
www.allitebooks.com

http://www.allitebooks.org

Spring Roo 1.1
Cookbook

Over 60 recipes to help you speed up the development
of your Java web applications using the Spring Roo
development tool

Ashish Sarin

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Spring Roo 1.1 Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: September 2011

Production Reference: 1190911

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK

ISBN 978-1-84951-458-3

www.packtpub.com

Cover Image by Sergey Suchok (sevlad.main@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Ashish Sarin

Reviewers
Tobias Lütticke

John Joseph Ryan III

Acquisition Editor
Usha Iyer

Development Editors
Neha Mallik

Reshma Sundaresan

Technical Editors
Vanjeet D'souza

Mehreen Shaikh

Project Coordinator
Joel Goveya

Proofreaders
Aaron Nash

Lisa Brady

Linda Morris

Indexer
Hemangini Bari

Production Coordinators
Nilesh R. Mohite

Alwin Roy

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org

About the Author

Ashish Sarin has more than 11 years of experience architecting and developing
applications using Java EE technologies. He is a Sun Certified Enterprise Architect for Java
EE Platform. He has authored many articles on portlets and rich Internet applications using
Liferay, DWR, JSF, and Spring Portlet MVC.

Ashish is also the author of Portlets in Action (http://manning.com/sarin/) by
Manning Publications.

Writing Spring Roo 1.1 Cookbook has been a very satisfying experience
because of the multitude of technologies it covers.

I would like to thank Tobias Lütticke for providing excellent feedback during
the review of the book. It helped a great deal with improving the technical
content and presentation of the book.

This book owes a great deal to John J. Ryan III for doing an outstanding job
of ensuring that each and every recipe is well tested and well presented to
readers. As the book's content moved from Spring Roo 1.1.1 to 1.1.3, John
made sure that we don't miss out on any relevant recipes and technical
details. It has given me a lot of confidence that recipes covered in this book
will work as described.

Special thanks to Vanjeet D'souza and Mehreen Shaikh for doing an
excellent job of ensuring that the book meets Packt's standards.

Thanks to Neha Mallik for doing an outstanding job at improving the
structure and presentation of the book. Thanks to Usha Iyer as well for
giving me the opportunity to write for Packt.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Tobias Lütticke has more than 11 years of experience in the software field. As a
consultant and software architect, he has shaped various mission-critical applications for
German blue chip companies and his current employer. His background also includes project
management and teaching of software development best practices. Early in his career Tobias
developed a passion for Open Source and agile development methodologies that still drives
his work. He is fortunate to have been involved in the successful delivery of two major Roo-
based projects; one of them is a public-facing geographic information system almost entirely
built with Open Source components.

Tobias is a certified Scrum Master, Project Management Professional (PMP), and he
holds a Computer Science degree from Karlsruhe Institute of Technology, Excellence
University, Germany.

Currently, he works as a Senior Application Solution Architect for a New Zealand government
entity, where he architects enterprise applications and leads development teams to see his
solutions through to fruition.

Tobias enjoys writing and shares his experience in the software development space through
articles he publishes in various magazines as well as through his book on OpenSSH.

www.allitebooks.com

http://www.allitebooks.org

John J. Ryan III is the founder and Director of Systems Engineering for Princigration ™ LLC.
He specializes in portal web development and system integration of Java based technologies.
He has extensive experience in data-centric systems across a wide array of technology stacks
and implementation languages. John has a BS in Computer Science and Engineering from
the University of Texas at Arlington and an MS in Systems Engineering from Southern
Methodist University.

John says, "Don't measure a person's skill by what they can recite. Measure their ability to pick
up a new skill or define a new problem. Life and business is about solving new problems, not
reciting technical verse."

In addition to the technical review of this publication, John has participated in several Spring
and Portal based book reviews and considers himself an expert in only one area, quickly
becoming effective in any domain.

I would like to thank my wife, Nancie for her support. I would also like to
thank my dad, Joe for teaching me the value of hard work and my mom, Ann
for showing me the power of a positive attitude. Finally, I would like to thank
Yahshua for all the goodness in my life and on the earth.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://PacktLib.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with Spring Roo	 7

Introduction	 8
Setting up Roo	 10
Using Spring Roo with Eclipse/STS	 12
Getting help and hints from Roo	 13
Creating a Roo project	 18
Importing a Roo project into Eclipse or IntelliJ IDEA IDE	 23
Configuring logging	 24
Viewing properties defined in a properties file	 26
Managing properties defined in a properties file	 27
Creating a Java class	 29
Moving existing Spring projects to use Spring Roo	 35
Adding attributes to a Java class	 36
Creating a Java interface	 41
Referring to a type from the Roo shell	 42
Creating application artifacts from Roo script	 44

Chapter 2: Persisting Objects Using JPA	 47
Introduction	 47
Setting up a JPA provider for your project	 48
Viewing database configuration properties	 54
Managing database configuration properties	 55
Creating persistent entities	 57
Adding JSR 303 constraints to persistent fields	 65
Controlling auto-generated methods of persistent entities	 68
Creating integration tests for persistent entities	 70
Creating new 'data on demand' for testing entities	 80
Creating mock tests for persistent entities	 82

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Executing persistent entities tests	 84
Creating applications that interact with multiple databases	 87
Packaging your Roo project	 92

Chapter 3: Advanced JPA Support in Spring Roo	 97
Introduction	 97
Viewing candidate dynamic finder methods	 98
Adding dynamic finder methods to an entity	 101
Creating a many-to-one (or one-to-one) relationship between entities	 106
Creating a one-to-many (or many-to-many) relationship between entities	 114
Creating a mapped superclass	 117
Customizing Roo-generated identifier definition	 122
Generating database metadata	 125
Creating entities from a database	 130

Chapter 4: Web Application Development with Spring Web MVC	 137
Introduction	 138
Auto-generating Spring MVC controllers and JSPX views from JPA entities	 138
Packaging, deploying, and using a Roo-generated Spring MVC application	 159
Modifying Roo-generated views	 164
Round-tripping support in Spring Roo for web controllers and views	 176
Creating a Spring MVC controller for a specific JPA entity	 181
Manually creating a Spring MVC controller for a JPA entity	 186
Adding static views to a Roo-generated web application	 195
Internationalizing Roo-generated web applications	 197
Adding or modifying themes generated by Roo	 200
Adding JSON support to domain objects and controllers	 206
Creating and executing Selenium tests for web controllers	 212

Chapter 5: Web Application Development with GWT, Flex, and
Spring Web Flow	 221

Introduction	 221
Scaffolding GWT applications from JPA entities	 222
Getting started with Flex application development	 250
Scaffolding a Flex application from JPA entities	 261
Getting started with Spring Web Flow	 274

Chapter 6: Emailing, Messaging, Spring Security, Solr, and GAE	 285
Introduction	 285
Sending e-mails using JavaMail API	 286
Sending and receiving JMS messages	 298
Configuring Spring Security for your application	 308
Using Spring Security with Apache Directory Server	 316

iii

Table of Contents

Deploying a GWT application on GAE	 329
Deploying a Spring Web MVC application on GAE	 342
Adding search capability to your domain model with Solr	 353

Chapter 7: Developing Add-ons and Removing Roo from Projects	 367
Introduction	 367
Setting up GnuPG for add-on development	 368
Installing an installable add-on	 370
Developing a simple add-on	 374
Developing an advanced add-on	 396
Converting non-OSGi JDBC drivers into OSGi-compliant bundles	 416
Removing Roo with push-in refactoring	 419
Adding Roo to a project using pull-out refactoring	 425
Upgrading to the latest version of Roo	 427

Index	 429

Preface
Spring Roo is an easy-to-use productivity tool for rapidly developing Java enterprise
applications using well-recognized frameworks such as Spring, Hibernate, AspectJ, Spring
Web Flow, Spring Security, GWT, and so on. Spring Roo takes care of creating Maven-enabled
projects, enterprise application architecture based on your choice of technologies, unit
and / or integration tests based on your choice of testing framework, and so on. The
bottom line is that if you're using Spring, then you should consider using Spring Roo for
increased productivity.

Spring Roo 1.1 Cookbook brings together a collection of recipes that demonstrate how
the Spring Roo developer tool simplifies rapidly developing enterprise applications using
standard technologies and / or frameworks such as JPA, GWT, Spring, Flex, Spring Web Flow,
Spring Security, and so on. It introduces readers to developing enterprise applications for
the real world using Spring Roo tool. The book starts off with basic recipes to make readers
comfortable with using Spring Roo tool. As the book progresses, readers are introduced
to more sophisticated features supported by Spring Roo in the context of a Flight Booking
application. In a step-by-step by fashion, each recipe shows how a particular activity is
performed, what Spring Roo does when a command is executed, and why it is important in the
context of the application being developed.

Initially, you make a quick start using Spring Roo through some simple recipes. Then you
learn how Spring Roo simplifies creating the persistence layer of an enterprise application
using JPA. You are introduced to the various Roo commands to create JPA entities, create
relationships between JPA entities, create integration tests using Spring TestContext
framework, and so on. Following this, the book shows you how Spring Roo simplifies creating
the web layer of an enterprise application using Spring Web MVC, Spring Web Flow, and how
to create Selenium tests for controller objects.

Subsequently, we focus on using Spring-BlazeDS, GWT, JSON, and so on. Spring Roo
commands that are used to incorporate e-mail and / or messaging features into an enterprise
application are demonstrated next. Finally, we wrap it up with some miscellaneous recipes
that show how to extend Spring Roo via add-ons, incorporate security, create cloud-ready
applications, remove Spring Roo from your enterprise application, and so on.

Preface

2

A fast-paced guide that helps you effectively use Spring Roo for developing
enterprise applications.

What this book covers
Chapter 1, Getting Started with Spring Roo, covers simple recipes to introduce readers to the
Spring Roo tool. You will learn how to use some of the basic features of Spring Roo that makes
it an easy-to-use productivity tool.

Chapter 2, Persisting Objects Using JPA, covers Spring Roo commands for setting up a JPA
provider, creating JPA entities, and creating unit and integration tests.

Chapter 3, Advanced JPA Support in Spring Roo, focuses on Spring Roo commands for adding
dynamic finder methods to JPA entities, creating relationship between entities,
and creating JPA entities using database reverse engineering support in Spring Roo.

Chapter 4, Web Application Development with Spring Web MVC, covers Spring Web MVC
support in Spring Roo. The recipes in this chapter show how to scaffold a Spring Web MVC
application from JPA entities, internationalize the web application, and add different
themes to it.

Chapter 5, Web Application Development with GWT, Flex, and Spring Web Flow, shows how
Spring Roo can be used to scaffold GWT and Flex applications from JPA entities. This chapter
also shows how Spring Roo let's you quickly get started with developing applications using
Spring Web Flow.

Chapter 6, Emailing, Messaging, Spring Security, Solr, and GAE, covers a multitude of topics
related to adding emailing support, messaging using JavaMail API, incorporating application
security using Spring Security, adding search capability using Solr search server, and
developing applications for Google App Engine (GAE).

Chapter 7, Developing Add-ons and Removing Roo from Projects, wraps up the book with
some advanced topics such as how to create Spring Roo add-ons, install an add-on, remove
Roo from your project using push-in refactoring, adding Roo support to an existing project
using pull-up refactoring, and upgrading to a newer version of Spring Roo.

What you need for this book
ff Spring Roo 1.1.3 or 1.1.4 or 1.1.5

ff Eclipse Helios IDE (or later) or STS

ff Maven 3.x

ff Java SE 6 or later

ff MySQL database

ff Google Plugin for Eclipse IDE

Preface

3

ff Solr server

ff GnuPG

ff H2 database

Who this book is for
Spring Roo 1.1 Cookbook is for developers new to the Spring Roo tool but with experience
in developing applications using Spring framework, AspectJ, JPA, GWT, and technologies/
frameworks supported by Spring Roo. If you are new to the Spring framework, then it is
recommended to refer to a text covering Spring, before reading this Cookbook.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning:

Code words in text are shown as follows:

The perform eclipse and perform command commands are processed by Maven add-on
of Spring Roo.

A block of code is set as follows:

 <filter>
 <filter-name>HttpMethodFilter</filter-name>
 <filter-class>org.springframework.web.filter.
 HiddenHttpMethodFilter
 </filter-class>
 </filter>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold shown as follows:

<mvc:annotation-driven
 conversion-service ="myConversionService" />

<bean id="myConversionService" class= "..format.
FactoryConversionServiceFactoryBean">
 <property name="converters">
 <list>
 <bean class="com.flight.myCustomConverter"/>

 </list>

 </property>

</bean>

Preface

4

Any command-line input or output is written as follows:

roo> logging setup --level DEBUG --package ROOT

Updated SRC_MAIN_RESOURCES\log4j.properties

New terms and important words are shown in bold. Words that you see on the screen,
in menus, or dialog boxes for example, appear in the text like this: "Create a new Flight
Description by selecting the Create new Flight Description option from the menu and
entering values for Origin, Destination, and Price fields".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail to suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started with

Spring Roo

In this chapter, we will cover the following topics:

ff Setting up Roo

ff Getting help and hints from Roo

ff Creating a Roo project

ff Importing a Roo project into Eclipse or IntelliJ IDEA IDE

ff Configuring logging

ff Viewing properties defined in a properties file

ff Managing properties defined in a properties file

ff Creating a Java class

ff Adding attributes to a Java class

ff Creating a Java interface

ff Referring to a type from the Roo shell

ff Creating application artifacts from Roo script

Getting Started with Spring Roo

8

Introduction
Java provides an excellent platform for enterprise application development but has often
been weighed down by productivity issues. For instance, if you want to develop a web
application, then you need to learn a web framework, create JSPs or views, implement service
layer, integrate services with a persistence framework, implement persistence logic, create
configuration files for different application layers, write unit and integration tests, write build
scripts, and so on. Phew! It seems like a lot of work to even create a simple web application
that uses a standard set of Java frameworks. This is the reason why many organizations
moved to platforms, which offer quick-start to developing simple or medium complexity
applications. With the arrival of open source frameworks like Spring and Hibernate, Java
platform received a big boost in terms of developer productivity and simplicity; it was still off
the mark when it came to productivity levels compared to platforms like Ruby on Rails, until
Spring Roo arrived.

Spring Roo is the next generation rapid application development tool for Java programming
language. It is an open source tool, which comes under the umbrella of SpringSource
(http://www.springsource.org/) projects. Applications developed using Spring Roo
make use of the Spring programming model, which already has a proven track record of
delivering portable, testable, and maintainable enterprise applications.

Spring Roo is an easy-to-use tool for rapidly developing Java enterprise applications using well-
recognized frameworks such as Spring, Hibernate, AspectJ, Spring Web Flow, Spring Security,
GWT, Flex, and so on. Spring Roo takes care of creating project structure for your enterprise
application, adding support to use Maven for building and deploying the application,
creating application architecture based on your choice of technologies, creating unit and
integration tests based on your choice of testing framework, and so on. Spring Roo provides
an interactive, intuitive, text-based interface through which you enter the details of your
application in a step-by-step fashion to create a working application in minutes.

When using Spring Roo, it's up to the enterprise application developer
to choose the technology or framework to use in developing the
application. For instance, you can choose Hibernate or OpenJPA for
persistence and Spring Web Flow or GWT for the web layer.

So, what do you need to learn to develop applications using Spring Roo? As we will see
shortly, you need to learn hardly anything to develop enterprise applications using Spring Roo.
Spring Roo's key goal has been to utilize existing knowledge of enterprise developers and
automate most of the tasks that a developer had to perform in a typical enterprise application
development project. This results in increased developer productivity with nearly no learning
curve. Isn't it exciting that you can rapidly develop Java enterprise applications using standard
Java technologies without learning anything new?

http://www.springsource.org/

Chapter 1

9

Before we jump into using Spring Roo tool, let's have a look at the key benefits of using
Spring Roo:

ff Improved enterprise developer's productivity: Spring Roo improves enterprise
developer's productivity by auto-generating code based on instructions provided by
developer or inferred from the code already generated by Spring Roo.

ff Productivity improvement throughout project lifecycle: Spring Roo not only gets you
quickly started with the project but it also gives you productivity improvements over
the lifetime of the project.

ff No extra layers of abstraction: Spring Roo doesn't attempt to hide implementation
details from enterprise developers, making it easy for developers to understand the
code and modify it as per their need.

ff No runtime dependency: If you develop applications using Spring Roo, at runtime
your application code is only dependent on frameworks that you used for developing
the application, nothing more, nothing less.

ff No vendor lock-in: At any time you decide to move away from using Spring Roo, you
can use Eclipse IDE or STS (Spring Tool Suite—SourceSource's Eclipse flavor) to
remove Spring Roo specific details from your application.

The following figures shows what you can do with Spring Roo and the benefits that you get:

The given figure shows that you can also use Spring Roo for creating proof of concepts, for
creating prototypes, and for learning new technologies. With Spring Roo you can quickly create
a working application in minutes, which makes it an ideal candidate for developing prototypes
and creating proof of concepts. A developer can use Spring Roo to create a simple application
using the technology that (s)he wants to learn and play around with it or go through the Roo-
generated source code to quickly learn about the technology.

Getting Started with Spring Roo

10

In this chapter, we will look at recipes that will help you get started with using Spring Roo for
developing your enterprise application. The recipes in this chapter focus on demonstrating
how you set up Roo, create a Roo project, create some of the project artifacts, get help and
hints on various Roo commands from the Roo shell, and import Roo project in your favorite
IDE. This chapter will set the stage for more advanced recipes that we will see in the later
chapters of this book.

Setting up Roo
The first thing that you need to do to get started with using Spring Roo is to set up the Roo tool
on your laptop or desktop.

In this recipe, we will look at how you can install Spring Roo and verify that it's ready to use.

What do I need to learn to effectively use Spring Roo?
If you are an experienced Java enterprise developer, then you hardly need
to learn anything new to use Spring Roo. If you know how AspectJ ITDs (Inter-
type Declarations) work, then it will be helpful to understand what Spring Roo
does behind the scenes. As you go through the various recipes in this book,
you will find enough details on how Spring Roo makes use of AspectJ ITDs.

Getting ready
As you are going to install Spring Roo, you first need to download Spring Roo ZIP archive from
the official home page of Spring Roo (http://www.springsource.org/roo/start).
Also, ensure that you have the following software installed on your machine:

ff Java SE 6 or later (http://java.sun.com/javase/downloads/index.jsp).

ff Apache Maven 3.x or later (http://maven.apache.org/download.html).
Examples in this book make use of Apache Maven 3.0.2

How to do it...
To install Spring Roo, all you need to do is to follow the given steps:

1.	 Unzip the downloaded Spring Roo ZIP archive into a directory. Once you have
unzipped Spring Roo ZIP file, you will see the directory structure (excluding the cache
directory) as shown in the following screenshot:

http://www.springsource.org/roo/start
http://java.sun.com/javase/downloads/index.jsp

Chapter 1

11

2.	 Set the JAVA_HOME environment variable to point to the Java SE installation
directory.

3.	 Set the ROO_HOME environment variable to point to the Roo installation directory.

4.	 If you are using Windows, add the ROO_HOME/bin directory to the PATH environment
variable. If you are using Linux or Mac OS X, then create a symbolic link to the ROO_
HOME/bin/roo.sh shell script.

5.	 Roo installation isn't complete unless you verify it. So, create a ch01-recipe sub-
directory in the C:\roo-cookbbook directory, open command prompt, and go to
the ch01-recipe directory. Now, execute the roo.bat batch file, as shown in the
following commands:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.com/
support and register to have the files e-mailed directly to you.

C:\>cd roo-cookbbook

C:\roo-cookbbook>cd ch01-recipe

C:\roo-cookbbook\ch01-recipe>roo

 ____ ____ ____

 / __ \/ __ \/ __ \

 / /_/ / / / / / / /

 / _, _/ /_/ / /_/ /

/_/ |_|____/____/ 1.1.1.RELEASE [rev 156ccd6]

Getting Started with Spring Roo

12

Welcome to Spring Roo. For assistance press TAB or type "hint"
then hit ENTER.

..

roo>

6.	 If you see the output as shown, it means you have successfully installed Spring Roo.
You will notice that when you execute roo.bat or roo.sh, the command prompt
changes to roo>. You are now ready to play with Spring Roo.

How it works...
Spring Roo is built on top of Apache Felix (http://felix.apache.org/site/index.
html) OSGi container, which promotes modularity and dynamic assembly of applications. The
bundle directory contains OSGi bundles that form part of Spring Roo release. These bundles
provide core services required by Roo and add-ons that support code generation. When
you first start Spring Roo by executing Roo batch file or shell script, then these bundles are
installed and copied into the cache directory of your Spring Roo installation.

There's more...
Spring Roo comes with certain core services and base add-ons that are part of Spring Roo
distribution. Core services like the Roo shell, file system monitor, bootstrap, and so on, provide
the necessary infrastructure for the add-ons to perform their intended responsibility. Add-
ons are at the heart of Spring Roo and they provide the code generation functionality. For
instance, the e-mail add-on adds e-mail support and the JPA (Java Persistence API) add-on
helps with setting up a JPA provider, creating JPA entities, their relationships, and so on.

As Roo add-ons are OSGi compliant, you can additionally create a custom add-on or download
a third-party add-on and install it as part of your Spring Roo installation to extend Roo's
functionality.

Using Spring Roo with Eclipse/STS
As Roo is a command-line driven tool, you may want to integrate it with a feature rich IDE like
Eclipse or STS to simplify application development. If you are using STS, you don't need to
worry about integrating Roo with it because support for Roo is built into STS. If you want to
integrate Roo with Eclipse, you can install STS components in Eclipse, in the same way as you
install any other Eclipse plugin.

If you are using any other IDE or you don't want to integrate your Eclipse IDE with Spring Roo,
you can run Spring Roo in the background and use your favorite IDE to develop your enterprise
application. As you make modifications to your enterprise application using your IDE, Spring
Roo will work in the background to manage the enterprise application.

http://felix.apache.org/site/index.html

Chapter 1

13

The following screenshot shows Spring Roo was started from inside Eclipse IDE. It shows
that the roo> prompt is now displayed adjacent to a text box where you can enter your
Roo commands:

If you compare the output shown in the given screenshot with the output that you saw earlier
when you started the Roo shell from command prompt, you will notice that they are not the
same. Really? Yes, in the case of Eclipse or STS, to use auto-completion (as suggested in the
welcome text) feature of Roo commands, you need to use CTRL + SPACE instead of TAB.

See also
ff The next recipe, titled Getting help and hints from Roo, shows how Spring Roo provides

context-sensitive hints on using the Roo shell and how to access help at any given time.

Getting help and hints from Roo
One of the key features of the Spring Roo shell is that it provides context-sensitive hints to the
developers. The hints feature of Spring Roo provides step-by-step guidance on developing a
working enterprise application in minutes. For instance, if you haven't created a Roo project in
the directory from which you are running the Roo shell, issuing the hint command tells you
how to go about creating a Roo project. If Roo finds that the directory from which the Roo shell
is executing contains a Roo project but a JPA persistence provider is not set up yet, it suggests
you set up a persistence provider (such as OpenJPA and Hibernate) for your project.

What is a Roo project?
A Roo project is nothing but a Java project whose source code consists of
Java source files and .aj (AspectJ) files. If you decide to move away from
Roo, you can easily do so because there is no runtime dependency of the
generated code on any Roo libraries. Refer to the Removing Roo-specific
details from your project recipe in Chapter 7 to see how to use IDEs like
Eclipse and STS to remove Roo.

Getting Started with Spring Roo

14

The help command provides a list of commands that are supported by a particular version
of Spring Roo, accompanied with a short description of the purpose of the command. The
commands listed by the help command are the only commands that you can execute from
the Roo shell.

It is important to note that you may not be able to execute some of the Roo commands listed
by help command, if they are not applicable to your Roo project. For instance, if you haven't
set up a JPA persistence provider for your enterprise application, the Roo shell doesn't allow
you to execute commands for creating JPA entities.

Getting ready
To execute the commands defined in this recipe, first create an empty directory from which
you will start your Roo shell. For instance, you can create a sub-directory named ch01-
recipe inside the cookbook-recipe directory in the C: drive. Go to the ch01-recipe
directory and execute roo.bat batch file to start the Roo shell.

How to do it...
To get help and hints from Roo follow the given steps:

1.	 To get help from Spring Roo, all you need to do is enter the help command in
your Roo shell. But, we will do it a bit differently in our case. Instead of entering
the complete command name, enter the letter h and press TAB (if you are using
standalone Spring Roo installation) or CTRL + SPACE if you are using Spring Roo
installed in Eclipse IDE or STS. You will get the following output from the Roo shell:
roo> h

help hint

roo> h

As shown in the given code, the Roo shell provides the list of matching commands
that it finds. In this case, it's help and hint. Now, enter he into the Roo shell and
press TAB or CTRL + SPACE. You will notice that now the Roo shell automatically
completes the command for you to reflect the matching help command.

Once you enter the help command, you will get the list of commands supported by
Spring Roo, shown as follows:
roo> help

.....

* class - Creates a new Java class source file in any project path

* interface - Creates a new Java interface source file in any
project path

* project - Creates a new project

Chapter 1

15

* quit - Exits the shell

* version - Displays shell version

.....

As you can see, the help command provides a short description about all the
commands supported by Spring Roo. For instance, it tells you that you can use the
quit command to exit the Roo shell and the version command to know the version
of Spring Roo that you are currently using.

2.	 Now that you know how help command is useful, let's try out the hint command,
shown as follows:
roo> hint

Welcome to Roo! We hope you enjoy your stay!

Before you can use many features of Roo, you need to start a new
project.

To do this, type 'project' (without the quotes) and then hit TAB.

Enter a --topLevelPackage like 'com.mycompany.projectname' (no
quotes).

When you've finished completing your --topLevelPackage, press
ENTER.

Your new project will then be created in the current working
directory.

....

As you can see from the given output, Spring Roo shows the hint on how to go about
creating a project using the project command. We will make use of the hint
command in later recipes to discover how it is useful in creating a fully functional
project.

How it works...
As mentioned earlier, Spring Roo consists of core services and add-ons. Add-ons are meant
for generating code based on commands executed by the developer. While executing
commands like hint and help, Roo is not generating any code. You can say that these
commands are processed by the core services and not by any Spring Roo add-on.

There's more...
Spring Roo also provides with the option to pass arguments to Roo commands, which
is covered in the following section. Also when you execute a command from the Roo
shell, it is recorded in a Roo script file, which is explained in the Log file for executed
Roo commands section.

Getting Started with Spring Roo

16

Passing arguments to Roo commands
Like most Roo commands, the help and hint commands accept arguments. Arguments are
additional parameters that are passed to a Roo command to customize command behaviour.
For instance, the help command accepts a command argument and the hint command
accepts a topic argument.

Earlier, we saw that the help command provides high-level details about commands supported
by Spring Roo. The command argument is used to specify the name of the command for
which detailed help information is needed, including information about required and optional
arguments that can be passed to the Roo command. Similarly, the topic argument of
hint command provides detailed information on a particular topic. The command and hint
arguments are optional arguments; Roo shell doesn't force you to specify them.

In most cases Roo expects you to specify arguments in the following format:

--<argument-name> <argument-value>

To simplify using the hint and help commands, Roo lets you specify arguments without
un-necessary frills. For instance, you can enter the help project command to get help
information on the project command or you can enter the hint jpa command to get
hints related to JPA.

The following output from the Roo shell shows the results from executing the help project
and hint jpa commands:

roo> help project

Keyword: project

Description: Creates a new project

 Keyword: ** default **

Keyword: topLevelPackage

 Help: The uppermost package name (this becomes the
<groupId> in Maven and also the '~' value when using Roo's shell)

Mandatory: true

.....

roo> hint jpa

Roo requires the installation of a JPA provider and associated database.

Type 'persistence setup' and then hit TAB three times.

.....

Chapter 1

17

As you can see from the given output, the help command gives the exact details about a
command. For instance, the help project command suggests that the project command
accepts a mandatory argument named topLevelPackage. The hint jpa command
provides high-level details about the jpa topic.

So, the question arises, how do you find the topics on which hints are available? Well, you can
find these topics from Roo by executing the hint topics command, shown as follows:

roo> hint topics

The following hints are available to help you use Roo:

general, start, jpa, entities, fields, relationships,

controllers, finders, eclipse, logging

Just type 'hint topic_name' (without quotes) to view a specific hint.

The given output suggests that Spring Roo provides hints on the following topics: jpa,
entities, fields, relationships, and so on.

The help and hint commands are the most often used commands; it is recommended that
you should use them as and when required while working with your Roo project.

Log file for executed Roo commands
Let's say that you created an enterprise application using Spring Roo consisting of Spring
Web MVC and Hibernate frameworks. Additionally, you executed Roo commands to add
e-mail and JMS message sending support to some of the classes that you created as part
of your enterprise application. Now, let's say a similar project needs to be created in your
organization, which makes use of Spring Web MVC, Hibernate frameworks, and requires
e-mail and JMS message sending functionalities. You can either re-execute all the Roo
commands (that you used in your earlier enterprise application) to create the new enterprise
application, or you can simply execute the Roo script from the earlier enterprise application.

When you execute a command from the Roo shell, it is recorded in a Roo script file, named
log.roo. You will notice that a log.roo script file is created in the ch01-recipe directory.
The log.roo script contains the commands that you executed using the Roo shell and also
the details of when you started the Roo shell or exited it. This feature of Spring Roo can be
useful if you want to review the commands that you executed or if you want to execute the
same set of commands using the script command of Spring Roo. In a moment you will see
how to execute a Roo script file, in the Creating application artifacts from Roo script recipe of
this chapter.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Spring Roo

18

See also
ff The next recipe, Creating a Roo project shows how you can use the help command

to discover the details of the project command, which is used for creating a Roo
project.

Creating a Roo project
This is the first recipe in which you will see Spring Roo doing some real work to help you create
a Java enterprise application. This recipe shows how to go about creating a Roo project using
project command. The end result of following this recipe will be a project, which follows
standard Maven directory structure. The project created in this recipe can be packaged as a
JAR file because it doesn't have a web layer. In Chapter 4, Web Application Development with
Spring Web MVC and Chapter 5, Web Application Development with GWT, Flex, and Spring
Web Flow you will see how to create a web layer of an enterprise application using Spring Roo.
The project that you will create in this recipe will act as a foundation for the rest of the recipes
in this chapter.

Getting ready
The first thing that you need to do is to create an empty directory in which you are going to
create your Roo project. Create a ch01-recipe sub-directory in the C:\roo-cookbbook
directory, if you haven't created it yet. Start the Roo shell from the ch01-recipe directory by
executing the Roo batch file or shell script, as shown here:

C:\roo-cookbook\ch01-recipe>roo

How to do it...
To create a Roo project, execute the project command from your Roo shell, shown as
follows:

roo>project --topLevelPackage sample.roo.flightapp --java 6 --projectName
flight-app

Created C:\roo-cookbook\ch01-recipe\pom.xml

.....

Created SRC_MAIN_RESOURCES\META-INF\spring\applicationContext.xml

Created SRC_MAIN_RESOURCES\log4j.properties

sample.roo.flightapp roo>

Chapter 1

19

Notice the change in the Roo prompt after the execution of the project command. The
change in prompt indicates that you are now working with a project whose top-level package is
sample.roo.flightapp. If you start the Roo shell from a directory, which already contains
a Roo project, then the Roo prompt will not change.

How it works...
The following table describes the purpose of each of the arguments passed to the
project command:

Argument Purpose
topLevelPackage This is a Mandatory argument, which identifies the base or root

package of your project. You will refer to this package frequently in
your Roo commands using the tilde symbol (~). The value of this
argument becomes the value of the <group-id> element in maven's
pom.xml file.

java This is an optional argument, which specifies the version of Java (must
be 5, 6, or 7) with which the source and compiled classes of the Roo
project should be compatible with. If unspecified, the Java version is
auto-detected by Spring Roo.

projectName This is an optional argument, which specifies the name of
the project. The value of this argument becomes the value of
<artifact-id> and <name> elements in maven's pom.xml file.
If unspecified, the last part of the package name specified as the
value of topLevelPackage argument is used. For instance, if the
topLevelPackage argument value is sample.roo.flightapp,
and the projectName argument is not specified, the value of
projectName argument is assumed to be flightapp.

Use TAB or CTRL + SPACE regularly for discovering mandatory and optional
attributes, and their pre-defined values
As it's hard to remember all the mandatory and optional attributes of
different Roo commands, it's recommended that you use TAB (if you are using
standalone Roo) or CTRL + SPACE (if you are using Roo from within Eclipse
or STS) to use the auto-completion feature of Roo. Roo not only provides
auto-completion of Roo commands (as we saw in an earlier recipe), but it
also displays the mandatory arguments of a command when you press TAB
or CTRL + SPACE. If you want to know about the optional arguments of a
command, simply enter -- followed by TAB or CTRL + SPACE. To restrict users
from entering any arbitrary value, a command argument may accept only
a particular value from a set of pre-defined values for that argument. The
pre-defined values are defined by the add-on responsible for processing the
command. If an argument accepts a value from a set of pre-defined values by
Roo, it is displayed when you press TAB or CTRL + SPACE.

Getting Started with Spring Roo

20

Spring Roo distribution comes with a Maven add-on, which is responsible for processing the
project command. There are more Roo commands that are processed by the Maven add-
on, which you will see later in this book.

The output of project command shows that it creates directories with name SRC_MAIN_
JAVA, SCR_MAIN_WEBAPP, and so on. These are logical names given to standard directories
created by the Maven add-on. The following table shows the directories to which each of these
names map in the case of the flight-app project:

Path value Project directory
SRC_MAIN_JAVA Refers to the root of the Java source directory, which contains

application's Java sources: ch01-recipe\src\main\java.
SRC_MAIN_RESOURCES The root of the directory, which contains resources (Spring's

application context XML, database properties file, log4j
properties file, persistence.xml file, and so on) required by
the Java enterprise application: ch01-recipe\src\main\resources.

SRC_TEST_JAVA The root of the Java source directory, which contains unit and
integration tests: ch01-recipe\src\test\java.

SRC_TEST_RESOURCES The root of the directory, which contains resources required during
unit and integration testing: ch01-recipe\src\test\resources.

SRC_MAIN_WEBAPP The web application directory, which contains web pages, images,
style sheets, and web application configuration: ch01-recipe\src\
main\webapp.

ROOT Refers to the root directory of the project, which is ch01-recipe in
case of flight-app project.

SPRING_CONFIG_ROOT Refers to the directory, which contains Spring's application
context XML file. In the context of flight-app project this refers to
ch01-recipe\src\main\resources\META-INF\spring.

As evident from the execution of the project command, not only did it create a
maven-ized project, it also created Spring's applicationContext.xml, maven's pom.
xml file, and a log4j.properties file. The following XML code shows the contents of the
applicationContext.xml file, which contains some interesting details:

<beans ..>

 <context:property-placeholder
 location="classpath*:META-INF/spring/*.properties"/>

 <context:spring-configured/>

 <context:component-scan base-package="sample.roo.flightapp">
 <context:exclude-filter
 expression=".*_Roo_.*" type="regex"/>

Chapter 1

21

 <context:exclude-filter expression=
 "org.springframework.stereotype.Controller"
 type="annotation"/>
 </context:component-scan>
</beans>

The important inferences that we can derive from the content of applicationContext.
xml are:

ff The definition of the <property-placeholder> element of Spring's context
namespace indicates that you must put your properties files that contain
configuration information for Spring beans, in the META-INF/spring directory so
that they can be picked up by Spring's application context. In the next chapter, we will
see how this is used by Roo-generated applications to read database properties from
an external properties file.

ff The <spring-configured> element of Spring's context namespace specifies
that objects that are annotated with @Configurable annotation are configured
using Spring, even if they are created outside of the Spring container. The
objects created outside the Spring container include objects that are created
programmatically using the new operator or by reflection. We will see example usage
of @Configurable annotation in Chapter 2, Persisting Objects Using JPA.

ff The <component-scan> element of Spring's context namespace specifies that
Spring components (that is, components annotated with @Service, @Repository
and @Component Spring annotations) found inside the sample.roo.flightapp
package or its sub-packages are automatically registered with Spring's application
context. Later in this chapter, we will use this feature to create a service class in the
flight-app project, which is auto-registered with Spring's application context.

The other important artifact that was generated during the project creation is the pom.xml
file that is used by maven. The following XML code shows how the argument values specified
in the project command are used in creating the pom.xml file of the flight-app project:

<project >

 <groupId>sample.roo.flightapp</groupId>
 <artifactId>flight-app</artifactId>
 <packaging>jar</packaging>
 <version>0.1.0.BUILD-SNAPSHOT</version>
 <name>flight-app</name>
</project>

You may notice that the value of the <packaging> element is jar and not war. The
reason for this lies with the fact that we haven't yet added a web layer to the flight-app
application. We will see in Chapter 4, Web Application Development with Spring Web MVC and
Chapter 5, Web Application Development with GWT, Flex, and Spring Web Flow how we go
about creating a web application using Spring Roo.

Getting Started with Spring Roo

22

The pom.xml additionally contains Maven plugins, which are available to Roo projects by
default. The following table summarizes some of the important Maven plugins that are
available to our newly created flight-app project:

Maven Plugin Usage
IDEA plugin You may use this plugin to convert the flight-app project into an IntelliJ

IDEA project.
Eclipse plugin You may use this plugin to convert the flight-app project into an Eclipse

project.
AspectJ compiler
plugin

This plugin weaves AspectJ aspects into your project classes. This
plugin is used internally by Spring Roo. We will see the AspectJ
compiler in action in Chapter 2.

Tomcat and Jetty
plugins

You can use these plugins during development to run Tomcat or Jetty
in embedded mode to test your web application.

There's more...
You won't always be starting a project from scratch, and you may find Spring Roo compelling
enough (which you will, as we go through its various features) to use in your existing
Spring-based Java projects. In such scenarios, you need to do the following:

1.	 Convert your existing Spring-based project into a standard Maven project as created
by Spring Roo's project command.

2.	 Add the AspectJ compiler plugin to the pom.xml file of your project.

3.	 Move bean definitions in your existing project to the applicationContext.xml file
in META-INF/spring directory.

4.	 Move the properties file used for configuring Spring beans to META-INF/spring/
directory.

There are other things you will need to do to convert your existing projects into a Roo project,
which we will discuss in relevant recipes.

See also
ff The Configuring logging recipe discusses how to configure logging in Roo projects

ff Refer to the Creating a Java class and Create a Java interface recipes to find out how
you can use Spring Roo to create classes/interfaces in your application

Chapter 1

23

Importing a Roo project into Eclipse or
IntelliJ IDEA IDE

As explained in the Setting up Roo recipe, you can either use STS or Eclipse with STS
components installed to work with Roo projects. Alternatively, you can create necessary
project files to import the Roo project into Eclipse or IntelliJ IDEA IDE (for working directly with
Java sources and configuration files) and run the Spring Roo shell separately in standalone
mode to execute Roo commands.

In this recipe, we look at how you can import a Roo project into Eclipse or IntelliJ IDEA by
executing commands provided by Spring Roo.

Getting ready
Start the Roo shell from the C:\roo-cookbook\ch01-recipe directory, which contains the
flight-app Roo project.

How to do it...
To import the Roo project into Eclipse or IntelliJ IDEA follow the given steps:

1.	 To create Eclipse-specific project files, execute the perform eclipse command
from the Roo shell, shown as follows:
roo> perform eclipse

Alternatively, you can use the perform command to execute the eclipse:eclipse
Maven goal of the Maven Eclipse plugin, shown as follows:
roo> perform command --mavenCommand eclipse:eclipse

2.	 To create IntelliJ IDEA specific project files, use the perform command to execute
the idea:idea Maven goal of the Maven IDEA plugin, shown as follows:
roo> perform command --mavenCommand idea:idea

How it works...
The perform eclipse and perform command commands are processed by the Maven
add-on of Spring Roo. The perform eclipse command generates Eclipse IDE specific
configuration files, such as .project and .classpath files. Behind the scenes, the
perform eclipse command executes the eclipse:eclipse goal of the Maven eclipse
plugin.

Getting Started with Spring Roo

24

The perform command is used to execute a Maven command. It accepts a single mandatory
argument, mavenCommand, which identifies the Maven goal to execute.

Maven IDEA and Eclipse plugins are configured in the pom.xml file by
Spring Roo at the project creation time; you don't need to add them to your
Roo project to use the commands shown in this recipe.

There's more...
If you are using any IDE other than STS, then ensure that you install AJDT (AspectJ
Development Tools), as it gives better development experience when working with projects
that make use of AspectJ aspects. For instance, when you open a Java source file in
Eclipse IDE (that has AJDT installed), the Cross Reference tab shows the various AspectJ
declarations that apply to the selected Java source file, and you can select these declarations
to open the corresponding AspectJ ITD files.

See also
ff Refer to the Setting up Roo recipe to know how to use STS or Eclipse (with STS

components) for developing with Spring Roo

ff Refer to the Removing Roo-specific details from your project recipe in Chapter 7,
Developing Add-ons and Removing Roo from Projects to see how you can convert
your Roo project into a normal Java project

Configuring logging
In the Creating a Roo project recipe, you saw that when you create a new project, a log4j.
properties file is automatically created with default logging configuration. In most real
projects, you'd like to customize the default logging configuration. By default, the log4j.
properties file configures root logger at ERROR level and logging is not enabled for the
project.

In this recipe, we will look at the logging setup command to modify the logging
configuration.

Getting ready
Start the Roo shell from the C:\roo-cookbook\ch01-recipe directory, which contains the
flight-app Roo project.

Chapter 1

25

How to do it...
Using the logging setup command you can specify the logging level and the package to
which it applies, as shown in the following steps:

1.	 The following logging setup commands are used to change the logging level of
rootLogger to DEBUG (which is ERROR by default) and enable DEBUG level logging for
all classes in the flight-app application:
roo> logging setup --level DEBUG --package ROOT

Updated SRC_MAIN_RESOURCES\log4j.properties

roo> logging setup --level DEBUG --package PROJECT

Updated SRC_MAIN_RESOURCES\log4j.properties

As the output from the command execution suggests, some changes have been
made by Roo to the log4j.properties file.

Keep an eye on the output of a command
When a Roo command is executed, it displays information about what files
and directories have been created or which files have been updated. This
can be helpful if you want to check the code that is generated on execution
of a command.

2.	 To confirm that the changes have been made to the log4j.properties, you can
either view it directly by opening the file or you can use the properties list
command (explained in the next recipe).

How it works...
The logging setup command is processed by the Logging add-on of Spring Roo. The
following table describes the arguments that the logging setup command accepts:

Argument Purpose
level This is a mandatory argument, which identifies the logging level. It can only

take one of the pre-defined values, like DEBUG, ERROR, INFO, and so on.
package This is an optional argument, which specifies the package to which the

logging level applies. It can only take one of the pre-defined values, such as
PROJECT, ALL_SPRING, PERSISTENCE, and so on.

Getting Started with Spring Roo

26

There's more...
As of Spring Roo 1.1.3, using the logging setup command you can't specify a custom
package name as the value of the package argument; therefore, you can set a custom
package name either by using the properties set command (explained later in this
chapter) or by directly editing the log4j.properties file.

See also
ff The Viewing properties defined in a properties file, Removing a property defined in a

properties file, and Adding properties to a properties file recipes show how you can
manage properties files in your Roo project.

Viewing properties defined in a
properties file

If your project contain properties files, you may want to view their content. For instance, when
we created the flight-app Roo project earlier, a log4j.properties file containing
logging configuration was also created. In this recipe, we will look at the properties list
command to view the contents of the log4j.properties file.

Getting ready
Start the Roo shell from C:\roo-cookbook\ch01-recipe directory, which contains the
flight-app Roo project.

How to do it...
To view the contents of a properties file, the properties list command requires a path
to the properties file and its name. The following properties list command displays the
contents of the log4j.properties file:

roo> properties list --name log4j.properties --path SRC_MAIN_RESOURCES

log4j.appender.R = org.apache.log4j.RollingFileAppender

log4j.appender.R.File = application.log

...

log4j.logger.sample.roo.flightapp = DEBUG

log4j.rootLogger = DEBUG, stdout

Chapter 1

27

How it works...
The Properties file add-on is responsible for processing the properties list command.
The following table describes the arguments it accepts:

Argument Purpose
path It is a mandatory argument that identifies a path to the properties file.

It only accepts pre-defined values like ROOT, SPRING_CONFIG_ROOT,
SCR_MAIN_WEBAPP, and so on.

name It is a mandatory argument that specifies the name of the properties file
whose content you want to view.

See also
ff The next recipe, Managing properties defined in a properties file, shows how you can

add, remove, and modify properties defined in properties files in your Roo project.

Managing properties defined in a
properties file

In this recipe, we look at Roo commands, which you can use to add, remove, and modify
properties defined in a properties file. We will use the log4j.properties file of the
flight-app project to demonstrate the use of commands.

The following table shows the properties that we will add, modify, and remove from the
log4j.properties file:

Property Action
log4j.appender.R.File =
application.log

Modified to log4j.appender.R.File =
flightapp.log

log4j.rootLogger = debug, stdout Modified to log4j.rootLogger = ERROR
log4j.appender.stdout = org.
apache.log4j.ConsoleAppender

Removed from log4j.properties

log4j.logger.sample.roo.
flightapp.service = ERROR

Added to log4j.properties

Getting ready
Start the Roo shell from the C:\roo-cookbook\ch01-recipe directory, which contains the
flight-app Roo project.

Getting Started with Spring Roo

28

How to do it...
To manage the properties defined in a properties file follow the given steps:

1.	 The properties set command is used to modify properties shown as follows:
roo> properties set --name log4j.properties --path SRC_MAIN_
RESOURCES --key log4j.appender.R.File --value flightapp.log

.....

roo> properties set --name log4j.properties --path SRC_MAIN_
RESOURCES --key log4j.rootLogger --value ERROR

2.	 The properties remove command is used to remove properties, shown as follows:
roo> properties remove --name log4j.properties --path SRC_MAIN_
RESOURCES --key log4j.appender.stdout

3.	 The properties set can also be used to add a new property, shown as follows:
roo> properties set --name log4j.properties --path SRC_MAIN_
RESOURCES --key log4j.logger.sample.roo.flightapp.service --value
DEBUG

How it works...
Like the properties list command, the properties set and properties remove
commands are provided by Properties file add-on. The following table describes the
arguments that both the properties set and properties remove commands accept:

Argument Purpose
path It is a mandatory argument that identifies a path to the properties file. Refer

to the Viewing properties defined in a properties file and Creating a Roo
project recipes for details on the values it can accept.

name It is a mandatory argument that specifies the name of the properties file
whose property you want to remove

key It is a mandatory argument that specifies the key of the property that you
want to remove from the properties file.

The properties set command accepts all the arguments that the properties remove
command accepts. Additionally, it accepts a mandatory argument, value, which specifies a
value of the property being set by the properties set command. If a matching property is
found in the properties file, the existing property is updated with the new value. If no matching
property is found, a new property is added to the properties file.

Chapter 1

29

There's more...
You can also change the properties file using your favorite IDE. If you are creating a new Roo
project which acts as a template for creating other projects, using properties commands to
add, modify, and remove properties from a properties file can be valuable.

If you want to modify logging configuration, you should first consider using the logging
setup command (explained earlier in the Configuring logging recipe). If you want to modify
database properties, you should use database commands (explained in the Managing
database configuration properties recipe in Chapter 2, Persisting Objects Using JPA).

See also
ff The Configuring logging recipe explains how to configure logging using Spring Roo

commands

ff The Managing database configuration properties recipe explains how to configure
database properties using Spring Roo commands

Creating a Java class
You can create Java classes in your Roo project, either by using the IDE of your choice or by
using the class command. If you create a class using Roo, boilerplate code (which includes
toString, and get and setter methods for attributes) is generated automatically and
managed by Spring Roo, and is kept in a separate AspectJ ITD file.

Getting ready
Start the Roo shell from the C:\roo-cookbook\ch01-recipe directory, which contains the
flight-app Roo project.

How to do it...
You can create a Java class using the class command, as shown here:

roo> class --class sample.roo.flightapp.service.FlightService
--rooAnnotations

Created SRC_MAIN_JAVA\sample\roo\flightapp\service

Created SRC_MAIN_JAVA\sample\roo\flightapp\service\FlightService.java

Created SRC_MAIN_JAVA\sample\roo\flightapp\service\FlightService_Roo_
Serializable.aj

~.service.FlightService roo>

Getting Started with Spring Roo

30

When the class command is executed, notice that the Roo prompt changes to refer to the
newly created Java class. In the next recipe, titled Adding fields to a Java class, we will see
how the changed Roo prompt simplifies performing commands on the referred class. Also,
notice that the service directory is automatically created by Spring Roo, if it doesn't exist.

Some command arguments, like rooAnnotations, act as a flag for
the command processor, and you don't need to specify their value.
Simply specifying them as part of the command means that the value
of the argument is true or yes.

How it works...
The class command accepts the arguments listed in the following table:

Argument Purpose
class It is a mandatory argument that identifies the fully-qualified name of

the Java class that you want to create. You can either specify the fully-
qualified class name using the tilde symbol '~' or you can use the
TAB (or CTRL + SPACE) multiple times to let Spring Roo complete the
package name for you.
The '~' symbol refers to the top-level package of the Roo project.
For instance, in flight-app project, it refers to sample.roo.
flightapp package. You can use this symbol to specify the package
(relative to top-level package) in which you want to create your Java
class.

rooAnnotations It is an optional argument that specifies the common Roo
annotations, such as @RooJavaBean, @RooToString, and @
RooSerializable, which are added to the generated Java class.
If unspecified, these annotations are not added to the generated Java
class.

path It is an optional argument that specifies the path to the source directory
in which the class is created. By default, the path is SRC_MAIN_JAVA.

extends It is an optional argument that specifies the fully-qualified name of
the class, which the Java class extends. You can use this argument to
create a class which extends from a superclass.

abstract It is an optional argument that indicates whether the class is an
abstract or concrete class. You can use this argument to create an
abstract class.

permitReserved
Words

It is an optional argument that indicates whether Roo should allow
creating a class whose name is a reserved word. By default, Roo
doesn't allow creating Java classes whose name uses reserved words.
For instance, by default you cannot create a class named New.

Chapter 1

31

As evident from the list of arguments accepted by the class command, Spring Roo doesn't
provide any argument to let you specify the interface(s) that the generated Java class
implements. If you want your Java class to implement one or more interfaces, you need to
manually modify your class definition.

As the output from class command suggests, apart from FlightService.java, Roo
creates a FlightService_Roo_Serializable.aj file—an AspectJ ITD that makes the
FlightService class implement java.io.Serializable interface.

The AspectJ ITDs generated by Roo have the following naming convention:

<java-class-name>_Roo_<add-on-name>.aj

Where <java-class-name> is the name of the Java class to which the AspectJ ITD applies.

<add-on-name> is the name of Spring Roo add-on responsible for managing the AspectJ ITD

The *_Roo_*.aj files are managed by Roo and you should not directly modify or delete them.

The following code shows how the FlightService.java file generates the FlightService
class using the class command:

package sample.roo.flightapp.service;

import org.springframework.roo.addon.javabean.RooJavaBean;
import org.springframework.roo.addon.tostring.RooToString;
import org.springframework.roo.addon.serializable.RooSerializable;

@RooJavaBean

@RooToString

@RooSerializable

public class FlightService { }

In the given code, Roo annotations were added to the generated FlightService class
because we specified the rooAnnotations argument in the class command.

To simplify debugging, developers commonly override the toString method of the java.
lang.Object class to output a string containing the value of all the attributes of the class.
With Spring Roo, you are relieved of this task because if your class is annotated with @
RooToString annotation, Spring Roo takes care of creating and updating the toString
method as you add, modify, or remove attributes from your Java class.

When you add an attribute to your FlightService class, Roo creates a FlightService_
Roo_ToString.aj—an AspectJ ITD that adds the toString method to the
FlightService class, and a FlightService_Roo_JavaBean.aj—an AspectJ ITD
that adds getters and setters methods for the attributes defined in the FlightService
class. The creation of these aspects is triggered by the presence of @RooToString and @
RooJavaBean annotations in the FlightService class.

Getting Started with Spring Roo

32

To see these two ITD files, add the following attribute to FlightService class:

private String origin;

If your Roo shell is running, as soon as you save the FlightService class, Roo will generate
a FlightService_Roo_ToString.aj file and a FlightService_Roo_JavaBean.
aj file in the same package as the FlightService class. If you observe the Roo shell, you
will find that Roo reports that it has created a FlightService_Roo_ToString.aj and
FlightService_Roo_JavaBean.aj files, as shown here:

Created SRC_MAIN_JAVA\sample\roo\flightapp\service\

FlightService_Roo_ToString.aj

Created SRC_MAIN_JAVA\sample\roo\flightapp\service\

FlightService_Roo_JavaBean.aj

The following code shows how FlightService_Roo_ToString.aj AspectJ ITD adds the
toString method to the FlightService class:

package sample.roo.flightapp.service;

privileged aspect FlightService_Roo_ToString

{

 public String FlightService.toString()
 {
 StringBuilder sb = new StringBuilder();
 sb.append("Origin: ")
 .append(getOrigin());
 return sb.toString();
 }
}

The given code shows that FlightService_Roo_ToString is a privileged aspect,
that is, it can access even private members of other aspects and classes. The declaration,
public String FlightSerivce.toString(), adds a public toString method to
the FlightService class that accepts no arguments and returns a String. Everything
inside the curly-braces is the implementation of the toString method. Each declaration in
an AspectJ ITD file identifies the target of that declaration. In the code, FlightService in
the declaration means that the FlightService class is the target; therefore, it will add the
toString method to the FlightService class. In the Adding fields to a Java class recipe,
we will see how the toString method is automatically updated by Spring Roo when you add
more attributes to the FlightService class.

Chapter 1

33

The following figure summarizes how the FlightService_Roo_ToString.aj file in the
previous listing declares adding the toString method to the Flight class:

In Spring Roo, AspectJ ITDs are responsible for adding fields, methods, and
constructors to Java classes and to make them implement interfaces or
extend from a superclass. Spring Roo is responsible for managing these ITDs
and you should not directly modify or delete them.

The following code shows the FlightService_Roo_JavaBean.aj AspectJ ITD file:

privileged aspect FlightService_Roo_JavaBean
{

 public String FlightService.getOrigin()
 {
 return this.origin;
 }

 public void FlightService.setOrigin
 (String origin)
 {
 this.origin = origin;
 }
}

The given code shows that FlightService_Roo_JavaBean.aj is also a privileged
aspect and it introduces two methods into the FlightService class: getOrigin and
setOrigin, to get and set the value of the origin attribute.

Getting Started with Spring Roo

34

The FlightService_Roo_Serializable.aj AspectJ ITD defines that the
FlightService class implements the java.io.Serializable interface, as shown here:

package sample.roo.flightapp.service;

import java.io.Serializable;

privileged aspect FlightService_Roo_Serializable
{

 declare parents: FlightService implements Serializable;

 private static final long FlightService.serialVersionUID
 = 5059552858884348572L

}

In the given code, the declare parents: FlightService implements
Serializable statement declares that the FlightService class implements the java.
io.Serializable interface. The following figure summarizes what this declaration means:

The statement private static final long FlightService.serialVersionUID =
5059552858884348572L, adds a serialVersionUID field (it's the field which you define
if your class implements the Serializable interface) to the FlightService class that
contains it.

Chapter 1

35

There's more...
If you want Roo to manage the creation of the toString method and getter and setter
methods for attributes of the class, it is recommended that you use the rooAnnotations
argument in the class command.

Roo annotations have source-level retention, which means that your
application is not dependent on Roo annotations at runtime.

Moving existing Spring projects to use
Spring Roo

If you are moving your existing Spring-based project to Roo, you can make out from this recipe
that you should do the following:

1.	 Remove the toString method and add the @RooToString annotation to all your
existing classes.

2.	 Remove the implementation of Serializable interfaces from classes and instead
annotate the classes with the @RooSerializable annotation.

3.	 Remove getters and setters methods from your Java classes and instead annotate
the classes with the @RooJavaBean annotation.

Registering the service class with Spring's application context
Using Spring Roo you can't create a service class, which is automatically
registered with Spring's application context; therefore, if you want your
service class to be auto-registered, then annotate it with the @Service
annotation. The service class will be registered with Spring's application
context as long as it is inside the top-level directory (for more information
refer to the <component-scan> element, described in the Creating a
Roo project recipe).

@RooToString—customizing the name of the toString method
We saw that using the @RooToString annotation creates a method named toString in
the corresponding AspectJ ITD file. You can use the toStringMethod attribute of the @
RooToString annotation to specify a custom name for the toString method, as shown here:

@RooToString(toStringMethod = "myTostring")

public class MyCustomClass { private String myAttr; }

Getting Started with Spring Roo

36

In the given code, the toStringMethod attribute specifies myToString as the name of the
method to act as the toString method for the MyCustomClass. The ITD file corresponding
to the @RooToString annotation: MyCustomClass_Roo_ToString.aj will now create a
method similar to toString but with the name myToString, as shown here:

privileged aspect MyCustomClass_Roo_ToString
{
 public String MyCustomClass.mytostring ()

 {

 StringBuilder sb = new StringBuilder();

 sb.append("MyAttr: ").append(getMyAttr());
 return sb.toString();
 }
}

@RooToString—excluding properties from the toString method
In some cases, you may want to restrict properties from being part of the auto-generated
toString method. The @RooToString annotation provides an excludeFields attribute,
which lets you specify an array of attributes that should be excluded from the auto-generated
toString method, as shown here:

@RooToString(excludeFields={"someAttribute"})

public class MyCustomClass { .. }

In this code, the @RooToString annotation instructs that the toString method of the
MyCustomClass class must not include the someAttribute property.

See also
ff The Adding attributes to a Java class recipe explains how you can add attributes to a

Java class using roo

ff The Creating a Java interface recipe explains how you can create a Java interface
from the Roo shell

Adding attributes to a Java class
You can add attributes to your Java classes in your Roo project, either from your IDE or by
using the field commands of Spring Roo. There are advantages in adding attributes using
Roo as opposed to using an IDE, which we will see in this recipe. The following table shows the
name and type of attributes that we will add to a Passenger class in the package sample.
roo.flightapp.domain of the flight-app project:

Chapter 1

37

Field name Type
firstName java.lang.String

lastName java.lang.String

age java.lang.Integer

address sample.roo.flightapp.domain.Address

Getting ready
Start the Roo shell from the C:\roo-cookbook\ch01-recipe directory, which contains the
flight-app project.

How to do it...
Roo provides field commands, which you can use to add different types of fields in your Java
class, shown as follows:

1.	 Create an Address class, which is an attribute type in the Passenger class, as
shown here:
roo> class --class ~.domain.Address --rooAnnotations

2.	 Create a Passenger class, to which we want to add attributes using the field
commands, as shown here:
sample.roo.flightapp.domain.Address roo> class --class ~.domain.
Passenger --rooAnnotations

3.	 Add firstName and lastName attributes to the Passenger class using field
string command, shown as follows:
sample.roo.flightapp.domain.Passenger roo> field string
--fieldName firstName

Updated ..Passenger.java

Created ..Passenger_Roo_JavaBean.aj

Created ..Passenger_Roo_ToString.aj

.. roo> field string --fieldName lastName

Updated ..Passenger.java

Updated ..Passenger_Roo_JavaBean.aj

Updated ..Passenger_Roo_ToString.aj

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Spring Roo

38

4.	 Add an age attribute to the Passenger class, using the field number command,
shown as follows:
.. roo> field number --fieldName age --type java.lang.Integer

Updated ..Passenger.java

Updated ..Passenger_Roo_JavaBean.aj

Updated ..Passenger_Roo_ToString.aj

5.	 Add an address attribute of type Address to the Passenger class, using the
field other command, shown as follows:
.. roo> field other --fieldName address --type sample.roo.
flightapp.domain.Address

Updated ..Passenger.java

Updated ..Passenger_Roo_JavaBean.aj

Updated ..Passenger_Roo_ToString.aj

The given output for each of these commands shows that when an attribute is added to the
Passenger class for the first time, the Passenger_Roo_JavaBean.aj and Passenger_
Roo_ToString.aj files are created. You may notice that every time you add an attribute, the
Passenger_Roo_JavaBean.aj and Passenger_Roo_ToString.aj AspectJ ITD files are
also updated.

How it works...
Spring Roo provides multiple field commands for adding different types of attributes to the
Java class. For instance, field string is for adding a String type field, field date is for
adding a java.util.Date or java.util.Calendar type field, field other is for adding
a field of custom Java type, and so on.

Some of the field commands, like field set and field reference,
apply only to JPA entities, and are therefore not applicable to every Java class
that you create in your Roo project. Also, field commands accept certain
arguments, which make sense only if the target Java class is a JPA entity. We
will discuss JPA entity specific field commands in Chapter 2.

The field string, field other, and field number commands accept the name
argument, which identifies the name of the attribute to be added to the Java class. The field
other and field number also require the type of the attribute.

The following code shows Passenger_Roo_JavaBean.aj AspectJ ITD, which was modified
by Spring Roo when we added fields to the Passenger class:

Chapter 1

39

privileged aspect Passenger_Roo_JavaBean
{
 public String Passenger.getFirstName()
 {
 return this.firstName;
 }
 public void Passenger.setFirstName(String firstName)
 {
 this.firstName = firstName;
 }
...
}

The given code shows that Passenger_Roo_JavaBean.aj was updated by Spring Roo to
introduce getter and setter methods for each of the fields added to Passenger class. This was
possible because of the presence of @RooJavaBean annotation in the Passenger class.

The following code shows Passenger_Roo_ToString.aj AspectJ ITD, which was also
modified by Spring Roo when fields were added to the Passenger class:

privileged aspect Passenger_Roo_ToString
{
 public String Passenger.toString()
 {
 StringBuilder sb = new StringBuilder();
 sb.append("FirstName:").append(getFirstName()).append(",");
 sb.append("LastName: ").append(getLastName()).append(", ");
 sb.append("Age: ").append(getAge()).append(", ");
 sb.append("Address: ").append(getAddress());
 return sb.toString();
 }
}

As the given code suggests, it introduces a toString method to the Passenger class,
which returns a concatenated String containing the value of each of its attribute. This was
possible because the Passenger class was annotated with the @RooToString annotation.

What if I add an attribute using IDE?
Spring Roo actively monitors changes to classes that are annotated with
Roo annotations, and any change to classes triggers Spring Roo to update
the corresponding AspectJ ITD files. So, it doesn't matter whether you add
attributes to your Java class using Roo shell or an IDE.

Getting Started with Spring Roo

40

The following figure shows how Spring Roo manages AspectJ ITD files:

The given figure shows that when you start the Spring Roo shell from a directory, it actively
monitors the Java classes in the file system that are annotated with Roo annotations (for
example @RooToString, @RooJavaBean, and so on). When any of these Java classes are
modified using an IDE or any other editor, Spring Roo checks if the AspectJ ITD files (which
follow the naming convention *_Roo_*.aj, as explained earlier) corresponding to the Java
classes are in sync with the Java classes. If they are not, it updates the AspectJ ITD files
accordingly. Spring Roo makes use of add-ons to make modifications to the AspectJ ITD files.

There's more...
This recipe showed that if you want Roo to automatically generate a toString method and
getter and setter methods for all the attributes, then annotate your class with @RooToString
and @RooJavaBean annotations.

What if I add an attribute when Spring Roo is not running?
When you start Roo shell, it checks if AspectJ ITDs are in sync with the
corresponding Java classes. If there are differences, then Roo updates the
AspectJ ITD files to reflect the current state of the Java class. At this time
Roo may even remove an ITD file if it finds that it is no longer required. For
instance, if you remove all the attributes from Passenger class, then the
corresponding Passenger_Roo_JavaBean.aj and Passenger_Roo_
ToString.aj files are automatically removed by Roo.

Chapter 1

41

Spring Roo doesn't provide commands to remove or modify an attribute. So, if you want to
remove or modify an existing attribute of a Java class, you can do so using your IDE. Spring
Roo will take care of removing or modifying the attribute in corresponding AspectJ ITD files.

@RooJavaBean—controlling the generation of getter and setter
methods
We saw that using @RooJavaBean annotation introduces getter and setter methods for all
the fields in a class. In some cases, you may want to control the generation of these getter
and setter methods. @RooJavaBean allows you to do so using the gettersByDefault
and settersByDefault attributes. These attributes specify whether getter and setter
methods should be generated by default or not. The default value of these attributes is true,
which means the @RooJavaBean annotation will create getter and setter methods in the
corresponding *_Roo_JavaBean.aj ITD for all the fields defined in the class.

If you specify the value of both gettersByDefault and settersByDefault elements as
false, then Spring Roo deletes the corresponding AspectJ ITD file.

See also
ff The Creating a Java interface recipe shows how to create a Java interface using

Spring Roo

ff The Adding fields to persistent entities recipe of Chapter 2, Persisting Objects Using
JPA shows the additional arguments that are available in field commands

Creating a Java interface
You can use Spring Roo's interface command or an IDE to create a Java interface. In this
recipe, we will see how we can create an interface named FlightServiceIntf.

Getting ready
Start the Roo shell from the C:\roo-cookbook\ch01-recipe directory, which contains the
flight-app Roo project.

Getting Started with Spring Roo

42

How to do it...
Spring Roo provides the interface command to create a Java interface, as shown here:

roo> interface --class sample.roo.flightapp.service.FlightServiceIntf

Created SRC_MAIN_JAVA\sample\roo\flightapp\service\FlightServiceIntf.java

sample.roo.flightapp.service.FlightServiceIntf roo>

How it works...
The following table describes the arguments that the interface command accepts:

Argument Purpose
class It is a mandatory argument, which specifies the fully-qualified

name of the Java interface.
path It is an optional argument, which identifies the directory in which

to create the interface, default being SCR_MAIN_JAVA.
permitReservedWords It is an optional argument, which instructs Spring Roo to allow

reserved words in the name of Java interface.

There's more...
Using Spring Roo you can't add constants or declare methods in your Java interface.
To add constants or methods, you need to use your IDE. You may have noticed that the
rooAnnotations argument is not available for the interface command; therefore,
you can safely assume that Spring Roo doesn't generate any code corresponding to a Java
interface when you make modifications to it.

See also
ff The Creating a Java class recipe shows how to create a Java class using Spring Roo

Referring to a type from the Roo shell
In some scenarios, you may want to set the focus of your commands to a particular Java type.
For instance, you may want the Roo shell to execute field commands on a particular Java
type, so that you don't need to specify the class argument in your field commands.

Chapter 1

43

Getting ready
Start the Roo shell from the C:\roo-cookbook\ch01-recipe directory, which contains the
flight-app Roo project.

How to do it...
Spring Roo provides a focus command, which lets you change the target of your commands
to a different Java type. The following sequence of steps shows how we can use the focus
command to switch from one type to another:

1.	 Execute the following focus command to specify that you want to work with the
flight-app project. This will change the Roo prompt to reflect the top-level package
name of Roo project:
roo> focus --class ~

2.	 Create FlightDesc class using the class command. Use ~ to denote that you are
specifying the package name for the class with respect to the top-level package of the
project. This will change the Roo prompt to refer to the FlightDesc type, shown as
follows:
sample.roo.Flightapp roo> class --class ~.domain.FlightDesc
--rooAnnotations

Created SRC_MAIN_JAVA\sample\roo\flightapp\domain\FlightDesc.java

3.	 Create a Flight class using the class command. This will change the Roo prompt
from FlightDesc type to refer to the newly created Flight type, as shown here:
~.domain.FlightDesc roo> class --class ~.domain.Flight
--rooAnnotations

Created SRC_MAIN_JAVA\sample\roo\flightapp\domain\Flight.java

4.	 Use a focus command to switch to the FlightDesc type. This will change the Roo
prompt from referring to Flight type to FlightDesc type, as shown here:
~.domain.Flight roo> focus --class ~.domain.FlightDesc

5.	 Add from_city and to_city attributes to the FlightDesc class as shown here.
As the currently referred type by Roo prompt is FlightDesc, you don't need to
specify the class argument:
~.domain.FlightDesc roo> field string from_city

~.domain.FlightDesc roo> field string to_city

Getting Started with Spring Roo

44

6.	 Without changing focus to the Flight class, add a flight_Id attribute to the
Flight class by using the field command along with the class argument, as
shown here. The class argument specifies that the target of the command is the
Flight class and not the currently referred FlightDesc class:
~.domain.FlightDesc roo> field number --fieldName flight_Id --type
java.lang.Integer --class ~.domain.Flight

How it works...
The class argument of the focus command lets you specify the fully-qualified name of the
Java type with which you want to work. The ~ symbol is used to indicate the top-level package
of the Roo project that you specified during creation of the Roo project.

The use of the ~ symbol simplifies providing the value of any argument that
expects a fully-qualified name of a Java type in your Roo project.

There's more...
The use of the focus command is mainly to simplify writing commands targeting a particular
Java type. If you don't want to use the focus command in a situation, then you can always
use the class argument of the command to specify the target Java type of the command.

See also
ff The Creating a Java class recipe shows how to create a Java class using Spring Roo

ff The Adding attributes to a Java class recipe shows how to add attributes to a Java
class using Spring Roo

Creating application artifacts from
Roo script

In some scenarios, you may want to generate complete enterprise application skeleton by
feeding a set of Roo commands to Spring Roo from a text file. To address such scenarios
Spring Roo provides the script command, which allows you to execute commands contained
in a text file. The convention is to name the script file containing commands with a .roo
extension.

Chapter 1

45

Roo script is nothing but a text file containing Roo commands. The
commands are executed in the order they appear in the text file.

In this recipe, we look at how we can execute the commands contained in a ch01.roo text
file that accompanies this book. The ch01.roo file contains commands, which let's you
create a fresh flight-app project.

Getting ready
If your Roo shell is still open, then exit it and remove all the files from the C:\roo-
cookbook\ch01-recipe directory. Download the ch01.roo file from the book's website
and copy it to C:\roo-cookbook\ch01-recipe. Start the Roo shell from the C:\roo-
cookbook\ch01-recipe directory.

How to do it...
To create the application skeleton execute the script command, by specifying the file
containing Roo commands, as shown here:

roo>script --file ch01.roo --lineNumbers

How it works...
The script command accepts the following arguments:

Argument Purpose
file It is a mandatory argument, which specifies the name of the file that

contains Roo commands
lineNumbers It is an optional argument that instructs the Roo shell to print the line

numbers of the command being executed from the file

Getting Started with Spring Roo

46

There's more...
One of the features that you will not find in Spring Roo is to revert the execution of a previous
command. For instance, if you added a field using the field command and now you want to
rollback the changes it made, then it is not possible. If you have mistakenly executed a Roo
command, you can remove it from the log.roo file and re-execute the commands in log.
roo using the script command.

If a Roo command fails for some reason, it is commented out in the log.roo file.
So, you don't need to worry about removing commands that failed execution from your
log.roo file.

See also
ff The Setting up Roo recipe show how you can get started with Spring Roo.

2
Persisting Objects

Using JPA

In this chapter, we will cover:

ff Setting up a JPA provider for your project

ff Viewing database configuration properties

ff Managing database configuration properties

ff Creating persistent entities

ff Adding JSR 303 constraints to persistent fields

ff Creating integration tests for persistent entities

ff Creating new 'data on demand' for testing entities

ff Creating mock tests for persistent entities

ff Executing persistent entities tests

ff Controlling auto-generated methods of persistent entities

ff Creating applications that interact with multiple databases

ff Packaging your Roo project

Introduction
Java Persistence API (JPA) provides a standard API for persisting Java objects to a relational
database. The recipes in this chapter look at Roo commands that configure the data source
and JPA provider (for example, Hibernate and OpenJPA), and Roo commands that create
persistent entities of your enterprise application.

Persisting Objects Using JPA

48

If you're using Spring only in the persistence layer, you'll see in this chapter how Roo can be
used to quickly develop the persistence layer of your application. You'll notice that applications
generated using Roo don't have a DAO (Data Access Object) layer because the domain entities
generated by Roo are themselves rich in flavor, with finder and CRUD methods defined in the
persistent entities. Also, Roo-generated applications don't have a service layer for abstracting
business services (which in turn could access persistent entities). If you want to create a
service layer for your enterprise application, it is left up to you to create services. You should
create a service layer for your enterprise application if the business logic spans multiple
persistent entities, if you want to put transactional boundaries in the service layer, or if you
want the business logic to be contained in the service layer, and so on.

In Chapter 4, Web Application Development with Spring Web MVC and Chapter 5, Web
Application Development with GWT, Flex, and Spring Web Flow we'll see that Spring Roo
generates the web layer of the application, which directly interacts with the persistent
entities—leaving behind service and data access layers.

Setting up a JPA provider for your project
In enterprise applications, data is persisted in one or more data stores. JPA provides
a standard API for managing data in relational databases. In this task we'll look at the
persistence setup command to configure a JPA persistence provider for a Roo project.

Getting ready
Create a sub-directory ch02-recipes inside the C:\roo-cookbook directory.

To set up a JPA provider, we first need to create a Roo project. To create a new Roo project,
download ch02.roo file from the book's website and copy it to the ch02-recipes directory.

Open the command prompt and go to the ch02-recipes directory. Now, start the Roo shell
and execute commands in ch02.roo script using the script command, as explained in
the Creating application artifacts from a Roo script recipe of Chapter 1. Successful execution
of the ch02.roo script creates a flight-app Eclipse project which you can import in your
Eclipse IDE.

How to do it...
The following steps will demonstrate how to set up a JPA provider:

1.	 To set up Hibernate as the JPA provider for your application, execute the
persistence setup command, as shown here:
... roo> persistence setup --provider HIBERNATE --database MYSQL
--databaseName myFlightAppDB

Updated SRC_MAIN_RESOURCES\META-INF\spring\applicationContext.xml

Chapter 2

49

Created SRC_MAIN_RESOURCES\META-INF\persistence.xml

Created SRC_MAIN_RESOURCES\META-INF\spring\database.properties

Updated ROOT\pom.xml [Added dependencies mysql:mysql-connector-
java:5.1.13, org.

hibernate:hibernate-core:3.6.1.Final, ..]

2.	 Execute the perform eclipse Roo command, as shown here:
..roo> perform eclipse

3.	 Import the flight-app Roo project into your Eclipse IDE.

It is recommended that whenever you find that a Roo command updates
the pom.xml file, then executes perform eclipse (for Eclipse IDE) or
perfom command --mavenCommand idea:idea (for IntelliJ IDEA), you
should update the classpath settings of the project. This should be followed
by refreshing your project in the IDE.

How it works...
The persistence setup command is processed by the JPA add-on of Spring Roo. The
following table describes the arguments that the persistence setup command accepts:

Argument Description
provider This is a mandatory argument that specifies the JPA provider that

you want to use for your enterprise application. This argument
accepts a pre-defined value, like HIBERNATE, OPENJPA, and so on.

database This is a mandatory argument that identifies the database
product used by your enterprise application to persist application
data. It accepts a pre-defined value, like MYSQL, DB2, and so on.

databaseName Identifies the name of the database which your enterprise
application interacts with. This argument is useful only if
you're not using a JNDI-bound data source in your enterprise
application.

hostName Identifies the location of the remote database. Defaults to
localhost.This argument is useful only if you're not using a
JNDI-bound data source in your enterprise application.

jndiDataSource Specifies the JNDI-bound data source that is used by the
application.

Persisting Objects Using JPA

50

Argument Description
username Identifies the username required for connecting to the data

source.This argument is useful only if you're not using a JNDI-
bound data source in your enterprise application.

password Identifies the password required for connecting to the data
source.This argument is useful only if you're not using a JNDI-
bound data source in your enterprise application.

applicationId Identifies the application identifier if you want to deploy the
application on Google App Engine. We'll discuss this argument
in detail in the Deploying a GWT application on GAE recipe in
Chapter 6.

persistenceUnit Specifies the name of the persistence unit to be used in the Roo-
generated persistence.xml file. You must use this argument
if your application interacts with multiple databases.

transactionManager [Supported since Spring Roo 1.1.5] Name of the transaction
manager corresponding to the persistence unit. You must use this
argument if your application interacts with multiple databases.

As the output from the persistence setup command suggests, the following files in our
flight-app Roo project are created or modified:

ff persistence.xml: this is a newly created file which is used by a JPA provider to
discover persistence provider information, which is Hibernate in the case of the
flight-app project.

ff database.properties: this is a newly created file which contains data source
information, such as username, password, data source URL, and driver class.

ff applicationContext.xml: this file was created when we created our Roo
project. This file is now modified to include data source, transaction manager, and
JPA EntityManagerFactory definitions. Later in this section, we'll see these
definitions in detail.

ff pom.xml: this file was created when we created our Roo project. It is now modified
to include project dependencies on MySQL connector, Hibernate, Hibernate Validator,
and so on. This shows that Roo adds dependencies to your project only when you
add additional functionality to your enterprise application. For instance, if you are not
using JPA, then JPA-related dependencies are not added to your project unless you
execute the persistence setup command.

Chapter 2

51

The following XML fragment shows the persistence.xml file created by Spring Roo:

<persistence>
 <persistence-unit name="persistenceUnit"
 transaction-type="RESOURCE_LOCAL">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <properties>
 <property name="hibernate.dialect"
 value="org.hibernate.dialect.MySQL5InnoDBDialect"/>
 <property name="hibernate.hbm2ddl.auto" value="create"/>
 ...
 </properties>
 </persistence-unit>
</persistence>

The preceding listing shows that Roo creates a persistence.xml file based on the JPA
provider and database information that you supplied to the persistence setup command.
The name attribute of the <persistence-unit> element specifies the persistence unit
name. If the persistenceUnit argument of persistence setup is not specified, then by
default, Roo sets the name attribute value to persistenceUnit. The create value of the
hibernate.hbm2ddl.auto property indicates that every time Hibernate SessionFactory
is created, the database is re-created. You may want to change the value of hibernate.
hbm2ddl.auto from create to validate or update or create-drop, depending upon
how you want Hibernate to manage your database schema based on the mappings provided
in JPA entities.

Also, if your enterprise application updates multiple data sources, then you should set the
value of the transaction-type attribute of the persistence-unit element to JTA' (Java
Transaction API), instead of RESOURCE_LOCAL.

The following code shows the elements that were added to the applicationContext.xml
file when you executed the persistence setup command:

<bean class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close" id="dataSource">
 <property name="driverClassName"
 value="${database.driverClassName}"/>
 <property name="url" value="${database.url}"/>
 <property name="username" value="${database.username}"/>
 <property name="password" value="${database.password}"/>
 ...
</bean>

<bean
 class="org.springframework.orm.jpa.JpaTransactionManager"
 id="transactionManager">

Persisting Objects Using JPA

52

 <property name="entityManagerFactory"
 ref="entityManagerFactory"/>
</bean>

<tx:annotation-driven mode="aspectj"
 transaction-manager="transactionManager"/>

<bean
 class="org.springframework.orm.jpa.
 LocalContainerEntityManagerFactoryBean"
 id="entityManagerFactory">
 <property name="dataSource" ref="dataSource"/>
</bean>

As shown in the preceding XML, the additional beans added by the persistence setup
command are:

ff dataSource: refers to a javax.sql.DataSource object, which represents
an application's data source. The properties for the data source are contained
in the database.properties file that was created by persistence setup.
The database.properties file is read by Spring's application context
because of the presence of the <property-placeholder> element in the
applicationContext.xml file (refer to the Creating a Roo project recipe in
Chapter 1).

ff entityManagerFactory: refers to Spring's factory bean, which is
responsible for creating JPA EntityManagerFactory. You should use
LocalContainerEntityManagerFactoryBean because it provides maximum
control over the configuration of EntityManagerFactory.

ff transactionManager: refers to the JpaTransactionManager bean, which is
appropriate if your application uses a single EntityManagerFactory, that is, only
a single database or transactional resource.

The <annotation-driven> element of Spring's transaction schema (spring-tx-
3.0.xsd) suggests that you should use Spring's @Transactional annotation to mark
methods as transactional. The value aspectj of the mode attribute means that the AspectJ
transaction aspect is weaved into the class at load-time or compile-time. If you want to use
Spring's AOP framework for proxying the @Transactional annotated beans (which are
usually your service classes), then specify the value of the mode attribute as proxy or don't
specify the mode attribute at all.

If you keep the mode attribute value as aspectj (which is recommended) then you should
take care of the following requirements:

Chapter 2

53

ff Enable compile-time (or load-time) weaving for your application. You don't need to
worry about this because if you package your Roo project into a WAR or JAR (refer
to the Packaging your Roo project recipe of this chapter), then the AspectJ compiler
Maven Plugin (refer to the Creating a Roo project recipe of Chapter 1) is used to
weave the AspectJ transaction aspect (defined in spring-aspects.jar file) into
the Roo methods annotated with the @Transactional annotation.

ff Use the @Transactional annotation on the concrete class and not on the
interface.

There's more...
Now, let's look at how we can use the JNDI-bound data source in applications generated by
Spring Roo.

JNDI-bound data source
In most real-world applications, the javax.sql.DataSource object is obtained from
JNDI and not created from properties defined in a properties file. To access a JNDI-bound
data source, instead of relying on Spring to create DataSource for the application, use
the jndiDataSource argument of persistence setup to specify the JNDI name of the
DataSource, as shown here:

persistence setup --provider HIBERNATE --database MYSQL --jndiDataSource
jdbc/accountDB

If the jndiDataSource argument is specified, then Spring Roo adds the jndi-lookup
element of Spring's jee schema to the applicationContext.xml file, as shown here:

<beans ... xmlns:jee="http://www.springframework.org/schema/jee" ...
xsi:schemaLocation="http://www.springframework.org/schema/jee http://
www.springframework.org/schema/jee/spring-jee-3.0.xsd">
.....
<jee:jndi-lookup id="dataSource" jndi-name="jdbc/accountDB" />
.....

The jndi-lookup element, shown above, is responsible for accessing the DataSource
configured in JNDI with the name jdbc/accountDB (referred to by the jndi-name attribute)
and making it available in Spring's application context with bean id as dataSource.

If you compare the preceding applicationContext.xml file with the one shown earlier,
you can see that the only difference is how the dataSource bean is made available to the
Spring's application context.

Persisting Objects Using JPA

54

See also
ff Refer to the Creating persistent entities recipe to see how to create persistent entities

ff Refer to the Creating applications that interact with multiple databases recipe for
details on how to develop applications that interact with multiple databases

Viewing database configuration properties
In this recipe we'll see how the database properties list command lets us view the list
of database properties and their values, as specified in the database.properties file.

Getting ready
Refer to the Setting up a JPA provider for your project recipe to create a flight-app Roo
project and to set up a persistence provider using the persistence setup command.

You won't need this recipe if you're using a JNDI-bound data source in your
Roo project.

How to do it...
Follow these steps to view database properties:

1.	 Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

2.	 To view database properties defined in the database.properties file located in
SRC_MAIN_RESOURCES\META-INF\spring\ directory, you can use the database
properties list command, as shown here:
roo> database properties list

database.driverClassName = com.mysql.jdbc.Driver

database.password =

database.url = jdbc:mysql://localhost:3306/myFlightAppDB

database.username =

Chapter 2

55

How it works...
The database properties list command is processed by the JPA add-on. Instead of using
the database properties list command you can use the properties list command
(refer to the Viewing properties defined in a properties file recipe of Chapter 1), which shows the
properties contained in a properties file. The end result of using either of the commands is
the same, the only difference being that you need to specify the name and path arguments in
the properties list command to refer to the database.properties file.

There's more...
Instead of using Spring Roo, you can also view the database.properties file using an
IDE like Eclipse or STS. The whole idea of using Spring Roo's database properties list
command is to allow developers to look at the database properties without switching to the IDE.

See also
ff The next recipe, Managing database configuration properties, shows how you can

add, remove, and modify properties defined in the database.properties file of
your Roo project.

Managing database configuration properties
In the previous recipe, we saw how we can view the database configuration properties defined
in the database.properties file using the database properties list command. In
this recipe, we'll look at how we can add, modify, or remove properties from the database.
properties file using the database properties set and database properties
remove commands.

The following table shows the properties that we'll add, modify, and remove from the
database.properties file:

Property Action
database.username Modified to database.username = root
database.password Modified to database.password =

asarin

database.url = jdbc\:mysql\://
localhost\:3306/myFlightAppDB

Removed from database.properties

database.modified.url =
jdbc\:mysql\://localhost\:3406/
myFlightAppDB

Added to database.properties

database.initialPoolSize=10 Added to database.properties

Persisting Objects Using JPA

56

Getting ready
Refer to the Setting up a JPA provider for your project recipe to create the flight-app Roo
project and to set up a persistence provider using the persistence setup command.

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

You won't need this recipe if you're using JNDI-bound data source
in your Roo project.

How to do it...
The following steps will show you how to add, modify, or remove properties:

1.	 The database properties set command is useful if you want to modify properties
defined in the database.properties file, as shown here:
roo> database properties set --key database.username --value root

roo> database properties set --key database.password --value
asarin

2.	 The database properties set command can also be used to add new properties
to the database.properties file, as shown here:
roo> database properties set --key database.modified.url --value
jdbc:mysql://localhost:3406/myFlightAppDB

roo> database properties set --key database.initialPoolSize
--value 10

3.	 The database properties remove command is for removing an existing property
from the database.properties file, as shown here:
roo> database properties remove --key database.url

How it works...
The database properties set and database properties remove commands are
processed by JPA add-on. Instead of using these commands you can use the properties
set and properties remove command also, as shown in the Managing properties defined
in a properties file recipe in Chapter 1, Getting Started with Spring Roo

It is important to note that if you modify the names of properties in the database.
properties file, then these modifications must be reflected in the dataSource bean
defined in the applicationContext.xml file of your Roo project.

Chapter 2

57

There's more...
Instead of using Spring Roo, you can also modify the database.properties file using an
IDE like Eclipse or STS. Using Roo commands to modify the database.properties file
allows developers to replay the actions taken from the Roo shell using the script command.

See also
ff Refer to the Viewing database configuration properties recipe, described earlier

in this chapter, to see how you can view properties defined in the database.
properties file using the Roo command

Creating persistent entities
In this recipe we look at how Spring Roo simplifies the creation of JPA entities using the
entity and field commands. In this recipe we'll create a Flight JPA entity which has
a composite primary key. Refer to the Creating a many-to-one relationship between entities
recipe of Chapter 3, Advanced JPA Support in Spring Roo to see how to create persistent
entities with surrogate keys.

The following figure shows the attributes of the Flight entity and its composite
primary key (FlightKey):

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch02-recipes
directory.

Execute the ch02_jpa_setup.roo script. It creates a flight-app Roo project and sets up
Hibernate as the persistence provider using the persistence setup command. If you are
using a different database than MySQL or your connection settings are different from what is
specified in the script, then modify the script accordingly.

Persisting Objects Using JPA

58

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

The ch02_persistent_entities.roo script that accompanies
this book creates the flight-app project, sets up Hibernate as
the persistence provider, modifies the database.username and
database.password properties in the database.properties
file, and executes the commands shown in this recipe.

How to do it...
The following steps will demonstrate how to create persistent entities:

1.	 Create a Flight entity in the sample.roo.flightapp.domain package using
the entity command:
..roo> entity --class ~.domain.Flight --identifierType ~.domain.
FlightKey --table FLIGHT_TBL

2.	 Add fields to the Flight entity using field commands:
..roo> field number --type java.lang.Integer --fieldName
numOfSeats

..roo> field string --fieldName origin

..roo> field string --fieldName destination

..roo> field date --type java.util.Date --fieldName createdDate

..roo> field date --type java.util.Date --fieldName modifiedDate

..roo> field string --fieldName createdBy

..roo> field string --fieldName modifiedBy

3.	 Switch focus to the FlightKey class (that was auto-generated in the sample.roo.
flightapp.domain package when we created the Flight entity in Step 1):
..roo> focus --class ~.domain.FlightKey

4.	 Add flightId and departureDate fields to the FlightKey class:
..roo> field string --fieldName flightId

..roo> field date --fieldName departureDate --type java.util.Date

The output of the entity command is not shown above for brevity.
We'll discuss the important ITD files generated corresponding to a JPA
entity in the How it works... section.

Chapter 2

59

How it works...
The entity command is used to create a JPA persistent entity. It provides a couple of
arguments which should be sufficient for most scenarios that you encounter while developing
the persistence layer of your enterprise application. For instance, the mappedSuperclass
argument marks the class with the @MapperSuperclass JPA annotation (refer to the
Creating a mapped superclass recipe in Chapter 3, Advanced JPA Support in Spring Roo), the
inheritanceType argument adds the @Inheritance JPA annotation to let you specify the
inheritance strategy followed for persisting classes of an inheritance hierarchy, and so on.

The following table describes arguments that you can pass to the entity command:

Argument Description
class This is a mandatory argument which specifies the fully-qualified

name of the persistent entity class. You can use the '~' symbol
while specifying the fully-qualified name.

mappedSuperclass Instructs Roo that the class is a 'mapped superclass'. If
specified, the generated class is annotated with the @
MappedSuperclass JPA annotation.

extends Identifies the superclass of the entity class.
abstract Specifies that the generated entity is an abstract entity.
inheritanceType Specifies the inheritance strategy used for persisting the entity.

It accepts one of the following values: JOINED, SINGLE_
TABLE, and TABLE_PER_CLASS. If specified, it adds the @
Inheritance JPA annotation to the entity class.

table Specifies the name of the table to which the entity is mapped.
identifierField Specifies the name of the identifier field in the entity. By default

the name of the identifier field is id.
identifierType Specifies the Java type of the identifier field. This argument can

accept values pre-defined by Roo, such as java.lang.Long,
java.lang.Double, and so on, or it can take a custom Java
type.
If your entity uses a composite primary key, then you'll use a
custom Java type. For instance, the Flight entity specifies
FlightKey as the identifierType because it's the
composite primary key class of the Flight entity. Also note that
the composite primary key class is auto-generated when you
execute the entity command.

identifierColumn Specifies the table column to which the identifier field is mapped.
If your entity uses a composite primary key, then you must not
use this argument.

Persisting Objects Using JPA

60

Argument Description
versionField Specifies the name of the version field in the entity. By default

the name of the version field is version.
versionColumn The table column to which the version field is mapped.
testAutomatically Instructs Roo to automatically generate integration tests for the

entity. In the Creating integration tests for persistent entities
recipe we'll discuss integration testing of persistent entities in
detail.

schema, catalog Arguments for specifying qualifiers for table names in the
database. These arguments translate into schema and
catalog attributes of the @Table JPA annotation.

persistenceUnit Name of the persistence unit, defined in the persistence.
xml file, with which the persistent entity is associated.

transactionManager [Supported since Spring Roo 1.1.5] Name of the transaction
manager which is used for the persistent entity.

You may have noticed that the field command that we have used for adding fields to the
Flight JPA entity is the same field command that we had used to add attributes to our
Java class in the Adding attributes to a Java class recipe in Chapter 1, Getting Started with
Spring Roo.

The following code shows the Flight entity which was created by the entity command:

@RooJavaBean
@RooToString
@RooEntity(identifierType = FlightKey.class, table= "FLIGHT_TBL")
public class Flight {
 private Integer numOfSeats;
 private String origin;
 private String destination;
 ...
}

In the Flight.java code, the @RooJavaBean and @RooToString annotations are the
most commonly used Roo annotations. For more information on @RooJavaBean and @
RooToString, please refer to the Creating a Java class and Adding attributes to a Java
class recipes in Chapter 1, Getting Started with Spring Roo. The @RooEntity annotation
provides details about the persistent entity which is the Flight entity in the previous code.
The identifierType attribute specifies the identifier type of Flight entity, which is
FlightKey—the composite primary key class of the Flight entity. The table attribute
specifies the database table to which the Flight JPA entity maps.

Chapter 2

61

You'll notice that the fields of the entity don't use JPA @Column annotation
to provide a mapping of the fields to the corresponding FLIGHT_TBL table
columns. Later in this recipe we'll see how field command can be used to
specify table column mapping for the fields.

The @RooEntity annotation introduces a couple of persistence related methods and
attributes using the ITD file, Flight_Roo_Entity.aj, as shown here:

privileged aspect Flight_Roo_Entity {
 declare @type: Flight: @Entity;

 declare @type: Flight: @Table(name = "FLIGHT_TBL");

 @PersistenceContext
 transient EntityManager Flight.entityManager;

 @EmbeddedId
 private FlightKey Flight.id;

 @Version
 @Column(name = "version")
 private Integer Flight.version;

 public FlightKey Flight.getId() {
 return this.id;
 }
 public void Flight.setId(FlightKey id) {
 this.id = id;
 }
 public Integer Flight.getVersion() {
 return this.version;
 }
 public void Flight.setVersion(Integer version) {
 this.version = version;
 }
 ...
}

The persistence related methods (such as, persist, remove, and so on) have been omitted
from the previous code listing for brevity. Auto-generated persistence related methods are
discussed in the Controlling auto-generated methods of persistent entities recipe. As you can
see, Spring Roo generates the necessary code to create a fully-functional JPA entity.

Persisting Objects Using JPA

62

The following code in Flight_Roo_Entity.aj adds @Table and @Entity JPA annotations
in the Flight class:

declare @type: Flight: @Entity;
declare @type: Flight: @Table(name = "FLIGHT_TBL");

In Flight_Roo_Entity.aj, the FlightKey field is annotated with the @EmbeddedId
annotation because it is the composite primary key class of the Flight entity. Roo also
creates a version field in Flight_Roo_Entity.aj, which maps to the version column
of the table to which the Flight entity maps. If we create a persistent entity that doesn't use
a composite primary key, then instead of @EmbeddedId, Spring Roo uses the @Id annotation
to annotate the primary key.

While generating an entity, Spring Roo also generates a <entity-name>_Roo_
Configurable.aj ITD, which is responsible for adding Spring's @Configurable
annotation to the entity. Here, <entity-name> is the name of the persistent entity.

The entity instances are typically created outside the Spring's application context by the JPA
provider or by using the new operator. The use of @Configurable annotation is particularly
useful in entities because it allows injecting beans configured in Spring's application context
into the entity instance. It is because of the @Configurable annotation that Spring is able to
inject the EntityManager instance into persistent entities.

The following code listing shows the FlightKey class of the flight-app application:

@RooToString
@RooIdentifier
public final class FlightKey {
 private String flightId;
 private Date departureDate;
}

In the code, the @RooIdentifier annotation of Spring Roo is responsible for adding
constructors, getter and setter methods for fields, and also provides implementation of the
hashCode and equals methods of the FlightKey composite primary key class. Spring
Roo generates a <entity-name>_Roo_Identifier.aj ITD file corresponding to the @
RooIdentifier annotation on the composite primary key class. Here, <entity-name> is
the name of the persistent entity.

The following code shows the methods and attributes defined in the FlightKey_Roo_
Identifier.aj ITD file:

privileged aspect FlightKey_Roo_Identifier {

 declare @type: FlightKey: @Embeddable;

 public FlightKey.new(String flightId, Date departureDate) {}

Chapter 2

63

 private FlightKey.new() {}

 public String FlightKey.getFlightId() {
 return this.flightId;
 }

 public Date FlightKey.getDepartureDate() {
 return this.departureDate;
 }

 public boolean FlightKey.equals(Object obj) {}

 public int FlightKey.hashCode() {}

}

In the code, implementation details of methods and constructors have not been shown for
brevity. As the code suggests, FlightKey_Roo_Identifier.aj ITD adds the following
methods, constructors, fields, and annotations to the FlightKey class:

ff Adds the @Embeddable JPA annotation to the FlightKey class, which is
required because the FlightKey class is added to the Flight entity using the @
EmbeddedId JPA annotation

ff Adds a no-argument constructor to the FlightKey class

ff Adds a constructor that accepts fields defined in the FlightKey class as arguments

ff Adds getter and setter methods for the fields defined in the FlightKey class

ff Adds implementation for the equals and hashCode methods of the java.lang.
Object class

The @RooIdentifier annotation accepts two attributes—gettersByDefault and
settersByDefault, which allow you to control the creation of getter and setter methods for
the fields defined in the FlightKey class. @RooIdentifier also accepts a third attribute,
dbManaged, which is useful if the JPA entity was created by Roo using database reverse
engineering. We'll discuss the dbManaged attribute in detail in the Creating entities from a
database recipe of Chapter 3, Advanced JPA Support in Spring Roo.

There's more...
We'll now look at how to add fields to persistent entities that contain information about the
table columns to which the fields map.

Persisting Objects Using JPA

64

Adding table column information in persistent entity fields
Delete the origin field from the Flight.java file and ensure that Spring Roo is running in
the background to remove the origin field from AspectJ ITD files.

Now, add the origin field to the Flight persistent entity using the field command, and
specify the name of the table column, FLT_ORIGIN, to which the origin field maps, as the
value of column argument:

~.domain.Flight roo> field string --fieldName origin --column FLT_ORIGIN

The presence of the column argument indicates that the field is annotated with the @Column
JPA annotation with the value of the column argument representing the value of the name
attribute of the @Column annotation, as shown here:

@RooJavaBean
@RooToString
@RooEntity(table = "FLIGHT_TBL")
public class Flight {

 @Column(name = "FLT_ORIGIN")
 private String origin;
}

The Roo script ch02_persistent_fields.roo that accompanies this book contains
commands to create the flight-app project consisting of the Flight entity and the
FlightKey class. Additionally, the script adds database column mapping for all the
persistent fields defined in the Flight entity and FlightKey class. It is recommended that
you exit the Roo shell, remove all the files from ch02-recipes directory, and recreate the
flight-app Roo project by executing the ch02_persistent_fields.roo script.

The class argument in roo commands
We saw in a couple of recipes that the focus command is used to switch command reference
from one class or interface to another class or interface in the Roo project, followed by Roo
commands that apply to that class or interface. Instead of using the focus command, you
can use the class argument of the roo command (if supported by the roo command) to
explicitly specify the class or interface to which the command applies. For instance, we can
add a flightId field to FlightKey class without using the focus command, as shown
here:

...roo> field string --class ~.domain.Flight --fieldName origin --column
FLT_ORIGIN

As we can see from the field command, we can specify a fully-qualified name of the class
on which the command applies.

Chapter 2

65

See also
ff Refer to the Controlling auto-generated methods of persistent entities recipe to see

how you can control Spring Roo generated methods corresponding to a persistent
entity

Adding JSR 303 constraints to
persistent fields

JSR 303 (bean validation) defines a standard approach for annotations-based JavaBeans
validation. In this recipe we'll look at how Spring Roo's field command can be used to add
JSR 303 validation constraints to persistent fields of entities.

The following table shows the validation constraints that apply to fields defined in the Flight
entity and FlightKey class of our flight-app project:

Persistent field Constraint JSR 303 annotation
Flight -> createdDate Not null @NotNull

Flight -> createdBy Not null @NotNull

Flight -> numOfSeats Not null

Maximum seats 200

Minimum seats 100

@NotNull

@DecimalMax("200")

@DecimalMin("100")

Flight -> origin Not null

Maximum length of value
of origin is 20, minimum
length is 3

@NotNull

@Size(min=3, max=20)

Flight -> destination Not null

Maximum length of value
of destination is 20,
minimum length is 3

@NotNull

@Size(min=3, max=20)

FlightKey -> flightId Not null @NotNull

FlightKey ->
departureDate

Not null @NotNull

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch02-recipes
directory.

Persisting Objects Using JPA

66

Execute the ch02_jpa_setup.roo script. It creates a flight-app Roo project and sets
up Hibernate as a persistence provider using the persistence setup command. If you are
using a different database than MySQL or your connection settings are different from what is
specified in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

How to do it...
Follow these steps to add JSR 303 constraints:

1.	 Create the Flight entity in the sample.roo.flightapp.domain package using
the entity command:
..roo> entity --class ~.domain.Flight --identifierType ~.domain.
FlightKey --table FLIGHT_TBL

2.	 Add numOfSeats, origin, destination, createdBy, modifiedBy,
createdDate, and modifiedDate fields to the Flight entity, as shown here:
..roo> field number --type java.lang.Integer --fieldName
numOfSeats --column NUM_OF_SEATS --notNull --decimalMin 100
--decimalMax 200

..roo> field string --fieldName origin --column FLT_ORIGIN
--notNull --sizeMin 3 --sizeMax 20

..roo> field string --fieldName destination --column FLT_
DESTINATION --notNull --sizeMin 3 --sizeMax 20

..roo> field date --type java.util.Date --fieldName createdDate
--column CREATED_DATE --notNull

..roo> field string --fieldName createdBy --column CREATED_BY
--notNull

3.	 Set the Roo prompt on the FlightKey primary key class using the focus command:
..roo> focus --class ~.domain.FlightKey

4.	 Add flightId and departureDate fields to the FlightKey entity, as shown here:
..roo> field string --fieldName flightId --column FLIGHT_ID
--notNull

..roo> field date --fieldName departureDate --type java.util.Date
--notNull --column FLT_DEP_DATE

Chapter 2

67

How it works...
In the field command you can use arguments such as notNull, nullRequired,
decimalMax, decimalMin, regexp, sizeMax, and sizeMin to specify the validation
constraints that apply to a field. The use of these arguments will result in the generation of
fields that are annotated with JSR 303 annotations, as shown here for Flight entity:

public class Flight {

 @NotNull
 @DecimalMin("100")
 @DecimalMax("200")
 @Column(name="NUM_OF_SEATS")
 private Integer numOfSeats;

 @NotNull
 @Column(name = "FLT_ORIGIN")
 @Size(min = 3, max = 20)
 private String origin;

 @NotNull
 @Column(name = "FLT_DESTINATION")
 @Size(min = 3, max = 20)
 private String destination;

}

There's more...
Using JSR 303 constraints is not limited to domain objects; you can use JSR 303 constraints
in any class, irrespective of the tier in which the class is used. For instance, you can use JSR
303 constraints in command or form-backing objects of your web tier.

See also
ff Refer to the Creating persistent entities recipe to see how to create persistent entities

and add fields to them

Persisting Objects Using JPA

68

Controlling auto-generated methods of
persistent entities

When a persistent entity is created using Roo, a number of methods are auto-generated to
simplify usage and testing of the entity. For instance, when the Flight entity was created in
the Creating persistent entities recipe, the corresponding Flight_Roo_Entity.aj AspectJ
ITD file was created with methods like persist, remove, merge, flush, findFlight, and
so on.

In this recipe we'll look at how to control the generation of entity methods by:

ff Specifying the prefix to be used for a method

ff Instructing Roo not to generate a particular method

For the purpose of this recipe, we'll instruct Roo to do the following for the Flight entity:

ff Change the name of the persist auto-generated method to save

ff Change the name of the findFlight auto-generated method to
finderForFlight

ff Don't generate countFlights and findFlightEntries methods

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch02-recipes
directory.

Execute the ch02_jsr303_fields.roo script. It creates a flight-app Roo project and
sets up Hibernate as the persistence provider using the persistence setup command. The
script also creates a Flight entity, which has FlightKey as its composite primary key class,
and adds fields to the Flight and FlightKey classes. If you are using a different database
than MySQL or your connection settings are different from what is specified in the script, then
modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

How to do it...
The following steps will show you how to control auto-generated methods:

1.	 Open Flight.java file in your favorite IDE.

2.	 Change the @RooEntity annotation to:
@RooEntity(identifierType = FlightKey.class,
 persistMethod="save", countMethod="",

Chapter 2

69

 findMethod="finderFor", findEntriesMethod="")

3.	 You'll see the following output on the Roo shell:

Updated SRC_MAIN_JAVA\sample\roo\flightapp\domain\Flight_Roo_
Entity.aj

How it works...
The @RooEntity annotation of Roo is responsible for managing the methods defined in the
corresponding *_Roo_Entity.aj AspectJ ITD. @RooEntity annotation defines attributes
which let you specify the prefix to be used for the methods generated by Roo and also to
control whether a particular method is generated or not. The @RooEntity annotation also
defines attributes which you can use to specify entity identifier and version fields name, type,
and table column information.

In the previous code, the @RooEntity annotation specifies the following information:

ff identifierType = FlightKey.class: specifies the Flight entity identifier type
as FlightKey class. The default value is Long.

ff persistMethod = "save": the value 'save' means that instead of generating a
persist method, Roo generates a method named save.

ff countMethod = "": as the value is "", it means Roo must not generate
countFlights method.

ff findEntriesMethod = "": as the value is "", it means Roo must not generate
findFlightEnteries method.

ff findMethod = "finderFor": as the value is finderFor, instead of generating
findFlight method, Roo will generate method named finderForFlight.

Persisting Objects Using JPA

70

The follow table describes all the attributes defined by @RooEntity annotation:

@RooEntity attributes Description
countMethod, findAllMethod,
findEntriesMethod,
findMethod, flushMethod,
mergeMethod, persistMethod,
removeMethod

Attributes for specifying the prefix of the generated
method. A value of "" means that the method will not
be generated by Roo.

identifierColumn,
identifierField,
identifierType

Attributes for specifying JPA entity identifier
information, which includes the name of the table
column to which the identifier field maps, the name
of the identifier field in the AspectJ ITD file, and the
Java type of the identifier field.

versionField, versionType,
versionColumn

Attributes for specifying the version field information,
which includes name of the table column to which
the version field maps, name of the version field in
the AspectJ ITD file, and the Java type of the version
field.

finders Attribute that specifies names of the methods for
which dynamic finder methods are generated by Roo.

mappedSuperclass Instructs Roo to generate a @MappedSuperclass
annotation instead of @Entity. We'll see mapped
superclass usage in Chapter 3, Advanced JPA
Support in Spring Roo.

inheritanceType Inheritance type to be used for the JPA entity.
persistenceUnit The name of the persistence unit, defined in

persistence.xml, with which the entity is
associated.

transactionManager [Supported since Spring Roo 1.1.5] The name of
the transaction manager associated with the entity.

See also
ff Refer to the Creating persistent entities recipe to see how to create JPA entities

using Roo

Creating integration tests for persistent
entities

Spring Roo provides a test integration command that simplifies the creation of
integration tests for persistent entities. In this recipe, we'll look at how to create an integration
test for an entity.

Chapter 2

71

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch02-recipes
directory.

Execute the ch02_jsr303_fields.roo script. It creates a flight-app Roo project and
sets up Hibernate as persistence provider using the persistence setup command. The
script also creates a Flight entity, which has FlightKey as its composite primary key class,
and adds fields to the Flight and FlightKey classes. If you are using a different database
than MySQL or your connection settings are different from what is specified in the script, then
modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

How to do it...
The following steps will show you how to create integration tests:

1.	 Change the focus of the Roo commands to the Flight entity:
roo> focus --class ~.domain.Flight

2.	 Execute the test integration command:
~.domain.Flight> test integration

Created ...FlightDataOnDemand.java

Created ...FlightIntegrationTest.java

Created ...FlightDataOnDemand_Roo_DataOnDemand.aj

Created ...FlightIntegrationTest_Roo_IntegrationTest.aj

Created ... FlightDataOnDemand_Roo_Configurable.aj

Created ... Flight_Roo_Configurable.aj

How it works...
The test integration command generates files in the src\test\java folder. The output
from the test integration command shows that the following files are generated:

ff FlightDataOnDemand.java: represents a 'data on demand' class which provides
the necessary data for automated integration testing of the Flight entity.

Persisting Objects Using JPA

72

ff FlightDataOnDemand_Roo_DataOnDemand.aj: this AspectJ ITD file defines
methods that are added to the FlightDataOnDemand class during compilation.
The methods defined in this AspectJ ITD file are responsible for dynamically creating
10 instances of the Flight entity and storing them in the database—referred to as
seed data. These Flight instances are used while performing integration testing.
The entity instances created by AspectJ ITD comply with the JSR 303 constraints that
apply on persistent fields of the entity. By default, a transaction associated with a
test method is rolled-back after the test method completes—the reason why you won't
see seed data in database tables after the execution of integration tests. Refer to
the Executing persistent entities tests recipe to see an example usage of Spring's @
Roolback annotation to specify that transactions associated with test methods must
not be rolled-back.

ff FlightIntegrationTest.java: represents the JUnit integration test class for the
Flight entity.

ff FlightIntegrationTest_Roo_IntegrationTest.aj: AspectJ ITD responsible
for defining integration testing methods for the Flight entity.

ff FlightDataOnDemand_Roo_Configurable.aj and Flight_Roo_
Configurable.aj: AspectJ ITDs that add the @Configurable annotation to
FlightDataOnDemand and Flight classes, respectively.

Let's now look at each of these files in detail.

The following listing shows the FlightDataOnDemand.java class:

import org.springframework.roo.addon.dod.RooDataOnDemand;
import sample.roo.flightapp.domain.Flight;

@RooDataOnDemand(entity = Flight.class)
public class FlightDataOnDemand { }

The code listing shows the use of Roo's @RooDataOnDemand annotation, which identifies
the persistent entity for which the FlightDataOnDemand class creates seed data for
integration testing. The @RooDataOnDemand annotation is responsible for the creation of
the corresponding *_Roo_DataOnDemand.aj AspectJ ITD file. The @RooDataOnDemand
accepts two attributes to customize the behavior of seed data generation:

ff entity: identifies the persistent entity for which the seed data needs to be created.

ff quantity: the number of records to be created for the entity, default being 10. If
you want to create more records for integration testing of the entity, then specify an
appropriate value of this attribute.

Chapter 2

73

If you are using a performance testing tool like JMeter to test the performance of the
JPA layer of your enterprise application, you can modify the FlightIntegrationTest
JUnit test class and use it as a JUnit Request Sampler (or you can put a wrapper around
FlightIntegrationTest and use Java Request Sampler) when creating a test plan in
JMeter. This lets you quickly get started with testing the performance of your data access
code. Based on the performance test requirements for a persistent entity, you can adjust the
value of the quantity attribute of the @RooDataOnDemand annotation. For instance, if you
want to test the performance of the data access layer when there are n number of records in
the database, then specify the value of quantity attribute as n.

The following listing shows the FlightDataOnDemand_Roo_DataOnDemand.aj AspectJ
ITD file, which defines methods, attributes, and annotations that are weaved into the
FlightDataOnDemand.java class at compile-time:

privileged aspect FlightDataOnDemand_Roo_DataOnDemand {

 declare @type: FlightDataOnDemand: @Component;

 private Random FlightDataOnDemand.rnd =
 new java.security.SecureRandom();

 private List<Flight> FlightDataOnDemand.data;

 public Flight FlightDataOnDemand.getNewTransientFlight (int
 index) {...}

 public Flight FlightDataOnDemand.getSpecificFlight(int
 index) {...}

 public Flight FlightDataOnDemand.getRandomFlight() {...}

 public boolean FlightDataOnDemand.modifyFlight(Flight obj)
 {...}

 public void FlightDataOnDemand.init() {...}

}

The code listing shows that AspectJ ITD does the following:

ff Adds the @Component annotation to the FlightDataOnDemand class, so that it is
auto-registered with Spring's application context. This enables you to create custom
integration tests in which you can autowire one or more *DataOnDemand classes.

ff Creates an instance of the java.security.SecureRandom class, which is used
for generating a random number.

Persisting Objects Using JPA

74

ff Declares a list which holds Flight entities generated by the 'data on demand' class.
These Flight entity instances represent the seed data generated by the 'data on
demand' class.

ff Defines a getNewTransientFlight(int index) method for generating
a unique Flight instance based on the value of the index argument. The
getNewTransientFlight method creates persistent entity instances which
comply with the JSR 303 annotations specified for the entity's persistent fields.
For instance, the Flight entity specifies the @Size(min = 3, max = 20) JSR
303 annotation for the origin and destination fields (refer to the Flight.
java class); therefore, the getNewTransientFlight method attempts (that is,
it is not guaranteed, as we'll see soon) to ensure that the size of the origin and
destination fields comply with the corresponding JSR 303 annotation.

ff Defines the getSpecificFlight(int index) method, which returns the Flight
entity at the specified index from the collection of seed data maintained by the 'data
on demand' class.

ff Defines the getRandomFlight() method, which returns Flight entity at a
random index (obtained from the java.security.SecureRandom instance) in the
seed data collection maintained by the 'data on demand' class.

ff Defines the modifyFlight(Flight+obj) method, which is supposed to
modify the Flight entity passed as argument and return the success or failure
of modification. But it simply returns false, that is, it never modifies the passed
Flight instance.

ff Defines an init() method, which is responsible for creating the seed data for
integration testing of the Flight entity. It creates Flight entities in the database
using the getNewTransientFlight(int index) method. The number of Flight
entities created in the database is determined by the value of the quantity
attribute of the @RooOnDemand annotation.

It is important to note that the init() method is internally called by
methods defined in the *_Roo_DataOnDemand.aj to ensure that
a fresh set of seed data is created in the database each time a test
method is invoked.

JSR 303 annotations and seed data
The 'data on demand' classes generated by Spring Roo provide limited
support for creating entity instances that comply with JSR 303 annotations.
As of Spring Roo 1.1.3, it only supports @NotNull, @Past, and @Future
JSR 303 constraints, along with some support for maximum and minimum
range annotations. If your project uses any other JSR 303 annotation, then
it is recommended to create your own setter method for entity fields in the
*DataOnDemand.java class.

Chapter 2

75

The following listing shows the FlightIntegrationTest.java class:

import org.junit.Test;
import org.springframework.roo.addon.test.RooIntegrationTest;

@RooIntegrationTest(entity = Flight.class)
public class FlightIntegrationTest {
 @Test
 public void testMarkerMethod() {
 }
}

The code listing shows the presence of Roo's @RooIntegrationTest annotation, which
indicates that an integration test AspectJ ITD is to be created for the Flight entity. The
testMarkerMethod is an example JUnit test method. The @RooIntegrationTest
annotation accepts an entity attribute, which identifies the persistent entity for which
the integration test is created—Flight in case of the FlightIntegrationTest class.
Additionally, the @RooIntegrationTest annotation defines attributes which let you control
the integration test methods that are auto-generated by Roo in the corresponding *_Roo_
IntegrationTest.aj AspectJ ITD.

The following listing shows the FlightIntegrationTest_Roo_IntegrationTest.aj
AspectJ ITD file that was generated by Roo corresponding to the FlightIntegrationTest
class:

import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.
 junit4.SpringJUnit4ClassRunner;
privileged aspect FlightIntegrationTest_Roo_IntegrationTest {

 declare @type: FlightIntegrationTest:
 @RunWith(SpringJUnit4ClassRunner.class);

 declare @type: FlightIntegrationTest:
 @ContextConfiguration(locations =
 "classpath:/META-INF/spring/applicationContext.xml");

 declare @type: FlightIntegrationTest:@Transactional;

 @Autowired
 private FlightDataOnDemand FlightIntegrationTest.dod;

 @Test
 public void FlightIntegrationTest.testFindAllFlights() {
 ...

Persisting Objects Using JPA

76

 }

 @Test
 public void FlightIntegrationTest.testPersist() {
 ...
 }
 ...
}

The previous code shows that AspectJ ITD does the following:

ff Adds JUnit's @RunWith annotation to the FlightIntegrationTest class,
instructing the use of Spring's SpringJUnit4ClassRunner for running the JUnit
tests.

ff Adds Spring's @ContextConfiguration annotation to the
FlightIntegrationTest class, which specifies the location of Spring's
application-context XML file to be used for executing the tests. By default, it is set to
use the applicationContext.xml file in the META-INF\spring folder. If you
want to use a different application-context XML for running the tests, then specify the
@ContextConfiguration annotation in the FlightIntegrationTest class.

ff Adds Spring's @Transactional annotation to the FlightIntegrationTest
class, which means all the test methods defined in FlightIntegrationTest (or
weaved into it by AspectJ ITD) are transactional in nature.

ff Declares integration test methods, like testFindAllFlights, testPersist, and
so on. The test methods make use of FlightDataOnDemand (a 'data on demand'
class) instance for creating Flight instances (the seed data) for testing the Flight
entity and for retrieving a random Flight instance from the database.

There's more...
In some scenarios you may want to customize the seed data created by *DataOnDemand.
java class and to control the integration test methods that are auto-generated by Spring Roo.

Customizing seed data creation
If you're using JSR 303 annotations that are not supported by Spring Roo, you'll need to
create custom setter methods (defined in *_Roo_DataOnDemand.aj) for setting persistent
entity field values. The following listing shows some of the setter methods (setNumOfSeats
and setOrigin) auto-generated by Roo for the Flight entity; the following is the
FlightDataOnDemand_Roo_DataOnDemand.aj method:

public Flight FlightDataOnDemand.getNewTransientFlight
(int index) {
 sample.roo.flightapp.domain.Flight obj = new
 sample.roo.flightapp.domain.Flight();

Chapter 2

77

 setEmbeddedId(obj, index);
 setNumOfSeats(obj, index);
 setOrigin(obj, index);
 setDestination(obj, index);
 ...
 return obj;
}

private void FlightDataOnDemand.setEmbeddedId(Flight obj,
 int index) {
 java.lang.String flightId = "flightId_" + index;
 ...
 obj.setId(embeddedIdClass);
}

private void FlightDataOnDemand.setNumOfSeats(Flight obj,
 int index) {
 java.lang.Integer numOfSeats = new Integer(index);
 obj.setNumOfSeats(numOfSeats);
}

private void FlightDataOnDemand.setOrigin(Flight obj,
 int index) {
 java.lang.String origin = "origin_" + index;
 if (origin.length() > 20) {
 origin = origin.substring(0, 20);
 }
 obj.setOrigin(origin);
}
...

In the code listing, there are a couple of things to notice about the Flight entity that is
created:

ff @NotNull JSR 303 annotation is taken care of while creating the Flight entity, but
the @DecimalMax and @DecimalMin JSR 303 annotations on the numOfSeats
field are completely ignored (refer setNumOfSeats method in the code listing).

ff The @Size annotation on origin and destination fields (refer setOrigin
method in the code listing) is partially supported as the method only checks if the
maximum length of the value assigned to destination (or origin) field is 20. It
doesn't check for the minimum length as 3.

ff The composite key is dynamically created and set (refer to the setEmbeddedId
method in the previous listing).

Persisting Objects Using JPA

78

To address the issue with JSR 303 support in the auto-generated Flight entity instance by
FlightDataOnDemand_Roo_DataOnDemand.aj, we can write custom setNumOfSeats,
setOrigin, and setDestination methods in the FlightDataOnDemand.java class,
which does the following:

ff Checks that the length of origin and destination fields are within the limits
defined by @Size

ff Provides checks for the @DecimalMin and @DecimalMax JSR 303 annotations

It is important to note that if you create setNumOfSeats, setOrigin, and
setDestination methods in the FlightDataOnDemand.java class, then Roo removes
these methods from the corresponding FlightDataOnDemand_Roo_DataOnDemand.
aj AspectJ ITD. This requires that the signature of methods in the FlightDataOnDemand.
java class is the same as the signature of methods defined in the corresponding
FlightDataOnDemand_Roo_DataOnDemand.aj AspectJ ITD file. Similarly, you can
customize any method of FlightDataOnDemand_Roo_DataOnDemand.aj by writing them
in the FlightDataOnDemand.java class.

The following figure shows how Roo removes setNumOfSeats, setOrigin, and
setDestination methods from the FlightDataOnDemand_Roo_DataOnDemand.aj file:

Chapter 2

79

The figure shows that Spring Roo Shell monitors the FlightDataOnDemand.java class
(because it is annotated with Roo's @RooDataOnDemand annotation). When any change
is made to the FlightDataOnDemand.java class, Roo triggers add-on(s) responsible for
managing the AspectJ ITD file(s) corresponding to the FlightDataOnDemand.java class.
In the case of FlightDataOnDemand, Roo triggers Dod add-on ('data on demand') to update
FlightDataOnDemand_Roo_DataOnDemand.aj AspectJ ITD, so that the AspectJ ITD is in sync
with the FlightDataOnDemand.java class. When you add setNumOfSeats, setOrigin,
and setDestination methods in the FlightDataOnDemand.java class, Dod add-on checks
if the methods already exist there. If they exist, Dod add-on removes those methods from the
FlightDataOnDemand_Roo_DataOnDemand.aj AspectJ ITD.

It is important to note that modifying a Java class that is annotated with Roo annotations may
result in multiple AspectJ ITDs getting affected. For instance, if you remove the modifiedBy
field from the Flight.java class, Roo will update the Flight_Roo_JavaBean.aj,
Flight_Roo_ToString.aj, and FlightDataOnDemand_Roo_DataOnDemand.aj
AspectJ ITD files to reflect the removal of the modifiedBy field.

Controlling integration test methods
We mentioned earlier that the @RooIntegrationTest annotation in *IntegrationTest.
java defines attributes which let you control the integration test methods that are
auto-generated by Roo in the *_Roo_IntegrationTest.aj AspectJ ITD file. The @
RooIntegrationTest annotation defines the following attributes to control the auto-
generation of integration test methods: count, find, findAll, findAllMaximum,
findEntries, flush, merge, persist, and remove. If the value of any of these
attributes is specified as false, then the corresponding test method is removed from the
*_Roo_IntegrationTest.aj AspectJ ITD file. For instance, the testFindAllFlights
method searches for all Flight instances in the database, which may not be desirable
for performance reasons. To instruct Spring Roo to remove the auto-generated
testFindAllFlights method from the FlightIntegrationTest_Roo_
IntegrationTest.aj file, all you need to do is to specify the value of the findAll
attribute value as false in the @RooIntegrationTest annotation, as shown here:

@RooIntegrationTest(entity = Flight.class, findAll=false)
public class FlightIntegrationTest {
 ...
}

Generating integration tests at the time of entity creation
In this recipe we saw how to create integration tests using the test integration
command. You can also use the testAutomatically argument of the entity command to
instruct Roo to create integration tests at the time of entity creation, as shown here:

roo> entity --class ~.domain.Flight --testAutomatically --identifierType
~.domain.FlightKey --table FLIGHT_TBL

Persisting Objects Using JPA

80

Providing custom implementation for integration tests
As with the 'data on demand' class, you can provide a custom implementation for an
integration test method in your *IntegrationTest.java class. For instance, if you want
to modify the testPersist Roo-generated test method with a customized testPersist
method, create a testPersist method in the FlightIntegrationTest.java file.
Adding the testPersist method to *IntegrationTest.java results in the removal
of the testPersist method from the corresponding *_Roo_IntegrationTest.
aj file by Roo. Similarly, you can customize any other test method defined in the *_Roo_
IntegrationTest.aj file.

See also
ff Refer to the Creating new 'data on demand' for testing entities recipe to see how you

can create seed data for an entity

ff Refer to the Executing persistent entities tests recipe to see how integration and
mock tests of entities are executed using Spring Roo

ff Refer to the Creating mock tests for persistent entities recipe to create mock static
methods defined in entities

Creating new 'data on demand' for
testing entities

We saw in the previous recipe that the test integration command and
testAutomatically argument of the entity command result in the generation of an
integration test and seed data for an entity. In situations where you're creating your own
integration tests, you may still want to use the Roo-generated seed data for an entity. So, you
are writing your custom integration test class but using a Roo-generated 'data on demand'
class. This is where the dod command of Spring Roo comes into the picture.

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch02-recipes
directory.

Execute the ch02_jsr303_fields.roo script. It creates a flight-app Roo project and
sets up Hibernate as the persistence provider using the persistence setup command. The
script also creates a Flight entity, which has FlightKey as its composite primary key class,
and adds fields to the Flight and FlightKey classes. If you are using a different database
than MySQL or your connection settings are different from what is specified in the script, then
modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

Chapter 2

81

How to do it...
Follow these steps to create new 'data on demand':

1.	 Change the focus of Roo commands to the Flight entity:
roo> focus --class ~.domain.Flight

2.	 Execute the test integration command:
~.domain.Flight> test integration

3.	 To create a new 'data on demand' class for the Flight entity, execute the following
dod command:
~.domain.Flight> dod --entity ~.domain.Flight --class MyFlightDod

Created SRC_TEST_JAVA\..MyFlightDod.java

Created SRC_TEST_JAVA\..MyFlightDod_Roo_Configurable.aj

Created SRC_TEST_JAVA\..MyFlightDod_Roo_DataOnDemand.aj

How it works...
The dod command accepts two arguments:

ff entity: the fully-qualified name of the entity for which the 'data on demand' class
needs to be created.

ff class: the name of the 'data on demand' class. This class is annotated with the @
RooDataOnDemand annotation. If this argument is not specified, then by default, the
name of the class is <entity-name>DataOnDemand, where <entity-name> is
the simple name of the entity.

The dod command generates the corresponding 'data on demand' Java class, *_Roo_
DataOnDemand.aj, and *_Roo_Configurable.aj. Now, you can use the newly created
'data on demand' Java class (FlightIntegrationTest.java) in your integration test
class, as shown here:

package sample.roo.flightapp.domain;

public class FlightIntegrationTest {
 @Autowired
 private MyFlightDod myDod;

 @Test
 public void testMyCustomDodTest() {
 sample.roo.flightapp.domain.Flight obj =

Persisting Objects Using JPA

82

 myDod.getNewTransientFlight(Integer.MAX_VALUE);
 ..
 obj.persist();
 obj.flush();
 ..
 }
}

See also
ff Refer to the Creating integration tests for persistent entities recipe for details on how

to create integration tests for entities using Spring Roo

Creating mock tests for persistent entities
In the recipe Creating integration tests for persistent entities, we saw how Spring Roo helps
with the creation of integration tests. In this recipe we look at how Spring Roo simplifies the
generation of a mock test for an entity using the test mock command.

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch02-recipes
directory.

Execute the ch02_jsr303_fields.roo script. It creates a flight-app Roo project and
sets up Hibernate as the persistence provider using the persistence setup command. The
script also creates a Flight entity, which has FlightKey as its composite primary key class,
and adds fields to the Flight and FlightKey classes. If you are using a different database
than MySQL or your connection settings are different from what is specified in the script, then
modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

How to do it...
Follow these steps to create mock tests:

1.	 Set the focus of Roo on the Flight entity, using the focus command:
roo> focus --class ~.domain.Flight

2.	 To create a mock test for the Flight entity, execute the following test mock
command:
~.domain.Flight roo> test mock

Created SRC_TEST_JAVA\sample\roo\flightapp\domain\FlightTest.java

Chapter 2

83

How it works...
The execution of the test mock command creates a JUnit test, FlightTest.java, which is
responsible for mock testing of the Flight entity, as shown here:

package sample.roo.flightapp.domain;

@RunWith(JUnit4.class)
@MockStaticEntityMethods
public class FlightTest {

 @Test
 public void testMethod() {
 int expectedCount = 13;
 Flight.countFlights();

 ..AnnotationDrivenStaticEntityMockingControl.
 expectReturn(expectedCount);

 ..AnnotationDrivenStaticEntityMockingControl.playback();
 org.junit.Assert.assertEquals(expectedCount,
 Flight.countFlights());
 }
}

If you are using Spring Roo 1.1.3, then you'll have to add the @MockStaticEntityMethods
and @RunWith(JUnit4.class) annotations in Roo-generated mock tests, as shown.

In the code listing, the @MockStaticEntityMethods annotation represents a Spring
annotation which supports mock testing of static entity methods, like count and finder
methods. Spring defines an AnnotationDrivenStaticEntityMockingControl aspect,
which applies to methods of a test class annotated with @MockStaticEntityMethods
and mocks calls to the static methods of the persistent entity. Additionally, the
AnnotationDrivenStaticEntityMockingControl aspect defines the expectReturn
and playback methods to simplify writing mock tests.

As the AnnotationDrivenStaticEntityMockingControl aspect applies to any class
annotated with @MockStaticEntityMethods, it makes it possible to write tests using any
testing framework (JUnit or TestNG) for mock testing entities. For testing of instance methods
defined in the entity, you'll continue to use the common approaches for mock testing using
EasyMock, Mockito, and so on.

Persisting Objects Using JPA

84

See also
ff Refer to the Creating integration tests for persistent entities recipe to see Spring

Roo's support for auto-generation of integration tests for JPA entities

Executing persistent entities tests
In previous recipes we saw how to create mock and integration tests for persistent entities.
In this recipe we'll look at how to execute these tests using the perform tests command of
Spring Roo.

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch02-recipes
directory.

Execute the ch02_jsr303_fields.roo script. It creates a flight-app Roo project and
sets up Hibernate as the persistence provider using the persistence setup command. The
script also creates a Flight entity, which has FlightKey as its composite primary key class,
and adds fields to the Flight and FlightKey classes. If you are using a different database
than MySQL or your connection settings are different from what is specified in the script, then
modify the script accordingly.

Install the MySQL 5.5.11 database—this is required because we'll now be executing
integration tests. Create a database named "myFlightAppDB" in MySQL server instance and
ensure that the connection properties defined in the database.properties file of the
flight-app Roo project can be used to successfully connect to "myFlightAppDB".

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

How to do it...
Follow these steps to create and execute tests:

1.	 Change the focus of Roo commands to Flight entity:
roo> focus --class ~.domain.Flight

2.	 Execute the test integration command to create integration tests for the
Flight entity:
~.domain.Flight> test integration

3.	 To execute tests defined in the Roo project, issue the perform tests command
from the Roo prompt, as shown here:
roo> perform tests

Chapter 2

85

The integration test for the Flight entity will fail currently because:

ff The auto-generated 'data on demand' class provides limited support for creating
entity instances that comply with JSR 303 annotations. As explained in the Creating
integration tests for persistent entities recipe, you can write custom setter methods
for persistent fields in the FlightDataOnDemand.java entity to create Flight
entities that comply with JSR 303 annotations specified on the persistent fields.

ff The query fired by the countFlights method in the Flight_Roo_Entity.
aj AspectJ ITD file doesn't work with MySQL 5.1.1. You need to change the
countFlights method from:
public static long countFlights() {
 return entityManager().createQuery("SELECT COUNT(o)
 FROM Flight o", Long.class).getSingleResult();
}

To:
public static long countFlights() {
 return entityManager().createQuery("SELECT COUNT(*)
 FROM Flight o", Long.class).getSingleResult();
}

As AspectJ ITD files are managed by Spring Roo, you should not change the countFlights
method in the Flight_Roo_Entity.aj file. Instead, either perform push-in refactoring or
create a countFlights method in the Flight.java file.

In push-in refactoring, you use the IDE to push the declarations, methods, attributes, and
constructors defined in the AspectJ ITD file to the target Java class. For more information on
push-in refactoring, refer to the Removing Roo with push-in refactoring recipe of Chapter 7.

When writing countFlights method in Flight.java, make sure
that Roo is running in the background, so that Roo can remove the
countFlights method from the Flight_Roo_Entity.aj file.
Additionally, ensure that the signature of countFlights method is same
as the one defined in the Flight_Roo_Entity.aj file.

How it works...
The perform tests command is processed by the maven add-on of Roo and is responsible
for executing all the tests that form part of the Roo project. If you want to directly execute the
tests using maven, then exit the Roo prompt and use the mvn test command of maven. The
results of test execution are saved in the <project_dir>/target/surefire-reports
directory, where project_dir is your Roo project directory.

Persisting Objects Using JPA

86

There's more...
The ch02_flightapp_testing.zip file that accompanies this book contains the
flight-app Eclipse project that we saw in recipes of the previous chapter and this chapter.
You can import this project into your Eclipse IDE and view the following changes that I made to
the flight-app project to demonstrate concepts that we've learned so far:

ff Defined the setNumOfSeats method in FlightDataOnDemand.java to
create Flight entities that meet the constraint specified by the JSR 303 @Size
annotation for the numOfSeats field. Defining the setNumOfSeats method in
FlightDataOnDemand.java results in the removal of the method with the same
signature from the FlightDataOnDemand_Roo_DataOnDemand.aj file.

ff Defined setOrigin and setDestination methods in FlightDataOnDemand.
java to create Flight entities that meet the constraints specified by JSR 303 @
DecimalMax and @DecimalMin annotations on origin and destination fields.
Defining setOrigin and setDestination methods in FlightDataOnDemand.
java results in removal of methods with the same signature from the
FlightDataOnDemand_Roo_DataOnDemand.aj file.

ff Changed the @RooIntegrationTest annotation in FlightIntegrationTest.
java to instruct Roo not to generate findAll, findEntries, and count test
methods.

ff Autowired MyFlightDod reference (a custom 'data on demand' class) in
FlightIntegrationTest.java and defined a custom testMyCustomDodTest
method.

ff Added a @Rollback(false) Spring annotation to the testPersist method in
FlightIntegrationTest.java so that the data created by the testPersist
method is not rolled back after it is executed. This feature could be particularly useful
if you want to manually verify the data that was created by the testPersist method
or if you want to keep the data for further testing.

You can execute the tests defined in the flight-app project using the perform tests
command and check your database to view the seed data that was created by the 'data on
demand' class and during the testing of testPersist method.

See also
ff Refer to the Creating integration tests for persistent entities recipe to see Spring

Roo's support for auto-generation of integration tests for JPA entities

ff Refer to the Creating mock tests for persistent entities recipe to mock static methods
defined in entities

Chapter 2

87

Creating applications that interact with
multiple databases

As of Spring Roo 1.1.3, both entity and persistence setup commands support the
persistenceUnit argument which lets you create enterprise applications which interact
with multiple databases. In this recipe we'll create two persistent units:

ff flight: the flight persistence unit consists of a single entity, Flight. It uses
Hibernate as a JPA provider and maps to a MySQL database named "myFlightDB".

ff payment: the payment persistence unit consists of a single entity, Payment.
It uses Hibernate as the JPA provider and maps to a MySQL database named
"myPaymentDB".

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch02-recipes
directory.

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

How to do it...
The following steps will demonstrate how to create an application that interacts with
multiple databases:

1.	 Create the flight-app Roo project:
..roo> project --topLevelPackage sample.roo.flightapp --java 6
--projectName flight-app

2.	 Set up the flight persistence unit:
..roo> persistence setup --provider HIBERNATE --database MYSQL
--databaseName myFlightDB --persistenceUnit flight

3.	 Create Flight entity, which is associated with the flight persistence unit:
..roo> entity --class ~.domain.Flight --table FLIGHT_TBL
--persistenceUnit flight

4.	 Add some fields to the Flight entity:
~.domain.Flight roo> field string --fieldName origin --column FLT_
ORIGIN --notNull

~.domain.Flight roo> field string --fieldName destination --column
FLT_DESTINATION --notNull

www.allitebooks.com

http://www.allitebooks.org

Persisting Objects Using JPA

88

5.	 Create an integration test for the Flight entity:
~.domain.Flight roo> test integration

6.	 Set up the payment persistence unit:
.. roo> persistence setup --provider HIBERNATE --database MYSQL
--databaseName myPaymentDB --persistenceUnit payment

7.	 Create the Payment entity, which is associated with the payment persistence unit:
.. roo> entity --class ~.domain.Payment --table PAYMENT_TBL
--persistenceUnit payment

8.	 Add fields to the Payment entity:
~.domain.Payment roo> field string --fieldName paymentType
--column PYMT_TYPE --notNull

9.	 Create an integration test for the Payment entity:
~.domain.Payment roo> test integration

10.	 Execute the perform eclipse command to import the flight-app project into
Eclipse IDE:
~.domain.Payment roo> perform eclipse

11.	 Execute the integration tests:
.. roo> perform tests

Executing the integration tests at this time will result in failure. We'll shortly see what we need
to do to get the tests working when using multiple databases.

How it works...
The concept of a persistence unit is not only useful when the enterprise application interacts
with multiple databases but also when you want to logically group entities in your application.
Using different persistence units can also be useful if you want to use different persistence
providers for different logical groups of entities.

When setting up a persistence provider using the persistence setup command you can
specify the persistence unit name by specifying the persistenceUnit argument. Also, when
creating entities using the entity command you can use the persistenceUnit argument
to specify the persistence unit to which the entity belongs. Spring Roo makes use of the
persistenceUnit argument of the persistence setup command to define a different
persistence unit in the /META-INF/persistence.xml file. The following listing shows the
persistence.xml file of the flight-app project after the execution of the persistence
setup commands:

<persistence ..>
 <persistence-unit name="flight"

Chapter 2

89

 transaction-type="RESOURCE_LOCAL">
 <provider>
 org.hibernate.ejb.HibernatePersistence
 </provider>
 ..
 </persistence-unit>

 <persistence-unit name="payment"
 transaction-type="RESOURCE_LOCAL">
 <provider>
 org.hibernate.ejb.HibernatePersistence
 </provider>
 ..
 </persistence-unit>
</persistence>

In the code, the name attribute of the <persistence-unit> element reflects the
persistenceUnit argument value that you specified in the persistence setup
command. As we have specified Hibernate as the JPA provider for both flight and
payment persistent units, the <provider> element contains org.hibernate.ejb.
HibernatePersistence as the JPA provider. If you want to use different JPA providers for
your persistence unit, then specify it using the provider argument of the persistence
setup command.

As we are using different persistence units, the entities created using the entity command
use the persistenceUnit attribute to identify the persistence unit with which the entity is
associated. The following code listing shows that the persistenceUnit argument value is
used in the @RooEntity annotation of the Flight class:

@RooJavaBean
@RooToString
@RooEntity(persistenceUnit = "flight", table = "FLIGHT_TBL")
public class Flight {..}

In the code, the value of the persistenceUnit attribute of @RooEntity is flight, which
affects the way Roo generates the corresponding *_Roo_Entity.aj AspectJ ITD file. The
following code listing shows the affect of persistenceUnit attribute of @RooEntity
annotation on the Flight_Roo_Entity.aj ITD file:

privileged aspect Flight_Roo_Entity {

 @PersistenceContext(unitName = "flight")
 transient EntityManager Flight.entityManager;
 ...
 @Transactional("flight")
 public void Flight.persist() {..}

Persisting Objects Using JPA

90

 @Transactional("flight")
 public void Flight.remove() {..}
 ...
}

In the code, the @PersistenceContext annotation makes use of the unitName attribute
to specify the persistence unit with which the EntityManager persistence context is
associated with. Also, notice that the @Transactional annotation now makes use of the
flight qualifier to specify the transaction manager required for managing transactions.

As of Spring Roo 1.1.3, you'll have to ensure that the transaction manager, entity manager
factory, and data source bean definitions for each persistence unit are configured in the /
META-INF/spring/applicationContext.xml file, as shown here:

<bean class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close" id="flightDataSource">

</bean>
<bean class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close" id="paymentDataSource">

</bean>

<bean
 class="org.springframework.orm.jpa.JpaTransactionManager"
 id="flightTransactionManager">
 <qualifier value="flight"/>
 <property name="entityManagerFactory"
 ref="flightEntityManagerFactory"/>
</bean>

<bean
 class="org.springframework.orm.jpa.JpaTransactionManager"
 id="paymentTransactionManager">
 <qualifier value="payment"/>
 <property name="entityManagerFactory"
 ref="paymentEntityManagerFactory"/>
</bean>

<tx:annotation-driven mode="aspectj"
 transaction-manager="flightTransactionManager"/>
<tx:annotation-driven mode="aspectj"
 transaction-manager="paymentTransactionManager"/>

Chapter 2

91

<bean
 class="org.springframework.orm.jpa.
 LocalContainerEntityManagerFactoryBean"
 id="flightEntityManagerFactory">
 <property name="persistenceUnitName" value="flight"/>
 <property name="dataSource" ref="dataSource"/>
</bean>
<bean class="org.springframework.orm.jpa.
 LocalContainerEntityManagerFactoryBean"
 id="paymentEntityManagerFactory">
 <property name="persistenceUnitName" value="payment"/>
 <property name="dataSource" ref="dataSource"/>
</bean>

The code shows that different transaction managers, entity manager factories, and
data source beans are configured for each persistence unit. The transaction manager
bean definitions make use of the <qualifier> element, so that @Transactional
annotations can refer to the target transaction manager using a qualifier. Also, the
LocalContainerEntityManagerFactoryBean is passed the persistence unit name with
which it is associated, using the persistenceUnitName property.

To ensure that integration tests work, you'll also need to specify the transaction manager to
use for the test methods annotated with the @Transactional annotation. To achieve this,
all you need to do is specify the @Transactional annotation in your test class, as shown
here for PaymentIntegrationTest class:

@RooIntegrationTest(entity = Payment.class)
@Transactional("payment")
public class PaymentIntegrationTest {

 @Test
 public void testMarkerMethod() {
 }
}

See also
ff Refer to the Creating persistent entities recipe to see how to create persistent entities

which belong to a single persistence unit

Persisting Objects Using JPA

92

Packaging your Roo project
If you are using Roo only to create the persistence layer of your enterprise application,
then you may want to package your Roo project as a JAR file and use it. This recipe shows
how you can package your Roo project and how Roo ensures that your packaged JAR file is
independent of Roo-specific annotations and AspectJ ITDs.

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch02-recipes
directory.

Execute the ch02_jsr303_fields.roo script. It creates a flight-app Roo project and
sets up Hibernate as persistence provider using the persistence setup command. The
script also creates a Flight entity, which has FlightKey as its composite primary key class,
and adds fields to the Flight and FlightKey classes. If you are using a different database
than MySQL or your connection settings are different from what is specified in the script, then
modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch02-recipes directory.

How to do it...
To package your Roo project into a JAR file, execute the perform package command from
the Roo shell:

roo> perform package

[INFO] ---

[INFO] Building flight-app 0.1.0.BUILD-SNAPSHOT

[INFO] ---

...

[INFO] --- aspectj-maven-plugin:1.2:compile (default) @ flight-app ---

...

[INFO] --- aspectj-maven-plugin:1.2:test-compile (default) @ flight-app

...

[INFO] Building jar: ...\target\flight-app-0.1.0.BUILD-SNAPSHOT.jar

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

Chapter 2

93

How it works...
The perform package command packages the Roo project using maven. Alternatively,
you can also use the mvn package command of maven to package the Roo project. It is
important to note that when using the perform package command, tests defined in the Roo
project are not executed.

The output from executing perform package shows that AspectJ compiler Maven Plugin is
used to compile the main and test Java classes of the flight-app project. The compile
goal of AspectJ compiler Maven Plugin weaves AspectJ ITDs and aspects defined in the
spring-aspects.jar file into the main Java classes of the project. The test-compile
goal weaves AspectJ ITDs and aspects defined in the spring-aspects.jar file into the test
classes of the project.

The perform package command creates the flight-app project's JAR file in the
target directory.

The following figure shows an example of how Flight.class is created by the AspectJ
compiler Maven Plugin by weaving AspectJ ITDs that apply to the Flight.java class:

The figure shows that AspectJ compiler Maven Plugin weaves Flight_Roo_Configurable.aj,
Flight_Roo_Entity.aj, Flight_Roo_JavaBean.aj, and Flight_Roo_ToString.aj AspectJ ITDs into
Flight.java to create Flight.class.

There's more...
To verify that your generated class file contains declarations from corresponding AspectJ ITDs,
you can also use the javap command. The javap command examines a .class file and
outputs the attributes, methods, and constructors that form part of the class.

Persisting Objects Using JPA

94

To use javap, you need to first set the PATH environment variable to point to the bin
directory of your Java SE installation, as shown here:

C:\> set PATH=%PATH%;C:\Program Files\Java\jdk1.6.0_23\bin

Now, go to the directory which contains your Roo project (ch02-recipes in our case) and
execute the javap command to view the details of the compiled Flight class, as
shown here:

C:\roo-cookbook\ch02-recipes> javap -classpath target\classes sample.roo.
flightapp.domain.Flight

public class sample.roo.flightapp.domain.Flight ...

{

 transient javax.persistence.EntityManager entityManager;

 ...

 public void clear();

 public static long countFlights();

 public static final javax.persistence.EntityManager

 entityManager();

 public static java.util.List findAllFlights();

 ...

 public void flush();

 public java.lang.String getCreatedBy();

 public java.util.Date getCreatedDate();

 public java.lang.String getDestination();

 public sample.roo.flightapp.domain.FlightKey getId();

 public java.lang.String getModifiedBy();

 public java.util.Date getModifiedDate();

 public java.lang.Integer getNumOfSeats();

 public java.lang.String getOrigin();

 public java.lang.Integer getVersion();

 public sample.roo.flightapp.domain.Flight merge();

 public void persist();

 public void remove();

 ...

}

Chapter 2

95

The output shows that methods defined in AspectJ ITDs are now part of the compiled
Flight class file.

See also
ff Refer to the Creating integration tests for persistent entities recipe to see Spring

Roo's support for auto-generation of integration tests for JPA entities.

3
Advanced JPA

Support in Spring Roo

In this chapter, we will cover:

ff Viewing candidate dynamic finder methods

ff Adding dynamic finder methods to an entity

ff Creating a many-to-one (or one-to-one) relationship between entities

ff Creating a one-to-many (or many-to-many) relationship between entities

ff Creating a mapped superclass

ff Customizing Roo-generated identifier definitions

ff Generating database metadata

ff Creating entities from a database

Introduction
In the previous chapter, we looked at how Spring Roo simplifies developing enterprise
applications that make use of JPAs for persistence. In this chapter, we continue our discussion
of JPAs and look at recipes that let us add dynamic finder methods, create relationships
between entities, and perform database reverse engineering to auto-generate JPA entities.

Advanced JPA Support in Spring Roo

98

Viewing candidate dynamic finder methods
A dynamic finder method is a finder method for which you don't need to write a JPA query.
It fetches entity instances from the database based on one or more persistent fields of the
entity class. The implementation of these dynamic finder methods is auto-generated by Roo
when you add their names to a persistent entity. As Roo doesn't create a DAO layer of an
application, dynamic finder methods are defined in the entity class. In this recipe, we will
look at the finder list command, which introspects a persistent entity and suggests names of
possible dynamic finder methods that can be added to the given persistent entity.

Getting ready
Create a sub-directory ch03-recipes inside the C:\roo-cookbook directory.

Execute the ch03_persistent_entities.roo script to create a flight-app Roo project.
The script sets up Hibernate as a persistence provider and creates a Flight entity, which
has FlightKey as its composite primary key class. Additionally, the script adds fields to the
Flight and FlightKey classes. If you are using a different database than MySQL or your
connection settings are different than what is specified in the script, then modify the script
accordingly.

Start Roo shell from the C:\roo-cookbook\ch03-recipes directory.

How to do it...
To use the finder list command to view dynamic finder methods, follow the given steps:

1.	 Set the focus of the subsequent commands on the Flight entity using the focus
command:
roo> focus --class ~.domain.Flight

2.	 Execute the finder list command to view the list of candidate dynamic finder
methods for the Flight entity, as shown here:
~.domain.Flight roo> finder list

.....

findFlightsByCreatedDateBetween(Date minCreatedDate, Date
maxCreatedDate)

findFlightsByCreatedDateGreaterThan(Date createdDate)

.....

findFlightsByDestination(String destination)

findFlightsByDestinationEquals(String destination)

findFlightsByDestinationIsNotNull()

findFlightsByDestinationIsNull()

Chapter 3

99

findFlightsByDestinationLike(String destination)
findFlightsByDestinationNotEquals(String destination)

How it works...
The finder list command displays names of the candidate dynamic finder methods for
an entity. By default, the dynamic finder methods suggested by the finder list command
search for entity instances based on only one persistent field of the entity. For instance, in the
output of the finder list command you will not find a dynamic finder method name which
finds the Flight entity instances based on both the createdDate and modifiedDate
fields. If an entity inherits from a mapped superclass, then the dynamic finder methods
corresponding to the inherited fields are also displayed by Roo.

The dynamic finder methods suggested by the finder list command are dependent
upon the type of the field. For instance, the createdDate is of type java.util.Date
and can participate in greater than, less than, and between comparisons; therefore,
findFlightsByCreatedDateBetween, findFlightsByCreatedDateGreaterThan,
and so on, are shown as candidate dynamic finder methods, and these methods accept the
createdDate field as the argument. On the other hand, the destination field is of type
String, which doesn't participate in greater than, less than, and between comparisons;
therefore, Roo doesn't suggest dynamic finder methods for finding the Flight instances
based on greater than, less than, and between comparisons of destination field.

There's more...
Let's now look at how to instruct Roo to:

ff Provide a list of candidate dynamic finder methods, which fetch entities based on
more than one persistent field

ff Restrict suggested dynamic finder method names based on a filter criteria

Listing dynamic finder methods for multiple persistent fields
If you want Roo to list finder method names that fetch entities based on multiple persistent
fields, you should use the depth argument of the finder list command. The depth
argument accepts a numeric value, which determines the number of persistent fields the
dynamic finder method uses to search for entities in the database. For instance, if you
want Flight instances to be searched based on both the origin and destination
fields, then the value of the depth argument must be 2. The default value of the depth
argument is 1, therefore; when we executed the finder list command, without specifying
depth argument, it listed dynamic finder method names that fetch entities based on only
one persistent field. The following finder list command shows the affect of the depth
argument on the suggested list of dynamic finder method names:

~.domain.Flight roo> finder list --depth 2

findFlightsByDestinationAndOrigin(String destination, String origin)

Advanced JPA Support in Spring Roo

100

findFlightsByDestinationAndOriginEquals(String destination, String
origin)

.....

As the output suggests, two persistent fields now form part of listed candidate dynamic finder
method names. Similarly, if you want your finders to span a n number of persistent fields, then
specify n as the value of a depth argument.

Limiting list of dynamic finder methods, based on a
filter criteria
As you increase the value of the depth argument, the number of candidate dynamic
finder method names listed by Roo increases exponentially due to the number of possible
combinations for method arguments. In such cases, it is desired to filter candidate dynamic
finder method names based on a filter criteria. The finder list command provides a
filter argument, which accepts a comma separated list of strings that must be present
in the dynamic finder method name. Dynamic finder method names which don't contain the
strings specified by the filter argument are omitted from the displayed list of candidate
dynamic finder method names. This makes it easy for you to locate dynamic finder methods
that you want to add to a persistent entity.

Note that there should be no spaces in the comma-separated list of
strings specified as the value of the filter argument.

The following finder list command shows the filter argument usage:

~.domain.Flight roo> finder list --depth 2 --filter
destinationlike,originlike

findFlightsByDestinationLikeAndOriginLike(..)

findFlightsByDestinationLikeOrOriginLike(..)

findFlightsByOriginLikeAndDestinationLike(..)

findFlightsByOriginLikeOrDestinationLike(..)

The output now shows only four methods that contain the text specified in the filter
argument. Similarly, you can add additional text to the filter argument to narrow
down the list of candidate dynamic finder method names that are displayed by the
finder list command.

See also
ff Refer to the Adding dynamic finder methods to an entity recipe below to see how

Spring Roo simplifies adding dynamic finder methods to an entity

Chapter 3

101

Adding dynamic finder methods to an entity
The finder list command shows the candidate dynamic finder method names whose
implementations Roo can automatically generate. In this recipe, we will look at how to add
dynamic finder methods to a persistent entity using the finder add command. As an
example, we will add the findFlightsByDestinationLikeAndOriginLike method to a
Flight entity.

Getting ready
Refer to the Viewing candidate dynamic finder methods recipe, to create the flight-app
Roo project.

Start the Roo shell from the C:\roo-cookbook\ch03-recipes directory.

How to do it...
To add dynamic finder methods, follow the given steps:

1.	 Set the focus of subsequent commands on the Flight entity using a focus
command:
roo> focus --class ~.domain.Flight

2.	 Add the findFlightsByDestinationLikeAndOriginLike dynamic finder
method to the Flight entity using the finder add command:
.. roo> finder add findFlightsByDestinationLikeAndOriginLike

Updated SRC_MAIN_JAVA\sample\roo\flightapp\domain\Flight.java

Created SRC_MAIN_JAVA\sample\roo\flightapp\domain\Flight_Roo_
Finder.aj

How it works...
The finder add command adds a dynamic finder method implementation to a persistent
entity. This feature saves the effort of writing your own JPA-QL queries for the finder methods.
The finder add command adds the name of the finder method to the finders attribute
of the @RooEntity annotation (refer to Chapter 2 for more details). The presence of the
finders attribute in the @RooEntity annotation triggers the creation of a *_Roo_Finder.
aj ITD file (if it doesn't already exist for the entity) and auto-generation of the finder method
implementation in the *_Roo_Finder.aj ITD file. *_Roo_Finder.aj adds finder method
implementation to the corresponding JPA entity class.

Advanced JPA Support in Spring Roo

102

The following figure shows how Roo adds dynamic finder methods to a JPA entity when the
finder add command is executed:

The given figure shows that when the finder add xyz command is executed, the Finder
add-on of Roo adds the xyz method name to the finders attribute of the @RooElement
annotation in the Flight.java file. As Spring Roo monitors Java files that are annotated
with Roo's annotations, Roo uses the Finder add-on to add the xyz dynamic finder method
implementation to the Flight_Roo_Finder.aj file. If Flight_Roo_Finder.aj doesn't
exist, the Finder add-on creates it. Now, if you define the xyz method in the Flight.java
file (because you may want to customize the implementation of the xyz method generated by
Roo), the Finder add-on removes it from the Flight_Roo_Finder.aj file.

The following code shows the modified @RooEntity annotation of the Flight entity, after
the finder add command is executed:

@RooEntity(identifierType = FlightKey.class,
table = "FLIGHT_TBL",
finders = { "findFlightsByDestinationLikeAndOriginLike"})

public class Flight { ... }

The following code shows the auto-generated implementation of the
findFlightsByDestinationLikeAndOriginLike finder method in the Flight_Roo_
Finder.aj file:

Chapter 3

103

import javax.persistence.EntityManager;
import javax.persistence.TypedQuery;
...
 public static TypedQuery<Flight>
 Flight.findFlightsByDestinationLikeAndOriginLike(
 String destination, String origin)
{

 if (destination == null || destination.length() == 0)
 throw new IllegalArgumentException("The destination
 argument is required");
 ...
 if (origin == null || origin.length() == 0)
 throw new IllegalArgumentException("The origin argument
 is required");
 ...
 EntityManager em = Flight.entityManager();
 TypedQuery<Flight> q = em.createQuery("SELECT Flight FROM
 Flight AS flight WHERE LOWER(flight.destination) LIKE
 LOWER(:destination) AND LOWER(flight.origin) LIKE
 LOWER(:origin)", Flight.class);

 q.setParameter("destination", destination);
 q.setParameter("origin", origin);
 return q;
}

The given code shows the following:

ff The finder method expects that both the origin and destination arguments
must be supplied to the finder method or an exception is thrown. In general,
the dynamic finder method implementation generated by Roo requires that the
arguments passed to the method are not null. If an argument type is String, the
dynamic finder method implementation requires that the argument must not be null
or blank, as shown in this code.

ff JPA-QL for the finder method is auto-generated.
ff The return type of the finder method is javax.persistence.

TypedQuery<Flight>. You can call the getResultList method of the
TypedQuery object from your web controller class to execute the SELECT query and
obtain the result.

There's more...
Let's now look at how we can add a custom finder method to an entity, perform integration
testing of dynamic finder methods, and use a @RooEntity annotation to trigger auto-
generation of a dynamic finder method implementation:

Advanced JPA Support in Spring Roo

104

Adding custom finder methods
You may want to add custom finder methods if the dynamic finder methods offered by Roo
don't meet your application's requirements. In such cases, you can either perform push-in
refactoring of Roo-generated dynamic finder methods and modify their implementation (not
their name or signature) in the corresponding persistent entity Java class or you can define
the method in the persistent entity Java class (which will result in removing the method from
the *_Roo_Finder.aj AspectJ ITD) or you can create your own AspectJ ITD to introduce your
custom finder methods into the persistent entity Java class.

If you want to change the implementation of a dynamic finder method, then you can either use
push-in refactoring or you can define the method in persistent entity Java class. The effects of
using push-in refactoring or defining the method in persistent entity Java class are the same.
In push-in refactoring, you use the IDE to move a declaration from AspectJ ITD file to the target
Java class and then modify it. And, in case you decide to define the method in the Java class
itself, you will probably do a copy-paste from AspectJ ITD to the Java class, and let Roo remove
the method declaration from AspectJ ITD.

The following figure shows what happens when you use push-in refactoring to move a method
declaration from AspectJ ITD to the target Java clss:

The given figure shows that when you perform push-in refactoring of the
findFlightsByDestinationLikeAndOriginLike method, the IDE simply moves
the method from the AspectJ ITD file to the target Flight.java class. So, if you have to
customize a method such as findFlightsByDestinationLikeAndOriginLike by
writing it in the Flight.java class, it will be much simpler if you perform push-in refactoring
or simply copy the method from the AspectJ ITD file and paste it in the Flight.java class
(followed by removing the Flight. that is prefixed to the method name). Copy-pasting
from AspectJ ITDs to target Java classes isn't efficient if you are planning to move all the
declarations in all the AspectJ ITDs to target Java classes. This is where push-in refactoring is
helpful, as we will see in Chapter 7, Developing Add-ons and Removing Roo from Projects.

Chapter 3

105

If you want to add a custom finder method whose name or signature is different from the
dynamic finder methods offered by Roo, then you can either define the method in the
persistent entity Java class or you can create a new AspectJ ITD and declare your method in
it. Both these approaches are fine, and it depends upon how comfortable you are with writing
AspectJ ITDs. Roo generates AspectJ ITDs so that cross-cutting concerns are separate from
the Java classes. So, if you feel that writing finder methods in your persistent entity Java class
pollutes it, you should consider writing AspectJ ITDs. It is important to note that the custom
AspectJ ITDs that you create in your project are not managed by Roo.

The following code shows an example of the Flight_MyCustom_Finder.aj AspectJ ITD,
which introduces the searchFlights(SearchCriteria criteria) finder method into
Flight.java:

import javax.persistence.EntityManager;
import javax.persistence.TypedQuery;

privileged aspect Flight_MyCustom_Finder {

 public static TypedQuery<Flight> Flight.searchFlight(
 SearchCriteria criteria) {
 EntityManager em = Flight.entityManager();
 TypedQuery<Flight> q = em.createQuery("SELECT Flight ..",
 Flight.class);
 q.setParameter("destination", criteria.getDestination());
 q.setParameter("origin", criteria.getOrigin());
 return q;
 }
}

As the given code shows, you can create your own AspectJ ITD and add custom finder
methods to JPA entities. As custom AspectJ ITDs are not managed by Roo, if you create the
searchFlight method in the Flight.java class, Roo will not remove it from the Flight_
MyCustom_Finder.aj file.

Integration testing of dynamic finder methods
Roo doesn't create integration tests for the auto-generated dynamic finder methods. To test
finder methods, write the test method in the *IntegrationTest.java file corresponding to
the persistent entity.

Advanced JPA Support in Spring Roo

106

Adding dynamic finders through @RooEntity annotation
The @RooEntity annotation accepts a finders attribute, which contains an array of string
values identifying names of dynamic finder methods that must be generated for the persistent
entity. The finders add command adds the finder method name to the finders attribute,
which in turn results in the generation of dynamic finder method by Roo. As the addition of
finder method name to finders attribute triggers generation of dynamic finder method
implementation, instead of using the finder add command you can directly add the name
of the finder method to the finders attribute using IDE, which in turn will trigger Roo to
generate the finder method implementation.

See also
ff Refer to the Controlling auto-generated methods of persistent entities recipe in

Chapter 2, Persisting Objects Using JPA to know more about the elements supported
by the @RooEntity annotation

ff Refer to the Viewing candidate dynamic finder methods recipe to see how the finder
list command is used to show the names of candidate dynamic finder methods

Creating a many-to-one (or one-to-one)
relationship between entities

In real-world applications, domain entities have relationships between them. In this section,
we look at how Roo simplifies creating a many-to-one (or one-to-one) relationship between JPA
entities.

The following figure shows the relationship between the FLIGHT_TBL and FLIGHT_DESC_
TBL tables, which we will use as a reference to model our many-to-onerelationship:

In the given figure, the FLIGHT_TBL table contains scheduled flight details and the FLIGHT_
DESC_TBL table contains details of all the flights that an airline offers. Each record in the
FLIGHT_TBL table refers to exactly one FLIGHT_DESC_TBL record. As there can be multiple
flights from one city to another, the relationship between FLIGHT_TBL and FLIGHT_DESC_
TBL is many-to-one. The FLIGHT_TBL table is mapped to the FLIGHT_DESC_TBL table by
the FLIGHT_DESC_ID foreign key. It is expected that if a FLIGHT_TBL record is deleted, then
the deletion is limited to the FLGHT_TBL only.

Chapter 3

107

The following figure shows JPA entities corresponding to the FLIGHT_TBL and FLIGHT_
DESC_TBL tables:

In the given figure, the flightId and flightDescId attributes represent primary keys of
the Flight and FlightDescription JPA entities, respectively.

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch03-recipes
directory.

Start the Roo shell from the C:\roo-cookbook\ch03-recipes directory.

Execute the ch03_jpa_setup.roo script which creates the flight-app Roo project, sets
up Hibernate as the persistence provider, and configures MySQL as the database for the
application. If you are using a different database than MySQL or your connection settings are
different than what is specified in the script, then modify the script accordingly.

How to do it...
To create the Flight and FlightDescription JPA entities with a many to one
relationship, follow the steps given here:

1.	 Create the Flight JPA entity (including integration tests) corresponding to the
FLIGHT_TBL table:
.. roo> entity --class ~.domain.Flight --identifierColumn FLIGHT_
ID --identifierField flightId --identifierType java.lang.Long
--table FLIGHT_TBL --testAutomatically

2.	 Add attributes to the Flight entity:
~.domain.Flight roo> field date --type java.util.Date --fieldName
departureDate --column DEPARTURE_DATE

~.domain.Flight roo> field date --type java.util.Date --fieldName
arrivalDate --column ARRIVAL_DATE

3.	 Create the FlightDescription entity (including integration tests) corresponding to
the FLIGHT_DESC_TBL table:

Advanced JPA Support in Spring Roo

108

~.domain.Flight roo> entity --class ~.domain.FlightDescription
--identifierColumn FLIGHT_DESC_ID --identifierField flightDescId
--identifierType java.lang.Long --table FLIGHT_DESC_TBL
--testAutomatically

4.	 Add attributes to the FlightDescription entity:
~.domain.FlightDescription roo> field string --fieldName origin
--column ORIGIN_CITY --notNull

~.domain.FlightDescription roo> field string --fieldName
destination --column DESTINATION_CITY --notNull

~.domain.FlightDescription roo> field number --type java.lang.
Float --fieldName price --column PRICE --notNull

5.	 Set the focus of the Roo commands on the Flight entity and use the field
reference command to create a many-to-one relationship between the Flight and
FlightDescription entities, as shown here:
~.domain.FlightDescription roo> focus --class ~.domain.Flight

~.domain.Flight roo> field reference --fieldName flightDescription
--type ~.domain.FlightDescription --joinColumnName FLIGHT_DESC_ID
--notNull

How it works...
As we are not using composite primary keys for the entities, the following things you'll
notice about the entity commands that we have used for creating Flight and
FlightDescription entities:

ff identifierField: An optional argument has been used to give a custom name
to the identifier field of the entities. For instance, the name of identifier field of the
Flight entity is flightId and that of FlightDescription is flightDescId. If
we had not used the identifierField argument, then by default Roo would have
assigned id as the name of the entity's identifier field.

ff identifierColumn: An optional argument has been used to set the name of
the table column to which the identifier field maps. This argument instructs Roo
to add the @Column JPA annotation to the identifier field. If you don't specify the
identifierColumn, by default the name of the mapping column is derived by
splitting the camel-case name and adding underscore as the separator. For instance,
if you don't specify the identifierColumn argument for an identifier field named
myOwnIdField field, the name of the table column is assumed to be my_own_id_
field. In the context of this recipe, the identifierColumn will not have any effect
because the name of the table column, derived from the identifier field name, is the
same as the name assigned by the identifierColumn argument.

Chapter 3

109

The following code snippet from the Flight.java file shows the Flight entity that was
created in this recipe:

@RooJavaBean
@RooToString
@RooEntity(identifierField = "flightId", identifierColumn = "FLIGHT_
ID", table = "FLIGHT_TBL")
public class Flight {
 ..
}

The given code shows that the @RooEntity annotation contains the identifierField,
identifierColumn, and the table attributes with values that we specified for these
arguments in the entity command. As mentioned in the Creating persistent entities recipe
of Chapter 2, Persisting Objects Using JPA the elements of the @RooEntity annotation are
used for generating the corresponding *_Roo_Entity.aj AspectJ ITD. The following code
shows the identifier field as defined in the Flight_Roo_Entity.aj AspectJ ITD:

privileged aspect Flight_Roo_Entity
{

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "FLIGHT_ID")
 private Long Flight.flightId;	

}

In this code, the identifier field is annotated with the @Column annotation because of the
presence of the identifierColumn argument in the @RooEntity annotation. The name
flightId of the identifier field is derived from the value of the identifierField
argument of the @RooEntity annotation.

Now, coming to the field reference command that is used for adding an attribute
referring to another object in a relationship. In our next example, the field reference
command adds the reference to the FlightDescription object in the Flight class. As
only a reference to a related object is defined using field reference, you can consider that
it defines many sides of a many-to-one relationship.

The field reference command is similar to the field other (described in Adding
attributes to a Java class recipe of Chapter 1, Getting Started with Spring Roo) command
because both the commands are used for defining a reference to custom Java objects. The
only difference is that the field reference command is specifically meant for defining
JPA relationships between entities. The following code from Flight.java shows the code
introduced by executing the field reference command:

Advanced JPA Support in Spring Roo

110

@NotNull
@ManyToOne
@JoinColumn(name = "FLIGHT_DESC_ID")
private FlightDescription flightDescription;

As we can see from the given code, the field reference command has added a many-to-
one JPA relationship between the Flight and FlightDescription entities.

The following table describes the arguments that can be passed to the field
reference command:

Argument Description
fieldName

(mandatory)

Name of the attribute, which refers to the related entity.
In our example, flightDescription is the name of
the attribute.

type

(mandatory)

Type of the related entity. In our example,
FlightDescription is the type of the related entity.

joinColumnName The column which acts as the foreign key for the
related entity. In our example, the FLIGHT_DESC_ID
is the column in the FLIGHT_TBL (represented by the
Flight JPA entity), which acts as the foreign key to the
FLIGHT_DESCRIPTION_TBL table (represented by the
FlightDescription JPA entity).

cardinality Cardinality of the relationship between JPA entities. By
default, cardinality is MANY_TO_ONE. If you are creating a
one-to-one relationship, then specify ONE_TO_ONE as the
value of the cardinality argument.

fetch JPA fetch strategy for related entity. The possible values
are EAGER and LAZY. The value of the fetch argument
translates into the value of the fetch element of a @
ManyToOne or a @OneToOne annotation.

referencedColumnName Identifies the column in the table of the related entity to
which this join column links. The value of this argument is
used as a value of the referencedColumnName attribute
of the @JoinColumn JPA annotation.

Even though the Roo shell displays MANY_TO_ONE, MANY_TO_
MANY, ONE_TO_MANY, and ONE_TO_ONE as possible values
of the cardinality argument of the field reference
command, it only accepts MANY_TO_ONE and ONE_TO_ONE.
The reason for this is that field reference only makes sense
in case of a one-to-one relationship or when the entity is on the
many side of a many-to-one relationship.

Chapter 3

111

There's more...
Let's now look at how Roo supports testing entities that participate in relationships with other
entities and at how to add a custom dynamic finder method corresponding to the many-to-one
relationship field.

Testing JPA entities that participate in relationships
Testing entities that participate in relationships can get a bit tricky sometimes because
integration tests may not be able to check relationship constraints. For instance, the
testRemove method of FlightDescriptionIntegrationTest (refer to the
FlightDescriptionIntegrationTest_Roo_IntegrationTest.aj AspectJ ITD)
doesn't test for the scenario in which one or more Flight entity instances are associated
with the FlightDescription instance being removed.

To effectively test entities that participate in relationships, you may want to modify
auto-generated test methods and data on demand classes. For instance, in
our example scenario, the data on demand class of the FlightDescription
(refer to the getNewTransientFlightDescription method defined in the
FlightDescriptionDataOnDemand_Roo_DataOnDemand.aj AspectJ ITD) only creates
FlightDescription instances, and doesn't create any associated Flight instances. As
a result of this, the testRemove method will never be able to test a scenario in which one
or more Flight instances are associated with the FlightDescription instance being
removed. So, to perform effective testing of the FlightDescription entity, you'll need to
do the following:

ff Define the getNewTransientFlightDescription method in the
FlightDescriptionDataOnDemand.java class, which creates the
FlightDescription objects that are associated with one or more
Flight instances

ff Define the testRemove method in the
FlightDescriptionIntegrationTesting class to first remove all the related
Flight entities, before attempting to remove the FlightDescription entity

If entities are not related, data on demand classes are independent of each other. But, if the
entities are related, then creating test data becomes a bit of a involved task. For instance,
the Flight entity has a many-to-one relationship with FlightDescription; which means
that the data on demand class for the Flight entity should create records in the FLIGHT_
TBL table, which have a foreign key reference to the FLIGHT_DESC_TBL table records. It is
mandatory to assign a foreign key reference to the Flight records in the FLIGHT_TBL table
because the FlightDescription relationship is annotated with @NotNull.

Advanced JPA Support in Spring Roo

112

Now, the question is how the data on the demand class of the Flight entity can
discover the FlightDescription instances (that were created in the FLIGHT_
DESC_TBL table by the getNewTransientFlightDescription method of the
FlightDescriptionDataOnDemand_Roo_DataOnDemand.aj AspectJ ITD) so
that the Flight instances (created by the getNewTransientFlight method of the
FlightDataOnDemand_Roo_DataOnDemand.aj AspectJ ITD) in the FLIGHT_TBL can
specify the foreign key reference to the FlightDescription instances? It's simple! It can
be done by using the data on the demand class of the FlightDescription entity because
it maintains the list of records that it created in the FLIGHT_DESC_TBL table. This is exactly
what Spring Roo does while generating data on demand classes—it creates dependency
between data on demand classes of related entities to
create test data.

The following code from the FlightDataOnDemand_Roo_DataOnDemand.aj file shows the
Flight data on the demand class:

privileged aspect FlightDataOnDemand_Roo_DataOnDemand
{
 ..
 @Autowired
 private FlightDescriptionDataOnDemand
 FlightDataOnDemand.flightDescriptionDataOnDemand;

 public Flight FlightDataOnDemand.
 getNewTransientFlight(int index)
 {

 sample.roo.flightapp.domain.Flight obj =
 new sample.roo.flightapp.domain.Flight();

 obj.setArrivalDate(obj, index);
 obj.setDepartureDate(obj, index);
 obj.setFlightDescription(obj, index);
 return obj;
 }

 private void FlightDataOnDemand.
 setFlightDescription(Flight obj, int index) {

 sample.roo.flightapp.domain.FlightDescription
 flightDescription = flightDescriptionDataOnDemand.
 getRandomFlightDescription();
 obj.setFlightDescription(flightDescription);
 }
...
}

Chapter 3

113

In the given code, the FlightDescriptionDataOnDemand object
is autowired into the FlightDataOnDemand object. As the Flight
entity has a many-to-one relationship with the FlightDescription,
data on demand class of the Flight entity uses the data on demand
class of the FlightDescription to obtain a reference to an existing
FlightDescription instance and set it in the Flight instance. This
ensures that the test data created during integration testing of the many-to-one
relationship is as per the relationship that exists between related entities.

It is important to note that @NotNull and @ManyToOne(...,optional=false) mean the
same thing. It is possible to specify that a relationship between entities must exist either by
using @NotNull (JSR 303: Bean Validation annotation) or by specifying false as the value
of the optional element of the @ManyToOne JPA annotation. In either case, the data on
demand class of the entity will ensure that the data on demand class of the related entity is
used to enforce a foreign key constraint on the test data created for integration testing.

Dynamic finder method for a many-to-one relationship field
As with other persistent fields, you can use the finder list and finder add commands
to view and add finder method(s) corresponding to the relationship field. For instance, if you
execute the finder list command against the Flight entity, then one of the finders is for
the flightDescription relationship field, as shown here:

~.domain.Flight roo> finder list

..

findFlightsByFlightDescription(FlightDescription flightDescription)

Also, you can use the depth argument of the finder list command to view dynamic finder
methods based on the relationship field and other persistent fields of the entity.

See also
ff The Creating a one-to-many (or many-to-many) relationship between entities recipe

that follows

Advanced JPA Support in Spring Roo

114

Creating a one-to-many (or many-to-many)
relationship between entities

In the previous recipe, we saw how the many-to-one (or one-to-one) relationship is established
between entities using the field reference command. In this recipe, we'll extend the same
example to show how a one-to-many (or many-to-many) relationship can be created using the
field set command. The following class diagram shows a one-to-many relationship between
the FlightDescription and Flight entities:

In the given figure, you'll notice that we have added a flights field of type Set<Flight>
to the FieldDescription entity, reflecting the one-to-many relationship between the
FlightDescription and the Flight entity.

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch03-recipes
directory.

Start the Roo shell from the C:\roo-cookbook\ch03-recipes directory.

Execute the ch03_relationship_many_to_one.roo script, which creates the flight-
app Roo project, sets up Hibernate as a persistence provider, configures MySQL as the
database for the application, creates the Flight and FlightDescription JPA entities,
and defines a many-to-one relationship between the Flight and FlightDescription
entities. If you are using a different database than MySQL or your connection settings are
different than what is specified in the script, then modify the script accordingly.

How to do it...
To create a one to many (or many to many) relationship between the FlightDescription
and Flight entities, follow the steps given here:

1.	 Set the focus of the Roo commands on the FlightDescription entity:
.. roo> focus --class ~.domain.FlightDescription

Chapter 3

115

2.	 Create a one-to-many relationship between the FlightDescription and Flight
entities using the field set command:
~.domain.FlightDescription roo> field set --fieldName flights
--type ~.domain.Flight --cardinality ONE_TO_MANY --mappedBy
flightDescription

How it works...
The field set command is used to create the many side of a one-to-many JPA relationship
within an entity. If the relationship between two entities is many-to-many, then the field set
command is used for both the entities in the relationship. The following table describes some
of the important arguments that can be specified for the field set command:

Argument Description
fieldName

(mandatory)

Name of the relationship field that you want to add to the entity. The type
of the field is java.util.Set.

In case of our example, the fieldName argument is specified as
flights, which results in an additional field named flights to the
FlightDescription entity.

type

(mandatory)

Identifies the type of the related entity (which is on the many side of a
one-to-many relationship) contained in the Set defined by the
fieldName argument.

In our example, the type value is specified as ~.domain.Flight,
which means that the Set (defined by the fieldName argument)
contains elements of type Flight, as shown here:

private Set<Flight> flights = new HashSet<Flight>();

mappedBy The value of the mappedBy argument refers to the owner of the
relationship. It translates into the value of the mappedBy element of the
JPA @OneToMany or @ManyToMany annotation.

In our example, the value of the mappedBy argument is
flightDescription; therefore, the flights field created by the
field set command is annotated with a @OneToMany annotation
whose mappedBy attribute value is flightDescription.

cardinality Cardinality of the relationship between JPA entities. By default, cardinality
is MANY_TO_MANY. As we want to create a one-to-many relationship
between the FlightDescription and Flight entity, the value of the
cardinality argument is specified as ONE_TO_MANY.

fetch TheJPA fetch strategy for related entity. The possible values are EAGER
and LAZY. The value of the fetch argument translates into the value of
the fetch element of the @ManyToMany or @OneToMany annotation.

Advanced JPA Support in Spring Roo

116

Even though the Roo shell displays MANY_TO_ONE, MANY_TO_MANY, ONE_
TO_MANY, and ONE_TO_ONE as possible values of the cardinality
argument of the field set command, it only accepts MANY_TO_MANY
and ONE_TO_MANY. The reason for this—field set only makes sense in
the case of a many-to-many relationship or when the entity is on the one
side of a one-to-many relationship.

The execution of the field set command against the FlightDescription entity results
in the following field added to it:

@OneToMany(cascade = CascadeType.ALL,
 mappedBy="flightDescription")
private Set<Flight> flights = new HashSet<Flight>();

The given code shows that the field set command simply adds a relationship field to
the entity.

There's more...
field set and field reference commands don't provide the option to specify the
cascade effect that applies to the related entity. The behavior of the commands is as
described here:

ff @ManyToMany or @OneToMany annotated JPA relationship field created using the
field set command has the value of the cascade element as CascadeType.
ALL, which means the entity operations such as refresh, persist, merge, and so on,
are propagated to a related entity.

ff @ManyToOne and @OneToOne annotated JPA relationship field created using
the field reference command don't have the cascade element specified,
which means entity operations such as refresh, persist, merge, and so on, are not
propagated to an associated entity.

In scenarios where you want to specify the cascade effect, you can modify the corresponding
JPA annotation in your Java source file.

See also
ff Refer to the Creating a many-to-one (or one-to-one) relationship between entities

recipe to see how a field reference command is used for a creating many-to-one
(or one-to-one) relationship

Chapter 3

117

Creating a mapped superclass
In this recipe, we'll look at how to create an entity which inherits a mapped superclass.
The fields of a mapped superclass are stored into the table to which the inheriting entity
is mapped. The mapped superclass itself is not mapped to any table. In this recipe, we'll
create the Flight entity, which extends the AuditFields class. The AuditFields class
represents a mapped superclass; the fields of AuditFields are stored into the table to
which the Flight entity is mapped.

The following figure shows the relationship between the Flight entity and the AuditFields
mapped superclass:

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch03-recipes
directory.

Start the Roo shell from the C:\roo-cookbook\ch03-recipes directory.

Execute the ch03_jpa_setup.roo script which creates the flight-app Roo project,
sets up Hibernate as persistence provider, and configures MySQL as the database for the
application. If you are using a different database than MySQL or your connection settings are
different than what is specified in the script, then modify the script accordingly.

How to do it...
To create an entity which inherits a mapped superclass, follow the given steps:

1.	 Create the AuditFields class using the entity command and add fields to it:
.. roo> entity --class ~.domain.AuditFields --mappedSuperclass

Advanced JPA Support in Spring Roo

118

~.domain.AuditFields roo> field date --type java.util.Date
--fieldName createdDate

~.domain.AuditFields roo> field date --type java.util.Date
--fieldName modifiedDate

~.domain.AuditFields roo> field string --fieldName createdBy

~.domain.AuditFields roo> field string --fieldName modifiedBy

2.	 Create the Flight entity using the entity command and add fields to it:
.. roo> entity --class ~.domain.Flight --extends ~.domain.
AuditFields --table FLIGHT_TBL

~.domain.Flight roo> field date --type java.util.Date --fieldName
departureDate --column DEPARTURE_DATE

~.domain.Flight roo> field date --type java.util.Date --fieldName
arrivalDate --column ARRIVAL_DATE

How it works...
The mappedSuperclass argument of the entity command is responsible for creating a
mapped superclass. It's a flag type argument; if present, it indicates that the generated
class must be annotated with the @MappedSuperclass JPA annotation. The following code
shows the relevant annotations of the AuditFields mapped superclass, as generated by
the entity command:

@RooJavaBean
@RooToString
@RooEntity(mappedSuperclass = true)
public class AuditFields {..}

As shown in this code, the AuditFields class is annotated with the @RooEntity
annotation. As we saw earlier, the @RooEntity annotation triggers Roo to generate
a *_Roo_Entity.aj AspectJ ITD file corresponding to the AuditFields class. The
mappedSuperclass attribute of the @RooEntity annotation instructs Roo to add a
declaration in the corresponding *_Roo_Entity.aj that annotates the AuditFields class
with the @MappedSuperclass annotation (instead of the @Entity JPA annotation).

When an entity class extends a mapped superclass, the Roo generates a *_Roo_Entity.
aj Aspect ITD file corresponding to the mapped superclass and defines an identifier field
(annotated with @Id JPA annotation), along with methods such as persist, merge,
refresh, and so on. (that we saw in the Creating persistent entities recipe of Chapter 2).
In this case, the inheriting entity's *_Roo_Entity.aj file only defines the static count and
finder methods for the entity.

Chapter 3

119

The following code listing shows the AuditFields_Roo_Entity.aj file:

privileged aspect AuditFields_Roo_Entity
{
 declare @type: AuditFields: @MappedSuperclass;

 @PersistenceContext
 transient EntityManager AuditFields.entityManager;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "id")
 private Long AuditFields.id;

 @Version
 @Column(name = "version")
 private Integer AuditFields.version;
 @Transactional
 public void AuditFields.persist()
 {
 if (this.entityManager == null)
 this.entityManager = entityManager();
 this.entityManager.persist(this);
}

 @Transactional
 public void AuditFields.remove() {...}

 public static final EntityManager
 AuditFields.entityManager() {...}
 ...
}

The given code shows that the AuditFields_Roo_Entity.aj ITD annotates the
AuditFields class with the @MappedSuperclass annotation. Also, notice that the ITD
doesn't annotate the AuditFields class with @Entity and @Table annotation. This code
shows that the *_Roo_Entity.aj ITD of a mapped superclass is the same as that of an
entity—consisting of identifier and version definitions, persist, remove, and so on methods,
and a method to obtain the JPA EntityManager instance.

As the Flight entity inherits from the AuditFields class, Roo generates a Flight_Roo_
Entity.aj ITD that doesn't contain identifier and version definitions or persistence methods
for persisting, refreshing, and merging the

Flight entity, as shown in the following code listing:

privileged aspect Flight_Roo_Entity
{
 declare @type: Flight: @Entity;

Advanced JPA Support in Spring Roo

120

 declare @type: Flight: @Table(name = "FLIGHT_TBL");
 public static long Flight.countFlights() {..}
 public static List<Flight> Flight.findAllFlights(){..}
 public static Flight Flight.findFlight(Long id) {..}
 public static List<Flight> Flight.findFlightEntries(
 int firstResult, int maxResults) {..}
}

The given code shows that the Flight entity contains only the find and count methods
and inherits the identity, version definitions, and persistence related methods from the
AuditFields mapped superclass. As in the case of any other JPA entity, the ITD annotates
the Flight class with the @Entity and the @Table annotations.

There's more...
Even though the mapped superclass contains the identifier definition, you can override it
in the inheriting entity by using @AttributeOverride or @AttributeOverrides JPA
annotation. The following code shows how the Flight entity can override the identifier
definition in the AuditFields class to map the identifier field to the FLT_ID column of
FLIGHT_TBL table:

@RooJavaBean
@RooToString
@RooEntity(table="FLIGHT_TBL")
@AttributeOverride(name="id", column=@Column(name="FLT_ID"))
public class Flight extends AuditFields {..}

Creating @Embeddable annotated classes
In the last recipe, we saw that the Flight entity inherits the AuditFields mapped
superclass. You could have modelled the Flight entity such that it contained the
AuditFields instance in the Flight entity itself instead of inheriting from it. To do so, you
need to create an AuditFields class annotated with @Embeddable JPA annotation, define
the reference to the AuditFields class in the Flight entity, and annotate the referencing
field with the @Embedded JPA annotation. Let's see how we can do this in Roo:

1.	 Create the AuditFields class using the entity command and add fields to it as
shown here:
.. roo> embeddable --class ~.domain.AuditFields

~.domain.AuditFields roo> field date --type java.util.Date
--fieldName createdDate

~.domain.AuditFields roo> field date --type java.util.Date
--fieldName modifiedDate

~.domain.AuditFields roo> field string --fieldName createdBy

~.domain.AuditFields roo> field string --fieldName modifiedBy

Chapter 3

121

2.	 Create the Flight entity using the entity command and add fields to it as shown
here:
.. roo> entity --class ~.domain.Flight --table FLIGHT_TBL

~.domain.Flight roo> field date --type java.util.Date --fieldName
departureDate --column DEPARTURE_DATE

~.domain.Flight roo> field date --type java.util.Date --fieldName
arrivalDate --column ARRIVAL_DATE

3.	 Using the field embedded command, define AuditFields as an embedded
object in the Flight entity as shown here:
~.domain.Flight roo> field embedded --fieldName auditFields --type
~.domain.AuditFields

The following code shows the AuditFields class generated by the embeddable command:

@RooJavaBean
@RooToString
@Embeddable
public class AuditFields
{
 @Temporal(TemporalType.TIMESTAMP)
 @DateTimeFormat(style = "S-")
 private Date createdDate;

 @Temporal(TemporalType.TIMESTAMP)
 @DateTimeFormat(style = "S-")
 private Date modifiedDate;

 private String createdBy;

 private String modifiedBy;
}

The given code shows that the AuditFields class is annotated with the JPA @Embeddable
annotation. It is not annotated with the @RooEntity annotation, which means that it doesn't
contain identifier and version definitions, and persistence related methods.

The following code shows the Flight entity:

@RooJavaBean
@RooToString
@RooEntity(table = "FLIGHT_TBL")
public class Flight
{
...
 @Embedded
 private AuditFields auditFields;
}

Advanced JPA Support in Spring Roo

122

This code shows that the Flight entity contains a reference to the AuditFields class. The
AuditFields reference is added by the field embedded command and it is annotated
with the @Embedded JPA annotation.

If you want to override the mapping of the fields defined in the AuditFields class, you can
use the @AttributeOverrides and @AttributeOverride JPA annotations. The following
code snippet shows how these annotations can be used in the Flight entity to map the
createdDate and modifiedDate fields of the AuditFields class to the C_DATE and M_
DATE columns of the table to which the Flight entity maps:

@Embedded
@AttributeOverrides({
 @AttributeOverride(name="createdDate",
 column=@Column(name="C_DATE")),
 @AttributeOverride(name="modifiedDate",
 column=@Column(name="M_DATE"))
})
private AuditFields auditFields;

See also
ff Refer to the Creating persistent entities recipe of Chapter 2 to see how to create

persistent entities, which do not inherit from a mapped superclass

Customizing Roo-generated
identifier definition

So far we have seen recipes where the JPA entity identifier is generated by Spring
Roo. By default, entities created by Roo specify the identifier generation strategy as
GENERATIONTYPE.AUTO, which means that the persistence provider will choose an
appropriate strategy for the database. You may want to customize this identifier generation
strategy based on your application's requirements.

In this recipe, we'll look at how we can modify a Roo-generated identifier definition to use a
database table for generating identifier values.

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch03-recipes directory.

Start the Roo shell from the C:\roo-cookbook\ch03-recipes directory.

Chapter 3

123

Execute the ch03_jpa_setup.roo script which creates the flight-app Roo project,
sets up Hibernate as a persistence provider, and configures MySQL as the database for the
application. If you are using a different database than MySQL or your connection settings are
different than what is specified in the script, then modify the script accordingly.

Now, create a new Flight entity with a Long type identifier field, as shown here:

roo> entity --class ~.domain.Flight --identifierColumn FLIGHT_ID
--identifierField flightId --identifierType java.lang.Long --table
FLIGHT_TBL

The following code from the Flight_Roo_Entity.aj file shows the identifier definition
generated by Spring Roo for the Flight entity:

privileged aspect Flight_Roo_Entity
{
...
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 @Column(name = "FLIGHT_ID")
 private Long Flight.flightId;

 public Long Flight.getFlightId()
 {
 return this.flightId;
 }

 public void Flight.setFlightId(Long id)
 {
 this.flightId = id;
 }
...
}

Now, lets say that we want the Flight entity's identifier value generated using a database
table named ID_GENERATOR. This means we need to annotate our flightId field with the
@TableGenerator and change the identifier generation strategy to GenerationType.
TABLE.

How to do it...
You can override the Roo-generated identifier definition by defining the identifier (with the
same name) in the entity's Java source file (and not in the *_Roo_Entity.aj file). The
following code shows the modified Flight.java file containing the flightId identifier
definition:

...
public class Flight

Advanced JPA Support in Spring Roo

124

{
...
 @Id
 @TableGenerator(name = "Flight_Gen", table = "ID_GENERATOR",
 pkColumnName = "ID_COLUMN", valueColumnName = "ID_VALUE",
 pkColumnValue = "FLIGHT_ID_VALUE", initialValue = 10,
 allocationSize=100)
 @GeneratedValue(strategy = GenerationType.TABLE,
 generator = "Flight_Gen")
 private Long flightId;

 public Long getFlightId()
 {
 return this.flightId;
 }
 public void setFlightId(Long flightId)
 {
 this.flightId = flightId;
 }
...
}

How it works...
The @TableGenerator JPA annotation specifies the details of the table used for primary key
generation. The @GeneratedValue JPA annotation specifies the strategy used for generating
primary key values. The GenerationType.TABLE indicates that the value of the flightId
primary key is obtained from the database table identified by the generator element of the
@GeneratedValue annotation.

When you an define identifier in the Java source file of an entity, Roo automatically removes
the identifier definition from the corresponding *_Roo_Entity.aj AspectJ ITD file. If you
now check the Flight_Roo_Entity.aj file, then you will find that the flightId definition
has been removed from it.

There's more...
Roo's entity command provides limited support for creating different types of identifier
definitions. In most scenarios, you will possibly find it compelling to customize the Roo-
generated identifier definition by defining the entity identifier in the entity's Java source file.

Chapter 3

125

See also
ff Refer to the Creating persistent entities recipe in Chapter 2 to know more about

creating JPA entities using Spring Roo

Generating database metadata
Roo supports creating JPA entities by introspecting an existing database. If you want Roo
to create JPA entities for an existing database, then you may want to know the database
metadata used as an input by Roo to create JPA entities corresponding to database tables.
In this recipe, we'll look at the database introspect command, which lets us view the
database metadata in XML format. In the next recipe, Creating entities from a database, we
will see how this metadata is used by Roo to create JPA entities.

The following figure shows tables and views of a database that we'll introspect using the
database introspect command:

In the given figure, the FLIGHT_TBL, FLIGHT_DESC_TBL, and CUSTOMER_TBL represent
database tables, and the FLIGHTS_VIEW represents a database view. The relationship
between the FLIGHT_TBL and FLIGHT_DESC_TBL tables is many-to-one. The CUSTOMER_
TBL uses a composite primary key (consisting of the CUST_ID and CUST_DOB columns) to
uniquely identify a customer. The FLIGHTS_VIEW database view combines data from the
FLIGHT_TBL and FLIGHT_DESC_TBL tables based on the FLIGHT_DESC_ID column.

Getting ready
Exit the Roo shell and delete the contents of the C:\roo-cookbook\ch03-recipes
directory.

Start the Roo shell from the C:\roo-cookbook\ch03-recipes directory.

Advanced JPA Support in Spring Roo

126

Execute the ch03_jpa_setup.Roo script which creates the flight-app Roo project,
sets up Hibernate as a persistence provider, and configures MySQL as the database for the
application. If you are using a different database than MySQL or your connection settings are
different than what is specified in the script, then modify the script accordingly.

Execute the myflightappdb.sql SQL script (that accompanies this book) against the
MySQL database. The myflightappdb.sql creates a database named myflightappdb
consisting of the FLIGHT_TBL, FLIGHT_DESC_TBL, and CUSTOMER_TBL tables and a
FLIGHT_VIEW database view, as shown earlier in this recipe. Ensure that the database.
properties file of your Roo project contains the settings to connect to this newly created
myflightappdb database.

For the purpose of this recipe, we'll be using the database introspect command to view
the metadata of a myflightappdb database created in MySQL database. Now, you're all set
to view metadata related to the database you've configured in the database.properties
file of your Roo project.

How to do it...
To use the database introspect command to view the database metadata, follow the
steps given here:

1.	 To enable downloading of the driver for the database which we are about to
introspect, execute the download accept terms of use command, as shown here:
roo> download accept terms of use

2.	 Execute the database introspect command, as shown here:
roo> database introspect --schema no-schema-required --file mydb.
xml --enableViews

Located add-on that may offer this JDBC driver

1 found, sorted by rank; T = trusted developer; R = Roo 1.1
compatible

ID T R DESCRIPTION -----

01 Y Y 5.1.13.0001 #jdbcdriver driverclass:com.mysql.jdbc.Driver.
This...

[HINT] use 'addon info id --searchResultId ..' to see details
about a search result

[HINT] use 'addon install id --searchResultId ..' to install a
specific search result, or

[HINT] use 'addon install bundle --bundleSymbolicName TAB' to
install a specific add-on version

Chapter 3

127

3.	 Executing the database introspect command for the first time suggests the
database driver that we need to download to perform the introspection of the
myflightappdb database in MySQL. So, download the suggested driver using the
addon install command, as shown here:
roo> addon install id --searchResultId 01

Target resource(s):

Spring Roo - Wrapping - mysql-connector-java (5.1.13.0001)

Deploying...done.

Successfully installed add-on: Spring Roo - Wrapping - mysql-
connector-java [version: 5.1.13.0001]

4.	 Re-execute the database introspect command as shown here:
roo> database introspect --schema no-schema-required --file mydb.
xml --enableViews

Database metadata written to file C:\roo-cookbook\ch03-recipes\
mydb.xml

5.	 Now, open the generated mydb.xml file to view the database metadata.

How it works...
The database introspect command makes use of the connection properties defined in
the database.properties file of the Roo project to create metadata information. This
implies that you can't simultaneously introspect multiple databases using the database
introspect command. The command accepts the following arguments:

ff schema (mandatory): It is the database schema which you want to introspect. If
you want Roo to connect to the database and provide the list of schemas available,
then simply press TAB after entering the--schema argument on the command line.
As some of the databases such as MySQL and Firebird don't support the concept
of schemas, pressing TAB after entering the--schema argument on the command
line will result in substituting no-schema-required as the value of the schema
argument.

ff file (optional): It is the file to which you want to save the database metadata. If you
don't specify this argument, the metadata is displayed directly in the Roo console.

ff enableViews (optional): It is the flag that indicates whether to include database
views in the generated metadata. By default database views are not included in the
generated metadata.

Advanced JPA Support in Spring Roo

128

The output of the database introspect command is an XML file (assuming a file
argument was specified), which contains details of database tables, including fields and their
type, primary key, foreign key, and so on. If you specify the enableViews argument, the
generated metadata includes database views also.

The following XML fragment shows how the database metadata is presented in the
mydb.xml file:

<database name="no-schema-required">
 <table name="customer_tbl">
 <column name="cust_id" primaryKey="true"
 required="true" scale="0" size="10" type="4,INT"/>
 ...
 <unique name="PRIMARY">
 <unique-column name="cust_id"/>
 <unique-column name="cust_dob"/>
 </unique>
 </table>
 <table name="flight_desc_tbl">
 <column name="flight_desc_id" primaryKey="true"
 required="true" scale="0" size="19" type="-5,BIGINT"/>
 ...
 <foreign-key foreignTable="flight_tbl"
 name="FK7E26BB6F365DD59" onDelete="none"
 onUpdate="none">
 <option key="exported" value="true"/>
 <reference foreign="flight_desc_id"
 local="flight_desc_id"/>
 </foreign-key>
 <unique name="PRIMARY">
 <unique-column name="flight_desc_id"/>
 </unique>
 </table>
 <table name="flight_tbl">
 ...
 </table>

 <table name="flights_view">
 <column name="origin_city" primaryKey="false"
 required="true" scale="0" size="255" type="12,VARCHAR"/>
 ...
 </table>
</database>

Chapter 3

129

The following table describes the significance of the elements in the given XML:

XML element Description
<table> Describes a database table or a database view. The name

attribute specifies the name of the table or view which the
<table> element describes.

<column> The <column>, sub-element of the <table> describes the details
of a column in the database table or view. The name attribute
identifies the column name. The primaryKey attribute indicates if
the column is one of the primary keys of the table or view.

<foreignKey> Specifies the details of an imported or exported foreign key of a
table. The foreignTable attribute specifies the name of the table
containing the imported or exported foreign key. The <option> sub-
element specifies whether the foreign key is imported or exported
by the table. The <reference> sub-element specifies the foreign
key column and the local column to which the imported or exported
foreign key maps.

<unique> Describes the unique constraint that applies to the table or view. If
the name attribute value is PRIMARY, then it means that the unique
constraint describes the primary key of the table.

There's more...
The metadata generated by Roo is used as input for generating JPA entities, as we'll see in the
Creating entities from database recipe. Errors may be reported when you use the database
introspect command if the META-INF/spring/database.properties file is not
found or the connection properties defined in the database.properties are incorrect. The
following table shows error messages that might be reported by the database introspect
and the corresponding resolution:

Error message Resolution
Connection properties must
not be null or empty

Indicates that the database.properties file was
not found in the META-INF/spring folder

Unable to get connection
from driver

Indicates that the database.properties file was
found but it doesn't correctly define the connection
properties. Check if the username, password, and
other connection properties are correctly specified.

Advanced JPA Support in Spring Roo

130

Testing database connection
As the database introspect command connects to the database
to generate metadata, you can also use this command to validate the
database connection after you've executed the persistenceXsetup
command.

See also
ff Refer to the Creating entities from a database recipe to see how the database

metadata is used for auto-generating JPA entities

Creating entities from a database
In many application development scenarios, an application needs to be designed for an
existing database or the application development starts after the database has been created.
To support such scenarios, Roo provides the database reverse engineer command
to auto-generate JPA entities from database metadata. As we'll see later in this recipe, Roo
provides incremental database reverse engineering, that is, you can execute the database
reverse engineer command each time the database changes occur and leave it up to Roo
to update JPA entity definitions based on the changes in the database.

The following figure shows tables of the database that we will reverse engineer using the
database reverse engineer command:

Getting ready
Refer to the Generating database metadata recipe to create the Roo project, to create the
myflightappdb database, tables, and views in MySQL, and install the JDBC driver for
MySQL.

Chapter 3

131

How to do it...
To create entities from a database, execute the database reverse engineer command as
shown here:

.. roo> database reverse engineer --package ~.domain.entity.autogen
--schema no-schema-required --enableViews --testAutomatically

Created SRC_MAIN_RESOURCES\dbre.xml

Updated SRC_MAIN_RESOURCES\META-INF\persistence.xml

Created ..\domain\entity\autogen\FlightDescTbl.java

...

Created ..\domain\entity\autogen\CustomerTbl.java

Created ..\domain\entity\autogen\CustomerTblPK_Roo_Identifier.aj

Created ..\domain\entity\autogen\CustomerTblPK.java

...

Created ..\domain\entity\autogen\FlightTbl.java

Created ..\domain\entity\autogen\FlightTbl_Roo_Entity.aj

Created ..\domain\entity\autogen\FlightTbl_Roo_DbManaged.aj

Created ..\domain\entity\autogen\FlightTbl_Roo_Configurable.aj

Created ..\domain\entity\autogen\FlightTbl_Roo_ToString.aj

...

Created ..\domain\entity\autogen\FlightsView.java

Created ..\domain\entity\autogen\FlightsViewPK.java

Created ..\domain\entity\autogen\FlightsViewPK_Roo_Identifier.aj

...

As evident from the output, the JPA entities are auto-generated by Spring Roo.

How it works...
The database reverse engineer command accepts the following arguments:

ff package: It is an optional argument that specifies the package in which JPA entities
are created by Roo. If this attribute is not specified, JPA entities are created in the top-
level package of the Roo project.

ff schema: It is a mandatory argument for specifying the database schema name. As
some of the databases such as MySQL and Firebird don't support the concept of
schemas, pressing TAB after entering --schema on the command line will result in
substituting no-schema-required as the value of the schema argument.

Advanced JPA Support in Spring Roo

132

ff testAutomatically: It is an optional argument, which instructs Roo to
create integration tests for the JPA entities created via the database reverse
engineer command.

ff enableViews: It is an optional argument, which instructs Roo to reverse the
engineer database views along with database tables. If specified, Roo creates a JPA
entity corresponding to each database view.

ff includeTables: It is an optional argument, which specifies the tables for which JPA
entities are created by Roo. By default the JPA entities corresponding to all the tables
in the database are created by Roo. The value of the includeTables argument
specifies a space-separated list of tables enclosed within double quotes, as shown
here:
.. roo> database reverse engineer --schema no-schema-required
--includeTables "FLIGHT_TBL FLIGHT_DESC_TBL"

ff excludeTables: It is an optional argument, which specifies the tables for which the
JPA entities must not be created by Roo. The value of the excludeTables argument
specifies a space-separated list of tables enclosed within double quotes, as shown
here:
.. roo> database reverse engineer --schema no-schema-required
--excludeTables "FLIGHT_TBL FLIGHT_DESC_TBL"

Let's now look at some of the interesting things that happened when we executed the
database reverse engineer command:

ff A dbre.xml file is generated in the SRC_MAIN_RESOURCES directory of the Roo
project. This file contains database metadata in XML format, as described in the
Generating database metadata recipe.

ff A Java class is generated corresponding to each of the tables and views in the
database. The name of the Java source file is <table-name>.java, where the
table-name is the name of the database table in the camel-case with underscores in
the table name removed. Each Java class represents a JPA entity corresponding to a
database table or view.

ff The META-INF/persistence.xml file is updated. Roo modifies (in case you
are using Hibernate as the JPA provider) the value of the property hibernate.
hbm2ddl.auto from create to validate, so that the database is not modified when
Hibernate SessionFactory is created. This makes sense because JPA entities in
the application have been created from the database and not otherwise.

ff A *_Roo_DbManaged.aj ITD file is created corresponding to each JPA entity created
by Roo. It defines fields and relationships derived for the JPA entity from the database
metadata. As this ITD file contains fields and relationship information, if you reverse
engineer the database multiple times, the changes corresponding to the database
are restricted to this ITD file, making incremental database reverse engineering
possible in Roo applications.

Chapter 3

133

ff If the primary key of a database table consists of multiple columns, Roo creates
a composite primary key class and a *_Roo_Identifier.aj AspectJ ITD. For
instance, in the case of CUSTOMER_TBL, Roo generates a CustomerTblPK.java
and CustomerTblPK_Roo_Identifier.aj AspectJ ITD file.

ff If a database table or view doesn't define a primary key, Roo creates a composite
primary key class consisting of all the fields in the database table or view. For
instance, the FLIGHTS_VIEW doesn't define a primary key; therefore, Roo creates
the FlightsViewPK.java composite primary key class.

The following code shows the FlightDescTbl_Roo_DbManaged.aj ITD, which
corresponds to the FLIGHT_DESC_TBL table:

privileged aspect FlightDescTbl_Roo_DbManaged
{

 @OneToMany(mappedBy = "flightDescId")
 private Set<FlightTbl> FlightDescTbl.flightTbls;
 @Column(name = "destination_city",
 columnDefinition = "VARCHAR" length = 255)
 @NotNull
 private String FlightDescTbl.destinationCity;
 @Column(name = "origin_city", length = 255)
 @NotNull
 private String FlightDescTbl.originCity;
 ..
}

The given code shows that the *_Roo_DbManaged.aj AspectJ ITD contains fields and
relationship information derived from the database metadata. This is different from what we
saw in earlier recipes where the JPA fields and relationships are contained in Java source files
and not in AspectJ ITD files. Also, notice the presence of the @NotNull JSR 303 annotation,
which is derived from the fact that the corresponding database column is defined as non-
nullable.

As with other AspectJ ITDs, the creation of the *_Roo_DbManaged.aj is managed by a Roo
annotation, @RooDbManaged, as shown here for the FlightDescTbl.java class:

@RooJavaBean
@RooToString
@RooEntity(table = "flight_desc_tbl")
@RooDbManaged(automaticallyDelete = true)
public class FlightDescTbl {
}

Advanced JPA Support in Spring Roo

134

In the given code, the @RooDbManaged annotation indicates that the FlightDescTbl
entity is managed by the database reverse engineering process of Roo. As shown in
this code, the FlightDescTbl class is empty and only contains class-level annotations.
The @RooDbManaged annotation controls the creation of the *_Roo_DbManaged.aj ITD.
The automaticallyDelete attribute of the @RooDbManaged annotation specifies whether
the entity should be removed if the table is removed from the database. The default value
is true, which means that the JPA entity will be removed from the Roo project if you
delete the corresponding database table followed by executing the database reverse
engineer command.

There's more...
Let's now look at how we can install JDBC drivers for Oracle and DB2 databases, override
JPA fields and relationships generated by the database reverse engineering process, perform
incremental database reverse engineering, and how composite primary cases are handled
by Roo.

Installing JDBC drivers for Oracle and DB2
The database reverse engineering process of Roo requires a JDBC driver to be available as
an OSGi bundle. Roo provides an addon create wrapper command, which you can use
to wrap the JDBC driver inside an OSGi compliant bundle for use with the database reverse
engineering process. Roo provides OSGi compliant bundles for most of the JDBC drivers,
which can be installed by using the addon install command. As open-source JDBC drivers
for Oracle and DB2 are not available, to use Roo's database reverse engineering process
against these databases, you first need to convert the non-OSGi JDBC driver JAR files of these
databases into OSGi compliant bundles.

In Chapter 7, we'll look at how the addon create wrapper command is used to convert a
non-OSGi JDBC driver JAR or any other Maven artifact into OSGi compliant bundles.

Modifying auto-generated JPA fields/relationships
If you want to make a modification to the JPA fields and relationships generated by the
database reverse engineering process, then define them in the JPA entity class itself. The field
and relationship that you define in the JPA entity class will be automatically removed by Roo
from the corresponding *_Roo_DbManaged.aj ITD file.

If you define all the JPA fields and relationships in your entity
class, then Roo will automatically delete the corresponding
*_Roo_DbManaged.aj ITD file.

Chapter 3

135

Incremental database reverse engineering
You can use the database reverse engineering process throughout the lifecycle of your project.
If modifications are made to the database, then execute the database reverse engineer
command, without using the schema and package arguments. The database reverse
engineering process updates the dbre.xml file, which in turn results in the addition, deletion,
and modification of JPA entities, their fields and relationships.

The dbre.xml file is managed by Roo but you can modify it, before modifying the database,
to see the impact of changes to the Roo-generated JPA entities. It should be noted that when
you re-execute the database reverse engineer command, then your custom changes to
the dbre.xml file will be overwritten.

Database table with composite primary key
If your database table has a composite primary key, then the database reverse engineering
process takes care of creating a primary key class which gets annotated with JPA @
Embeddable annotation (via the *_Roo_Identifier.aj ITD). The primary key class is then
introduced into the JPA entity class (via the *_Roo_Entity.aj ITD) and is annotated with
the JPA @EmbeddedId annotation.

See also
ff Refer to the Generating database metadata recipe to see how to view metadata

information of database tables

4
Web Application

Development with
Spring Web MVC

In this chapter, we will cover:

ff Auto-generating Spring MVC controllers and JSPX views from JPA entities

ff Packaging, deploying, and using Roo-generated Spring MVC application

ff Modifying Roo-generated views

ff Round-tripping support in Spring Roo for web controllers and views

ff Creating a Spring MVC controller for a specific JPA entity

ff Manually creating a Spring MVC controller for a JPA entity

ff Adding static views to Roo-generated web applications

ff Internationalizing Roo-generated web applications

ff Adding or modifying themes generated by Roo

ff Adding JSON support to domain objects and controllers

ff Creating and executing Selenium tests for web controllers

Web Application Development with Spring Web MVC

138

Introduction
In Chapter 2, Persisting Objects Using JPA and Chapter 3, Advanced JPA Support in Spring
Roo, we looked at how domain layer of an application can be quickly developed using a JPA
add-on of Spring Roo. In this chapter, we'll look at how Spring Roo simplifies developing the
web layer of an enterprise application using Spring Web MVC. We'll also look at how Spring
Roo lets you quickly test your web application locally.

You can use Roo in developing your enterprise application's
persistence layer even if the web framework that you want
to use is not supported by Roo. For instance, if you are
developing a web application using Wicket, you can still use
Roo to generate the persistence layer of your application.
Similarly, if you are developing a Swing application, you can
use Roo for creating the persistence layer.

Auto-generating Spring MVC controllers and
JSPX views from JPA entities

Spring Roo comes with a Web MVC add-on, which supports creating Spring MVC controllers
and JSPX views from Roo-managed JPA entities. Spring Roo provides multiple commands,
processed by a Web MVC add-on, to help with the auto-generation of the Spring MVC
controllers and JSPX views. By default the controllers generated by Roo support creating,
reading, updating, and deleting JPA entities from the data store.

The following commands are provided by Roo for creating controllers:

ff controller all: It is used for scaffolding a Spring Web MVC controller for
each JPA entity in the application for which a controller doesn't already exist.
The controller all command doesn't give you any control over application
functionality supported by generated controllers.

ff controller scaffold: It is used for scaffolding a Spring Web MVC controller
corresponding to a JPA entity. Unlike controller all command, the controller
scaffold command provides optional arguments, which allow you to control some
of the application functionalities supported by the generated controller. For instance,
you can specify that methods for creating, updating, and deleting the JPA entity are
not generated for the controller.

ff controller class: It is used for manually creating a controller. The controller
class command generates the skeleton of a controller, leaving the implementation
of the controller to the developer.

Chapter 4

139

In this recipe, we'll look at the controller all command and discuss in detail what
happens behind the scenes when you execute the controller all command. Creating a
Spring MVC controller for a specific JPA entity recipe shows usage of the controller scaffold
command and manually creating a Spring MVC controller for a JPA entity recipe shows how to
use the controller class command to manually implement a controller.

Getting ready
Create a sub-directory ch04-recipe inside the C:\roo-cookbook directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

Execute the ch04_web-app.roo script that creates a flight-app Roo project, sets up
Hibernate as a persistence provider, configures MySQL as the database for the application,
creates Flight and FlightDescription JPA entities, and defines a many-to-one
relationship between Flight and FlightDescription entities. If you are using a different
database than MySQL or your connection settings are different than what is specified in the
script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

How to do it...
To create views using the controller all command follow the given steps:

1.	 Execute controller all command, specifying ~.web as the value of the package
argument, as shown here:

.. roo> controller all --package ~.web

Created SRC_MAIN_JAVA\..\web

Created SRC_MAIN_JAVA\..\web\FlightDescriptionController.java

Created SRC_MAIN_WEBAPP\WEB-INF\spring

Created SRC_MAIN_WEBAPP\WEB-INF\spring\webmvc-config.xml

Created SRC_MAIN_JAVA\..\web\ApplicationConversionServiceFacto

ryBean.java

Created SRC_MAIN_JAVA\..\web\FlightDescriptionController_Roo_C

ontroller.aj

Created SRC_MAIN_JAVA\..\web\
ApplicationConversionServiceFactoryBean_Roo_ConversionService.
aj

Created SRC_MAIN_JAVA\..\web\FlightDescriptionController_Roo_
Controller_Finder.aj

..

Created SRC_MAIN_WEBAPP\images

Web Application Development with Spring Web MVC

140

Created SRC_MAIN_WEBAPP\styles

Created SRC_MAIN_WEBAPP\WEB-INF\classes

Created SRC_MAIN_WEBAPP\WEB-INF\classes\alt.properties

Created SRC_MAIN_WEBAPP\WEB-INF\classes\standard.properties

Created SRC_MAIN_WEBAPP\WEB-INF\layouts

Created SRC_MAIN_WEBAPP\WEB-INF\layouts\default.jspx

Created SRC_MAIN_WEBAPP\WEB-INF\layouts\layouts.xml

Created SRC_MAIN_WEBAPP\WEB-INF\views

Created SRC_MAIN_WEBAPP\WEB-INF\views\flightdescriptions

Created SRC_MAIN_WEBAPP\WEB-INF\views\flights

The output of the controller all command shows the creation of JSPX views,
controllers, directories for images, styles, and so on. Note that only a partial output
has been shown in the given code for brevity.

2.	 As many dependencies are added to the pom.xml file of the flight-app project
during processing of the controller all command, execute the perform eclipse
command of Roo to update the .classpath file of the Eclipse project:

..roo> perform eclipse

3.	 Import the flight-app project into the Eclipse IDE to view the files and directories that
form part of the application.

How it works...
As the output of executing the controller all command shows, controllers, views, and so
on, are created. To summarize, the following table describes the various directories that are
created in the flight-app Roo project:

Directory Description
sample\roo\
flightapp\web folder
in SRC_MAIN_JAVA

Contains the scaffolded controllers (and their ITDs) corresponding
to each JPA entity in the application. This folder is created
based on the value of the package argument of the controller
all command.

SRC_MAIN_WEBAPP\
WEB-INF\spring

Contains the web application context XML file for the
flight-app application that is loaded by Spring's
DispatcherServlet. The name of the web application
context XML file is webmvc-config.xml.

SRC_MAIN_WEBAPP\
images

Contains images used by the JSPX views generated by Roo.

SRC_MAIN_WEBAPP\
styles

Contains CSS stylesheets used by the JSPX views generated by
Roo. By default it contains two CSS stylesheets: standard.css
and alt.css.

Chapter 4

141

Directory Description
SRC_MAIN_WEBAPP\
WEB-INF\classes

Roo creates the following two property files, which identify
the resources that make up a theme: standard.properties
and alt.properties.

SRC_MAIN_WEBAPP\
WEB-INF\layouts

Contains a tiles configuration XML file, layouts.xml, which
contains tiles definitions. It also contains a layout template JSPX
file, default.jspx, which is used as a template by the tiles
definitions in the layouts.xml file.

SRC_MAIN_WEBAPP\
WEB-INF\views

Contains non-JPA entity specific JSPX views of the Roo-generated
web application. For instance, it contains an index.jspx file,
which shows the home page of the flight-app application and
an uncaughtException.jspx file, which is rendered when an
unexpected exception occurs in the web application. To simplify
creating a custom home page of the web application, the directory
also contains an index-template.jspx file.

The directory also contains a tiles configuration XML file, views.
xml, which extends the tiles definitions defined in the layouts.
xml file. The tiles definitions in the views.xml file are meant for
showing non-JPA entity specific JSPX pages such as the home page
and the page when unexpected exceptions occur during request
processing. You should note that a Roo-generated web application
makes use of Apache Tiles 2 framework to simplify
developing user interfaces.

SRC_MAIN_WEBAPP\
WEB-INF\views\
flightdescriptions

and

SRC_MAIN_WEBAPP\
WEB-INF\views\
flights

flightDescriptions and flights directories contain
JSPX views corresponding to FlightDescription and
Flight JPA entities, respectively. Each directory also contains
a tiles configuration XML file, views.xml, which contains tiles
definitions for showing JPA entity specific web pages. By default,
Roo creates JSPX views for performing CRUD operations on a
JPA entity.

SRC_MAIN_WEBAPP\
WEB-INF\tags

Contains tags that are installed by Roo to simplify developing
JSPs. The tags are XML-only in nature, that is, they are not backed
by a Java source code, making it possible to easily modify the
behavior of these tags. We will see in the round-tripping support
in Spring Roo for web controllers and the views recipe how the id
attribute of these tags helps achieve round-tripping support in a
Roo-generated web application.

Web Application Development with Spring Web MVC

142

Directory Description
SRC_MAIN_WEBAPP\
WEB-INF\i18n

Contains resource bundles for the web user interface to support
internationalization. By default Roo generates a messages.
properties and an application.properties file.

The messages.properties file contains translations that are
applicable to all web user interfaces generated by Roo.

The application.properties file contains application-
specific translations. This is the reason why you will find
translations containing words such as Flight and Flight
Description only in the application.properties file.

The modifying Roo-generated views and The internationalizing
Roo-generated web application recipes describe in detail how
these property files are managed by Roo and the role they play in
internationalizing a Roo-generated web application.

Apart from creating directories and files, first-time execution of the controller all
command also converts the nature of the Roo project from a normal Java project to a web
project. The change in the nature of the project is reflected by the <packaging> element of
the pom.xml file of the flight-app project, as shown here:

<project xmlns="http://maven.apache.org/POM/4.0.0 ..>
 ..
 <artifactId>flight-app</artifactId>
 <packaging>war</packaging>
 <version>0.1.0.BUILD-SNAPSHOT</version>
 <name>flight-app</name>
</project>

The value war of the <packaging> element suggests that the project is a web project and
not a normal Java project. A normal Java project has the value of a <packaging> element as
jar. We will see in Packaging your web application recipe how the value of a <packaging>
element affects the output of a perform package Roo command.

The first-time execution of a controller all command also results in the creation of a
web.xml file—the web application deployment descriptor.

We will now look in detail at the various artifacts generated by a controller all
command. Let's first look at the configuration information contained in a Roo-generated
web.xml file.

Configuration information defined in web.xml
The web.xml file configures DispatcherServlet, root web application context, exception
pages, and so on. In this section, we'll look at the configurations defined in the web.xml file
of the flight-app project:

Chapter 4

143

contextConfigLocation initialization parameter
The contextConfigLocation context initialization parameter identifies Spring's root web
application context XML file(s), as shown here:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath*:META-INF/spring/applicationContext*.xml
 </param-value>
</context-param>

The META-INF/spring/applicationContext.xml file contains bean definitions that are
shared by all servlets and filters defined in the flight-app web application. These bean
definitions are available to application contexts loaded by DispatcherServlet. As we saw
in the Creating a Roo project recipe of Chapter 1, Getting Started with Spring Roo and in
Setting up a JPA provider for your project recipe of Chapter 2, Persisting Objects Using JPA
an applicationContext.xml file contains bean definitions for configuring data sources,
services, transactions, and so on, and needs to be shared across the web application.

If you create additional application context XML files, which contain bean definitions that
you want to share across the web application, then you can add them to the value of the
contextConfigLocation parameter using commas or space separated values, as
shown here:

 <param-value>
 classpath*:META-INF/spring/applicationContext*.xml,
 META-INF/spring/mycontext.xml
 </param-value>

ContextLoaderListener
The root web application context, identified by the contextConfigLocation context
initialization parameter, is loaded by the ContextLoaderListener, which implements
javax.servlet.ServletContextListener, as shown here:

 <listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
 </listener>

DispatcherServlet
The webmvc-config.xml file created by Roo identifies the web application context of the
Roo-generated web application. The webmvc-config.xml file contains tile definitions,
handler (or controller) definitions, handler mappings, view and exception resolution
strategies, and so on. The DispatcherServlet of Spring is responsible for loading the
webmvc-config.xml file and dispatching requests to appropriate handlers, resolving
views, exceptions, and so on. In the web.xml of the flight-app, DispatcherServlet is
configured to load webmvc-config.xml, as shown here:

Web Application Development with Spring Web MVC

144

 <servlet>
 <servlet-name>flight-app</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <init-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/spring/webmvc-config.xml
 </param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

As shown in the given code, the DispatcherServlet accepts the contextConfig
Location initialization parameter that identifies the Spring's web application context XML
file. The scope of the application context loaded by the DispatcherServlet is limited to
the requests that are mapped to the DispatcherServlet.

If you want to modularize your application, then consider creating a different web application
context for each module and configure a DispatcherServlet for each module in the
web.xml file.

OpenEntityManagerInViewFilter
As you might be lazy about loading JPA entities in your web application, Roo configures the
OpenEntityManagerInViewFilter servlet filter in web.xml to bind the JPA EntityManager
to the thread in which a request is handled, as shown here:

 <filter>
 <filter-name>
 Spring OpenEntityManagerInViewFilter
 </filter-name>
 <filter-class>org.springframework.orm.jpa.support.
 OpenEntityManagerInViewFilter
 </filter-class>
 </filter>

The OpenEntityManagerInViewFilter assumes that the EntityManagerFactory
for looking up the EntityManager instance is registered with the root web application
context and has the name entityManagerFactory. If you change the id of the
LocalContainerEntityManagerFactory bean defined in META-INF/spring/
applicationContext.xml file, then add a entityManagerFactoryBeanName
initialization parameter to the OpenEntityManagerInViewFilter definition in web.xml to
inform it about the LocalContainerEntityManagerFactory bean.

Chapter 4

145

HiddenHttpMethodFilter
HTTP specification defines four methods: GET, POST, PUT, and DELETE, but HTML only
supports GET and POST methods. As the semantics of different HTTP methods differ, in the
REST approach it is recommended to use an appropriate HTTP method for sending an HTTP
request. For instance, if you want to delete Flight instances from the database, then you
should use the DELETE HTTP method and if you are updating Flight instances, then use
a PUT HTTP method. The HTTP method with which the HTTP request was made is obtained
using the getMethod() method of javax.servlet.HttpServletRequest.

So, to perform PUT and DELETE operations in your web application, you can do a normal
POST and along with it send an additional request parameter with the name _method whose
value is either PUT or DELETE. Spring provides a HiddenHttpMethodFilter servlet filter,
which reads the value of the _method parameter, creates an HttpServletRequest
Wrapper and overrides the getMethod method of HttpServletRequest to return the
value of the _method parameter—making it possible to perform PUT and DELETE HTTP
operations in your web application.

Spring Roo automatically configures HiddenHttpMethodFilter in the web.xml file
generated for the web application, as shown here for the flight-app application:

 <filter>
 <filter-name>HttpMethodFilter</filter-name>
 <filter-class>org.springframework.web.filter.
 HiddenHttpMethodFilter
 </filter-class>
 </filter>

The Spring Web MVC's form tag library provides built-in support for dealing with different
HTTP methods. For instance, the following form tag will result in performing an HTTP POST
and send an additional request parameter named _method whose value is PUT:

<form:form method="put">
 <input type="submit" value="Delete Flight"/>
</form:form>

In the given code, the method attribute of the form tag identifies the value that needs to be
set for the _method request parameter when the form is submitted.

As Roo-generated JSPX files make heavy use of custom
tags installed in the SRC_MAIN_WEBAPP\WEB-INF\
tags folder, you will mainly find usage of the Spring
MVC's form tag library in these custom tags.

Web Application Development with Spring Web MVC

146

Exception pages
By default, Roo configures exception pages for situations when unexpected exceptions occur
or a resource is not found (HTTP status code 404), as shown here for unexpected exceptions:

<error-page>
 <exception-type>java.lang.Exception</exception-type>
 <location>/uncaughtException</location>
</error-page>

As the Roo-generated application uses Apache Tiles 2 framework, the <location>
element is not mapped to the actual HTML or JSPX view that is shown in response to the
exception. Later in this recipe, we'll see how Spring's exception resolvers are used by
Roo-generated web applications to resolve exceptions to logical views.

Now, that we have seen configurations that form part of the web.xml file generated by Roo
for the flight-app application, let's now look at the web application context XML file:
webmvc-config.xml, which is loaded by DispatcherServlet. The web application
context, loaded by DispatcherServlet, is the place where request handlers, exception
resolvers, theme and locale change interceptors, and so on, are registered.

Beans and configurations defined in webmvc-config.xml
The webmvc-config.xml file contains configurations and bean definitions that are loaded
by DispatcherServlet. Let's now look at the webmvc-config.xml file in detail:

Controller auto-detection
In Roo-generation web applications, controllers are auto-detected using the
<component-scan> element of Spring's context schema, as shown here:

<context:component-scan base-package="sample.roo.flightapp"
 use-default-filters="false">
 <context:include-filter expression=

 "org.springframework.stereotype.Controller"

 type="annotation" />

</context:component-scan>

The base-package attribute specifies a comma separated list of packages, which are
scanned by Spring for classes annotated with @Repository, @Component, @Controller,
and @Service annotations. The use-default-filters attribute specifies if auto-
detection of classes annotated with @Repository, @Component, @Controller, and @
Service are enabled or disabled. By default, auto-detection is enabled. The value false
indicates that auto-detection of these annotated classes are disabled. As the web application
context loaded by DispatcherServlet should contain controller or handler components,
the <include-filter> element specifies that only classes annotated with @Controller
annotation are auto-detected by Spring.

Chapter 4

147

If you manually create controllers in a different package, then add the package containing
these controllers to the base-package attribute's value.

Annotation-driven development support and conversion service
Spring's mvc schema provides an <annotation-driven> element, which configures
annotation-driven development support for Spring MVC applications, as shown here in the
flight-app web application:

<mvc:annotation-driven
 conversion-service="applicationConversionService"/>

<bean id="applicationConversionService" class="sample.roo.flightapp.
web.ApplicationConversionServiceFactoryBean"
/>

It is an <annotation-driven> element, which ensures that incoming requests are
mapped to controllers (annotated with @Controller annotation) and to a particular
@RequestMapping annotated method of the controller. The conversion-service
attribute configures Spring's ConversionService where custom converters and formatters
are registered. Before we go into the details of what other Spring features are configured by
the <annotation-driven> element, let's take a quick look at Converter and Formatter SPIs
introduced in Spring 3 for type conversion and formatting purposes.

In your application, you can either use a Converter SPI or a Formatter SPI to perform type
conversions. A Converter SPI is suitable when you want to perform general-purpose type
conversions from one Java type to another Java type. For instance, when you want to convert
java.util.Number to java.long.Date, you can use a Converter SPI. The Formatter SPI
addresses the conversion requirements typical of web applications, where you need to convert
a String value to a particular Java type when an HTML form is submitted and to convert a
Java type to a String value for displaying it to the user when the form is rendered. You can
say that the Formatter SPI is a simplified version of the Converter SPI, and is more suitable for
web application environments where localization of String values is also required.

You can access conversion and formatting functionalities using the unified
ConversionService API provided by Spring. The ConversionService is backed
by a registry of converters and formatters, which are applied when you perform a type
conversion using ConversionService. GenericConversionService is a concrete
implementation of ConversionService, which is appropriate for use in most applications.
We will see later in this recipe, how the flight-app application makes use of the
GenericConversionService API to perform a general-purpose type conversion at runtime.

If the conversion-service attribute is not specified, the <annotation-driven>
element registers a default FormattingConversionService (which extends
GenericConversionService) for performing conversions to and from java.lang.
Number, java.util.Date, java.util.Calendar, and java.long.Long. Also, full
support for date and time formatting is installed if the Joda Time (http://joda-time.
sourceforge.net/) library is found in the application's classpath.

Web Application Development with Spring Web MVC

148

In a Roo-generated flight-app application, you will find a
dependency of the application on the Joda Time library in
the pom.xml file; therefore, formatting support for the Joda
Time library is installed for your Roo-generated web application.

The <annotation-driven> element makes use of the FormattingConversion
ServiceFactoryBean as a factory for creating a FormattingConversionService
instance. The use of the FormattingConversionService ensures that type conversion
and formatting is applied for common types such as numbers and dates during data binding
to fields of controller model objects (also referred to as command objects). It is important
to note that it is the FormattingConversionService that provides support for the
@DateTimeFormat (refer to Flight.java) and for @NumberFormat annotations.

To wire custom converters and formatters into the ConversionService instance, the
conversion-service attribute of the <annotation-driven> element sets the
ConversionService instance that is configured with custom converters and formatters,
as shown here:

<mvc:annotation-driven
 conversion-service ="myConversionService" />

<bean id="myConversionService" class= "..format.
FactoryConversionServiceFactoryBean">
 <property name="converters">
 <list>
 <bean class="com.flight.myCustomConverter"/>
 </list>
 </property>
</bean>

The given configuration shows that you can set custom converters using the converters
property of the FormattingConversionServiceFactoryBean class. If you take a
quick look at the FormattingConversionServiceFactoryBean, you will find that
it doesn't support a formatters property to allow configuring custom formatters. So,
how do we register custom formatters? To register custom formatters, you will need to
extend the FormattingConversionServiceFactoryBean class and override its
installFormatters method to set your custom formatters.

In our Roo-generated flight-app application, the conversion-service attribute
refers to the Roo-generated ApplicationConversionServiceFactoryBean,
which extends Spring's FormattingConversionServiceFactoryBean. the
ApplicationConversionServiceFactoryBean defines converters, which convert
Flight and FlightDescription JPA entity instances into String values consisting
of entity instance property names and their values.

Chapter 4

149

The following code listing from the ApplicationConversionServiceFactoryBean.
java file shows the Roo-generated ApplicationConversionServiceFactoryBean
class:

import org.springframework.format.FormatterRegistry;
import org.springframework.format.support.
 FormattingConversionServiceFactoryBean;
import org.springframework.roo.addon.web.mvc.controller.
 RooConversionService;

@RooConversionService

public class ApplicationConversionServiceFactoryBean extends
 FormattingConversionServiceFactoryBean
{

 @Override
 protected void installFormatters(FormatterRegistry registry)
 {
 super.installFormatters(registry);
 }
}

In the given code, the ApplicationConversionServiceFactoryBean represents an
application-wide ConversionService with which application converters and formatters
are registered. You can register your custom formatters and converters inside the
installFormatters method.

The @RooConversionService triggers a generation of a *_Roo_ConversionService.
aj AspectJ ITD file. The *_Roo_ConversionService.aj defines converters for
JPA entities in the application. These converters convert a JPA entity instance into a
String representation consisting of entity field names and their values. The String
representation of a JPA entity instance is used for displaying the entity instance as
a String on the Roo-generated web pages. The following code listing shows the
ApplicationConversionServiceFactoryBean_Roo_ConversionService.aj file of
the flight-app application:

privileged aspect ApplicationConversionServiceFactoryBean_Roo_
ConversionService
{
 static class
 ApplicationConversionServiceFactoryBean.FlightConverter
 implements Converter<Flight, String>
 {
 public String convert(Flight flight)
 {
 return new StringBuilder().
 append(flight.getDepartureDate()).append(" ").
 append(flight.getArrivalDate()).toString();
 }

Web Application Development with Spring Web MVC

150

 }

 static class ApplicationConversionServiceFactoryBean.
 FlightDescriptionConverter implements
 Converter< FlightDescription, java.lang.String>
 {
 public String convert(FlightDescription
 flightDescription)
 {
 ...
 }
 }

 public void ApplicationConversionServiceFactoryBean.
 installLabelConverters(FormatterRegistry registry)
 {
 registry.addConverter(getFlightConverter());
 registry.addConverter(getFlightDescriptionConverter());
 }

 public void ApplicationConversionServiceFactoryBean.
 afterPropertiesSet()
 {
 super.afterPropertiesSet();
 installLabelConverters(getObject());
 }
}

In the given code, the AspectJ ITD file introduces the following methods and static classes into
the ApplicationConversionServiceFactoryBean.java:

ff FlightConverter static class: It is the converter for the Flight entity. It
implements Spring's Converter interface and provides implementation of its
convert method. The convert method converts the Flight entity instance
to String.

ff FlightDescriptionConverter static class: It is the converter for the
FlightDescription entity. It implements Spring's Converter interface and
provides implementation of its convert method. The convert method converts
the FlightDescription entity instance to String.

ff installLabelConverters: It registers converters for Flight and
FlightDescription JPA entities with Spring's FormatterRegistry, which
extends Spring's ConverterRegistry for registering converters.

ff afterPropertiesSet: This is the method that is invoked to initialize the
ApplicationConversionServiceFactoryBean. The method invokes the
installLabelConverters to register converters for JPA entities.

Chapter 4

151

By default, the <annotation-driven> element also configures JSR 303 – Bean Validation
if a JSR 303 provider is found in an application's classpath. As we will see later in this recipe,
JSR 303 validation is used for validating model objects (also referred to as command objects)
of Spring MVC controllers.

In the Roo-generated flight-app application, you'll find
dependency of the application on the Hibernate Validator
library in the pom.xml file; therefore, you can be sure
that JSR 303 support is installed for your application.

If instead of using JSR 303 validation you want to use a custom validator based on Spring's
Validation API for validating model objects, then configure it using the validator property of
the <annotation-driven> element.

ResourceHttpRequestHandler
As web applications need to serve static resources such as images, CSS, and JS files, Roo
configures Spring's ResourceHttpRequestHandler via the <resources> element of the
mvc schema, as shown here:

<mvc:resources location="/,
 classpath:/META-INF/web-resources/"
 mapping="/resources/**" />

The location attribute specifies the locations from which to serve resources. It accepts
comma-separated values for resource locations. The / value refers to the web application root
and the classpath:/META-INF/web-resources value indicates that static resources
can also be served from the META-INF/web-resources directory of any JAR file in the
classpath. It is important to note that a resource is searched in the order of locations specified
in the location attribute.

The mapping attribute specifies the URL mapping pattern of the incoming resource request to
which the ResourceHttpRequestHandler applies.

DefaultServletHttpRequestHandler
Roo maps the DispatcherServlet to / (refer to the web.xml file of the flight-app
application), to which the default servlet of the servlet container is also mapped. As the
default servlet of a servlet container is responsible for serving static resources, mapping
DispatcherServlet to / overrides the default resource serving behavior. To address the
static resource serving issue arising from mapping DispatcherServlet to /, Roo makes
use of the <default-servlet-handler> element of the mvc schema to configure Spring's
DefaultServletHttpRequestHandler, which delegates a resource serving to the servlet
container's default servlet, as shown here:

<mvc:default-servlet-handler />

Web Application Development with Spring Web MVC

152

Theme and locale change interceptors
As most web applications are expected to support multiple locales and themes, Roo
configures Spring's LocaleChangeInterceptor and ThemeChangeInterceptor
beans in the web application context XML to simplify changing locale and the theme of the
web application, as shown here:

<mvc:interceptors>
 <bean class="org.springframework.web.servlet.theme.
 ThemeChangeInterceptor"/>
 <bean class="org.springframework.web.servlet.i18n.
 LocaleChangeInterceptor"
 p:paramName="lang" />
</mvc:interceptors>

In the given code, the <interceptors> element of Spring's mvc schema is used to
configure interceptors for pre/post-processing requests before/after the request is handled by
controllers. By default, ThemeChangeInterceptor inspects the request parameter named
theme to determine the theme to be applied and LocaleChangeInterceptor inspects
the request parameter named locale to determine the current locale associated with the
incoming request.

ParameterizableViewController
In a Spring MVC application, controllers are responsible for processing the incoming
request and returning a logical view name and view data. The DispatcherServlet
hands over the logical view name to Spring's ViewResolver (configured in the web
application context), which resolves the actual view corresponding to the logical view name.
The DispatcherServlet then renders the actual view. So, does it mean that even if a web
application needs to show a static web page, we will need to create a Spring MVC controller
for it? Well, this is where the ParameterizableViewController built-in controller of
Spring MVC comes into picture. The ParameterizableViewController simply returns
a pre-configured view name, which is resolved by the ViewResolver and rendered by the
DispatcherServlet. This saves the effort of creating a custom controller, which does
nothing but return the name of view to be rendered. You can either directly configure a
ParameterizableViewController in your web application context or use Spring's mvc
schema's <view-controller> element to do it for you.

In case of our flight-app application, Roo makes use of the <view-controller>
element for static views, such as the home page of the flight-app application and the
various exception pages, as shown here:

 <mvc:view-controller path="/" view-name="index" />
 <mvc:view-controller path="/uncaughtException" />

In the <view-controller> element the view-name attribute identifies the name of the
view mapped to the URL path identified by the path attribute. So, if the URL used to access
the flight-app application is http://localhost:8080/flight-app/, the view name
corresponding to this URL is index.

Chapter 4

153

If the view-name attribute is not specified for the view-controller element (as in the
given code for an uncaught exception related <view-controller> element), then the
RequestToViewNameTranslator, configured for the DispatcherServlet, is used
to resolve the name of the view. The RequestToViewNameTranslator is configured
in the web application context and is used by the DispatcherServlet to determine
the view name if no view name is returned by the controller handling the request. As
no RequestToViewNameTranslator is configured in the web application context by
Roo, the default implementation: the DefaultRequestToViewNameTranslator, is
used for determining the view name. The DefaultRequestToViewNameTranslator
simply removes the leading and trailing slashes and any file extension associated with
the URI, and the resulting value is used as the view name. So, if we attempt to invoke the
ParameterizableViewController corresponding to the uncaught exception view-
controller element using the following URL: http://localhost:8080/flight-app/
uncaughtException, then the DefaultRequestToViewNameTranslator will simply
return a uncaughtException as the name of the view that should be rendered by the
DispatcherServlet.

View resolution
Spring Web MVC applications require a ViewResolver to resolve actual view from the
logical view name returned by controllers. When creating Spring Web MVC applications, Roo
configures Spring's UrlBasedViewResolver (an implementation of the ViewResolver
interface) in the web application context, which returns the actual view. As every view
in Spring Web MVC is represented by a class that implements a View interface, the
UrlBasedViewResolver must be informed about the actual View class that it must
generate corresponding to the logical view name. The following fragment shows the
Roo-generated UrlBasedViewResolver configuration for the flight-app application:

<bean class="org.springframework.web.servlet.view.
 UrlBasedViewResolver" id="tilesViewResolver">
 <property name="viewClass"
 value="org.springframework.web.servlet.view.tiles2.
 TilesView" />
</bean>

The UrlBasedViewResolver resolves a view name to a URL, without requiring you
to explicitly map each view name to a URL. For instance, if the view name is mypage,
then the UrlBasedReviewResolver can be used to attach a prefix (using the prefix
property) /WEB-INF/jsp and a suffix (using the suffix property) .jsp to the view
name to create a URL pointing to the mypage.jsp page in the /WEB-INF/jsp folder of
your web application. Here, view name is mypage and the URL to which it is mapped by
the UrlBasedViewResolver is /WEB-INF/jsp/mypage.jsp. As the Roo configured
UrlBasedViewResolver doesn't make use of the suffix and the prefix properties, the
URL for the actual view is the same as the name of the logical view returned by the controller.

Web Application Development with Spring Web MVC

154

If you want to redirect or forward a request to another URL in a Spring MVC controller
implementation, then instead of returning a view name you can return a String value with a
prefix as redirect: or forward:. If a controller returns a redirect or forward URL, then the
UrlBasedViewResolver doesn't perform view resolution. Instead, it redirects or forwards
requests to the URL returned by the controller.

As Roo uses a Apache Tiles 2 framework to simplify JSP development, the viewClass
property of the UrlBasedViewResolver is set to TilesView. Tiles support is configured
in the web application context using Spring's TilesConfigurer, as we will see shortly.
The name of the tile definition to which TilesView corresponds to is the actual-view URL
resolved by the UrlBasedViewResolver. In case of the flight-app, we discussed that
the actual-view URL generated by the UrlBasedViewResolver is the same as the logical
name of the view; therefore, the name of the tile definition is also the same as the logical
name of the view returned by the controller.

To get a complete picture of how views are resolved in Roo-generated web applications,
consider the controller configured by the following <view-controller> element:

<mvc:view-controller path="/" view-name="index" />

We discussed earlier that the ParameterizableViewController configured by the given
view-controller element will return the view name as index. As no suffix or prefix
properties of the UrlBasedViewResolver are configured, the actual view URL is also an
index. Now, TilesView refers to the tile definition, which has the same name as the actual-
view URL value generated by the UrlBasedViewResolver; therefore, the name of the tile
definition is also index. To summarize, the ParameterizableViewController configured
we saw earlier will result in showing the view whose tile definition name is index (you will find
this tile definition name in the WEB-INF/views/views.xml file).

Tiles definitions
Tiles definitions are defined in XML files and configured in the web application context using
TilesConfigurer, as shown here:

<bean class="org.springframework.web.servlet.view.
 tiles2.TilesConfigurer" id="tilesConfigurer">
 <property name="definitions">
 <list>
 <value>/WEB-INF/layouts/layouts.xml</value>
 <value>/WEB-INF/views/**/views.xml</value>
 </list>
 </property>
</bean>

The definitions property of the TilesConfigurer specifies the tiles definitions XML
files. The path to these files can also use wildcard characters. For instance, the /WEB-INF/
views/**/views.xml path loads tiles definitions from all views.xml files, which are
inside the /WEB-INF/views/ directory.

Chapter 4

155

Exception handling
In a typical web application, it is required to gracefully handle exceptions thrown by
controllers. When an exception is thrown by a controller, the DispatcherServlet makes
use of Spring's HandlerExceptionResolver for resolving exceptions. Roo configures the
SimpleMappingExceptionResolver (an implementation of the HandlerException
Resolver) as the exception resolver for the flight-app application, as shown here:

<bean
 class="org.springframework.web.servlet.handler.
 SimpleMappingExceptionResolver"
 p:defaultErrorView="uncaughtException">
 <property name="exceptionMappings">
 <props>
 <prop key=".DataAccessException">dataAccessFailure</prop>

 </props>
 </property>
</bean>

The SimpleMappingExceptionResolver maps exception class names to error view
names. In the given code, this mapping is set via the exceptionMappings property.
You can either specify the fully-qualified class name of the exception or you can use a
substring to match multiple exception class names to an error view. For instance, the
.DataAccessException will map to the my.custom.DataAccessException as well
as the org.springframework.dao.EmptyResultDataAccessException, and in both
cases the DispatcherServlet will attempt to render the dataAccessFailure view. The
defaultError view attribute of the SimpleMappingExceptionResolver identifies the
view to which an exception is resolved if no exception mapping is found.

Miscellaneous configuration
Spring Roo also configures the following classes in webmvc-config.xml:

ff ReloadableResourceBundleMessageSource: Spring is a built-in
MessageSource implementation, which loads resource bundles from WEB-INF/
i18n folder.

ff ResourceBundleThemeSource: Spring is a built-in ThemeSource implementation
for loading the ResourceBundle for each theme supported by the web application.
In the context of the flight-app application, this configuration loads the alt.
properties and standard.properties theme files.

ff CookieThemeResolver: Spring is a built-in ThemeResolver implementation,
which stores a cookie in the browser for identifying the theme chosen by the user.

ff CookieLocaleResolver: Spring is a built in LocaleResolver implementation,
which stores a cookie in the browser for identifying the locale chosen by the user.

Web Application Development with Spring Web MVC

156

ff CommonsMultipartResolver: Spring is a built-in MultipartResolver
implementation, which makes use of the Jakarta Commons FileUpload 1.2
(http://commons.apache.org/fileupload/) or higher to support uploading
files in web applications.

Now, that we know the configurations created by Spring Roo in our flight-app application;
let's look at the controller classes generated by Roo.

Roo-generated controllers
Roo generates a controller for each JPA entity corresponding to which a controller doesn't
already exist. For instance, in case the of the flight-app application, Roo creates the
FlightController and the FlightDescriptionController controllers corresponding
to the Flight and the FlightDescription JPA entities, respectively. The following code
from the FlightController.java file shows the FlightController generated by
Spring Roo:

@RooWebScaffold(path = "flights", formBackingObject = Flight.class)
@RequestMapping("/flights")
@Controller
public class FlightController {}

The @Controller annotation indicates that the FlightController is a Spring MVC
controller component.

The @RequestMapping class-level annotation maps incoming requests to controller
classes. The URI to which the controller map is specified by the value specified in the
@RequestMapping annotation. For instance, the FlightController maps to the
/flights URI. As we will see soon, @RequestMapping annotation can also be used
at a method-level to narrow down the mapping specified at the class-level.

The @RooWebScaffold Roo annotation instructs Roo to generate an ITD containing CRUD
operations for the Flight JPA entity (identified by the formBackingObject attribute) and
creates JSPX views for performing CRUD operations on the Flight JPA entity. The path
attribute identifies the sub-directory inside the /WEB-INF/views/ in which view artifacts
(JSPX views and tiles definitions XML) are created for the FlightController. Refer the
Creating a Spring MVC controller for a specific JPA entity recipe to see a detailed list of the
@RooWebScaffold annotation attributes.

The following code shows the AspectJ ITD created for FlightController:

import javax.validation.Valid;

privileged aspect FlightController_Roo_Controller
{

 @RequestMapping(method = RequestMethod.POST)
 public String FlightController.create(@Valid Flight flight,
 ...)

Chapter 4

157

 {
 if (bindingResult.hasErrors())
 {
 ...
 return "flights/create";

 }
 ...
 flight.persist();
 return "redirect:/flights/" + ...;

 }
 ...
}

The following are the important points to notice about the given code:

ff The method attribute of the @RequestMapping method-level annotation specifies
that the create method of a FrontController is invoked if an HTTP POST request
is received by the controller. The create method represents the controller method in
which the Flight entity is persisted in the database.

ff The return value from the create method is either a flight/create or
redirect:flights/... String value. If the return value is flight/create,
then the flight-app application shows the web page, which maps to the flight/
create tiles definition name. If the return value is redirect:flights/,
then it is interpreted as a redirect URL (as mentioned earlier), to which the
DispatcherServlet redirects the request.

ff You may notice that the Flight parameter of the create method is annotated
with a @Valid JSR 303-bean validation annotation. The use of the @Valid
annotation results in invoking validation of the Flight entity before it is persisted
in the database.

The following createForm method, defined in the FlightController_Roo_Controller
.aj ITD, highlights another way in which the @RequestMapping annotation is used:

@RequestMapping(params = "form", method = RequestMethod.GET)

public String FlightController.createForm(Model uiModel)
{
 ..
 return "flights/create";
}

The createForm method shows the HTML form in which the user enters details required
for creating the Flight entity in the database. The createForm method is invoked if the
request received by the FlightController handler contains a request parameter named
form (as specified by params attribute) and the request method used for the request is HTTP
GET (as specified by the method attribute).

Web Application Development with Spring Web MVC

158

The following delete method, defined in the FlightController_Roo_Controller.aj
ITD, shows yet another way of using the @RequestMapping annotation:

@RequestMapping(value = "/{flightId}",

 method = RequestMethod.DELETE)

public String FlightController.delete(
 @PathVariable("flightId") Long flightId, ..)

{

 ..
}

The delete method deletes a Flight JPA entity from the database. The value attribute
of the method-level @RequestMapping narrows down the mapping specified by the
@RequestMapping annotation at the class-level. We earlier saw that the class-level
@RequestMapping for the FlightController specifies /flights as the URI to which
the FlightController maps. This means, the delete method maps to the /flights/
{flightId} URI-template. Now, the {flightId} is a variable whose value is determined
from the submitted request. When the value of the {flightId} variable is substituted in the
URI-template, then it becomes a URI. So, where does the value of the {flightId} variable
come from? It comes from the request URI. For instance, if the request URI is /flights/1,
then the value of the {flightId} variable is 1. As you will notice in the given code, the
@PathVariable annotation has been used for the method parameter named flightId.
The annotation @PathVariable("flightId") retrieves the value of the {flightId}
variable and binds it to the Long type flightId method parameter.

The @PathVariable not only binds the value of the URI
variables to method parameters, but also performs type
conversion.

If you look at the code for the FlightController_Roo_Controller.aj or the
FlightDescriptionController_Roo_Controller.aj ITD, then you will find that the
controller methods responsible for processing the HTTP POST, PUT, and DELETE methods
return a redirect URL (specified using redirect: prefix), that is, the Spring MVC controllers
automatically implement the PRG (Post-Redirect-Get) pattern.

There's more...
In this recipe, we saw that Spring Roo does a lot of work behind the scenes to give us a fully-
functional Spring Web MVC application. Depending upon your choice of web frontend, you
can also use Roo's built-in support for Flex and GWT to create web applications. In the next
chapter, we will look at Spring Roo's support for creating web applications using Flex, GWT,
and the Spring Web Flow framework.

Chapter 4

159

See also
ff Refer to the Getting started with Flex application development and Scaffolding

Flex application from JPA entities recipes to see how Spring Roo simplifies developing
Flex applications.

ff Refer to the Scaffolding GWT application from JPA entities recipe to see how Spring
Roo can be used to develop GWT based applications

ff Refer to the Getting started with Spring Web Flow recipe for details on how Spring
Roo supports developing applications with the Spring Web Flow framework

Packaging, deploying, and using a
Roo-generated Spring MVC application

The task of developing the Spring MVC application is incomplete without packaging, deploying,
and using it. In this recipe, we will look at how a Roo-generated Spring Web MVC application is
packaged, deployed, and run.

Getting ready
Delete the contents of ch04-recipe sub-directory inside the C:\roo-cookbook directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

The Execute the ch04_web-app.roo script that creates the flight-app Roo project,
sets up Hibernate as the persistence provider, configures MySQL as the database for
the application, creates Flight and FlightDescription JPA entities, and defines
many-to-one relationships between the Flight and FlightDescription entities. If
you are using a different database than MySQL or your connection settings are different
than what is specified in the script, then modify the script accordingly.

Start Roo shell from the C:\roo-cookbook\ch04-recipe directory.

How to do it...
For packaging, deploying, and using a Roo-generated Spring Web MVC application follow the
given steps:

1.	 Execute the controller all command to create controllers and views
corresponding to JPA entities in the flight-app project, as shown here:

roo> controller all --package ~.web

Web Application Development with Spring Web MVC

160

2.	 Package the flight-app web application using the perform package command
of Roo:

roo> perform package

3.	 Executing the perform package command will create a WAR file named
flight-app-0.1.0.BUILD-SNAPSHOT.war in the target directory of your
flight-app project. You can now deploy the WAR file to your application server.

4.	 If you want to directly run the flight-app project as a dynamic web application
in an embedded Tomcat instance, then exit the Roo shell and execute the following
maven command:

..ch04-recipe> mvn tomcat:run

Now, you can access the flight-app application by accessing the following URL:
http://localhost:8080/flight-app

If you see the following web page, then it means you have successfully deployed the
flight-app application on the embedded Tomcat instance:

5.	 Create a new Flight Description by selecting the Create new Flight Description
option from the menu and entering values the for Origin, Destination, and Price into
their relevant field, as shown in the following screenshot:

Chapter 4

161

Save the entered Flight Description by clicking the Save button.

6.	 Now, select Create new Flight option from the menu and select Departure Date and
Arrival Date, as shown in the following screenshot:

As the Departure Date and Arrival Date fields are date type fields, a popup calendar
is shown to simplify entering dates for these fields. You may notice that the Flight
Description field is a drop-down field, which shows all Flight Descriptions that you
have created. Roo shows a drop-down of Flight Descriptions because there exists
many-to-one relationships between Flight and FlightDescription JPA entities.

Now, save Flight details by clicking the Save button.

7.	 You can view the newly created Flight Description and Flight details by clicking the
List all Flight Descriptions and List all Flights menu options, respectively. You can
also search for a Flight Description, based on origin and destination, by clicking the
Find by Destination And Origin menu option. The Find by Destination And Origin
option is available because we had defined a finder method (refer ch04_web_app.
roo script) for our FlightDescription JPA entity.

8.	 By default two themes are installed in the Roo-generated flight-app application:
standard and alt (represented by the standard.properties and alt.
properties files of the flight-app project). The default theme of the
Flight-app application is standard. You can change the theme of the
Flight-app application by selecting the alt theme, as shown in the
following screenshot:

Web Application Development with Spring Web MVC

162

9.	 As the screenshot shows, selecting the alt theme moves menu options to the right
and the main content of the page is moved to the left. As mentioned earlier, theme
selected by a user is saved in the browser cookie; therefore, if you close the browser
and reopen it, you will find that the alt theme is applied by default on the web pages
of the Flight-app application.

How it works...
The perform package command runs maven's package command, which does the
packaging of the project. The project is packaged as a WAR file because the packaging
(as per the <packaging> element the in pom.xml file) specified for the flight-app project
is war. It is important to note that when the perform package command is executed, tests
are not executed. It executes maven's package command and specifies that the tests are
skipped, as shown here:

..ch04-recipe>mvn package -Dmaven.test.skip

As mentioned earlier, the perform command of Roo can be used to execute maven
commands. You can execute maven's package command (and execute tests) from the
Roo shell, as shown here:

.. roo> perform command --mavenCommand package

Don't run an embedded Tomcat instance from a Roo shell

You can run the flight-app project as a web application in the
embedded Tomcat instance using Roo's perform command,
but you should not do it because it will result in the creation of a
different process, which you can't stop using CTRL-C and also you
can't execute Roo commands from the Roo shell.

The flight-app project's pom.xml file configures Tomcat Maven Plugin (http://mojo.
codehaus.org/tomcat-maven-plugin/index.html), which makes it possible to run
the flight-app project as a dynamic web application in an embedded Tomcat instance. The
following XML fragment shows the configuration of the Tomcat Maven Plugin:

Chapter 4

163

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>tomcat-maven-plugin</artifactId>
 <version>1.0</version>
</plugin>

You can configure the plugin to affect the behavior of the embedded Tomcat instance. For
instance, if you want to change the default 8080 HTTP port to 8090, then you can do so by
supplying the maven.tomcat.port system property when running the project on the Tomcat
instance, as shown here:

..ch04-recipe> mvn tomcat:run –Dmaven.tomcat.port=8090

There's more...
Roo also provides a perform assembly command, which executes an assembly goal of
Maven Assembly Plugin (http://maven.apache.org/plugins/maven-assembly-
plugin/, configured in the pom.xml file of the Roo project). You should use the perform
assembly command only if you want to distribute your project as an archive, such as ZIP,
TAR, WAR, JAR, and so on. This distributable archive contains configuration files, project
documentation, and runtime dependencies of the project.

Running Roo project in embedded Jetty container
The Roo configures the Jetty Maven Plugin (http://docs.codehaus.org/display/
JETTY/Maven+Jetty+Plugin) in the pom.xml file to support running the Roo project
as a web application in an embedded Jetty container. To run the flight-app project in an
embedded Jetty container, all you need to do is to execute the jetty:run goal of the plugin
from the directory containing your project's pom.xml file:

..ch04-recipe> mvn jetty:run

If you want to change the default 8080 HTTP port to 8090 on which the Jetty container listens
for HTTP requests, then you can configure it by specifying the jetty.port system property,
as shown here:

..ch04-recipe> mvn jetty:run –Djetty.port=8090

See also
ff Refer to the Modifying Roo-generated views recipe for details about the JSPX views

generated by Roo and how you can customize its layout.

ff Refer to the Adding or modifying themes generated by Roo recipe to see how you
can customize default themes installed by Roo and how to add new themes to the
Roo-generated web application

Web Application Development with Spring Web MVC

164

ff Refer to the Internationalizing Roo-generated web applications recipe, for the
internationalization support that Spring Roo provides

Modifying Roo-generated views
In most application scenarios, you'd like to modify the layout of the views generated by
Roo or to change the placement of different form elements or add new form elements
to the view. In this recipe, we will look at how you can modify the home page of the
flight-app application.

The following screenshot shows the modified home page of the flight-app application:

The following are the modifications that we'll be doing to the Roo-generated flight-app
application to display the home page, as shown in the given screenshot:

ff Change the home page of the web application to show the name of the application as
Flight Application

ff Change the home page of the web application to describe the flight Application in
detail, instead of the benefits of Roo.

ff Change the banner image that shows up at the top of every web page

ff Change the categorization of the menu to show the Create new Flight Description
and Create new Flight options under the CREATE category, the List all Flight
Descriptions and the List all Flights under the VIEW category, and the Find by
Destination and Origin under the FIND category.

Getting ready
Delete the contents of the ch04-recipe sub-directory inside the C:\roo-cookbook directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

Chapter 4

165

Execute the ch04_web-app.roo script that creates the flight-app Roo project, sets
up Hibernate as the persistence provider, configures MySQL as the database for the
application, creates Flight and FlightDescription JPA entities and defines many-to-
one relationships between the Flight and FlightDescription entities. If you are using a
different database than MySQL or your connection settings are different than what is specified
in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

Execute the controller all command to create controllers and views corresponding to the
JPA entities in the flight-app project, as shown here:

.. roo> controller all --package ~.web

As many dependencies are added to the pom.xml file of the flight-app project during the
processing of the controller all command, execute the perform eclipse command of
Roo to update the .classpath file of the eclipse project.

.. roo> perform eclipse

Now, import the project into your Eclipse IDE.

How to do it...
To modify Roo-generated views follow the steps given here:

1.	 Open the SRC_MAIN_WEBAPP\WEB-INF\i18n\application.properties and
modify the value of the application_name property from Flight-App to Flight
Application, as shown here:
application_name=Flight Application

Now, add the following properties to the application.properties file:
menu_category_create_label=Create
menu_category_view_label=View
menu_category_find_label=Find

2.	 Open the SRC_MAIN_WEBAPP\WEB-INF\views\menu.jspx file and perform
the following changes:

�� Add a new <menu:category> tag (inside the <menu:menu> tag) with the
c_create as the id attribute value, as shown here:
<menu:category id="c_create"></menu:category>

�� Move the <menu:item> with the id attribute values i_flight
description_new and i_flight_new inside the newly added
<menu:category> tag, as shown here:
<menu:item id="i_flightdescription_new"

Web Application Development with Spring Web MVC

166

messageCode="global_menu_new"
url="/flightdescriptions?form"
z="DFDc4F2kZR5ysns4ZeMk5pr3E84=" />
<menu:item id="i_flight_new" messageCode="global_menu_new"
url="/flights?form"
z="opwPKDFqpdHotAZ0M/SeEslICC4=" />

�� Add a new <menu:category> tag with c_view as the id attribute value as
shown here:
<menu:category id="c_view"></menu:category>

�� Move <menu:item> with the id attribute values i_flightdescription_
list and i_flight_list inside the newly added <menu:category> tag,
as shown here:
<menu:item id="i_flightdescription_list"
messageCode="global_menu_list"
url="/flightdescriptions?...."
z="cvk+gcfsrOjH0bM6HiDsKdYX2gY=" />
<menu:item id="i_flight_list" messageCode="global_menu_list"
url="/flights?...."
z="sxdeS3ThjFWc2xKcFfdI4iiZms4=" />

�� Add a new <menu:category> tag with c_find as the id attribute value,
as shown here:
<menu:category id="c_find"></menu:category>

�� Move <menu:item> with the id attribute value fi_flightdescription_
destinationandorigin inside the newly added <menu:category> tag,
as shown here:
<menu:item id="fi_flightdescription_destinationandorigin"
messageCode="global_menu_find"
url="/flightdescriptions?find=...."
z="SiTmEGC8Kg6mdn8j47EUsKdsOn4=" />

�� Add a new attribute render and set its value to false for
existing <menu:category> tags with the id attribute values c_
flightdescription and c_flight, as shown here:
<menu:category id="c_flightdescription"
z=".." render= "false"/>
<menu:category id="c_flight" z=".." render="false"/>

3.	 Open the SRC_MAIN_WEBAPP\WEB-INF\i18n\messages.properties and
modify the welcome_text property value, as shown here:

Chapter 4

167

welcome_text=Flight Application allows you to perform CRUD
operations on Flight and FlightDescription JPA entities. It also
allows you to search for a FlightDescription based on origin and
destination.

4.	 Copy banner-graphic.png (from the files that accompany this chapter) to the
SRC_MAIN_WEBAPP\images directory.

5.	 As of Spring Roo 1.1.5, changes to the JSPX files are not actively monitored by
the Roo shell; therefore, restart the Roo shell. You will now find the value of the z
attribute of the <menu:category> tags with ids c_flightdescription and
c_flight is changed to user-managed.

How it works...
Roo-generated web application makes use of the messages.properties and the
application.properties resource bundles to support internationalization of the web
user interface. The application.properties file contains labels for menu and form
fields that are displayed on various web pages of the Roo-generated web application. The
labels contained in the application.properties file are derived from the name of JPA
entities and their fields. Also, the name of the web application, as displayed on the home page
of the application, is contained in the application.properties file. The messages.
properties contains generic messages which are applicable to all Roo-generated web
applications and are not specific to a single web application. For instance, labels for the
Save button and Reset button are specified in the messages.properties file. Refer to the
Internationalizing Roo-generated web applications recipe for details on how you can use these
property files to internationalize or localize Roo-generated Spring Web MVC applications.

Not all files generated by Roo are managed by Roo when changes occur in your JPA entities.
For instance, the application.properties file is modified by Roo only when you add new
JPA entities to your domain model or add new fields to them. Removing a field or a JPA entity
will not automatically remove the label properties corresponding to the field or the JPA entity
from the application.properties file. But modifying the name of a field in a JPA entity
will result in adding new properties to the application.properties file. As Roo never
tries to manage existing label properties defined in the application.properties file, you
can safely change them. The messages.properties file contains generic labels; therefore,
it is never managed by Roo once it is generated.

The menu.jspx file and the JSPX files contained inside the WEB-INF/views folder is
managed by Spring Roo. If you add, modify, or delete fields from JPA entities, then Roo is
responsible for updating the corresponding JSPX views (inside the WEB-INF/views) to reflect
the change. The menu.jspx file is managed by Roo to ensure that when new Spring Web
MVC controllers are created or finder methods are added to a JPA entity for which a controller
already exists, additional menu options are added to menu.jspx.

Let's now look at how we achieved the modified home page based on the actions that we
performed on the Roo-generated flight-app project:

Web Application Development with Spring Web MVC

168

Changing the displayed application name and welcome text
To change the application name and welcome text, we first need to find the JSPX view, which
shows the home page of the web application and then find the property in the application
.properties file, which is used by the JSPX view to show the application name and welcome
text. Alternatively, you can look at the property keys of the labels that you want to change
in the application.properties file, followed by using your IDE to search for JSPX files,
which make use of those property keys.

Let's first find the JSPX view that shows the home page of the flight-app application. In the
webmvc-config.xml file, the following <view-controller> element suggests that when
the request is received at the web application root /, then the view name is index:

<mvc:view-controller path="/" view-name="index"/>

Now, the following UrlBasedViewResolver in webmvc-config.xml suggests that we
need to find the tile definition named index in the tiles definitions XML file to find the view:

<bean class="org.springframework.web.servlet.view.
 UrlBasedViewResolver" id="tilesViewResolver">
 <property name="viewClass"
 value="org.springframework.web.servlet.view.
 tiles2.TilesView"/>
</bean>

The following TilesConfigurer configuration in webmvc-config.xml suggests where to
look for tiles definitions XML to find tiles definition named index:

<bean class="org.springframework.web.servlet.view.
 tiles2.TilesConfigurer" id="tilesConfigurer">
 <property name="definitions">
 <list>
 <value>/WEB-INF/layouts/layouts.xml</value>
 <value>/WEB-INF/views/**/views.xml</value>
 </list>
 </property>
</bean>

A quick scan of XML configuration files specified by TilesConfigurer shows that the
index tiles definition is defined in the SRC_MAIN_WEBAPP/WEB-INF/views/views.xml
file, as shown here:

<definition name="index" extends="default">
 <put-attribute name="body"

 value="/WEB-INF/views/index.jspx" />

</definition>

Chapter 4

169

As we'll see in the Adding static views to Roo-generated web application recipe, the
<put-attribute> element refers to the JSPX file responsible for showing the main content
(which excludes the header, footer, and menu) of the page. So, the /WEB-INF/views/
index.jspx is the file, which shows the home page of the flight-app application.

The following code shows the contents of the index.jspx file:

<div xmlns:spring="http://www.springframework.org/tags"
 xmlns:util="urn:jsptagdir:/WEB-INF/tags/util" .. >

 <spring:message var="app_name" code="application_name" .../>

 <spring:message var="title"

 code="welcome_titlepane" arguments="${app_name}" .../>

 <util:panel id="title" title="${title}">

 <h3>
 <spring:message code="welcome_h3"

 arguments="${app_name}" />

 </h3>
 <p>
 <spring:message code="welcome_text" />

 </p>
 </util:panel>
</div>

The <message> tag of Spring's tag library retrieves messages and labels from the resource
bundle, which are Roo-generated application.properties and messages.properties
files in case of the flight-app application. The code attribute identifies the property key
whose value needs to be obtained from the resource bundle. The var attribute identifies the
variable to which the returned property value is assigned. The arguments attribute specifies
the arguments that need to be passed to the <message> tag, which are typically used by the
<message> tag implementation to fill placeholders specified in the message or label retrieved
from the resource bundle.

The <panel> tag is one of the custom tags installed by Roo when the controller all
command was executed. The <panel> tag is used to show a collapsible panel. To see the
implementation of the <panel> tag, refer to the /WEB-INF/tags/util/panel.tagx file.

Web Application Development with Spring Web MVC

170

The following table shows the properties file in which the messages and labels, as specified by
the <message> tags in the index.jspx file, are located and their value:

Code Property value
application_name Defined in application.properties.

Value: Flight-app.
welcome_titlepane Defined in messages.properties.

Value: Welcome to {0}.
welcome_h3 Defined in messages.properties.

Value: Welcome to {0}.
welcome_text Defined in messages.properties.

Value: Spring Roo provides interactive, lightweight, ...

The {0} in the value of the welcome_titlepane and the welcome_h3 represents
a placeholder, which is filled by the value specified in the arguments attribute of the
<message> element.

The given table shows that if we change the application_name property, then it will change
the application name as shown on the home page. And if we change the welcome_text
property, then it will change the default welcome text.

Changing menu options
The menu.jspx file shows the menu options in the Roo web application. The following table
describes the tags that make up the menu.jspx file:

Tags Description
<menu> The <menu> custom tag (defined in menu.tagx) defines

a menu.
<category> The <category> tag (defined in category.tagx) defines the

top-level categories in the menu.
<item> The <item> tag (defined in item.tagx) defines items within

the menu categories.

Chapter 4

171

The following attributes are applicable to all the tags installed by Spring Roo (which includes
the <menu>, <item>, and <category> tags for menu):

ff id: The id attribute is used by Roo to check existence of elements in JSPX files. For
Roo-generated views, the value of the id attribute is derived from the JPA entity name
and field names. For example, the menu item Create new Flight Description, created
by the <menu:item> element, has the id attribute value i_flightdescription_
new, and is derived from the name of the FlightDescription JPA entity. If you
remove the <menu:item> element with id i_flightdescription_new, then Roo
finds out that the element has been removed and adds it to the JSPX file again.

In some cases, the value of the id attribute is also used by tag implementations to
determine the message or label that should be used in the implementation of a tag.
For example, if the messageCode attribute is not specified, i_flightdescription
_new id of the <menu:item> element is used by the item.tagx implementation
to find the label associated with the menu item.

ff render: The render attribute specifies whether the contents of the tag should
be rendered or not. By default, the value of the render attribute is true, that
is, the contents of the tag, including enclosing tags, should be rendered. Set the
value to false, if you don't want the contents of the tag and its enclosing tags to
be rendered.

ff z: The z attribute is used internally by Spring Roo to check if the developer has
made any modifications to the tag. It is this, z attribute that allows Roo to perform
round tripping. The value of the z attribute represents a hash key for a tag used in
the JSPX file and is calculated based on the tag name, attributes present in the tag,
and their values. The z attribute is never used in the calculation of the hash key. Also,
the order in which the attributes are specified in the tag is not considered for the
hash key calculation.

ff If you make any modification to a tag (by adding attributes, modifying attribute values,
or deleting an attribute), then Roo finds this out because the hash key of the tag now
will not match with the Roo calculated hash key for the tag. In case of a mismatch,
Roo simply sets the value of z to user-managed.

Significance of z attribute of Roo installed JSP tags
Let's consider the following element in menu.jspx to understand the relevance of the
z attribute:

<menu:item id="i_flightdescription_new"
 messageCode="global_menu_new"
 url="/flightdescriptions?form"
 z="DFDc4F2kZR5ysns4ZeMk5pr3E84="/>

Web Application Development with Spring Web MVC

172

The given <item> element shows a menu option labelled Create new Flight Description.
The url attribute of the <item> tag identifies the web controller responsible for handling
the web request when the Create new Flight Description menu option is clicked. As the
url attribute value is /flightdescriptions?form and it matches the value of the @
RequestMapping class-level annotation of the FlightDescriptionController (refer to
the FlightDescriptionController.java file), the FlightDescriptionController
handles the request when the Create new Flight Description menu option is clicked. If you
change the url attribute (and the corresponding @RequestMapping class-level annotation
in the FlightController.java) to, let's say, /fds?form, then Roo will automatically
update the <item> element's z attribute value to user-managed, which means Roo no
longer manages this element. Later in this recipe, we will look at how you can switch an
element back to the Roo-managed mode from the user-managed mode.

Understanding a Roo-generated JSPX file
Let's consider the /WEB-INF/views/flights/create.jspx view, which shows the form
for creating the Flight entities. The following code shows the content of create.jspx:

<div xmlns:field="urn:jsptagdir:/WEB-INF/tags/form/fields"
xmlns:form="urn:jsptagdir:/WEB-INF/tags/form" xmlns:jsp="http://java.
sun.com/JSP/Page" xmlns:spring="http://www.springframework.org/tags"
..>

 <form:create id="fc_sample_roo_flightapp_domain_Flight"
 modelAttribute="flight"
 path="/flights" render="${empty dependencies}"
 z="/JE8B/QGFrFLKszYDOjyDJjnTPc=">
 <field:datetime
 dateTimePattern="${flight_departuredate_date_format}"
 field="departureDate"
 id="c_sample_roo_flightapp_domain_Flight_departureDate"
 z="BtcAuQvStTt55J3J6zFybfhkSxA="/>

 <field:select field="flightDescription"
 id=".." itemValue="flightDescId"
 items="${flightdescriptions}"
 path="/flightdescriptions" required="true"
 z="MPt8rEJwJ7fZPqUZPDn6K7+A8OE="/>
 </form:create>

</div>

Chapter 4

173

A couple of interesting things to notice about the create.jspx file generated by Roo
are as follows:

ff The <create> custom tag (refer to /WEB-INF/tags/form/create.tagx) is
used for creating an HTML form. If you look at the create.tagx file, you will find
that it makes use of Spring's form tag library to create a form. The render attribute
specifies that the form should not be rendered if there are certain dependencies that
we need to create before creating the Flight entity. Soon we will see from where
the dependencies variable is coming from.

ff The <datetime> custom tag (refer to /WEB-INF/tags/form/fields/
datatime.tagx) is used to create a text field for entering departure the date of the
flight. The field attribute identifies the Flight JPA entity's field for which the text
field has been created. The text field is associated with a dijit (Dojo's UI JavaScript
library) date calendar to simplify entering a date into the field.

ff The <select> custom tag (refer to /WEB-INF/tags/form/fields/select.
tagx) is used to create a drop-down box for selecting the flight description
associated with the flight that we are about to create. Again, the field attribute
identifies the Flight JPA entity's field for which the drop-down box has been
created. The required attribute specifies whether or not it is mandatory to select
a flight description for creating a Flight entity. As the value of the required
attribute is true, you must select a flight description from the drop-down to create
the Flight entity.

As we can see, Roo intelligently decided that the <datetime> tag should be used for
creating fields corresponding to the Date type, such as the departureDate field of the
Flight entity. Roo also interpreted the @ManyToOne relationship between the Flight and
FlightDescription JPA entities and created a drop-down box (using the <select> tag)
for selecting flight descriptions. As the @ManyToOne relationship between the Flight and
FlightDescription entities is also annotated with @NotNull (JSR-303 annotation), Roo
translates that dependency on the user interface side by setting the required attribute to
true for the <select> tag.

Now, let's look at how the dependencies variable is used by the <create> tag to
decide whether to render the create Flight form or not. One of the things that you will
notice when you go about creating a Flight entity is that it will ask you to first create
FlightDescription, as shown in the following screenshot:

Web Application Development with Spring Web MVC

174

As shown in the screenshot, instead of displaying the Create new Flight form, the web
application displays a note saying that we need to first create flight descriptions. The decision
to show the note is taken by the dependencies variable, as shown again here:

<form:create id="fc_sample_roo_flightapp_domain_Flight"
 modelAttribute="flight"
 path="/flights" render="${empty dependencies}"
...

The dependencies variable is added to the request by the FlightController. The
FlightController identifies the dependencies of the Flight JPA entity based on the
relationships in which it participates. As the Flight entity has a not null many-to-one
relationship with the FlightDescription entity, the FlightController adds it as a
dependency in the dependencies variable, as shown here in the contents of the
FlightController_Roo_Controller.aj file:

@RequestMapping(params = "form", method = RequestMethod.GET)
 public String FlightController.createForm(Model model)
 {
 model.addAttribute("flight", new Flight());
 addDateTimeFormatPatterns(model);
 List dependencies = new ArrayList();

 if (FlightDescription.countFlightDescriptions() == 0)

 {

 dependencies.add(new String[]{"flightDescription",

 "flightdescriptions"});

 }

 model.addAttribute("dependencies", dependencies);
 return "flights/create";
 }

The createForm method is responsible for rendering the form for creating the Flight entity
instances. The given code shows that if no FlightDescription entity instances are found,
the createForm method adds a String[] to the dependencies model attribute. The
dependencies attribute contains the dependencies, which are not currently available for
creating the Flight instances. The form for creating Flight entities is rendered only if the
dependencies attribute is empty, something which we have already seen.

We saw earlier that we can switch an element in the JSPX file from the Roo-managed mode
to the user-managed mode. In some scenarios, you may want to switch back from the
user-managed mode to the Roo-managed mode. Let's look at how we can do so:

Chapter 4

175

Switching elements from user-managed to Roo-managed mode
We saw that Spring Roo does a lot of heavy lifting to create the user interface of the web
application. This includes creating JSPX files, installing custom tags, creating Spring Web
MVC controllers, creating web application context XML file, creating the web application
deployment descriptor, creating tiles definitions, installing themes, and so on. We also saw
that the value of the required attribute of the <select> tag for showing flight descriptions
was set to true because the Flight JPA entity participates in a not null many-to-one
relationship with the FlightDescription entity.

Let's assume that we want the text field of the departureDate field also to be mandatory to
create the Flight entity. You have the option to annotate the departureDate field of the
Flight JPA entity with @NotNull JSR-303 annotation and let Roo take care of setting the
required attribute's value to true for the departureDate text field. Let's further assume
that we don't want to make any changes to the Flight entity and a date must be entered in
the departureDate field when creating the Flight entity from the user interface. We can
do this by simply setting the required attribute's value to true, as shown here:

<field:datetime
 dateTimePattern="${flight_departuredate_date_format}"
 field="departureDate" required="true"
 id="c_sample_roo_flightapp_domain_Flight_departureDate"
 z="BtcAuQvStTt55J3J6zFybfhkSxA="/>

As we have changed the default value of the required attribute from false to true,
we have effectively modified the element; therefore, Roo will go ahead and set the value
of the z attribute to user-managed. A user-managed element in Spring Roo doesn't
participate in round tripping; therefore, if you make any modifications to the departureDate
field of the Flight entity, then Roo will not make any corresponding modifications to
the departureDate element in the create.jspx file. For instance, if you remove the
departureDate field from the Flight entity, then Roo will not remove the departureDate
element from create.jspx. If you want your modified form element to be Roo-managed
again, all you need to do is set the value of the z attribute to ?. The value of ? instructs Roo
to re-calculate the value of the z attribute based on the current attributes and their values,
making it possible for Roo to figure out if changes happen to the form element in the future.

As we just discussed, you can take control of Roo-managed form elements in JSPX views by
adding or modifying one or more attributes. It is recommended that after you make changes
to a form element, revert back to the Roo-managed mode by setting the value of the z
attribute to ?. In Roo-managed mode any modification to the JPA entities is taken care of by
Roo, saving the effort to make adjustments to the views.

See also
ff Refer to the Round-tripping support in Spring Roo for web controllers and views

recipe to see examples of round tripping support in Roo

Web Application Development with Spring Web MVC

176

ff Refer to the Adding static views to Roo-generated web application recipe to find out
how you can add your custom web pages to Roo-generated web applications

ff Refer to the Creating a Spring MVC controller for a specific JPA entity recipe for
details on how you can instruct Roo not to generate views for certain functionalities.

Round-tripping support in Spring Roo
for web controllers and views

In Roo-generated applications, you can change JPA entities and let Roo take care of making
necessary changes to the controllers and views. In this recipe, we look at an example
scenario, which demonstrates how changes to a JPA entity are propagated to corresponding
controllers and views.

Getting ready
Delete the contents of the ch04-recipe sub-directory inside the C:\roo-cookbook directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

Execute the ch04_web-app.roo script that creates the flight-app Roo project, sets up
Hibernate as the persistence provider, configures MySQL as the database for the application,
creates Flight and FlightDescription JPA entities, and defines a many-to-one
relationship between the Flight and FlightDescription entities. If you are using a
different database than MySQL or your connection settings are different than what is specified
in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

Execute the controller all command to create controllers and views corresponding to JPA
entities in the flight-app project, as shown here:

.. roo> controller all --package ~.web

Execute the perform eclipse command to update the project's classpath settings, as
shown here:

.. roo> perform eclipse

Now, import the project into your Eclipse IDE.

The following code from the FlightDescription.java file shows the FlightDescription
entity, which we will modify in this recipe to get a feel of Roo's round-tripping capabilities:

@RooJavaBean
@RooToString
@RooEntity(identifierField = "flightDescId",

Chapter 4

177

 identifierColumn = "FLIGHT_DESC_ID",
 table = "FLIGHT_DESC_TBL",
 finders = {"findFlightDescriptionsByDestinationAndOrigin" })

public class FlightDescription
{

 @NotNull
 @Column(name = "ORIGIN_CITY")
 private String origin;

 @NotNull
 @Column(name = "DESTINATION_CITY")
 private String destination;

 @NotNull

 @Column(name = "PRICE")
 private Float price;
}

How to do it...
To see round-tripping support for web controllers and views, follow the steps given here:

1.	 Open the FlightDescription.java file in your editor.

2.	 Remove the finders attribute and its value from the @RooEntity annotation, and
save the FlightDescription.java file. The Roo shell shows the actions taken by
Roo in response to the deletion of the finders attribute, as shown here:
Updated SRC_MAIN_WEBAPP\WEB-INF\views\menu.jspx

Deleted SRC_MAIN_JAVA\...\web\FlightDescriptionController_Roo_
Controller_Finder.aj

Deleted SRC_MAIN_JAVA\...\domain\FlightDescription_Roo_Finder.aj

3.	 Change the name of the origin field to originCity, destination field name to
destinationCity and save the FlightDescription.java file. The Roo shell
shows the following actions taken by Roo in response to our changes:
Updated ...\WEB-INF\views\flightdescriptions\list.jspx

Updated ...\WEB-INF\views\flightdescriptions\show.jspx

Updated ...\WEB-INF\views\flightdescriptions\create.jspx

Updated ...\WEB-INF\views\flightdescriptions\update.jspx

Updated ...\WEB-INF\i18n\application.properties

Updated ...\domain\FlightDescription_Roo_JavaBean.aj

Updated SRC_MAIN_JAVA\...\web\
ApplicationConversionServiceFactoryBean_Roo_ConversionService.aj

Updated SRC_MAIN_JAVA\...\domain\FlightDescription_Roo_ToString.aj

Web Application Development with Spring Web MVC

178

4.	 Remove the @NotNull JSR 303 annotation from the price field and save the
FlightDescription.java file. Now, Roo shell shows the following output in
response to the change:

Updated...\WEB-INF\views\flightdescriptions\create.jspx

Updated...\WEB-INF\views\flightdescriptions\update.jspx

How it works...
Let's now look at what Spring Roo did when we made modifications to Flight
Description.java. The following adjustments were made by Spring Roo in the
flight-app project when the finders element was removed:

ff Spring Roo removed the FlightDescription_Roo_Finder.aj ITD, which
contained the implementation of the finder method.

If a JPA entity defines multiple finder methods, then removing
a single finder method from the finders attribute of the @
RooEntity annotation will only remove the corresponding
finder method from the ITD file.

ff When the FlightDescriptionController_Roo_Controller_Finder
.aj ITD was created initially, it contained a method for showing the form
(refer to /WEB-INF/views/flightdescriptions/findFlightDescriptions
ByDestinationAndOrigin.jspx), which allows searching for a
FlightDescription based on origin and destination cities. It also contained
a method to search the FlightDescription instances and display returned
results (refer to /WEB-INF/views/flightdescriptions/list.jspx). Now,
as the finder method has been removed, the controller methods to show the
search form and search results are removed. It is important to note that in Spring
Roo 1.1.3, the method responsible for searching entity instances is not created in
FlightDescriptionController_Roo_Controller_Finder.aj. This bug is
resolved in Spring Roo 1.1.4 and above.

It is important to note that even though the findFlight
DescriptionsByDestinationAndOrigin.jspx file
is no longer required in the flight-app application, Spring
Roo doesn't remove it. You will need to manually remove the
JSPX file from your Roo project. This is because Spring Roo
doesn't automatically delete JSPX files that are no longer
required in the application.

ff As the finder method has been removed, the menu option Find by Destination and
City is also removed from the menu.jspx file.

Chapter 4

179

When the origin and the destination field names are modified, then the following
modifications are performed by Roo:

ff In the FlightDescription_Roo_JavaBean.aj ITD, the getter and setter
methods for the origin and the destination fields are replaced with the getter
and setter methods for originCity and destinationCity, respectively.

ff In the FlightDescription_Roo_ToString.aj ITD, the toString method is
modified to include the value of the destinationCity and originCity fields,
instead of the origin and the destination fields.

ff In the Auto-generating Spring MVC controllers and JSPX views from JPA entities
recipe we discussed how the Roo-generated ApplicationConversionService
FactoryBean is configured by the <mvc:annotation-driven> element
defined in the web application context XML. We saw earlier that the *_Roo_
ConversionService.aj file of the flight-app project introduces static
classes into the ApplicationConversionServiceFactoryBean class that
represent converters for the Flight and the FlightDescription JPA entities.

ff The following code shows the FlightDescriptionConverter static class
defined in ApplicationConversionServiceFactoryBean_Roo_Conversion
Service.aj, which returns the converter for the FlightDescription entity:

import org.springframework.core.convert.converter.Converter;

privileged aspect ApplicationConversionServiceFactoryBean_Roo_
ConversionService {
 ...
 static class ApplicationConversionServiceFactoryBean.
 FlightDescriptionConverter implements
 Converter<FlightDescription, java.lang.String> {
 public String convert(FlightDescription
 flightDescription){
 return new StringBuilder().
 append(flightDescription.getOrigin()).
 append("").
 append(flightDescription.getDestination()).
 append(" ").
 append(flightDescription.getPrice()).toString();
 }
 }
 ...
}

Web Application Development with Spring Web MVC

180

In the given code, the FlightDescriptionConverter static class implements
Spring's Converter. It converts the FlightDescription JPA entity into a String
representation. The String representation of FlightDescription is created by
simply concatenating the values of each of its fields.

As we modified the names of the origin and the destination fields to
originCity and destinationCity, Roo modifies the FlightDescription
Converter class to use the modified getter methods for the fields. The changes
that occurred due to these modifications can be outlined as follows:

ff The application.properties file is modified to add new properties, which act as
labels, for the originCity and the destinationCity fields, as shown here:
label_sample_roo_flightapp_domain_flightdescription_
destinationcity=Destination City
label_sample_roo_flightapp_domain_flightdescription_
origincity=Origin City

As you may have guessed, the property names are derived from the package in which
the JPA entity resides, that is the JPA entity name and the name of the field. It is also
important to note that once a property is added to the application.properties
file, it is never removed or modified by Roo. Roo always creates new properties in the
application.properties file. So, if you frequently modify your JPA entity fields, it
will result in unwanted proliferation of properties in the application.properties
file, which you will need to remove manually.

ff JSPX views: the create.jspx, update.jspx, show.jspx, and the list.jspx
files in /WEB-INF/views/flightdescriptions/ are modified to reflect the
change in name of the fields of the FlightDescription JPA entity. It is important
to note that if a field defined in the JSPX view is not Roo-managed, that is, the value
of the z attribute is 'user-managed' then Roo will not make any modification to the
field in response to changes in JPA entities.

When the @NotNull JSR 303 annotation is removed from the price field of
FlightDescription, then Roo cascades this change to the /WEB-INF/
views/flightdescriptions/create.jspx and the /WEB-INF/views/
flightdescriptions/update.jspx views. The only change that Roo makes
to these views is to remove the required attribute from the <input> custom tag
element that shows the price field on the web user interface.

There's more...
The round-tripping support for JSPX views in Roo is quite sophisticated and takes care of the
following changes in the Roo-managed JPA entity:

ff Change in name of fields

ff Change in type of fields

ff Change in the JSR 303 annotation associated with fields

Chapter 4

181

ff Removal of fields

ff Addition of new fields

If you want a particular element of a JSPX to remain unmodified even if the corresponding
field in the Roo-managed JPA entity is modified, then you can manually set the z attribute
value to user-managed. The sideeffect of this change is that Roo will create a new element
in the JSPX views if you add or modify the corresponding JPA entity field.

See also
ff Refer to the Modifying Roo-generated views recipe to find how you can modify a view

created by Spring Roo

ff Refer to the Adding static views to Roo-generated web application recipe to see how
Roo supports adding static views to a Spring MVC web application.

Creating a Spring MVC controller
for a specific JPA entity

The controller all command let's you create controllers for all JPA entities for which a
corresponding controller doesn't exist. If you want to control the web request path to which the
controller is mapped or the operations supported by the controller, then you should use the
controller scaffold command.

Getting ready
Delete the contents of the ch04-recipe sub-directory inside the C:\roo-cookbook
directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

Execute the ch04_web-app.roo script that creates the flight-app Roo project, sets up
Hibernate as the persistence provider, configures MySQL as the database for the application,
creates Flight and the FlightDescription JPA entities, and defines a many-to-one
relationship between the Flight and FlightDescription entities. If you are using a
different database than MySQL or your connection settings are different than what is specified
in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

Web Application Development with Spring Web MVC

182

How to do it...
The following steps show how to use the controller scaffold command to create
controllers for JPA entities:

1.	 Execute the controller scaffold command to create FlightController, as
shown here:
..roo> controller scaffold --class ~.web.FlightController --entity
~.domain.Flight --path /myflightpath --disallowedOperations update,delete

2.	 Execute the perform eclipse command to update the classpath settings, and
import the project in your Eclipse IDE.

How it works...
The following table describes the purpose of each of the arguments passed to the
controller scaffold command:

Argument Description
class

(mandatory)

Fully-qualified name of the controller class, which you want
to create.

entity

(optional)

Fully-qualified name of the Roo-managed JPA entity class
(a class annotated with @RooEntity annotation),
which is used as a form-backing object by the generated
controller. The value of this argument translates into the
value of the formBackingObject attribute of the @
RooWebScaffold annotation.

path

(optional)

Identifies the sub-directory inside /WEB-INF/views/, which
contains the JSPX views corresponding to the controller. The
value of this argument translates into the value of the path
attribute of the @RooWebScaffold annotation.

The value of the path argument also translates into the value
of the @RequestMapping class-level annotation in the
generated controller.

disallowedOperations

(optional)

Comma-separated list of operations, which is not supported
by the generated controller. For instance, if the value is
update,delete, then the generated controller doesn't
contain methods to update and delete the JPA entity
corresponding to which the controller was generated. The
only valid values for this argument are update, delete,
and create.

Chapter 4

183

The following code from the FlightController.java file shows the FlightController
created by the controller scaffold command:

@RooWebScaffold(path = "myflightpath", formBackingObject = Flight.
class, update = false, delete = false)

@RequestMapping("/myflightpath")

@Controller
public class FlightController {
}

As the given code shows, the value of the path attribute of the @RooWebScaffold
annotation and the @RequestMapping annotations are derived from the value
of the path argument of the controller scaffold command. The value of the
disallowedOperations argument of the controller scaffold command is used in
the @RooWebScaffold annotation to specify the operations that are not supported by the
generated controller.

The following table describes the elements of the @RooWebScaffold annotation:

Element Description
path Specifies the folder inside /WEB-INF/views/, which contains

the JSPX views created corresponding to the controller.
formBackingObject Specifies the JPA entity class, which the controller uses as the

form-backing object.
update Indicates if the update operation is defined by the *_Roo_

Controller.aj AspectJ ITD of the controller. If true, Roo
creates the JSPX view for updating the corresponding Roo-managed
JPA entity. Default value is true.

create Indicates if the create operation is defined by the *_Roo_
Controller.aj AspectJ ITD of the controller. If true, Roo
creates the JSPX view for creating the corresponding Roo-managed
JPA entity. Default value is true.

delete Indicates if the delete operation is defined by the *_Roo_
Controller.aj AspectJ ITD of the controller. If true, the Roo
generated JSPX view provides an option to delete the corresponding
Roo-managed JPA entity. Default value is true.

exposeFinders Exposes finder methods defined in the Roo-managed JPA entity.
If the finder methods are exposed, a *_Roo_Controller_
Finder.aj ITD is created that contains methods for rendering the
form for entering search criteria, and for searching entity instances
and showing search results. Default value is true.

Web Application Development with Spring Web MVC

184

Element Description
exposeJson Indicates that if the corresponding Roo-managed JPA entity is

annotated with the @RooJson class-level annotation, then expose
controller functionality (create, update, show, and delete) using
JSON. The default value is true.
Refer to the Adding JSON support to domain objects and
controllers recipe for details on how to add JSON support to
Roo-managed JPA entities and Spring Web MVC controllers.

The following table describes methods that form part of the *_Roo_Controller.aj ITD,
assuming that all controller operations were generated:

Method Description
createForm Shows the form for creating the entity.

Creates a new instance of the form-backing object (which is the
Roo-managed JPA entity specified by the formBackingObject
attribute of the @RooWebScaffold annotation), adds
dependencies required for persisting the Roo-managed JPA entity
(these dependencies include entities that participate in the
relationship, such as FlightDescription is required for
persisting a Flight entity), and adds date/time patterns
(if required).

create Persists Roo-managed entity exposed by the controller. Also
performs JSR 303 (if available) validation on the entity instance.
Adds date/time patterns (if required).

show Shows details of a persisted entity instance. Adds date/time
patterns (if required).

list Shows the list of persistent entity instances. Adds date/time
patterns (if required). Also adds support for pagination of data.

updateForm Shows the form for updating an entity instance. Adds date/time
patterns (if required).

update Persists changes to an entity instance. Adds date/time patterns
(if required).

delete Deletes an entity instance.

There's more...
As shown in this recipe, the controller scaffold command provides options to help
create a customized controller. Even if you have created controllers using the controller
all command, you can still customize the controller by setting the attributes of the @
RooWebScaffold annotation.

Chapter 4

185

Let's now see how you can override the auto-generated methods in the *_Roo_Controller
.aj file:

Overriding auto-generated controller methods
In some scenarios, you may want to override the auto-generated methods of the *_Roo_
Controller.aj file to provide custom implementation. To override a method defined
in ITD, all you need to do is to define a method with the same or different arguments and
return types, but with the same name, in your controller Java file.

Let's say that in our flight-app web application we need to address the following
requirements:

ff Currently, when a Flight entity instance is updated the FlightController shows
the updated entity instance in a read-only view. This default functionality needs to be
changed such that after update, the controller shows the list of Flight instances.

ff To address this requirement, we need to override the default behavior of the update
method defined in the FlightController_Roo_Controller.aj ITD. To
override the default behavior of the update method, all you need to do is to define
an update method (with the same or different arguments and return types) in the
FlightController.java file, as shown here:
@RequestMapping(method = RequestMethod.PUT)
public String update(@Valid Flight flight, ..) {

 return "redirect: /myflightpath/list";
}

In the given code, the update method redirects the user to myflightpath/list
(instead of /myflightpath/{flightId}) after persisting changes to
the Flight entity.

In Spring Roo 1.1.3, if you attempt to override a method
defined in the *_Roo_Controller.aj file by defining it in
your *Controller.java file, then Roo complains that the
method is already defined in your *Controller.java file.
This issue is resolved in Spring Roo 1.1.4 and later versions.

See also
ff Refer to the Manually creating a Spring MVC controller for a JPA entity recipe for

manually creating a controller.

ff Refer to the Auto-generating Spring MVC controllers and JSPX views from JPA
entities recipe for details on how the controller all command is used for
generating entities.

Web Application Development with Spring Web MVC

186

Manually creating a Spring MVC
controller for a JPA entity

If you want to create a custom controller, then Roo offers a controller class
command that creates the skeleton structure of a controller and a JSPX view to let
you quickly get started.

Let's consider that in our flight-app application we have the following entities:

ff Customer: Represents a customer in the flight booking application

ff Address: Represents the address of the customer

For the sake of simplicity, let's assume that there is a one-to-one bidirectional relationship
between Customer and Address entities, the Customer being the owner of the
relationship. The Customer entity has only one field: the customerName and the Address
entity has two fields: addressLine1 and addressLine2.

Let's say the flight-app application requires that the Customer and the corresponding
Address entities are created from the same form. When the user enters the customer's
name and clicks the Add address button (as shown in the next screenshot), then the form is
expanded to show the table for entering address information for the customer, and for saving
the customer's details. The following screenshot shows the form for entering information:

In the given screenshot, clicking the Save button creates a Customer and also the
corresponding Address entity instance.

As we have seen earlier, Roo generates views, which allow creating or updating only a single
entity at a time. In this scenario, we need to create both Customer and Address entities
simultaneously. This not only requires us to create a custom view but also a custom controller.

Getting ready
Delete the contents of the ch04-recipe sub-directory inside the C:\roo-cookbook directory.

Copy the ch04_manual_controller.roo script into the ch04-recipe directory.

Chapter 4

187

Execute the ch04_manual_controller.roo script which creates the flight-app Roo
project, sets up Hibernate as the persistence provider, configures MySQL as the database
for the application, creates Flight, FlightDescription, Customer, and Address JPA
entities, defines the many-to-one relationship between Flight and FlightDescription
entities and a one-to-one relationship between the Customer and Address entities. If you
are using a different database than MySQL or your connection settings are different than what
is specified in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

How to do it...
To see how to use a manually created Spring Web MVC controller for the given application
requirement, follow the given steps:

1.	 Execute the web mvc setup command to set up the Spring Web MVC artifacts, and
to convert the Roo project into a web project:
.. roo> web mvc setup

2.	 Execute the controller class command, as shown here:
.. roo> controller class --class ~.web.CustomerController
--preferredMapping /customer

Created SRC_MAIN_JAVA\sample\roo\flightapp\web\CustomerController.
java

Created SRC_MAIN_WEBAPP\WEB-INF\views\customer

Created SRC_MAIN_WEBAPP\WEB-INF\views\customer\index.jspx

Updated SRC_MAIN_WEBAPP\WEB-INF\i18n\application.properties

Created SRC_MAIN_WEBAPP\WEB-INF\views\menu.jspx

Created SRC_MAIN_WEBAPP\WEB-INF\tags\menu\menu.tagx

Created SRC_MAIN_WEBAPP\WEB-INF\tags\menu\item.tagx

Created SRC_MAIN_WEBAPP\WEB-INF\tags\menu\category.tagx

Created SRC_MAIN_WEBAPP\WEB-INF\views\customer\views.xml

3.	 As many dependencies were added to the pom.xml file of the flight-app project
during processing of the web mvc setup command, execute the perform eclipse
command of Roo to update the .classpath file of the Eclipse project:
.. roo> perform eclipse

Now, import the flight-app project in Eclipse IDE.

Web Application Development with Spring Web MVC

188

4.	 In the Customer.java file, make the association between the Customer and
Address entities as mandatory by setting the optional attribute value of the @
OneToOne JPA annotation to false. Also, set the cascade attribute value of @
OneToOne to CascadeType.ALL. The following listing shows the modified @
OneToOne
annotation in Customer.java:
import javax.persistence.CascadeType;
..
@RooEntity(table = "CUSTOMER_TBL")
public class Customer {

 @NotNull
 @Column(name = "CUST_NAME")
 private String customerName;

 @OneToOne(optional= false, cascade=CascadeType.ALL)

 @JoinColumn(name = "CUSTOMER_ID")
 private Address address;
}

5.	 In the Address.java file, make the association between the Address and
Customer entities as mandatory by setting the optional attribute value of the
@OneToOne annotation to false. As the Customer entity is the owner of the
relationship, set the mappedBy attribute value of the @OneToOne JPA annotation
to address. The following listing shows the modified @OneToOne annotation in
Address.java:
...
@RooEntity(table = "ADDRESS_TBL")
public class Address {

 @NotNull
 @Column(name = "ADDRESS_LINE1")
 private String addressLine1;
 ...

 @OneToOne(optional=false, mappedBy = "address")

 private Customer customer;
}

As in Spring Roo 1.1.5, the field reference command doesn't support any
argument, which lets you specify the owner of the one-to-one bidirectional
relationship; therefore, you need to edit your Java source for specifying the mappedBy
attribute value of the @OneToOne annotation. On the other hand, the field set
command does provide a mappedBy argument for specifying the relationship owner.

6.	 Replace the CustomerController.java file in the sample.roo.flightapp.
web package of SRC_MAIN_JAVA folder with the one contained in the source code
folder of this chapter.

Chapter 4

189

7.	 Replace the index.jspx file in the /WEB-INF/views/customer/ folder with the
index.jspx file contained in the source code folder of this chapter.

8.	 Exit the Roo shell and use the following maven command to deploy the flight-app
project as a dynamic web application in an embedded Tomcat instance:

..ch04-recipe> mvn tomcat:run

Now, you can access the flight-app application by accessing the following URL:
http://localhost:8080/flight-app

If you see the following web page, then it means you have successfully deployed the
flight-app application on the embedded Tomcat instance:

In the given screenshot, selecting the Customer Controller View menu option will take you to
the form for creating the Customer and Address entities.

How it works...
The controller class command is used for creating a manual controller. It accepts the
following arguments:

ff class: The fully qualified name of the controller class that you want to create.
ff preferredMapping: The request path to which the controller maps. The

value of the preferredMapping argument is used to derive the value of @
RequestMapping class-level annotation of the generated controller. The value of
the preferredMapping is also used to create a sub-folder inside the /WEB-INF/
views/ to contain the JSPX views and the tiles definitions XML file corresponding to
the generated controller.

As the output suggests, the following actions are performed by Roo when the controller
class command is executed:

ff Creates a skeleton CustomerController web controller, leaving the controller
implementation details to be provided by the developer.

Web Application Development with Spring Web MVC

190

ff Creates the customer sub-folder inside /WEB-INF/views/.

ff Creates a skeleton index.jspx view inside the /WEB-INF/views/customer
folder, leaving view details to be provided by the developer.

ff Creates a tiles definitions XML file, views.xml, inside the /WEB-INF/views/
customer folder. It contains a single tile definition customer/index, which
corresponds to the index.jspx view. As we will see shortly, the skeleton
CustomerController implementation makes use of the customer/index tile
definition to show the index.jspx view.

ff Adds the Customer Controller View label to the application.properties file,
which is used by the menu.jspx file to display a menu option for invoking the
CustomerController web controller.

ff Adds a menu option labelled Customer Controller View to the menu.jspx file for
invoking the CustomerController web controller.

It is important to note that no AspectJ ITD file is created when the controller class
command is executed.

The following code from the CustomerController.java file shows the
CustomerController generated by the controller class command:

@RequestMapping("/customer/**")

@Controller
public class CustomerController {

 @RequestMapping
 public void get(ModelMap modelMap, ..) { }

 @RequestMapping(method = RequestMethod.POST, value = "{id}")
 public void post(@PathVariable Long id, ..) { }

 @RequestMapping

 public String index() {

 return "customer/index";
 }
}

As the given code shows, the generated controller leaves it up to the developer to write
the implementation of the controller. The method index() is invoked when you click the
Customer Controller View menu option. The index() method simply returns customer/
index, which shows the index.jspx view.

The Roo-generated CustomerController is hardly of any use, so you need to write it's
functionality. The CustomerController.java file that accompanies the source code of
this chapter contains the necessary functionality for creating the Customer and Address
entities. Let's now take a look at the methods defined in the supplied Customer
Controller.java file:

Chapter 4

191

The index() method of the CustomerController sets the Customer JPA entity as the
form-backing object and adds another model attribute, which identifies whether to show the
address section of the form or not. The following code from the CustomerController.
java file shows the index() method:

 @RequestMapping

 public String index(Model model) {
 model.addAttribute("showAddressSection", false);

 Customer customer = new Customer();

 customer.setAddress(new Address());

 model.addAttribute("customer", customer);

 return "customer/index";
 }

The index() method sets the showAddressSection and customer model attributes.
The showAddressSection attribute is used as a flag by the index.jspx view to decide
whether to show or hide the address section of the form. The customer model attribute
represents the Customer JPA entity, which acts as the form-backing object.

Now, when the Add address button is clicked by the user, the following showAddress method
of the CustomerController is invoked:

@RequestMapping(method = RequestMethod.POST,
 params = "user-action=showAddressForm")
public String showAddress(@Valid Customer customer,
 BindingResult result, Model model, ..) {
 if (result.hasErrors()) {
 model.addAttribute("customer", customer);
 } else {
 model.addAttribute("showAddressSection", true);

 model.addAttribute("customer", customer);

 }
 return "customer/index";
}

The @RequestMapping annotation in the given code specifies that the showAddress
method is invoked when the request type is HTTP POST and the value of the user-action
request parameter is the showAddressForm. If no binding or validation errors occur, then
the showAddressSection model attribute is set to true.

If the showAddressSection model attribute value is true, then it means the index.
jspx view will show the address section of the form to allow users to enter an address for
the customer. Now, the user can enter address information and click the Save button to
persist the Customer and the associated Address JPA entity instance. The following create
method of the CustomerController is invoked when the user clicks Save button:

Web Application Development with Spring Web MVC

192

@RequestMapping(method = RequestMethod.POST,
 params = "user-action=create")
 public String create(@Valid Customer customer, ..) {
 customer.persist();
 return "customer/index";
}

The @RequestMapping annotation in the given code indicates that the create method is
invoked when the request type is HTTP POST and the value of the user-action request
parameter is create.

The following code shows the modified /WEB-INF/views/customer/index.jspx file:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<jsp:root xmlns:c="http://java.sun.com/jsp/jstl/core"
 xmlns:spring="http://www.springframework.org/tags"
 xmlns:form=http://www.springframework.org/tags/form" ..>

<form:form modelAttribute="customer"

 action="customer" method="POST">

 <form:errors cssClass="errors" delimiter="<p/>" />
 <c:choose>
 <c:when test="${not showAddressSection}">

 <spring:message text="Customer name" />:
 <form:input path="customerName" />
 <input type="submit" value="Add address" />
 <input type="hidden" name="user-action"

 value="showAddressForm" />

 </c:when>
 <c:otherwise>

 <spring:message text="Customer name" />:
 <form:input path="customerName" onclick="blur();" />
 <input type="submit" value="Add address"
 disabled="disabled" />
 <input type="hidden" name="user-action"

 value="create" />

 <table>
 <thead>
 <tr>
 <td colspan="2">Address</td>
 </tr>
 </thead>
 <tr>
 <td>
 <label for="addressLine1">

Chapter 4

193

 Address Line 1
 </label>
 </td>
 ...
 </form:form>
</jsp:root>

The given index.jspx file shows that we can create our JSPX views without using custom
tag library installed by Spring Roo or we can create our custom tag library and use it for
creating JSPX views. The index.jspx makes use of Spring's form tag library to create the
HTML form. The showAddressSection model attribute is used to show or hide the address
section of the form. The user-action hidden input field is set to an appropriate value,
showAddressForm or create, depending upon whether the user clicks the Add address or
the Save button.

There's more...
We saw how we can use Roo-generated JPA entities and write our custom JSPX views and web
controllers to create a web application. Now, we look at a particular limitation with views that
are generated by Roo for the @OneToMany relationship:

Scaffolding Spring Web MVC application for a one-to-many
relationship
Spring Roo doesn't scaffold an HTML element for the one side of a one-to-many relationship.
Let's look at this in the context of an example:

In the flight-app application, a Booking entity instance represents a booking on a flight
by a customer. On a particular flight, many bookings are possible; therefore, the relationship
between the Flight and Booking entities is one-to-many. The ch04_one_to_many.roo
script that accompanies this book does the following:

ff Creates Flight and Booking entities

ff Creates a one-to-many relationship between Flight and Booking entities

ff Creates controllers and JSPX views for the entities

Exit the Roo shell and delete the contents of ch04-recipe. Execute the ch04_one_
to_many.roo script and run the generated Spring Web MVC application using maven
(as described in the Packaging, deploying, and using Roo-generated Spring MVC
application recipe).

Web Application Development with Spring Web MVC

194

Now, create a Booking instance using the Create new Booking menu option of the
generated web application, as shown in the following screenshot:

Once you have created a Booking instance, you are ready to create a new Flight instance
and associate a Flight with the newly created Booking instance. To create a new Flight
instance, select the Create new Flight instance menu option, which shows the form for
creating Flight instances, as shown in the following figure:

As the given screenshot shows, Spring Roo didn't scaffold an HTML element to select
multiple Booking instances, to help create a one-to-many relationship between Flight and
Booking entity instances. So, how do we create the relationship between entities in case the
relationship is one-to-many? To use the scaffolded Spring Web MVC application to manage
relationships between Booking and Flight entities, specify the @ManyToOne annotated
field in the Booking entity (the many side of the relationship) to create a many-to-one
relationship between the Booking and Flight entities. Now, you can create the Flight
instances (without specifying the related Booking instances), and manage the relationship
between the Booking and Flight instances from the form for creating the Booking (the
many side of relationship) instances.

If you don't want to add the @ManyToOne annotated field to the Booking entity, you can
modify the /WEB-INF/flights/create.jspx view (which displays the form for creating
the Flight instances) to add a field, which shows a multi-select list box that displays the
Booking instances. The following <field:simple> custom tag (installed by Roo) in
create.jspx shows the message: This relationship is managed from the Booking side
when you select the menu option to view the form for creating the Flight instances:

Chapter 4

195

<field:simple field="bookings"
 id="c_sample_roo_flightapp_domain_Flight_bookings"
 messageCode="entity_reference_not_managed"
 messageCodeAttribute="Booking" z="..."/>

You can replace the <field:simple> tag with the <field:select> tag (installed by Roo),
which displays a multi-select list box:

<field:select field="bookings"
 id="c_sample_roo_flightapp_domain_Flight_bookings"
 itemValue="id" items="${bookings}" multiple="true"
 path="/bookings"/>

If you look at the FlightController_Roo_Controller.aj file, you will find a
@ModelAttribute annotated method, which stores all Booking instances in a
model attribute named bookings. In the given code, the bookings model attribute is
referenced by the items attribute of the <field:select> tag to display the Booking
instances in a multi-select list box.

See also
ff Refer to the Creating a one-to-many (or many-to-many) relationship between entities

recipe of Chapter 3

Adding static views to a Roo-generated
web application

A static view in a Spring Web MVC application is a view for which you don't explicitly create
a controller class. We saw earlier that the Spring Web MVC application scaffolded by Roo
configures static views using the <view-controller> element of Spring's mvc schema.
The static views don't have an explicit controller, but behind the scenes Spring's built-in
ParameterizableViewController is used for rendering static views. Refer to the
Auto-generating Spring MVC controllers and JSPX views from JPA entities recipe for details
on pre-configured static views in the Roo generated web application.

In this recipe, we will look at the web mvc install view command of Roo, which creates
a static view.

Getting ready
Delete the contents of ch04-recipe sub-directory inside the C:\roo-cookbook directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

Web Application Development with Spring Web MVC

196

Execute the ch04_web-app.roo script that creates the flight-app Roo project, sets up
Hibernate as the persistence provider, configures MySQL as the database for the application,
creates the Flight and FlightDescription JPA entities and defines a many-to-one
relationship between the Flight and FlightDescription entities. If you are using a
different database than MySQL or your connection settings are different than what is specified
in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

Execute the controller all command to create controllers and views corresponding to the
JPA entities in the flight-app project, as shown here:

.. roo> controller all --package ~.web

Execute the perform eclipse command to update the project's classpath settings, as
shown here:

.. roo> perform eclipse

Now, import the flight-app project into your Eclipse IDE.

How to do it...
To add static views to a Roo-generated web application execute the web mvc install view
command, as shown here:

.. roo> web mvc install view --path /static/views --viewName help --title
Help

Created SRC_MAIN_WEBAPP\WEB-INF\views\static\views
Created SRC_MAIN_WEBAPP\WEB-INF\views\static\views\help.jspx
Managed SRC_MAIN_WEBAPP\WEB-INF\i18n\application.properties
Managed SRC_MAIN_WEBAPP\WEB-INF\views\menu.jspx
Created SRC_MAIN_WEBAPP\WEB-INF\views\static\views\views.xml
Managed SRC_MAIN_WEBAPP\WEB-INF\spring\webmvc-config.xml

How it works...
The following table describes the arguments that the web mvc install view
command accepts:

Argument Description
path Specifies the sub-folder inside the /WEB-INF/views/ folder in which the

view is created.
viewName The name of the view JSPX file.
title Specifies the name of the menu option with which the static view is accessible.

Chapter 4

197

As the output from the web mvc install view command suggests, the following actions are
taken by Spring Roo in response to executing the command:

ff Creates a /static/views directory inside the /WEB-INF/views folder. Roo uses
the value of the path argument to determine the directory to create.

ff Creates a help.jspx file inside the /WEB-INF/views/static/views directory.
The value of the viewName argument is used as the name of the JSPX file.

ff Adds a property with value Help to the application.properties, that is, the
value of the title argument is used as the value of the newly added property. The
property is used by menu.jspx to show a Help menu option. The Help menu option
allows access to the newly created help.jspx view.

ff Creates a /WEB-INF/views/static/views/views.xml tiles definitions XML file,
containing a single tiles definition for showing the help.jspx view, as shown here:
<tiles-definitions>
 <definition extends="default" name="static/views/help">
 <put-attribute name="body"
 value="/WEB-INF/views/static/views/help.jspx"/>
 </definition>
</tiles-definitions>

ff Adds a <view-controller> element to the webmvc-config.xml to allow access
to the help.jspx view without requiring to write a controller, as shown here:
<mvc:view-controller path="/static/view/help"/>

See also

ff Refer to the Manually creating a Spring MVC controller for a JPA entity recipe for
details on how to create a custom controller and view

Internationalizing Roo-generated
web applications

Roo supports internationalization of the complete UI by using resource bundles for labels and
messages. In this recipe, we will look at the web mvc install language command of Roo
and see how it simplifies internationalizing the Roo-generated web user interface.

Getting ready
Delete the contents of ch04-recipe sub-directory inside the C:\roo-cookbook directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

Web Application Development with Spring Web MVC

198

Execute the ch04_web-app.roo script that creates the flight-app Roo project, sets up
Hibernate as the persistence provider, configures MySQL as the database for the application,
creates the Flight and FlightDescription JPA entities and defines a many-to-one
relationship between the Flight and FlightDescription entities. If you are using a
different database than MySQL or your connection settings are different than what is specified
in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

Execute the controller all command to create controllers and views corresponding to the
JPA entities in the flight-app project, as shown here:

.. roo> controller all --package ~.web

Execute the perform eclipse command to update the project's classpath settings, as
shown here:

.. roo> perform eclipse

Now, import the project into your Eclipse IDE.

How to do it...
For internationalizing the Roo-generated web user interface execute web mvc install
language, as shown here:

.. roo> web mvc install language --code es

Created SRC_MAIN_WEBAPP\WEB-INF\i18n\messages_es.properties
Created SRC_MAIN_WEBAPP\images\es.png
Managed SRC_MAIN_WEBAPP\WEB-INF\views\footer.jspx

How it works...
The web mvc install language command accepts a single argument: code, which
identifies the language code for which the support needs to be added to the web application.
The code argument accepts a pre-defined language code, depending upon the languages
supported by Spring Roo. Spring Roo contains translations for the standard messages and
labels for the following language codes: de (German), en (English), es (Espanol), it (Italian),
nl (Dutch), and sv (Swedish).

When the web mvc install language command is executed, Roo processes the command
by taking the following actions:

ff Creates the messages_es.properties in /WEB-INF/i18n/ folder

ff Copies an image icon (es.png) for the language in the images directory

ff Updates /WEB-INF/views/footer.jspx to show the image icon for the language

Chapter 4

199

To check if the support for the Espanol language is correctly installed, deploy and run the
flight-app application. The following screenshot shows the home page of the flight-app
application, after the Espanol language support is added:

As the given screenshot shows, an additional image icon is displayed to allow users to
change the language of the web application to Espanol. When a user clicks the image icon
corresponding to a language, the lang request parameter is set in the request, which is used
by LocaleChangeInterceptor (configured in the /WEB-INF/spring/webmvc-config.
xml) for changing the current locale.

The CookieLocaleResolver configured in the /WEB-INF/spring/webmvc-config.
xml stores a cookie named locale in the browser, so that users don't need to change their
preferred language every time they access the web application.

There's more...
In the Auto-generating Spring MVC controllers and the JSPX views from the JPA entities
recipe, we discussed that the messages.properties contains messages and labels that
are common to all Roo-generated web applications and the application.properties
contains application-specific messages and labels.

As Roo can't provide translations for application-specific messages and labels, the web mvc
install language command doesn't create an application_<language-code>.
properties file. It is left up to the developer to create an application_<language-
code>.properties file for specific language codes and provide translations.

See also
ff Refer to the Auto-generating Spring MVC controllers and JSPX views from

JPA entities recipe for LocaleChangeInterceptor and CookieLocale
Resolver configuration

Web Application Development with Spring Web MVC

200

Adding or modifying themes
generated by Roo

A theme is a collection of CSS and image files that define the overall look and feel of the web
application. Spring Web MVC framework provides built-in support for defining and applying
themes. In the Auto-generating Spring MVC controllers and JSPX views from JPA entities
recipes, we touched upon themes support in Roo-generated Spring Web MVC applications.
In this recipe, we'll see in detail how to add new themes to Roo-generated Spring Web MVC
applications and to modify default themes installed by Roo.

In this recipe, we'll make the following modifications to the Roo-generated flight-app
web application:

ff Add a new custom theme

ff Modify existing themes to show different background color of menu headings, and
different header images

ff Add a new standard theme, which is applied if the language is es (that is, Espanol)

Getting ready
Delete the contents of ch04-recipe the sub-directory inside the C:\roo-cookbook
directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

Execute the ch04_web-app.roo script that creates the flight-app Roo project, sets up
Hibernate as the persistence provider, configures MySQL as the database for the application,
creates the Flight and FlightDescription JPA entities and defines a many-to-one
relationship between the Flight and FlightDescription entities. If you are using a
different database than MySQL or your connection settings are different than what is specified
in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

Execute the controller all command to create controllers and views corresponding to the
JPA entities in the flight-app project, as shown here:

.. roo> controller all --package ~.web

Execute the perform eclipse command to update the project's classpath settings, as
shown here:

.. roo> perform eclipse

Now, import the flight-app project into your Eclipse IDE.

Chapter 4

201

How to do it...
To add new themes and modify existing themes follow the steps given here:

1.	 Create the custom.properties file in the /WEB-INF/classes folder and set the
following properties:
styleSheet=resources/styles/custom.css
header_image=resources/images/custom_image.png

The custom.properties file represents the file that defines the custom theme that
we want to add to the flight-app application.

2.	 Create the standard_es.properties file in the /WEB-INF/classes folder and
set the following properties:
styleSheet=resources/styles/standard_es.css
header_image=resources/images/standard_es_image.png

The standard_es.properties file represents the file that defines a standard
theme when the language is es.

3.	 Update the alt.properties file in the /WEB-INF/classes folder so that it has
the following properties:
styleSheet=resources/styles/alt.css
header_image=resources/images/alt_image.png

The alt.properties file represents the file that defines an alternate theme. This
theme is installed by Roo.

4.	 Update the standard.properties file in the /WEB-INF/classes folder so that it
has the following properties:
styleSheet=resources/styles/standard.css
header_image=resources/images/standard_image.png

The standard.properties file represents the file that defines a standard theme.
This theme is installed by Roo.

5.	 Copy the alt_image.png (banner image for alternate theme), the custom_
image.png (banner image for newly added custom theme), the standard_
es_image.png (banner image for newly added standard theme when the language
is es) and the standard_image.png (banner image for standard theme) images
that accompany this chapter to the SRC_MAIN_WEBAPP/images/ folder of the
flight-app application.

6.	 Create a copy of SRC_MAIN_WEBAPP/styles/alt.css (CSS for alternate theme)
and name it custom.css (CSS for newly added custom theme). Change the
background color of the menu headings by modifying the background element of
the #menu h2 definition, as shown here:
#menu h2 {

Web Application Development with Spring Web MVC

202

 color: #fff;
background: #3f0;

 text-transform: uppercase;
 font-weight:bold;
 font-size: 12px;
}

7.	 Change the background element of the #menu h2 definition in the standard.css
(CSS for standard theme) file, as shown here:
#menu h2 {
 color: #fff;

background: #06c;

 text-transform: uppercase;
 font-weight:bold;
 font-size: 12px;
}

8.	 Create a copy of SRC_MAIN_WEBAPP/styles/standard.css and name it
standard_es.css (CSS for newly added standard theme when the language is es).
Change the background color of the menu headings by modifying the background
element of the #menu h2 definition, as shown here:
#menu h2 {
 color: #fff;

background: #f0f;

 text-transform: uppercase;
 font-weight:bold;
 font-size: 12px;
}

9.	 Modify the /WEB-INF/tags/util/theme.tagx file to add the hyperlink
for switching to the custom theme (or you can copy the theme.tagx file that
accompanies the source code of this chapter):
...
<c:out value=" | " />
<spring:url var="url_theme3" value="">
 <spring:param name="theme" value="custom" />
 <c:if test="${not empty param.page}">
 <spring:param name="page" value="${param.page}" />
 </c:if>
 <c:if test="${not empty param.size}">
 <spring:param name="size" value="${param.size}" />
 </c:if>
</spring:url>

Chapter 4

203

<spring:message code="global_theme_custom"
 var="theme_custom" />

${theme_custom}</
a>

The <spring:message> tag in the given code displays the custom link, which
allows switching the theme to custom.

10.	 Add the following property to the/WEB-INF/i18n/messages.properties file:
global_theme_custom=custom

This property is used by the theme.tagx to display the custom link.

11.	 Update the /WEB-INF/views/header.jspx file to use the header_image
property defined in the theme files for the banner image (or use the header.jspx
file that accompanies this chapter):
 <spring:theme code="header_image" var="headerImg"/>
 <spring:url value="/${headerImg}" var="banner" />

12.	 Add language support for es (Espanol) using the web mvc install language
command, as shown here:
..roo> web mvc install language --code es

13.	 Deploy the flight-app application to embed a Tomcat instance using maven, as
shown here:

.. recipe> mvc tomcat:run

How it works...
Let's take a deep dive into how themes are configured and used in Spring MVC applications:

In webmvc-config.xml, ResourceBundleThemeSource is configured by Spring Roo.
When using the ResourceBundleThemeSource all theme resources (images and CSS)
are defined in a properties file (a theme source), which resides in the classpath root (that
is, the /WEB-INF/classes directory). So, each properties file in the /WEB-INF/classes
constitutes a theme definition file. Now, by default Roo creates two properties file in /WEB-
INF/classes directory: standard.properties and alt.properties. We can say that
we have two themes installed by default in the Roo-generated Spring Web MVC applications.
So, what does these property files contain? Each properties file contains information about
the CSS and images that form part of the theme. The alt.properties file contains the
following property:

styleSheet=resources/styles/alt.css

Web Application Development with Spring Web MVC

204

The standard.properties file contains the following property:

styleSheet=resources/styles/standard.css

As you can see, both alt.properties and standard.properties define a styleSheet
property, which refers to a CSS file. Depending upon the theme you choose in the Roo-
generated web application, an appropriate style sheet is applied to the web application.

The next question that you may ask is—how the Spring Web MVC application comes
to know which theme to apply? Well, this is where the following Roo-generated
CookieThemeResolver configuration comes into play:

<bean class="org.springframework.web.servlet.theme.
 CookieThemeResolver"
 id="themeResolver" p:cookieName="theme"
 p:defaultThemeName="standard"/>

The cookieName attribute specifies the name of the cookie, which contains the theme
that applies to the web application. If no cookie is found, then the configuration uses the
theme identified by the defaultThemeName attribute, which happens to be standard;
therefore, the theme defined by standard.properties is used by default by the Roo-
generated Spring Web MVC application.

Now, we know how themes are defined using property files and how a theme is configured for
Spring Web MVC application. Let's now see how theme resources are accessed by JSPX views:

JSPX views access theme resources such as images and CSS defined in property files using
the <theme> tag of Spring's tag library, as shown here:

 <spring:theme code="header_image" var="headerImg"/>

The code attribute identifies the name of the property, which you want to access from the
theme properties file. The var attribute of the <theme> tag specifies the name of the variable
in which the property value is stored. The theme property file from which the property is read
is dependent upon the current theme that applies to the web application. For instance, if the
current theme is standard, then the header_image property is read from the standard.
properties file, if the current theme is custom, then header_image property is read from
the custom.properties file, and so on.

The ResourceBundleThemeSource supports configuring localized themes also. For
instance, the standard_es.properties file in /WEB-INF/classes defines theme
resources, which apply when the language is es and the theme is standard.

Now, coming to how you add your custom theme name at the bottom of the web page of the
Roo-generated web application. All you need to do is to modify the theme.tagx file, which is
responsible for showing all the theme hyperlinks. When you select the theme of your choice,
the ThemeChangeInterceptor comes into picture, which allows for changing the current
theme on every request.

Chapter 4

205

The following screenshot shows how the home page of the flight-app application looks
when the current theme is the modified standard theme:

In the given screenshot, you'll notice the change in the background color of the menu
headings such as FLIGHT DESCRIPTION and FLIGHT. You'll also notice that instead of the
default header image, an image containing text IMAGE (Standard) is displayed. As we have
copied different images for each theme, a different image is displayed, which identifies the
theme, which currently applies to the web application.

The following screenshot shows the home page of the flight-app application when we
select the Espanol language from the footer, without changing the current standard theme:

Again, notice the change in the background color of the menu headings and the change in the
header image.

Web Application Development with Spring Web MVC

206

The following screenshot shows the home page of the flight-app web application when the
chosen language is English and the theme is custom:

There's more...
In some scenarios, you may have additional properties files in your /WEB-INF/classes
directory. For instance, you may have a log4j.properties file inside /WEB-INF/
classes for use by the log4j library. In such scenarios, you may want to keep your theme
properties files in a different folder than the classpath root. You can do so by using the
basenamePrefix property of ResourceBundleThemeSource. For instance, consider the
following configuration of the ResourceBundleThemeSource in webmvc-config.xml file:

<bean class="org.springframework.ui.context.support.
 ResourceBundleThemeSource" id="themeSource"
 p:basenamePrefix="themes."/>

The value themes. of the basenamePrefix attribute effectively says that
ResourceBundleThemeSource should look for themes inside the /WEB-INF/
classes/themes directory.

See also
ff Refer to the Auto-generating Spring MVC controllers and JSPX views from JPA entities

recipe to know more about configurations defined in the webmvc-config.xml file

Adding JSON support to domain objects
and controllers

Let's say that you have developed the persistence layer of your application using Roo. Now,
you want to expose the CRUD operations and dynamic finder methods defined in the Roo-
generated JPA entities to the outside world via a RESTful interface.

Chapter 4

207

Roo supports exposing CRUD operations and dynamic finders of JPA entities via RESTful
interfaces that use JSON documents for exchanging data. As JSON is used by Roo-generated
RESTful interfaces, you can modify JSPX pages of the Roo-generated Spring Web MVC
application to use Ajax to interact with these RESTful interfaces.

Roo provides two commands for adding JSON support to existing classes in the Roo project:

ff json add: Adds JSON support to the class specified using the class argument

ff json all: Adds JSON support to all the classes annotated with the
@RooJavaBean annotation

The json add and json all commands add the @RooJson annotation to Java classes.
the @RooJson annotation results in the creation of a *_Roo_Json.aj AspectJ ITD
corresponding to the class annotated with the @RooJson annotation. In this recipe, we'll look
at the *_Roo_Json.aj AspectJ ITD and at the @RooJson annotation.

It is important to note that @RooJson annotation allows you to control auto-generation of
JSON related methods in the corresponding *_Roo_Json.aj ITD file.

Getting ready
Delete the contents of the ch04-recipe sub-directory inside the C:\roo-cookbook
directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

Execute the ch04_web-app.roo script that creates the flight-app Roo project, sets up
Hibernate as the persistence provider, configures MySQL as the database for the application,
creates the Flight and FlightDescription JPA entities, and defines a many-to-one
relationship between the Flight and FlightDescription entities. If you are using a
different database than MySQL or your connection settings are different than what is specified
in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

Execute the controller all command to create controllers and JSPX views corresponding
to JPA entities in the flight-app project, as shown here:

.. roo> controller all --package ~.web

Execute the perform eclipse command to update the project's classpath settings, as
shown here:

.. roo> perform eclipse

Now, import the flight-app project into your Eclipse IDE.

Web Application Development with Spring Web MVC

208

How to do it...
To add the json support execute the json add command against the Flight JPA entity:

~.domain.Flight roo> json add --class ~.domain.Flight

Updated SRC_MAIN_JAVA\...\domain\Flight.java

Created SRC_MAIN_JAVA\...\domain\Flight_Roo_Json.aj

Created SRC_MAIN_JAVA\...\web\FlightController_Roo_Controller_Json.aj

Alternatively, add the @RooJson annotation to the Flight.java class. Adding the @
RooJson annotation to the Flight entity has the same effect as executing the json add
command against the Flight entity. Adding the @RooJson annotation will result in auto-
generation of Flight_Roo_Json.aj and FlightController_Roo_Controller_Json.
aj AspectJ ITDs.

How it works...
Executing the json add command annotates the class (specified via class argument) with
the @RooJson annotation. If a class is annotated with the @RooJson annotation, Roo creates
a *_Roo_Json.aj AspectJ ITD, which defines methods for converting objects of the class to
JSON documents and vice versa.

We saw that when the json addon command was executed against the Flight entity, it also
resulted in the creation of a FlightController_Roo_Controller_Json.aj AspectJ
ITD. This ITD is created if the value of the @RooWebScaffold's exposeJson attribute in
the FlightController.java class is true. If the @RooWebScaffold's exposeJson
attribute is not specified, the default value is true.

If the value of the exposeJson attribute is true and the JPA entity used as the form-backing
object by the web controller is annotated with the @RooJson annotation, Roo creates a *_
Roo_Controller_Json.aj ITD corresponding to the web controller class. This ITD defines
JSON-based methods to perform CRUD operations and execute dynamic finder methods of
the JPA entity. For instance, the FlightController_Roo_Controller_Json.aj ITD
introduces JSON-related methods into the FlightController.java class for performing
CRUD operations on the Flight entity.

The following listing shows the methods defined in the Flight_Roo_Json.aj ITD file that
was created corresponding to the @RooJson annotated Flight entity:

import flexjson.JSONDeserializer;

import flexjson.JSONSerializer;

privileged aspect Flight_Roo_Json {

 public String Flight.toJson() {
 return new JSONSerializer().exclude("*.class").

Chapter 4

209

 serialize(this);
 }

 public static Flight Flight.fromJsonToFlight(String json) {
 return new JSONDeserializer<Flight>().use(null,
 Flight.class).deserialize(json);
 }

 public static String Flight.toJsonArray(
 Collection<Flight> collection) {
 ...
 }

 public static Collection<Flight>
 Flight.fromJsonArrayToFlights(String json) {
 ...
 }
}

In the given code listing, Roo makes use of the Flexj son library to incorporate support for
serializing and deserializing JSON documents. The auto-generated JSON methods that are
defined in Flight_Roo_Json.aj are:

ff toJson: Converts the current Flight object into a JSON document

ff fromJsonToFlight: Converts the JSON document passed as an argument into the
Flight object

ff toJsonArray: Converts a collection of Flight objects into a JSON document
containing an array

ff fromJsonArrayToFlights: Converts a JSON array document into a collection of
Flight objects

ff If you want to customize the names of the JSON methods generated by @RooJson,
you can use the following attributes of @RooJson annotation:

�� fromJsonArrayMethod: For customizing the name of the
fromJsonArrayTo<class_name> method

�� fromJsonMethod: For customizing the name of the
fromJson<class_name> method

�� toJsonArrayMethod: For customizing the name of the
toJsonArray method

�� toJsonMethod: For customizing the name of the toJson method

The <class_name> refers to the name of the JPA entity class to which the JSON method
applies. If the value of an element is "", then the corresponding method is not generated
by Roo in the *_Roo_Json.aj file.

Web Application Development with Spring Web MVC

210

It is important to note that you can use the json add command to add JSON support to any
class. For instance, if you create a MyKlass class and annotate it with @RooJson, then Roo
will auto-generate the given methods where the <class-name> is MyKlass.

Excluding fields from serializing
To exclude a field from serializing to JSON format, all you
need to do is to annotate the field or the corresponding getter
method with the @JSON(include=false) annotation.

In some JavaScript libraries, such as EXT JS, it is expected that the JSON document contains
a root node. You can instruct Roo to set the root node of the generated JSON document either
by using the rootName argument of the json add command or by setting the rootName
attribute of the @RooJson annotation. When the rootName argument of the json add
command is used, the generated @RooJson annotation's rootName attribute is set to the
value of the rootName command argument.

The following code snippet shows the Flight_Roo_Json.aj ITD when the rootName
attribute of the @RooJson annotation on the Flight.java file is set to myRoot:

import flexjson.JSONDeserializer;

import flexjson.JSONSerializer;

privileged aspect Flight_Roo_Json {

 public String Flight.toJson() {

 return new JSONSerializer().
 rootName("myRoot").exclude("*.class").serialize(this);
 }
 ...
 public static String Flight.toJsonArray(

 Collection<Flight> collection) {

 return new JSONSerializer().
 rootName("myRoot").exclude("*.class").
 serialize(collection);
 }
 ...
}

The given code shows that if the rootName attribute of the @RooJson annotation is
specified, the toJson and toJsonArray methods of the *_Roo_Json.aj ITD set
the root node of the JSON document to myRoot using the rootName method of the
JSONSerializer object of Flexjson. The argument passed to the rootName method is the
value set for the rootName attribute of the @RooJson annotation.

Chapter 4

211

The following code shows the FlightController_Roo_Controller_Json.aj ITD, which
was generated because the value of the @RooWebScaffold's exposeJson attribute is true
in the FlightController.java file:

import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.ResponseBody;

privileged aspect FlightController_Roo_Controller_Json {

 @RequestMapping(value = "/{flightId}",

 method = RequestMethod.GET,

 headers = "Accept=application/json")

 @ResponseBody

 public Object FlightController.
 showJson(@PathVariable("flightId") Long flightId) {
 Flight flight = Flight.findFlight(flightId);
 if (flight == null) {
 HttpHeaders headers= new HttpHeaders();
 headers.add("Content-Type", "application/text");
 return new ResponseEntity<String>(headers,
 HttpStatus.NOT_FOUND);
 }
 return flight.toJson();
 }
 ...
}

The given code shows the showJson method that the ITD adds to the FlightController.
java class. The showJson method represents one of many JSON related methods defined
in the ITD. The showJson method returns a Flight object as a JSON document. The
showJson method returns the JSON representation of the Flight entity whose identifier is
specified via request URI. If the request URI is /flights/10, then the showJson method
returns the JSON representation of the Flight entity instance whose identifier value is
10. the @ResponseBody annotation instructs the Spring Web MVC framework to write the
response to the HTTP response body. The headers attribute of the @RequestMapping
annotation specifies the request headers that must be present in the web request.

To test the JSON related methods defined in FlightController_Roo_Controller_Json.
aj, you can use the Poster add-on of Firefox or you can use the curl command of Linux.

See also
ff Refer to the Creating a Spring MVC controller for a specific JPA entity and Auto-

generating Spring MVC controllers and JSPX views from JPA entities recipes to view
details of methods generated by Roo

Web Application Development with Spring Web MVC

212

Creating and executing Selenium tests
for web controllers

Automated web application testing is an important part of any web application development
effort. Spring Roo provides supports for auto-generating Selenium tests for the Spring Web
MVC controllers. In this recipe, we'll look at how to generate Selenium tests for web controllers
using Roo and how to use the Selenium maven plugin to execute them.

Getting ready
Delete the contents of ch04-recipe sub-directory inside the C:\roo-cookbook directory.

Copy the ch04_web-app.roo script into the ch04-recipe directory.

Execute the ch04_web-app.roo script that creates the flight-app Roo project, sets up
Hibernate as the persistence provider, configures MySQL as the database for the application,
creates the Flight and FlightDescription JPA entities and defines a many-to-one
relationship between Flight and FlightDescription entities. If you are using a different
database than MySQL or your connection settings are different than what is specified in the
script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch04-recipe directory.

Execute the controller all command to create controllers and views corresponding to the
JPA entities in the flight-app project, as shown here:

.. roo> controller all --package ~.web

Execute the perform eclipse command to update the project's classpath settings, as
shown here:

.. roo> perform eclipse

Now, import the flight-app project into your Eclipse IDE.

Install the Firefox web browser, which is used by default for executing Selenium tests. If you
want to use any other web browser, then refer to the How it works... section of this recipe.

How to do it...
The following steps demonstrate how to create Selenium tests:

1.	 Execute the selenium test command to create the Selenium test for
FlightDesciptionController, as shown here:

Chapter 4

213

..roo> selenium test --controller ~.web.
FlightDescriptionController --name testFlightDescriptionController
--serverUrl http://localhost:8080/

Created SRC_MAIN_WEBAPP\selenium

Created SRC_MAIN_WEBAPP\selenium\test-flightdescription.xhtml

Created SRC_MAIN_WEBAPP\selenium\test-suite.xhtml

Managed SRC_MAIN_WEBAPP\WEB-INF\i18n\application.properties

Managed SRC_MAIN_WEBAPP\WEB-INF\views\menu.jspx

Managed ROOT\pom.xml

2.	 Execute the selenium test command to create the Selenium test for
FlightController, as shown here:
..roo> selenium test --controller ~.web.FlightController --name
testFlightController --serverUrl http://localhost:8080/

Created SRC_MAIN_WEBAPP\selenium\test-flight.xhtml

Managed SRC_MAIN_WEBAPP\selenium\test-suite.xhtml

3.	 Exit the Roo shell and run the flight-app project inside the embedded Tomcat
(or jetty) instance, by executing the tomcat:run goal:
.. recipe> mvn tomcat:run

4.	 Open another command prompt and execute the selenium:selenese maven goal
to execute the Selenium tests, as shown here:

.. recipe> mvn selenium:selenese

How it works...
The selenium test command creates the Selenium test for a web controller. The following
table describes the arguments accepted by the selenium test command:

Argument Description
controller Specifies the fully-qualified name of the web controller for which the

Selenium test needs to be created.
name It is the name given to the generated Selenium test.
serverUrl The URL of the server where the web application is running. The default

value of the serverUrl argument is http://localhost:8080/.
The serverUrl argument value is used when executing Selenium tests
using the Selenium maven plugin.

Web Application Development with Spring Web MVC

214

When the selenium test command is executed for the first time, Roo performs the
following tasks:

ff Creates the SRC_MAIN_WEBAPP/selenium folder, in which all Selenium tests
are created

ff Creates the test-<JPA-entity-name>.xhtml file, which represents the
Selenium script for testing the web controller. The <JPA-entity-name> is the name
of the JPA entity managed by the web controller.

ff Creates a test-suite.xhtml file, which contains the collection of Selenium tests
that form part of the web application.

ff Adds a new label property to the application.properties file with the value of
Selenium Tests. The label is used by the menu.jspx file to show a menu category
under which you'll find a hyperlink Test Suite. Clicking the Test Suite link shows the
list of all the Selenium tests that form part of the web application.

ff Updates the pom.xml file to configure the Selenium maven plugin. The following XML
fragment shows the configuration of the Selenium maven plugin:

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>selenium-maven-plugin</artifactId>
 <version>1.1</version>

 <configuration>
 <suite>src\main\webapp\selenium\test-suite.xhtml</suite>
 <browser>*firefox</browser>
 <results>
 ${project.build.directory}/selenium.html</results>
 <startURL>http://localhost:4444/</startURL>
 </configuration>

</plugin>

The <configuration> element configures settings for the Selenium maven plugin.
The <suite> element identifies the Selenium test suite, which is executed when
you run the selenium:selenese goal. The <browser> element specifies the web
browser to use for executing Selenium tests. The value *firefox indicates that the
tests are executed using the Firefox web browser. If you want to use IE for executing
the Selenium tests, then specify *iexplore as the value of the <browser>
element. If you want to use any other browser, then specify *custom as the value.
The <startURL> identifies the URL where the Selenium server is running. The
Selenium server acts as a proxy between the browser running the selenium tests
and the web application being tested. The selenium:selenese goal starts the
Selenium server, executes tests defined in the test suite and stops the server when
the execution of tests completes. The <results> element specifies the location
where the Selenium test results are stored. The ${project.build.directory}
variable refers to the target directory of your project.

Chapter 4

215

When you execute the selenium:selenese goal, the Firexfox web browser is
automatically opened and tests defined in the test-suite.xhtml are executed.
The result of the execution is saved in the /target/selenium.html file.

Let's now look at the XHTML files (representing Selenium test scripts) that were created when
we executed the selenium test command:

Selenium test scripts
The Selenium scripts are simple HTML files. The following listing shows the content of the
test-flightdescription.xhtml script:

<html ..>
..
<title>testFlightDescriptionController</title>
..
<table border="1" cellpadding="1" cellspacing="1">
 ..
 <tbody>
 <tr>
 <td>open</td>
 <td>
 http://localhost:8080/flight-app/flightdescriptions?
 form&lang=en_IN</td>
 <td></td>
 </tr>
 <tr>
 <td>type</td>
 <td>_origin_id</td>
 <td>someOrigin1</td>
 </tr>
 ..
 <tr>
 <td>clickAndWait</td>
 <td>//input[@id='proceed']</td>
 <td></td>
 </tr>
 ..
</html>

Web Application Development with Spring Web MVC

216

The HTML test script of Selenium consists of multiple table rows (that is, <tr> elements) and
each row has three columns (represented by <td> elements). There is a specific semantic
associated with each column. The first column identifies the Selenium command to be executed.
For instance, the open command instructs Selenium to open a URL and the type command
enters a value in an input type HTML element. The type command may also be used for
selecting a value in a drop-down box, selecting a checkbox, and so on. The clickAndWait
command instructs Selenium to perform a click action and waits for the new page to load in
response to the click action. The second column in the table row identifies the target of the
Selenium command. For instance, the test-flightdescription.xhtml, open command
opens the following URL:

http://localhost:8080/flight-app/flightdescriptions?form&
lang=en_IN

The given URL opens the web page for creating the FlightDescription JPA entities. This
is the same form, which opens up when you select the Create new Flight Description menu
option in the flight-app web application.

The type command shown in the test-flightdescription.xhtml enters value for
the input field with the id value as _origin_id. The id attribute's value of the Origin
field on the HTML form for creating the FlightDescription entity is _origin_id. The
clickAndWait command makes use of XPath expression to instruct Selenium to click the
button whose id attribute's value is proceed. The id attribute's value of the Save button on
the form for creating the FlightDescription entity instances has the value proceed.

The third column of the table row in the Selenium script specifies the value that is used by
the command for performing its action. For instance, in the test-flightdescription.
xhtml file, the type command sets the value of the input field with the id _origin_id to
the value someOrigin1 (the value specified in the third <td> element). Depending upon the
command, the second and third columns of a table row might be empty. For instance, in the
case of the open and clickAndWait commands, the third column of the table row is empty.

If you look at the test-flightdescription.xhtml script in its entirety, it is opening
the form for creating new FlightDescription entities, entering values for the input
fields in the form and clicking the Save button. This means, a successful execution of test-
flightdescription.xhtml means a FlightDescription JPA entity is created in the
database. Similarly, the test-flight.xhtml script creates a Flight JPA entity instance.

Selenium test suite
The test-suite.xhtml file created by Roo in the SRC_MAIN_WEBAPP/selenium folder
specifies the tests that are executed by the Selenium maven plugin. The following listing
shows the contents of the test-suite.xhtml file:

Chapter 4

217

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
 ..
 <tr>
 <td>

 <a href="http://localhost:8080/flight-app

 /resources/selenium/test-flightdescription.xhtml">

 testFlightDescriptionController

 </td>

 </tr>
 <tr>
 <td>

 <a href="http://localhost:8080/flight-app

 /resources/selenium/test-flight.xhtml">

 testFlightController

 </td>

 </tr>
 </table>
 </body>
</html>

In the test-suite.xhtml, each <td> element specifies a Selenium test script that is
executed as part of the test suite. The important point to notice is the URL used to specify
the location of the test scripts. The test-flightdescription.xhtml and the test-
flight.xhtml are served statically by the ResourceHttpRequestHandler handler,
which is configured in the webmvc-config.xml via the resources element of the mvc
schema, as shown here:

<mvc:resources location="/,
 classpath:/META-INF/web-resources/"
 mapping="/resources/**" />

Refer to the Auto-generating Spring MVC controllers and JSPX views from JPA entities recipe
for more information on the configuration of the <resources> element.

It is important to note that Selenium tests are executed in the order they are specified in the
test-suite.xhtml file.

Web Application Development with Spring Web MVC

218

You can view the details of tests that form part of the test suite by deploying your Roo-
generated web application and selecting the Test Suite menu option under the SELENIUM
TESTS category, as shown in the following screenshot:

In the case of the flight-app application, selecting the Test Suite option shows
the test-suite.xhtml, which in turn you can use to view details of the
test-flightdescription.xhtml and test-flight.xhtml files.

There's more...
The following are some of the important points to notice about Selenium tests generated by
Spring Roo:

ff The round-tripping support is not available for Selenium tests generated by Spring
Roo. For instance, if you add, remove, or modify an attribute of the Flight JPA entity,
then the corresponding Selenium test script test-flight.xhtml is not modified by
Roo. You can remove the Roo-generated Selenium test scripts and regenerate them
using the selenium test command.

ff As we saw, Roo generates Selenium tests only for creating the form-backing object
exposed by the controller. So, you can't create a Selenium test for a controller, which
doesn't support creation of form-backing objects, that is, the value of the create
attribute of the @RooWebScaffold annotation in the controller is false. If you
execute the selenium test command against a controller that specifies the value
of the @RooWebScaffold's create attribute as false, then the Roo complains
that the creation of the Selenium test is not supported by the controller.

ff Roo doesn't generate Selenium tests for manually created controllers. So, if you
generate a controller, which doesn't have a @RooWebScaffold annotation,
then you can't use Roo to generated the Selenium test for it. If you execute the
selenium test command against a controller, which isn't annotated with the
@RooWebScaffold annotation, then Roo complains that the controller doesn't seem
to be a Roo-generated controller.

Chapter 4

219

ff Roo generates the Selenium tests by introspecting the properties of the form-backing
object (which is a JPA entity in case of the Roo generated controllers) exposed by the
Roo-generated controllers. The generated Selenium test assumes that the form for
creating the JPA entity (exposed by the web controller as a form-backing object) will
always be displayed, which is not always the case. For instance, if you access the
Create new Flight menu option, then it will not show the form to create the Flight
instance if we haven't already created one or more FlightDescription instances.
So, if test-suite.xhtml specifies execution of test-flight.xhtml before the
test-flightdescription.xhtml, then the test-flight.xhtml execution will
fail if no FlightDescription instances have already been created.

The Spring Roo generated Selenium test doesn't perform a thorough testing of the Roo-
generated web application functionality; it only tests the controller functionality that creates
the JPA entity instance. It is recommended that you use the Selenium-IDE (available as a
Firefox plugin) to record and execute test scripts. If you are looking for a more sophisticated
testing approach, then you can use the Selenium-IDE to create a test script, save it as a JUnit4
or TestNG test, modify the test to address specific testing requirements (like, verifying if the
JPA entity instance was saved successfully by retrieving it from the database) and execute the
JUnit4 or TestNG tests using the maven Surefire plugin.

See also
ff Refer to the Creating integration test for persistent entities recipe of Chapter 2 for

details on how Roo supports auto-generation of integration tests for JPA entities

5
Web Application

Development with
GWT, Flex, and

Spring Web Flow

In this chapter, we will cover:

ff Scaffolding GWT applications from JPA entities

ff Getting started with Flex application development

ff Scaffolding a Flex application from JPA entities

ff Getting started with Spring Web Flow

Introduction
In the previous chapter, we saw that Roo scaffolds Spring Web MVC controllers and JSPX
views from JPA entities that are in the application. In this chapter, we'll look at Roo commands
that scaffold GWT and Flex front-ends from JPA entities. Additionally, in this chapter, we'll see
how we can use Roo to add support for Spring Web Flow in our application.

Web Application Development with GWT, Flex, and Spring Web Flow

222

Scaffolding GWT applications
from JPA entities

In this recipe, we'll look at the gwt setup command, which scaffolds GWT artifacts from
JPA entities.

Getting ready
Create a new directory (C:\roo-cookbook\ch05-gwt) in your system. Copy the ch05_
gwt_app.roo script that accompanies this book to the ch05-gwt directory. Start the Roo
shell from the ch05-gwt directory and execute the ch05_gwt_app.roo script using the
script command. Executing the ch05_gwt_app.roo script does the following:

ff Creates a flightapp-gwt Eclipse project

ff Sets up Hibernate as a persistence provider

ff Configures MySQL as the database for the application

ff Creates Flight and FlightDescription JPA entities and defines a many-to-one
relationship between Flight and FlightDescription entities

If you are using a different database than MySQL or your connection settings are different
from what is specified in the script, then modify the script accordingly.

Install the Google Plugin for Eclipse IDE (http://code.google.com/eclipse/); it
simplifies developing GWT applications using Eclipse IDE.

How to do it...
Follow these steps to scaffold GWT applications:

1.	 Execute gwt setup command, as shown here:
..roo>gwt setup

....

Created SRC_MAIN_WEBAPP\WEB-INF\spring

Created SRC_MAIN_WEBAPP\WEB-INF\spring\webmvc-config.xml

Created SRC_MAIN_WEBAPP\WEB-INF\web.xml

Updated ROOT\pom.xml[...]

Created SRC_MAIN_JAVA\sample\roo\flightapp\client

Created SRC_MAIN_JAVA\sample\roo\flightapp\ApplicationScaffold.
gwt.xml

Created SRC_MAIN_JAVA\sample\roo\flightapp\client\managed\request

Created SRC_MAIN_JAVA\sample\roo\flightapp\client\scaffold\request

Chapter 5

223

Created SRC_MAIN_WEBAPP\index.html

Created SRC_MAIN_WEBAPP\ApplicationScaffold.html

...

Note that only partial output has been shown above for brevity.

2.	 As of Spring Roo 1.1.3, gwt setup command creates GAE-specific (Google App
Engine) Java files that you must remove from the generated source. To do so, remove
the following folders from the flightapp-gwt project before going to the next step:
src/main/java/sample/roo/flightapp/server/gae
src/main/java/sample/roo/flightapp/shared/gae
src/main/java/sample/roo/flightapp/client/scaffold/gae

If you are using Spring Roo 1.1.5, GAE-specific Java files are not generated.

3.	 Execute the perform eclipse command to update the .classpath file of the
flightapp-gwt Eclipse project and to convert the nature of the project to gwt:
..roo>perform eclipse

4.	 Import the flightapp-gwt project into your Eclipse IDE. Add the Google Web
Toolkit library to the build path (Project properties | Java Build Path | Add Library)
of the flightapp-gwt project, so that the project doesn't show any compilation
errors in Eclipse IDE.

5.	 If you want to run the GWT application using the GWT Maven plugin (http://
mojo.codehaus.org/gwt-maven-plugin/), then exit the Roo shell and execute
gwt:run goal of the GWT maven plugin, as shown here (alternatively, you may go to
the next step):
..recipe>mvn clean compile gwt:run

Executing the gwt:run goal opens the GWT Development Mode window, as
shown here:

Web Application Development with GWT, Flex, and Spring Web Flow

224

Click the Launch Default Browser button in the GWT Development Mode window to
launch the flightapp-gwt application. If not already installed, you'll be prompted
to install the Google Web Toolkit Developer Plugin for your browser, which is
required when you are running a GWT application in development mode.

6.	 If you want to run the GWT application from your Eclipse IDE, then right-click the
flightapp-gwt project in Eclipse IDE and select Google | Web Toolkit Settings...
option. Select the Web Application option and check the option This project has a
WAR directory, as shown here:

As shown in the screenshot, set the WAR directory value to src/main/
webapp—Maven's standard WAR directory that contains the Application
Scaffold.html host page. Make sure that the Launch and deploy from this
directory option is unchecked.

7.	 Right-click on the flightapp-gwt project in Eclipse IDE and select the Run As | Web
Application option. Select ApplicationScaffold.html (or index.html) page in
the HTML Page Selection dialog, as shown in the following figure:

Chapter 5

225

The HTML page that you select on this screen represents a host HTML page that
is responsible for loading the GWT application. Both ApplicationScaffold.
html and index.html files are located in the src/main/webapp directory of
the flightapp-gwt GWT application. index.html is a simple HTML page that
simply loads the ApplicationScaffold.html page—the host HTML page of
flightapp-gwt GWT application.

When you are running the GWT application for the first time, you will be asked to
select the location of the WAR directory of the flightapp-gwt project, which is
target/flightapp-gwt-0.1.0.BUILD-SNAPSHOT.

8.	 The Run As | Web Application option starts the embedded Jetty server (bundled
with Google Plugin for Eclipse) and runs the GWT application in the development
mode. In development mode, the GWT application executes like a regular Java
application, and is not compiled to JavaScript. This makes it possible to debug the
GWT application during the development phase and when the application is ready for
production, simply compile the GWT application to create corresponding JavaScript
files. In the development mode, Eclipse IDE shows a new Development Mode view
with the link to access the GWT application, as shown here:

9.	 Click the URL displayed in the Development Mode view to open it in the default web
browser or right-click the URL to select the browser in which you want to open it. If the
flightapp-gwt application is successfully deployed, you'll see the home page of
the application, as shown here:

Web Application Development with GWT, Flex, and Spring Web Flow

226

You can now use the Flights and FlightDescriptions menu options to perform CRUD
operations on Flight and FlightDescription JPA entities.

How it works...
The gwt setup command is processed by the GWT add-on of Spring Roo.

You might be wondering, why the Roo-generated GWT user interface doesn't show a link
corresponding to the findFlightDescriptionsByDestinationAndOrigin finder
method in the FlightDescription JPA entity? As of Spring Roo 1.1.5, the GWT add-on
doesn't add finder functionality to the scaffolded GWT application.

The gwt setup command does the heavy lifting of scaffolding GWT Activities, Places, Proxies,
and Views for performing CRUD operations on JPA entities. Let's first take a look at the Roo-
generated GWT module descriptor file, ApplicationScaffold.gwt.xml, which describes
a GWT module.

GWT module descriptor
Roo creates ApplicationScaffold.gwt.xml in the root package, sample.roo.
flightapp, of the flightapp-gwt project. It defines module dependencies, source paths,
properties, deferred binding configurations, and module entry points. Let's look at some of the
important elements defined in ApplicationScaffold.gwt.xml.

By default, the name of the GWT module is derived from the location of the module
descriptor. As Roo creates the ApplicationScaffold.gwt.xml file in the sample.
roo.flightapp package, the name of the module is sample.roo.flightapp.
ApplicationScaffold. The ApplicationScaffold.gwt.xml file renames the module
to applicationScaffold using the rename-to attribute of the <module> element, as
shown here:

<module rename-to="applicationScaffold">

The GWT compiler generates JavaScript code in the directory identified by the module
name; therefore, the code for our applicationScaffold module is generated in the
applicationScaffold sub-directory of the generated WAR file.

The <inherits> element of the module descriptor specifies modules on which the module
is dependent upon. For instance, applicationScaffold is dependent on User, Logging,
Activity, Places, and so on, built-in modules of GWT, as shown here:

 <inherits name='com.google.gwt.activity.Activity'/>
 <inherits name='com.google.gwt.place.Place'/>
 <inherits name="com.google.gwt.user.User"/>
 <inherits name='com.google.gwt.logging.Logging'/>

Chapter 5

227

The <source> element of the module descriptor specifies package, including its
sub-packages (relative to the classpath location of ApplicationScaffold.gwt.xml file),
which contain Java classes that GWT compiler needs to translate into JavaScript, as shown
here for applicationScaffold module:

 <source path='client'/>
 <source path='shared'/>

The given <source> element instructs the GWT compiler to translate Java classes contained
in sample.roo.flightapp.client and sample.roo.flightapp.shared packages,
and their sub-packages.

The <public> element of module descriptor specifies packages (and their sub-packages)
that contain publicly accessible resources, like images and CSS files, as shown here:

<public path="public"/>

As with the <source> elements, the <public> element specifies the location of packages
relative to the classpath location of the module descriptor file.

The ApplicationScaffold.gwt.xml file configures logging for the module, as
shown here:

<set-property name="gwt.logging.enabled" value="TRUE"/>
<set-property name="gwt.logging.logLevel" value="INFO"/>
<set-property name="gwt.logging.consoleHandler"
 value="ENABLED"/>
<set-property name="gwt.logging.developmentModeHandler"
 value="ENABLED"/>
<set-property name="gwt.logging.simpleRemoteHandler"
 value="DISABLED"/>
...

In this code, gwt.logging.enabled property enables logging for the
applicationScaffold module, gwt.logging.logLevel property sets the logging
level to INFO, gwt.logging.consoleHandler property enables logger output to appear
in the IDE console, gwt.logging.developmentModeHandler property enables logger
output to appear in the 'Development Mode' console of the IDE and gwt.logging.
simpleRemoteHandler property disables remote logging of log messages. Later in this
recipe, we'll see that gwt.logging.simpleRemoteHandler property is set to ENABLED to
enable logging messages on the server-side.

Roo-generated GWT applications by default provide support for the mobile Safari browser. So,
if you are developing a GWT application, it'll work seamlessly on mobile phones that use the
mobile Safari browser. If the application is accessed using the mobile Safari browser, then the
GWT application will create a web UI suitable for display in mobile devices. To support both
desktop and mobile Safari browsers, the applicationScaffold module makes use of the
deferred binding feature of the GWT compiler.

Web Application Development with GWT, Flex, and Spring Web Flow

228

To use the deferred binding feature, the <define-property> element of module descriptor
is used to define a new property named mobile.user.agent, as shown here:

<define-property name="mobile.user.agent"
 values="mobilesafari, none"/>

The values attribute specifies a comma-separated list of values that the mobile.user.
agent property can accept.

To set the mobile.user.agent property value, the module descriptor makes use of the
<property-provider> element, as shown here:

 <property-provider name="mobile.user.agent">

 <![CDATA[
 var ua = navigator.userAgent.toLowerCase();
 ...
]]>

The CDATA section contains the JavaScript that is used to obtain the value of the
mobile.user.agent from the user-agent information sent by the web browser to
the server hosting the GWT application.

Now, the most important part: the deferred binding rule is defined using a replacement
technique in the applicationScaffold module descriptor file, as shown here:

<replace-with
 class="...client.scaffold.ioc.MobileInjectorWrapper">
 <when-type-is
 class="...client.scaffold.ioc.DesktopInjectorWrapper"/>
 <all>
 <when-property-is name="mobile.user.agent"
 value="mobilesafari"/>
 </all>
</replace-with>

This configuration instructs the GWT compiler to replace the code of Desktop
Injectorrapper with MobileInjectorWrapper (while generating JavaScript for
the applicationScaffold module) if the value of mobile.user.agent property
is mobilesafari. This is possible because both DesktopInjectorWrapper and
MobileInjectorWrapper implement the same interface, InjectorWrapper. When the
GWT compiler executes, it uses deferred binding rules (defined in the module descriptor file) to
generate separate flightapp-gwt application's JavaScript code for mobile Safari and desktop
browsers. This ensures that the desktop and mobile browsers download JavaScript code meant
specifically for that browser type. For instance, the mobile Safari browser will not download
JavaScript code that is specific to the desktop web browser and vice versa. The classes that
need to create an instance of DesktopInjectorWrapper or MobileInjectorWrapper
make use of the create static method of the com.google.gwt.core.client.GWT
class to instruct the GWT compiler to instantiate the DesktopInjectorWrapper or
MobileInjectorWrapper instance using deferred binding.

Chapter 5

229

The code generated for mobile Safari browser follows
a similar design approach as the code for the desktop
browser; therefore, in this book we'll limit the discussion
of Roo-generated code specific to desktop browser.

A module descriptor also describes entry points into the GWT application using
<entry-point> element, as shown here for applicationScaffold module:

<entry-point
 class="sample.roo.flightapp.client.scaffold.Scaffold"/>

The above code suggests that Scaffold class represents the entry point for the
applicationScaffold module. Scaffold class implements com.google.gwt.core.
client.EntryPoint interface of GWT—a mandatory requirement for entry point classes.

The GWT module's entry point
As mentioned earlier, the Scaffold class of the flightapp-gwt application represents
an entry point into the applicationScaffold module. The Scaffold class implements
GWT's EntryPoint interface and implements its onModuleLoad method to bootstrap the
flightapp-gwt application, as shown here:

Scaffold.java
package sample.roo.flightapp.client.scaffold;

import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.core.client.GWT;

public class Scaffold implements EntryPoint {
 final private InjectorWrapper injectorWrapper =

 GWT.create(DesktopInjectorWrapper.class);

 public void onModuleLoad() {
 injectorWrapper.getInjector().getScaffoldApp().run();

 }
}

The first thing to notice in this code is the use of the create method of the com.
google.gwt.core.client.GWT class to create the DesktopInjectorWrapper
instance. As the DesktopInjectorWrapper implementation needs to be replaced by
MobileInjectorWrapper for the mobile Safari browser, DesktopInjectorWrapper is
created using the create method of the GWT class.

Web Application Development with GWT, Flex, and Spring Web Flow

230

The onModuleLoad method is like Java's main method, and is responsible for initializing
the flightapp-gwt application. In the Scaffold class, the onModuleLoad method is
responsible for creating the application's web UI, registering event handlers with EventBus,
and so on. The DesktopInjectorWrapper and MobileInjectorWrapper classes
represent a wrapper around GIN's Ginjector implementation.

Dependency injection using GIN
GIN is a dependency injection framework that uses Google Guice framework to support
dependency injection in GWT applications. In GWT applications, references to objects that
are needed throughout the application can be created using GIN or a factory. The Roo-
generated flightapp-gwt GWT application makes use of GIN to create EventBus,
ApplicationRequestFactory, and PlaceController—objects that are used across the
flightapp-gwt application. The following table describes the importance of these objects
in the flightapp-gwt application:

Object Description
EventBus The EventBus is used in a GWT application for

publishing events and registering event handlers.
ApplicationRequestFactory A Roo-generated interface that extends GWT's

RequestFactory interface. The implementation
of this interface is generated by the GWT compiler.
The flightapp-gwt application makes use of
RequestFactory to interact with the JPA layer.

PlaceController A GWT Place represents a location in a GWT
application. If you select the Flights menu option
from the UI of the flightapp-gwt application,
then it represents a place. Now, if you select
the FlightDescriptions option from the UI, then it
represents a different place in the application.
GWT's PlaceController is used to navigate from
one place to another in the GWT application.

Now that we know what objects are used across the flightapp-gwt application, let's look
at how GIN creates these objects and how these objects are injected into objects that depend
on them.

Chapter 5

231

To understand how Ginjector is used in flightapp-gwt, let's look at the following
class diagram:

In this class diagram, the Ginjector interface is part of GIN API. The ScaffoldInjector
and DesktopInjector are generated by Roo. The following are the important points to
notice in the above class diagram:

ff ScaffoldInjector extends the Ginjector interface and defines a single method
getScaffoldApp, which returns an instance of type ScaffoldApp.

ff ScaffoldApp is a Roo-generated class that defines the contract for initializing the
GWT application for both the desktop and mobile browser.

ff The DesktopInjector extends ScaffoldInjector and overrides the
getScaffoldApp method to return ScaffoldDestopApp. This change in
return type is perfectly legal because ScaffoldDesktopApp is a subclass of the
ScaffoldApp class.

ff ScaffoldDesktopApp is responsible for creating the web UI, tailored for the
desktop web browser, and performing all the initialization work before the application
is put into service. Similarly, ScaffoldMobileApp is responsible for creating the
web UI for the mobile browser.

GIN's Ginjector interface is at the heart of the GIN framework and is responsible for
performing dependency injection. To use Ginjector, a GWT application must do the following:

ff Define an interface that extends Ginjector—this is the DesktopInjector
interface in the case of flightapp-gwt. The GWT compiler is responsible for
providing the implementation of this interface.

Web Application Development with GWT, Flex, and Spring Web Flow

232

ff Define one or more methods in the interface to return a top-level object that the
rest of the application would use. The Ginjector creates the top-level object
by injecting dependencies of the lower-level objects based on the bindings
configured by the Ginjector. In the case of the flightapp-gwt application,
ScaffoldDesktopApp and ScaffoldMobileApp represent top-level objects.

ff Define a GinModule or AbstractGinModule (both are part of GIN API) class
that defines bindings for the dependencies. The ScaffoldModule class in
flightapp-gwt defines bindings for EventBus, PlaceController, and
ApplicationRequestFactory.

ff Annotate the method, contructor, or field of your classes where you want Ginjector
to perform dependency injection with the @Inject annotation (part of Guice
API). In the case of flightapp-gwt, ApplicationDetailsActivites,
ApplicationMasterActivities, and so on, make use of the @Inject
annotation to let Ginjector inject dependencies.

Let's now look at the code created by Roo corresponding to each of the activities
described previously.

The following code shows the DesktopInjector interface:

DesktopInjector.java
package sample.roo.flightapp.client.scaffold.ioc;
..
import sample.roo.flightapp.client.scaffold.ScaffoldDesktopApp;
import com.google.gwt.inject.client.GinModules;

@GinModules(value = {ScaffoldModule.class})

public interface DesktopInjector extends ScaffoldInjector {

 ScaffoldDesktopApp getScaffoldApp();

}

DesktopInjector extends the ScaffoldInjector interface (which in turn extends
GIN's Ginjector interface) and defines a single method—getScaffoldApp, which returns
the ScaffoldDesktopApp object. So, the responsibility of Ginjector implementation
generated by the GWT compiler is to return an instance of ScaffoldDesktopApp with all its
dependencies injected with appropriate implementations.

Chapter 5

233

The @GinModules annotation specifies the class (which implements the GinModule
interface or extends the AbstractGinModule abstract class) responsible for defining
dependencies and their providers. The following code shows the ScaffoldModule class,
which binds EventBus, PlaceController, and ApplicationRequestFactory
dependencies to their respective providers:

ScaffoldModule.java
package sample.roo.flightapp.client.scaffold.ioc;

import com.google.gwt.event.shared.EventBus;
import com.google.gwt.event.shared.SimpleEventBus;
import com.google.gwt.inject.client.AbstractGinModule;
import com.google.gwt.place.shared.PlaceController;
import com.google.inject.Inject;
import com.google.inject.Provider;
import com.google.inject.Singleton;

public class ScaffoldModule extends AbstractGinModule {

 @Override
 protected void configure() {

 bind(EventBus.class).
 to(SimpleEventBus.class).in(Singleton.class);
 bind(ApplicationRequestFactory.class).
 toProvider(RequestFactoryProvider.class).
 in(Singleton.class);
 bind(PlaceController.class).
 toProvider(PlaceControllerProvider.class).
 in(Singleton.class);
 }

 static class PlaceControllerProvider implements

 Provider<PlaceController> {

 private final PlaceController placeController;

 @Inject

 public PlaceControllerProvider(EventBus eventBus) {
 this.placeController = new PlaceController(eventBus);
 }

 public PlaceController get() {
 return placeController;
 }

Web Application Development with GWT, Flex, and Spring Web Flow

234

 }

 static class RequestFactoryProvider implements

 Provider<ApplicationRequestFactory> {

 ..
 }
}

The Roo-generated ScaffoldModule class extends AbstractGinModule and
overrides the configure method to associate dependencies with their providers.
The bind method of AbstractGinModule binds a dependency to its provider.
The in(Singleton.class) instructs that only a single instance of EventBus,
PlaceController, and ApplicationRequestFactory are created for the application.
The PlaceControllerProvider and RequestFactoryProvider static inner classes
represent provider for the PlaceController and RequestFactory instances, respectively.
SimpleEventBus (part of GWT API) is an implementation of EventBus.

An important point to notice in this code is the use of @Inject annotation by
PlaceControllerProvider for instructing Ginjector to inject an implementation of
EventBus. So, if you are creating a hierarchy of objects, then define the method in Ginjector,
which returns the top-level object because the lower-level objects in the hierarchy can make use
of Ginjector's dependency injection feature using the @Inject annotation.

The following figure summarizes how the Scaffold class makes use of the GIN framework to
bootstrap the application:

The Scaffold class' onModuleLoad method invokes the getInjector method of
DesktopInjectWrapper to access Ginjector implementation, followed by a call to
getScaffoldApp to obtain an instance of ScaffoldDesptopApp. The following sequence
diagram further clarifies the sequence of method invocations between classes:

Chapter 5

235

In the above sequence diagram, the call to the run method of DesktopScaffoldApp results
in initialization of the web UI.

Now that we know how the flightapp-gwt application makes use of GIN and initializes
itself, we'll look at GWT's EntityProxy and RequestFactory interfaces and how
scaffolded code makes use of them.

EntityProxy, RequestContext, and RequestFactory interfaces
An entity proxy represents a client-side (the JavaScript-side) object that mimics an entity on
the server-side, which is a JPA entity in the case of the flightapp-gwt GWT application.
Entity proxies act as means to transfer data between client and the server. In GWT, a
client-side object that acts as an entity proxy extends GWT's EntityProxy interface and
defines abstract getter and setter methods for the fields defined in the corresponding
server-side entity. In flightapp-gwt, we have Flight and FlightDescription
JPA entities; therefore, Roo generates corresponding entity proxies FlightProxy and
FlightDescriptionProxy, respectively. By default, Roo creates abstract getter and
setter methods in entity proxy for all the attributes defined in the corresponding JPA entity
class. The following code shows the FlightProxy entity proxy:

FlightProxy.java
package sample.roo.flightapp.client.managed.request;

import com.google.gwt.requestfactory.shared.EntityProxy;
import com.google.gwt.requestfactory.shared.ProxyForName;
import org.springframework.roo.addon.gwt.RooGwtMirroredFrom;

@RooGwtMirroredFrom("sample.roo.flightapp.domain.Flight")
@ProxyForName("sample.roo.flightapp.domain.Flight")
public interface FlightProxy extends EntityProxy {
 abstract Long getId();

Web Application Development with GWT, Flex, and Spring Web Flow

236

 abstract Integer getVersion();
 abstract Date getDepartureDate();
 abstract Date getArrivalDate();
 abstract FlightDescriptionProxy getFlightDescription();

 abstract void setId(Long id);
 ...
}

Roo's @RooGwtMirroredFrom annotation specifies the fully-qualified class name of the JPA
entity for which the FlightProxy entity proxy was created.

It is the @RooGwtMirroredFrom annotation that keeps the entity
proxy in-sync with the corresponding JPA entity.

The GWT's @ProxyForName annotation specifies the server-side entity represented by the
entity proxy. Notice that in the above code the getFlightDescription method is defined
to return FlightDescriptionProxy because it represents the entity proxy corresponding
to the FlightDescription JPA entity.

To invoke server-side services, the GWT application's client-side code needs to have client-side
stubs for remote services. The client-side code makes use of service stubs to invoke remote
services. A service stub is defined by an interface that extends GWT's RequestContext
interface and defines methods with a signature similar to that of the corresponding remote
service methods. We'll shortly see the difference between methods defined in the remote
service class and the client-side service stub.

By default, Roo generates rich entities and the resulting application doesn't have a service
layer; therefore, in the case of the Roo-generated GWT application a service stub defines
methods corresponding to the JPA entity class. The following code shows the Roo-generated
FlightRequest service stub corresponding to the Flight JPA entity in flightapp-gwt
application:

FlightRequest.java
package sample.roo.flightapp.client.managed.request;

import com.google.gwt.requestfactory.shared.InstanceRequest;
import com.google.gwt.requestfactory.shared.Request;
import com.google.gwt.requestfactory.shared.RequestContext;
import com.google.gwt.requestfactory.shared.ServiceName;
import org.springframework.roo.addon.gwt.RooGwtMirroredFrom;

@RooGwtMirroredFrom("sample.roo.flightapp.domain.Flight")

@ServiceName("sample.roo.flightapp.domain.Flight")

public interface FlightRequest extends RequestContext {

Chapter 5

237

 abstract Request<java.lang.Long> countFlights();
 abstract Request<java.util.List<...FlightProxy>>
 findAllFlights();

 abstract InstanceRequest<...FlightProxy, java.lang.Void>
 remove();
 abstract InstanceRequest<...FlightProxy, java.lang.Void>
 persist();
}

As this code shows, a FlightRequest service stub extends GWT's RequestContext
interface. GWT's @ServiceName annotation specifies the full-qualified name of the server-
side service class corresponding to the client-side service stub, which is the Flight
JPA entity in the case of the FlightRequest stub. The above code shows that the
FlightRequest service stub defines methods that return the following:

ff Request<T> – where T represents the actual return type of the corresponding
method on the server-side class. For instance, countFlights method returns
java.long.Long in Flight JPA entity, and so does the countFlights method
in FlightRequest stub. If a method on the server-side service class returns an
entity, then the client-side service stub returns the corresponding entity proxy. For
instance, findAllFlights method in Flight JPA entity returns a java.util.
List<Flight>, so the findAllFlights method in FlightRequest stub returns
java.util.List<FlightProxy>. It is important to note that the methods
corresponding to static methods of the server-side service return Request<T> type
in the client-side service stub.

ff InstanceRequest<P,T> – where P represents the entity type on which
the corresponding server-side service method acts and T represents the
actual return type of the method. For instance, persist method of Flight
JPA entity acts on Flight entity instance and returns void; therefore,
the return type of the corresponding method in FlightRequest stub is
InstanceRequest<FlightProxy, java.lang.Void>. Note that the only
stub methods corresponding to instance methods on the server-side service return
InstanceRequest.

It is Roo's @RooGwtMirroredFrom annotation that keeps the
client-side stub in-sync with the corresponding JPA entity.

Now, let's look at how RequestFactory helps with communication between client-side and
server-side code.

Web Application Development with GWT, Flex, and Spring Web Flow

238

RequestFactory acts as a communication bridge between the entity proxy and the
corresponding entity on the server-side. RequestFactory manages entity proxies and is
responsible for copying server-side entity attribute values to corresponding entity proxy and
vice versa. In your GWT application, you are required to define an interface that extends
RequestFactory interface and provide methods that return client-side stubs for server-side
services. Roo creates an ApplicationRequestFactory class (we discussed earlier that
this was created using GIN), which is shown here:

package sample.roo.flightapp.client.managed.request;

import sample.roo.flightapp.shared.scaffold.ScaffoldRequestFactory;

public interface ApplicationRequestFactory extends
 ScaffoldRequestFactory {

 FlightRequest flightRequest();
 FlightDescriptionRequest flightDescriptionRequest();
}

The following class diagram shows the inheritance hierarchy of the
ApplicationRequestFactory class:

The above figure shows that ApplicationRequestFactory extends the Roo-generated
ScaffoldRequestFactory interface, which in turn extends GWT's RequestFactory
interface. The hierarchy is created such that if you want to define your custom client-side
service stub methods, then you can add them to the ScaffoldRequestFactory.

Chapter 5

239

ApplicationRequestFactory is managed by Roo; therefore, you
should not modify it manually to add custom client-side service stub
methods. Instead, add them to ScaffoldRequestFactory.

The interaction between entity proxy and server-side entity is achieved by configuring GWT's
RequestFactoryServlet in the web.xml file of the GWT web application.

You don't need to configure RequestFactoryServlet in the
web.xml file of the flightapp-gwt project because when
you execute the gwt setup command, Roo configures GWT's
RequestFactoryServlet in the web.xml file.

The following code shows the configuration of RequestFactoryServlet in the web.xml
file of the flightapp-gwt application:

web.xml
<servlet>
 <servlet-name>requestFactory</servlet-name>
 <servlet-class>
 com.google.gwt.requestfactory.server.RequestFactoryServlet
 </servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>requestFactory</servlet-name>
 <url-pattern>/gwtRequest</url-pattern>
</servlet-mapping>

This configuration shows that by default Roo maps the RequestFactoryServlet
to /gwtRequest URL, which you can change. If you change the URL
mapping of RequestFactoryServlet, then you also need to change how
ApplicationRequestFactory is created by ScaffoldModule—the Roo-generated GIN
module we discussed earlier.

RequestFactory requires that the server-side entity must define a no-argument constructor,
getId, getVersion, and find<Entity> methods. The getVersion should return
the version, getId should return the unique ID associated with entity instance, and the
find<Entity> method which accepts entity ID and returns the corresponding entity
instance. So, if you create entities using the Roo entity command, then make sure that
you don't set the name of the identifier field or version field to anything other than id and
version, respectively. When you execute the Roo gwt setup command, and Roo finds that
the names of ID and version fields is different from id and version, then it doesn't scaffold
the GWT application.

Let's now look at some of the Roo-generated GWT activities and places.

Web Application Development with GWT, Flex, and Spring Web Flow

240

Activities and places
Roo-generated GWT code consists of many base classes and interfaces that attempt to
provide a consistent approach to performing CRUD operations on JPA entities. In this section,
we'll look at some of the important classes and interfaces and concepts which will give you a
starting point to understand the Roo-generated GWT code.

The Roo-generated GWT web UI consists of a Master display region and a Detail display
region. The Master display region shows the list of entities that can be managed from the
web UI. The widget that shows Flight and FlightDescriptions in a list represents the Master
display region. The Detail display region shows activities that can be performed on each of
the entities displayed in the Master display region. The region that shows the list of Flight
or FlightDescription entity instances in the system, the form to create a new entity
instance, the form to edit an entity instance, and so on, represents the Detail display region.

The following figure shows the Master display region and Detail display region in the
flightapp-gwt application:

Let's now look at some of the examples of activities, places and views, in the Roo-generated
flightapp-gwt application.

Chapter 5

241

Activities are responsible for driving views and handling events generated by user interaction
in a display region. It is created by implementing GWT's Activity interface or by extending
GWT's AbstractActivity abstract class. The following diagram shows some of the
activities that were generated by Roo for flightapp-gwt application:

This diagram shows that FlightDescriptionDetailsActivity and
FlightDetailsActivity inherit from the AbstractActivity abstract class, and
FlightDescriptionListActivity and FlightListActivity classes implement the
Activity interface. <entity-name>DetailsActivity activities drive views and manage
user interactions when an existing entity instance's details are displayed in the Detail display
region. <entity-name>ListActivity activities drive views and manage user interactions
when the list of entity instances are displayed in the Detail display region.

Web Application Development with GWT, Flex, and Spring Web Flow

242

Places are locations within the display region that can be translated into a URL. An Activity
is mapped to a place (changeable into a URL), which makes Activities accessible via
URL. A place is created by extending GWT's Place abstract class. The place implementation
class also defines how the place instance can be translated into a URL. ProxyPlace
and ProxyListPlace classes generated by Roo in flightapp-gwt are examples of
places in GWT. The following figure shows the attributes defined by the ProxyPlace and
ProxyListPlace classes:

The ProxyPlace corresponds to a place in the 'detail' display region and ProxyListPlace
corresponds to a place in the Master display region. When a ProxyPlace instance is
created, it knows the EntityProxy for which the place instance is being created (identified
by proxyClass attribute), the operation to be performed (identified by operation attribute)
on the EntityProxy, and the unique identifier (identified by proxyId attribute of type
EntityProxyId) of the EntityProxy. Similarly, when ProxyListPlace is created, it
knows about the EntityProxy for which the place instance is being created (identified by
the proxyType attribute).

Each display region is associated with an ActivityMapper, which maps each Place in
the display region to an Activity. It is created by implementing GWT's ActivityMapper
interface. ActivityMapper defines a single method getActivity(Place place),
which returns an activity corresponding to a place. In the flightapp-gwt application,
ApplicationMasterActivities is an ActivityMapper for the Master display region
and ApplicationDetailsActivities is an ActivityMapper for the Detail display
region. The following class diagram shows the ActivityMappers created by Roo in the
flightapp-gwt project:

Chapter 5

243

This figure shows that Roo creates FlightActivitiesMapper and
FlightDescriptionActivitiesMapper classes corresponding to the Flight and
FlightDescription JPA entities. Even though these activity mappers don't implement
GWT's ActivityMapper interface, they act as activity mappers in the flightapp-
gwt application. These activity mappers return Activity instances specific to the
EntityProxy. The getActivity method of an <entity-name>ActivitiesMapper
class accepts a ProxyPlace (which represents a place in the Detail display region)
argument and returns an Activity for that place. The ApplicationDetailsActivities
activity mapper (which applies to the Detail display region of the web UI) is responsible
for creating the FlightActivitiesMapper and FlightDescriptionActivities
instances depending upon the JPA entity on which the user actions are to be performed.
The ApplicationMasterActivities returns either the FlightListActivity or
FlightDescriptionListActivity instance, depending upon the JPA entity selected from
the Master display region.

Web Application Development with GWT, Flex, and Spring Web Flow

244

An ActivityManager is associated with a display region and starts and stops an activity
when a user navigates from one place to another. It is created by creating an instance
of GWT's ActivityManager class by passing an ActivityMapper instance and an
EventBus instance. In flightapp-gwt, ActivityManager is created for both 'master'
and Detail display region when the run method of ScaffoldDesktopApp is executed, as
shown in the following sequence diagram:

Dealing with entity proxy-specific processing
Roo creates an abstract generic class, ApplicationEntityTypesProcessor<T>, for
dealing with different entity proxies in the scaffolded GWT application. ApplicationEntity
TypesProcessor<T> is implemented by classes that perform a functionality based on entity
proxy type. The following code listing shows the ApplicationEntityTypesProcessor<T>
class of the flightapp-gwt project:

ApplicationEntityTypesProcessor.java
package sample.roo.flightapp.client.managed.request;

public abstract class ApplicationEntityTypesProcessor<T> {

 private final T defaultValue;

 private T result;

 private static void process(

 ApplicationEntityTypesProcessor<?> processor,
 Class<?> clazz) {
 if (FlightProxy.class.equals(clazz)) {

Chapter 5

245

 processor.handleFlight((FlightProxy) null);

 return;
 }
 if (FlightDescriptionProxy.class.equals(clazz)) {
 processor.handleFlightDescription(

 (FlightDescriptionProxy) null);

 return;
 }
 processor.handleNonProxy(null);
 }

 public abstract void handleFlight(FlightProxy proxy);

 public abstract void
 handleFlightDescription(FlightDescriptionProxy proxy);

 public T process(Class<?> clazz) {

 setResult(defaultValue);
 ApplicationEntityTypesProcessor.process(this, clazz);
 return result;
 }

}

ApplicationEntityTypesProcessor<T> class represents a generic class. The
handleFlight and handleFlightDescription methods are defined as abstract
methods; therefore, subclasses need to provide implementation of these methods.

You'll find an abstract handleXXX method defined for each entity proxy in
the ApplicationEntityTypesProcessor<T> class.

The result attribute identifies the result to return when the public process method of
the ApplicationEntityTypesProcessor<T> class is invoked. Note that the return
type of the result attribute is a generic type—determined by the generic type associated
with the class. The public process method accepts the class or object of the entity proxy
as the argument and internally invokes the private process method, which in turn calls the
handleFlight or handleFlightDescription method, depending upon the entity proxy
object or class.

So, what is the handleXXX method expected to do in the implementation class? It simply
sets a return value, which is returned when the public process method is called. Let's see
this in the context of an example.

Web Application Development with GWT, Flex, and Spring Web Flow

246

We mentioned earlier that the ApplicationDetailsActivities class represents an
ActivityMapper for the Detail display region of the Roo-generated GWT application. The
ApplicationDetailsActivity returns a FlightActivityMapper (specific to the
FlightProxy entity proxy) or FlightDescriptionActivityMapper instance (specific to
the FlightDescriptionProxy entity proxy) by implementing the ApplicationEntityT
ypesProcessor<T> class.

ApplicationDetailsActivities extends the
ApplicationDetailsActivities_Roo_Gwt class, which actually
implements the ActivityMapper GWT interface.

The following code shows how ApplicationDetailsActivities makes use of the Appli
cationEntityTypesProcessor<T> class:

ApplicationDetailsActivities_Roo_Gwt.java
public Activity getActivity(Place place) {

 final ProxyPlace proxyPlace = (ProxyPlace) place;
 return new ApplicationEntityTypesProcessor<Activity>() {
 @Override
 public void handleFlight(FlightProxy proxy) {
 setResult(new FlightActivitiesMapper(requests,
 placeController).getActivity(proxyPlace));
 }

 @Override
 public void handleFlightDescription(FlightDescriptionProxy
 proxy) {
 setResult(new FlightDescriptionActivitiesMapper(requests,
 placeController).getActivity(proxyPlace));
 }
 }.process(proxyPlace.getProxyClass());
}

In this code, the following are the important points to note:

ff ApplicationEntityTypesProcessor<T> is associated with Activity type.

ff The handleFlight method sets the return value to the Activity returned from
FlightActivityMapper.

ff The handleFlightDescription method sets the return value to the Activity
returned from FlightDescriptionActivityMapper.

ff The process method of ApplicationEntityTypesProcessor<T> is
invoked at the end to obtain the return value set by the handleFlight or
handleFlightDescription method.

Chapter 5

247

This code showed that ApplicationEntityTypesProcessor<T> generic class
is associated with an Activity type and is used to retrieve Activity specific to
FlightProxy or FlightDescriptionProxy. Similarly, Roo-generated GWT code makes
use of ApplicationEntityTypesProcessor<T> class to perform other entity proxy-
specific processing, like rendering the list of entities in the Master display region.

There's more...
Let's now look at:

ff How to compile and run the Roo-generated GWT application in an embedded Jetty
container

ff How to access the mobile version of the Roo-generated flightapp-gwt application

ff Round-tripping support in the Roo-generated GWT application

ff How to enable remote logging

Compiling and running the GWT application in an embedded Jetty
container
In the Development Mode, the GWT application is not compiled into JavaScript. You can
compile the GWT application into JavaScript and run it using an embedded Jetty container by
executing mvn jetty:run-exploded command, as shown here:

C:\roo-cookbook\ch05-gwt> mvn jetty:run-exploded

You can now access the flightapp-gwt application by entering the following URL: http://
localhost:8080/flightapp-gwt/index.html

Accessing the mobile version of the GWT application
If you have compiled and deployed the flightapp-gwt application using the mvn
jetty:run-exploded command, then access the mobile version of the flightapp-gwt
application using the following URL:

http://localhost:8080/flightapp-gwt/index.html&m=true

If you are running the flightapp-gwt application in Development Mode, then use the
following URL:

http://127.0.0.1:8888/ApplicationScaffold.html?gwt.
codesvr=127.0.0.1:9997&m=true

Web Application Development with GWT, Flex, and Spring Web Flow

248

In either case, you'll see the mobile version of the flightapp-gwt application, as shown
here:

In this screenshot, the Flights and FlightDescriptions options are clickable, and by selecting
them you can get started with performing CRUD operations on JPA entity instances.

Round-tripping support for GWT applications
If you add, modify, or delete any field from a JPA entity in the Roo-scaffolded GWT
application, then Roo makes the necessary changes to GWT artifacts accordingly. To
see Roo's round-tripping support for the scaffolded GWT application, start the Roo shell
from the root directory of the flightapp-gwt project and add an aircraftModel
field to the FlightDescription entity using the field command or by editing the
FlightDescription.java file directly from your IDE. In response to the addition of the
aircraftModel attribute, the Roo shell shows the following actions taken by Roo:

Updated ...FlightDescriptionProxy.java

Updated ...FlightDescriptionListView_Roo_Gwt.java

Updated ...FlightDescriptionDetailsView_Roo_Gwt.java

Updated ...FlightDescriptionDetailsView.ui.xml

Updated ...FlightDescriptionEditView_Roo_Gwt.java

Updated ...FlightDescriptionEditView.ui.xml

...

The output shows that Roo updates the GWT entity proxy, FlightDescriptionProxy, and
other GWT artifacts to reflect the modification to the FlightDescription JPA entity. The
other important thing to notice is that most of the modifications are limited to *_Roo_Gwt.
java files—files that are managed by Roo. So, if you make changes to files that don't follow
the naming convention *_Roo_Gwt.java, then such changes will be preserved by Roo
(except in the case that you are modifying Java files in the *.client.managed.* package).
In the Roo-scaffolded GWT application, *_Roo_Gwt.java files are equivalent to *_Roo_*.
aj AspectJ ITD files, that is, Roo attempts to minimize the impact on the scaffolded GWT code
by only modifying *_Roo_Gwt.java files.

Chapter 5

249

Enabling remote logging
The GWT logging framework emulates Java Logging API, making it possible to log messages from
the Java code that resides in the sample.roo.client package and its sub-packages. As we
mentioned earlier, Java classes contained inside the sample.roo.client package and its
sub-packages are translated into JavaScript by the GWT compiler. The remote logging capability
in GWT enables client code to send log messages to the server-side logging infrastructure.
To configure remote logging, set the value of the gwt.logging.simpleRemoteHandler
property to ENABLED in the ApplicationScaffold.gwt.xml file:

<set-property name="gwt.logging.simpleRemoteHandler"
 value="ENABLED"/>

The above configuration enables remote logging of messages. GWT provides a
RemoteLoggingServiceImpl servlet, which acts as a handler for logging messages
received from the client-side. You'll need to configure RemoteLoggingServiceImpl servlet
in your web.xml file, as shown here:

<servlet>
 <servlet-name>remoteLogger</servlet-name>
 <servlet-class>
com.google.gwt.logging.server.RemoteLoggingServiceImpl
 </servlet-class>
</servlet>
	
<servlet-mapping>
 <servlet-name>remoteLogger</servlet-name>
 <url-pattern>

 /applicationScaffold/remote_logging

 </url-pattern>

</servlet-mapping>

The important point to note is that the RemoteLoggingServiceImpl servlet should be
mapped to the /<module_name>/remote_logging URL.

As the method names of the Java class in the client-side are obfuscated when the GWT
compiler converts them into JavaScript, you need to resymbolize or deobfuscate them by
setting the following properties in the ApplicationScaffold.gwt.xml file:

<set-property name="compiler.emulatedStack" value="true" />
<set-configuration-property
 name="compiler.emulatedStack.recordLineNumbers"
 value="true" />
<set-configuration-property
 name="compiler.emulatedStack.recordFileNames"
 value="true" />

Web Application Development with GWT, Flex, and Spring Web Flow

250

Also, you'll need to create a symbol maps directory using the –extra option of GWT compiler
and place it inside a directory accessible to the server-side code, like the WEB-INF/classes
directory of the generated WAR file.

See also
ff Refer to the Auto-generating Spring MVC controllers and JSPX views from JPA entities

recipe in Chapter 4, Web Application Development with Spring Web MVC for details
on how Roo scaffolds a Spring MVC application from JPA entities

Getting started with Flex application
development

In the previous recipe, we saw how we can scaffold a complete GWT application using Roo. In
this recipe, we'll see how Roo simplifies setting up Flex for your Roo project. In the next recipe
Scaffolding Flex application from JPA entities we'll look at how Roo generates a fully-functional
Flex application to perform CRUD operations on JPA entities.

Getting ready
At the time of writing this book, Flex addon is not compatible with Spring Roo 1.1.3 and above;
therefore, download Spring Roo 1.1.2.

At the time of writing this recipe, the Flex addon used is the snapshot version dated 15-
Aug-2011 from the Flex Spring Roo addon repository (http://s3browse.
springsource.com/browse/maven.springframework.org/snapshot/
org/springframework/flex/roo/addon/org.springframework.flex.
roo.addon/1.0.0.BUILD-SNAPSHOT/). Download the JAR file named org.
springframework.flex.roo.addon-xx.jar and copy it to Roo's bundle directory or
install it using the osgi start (explained in Chapter 7, Developing Add-ons and Removing
Roo from Projects) command.

Flex add-on is an example of an installable add-on. For more
information on installable add-ons, see Chapter 7, Developing
Add-ons and Removing Roo from Projects.

Create a new directory C:\roo-cookbook\ch05-flex in your system and start the Roo
shell from the ch05-flex directory. Enter the help command and check whether you see
flex setup, flex remoting scaffold, and flex remoting all commands in the
output. If you see the flex commands in the output of the help command, it means you
have successfully installed the Flex addon.

Chapter 5

251

Copy the ch05_flex_app.roo script that accompanies this book to the ch05-flex
directory. Now, execute the ch05_flex_app.roo script using the script command.
Executing the ch05_flex_app.roo script creates a flightapp_flex Eclipse project,
sets up Hibernate as persistence provider, configures MySQL as the database for the
application, creates Flight and FlightDescription JPA entities, and defines a many-to-
one relationship between the Flight and FlightDescription entities. If you are using a
different database than MySQL or your connection settings are different than what is specified
in the script, then modify the script accordingly.

Though not required, you may also want to download Flash Builder 4 and install it as the
Eclipse plugin to simplify editing MXML and ActionScript files generated by Roo in this recipe.

How to do it...
To set up the flex application, follow the steps given here:

1.	 Execute the flex setup command to create Spring BlazeDS integration-related
configuration artifacts in the flightapp_flex project:
... roo> flex setup

Created SRC_MAIN_WEBAPP\WEB-INF\flex

Created SRC_MAIN_WEBAPP\WEB-INF\flex\services-config.xml

...

Created SRC_MAIN_WEBAPP\WEB-INF\spring

Created SRC_MAIN_WEBAPP\WEB-INF\spring\flex-config.xml

Created SRC_MAIN_WEBAPP\WEB-INF\spring\webmvc-config.xml

...

Created SRC_MAIN_WEBAPP\WEB-INF\web.xml

Managed SRC_MAIN_WEBAPP\WEB-INF\web.xml

...

Managed SRC_MAIN_WEBAPP\WEB-INF\spring\webmvc-config.xml

Managed ROOT\pom.xml [Added dependency com.adobe.flex.
framework:flex-framework:4.0.0.14159]

Managed ROOT\pom.xml [Added dependency org.springframework.
flex:spring-flex-core:1.5.0.BUILD-SNAPSHOT]

...

Created ROOT\.flexProperties

Created ROOT\.actionScriptProperties

...

Created ROOT\src\main\flex\flightapp_flex_scaffold.mxml

Created SRC_MAIN_WEBAPP\flightapp_flex_scaffold.html

Created ROOT\src\main\flex\flightapp_flex_scaffold-config.xml

Web Application Development with GWT, Flex, and Spring Web Flow

252

2.	 Include the Maven repository for Spring snapshot versions in your pom.xml file
so that the Flex add-on can download Flex add-on dependencies that are not yet
available in milestone or in the release Maven repository of Spring:
<repositories>
 <repository>
 <id>spring-maven-snapshot</id>
 <name>Spring Maven Snapshot Repository</name>
 <url>
 http://maven.springframework.org/snapshot
 </url>
 </repository>
 ...
</repositories>

3.	 Configure the plugin repository for the Flexmojos Maven plugin (refer to the plugin
documentation for more details: http://repository.sonatype.org/content/
sites/flexmojos-site/3.8/plugin-info.html) in the pom.xml file, as
shown here:
<pluginRepositories>
 <pluginRepository>
 <id>flexmojos-repository</id>
 <url>
 http://repository.sonatype.org/content/groups/flexgroup/
 </url>
 </pluginRepository>
 ...
</pluginRepositories>

4.	 Execute the perform eclipse command to update the project's classpath
settings with the newly added dependencies in pom.xml file. It also adds Flex and
ActionScript nature to the flightapp_flex Eclipse project.

How it works...
The flex setup command is processed by the Flex add-on of Roo.

The flex setup command configures Spring BlazeDS integration and creates the necessary
artifacts that are required for developing a Flex 4 application. The following table describes
some of the important directories and files that were created by the flex setup command:

Chapter 5

253

Directory / File Description
SRC_MAIN_WEBAPP\
history

Contains history.css, history.js, and
historyFrame.html files that are responsible for
managing browser history.

SRC_MAIN_WEBAPP\WEB-
INF\flex\services-
config.xml

The services-config.xml is a BlazeDS configuration
file that contains channels and corresponding endpoint
configurations for the BlazeDS.

SRC_MAIN_WEBAPP\
WEB-INF\spring\flex-
config.xml

The flex-config.xml configures BlazeDS
MessageBroker as a Spring-managed bean.

SRC_MAIN_WEBAPP\WEB-
INF\spring\webmvc-
config.xml

Spring's web application context XML, which is loaded
by DispatcherServlet defined in the web.xml file.
Additionally, the webmvc-config.xml file imports bean
definitions from flex-config.xml.

ROOT\html-template The html-template directory contains an index.
template.html file that acts as an HTML template for
embedding the Flex application.

Roo generates a flightapp_flex_scaffold.html file
(based on the index.template.html file) in the SRC_
MAIN_WEBAPP directory for embedding our Flight App Flex
application. So, to load our Flight App Flex application, we'll
need to load the flightapp_flex_scaffold.html
page in the web browser.

ROOT\src\main\flex\
flightapp_flex_
scaffold.mxml

The flightapp_flex_scaffold.mxml is the main
application MXML file that defines the layout of the
application and the initial user interface.

ROOT\src\main\flex\
flightapp_flex_
scaffold-config.xml

The flightapp_flex_scaffold-config.xml XML
file overrides the default Flex compiler settings. In the
Scaffolding Flex application from JPA entities recipe we'll
see that this XML file contains fully-qualified ActionScript
class names that correspond to the main views (MXML files)
scaffolded by Roo for each JPA entity.

Let's now look at the important configuration files created by Spring Roo.

The webmvc-config.xml file is Spring's web application context XML file, and is loaded by
DispatcherServlet configured in the web.xml file of the flightapp_flex project. The
webmvc-config.xml file imports bean definitions in the flex-config.xml application
context XML file, as shown here:

webmvc-config.xml
<beans>

 <import resource="flex-config.xml"/>
</beans>

Web Application Development with GWT, Flex, and Spring Web Flow

254

For information on other elements defined in webmvc-config.
xml file, please refer to Chapter 4, Web Application Development
with Spring Web MVC.

The flex-config.xml makes use of the <message-broker> element of Spring's flex
schema to configure and initialize a BlazeDS MessageBroker, as shown here:

flex-config.xml
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:flex="http://www.springframework.org/schema/flex"
 ...>

 <flex:message-broker mapping-order="1">
 <flex:mapping pattern="/messagebroker/*"/>
 <flex:message-service default-channels="longpolling-amf" />
 </flex:message-broker>

</beans>

By default, the <message-broker> element considers the /WEB-INF/flex/services-
config.xml file as the configuration file for BlazeDS MessageBroker. If you change the
name or location of the services-config.xml file in flightapp_flex, then use the
services-config-path attribute of the <message-broker> element to specify your
BlazeDS configuration XML file.

The <mapping> element of the flex schema maps incoming requests from the
DispatcherServlet to /messagebroker/* path—the path to which BlazeDS
MessageBroker channels are mapped in services-config.xml, as we'll see shortly.

The <message-service> element configures a BlazeDS flex.messaging.services.
MessageService object that provides a publish-subscribe messaging between producers
and consumers of messages in the application. The default-channels attribute specifies
the message channel(s) used by Flex clients to access MessageService or to receive
messages from it. The longpolling-amf value refers to the AMFChannel configured in
services-config.xml, with polling enabled.

It is important to note that even though Roo configures
MessageService, it is not used by the Roo-generated Flex application.

The following listing shows the channels configured in the Roo-generated services-
config.xml file:

services-config.xml
<channels>
 <channel-definition id="amf"
 class="mx.messaging.channels.AMFChannel">

Chapter 5

255

 <endpoint

 url="http://{server.name}:{server.port}/
 {context.root}/messagebroker/amf"
 class="flex.messaging.endpoints.AMFEndpoint"/>
 </channel-definition>
 ...
 <channel-definition id="longpolling-amf"

 class="mx.messaging.channels.AMFChannel">
 <endpoint url="http://{server.name}:{server.port}/

 {context.root}/messagebroker/amflongpolling"
 class="flex.messaging.endpoints.AMFEndpoint"/>
 <properties>
 <polling-enabled>true</polling-enabled>

 </properties>
 </channel-definition>
 ...
</channels>

This code listing shows channel definitions as created by Roo. A <channel-definition>
element defines a channel. The id attribute is a unique identifier of a channel and is used
by Flex clients to connect to an endpoint. The class attribute identifies the type of the
channel. The enclosing <endpoint> element defines the endpoint corresponding to the
channel. The url attribute of the <endpoint> element specifies the URL of the server and
class attribute specifies the endpoint class. Flex components make use of channels to
communicate with BlazeDS endpoints. For instance, the above code listing indicates that
AMFChannel is used by Flex to communicate with the AMFEndpoint.

The {server.name} and {server.port} tokens used by the url attribute value are
replaced at runtime based on the URL of the server from which the SWF file is downloaded.
The {context.root} token is replaced with a value that is calculated at compile-time based
on the <contextRoot> configuration option defined in the pom.xml file for the Flexmojos
Maven plugin. Later in this recipe, we'll look at the Flexmojos Maven plugin configuration
generated by Roo for the flightapp_flex project.

The incoming requests to DispatcherServlet are routed to the BlazeDS MessageBroker,
because the <mapping-pattern> element value (that is, /messagebroker/*) in flex-
config.xml maps to the url attribute value (http://../messagebroker/..) of the
<endpoint> elements in services-config.xml.

We saw earlier that the longpolling-amf channel is used as the default channel by
MessageService for transporting messages. The <polling-enabled> property of the
channel is set to true, which means that polling is enabled for the longpolling-amf
channel.

Web Application Development with GWT, Flex, and Spring Web Flow

256

The following <services> element of the services-config.xml file shows the
application-level default channels configuration:

<services>
 <default-channels>
 <channel ref="amf"/>
 </default-channels>
</services>

This <default-channels> element specifies that if a Flex component doesn't specify the
channel to be used, then use the amf channel for communication.

Roo also configures server-side logging in services-config.xml using the <logging>
element, as shown here:

<logging>
 <target class="flex.messaging.log.ConsoleTarget"
 level="Warn">
 <properties>
 <prefix>[BlazeDS] </prefix>
 <includeDate>false</includeDate>
 <includeTime>false</includeTime>
 <includeLevel>false</includeLevel>
 <includeCategory>false</includeCategory>
 </properties>
 <filters>
 <pattern>Endpoint.*</pattern>
 <pattern>Service.*</pattern>
 <pattern>Configuration</pattern>
 </filters>
 </target>
</logging>

The logging configuration specifies where the log messages are written, what types of
messages are written, how they are written, and the log messages generated by each category
(like Endpoint, Service, and so on) are written. The class attribute (of target element)
value of flex.messaging.log.ConsoleTarget means that the log messages are written
to standard ouput. level="Warn" means that only warning level messages are written. In
the above code, the <properties> element specifies that log messages are prefixed with
[BlazeDS] and include date, time, logging level, and category. The <filters> element
limits the logging to the categories defined by the <pattern> sub-elements.

Let's now look at the scaffolded MXML file which serves as the main application file—the
MXML file that contains the Application component of Flex's Spark component library.

Chapter 5

257

The following code listing shows the flightapp_flex_scaffold.mxml file:

flightapp_flex_scaffold.mxml
<s:Application xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"..>
 <fx:Script>
 <![CDATA[
 ...
 protected function

 entityList_doubleClickHandler(event:MouseEvent):void

 {
 ...
 }
]]>
 </fx:Script>

 <fx:Declarations>
 <s:ArrayList id="entities">

 </s:ArrayList>

 <s:ChannelSet id="remotingChannels">

 <s:AMFChannel id="amf" url=

 "http://localhost:8080/flightapp_flex/messagebroker/amf"/>

 </s:ChannelSet>

 </fx:Declarations>

 <s:Group id="mainGroup" height="100%" width="100%">
 <s:layout>
 <s:HorizontalLayout/>
 </s:layout>

 <s:Panel id="entityPanel" title="Entity List" height="100%">

 <s:List id="entityList" dataProvider="{entities}"

 width="100%" height="100%"

 toolTip="Double-Click the selected Entity"

 doubleClickEnabled="true"

 doubleClick="entityList_doubleClickHandler(event)"/>

 </s:Panel>

 </s:Group>

</s:Application>

Web Application Development with GWT, Flex, and Spring Web Flow

258

This MXML shows the user interface of the flightapp_flex application. The <Panel>
tag creates a Spark Panel component which contains a Spark List component. The List
component shows the list of entities that can be managed from the user interface. The list
of entities is defined by the <ArrayList> tag. Notice that the value of the dataProvider
attribute of the <List> tag is {entities} and the id attribute value of the <ArrayList>
tag is entities, which means that the list of entities displayed by the List component
comes from the list defined by the <ArrayList> tag. Well, the <ArrayList> tag doesn't
contain any element; therefore, for now, the list is empty.

The <ArrayList> tag is populated with child elements when we execute
flex remoting all or flex remoting scaffold commands to
scaffold a remoting destination corresponding to a JPA entity, as we'll see in
the Scaffolding Flex application from the JPA entities recipe.

The doubleClick attribute of <List> specifies that the entityList_
doubleClickHandler(event) ActionScript method to be invoked when a user
double clicks an item in the list. In the Scaffolding remoting destination from the
JPA entities recipe, we'll go through the implementation detail of the entityList_
doubleClickHandler(event) method.

The <ChannelSet> tag creates a ChannelSet—a set of channels for communication with
the BlazeDS server. We saw earlier that Roo defines the amf channel (channel type being
AMFChannel) as the default application-wide channel in services-config.xml; therefore,
the Roo-generated <ChannelSet> tag creates an AMFChannel using the <AMFChannel>
tag. The url attribute of <AMFChannel> specifies the corresponding endpoint URL.

As the url attribute of the <AMFChannel> tag specifies the location of the
BlazeDS server as localhost, your Roo-generated flightapp_flex
application will work only if your BlazeDS server is running locally. To avoid hard-
coded endpoint URLs, it is recommended that you externalize ChannelSet
configuration into an XML file that is parsed when the Flex application is
initialized and later used to communicate with the BlazeDS server.

As mentioned earlier, Roo generates a flightapp_flex_scaffold-config.xml
configuration file that overrides the default Flex compiler settings. Notice that the naming
convention followed by the file is: <MXML file name>-config.xml, where <MXML file name>
is the name of the MXML file corresponding to the configuration file which was created. When
an MXML file named myApp.mxml is compiled, Flex compiler looks for a configuration file
named myApp-config.xml in the same location as the MXML file, and uses it to override
the default compiler options.

Chapter 5

259

The following listing shows the content of the flightapp_flex_scaffold-config.xml
file:

<flex-config xmlns="http://www.adobe.com/2006/flex-config">
 <includes append="true">
 </includes>
</flex-config>

As this code shows, flightapp_flex_scaffold-config.xml doesn't do anything
interesting. In the Scaffolding Flex application from JPA entities recipe, we'll discuss this file in
detail once it's updated after the execution of the flex remoting all or flex remoting
scaffold command.

There's more...
We mentioned earlier that Roo configures the Flexmojos Maven plugin in the pom.xml file of
the flightapp_flex project. Let's now look at the Flexmojos plugin configuration in detail.

Flexmojos Maven plugin configuration
Flexmojos Maven plugin offers many features, but for brevity we'll focus only on the
flexmojos:compile-swf goal, which is responsible for compiling the Flex project's sources
(MXML and ActionScript files) and package it into an SWF file. The following listing shows the
configuration of Flexmojos Maven plugin in the pom.xml file of the flightapp_flex project:

pom.xml
<plugin>
 <groupId>org.sonatype.flexmojos</groupId>
 <artifactId>flexmojos-maven-plugin</artifactId>
 <version>3.7.1</version>
 <executions>
 <execution>
 <id>compile-scaffold-swf</id>
 <phase>process-resources</phase>
 <goals>
 <goal>compile-swf</goal>
 </goals>
 <configuration>
 <incremental>true</incremental>
 <sourceFile>
 ${basedir}/src/main/flex/${project.name}_scaffold.mxml
 </sourceFile>
 <sourcePaths>
 <path>${basedir}/src/main/flex</path>
 </sourcePaths>
 <output>

Web Application Development with GWT, Flex, and Spring Web Flow

260

 ${basedir}/src/main/webapp/${project.name}_scaffold.swf

 </output>

 <contextRoot>/${project.build.finalName}</contextRoot>

 <services>

 ${basedir}/src/main/webapp/WEB-INF/

 flex/services-config.xml

 </services>

 <debug>true</debug>

 </configuration>

 </execution>
 </executions>
 <dependencies>
 <dependency>

 <groupId>com.adobe.flex</groupId>

 <artifactId>compiler</artifactId>

 <version>4.0.0.14159</version>

 <type>pom</type>

 </dependency>

 </dependencies>
</plugin>

In this listing, the <configuration> element configures the Flexmojos Maven plugin.
The <sourceFile> element identifies the main application MXML file to be compiled by
the plugin, which is the flightapp_flex_scaffold.mxml file. The <sourcePaths>
specifies the base directory or directories where the project's ActionScript files are located,
which corresponds to /src/main/flex— the directory, which is created when you execute
the flex remoting all or flex remoting scaffold command. The <output>
specifies the name and location of the generated SWF file, which is SRC_MAIN_WEBAPP/
flightapp_flex_scaffold.swf for the flightapp_flex project. The <contextRoot>
element specifies the context root of the web application, which corresponds to the value /
flightapp_flex-0.1.0.BUILD-SNAPSHOT. The value of <contextRoot> element
is used to replace the {context.root} token specified in the endpoint URLs defined in
services-config.xml file. The <services> element specifies the services-config.
xml file that defines channels and corresponding endpoints.

The <dependency> element specifies that the Flexmojos Maven plugin is dependent on
Flex compiler. Note that the dependency type is pom and not jar. As the dependency type is
pom, dependencies specified in the corresponding pom file (which you can find at https://
repository.sonatype.org/content/groups/flexgroup/) are added to the required
dependencies of the Flexmojos Maven plugin.

Chapter 5

261

See also
ff Refer to the Scaffolding a Flex application from JPA entities recipe, to see how to

scaffold remoting destinations and Flex user interface using Roo

Scaffolding a Flex application from JPA
entities

In the previous recipe, we saw how to set up a project to use Flex and Spring BlazeDS
integration. In this recipe, we go a step further and scaffold a complete Flex application that
interacts with BlazeDS to perform CRUD operations on the JPA entities.

Getting ready
This recipe is an extension of the previous recipe, Getting started with Flex application
development; therefore, perform the steps described in the previous recipe to set up the
flightapp_flex project to use the Flex and Spring BlazeDS integration.

Start the Roo shell from the C:\roo-cookbook\ch05-flex directory—the directory in
which the flightapp_flex project was created when you went through the Getting started
with Flex application development recipe.

How to do it...
To scaffold a flex application, follow the steps given here:

1.	 Execute the flex remoting all command, as shown here:
.. roo> flex remoting all --package ~.flex

Created SRC_MAIN_JAVA\sample\roo\flightapp\flex

Created ..FlightDescriptionService.java

Created ..FlightDescriptionService_Roo_Service.aj

..

Created ROOT\src\main\flex\sample\roo\flightapp\domain

Created ..FlightDescription.as

Updated ROOT\src\main\flex\flightapp_flex_scaffold.mxml

Updated ROOT\src\main\flex\flightapp_flex_scaffold-config.xml

Created ROOT\src\main\flex\sample\roo\flightapp\presentation\

flightdescription

Created ..FlightDescriptionEvent.as

Web Application Development with GWT, Flex, and Spring Web Flow

262

Created ..FlightDescriptionView.mxml

Created ..FlightDescriptionForm.mxml

2.	 The output shown here has been organized such that the directory which is created
by Roo comes first, followed by the files that are created in the directory. The Spring
Roo shell will not show the output as it has been shown above. For brevity, the output
shows only the files that were created corresponding to the FlightDescription
JPA entity.

3.	 Exit the Roo shell and execute mvn install from the directory containing the
flightapp_flex project to build the flightapp_flex project:
C:\roo-cookbook\ch05-flex>mvn install

4.	 Execute the tomcat:run goal (from the directory containing the flightapp_flex
Roo project) of the Tomcat Maven plugin to start the embedded Tomcat instance:
C:\roo-cookbook\ch05-flex>mvn tomcat:run

5.	 Open the web browser and access the flightapp_flex_scaffold.
html file, which acts as the HTML wrapper for our Flex application: http://
localhost:8080/flightapp_flex/flightapp_flex_scaffold.html. If
Flash Player 10 or above is not already installed for your web browser, you'll be
asked to install it. It is also recommended that you install Flash Debugger for your
web browser to view any exceptions raised while interacting with the Flex application.
If you see the following Flex application user interface, then it means you have
successfully deployed your Flex application on Tomcat:

6.	 This screenshot shows the list of JPA entities that can be managed using the
Flex application. As the flightapp_flex project contained Flight and
FlightDescription entities, they are shown in the list.

7.	 To perform CRUD operations on the FlightDescription and Flight entity
instances, double-click the JPA entity name in the list. The following screenshot
shows the screen that is displayed when you double-click the FlightDescription item
in the list:

Chapter 5

263

How it works...
The flex remoting all command is processed by the Flex add-on of Spring Roo.

Flex clients interact with server-side BlazeDS remoting destinations (which are Java objects)
via BlazeDS RemotingService. As we are using Spring BlazeDS integration, remoting
destinations are configured as Spring service components, and the RemotingService
is configured with sensible defaults by the <message-broker> element of Spring's flex
schema (refer SRC_MAIN_WEBAPP\WEB-INF\spring\flex-config.xmlfile). The
package argument of the flex remoting all command specifies the package in which the
remoting destinations are created.

It is important to note that Flex clients interact with messaging destinations
(which could be a JMS queue or topic) using the MessageService and
with remoting destinations (Java objects) using the RemotingService.

Web Application Development with GWT, Flex, and Spring Web Flow

264

The following table describes the important directories and files that are created when the
flex remoting all command is executed:

Directory / file Description
SRC_MAIN_JAVA\sample\
roo\flightapp\flex

Contains remoting destinations created by Roo
corresponding to each JPA entity in the flightapp_flex
application for which a remoting destination doesn't exist.
This directory is created based on the package argument
value of the flex remoting all command.

ROOT\src\main\flex\
sample\roo\flightapp\
domain

Contains Roo-generated ActionScript classes that map to JPA
entities in the flightapp_flex application.

ROOT\src\main\flex\
sample\roo\flightapp\
presentation\
flightdescription

Contains MXML files and ActionScript classes for performing
CRUD operations on the FlightDescription JPA entity.
The name of the directory is derived from the name of the
JPA entity.

ROOT\src\main\flex\
sample\roo\flightapp\
presentation\flight

Contains MXML files and ActionScript classes for performing
CRUD operations on the Flight JPA entity. The name of the
directory is derived from the name of the JPA entity.

When the flex remoting all command is executed, it creates a remoting destination
(which is also Spring's service component) corresponding to each JPA entity in the application
for which a remoting destination doesn't already exist. A remoting destination defines
methods to perform CRUD operations on the corresponding JPA entity. The following code
listing shows the remoting destination, FlightDescriptionService class, created by Roo
corresponding to the FlightDescription JPA entity:

FlightDescriptionService.java
package sample.roo.flightapp.flex;

import org.springframework.flex.roo.addon.RooFlexScaffold;
import sample.roo.flightapp.domain.FlightDescription;
import org.springframework.flex.remoting.RemotingDestination;
import org.springframework.stereotype.Service;

@RooFlexScaffold(entity = FlightDescription.class)

@RemotingDestination

@Service

public class FlightDescriptionService {
}

Chapter 5

265

In this code, @RooFlexScaffold annotation instructs Roo to generate a
corresponding AspectJ ITD file. This AspectJ ITD file introduces methods into the
FlightDescriptionService class for performing CRUD operations on the
FlightDescription entity. The entity attribute of @RooFlexScaffold annotation
specifies the JPA entity managed by the FlightDescriptionService class. The @
RemotingDestination annotation of Spring indicates that FlightDescriptionService
class is exported as a remoting destination.

Spring-managed MessageBroker is responsible for routing messages received
from the Flex clients to RemotingService, which in turn invokes the method on
the Spring-managed remoting destination. The @Service annotation indicates that
FlightDescriptionService represents Spring's service component. The use of the @
Service annotation ensures that FlightDescriptionService is auto-registered with
Spring's web application context, using the classpath scanning feature of Spring (refer to the
<component-scan> element defined in the webmvc-config.xml file).

The following code listing shows the AspectJ ITD file created corresponding to the @
RooFlexScaffold annotation in the FlightDescriptionService class:

FlightDescriptionService_Roo_Service.aj
package sample.roo.flightapp.flex;

import java.lang.Long;
import java.util.List;
import sample.roo.flightapp.domain.FlightDescription;

privileged aspect FlightDescriptionService_Roo_Service {

 public FlightDescription

 FlightDescriptionService.show(Long id) {

 ...
 return FlightDescription.findFlightDescription(id);
 }

 public List<FlightDescription>

 FlightDescriptionService.list() {

 return FlightDescription.findAllFlightDescriptions();
 }
 ...
}

This code shows that FlightDescriptionService_Roo_Service.aj introduces CRUD
operations for the FlightDescription JPA entity in the FlightDescriptionService
class. Though not shown in the above code, pagination support is also introduced for reading
the list of FlightDescription JPA entities.

Web Application Development with GWT, Flex, and Spring Web Flow

266

The name of the AspectJ ITD file corresponding to the @RooFlexScaffold annotation has
the following naming convention: <JPA-entity-name>Service_Roo_Service.aj, where
<JPA-entity-name> is the name of the JPA entity specified by the entity attribute of the
@RooFlexScaffold annotation.

Invoking Spring-managed remoting destination methods from the Flex client
may require sending and receiving objects. For instance, the show method of
FlightDescriptionService returns a FlightDescription object and the create
method accepts a FlightDescription object. Flex allows exchanging data between
the Flex client and remoting destination method by auto-converting the ActionScript
object to the Java object and vice versa. As the Flex client in the flightapp_flex
application exchanges flight description details with the FlightDescriptionService
remoting destination, Roo generates ActionScript classes corresponding to the JPA entity
managed by FlightDescriptionService. The following code shows the Roo-generated
FlightDescription.as ActionScript class corresponding to the FlightDescription
JPA entity:

FlightDescription.as
package sample.roo.flightapp.domain{
[RemoteClass(alias="sample.roo.flightapp.domain.FlightDescription")]

 public class FlightDescription {
 public var destination:String;
 public var id:Number;
 public var origin:String;
 public var price:Number;
 public var version:Number;
 }
}

This code shows that the FlightDescription.as ActionScript class defines the same
attributes as the corresponding FlightDescription JPA entity. The [RemoteClass]
metadata tag specifies the remote Java object to which the ActionScript object maps. The
alias attribute specifies the fully-qualified class name of the remote Java object to which the
ActionScript object maps.

Roo creates ActionScript and MXML files corresponding to each JPA entity so that CRUD
operations can be performed on JPA entities from the scaffolded Flex user interface. The
following table describes each of these Roo-generated files (located in ROOT\src\main\
flex\sample\roo\flightapp\presentation\flightdescription and ROOT\
src\main\flex\sample\roo\flightapp\presentation\flight directories):

Chapter 5

267

File Description
<JPA-entity-
name>Event.as

Subclass of flash.events.Event that defines different
event types, like create, edit, and delete events that are
generated when a JPA entity is created, edited, or modified.
In flightapp_flex project, FlightEvent.as and
FlightDescriptionEvent.as represent event
classes.

<JPA-entity-name>View.
mxml

MXML file that shows the list of entity instances and
options to create, edit, and delete entity instances. In the
flightapp_flex project, FlightView.mxml and
FlightDescriptionView.mxml MXML files show list
of Flight and FlightDescription entity instances,
respectively, and options to create, edit, and delete the
entity instances.

<JPA-entity-name>Form.
mxml

The MXML file that shows the form for creating
entity instances. In the flightapp_flex project,
FlightForm.mxml and FlightDescriptionForm.
mxml files show the form for creating Flight and
FlightDescription JPA entity instances, respectively.

The following code shows the FlightDescriptionEvent.as ActionScript class created
by Roo:

package sample.roo.flightapp.presentation.flightdescription
{
 import flash.events.Event;
 import sample.roo.flightapp.domain.FlightDescription;

 public class FlightDescriptionEvent extends Event {
 public static const CREATE:String =
 "flightDescriptionCreate";
 public static const UPDATE:String =
 "flightDescriptionUpdate";
 public static const DELETE:String =
 "flightDescriptionDelete";

 public var flightDescription:FlightDescription;

 public function FlightDescriptionEvent(type:String,
 flightDescription:FlightDescription,
 bubbles:Boolean = true, cancelable:Boolean = false){
 this.flightDescription = flightDescription;
 super(type, bubbles, cancelable);
 }
 }
}

Web Application Development with GWT, Flex, and Spring Web Flow

268

The FlightDescriptionEvent class is a subclass of the flash.events.Event
class and defines three different types of events: flightDescriptionCreate,
flightDescriptionUpdate, and flightDescriptionDelete. The
FlightDescription ActionScript object (which corresponds to the
FlightDescription JPA entity on the server-side) represents the payload carried by the
FlightDescriptionEvent event type.

As mentioned earlier, in the flightapp_flex application, flightapp_flex_scaffold.
mxml file defines the initial user interface of the application. When the flex remoting all
command was executed, we saw in the output that the flightapp_flex_scaffold.mxml
file was updated. The following code shows the modification that was made by Roo to the
flightapp_flex_scaffold.mxml file:

flightapp_flex_scaffold.mxml
...
<fx:Declarations>
 <s:ArrayList id="entities">

 <fx:String>FlightDescription</fx:String>

 <fx:String>Flight</fx:String>

 </s:ArrayList>

 ...
 </fx:Declarations>
 ...
 <s:Panel id="entityPanel" title="Entity List" height="100%">
 <s:List id="entityList" dataProvider="{entities}"
 width="100%" height="100%"
 toolTip="Double-Click the selected Entity"
 doubleClickEnabled="true"
 doubleClick="entityList_doubleClickHandler(event)"/>
 </s:Panel>
 </s:Group>

If you compare this code with the code of the flightapp_flex_scaffold.mxml file that
we saw in the previous recipe, you'll notice that the only change that happened is the addition
of the <fx:String> elements to the <ArrayList>. Roo creates an <fx:String> element
corresponding to each JPA entity in the application. By default, the value of the <fx:String>
element is the simple name of the corresponding JPA entity. As the <List> component
makes use of <ArrayList> as its data provider, the <List> component now displays Flight
and FlightDescription list items in the user interface, as shown here:

Chapter 5

269

This screenshot shows that Roo doesn't generate a list item corresponding to the
finder method, findFlightDescriptionsByDestinationAndOrigin, defined in
FlightDescription JPA entity.

When you double-click an item in the list shown above, it invokes the entityList_
doubleClickHandler ActionScript method defined in the flightapp_flex_scaffold.
mxml file, which displays the user interface generated either by FlightView.mxml or
FlightView.mxml, depending upon the list item double-clicked. The following code shows
the entityList_doubleClickHandler method:

protected function
 entityList_doubleClickHandler(event:MouseEvent):void {
 ..
 var selectedEntity:String = entityList.selectedItem;
 var selectedEntityPackage:String =
 selectedEntity.toLowerCase();

 var viewClass:Class =

 getDefinitionByName("sample.roo.flightapp.presentation."

 + selectedEntityPackage+"::"+selectedEntity+"View")

 as Class;

 if (viewClass != null) {
 var newView:UIComponent = UIComponent(new viewClass());
 ...
 mainGroup.addElement(newView);

 }
 ...
}

As MXML files are compiled into ActionScript classes, FlightDescriptionView.mxml
and FlightView.mxml files are converted to FileDescriptionView and FlightView
ActionScript classes, respectively. The entityList_doubleClickHandler method
obtains the selected item value from the list (which is either FlightDescription or Flight) and
appends 'View' string to it—making the concatented value to FlightDescriptionView
or FlightView. The entityList_doubleClickHandler then creates an instance of
FlightDescriptionView or FlightView and adds it to the main user interface.

Web Application Development with GWT, Flex, and Spring Web Flow

270

The following sequence diagram summarizes the role played by the entity_
doubleClickHandler method:

It is important to note that the entityList_doubleClickHandler method of
the flightapp_flex_scaffold.mxml file never directly references either the
FlightView or FlightDescriptionView ActionScript class. In fact, FlightView and
FlightDescriptionView classes are not referenced by any other MXML or ActionScript
class in the flightapp_flex project. The side-effect of this is that the Flex compiler doesn't
include FlightDescriptionView and FlightView in the generated SWF file. To instruct
Flex compiler to include FlightDescriptionView and FlightView ActionScript classes,
Roo adds their fully-qualified name in the flightapp_flex_scaffold-config.xml file,
as shown here:

flightapp_flex_scaffold-config.xml
<flex-config xmlns="http://www.adobe.com/2006/flex-config">
 <includes append="true">
	 <symbol>sample.roo.flightapp.presentation.flightdescription.
FlightDescriptionView

 </symbol>

 <symbol>

 sample.roo.flightapp.presentation.flight.FlightView

 </symbol>

 </includes>
</flex-config>

The <symbol> elements specify the ActionScript classes that should be included in the
generated SWF file by the Flex compiler.

Chapter 5

271

The FlightDescriptionView.mxml shows a New FlightDescription button, and if clicked,
it invokes the showForm method. The showForm method of FlightDescriptionView.
mxml shows the form (represented by FlightDescriptionForm.mxml) for creating
FlightDescription entity instances, as shown here:

The following sequence diagram shows what happens behind the scenes when you click on
the New FlightDescription button:

This sequence diagram shows that the showForm method creates
FlightDescriptionForm and FlightDescription objects. The FlightDescription
object (which corresponds to FlightDescription JPA entity) acts as the form-
backing object that we see in web applications. The showForm methods sets the
FlightDescription object in the FlightDescriptionForm instance. Also,
showForm adds an event listener for the FlightDescriptionEvent.CREATE event to
FlightDescriptionForm.

The following code shows the showForm method:

private function showForm
 (flightDescription:FlightDescription = null):void {
 var form:FlightDescriptionForm =
 PopUpManager.createPopUp(this, FlightDescriptionForm, true)

Web Application Development with GWT, Flex, and Spring Web Flow

272

 as FlightDescriptionForm;
 ..
 form.flightDescription = flightDescription != null ?
 flightDescription : new FlightDescription();

 form.addEventListener(FlightDescriptionEvent.CREATE,

 flightDescriptionView_flightDescriptionCreateEventHandler);
}

This code shows that, the addEventListener method accepts the type of event that
FlightDescriptionForm object listens to, which is FlightDescriptionEvent.
CREATE. The addEventListener also accepts the name of the handler method that is
invoked when the event is received by the FlightDescriptionForm object. So, if the
FlightDescriptionEvent.CREATE event is received by the FlightDescriptionForm
object, it results in the invocation of the flightDescriptionView_
flightDescriptionCreateEventHandler method. We'll come back to the handler
method, but first let's look at how the FlightDescriptionEvent.CREATE event is
generated.

The following sequence diagram shows that the FlightDescriptionEvent.CREATE event
is generated when the user presses the Save button to create a FlightDescription JPA
entity instance:

Chapter 5

273

This sequence diagram shows that when the Save button is clicked, it results in the
invocation of the processSave method defined in FlightDescriptioForm.mxml.
The processSave method validates the form data entered by the user using the
mx.validators.Validator. If the data validation succeeds, form data is set in the
FlightDescription ActionScript object. The processSave method now creates a
FlightDescriptionEvent event of type FlightDescriptionEvent.CREATE and
passes the FlightDescription ActionScript object as the payload of the event. Invoking
the dispatchEvent method results in dispatching the newly created event to listeners.

So, after receiving the FlightDescriptionEvent.CREATE event,
flightDescriptionView_flightDescriptionCreateEventHandler is invoked,
as explained earlier. The following code shows the flightDescriptionView_
flightDescriptionCreateEventHandler method, which invokes the
FlightDescriptionService's create method to create an instance of the
FlightDescription JPA entity:

protected function
 flightDescriptionView_flightDescriptionCreateEventHandler
 (event:FlightDescriptionEvent):void {
 flightDescriptionService.create(event.flightDescription);

}
...

The flightDescriptionService object in the previous code represents a mx.rpc.
remoting.RemoteObject, which is used by Flex clients to access remoting destinations.
RemoteObject is defined in FlightDescriptionView.mxml using the <RemotObject>
tag, as shown here:

<s:RemoteObject channelSet="{remotingChannels}"
 destination="flightDescriptionService"

 fault="flightDescriptionService_faultHandler(event)"
 id="flightDescriptionService">

 ...
</s:RemoteObject>

In this code, {remotingChannels} identifies the ChannelSet to use for communication
with server-side Java objects. We saw in the previous recipe that remoting channels used
by the flightapp_flex application are defined in the flightapp_flex_scaffold.
mxml file using the <ChannelSet> tag. The destination attribute specifies the remoting
destination that is accessed via RemoteObject.

There's more...
The Flex Add-on provides round-tripping support, that is, modifications to JPA entities are
propagated to MXML and ActionScript files.

Web Application Development with GWT, Flex, and Spring Web Flow

274

Flex Addon doesn't provide any support for controlling the methods that form a part of
the Spring-managed remoting destinations. For instance, you can't control the methods
that are part of the FlightDescriptionService_Roo_Service.aj file using @
RooFlexScaffold annotation.

If you want that a method in the Spring-managed remoting destination is not accessible to
Flex clients, then all you need to do is to either perform push-in refactoring or define the
method in the corresponding Java class and add the @RemotingExclude annotation of
Spring to the method.

Spring Roo makes use of JSR 303 annotations specified in the JPA entity to add Flex
validators in the MXML files. For instance, if a JPA entity field specifies @NotNull JSR 303
annotation then Roo adds a Flex StringValidator or Numbervalidator that checks that
the field on the form is not blank. Note that Flex addon support for JSR 303 annotations is
limited.

See also
ff Refer to the Getting started with Flex application development to see how you can set

up Flex for your Roo project

Getting started with Spring Web Flow
In Chapter 4, Web Application Development with Spring Web MVC we saw that Roo simplifies
building Spring Web MVC applications. In this recipe, we'll look at how Roo sets up your Roo
project to use Spring Web Flow—a framework that is built on top of Spring Web MVC.

Spring Web Flow allows modelling a web application as a set of flows, where each flow
represents a finite state machine.

The support for Spring Web Flow is broken in Spring Roo 1.1.3; therefore, you
must use Spring Roo 1.1.4 or 1.1.5 to execute this recipe. This recipe has
been developed using Spring Roo 1.1.5.

Getting ready
Create a new directory C:\roo-cookbook\ch05-webflow in your system and copy
the ch05_webflow_app.roo script that accompanies this book to the ch05-webflow
directory.

Chapter 5

275

Start the Roo shell from the ch05-webflow directory and execute the ch05_webflow_
app.roo script using the script command. Executing the ch05_webflow_app.roo
script creates a flightapp-webflow Eclipse project, sets up Hibernate as persistence
provider, configures MySQL as the database for the application, and creates Flight,
FlightDescription, Customer, and Address JPA entities. The Customer entity has a
one-to-one relationship with the Address entity and Flight has a many-to-one relationship
with the FlightDescription entity. If you are using a different database than MySQL or
your connection settings are different than what is specified in the script, then modify the
script accordingly.

How to do it...
To set up the Spring Web Flow framework, follow the steps given here:

1.	 Execute the web flow Roo command to create a Customer flow, as shown here:
.. roo> web flow --flowName customer

Created SRC_MAIN_WEBAPP\WEB-INF\spring

Created SRC_MAIN_WEBAPP\WEB-INF\spring\webflow-config.xml

Created SRC_MAIN_WEBAPP\WEB-INF\spring\webmvc-config.xml

...

Created SRC_MAIN_WEBAPP\WEB-INF\views\customer

Created SRC_MAIN_WEBAPP\WEB-INF\views\customer\flow.xml

Created SRC_MAIN_WEBAPP\WEB-INF\views\customer\view-state-1.jspx

Created SRC_MAIN_WEBAPP\WEB-INF\views\customer\view-state-2.jspx

Created SRC_MAIN_WEBAPP\WEB-INF\views\customer\end-state.jspx

Created SRC_MAIN_WEBAPP\WEB-INF\views\menu.jspx

Created SRC_MAIN_WEBAPP\WEB-INF\views\customer\views.xml

...

Updated ROOT\pom.xml [...; added dependency org.springframework.
webflow:spring-webflo

w:2.2.1.RELEASE]

2.	 Execute the perform eclipse command to update the project's classpath settings:
.. roo> perform eclipse

3.	 You can now import the flightapp_webflow project into your Eclipse IDE.

4.	 Exit the Roo shell and execute the tomcat:run goal of the Tomcat Maven plugin
from the ch05-webflow directory to deploy the flightapp_webflow project to the
embedded Tomcat container:
C:\roo-cookbook\ch05-webflow> mvn tomcat:run

Web Application Development with GWT, Flex, and Spring Web Flow

276

5.	 Open the http://localhost:8080/flightapp_webflow URL in your favorite browser.
If you see the following page, then it means your application is successfully deployed
in the embedded Tomcat container:

6.	 Click the Enter Customer flow menu option to start the sample flow installed by
the web flow command. This screenshot shows the first step in the flow when the
Customer flow is started:

7.	 The CANCEL button ends the Customer flow and the PROCEED button takes you to
next step in the flow.

Chapter 5

277

How it works...
Spring Web Flow allows creating a web application as a set of flows, where each flow defines
a series of states, transitions, and actions. The web flow command, processed by the Spring
Web Flow add-on, creates artifacts that are required to quickly get started with developing
web applications using Spring Web Flow. The flowName is an optional argument that
specifies the name of the flow which you want to create. If the flowName argument is
not specified, Roo creates a sample flow.

When the web flow command is executed for the first time, it mostly creates files and
directories that you've already seen in Chapter 4, Web Application Development with Spring Web
MVC. In this recipe, we'll focus on files and directories that Roo creates specifically for developing
applications with Spring Web Flow. It is important to note that the web flow command only
creates a sample flow, which gives you the starting point to create your custom flow.

As the output of the web flow command shows, Roo not only creates the webmvc-config
.xml file (which is also created when you execute the web mvc install command) but
also creates a webflow-config.xml file. The webflow-config.xml file is the application
context XML file that defines Spring Web Flow-specific special beans like FlowHandler
Mapping, FlowHandlerAdapter, and so on. The webmvc-config.xml web application
context XML defines the beans that we discussed in Chapter 4, Web Application Development
with Spring Web MVC. Additionally, it now imports the bean definitions in webflow-config.
xml, using the <import> element of Spring's beans schema, as shown here:

<import resource="webflow-config.xml"/>

The value of flowName argument is used by Roo to create a directory with the same name in
the/WEB-INF/views folder, containing flow-related artifacts. By default, Roo only creates an
example flow to let you get started with creating your own flow. The following table describes
the flow-related artifacts that were created in the /WEB-INF/views/customer directory
when we executed the web flow --flowName customer command:

File name Description
flow.xml XML file that defines the flow states, transitions, and actions
view-state-1.jspx JSPX file that corresponds to the first view state of the

Customer flow
view-state-2.jspx JSPX file that corresponds to the second view state of the

Customer flow
end-state.jspx JSPX file that corresponds to the end view state of the

Customer flow
views.xml Tiles configuration XML file, which contains tiles definitions for

showing JSPX pages in the Customer flow

Let's first look at how we define a flow in a flow definition XML file.

Web Application Development with GWT, Flex, and Spring Web Flow

278

The following listing shows the flow.xml file that was created in the WEB-INF/views/
customer folder:

flow.xml
<flow xmlns="http://www.springframework.org/schema/webflow" ..>

 <view-state id="view-state-1" view="customer/view-state-1">
 	 <transition on="success" to="view-state-2"/>
 	 <transition on="cancel" to="end-state"/>
 </view-state>

 <view-state id="view-state-2" view="customer/view-state-2">
 	 <transition on="cancel" to="end-state"/>
 </view-state>

 <end-state id="end-state" view="customer/end-state"/>

</flow>

As this code shows, every flow definition XML file begins with the <flow> root element. A
<view-state> element defines a view state—a state in which a view is rendered. The id
attribute of the <view-state> element uniquely identifies the state in the flow definition
XML file. As the first state defined in the flow definition, XML file is the start state of the
flow, view-state-1 represents the start state of Customer flow. The view attribute of the
<view-state> element specifies the view that should be rendered to the user. As Roo-
generated Spring Web Flow application makes use of Apache Tiles 2 framework, the value of
the view attribute represents a logical name of the view. The actual view corresponding to the
view attribute value is determined based on the tiles definition contained in the WEB-INF/
views/customer/views.xml file. The <end-state> element defines the end state of the
flow. The view attribute defines the logical name of the view that is rendered when the end
state of the flow is reached. A flow may define multiple end states and in some cases the end
state may not render a view.

The <transition> element specifies the state to which the flow is transitioned when an
event occurs. The on attribute specifies the event that triggers the transition and the to
attribute specifies the state to which the flow transitions. For instance, if the Customer flow is
in view-state-1 state and success event is received, then the flow transitions to view-
state-2 state and if cancel event is received, then the flow transitions to end-state.
As you can see, the state transitions result in navigation from one page to another page in a
Spring Web Flow application.

Let's now look at the beans defined in Roo-generated webflow-config.xml file for the
flightapp_webflow project.

Chapter 5

279

Spring Web Flow configuration
The webflow-config.xml defines a HandlerMapping that returns a FlowHandler for
initiating execution of a flow, as shown here:

<bean class=
"org.springframework.webflow.mvc.servlet.FlowHandlerMapping">
 <property name="order" value="0" />
 <property name="flowRegistry" ref="flowRegistry" />
</bean>

The order property specifies the priority assigned to the FlowHandlerMapping with
respect to other HandlerMapping implementations configured in the web application
context. The value can be anything from Integer.MIN_VALUE to Integer.MAX_VALUE.
The lower the value of the order property, the higher the priority of the HandlerMapping
implementation. So, if a HandlerMapping implementation configured in the web application
context specifies a value of order property more than 0, then it has a lower priority than
FlowHandlerMapping. The priority of a HandlerMapping implementation comes into play
when DispatcherServlet attempts to find a handler for processing the request.

The HandlerMapping configuration with highest priority (that is, lowest
order value) is first consulted by DispatcherServlet to find a matching
handler and HandlerMapping configuration that doesn't specify an order
property is given the lowest priority.

The flowRegistry property of FlowHandlerMapping specifies a
FlowDefinitionRegistry that contains a registry of all the flow definitions in the
application. The following <flow-registry> element of Spring's webflow schema defines
a flow registry:

<webflow:flow-registry id="flowRegistry"
 flow-builder-services="flowBuilderServices"
 base-path="/WEB-INF/views">
 <webflow:flow-location-pattern value="/**/flow.xml" />
</webflow:flow-registry>

The base-path attribute specifies the location relative to which flow definition XML files
are located. The value /WEB-INF/views of the base-path attribute means that the
flow definition XML files are located relative to the /WEB-INF/views folder. The <flow-
location-pattern> specifies the location pattern for finding the flow definition XML files,
relative to the base-path. The value /**/flow.xml means that the flow.xml files inside
the /WEB-INF/views folder or its subfolder represent the flow definition XML files.

Web Application Development with GWT, Flex, and Spring Web Flow

280

Flows are registered in the flow registry with a unique ID, which is determined by the name
of the flow definition XML file (if base-path attribute is not specified) or by the location of
the flow definition XML file relative to the base-path attribute value. As the Roo-generated
webflow-config.xml file makes use of the base-path attribute, the unique ID assigned
to the flow is determined by the location of the flow definition XML files relative to the base-
path attribute value. For instance, the Customer flow definition XML file in the flightapp_
webflow project is located in the /WEB-INF/views/customer folder (relative to base-
path) and the base-path attribute is /WEB-INF/views. If we subtract the base-path
value (/WEB-INF/views) from the flow definition XML location (/WEB-INF/views/
customer), then it returns the unique ID of the flow with which it is registered in the flow
registry—which is customer for the Customer flow.

When a request is received (via DispatcherServlet) by the FlowHandlerMapping, it
checks whether the flow registry contains a flow whose unique ID matches the current request
path. If a match is found, then it returns a FlowHandler that starts execution of the matched
flow, else it returns null. When null is returned, DispatcherServlet consults the next
HandlerMapping in the web application context to find the handler for processing the request.

The flow-builder-services attribute of the <flow-registry> element specifies
an implementation of FlowBuilderServices, which is used for configuring custom
services that are required to build flows registered in the flow registry. For instance, if
you want to configure a custom ConversionService or ViewFactoryCreator, you
can specify reference to a FlowBuilderServices instance as the value of the flow-
builder-services attribute value. As Roo-generated Spring Web Flow application
makes use of Apache Tiles 2 framework, FlowBuilderServices is configured with a
ViewFactoryCreator that maps a URL to a TilesView (described in detail in Chapter 4,
Web Application Development with Spring Web MVC), as shown here:

<bean id="mvcViewFactoryCreator" class=
"org.springframework.webflow.mvc.builder.MvcViewFactoryCreator">
 <property name="viewResolvers" ref="tilesViewResolver" />
</bean>

The MvcViewFactoryCreator is an implementation of the ViewFactoryCreator,
which creates a ViewFactory for rendering Spring Web MVC-based views, like JSPs. The
viewResolvers property of MvcViewFactoryCreator specifies the view resolution
strategy. The tilesViewResolver (defined in the webmvc-config.xml file) represents
a UrlBasedViewResolver that resolves view names corresponding to URLs. As Roo-
generated Spring Web Flow application makes use of Apache Tiles 2 framework, the
UrlBasedViewResolver resolves a URL to a TilesView, as shown here:

<bean class=
"org.springframework.web.servlet.view.UrlBasedViewResolver"
 id="tilesViewResolver">
 <property name="viewClass" value=
 "org.springframework.web.servlet.view.tiles2.TilesView"/>
</bean>

Chapter 5

281

Refer to Chapter 4, Web Application Development with Spring Web MVC for more information
on UrlBasedViewResolver.

Let's now take a step back and see how request is mapped to a flow and how the view is
resolved corresponding to the view state of the Customer flow. If you look at the menu.jspx
file, you'll find that the menu option Enter Customer flow refers to the/customer URL, as
shown here:

<menu:item id="i_flows_customer" messageCode="webflow_menu_enter"
url="/customer" z=".."/>

So, when you click the Enter Customer flow menu option, FlowHandlerMapping
attempts to find the flow whose unique ID is customer (removing the leading '/' from the
request path gives the flow ID to look for). As our Customer flow has a customer unique
ID, FlowHandlerMapping returns a FlowHandler instance that starts the execution
of Customer flow. As the first <view-state> element in flow.xml of Customer flow
defines the start state of the Customer flow, view corresponding to the first <view-state>
element is rendered. The view attribute of the first <view-state> element is customer/
view-state-1, which represents a logical view name. As the Roo-generated Spring Web
Flow application makes use of Apache Tiles 2 framework, the Tiles configuration XML files
(including /WEB-INF/views/customer/views.xml Tiles configuration XML file) in the
application are consulted to find the tiles definition corresponding to the logical view name
customer/view-state-1. The following listing shows the /WEB-INF/views/customer/
views.xml file:

<tiles-definitions>
 <definition extends="default" name="customer/*">

 <put-attribute name="body"
 value="/WEB-INF/views/customer/{1}.jspx"/>

 </definition>
</tiles-definitions>

The <definition> element's name attribute value is customer/*, which matches the
logical view name customer/view-state-1. So, we now know the tiles definition that
applies to the first <view-state> element of the Customer flow. Another interesting thing
to notice is the use of token {1} in the value of <put-attribute> element. The token {1}
refers to the first value that appears in the logical view name after the customer/ string—
which is view-state-1 for the first <view-state> element of the Customer flow. Similarly,
if the logical view name is customer/x/y/z, then the value of token {1} is x, token {2} is
y, and {3} is z. This makes the view rendered for the first <view-state> element of the
Customer flow as /WEB-INF/views/customer/view-state-1.jspx.

Web Application Development with GWT, Flex, and Spring Web Flow

282

Now, coming back to webflow-config.xml, the flows are started by FlowHandler and
executed by FlowExecutor, and the following FlowHandlerAdapter implementation is
configured:

<bean class=
"org.springframework.webflow.mvc.servlet.FlowHandlerAdapter">
 <property name="flowExecutor" ref="flowExecutor" />
</bean>
<webflow:flow-executor id="flowExecutor" />

The <flow-executor> element of Spring's webflow schema installs a FlowExecutor,
which is used by the FlowHandler implementation to execute a flow. You can create a custom
FlowHandler implementation if you like, by extending AbstractFlowHandler class.

Developing applications using both Spring Web MVC and Spring
Web Flow
You'll also find that the following beans are configured in the webflow-config.xml file:

<bean class="org.springframework.web.servlet.mvc.annotation.
 AnnotationMethodHandlerAdapter" />

<bean class="org.springframework.web.servlet.mvc.
SimpleControllerHandlerAdapter" />

The AnnotationMethodHandlerAdapter is used when you are using @Controller
annotated controllers in Spring Web MVC and SimpleControllerHandlerAdapter
is used when you are using controllers that implement Spring Web MVC's Controller
interface.

You might be wondering why these HandlerAdapter implementations are configured when
we are using Spring Web Flow and not Spring Web MVC. Well, Spring Web Flow is usually used
along with Spring Web MVC because not everything in your web application may represent a
flow. For instance, in a Flight Booking application, Booking may represent a process spanning
a series of steps but creation of a Flight entity may not. This is the reason why execution
of the web flow command not only enables development using Spring Web Flow but also
using Spring Web MVC. If you look at webmvc-config.xml file, it defines <annotation-
driven> element of Spring's mvc schema, as shown here:

<mvc:annotation-driven/>

The <annotation-driven> element configures AnnotationMethodHandlerAdapter
and DefaultAnnotationHandlerMapping beans to support developing Spring Web
MVC applications using annotated controllers. As webflow-config.xml explicitly
defines FlowHandlerAdapter, it overrides the AnnotationMethodHandlerAdapter
bean configured implicitly by <annotation-driven>. This is the reason why the
AnnotationMethodHandlerAdapter bean is explicitly configured by Roo in the webflow-
config.xml file.

Chapter 5

283

To see how Spring Web Flow and Spring Web MVC co-exist in the same application, scaffold
Spring Web MVC controller for Flight and FlightDescription JPA entities in flighapp_
webflow project, as shown here:

.. roo> controller scaffold --class ~.controller.FlightController
--entity ~.domain.Flight

.. roo> controller scaffold --class ~.controller.
FlightDescriptionController --entity ~.domain.FlightDescription

Executing controller scaffold Roo command will generate Spring Web MVC
annotated controllers in the com.sample.flightapp.controller package. Also, it
will generate JSPX views and a tiles configuration XML file corresponding to the Flight
and FlightDescription JPA entities in /WEB-INF/views/flights and /WEB-INF/
views/flightdescriptions folders, respectively. Now, exit the Roo shell and deploy the
flightapp_webflow project to the embedded Tomcat container as shown here:

C:\roo-cookbook\ch05-webflow> mvn tomcat:run

Open http://localhost:8080/flightapp_webflow URL in your favorite browser. If
you see the following page, then it means your application is successfully deployed on the
embedded Tomcat container:

As this screenshot shows, the flightapp_webflow application consists of both Spring Web
Flow flows (created via the web flow command) and Spring Web MVC controllers (created via
the controller scaffold command).

Web Application Development with GWT, Flex, and Spring Web Flow

284

There's more...
Spring Web Flow provides support for associating model attributes with a view state, making
it possible to create a flow consisting of form submissions. For instance, you can modify
Customer flow such that the user first enters details in a customer form (which binds form
field values to the Customer JPA entity), followed by address details (which binds form field
values to the Address JPA entity), and in the end both Customer and Address entity
instances are persisted in the database.

See also
ff Refer to the Creating Spring MVC controllers and JSPX views from JPA entities

recipe in Chapter 4, Web Application Development with Spring Web MVC to see a
description of beans defined in webmvc-config.xml file

6
Emailing, Messaging,

Spring Security,
Solr, and GAE

In this chapter, we will cover:

ff Sending e-mails using JavaMail API

ff Sending and receiving JMS messages

ff Configuring Spring security for your application

ff Using Spring Security with Apache Directory Server

ff Deploying a GWT application on GAE

ff Deploying a Spring Web MVC application on GAE

ff Adding search capability to your domain model with Solr

Introduction
In this chapter, we look at Roo commands that support sending e-mails via JavaMail API,
sending and receiving JMS messages, configuring Spring Security for an application, deploying
Spring and GWT applications to Google App Engine (GAE), and adding search capability to an
application's domain model using Solr search server.

Emailing, Messaging, Spring Security, Solr, and GAE

286

Sending e-mails using JavaMail API
Spring framework provides classes such as JavaMailSenderImpl, SimpleMailMessage,
and so on, which simplify sending e-mails via JavaMail API. In this recipe, we'll look at Roo
commands that help with the configuration of these classes. To verify that the emailing
feature in our application is working correctly, we'll send an e-mail via Gmail.

Getting ready
Create a new directory C:\roo-cookbook\ch06-email in your system. Copy the ch06_
web_app.roo script to the ch06-email directory. If you are using a different database
than MySQL or your connection settings are different than what is specified in the script, then
modify the script accordingly.

Start the Roo shell from the ch06-email directory and execute the ch06_web_app.roo
script using the script command. Executing the Roo script will create a flightapp-web
eclipse project that represents a Spring Web MVC application consisting of Flight and
FlightDescription JPA entities.

How to do it...
To simplify e-mail sending, follow the steps given here:

1.	 Execute the email sender setup command, by providing username and
password argument values for the Gmail account through which you want to send
e-mails. In the following command, replace the <username> and <password>
argument values with the values that reflect your Gmail account username and
password, respectively. It is important to note that you don't need to specify
@gmail.com as the value of username, as it is derived from the hostServer
argument. If you are using a different mail server for sending e-mails, then modify the
argument values accordingly.
... roo> email sender setup --hostServer smtp.gmail.com --port 587
--protocol SMTP --username <username> --password <password>

Updated SRC_MAIN_RESOURCES\META-INF\spring\applicationContext.xml

Updated ROOT\pom.xml [Added dependencies ..., javax.
mail:mail:1.4.1, javax.activation:activation:1.1.1]

Created SRC_MAIN_RESOURCES\META-INF\spring\email.properties

2.	 Execute the email template setup command to specify the sender of the e-mail
message and the subject of the e-mail (replace <username> with your Gmail
account username), as shown here:

Chapter 6

287

... roo> email template setup --from <username>@gmail.com
--subject "A new Flight instance has been created"

Updated SRC_MAIN_RESOURCES\META-INF\spring\applicationContext.xml

Updated SRC_MAIN_RESOURCES\META-INF\spring\email.properties

3.	 Add Spring's MailSender and SimpleMailMessage fields, along with a
sendMessage method, to FlightController.java using the field email
template command, as shown here:
... roo> field email template --class ~.web.FlightController

Updated ...flightapp\web\FlightController.java

4.	 Execute the perform eclipse command to update the project's classpath settings:
.. roo> perform eclipse

5.	 Import the flightapp-web Eclipse project into Eclipse IDE.

6.	 Open FlightController_Roo_Controller.aj file, copy the declaration that
introduces create(...) method in FlightController.java and paste it in the
FlightController.java file.

If you are using Spring Roo 1.1.3, then remove the create
method declaration from FlightController_Roo_
Controller.aj file. This is required because the create
declaration from FlightController_Roo_Controller.
aj file is not automatically removed in Spring Roo 1.1.3.

The create method of the FlightController class is invoked when the user
enters flight information and submits the request to create a new Flight instance.
After adding the create(...) method, your FlightController.java should
look as follows:
@RooWebScaffold(...)
@RequestMapping("/flights")
@Controller
public class FlightController {

 @Autowired
 private transient MailSender mailTemplate;

 @Autowired
 private transient SimpleMailMessage simpleMailMessage;

 @RequestMapping(method = RequestMethod.POST)
 public String create(@Valid Flight flight,
 BindingResult bindingResult, Model uiModel,
 HttpServletRequest httpServletRequest) {

 ...

Emailing, Messaging, Spring Security, Solr, and GAE

288

 flight.persist();
 return "redirect:/flights/" +
 encodeUrlPathSegment(flight.getFlightId().toString(),
 httpServletRequest);
 }

 public void sendMessage(java.lang.String mailTo,
 java.lang.String message) {
 ...
 }
}

In the given code, the create method has been directly added to the
FlightController.java by copying it from the FlightController_
Roo_Controller.aj AspectJ ITD file. In the ITD, the create method is declared
as shown here:
public String FlightController.create(...)

Make sure that you remove the FlightController from the name of the
method when you copy it to the FlightController.java file. So, this method in
FlightController.java becomes:
public String create(...)

When you add the create(...) method in FlightController.java with the
same signature as in FlightController_Roo_Controller.aj, then Roo
removes the create(...) method from FlightController_Roo_Controller.
aj. Refresh the flightapp-web project in Eclipse IDE so that modifications made
by Roo are visible.

7.	 Now, modify the create(...) method in FlightController.java by adding the
following piece of code just after the call to flight.persist() method:
sendMessage("<username>@gmail.com", "A new instance of Flight
entity with id " + flight.getFlightId() + " has been created.");

In this code, replace <username> with your Gmail account username.

8.	 Exit the Roo shell and execute the tomcat:run goal of the Tomcat maven plugin
from the ch06-email directory to deploy the flightapp-web project in an
embedded Tomcat container, as shown here:

C:\roo-cookbook\ch06-email> mvn tomcat:run

Chapter 6

289

Access the flightapp-web application from the web browser using the following
URL: http://localhost:8080/flightapp-web. You should now see the
following home page of the flightapp-web application:

Select the Create new Flight Description option from the menu, which shows the
form for creating a new FlightDescription entity instance. Once you have
created the FlightDescription instance, select the Create new Flight menu
option to create a Flight instance. The following screenshot shows the form for
creating a Flight instance:

Enter Departure Date, Arrival Date, and Flight Description information and click
the Save button. Saving the Flight instance will result in sending an e-mail to your
Gmail account, with the subject as A new Flight instance has been created and the
message A new instance of Flight entity with ID 1 has been created. As you create
more Flight instances, an e-mail is sent to your Gmail account for each Flight
instance created.

Emailing, Messaging, Spring Security, Solr, and GAE

290

How it works...
JavaMail API provides classes such as Session, Transport, Authenticator, and so
on, that are used for composing, sending, and reading e-mails. If you want to directly use
the JavaMail API to send an e-mail message, then you'll need to know how to use different
JavaMail API classes and interfaces. Spring framework abstracts the inner workings of
JavaMail API by providing a set of classes and interfaces, which simplifies writing programs
that require the functionality of sending e-mails. Also, Spring provides an exception hierarchy,
which abstracts exceptions thrown during composing, parsing, and sending e-mails or while
authenticating with the mail server.

The following figure shows the important classes and interfaces of Spring that provide
e-mail sending functionality. You can find these classes and interfaces in the org.
springframework.mail and org.springframework.mail.javamail packages of
the Spring framework.

MailSender interface is a generic interface that defines e-mail sending functionality.
As shown in the given figure, it defines two send methods that accept Spring's
SimpleMailMessage and SimpleMailMessage[] objects as arguments.

The JavaMailSender interface extends the MailSender interface and defines methods
specific to sending e-mails using JavaMail API. JavaMailSender defines methods such as
createMimeMessage—for creating a MimeMessage instance (which is part of JavaMail
API), send—for sending a MimeMessage, and so on. For the complete list of methods
defined by Spring, refer to the Spring API documentation for the JavaMailSender interface.
Spring provides a concrete implementation of the JavaMailSender interface through the
JavaMailSenderImpl class, which you can use in your application to send e-mails.

Chapter 6

291

It is important to note that the MailSender interface defines send methods that accept
SimpleMailMessage or SimpleMailMessage[] objects as arguments, and the
JavaMailSender interface defines send methods that accept MimeMessage or
MimeMessage[] objects as arguments. SimpleMailMessage is part of Spring framework
and is useful for creating simple mail messages consisting of from, to, e-mail body, and so
on. If you want to send more refined messages consisting of attachments, inline images, and
so on, then you should use MimeMessage to create your mail message.

Now that we have a basic understanding of different classes and interfaces that come into the
picture when it comes to sending e-mails, let's look at various Spring Roo commands that we
used in the flightapp-web application for setting up e-mail support and sending e-mails.

Setting up e-mail sending support
The email sender setup Roo command sets up e-mail sending support in a Roo project by
configuring JavaMailSenderImpl in Spring's application context. When the email sender
setup command is executed, the following actions are performed by Roo:

ff The SRC_MAIN_RESOURCES\META-INF\spring\applicationContext.xml file
is updated to configure JavaMailSenderImpl as a Spring bean

ff The SRC_MAIN_RESOURCES\META-INF\spring\email.properties file is
created, which contains properties for setting up the JavaMailSenderImpl
instance. The properties defined in the email.properties file come from the
arguments specified for the email sender setup command.

ff The pom.xml file is updated to reflect dependency on JavaMail and Java Activation
Framework(JAF) JAR files.

The following listing shows the JavaMailSenderImpl configuration in the
applicationContext.xml file:

<bean class="org.springframework.mail.javamail.
 JavaMailSenderImpl" id="mailSender">
 <property name="host" value="${email.host}"/>
 <property name="protocol" value="${email.protocol}"/>
 <property name="port" value="${email.port}"/>
 <property name="username" value="${email.username}"/>
 <property name="password" value="${email.password}"/>
 <property name="javaMailProperties">
 <props>
 <prop key="mail.smtp.auth">true</prop>
 <prop key="mail.smtp.starttls.enable">true</prop>
 </props>
 </property>
</bean>

Emailing, Messaging, Spring Security, Solr, and GAE

292

In the given XML, JavaMailSenderImpl is configured with properties such as
host, protocol, port, and so on. The values of these properties come from the
email.properties file.

The following listing shows the email.properties file:

email.host=smtp.gmail.com

email.password=<password>
email.port=587
email.protocol=smtp

email.username=<username>

Instead of <username> and <password>, you'll see username and password values
specified for the email sender setup command. The email.properties file is
read by Spring's PropertyPlaceholderConfigurer to fill the placeholders defined
in the configuration of JavaMailSender. The applicationContext.xml file
uses the <property-placeholder> element of Spring's context to configure a
PropertyPlaceholderConfigurer, as shown here:

<context:property-placeholder location="classpath*:META-INF/spring/*.
properties"/>

The location attribute specifies that the PropertyPlaceholderConfigurer will look for
properties files in the META-INF/spring directory of the project.

In this recipe, we used the email sender setup command
to set up JavaMailSenderImpl for the flightapp-web
project that represents a Spring Web MVC application. You
can use the email sender setup command with any Roo
project that requires an e-mail sending feature.

Let's now look at how to set up a SimpleMailMessage instance:

Setting up a mail message
The email template setup command configures SimpleMailMessage as a bean
in the applicationContext.xml file. The email template setup command accepts
two arguments: from and subject, identifying the sender and subject of the email,
respectively. When the email sender setup command is executed, the following actions
are performed by Roo:

ff Configures SimpleMailMessage as a Spring-managed bean in
applicationContext.xml, as shown here:
<bean class="org.springframework.mail.SimpleMailMessage"
 id="templateMessage">
 <property name="from" value="${email.from}"/>
 <property name="subject" value="${email.subject}"/>

Chapter 6

293

 </bean>
</beans>

The values of ${email.from} and ${email.subject} placeholders come from
the email.properties file.

ff Updates the email.properties file to include email.from and email.subject
properties, the values of which come from the value of the from and subject
arguments passed to the email template setup command:
email.from=<username>@gmail.com
email.subject=A new Flight instance has been created

Now that JavaMailSenderImpl and SimpleMailMessage instances are configured in the
application context XML file, we'll look at how to send e-mails.

Sending mails
To send an e-mail from your enterprise application you'll require access to both the
JavaMailSenderImpl and SimpleMailMessage instances registered with the Spring's
application context. Attributes referring to these instances are automatically added to a
class by the field email template Roo command. The following code listing shows
the FlightController.java class after the field email template command was
executed against it:

import org.springframework.mail.MailSender;
....
public class FlightController {

 @Autowired
 private transient MailSender mailTemplate;

 @Autowired
 private transient SimpleMailMessage simpleMailMessage;

 public void sendMessage(java.lang.String mailTo,
 java.lang.String message) {
 simpleMailMessage.setTo(mailTo);
 simpleMailMessage.setText(message);
 mailTemplate.send(simpleMailMessage);
 }
}

In the given code, the mailTemplate attribute refers to the JavaMailSenderImpl
instance and the simpleMailMessage attribute refers to the SimpleMailMessage
instance registered with the Spring's application context. It is important to note that the
type of the mailTemplate attribute is MailSender and not JavaMailSender. Also, a
sendMessage method is added to the FlightController.java for sending e-mails.
The sendMessage method accepts arguments that identify the e-mail recipient's address
and the text content or body of the e-mail. The sendMessage method makes use of the
send(SimpleMailMessage) method of MailSender to send e-mails.

Emailing, Messaging, Spring Security, Solr, and GAE

294

You can now call the send method from within the FlightController.java class
methods to send e-mails. In our example scenario, we called send method from the
create method after a Flight instance was persisted, as shown here:

@RequestMapping(method = RequestMethod.POST)
 public String create(@Valid Flight flight,
 BindingResult bindingResult, Model uiModel,
 HttpServletRequest httpServletRequest) {
 ...
 flight.persist();
 sendMessage("<username>@gmail.com",
 "A new instance of Flight entity with id "
 + flight.getFlightId()
 + "has been created.");

 return "redirect:/flights/" +
 encodeUrlPathSegment(flight.getFlightId().toString(),
 httpServletRequest);
 }

There's more...
Let's now look at how to send e-mails asynchronously, how to send more refined e-mails
consisting of attachments, inline images, and so on, and finally how to send e-mails when
the JavaMail Session is configured in JNDI.

Sending e-mails asynchronously
E-mail sending that we have discussed so far in this recipe, is synchronous in nature.
Typically, e-mails are sent asynchronously by applications—something which can be achieved
in Spring via the @Async annotation. The field email template command supports an
async argument, that instructs Roo to do the following:

ff Create the sendMessage method, which is annotated with the @Async
Spring annotation

ff Enable detection of the @Async annotated methods using the <annotation-
driven> element of Spring's task namespace, as shown here:
<task:annotation-driven executor="asyncExecutor"
 mode="aspectj" />

The executor attribute refers to an implementation of the java.util.
concurrent.Executor interface, responsible for executing the @Async
annotated method.

ff Configure Spring's ThreadPoolTaskExecutor in application context XML using the
<executor> element of Spring's task namespace, as shown here:
<task:executor id="asyncExecutor"
 pool-size="${executor.poolSize}" />

Chapter 6

295

ff Spring's ThreadPoolTaskExecutor configures a java.util.concurrent.
ThreadPoolExecutor instance (an implementation of java.util.concurrent.
Executor) with the thread pool size specified by the pool-size attribute
value. The ${executor.poolSize} placeholder's value comes from the email.
properties file.

ff Add the executor.poolSize property to the email.properties file, as
shown here:
executor.poolSize=10

To send mails asynchronously when a FlightDescription instance is created,
execute the following field email template command against the Flight
DescriptionController class, as shown here:

.. roo> field email template --class ~.web.FlightDescriptionController
--async

Now, copy the create(...) method from FlightDescriptionController_Roo_
Controller.aj to FlightDescriptionController.java and add a call to the
sendMessage(...) method, as shown here:

@RequestMapping(method = RequestMethod.POST)
public String create(@Valid FlightDescription...) {
 ...
 flightDescription.persist();
 sendMessage("<username>@gmail.com",
 "FlightDescription instance created");
 return "redirect:/flightdescriptions/" + ..
}

Sending e-mails with attachments
As mentioned earlier, if you want to send mails with attachments, inline images, and so on,
then you need to use MimeMessage instead of SimpleMailMessage. The field email
template command adds SimpleMailMessage and MailSender type attributes to the
Java class, as shown here:

 @Autowired
 private transient MailSender mailTemplate;

 @Autowired
 private transient SimpleMailMessage simpleMailMessage;

Emailing, Messaging, Spring Security, Solr, and GAE

296

Now, MailSender defines methods which accept a SimpleMailMessage or Simple
MailMessage[] object as the argument. JavaMailSender, on the other hand, defines
methods which accept a MimeMessage or MimeMessage[] object as the argument. So, we
need to change the type of mailTemplate attribute from MailSender to JavaMailSender
(a sub-interface of MailSender) to send messages of type MimeMessage. Also, we need to
remove the simpleMailMessage attribute from the class because we need mail message
of type MimeMessage and not SimpleMailMessage when sending mail messages with
attachments or inline images.

So, how do we go about creating a MimeMessage? Spring provides the following utility
classes that simplify creating a MimeMessage:

ff MimeMessagePreparator: A callback interface for preparing a MimeMessage

ff MimeMessageHelper: A helper class that provides methods for creating and
populating a MimeMessage

The following code shows modified FlightDescriptionController.java that makes
use of MimeMessageHelper to send a mail message with an attachment when a new
FlightDescription instance is created:

import javax.mail.MessagingException;
import javax.mail.internet.MimeMessage;
import org.springframework.mail.javamail.JavaMailSender;
import org.springframework.mail.javamail.MimeMessageHelper;
import org.springframework.scheduling.annotation.Async;
...
public class FlightDescriptionController {

 @Autowired
 private transient JavaMailSender mailTemplate;

 @RequestMapping(method = RequestMethod.POST)
 public String create(@Valid FlightDescription
 flightDescription...) {
 ...
 flightDescription.persist();
 sendMessage(..);
 return "redirect:/flightDescriptions/" + ...);
 }

 @Async
 public void sendMessage(java.lang.String mailTo,
 java.lang.String message) throws MessagingException {
 MimeMessage mimeMessage =
 mailTemplate.createMimeMessage();

 MimeMessageHelper helper =

Chapter 6

297

 new MimeMessageHelper(mimeMessage, true);
 helper.setTo(mailTo);
 helper.setText(message);
 helper.addAttachment("logo.gif",
 new File("C:/logo.gif"));
 mailTemplate.send(mimeMessage);
 }
}

In the FlightDescriptionController.java we made the following changes:

ff Changed return type of the mailMessage attribute from MailSender to
JavaMailSender

ff Removed the simpleMailMessage attribute of type SimpleMailMessage as we
need a MimeMessage instance to send mails with attachments

ff Modified the sendMessage method to make use of the MimeMessageHelper class
to create a MimeMessage instance and add attachments to it.

Sending e-mails with JavaMail Session configured in JNDI
If JavaMail Session is configured in JNDI of your application server, then you'll need to
modify the applicationContext.xml file of your Roo project to create the JavaMail
SenderImpl instance using JavaMail Session configured in JNDI, as shown here:

<beans ... xmlns:jee="http://www.springframework.org/schema/jee" ...
xsi:schemaLocation="http://www.springframework.org/schema/jee http://
www.springframework.org/schema/jee/spring-jee-3.0.xsd">
.....
<jee:jndi-lookup id="mailSession" jndi-name="mail/session" />

<bean class="org.springframework.mail.javamail.JavaMailSenderImpl"
 id="mailSender">
 <property name="session" value="mailSession"/>
</bean>
.....

The jndi-lookup element of Spring's jee namespace, shown in the given code,
is responsible for accessing the JavaMail Session configured in JNDI with name
"mail/session" (referred to by the jndi-name attribute) and making it available in
a Spring application context with bean id as "mailSession".

See also
ff Refer to the next recipe, Sending and receiving messages with JMS, to see how you

can send and receive messages using JMS

Emailing, Messaging, Spring Security, Solr, and GAE

298

Sending and receiving JMS messages
Spring Roo provides support for developing messaging applications based on JMS (Java
Message Service) API. As of Spring Roo 1.1.5, the only JMS provider supported by Roo is
embedded ActiveMQ(http://activemq.apache.org/); it is configured in the same
JVM as the Java application accessing it.

In this recipe, we'll look at how Spring Roo supports sending and receiving JMS messages
using embedded ActiveMQ.

Getting ready
Create a sub-directory ch06-jms inside the C:\roo-cookbook directory.

Copy the ch06_web_app.roo script into the ch06-jms directory.

Execute the ch06_web_app.roo script that creates flightapp-web Roo project, sets up
Hibernate as persistence provider, configures MySQL as the database for the application,
creates Flight and FlightDescription JPA entities, and defines many-to-one
relationship between Flight and FlightDescription entities. Also, script makes use
of controller all command to scaffold a Spring Web MVC application from JPA entities.
If you are using a different database than MySQL or your connection settings are different
than what is specified in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch06-jms directory.

In this recipe, we'll look at how to send the newly created Flight instance's attributes as a
JMS message to a queue destination and use an asynchronous message listener for reading
the JMS message from the queue.

How to do it...
To set up flight-app as a JMS messaging application, follow the steps given here:

1.	 Execute the jms setup command to create a new Spring application context XML
file for the flightapp-web application, which configures embedded ActiveMQ
as JMS provider, a JMS destination queue named myDestination, and Spring's
JmsTemplate for sending JMS messages, as shown here:
.. roo> jms setup --provider ACTIVEMQ_IN_MEMORY --destinationName
myDestination --destinationType QUEUE

Created ..\META-INF\spring\applicationContext-jms.xml

...

Updated ROOT\pom.xml [Added dependency org.apache.
activemq:activemq-core:5.4.2]

Chapter 6

299

2.	 Execute the field jms template command to inject Spring's JmsTemplate into
FlightController.java. The FlightController makes use of JmsTemplate
to send JMS messages to embedded ActiveMQ configured in the first step.
.. roo> field jms template --class ~.web.FlightController
--fieldName jmsTemplate

Updated ...\sample\roo\flightapp\web\FlightController.java

3.	 Execute the jms listener command to create a MyListener JMS message
consumer that consumes messages asynchronously from the myDestination
queue created in the first step.
... roo> jms listener class --class ~.web.MyListener
--destinationName myDestination --destinationType QUEUE

Created SRC_MAIN_JAVA\sample\roo\flightapp\web\MyListener.java

Updated SRC_MAIN_RESOURCES\META-INF\spring\applicationContext-jms.
xml

4.	 Execute the perform eclipse command to update the project's classpath, as
shown here:
.. roo> perform eclipse

5.	 Now, import the flightapp-web project into your Eclipse IDE.

6.	 Modify Flight.java and FlightDescription.java to implement the java.
io.Serializable interface, as shown here:
import java.io.Serializable;
...
public class Flight implements Serializable { .. }
import java.io.Serializable;
...
public class FlightDescription implements Serializable { .. }

7.	 Open the FlightController_Roo_Controller.aj file and copy the declaration
that introduces the create(...) method in FlightController.java and
adds it directly to FlightController.java. The create method of the
FlightController class is invoked when a user enters information in the flight
creation HTML form and submits the request to create a new Flight instance. After
adding the create(...) method, your FlightController.java should look as
follows:
@RooWebScaffold(...)
@RequestMapping("/flights")
@Controller
public class FlightController {

Emailing, Messaging, Spring Security, Solr, and GAE

300

 @Autowired
 private transient JmsTemplate jmsTemplate;

@RequestMapping(method = RequestMethod.POST)
 public String create(@Valid Flight flight,
 BindingResult bindingResult, Model uiModel,
 HttpServletRequest httpServletRequest) {
 ...
 flight.persist();
 return "redirect:/flights/" +
 encodeUrlPathSegment(flight.getFlightId().toString(),
 httpServletRequest);
 }

 public void sendMessage(java.lang.Object messageObject) {
 jmsTemplate.convertAndSend(messageObject);
 }
}

In Spring Roo 1.1.3, if you attempt to override a method defined in
*_Roo_Controller.aj file by defining it in your *Controller.
java file, then Roo complains that the method is already defined in
the corresponding *Controller.java file. This issue is resolved
in Spring Roo 1.1.4 and later versions. You can address this issue
in Spring Roo 1.1.3 by removing the copied declaration from the *_
Roo_Controller.aj file.

8.	 In the given code, the create method has been directly added to the
FlightController.java by copying it from the FlightController_Roo_
Controller.aj AspectJ ITD file. In the ITD, the create method is declared as
shown here:
public String FlightController.create(...)

9.	 Make sure that you remove the FlightController. prefix from the name of the
method when you copy it to the FlightController.java file. So, this method in
FlightController.java becomes:
public String create(...)

10.	 Now, modify the create(...) method in FlightController.java by adding the
sendMessage method call just after the call to the flight.persist() method:
sendMessage(flight);

11.	 Exit the Roo shell and execute the tomcat:run goal of the Tomcat maven plugin
from the ch06-jms directory to deploy the flightapp-web project in an embedded
Tomcat container, as shown here:
C:\roo-cookbook\ch06-jms> mvn tomcat:run

Chapter 6

301

12.	 Access the flightapp-web application from the web browser using the following
URL: http://localhost:8080/flightapp-web. You should now see the
following home page of the flightapp-web application:

13.	 Select the Create new Flight Description option from the menu that shows you
the form for creating a new FlightDescription entity instance. Once you have
created the FlightDescription instance, select the Create new Flight menu
option to create a Flight instance. The following screenshot shows the form for
creating a Flight instance:

14.	 Enter Departure Date, Arrival Date, and Flight Description information and click the
Save button. Saving the Flight instance will result in sending a JMS message to the
myDestination queue containing details of the newly created Flight instance
and the associated FlightDescription instance attributes.

Emailing, Messaging, Spring Security, Solr, and GAE

302

15.	 The MyListener JMS message consumer asynchronously reads the JMS message
from the myDestination queue and writes it to the standard output, as shown
here:
JMS message received: DepartureDate: Tue Feb 01 00:00:00 IST
2011, ArrivalDate:Wed Feb 02 00:00:00 IST 2011, FlightDescription:
Origin: NYC, Destination: INDIA

, Price: 1200.0

How it works...
The JMS add-on of Roo is responsible for processing JMS related commands, which are: jms
setup, jms listener, and field jms template.

Spring simplifies integrating an enterprise application with a JMS provider. Spring's
JmsTemplate class is a helper class, that enables the applications to send and receive
JMS messages synchronously. The JmsTemplate class holds reference to the javax.jms.
ConnectionFactory instance—used for creating connections with the JMS provider.

The JMS provider in our example is the embedded (or in-memory) ActiveMQ.
It is important to note that Roo only supports embedded ActiveMQ as the JMS
provider. If you want to use any other JMS provider or standalone ActiveMQ,
then you'll need to change the Roo-generated JMS provider configuration.

Let's look at various commands that we used in the flightapp-web application for setting
up a JMS provider, and for sending and receiving JMS messages.

Setting up a JMS provider
The jms setup command sets up a JMS provider for your enterprise application. The jms
setup command accepts the following arguments:

ff provider: A mandatory argument that specifies the JMS provider for which support
needs to be added to the application. Roo defines only a single value that this
argument can accept, that is, ACTIVEMQ_IN_MEMORY, which is meant for setting up
embedded ActiveMQ as the JMS provider.

ff destinationName: An optional argument that specifies the name of the JMS
destination accessed by the application. If unspecified, the name of the destination is
defaulted to myDestination.

ff destinationType: An optional argument that identifies the type of the JMS
destination specified via the destinationName argument. Roo defines only two
possible values for this argument, which are QUEUE (if the JMS destination is of
type queue) and TOPIC (if the JMS destination is of type topic). If unspecified, the
destination type is defaulted to QUEUE.

Chapter 6

303

The jms setup command creates an application context XML file: applicationContext-
jms.xml in SRC_MAIN_RESOURCES/META-INF/spring directory. The
applicationContext-jms.xml file configures embedded ActiveMQ broker, JmsTemplate,
JMS ConnectionFactory, JMS destinations, and message listener containers.

The following listing shows the embedded ActiveMQ broker configuration in
applicationContext-jms.xml:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:amq="http://activemq.apache.org/schema/core" ...>

 <amq:broker persistent="false" useJmx="true">
 <amq:transportConnectors>
 <amq:transportConnector uri="tcp://localhost:61616"/>
 </amq:transportConnectors>
 </amq:broker>
 ...
</beans>

The amq namespace refers to ActiveMQ schema, which allows configuring ActiveMQ in
Spring's application context XML file. The <broker> element configures an embedded
ActiveMQ broker whose name is localhost. If you want to specify a custom name for
the broker, then you can do so by using brokerName attribute of <broker> element. The
persistent attribute specifies whether the JMS messages received by the ActiveMQ broker
are persisted into a data store or not. The value false instructs the broker not to persist
messages. If you specify true as the value of the persistent attribute, ActiveMQ configures
KahaDB as the default data store for messages. The useJmx attribute specifies if broker's
services are exposed via JMX. If the attribute value is true, then you can use JMX clients
to invoke ActiveMQ broker's services such as start or stop broker, to add or remove topics
and queue JMS destinations, and so on. The <transportConnectors> element defines
the transport connectors on which ActiveMQ broker listens to a connection from clients.
The <transportConnector> element in the given code listing specifies a tcp transport
connector that listens on port 61616.

JMS ConnectionFactory is configured in the applicationContext-jms.xml file, as
shown here:

<amq:connectionFactory brokerURL="vm://localhost"
 id="jmsFactory"/>

<bean class="org.springframework.jms.connection.
CachingConnectionFactory" id="cachingConnectionFactory">
 <property name="targetConnectionFactory">
 <ref local="jmsFactory"/>
 </property>
</bean>

Emailing, Messaging, Spring Security, Solr, and GAE

304

The <connectionFactory> element of the amq namespace configures a JMS
ConnectionFactory. JMS ConnectionFactory is typically configured in the application
server and fetched by applications using JNDI. If ConnectionFactory is configured in the
application server, then you can make use of the <jndi-lookup> element of Spring's jee
schema to obtain it. The brokerURL attribute identifies the URL for connecting to ActiveMQ
broker. The value of the brokerURL attribute is vm://localhost, which means that the VM
(Virtual Machine) protocol is used by clients to access ActiveMQ broker named localhost.
The vm protocol is used because the client (which is flightapp-web application in our
case) and broker are located in the same JVM. The use of the VM protocol ensures improved
performance because there is no network overhead involved between client and broker
communication and the client directly invokes the methods of the broker.

Spring's CachingConnectionFactory class is a JMS ConnectionFactory adapter
that caches instances of JMS Session, MessageConsumer, and MessageProducer
for improved performance. The targetConnectionFactory property identifies the
ConnectionFactory, which the CachingConnectionFactory instance uses to obtain
the JMS Connection. The targetConnectionFactory property in the given configuration
refers to the JMS ConnectionFactory created by the <connectionFactory> element of
the amq namespace.

In the jms setup command, we also passed JMS destination name (myDestination) and
type (QUEUE), which JMS add-on uses to configure a JMS queue named myDestination in
the applicationContext-jms.xml file, as shown here:

<amq:queue id="myDestination" physicalName="myDestination"/>

Here, the <queue> element of amq namespace configures a JMS queue named
myDestination. The physicalName attribute specifies the name of the JMS queue in
ActiveMQ. JMS destinations are typically configured in the application server and fetched by
applications using JNDI. If JMS destination is configured in the application server, then you
can make use of <jndi-lookup> element of Spring's jee schema to fetch it.

Spring's JmsTemplate is also configured in applicationContext-jms.xml file, as
shown here:

<bean class="org.springframework.jms.core.JmsTemplate"
 id="jmsTemplate">
 <property name="connectionFactory"
 ref="cachingConnectionFactory"/>
 <property name="defaultDestination" ref="myDestination"/>
</bean>

The connectionFactory property refers to the CachingConnectionFactory instance.
JmsTemplate defines send methods that accept the JMS Destination object or JMS
destination name as the parameter. The defaultDestination property refers to the JMS
destination that is used for sending or receiving messages when the send method used
doesn't accept the JMS Destination object or JMS destination name as the parameter.

Chapter 6

305

To allow the flighapp-web application to asynchronously receive JMS messages,
the jms setup command configures a Spring's message listener container in the
applicationContext-jms.xml file, as shown here:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:jms="http://www.springframework.org/schema/jms" ...>
 ...
 <jms:listener-container connection-factory="jmsFactory"
 destination-type="queue" />
 ...
</beans>

A message listener container receives messages from the JMS provider and dispatches it
to a message consumer implementation. The message listener container saves the effort
for writing the code that you'll need to write for asynchronous message consumption, which
includes registering with the JMS provider, managing transactions, and so on.

In the given configuration, the <listener-container> element of Spring's jms namespace
creates a message listener container. The connection-factory attribute identifies the JMS
ConnectionFactory that the container uses for creating connections with the JMS provider.
The destination-type identifies the JMS destination type (queue, topic, or durable topic)
from which the container receives messages. You can add <listener> elements (of Spring's
jms namespace) inside <listener-container> to define the message consumers to
which the listener container dispatches the messages for processing.

Let's now look at how we send JMS messages using the JmsTemplate class.

Sending message using JMS Template
The field jms template command autowires the JmsTemplate instance into a class
identified by the class argument. The fieldName argument identifies the name of the field
with which JmsTemplate is added to the class.

The following code shows the FlightController.java file into which we added the
JmsTemplate field using the jms template command:

import org.springframework.jms.core.JmsTemplate;
...
public class FlightController {

 @Autowired
 private transient JmsTemplate jmsTemplate;

 public void sendMessage(Object messageObject) {
 jmsTemplate.convertAndSend(messageObject);
 }
}

Emailing, Messaging, Spring Security, Solr, and GAE

306

The given code shows that the jms template command adds a JmsTemplate field
and a sendMessage method to the FlightController class. The sendMessage
method accepts Object type as argument, which represents the object that you want to
send as a JMS message to the JMS destination. The sendMessage method invokes the
convertAndSend method of JmsTemplate, which converts the passed object into a JMS
message and sends it to the default destination set by the setDefaultDestination(...)
method or specified by the defaultDestination property of JmsTemplate in the
application context XML file. In the case of Roo-generated code, the default destination
of JmsTemplate is specified by the defaultDestination property (refer to the
applicationContext-jms.xml file of the flightapp-web project).

So, you might ask—how is the conversion between an object and JMS message performed?
Spring provides a MessageConverter interface, which you can implement to define how
to handle conversion from a Java object to a JMS message and vice versa. Spring provides
a built-in MessageConverter implementation: SimpleMessageConverter, which is
used by default by JmsTemplate and is responsible for conversion between String and
JMS TextMessage, byte[] and JMS ByteMessage, Map and JMS MapMessage,
and between the Serializable object and JMS ObjectMessage. As Flight and
FlightDescription objects in the flightapp-web application implement the
Serializable interface, the convertAndSend method of JmsTemplate converts them
into JMS ObjectMessage instances.

Creating a JMS message consumer
The jms listener command creates an asynchronous JMS message consumer. If you want
your application to synchronously consume messages, then you can use one of the receive
methods of JmsTemplate. If you also want to convert the received JMS message into a Java
object using SimpleMessageConverter, then you can use receiveAndConvert(...)
method of JmsTemplate to receive messages.

The jms listener command creates a message consumer and updates the
applicationContext-jms.xml file to create a new message listener container containing
the newly created message consumer as a listener. In the case of flightapp-web, the
jms listener command creates the MyListener JMS message consumer and adds the
following configuration to the applicationContext-jms.xml file:

<bean class="sample.roo.flightapp.web.MyListener"
 id="myListener"/>

<jms:listener-container connection-factory="jmsFactory"
 destination-type="queue">
 <jms:listener destination="myDestination"
 method="onMessage" ref="myListener"/>
</jms:listener-container>

The <bean> element configures MyListener message consumer as a Spring bean.

Chapter 6

307

The <listener> element of Spring's jms namespace defines a message listener to which
the message listener container (specified by the enclosing <listener-container>
element) dispatches JMS messages for processing. The destination-type attribute of
<listener-container> is derived from the value of destinationType argument of jms
listener command. The ref attribute refers to the message consumer instance, which is
responsible for processing the JMS message. The destination attribute (which corresponds
to the destinationName argument value of the jms listener command) identifies the
JMS destination from which the message consumer receives JMS messages (via the message
container listener) for processing. The method attribute specifies the name of the method of
the message consumer class, which is responsible for processing the receive JMS message.

So, by executing jms listener command for flightapp-web we have created a
MyListener class, which is responsible for processing JMS messages received by the
myDestination JMS destination. The following code listing from MyListener.java shows
the Roo-generated MyListener class:

public class MyListener {

 public void onMessage(Object message) {
 System.out.println("JMS message received: " + message);
 }
}

As the given code shows, the Roo-generated message listener doesn't implement any
interface or extend any class, and defines an onMessage method which accepts the JMS
message as argument. The onMessage doesn't do anything interesting—it simply prints the
message on the standard output.

There's more...
Let's now see how you can send JMS messages asynchronously from your enterprise
application:

Sending JMS messages asynchronously
The field jms template command supports an async argument, which you can use to
specify that the Roo-generated sendMessage method is annotated with Spring's @Async
annotation. An @Async annotated method of an object is executed asynchronously by Spring
using java.util.concurrent.ThreadPoolExecutor. If async argument is specified,
Roo performs the following actions:

ff Creates the sendMessage method that is annotated with Spring's
@Async annotation

Emailing, Messaging, Spring Security, Solr, and GAE

308

ff Enables detection of @Async annotated methods in applicationContext.xml
via the <annotation-driven> element of Spring's task namespace, as shown
here:
<task:annotation-driven executor="asyncExecutor"
 mode="aspectj" />

The executor attribute refers to an implementation of java.util.concurrent.
Executor interface, responsible for executing the @Async annotated method.

ff Configures Spring's ThreadPoolTaskExecutor in applicationContext.xml
using <executor> element of Spring's task namespace, as shown here:
<task:executor id="asyncExecutor"
 pool-size="${executor.poolSize}" />

ff Spring's ThreadPoolTaskExecutor configures a java.util.concurrent.
ThreadPoolExecutor instance (an implementation of java.util.concurrent.
Executor) with the thread pool size specified by the pool-size attribute value.
The ${executor.poolSize} placeholder's value comes from Roo-generated jms.
properties file, as shown here:
executor.poolSize=10

See also
ff Refer to the Sending e-mails using JavaMail API recipe to see how you can send

e-mails from your application

Configuring Spring Security for your
application

Roo supports configuring Spring Security for your application via security setup command.
In this recipe, we'll look at the security related configurations added to your application by
Roo when you execute the security setup command. In the next recipe, Using Spring
Security with Apache Directory Server, we'll look at how we can extend the Spring Security
configuration to use Apache Directory Server for addressing security requirements of a
Roo-generated web application and how to incorporate method-level security.

Getting ready
Create a sub-directory ch06-security inside the C:\roo-cookbook directory.

Copy the ch06_web_app_security.roo script into the ch06-security directory.

Chapter 6

309

Execute the ch06_web_app_security.roo script, which creates the flightapp-web
Roo project, sets up Hibernate as persistence provider, configures MySQL as the database for
the application, creates Flight, FlightDescription, and Booking JPA entities, defines
a many-to-one relationship between Flight and FlightDescription entities, and a
many-to-one relationship between Booking and Flight JPA entities. Also, script makes use
of controller all command to scaffold Spring Web MVC application. If you are using a
different database than MySQL or your connection settings are different than what is specified
in the script, then modify the script accordingly.

Start the Roo shell from the C:\roo-cookbook\ch06-security directory.

How to do it...
To configure Spring Security for your application through the security setup command,
follow the steps given here:

1.	 Execute the security setup command to set up Spring Security for the flightapp-
web Spring Web MVC application, as shown here:
.. roo> security setup

Updated ROOT\pom.xml [Added property 'spring-security.version'
with value '3.0.5

.RELEASE']

Updated ROOT\pom.xml [Added dependencies org.springframework.
security:spring-security-core:${spring-security.version}, ...]

Created SRC_MAIN_RESOURCES\META-INF\spring\applicationContext-
security.xml

Created SRC_MAIN_WEBAPP\WEB-INF\views\login.jspx

Updated SRC_MAIN_WEBAPP\WEB-INF\views\views.xml

Updated SRC_MAIN_WEBAPP\WEB-INF\web.xml

Updated SRC_MAIN_WEBAPP\WEB-INF\spring\webmvc-config.xml

2.	 Execute the perform eclipse command to update project's classpath settings:
.. roo> perform eclipse

3.	 Import flightapp-web Eclipse project into Eclipse IDE

Emailing, Messaging, Spring Security, Solr, and GAE

310

How it works...
The security setup command is processed by the Security add-on of Roo. The security
setup command is available only after you have installed Spring Web MVC artifacts by
executing one of the controller commands of Roo. This limits the use of the security
add-on only to projects that make use of Spring Web MVC.

Security add-on processes the security setup command and performs the
following actions:

ff Adds a property named spring-security-version with value 3.0.5 to the
pom.xml file of the flightapp-web project, as shown here:
<project ...>
 ...
 <name>flightapp-web</name>
 <properties>
 <roo.version>1.1.2.RELEASE</roo.version>
 <spring.version>3.0.5.RELEASE</spring.version>
 <spring-security.version>
 3.0.5.RELEASE</spring-security.version>
 ...
 </properties>
 ...
</project>

The spring-security-version property identifies the version of Spring Security
framework required by the application. The Spring Security version number property
is referenced by the <dependency> elements in pom.xml, as shown here:

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-config</artifactId>
 <version>${spring-security.version}</version>
</dependency>

<dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-web</artifactId>
 <version>${spring-security.version}</version>
</dependency>

As the given configuration shows, defining the version number of Spring Security
required by the flightapp-web application as a property in pom.xml file can
ensure that pom.xml defines dependencies on JAR files that belong to the same
version of Spring Security.

Chapter 6

311

ff Creates an application context XML file: applicationContext-security.
xml in SRC_MAIN_RESOURCES/META-INF/spring directory. The
applicationContext-security.xml file configures authentication and
authorization requirements of the application.

ff Adds Spring Security's DelegatingFilterProxy servlet filter to the web.xml file
of the flightapp-web application, as shown here:
 <filter>
 <filter-name>springSecurityFilterChain</filter-name>
 <filter-class>
 org.springframework.web.filter.DelegatingFilterProxy
 </filter-class>
 </filter>

 <filter-mapping>
 <filter-name>springSecurityFilterChain</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

The DelegatingFilterProxy servlet filter acts as an entry point into Spring
Security's web module, which handles web request security. The name of the
filter springSecurityFilterChain refers to the name of Spring Security's
FlightChainProxy instance configured in the applicationContext-
security.xml file. The DelegatingFilterProxy filter delegates web request to
FlightChainProxy instance for performing web request security.

ff Creates a login JSPX page login.jspx in the SRC_MAIN_WEBAPP\WEB-INF\
views directory.

ff Adds tiles definition for the login page in the SRC_MAIN_WEBAPP\WEB-INF\views\
views.xml tiles definitions XML file, as shown here:
<definition extends="public" name="login">
 <put-attribute name="body"
 value="/WEB-INF/views/login.jspx"/>
</definition>

ff Configures a ParameterizableViewController (via view-controller
element of mvc namespace of Spring) in webmvc-config.xml file (located in SRC_
MAIN_WEBAPP\WEB-INF\spring directory) that dispatches request to login.
jspx page, as shown here:
<mvc:view-controller path="/login"/>

ff Updates the pom.xml file of the flightapp-web project to include dependency on
Spring Security JAR files, such as spring-security-core, spring-security-
config, and so on.

Emailing, Messaging, Spring Security, Solr, and GAE

312

Let's now look in detail at the applicationContext-security.xml file.

Spring Security application context XML file
The applicationContext-security.xml file configures Spring Security beans, which
are used for authentication and authorization of requests. As we'll see shortly, Roo-generated
applicationContext-security.xml doesn't do much but gives a good starting point to
configure your application-specific security.

AuthenticationManager configuration
Authentication mechanism for the application is configured in applicationContext-
security.xml via the <authentication-manager> element of Spring's security
namespace, as shown here:

<authentication-manager alias="authenticationManager">
 <authentication-provider>
 <password-encoder hash="sha-256"/>
 <user-service>
 <user name="admin" password="..."
 authorities="ROLE_ADMIN"/>
 <user name="user" password="..."
 authorities="ROLE_USER"/>
 </user-service>
 </authentication-provider>
</authentication-manager>

Let's look in detail at each of the elements in the given configuration and how they work
together to provide authentication services to the application:

ff <authentication-manager>: It registers an instance of Spring Security's
AuthenticationManager implementation that is responsible for providing
authentication services. AuthenticationManager delegate's authentication to
the AuthenticationProvider is configured using the <authentication-
provider> sub-elements.

Chapter 6

313

ff <authentication-provider>: It registers an instance of Spring Security's
AuthenticationProvider implementation. Spring Security provides a couple
of built-in implementations of the AuthenticationProvider interface to
simplify incorporating different authentication mechanisms in the application.
For instance, if you are using JA-SIG CAS for authentication, you can use
CasAuthenticationProvider implementation and if you are using an LDAP
server for authentication, you can use LdapAuthenticationProvider, and
so on. The AuthenticationProvider implementation usage is specified using
the ref attribute of the <authentication-provider> element. If the ref
attribute is not specified (as in the case of Roo-generated applicationContext-
security.xml), DaoAuthenticationProvider implementation is
registered. DaoAuthenticationProvider makes use of Spring Security's
UserDetailsService to authenticate users. UserDetailsService loads
user details containing username, password, and granted authorities based on
the username entered by the application user. DaoAuthenticationProvider
authenticates the user by comparing the password entered by the application user
with the user details loaded by UserDetailsService.

ff <user-service>: It creates an in-memory UserDetailsService instance that
reads user details from a properties file or from the nested <user> elements.

ff <user>: It defines a user of the application. The name and password attributes
identify the username and password required for authentication.

ff <password-encoder>: It converts submitted passwords to hashed
versions before comparing the submitted password with the one retrieved by
UserDetailsService. The hash attribute specifies the hashing algorithm to use
for encoding password.

Web request security configuration
The following <http> element shows how web request security is configured in the
applicationContext-security.xml file:

<http auto-config="true" use-expressions="true">
 <form-login
 login-processing-url="/resources/j_spring_security_check"
 login-page="/login"
 authentication-failure-url="/login?login_error=t"/>

 <logout logout-url="/resources/j_spring_security_logout"/>

 <intercept-url pattern="/choices/**"
 access="hasRole('ROLE_ADMIN')"/>
 <intercept-url pattern="/member/**"
 access="isAuthenticated()" />
 <intercept-url pattern="/resources/**"
 access="permitAll" />
 <intercept-url pattern="/**" access="permitAll" />
</http>

Emailing, Messaging, Spring Security, Solr, and GAE

314

Let's now look in detail at how the elements in the given configuration define web
request security:

ff <http>: It contains the HTTP security configuration elements. It creates
an instance of Spring Security's FilterChainProxy with bean name as
springSecurityFilterChain. It is important to note that the name of the
FilterChainProxy bean is same as the name of the DelegatingFilterProxy
servlet filter configured in web.xml file.

The auto-config attribute automatically configures Spring Security beans, which
provide form-based login, logout, and HTTP BASIC authentication services.

The use-expression attribute specifies whether the access attributes of
the <intercept-url> element (discussed later in this recipe) can accept EL
expressions.

ff <form-login>: It configures Spring Security's
UsernamePasswordAuthenticationFilter filter bean (a bean
that implements the javax.servlet.Filter interface of Servlet API)
and LoginUrlAuthenticationEntryPoint bean in an application
context. The UsernamePasswordAuthenticationFilter filter
bean is used by FilterChainProxy to perform authentication.
UsernamePasswordAuthenticationFilter uses the username and password
in the submitted request to attempt authentication against the configured
authentication provider(s). It is important to note that the names of the request
parameters that contain the username and password must be j_username
and j_password, respectively. If you check the Roo-generated login.jspx file
for parameters that flightapp-web project, you'll find that the names of the
username and password fields are j_username and j_password, respectively.
The LoginUrlAuthenticationEntryPoint bean starts off the form login
authentication using UsernamePasswordAuthenticationFilter.

The login-page attribute specifies the URL of the login page. The value of this
attribute is used by LoginUrlAuthenticationEntryPoint to render the login
page. The value of the attribute is /login, which means that the <mvc:view-
controller path="/login"/> configured controller in webmvc-config.xml is
responsible for rendering the login page.

The login-processing-url attribute specifies the URL to which the login form is
submitted. The UsernamePasswordAuthenticationFilter handles a request
submitted to the URL identified by its filterProcessesUrl property. The value of
the login-processing-url attribute is used to set the filterProcessesUrl
property of UsernamePasswordAuthenticationFilter. The value of the
login-processing-url attribute is /resources/j_spring_security_
check, which is the same as the value of the action attribute of the HTML <form>
element in the Roo-generated login.jspx file of the flightapp-web project.

Chapter 6

315

The authentication-failure-url attribute specifies the URL to which the
user is redirected if login fails. The value of this attribute /login?login_error=t
means that the <mvc:view-controller path="/login"/> configured controller
in webmvc-config.xml will render the login page again. The login_error
parameter in the URL is used by the login.jspx page to show an authentication
failure message on the login page, as shown here:

ff <logout>: It configures the LogoutFilter filter bean that is responsible for
processing logout requests. The LogoutFilter handles request submitted to the
URL identified by its filterProcessesUrl property. The value of logout-url
attribute is used to set the filterProcessesUrl property of LogoutFilter.
In case of Roo-generated applicationContext-security.xml, the value of
logout-url is /resources/j_spring_security_logout. The footer.jspx
file (located in /WEB-INF/views directory) contains the Logout hyperlink that is
displayed if the user is logged in. The Logout hyperlink refers to /resources/j_
spring_security_logout URL, which means that when the user clicks the
Logout hyperlink, the request is processed by the LogoutFilter filter bean.

ff <intercept-url>: It defines the URL pattern and the corresponding access
permissions. The pattern attribute specifies the URL pattern and the access
attribute specifies the access permissions. As mentioned earlier, the <http>
element's use-expression attribute is set to true; therefore, the access attribute
can accept Boolean EL expressions. If the value returned by the expression is true,
then access to the URL pattern, specified by the pattern attribute, is authorized.

The hasRole, isAuthenticated, and permitAll are examples of built-in
expressions. The hasRole('ROLE_ADMIN') returns true if the role of the
authenticated principal is ROLE_ADMIN. The isAuthenticated() returns true if
the user is not an anonymous user. The permitAll expression always returns true.

Emailing, Messaging, Spring Security, Solr, and GAE

316

The <http> element registers an implementation Spring Security's
AccessDecisionManager, which makes access decisions regarding web URL
access. An incoming web request is matched against the URL patterns specified
by the <intercept-url> elements in the order in which they appear within the
<http> element. If a match is found, it'll be used by AccessDecisionManager
implementation for making access decisions. As incoming web requests are matched
against the URL patterns (specified by the <intercept-url> elements) in the order
in which they appear within the <http> element, more specific URL patterns should
be declared before the more general URL patterns.

Using Spring Security with Apache
Directory Server

This recipe extends on the previous recipe and shows a fully-functional Flight Booking
application developed using Spring Web MVC that makes use of Spring Security to implement
web request and method-level security. We'll look at modifications or additions that we need
to make to configurations and artifacts generated by the security setup command to
create a security-aware Flight Booking application.

Let's first take a quick look at the security requirements of the Flight Booking application
before we delve into the details of how these requirements are met using Spring Security.

Flight Booking application requirements
The Flight Booking application users are authenticated against Apache Directory Server, which
contains application users, details and their role information. An authenticated user of the
Flight Booking application can either have the role of ROLE_ADMIN_USER or ROLE_APP_
USER. Access to application functionality is granted or restricted based on the authenticated
user's role.

Web request security requirement of Flight Booking application restricts unauthorized
access to menu options. The following screenshot shows the main menu of the Flight
Booking application:

Chapter 6

317

The following table defines the access permissions for each menu option (shown in the given
screenshot) based on role:

Menu option Accessible to role
Create new FlightDescription

List all Flight Descriptions

Find by Destination And Origin

Create new Flight

List all Flights

ROLE_ADMIN_USER

Create new Booking

List all Bookings

ROLE_APP_USER

ROLE_ADMIN_USER

As the given table shows, an application user with the ROLE_ADMIN_USER role can access
web pages for Flight, FlightDescription, and Booking JPA entities. An application
user with the ROLE_APP_USER role can only access web pages corresponding to the
Booking JPA entity.

Even though the Create new Booking and List all Bookings links are accessible to both
ROLE_APP_USER and ROLE_ADMIN_USER roles (as shown in the preceding table), the
following security requirements (which will eventually translate into method-level security
requirements) must also be met by the application:

ff A user with ROLE_APP_USER role can create a new Booking instance, but can't edit
or remove an existing Booking instance

ff A user with ROLE_ADMIN_USER role can edit or remove an existing Booking
instance, but can't create a new Booking instance

Emailing, Messaging, Spring Security, Solr, and GAE

318

Getting ready
Extract the contents of the ch06-ldap-security.zip file into the C:\roo-cookbook
directory. This will create the ch06-ldap-security directory in C:\roo-cookbook. The
ch06-ldap-security directory contains a flightapp-web web project that represents
the security-aware Flight Booking application. This flightapp-web project is an extension of
the flightapp-web project that we created in the previous recipe. It contains modifications
to Spring Security generated artifacts, and a couple of additional changes to the address web
request and method-level security requirements of the Flight Booking application.

If you are using a different database than MySQL or your connection settings are different
than what is specified in database.properties file of flightapp-web project, then
modify the database.properties file accordingly.

Open the command prompt and go to the C:\roo-cookbook\ch06-ldap-security
directory.

How to do it...
To configure security settings with the Spring application, follow the steps given here:

1.	 Deploy the flightapp-web project as a dynamic web application in an embedded
Tomcat instance:
..ch06-ldap-security> mvn tomcat:run

This will download the dependencies defined in the pom.xml file of the flightapp-
web project. Now, you can access the flightapp-web application by accessing the
following URL:
http://localhost:8080/flightapp-web

If you see the following web page, then it means you have successfully deployed the
flightapp-web application on the embedded Tomcat instance:

Chapter 6

319

2.	 Select the Create new Flight Description menu option, which will show you the login
screen of the Flight Booking application, as shown here:

3.	 Enter admin in the Name labeled field, admin in the Password labeled field, and click
the Submit button to log in to the application. The admin user has ROLE_ADMIN_
USER role.

The admin user is associated with the ROLE_ADMIN_USER role; therefore, the
admin user is shown the form for creating a new FlightDescription instance,
as shown here:

4.	 Enter flight description details as shown in the screenshot and click the Save button
to create a new FlightDescription instance.

Emailing, Messaging, Spring Security, Solr, and GAE

320

5.	 Now, select the Create new Flight menu option to view the form for creating a new
Flight instance, as shown here:

6.	 Set the date in the Arrival Date and Departure Date fields, and select the newly
created FlightDescription from the combo box labeled Flight Description. Set
the value of the Flight Number field to MYFLT-101. Now, click the Save button to
create the new Flight instance in the database.

7.	 In the given form, you may notice that in the Roo-generated Flight Booking Spring
Web MVC application we can set arrival and departure dates but can't set time
of arrival or departure of flights. This is because Roo-generated Spring Web MVC
applications make use of the dijit.form.DateTextBox component of the Dijit
library to render java.util.Date type fields of a JPA entity in JSPX views. You can
modify this behavior by either modifying Roo-installed datetime.tagx tag (refer to
the WEB-INF/tags/form/fields directory of flightapp-web) or by creating
your own custom tag that renders a java.util.Date JPA field as a form field, which
makes use of both dijit.form.DateTextBox (for selecting date) and diji.
form.TimeTextBox (for selecting time). This allows users to select both date and
time values for the field.

8.	 As we have already created the FlightDescription instance and associated
Flight instance, it's time to create a booking on the MYFLT-101 flight. Select the
Create new Booking menu option to view the form for creating a new Booking
instance, as shown here:

Chapter 6

321

9.	 Select MYFLT-101 flight number from Flight field and enter a name in the Booked
By field. If you now click the Save button to save the Booking instance, you'll receive
an Access denied to admin message, as shown here:

The access denied message is shown because a user in the ROLE_ADMIN_USER
role doesn't have access to invoke the persist method of the Booking JPA entity.
Select the Logout hyperlink to log out from the Flight Booking application.

10.	 Now, select the Create new Booking option from the menu option. The Flight
Booking application will ask you to log in because all menu options are accessible
only to authenticated users. Log in with name as ashish and password as ashish. The
user ashish has the ROLE_APP_USER role.

11.	 Create a new Booking instance, as described in the fifth step. This time the Booking
instance is created successfully because ROLE_APP_USER has the permission to
invoke the persist method of the Booking JPA entity.

12.	 Now, select the Create new Flight Description menu option. This will show the
Access denied to ashish message, as shown here:

The access denied message is displayed because web request security of Flight
Booking application restricts users from accessing menu options related to Flight
and FlightDescription JPA entities. Also, if you are logged in as ashish and
attempt to modify or delete an existing Booking instance, then you'll be denied
access by the application. The reason for this is that the permission to invoke merge
and remove methods of the Booking JPA entity is only with users with ROLE_
ADMIN_USER role.

Emailing, Messaging, Spring Security, Solr, and GAE

322

How it works...
In the Configuring Spring security for your application recipe, we discussed Spring Security
configuration generated by the security setup command. As the security setup
command created configuration was only helpful in getting us started with adding security to
our application, this recipe extends the configuration created by security setup command
to demonstrate how authentication and authorization can be quickly incorporated into Roo-
generated web applications. In this section, we'll look at what modifications or additions we
made to configurations and artifacts generated by security setup command to create a
security-aware Flight Booking application.

Let's start with how we set up Apache Directory Server as the authentication source for the
Flight Booking application.

Setting up embedded Apache Directory Server
Spring Security namespace provides an <ldap-server> element that configures the
location of an external LDAP server against which authentication is to be performed. It can
also be used to create an embedded Apache Directory Server instance. If the url attribute
of the <ldap-server> element is specified, then it means that an external LDAP server is
being used for authentication. And, if the url attribute is not specified, then an embedded
instance of Apache Directory Server is created.

The applicationContext-security.xml file of the flightapp-web project configures
embedded Apache Directory Server instances, as shown here:

<ldap-server ldif="classpath:application_users.ldif"
 root="dc=sample,dc=com" />

The ldif attribute specifies the location of the LDIF (LDAP Data Interchange Format)
file, which contains user information loaded by the embedded LDAP server. You'll find the
application_users.ldif file in the WEB-INF/classes directory of the flightapp-
web project. The root attribute specifies the root of the LDAP directory tree.

The following figure shows the LDAP directory tree defined by the application_users.ldif
file:

Chapter 6

323

The given figure shows that user groups administrator and appuser are defined under
ou=groups, and application users admin and ashish are defined under ou=users.
The DN (Distinguished Name) of user ashish is uid=ashish,ou=users,dc=sample,
dc=com, and DN of user admin is uid=admin,ou=users,dc=sample,dc=com. DN of
administrator group entry is cn=administrator,ou=groups,dc=sample,dc=com,
and DN of appuser group entry is cn=appuser,ou=groups,dc=sample,dc=com.

The uniqueMember attribute(s) of an entry defined under ou=groups identifies the
application user who belongs to that group. For instance, in the cn=administrator entry,
the uniqueMember attribute value is uid=admin,ou=users,dc=sample,dc=com (DN of
user admin), which means that the admin user belongs to administrator group. Similarly,
ashish belongs to appuser group.

The businessCategory attribute of an entry under ou=groups identifies the role of the
users belonging to that group. As the given figure shows, the role of user admin is admin_
user and the role of user ashish is app_user.

As Flight Booking application makes use of the embedded Apache Directory Server, the
following JAR dependencies have been added to the pom.xml file of the flightapp-web
project:

ff apacheds-protocol-shared
ff apacheds-protocol-ldap
ff apacheds-core-entry
ff apacheds-core
ff apacheds-server-jndi
ff shared-ldap

As Spring Security supports version 1.5.5 of embedded Apache Directory
Server, all the given JAR files belong to version 1.5.5.

As we are using Spring Security's LDAP support, spring-security-ldap JAR dependency
is also added to the pom.xml file.

Let's now look at configuration, which instructs Spring Security to authenticate against the
embedded LDAP server.

Authenticating against the LDAP server
To authenticate against the embedded LDAP server, the following configuration has been
added to the applicationContext-security.xml file:

<authentication-manager>
 <authentication-provider>
 <ldap-user-service group-search-filter="uniqueMember={0}"
 group-search-base="ou=groups"

Emailing, Messaging, Spring Security, Solr, and GAE

324

 user-search-base="ou=users"
 user-search-filter="uid={0}"
 group-role-attribute="businessCategory" />
 </authentication-provider>
</authentication-manager>

The <ldap-user-service> configures LdapUserDetailsService (an implementation
of UserDetailsService that we discussed earlier), which loads user details
containing username, password, and roles from the LDAP server. Authentication is
performed by comparing the user entered password with the user details loaded by the
LdapUserDetailsService instance.

The <ldap-user-service> element accepts the following attributes:

ff user-search-base: Specifies the part of the directory tree under which search for
users is performed. The value ou=users means that the search will be performed on
entries that are defined under DN, which are ou=users, dc=sample, dc=com.

ff user-search-filter: It specifies the filter criteria used for searching users in
the directory tree. The value uid={0} means that search is made for the user entry
where value of uid attribute is equal to username entered by the user in the login
form. The value {0} is replaced by the username entered by the user in the login
form.

ff group-search-base: It specifies the part of the directory tree under which search
for groups is performed. The value ou=groups means that the search will be
performed on entries that are defined under DN, which are ou=groups,dc=sample,
and dc=com.

ff group-search-filter: It specifies the filter criteria used for searching groups in
the directory tree. The value uniqueMember={0} means that a search is made for
group entries, where the value of the uniqueMember attribute is equal to the DN of
the user.

If user ashish attempts to log in to the Flight Booking application, then the value
of the user-search-base and user-search-filter attributes will be used for
searching the user. This will result in returning the entry whose DN is uid=ashish,o
u=users,dc=sample,dc=com. Now, the value of the group-search-filter and
group-search-base attributes will be used to search for the group entry whose
uniqueMember attribute value is uid=ashish,ou=users,dc=sample,dc=com.
This will return the cn=appuser,ou=groups,dc=sample,dc=com entry because
it contains the uniqueMember attribute with value uid=ashish,ou=users,dc=sa
mple,dc=com.

ff group-role-attribute: It specifies the attribute of the group entry, which is used
as the role name. As the value of group-role-attribute is businessCategory,
if the group entry returned for the authenticating user is cn=administrator,ou=g
roups,dc=sample,dc=com, then the role of the user is admin_user—the value of
the businessCategory attribute of the entry.

Chapter 6

325

It is important to note at this point that Spring Security's LDAP authentication mechanism by
default prepends ROLE_ to the name of the role returned after authentication. So, if the admin
user authenticates with the Flight Booking application, then instead of admin_user role, it gets
the role ROLE_ADMIN_USER. Similarly, user ashish gets the 'ROLE_APP_USER' role.

Let's now look at how web request security is configured for the Flight Booking application.

Configuring web request security
The following <http> element of security namespace shows how web request security
is configured in the applicationContext-security.xml file of the flightapp-web
project:

<http auto-config="true" use-expressions="true">
 <access-denied-handler error-page="/accessdenied" />
 <form-login .../>
 <logout logout-url="/resources/j_spring_security_logout" />

 <intercept-url pattern="/flights/**"
 access="hasRole('ROLE_ADMIN_USER')" />

 <intercept-url pattern="/flightdescriptions/**"
 access="hasRole('ROLE_ADMIN_USER')" />

 <intercept-url pattern="/bookings/**"
 access="hasAnyRole('ROLE_APP_USER','ROLE_ADMIN_USER')" />

 <intercept-url pattern="/accessdenied/**"
 access="hasAnyRole('ROLE_APP_USER', 'ROLE_ADMIN_USER')" />
 </http>

As in the previous recipe, we discussed the <http> element of the Roo-generated
applicationContext-security.xml file; but here we'll only focus on configuration
elements specifically added for meeting flightapp-web application's web security
requirements. In the given code, the following are the elements that we added to configure
web request security for the Flight Booking application:

ff <access-denied-handler>: It configures the error page that is shown to the user
if access is denied to the requested page. The error-page attribute specifies the
URL of the error page. The <mvc:view-controller path="/accessdenied"/>
entry in webmvc-config.xml configures ParameterizableViewController,
responsible for rendering the access denied page—accessdenied.jspx in the /
WEB-INF/views directory.

Emailing, Messaging, Spring Security, Solr, and GAE

326

ff <intercept-url>: It defines the URL pattern and the corresponding access
permissions for the Flight Booking application. Let's look at each of the
<intercept-url> elements defined for the Flight Booking application:
<intercept-url pattern="/flights/**"
 access="hasRole('ROLE_ADMIN_USER')" />

�� The pattern /flights/** refers to all the web pages that are specific to
managing Flight JPA entity instances. The hasRole('ROLE_ADMIN_
USER') expression specifies that pages specific to managing Flight JPA
entity instances are accessible only to users with the ROLE_ADMIN_USER
role.

<intercept-url pattern="/flightdescriptions/**"
 access="hasRole('ROLE_ADMIN_USER')" />

�� The pattern /flightdescriptions/** refers to all the web pages that
are specific to managing FlightDescription JPA entity instances. The
hasRole('ROLE_ADMIN_USER') expression specifies that pages specific
to managing FlightDescription JPA entity instances are accessible only
to users with the ROLE_ADMIN_USER role.
<intercept-url pattern="/bookings/**"
 access="hasAnyRole('ROLE_APP_USER','ROLE_ADMIN_USER')"
/>

�� The pattern /bookings/** refers to all the web pages that are specific to
managing Booking JPA entity instances. The hasAnyRole('ROLE_APP_
USER','ROLE_ADMIN_USER') expression specifies that pages specific to
managing Booking JPA entity instances are accessible only to users with
the ROLE_ADMIN_USER or ROLE_APP_USER role.
<intercept-url pattern="/accessdenied/**"
 access="hasAnyRole('ROLE_APP_USER', 'ROLE_ADMIN_USER')"
/>

�� The pattern /accessdenied/** refers to the web page that shows Access
denied … message. The hasAnyRole('ROLE_APP_USER','ROLE_
ADMIN_USER') expression specifies that the access denied page is
accessible to users with the ROLE_ADMIN_USER or ROLE_APP_USER role.
This is important because the access denied page should not be accessible
to anonymous users.

Let's now look at how method-level security is configured in the Flight Booking
application.

Chapter 6

327

Configuring method-level security
Method-level security in the Flight Booking application is enabled by the <global-method-
security> element in the applicationContext-security.xml file, as shown here:

<global-method-security mode="aspectj"
 secured-annotations="enabled"/>

The mode attribute value specifies whether Spring AOP (which proxies the target object) or
AspectJ (in which Spring's AspectJ security aspect is weaved into the class at load-time or
compile-time) is used for securing methods. As Booking JPA entity is created outside the
Spring container, to use Spring's @Secured annotation (discussed in the next section) to
secure methods defined by Booking JPA entity, you need to use AspectJ. The value aspectj
of the mode attribute instructs Spring to weave AnnotationSecurityAspect (available in
the Spring Security's spring-security-aspects JAR file) into classes that make use of
the @Secured annotation. The secured-annotations attribute specifies if the use of the @
Secured annotations is enabled or disabled for the application context. The value enabled
means that Spring Security will secure all methods that make use @Secured method-level
annotation. Spring also supports using JSR-250 security annotations, security expressions
(like hasRole, hasPermission, and so on), and the <protect-pointcut> sub-element
of the <global-method-security> element to implement method-level security. You
can use a combination of different approaches to implement method-level security in your
application.

As we are using AspectJ mode for implementing method-level security in the Flight Booking
application, dependency on spring-security-aspects JAR has been added to the pom.
xml file, and the AspectJ compiler plugin configuration in the pom.xml file has been updated
to include spring-security-aspects, as shown here:

 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>aspectj-maven-plugin</artifactId>
 ...
 <configuration>
 <outxml>true</outxml>
 <aspectLibraries>
 <aspectLibrary>
 <groupId>org.springframework</groupId>
 <artifactId>spring-aspects</artifactId>
 </aspectLibrary>
 <aspectLibrary>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-aspects</artifactId>
 </aspectLibrary>
 </aspectLibraries>
 ...
 </configuration>
 </plugin>

Emailing, Messaging, Spring Security, Solr, and GAE

328

The <aspectLibrary> element specifies the JAR files that contain aspects. The spring-
aspects JAR contains aspect for weaving @Transactional support and spring-
security-aspects JAR contains aspect for weaving @Secured support in classes.

You may also notice that Spring Security version 3.1.0 RC1 has been
used in the Flight Booking application because spring-security
schema prior to version 3.1 didn't support mode attribute for <global-
method-security> element.

Now that we have seen how method-level security is configured for the Flight Booking
application, we are ready to annotate Booking JPA entity methods with the @Secured
annotation.

Adding @Secured annotation to JPA entity methods
Spring Security's @Secured annotation can be used at method-level to secure methods from
unauthorized access. @Secured annotation specifies the user roles that are authorized to
invoke the method.

Adding Spring Security's @Secured annotation to JPA entity methods in Roo-generated
applications is a bit of an involved process. Roo defines JPA entity methods in the *_Roo_
Entity.aj AspectJ ITD file, which is not recommended to be modified by application
developers. To add the @Secured annotation to a JPA entity method, perform push-in
refactoring (refer to Chapter 7) to move the method to the entity's Java class or simply copy
the methods from the AspectJ file to entity's Java class. For instance, in the case of the
Booking JPA entity, the persist method is copied from the Booking_Roo_Entity.aj file
to the Booking.java file, as shown here:

@RooEntity(identifierColumn = "BOOKING_ID")
public class Booking {
 @PersistenceContext
 transient EntityManager entityManager;
 ...
 @Transactional
 @Secured("ROLE_APP_USER")
 public void persist() {
 if (this.entityManager == null)
 this.entityManager = entityManager();
 this.entityManager.persist(this);
 }

 public static final EntityManager entityManager() {
 EntityManager em = new Booking().entityManager;
 ...
 return em;
 }
}

Chapter 6

329

The given code shows that the persist method is copied from Booking_Roo_Entity.aj
to the Booking.java file. The @Secured annotation is added to the persist method to
make it secure.

It is important to note that copying a method from AspectJ ITD to a Java file doesn't require
moving dependent methods and attributes also. For instance, moving persist method from
Booking_Roo_Entity.aj to Booking.java doesn't require moving entityManager
attribute and entityManager() method, as shown in the code. It has been done to simplify
understanding the code.

Deploying a GWT application on GAE
GAE (Google App Engine) is the cloud computing platform from Google that provides the
infrastructure for deploying your web applications. In this recipe, we'll look at how Roo
simplifies developing an application for GAE. We'll also see how a Roo-scaffolded GWT
application is created and deployed on GAE. In the Deploying Spring Web MVC applications on
GAE recipe, we'll see a Spring Web MVC application that can be deployed on GAE.

Getting ready
If you only want to run the GWT application locally using App Engine SDK for Java, then you
don't need to sign up with Google App Engine and create an application identifier. If you want
to deploy the application on GAE, follow the steps mentioned here to create an application
identifier for your application.

1.	 Sign-up for a free Google App Engine account by going to the following URL: http://
appengine.google.com. Once you are signed in, you'll see the following welcome
page:

Emailing, Messaging, Spring Security, Solr, and GAE

330

2.	 Now, you need to create an application identifier that uniquely identifies your
application and is required for deploying your applications on GAE. Click the Create
Application button, which will ask you to select your country information and mobile
number to generate a verification code, as shown here:

3.	 Once you have provided the verification code that you received via SMS, you can
create the application identifier as shown in the following screenshot:

4.	 Enter a unique value for the Application identifier field and enter a value for
Application title. As the given screenshot shows, the application identifier name is
prepended to .appspot.com to form the URL to access your application. So, if your
unique identifier is myappid, then after deploying the application on GAE you can
access it by going to http://myappid.appspot.com.

Now, we are all set to create our GWT application, which we want to deploy to GAE.

Create a sub-directory ch06-gae-gwt inside the C:\roo-cookbook directory and start the
Roo shell from C:\roo-cookbook\ch06-gae-gwt.

Chapter 6

331

How to do it...
To create a Roo-scaffolded GWT application and deploy it on GAE, follow the steps given here:

1.	 Create flightapp-gae-gwt project using project command:
... roo> project --topLevelPackage sample.roo.flightapp --java 6
--projectName flightapp-gae-gwt

2.	 Use persistence setup command to setup DataNucleus as persistence provider
and set GOOLE_APP_ENGINE as the database. The applicationId argument is
optional and if you only want to test the application locally, then you don't need to
specify it.
... roo> persistence setup --provider DATANUCLEUS --database
GOOGLE_APP_ENGINE --applicationId <your application identifier>

Created SRC_MAIN_WEBAPP\WEB-INF\appengine-web.xml

Created SRC_MAIN_WEBAPP\WEB-INF\logging.properties

Updated SRC_MAIN_RESOURCES\log4j.properties

Updated ROOT\pom.xml [Added property 'gae.home' with value
'${user.home}/.m2/repository/com/google/appengine/appengine-java-
sdk/1.4.0/appengine-java-sdk-1.4.0']

Updated ROOT\pom.xml [Added dependencies com.google.appengine.
orm:datanucleus-appengine:1.0.7.final..]

Updated ROOT\pom.xml [Added plugin maven-gae-plugin]

Updated ROOT\pom.xml [Added plugin maven-datanucleus-plugin]

For brevity, the given output only shows GAE-specific actions that are performed by
Roo.

3.	 Create the FlightDescription JPA entity and add fields to it, as shown here:
... roo> entity --class ~.domain.FlightDescription
--identifierType java.lang.Long --testAutomatically

... roo> field string --fieldName origin --notNull

... roo> field string --fieldName destination --notNull

... roo> field number --type java.lang.Float --fieldName price
--notNull

Emailing, Messaging, Spring Security, Solr, and GAE

332

4.	 Scaffold GWT application using the gwt setup command:
... roo> gwt setup

5.	 If you want to import flightapp-gae-gwt into Eclipse IDE , execute the perform
eclipse command:
... roo> perform eclipse

6.	 Exit the Roo shell and execute the gae:run goal of Maven GAE Plugin to run the
flightapp-gae-gwt application locally on the Google App Engine development
web server that comes bundled with App Engine SDK for Java, as shown here:
C:\roo-cookbook\ch06-gae-gwt> mvn gae:run

7.	 The Maven GAE Plugin was configured in the pom.xml file of the flightapp-gae-
gwt project when we executed the persistence setup command. A successful
start of development server will show the following message: The server is
running at http://localhost:8080/

8.	 Now, open your favorite web browser and go to http://localhost:8080 to access
the GWT flightapp-gae-gwt web application, which allows you to perform CRUD
operations on the FlightDescription JPA entity, as shown here:

Chapter 6

333

9.	 After you have tested the application locally, you can deploy the flightapp-gae-
gwt application to GAE by executing the gae:deploy goal of Maven GAE Plugin, as
shown in the following command. If you had not created application identifier and
specified it as the value of the applicationId argument of the persistence
setup command, then this step will fail.
C:\roo-cookbook\ch06-gae-gwt> mvn gae:deploy

Beginning server interaction for <your-application-identifier>...

...

Email: <email-id>@gmail.com

Password for <email-id>@gmail.com:

...

10.	 As the given output suggests, while deploying your application you need to provide
your e-mail address and corresponding password with which you signed up with
Google App Engine.

11.	 Once the flightapp-gae-gwt application is successfully deployed on GAE, you can
access it via the following URL:
http://<your-application-identifier>.appspot.com

As the flightapp-gae-gwt application is a secured application, you'll be required
to log in using your Google Accounts or OpenID credentials.

How it works...
The persistence setup command determines that the target deployment environment is
Google App Engine if the value of database argument is GOOGLE_APP_ENGINE. If the value
of the database argument is GOOGLE_APP_ENGINE, then it becomes mandatory to specify
DATANUCLEUS as the value of the provider argument.

You might be wondering why it's mandatory to specify the persistence provider as
DataNucleus and GOOGLE_APP_ENGINE as the database. Well, Google App Engine uses
a proprietary schema-less object datastore, BigTable, for persisting application data. Java
applications can access the BigTable datastore using JPA or JDO via DataNucleus App
Engine plugin (this is not a Maven plugin but a DataNucleus plugin). DataNucleus is a
separate product that allows access to datastores (which includes RDBMS, Excel, XML, LDAP,
and so on) using JDO and JPA APIs. Also, the Datanucleus App Engine plugin is developed
and maintained by Google and is specifically meant for use with GAE. So, you can say that by
using DataNucleus, developers can use JDO or JPA APIs in their applications for accessing
or persisting data, irrespective of the datastore(s) used by the application. This could be
particularly useful in case your application makes use of distinct types of data sources.

Emailing, Messaging, Spring Security, Solr, and GAE

334

In response to persistence setup, Roo performs the following actions:

ff Creates the appengine-web.xml file in the WEB-INF directory

ff Adds dependency on DataNucleus App Engine plugin in pom.xml

ff Configures Maven GAE plugin in pom.xml

ff Configures Maven DataNucleus plugin in pom.xml

ff Creates logging.properties configuration for Java logging API

ff Creates the persistence.xml file in the META-INF directory, which provides
persistence provider (DataNucleus in our case) information

ff Creates the applicationContext.xml file in META-INF/spring directory, which
contains transaction manager and JPA EntityManagerFactory definitions

Let's now look at appengine-web.xml file and the plugins configured by Roo.

appengine-web.xml
The appengine-web.xml is a configuration file specific to GAE, which specifies application
identifier, version of the application, static and resource files in the application, system
properties, and so on. The following listing shows the content of appengine-web.xml
generated by Roo for the flightapp-gae-gwt project:

<appengine-web-app xmlns="http://appengine.google.com/ns/1.0">
 <application>myappid</application>
 <version>1</version>
 <sessions-enabled>true</sessions-enabled>
 <system-properties>
 <property name="java.util.logging.config.file"
 value="WEB-INF/logging.properties"/>
 <property
 name="appengine.orm.disable.duplicate.emf.exception"
 value="false"/>
 </system-properties>
</appengine-web-app>

<appengine-web-app> is the root element of appengine-web.xml. <application>
element specifies the application identifier, the value of which comes from the
applicationId argument of persistence setup command.

Chapter 6

335

<version> element specifies the version identifier of the application code that you are
deploying on GAE. The application version identifier is particularly useful when you want to test
your deployed application on GAE before making it the default version, which is accessible to the
users. Let's say, you have version 1 of Flight Booking application already deployed on GAE. Now,
you make some changes to your application code in order to fix bugs or add/modify application
features. To test your modified application on GAE, change the <version> element to a
different value, let's say 2, and deploy the application on GAE using gae:deploy goal (more
on this later) of maven GAE plugin. GAE uses the value of <version> element to determine if
the existing application code needs to be replaced by the newly deployed application code or to
create a new version of the application code. As the version of newly deployed Flight Booking
application code is 2 and the existing application code had version 1, GAE creates a new
version of the application, which you can access by going to the following URL: http://<app-
version>.latest.<application-id>.appspot.com. Assuming that the application
identifier of the Flight Booking application is myappid and the version deployed is 2, the URL
becomes http://2.latest.myappid.appspot.com.

The <session-enabled> element enables GAE's session persistence feature, that is,
session data is persisted into App Engine's datastore. So, if you set session data in your web
application using setAttribute method of HttpSession, then it is stored in App Engine's
datastore. As the session objects are persisted, the objects that you set in the session must
implement the java.io.Serializable interface.

The <system-properties> element defines the system properties available to the
application. App Engine supports application logging via Logging API of Java (refer to the
java.util.logging package). The logging configuration is read from the file, which is
specified as the value of java.util.logging.config.file system property. In the
appengine-web.xml file of the flightapp-gae-gwt project, the <property> sub-
element of the <system-properties> element specifies that the value of the java.util.
logging.config.file system property is WEB-INF/logging.properties. Similarly,
appengine.orm.disable.duplicate.emf.exception system property with value
true instructs App Engine not to raise exceptions when the application attempts to create
multiple javax.persistence.EntityManagerFactory instances for a persistence
unit. By default, App Engine expects that only a single instance of EntityManagerFactory
exists per persistence unit, and an attempt to create a duplicate EntityManagerFactory
instance results in exception.

Maven GAE plugin
The Maven GAE plugin simplifies developing Java applications for App Engine by providing
goals, which help with downloading and unzipping App Engine SDK, starting and stopping App
Engine development server, deploying application to App Engine, retrieving application logs
from App Engine, and so on.

Emailing, Messaging, Spring Security, Solr, and GAE

336

The following listing shows Maven GAE plugin specific configuration as defined in pom.xml of
the flightapp-gae-gwt project:

<project ...>
 ...
 <properties>
 ...
 <gae.home>
 ${user.home}/.m2/repository/com/google/appengine/
 appengine-java-sdk/1.4.0/appengine-java-sdk-1.4.0
 </gae.home>
 </properties>
 ...
 <plugin>
 <groupId>net.kindleit</groupId>
 <artifactId>maven-gae-plugin</artifactId>
 <version>0.5.7</version>
 <configuration>
 <unpackVersion>1.4.0</unpackVersion>
 </configuration>
 <executions>
 <execution>
 <phase>validate</phase>
 <goals>
 <goal>unpack</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
</project>

The gae.home property specifies the location of the unpacked version of App Engine SDK.

The sub-element <unpackVersion> of plugin <configuration> specifies the version
of the plugin to unpack. The <execution> element specifies that the gae:unpack goal
of the Maven GAE plugin is executed in the validate build lifecycle phase. The validate
build lifecycle phase is the one in which Maven validates that the project is correct and all the
required information to make the build is available. The gae:unpack goal unpacks the GAE
SDK to the location specified by the gae.home property.

Chapter 6

337

Spring Roo 1.1.3 generates pom.xml, which makes project dependent on GAE
SDK 1.4.0 and Maven GAE plugin 0.5.7, as shown in the listing we just saw. At
the time of writing this book, the current version of GAE SDK is 1.5.1 and that
of Maven GAE plugin is 0.8.4. To change the version of GAE SDK, modify the
gae.home property. And, to change the version of Maven GAE plugin, simply
modify the value of the <version> sub-element of the <plugin> element,
which configures Maven GAE plugin. If you are using Spring Roo 1.1.5, then the
project already uses GAE SDK 1.5.1 and Maven GAE plugin 0.8.4.

The following table specifies some of the goals defined by the Maven GAE plugin:

Goal Description
gae:run Runs the project locally on the GAE development web server
gae:deploy Uploads the application to the GAE server
gae:logs Retrieves application logs from the GAE server
gae:version Shows the plugin and GAE SDK versions

Let's now look at the Maven DataNucleus plugin and the role it plays in the GAE application.

Maven DataNucleus plugin
To make a class persistent, DataNucleus expects that the class must implement the
PersistenceCapable interface of JDO. Why are we talking about JDO now? Well, it's
because DataNucleus support for JPA is built on top of JDO. This means that even if you have
annotated your domain classes with the @Entity JPA annotation, DataNucleus can't persist
them. To free developers from implementing the PersistenceCapable interface in their
domain classes, DataNucleus provides an enhancer, which works on the compiled domain
classes and implements PersistenceCapable interface via bytecode enhancement. The
Maven DataNucleus plugin provides a datanucleus:enhance goal, which enhances JPA
classes annotated with the @Entity annotation. The following code shows this:

 <plugin>
 <groupId>org.datanucleus</groupId>
 <artifactId>maven-datanucleus-plugin</artifactId>
 <version>1.1.4</version>
 <configuration>
 <mappingIncludes>**/*.class</mappingIncludes>
 <enhancerName>ASM</enhancerName>
 <api>JPA</api>
 <mappingExcludes>**/GaeAuthFilter.class</mappingExcludes>
 </configuration>
 <executions>
 <execution>
 <phase>compile</phase>
 <goals>

Emailing, Messaging, Spring Security, Solr, and GAE

338

 <goal>enhance</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

In the plugin configuration, the <execution> element specifies that
datanucleus:enhance goal is executed in the compile build lifecycle phase. So, when
Java source files are compiled, the Maven DataNucleus plugin enhances the compiled JPA
domain classes. The <mappingIncludes> element specifies the classes that should be
included for enhancement. The <mappingExcludes> specifies the classes that should not
be considered for enhancement.

The <api> element specifies whether the enhancement is for JPA or JDO. As we are using
JPA in the flightapp-gae-gwt project, the value of the <api> element is jpa. The
<enhancerName> element specifies ASM as the value, which basically refers to the ASM
framework (http://asm.ow2.org/) used by DataNucleus for enhancing the bytecode.

Let's now look at the FlightDescription entity that was generated by Roo:

Persistent entities
As GAE datastore is not a relational database, you'll find that some of the concepts that apply
while using JPA with relational databases will not apply when using JPA with GAE datastore.

The following code shows the FlightDescription JPA entity generated by Roo.

@RooJavaBean
@RooToString
@RooEntity
public class FlightDescription {

 @NotNull
 private String origin;

 @NotNull
 private String destination;

 @NotNull
 private Float price;
}

The given code shows that we are not using @Column and @Table JPA annotations to identify
the table into which the entity instances are saved and the table column to which a persistent
entity field maps to. As the GAE datastore is schema-less, you don't need to specify the table
or column information. You can still use the JSR 303 annotations, such as @NotNull in this
code, for validating your domain objects.

Chapter 6

339

The following code shows the FlightDescription_Roo_Entity.aj AspectJ ITD file:

privileged aspect FlightDescription_Roo_Entity {

 declare @type: FlightDescription: @Entity;

 @PersistenceContext
 transient EntityManager FlightDescription.entityManager;

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Column(name = "id")
 private Long FlightDescription.id;

 @Version
 @Column(name = "version")
 private Integer FlightDescription.version;
 ...
}

It is interesting to note that the primary key generation strategy is specified as
GenerationType.IDENTITY. In GAE, this means that the identifier value is not assigned to
the FlightDescription entity until the associated transaction completes or you explicitly
call the flush method of EntityManager.

Let's now look at how the flightapp-gae-gwt application ensures that only authenticated
users can access it.

Authentication and authorization in GAE applications
As with any other web application, web request security constraints for the flightapp-
gae-gwt application are specified in the web.xml file of the application. The following listing
shows the <security-constraint> element of the web.xml file of flightapp-gae-gwt
application:

<security-constraint>
 <display-name>...</display-name>
 <web-resource-collection>
 <web-resource-name>...</web-resource-name>
 <url-pattern>*.html</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>*</role-name>
 </auth-constraint>
</security-constraint>

Emailing, Messaging, Spring Security, Solr, and GAE

340

The <url-pattern> specifies that any URL that matches the *.html pattern is secured
and would require authentication. In the case of the flightapp-gae-gwt application, the
home page of the application is index.html, which is secured according to the URL pattern
specified by the <url-pattern> element. As the entry into the flightapp-gae-gwt
application is restricted, users need to authenticate using their Google Accounts credentials
before accessing the application. The <role-name> element specifies * as the value, which
means that any authenticated user can access the application. If you want your application on
GAE to be accessible to anonymous users also, then remove the <security-constraint>
element from the web.xml file.

If you remove the <security-constraint> element from web.xml of the flightapp-
gae-gwt project and upload the application to GAE servers, you'll find that an attempt to
access the flightapp-gae-gwt application still asks for authentication. The reason behind
this behavior is that the sample.roo.flightapp.server.gae.GaeAuthFilter servlet
filter configured in the Roo-generated web.xml file. GaeAuthFilter is a Roo-generated
servlet filter, which checks if the user is logged in or not. If the user is not logged in, then
it redirects the user to the Google Accounts sign in page. The following code listing from
GaeAuthFilter.java shows the GaeAuthFilter class:

import com.google.appengine.api.users.UserService;
import com.google.appengine.api.users.UserServiceFactory;

public class GaeAuthFilter implements Filter {
 ...

 public void doFilter(...) ... {
 UserService userService =
 UserServiceFactory.getUserService();
 ...

 if (!userService.isUserLoggedIn()) {
 String requestUrl = request.getHeader("requestUrl");
 if (requestUrl == null) {
 requestUrl = request.getRequestURI();
 }
 response.setHeader("login",
 userService.createLoginURL(requestUrl));
 response.sendError(HttpServletResponse.SC_UNAUTHORIZED);
 return;
 }
 ...
}

Chapter 6

341

In the given code, UserServiceFactory is a GAE-specific class whose getUserService
method returns an instance of UserService. The UserService interface defines methods
to create login and logout URLs, get details of the currently signed in user, check if the user is
logged in, and so on. In this code, GaeAuthFilter checks if the user is logged in by calling
the isUserLoggedIn() method. If the user is not logged in, GaeAuthFilter makes use of
the createLoginURL(..) method of UserService to create a login URL and redirects the
user to it.

Another interesting point to notice about GaeAuthFilter is its mapping. The following listing
shows the mapping of GWT's RequestFactoryServlet and GaeAuthFilter in the web.
xml file:

<filter-mapping>
 <filter-name>GaeAuthFilter</filter-name>
 <url-pattern>/gwtRequest/*</url-pattern>
</filter-mapping>

<servlet-mapping>
 <servlet-name>requestFactory</servlet-name>
 <url-pattern>/gwtRequest</url-pattern>
</servlet-mapping>

The <url-pattern> elements of GaeAuthFilter and GWT's RequestFactoryServlet
show that a web request sent to RequestFactoryServlet is intercepted by
GaeAuthFilter. This ensures that if the session expires, the application user is redirected
to the Google Accounts sign-in page.

UserService provides a getCurrentUser method that returns a User object if the user
is logged in. The User object contains user id, nickname, and e-mail information of the
authenticated user. If your application requires capturing more information about the user,
such as their preferences, address, and so on, then you need to save such information as part
of your application data.

By default, the only role defined by App Engine is admin, which you can specify as the value
of the <role-name> element. The admin role is assigned to users that are application
administrators, that is, users that you add using the Admin Console of GAE. Admin Console
gives you complete control over your deployed application on GAE. It allows you to administer
your datastore, test different versions of your application, create application, and so on. You
can access Admin Console by going to the following URL: http://appengine.google.
com. You can use the isUserAdmin method of UserService to determine if the logged in
user belongs to admin role or not.

Even though GAE supports only admin role, you can still incorporate role-based security
in your App Engine applications by introducing application-specific roles. You can save
application-specific role information as part of application data. For instance, you can use
Spring Security framework with your GWT or Spring Web MVC application to implement web
request security and method-level security based on the roles assigned to users.

Emailing, Messaging, Spring Security, Solr, and GAE

342

Deploying a Spring Web MVC application
on GAE

As of Spring Roo 1.1.5, the Roo-generated Spring Web MVC application doesn't work on GAE.
The reason for this is related to mismatch in the JSTL version used by GAE and by the Roo-
generated Spring MVC application. Also, Roo-generated JPA entities support only unowned
relationships (refer http://code.google.com/appengine/docs/java/datastore/
jdo/relationships.html to learn about owned and unowned relationships). In this
recipe, we'll look at a Spring 3.0 Web MVC application (which uses JSTL tags that work
on GAE) consisting of FlightDescription and Flight JPA entities and demonstrates
how to create a unidirectional owned one-to-many relationship between JPA entities. The
FlightDescription entity is on the one side of one-to-many relationship.

If you are using Spring Roo 1.2.x, then the Roo-generated Spring Web MVC
application can be deployed successfully on GAE.

Getting ready
If you only want to run the Spring Web MVC application locally using App Engine SDK for Java,
then you don't need to sign-up with Google App Engine and create an application identifier.
If you want to deploy the application on GAE, then follow the steps described in the previous
recipe and ensure that you modify the application identifier in WEB-INF/appengine-web.
xml file. It is recommended that you deploy the application on GAE servers, as we'll also
discuss some of the features offered by Admin Console.

Extract the ch06-gae-spring-mvc.zip file that accompanies this book to the C:\roo-
cookbook directory. Extracting the ZIP file will create a directory named ch06-gae-spring-
mvc, which contains the flightapp-gae-spring-mvc Eclipse project. The flightapp-
gae-spring-mvc project makes use of App Engine SDK version 1.4.2 and Maven GAE
Plugin 0.8.2.

How to do it...
To deploy a Spring Web MVC application on GAE follow the steps given here:

1.	 Open the command prompt and go to C:\roo-cookbook\ch06-gae-spring-mvc
directory. Execute mvn gae:run command to deploy the flightapp-gae-spring-
mvc project on App Engine development web server:
C:\roo-cookbook\ch06-gae-spring-mvc> mvn gae:run

2.	 Once the development web server starts successfully, open web browser and go to
the following URL: http://localhost:8080. If you see the following page, then it
means that your flightapp-gae-spring-mvc project is successfully deployed:

Chapter 6

343

3.	 The given screenshot shows the home page of our Flight Booking application,
which currently allows managing Flight and FlightDescription objects.
Selecting the Manage Flight Descriptions hyperlink allows users to create and view
FlightDescription instances. Also, it allows users to child Flight instances
associated with a FlightDescription instance. The Manage Flights option allows
users to create and delete Flight instances.

4.	 Select Manage Flight Descriptions option to view FlightDescription instances
in the application, as shown here:

5.	 As we have not yet created any FlightDescription instances, the table shows No
record found message.

6.	 Select the Create Flight Description option to view the form for creating a new
FlightDescription instance, as shown here:

Emailing, Messaging, Spring Security, Solr, and GAE

344

7.	 Enter the FlightDescription details as shown in the given screenshot and click
the Create button. The newly created FlightDescription instance is displayed in
the list of FlightDescription instances, as shown here:

8.	 The View button corresponding to a FlightDescription record shows
the FlightDescription details along with the Flight details, which are
associated with the FlightDescription instance. The Delete button deletes the
FlightDescription instance along with the associated Flight instances.

9.	 Click the Home link to go back to the home page of the application and select the
Manage Flights link to view the Flight instances, as shown here:

10.	 Select the Create Flight link to view the form for creating Flight instances, as
shown here:

11.	 Enter FLT-100 as the value of Flight name field and select NYC – DELHI for
only 1200 USD as the value of Flight Description field. Click Create button to
create Flight instance (with FLT-100 as the flight name), which is a child of
FlightDescription instance (origin: NYC, destination: DELHI, price: 1200).
Similarly, create flights with names FLT-200, FLT-300, and FLT-400. Now, if
you go to the FlightDescription listing page and click the View button, then
you'll see the newly created Flight instances as a child of the NYC-DELHI-1200
FlightDescription instance, as shown here:

Chapter 6

345

12.	 The given screenshot shows the Flight instances that are associated with
FlightDescription instance.

13.	 If you now delete the FlightDescription instance by selecting the Delete
button (as shown in the next screenshot) corresponding to the NYC-DELHI-1200
FlightDescription instance, then it'll also delete associated Flight instances.

How it works...
GAE datastore is a non-relational database in which relationships between entities are
modeled as either owned or unowned. An owned relationship is based on the concept of
parent-child relationship, where the child entity instances cannot exist without a parent. In an
unowned relationship, entity instances can exist irrespective of their relationship with other
entities.

Emailing, Messaging, Spring Security, Solr, and GAE

346

An owned relationship can be best visualized as a tree structure in which the root of the tree
is an entity instance, which is the ultimate parent for all the entities. The following figure
shows an owned relationship example in which FlightDescription is the root entity with
Flight entity instances as its child entities, and Booking entity instances are the child of
the Flight entity.

In the given figure, FlightDescription (NYC-DELHI-1200) is at the root of the
tree. The Flight instances (FLT-100, FLT-200, FLT-300, FLT-400) are children of the
FlightDescription (NYC-DELHI-1200) instance. The Booking (ashish, greg) instances
are children of the Flight (FLT-400) instance. If such a parent-child relationship is defined
in the entities stored in the App Engine datastore, then these entities are referred to as part
of the same entity group. You can think of an entity group as a tree with a root entity at the
top and this root entity doesn't have any parents. In this figure, FlightDescription (NYC-
DELHI-1200) represents the root entity. The other important point about owned relationships
is that except the root entity, all other entities in the entity group cannot be created without a
parent. For example, Flight instance cannot exist without a FlightDescription instance
and Booking instance cannot exist without a Flight instance.

In GAE, creating an owned relationship puts a restriction on the type of primary key that you
can define for the child entity. The reason for this is that the child entity instance needs to
know its parent in the entity group apart from its own entity ID. The type of primary key of the
child entity in an owned relationship is either com.google.appengine.api.datastore.
Key or encoded String form of com.google.appengine.api.datastore.Key. GAE
provides a KeyFactory class (discussed later in this recipe), which you can use to create a
Key instance or to convert a Key instance value to String (referred to as encoded form of
the Key) and vice versa.

Chapter 6

347

In an unowned relationship, each entity instance exists independently of each other. For
example, the relationship between Student and Course entities is an example of an
unowned relationship. A Student entity can exist without a Course and a Course entity can
exist without a Student.

In our Flight Booking application, the relationship between FlightDescription and
Flight entities is an example of an owned relationship, where Flight entity instances
cannot exist without a FlightDescription instance. Let's now see how an owned one-to-
many relationship has been created between the FlightDescription and Flight entities
in the Flight Booking application.

Owned relationship
The following code listing shows some of the important methods and attributes of the
FlightDescription entity:

import com.google.appengine.api.datastore.Key;
import com.google.appengine.api.datastore.KeyFactory;

@Entity
public class FlightDescription {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Basic
 private Key flightDescriptionId;

 @Basic
 @NotNull
 private String origin;
 ...

 @OneToMany
 private List<Flight> flights;

 ...
 @Transactional
 public void persist() {
 if (this.entityManager == null)
 this.entityManager = entityManager();
 this.entityManager.persist(this);
 }

 @Transactional
 public static FlightDescription
 findFlightDescription(String key) {

Emailing, Messaging, Spring Security, Solr, and GAE

348

 return
 (FlightDescription)entityManager().createQuery("select o
 from FlightDescription o where o.flightDescriptionId =
 :id").setParameter("id",
 KeyFactory.stringToKey(key)).getSingleResult();
 }
 ...
 public String getFlightDescriptionKeyAsString() {
 return KeyFactory.keyToString(flightDescriptionId);
 }
 ...
}

The given code shows that FlightDescription entity's primary key is of type com.
google.appengine.api.datastore.Key. The Key not only holds the entity's primary
key, but also holds information about the entity group to which the entity instance belongs. As
the FlightDescription represents a root entity (that is, without a parent), the Key field
will not contain entity group information. The @OneToMany annotated flights field defines
an owned relationship between the FlightDescription and Flight entities.

If it was an unowned relationship the flights field would have taken the following form:

private List<Key> flights;

Here, the flights field refers to the primary keys of Flight entity instances. Also, the field
is not annotated with the @OneToMany annotation.

The findFlightDescription method of the FlightDescription entity takes encoded
String value of Key to find the matching FlightDescription. The KeyFactory class
provides keyToString and stringToKey to convert Key into its encoded String form and
vice versa. This is particularly useful when you are creating relationships between entities via
the user interface of the web application. The query to fetch the FlightDescription object
makes use of the KeyFactory class to obtain Key from its String representation and use it
as part of the query, as shown here again:

entityManager().createQuery("select o
 from FlightDescription o where o.flightDescriptionId =
 :id").setParameter("id",
 KeyFactory.stringToKey(key)).getSingleResult();

The persist method of FlightDescription shows that you don't need to set the value of
the primary key. It is set by the App Engine.

The getFlightDescriptionKeyAsString method of the FlightDescription entity
makes use of KeyFactory class to return the primary key of the entity as an encoded
String value.

Chapter 6

349

Let's now look at how Flight entity is modeled.

The following code listing shows noteworthy attributes and methods of the Flight entity:

@Entity
public class Flight {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Basic
 private Key flightId;

 @Basic
 @NotNull
 private String flightName;

 private transient String encodedFlightDescriptionId;

 @Transactional
 public void persist() {
 if (this.entityManager == null)
 this.entityManager = entityManager();
 Key parentKey = KeyFactory.stringToKey(
 encodedFlightDescriptionId);

 Key flightKey = KeyFactory.createKey(parentKey,
 Flight.class.getSimpleName(), flightName);

 setFlightId(flightKey);
 this.entityManager.persist(this);
 }

 public String getEncodedFlightDescriptionId() {
 return encodedFlightDescriptionId;
 }

 public String getFlightKeyAsString() {
 return KeyFactory.keyToString(flightId);
 }
}

Emailing, Messaging, Spring Security, Solr, and GAE

350

In the given code, flightId represents the primary key of the Flight entity. The persist
method of the Flight entity makes use of the createKey method of the KeyFactory
class to create the primary key. The createKey(parent, kind, name) method accepts
primary key information of the parent entity (FlightDescription is the parent in the case
of Flight entity), the kind (which is similar to the concept of tables in relational databases),
and the name of the key that uniquely identifies the entity within the kind. In the case of the
Flight entity's primary key, the kind refers to the simple name of the entity class: Flight.
class.getSimpleName() and the name of the key is the flightName property of the
Flight entity. So, if you re-create a Flight entity with flightName as FLT-100, then it
will overwrite the existing Flight (FLT-100) entity instance. GAE datastore doesn't support a
composite primary key, but you can still achieve it by concatenating multiple entity field values
in creating the name of the key.

The encodedFlightDescriptionId is the String form of the FlightDescription
primary key who is the parent of Flight entity instance. The value of
encodedFlightDescriptionId is set when the user selects the FlightDescription
from the user interface for creating the Flight instance, as shown here:

The <option> element corresponding to the FlightDescription (NYC-DELHI-1200) entity
instance is rendered as shown here:

<option value="<string value of Key>">NYC-DELHI for only 1200 USD</
option>

The value attribute specifies the String form of the FlightDescription primary key
(which is of type Key). So, when the user clicks the Create button, the String value of Key is
bound to the encodedFlightDescriptionId field of the Flight instance.

The flightapp-gae-spring-mvc project contains the KeyEditor property editor class
that uses KeyFactory to perform conversion from Key to String format and vice versa.
The property editor has been used instead of a Spring ConversionService implementation
because the ConversionService implementation doesn't currently work with the
<options> tag of the Spring form tag library.

Let's now look at how we can manage persisted data in GAE datastore using Admin Console.

Chapter 6

351

Managing persisted data using Admin Console
You can view, edit, and delete data persisted by your application in GAE datastore by using
Admin Console. Go to http://appengine.google.com and sign in to view the applications
that you have created, as shown here:

The given screenshot shows the two applications that I have created in GAE. The roo-
cookbook-spring-mvc application corresponds to the application that we saw in this
recipe. Selecting the application will show the Dashboard for the application where you can
view different statistics related to your application. We are only interested in viewing the data
that we saved in the datastore, so select the Datastore Viewer option from the Dashboard.
The Datastore Viewer shows the entities that you saved in the datastore, as shown in the
following screenshot:

Emailing, Messaging, Spring Security, Solr, and GAE

352

The given screenshot shows the data for the FlightDescription kind that we created.
You can use the Query tab to query the datastore using GQL. You can also delete or edit the
entity instances. If you change kind to Flight, then the Admin Console will show the Flight
entities that you have created, as shown here:

The given screenshot shows that the name set for the primary key of the Flight instance is
displayed under the ID/Name column.

There's more...
If you are designing your entities for App Engine, it is important to note that within a
transaction you can only operate on entities which belong to the same entity group. So, if you
have Student and Course entities, which are in different entity groups, then you can't create
or update them in a single transaction.

As of Spring Roo 1.1.3, you can only create unowned relationship between entities. For
instance, if you execute the field reference or field set command to add a relationship
field, then the *_Roo_JavaBean.aj AspectJ ITD file corresponding to the JPA entity removes
the @OneToMany or @OneToOne or @ManyToOne or @ManyToMany annotation from the
corresponding field in the JPA entity Java source file, resulting in an unowned relationship. The
following code fragment shows how the AspectJ ITD file removes the relationship annotation
from Java source file:

privileged aspect FlightDescription_Roo_JavaBean {

 declare @field: * FlightDescription.flights: -@OneToMany;
 ...
}

Chapter 6

353

The given code shows that if the FlightDescription and Flight entities were created
using Spring Roo, then the @OneToMany annotation on the flights (which refers to
a collection of Flight entities) field of FlightDescription will be removed by the
FlightDescription_Roo_JavaBean.aj AspectJ ITD file. The minus sign (-) indicates
that the @OneToMany annotation will be removed from the FlightDescription.java file.

See also
ff Refer to the Deploying a GWT application on GAE recipe, to see an example of GWT

application for App Engine

Adding search capability to your domain
model with Solr

Apache Solr is an open-source search platform built on top of the Apache Lucene search
engine library. Spring Roo's Solr add-on provides support for integrating the Roo-generated
domain model with Solr platform. In this recipe, we'll look at how Roo makes use of SolrJ Java
client library to add domain model data into Solr server for indexing and to search domain
model data based on user supplied query parameters.

Getting ready
To see Roo's support for Solr in action, you need to download and run the Solr server, as
described here:

1.	 Download the Solr server version 1.4.0 ZIP file from Solr website and unzip the
bundle into a directory. Let's call the unzipped directory as SOLR_HOME.

2.	 Go to the SOLR_HOME\example directory and start Solr server:
C:\...\apache-solr-1.4.0\example> java –jar start.jar

3.	 Open the web browser and verify that Solr server has successfully started by going to
the following URL: http://localhost:8983/solr/admin/

Now, create a sub-directory ch06-solr inside C:\roo-cookbook directory, copy ch06_
web_app.roo script and start Roo shell from C:\roo-cookbook\ch06-solr.

How to do it...
Follow these step to add search capability:

1.	 Execute the ch06_solr.roo script, as shown here:
roo> script --file ch06_web_app.roo

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

Emailing, Messaging, Spring Security, Solr, and GAE

354

The script creates a flightapp-web Roo project consisting of Flight and
FlightDescription JPA entities.

2.	 Setup Solr for the flightapp-web project using the solr setup command:
.. roo> solr setup

Updated ROOT\pom.xml [Added dependency org.apache.solr:solr-
solrj:1.4.0]

Created SRC_MAIN_RESOURCES\META-INF\spring\solr.properties

Updated SRC_MAIN_RESOURCES\META-INF\spring\applicationContext.xml

3.	 Make all JPA entities in the project searchable by executing the solr all command
as shown here:
.. roo> solr all

Updated SRC_MAIN_JAVA\...\FlightDescription.java

Updated SRC_MAIN_JAVA\...\Flight.java

Created SRC_MAIN_JAVA\..\Flight_Roo_SolrSearch.aj

Created SRC_MAIN_JAVA\...\FlightDescription_Roo_SolrSearch.aj

4.	 Create a controller, which is responsible for searching Solr documents, as shown
here:
.. roo> controller class --class ~.web.
FlightDescriptionSearchController --preferredMapping /
flightdescriptionsearch

Created SRC_MAIN_JAVA\...\FlightDescriptionSearchController

.java

Created SRC_MAIN_WEBAPP\WEB-INF\views\flightdescriptionsearch

Created SRC_MAIN_WEBAPP\WEB-INF\views\flightdescriptionsearch\
index.jspx

Copy MySolrField.java and FlightDescriptionSearchController.
java files from the source code that accompanies this chapter to sample.
roo.flightapp.web package. Also, replace /WEB-INF/views/
flightdescriptionsearch/index.jsp with the index.jsp file from the
source code that accompanies this chapter.

5.	 Execute the perform eclipse command so that you can import the flightapp-
web project into your Eclipse IDE as shown here:
.. roo> perform eclipse

Chapter 6

355

6.	 Exit the Roo shell and execute the tomcat:run goal of Maven Tomcat Plugin from
ch06-solr directory to deploy the flightapp-web project in embedded Tomcat
container as shown here:
C:\roo-cookbook\ch06-solr> mvn tomcat:run

7.	 Open your web browser and go to http://localhost:8080/flightapp-
web. If you see the following home page of the web application, it means that the
flightapp-web project is successfully deployed on Tomcat:

In the given screenshot, Flight Description Search Controller View menu
option sends request to FlightDescriptionSearchController class,
which in turn renders the index.jsp page located in /WEB-INF/views/
flightdescriptionsearch folder.

8.	 At this time make sure that your Solr server is up and running. Now, select
Create new Flight Description menu option to view the form for creating new
FlightDescription entities in database, as shown here:

The given screenshot shows that you need to enter information about the following
fields: Price, Origin and Destination. Create two FlightDescription instances
with the information shown in the following table:

Emailing, Messaging, Spring Security, Solr, and GAE

356

Instance Price Origin Destination
Instance-1 1200 NYC DELHI
Instance-2 1400 MUMBAI ATLANTA

9.	 When you create the FlightDescription entity instance, Roo's support for
Solr adds the entity data into Solr for indexing and searching. Select the Flight
Description Search Controller View menu option that searches the Solr server for
documents that have a field named flightdescription_solrsummary_t and
displays it in a tabular format, as shown here:

10.	 The given screenshot shows four tables: two of them are titled Solr Document
– All Fields and the remaining two are titled Solr Document – Matching Fields.
Solr Document – All Fields titled tables show all the fields of the Solr document
that contained the field flightdescription_solrsummary_t and Solr Document –
Matching Fields titled tables show only the flightdescription.origin_s field
of the Solr document that contains flightdescription_solrsummary_t field.

We'll come back to these fields and look at how things work behind the scenes in the
How it works… section.

Chapter 6

357

How it works...
The integration between Solr search platform and Roo-generated domain model is
achieved by:

ff Configuring Solr for Roo project

ff Defining methods to add domain model data to Solr index

ff Defining methods for querying Solr search server

Let's now look at how Roo simplifies Solr integration.

Configuring Solr for Roo project
The solr setup command configures Solr for the Roo project. When solr setup command
is executed, Roo takes the following actions:

ff Adds dependency of project on SolrJ 1.4.0 in pom.xml file. SolrJ is used by JPA
entities to add entity data to Solr index and for querying the Solr search server.

ff Enables support for @Async annotated methods in the project by adding
<annotation-driven> element of Spring's task namespace in
applicationContext.xml file, as shown here:
<task:annotation-driven executor="asyncExecutor"
 mode="aspectj" />

The executor attribute refers to an implementation of the java.util.
concurrent.Executor interface, responsible for executing the @Async annotated
method.

ff Configures Spring's ThreadPoolTaskExecutor in applicationContext.xml
using <executor> element of Spring's task namespace, as shown here:
<task:executor id="asyncExecutor"
 pool-size="${executor.poolSize}" />

Spring's ThreadPoolTaskExecutor configures a java.util.concurrent.
ThreadPoolExecutor instance (an implementation of java.util.concurrent.
Executor) with the thread pool size specified by the pool-size attribute value. The
${executor.poolSize} placeholder's value comes from the solr.properties
file.

ff Configures SolrJ's CommonsHttpSolrServer instance (a subclass of SolrJ's
SolrServer abstract class) in the applicationContext.xml file to allow JPA
entities to interact with the Solr search server over HTTP protocol:
 <bean class="org.apache.solr.client.solrj.
 impl.CommonsHttpSolrServer" id="solrServer">
 <constructor-arg value="${solr.serverUrl}"/>
 </bean>

Emailing, Messaging, Spring Security, Solr, and GAE

358

Behind the scenes, CommonsHttpSolrServer makes use of Apache
Commons HttpClient to interact with the Solr search server. The constructor of
CommonsHttpSolrServer accepts URL of the Solr search server as an argument.
The <constructor-arg> element specifies the value of the constructor argument
as ${solr.serverUrl}, which refers to the solr.serverUrl property defined in
solr.properties file.

ff Creates a solr.properties file in the SRC_MAIN_RESOURCES\META-INF\
spring\ directory. The properties file defines an executor.poolSize property,
which specifies the thread pool size required by ThreadPoolExecutor, as shown
here:
executor.poolSize=10

The solr.properties file also contains a solr.serverUrl property, which
identifies the URL where the Solr search server is running, as shown here:
solr.serverUrl=http\://localhost\:8983/solr

If your Solr server is running on a different host or port, then change the URL in the solr.
properties file or use the searchServerUrl argument of the solr setup command to
specify the Solr search server URL.

Adding domain model data to Solr index and searching Solr
documents
Imagine that you want to search for FlightDescription instances where the origin
field is NYC. You can perform this search against the database in which you persist your
FlightDescription entity instances or you can add the FlightDescription instance
data into Solr index and search against it. We'll look at how Roo supports adding entity
instance data to Solr index, and in the next section, we'll look at how to query that data in Solr
search server.

Though there are multiple ways in which you can push data into Solr, Roo makes use of the
SolrJ client library to interact with the Solr search server. When the solr all Roo command
is executed, it adds certain methods (via AspectJ ITD) to JPA entity classes that are fired when
an entity is added, removed, or updated. These methods are responsible for adding, updating,
and deleting entity data from Solr index using SolrJ client library.

When solr all command is executed, the following actions are performed by Roo:

ff Adds the @RooSolrSearchable annotation to JPA entity class that triggers creation
of the corresponding *_Roo_SolrSearch.aj AspectJ ITD file.

The following code listing shows the FlightDescription JPA entity of
flightapp-web project after solr all command was executed:
@RooEntity(identifierColumn = "FLIGHT_DESC_
ID", table = "FLIGHT_DESC_TBL", finders = {
"findFlightDescriptionsByDestinationAndOrigin" })

Chapter 6

359

@RooSolrSearchable
public class FlightDescription {
 ...
}

The given code shows that @RooSolrSearchable annotation is added to
FlightDescription entity. If you look at the Flight entity, you'll find that the @
RooSolrSearchable annotation is also added to it.

ff Creates a *_Roo_SolrSearch.aj AspectJ ITD file (corresponding to each JPA
entity in the project. *_Roo_SolrSearch.aj) that introduces methods into JPA
entity class for adding, updating, and removing entity from Solr index. Also, *_Roo_
SolrSearch.aj defines methods for querying the Solr server using SolrJ client
library.

Methods and attributes introduced by *_Roo_SolrSearch.aj AspectJ ITD
Let's now look at methods and attributes introduced by the FlightDescription_Roo_
SolrSearch.aj file:

ff solrServer attribute that refers to the CommonsHttpSolrServer bean
configured in applicationContext.xml file is shown as follows:
@Autowired
transient SolrServer FlightDescription.solrServer;

ff solrServer(): A static method that returns the solrServer attribute introduced
by the ITD file is shown as follows:
public static final SolrServer FlightDescription.solrServer() {
 SolrServer _solrServer = new FlightDescription().solrServer;
 ..
 return _solrServer;
}

ff indexFlightDescriptions: A static method that adds a collection of
FlightDescription entity instances to the Solr index is shown as follows:
import org.springframework.scheduling.annotation.Async;
...
...
@Async
public static void
 FlightDescription.indexFlightDescriptions
 (Collection<FlightDescription> flightdescriptions) {

 java.util.List<SolrInputDocument> documents =
 new java.util.ArrayList<SolrInputDocument>();

 for (FlightDescription flightdescription :
 flightdescriptions) {

Emailing, Messaging, Spring Security, Solr, and GAE

360

 SolrInputDocument sid = new SolrInputDocument();
 sid.addField("id", "flightdescription_" +
 flightdescription.getId());
 sid.addField("flightdescription.id_l",
 flightdescription.getId());
 sid.addField("flightdescription.origin_s",
 flightdescription.getOrigin());
 ...
 sid.addField("flightdescription.price_f",
 flightdescription.getPrice());
 sid.addField("flightdescription_solrsummary_t", ...);
 documents.add(sid);
 }
 try {
 SolrServer solrServer = solrServer();
 solrServer.add(documents);
 solrServer.commit();
 } catch (Exception e) {
 e.printStackTrace();
 }
}

The given code shows that the indexFlightDescriptions method is annotated
with Spring's @Async annotation, which means that it is invoked asynchronously.
The method iterates over all the FlightDescription instances (passed as
method argument) and creates a list of SolrInputDocument. The SolrJ's
SolrInputDocument class represents a document that you want to feed to Solr
server for indexing. The addField method of SolrInputDocument identifies the
field that you want to add to the document.

The field name that is added by Roo to the SolrInputDocument has the following
naming convention:
<entity-simple-name>.<field-name>_<field-type>

Here, entity-simple-name is the simple name of JPA entity, field-name is the
name of the field, and field-type is the type of the field. So, the orgin field is
added to SolrInputDocument with the name flightdescription.origin_s
and price field is added with the name flightdescription.price_f.

If the JPA entity field type isn't Integer, String, Long, Boolean, Float,
Double, or Date, then the field name with which the JPA entity field is added to
SolrInputDocument is shown as follows:
<entity-simple-name>.<field-name>_t

Chapter 6

361

For instance, the Flight class in flightapp-web project contains the
flightDescription relationship field of type FlightDescription, which is
added to SolrInputDocument with name flight.flightdescription_t (refer
to the Flight_Roo_SolrSearch.aj AspectJ ITD file).

You might be wondering, why Roo doesn't add JPA entity fields with their exact name
in the SolrInputDocument. Here is a short description of how Solr works:

SolrInputDocument represents a document that you add to Solr search server.
The document consists of fields and you need to tell Solr search server, which of
these fields should be indexed. It is important to note that if a field is not indexed,
then you can't search or sort documents based on that field. You tell the Solr search
server, which fields of a document should be indexed by specifying the fields in
schema.xml file located in SOLR_HOME\example\solr\conf directory. Solr
has the concept of Dynamic Fields, wherein if a field follows a standard naming
convention, then it is automatically indexed by Solr search server. The following
XML fragment from the schema.xml file defines the dynamic fields that will be
automatically indexed by Solr:
<dynamicField name="*_s" type="string" indexed="true"
 stored="true"/>
<dynamicField name="*_l" type="slong" indexed="true"
 stored="true"/>
<dynamicField name="*_t" type="text" indexed="true"
 stored="true"/>
<dynamicField name="*_f" type="sfloat" indexed="true"
 stored="true"/>

The given XML fragment instructs Solr to index any field that matches the pattern
*_s, *_l, *_t, or *_f. So, now you can see the link between Roo generated field
names and the dynamic fields defined by Solr.

The indexFlightDescriptions method also adds an id field name to the
SolrInputDocument. It is mandatory for any SolrInputDocument to contain a
field named id, which uniquely identifies the document in Solr index. By default, Roo
sets the value of id field to "flightdescription_" + flightdescription.
getId(). We'll see later in this section that this id field value is used for deleting the
document from Solr index.

The indexFlightDescriptions method also adds an extra field,
flightdescription_solrsummary_t, in SolrInputDocument so that
it can be used to search all documents that have been indexed by Solr for
FlightDescription JPA entity. Similarly, the indexFlightDescriptions
method of Flight_Roo_SolrSearch.aj AspectJ ITD adds flight_
solrsummary_t field in SolrInputDocument to allow searching for documents
indexed by Solr for the Flight JPA entity.

Emailing, Messaging, Spring Security, Solr, and GAE

362

The following code in the indexFlightDescriptions method adds the
SolrInputDocuments to Solr index:
SolrServer solrServer = solrServer();
solrServer.add(documents);
solrServer.commit();

ff indexFlightDescription: A static method, which adds a FlightDescription
entity instance to Solr index, which is shown as follows:
public static void
 FlightDescription.indexFlightDescription(FlightDescription
 flightdescription) {
 List<FlightDescription> flightdescriptions =
 new ArrayList<FlightDescription>();
 flightdescriptions.add(flightdescription);
 indexFlightDescriptions(flightdescriptions);
}

As the given code shows, indexFlightDescription method delegates
the responsibility of adding FlightDescription instance to Solr index to
indexFlightDescriptions method.

ff deleteIndex: A static method, which deletes a Solr document corresponding to a
FlightDescription JPA entity instance is shown as follows:
@Async
public static void
 FlightDescription.deleteIndex(FlightDescription
 flightdescription) {
 SolrServer solrServer = solrServer();
 try {

 solrServer.deleteById("flightdescription_" +
 flightdescription.getId());

 solrServer.commit();
 } catch (Exception e) {
 e.printStackTrace();
 }
}

In the given code, the deleteById method of SolrServer deletes the document
(from Solr index), which has the id attribute value "flightdescription_" +
flightdescription.getId(). The Spring's @Async annotation means that the
deleteIndex method is invoked asynchronously.

Chapter 6

363

ff postPersistOrUpdate method, which is invoked when the FlightDescription
JPA entity instance is persisted or updated in the database. This method is
responsible for adding or updating the Solr index with the modified JPA entity
instance data, as shown here:
import javax.persistence.PostPersist;
import javax.persistence.PostUpdate;
...
...
@PostUpdate
@PostPersist
private void FlightDescription.postPersistOrUpdate() {
 indexFlightDescription(this);
}

The @PostUpdate and @PostPersist JPA annotations indicate that
postPersistOrUpdate method is invoked when FlightDescription JPA entity
is updated or persisted in the database. The call to indexFlightDescription
method suggests that the entity data is updated or added to the Solr index.

ff preRemove method, which removes the entity data from Solr index by calling the
deleteIndex method:
import javax.persistence.PreRemove;
...
...
@PreRemove
private void FlightDescription.preRemove() {
 deleteIndex(this);
}

The @PreRemove JPA annotation means that the preRemove method is invoked
before the JPA entity instance is removed from the database.

ff search(SolrQuery query) method, which allows searching Solr documents that
match the search query:
public static QueryResponse FlightDescription.search(SolrQuery
query) {
 try {
 return solrServer().query(query);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return new QueryResponse();
}

Emailing, Messaging, Spring Security, Solr, and GAE

364

SolrQuery represents a query object, which contains the field information based
on which the search has to be performed, the fields to return, and so on. The query
method of SolrServer sends the search request to Solr search server using Apache
Commons HttpClient and returns a QueryResponse object from which you can
extract the Solr documents that matched the search query.

ff search(String) method that only returns Solr document(s) corresponding to
FlightDescription entity in Solr search server:
public static QueryResponse
 FlightDescription.search(String queryString) {

 String searchString =
 "FlightDescription_solrsummary_t:" + queryString;

 return search(new SolrQuery(searchString.toLowerCase()));
}

In the given code, the SolrQuery object is created using the searchString. The
searchString specifies the Solr query used for finding matching Solr documents.
As searchString already contains the constant value "FlightDescription_
solrsummary_t:", which means that you can only search for Solr documents
that contain "FlightDescription_solrsummary_t" field. If you remember
from the earlier discussion, the "FlightDescription_solrsummary_t" field
is only available in Solr documents which have been added corresponding to the
FlightDescription entity.

Let's now look at how the FlightDescriptionSearchController controller makes use
of search methods defined in the FlightDescription JPA entity to search documents
indexed by Solr search server.

Searching Solr documents
FlightDescriptionSearchController defines methods which search for Solr
documents corresponding to the FlightDescription entity. The following code listing
shows FlightDescriptionSearchController class:

@Controller
public class FlightDescriptionSearchController {

 private List<List<MySolrField>> getAllFields() {
 QueryResponse response = FlightDescription.search("*");
 SolrDocumentList documentList = response.getResults();
 return getSolrDocumentFieldList(documentList);
 }

 private List<List<MySolrField>> getMatchingFields() {
 SolrQuery solrQuery = new SolrQuery().
 setQuery("flightdescription_solrsummary_t:*").

Chapter 6

365

 setParam("fl", "flightdescription.origin_s");
 QueryResponse response =
 FlightDescription.search(solrQuery);
 SolrDocumentList documentList = response.getResults();
 return getSolrDocumentFieldList(documentList);
 }

 private List<List<MySolrField>>
 getSolrDocumentFieldList(SolrDocumentList list) {
 List<List<MySolrField>> matchingDocList
 = new ArrayList<List<MySolrField>>();
 ... 	
 return matchingDocList;
 }
}

The getAllFields method invokes search(String queryString) method of
FlightDescription entity and passes * as the method argument. As we saw earlier, the
search(String queryString) method of FlightDescription will create the following
query: "FlightDescription_solrsummary_t:*", which means search for all Solr
documents, which contain "FlightDescription_solrsummary_t" field. This query will
return all the Solr documents corresponding to FlightDescription entity that we added to
Solr index.

The getMatchingFields method invokes the search(SolrQuery query) method
passing the SolrQuery object, which queries for all Solr documents corresponding to
FlightDescription JPA entity but specifies that the query result should only contain the
flightdescription.origin_s field. The setQuery parameter of SolrQuery specifies the
query and setParam specifies that only flightdescription.origin_s field should be
returned in the result.

The getResults method of the QueryResponse object returns SolrDocumentList
representing the list of matching Solr documents returned by the query.

The getSolrDocumentFieldList method takes SolrDocumentList as the argument
and extracts SolrDocument instances from it. The method then extracts field names and
their values from each SolrDocument instance to create a List<List<MySolrField>>.
The MySolrField represents a custom class that we created in flightapp-web project to
represent a single field-value pair in SolrDocument.

The /WEB-INF/views/flightdescriptionsearch/index.jsp JSP page displays
data returned by getFields and getMatchingFields methods. This is the reason why
selecting Flight Description Search Controller View menu option shows two different types
of tables. One table type shows all the Solr document fields and the other table type only
shows the flightdescription.origin_s field.

Emailing, Messaging, Spring Security, Solr, and GAE

366

There's more...
Solr index is updated in @PreRemove, @PostPersist, and the @PostUpdate annotated
method. So, what if the transaction fails to commit but the entity data is stored as Solr
document in Solr search server? You need to take care of maintaining the integrity yourself,
because Roo doesn't help you there.

Let's now look at the attributes that @RooSolrSearchable defines to customize names of
Roo-generated methods in *_Roo_SolrSearch.aj AspectJ ITD.

Customizing Roo-generated *_Roo_SolrSearch.aj AspectJ ITD
The following table describes the attributes of @RooSolrSearchable annotation:

Attribute Description
deleteIndexMethod Specifies a custom name for the deleteIndex

method. Value blank " " instructs Roo not to generate
deleteIndex method.

indexMethod Specifies a custom name for the index methods.
Value blank " " instructs Roo not to generate index
methods.

postPersistOrUpdateMethod Specifies a custom name for the
postPersistOrUpdate methods. Value
blank " " instructs Roo not to generate
postPersistOrUpdate methods.

preRemoveMethod Specifies a custom name for the preRemove
method. Value blank " " instructs Roo not to generate
preRemove method.

searchMethod Specifies a custom name for the search method,
which accepts SolrQuery as argument. Value blank
" " instructs Roo not to generate search method,
which accepts SolrQuery argument.

simpleSearchMethod Specifies a custom name for the search method,
which accepts String as argument. Value blank " "
instructs Roo not to generate search method, which
accepts String argument.

7
Developing Add-ons
and Removing Roo

from Projects

In this chapter, we will cover:

ff Setting up GnuPG for add-on development

ff Installing an installable add-on

ff Developing a simple add-on

ff Developing an advanced add-on

ff Converting non-OSGi JDBC drivers into OSGi-compliant bundles

ff Removing Roo with push-in refactoring

ff Adding Roo to a project using pull-out refactoring

ff Upgrading to the latest version of Roo

Introduction
In previous chapters, we saw that executing a Roo command kicks-off code generation logic
in Roo add-ons. You may want to create a custom add-on for functionality that is not yet
supported by base or installable add-ons. For instance, currently there is no Roo add-on that
provides support for creating Java portlets using the Spring Portlet MVC. So, we can develop a
Roo add-on which is responsible for scaffolding Spring Portlet MVC controllers and JSPs from
JPA entities.

Developing Add-ons and Removing Roo from Projects

368

In this chapter, we'll look at recipes which show how Roo simplifies installing, developing, and
publishing add-ons. Also, we'll take a broad look at the Roo architecture and Roo commands
which you'll find useful while developing and testing add-ons.

Setting up GnuPG for add-on development
Roo makes use of GnuPG (http://www.gnupg.org/) to sign add-ons. Signing of add-ons
ensures that Roo users download and install only trusted add-ons. The add-on creator module
of Roo signs the add-on with his secret PGP key and publishes the public PGP key to a public
key server. A Roo user needs to tell Roo explicitly that it trusts an add-on by adding a public
PGP key to Roo's key store. This allows Roo to download and install the add-on. If the public
PGP key is not added to Roo's key store, the add-on will not be downloaded and installed.

In this recipe, we'll look at how to install GnuPG, create a key-pair (consisting of secret and
public keys), and publish the public key to a public key server.

Getting ready
If you are using Windows or UNIX, download and install GnuPG from the following location:
http://www.gnupg.org/download/. If you are using Mac, download and install GnuPG
for Mac from the following location: http://macgpg.sourceforge.net/.

Installing GnuPG on Windows will create the following installation directory: C:\Program
Files\GNU\GnuPG.

How to do it...
The following steps will demonstrate how to set up GnuPG:

1.	 Open the command prompt and execute the following GnuPG list-secret-keys
command to view secret PGP keys that you may have created earlier:
C:\Users\Ashish>gpg --list-secret-keys

gpg: keyring 'C:/Users/Ashish/AppData/Roaming/gnupg\secring.gpg'
created

The output shows that a secring.gpg file is created if it is not found. The
secring.gpg file contains key information.

2.	 Create a new key-pair consisting of a secret PGP key and public PGP key using
GnuPG's gen-key command, as shown here:
C:\Users\Ashish>gpg --gen-key

...

Please select what kind of key you want:

Chapter 7

369

 (1) RSA and RSA (default)

 (2) DSA and Elgamal

 (3) DSA (sign only)

 (4) RSA (sign only)

Your selection? 1

...

Executing the gen-key command asks multiple questions, such as for the e-mail
ID, real name, kind and length of key, and so on. When asked to select what
kind of key you want, choose either option 1 (RSA and RSA (default)) or
2 (DSA and Elgamal), as the key can be used for both encryption and decryption.
In the end, you'll be asked to provide a passphrase to protect your secret PGP key.
Remember the passphrase, as you'll need to provide it when building your custom
add-ons.

3.	 To verify that the key-pair has been successfully created, execute GnuPG's list-
secret-keys command:
C:\Users\Ashish>gpg --list-secret-keys

C:/Users/Ashish/AppData/Roaming/gnupg\secring.gpg

sec 2048R/BFB28A4D 2011-04-30

uid Ashish Sarin (This is my key)
<ashish.k.sarin@gmail.com>

ssb 2048R/9FCAFB76 2011-04-30

If you see the previous output, it means your key-pair has been successfully
generated. The sec key ID is BFB28A4D, which represents the key ID of your public
PGP key which you need to publish to a public key server.

4.	 Now, publish the public key using GnuPG's send-keys command, as shown here:
gpg --send-keys --keyserver hkp://pgp.mit.edu <public-key-id>

Here, <public-key-id> is the sec key ID that was listed when you executed the
list-secret-keys command. In my case, <public-key-id> is BFB28A4D.

How it works...
We saw that GnuPG is used to create a key-pair and publish the public PGP key to a public key
server. As most public key servers share keys, you don't need to send keys to all public
key servers.

Developing Add-ons and Removing Roo from Projects

370

See also
ff Refer to the Installing an installable add-on recipe to see how to install add-ons

ff Refer to the Developing a simple add-on recipe to see how Spring Roo signs custom
add-ons using your secret key

Installing an installable add-on
An add-on that is not part of the Spring Roo distribution is referred to as an installable add-on.
So, any add-on that is not a base add-on is an installable add-on. In this recipe, we'll look at
how to install an installable add-on and the challenges that you'll face in doing so.

Getting ready
Refer to the Setting up GnuPG for add-on development recipe to set up GnuPG on your
system.

Create a new directory C:\roo-cookbook\ch07-service in your system and start the Roo
shell from the ch07-service directory.

Executing the ch07_jpa_setup.roo script creates a flight-app Roo project, sets
up Hibernate as a persistence provider, and configures MySQL as the database for the
application. If you are using a different database than MySQL or your connection settings are
different from what is specified in the script, then modify the script accordingly.

How to do it...
The following steps will demonstrate how to install an installable add-on:

1.	 Enter the following command in the Roo shell and press Tab:
roo> addon install bundle --bundleSymbolicName

Display all 308 possibilities? (y or n)

Roo asks if it should display the symbolic names of all the available add-ons. Press
the Y key to instruct Roo to list all the add-ons. You'll find that in the list there are a
couple of gvNIX (https://code.google.com/p/gvnix/) Roo add-ons that
have bundle symbolic names starting with "org.gvnix.". For the purpose of this recipe
we'll install the gvNIX Service Management add-on whose bundle symbolic name is
org.gvnix.service.roo.addon. Using the Service Management add-on you can
quickly create a service layer of your enterprise application.

https://code.google.com/p/gvnix/

Chapter 7

371

2.	 Now, install gvNIX using the addon install bundle command, as shown here:
roo> addon install bundle --bundleSymbolicName org.gvnix.service.
roo.addon

...

Downloaded 100% of org.gvnix.service.roo.addon-0.6.0.jar.asc

Download URL 'http://gvnix.googlecode.com/svn/repo/org/gvnix/
org.gvnix.service.roo.addon/0.6.0/org.gvnix.service.roo.addon-
0.6.0.jar' failed

This resource was signed with PGP key ID '0xC5FC814B', which is
not currently trusted

The output shows that gvNIX Service Management Roo add-on couldn't be
downloaded and installed because it was signed with PGP key ID 0xC5FC814B,
which is not trusted by your Spring Roo installation.

3.	 Add the PGP key ID 0xC5FC814B to Roo's key store using the pgp trust Roo
command, as shown here:
roo> pgp trust --keyId 0xC5FC814B

4.	 Now that we have informed Spring Roo to trust the PGP key ID with which the gvNIX
Service Management Roo add-on was signed, you can now install the gvNIX Service
Management Roo add-on using the addon install bundle command, as shown
here:
roo> addon install bundle --bundleSymbolicName org.gvnix.service.
roo.addon

Target resource(s):

 gvNIX - Spring Roo - Addon - Services Management (0.6.0)

Deploying...done.

Successfully installed add-on: gvNIX - Spring Roo - Addon -
Services Management [version: 0.6.0]

The output shows that the gvNIX Service Management add-on was successfully
installed by Spring Roo and the commands exposed by the gvNIX Service
Management add-on are available to the Roo shell. For instance, you'll now find that
the following Roo commands are now available to the Roo shell: service class,
service import ws, and service operation.

Developing Add-ons and Removing Roo from Projects

372

How it works...
The list of add-ons comes from the RooBot's index file. RooBot is a VMWare-hosted service
that indexes publicly available OBR (OSGi Bundle Repository) files. An OBR represents a
repository of add-ons and an OBR file is an XML file (typically named repository.xml),
which contains the information about add-ons and the URLs where they are published. Note
that an OBR repository need not physically host add-ons, and may only provide an OBR file
which contains details of add-ons and the URL at which they are published. A developer
provides an OBR file for the Roo add-on that he/she publishes at his/her website. The OBR file
is indexed by RooBot, and RooBot ensures that the URL used to download an add-on uses the
httppgp:// (instead of http://) URL for signature verification.

Every time you start the Roo shell by executing the Roo batch file, the RooBot's index file is
downloaded by Spring Roo so that you can search and install add-ons. It is important to note
that RooBot does not physically host add-ons. When you execute addon search or addon
list command, Spring Roo refers to RooBot's index file to perform search and listing of
available add-ons.

When you attempt to install a Roo add-on using the addon install bundle or addon
install id command, the httppgp:// URL of the add-on in RooBot's index file is used
to download and install the add-on. The use of the httppgp:// URL requires Spring Roo to
first download the PGP signature file (a .asc file) and URL of the add-on, and verify that your
Spring Roo installation trusts the PGP key ID used to sign the signature file. If your Spring Roo
installation doesn't trust the PGP key ID, it will not attempt to download the add-on.

In our recipe, when we first attempted to download gvNIX Service Management Roo add-on, it
resulted in an error because the PGP signature file was signed using a PGP key ID which the
Spring Roo installation didn't trust. So, we used the pgp trust Roo command to add the PGP
key ID to Spring Roo's key store and re-attempted to download the gvNIX Service Management
Roo add-on. Spring Roo stores trusted keys in the.spring_roo_pgp.bpg file in the user's
home directory.

There's more...
It is important to note that the addon commands (addon info bundle, addon info
id, addon install bundle, addon install id, addon list, addon search, addon
upgrade) work only with add-ons registered with the RooBot index file. For instance, you
cannot search for or install a Roo add-on which is not listed with the RooBot index file.

Chapter 7

373

Trusting add-ons by default
If you want to download add-ons without having to add a PGP key ID to Roo's key store, you
can do so by executing the pgp automatic trust Roo command, as shown here:

roo> pgp automatic trust

Executing the pgp automatic trust command instructs Roo not to verify that the
downloaded PGP signature file of the add-on is signed by a trusted PGP key ID. It is important
to note that enabling the automatic PGP key trusting feature of Roo can be unsafe.

If you want to turn off the automatic PGP key trusting feature, then simply re-execute the pgp
automatic trust command.

Installing add-ons not indexed by RooBot
There could be scenarios in which a Roo add-on is not registered with RooBot but you still
want to install and use it. If a Roo add-on is meant for internal use within an organization, then
you won't publish it to RooBot or you may want to test an add-on thoroughly before registering
it with RooBot. In such scenarios, you need to add the OBR URL of the add-on repository to
your Roo installation using the osgi obr url add command, followed by executing the osgi
obr start command to download and install the add-on.

Let's look at an example scenario in which you make use of osgi obr url add and osgi
obr start commands to download and install Roo add-ons.

The gvNIX (https://code.google.com/p/gvnix/) Google Code project provides multiple
Roo add-ons, which deal with Service Management (as discussed earlier), reporting, theming,
and so on. Even though gvNIX add-ons are published in RooBot, we can directly download and
install them using osgi obr url add and osgi obr start commands.

To add OBR URL of repository hosting add-ons, you need to locate the OBR XML file that
contains a list of add-ons and the URLs where these add-ons are published. In the case of
the gvNIX Google Code project, the OBR file name is repository.xml and is located in the
repo directory of the project.

You can carry out the following steps to add an OBR file URL of the gvNIX project to your Roo
installation:

ff View the repository.xml file by going to the gvNIX Google Code project
and selecting the Source | Browse option. As we need to add the URL of this
repository.xml file to the Roo installation using the osgi obr url add
command, go to the Source | Browse option of the gvNIX project on Google Code
and open the repository.xml file inside repo directory.

Developing Add-ons and Removing Roo from Projects

374

Google Code presents the content of the repository.xml file in
HTML format, and the URL that you now see in the browser is not the
URL location of the repository.xml file.

ff To get to the real location of repository.xml file, select View raw file link that
shows up in the menu on the right-side of the HTML page. The URL that you'll
now see in the browser is http://gvnix.googlecode.com/svn/repo/
repository.xml.

ff Now, add the URL to the repository.xml file to Roo installation, as shown here:

roo> osgi obr url add --url http://gvnix.googlecode.com/svn/repo/
repository.xml

As described here, you can add multiple OBR file URLs to your Roo installation. Once you
have added the OBR file URL, you can download and install a Roo add-on defined in the OBR
file. For instance, we can now install add-ons listed in the repository.xml file of the gvNIX
project, as shown here for the Web Report add-on of the gvNIX project:

roo> osgi obr start --bundleSymbolicName org.gvnix.web.report.roo.addon

Target resource(s):

 gvNIX - Spring Roo - Addon - Web Report (0.6.0)

Deploying...done.

As the osgi obr start command downloads add-ons using URLs defined in the OBR file,
it may be possible that the download URL in OBR file uses http:// and not httppgp://.
This could be unsafe, as Spring Roo PGP signature verification is not required when using a
http:// URL for downloading add-ons.

See also
ff Refer to the Developing a simple add-on recipe to see how you can directly install an

add-on JAR file

Developing a simple add-on
Roo provides an add-on creator add-on which simplifies developing custom add-ons. You can
either create a simple or an advanced add-on using the commands exposed by the
add-on creator.

Chapter 7

375

A simple add-on is meant to add project dependencies in the pom.xml file or to add
configuration artifacts to the project. For instance, in Chapter 4, Web Application Development
with Spring Web MVC we saw that Roo installs JSP custom tags when scaffolding a Spring
Web MVC application. Instead of using Roo-installed JSP custom tags, you can create a simple
Roo add-on which replaces Roo-installed JSP custom tags with the tags that you have tailored
based on your application requirements.

An advanced add-on, on the other hand, is required in scenarios in which you want to create
new Java classes, interfaces, and AspectJ ITD files. For instance, a Portlet add-on will scaffold
controllers and JSPs from JPA entities.

In this recipe, we'll look at the addon create simple command, which creates a simple
Roo add-on that replaces some of the tags installed by Roo for a Spring MVC application with
custom tags. We'll also see how we can use the newly created add-on in a Roo project.

As mentioned in Chapter 1, Getting Started with Spring Roo, Roo is built on top of the Apache
Felix OSGi container and Roo add-ons represent OSGi bundles. As we go through Roo add-on
development recipes in this chapter, we'll touch upon some of the OSGi concepts you need to
know to understand how add-ons work.

Getting ready
Create a new directory C:\roo-cookbook\ch07-simple-add-on in your system and start
the Roo shell from the ch07-simple-add-on directory.

How to do it...
The following steps will demonstrate how to develop a simple add-on:

1.	 Execute the addon create simple command, as shown here, to create a com.
roo.addon.mysimple add-on project:
roo> addon create simple --topLevelPackage com.roo.addon.mysimple
--description "Mysimple addon" --projectName "Mysimple addon"

Created ROOT\pom.xml

Created ROOT\readme.txt

Created ROOT\legal

Created ROOT\legal\LICENSE.TXT

Created SRC_MAIN_JAVA\...\MysimpleCommands.java

Created SRC_MAIN_JAVA\com\...\MysimpleOperations.java

Created SRC_MAIN_JAVA\...\MysimpleOperationsImpl.java

Created SRC_MAIN_JAVA\...\MysimplePropertyName.java

Created ROOT\src\main\assembly\assembly.xml

Developing Add-ons and Removing Roo from Projects

376

Created SRC_MAIN_RESOURCES\com\roo\addon\mysimple\info.tagx

Created SRC_MAIN_RESOURCES\com\roo\addon\mysimple\show.tagx

2.	 Execute the perform eclipse command to create Eclipse IDE-specific configuration
files:
roo> perform eclipse

3.	 Now, import the com.roo.addon.mysimple Eclipse project into the Eclipse IDE.

How it works...
The addon create simple command creates a Roo add-on, which contributes commands to
the Roo shell and defines operations which are invoked in response to the execution of these
commands. The package argument specifies the top-level package of the add-on and is also
used as the name of the add-on project. The following classes and interfaces are generated by
the addon create simple command, and the <last-part-of-top-level-package>
refers to the text after the last index of '.' in the value of topLevelPackage argument. In
the case of our example, the topLevelPackage argument value is com.roo.addon.
mysimple, which makes value of <last-part-of-top-level-package> as mysimple:

ff <last-part-of-top-level-package> Commands.java class: defines methods
that are contributed to the Roo shell by the add-on

ff <last-part-of-top-level-package> Operations.java interface: defines
methods that contains the majority of processing logic corresponding to Roo
commands

ff <last-part-of-top-level-package> OperationsImpl.java class:
implements the *Operations.java interface

ff <last-part-of-top-level-package> PropertyName.java enum type:
defines the possible values for an argument passed to a Roo command

The add-on generated via the addon create simple command gives you the starting
point for custom add-on development. The generated add-on doesn't do much, except show
the classes and interfaces that you'll typically create in an add-on. You'll need to modify the
generated add-on to perform functions specific to your requirements.

Let's begin with looking at the Java classes and interfaces (created by addon create
simple command) which define commands and operations for the com.roo.addon.
mysimple add-on.

Chapter 7

377

MysimpleCommands class
The following code listing shows the MysimpleCommands class, which defines the commands
that the add-on contributes to the Roo shell:

import java.util.logging.Logger;
import org.apache.felix.scr.annotations.Component;
import org.apache.felix.scr.annotations.Reference;
import org.apache.felix.scr.annotations.Service;
import org.springframework.roo.shell.converters.StaticFieldConverter;

@Component
@Service
public class MysimpleCommands implements CommandMarker {
	
 private Logger log = Logger.getLogger(getClass().getName());

 @Reference private MysimpleOperations operations;
	
 @Reference private StaticFieldConverter
 staticFieldConverter;

 protected void activate(ComponentContext context) {
 staticFieldConverter.add(MysimplePropertyName.class);
 }

 protected void deactivate(ComponentContext context) {
 staticFieldConverter.remove(MysimplePropertyName.class);
 }
 ...
}

The following are some of the important points to note about the MysimpleCommands class:

ff MysimpleCommands class defines the Roo commands that the mysimple add-on
contributes to the Roo shell via @CliCommand annotated methods. We'll discuss
commands contributed by a mysimple add-on later in this section. When a Roo
command is executed from the shell, it results in execution of the corresponding @
CliCommand annotated method in the MysimpleCommands class.

Developing Add-ons and Removing Roo from Projects

378

ff MysimpleCommands class is annotated with @Component and @Service
Apache Felix annotations. @Component and @Service annotations have source-
level retention and are used by Apache Felix Maven SCR Plugin (http://
felix.apache.org/site/apache-felix-maven-scr-plugin.html) to
generate XML configuration required by OSGi's Service Component Runtime (SCR) -
responsible for managing the lifecycle of the MysimpleCommands component and
registering it as a service with OSGi service registry. Annotating MysimpleCommands
with @Component and @Service annotations ensures that you can access
MysimpleCommands object (using @Reference Apache Felix annotation) from other
Roo add-ons, if required.

ff MysimpleCommands class implements Roo's CommandMarker interface.
CommandMarker is a marker interface, that is, it doesn't declare any methods.
Roo looks for components implementing CommandMarker interface to identify
components that contribute commands to the Roo shell.

ff @Reference annotation of Apache Felix is like @Autowired annotation
of Spring, and is used to resolve service dependencies of a component.
MysimpleOperations and StaticFieldConverter are service dependencies
of the MysimpleCommands component. MysimpleOperations and
StaticFieldConverter services are accessible to MysimpleCommands via the @
Reference annotation because the classes implementing MysimpleOperations
and StaticFieldConverter interfaces are also annotated with @Service and @
Component annotations—making them accessible to other Roo add-ons.

ff MysimpleOperations defines methods that implement the major part of the
functionality performed by Roo commands contributed by the add-on. These methods
are invoked by the methods defined in the MysimpleCommands class.

ff StaticFieldConverter represents a Spring Converter that provides type-safety
for the argument values that are passed from the Roo shell to the corresponding @
CliCommand annotated methods in the MysimpleCommands class.

ff As Roo add-ons are deployed as OSGi bundles on the underlying Apache Felix
OSGi container, the activate and deactivate methods represent lifecycle
methods that are called by the OSGi container to activate and deactivate the Roo
add-on, respectively. In the case of the mysimple add-on, the activate method
adds MysimplePropertyName enum type to the StaticFieldConverter
implementation. In the deactivate method, the mysimple add-on removes
the MysimplePropertyName enum type from the StaticFieldConverter
implementation.

ff Now that we see the big picture about the role played by the MysimpleCommands
class in mysimple add-on, let's look at the methods in the MysimpleCommands class
that register commands with the Roo shell and process these Roo commands when
they are executed from the Roo shell.

Chapter 7

379

Defining Roo commands
The following code listing shows the methods of the MysimpleCommands class that define
Roo commands exposed by the mysimple add-on:

import org.springframework.roo.shell.CliCommand;
import org.springframework.roo.shell.CliOption;
...

@Reference private MysimpleOperations operations;

@CliCommand(value = "say hello",
 help = "Prints welcome message to the Roo shell")
public void sayHello(
 @CliOption(key = "name", mandatory = true,
 help = "State your name") String name,
 @CliOption(key = "countryOfOrigin", mandatory = false,
 help = "Country of orgin") MysimplePropertyName country) {

 log.info("Welcome " + name + "!");
 ...
}

@CliCommand(value = "web mvc install tags",
 help="Replace default Roo MVC tags used for scaffolding")
public void installTags() {
 .installTags();
}

In the preceding code, we can see that:

ff The @Reference annotation performs autowiring by type and binds the
reference to the service that implements the MysimpleOperations interface.
As MysimpleOperationsImpl implements the MysimpleOperations
interface, reference to the MysimpleOperationsImpl object is injected into the
MysimpleCommands instance.

Developing Add-ons and Removing Roo from Projects

380

ff @CliCommand is a method-level Roo annotation which identifies methods which
contribute commands to the Roo shell. The value attribute specifies the name of the
command that is contributed by the add-on to the Roo shell. For instance, the mysimple
add-on contributes say hello and web mvc install tags commands to the Roo
shell. The help attribute specifies the help text that is displayed against the command
when you execute the help Roo command. When a Roo command is executed from
the Roo shell, the corresponding @CliCommand annotated method is executed by
Roo. For instance, if you execute the say hello command from the Roo shell, Roo
executes the sayHello method of the MysimpleCommands class, which prints a
welcome message on the Roo shell using Java Logging API. Similarly, if you execute the
web mvc install tags command, Roo executes the installTags method of the
MysimpleCommands class. The installTags method invokes the installTags
method of the MysimpleOperationsImpl class, which copies info.tagx and
show.tagx tag files into your Roo project. Later in this recipe we'll look in detail at the
installTags method of the MysimpleOperationsImpl class.

ff The @CliOption method-parameter-level Roo annotation specifies the arguments
that a Roo command accepts. The key attribute specifies the name of the command
argument, the mandatory attribute specifies if the argument is mandatory or
optional, and the help attribute specifies the help text associated with the argument.
For instance, the say hello command accepts two arguments—name and
countryOfOrigin. The name argument is mandatory and countryOfOrigin is
optional.

The Java type of an argument can be a simple String or it could be a complex type.
In the case of the say hello command, the name argument is of type String and
countryOfOrigin is of type MysimplePropertyName. Roo provides converters for
common Java types, such as String, Date, Enum, Locale, boolean, and so on. You
can also create your custom converters and register them with Roo as an OSGi service.
Roo makes use of registered converters to convert the value specified for the argument
into the Java type expected by the method. In the case of the mysimple add-on, Roo
converts the value entered for the countryOfOrigin argument of the say hello
Roo command to the MysimplePropertyName type. We'll see later in this recipe that
using MysimplePropertyName (an enum) as the Java type of the countryOfOrigin
Roo argument provides tab-completion feature for the argument value. We saw earlier
that the MysimplePropertyName class is added to the StaticFieldConverter
instance in the activate method. This is to allow StaticFieldConverter to convert
the value of the countryOfOrigin argument in the say hello Roo command to the
MysimplePropertyName type.

Let's now look at how to make a Roo command unavailable to the Roo shell if certain pre-
conditions are not met.

Chapter 7

381

Making Roo commands unavailable
If certain pre-conditions are not met, you may want to make a Roo command unavailable
to the Roo shell. For instance, if you have not yet created a Roo project using the project
command, then Roo doesn't allow you to set up a JPA persistence provider using the
persistence setup command.

ff The @CliAvailabilityIndicator is a method-level Roo annotation that lets you
specify the pre-conditions that must be met for a Roo command to be available to
the Roo shell. The following code shows the methods in the MysimpleCommands
class that define the availability conditions for the say hello and web mvc install
tags commands:
import org.springframework.roo.shell.CliAvailabilityIndicator;
...

@Reference private MysimpleOperations operations;
...

@CliAvailabilityIndicator("say hello")
public boolean isSayHelloAvailable() {
 return true;
}

@CliAvailabilityIndicator("web mvc install tags")
public boolean isInstallTagsCommandAvailable() {
 return operations.isInstallTagsCommandAvailable();
}

In the code, @CliAvailabilityIndicator annotated methods define the availability
of the say hello and web mvc install tags commands. The value specified in the @
CliAvailabilityIndicator annotation identifies the name of the Roo command for
which the method is executed to determine the command's availability. For instance, the
isSayHelloAvailable method defines the availability of the say hello command and
the isInstallTagsCommandAvailable method defines the availability of the web mvc
install tags command. The return type of @CliAvailabilityIndicator annotated
methods is boolean and the method must be a public method which doesn't accept any
arguments. If the value returned by the @CliAvailabilityIndicator annotated method
is true, then it means that the corresponding command is available, else it is unavailable.

As the isSayHelloAvailable method always returns true, the say
hello command is always available to the Roo shell. On the other hand, the
isInstallTagsCommandAvailable method consults the MysimpleOperations
implementation to determine the availability of the web mvc install tags command.

Let's now look at the MysimpleOperationsImpl class, which defines the majority of the
logic executed when the mysimple add-on Roo commands are executed from the Roo shell.

Developing Add-ons and Removing Roo from Projects

382

The MysimpleOperations interface and MysimpleOperationsImpl
class
The MysimpleOperations interface defines three methods as described in the following
table:

Method Description
boolean
isInstallTagsCommandAvailable()

Checks if the tags sub-directory exists in the
SRC_MAIN_WEBAPP/WEB-INF directory of
your Roo project. Returns true if the directory
exists.

String getProperty(String) Accepts a system property as an argument
and returns its value.

void installTags() Copies info.tagx and show.tagx tag files
from the mysimple add-on to your Roo project.

The MysimpleOperationsImpl class implements the MysimpleOperations interface.
The methods defined in the MysimpleCommands class mainly delegate processing of logic
to the implementation of the MysimpleOperations interface. The following code shows the
MysimpleOperationsImpl class (methods have not been shown for brevity):

import org.springframework.roo.process.manager.FileManager;
import org.springframework.roo.project.ProjectOperations;

@Component
@Service
public class MysimpleOperationsImpl
 implements MysimpleOperations {
 private static final char SEPARATOR = File.separatorChar;

 @Reference private FileManager fileManager;

 @Reference private ProjectOperations projectOperations;
 ...
}

The MysimpleOperationsImpl class is annotated with @Component and @Service
Apache Flex annotations, which means OSGi's SCR is responsible for managing the lifecycle
of the MysimpleOperationsImpl component and registering it as a service with the OSGi
service registry. Like MysimpleCommands, you can access the MysimpleOperationsImpl
instance from other add-ons using the @Reference Apache Felix annotation.

Chapter 7

383

Roo provides many built-in services which simplify add-on development. FileManager and
ProjectOperations types represent services provided by Roo for managing files (like
creating, reading, updating files, undo capability, and so on) and performing actions on the
Roo project (like adding dependencies to the pom.xml file, updating project type, and so on),
respectively. FileManager service and ProjectOperations are provided by the Process
Manager and Project core modules of Roo, respectively. It is important to note that add-ons
are different from core modules in Roo. The core modules provide vital features of the Spring
Roo tool, like file system monitoring, registering commands with the Roo shell, and so on. Roo
commands provided by add-ons are executed by Spring Roo users for code generation but
Roo commands provided by core modules are primarily meant for accessing internal features
of Spring Roo, like obtaining metadata, setting polling speed, and so on.

We saw earlier that the isInstallTagsCommandAvailable method of
MysimpleOperations is invoked by the isInstallTagsCommandAvailable method
of the MysimpleCommands class to check the availability of the web mvc install tags
command. The following code shows the isInstallTagsCommandAvailable method of
MysimpleOperationsImpl:

public boolean isInstallTagsCommandAvailable() {
 return
 projectOperations.isProjectAvailable() &&
 fileManager.exists(projectOperations.getProjectMetadata()
 .getPathResolver().getIdentifier(Path.SRC_MAIN_WEBAPP,
 "WEB-INF" + SEPARATOR + "tags"));
}

In the code, the isInstallTagsCommandAvailable method makes use of
ProjectOperation services to check if a Roo project exists. The method also makes use of
the FileManager service to check if a tags sub-directory exists in the SRC_MAIN_WEBAPP/
WEB-INF directory of your Roo project. If a tags directory doesn't exist or you haven't yet
created a Roo project, then the method returns false. This means the web mvc install
tags Roo command is not available to the Roo shell if you haven't yet created a Roo project
which contains a tags sub-directory inside the SRC_MAIN_WEBAPP/WEB-INF directory.

We saw earlier that the installTags method of MysimpleCommands invokes the
installTags method of MysimpleOperations. The following code shows the
installTags method as implemented by the MysimpleOperationsImpl class:

import org.springframework.roo.process.manager.MutableFile;
import org.springframework.roo.project.Path;
import org.springframework.roo.project.PathResolver;
import org.springframework.roo.project.ProjectOperations;
import org.springframework.roo.support.util.FileCopyUtils;
import org.springframework.roo.support.util.TemplateUtils;
...
public void installTags() {

Developing Add-ons and Removing Roo from Projects

384

 PathResolver pathResolver =
 projectOperations.getProjectMetadata().getPathResolver();

 createOrReplaceFile(..., "info.tagx");
 createOrReplaceFile(..., "show.tagx");
}

private void createOrReplaceFile(String path, String fileName)
{
 String targetFile = path + SEPARATOR + fileName;

 MutableFile mutableFile = fileManager.exists(targetFile) ?
 fileManager.updateFile(targetFile) :
 fileManager.createFile(targetFile);
 try {
 FileCopyUtils.copy(TemplateUtils.getTemplate(getClass(),
 fileName), mutableFile.getOutputStream());
 } catch (IOException e) {
 throw new IllegalStateException(e);
 }
}

In the code, the installTags method copies info.tagx and show.tagx files from the
SRC_MAIN_RESOURCE/com/roo/addon/mysimple directory of the mysimple add-on to the
SRC_MAN_WEBAPP/WEB-INF/tags directory of your Roo project. The createOrReplace
method is the method, which is used by the installTags method to copy the files. The
following table describes the classes used by the installTags and createOrReplace
methods for copying tag files:

Class Description
PathResolver Used to locate files and directories in your Roo project. You can

use the ProjectOperations service to obtain reference to
PathResolver.

MutableFile Represents a file in your Roo project, which you want to create, modify,
or delete. You can use the FileManager service to obtain reference
to the MutableFile instance.

FileCopyUtils Utility class that provides methods for copying resources from the add-
on to your Roo project.

TemplateUtils Utility class that is used to resolve template files in the add-on project.
We'll discuss templates in detail later in this recipe.

Let's now look at the MysimplePropertyName enum type, which defines constants for the
countryOfOrigin argument of web mvc install tags command.

Chapter 7

385

MysimpleNameProperty enum type
The following code shows the MysimpleNameProperty enum type, which defines constants
for the countryOfOrigin argument value of the web mvc install tags command:

public enum MysimplePropertyName {
 AUSTRALIA("Australia"),
 UNITED_STATES("United States"),
 GERMANY("Germany"),
 NOT_SPECIFIED("None of your business!");

 private String propertyName;

 private MysimplePropertyName(String propertyName) {
 Assert.hasText(propertyName, "Property name required");
 this.propertyName = propertyName;
 }
 ...
}

In the code, constant AUSTRALIA is associated with value Australia, UNITED_
STATES is associated with value United States, and so on. We saw earlier that the
countryOfOrigin argument is of type MysimplePropertyName. We can only pass
String type values for an argument from the Roo shell, so what we should specify
as the value of the countryOfOrigin argument, and how it'll get converted to
MysimplePropertyName. When you enter a partial value for the countryOfOrigin
argument and press the Tab key, Roo internally refers to MysimplePropertyName to find
a matching constant. For instance, if you enter au as the value of the countryOfOrigin
argument, Roo attempts to find the constant that matches au in MysimpleNameProperty
and auto-completes the value. As the matching is case-insensitive, the value au of the
countryOfOrigin argument is completed by the Roo shell as AUSTRALIA.

Developing Add-ons and Removing Roo from Projects

386

The following diagram summarizes how a simple add-on works:

The figure shows that CommandMarker is an interface provided by Roo, and it is implemented
by the MysimpleCommands class. The MysimpleCommands class invokes methods of the
MysimpleOperationsImpl class to process the commands exposed by the mysimple
add-on. The MysimpleCommands and MysimpleOperationsImpl classes use services
provided by Roo to perform the desired functionality.

There's more...
In this section we'll look at:

ff How to locally deploy the mysimple add-on for testing Roo commands

ff How tab-completion support is implemented for Roo commands using constants
defined in an enum type and a Java class

ff How the @CliAvailabilityIndicator annotation can be used for a method to
define availability of multiple Roo commands exposed by the *Command class

ff What templates are in add-ons and how they are typically used

ff Plugins and dependency configuration in the pom.xml file of an add-on

Chapter 7

387

Deploying and running mysimple add-on
Once you have created an add-on, you may want to test its functionality, before making the
add-on available to other developers. In this section, we'll look at how to locally deploy and
test the mysimple add-on that we created using the create addon simple command.

To use the mysimple add-on, you need to convert it into an OSGi-compliant JAR bundle. To do
so, execute mvn clean install from the directory which contains your mysimple add-on
project, as shown here:

C:\roo-cookbook\ch07-simple-add-on> mvn clean install -Dgpg.
passphrase=<thephrase>

Here, <thephrase> is the password phrase that you provide for signing add-ons using GnuPG
(also referred to as GPG). Refer to the Setting up GnuPG for add-on development recipe for
information on how to set up GnuPG and create a password phrase for signing add-ons.

Executing the mvn clean install command creates a com.roo.addon.mysimple-
0.1.0.BUILD-SNAPSHOT.jar add-on OSGi bundle in the target directory of the mysimple
add-on project. Now, let's look at how to use the mysimple add-on in a Roo project.

Using the mysimple add-on in a Roo project
The following steps will demonstrate how to use an add-on:

1.	 Create a new directory C:\roo-cookbook\ch07-addon-test in your system and
start the Roo shell from this directory.

2.	 Execute the ch07_web_app.roo script to create a flight-app Spring Web MVC
project.

3.	 Execute the osgi start command to install and activate the mysimple add-on, as
shown here:
roo> osgi start --url file:///C:/roo-cookbook/ch07-simple-add-on/
target/com.roo.addon.mysimple-0.1.0.BUILD-SNAPSHOT.jar

Here the url argument specifies the location of the add-on OSGi bundle you want to
install and activate.

The osgi start command installs the mysimple add-on. This command is also
used to download and install Roo add-ons that are located on a website by specifying
the http:// or httppgp:// URL to the add-on JAR file as the value of the url
argument.

4.	 To verify that the add-on was successfully installed, type say at the Roo shell and
press the Tab key. Roo should autocomplete the command to say hello, as shown
here:
roo> say hello

http://www.gnupg.org/

Developing Add-ons and Removing Roo from Projects

388

5.	 Press the Tab key again to let Roo show the mandatory name argument of the say
hello command, as shown here:
roo> say hello --name

6.	 Enter Ron as the value of name argument and type -- followed by the Tab key to view
the optional arguments of the say hello command:
roo> say hello --name Ron --

7.	 As the only optional argument of the say hello command is countryOfOrigin, it
is displayed on the Roo shell:
roo> say hello --name Ron --countryOfOrigin

8.	 Now, press Tab again to view the argument values that can be passed to the
countryOfOrigin argument. You'll see the following output:
roo> say hello --name Ron --countryOfOrigin

AUSTRALIA GERMANY NOT_SPECIFIED UNITED_STATES

The output shows that countryOfOrigin can accept only one of the four possible
values: AUSTRALIA, GERMANY, NOT_SPECIFIED, and UNITED_STATES.

9.	 Enter aus as the value of the countryOfOrigin argument and press the Tab key to
let Roo perform autocompletion of the value, as shown here:
roo> say hello --name Ron --countryOfOrigin aus

roo> say hello --name Ron --countryOfOrigin AUSTRALIA

As shown, Roo performs autocompletion of value for the countryOfOrigin
argument. The possible values for the countryOfOrigin argument come from the
MysimplePropertyName enum type.

10.	 Now, press Enter to let the mysimple add-on process the say hello command. You'll
see an output like the following:
~.web.controller roo> say hello --name Ron --countryOfOrigin
AUSTRALIA

Welcome Ron!

Country of origin: Australia

It seems you are a running JDK 1.6.0_23

You can use the default JDK logger anywhere in your add-on to send
messages to the Roo shell

Chapter 7

389

When the say hello command is executed, it is processed by the sayHello
method of the MysimpleCommands class.

11.	 Now, execute web mvc install tags of the mysimple add-on to install the info.
tagx and show.tagx files to the flight-app Roo project:
roo> web mvc install tags

Created SRC_MAIN_WEBAPP\WEB-INF\tags\util\info.tagx

Updated SRC_MAIN_WEBAPP\WEB-INF\tags\form\show.tagx

The output of executing web mvc install tags shows that the info.tagx file
is added to the flight-app project and the show.tagx file is replaced. The web
mvc install tags command is processed by the installTags method of the
MysimpleCommands class, which delegates to the installTags method of the
MysimpleOperationsImpl class.

If you make modifications to the mysimple add-on and want to re-deploy it to Spring Roo, then
use the osgi update command, as shown here:

roo> osgi update --url file:///C:/roo-cookbook/ch07-simple-add-on/target/
com.roo.addon.mysimple-0.1.0.BUILD-SNAPSHOT.jar

If you want to uninstall the mysimple add-on, then use the osgi uninstall command, as
shown here:

roo> osgi uninstall --bundleSymbolicName com.roo.addon.mysimple

The bundleSymbolicName argument identifies the name of the add-on to be uninstalled
from Spring Roo. Once an add-on is uninstalled, Roo commands exposed by that add-on are
no longer available to the Roo shell.

Tab-completion feature with constant values
The MysimplePropertyName enum type defines constants, which represent the
possible values that an argument of a Roo command can accept. You are not limited to
using enum types to define constants for argument values. Let's say that instead of using
the MySimplePropertyName enum type we want to use a Country class that defines
constants for countries. The following code shows the Country class that can be used in
place of the MySimplePropertyName enum type:

public class Country {
 public static final Country AUSTRALIA =
 new Country("Australia");
 public static final Country NOT_SPECIFIED =
 new Country("None of your business!");
 public static final Country UNITED_STATES =
 new Country("United States");

Developing Add-ons and Removing Roo from Projects

390

 public static final Country GERMANY =
 new Country("Germany");

 private String countryName;

 public Country(String countryName) {
 this.countryName = countryName;
 }

 public String getCountryName() {
 return countryName;
 }
}

The preceding code shows that the Country class defines constants for each country
representing a possible value of the countryOfOrigin argument. Now, to use the Country
class instead of the MysimplePropertyName enum, all you need to do is to replace
references to it with Country in the MysimpleCommands class, as shown here:

public class MysimpleCommands implements CommandMarker {
 @Reference private StaticFieldConverter staticFieldConverter;

 protected void activate(ComponentContext context) {
 staticFieldConverter.add(Country.class);
 }

 protected void deactivate(ComponentContext context) {
 staticFieldConverter.remove(Country.class);
 }

 @CliCommand(value = "say hello",
 help = "Prints welcome message to the Roo shell")
 public void sayHello(..., @CliOption(key = "countryOfOrigin",
 mandatory = false,
 help = "Country of orgin") Country country) {

 log.info("Welcome " + name + "!");
 log.warning("Country of origin: " + (country == null ?
 Country.NOT_SPECIFIED.getCountryName() :
 country.getCountryName()));
 ...
 }
 ...
}

Chapter 7

391

The preceding code shows that the Country class must be added to the
StaticFieldConverter service and must be specified as the type of countryOfOrigin
argument in sayHello method.

Multiple command availability using @CliAvailabilityIndicator
In mysimple add-on, separate @CliAvailabilityIndicator annotated methods are used
to indicate availability of the say hello and web mvc install tags commands. If you want
to use a single @CliAvailabilityIndicator annotated method to indicate availability of
multiple Roo commands offered by the mysimple add-on, then specify the command array in
the @CliAvailabilityIndicator annotation. For instance, you can define the following
method in MysimpleCommands to indicate that the say hello and web mvc install tags
commands are always available to the Roo shell:

@CliAvailabilityIndicator({"say hello",
 "web mvc install tags"})
public boolean isCommandAvailable() {
 return true;
}

In the preceding code the @CliAvailabilityIndicator annotation specifies an array of
Roo commands (say hello and web mvc install tags) whose availability is checked by
the isCommandAvailable method.

Templates in Roo add-ons
Templates in an add-on project are resources that are copied to the Roo project when one or
more commands of the add-on are executed. For instance, when you execute the web mvc
install tags command, the info.tagx and show.tagx files are copied from add-on to
the Roo project. Templates can also be images, XML files, properties files, and so on, which
the add-on commands copy to the Roo project.

Templates are located inside the SRC_MAIN_RESOURCES directory of an add-on project.
For instance, in the case of the mysimple add-on, the info.tagx and show.tagx files are
located in the SRC_MAIN_RESOURCES/com/roo/addon/mysimple directory. Add-ons
access templates using the TemplateUtils class and then copy it to the Roo project using
the FileCopyUtils class. TemplateUtils defines the following two static methods which
are used to access templates in the add-on:

ff String getTemplatePath(Class<?> clazz, String templateFilename):
this method returns the path to the template file specified via the
templateFilename argument. The clazz argument's package information is used
to obtain the sub-directory inside the SRC_MAIN_RESOURCES directory that contains
the template file.

Developing Add-ons and Removing Roo from Projects

392

For instance, if the clazz argument represents a class whose package name is
com.roo.addon.mysimple and the templateFileName argument value is
show.tagx, the getTemplatePath method returns the path to the SRC_MAIN_
RESOURCES/com/roo/addon/mysimple/show.tagx file. You can also specify
the relative path to the template file as the value of the templateFilename
argument. For instance, if you specify the value of templateFilename as WEB-
INF/myconfig.xml, then the path to the template file becomes SRC_MAIN_
RESOURCES/com/roo/addon/mysimple/WEB-INF/myconfig.xml.

ff InputStream getTemplate(Class<?> clazz, String templateFilename):
this method returns java.io.InputStream to the template file. In the
case of the mysimple add-on, the createOrReplaceFile method of the
MySimpleOperationsImpl class makes use of the TemplateUtils class to
obtain InputStream to the info.tagx and show.tagx files.

In some add-ons, a template file may be an XML file which the add-ons need to modify before
copying it to the Roo project. To modify XML templates, Roo provides an XMLUtils class
which add-ons can use to modify the content of XML template files. Let's look at a scenario
that shows how add-ons can modify the content of an XML template file before copying it to
the Roo project.

The following config.xml file shows a Spring application context XML file which represents a
template XML file of an add-on:

beans xmlns="http://www.springframework.org/schema/beans"
xmlns:context="http://www.springframework.org/schema/context" ...>
 <context:component-scan base-package=""/>
 ...
</beans>

In the config.xml file, the <component-scan> element of Spring's context namespace
specifies the packages (via the base-package attribute) that are scanned by Spring.
The classes in these packages (and their sub-packages) that are annotated with the @
Component, @Service, and @Repository Spring annotations are auto-registered with
Spring's application context. As the add-on copies the config.xml file to a Roo project when
a Roo command is executed, the add-on doesn't know in advance the value that needs to
be specified for the base-package attribute. This is the reason why the value of the base-
package attribute is empty in the config.xml file.

The following code shows how an add-on can read the config.xml file, modify it, and then
write the modified config.xml to the Roo project:

import org.springframework.roo.metadata.MetadataService;
import org.springframework.roo.project.PathResolver;
import org.springframework.roo.project.ProjectMetadata;
import org.springframework.roo.support.util.XmlUtils;
import org.w3c.dom.Document;

Chapter 7

393

import org.w3c.dom.Element;
import java.io.ByteArrayOutputStream;
import java.io.OutputStreamWriter;

@Component
@Service
public class FileWriterOperationsImpl
 implements FileWriterOperations {
@Reference private MetadataService metadataService;
 ...
 public void copyApplicationContextXML() {
 ProjectMetadata projectMetadata =
 (ProjectMetadata) metadataService.get(ProjectMetadata.
 getProjectIdentifier());

 InputStream templateInputStream =
 TemplateUtils.getTemplate(getClass(),
 "config.xml");
 Document config;
 try {
 config = XmlUtils.getDocumentBuilder().
 parse(templateInputStream);
 } catch (Exception ex) {...}

 Element rootElement = (Element) config.getDocumentElement();

 XmlUtils.findFirstElementByName("context:component-scan",
 rootElement).setAttribute("base-package",
 projectMetadata.getTopLevelPackage().
 getFullyQualifiedPackageName());

 ByteArrayOutputStream outputStream =
 new ByteArrayOutputStream();

 XmlUtils.writeXml(XmlUtils.createIndentingTransformer(),
 outputStream,
 config);
 String xmlContent = outputStream.toString();

 FileCopyUtils.copy(xmlContent, new OutputStreamWriter(...));
 }
 ...
}

Developing Add-ons and Removing Roo from Projects

394

The FileWriterOperationsImpl class is similar to the MysimpleOperationsImpl
class of the mysimple add-on. It defines the copyApplicationContextXML method which
is responsible for copying the config.xml file from the add-on to the Roo project.

The MetadataService class represents a service provided by Roo for retrieving metadata
information for the Roo project, Java types, fields, methods, and so on. Metadata is obtained
from Roo's MetadataService using a metadata identification string, which has the
format: MID:<fully-qualified-class-name>#<instance-identification-
key>, where <fully-qualified-class-name> is the metadata type and <instance-
identification-key> is the Java type to which the metadata applies. If the metadata
is not associated with a Java type, then the metadata string format is: MID:<fully-
qualified-class-name>. If the metadata identification string has the format
MID:<fully-qualified-class-name>#<instance-identification-key>, then it
is referred to as an instance-level metadata identification string. If the metadata identification
string has the format MID:<fully-qualified-class-name>, then it is referred to
as a class-level metadata identification string. In the FileWriterOperationsImpl
class, ProjectMetadata represents a metadata type which holds the Roo project's
details, like project name, top-level package name, dependencies, and so on. The
getProjectIdentifier() method of ProjectMetadata returns a metadata
identification string for the Roo project and is then passed to MetadataService to retrieve
the ProjectMetadata instance.

The TemplateUtils class is used to obtain java.io.InputStream to the config.xml
file. The XmlUtils class is then used to parse the config.xml file to build the org.w3c.
dom.Document instance. The findFirstElementByName method of XmlUtils is used to
find the first occurrence of the <context:component-scan> element in config.xml. The
findFirstElementByName method returns an instance of org.w3c.dom.Element. The
setAttribute method of Element is used to set the value of the base-package attribute
of the <context:component-scan> element to the top-level package of the Roo project. The
writeXml method of XmlUtils writes the Document object to java.io.OutputStream.
The createIndentingTransformer method of XmlUtils creates a javax.xml.
transform.Transformer instance, which indents entries in the Document object by 4
characters. If you want to perform a custom transformation of XML, you can create a custom
Transformer implementation and pass it to the writeXml method of XmlUtils class.

Let's say you have a Roo project named flight-app whose top-level package is
com.sample.flightapp. Now assume that you execute a Roo command which
results in the execution of the copyApplicationContextXML method of the
FileWriterOperationsImpl class of the add-on. The copyApplicationContextXML
method will read the config.xml template file, set the base-package attribute of the
<context:component-scan> element to com.sample.flightapp and write the
modified config.xml to the flight-app Roo project.

Now let's look at some of the important configurations defined in the pom.xml file of the
mysimple add-on project.

Chapter 7

395

The pom.xml file
The pom.xml file of an add-on created via the addon create simple command contains
the following configurations:

ff The core Spring Roo modules on which a simple add-on depends is configured in
the pom.xml file. If your add-on makes use of other add-ons, then you'll need to
configure it in the pom.xml file.

ff By default Google Code is configured as the SCM (Software Configuration
Management) repository for the add-on.

ff The Maven assembly plugin is configured for packaging the add-on. You can execute
perform assembly Roo command or assembly:single goal of the assembly
plugin to package the add-on as a ZIP file. The assembly description, assembly.
xml, is located in the src/main/assembly folder of add-on.

ff The Maven release plugin is configured for releasing the add-on. Once you are done
with local testing of your add-on, you can release the add-on to Google Code (or the
SCM you configured in the pom.xml file) by executing the mvn release:prepare
release:perform Maven command.

ff The Maven GPG plugin is configured to sign add-on project artifacts using GnuPG.

ff The Maven bundle plugin is configured to package an add-on as an OSGi compliant
bundle. You'll find that the <packaging> element's value is specified as bundle in
the pom.xml file of add-on, which means that the add-on is packaged as an OSGi
bundle.

OSGi commands for troubleshooting
Once you have deployed an add-on, you can check if it was successfully installed or not by
using the following OSGi commands from the Roo shell:

ff osgi ps: lists the OSGi bundles and their status. If you have successfully installed
the mysimple add-on, then executing the osgi ps command should show the
mysimple add-on as active, as shown here:
[Active] [1] Mysimple addon (0.1.0.BUILD-SNAPSHOT)

ff osgi log: shows the OSGi container logs. If your add-on fails to install successfully,
you can refer to the container logs to troubleshoot installation issues.

ff osgi scr list: lists services and components registered with the OSGi container.
If you have successfully installed the mysimple add-on, then executing the osgi scr
list command should show commands and operation types, as shown here:
[181] [active] com.roo.addon.mysimple.MysimpleOperationsImpl

[180] [active] com.roo.addon.mysimple.MysimpleCommands

Developing Add-ons and Removing Roo from Projects

396

In the preceding output, numbers 180 and 181 denote the component IDs assigned
by the OSGi container to the MysimpleCommands and MysimpleOperations
types respectively.

ff osgi scr info: shows detailed information about a component or service
registered with the OSGi container. This command accepts a mandatory argument,
componentId. You can use this command to find unresolvable dependencies
of a component. If you have successfully installed the mysimple add-on, then
executing osgi scr info --componentId 180 (substitute the component ID of
MysimpleCommands as displayed by executing the osgi scr list command)
should show if the dependencies of MysimpleCommands were satisfied or not, as
shown here:

ID: 180

Name: com.roo.addon.mysimple.MysimpleCommands

State: active

Services: org.springframework.roo.shell.CommandMarker

...

Reference: staticFieldConverter

Satisfied: satisfied

Service Name: org.springframework.roo.shell.converters.
StaticFieldConverter

...

Reference: operations

Satisfied: satisfied

Service Name: com.roo.addon.mysimple.MysimpleOperations

The output shows that the StaticFieldConverter and MysimpleOperations
dependencies of MysimpleCommands were resolved successfully.

See also
ff Refer to the Developing an advanced add-on recipe to see how to develop an add-on,

which creates new Java classes, interfaces, and AspectJ ITD files

Developing an advanced add-on
If you want to generate Java code (classes and interfaces) and AspectJ ITDs in response to the
execution of one or more Roo commands, then you should create an advanced Roo add-on.

Chapter 7

397

Spring Roo treats both simple and advanced add-ons the same way. The distinction between
simple and advanced add-ons exists so that you can choose an appropriate add-on template
based on your custom add-on requirement. The add-on template created by the addon
create simple command is useful if you want to create a custom add-on meant for adding
project dependencies to the pom.xml file and for adding configuration artifacts to the project.
In this recipe we'll look at the addon create advanced command, which is useful if you
want to create a custom add-on to generate Java code and AspectJ ITD.

Getting ready
Create a new directory C:\roo-cookbook\ch07-advanced-add-on in your system and
start the Roo shell from the ch07-advanced-add-on directory.

How to do it...
The following steps will demonstrate how to create an advanced add-on:

1.	 Execute the addon create advanced command, as shown here, to create a com.
roo.addon.myadvanced add-on project:
..roo> addon create advanced --topLevelPackage com.roo.addon.
myadvanced

...

Created SRC_MAIN_JAVA\...\MyadvancedCommands.java

Created SRC_MAIN_JAVA\...\MyadvancedOperations.java

Created SRC_MAIN_JAVA\...\MyadvancedOperationsImpl.java

Created SRC_MAIN_JAVA\...\MyadvancedMetadata.java

Created SRC_MAIN_JAVA\...\MyadvancedMetadataProvider.java

Created SRC_MAIN_JAVA\...\RooMyadvanced.java

Created SRC_MAIN_RESOURCES\...\configuration.xml

The output only shows some of the important files generated by the Roo command
that we'll discuss them in this recipe.

2.	 Execute the perform eclipse command to create Eclipse-IDE specific configuration
files:
roo> perform eclipse

Now, import the com.roo.addon.myadvanced Eclipse project into Eclipse IDE.

Developing Add-ons and Removing Roo from Projects

398

How it works...
The addon create advanced command creates a Roo add-on template which you can use
as the starting point to create a custom Roo add-on which generates Java classes, interfaces
and AspectJ ITDs. The following classes and interfaces are generated by the addon create
advanced command. The <last-part-of-top-level-package> refers to the text after
the last index of '.' in the value of the topLevelPackage argument. In case of our example,
the topLevelPackage argument value is com.roo.addon.myadvanced, which makes
value of <last-part-of-top-level-package> as 'myadvanced'.

ff <last-part-of-top-level-package>Commands.java class: defines methods
that are contributed to the Roo shell by the add-on.

ff <last-part-of-top-level-package>Operations.java interface: defines
methods that contain the processing logic for commands defined in the *Commands.
java class.

ff <last-part-of-top-level-package>OperationsImpl.java class:
implements the *Operations.java interface.

ff <last-part-of-top-level-package>Metadata.java class: represents the
metadata associated with this add-on. In this class you write the code for creating
Java classes, interfaces, and AspectJ ITDs.

ff <last-part-of-top-level-package>MetadataProvider.java class:
creates the metadata associated with this add-on.

ff Roo<last-part-of-top-level-package>.java class: represents the Roo
annotation (similar to other Roo annotations like @RooEntity, @RooJavaBean,
@RooSolrSearchable, and so on) which triggers this add-on to generate Java
classes, interfaces, and AspectJ ITDs.

You may have noticed that a configuration.xml file is also generated in the SRC_MAIN_
RESOURCES\com\roo\addon\myadvanced directory. The configuration.xml file
defines dependencies that are added by the add-on to the pom.xml file of the Roo project.

The MyadvancedCommands class
The following code shows the methods of the MyAdvancedCommands class that defines Roo
commands exposed by the myadvanced add-on:

@Component
@Service
public class MyadvancedCommands implements CommandMarker {

 @Reference private MyadvancedOperations operations;

 @CliAvailabilityIndicator({ "myadvanced setup",
 "myadvanced add", "myadvanced all" })

Chapter 7

399

 public boolean isCommandAvailable() {
 return operations.isCommandAvailable();
 }

 @CliCommand(value = "myadvanced add",
 help = "Some helpful description")
 public void add(@CliOption(key = "type",
 mandatory = true,
 help = "The java type to apply this annotation to")
 JavaType target) {
 operations.annotateType(target);
 }

 @CliCommand(value = "myadvanced all",
 help = "Some helpful description")
 public void all() {
 operations.annotateAll();
 }

 @CliCommand(value = "myadvanced setup",
 help = "Setup Myadvanced addon")
 public void setup() {
 operations.setup();
 }
}

As the code shows, the myadvanced add-on registers the following commands with the Roo
shell:

ff myadvanced setup: performs the initial setup that is required for using the add-
on. When this command is executed, the myadvanced add-on updates project
dependencies in the pom.xml file.

ff myadvanced add: annotates the Java class (specified via the type argument of
the myadvanced add command) with the @RooMyadvanced annotation. In the
preceding code, you'll notice that the Java class passed to the add method is of
type JavaType. The JavaType represents a Roo-specific class that simplifies
accessing simple and package names of a Java type. Annotating a Java type with the
@RooMyAdvanced annotation kicks off code generation by the myadvanced add-on.

ff myadvanced all: finds all the Java types in the project that are annotated with the
@RooJavaBean annotation (soon we'll see how the myadvanced add-on does this),
and annotates them with the @RooMyAdvanced annotation. Annotating a Java type
with the @RooMyAdvanced annotation kicks off code generation by the myadvanced
add-on.

Developing Add-ons and Removing Roo from Projects

400

The MyAdvancedCommands class also defines a @CliAvailabilityIndicator annotated
method, which decides the availability of the myadvanced setup, myadvanced add, and
myadvanced all commands.

Let's now look at the MyadvancedOperationsImpl class, which provides implementations
for the commands exposed by the myadvanced add-on.

The MyadvancedOperationsImpl class
The following code shows the MyadvancedOperationsImpl class. The code doesn't
show the implementation of the annotateType and annotateAll methods, which will be
discussed in detail later in this section.

import ...roo.classpath.PhysicalTypeMetadataProvider;
import ...roo.classpath.TypeLocationService;
import ...roo.metadata.MetadataService;
import ...roo.model.JavaType;
import ...roo.project.ProjectOperations;
import ...roo.project.Dependency;
import ...roo.project.DependencyScope;
import ...roo.project.DependencyType;
import ...roo.project.Repository;
import ...roo.support.util.XmlUtils;
import org.w3c.dom.Element;

@Component
@Service
public class MyadvancedOperationsImpl implements
 MyadvancedOperations {

 @Reference private MetadataService metadataService;
 @Reference private PhysicalTypeMetadataProvider
 physicalTypeMetadataProvider;
 @Reference private ProjectOperations projectOperations;
 @Reference private TypeLocationService typeLocationService;
 ...

 public boolean isCommandAvailable() {
 return projectOperations.isProjectAvailable();
 }

 public void annotateType(JavaType javaType) { ... }

 public void annotateAll() { ... }
 public void setup() {

Chapter 7

401

 projectOperations.addRepository(
 new Repository("Myadvanced Roo add-on repository",
 "Myadvanced Roo add-on repository",
 "https://com-roo-addon-
 myadvanced.googlecode.com/svn/repo"));

 List<Dependency> dependencies = new ArrayList<Dependency>();
 dependencies.add(
 new Dependency("com.roo.addon.myadvanced",
 "com.roo.addon.myadvanced", "0.1.0.BUILD-SNAPSHOT",
 DependencyType.JAR, DependencyScope.PROVIDED));

 for (Element dependencyElement :
 XmlUtils. findElements("/configuration/batch/" +
 "dependencies/dependency",
 XmlUtils.getConfiguration(getClass()))) {
 dependencies.add(new Dependency(dependencyElement));
 }

 projectOperations.addDependencies(dependencies);
 }
}

The MyadvancedOperationsImpl class references the following services offered by Roo:

ff MetadataService: service provided by Roo for retrieving metadata information
for the Roo project, Java types, fields, methods, and so on. Refer to the Developing a
simple add-on recipe for more details.

ff PhysicalTypeMetadataProvider: a metadata provider that provides metadata
for a class, interface, enum, or annotation type. As we'll see later in this section, this
metadata provider is used by the MyadvancedOperationsImpl class to obtain
the metadata information about the Java type that needs to be annotated with the @
RooMyadvanced annotation.

Developing Add-ons and Removing Roo from Projects

402

ff ProjectOperations: this is used by the myadvanced add-on in the
isCommandAvailable and setup methods to check if a Roo project exists
and to modify the pom.xml file of the Roo project, as shown in the given code.
The isCommandAvailable method in the given code makes use of the
isProjectAvailable method of ProjectOperations to determine if a Roo
project has been created. The isCommandAvailable method is invoked by the @
CliAvailabilityIndicator annotated method of the MyadvancedCommands
class. The setup method in this code makes use of the addRepository method
of ProjectOperations to add repository information of the add-on to the Roo
project's pom.xml file. By default, the repository refers to the repo directory of the
Google Code project of the add-on (refer to the pom.xml file of the myadvanced add-
on). The setup method adds Roo project's dependency on the myadvanced add-on
and the dependencies defined in the configuration.xml (inside SRC_MAIN_
RESOURCES/com/roo/addon/myadvanced) file by using the addDependencies
method. The setup method makes use of the getConfiguration method of
XmlUtils class to load the configuration.xml file.

ff TypeLocationService: a Roo service that helps with locating Java types in
the Roo project. For instance, you can find Java types annotated with a particular
annotation using TypeLocationService.

ff The annotateType method of the MyadvancedOperationsImpl class is invoked
when the myadvanced add command is executed. The following code shows the
implementation of the annotateType method:
import ...roo.classpath.PhysicalTypeDetails;
import ...roo.classpath.PhysicalTypeMetadata;
import ...roo.classpath.PhysicalTypeMetadataProvider;
import ...roo.classpath.TypeLocationService;
import ...roo.classpath.details.MemberFindingUtils;
import ...roo.classpath.details.MutableClassOrInterfaceTypeDetails;
import ...roo.classpath.details.annotations.
AnnotationMetadataBuilder;
...
@Reference private MetadataService metadataService;
@Reference private PhysicalTypeMetadataProvider
 physicalTypeMetadataProvider;
...
public void annotateType(JavaType javaType) {
 String id =
 physicalTypeMetadataProvider.findIdentifier(javaType);

 PhysicalTypeMetadata physicalTypeMetadata =
 (PhysicalTypeMetadata) metadataService.get(id);

 PhysicalTypeDetails physicalTypeDetails =

Chapter 7

403

 physicalTypeMetadata.getMemberHoldingTypeDetails();

 MutableClassOrInterfaceTypeDetails mutableTypeDetails =
 (MutableClassOrInterfaceTypeDetails) physicalTypeDetails;

 if (MemberFindingUtils.getAnnotationOfType(
 mutableTypeDetails.getAnnotations(),
 new JavaType(RooMyadvanced.class.getName())) == null) {

 JavaType rooRooMyadvanced =
 new JavaType(RooMyadvanced.class.getName());
 AnnotationMetadataBuilder annotationBuilder =
 new AnnotationMetadataBuilder(rooRooMyadvanced);

 mutableTypeDetails.addTypeAnnotation(
 annotationBuilder.build()
);
 }
 }

The annotateType method accepts a JavaType argument. The JavaType
argument represents the Java type that you specified as the value of the type
argument of the myadvanced add command. The annotateType method
performs the following actions to annotate the JavaType argument with the @
RooMyadvanced annotation:

ff Obtains metadata identification string for the JavaType on which the annotation
needs to be applied. This is achieved by using the findIdentifier method of the
PhysicalTypeMetadataProvider class of Roo.

Let's say that the myadvanced add command is executed as shown here:
... roo> myadvanced add --type sample.roo.flightapp.domain.Flight

In the myadvanced add command, the value of the type argument is
sample.roo.flightapp.domain.Flight. This Java type is passed to the
annotateType method of the MyadvancedOperationsImpl class by Roo.
The metadata identification string returned by the findIdentifier method of
PhysicalTypeMetadataProvider is as follows:
MID:org.springframework.roo.classpath.PhysicalTypeIdentifier#SRC_
MAIN_JAVA?sample.roo.flightapp.domain.Flight

ff Uses the metadata identification string of the Java type to obtain the
PhysicalTypeMetadata object, which represents the metadata information about
the Java type.

Developing Add-ons and Removing Roo from Projects

404

ff Makes use of the getMemberHoldingTypeDetails method of
PhysicalTypeMetadata to retrieve PhysicalTypeDetails. The
PhysicalTypeDetails provides details of the Java type represented by
PhysicalTypeMetadata.

ff Casts the PhysicalTypeDetails into
MutableClassOrInterfaceTypeDetails. The
MutableClassOrInterfaceTypeDetails is used to modify the Java type
represented by it, which is the JavaType argument passed to the annotateType
method of MyadvancedOperationsImpl class. Amongst other things, you can use
the MutableClassOrInterfaceTypeDetails object to add or remove fields,
methods, and annotations from the Java type.

It is important to note that starting with Spring Roo 1.2.x, modifications to a
Java type are performed using Roo's TypeManagementService instead of
Roo's MutableClassOrInterfaceTypeDetails.

ff Uses MemberFindingUtils utility class to check if the Java type is already
annotated with the @RooMyadvanced annotation.

ff Uses AnnotationMetadataBuilder to create the @RooMyAdvanced annotation,
and adds it to the Java type using the MutableClassOrInterfaceTypeDetails
object.

ff The following code shows the annotateAll method of the
MyadvancedOperationsImpl class, which adds the @RooMyadvanced annotation
to all the Java types annotated with the @RooJavaBean annotation:
import ...roo.classpath.TypeLocationService;
import ...roo.model.JavaType;
...
public void annotateAll() {
 for (JavaType type:
 typeLocationService.findTypesWithAnnotation(
 new JavaType("org.springframework.roo.addon. " +
 "javabean.RooJavaBean"))) {
 annotateType(type);
 }
}

As shown in the preceding code, the annotateAll method makes use of
TypeLocationService to find Java types that are annotated with the @RooJavaBean
annotation, and then invokes the annotateType method to annotate Java types with the @
RooMyadvanced annotation.

Let's now look at how the myadvanced add-on triggers code generation using the
MyadvancedMetadataProvider class.

Chapter 7

405

The MyadvancedMetadataProvider class
The MyadvancedMetadataProvider class represents an OSGi component which
creates a MyadvancedMetadata instance when a Java type is annotated with the @
RooMyadvanced annotation. The MyadvancedMetadata in turn creates an AspectJ
ITD and adds a method and a field to it. In this section, we'll look at how Roo-generated
MyadvancedMetadataProvider is implemented.

The following code shows some of the methods of the MyadvancedMetadataProvider
class:

import org.apache.felix.scr.annotations.Component;
import org.apache.felix.scr.annotations.Service;
import org.osgi.service.component.ComponentContext;
import ...roo.classpath.PhysicalTypeIdentifier;
import ...roo.classpath.PhysicalTypeMetadata;
import ...roo.classpath.itd.AbstractItdMetadataProvider;
import ...roo.classpath.itd.ItdTypeDetailsProvidingMetadataItem;
import org.springframework.roo.model.JavaType;
import org.springframework.roo.project.Path;

@Component
@Service
public final class MyadvancedMetadataProvider extends
AbstractItdMetadataProvider {

 protected void activate(ComponentContext context) {
 metadataDependencyRegistry.
 registerDependency(PhysicalTypeIdentifier.
 getMetadataIdentiferType(), getProvidesType());

 addMetadataTrigger(
 new JavaType(RooMyadvanced.class.getName()));
 }

 protected void deactivate(ComponentContext context) {
 metadataDependencyRegistry.
 deregisterDependency(PhysicalTypeIdentifier.
 getMetadataIdentiferType(), getProvidesType());

 removeMetadataTrigger(
 new JavaType(RooMyadvanced.class.getName()));
 }
 ...
}

Developing Add-ons and Removing Roo from Projects

406

The preceding code shows that MyadvancedMetadataProvider extends Roo's
AbstractItdMetadataProvider abstract class. The AbstractItdMetadataProvider
class defines the common functionality required by add-ons that generate AspectJ ITDs. The
activate method is invoked by the Apache Felix OSGi container when the myadvanced add-
on is installed.

Dependency registration and unregistration
In Chapter 4, Web Application Development with Spring Web MVC you saw that if you redefine
a method of the *_Roo_Controller.aj file in the *Controller.java class, then Roo
automatically removes that method from the *_Roo_Controller.aj file. We also saw that
when you modify a @RooEntity or @RooWebScaffold annotation, it results in modification
of corresponding AspectJ ITDs. Roo maintains dependency between Java types (which could
be a class, interface, or a @Roo* annotation) of the Roo project using metadata identification
strings, making it possible for Roo to manage code contained in AspectJ ITD when changes
are made to a Java type.

Let's now look closely at the following code snippet in the activate method of
MyadvancedMetadataProvider class:

metadataDependencyRegistry.
 registerDependency(PhysicalTypeIdentifier.
 getMetadataIdentiferType(), getProvidesType());

The metadataDependencyRegistry is a protected attribute defined in Roo's
AbstractItdMetadataProvider class and is of type MetadataDependencyRegistry.
The MetadataDependencyRegistry instance keeps track of dependencies between
metadata identification strings. The registerDependency method is used to specify
dependency between metadata identification strings. PhysicalTypeIdentifier represents
a Roo class that creates a metadata identification string for a Java type in Roo project.

In the previous code, the PhysicalTypeIdentifier.getMetadataIdentiferType()
code returns MID:org.springframework.roo.classpath.
PhysicalTypeIdentifier, and MyadvancedMetadata.
getMetadataIdentiferType() returns MID:com.roo.addon.myadvanced.
MyadvancedMetadata. As both the metadata identification strings don't contain the Java
type to which they apply, they are class-level metadata identification strings. You can create
dependencies between class level-or instance-level metadata identification strings.

The MID:org.springframework.roo.classpath.PhysicalTypeIdentifier
represents the upstream dependency and MID:com.roo.addon.myadvanced.
MyadvancedMetadata represents the downstream dependency. When changes are made
to an upstream dependency, Roo takes care of notifying all the downstream dependencies,
which results in recreating the downstream metadata. The MetadataProviders
are responsible for handling the notification. So, in the case of the myadvanced
add-on, when a Java type (represented by MID:org.springframework.roo.
classpath.PhysicalTypeIdentifier) in the Roo project is changed, it notifies the
MyadvancedMetadataProvider instance.

Chapter 7

407

The metadata dependencies specified in the activate method should be unregistered in the
deactivate method of the metadata provider. The metadata dependencies are unregistered
using the deregisterDependency method of the MetadataDependencyRegistry
instance, as shown here for MyadvancedMetadataProvider:

protected void deactivate(ComponentContext context) {
 metadataDependencyRegistry.
 deregisterDependency(PhysicalTypeIdentifier.
 getMetadataIdentiferType(), getProvidesType());

 ...
}

Registering and unregistering metadata creation trigger
Metadata dependency registration ensures that downstream dependencies of a metadata
are notified when changes occur in the upstream dependencies. To specify what triggers
creation of metadata, metadata provider makes use of the addMetadataTrigger
method of the AbstractItdMetadataProvider class, as shown here for
MyadvancedMetadataProvider:

protected void activate(ComponentContext context) {
 metadataDependencyRegistry.
 registerDependency(PhysicalTypeIdentifier.
 getMetadataIdentiferType(), getProvidesType());

 addMetadataTrigger(
 new JavaType(RooMyadvanced.class.getName()));
 }

In the preceding code, the addMetadataTrigger method accepts RooMyadvanced Java
type. It means that whenever a Java type is annotated with @RooMyadvanced annotation,
MyadvancedMetadataProvider will create an instance of MyadvancedMetadata.

The metadata trigger is removed by the metadata provider in the deactivate method, as
shown here for the MyadvancedMetadataProvider class:

protected void deactivate(ComponentContext context) {
 ...
 removeMetadataTrigger(
 new JavaType(RooMyadvanced.class.getName()));
 }

Let's now look at how Spring Roo works behind the scenes to generate code when a Java type
is annotated with the @RooMyadvanced annotation.

Developing Add-ons and Removing Roo from Projects

408

Code generation functionality of add-ons
The following sequence diagram shows how the myadvanced add-on processes the
myadvanced add --type sample.roo.flightapp.domain.Flight command, where
the Flight class represents a JPA entity in your Roo project to which you want to add the @
RooMyadvanced annotation.

The figure shows that when the myadvanced add command is executed, the add method
of MyadvancedCommands instance is invoked and the type argument value is passed to
the add method. You may notice that the add method accepts an argument of JavaType
type, but we didn't register a custom converter with the Roo shell for it. This is because Roo
is responsible for converting the type argument value to JavaType type. The JavaType
contains the simple and package name information about the type argument value. In
our case, JavaType argument passed to the add method contains simple and package
name information about the Flight class that we specified as value of the type argument.
The add method of MyadvancedCommands invokes the annotateType method of the
MyadvancedOperationsImpl class and passes the JavaType instance containing
information about the Flight class. The annotateType method annotates the Flight.
java file with the @RooMyadvanced annotation.

Annotating Flight.java with the @RooMyadvanced annotation results in issuing a
notification to the file monitor service of Roo that the Flight.java file has been modified.
The following sequence diagram shows how file monitor service of Roo notifies change in
Flight.java file to MetadataDependencyRegistry:

Chapter 7

409

The preceding figure shows that the file monitor service notifies
PhysicalTypeMetadaProvider that the Flight.java file has been modified. As
discussed earlier, PhysicalTypeMetadaProvider provides metadata for a Java type
in the Roo project. PhysicalTypeMetadaProvider is notified when Flight.java is
modified because PhysicalTypeMetadaProvider is a registered listener for file change
events. After receiving the file change notification, PhysicalTypeMetadaProvider
asks MetadataDependencyRegistry instance to inform any registered downstream
dependencies. We saw earlier that MyadvancedMetadataProvider's activate
method registers MID:com.roo.addon.myadvanced.MyadvancedMetadata as
the downstream dependency of MID:org.springframework.roo.classpath.
PhysicalTypeIdentifier. The MID:org.springframework.roo.classpath.
PhysicalTypeIdentifier represents a class-level metadata identification string created
by PhysicalTypeMetadataProvider and represents a Java type in the Roo project. So,
the change in Flight.java results in notifying the metadata provider that creates the
MID:com.roo.addon.myadvanced.MyadvancedMetadata metadata identification
string, which is MyadvancedMetadataProvider.

The following sequence diagram shows how MetadataDependencyRegistry notifies
MyadvancedMetadataProvider to create MyadvancedMetadata:

Developing Add-ons and Removing Roo from Projects

410

In the preceding figure, MetadataProvider represents an interface that is implemented
by all the metadata providers in Roo, and MetadataItem represents the metadata that is
created by MetadataProvider implementations. In the case of the myadvanced add-on,
MyadvancedMetadataProvider implements the MetadataProvider interface and
MyadvancedMetadata implements the MetadataItem interface.

The previous sequence diagram shows that MetadataDependencyRegistry
notifies MetadataService to inform the MetadataProvider (which is
MyadvancedMetadataProvider in the case of the myadvanced add-on) of the downstream
dependency.

MetadataService is a central service in Roo which knows about
all the metadata providers in the system. You don't need to register
your metadata providers with MetadataService because it can
automatically detect an OSGi service as a metadata provider if it
implements the MetadataProvider interface.

A MetadataItem (which is MyadvancedMetadata in the case of the myadvanced add-
on) is created when MetadataProvider (which is MyadvancedMetadataProvider in
the case of the myadvanced add-on) of the downstream dependency is notified, as we'll see
shortly. MetadataService makes use of the MetadataIdentificationUtils utility
class to obtain the MetadataProvider class corresponding to the metadata identification
string of the downstream dependency. Once the MetadataProvider for the downstream
dependency is obtained, MetadataService notifies the MetadataProvider.

The MetadataProvider needs to know the Java type for which the MetadataItem
is to be created. For instance, in the case of the myadvanced add-on example,
MyadvancedMetadataProvider needs to know that MyadvancedMetadata needs
to be created corresponding to the Flight.java class. MetadataProvider converts
class-level MID (MID:com.roo.addon.myadvanced.MyadvancedMetadata) of
downstream dependency into instance-level MID (MID:com.roo.addon.myadvanced.
MyadvancedMetadata #SRC_MAIN_JAVA?sample.roo.flightapp.domain.
Flight) to identify the Java type for which the MetadataItem is to be created. When the
MetadataItem instance is created, it results in code generation.

Now let's look at some of the methods of MyadvancedMetadataProvider, which play an
important role in creating the MyadvancedMetadata instance:

import ...roo.classpath.itd.ItdTypeDetailsProvidingMetadataItem;
...
public final class MyadvancedMetadataProvider
 extends AbstractItdMetadataProvider {
 ...
 protected ItdTypeDetailsProvidingMetadataItem
 getMetadata(String metadataIdentificationString,
 JavaType aspectName,
 PhysicalTypeMetadata governorPhysicalTypeMetadata,

Chapter 7

411

 String itdFilename) {

 return new MyadvancedMetadata(metadataIdentificationString,
 aspectName, governorPhysicalTypeMetadata);
 }

 public String getItdUniquenessFilenameSuffix() {
 return "Myadvanced";
 }

 protected String getGovernorPhysicalTypeIdentifier(
 String metadataIdentificationString) {

 JavaType javaType = MyadvancedMetadata.
 getJavaType(metadataIdentificationString);

 Path path = MyadvancedMetadata.
 getPath(metadataIdentificationString);

 return PhysicalTypeIdentifier.createIdentifier(javaType,
 path);
 }

 protected String createLocalIdentifier(JavaType javaType,
 Path path) {

 return MyadvancedMetadata.createIdentifier(javaType, path);
 }

 public String getProvidesType() {
 return MyadvancedMetadata.getMetadataIdentiferType();
 }
}

Developing Add-ons and Removing Roo from Projects

412

The MyadvancedMetadataProvider class extends the
AbstractItdMetadataProvider abstract class and makes use of the template method
design pattern. The methods shown in the preceding code are invoked by the concrete
methods defined in the AbstractItdMetadataProvider class. The following table
describes the purpose of each of these methods:

Method name Description
getMetadata This method is responsible for creating

and returning the MetadataItem
(which is MyadvancedMetadata in
the case of the myadvanced add-on).

getItdUniquenessFilenameSuffix This method returns the suffix that
should be used for naming the AspectJ
ITD file. As this method returns
"Myadvanced", the name of the AspectJ
ITD created by this add-on is *_Roo_
Myadvanced.aj.

getGovernorPhysicalTypeIdentifier Returns the instance-level MID of the
Java type that receives the methods
defined by the *_Roo_Myadvanced.
aj AspectJ ITD file. In our example,
Flight is the Java type that
receives methods defined by *_Roo_
Myadvanced.aj.

getProvidesType This method returns a class-level MID
that identifies the MetadataItem
which this MetadataProvider
implementation offers. This method
delegates the responsibility of
creating MID to the MetadataItem
implementation class.

createLocalIdentifier Creates a local instance-level MID for the
specified Java type and path arguments.
This method delegates the creation of
MID to the MetadaItem implementation
class.

The getMetadata method is responsible for creating the MyadvancedMetadata by passing
information that MyadvancedMetadata is dependent upon. The following table describes
the arguments passed to the getMetadata method:

Chapter 7

413

Method argument Description
metadataIdentificationString This represents instance-level metadata for

MyadvancedMetadata. As Flight.java
file was annotated with @RooMyadvanced
annotation, the value of this argument is:
MID:com.roo.addon.myadvanced.
MyadvancedMetadata

#SRC_MAIN_JAVA?sample.roo.
flightapp.domain.F

Light. This value is created by the superclass
of the metadata provider by invoking the
createLocalIdentifier method and
getProvidesType methods.

aspectName This represents a JavaType corresponding to
the AspectJ ITD file created by the add-on.

governorPhysicalTypeMetadata Represents the PhysicalTypeMetadata
instance that identifies the Java type
corresponding to which the AspectJ ITD file
is to be created. As the Flight.java file
was annotated with @RooMyadvanced
annotation, this argument represents the
PhysicalTypeMetadata corresponding to
Flight.java class.

itdFilename This represents the name of the AspectJ ITD
file that MyadvandedMetadata creates. The
name of this file is derived by the superclass
of the metadata provider by invoking the
getItdUniquenessFilenameSuffix
method. As the Flight.java file was
annotated with the @RooMyadvanced
annotation, the name of the file is Flight_
Roo_Myadvanced.aj.

Now, let's look at the MyadvancedMetadata class that is responsible for creating the
AspectJ ITD file and adding methods and fields to it.

The following code shows the MyadvancedMetadata class:

public class MyadvancedMetadata
 extends AbstractItdTypeDetailsProvidingMetadataItem {

 private static final String PROVIDES_TYPE_STRING =
 MyadvancedMetadata.class.getName();

 private static final String PROVIDES_TYPE =

Developing Add-ons and Removing Roo from Projects

414

 MetadataIdentificationUtils.create(PROVIDES_TYPE_STRING);

 public MyadvancedMetadata(String identifier,
 JavaType aspectName,
 PhysicalTypeMetadata governorPhysicalTypeMetadata) {

 super(identifier, aspectName, governorPhysicalTypeMetadata);
 builder.addField(getSampleField());
 builder.addMethod(getSampleMethod());
 itdTypeDetails = builder.build();
 }

 private FieldMetadata getSampleField() {
 ...
 }

 private MethodMetadata getSampleMethod() {
 ...
 }

 ...
 public static final String getMetadataIdentiferType() {
 return PROVIDES_TYPE;
 }
 ...
}

The preceding code shows that MyadvancedMetadata defines two constants and a couple
of methods. The PROVIDES_TYPE_STRING constant refers to the fully-qualified name of the
MyadvancedMetadata class and PROVIDES_TYPE refers to the metadata type provided by
the MyadvancedMetadata class. The value of PROVIDES_TYPE is MID:com.roo.addon.
myadvanced.MyadvancedMetadata.

MyadvancedMetadata extends the AbstractItdTypeDetails
ProvidingMetadataItem abstract class, which provides the common functionality
for add-ons that want to create an AspectJ ITD file corresponding to a Java type. The
constructor of MyadvancedMetatada makes use of information passed by the
MyadvancedMetadataProvider to create the AspectJ ITD file. To simplify creation
of AspectJ ITD file, Roo's ItdTypeDetailsBuilder instance (represented by the
builder variable in the constructor) is used. The addField and addMethod methods of
ItdTypeDetailsBuilder are used to add information about fields and methods that form
part of the AspectJ ITD. The getSampleField and getSampleMethod methods in the
above code return FieldMetadata and MethodMetadata, which represent the field and
method to be added to the AspectJ ITD.

Chapter 7

415

The following code shows the getSampleField method of MyadvancedMetadata class:

private FieldMetadata getSampleField() {
 int modifier = 0;

 FieldMetadataBuilder fieldBuilder =
 new FieldMetadataBuilder(getId(),
 modifier,
 new ArrayList<AnnotationMetadataBuilder>(),
 new JavaSymbolName("sampleField"),
 JavaType.STRING_OBJECT);

 return fieldBuilder.build();
 }

Roo's FieldMetadataBuilder is used to create a FieldMetadata instance. The following
are the details of the arguments passed to the FieldMetadataBuilder constructor:

ff getId(): identifies the Java type into which the field will be introduced by the
AspectJ ITD

ff modifier: represents the access modifier for the field

ff new ArrayList<AnnotationMetadataBuilder>(): contains information about
the annotations that must be added to the field

ff new JavaSymbolName("sampleField"): name of the field

ff JavaType.STRING_OBJECT: Java type of the field

Similarly, the getSampleMethod method of MyadvancedMetadata makes use of Roo's
MethodMetadataBuilder to create an instance of MethodMetadata.

Now that you know how the myadvanced add-on works, you can use it in your Roo project the
same way we used the mysimple add-on.

There's more...
Roo provides a metadata for type command to view metadata for a Java type. You can also
use the metadata trace command to see how metadata event notifications happen.

See also
ff Refer to the Developing a simple add-on recipe to see how to develop a simple add-on

Developing Add-ons and Removing Roo from Projects

416

Converting non-OSGi JDBC drivers into
OSGi-compliant bundles	

In Chapter 3, Advanced JPA Support in Spring Roo we discussed that the database reverse
engineering process of Roo requires the JDBC driver for the database to be available as
an OSGi bundle. In this recipe, we'll look at how to convert H2 database's JDBC driver into
a OSGi bundle using the addon create wrapper command and use it in database
reverse engineering.

Getting ready
Download the H2 database bundled as a ZIP file from , and unzip it to the C:\roo-
cookbook\ directory. Extracting the H2 database ZIP file will create a directory named h2
inside the C:\roo-cookbook directory.

How to do it...
The following steps will demonstrate how to convert non-OSGi JDBC drivers into OSGi
compliant bundles:

1.	 Go to the C:\roo-cookbook\h2\bin directory and double-click the h2.bat
file. This will start the H2 database and also open H2 Console in your default web
browser, as shown in the following screenshot:

Chapter 7

417

Make sure that you select Generic H2 (Server) as the value of the Saved Settings
option and the value of the JDBC URL field is jdbc:h2:tcp://localhost/~/
myflightappdb. Click the Connect button to log in to the H2 Console. This will
automatically create the myflightappdb in H2 database.

2.	 After logging in to H2 Console, you will see the myflightappdb details, as shown
here:

Now, paste the following SQL statement in the text area shown in the given
screenshot and execute it by clicking the Run (Ctrl+Enter) button:
DROP TABLE IF EXISTS 'customer_tbl';
CREATE TABLE IF NOT EXISTS 'customer_tbl' (
 'cust_id' int(10) NOT NULL,
 'cust_dob' date NOT NULL,
 'cust_name' varchar(50) NOT NULL,
 PRIMARY KEY ('cust_id','cust_dob')
)

Executing the SQL statement will create the CUSTOMER_TBL table in the
myflightappdb database.

3.	 Create the C:\roo-cookbook\ch07-recipes\driver directory and copy
the h2*.jar file from the C:\roo-cookbook\h2\bin directory to the driver
directory.

4.	 Open the command prompt and go to C:\roo-cookbook\ch07-recipes\driver
and execute the maven install command:
C:\roo-cookbook\driver> mvn install:install-file
-Dfile=h2-1.3.160.jar -DgroupId=com.h2database -DartifactId=h2
-Dversion=1.3.60 -Dpackaging=jar

Here, it is assumed that H2 database driver JAR file is the h2-1.3.160.jar file.

5.	 Create the C:\roo-cookbook\ch07-recipes\wrapper directory and start the
Roo shell from it.

Developing Add-ons and Removing Roo from Projects

418

6.	 Execute the addon create wrapper command to create a Roo add-on that wraps
the h2-1.3.160.jar maven artifact:
... roo> addon create wrapper --topLevelPackage com.h2.roo.
jdbc --groupId com.h2database --artifactId h2 --version 1.3.60
--vendorName H2 --licenseUrl http://www.h2database.com

7.	 Modify the pom.xml file and add the following <Import-Package> element to the
configuration of Maven Bundle Plugin:
<instructions>
 <Import-Package>javax.servlet.*;resolution:=optional,
 org.apache.lucene.*;resolution:=optional,
 org.slf4j;resolution:=optional,*
 </Import-Package>
 ...
</instructions>

8.	 Now, exit the Roo shell and execute the following maven goal to generate the OSGi
version of the H2 database driver:
C:\roo-cookbook\ch07-recipes\wrapper> mvn bundle:bundle

This maven goal creates the OSGi-compliant H2 database driver in the target
directory of the project with name com.h2.roo.jdbc.h2-1.3.60.0001.jar.

9.	 Create the C:\roo-cookbook\ch07-recipes\flight-app directory and start
the Roo shell from it.

10.	 Create a new Roo project inside the flight-app directory:
... roo> project --topLevelPackage sample.roo.flightapp --java 6
--projectName flight-app

11.	 Set up Hibernate as the persistence provider for the myflightappdb H2 database:
... roo> persistence setup --provider HIBERNATE --database H2_IN_
MEMORY --databaseName myFlightAppDB

12.	 Set 'sa' as the username to use for connecting with the H2 database:
... roo> database properties set --key database.username --value
sa

13.	 Now, execute the perform eclipse command to create Eclipse IDE-specific
configuration files:
... roo> perform eclipse

14.	 Import the flight-app project into Eclipse IDE and modify the database.
url property in the SRC_MAIN_RESOURCES/META-INF/spring/database.
properties file to point to the myflightappdb H2 database, as shown here:
database.password=
database.url=jdbc:h2:tcp://localhost/~/myflightappdb

Chapter 7

419

database.username=sa
database.driverClassName=org.h2.Driver

15.	 Now, install the OSGi-compliant H2 database driver that we created earlier:
... roo> osgi start --url file:///C:/roo-cookbook/ch07-recipes /
wrapper/target/com.h2.roo.jdbc.h2-1.3.60.0001.jar

16.	 Execute database reverse engineer command to instruct Roo to create the JPA
entity corresponding to the CUSTOMER_TBL in the H2 database:
roo> database reverse engineer --schema PUBLIC

How it works...
The addon create wrapper command creates an add-on that wraps a Maven artifact. The
Apache Felix Maven Bundle Plugin's bundle goal creates an OSGi-compliant JAR for the
add-on project.

The <Import-Package> element specifies the packages that are required or optional for the
bundle.

See also
ff Refer to the Creating entities from database recipe of Chapter 3 to see how the

database reverse engineer command works

Removing Roo with push-in refactoring
Spring Roo is responsible for managing the AspectJ ITDs in a Roo project. As AspectJ ITDs
are managed by Roo, you must not modify them. In some situations you may want to modify
the AspectJ ITD files to serve your application's requirements. For instance, you may want to
modify implementation of a method in an AspectJ ITD file.

In the Sending emails using JavaMail API recipe of Chapter 6, Emailing, Messaging, Spring
Security, Solr, and GAE we copied the create(...) method from FlightController_
Roo_Controller.aj file to FlightController.java file because we wanted to modify
the implementation of create(...) method. If Roo finds a method defined in the Java source
file, it removes the method with the same signature from the corresponding AspectJ ITD file.
So, when we copied the create(...) method to the FlightController.java file, Roo
removed the create(...) method from the FlightController_Roo_Controller.aj
file. The copy paste approach can be quite daunting if you need to do it at many places. In this
recipe, we'll look at how you can use Eclipse IDE to pushin specific methods and attributes to the
corresponding Java source file.

Developing Add-ons and Removing Roo from Projects

420

Getting ready
If you are using any IDE other than STS, then ensure that you install AJDT (AspectJ
Development Tools).

Create directory C:\roo-cookbook\ch07-recipes\push-in and copy the ch07_web_
app.roo script. Now, start the Roo shell from the push-in directory and execute the script
using the script command. Executing the script will create a flight-app Spring Web MVC
application.

How to do it...
The following steps will demonstrate how to remove Roo:

1.	 Import the flight-app Roo project into your Eclipse IDE.

2.	 Select the Flight_Roo_ToString.aj AspectJ ITD file from Project Explorer, as
shown here:

3.	 When you open the Flight_Roo_ToString.aj file, in the Outline view of Eclipse
IDE you'll see the details of methods and attributes defined in the Flight_Roo_
ToString.aj file, as shown here:

Chapter 7

421

4.	 Now, right-click the Flight.toString() : String element in the Outline view
and select the Refactor option, as shown here:

Developing Add-ons and Removing Roo from Projects

422

5.	 Selecting the Refactor | Push In... option shows the following dialog box:

6.	 The dialog box shows the following information:

�� Declaring aspect: this shows the name of the AspectJ ITD file

�� Intertype Name: this shows the declaration in AspectJ ITD that we
selected from the Outline view

�� Flight: this shows the name of the Java class which is the target of the
declaration

7.	 Selecting the Preview button shows the changes that will be made to the target
Flight class if you continue with this refactoring, as shown here:

Chapter 7

423

This screenshot shows that the toString method defined in Flight_To_String.
aj file will be added to Flight.java file. Also, notice that if we continue with
this refactoring it will result in deletion of Flight_Roo_ToString.aj file. If you
want to keep the empty Flight_Roo_ToString.aj file, then uncheck Delete
...Flight_Roo_ToString.aj option.

8.	 Click OK button to complete the refactoring. You'll now see, that the toString
method defined in Flight_Roo_ToString.aj AspectJ ITD has been moved to
Flight.java file.

9.	 Optionally, if you want to revert back the refactoring, simply select the Edit | Undo
option of Eclipse IDE.

How it works...
Push-in refactoring is like any other refactoring mechanism provided by IDEs. Based on the
AspectJ ITD declaration, IDE figures out the target of the declaration, and moves the code
from the ITD file to the target Java source file.

Developing Add-ons and Removing Roo from Projects

424

Note that if you are completely removing Roo from your project, then you also need to
remove dependency on Roo from the pom.xml file of your project and remove all the @Roo*
annotations (and corresponding import statements) from your project.

There's more...
Let's see how you can push all the declarations in a single AspectJ ITD file to the target Java
source file, and how you can push all the declarations in all the AspectJ ITD files in the Roo
project to their respective target Java source files.

Push-in refactoring—single AspectJ ITD file
To push all the declarations from a single AspectJ ITD file to the target Java source file, right-
click the AspectJ ITD file from the Project Explorer or right-click the element in Outline view
that represents the AspectJ ITD type, and select Refactor | Push In option.

The following screenshot shows the dialog box shown when you select Flight_Roo_
JavaBean.aj ITD file of the flight-app project from Project Explorer and select the
Refactor | Push In option.

This screenshot shows that all the declarations in the Flight_Roo_JavaBean.aj file now
form part of the refactoring process.

Push-in refactoring – across the whole project
To perform push-in refactoring across the whole project, select the project from Project
Explorer and select the Refactor | Push In option.

Chapter 7

425

See also
ff Refer to the Adding Roo to a project using pull-out refactoring recipe to see how you

can pull out methods and attributes from Java class to an AspectJ ITD file

Adding Roo to a project using pull-out
refactoring

The pull-out refactoring is the reverse of push-in refactoring. In push-out refactoring you
extract methods and attributes from the Java source file and move it to an AspectJ ITD file.
This feature is particularly useful in the following situations:

ff If you had earlier performed push-in refactoring on your Roo project, and now you
want to develop your project once again using Spring Roo

ff If you have partially developed a project and now you want to use Spring Roo in its
development

ff In this recipe we'll look at how to pull-out the toString method from the Flight.
java file to Flight_To_String.aj file.

Getting ready
Follow the instructions specified in the Removing Roo with push-in refactoring recipe to push
the toString method defined in the Flight_To_String.aj file to Flight.java file.

How to do it...
Follow these steps to move the code from Java source file to an AspectJ ITD file:

1.	 Create a Flight_To_String.aj file in the sample.roo.flightapp.domain
package, as shown here:
package sample.roo.flightapp.domain;

public aspect Flight_To_String { }

This an empty aspect into which we want to pull-out fields, contructors, methods, and
so on, from Java source file.

2.	 Open the Flight.java file in Eclipse IDE.

Developing Add-ons and Removing Roo from Projects

426

3.	 Right-click the toString method from the Outline view and select Refactor | Pull Out
ITD…, as shown in the following screenshot:

4.	 Selecting the Pull Out ITD option shows the following dialog box to let you specify the
AspectJ ITD file into which the selected toString method should be added:

In the preceding screenshot enter sample.roo.flightapp.domain.Flight_
To_String as the name of the Target Aspect and make sure that you check the
Make the Aspect Privileged option.

Chapter 7

427

5.	 Click OK to pull-out the toString method to the Flight_To_String.aj file.

There's more...
IIf you want to use Spring Roo for an existing project, then you need to move the methods,
attributes or constructors from Java source files to AspectJ ITD files. These ITD files are then
managed by Spring Roo. You need to make sure that you only move those Java elements
to AspectJ ITD files that can be managed by Roo. The naming convention followed by these
AspectJ ITD files should follow the naming convention expected by Roo. You'll also have to add
necessary Roo-related dependencies in your pom.xml file.

See also
ff Refer to the Removing Roo with push-in refactoring recipe for removing Roo from

your project

Upgrading to the latest version of Roo
Roo simplifies upgrading from a previous version of your project to the latest version. All you
need to do is to start the Roo shell from the root directory of your Roo project. Roo makes the
adjustments to AspectJ ITD files that are applicable to the version.

In this recipe, we'll look at a Roo project that was created on version 1.1.3 and now being
upgraded to 1.1.5.

Getting ready
Unzip the ch06-ldap-security.zip file that accompanies this book. Extracting the ZIP
file will create a directory ch06-ldap-security, which represents a Roo project developed
using Spring Roo 1.1.3.

How to do it...
Follow these steps to upgrade your version of Roo:

1.	 Start the Roo shell from the ch06-ldap-security directory; you'll see the
following output:
Updated ROOT\pom.xml [updated property 'roo.version' to
'1.1.5.RELEASE']

Updated SRC_MAIN_JAVA\...\domain\Booking_Roo_ToString.aj
... SRC_MAIN_JAVA\...web\FlightDescriptionController_Roo_
Controller_Finder.aj
...

Developing Add-ons and Removing Roo from Projects

428

The output shows that one of the files modified by Roo is
FlightDescriptionController_Roo_Controller_Finder.aj. If you look at
this file you'll find that Roo has added a method responsible for searching Flight
entity instances. Now, take a look at this sentence from Chapter 4, Web Application
Development with Spring Web MVC:

It is important to note that in Spring Roo 1.1.3, the method
responsible for searching entity instances is not created in
FlightDescriptionController_Roo_Controller_Finder.aj.

This bug is resolved in Spring Roo 1.1.4 and above.

You can see that upgrading Roo to 1.1.5 automatically fixed the bug that existed in Roo 1.1.5.

How it works...
We mentioned earlier that Roo is responsible for managing the AspectJ ITD files in your Roo
project. So, when you upgrade to a later version of Roo, Roo takes care of modifying the code
in the AspectJ ITD files of your project.

There's more...
Roo's upgradation process is destructive, that is, you can't undo the changes made by Roo
during the upgrade process. So, make sure that you keep a backup copy of your project before
starting the Roo shell from the base directory of your project.

Index
Symbols
<access-denied-handler> element 325
<annotation-driven> element 52, 147, 148,

282
<api> element 338
<ArrayList> tag 258
<aspectLibrary> element 328
@Async annotation 294
@AttributeOverride JPA annotation 122
@AttributeOverrides JPA annotation 122
<authentication-manager> element

about 312
working 312

<authentication-provider> element
about 313
working 313

<bean> element 306
<broker> element 303
<browser> element 214
<channel-definition> element 255
<ChannelSet> tag 258
@CliAvailabilityIndicator annotation 386
@CliAvailabilityIndicator method 381
@Component annotation 146
<component-scan> element 146, 392
@Configurable annotation 21, 62
<configuration> element 214
<connectionFactory> element 304
@Controller annotation 146, 156
*Controller.java class 406
@DateTimeFormat annotations 148
<define-property> element 228
<dependency> element 260
@Embeddable annotated classes

creating 120-122

@Embeddable JPA annotation 120
<endpoint> element 255
<execution> element 336, 338
<flow-registry> element 280
<flow> root element 278
<form-login> element

about 314
working 314

@GeneratedValue JPA annotation 124
@GinModules annotation 233
<global-method-security> element 327
<http> element

about 314
working 314

<Import-Package> element 419
@Inject annotation 234
<inherits> element 226
<intercept-url> element 326

about 315
working 315

<jndi-lookup> element 304
<last-part-of-top-level-package> 398
<ldap-server> element 322
<ldap-user-service> element

about 324
group-role-attribute 324
group-search-base attribute 324
group-search-filter attribute 324
user-search-base attribute 324
user-search-filter attribute 324

<listener-container> element 305, 307
<listener> element 307
<logout> element

about 315
working 315

@ManyToOne JPA annotation 113

430

@MappedSuperclass annotation 119
<mapping> element 254
<mappingIncludes> element 338
<message-broker> element 254
<message-service> element 254
@NotNull JSR 303 annotation 77
@NumberFormat annotation 148
@OneToOne annotation 188
<option> element 350
<packaging> element 142
<password-encoder> element

about 313
working 313

@PostPersist JPA annotation 363
@PostUpdate JPA annotation 363
@PreRemove JPA annotation 363
<protect-pointcut> sub-element 327
<public> element 227
<queue> element 304
@Repository annotation 146
@RequestMapping annotation 156, 191
@RequestMapping method 147
<results> element 214
<role-name> element 341
*_Roo_Controller.aj file 406
@RooConversionService 149
@RooDataOnDemand annotation 72
*_Roo_DbManaged.aj ITD file 132
@RooDbManaged annotation 134
@RooEntity annotation 102, 103, 106
@RooEntity attributes

countMethod 70
findAllMethod 70
findEntriesMethod 70
finders 70
findMethod 70
flushMethod 70
identifierColumn 70
identifierField 70
identifierType 70
inheritanceType 70
mappedSuperclass 70
mergeMethod 70
persistenceUnit 70
persistMethod 70
removeMethod 70
transactionManager 70

versionColumn 70
versionField 70
versionType 70

@RooFlexScaffold annotation 265, 266
@RooIdentifier annotation 63
@RooIntegrationTest annotation 75
@RooJavaBean annotation 35, 60
@RooMyadvanced annotation 404
@RooSerializable annotation 35
@RooSolrSearchable annotation 359

attributes 366
*_Roo_SolrSearch.aj AspectJ ITD file 359

customizing 366
deleteIndex method 362
indexFlightDescription 362
indexFlightDescriptions 359
postPersistOrUpdate method 363
preRemove method 363
search(SolrQuery query) method 363
search(String) method 364
solrServer attribute 359
solrServer() method 359

@RooToString annotation 60
@RooWebScaffold annotation 218
@RooWebScaffold Roo annotation 156
@Secured annotation, Apache Directory

Server
adding, to JPA entity methods 328, 329

<security-constraint> element 339
@Service annotation 146
<session-enabled> element 335
<source> element 227
<system-properties> element 335
@TableGenerator JPA annotation 124
@Transactional annotation 53
<transition> element 278
<transportConnectors> element 303
<unpackVersion> element 336
<url-pattern> elements 341
<user> element

about 313
working 313

<user-service> element
about 313
working 313

<version> element 335
<view-state> element 278

431

A
AbstractItdMetadataProvider abstract class

412
createLocalIdentifier method 412
getGovernorPhysicalTypeIdentifier method

412
getItdUniquenessFilenameSuffix method 412
getMetadata method 412
getProvidesType method 412

AbstractItdMetadataProvider class 406
AbstractItdTypeDetailsProvidingMetadata-

Item abstract class 414
activities, GWT applications

about 241
DetailsActivity 241
FlightDescriptionDetailsActivity 241
FlightDescriptionListActivity 241
FlightDetailsActivity 241
FlightListActivity 241
ListActivity 241

ActivityManager 244
ActivityMapper interface

about 242
ApplicationDetailsActivities 242
ApplicationMasterActivities 242
FlightActivitiesMapper 243
FlightDescriptionActivitiesMapper 243

addEventListener method 272
addField method 414
addMetadataTrigger method 407
addMethod method 414
addon create simple command 375

about 395
executing 375

addon create wrapper command 419
add-on creator module 368
addon install bundle command 371
addon install command 127
add-ons

installing, not indexed by RooBot 373, 374
trusting 373

Admin Console, GAE
about 341
URL 341

advanced add-on 375
code generation functionality 408-414

developing 396, 398
advanced add-on commands

myadvanced add 399
myadvanced all 399
myadvanced setup 399

afterPropertiesSet 150
annotateAll method 400, 404
annotateType method 403
annotateType methods 400
annotation-driven development support

configuring 147
AnnotationMethodHandlerAdapter 282
Apache Directory Server

setting up 322, 323
Apache Felix OSGi container 12
Apache Lucene search engine library 353
Apache Maven 3.x

URL 10
Apache Solr 353
appengine-web.xml file

<session-enabled> element 335
<system-properties> element 335
<version> element 335
about 334

applicationContext-jms.xml file 303
applicationContext-security.xml file

about 312
AuthenticationManager, configuring 312
web request security, configuring 313-316

applicationContext.xml file 292
ApplicationDetailsActivities_Roo_Gwt

.java 246
ApplicationEntityTypesProcessor.java

244-245
ApplicationEntityTypesProcessor<T>

class 245
application.properties 167
ApplicationRequestFactory object 230
applications

developing, Spring Web MVC and Spring Web
Flow used 282, 283

ApplicationScaffold.gwt.xml 226
applicationScaffold module 226
applications, interacting with multiple

databases
creating 87-91

application_users.ldif file 322

432

arguments
about 16
command argument 16
topic argument 16

arguments, passing to class command
abstract 30
class 30
extends 30
path 30
permitReservedWords 30
rooAnnotations 30

arguments, passing to interface command
class 42
path 42
permitReservedWords 42

arguments, passing to logging setup
command

level 25
package 25

arguments, passing to getMetadata method
aspectName 413
governorPhysicalTypeMetadata 413
itdFilename 413
metadataIdentificationString 413

arguments, passing to controller class
command

class 189
preferredMapping 189

arguments, passing to controller scaffold
command

class 182
disallowedOperations 182
entity 182
path 182

arguments, passing to database introspect
command

enableViews 127
file 127
schema 127

arguments, passing to database reverse
engineer command

enableViews 132
excludeTables 132
includeTables 132
package 131
schema 131
testAutomatically 132

arguments, passing to entity command
abstract 59
catalog 60
class 59
extends 59
identifierColumn 59
identifierField 59
identifierType 59
inheritanceType 59
mappedSuperclass 59
persistenceUnit 60
schema 60
table 59
testAutomatically 60
transactionManager 60
versionColumn 60
versionField 60

arguments, passing to FieldMetadataBuilder
constructor

getId() 415
JavaType.STRING_OBJECT 415
modifier 415
new ArrayList<AnnotationMetadataBuilder>()

415
new JavaSymbolName(415

arguments, passing to field reference
command

cardinality 110
fetch 110
fieldName 110
joinColumnName 110
referencedColumnName 110
type 110

arguments, passing to field set command
cardinality 115
fetch 115
fieldName 115
mappedBy 115
type 115

arguments, passing to jms setup command
destinationName 302
destinationType 302
provider 302

arguments, passing to persistence setup
command

applicationId 50
database 49

433

databaseName 49
hostName 49
jndiDataSource 49
password 50
persistenceUnit 50
provider 49
transactionManager 50
username 50

arguments, passing to selenium test
command

controller 213
name 213
serverUrl 213

arguments, passing to web mvc install view
command

path 196
title 196
viewName 196

arguments, passing to project command
java 19
projectName 19
topLevelPackage 19

arguments, passing to properties list
command

name 27
path 27

arguments, passing to properties set and
properties remove commands

key 28
name 28
path 28

AspectJ 8
AspectJ compiler plugin 22
AspectJ ITD files

managing 39
AspectJ ITDs 31
attributes

adding, to Java class 36-40
attributes, @RooJson annotation

fromJsonArrayMethod 209
fromJsonMethod 209
toJsonArrayMethod 209
toJsonMethod 209

attributes, @RooSolrSearchable annotation
deleteIndexMethod 366
indexMethod 366
postPersistOrUpdateMethod 366

preRemoveMethod 366
searchMethod 366
simpleSearchMethod 366

AuditFields class 117
authentication-failure-url attribute 315
authentication, GAE applications 339-341
Authenticator class 290
authorization, GAE applications 339-341
auto-config attribute 314
auto-generated controller methods

overriding 185
auto-generated JPA fields/relationships

modifying 134
auto-generated methods, persistent entities

controlling 68
automaticallyDelete attribute 134

B
base-package attribute 146, 392, 394
base-path attribute 279
bind method 234
boolean isInstallTagsCommandAvailable()

method 382
bundleSymbolicName argument 389
businessCategory attribute 323

C
CachingConnectionFactory class 304
ch01-recipe directory 17
class command

arguments 30
code attribute 204
CommonsMultipartResolver 156
configuration files, Flex application

flex-config.xml 254
flightapp_flex_scaffold.mxml 257-259
services-config.xml 255, 256
webmvc-config.xml 254

configurations definitions, web.xml
about 142
contextConfigLocation initialization parameter

143
ContextLoaderListener 143
DispatcherServlet 143
exception pages 146
HiddenHttpMethodFilter 145

434

OpenEntityManagerInViewFilter 144
contextConfigLocation initialization

parameter 143
ContextLoaderListener 143
controller all command 138, 159
controller auto-detection 146
controller class command 138
controller scaffold command 138, 181
conversion service

about 147
configuring 147
custom converters and formatters, wiring 148

conversion-service attribute 147
Converter SPI 147
CookieLocaleResolver 155, 199
CookieThemeResolver 155
copyApplicationContextXML method 394
countFlights method 85
create addon simple command 387
createdDate field 99
createForm method 157, 184
create.jspx file

<create> custom tag 173
<datetime> custom tag 173
<select> custom tag 173
about 173

createLocalIdentifier method 412
create method 157, 184, 229, 287
create(...) method 419
createOrReplace methods 384
CustomerController.java file 190

D
database argument 333
database configuration properties

database.initialPoolSize 55
database.modified.url 55
database.password 55
database.url 55
database.username 55
managing 55, 56
viewing 54
working 55, 56

database introspect command
about 125
using 126

database metadata
generating 125-128

database properties list command 54, 55
database reverse engineer command 130

executing 132
database table

with composite primary key 135
data on demand

creating, for testing entities 80, 81
dataSource 52
dbManaged attribute 63
dbre.xml file 132
DefaultAnnotationHandlerMapping 282
DefaultRequestToViewNameTranslator 153
DefaultServletHttpRequestHandler 151
DelegatingFilterProxy servlet filter 311
deleteById method 362
DELETE HTTP method 145
deleteIndex method 362, 363, 366
delete method 158, 184
dependency

registering 406
unregistering 406

dependency injection 230
depth argument 99
deregisterDependency method 407
DesktopInjector interface

DesktopInjector.java 232
ScaffoldModule.java 233, 234

DesktopInjector.java 232
DesktopInjectorrapper 228
destination field 99
directories, flight-app project

sample\roo\flightapp\web 140
SRC_MAIN_WEBAPP\images 140
SRC_MAIN_WEBAPP\styles 140
SRC_MAIN_WEBAPP\WEB-INF\classes 141
SRC_MAIN_WEBAPP\WEB-INF\i18n 142
SRC_MAIN_WEBAPP\WEB-INF\layouts 141
SRC_MAIN_WEBAPP\WEB-INF\spring 140
SRC_MAIN_WEBAPP\WEB-INF\views 141
SRC_MAIN_WEBAPP\WEB-INF\views\flightde-

scriptions 141
SRC_MAIN_WEBAPP\WEB-INF\views\flights

141
DispatcherServlet 143, 279
dod command 80

435

domain model data
adding, to Solr index 358

downstream dependencies 406
dynamic finder methods

about 98
adding, through @RooEntity annotation 106
adding, to entity 101-103
adding, to JPA entity 102
custom finder methods, adding 104, 105
for many-to-one relationship field 113
integration testing 105
listing, for multiple persistent fields 99, 100
list, limiting 100
viewing 98, 99

E
Eclipse plugin 22
elements, @RooWebScaffold annotation

about 183
create 183
delete 183
exposeFinders 183
exposeJson 184
formBackingObject 183
path 183
update 183

e-mails
sending 293
sending asynchronously 294
sending, JavaMail API used 286-291
sending, with attachments 295, 297
sending, with JavaMail Session configured in

JNDI 297
email sender setup command 286

executing 292
e-mail sending

simplifying 286
e-mail sending support

setting up 291, 292
email template setup command 292
end-state.jspx 277
entities

creating, for database 130-133
entity commands

about 59
identifierColumn 108

identifierField 108
entityList_doubleClickHandler method 269
entityManagerFactory 52
entity proxy-specific processing

ApplicationDetailsActivities_Roo_Gwt.java
246, 247

ApplicationEntityTypesProcessor.java 244-
246

dealing with 244
EventBus object 230
exception handling 155
exceptionMappings property 155
exception pages 146
exposeJson attribute 208

F
field email template command 293
field embedded command 121
field jms template command 307

executing 299
FieldMetadataBuilder constructor 415
field reference command 108
field set command 114, 188
FileCopyUtils class 384
FileWriterOperationsImpl class 394
filter argument 100
finder add command 102
Finder add-on 102
finder list command

about 98
using 98

findFirstElementByName method 394
findFlightDescription method 348
findFlightsByDestinationLikeAndOriginLike

method 101
findIdentifier method 403
flash.events.Event class 268
Flex 8
Flex add-on 250, 252
Flex application

developing 250-252
Flexmojos Maven plugin 259
working 252

Flex application
scaffolding, from JPA entities -273

flex-config.xml 254

436

Flexmojos Maven plugin
about 259
configuring 252, 259
pom.xml 259, 260

flex remoting all command 263
directories 264
executing 261

flex remoting scaffold command 260
flex setup command

about 252
directories 252

flightapp_flex project 261
flightapp_flex_scaffold-config.xml 270
flightapp_flex_scaffold.mxml 257-269
flightapp_flex_scaffold.mxml file 268
flight-app project

about 48
applicationContext.xml file 50
database.properties file 50
flight-app projectdirectories 140
persistence.xml file 50
pom.xml file 50

Flight Booking application security require-
ments 316, 317

FlightConverter static class 150
FlightDataOnDemand.java class 71, 72
FlightDataOnDemand_Roo_Configurable.aj

72
FlightDataOnDemand_Roo_DataOnDemand.

aj 72
FlightDataOnDemand_Roo_DataOnDemand.aj

method 76
FlightDescription.as 266
FlightDescriptionConverter static class 150
FlightDescriptionDataOnDemand.java class

111
FlightDescription entity 108, 265
FlightDescriptionEvent class 268
FlightDescriptionEvent.CREATE event 273

generating 272
FlightDescription JPA entity 262
FlightDescription_Roo_JavaBean.aj ITD 179
FlightDescriptionService.java 164, 265
FlightDescriptionService_Roo_Service.aj

265, 266
FlightDescTbl entity 134
FlightIntegrationTest.java 72

FlightIntegrationTest_Roo_IntegrationTest.
aj 72

FlightProxy.java 235, 236
FlightRequest.java 236-238
Flight_Roo_Configurable.aj 72
Flight_Roo_Entity.aj file 123
FlightService class 32
FlightService.java file 31
Flight_To_String.aj file 425
flow-builder-services attribute 280
FlowExecutor 282
FlowHandlerMapping 281
flowName 277
flow.xml file 277, 278
focus command 43
Formatter SPI 147
FormattingConversionServiceFactoryBean

148

G
GAE

about 329
account, signing up 329
persistence entities 338, 339
URL 329

GAE applications
authentication 339-341
authorization 339-341

GenericConversionService 147
gen-key command 368
getAllFields method 365
getCurrentUser method 341
getFlightDescriptionKeyAsString method 348
getGovernorPhysicalTypeIdentifier method

412
getItdUniquenessFilenameSuffix method 412
getMatchingFields method 365
getMetadata method 412
getMethod() method 145
getNewTransientFlightDescription method

111
getProjectIdentifier() method 394
getProvidesType method 412
getRandomFlight() method 74
getResultList method 103
getSampleField method 414

437

getSampleMethod method 414
getScaffoldApp method 231
getSolrDocumentFieldList method 365
getSpecificFlight(int index) method 74
getter and setter methods

generation, controlling 41
getUserService method 341
GIN 230
Ginjector interface

about 231
DesktopInjector 231
ScaffoldInjector 231
using 231

GnuPG
setting up, for add-on development 368, 369
URL 368
working 369

GnuPG, for Windows
URL 368

GnuPG, for Windows or UNIX
URL 368

Google App Engine. See GAE
GOOGLE_APP_ENGINE 333
Google Guice framework 230
gvNIX Service Management Roo add-on 372
GWT 8
GWT add-on 226
GWT application

compiling, in embedded Jetty container 247
deploying, on GAE 329-332
mobile version, accessing 247, 248
remote logging, enabling 249, 250
round-tripping support 248
running, in embedded Jetty container 247

GWT applications
activities 241
ApplicationRequestFactory object 230
dependency injection 230
EntityProxy 235
entity proxy-specific processing, dealing with

244
EventBus object 230
GWT module descriptor 226
GWT module entry point 229
PlaceController object 230
places 242
RequestContext 235

RequestFactory 235
scaffolding, from JPA entities 222-226

gwt.logging.enabled property 227
gwt.logging.simpleRemoteHandler property

227
GWT module descriptor

<define-property> element 228
<inherits> element 226
<public> element 227
<source> element 227
about 226-228
entry points 229

GWT module entry point 229
gwt setup command 222, 226

H
handleFlightDescription method 245
handleFlight method 245
HandlerExceptionResolver 155
HandlerMapping 279
HandlerMapping implementation 279
handleXXX method 245
help command, Spring Roo

executing 14, 15
Hibernate 8
HiddenHttpMethodFilter 145
hint command, Spring Roo

executing 14, 15
hint jpa command 16

I
id attribute 171
IDEA plugin 22
identifierColumn 108
identifierField 108
incremental database reverse engineering

135
indexFlightDescription method 362
indexFlightDescriptions method 359, 360
index() method 190
indexMethod 366
InjectorWrapper 228
InputStream getTemplate 392
installable add-on

installing 370-372
working 372

438

installFormatters method 149
installLabelConverters 150
installTags method 383, 384
integration tests, persistent entities

creating 70
custom implementation, providing 80
generating, at time of entity creation 79
integration test methods, controlling 79
seed data creation, customizing 76-79
working 71-76

interface command
arguments 42

isInstallTagsCommandAvailable method 381,
383

isSayHelloAvailable method 381
isUserLoggedIn() method 341

J
Java class

attributes, adding 36-41
creating 29-35
getter and setter methods. controlling 41

Java interface
creating 41

java.lang.Object class 63
JavaMailSenderImpl 286
JavaMailSender interface 290
javap command 93
Java Persistence API. See JPA
Java SE 6

URL 10
JDBC drivers

installing, for Oracle and DB2 134
Jetty Maven Plugin

URL 163
JMS add-on 302
JMS ConnectionFactory 304
jms listener command

about 306
executing 299

JMS message consumer
creating 306

JMS messages
receiving 298-301
sending 298-301
sending asynchronously 307

sending, JMS Template used 305
JMS provider

setting up 302-305
jms setup command

executing 298
JNDI-bound data source 53
Joda Time

URL 147
JPA add-on 55
JPA entities, participating in relationships

testing 111-113
JPA provider

setting up 48, 49
working 49-52

json add command 207
json all command 207
JSON methods

fromJsonArrayToFlights 209
fromJsonToFlight 209
testing 211
toJson 209
toJsonArray 209

JSON support
adding, to domain objects and controllers

206-211
working 208, 209

JSPX views
generating, from JPA entities 138-142

JSR 303 constraints
adding, to persistent fields 65, 67

K
KeyFactory class 348
kind 350

L
LDAP directory tree

diagrammatic representation 322, 323
LDAP server

authenticating against 323
ldif attribute 322
list method 184
list-secret-keys command 368
LocaleChangeInterceptor 152
location attribute 151
log4j.properties file

439

properties, managing 27, 29
properties, modifying 27, 29
properties, viewing 26, 27

logging configuration
modifying 24
modifying, logging setup command used 25,

26
logging setup command 24

about 25
arguments 25

login-page attribute 314
login-processing-url attribute 314
log.roo script 17

M
mail message

setting up 292
MailSender interface 290
many-to-many relationship

creating, between entities 114-116
many-to-one relationship

creating, between entities 106-110
mappedBy attribute value 188
mapped superclass

creating 117-119
mappedSuperclass argument 118
mapping attribute 151
maven add-on 85
Maven add-on 20
Maven Assembly Plugin

URL 163
mavenCommand 24
Maven DataNucleus Plugin 337, 338
Maven GAE Plugin

<execution> element 336
<unpackVersion> sub-element 336
about 332, 335
gae.home property 336
goals 337
specific configuration 336

Maven plugins
AspectJ compiler plugin 22
Eclipse plugin 22
IDEA plugin 22
Tomcat and Jetty plugins 22

MemberFindingUtils utility class 404

menu.jspx file 167
about 170
tags 170

MessageConverter interface 306
messages.properties 167
metadata creation trigger

registering 407
unregistering 407

metadataDependencyRegistry 406
MetadataDependencyRegistry 406
MetadataItem 410
MetadataProvider 410
MetadataService class 394, 401
META-INF/persistence.xml file 132
method attribute 157
method-level security, Apache Directory

Server
configuring 327

MimeMessage[] object 291
MobileInjectorWrapper 228
mobile.user.agent property 228
mobile version, of GWT application

accessing 247, 248
mock tests, for persistent entities

creating 82, 83
modifiedDate field 99
modifyFlight(Flight+obj) method 74
MutableFile class 384
MvcViewFactoryCreator 280
mvn package command 93
myadvanced add command 408
MyadvancedCommands class 398-400
MyadvancedMetadata class 413
MyadvancedMetadataProvider class 405-412
MyadvancedOperationsImpl class 400-404
myOwnIdField field 108
mysimple add-on

deploying 387
running 387
using, in Roo project 387-389

MysimpleCommands class 377, 378
MysimpleNameProperty enum type 385
MysimpleOperations 378
MysimpleOperationsImpl component 382
MysimpleOperations interface

about 382

440

boolean isInstallTagsCommandAvailable()
method 382

String getProperty(String) method 382
void installTags() method 382

MysimplePropertyName 385

N
name 350
non-OSGi JDBC drivers

converting, into OSGi-compliant bundles 416-
419

Numbervalidator 274

O
one-to-many relationship

creating, between entities 114-116
one-to-one relationship

creating, between entities 106-110
onModuleLoad method 229
OpenEntityManagerInViewFilter 144
OSGi commands

about 395, 396
osgi log 395
osgi ps 395
osgi scr info 396
osgi scr list 395

osgi obr start command 373, 374
osgi obr url add command 373
owned relationship 345, 347

P
ParameterizableViewController 152
parent entity 350
PathResolver class 384
path value

ROOT 20
SPRING_CONFIG_ROOT 20
SRC_MAIN_JAVA 20
SRC_MAIN_RESOURCES 20
SRC_MAIN_WEBAPP 20
SRC_TEST_JAVA 20
SRC_TEST_RESOURCES 20

pattern attribute 315
perform assembly command 163
perform command 24

perform eclipse command 23, 165, 376
perform package command 92, 160
perform tests command 84
persistence entities, GAE 338, 339
persistence setup command 48, 49, 88, 333,

381
persistence-unit element 51
persistent entities

auto-generated methods, controlling 68, 69
class argument, using 64
creating 57, 58
integration tests, creating 70-76
JSR 303 constraints, adding 65, 67
mock tests, creating 82, 83
table column information, adding 64
working 59-63

persistent entities tests
executing 84, 85
working 85

pgp automatic trust command 373
pgp trust Roo command 372
PhysicalTypeMetadata object 403
PhysicalTypeMetadataProvider class 401
PlaceController object 230
PlaceControllerProvider 234
places, GWT applications

about 242
ProxyListPlace 242
ProxyPlace 242

pom.xml 259, 260
pom.xml file 395
postPersistOrUpdate method 363, 366
preRemove method 363, 366
processSave method 273
project command 16

arguments 19
ProjectOperations class 402
Properties file add-on 27, 28
properties list command

about 26
arguments 27

properties remove command 28
properties set command 28
ProxyListPlace 242
ProxyPlace 242
public PGP key 368
push-in refactoring

441

single AspectJ ITD file 424

R
registerDependency method 406
ReloadableResourceBundleMessageSource

155
RemoteClass] metadata tag 266
remote logging , GWT application

enabling 249, 250
RemotingService 263
render attribute 171
RequestFactoryProvider 234
RequestToViewNameTranslator 153
ResourceBundleThemeSource 155
ResourceHttpRequestHandler 151
Roo. See Spring Roo
Roo add-ons

templates 391-394
Roo commands

defining 379, 380
making, unavailable 381

Roo-generated controllers
about 156
FlightController 156
FlightDescriptionController 156

Roo-generated files
Event.as 267
Form.mxml 267
View.mxml 267

Roo-generated identifier definition
customizing 122-124

Roo-generated JSPX file 172
Roo-generated views

application name, changing 168-170
elements, switching from user-managed to

Roo-managed mode 175
menu options, changing 170, 171
modifying 164-167
Roo-generated JSPX file 172-174
welcome text, changing 168-170
working 167
z attribute, significance 171

Roo-generated web application
internationalizing 197-199
static views, adding 195, 197
theme, adding or modifying 200-205

Roo project
about 13
arguments, passing 19, 20
creating 18
importing, into Eclipse or IntelliJ IDEA IDE 23,

24
JMS add-on 302
JMS messages, receiving 298-301
JMS messages, sending 298,-301
JPA provider, setting up 48, 49
logging, configuring 24, 25
mails, sending 293
mails, sending asynchronously 294
mails, sending with attachments 295, 297
mails, sending with JavaMail Session config-

ured in JNDI 297
mail message, setting up 292
packaging 92-95
Roo projecte-mail sending support, setting up

291, 292
running, in embedded Jetty container 163
Solr, configuring for 357
working 19

Roo-scaffolded GWT application
creating 331, 332
deploying 333

Roo shell 12
RooToString annotation 35
round-tripping support

for web controllers and views 176-180
round-tripping support , of GWT application

248

S
say hello command 381
Scaffold class 234
ScaffoldDesktopApp subclass 231
Scaffold.java 229
ScaffoldModule.java 233-235
script command

arguments 45
search capability

adding, to domain model with Solr 353-357
searchFlight method 105
searchMethod 366
search(SolrQuery query) method 363

442

search(String) method 364
secured-annotations attribute 327
Security add-on 310
security setup command 308
selenium test command 212
Selenium test scripts 215, 216
selenium tests, for web controllers

creating 212-214
executing 212-214

Selenium test suite 216-218
sendMessage method 293
services-config.xml 255
Session class 290
setAttribute method 394
setDestination method 86
setEmbeddedId method 77
setNumOfSeats method 86
setOrigin method 86
showAddress method 191
showAddressSection attribute 191
showAddressSection model attribute value

191
showForm method 271
show method 184
simple add-on

about 375
developing 374, 376
MysimpleCommands class 377
working 376, 386

SimpleControllerHandlerAdapter 282
SimpleMailMessage 286
SimpleMailMessage[] object 291
SimpleMappingExceptionResolver 155
simpleSearchMethod 366
Solr

configuring, for Roo project 357
using, for adding search capability 353-356

Solr add-on 353
Solr documents

searching 364, 365
Solr index

domain model data, adding 358
SolrJ Java client library

using 353
Solr server

downloading 353
solrServer attribute 359

solrServer() method 359
solr setup command

about 357
executing 357

Spring 8
Spring MVC application

deploying 159-162
packaging 159-162
using 159-162

Spring MVC controllers
creating, for specific JPA entity 181-184
creating manually, for JPA entity 186-193
generating, from JPA entities 138-142

Spring projects
moving 35

Spring Roo
about 8
adding, to project with pull-out refactoring

425-427
advanced add-on, developing 396, 398
advanced JPA support 97
application artifacts, creating from Roo script

44, 46
applications interacting with multiple data-

bases, creating 87-91
auto-generated controller methods, overriding

185
benefits 9
candidate dynamic finder methods, viewing

98
command 13
core services 12
database metadata, generating 125-127
diagrammatic reopresentation 9
dynamic finder methods, adding to entity 101
entities, creating from database 130
Flex application development 250-252
GnuPG, setting up for add-on development

368, 369
GWT applications, scaffolding from JPA enti-

ties 222-226
help command 14
help command, executing 14, 15
hint command 13
hint command, executing 14, 15
installable add-on, installing 370-372
installing 10, 11

443

Java class, creating 29-35
Java interface, creating 41
JSON support 206
JNDI-bound data source 53
log4j.properties file properties, managing 27,

29
log4j.properties file properties, viewing 26, 27
logging add-on 25
many-to-many relationships, creating between

entities 114
many-to-one relationships, creating between

entities 106
mapped superclass, creating 117
non-OSGi JDBC drivers, converting into OSGi-

compliant bundles 416-419
one-to-many relationships, creating between

entities 114
one-to-one relationships, creating between

entities 106
Properties file add-on 27
removing, with push-in refactoring 419-423
Roo-generated identifier definition, custom-

izing 122
round-tripping support, for web controllers and

views 176-180
setting up 10, 11
simple add-on, developing 374, 376
Security add-on 310
Solr add-on 353
SolrJ Java client library, using 353
Spring MVC controllers, creating for specific

JPA entity 181-184
Spring MVC controllers, creating manually for

JPA entity 186-193
Spring Web Flow 274
type, referring from Roo shell 42, 44
upgrading 427
using, with Eclipse/STS 12, 13
working 12

Spring Roo commands
arguments, passing to 16, 17
log file 17

Spring Roo ZIP archive
downloading 10

Spring Security
applicationContext-security.xml file 312
configuring 308

using, with Apache Directory Server 316-321
working 310, 311

Spring Security, with Apache Directory Server
about 316
Apache Directory Server, setting up 322, 323
Flight Booking application requirements 316
LDAP server, authenticating against 323, 325
method-level security, configuring 327, 328
@Secured annotation, adding to JPA entity

methods 328, 329
web request security, configuring 325, 326

SpringSource
URL 8

Spring Web Flow
about 8, 274
benefits 284
configuring 279-282
using 274-276
working 277, 278

Spring Web Flow add-on 277
Spring Web MVC application

deploying, on GAE 342-347
persisted data, managing with admin console

351, 352
scaffolding, for one-to-many relationship 193,

194
standard.properties file 201
StaticFieldConverter 378
static views

adding, to Roo-generated web application
195, 197

String getProperty(String) method 382
String getTemplatePath 391
StringValidator 274

T
tab-completion feature

with, constant values 389, 391
targetConnectionFactory property 304
templates, Roo add-ons 391-394
TemplateUtils class 384, 394
test-flightdescription.xhtml script 216
test integration command 70
testMarkerMethod 75
test mock command 83
testPersist method 80

444

testRemove method 111
theme

about 200
adding, or modifying 200

ThemeChangeInterceptor 152, 204
theme.tagx file 204
TilesConfigurer 154
TilesView 154
tilesViewResolver 280
Tomcat and Jetty plugins 22
toString 29
toString method 32, 423

customizing 35, 36
properties, excluding from 36

transactionManager 52
transaction-type attribute 51
Transport class 290
trusted add-ons 368
type

referring, from Roo shell 42, 43
TypedQuery object 103
TypeLocationService class 402

U
uniqueMember attribute 323
unowned relationship 345
updateForm method 184
update method 184
upstream dependency 406
UrlBasedViewResolver 153, 280
use-default-filters attribute 146
use-expression attribute 314
user-managed element 175
UsernamePasswordAuthenticationFilter filter

bean 314

V
ViewFactoryCreator 280
ViewResolver 153
view-state-1.jspx 277
view-state-2.jspx 277
views.xml 277
void installTags() method 382

W
web flow command 277
Web MVC add-on 138
webmvc-config.xml file

about 143, 146, 254
annotation-driven development support 147
controller auto-detection 146
DefaultServletHttpRequestHandler 151
exception handling 155
LocaleChangeInterceptor 152
miscellaneous configuration 155
ParameterizableViewController 152, 153
ResourceHttpRequestHandler 151
ThemeChangeInterceptor 152
TilesConfigurer 154
UrlBasedViewResolver 153
ViewResolver 153

web mvc install language command 198
web mvc install tags command 381, 385
web request security

configuring 313, 314
web request security, Apache Directory Server

configuring 325, 326
web.xml 239
writeXml method 394

X
XML elements

<column> 129
<foreignKey> 129
<table> 129
<unique> 129

XmlUtils class 394
XMLUtils class 392

Z
z attribute 171

Thank you for buying

Spring Roo 1.1 Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Spring Persistence with
Hibernate
ISBN: 978-1-849510-56-1 Paperback: 460 pages

Build robust and reliable persistence solutions for your
enterprise Java application

1.	 Get to grips with Hibernate and its configuration
manager, mappings, types, session APIs, queries,
and much more

2.	 Integrate Hibernate and Spring as part of your
enterprise Java stack development

3.	 Work with Spring IoC (Inversion of Control), Spring
AOP, transaction management, web development,
and unit testing considerations and features

4.	 Covers advanced and useful features of Hibernate
in a practical way

Service Oriented Architecture
with Java
ISBN: 978-1-847193-21-6 Paperback: 192 pages

Use SOA and web services to build powerful Java
applications

1.	 Build effective SOA applications with Java Web
Services

2.	 Quick reference guide with best-practice design
examples

3.	 Understand SOA concepts from core with
examples

4.	 Design scalable inter-enterprise communication

Please check www.PacktPub.com for information on our titles

Spring Web Flow 2 Web
Development
ISBN: 978-1-847195-42-5 Paperback: 200 pages

Master Spring's well-designed web frameworks to
develop powerful web applications

1.	 Design, develop, and test your web applications
using the Spring Web Flow 2 framework

2.	 Enhance your web applications with progressive
AJAX, Spring security integration, and Spring Faces

3.	 Stay up-to-date with the latest version of Spring
Web Flow

4.	 Walk through the creation of a bug tracker web
application with clear explanations

Spring Security 3
ISBN: 978-1-847199-74-4 Paperback: 396 pages

Secure your web applications against malicious
intruders with this easy to follow practical guide

1.	 Make your web applications impenetrable.

2.	 Implement authentication and authorization of
users.

3.	 Integrate Spring Security 3 with common external
security providers

4.	 Packed full with concrete, simple, and concise
examples.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Spring Roo
	Introduction
	Setting up Roo
	Using Spring Roo with Eclipse/STS
	Getting help and hints from Roo
	Creating a Roo project
	Importing a Roo project into Eclipse or
IntelliJ IDEA IDE
	Configuring logging
	Viewing properties defined in a
properties file
	Managing properties defined in a
properties file
	Creating a Java class
	Moving existing Spring projects to use Spring Roo
	Adding attributes to a Java class
	Creating a Java interface
	Referring to a type from the Roo shell
	Creating application artifacts from
Roo script

	Chapter 2: Persisting Objects Using JPA
	Introduction
	Setting up a JPA provider for your project
	Viewing database configuration properties
	Managing database configuration properties
	Creating persistent entities
	Adding JSR 303 constraints to
persistent fields
	Controlling auto-generated methods of
persistent entities
	Creating integration tests for persistent
entities
	Creating new 'data on demand' for
testing entities
	Creating mock tests for persistent entities
	Executing persistent entities tests
	Creating applications that interact with
multiple databases
	Packaging your Roo project

	Chapter 3: Advanced JPA Support in Spring Roo
	Introduction
	Viewing candidate dynamic finder methods
	Adding dynamic finder methods to an entity
	Creating a many-to-one (or one-to-one)
	relationship between entities
	Creating a one-to-many (or many-to-many)
	relationship between entities
	Creating a mapped superclass
	Customizing Roo-generated
	identifier definition
	Generating database metadata
	Creating entities from a database

	Chapter 4: Web Application Development with Spring Web MVC
	Introduction
	Auto-generating Spring MVC controllers and
	JSPX views from JPA entities
	Packaging, deploying, and using a
	Roo-generated Spring MVC application
	Modifying Roo-generated views
	Round-tripping support in Spring Roo
	for web controllers and views
	Creating a Spring MVC controller
	for a specific JPA entity
	Manually creating a Spring MVC
	controller for a JPA entity
	Adding static views to a Roo-generated
	web application
	Internationalizing Roo-generated
	web applications
	Adding or modifying themes
	generated by Roo
	Adding JSON support to domain objects
	and controllers
	Creating and executing Selenium tests
	for web controllers

	Chapter 5: Web Application Development with GWT, Flex, and
Spring Web Flow
	Introduction
	Scaffolding GWT applications
	from JPA entities
	Getting started with Flex application
development
	Scaffolding a Flex application from JPA
entities
	Getting started with Spring Web Flow

	Chapter 6: Emailing, Messaging, Spring Security,
Solr, and GAE
	Introduction
	Sending e-mails using JavaMail API
	Sending and receiving JMS messages
	Configuring Spring Security for your
application
	Using Spring Security with Apache
Directory Server
	Deploying a GWT application on GAE
	Deploying a Spring Web MVC application
on GAE
	Adding search capability to your domain model with Solr

	Chapter 7: Developing Add-ons and Removing Roo from Projects
	Introduction
	Setting up GnuPG for add-on development
	Installing an installable add-on
	Developing a simple add-on
	Developing an advanced add-on
	Converting non-OSGi JDBC drivers into OSGi-compliant bundles	
	Removing Roo with push-in refactoring
	Adding Roo to a project using pull-out
refactoring
	Upgrading to the latest version of Roo

	Index

