (field) names, SQL arbitrary expressions, and star (*) are allowed. Some special
names, such as @id and @weight, should be used with a leading @ (at-sign). This
requirement will be lifted in future versions:

SELECT @id AS item_id, category_id, (points + 2)
 AS totalpoints FROM items WHERE MATCH ('search term');

Chapter 8

[213]

Computed expresses must be aliased with a valid unique identifier.
For example, totalpoints in the previous query. This is unlike SQL
where expressions need not have an alias.

FROM clause
The FROM clause should contain the list of indexes to be searched. Multiple index names are
enumerated by a comma. This is unlike SQL, where comma in FROM means JOIN:

SELECT * FROM items1, items2 WHERE MATCH ('search term');

WHERE clause
WHERE works for both full-text queries and filters. For filtering, normal comparison operators
such as =, !=, <, >, <=, >=, IN(), AND, NOT, and BETWEEN are all supported , and these
operators map to filters. Full-text search can be performed using the MATCH() method,
which takes the full-text search query as an argument. The full-text query is interpreted
according to the full-text query language rules as explained in Chapter 4, Searching.

The OR operator is not supported at the time of writing this book. It will be
supported in future versions.

SELECT * FROM items WHERE created > 1281912160;

This query will get all the documents from the items index where the created (timestamp)
attribute has a value greater than 1281912160, which is the timestamp for 16th August 2010:

SELECT * FROM items
 WHERE MATCH ('search term') AND created > 1281912160;

This query will get all the documents where full-text fields match 'search term' and the
created attribute is greater than 1281912160:

SELECT * FROM items
 WHERE MATCH ('@content (hello | world) @title –bye');

This query will search for all documents whose content field matches "hello" or "world", but
whose title field does not match "bye".

There can only be one MATCH() in the clause.

What Next?

[214]

GROUP BY clause
Currently only single column grouping is supported. However, the column can be a computed
expression.

AVG(), MIN(), MAX(), SUM(); functions that are used for aggregating data can be used with
either plain attributes or arbitrary expressions as arguments. GROUP BY will add an implicit
COUNT(*) in the form of @count column to the result:

SELECT *, AVG(points) AS avgpoints FROM items
 WHERE created > 1281912160 GROUP BY category_id;

ORDER BY clause
ORDER BY works similar to the SQL ORDER BY clause, with the difference being that ASC
and DESC are explicitly required, and only column names are allowed and not expressions:

SELECT * FROM items WHERE MATCH ('search term')
 ORDER BY created DESC;

LIMIT clause
LIMIT works exactly similar to the SQL LIMIT clause. However, as in the Sphinx API, an
implicit LIMIT 0,20 is always present by default.

LIMIT can not be set to a value greater than max_matches config file
setting. The maximum number of results Sphinx will fetch will not go over
what is set in config file.

SELECT * FROM items WHERE MATCH ('@content search_term')
 LIMIT 50;

SELECT * FROM items WHERE MATCH ('@title search_term')
 LIMIT 50, 100;

OPTION clause
This Sphinx-specific extension lets you control a number of per-query options. The options
and values are given in the following table:

Option Values

ranker None, bm25, proximity_bm25, wordcount, proximity, matchany or fieldmask

max_matches integer (per query max matches)

cutoff integer (max found matches threshold)

max_query_
time

integer (max search time threshold in milliseconds)

Chapter 8

[215]

Option Values

retry_count integer (distributed retries count)

retry_delay integer (distributed retry delay in milliseconds)

SELECT * FROM items WHERE MATCH ('search term')
 OPTION ranker=bm25, max_matches=5;

SHOW WARNINGS
This statement is used to get the warning messages produced by the previous query:

mysql>SELECT * FROM items WHERE MATCH ('"search term"/3');

This query will give the following output:

We searched for "search term" with a quorum threshold value of 3. This gave a result, but with
one warning. To retrieve the warning message we can fire the SHOW WARNINGS statement:

SHOW WARNINGS;

And it gives the following output:

This way you can retrieve the warning messages of the latest query.

What Next?

[216]

SHOW STATUS
The following statement shows the performance counters:

SHOW STATUS will show the IO and CPU counters if searchd was started with --iostats
and --cpustats switches respectively. The variables returned by SHOW STATUS provide
information about the server performance and operation. For example, uptime shows the
number of seconds that the server has been running. connections shows the number of
attempts that have been made to connect to the server (successful or unsuccessful).

SHOW META
This shows the additional information about the previous query, which includes query time
and other statistics:

SELECT * FROM items WHERE MATCH ('test');

SHOW META;

Chapter 8

[217]

This query will output the information as shown in the next screenshot:

So, SHOW META gives the same information that we get in the data returned when we use
Sphinx Client API and fire a full-text query.

Use case scenarios
Sphinx can be used in any web application that involves the searching of data. It can be a
simple blog, shopping portal, or a very complex hotel or airline booking website. The most
common use case of Sphinx is where searching needs to be fast and reliable.

The following is a list of scenarios where Sphinx will perform best:

�� Applications with a lot (billions of documents) of content

�� Applications that need to filter their search results based on numerous attributes
(which are not full-text)

�� Applications where search is required on segregated data

�� Applications where data is coming from a non-conventional source such as a file
system, mailboxes, NoSQL databases, and so on

�� Applications that need distributed searching so that load is balanced

What Next?

[218]

Popular websites using Sphinx
Sphinx is gaining popularity day by day and many high traffic websites are migrating
their search engines to Sphinx. A few who have already done this are listed next
(Ref: http://sphinxsearch.com/info/powered/):

�� http://craigslist.org/: Craigslist is one of the world's most popular and
highly visited websites. Thousands of people search the classifieds on craigslist every
hour. They moved to using Sphinx in November 2008. Craigslist is known to have the
busiest Sphinx server in the world.

�� http://www.joomla.org/: Sphinx is used to improve search through their forum,
which comprises more than 700,000 posts.

�� http://mininova.org/: One of the biggest sites to search for torrents. Sphinx on
this site servers more than five million searches per day.

�� http://boardreader.com/: The website with the biggest Sphinx installation in
terms of data. It is indexing over two billion documents now.

�� http://netlog.com/: This is a huge social networking site with over 35 million
users. Search is powered by Sphinx on this site.

�� http://www.phpbb.com/: Sphinx helps index the community area on their site,
made up of more than 2.6 million posts.

�� http://www.bestcarehome.co.uk : One of the biggest databases of UK care
homes. Uses Sphinx to search through the care homes with complex logic on
filtering the searching results based on care needs.

�� And many more...

Summary
In this chapter:

�� We learned about SphinxQL, which can be accessed using a regular MySQL client

�� We saw different statements supported by SphinxQL

�� We saw different cases when Sphinx can be used

�� We saw a few popular websites (and some statistics) that use Sphinx

We have covered all the topics that should get you started with using Sphinx in your
projects. The beauty of Sphinx is that it is almost language independent. Sphinx client
API implementations are available for numerous programming languages.

http://mininova.org/
http://boardreader.com/
http://netlog.com/

Index
Symbols
$id macro 41
$results[‘matches’] variable 79
$ which php command 60
--all argument 47
& (AND) operator 88
/indexer command 20
--prefix configure option 19
<sphinx:docset> 61
<sphinx:schema> 61

A
addresses table 9
advanced data fetching options

sql_query_post 186
sql_query_post_index 187
sql_query_pre 186
sql_ranged_throttle 187

advanced search form, property search applica-
tion

creating 163-167
advanced source options

configuration file, creating 187, 189
agent_blackhole option 197
agent_connect_timeout option 197
agent_query_timeout option 197
all-field search operator

using 93
attributes

about 37, 50
adding, to index 50, 52
adding, to schema 62-67
characteristics 37
example 37

types 37, 38
uses 37

B
basic search script

creating 74-78
bin directory 20
blog

database tables, creating for 42-45
blog post 38
BM25 weight 99
boolean mode queries 86-89

C
C++ 73
category_id attribute 55
charset configuration

about 198
options 198, 199

charset configuration, options
charset_table 198, 199
charset_type 198

charset_table option 198, 199
charset_type option 198
client API implementations, Sphinx 73-78
client_timeout option 206
column list clause

about 212
FROM 213
GROUP BY 214
LIMIT 214
OPTION 214
ORDER BY 214
WHERE 213

[220]

configuration file, Sphinx
about 181
creating 45-47
creating, advanced source options used 187,

189
errors 184
indexer section 182
index section 182
searchd section 182
source section 182

configuration, xmlpipe2 data source 57-61
configure utility

about 12
options 13

Craigslist
about 218
URL 218

cutoff option 214

D
database 36
database connection options

about 184
odbc_dsn 185, 186
sql_port 184
sql_sock 185

database index 35
Database Management System. See DBMS
database, property search application

populating 144
database structure, property search application

141
database tables

creating, for blog 42-45
populating 43-45

data fetching options
about 186
sql_query 186
sql_query_range 186
sql_range_step 186

data related options
about 199
html_index_attrs 201
html_remove_elements 201
html_strip 201
ignore_chars 200

min_word_len 200
stopwords 199

data source 38, 39
data source configuration, Sphinx

about 184
SQL related options 184

data source driver 38
DBMS 32
description 23
desktop applications

search 7
display_results() function 82
distributed index

setting up, on primary server 194-196
distributed index configuration

adding 195, 196
distributed index configuration options

about 197
agent_blackhole 197
agent_connect_timeout 197
agent_query_timeout 197

distributed searching
about 190
indexes, creating for 191-193
index, setting up on multiple servers 190-193
performing, on single server 197

duplicate items, feed search application
avoiding, by adding code 122, 123
checking for 122

E
extended query syntax 90-94

F
feed data, feed search application

saving, by adding code 114, 116
feeds

adding, by creating forms 111-114
index, creating 117-122
indexing 117

feed search application
about 105
code, adding to save feed 114, 116
delta index, adding 124-126
duplicate items avoiding, by adding code 122,

123

[221]

duplicate items, checking for 122
feed data, saving 114
feeds application, setting up 108-111
form, creating to add feeds 111
index, creating 117-120
index merging 124
MySQL database and tables, creating 106, 107
re-indexing 137
results filtering, by adding code 133, 134
search form, creating 126-128
search form prefilled with last submitted data,

displaying 134-136
search query, performing 128
search query performing, by adding code 128-

133
setting up 108-111
software, requisites 106
tools, requisites 106

filter, feed search application
applying 133
results, by applying code 133, 134
search form prefilled with last submitted data,

displaying 134-136
filters, property search application

adding, for amenities 171
form, feed search application

creating, to add feeds 111-114
form, property search application

creating, to add property 149,-154
FROM clause 213
full-text search

about 21, 37
advantages 25
applications 25
versus normal search 21-23

full-text search, property search application
performing, by adding code 160-163

full-text search results
filtering 95-98

G
geo distance search, property search application

performing, by adding code 174-178
GROUP BY clause 214
grouping modes, Sphinx

SPH_GROUPBY_ATTR 103

SPH_GROUPBY_DAY 103
SPH_GROUPBY_MONTH 103
SPH_GROUPBY_WEEK 103
SPH_GROUPBY_YEAR 103

grouping search results 103, 104

H
html_index_attrs option 201
html_remove_elements option 201
html_strip option 201

I
ignore_chars option 200
index

about 36
attributes 37, 38
attributes, adding to 50, 52
creating, for distributed searching 191, 192,

193
creating, SQL data source used 41, 42
creating, without attributes 57-60
drawbacks 36
MVA, adding to 52-55
searching 9, 31
setting up, on multiple servers 190-193

index configuration, Sphinx
about 190
charset configuration 198, 199
data related options 199- 201
distributed searching 190
word processing options 201-203

indexer 47
indexer configuration, Sphinx

about 207
max_iops option 208
max_iosize option 208
max_xmlpipe2_field option 208
mem_limit option 207

indexer section, sphinx.conf file 31
indexer utility 25
index, feed search application

creating 117-120
indexing 25-29, 30, 36, 49
index merging, feed search application

about 124
delta index, adding 124-126

[222]

index, property search application
creating 155-157

index, searching
about 9
advantage 9
disadvantage 9

index section, sphinx.conf file 31
installation, Sphinx

about 11
issues 14
system requisites 11
verifying 19, 20

invalid configuration file 183

L
library 36
LIMIT clause 214
Linux

Sphinx, installing on 12
listen option 77, 205
live database

about 8
search, performing on 8

log option 77, 205
Longest Common Subsequence (LCS) 99
Lucene 32

M
Mac OS X

Sphinx, installing on 15, 16
main+delta scheme 124
make command 12, 16
master index 196
MATCH() function 24
matching modes, Sphinx

about 79
SPH_MATCH_ALL 79
SPH_MATCH_ANY 79
SPH_MATCH_BOOLEAN 79
SPH_MATCH_EXTENDED 79
SPH_MATCH_EXTENDED2 79
SPH_MATCH_FULLSCAN 79
SPH_MATCH_PHRASE 79

max_children option 77, 206
max_iops option 208

max_iosize option 208
max_matches option 206, 214
max_query_time option 214
max_xmlpipe2_field option 208
mem_limit option 207
Metaphone 203
min_stemming_len option 204
min_word_len option 200
morphology

about 201, 203
used, for stemming 202, 203

MS SQL server-specific options
mssql_unicode 190
mssql_winauth 189

mssql_unicode option 190
mssql_winauth option 189
multiple field search operator

using 92
Multi-value attributes. See MVA
MVA

about 38, 42
index, adding to 52-55

MyISAM Engine 24
MySQL 39
MySQL CLI

Sphinx, querying 210-212
MySQL database

about 8
addresses table 9
full-text search 24
normal search, performing 21-23
search, performing on 9
user table 9

MySQL database, feed search application
creating 106, 107

MySQL database, property search application
creating 141-143

MySQL structure, property search application
creating 141-143

N
normal search

performing, in MySQL 21-23
versus full-text search 21-23

NOT operator 89

[223]

O
odbc_dsn option 185, 186
OPTION clause 214
ORDER BY clause 214
OR operator 88, 213

P
Perl 73
PHP 73
phpMyAdmin 23
phrase search operator

using 93
pid_file option 77, 206
post-fetch query 186
PostgreSQL 8, 39
post-index query 187
pre-fetch query 186
primary server

distributed index, setting up on 194-196
property search application

about 139, 140
advanced search form, creating 163-167
database, populating 144
database structure 141
delta index adding, index merging technique

used 178
filter, adding for amenities 171
form, creating to add property 149, 151
form to add property, creating 149
full-text search performing, by adding code

160-163
geo distance search performing, by adding code

174-178
index, creating 155-157
MySQL database, creating 141, 142
ranged filters, adding 167-170
search form, creating 172, 173
setting up 145-148
simple search form, creating 158, 159
software, requisites 140
structure, creating 141-143
tools, requisites 140

proximity search operator
using 94

Q
query_log option 77, 205
quorum operator

using 94

R
ranged filters, property search application

adding 167-170
ranker option 214
read_timeout option 206
re-indexing, feed search application 137
relevance 24
result set

filtering 95-98
retry_count option 215
retry_delay option 215
Ruby 73

S
SBCS 198
schema

attributes, adding to 62-67
defining, in Sphinx configuration file 67-70

scripting language 23
seamless_rotate option 207
search

about 7
performing, on MySQL database 9

search daemon configuration, Sphinx
about 204
client_timeout option 206
listen option 205
log option 205
max_children option 206
max_matches option 206
pid_file option 206
query_log option 205
read_timeout option 206
seamless_rotate option 207

searchd configuration options
adding 77

searchd daemon 26, 30, 39, 48, 73, 74, 78
search, desktop applications 7
searchd section, sphinx.conf file 31

[224]

search form, feed search application
creating 126-128
prefilled with last submitted data, displaying

134-136
search form, property search application

creating 172, 173
searching 8, 25-30
search, performing

ways 8
search query, feed search application

performing 128
performing, by adding code 128-133

search utility 41, 48
search, web applications 7
SELECT clause

about 212
column list clause 212
SHOW META statement 216
SHOW STATUS statement 216
SHOW WARNINGS statement 215

SELECT query 23
SetFilterFloatRange() method 99
SetFilter() method 98
SetGeoAnchor () method 99
SetGroupBy() API call 103
SetIDRange($min, $max) method 96
SetRankingMode() API method 101
SHOW META statement 216
SHOW STATUS statement 216
SHOW WARNINGS statement 215
simple index

creating, without attributes 42-45
simple search form, property search application

creating 158, 159
Single Byte Character Set. See SBCS
single server

distributed searching, performing on 197
Solr 32
sorting modes, Sphinx

about 102
SPH_SORT_ATTR_ASC 102
SPH_SORT_ATTR_DESC 102
SPH_SORT_EXPR 102
SPH_SORT_EXTENDED 102
SPH_SORT_RELEVANCE 102
SPH_SORT_TIME_SEGMENTS 102

Soundex 203
source section, sphinx.conf file 31
SPH_GROUPBY_ATTR mode 103
SPH_GROUPBY_DAY mode 103
SPH_GROUPBY_MONTH mode 103
SPH_GROUPBY_WEEK mode 103
SPH_GROUPBY_YEAR mode 103
Sphinx

about 10, 21
boolean mode queries 86-89
client API implementations 73-78
configuration file, creating 31
data source configuration 184
extended query syntax 90-94
features 10
full-text search 21
full-text search, advantages 32, 33
full-text search results, filtering 95-98
grouping search results 103, 104
history 10
index configuration 190
indexer configuration 207
indexes 36
installation, verifying 19, 20
installing 11, 12
invalid configuration file 183
license 11
matching modes 79-86
other supported systems 16
overview 25
popular websites 218
querying, MySQL CLI used 210-212
search daemon configuration 204
search, using client API 74-78
search, with different matching modes 80-86
sorting modes 102
use case scenarios 217
used, for indexing 25-30
used, for searching 25-30
valid configuration file 182
weighting search results 99, 100

sphinx:attr element 66
SphinxClient class 78
SphinxClient::Query($query) method 79
SphinxClient::Query() method 86

[225]

SphinxClient::SetArrayResult($arrayresult)
method 79

SphinxClient::SetServer($host, $port) method
78

sphinx.conf file
about 31
indexer section 31
index section 31
searchd section 31
source section 31

Sphinx configuration file
about 181
creating 31, 45-47
indexer section 182
index section 182
rules, for creating 182-184
schema, defining in 67-70
searchd section 182
source section 182

Sphinx, installing
about 11
issues 14
on Linux 12
on Mac OS X 15, 16
on Windows 14, 15
system requisites 11

SphinxQL
SELECT clause 212
working 209-212

SPH_MATCH_ALL mode 79, 83
SPH_MATCH_ANY mode 79, 83, 101
SPH_MATCH_BOOLEAN mode 79, 101
SPH_MATCH_EXTENDED2 mode 79, 92, 101
SPH_MATCH_EXTENDED mode 79
SPH_MATCH_FULLSCAN mode 79, 83-86
SPH_MATCH_PHRASE mode 79, 83, 85
SPH_SORT_ATTR_ASC mode 102
SPH_SORT_ATTR_DESC mode 102
SPH_SORT_EXPR mode 102
SPH_SORT _EXPR sort mode 37
SPH_SORT_EXTENDED mode 102, 103
SPH_SORT_RELEVANCE mode 102
SPH_SORT_TIME_SEGMENTS mode 102
sql_attr_bigint 41
sql_attr_bool 41
sql_attr_float 41

sql_attr_multi 41, 54
sql_attr_str2ordinal 41
sql_attr_timestamp 41
sql_attr_unit 41
SQL data source

used, for index creation 41, 42
SQL data sources 39-41
sql_db option 40
sql_host option 40
SQLite 8
sql_* option 31
sql_pass option 40
SQL Phrase Index. See Sphinx
sql_port option 40, 184
sql_query option 31, 40, 186
sql_query_post_index option 187
sql_query_post option 186
sql_query_pre option 186
sql_query_range option 186
sql_ranged_throttle option 187
sql_range_step option 186
SQL related options

about 184
connection options 184, 186
data fetching options 186

sql_sock option 185
sql_user option 40
stdout 56
stemming

about 201
morphology, using for 202, 203

stopwords option 199
structured documents 36

T
tables, feed search application

creating 106, 107
tar command 16
test 26, 32
title 23
traditional search 21

U
Use case scenarios 217
users table 9

[226]

V
valid configuration file 182
var directory 20

W
web applications

search 7
webroot 78
weighting 99
weighting functions parts, Sphinx

about 99
phrase rank 99
statistical rank 99

WHERE clause 213
Windows

Sphinx, installing on 14, 15

wordforms 204
word processing options

about 201
morphology 201
wordforms 204

X
xmlpipe2 data source

about 39, 56
configuring 57-61

xmlpipe_command 60
xmlpipe data source 56

Thank you for buying
Sphinx Search Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Joomla! 1.5 SEO
ISBN: 978-1-847198-16-7 Paperback: 324 pages

Improve the search engine friendliness of your
web site

1.	 Improve the rankings of your Joomla! site in the
search engine result pages such as Google, Yahoo,
and Bing

2.	 Improve your web site SEO performance by gaining
and producing incoming links to your web site

3.	 Market and measure the success of your blog by
applying SEO

Drupal 6 Search Engine Optimization
ISBN: 978-1-847198-22-8 Paperback: 280 pages

Rank high in search engines with professional SEO
tips, modules, and best practices for Drupal web sites

1.	 Concise, actionable steps for increasing traffic to
your Drupal site

2.	 Learn which modules to install and how to configure
them for maximum SEO results

3.	 Create search engine friendly and optimized title
tags, paths, sitemaps, headings, navigation, and
more

Please check www.PacktPub.com for information on our titles

Solr 1.4 Enterprise Search Server
ISBN: 978-1-847195-88-3 Paperback: 336 pages

Enhance your search with faceted navigation, result
highlighting, fuzzy queries, ranked scoring, and more

1.	 Deploy, embed, and integrate Solr with a host of
programming languages

2.	 Implement faceting in e-commerce and other sites
to summarize and navigate the results of a text
search

3.	 Enhance your search by highlighting search results,
offering spell-corrections, auto-suggest, finding
“similar” records, boosting records and fields for
scoring, phonetic matching

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1.	 Learn Python development best practices from
an expert, with detailed coverage of naming and
coding conventions

2.	 Apply object-oriented principles, design patterns,
and advanced syntax tricks

3.	 Manage your code with distributed version control

4.	 Profile and optimize your code

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Sphinx
	What you need to know
	Different ways of performing a search
	Searching on a live database
	Searching an index

	Sphinx—a full-text search engine
	Features
	A brief history
	License

	Installation
	System requirements
	Sphinx on a Unix-based system

	Time for action – installation on Linux
	Options to the configure command
	Known issues during installation
	Sphinx on Windows

	Time for action – installation on Windows
	Sphinx on Mac OS X

	Time for action – installation on a Mac
	Other supported systems

	Summary

	Chapter 2: Getting Started
	Checking the installation
	Full-text search
	What is full-text search?
	Traditional search

	Time for action – normal search in MySQL
	MySQL full-text search
	Advantages of full-text search
	When to use a full-text search?

	Overview of Sphinx
	Primary programs

	Time for action – Sphinx in action
	Data to be indexed
	Creating the Sphinx configuration file
	Searching the index

	Why use Sphinx for full-text searching?
	Summary

	Chapter 3: Indexing
	What are indexes?
	Indexes in Sphinx

	Index attributes
	Types of attributes
	Multi-value attributes (MVA)

	Data sources
	How to define the data source?
	SQL data sources
	Creating Index using SQL data source (Blog)

	Time for action – creating database tables for a blog
	Time for action – populate the database tables
	Time for action – creating the Sphinx configuration file
	Time for action – adding attributes to the index
	Time for action – Adding an MVA to the index
	xmlpipe data source
	xmlpipe2 data source
	Indexing with schema defined in XML stream

	Time for action – creating index (without attributes)
	Time for action – add attributes to schema
	Indexing with schema defined in configuration file

	Time for action – create index with schema defined
	in configuration file
	Summary

	Chapter 4: Searching
	Client API implementations for Sphinx
	Search using client API
	Time for action – creating a basic search script
	Matching modes

	Time for action – searching with different matching modes
	Boolean query syntax

	Time for action – searching using Boolean query syntax
	Extended query syntax

	Time for action – searching with extended query syntax
	Filtering full-text search results
	Time for action – filtering the result set
	Weighting search results
	Time for action – weighting search results
	Sorting modes
	Grouping search results
	Summary

	Chapter 5: Feed Search
	The application
	Tools and software used while creating this application
	Database structure

	Time for action – creating the MySQL database and tables
	Basic setup

	Time for action – setting up the feeds application
	Add feed

	Time for action – creating a form to add feeds
	Saving the feed data

	Time for action – adding code to save feed
	Indexing the feeds

	Time for action – create the index
	Check for duplicate items

	Time for action – adding code to avoid duplicate items
	Index merging

	Time for action – adding the delta index
	Search form

	Time for action – creating the search form
	Perform the search query

	Time for action – adding code to perform a search query
	Applying filters

	Time for action – adding code to filter the results
	Time for action – showing search form prefilled with
	last submitted data
	Re-indexing

	Summary

	Chapter 6: Property Search
	The application
	Tools and software used while creating this application
	Database structure

	Time for action – creating the MySQL database and structure
	Initial data

	Time for action – populating the database
	Basic setup

	Time for action – setting up the application
	Adding a property

	Time for action – creating the form to add property
	Indexing the properties

	Time for action – creating the index
	Simple search form

	Time for action – creating the simple search form
	Full-text search

	Time for action – adding code to perform full-text search
	Advanced search

	Time for action – creating the Advanced search form
	Ranged filters

	Time for action – adding ranged filters
	Geo distance search

	Time for action – creating the search form
	Add geo anchor

	Time for action – adding code to perform geo distance search
	Summary

	Chapter 7: Sphinx Configuration
	Sphinx configuration file
	Rules for creating the configuration file

	Data source configuration
	SQL related options
	Connection options
	Options to fetch data (SQL data source)

	Configuration file using advanced options

	Time for action – creating a configuration with advanced
	source options
	MS SQL specific options

	Index configuration
	Distributed searching
	Set up an index on multiple servers

	Time for action – creating indexes for distributed searching
	Set up the distributed index on the primary server

	Time for action – adding distributed index configuration
	Distributed searching on single server
	charset configuration
	Data related options
	Word processing options
	Morphology

	Time for action – using morphology for stemming
	Wordforms

	Search daemon configuration
	Indexer configuration
	Summary

	Chapter 8: What Next?
	SphinxQL
	SphinxQL in action

	Time for action – querying Sphinx using MySQL CLI
	SELECT
	Column list clause
	SHOW WARNINGS
	SHOW STATUS
	SHOW META

	Use case scenarios
	Popular websites using Sphinx
	Summary

	Index

