
www.allitebooks.com

http://www.allitebooks.org

Squid Proxy Server 3.1
Beginner's Guide

Improve the performance of your network using the caching
and access control capabilities of Squid

Kulbir Saini

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Squid Proxy Server 3.1
Beginner's Guide

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, its dealers or
distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2011

Production Reference: 1160211

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849513-90-6

www.packtpub.com

Cover Image by Faiz Fattohi (faizfattohi@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Kulbir Saini

Reviewers

Mihai Dobos

Siju Oommen George

Amos Y. Jeffries

Rajkumar Seenivasan

Acquisition Editor

Sarah Cullington

Development Editor

Susmita Panda

Technical Editor

Sakina Kaydawala

Copy Editor

Leonard D'Silva

Indexer

Hemangini Bari

Editorial Team Leader

Mithun Sehgal

Project Team Leader

Ashwin Shetty

Project Coordinator

Michelle Quadros

Proofreader

Lindsey Thomas

Graphics

Nilesh Mohite

Production Coordinators

Aparna Bhagat

Kruthika Bangera

Cover Work

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Kulbir Saini is an entrepreneur based in Hyderabad, India. He has had extensive experience
in managing systems and network infrastructure. Apart from his work as a freelance
developer, he provides services to a number of startups. Through his blogs, he has been an
active contributor of documentation for various open source projects, most notable being
The Fedora Project and Squid. Besides computers, which his life practically revolves around,
he loves travelling to remote places with his friends. For more details, please check
http://saini.co.in/.

There are people who served as a source of inspiration, people who helped
me throughout, and my friends who were always there for me. Without
them, this book wouldn't have been possible.

I would like to thank Sunil Mohan Ranta, Nirnimesh, Suryakant Patidar,
Shiben Bhattacharjee, Tarun Jain, Sanyam Sharma, Jayaram Kowta, Amal
Raj, Sachin Rawat, Vidit Bansal, Upasana Tegta, Gopal Datt Joshi, Vardhman
Jain, Sandeep Chandna, Anurag Singh Rana, Sandeep Kumar, Rishabh
Mukherjee, Mahaveer Singh Deora, Sambhav Jain, Ajay Somani, Ankush
Kalkote, Deepak Vig, Kapil Agrawal, Sachin Goyal, Pankaj Saini, Alok Kumar,
Nitin Bansal, Nitin Gupta, Kapil Bajaj, Gaurav Kharkwal, Atul Dwivedi,
Abhinav Parashar, Bhargava Chowdary, Maruti Borker, Abhilash I, Gopal
Krishna Koduri, Sashidhar Guntury, Siva Reddy, Prashant Mathur, Vipul
Mittal, Deepti G.P., Shikha Aggarwal, Gaganpreet Singh Arora, Sanrag Sood,
Anshuman Singh, Himanshu Singh, Himanshu Sharma, Dinesh Yadav, Tushar
Mahajan, Sankalp Khare, Mayank Juneja, Ankur Goel, Anuraj Pandey, Rohit
Nigam, Romit Pandey, Ankit Rai, Vishwajeet Singh, Suyesh Tiwari, Sanidhya
Kashap, and Kunal Jain.

I would also like to thank Michelle Quadros, Sarah Cullington, Susmita
Panda, Priya Mukherji, and Snehman K Kohli from Packt who have been
extremely helpful and encouraging during the writing of the book.

Special thanks go out to my parents and sister, for their love and support.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mihai Dobos has a strong background in networking and security technologies, with hands
on project experience in open source, Cisco, Juniper, Symantec, and many other vendors.

He started as a Cisco trainer right after finishing high school, then moved on to real-life
implementations of network and security solutions. Mihai is now studying for his Masters
degree in Information Security in the Military Technical Academy.

Siju Oommen George works as the Senior Systems Administrator at HiFX Learning
Services, which is part of Virtual Training Company. He also over sees network, security,
and systems-related aspects at HiFX IT & Media Services, Fingent, and Quantlogic.

He completed his BTech course in Production Engineering from the University of Calicut in
2000 and has many years of System Administration experience on BSD, OS X, Linux, and
Microsoft Windows Platforms, involving both open source and proprietary software. He is
also a contributor to the DragonFlyBSD Handbook. He actively advocates the use of BSDs
among Computer Professionals and encourages Computer students to do the same. He is an
active participant in many of the BSD, Linux, and open source software mailing lists and enjoys
helping others who are new to a particular technology. He also reviews computer-related
books in his spare time. He is married to Sophia Yesudas who works in the Airline Industry.

I would like to thank my Lord and Savior Jesus Christ who gave me the
grace to continue working on reviewing this book during my busy schedule
and sickness, my wife Sophia for allowing me to steal time from her and
spend it in front of the computer at home, my Father T O Oommen and my
Late mother C I Maria who worked hard to pay for my education, my Pastor
Rajesh Mathew Kottukapilly who was with me in all the ups and downs of
life, and finally my employer Mohan Thomas who provided me with the
encouragement and facilities to research, experiment, work, and learn
almost everything I know in the computer field.

www.allitebooks.com

http://www.allitebooks.org

Amos Y. Jeffries' original background is in genetic engineering, physics, and astronomy.
He was introduced to computing in 1994. By 1996, he was developing networked
multiplayer games and accounting software on the Macintosh platform. In 2000, he joined
the nanotechnology field working with members of the Foresight Institute and others
spreading the foundations of the technology. In 2001, he graduated from the University of
Waikato with a Bachelor of Science (Software Engineering) degree with additional topical
background in software design, languages, compiler construction, data storage, encryption,
and artificial intelligence. In 2002, as a post-graduate, Amos worked as a developer creating
real-time software for multi-media I/O, networking, and recording on Large Interactive
Display Surfaces [1]. Later in 2002, he began a career in HTTP web design and network
administration, founding Treehouse Networks Ltd. in 2003 as a consultancy. This led him into
the field of SMTP mail networking and as a result data forensics and the anti-spam/anti-virus
industry. In 2004, he returned to formal study in the topics of low-level networking protocols
and human-computer interaction. In 2007, he entered the Squid project as a developer
integrating IPv6 support and soon stepped into the position of Squid-3 maintainer. In 2008,
he began contract work for the Te Kotahitanga research project at the University of Waikato
developing online tools for supporting teacher professional development [2,3].

Acknowledgements should go to Robert Collins, Henrik Nordstrom,
Francesco Chemolli, and Alex Rousskov[4]. Without whom Squid-3 would
have ceased to exist some years back.

[1]http://www.waikato.ac.nz/php/research.php?author=12357
5&mode=show

[2]http://edlinked.soe.waikato.ac.nz/departments/index.
php?dept_id=20&page_id=2639

[3](Research publication due out next year).

[4] Non-English characters exist in the correct spelling of these names

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles. Sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
Fully searchable across every book published by Packt

Copy and paste, print and bookmark content

On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

•

•

•

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Getting Started with Squid 7
Proxy server 7
Reverse proxy 9
Getting Squid 9
Time for action – identifying the right version 10

Methods of obtaining Squid 11
Using source archives 11

Time for action – downloading Squid 11
Obtaining the latest source code from Bazaar VCS 12

Time for action – using Bazaar to obtain source code 13
Using binary packages 14

Installing Squid 14
Installing Squid from source code 14

Compiling Squid 14
Uncompressing the source archive 15
Configure or system check 15

Time for action – running the configure command 25
Time for action – compiling the source 26
Time for action – installing Squid 27
Time for action – exploring Squid files 27

Installing Squid from binary packages 29
Fedora, CentOS or Red Hat 30
Debian or Ubuntu 30
FreeBSD 30
OpenBSD or NetBSD 30
Dragonfly BSD 30
Gentoo 30
Arch Linux 31

Summary 32

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Configuring Squid 33
Quick start 34
Syntax of the configuration file 34

Types of directives 35
HTTP port 37
Time for action – setting the HTTP port 37
Access control lists 38
Time for action – constructing simple ACLs 39
Controlling access to the proxy server 40

HTTP access control 40
Time for action – combining ACLs and HTTP access 41

HTTP reply access 42
ICP access 43
HTCP access 43
HTCP CLR access 43
Miss access 43
Ident lookup access 43

Cache peers or neighbors 44
Declaring cache peers 44

Time for action – adding a cache peer 44
Quickly restricting access to domains using peers 45
Advanced control on access using peers 46

Caching web documents 46
Using main memory (RAM) for caching 46

In-transit objects or current requests 47
Hot or popular objects 47
Negatively cached objects 47
Specifying cache space in RAM 47

Time for action – specifying space for memory caching 48
Maximum object size in memory 48
Memory cache mode 49

Using hard disks for caching 49
Specifying the storage space 49

Time for action – creating a cache directory 51
Configuring the number of sub directories 52

Time for action – adding a cache directory 52
Cache directory selection 53
Cache object size limits 53
Setting limits on object replacement 54

Cache replacement policies 54
Least recently used (LRU) 54
Greedy dual size frequency (GDSF) 54
Least frequently used with dynamic aging (LFUDA) 55

Table of Contents

[iii]

Tuning Squid for enhanced caching 55
Selective caching 55

Time for action – preventing the caching of local content 55
Refresh patterns for cached objects 56

Time for action – calculating the freshness of cached objects 57
Options for refresh pattern 58

Aborting the partial retrievals 60
Caching the failed requests 61

Playing around with HTTP headers 61
Controlling HTTP headers in requests 61
Controlling HTTP headers in responses 62
Replacing the contents of HTTP headers 62

DNS server configuration 62
Specifying the DNS program path 63
Controlling the number of DNS client processes 63
Setting the DNS name servers 63

Time for action – adding DNS name servers 64
Setting the hosts file 64
Default domain name for requests 64
Timeout for DNS queries 64
Caching the DNS responses 65
Setting the size of the DNS cache 65

Logging 66
Log formats 66
Log file rotation or log file backups 66
Log access 66
Buffered logs 66
Strip query terms 67

URL rewriters and redirectors 67
Other configuration directives 67

Setting the effective user for running Squid 68
Configuring hostnames for the proxy server 68

Hostname visible to everyone 68
Unique hostname for the server 68

Controlling the request forwarding 68
Always direct 69
Never direct 69
Hierarchy stoplist 69

Broken posts 70
TCP outgoing address 70

Table of Contents

[iv]

PID filename 71
Client netmask 71

Summary 73

Chapter 3: Running Squid 75
Command line options 75

Getting a list of available options 76
Time for action – listing the options 77

Getting information about our Squid installation 78
Time for action – finding out the Squid version 78

Creating cache or swap directories 78
Time for action – creating cache directories 78

Using a different configuration file 79
Getting verbose output 79

Time for action – debugging output in the console 80
Full debugging output on the terminal 81
Running as a normal process 82
Parsing the Squid configuration file for errors or warnings 82

Time for action – testing our configuration file 82
Sending various signals to a running Squid process 83

Reloading a new configuration file in a running process 83
Shutting down the Squid process 84
Interrupting or killing a running Squid process 84
Checking the status of a running Squid process 84
Sending a running process in to debug mode 85
Rotating the log files 85

Forcing the storage metadata to rebuild 86
Double checking swap during rebuild 86

Automatically starting Squid at system startup 87
Adding Squid command to /etc/rc.local file 87
Adding init script 87

Time for action – adding the init script 87
Summary 89

Chapter 4: Getting Started with Squid's Powerful ACLs and Access Rules 91
Access control lists 92

Fast and slow ACL types 92
Source and destination IP address 92

Time for action – constructing ACL lists using IP addresses 93
Time for action – using a range of IP addresses to build ACL lists 94

Source and destination domain names 96
Time for action – constructing ACL lists using domain names 97

Destination port 98

Table of Contents

[v]

Time for action – building ACL lists using destination ports 99
HTTP methods 101
Identifying requests using the request protocol 102

Time for action – using a request protocol to construct access rules 102
Time-based ACLs 103
URL and URL path-based identification 104
Matching client usernames 105
Proxy authentication 106

Time for action – enforcing proxy authentication 107
User limits 108
Identification based on various HTTP headers 109
HTTP reply status 111
Identifying random requests 112

Access list rules 112
Access to HTTP protocol 112
Access to other ports 114
Enforcing limited access to neighbors 115

Time for action – denying miss_access to neighbors 115
Requesting neighbor proxy servers 116
Forwarding requests to remote servers 117
Ident lookup access 117
Controlled caching of web documents 118
URL rewrite access 118
HTTP header access 119
Custom error pages 119
Maximum size of the reply body 120
Logging requests selectively 120

Mixing ACL lists and rules – example scenarios 121
Handling caching of local content 121

Time for action – avoiding caching of local content 121
Denying access from external networks 122
Denying access to selective clients 122
Blocking the download of video content 123

Time for action – blocking video content 123
Special access for certain clients 123

Time for action – writing rules for special access 124
Limited access during working hours 124
Allowing some clients to connect to special ports 125

Testing access control with squidclient 126

Table of Contents

[vi]

Time for action – testing our access control example with squidclient 128
Time for action – testing a complex access control 129
Summary 132

Chapter 5: Understanding Log Files and Log Formats 133
Log messages 134
Cache log or debug log 134
Time for action – understanding the cache log 134
Access log 137

Understanding the access log 137
Time for action – understanding the access log messages 137

Access log syntax 139
Time for action – analyzing a syntax to specify access log 139

Log format 140
Time for action – learning log format and format codes 140

Log formats provided by Squid 142

Time for action – customizing the access log with a new log format 142
Selective logging of requests 143
Time for action – using access_log to control logging of requests 144
Referer log 144
Time for action – enabling the referer log 145
Time for action – translating the referer logs to a human-readable format 145
User agent log 146
Time for action – enabling user agent logging 147
Emulating HTTP server-like logs 147
Time for action – enabling HTTP server log emulation 147
Log file rotation 148
Other log related features 148

Cache store log 149
Summary 150

Chapter 6: Managing Squid and Monitoring Traffic 151
Cache manager 151

Installing the Apache Web server 152
Time for action – installing Apache Web server 152

Configuring Apache for providing the cache manager web interface 152
Time for action – configuring Apache to use cachemgr.cgi 153

Accessing the cache manager web interface 153
Configuring Squid 154
Log in to cache manger 154
General Runtime Information 156
IP Cache Stats and Contents 157
FQDN Cache Statistics 158

Table of Contents

[vii]

HTTP Header Statistics 159
Traffic and Resource Counters 160
Request Forwarding Statistics 161
Cache Client List 162
Memory Utilization 163
Internal DNS Statistics 164

Log file analyzers 165
Calamaris 165

Installing Calamaris 166

Time for action – installing Calamaris 166
Using Calamaris to generate statistics 167

Time for action – generating stats in plain text format 167
Time for action – generating graphical reports with Calamaris 168
Summary 171

Chapter 7: Protecting your Squid Proxy Server with Authentication 173
HTTP authentication 174
Basic authentication 174
Time for action – exploring Basic authentication 174

Database authentication 176
Configuring database authentication 177

NCSA authentication 178
Time for action – configuring NCSA authentication 178

NIS authentication 179
LDAP authentication 179
SMB authentication 179
PAM authentication 180

Time for action – configuring PAM service 180
MSNT authentication 180

Time for action – configuring MSNT authentication 180
MSNT multi domain authentication 181
SASL authentication 182

Time for action – configuring Squid to use SASL authentication 182
getpwnam authentication 182
POP3 authentication 183
RADIUS authentication 183

Time for action – configuring RADIUS authentication 183
Fake Basic authentication 184

Digest authentication 184
Time for action – configuring Digest authentication 185

File authentication 186
LDAP authentication 186
eDirectory authentication 187

Table of Contents

[viii]

Microsoft NTLM authentication 187
Samba's NTLM authentication 188
Fake NTLM authentication 188

Negotiate authentication 189
Time for action – configuring Negotiate authentication 189
Using multiple authentication schemes 190
Writing a custom authentication helper 191
Time for action – writing a helper program 191
Making non-concurrent helpers concurrent 192
Common issues with authentication 193
Summary 196

Chapter 8: Building a Hierarchy of Squid Caches 197
Cache hierarchies 198
Reasons to use hierarchical caching 198
Problems with hierarchical caching 199
Joining a cache hierarchy 201
Time for action – joining a cache hierarchy 202

ICP options 202
HTCP options 203
Peer or neighbor selection 204

Options for peer selection methods 205

Other cache peer options 208
Controlling communication with peers 209

Domain-based forwarding 209
Time for action – configuring Squid for domain-based forwarding 210

Cache peer access 210
Time for action – forwarding requests to cache peers using ACLs 211

Switching peer relationship 212
Time for action – configuring Squid to switch peer relationship 213

Controlling request redirects 213
Peer communication protocols 215

Internet Cache Protocol 215
Cache digests 216

Squid and cache digest configuration 217

Hypertext Caching Protocol 218
Summary 219

Chapter 9: Squid in Reverse Proxy Mode 221
What is reverse proxy mode? 222

Exploring reverse proxy mode 222
Configuring Squid as a server surrogate 223

Table of Contents

[ix]

HTTP port 224
HTTP options in reverse proxy mode 224

HTTPS port 225
HTTPS options in reverse proxy mode 226
Adding backend web servers 229

Cache peer options for reverse proxy mode 229

Time for action – adding backend web servers 229
Support for surrogate protocol 230

Understanding the surrogate protocol 230
Configuration options for surrogate support 231

Support for ESI protocol 231
Configuring Squid for ESI support 232

Logging messages in web server log format 232
Ignoring the browser reloads 232

Time for action – configuring Squid to ignore the browser reloads 233
Access controls in reverse proxy mode 233

Squid in only reverse proxy mode 234
Squid in reverse proxy and forward proxy mode 234
Example configurations 235
Web server and Squid server on the same machine 236
Accelerating multiple backend web servers hosting one website 236
Accelerating multiple web servers hosting multiple websites 237

Summary 238

Chapter 10: Squid in Intercept Mode 239
Interception caching 239
Time for action – understanding interception caching 240
Advantages of interception caching 241
Problems with interception caching 241
Diverting HTTP traffic to Squid 243

Using a router's policy routing to divert requests 243
Using rule-based switching to divert requests 244
Using Squid server as a bridge 244
Using WCCP tunnel 245
Implementing interception caching 245
Configuring the network devices 245
Configuring the operating system 246

Time for action – enabling IP forwarding 246
Time for action – redirecting HTTP traffic to Squid 247

Configuring Squid 248
Configuring HTTP port 248

Summary 250

Table of Contents

[x]

Chapter 11: Writing URL Redirectors and Rewriters 251
URL redirectors and rewriters 251

Understanding URL redirectors 252
HTTP status codes for redirection 253

Understanding URL rewriters 254
Issues with URL rewriters 255

Squid, URL redirectors, and rewriters 256
Communication interface 256

Time for action – exploring the message flow between Squid and redirectors 257
Time for action – writing a simple URL redirector program 258

Concurrency 259
Handling whitespace in URLs 259

Using the uri_whitespace directive 259
Making redirector programs intelligent 260

Writing our own URL redirector program 260
Time for action – writing our own template for a URL redirector 261
Configuring Squid 262

Specifying the URL redirector program 263
Controlling redirector children 263
Controlling requests passed to the redirector program 264
Bypassing URL redirector programs when under heavy load 264
Rewriting the Host HTTP header 265

A special URL redirector – deny_info 265
Popular URL redirectors 267

SquidGuard 267
Squirm 267
Ad Zapper 268

Summary 269

Chapter 12: Troubleshooting Squid 271
Some common issues 271

Cannot write to log files 272
Time for action – changing the ownership of log files 272

Could not determine hostname 272
Cannot create swap directories 273

Time for action – fixing cache directory permissions 273
Failed verification of swap directories 274

Time for action – creating swap directories 274
Address already in use 274

Table of Contents

[xi]

Time for action – finding the program listening on a specific port 275
URLs with underscore results in an invalid URL 276

Enforce hostname checks 276
Allow underscore 276

Squid becomes slow over time 276
The request or reply is too large 277
Access denied on the proxy server 277
Connection refused when reaching a sibling proxy server 278

Debugging problems 278
Time for action – debugging HTTP requests 281
Time for action – debugging access control 282

Getting help online and reporting bugs 284
Summary 286

Pop Quiz Answers 287

Index 291

Preface
Squid proxy server enables you to cache your web content and return it quickly on
subsequent requests. System administrators often struggle with delays and too much
bandwidth being used, but Squid solves these problems by handling requests locally. By
deploying Squid in accelerator mode, requests are handled faster than on normal web
servers, thus making your site perform quicker than everyone else's!

The Squid Proxy Server 3.1 Beginner's Guide will help you to install and configure Squid so
that it is optimized to enhance the performance of your network. Caching usually takes a
lot of professional know-how, which can take time and be very confusing. The Squid proxy
server reduces the amount of effort that you will have to spend and this book will show you
how best to use Squid, saving your time and allowing you to get most out of your network.

Whether you only run one site, or are in charge of a whole network, Squid is an invaluable
tool which improves performance immeasurably. Caching and performance optimization
usually requires a lot of work on the developer's part, but Squid does all that for you. This
book will show you how to get the most out of Squid by customizing it for your network.
You will learn about the different configuration options available and the transparent and
accelerated modes that enable you to focus on particular areas of your network.

Applying proxy servers to large networks can be a lot of work as you have to decide where
to place restrictions and who to grant access. However, the straightforward examples in this
book will guide you through step-by-step so that you will have a proxy server that covers all
areas of your network by the time you finish reading.

What this book covers
Chapter 1, Getting Started with Squid, discusses the basics of proxy servers and web
caching and how we can utilize them to save bandwidth and improve the end user's
browsing experience. We will also learn to identify the correct Squid version for our
environment. We will explore various configuration options available for enabling or
disabling certain features while we compile Squid from the source code. We will explore
steps to compile and install Squid.

Preface

[�]

Chapter 2, Configuring Squid, explores the syntax used in the Squid configuration file, which
is used to control Squid's behavior. We will explore the important directives used in the
configuration file and will see related examples to understand them better. We will have
a brief overview of the powerful access control lists which we will learn in detail in later
chapters. We will also learn to fine-tune our cache to achieve a better HIT ratio to save
bandwidth and reduce the average page load time.

Chapter 3, Running Squid, talks about running Squid in different modes and various
command line options available for debugging purposes. We will also learn about rotating
Squid logs to reclaim disk space by deleting old/obsolete log files. We will learn to install
the init script to automatically start Squid on system startup.

Chapter 4, Getting Started with Squid's Powerful ACLs and Access Rules, explores the Access
Control Lists in detail with examples. We will learn about various ACL types and to construct
ACLs to identify requests and responses based on different criteria. We will also learn about
mixing ACLs of various types with access rules to achieve desired access control.

Chapter 5, Understanding Log Files and Log Formats, discusses configuring Squid to generate
customized log messages. We will also learn to interpret the messages logged by Squid in
various log files.

Chapter 6, Managing Squid and Monitoring Traffic, explores the Squid's Cache Manager
web interface in this chapter using which we can monitor our Squid proxy server and get
statistics about different components of Squid. We will also have a look at a few log file
analyzers which make analyzing traffic simpler compared to manually interpreting the
access log messages.

Chapter 7, Protecting your Squid with Authentication, teaches us to protect our Squid
proxy server with authentication using the various authentication schemes available. We
will also learn to write custom authentication helpers using which we can build our own
authentication system for Squid.

Chapter 8, Building a Hierarchy of Squid Caches, explores cache hierarchies in detail. We will
also learn to configure Squid to act as a parent or a sibling proxy server in a hierarchy, and to
use other proxy servers as a parent or sibling cache.

Chapter 9, Squid in Reverse Proxy Mode, discusses how Squid can accept HTTP requests on
behalf of one or more web servers in the background. We will learn to configure Squid in
reverse proxy mode. We will also have a look at a few example scenarios.

Chapter 10, Squid in Intercept Mode, talks about the details of intercept mode and how to
configure the network devices, and the host operating system to intercept the HTTP requests
and forward them to Squid proxy server. We will also have a look at the pros and cons of
Squid in intercept mode.

Preface

[�]

Chapter 11, Writing URL Redirectors and Rewriters. Squid's behavior can be further
customized using the URL redirectors and rewriter helpers. In this chapter, we will learn
about the internals of redirectors and rewriters and we will create our own custom helpers.

Chapter 12, Troubleshooting Squid, discusses some common problems or errors which you
may come across while configuring or running Squid. We will also learn about getting online
help to resolve issues with Squid and filing bug reports.

What you need for this book
A beginner level knowledge of Linux/Unix operating system and familiarity with basic
commands is all what you need. Squid runs almost on all Linux/Unix operating systems and
there is a great possibility that your favorite operating system repository already has Squid.

On a server, the availability of free main memory and speed of hard disk play a major role
in determining the performance of the Squid proxy server. As most of the cached objects
stay on the hard disks, faster disks will result in low disk latency and faster responses. But
faster hard disks (SCSI) are often very expensive as compared to ATA hard disks and we have
to analyze our requirements to strike a balance between the disk speed we need and the
money we are going to spend on it.

The main memory is the most important factor for optimizing Squid's performance. Squid
stores a little bit of information about each cached object in the main memory. On average,
Squid consumes up to 32 MB of the main memory for every GB of disk caching. The actual
memory utilization may vary depending on the average object size, CPU architecture, and
the number of concurrent users, and so on. While memory is critical for good performance,
a faster CPU also helps, but is not really critical.

Who this book is for
If you are a Linux or Unix system administrator and you want to enhance the performance
of your network or you are a web developer and want to enhance the performance of
your website, this book is for you. You will be expected to have some basic knowledge of
networking concepts, but may not have used caching systems or proxy servers until now.

Conventions
In this book, you will find several headings appearing frequently. To give clear instructions of
how to complete a procedure or task, we use:

Preface

[�]

Time for action - heading
1. Action 1

2. Action 2

3. Action 3

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?
This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

Pop quiz
These are short multiple choice questions intended to help you test your own understanding.

Have a go hero - heading
These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The directive visible_hostname is used to set
the hostname."

A block of code is set as follows:

acl special_network src 192.0.2.0/24
tcp_outgoing_address 198.51.100.25 special_network
tcp_outgoing_address 198.51.100.86

Any command-line input or output is written as follows:

$ mkdir /drive/squid_cache

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "If we click on the Internal
DNS Statistics link in the Cache Manager menu, we will be presented with various statistics
about the requests performed by the internal DNS client".

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for the book

You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this
book elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately, so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started with Squid

In this chapter, we will have a look at how proxy servers and web caching
works in general. We will proceed to download the correct Squid package
for our operating system, based on the system requirements that we learned
about in the Preface. We will learn how to compile and build additional Squid
features. We will also learn the advantages of compiling Squid manually from
the source over using a pre-compiled binary package.

In the final section, we will learn how to install Squid from a compiled source
binary package, using popular package managers. Installation is a crucial
part in getting started with Squid. Sometimes, we need to compile Squid with
custom flags, depending on the environment requirements.

So let's get started with the real stuff.

Proxy server
A proxy server is a computer system sitting between the client requesting a web document
and the target server (another computer system) serving the document. In its simplest form,
a proxy server facilitates communication between client and target server without modifying
requests or replies. When we initiate a request for a resource from the target server, the
proxy server hijacks our connection and represents itself as a client to the target server,
requesting the resource on our behalf. If a reply is received, the proxy server returns it to us,
giving a feel that we have communicated with the target server.

Getting Started with Squid

[�]

In advanced forms, a proxy server can filter requests based on various rules and may allow
communication only when requests can be validated against the available rules. The rules
are generally based on an IP address of a client or target server, protocol, content type of
web documents, web content type, and so on.

As seen in the preceding image, clients can't make direct requests to the web servers. To
facilitate communication between clients and web servers, we have connected them using
a proxy server which is acting as a medium of communication for clients and web servers.

Sometimes, a proxy server can modify requests or replies, or can even store the replies from
the target server locally for fulfilling the same request from the same or other clients at a
later stage. Storing the replies locally for use at a later time is known as caching. Caching is a
popular technique used by proxy servers to save bandwidth, empowering web servers, and
improving the end user's browsing experience.

Proxy servers are mostly deployed to perform the following:

Reduce bandwidth usage

Enhance the user's browsing experience by reducing page load time which, in turn,
is achieved by caching web documents

Enforce network access policies

Monitoring user traffic or reporting Internet usage for individual users or groups

Enhance user privacy by not exposing a user's machine directly to Internet

Distribute load among different web servers to reduce load on a single server

Empower a poorly performing web server

Filter requests or replies using an integrated virus/malware detection system

Load balance network traffic across multiple Internet connections

Relay traffic around within a local area network

Chapter 1

[�]

In simple terms, a proxy server is an agent between a client and target server that has a
list of rules against which it validates every request or reply, and then allows or denies
access accordingly.

Reverse proxy
Reverse proxying is a technique of storing the replies or resources from a web server locally
so that the subsequent requests to the same resource can be satisfied from the local copy
on the proxy server, sometimes without even actually contacting the web server. The proxy
server or web cache checks if the locally stored copy of the web document is still valid before
serving the cached copy.

The life of the locally stored web document is calculated from the additional HTTP headers
received from the web server. Using HTTP headers, web servers can control whether a given
document/response should be cached by a proxy server or not.

Web caching is mostly used:

To reduce bandwidth usage. A large number of static web documents like CSS and
JavaScript files, images, videos, and so on can be cached as they don't change
frequently and constitutes the major part of a response from a web server.

By ISPs to reduce average page load time to enhance browsing experience for their
customers on Dial-Up or broadband.

To take a load off a very busy web server by serving static pages/documents from
a proxy server's cache.

Getting Squid
Squid is available in several forms (compressed source archives, source code from a version
control system, binary packages such as RPM, DEB, and so on) from Squid's official website,
various Squid mirrors worldwide, and software repositories of almost all the popular
operating systems. Squid is also shipped with many Linux/Unix distributions.

There are various versions and releases of Squid available for download from Squid's official
website. To get the most out of a Squid installation its best to check out the latest source
code from a Version Control System (VCS) so that we get the latest features and fixes. But be
warned, the latest source code from a VCS is generally leading edge and may not be stable or
may not even work properly. Though code from a VCS is good for learning or testing Squid's
new features, you are strongly advised not to use code from a VCS for production deployments.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Squid

[10]

If we want to play safe, we should probably download the latest stable version or stable
version from the older releases. Stable versions are generally tested before they are
released and are supposed to work out of the box. Stable versions can directly be used in
production deployments.

Time for action – identifying the right version
A list of available versions of Squid is maintained at http://www.squid-cache.org/
Versions/. For production environments, we should use versions listed under the Stable
Versions section only. If we want to test new Squid features in our environment or if we
intend to provide feedback to the Squid community about the new version, then we should
be using one of the Beta Versions.

As we can see in the preceding screenshot, the website contains the First Production
Release Date and Latest Release Date for the stable versions. If we click on any of the
versions, we are directed to a page containing a list of all the releases in that particular
version. Let's have a look at the page for version 3.1:

Chapter 1

[11]

For every release, along with a release date, there are links for downloading compressed
source archives.

Different versions of Squid may have different features. For example, all the features
available in Squid version 2.7 may or may not be available in newer versions such as Squid
3.x. Some features may have been deprecated or have become redundant over time and
they are generally removed. On the other hand, Squid 3.x may have several new features
or existing features in an improved and revised manner.

Therefore, we should always aim for the latest version, but depending on the environment,
we may go for stable or beta version. Also, if we need specific features that are not available
in the latest version, we may choose from the available releases in a different branch.

What just happened?
We had a brief look at the pages containing the different versions and releases of Squid,
on Squid's official website. We also learned which versions and releases that we should
download and use for different types of usage.

Methods of obtaining Squid
After identifying the version of Squid that we should be using for compiling and installation,
let's have a look at the ways in which we can obtain Squid release 3.1.10.

Using source archives
Compressed source archives are the most popular way of getting Squid. To download the
source archive, please visit Squid download page, http://www.squid-cache.org/
Download/. This web page has links for downloading the different versions and releases
of Squid, either from the official website or available mirrors worldwide. We can use either
HTTP or FTP for getting the Squid source archive.

Time for action – downloading Squid
Now we are going to download Squid 3.1.10 from Squid's official website:

1. Let's go to the web page http://www.squid-cache.org/Versions/.

2. Now we need to click on the link to Version 3.1, as shown in the
following screenshot:

Getting Started with Squid

[12]

3. We'll be taken to a page displaying the various releases in version 3.1. The link with
the display text tar.gz in the Download column is a link to the compressed source
archive for Squid release 3.1.10, as shown in the following screenshot:

4. To download Squid 3.1.10 using the web browser, just click on the link.

5. Alternatively, we can use wget to download the source archive from the command
line as follows:

wget http://www.squid-cache.org/Versions/v3/3.1/squid-3.1.10.tar.gz

What just happened?
We successfully retrieved Squid version 3.1.10 from Squid's official website. The process of
retrieving other stable or beta versions is very similar.

Obtaining the latest source code from Bazaar VCS
Advanced users may be interested in getting the very latest source code from the Squid
code repository, using Bazaar. We can safely skip this section if we are not familiar with
VCS in general. Bazaar is a popular version control system used to track project history and
facilitate collaboration. From version 3.x onwards, Squid source code has been migrated to
Bazaar. Therefore, we should ensure that we have Bazaar installed on our system in order
to checkout the source code from repository. To find out more about Bazaar or for Bazaar
installation and configuration manuals, please visit Bazaar's official website at
http://bazaar.canonical.com/.

Once we have setup Bazaar, we should head to the Squid code repository mirrored on
Launchpad at https://code.launchpad.net/squid/. From here we can browse all the
versions and branches of Squid. Let's get ourselves familiar with the page layout:

Chapter 1

[13]

In the previous screenshot, Series: trunk represents the development branch, which
contains code that is still in development and is not ready for production use. The branches
with the status Mature are stable and can be used right away in production environments.

Time for action – using Bazaar to obtain source code
Now that we are familiar with the various branches, versions, and releases. Let's proceed to
checking out the source code with Bazaar. To download code from any branch, the syntax for
the command is as follows:

bzr branch lp:squid[/branch[/version]]

branch and version are optional parameters in the previous code. So, if we want to get
branch 3.1, then the command will be as follows:

bzr branch lp:squid/3.1

The previous command will fetch source code from Launchpad and may take a considerable
amount of time, depending on the Internet connection. If we are willing to download source
code for Squid version 3.1.10, then the command will be as follows:

bzr branch lp:squid/3.1/3.1.10

In the previous code, 3.1 is the branch name and 3.1.10 is the specific version of Squid
that we want to checkout.

What just happened?
We learned to fetch the source code for any Squid branch or release using Bazaar from
Squid's source code hosted on Launchpad.

Have a go hero – fetching the source code
Using the command syntax that we learned in the previous section, fetch the source code for
Squid version 3.0.stable25 from Launchpad.

Solution:

bzr branch lp:squid/3.0/3.0.stable25

Explanation: If we browse to the particular version on Launchpad, the version
number used in the command becomes obvious.

Getting Started with Squid

[14]

Using binary packages
Squid binary packages are pre-compiled and ready to install software bundles. Binary
packages are available in the software repositories of almost all Linux/Unix-based operating
systems. Depending on the operating system, only stable and sometimes well tested beta
versions make it to the software repositories, so they are ready for production use.

Installing Squid
Squid can be installed using the source code we obtained in the previous section, using a
package manager which, in turn, uses the binary package available for our operating system.
Let's have a detailed look at the ways in which we can install Squid.

Installing Squid from source code
Installing Squid from source code is a three step process:

1. Select the features and operating system-specific settings.

2. Compile the source code to generate the executables.

3. Place the generated executables and other required files in their designated
locations for Squid to function properly.

We can perform some of the above steps using automated tools that make the compilation
and installation process relatively easy.

Compiling Squid
Compiling Squid is a process of compiling several files containing C/C++ source code and
generating executables. Compiling Squid is really easy and can be done in a few steps. For
compiling Squid, we need an ANSI C/C++ compliant compiler. If we already have a GNU C/
C++ Compiler (GNU Compiler Collection (GCC) and g++, which are available on almost every
Linux/Unix-based operating system by default), we are ready to begin the actual compilation.

Why compile?
Compiling Squid is a bit of a painful task compared to installing Squid from the binary
package. However, we recommend compiling Squid from the source instead of using
pre-compiled binaries. Let's walk through a few advantages of compiling Squid from
the source:

While compiling we can enable extra features, which may not be enabled in the
pre-compiled binary package.

Chapter 1

[15]

When compiling, we can also disable extra features that are not needed for a
particular environment. For example, we may not need Authentication helpers or
ICMP support.

configure probes the system for several features and enables or disables them
accordingly, while pre-compiled binary packages will have the features detected for
the system the source was compiled on.

Using configure, we can specify an alternate location for installing Squid. We can
even install Squid without root or super user privileges, which may not be possible
with pre-compiled binary package.

Though compiling Squid from source has a lot of advantages over installing from the binary
package, the binary package has its own advantages. For example, when we are in damage
control mode or a crisis situation and we need to get the proxy server up and running really
quickly, using a binary package for installation will provide a quicker installation.

Uncompressing the source archive
If we obtained the Squid in a compressed archive format, we must extract it before we can
proceed any further. If we obtained Squid from Launchpad using Bazaar, we don't need
to perform this step.

tar -xvzf squid-3.1.10.tar.gz

tar is a popular command which is used to extract compressed archives of various types.
On the other hand, it can also be used to compress many files into a single archive. The
preceding command will extract the archive to a directory named squid-3.1.10.

Configure or system check
Configure or system check is the first step in the compilation process and is achieved by
running ./configure from the command line. This program probes the system, making
sure that the required packages are installed. This also checks the system capabilities and
collects information about the system architecture and default settings such as, available
file descriptors and so on. After collecting all the information, this program generates the
makefiles, which are used in the next step to actually compile the Squid source code.

Running configure without any parameters uses the preset defaults. If we are willing to
change the default Squid settings or if we want to disable some optional features that are
enabled by default, or if we want to install Squid in an alternate location in the file system,
we need to pass options to configure. Use the following the command to see the available
options along with a brief description.

Getting Started with Squid

[16]

Let's run configure with the --help option to have a look at the available
configuration options.

./configure --help | less

This will display the page containing the options and their brief description for configure.
Use up and down arrow keys to navigate through the information. Now let's discuss a few of
the commonly used options with configure:

--prefix
The --prefix option is the most commonly used option. If we are testing a new version or
if we wanted to test multiple Squid versions, we will have multiple Squid version installed
on our system. To identify the different versions and to prevent interference or confusion
between the versions, it's a good idea to install them in separate directories.

For example, for installing Squid version 3.1.10, we can use the directory /opt/
squid/3.1.10/ and the corresponding configure command will be run as:

./configure --prefix=/opt/squid/3.1.10/

Similarly, for installing Squid version 3.1, we can use the directory /opt/squid/3.1/.

From now onwards, ${prefix} will represent the location
where we have installed Squid, that is, the directory name used
with the --prefix option while running configure, as shown
in the previous command.

Squid provides even more control over the location of different types of files such as
executables and documentation files. Their placement can be controlled with options such
as --bindir, --sbindir, and so on. Please check the configure help page for further
details on these options.

Now, let's check the optional features and packages. To enable any optional feature, we pass
an option in the format --enable-FEATURE_NAME and to disable a feature, the option
format is either --disable-FEATURE_NAME or --enable-FEATURE_NAME=no. For
example, icmp is a feature name.

./configure --enable-FEATURE # FEATURE will be enabled

./configure --disable-FEATURE # FEATURE will be disabled

./configure --enable-FEATURE=no # FEATURE will be disabled

Similarly, to compile Squid with an available package, we pass an option in the format
--with-PACKAGE_NAME and to compile Squid without a package, we pass the option
--without-PACKAGE_NAME. openssl is an example package name.

Chapter 1

[17]

--enable-gnuregex
Regular expressions are used for constructing Access Control Lists in Squid. If we are running
a modern Linux/Unix-based operating system, we don't need to worry about this option. But
if our system doesn't have built-in support for regular expressions, we should enable support
for regular expressions using --enable-gnuregex.

--disable-inline
Squid has a lot of code that can be inlined, which is good for production use. But inline code
takes longer to compile and is useful when we need to compile a source only once for setting
up Squid for production use. This option is intended to be used during development when
we need to compile Squid time and again.

--disable-optimizations
Squid is, by default, compiled with compiler optimizations that result in better performance.
Again this option should be used while debugging a problem or testing different versions
as it'll reduce compilation time. The --disable-inline option is automatically used if we
use this option.

--enable-storeio
Squid's performance depends heavily on disk I/O performance when disk caching is enabled.
The quicker Squid can read/write files from cache, the lesser time it'll take to satisfy a
request, which in turn will result in smaller delays. Different storage techniques may lead to
optimized performance, depending on the traffic type and usage. We can use this option to
build Squid with support for various store I/O modules. Please check the src/fs/ directory
in the Squid source code for available store I/O modules.

./configure --enable-storeio=ufs,aufs,coss,diskd,null

--enable-removal-policies
While using disk caching, we instruct Squid to use a specified disk space for caching web
documents. Over a period of time, the space is consumed and Squid will still need more
space to cache new documents. Squid then has to decide which old documents should
be removed or purged from the cache to make space for storing the new ones. There are
different policies for purging the documents to achieve maximum benefits from caching.

The policies are based on heap and list data structures. List data structure is enabled by
default. Please check the src/repl/ directory in the Squid source code for available
removal policies.

./configure --enable-removal-policies=heap,lru

Getting Started with Squid

[1�]

--enable-icmp
This option is helpful in determining the distance from other cache peers and remote
servers to estimate approximate latency. This is useful only if we have other cache peers
in the network.

--enable-delay-pools
Squid uses delay pools to limit or control bandwidth that can be used by a client or a group
of clients. Delay pools are like leaky buckets which leak data (web traffic) to clients and are
refilled at a controlled rate. These come in handy when we need to control the bandwidth
used by a group of users.

--enable-esi
This option enables Squid to use Edge Side Includes (see http://www.esi.org for more
information). If this is enabled, Squid completely ignores cache-control headers from clients.
This option is only intended to be used when Squid is used in accelerator mode.

--enable-useragent-log
This provides the capability of logging user agent headers from HTTP requests by clients.

--enable-referer-log
If we enable this option, Squid will be able to write a referer header field from
HTTP requests.

--disable-wccp
This option disables support for Cisco's Web Cache Communication Protocol (WCCP).
WCCP enables communication between caches, which in turn helps in localizing the traffic.
By default, WCCP-support is enabled.

--disable-wccpv2
Similar to the previous option, this disables support Cisco's WCCP version 2. WCCPv2
is an improved version of WCCP and has built-in support for load balancing, scaling,
fault-tolerance, and service assurance mechanisms. By default, WCCPv2 support is enabled.

--disable-snmp
In Squid versions 3.x, SNMP (Simple Network Management Protocol) is enabled by
default. SNMP is quite popular among system administrators for monitoring servers
and network devices.

Chapter 1

[1�]

--enable-cachemgr-hostname
Cache Manager (cachemgr.cgi) is a CGI utility to manage Squid's cache and view cache
statistics using a web interface. The host name for accessing cache manager can be set using
this option. By default, we can access cache manager web interface using localhost or the
IP address of the Squid server.

./configure --enable-cachemgr-hostname=squidproxy.example.com

--enable-arp-acl
Squid supports building Access Control Lists based on MAC (or Ethernet) addresses.
This feature is disabled by default. If we want to control client access based on Ethernet
addresses, we should enable this feature. Enabling this is a good idea while learning Squid.

This option will be replaced by --enable-eui which is enabled by default.

--disable-htcp
Hypertext Caching Protocol (HTCP) can be used by Squid to send and receive cache digests
to neighboring caches. This option disables HTCP support.

--enable-ssl
Squid can terminate SSL connections. When Squid is configured in reverse proxy mode,
Squid can terminate the SSL connections initiated by clients and handle it on behalf of the
web server in the backend. This essentially means that the backend web server will not
have to do any SSL work, which means significant computation savings. In this case, the
communication between Squid and the backend web server will be pure HTTP, but clients
will still see it as a secure connection with the web server. This is useful only when Squid is
configured to work in accelerator or reverse proxy mode.

--enable-cache-digests
Cache digests are Squid's way of sharing information with neighboring Squid servers about
the cached web documents, in a compressed format.

--enable-default-err-language
Whenever Squid encounters an error (for example, a page not found, access denied, or
network unreachable error) that should be conveyed to the client, Squid uses default pages
for showing these errors. The error pages are available in local languages. This option can be
used to specify the default language for all the error pages. The default language for error
pages is English.

./configure --enable-default-err-language=Spanish

Getting Started with Squid

[20]

--enable-err-languages
By default, Squid builds support for all available languages. If we only want to build Squid
with languages which we are familiar with, we can use this option. Please check the
errors/ directory in the Squid source code for available languages.

./configure --enable-err-languages='English French German'

--disable-http-violations
Squid has configuration options, and by using them, we can force Squid to violate HTTP
protocol standards by replacing header fields in HTTP requests or responses. Tinkering with
HTTP headers is against standard HTTP norms. We can disable support for all sorts of HTTP
violations by using this option.

--enable-ipfw-transparent
IPFIREWALL (IPFW) is a firewall application for the FreeBSD system maintained by FreeBSD
staff and volunteers. This option is useful while setting up Transparent Proxy Server on
systems with IPFW. If our system doesn't have IPFW, we should avoid using this option,
because Squid will fail to compile. The default behavior is auto-detect, which does the job
quite well.

--enable-ipf-transparent
IPFilter (IPF) is also a stateful firewall for many Unix-like operating systems. It is provided by
NetBSD, Solaris, and so on. If our system has IPF, then we should enable this option to be
able to configure Squid in Transparent mode. Enabling this option in the absence of IPF on
the system will result in compile errors.

--enable-pf-transparent
Packet Filter (PF) is yet another stateful firewall application originally developed for
OpenBSD. This option is useful on systems with PF installed to achieve Transparent
Proxy mode. Do not enable this option if PF is not installed.

--enable-linux-netfliter
Netfilter is the packet filtering framework in Linux kernels in series 2.4.x and 2.6.x. This
option is useful for enabling Transparent Proxy support on Linux-based operating systems.

--enable-follow-x-forwarded-for
When a HTTP request is forwarded by a proxy, the proxy writes essential information about
itself and the client for which the request is being forwarded, in HTTP headers. This option
enables Squid to try to lookup the IP address of the original client for which the request was
forwarded through one or more proxy servers.

Chapter 1

[21]

--disable-ident-lookups
This prevents Squid from performing ident lookups or identifying a username for every
connection. Disabling this may prevent our system from a possible Denial of Service
attack by a malicious client requesting a large number of connections.

--disable-internal-dns
Squid has its own implementation of DNS protocol and is capable of building DNS queries. If
we want to use Squid's internal DNS, then we should not disable it. Otherwise, we can disable
support for Squid's internal DNS feature by using this option and can use external DNS servers.

--enable-default-hostsfile
Using this option, we can select the default location of the hosts file. On most operating
systems, it's located in the /etc/hosts directory.

./configure --enable-default-hostsfile=/some/other/location/hosts

--enable-auth
Squid supports various authentication mechanisms. This option enables support for
authentication schemes. This configure option (and related enable auth options) are
undergoing change.

Old Syntax
Previously, this option was used to enable authentication support and a list of authentication
schemes was also passed. The authentication schemes from the list were then built
during compilation.

./configure --enable-auth=basic,digest,ntlm

New Syntax
Now, this option is used only to enable global support for authentication and a list of
authentication schemes is not passed along. The authentication scheme is enabled with the
option --enable-auth-AUTHENTICATION_SCHEME where AUTHENTICATION_SCHEME
is the name of the authentication scheme. By default, all the authentication schemes
are enabled and the corresponding authentication helpers are built during compilation.
Authentication helpers are external programs that can authenticate clients using various
authentication mechanisms, against different user databases.

./configure --enable-auth

Getting Started with Squid

[22]

--enable-auth-basic
This option enables support for a Basic Authentication scheme and builds the list of helpers
specified. If the list of helpers is not provided, this will enable all the possible helpers. A list
of available helpers for this scheme can be found in the helpers/basic_auth/ directory
in the Squid source code. To disable this authentication scheme, we can use --disable-
auth-basic.

./configure --enable-auth-basic=PAM,NCSA,LDAP

If we want to enable this option but don't want to build any helpers, we should use "none"
in place of a list of helpers.

./configure --enable-auth-basic=none

Previously, this option was known as --enable-basic-auth-helpers. The list of helpers
is passed in a similar way.

./configure --enable-basic-auth-helpers=PAM,NCSA,LDAP

The old and new option syntax for all other authentication schemes
are similar.

--enable-auth-ntlm
Squid support for the NTLM authentication scheme is enabled with this option. The available
helpers for this scheme reside in the helpers/ntlm_auth/ directory in the Squid source
code. To disable NTLM authentication scheme support, use the --disable-auth-ntlm
option.

./configure --enable-auth-ntlm=smb_lm,no_check

--enable-auth-negotiate
This option enables the Negotiate Authentication scheme. Details and syntax are similar
to the above authentication scheme option.

./configure --enable-auth-negotiate=kerberos

--enable-auth-digest
This option enables support for Digest Authentication scheme. Other details are similar
to the above option.

--enable-ntlm-fail-open
If this option is enabled and a helper fails while authenticating a user, it can still allow
Squid to authenticate the user. This option should be used with care as it may lead
to security loopholes.

Chapter 1

[23]

--enable-external-acl-helpers
Squid supports external ACLs using helpers. If we are willing to use external ACLs, we should
consider using this option. We can also use this option while learning. A list of external
ACL helpers should be passed to build specific helpers. The default behavior is to build
all the available helpers. A list of available external ACL helpers can be found in the
helpers/external_acl/ directory in the Squid source code.

./configure --enable-external-acl-helpers=unix_group,ldap_group

--disable-translation
By default, Squid tries to present error and manual pages in a local language. If we don't
want this to happen, then we may use this option.

--disable-auto-locale
Based on a client's request headers, Squid tries to automatically provide localized error
pages. We can use this option to disable the automatic localization. The error_directory
tag in the Squid configuration file must be configured if we use this option.

--disable-unlinkd
unlinkd is an external process which is used to make unlink system calls. This option
disables unlinkd support in Squid. Disabling unlinkd is not a good idea as the unlink
system call can block a process for a considerable amount of time, which can cause a delay
in responses.

--with-default-user
We normally don't want to run Squid as the root user to omit any security risks. By default,
Squid runs as the user nobody. However, if we have installed Squid from a pre-compiled
binary, Squid may run as a 'squid' or 'proxy' user depending on the operating system we
are using. Using this option, we can set the default user for running Squid. See the following
example of how to use this option:

./configure --with-default-user=squid

--with-logdir
By default, Squid writes all logs and error reports to designated files in ${prefix}/var/
logs/. This location is different from the location used by all other processes and daemons
to write their logs. In order to get quick access to the Squid logs, we may want to place them
in the default system log directory, which is /var/log/ in most of the Linux-based
operating systems. See the following example of the syntax to achieve this:

./configure --with-logdir=/var/log/squid/

Getting Started with Squid

[24]

--with-pidfile
The default location for storing the Squid PID file is ${prefix}/var/run/squid.
pid, which is not the standard system location for storing PID files. On most Linux-based
operating systems, the PID files are stored in /var/run/. So, we may want to change the
default PIDfile location using the following option:

./configure --with-pidfile=/var/run/squid.pid

--with-aufs-threads
Using this option, we can specify the number of threads to use when the aufs storage
system is used for managing the cache directories. If this option is not used, Squid
automatically calculates the number of threads that should be used:

./configure --with-aufs-threads=12

--without-pthreads
Older versions of Squid were built without POSIX threads support. Now, Squid is built with
pthreads support by default, therefore, if we don't want to enable pthreads support,
we'll have to explicitly disable it.

--with-openssl
If we want to build Squid with OpenSSL support, we can use this option to specify the
OpenSSL installation path, if it's not installed in the default location:

./configure --with-openssl=/opt/openssl/

--with-large-files
Under heavy traffic, Squid's log files (especially the access log) grow quickly and in the long
run the file size may become quite large. We can use this option to enable support for large
log files.

For better performance, it is good practice to rotate log files frequently
instead of going with large files.

--with-filedescriptors
Operating systems use file descriptors (basically integers) to track the open files and sockets.
By default, there is a limit on the number of file descriptors a user can use (normally 1024).
Once Squid has accepted connections which have consumed all the available file descriptors
to the Squid user, it can't accept more connections unless some of the file descriptors
are released.

Chapter 1

[25]

Under heavy load, Squid frequently runs out of file descriptors. We can use the following
option to overcome the file descriptor shortage problem:

./configure --with-filedescriptors=8192

We also need to increase the system-wide limit on the number of file
descriptors available to a user.

Have a go hero – file descriptors
Find out the maximum number of available file descriptors for your user. Also, write down
the commands that will set the maximum available file descriptors limit to 8192.

Solution: To check the available file-descriptors use the following command:

ulimit -n

To set the file descriptor limit to 8192, we need to append the following lines to
/etc/security/limits.conf:

username hard nofile 8192
username soft nofile 8192

The preceding action can be performed only with root or super user privileges.

Time for action – running the configure command
Now that we have had a brief look at several of the available options, we can layout the
options for the environment for which we are building Squid. Now, we are ready to run
the configure command with the following options:

./configure --prefix=/opt/squid/ --with-logdir=/var/log/squid/ --with-
pidfile=/var/run/squid.pid --enable-storeio=ufs,aufs --enable-removal-
policies=lru,heap --enable-icmp --enable-useragent-log --enable-referer-
log --enable-cache-digests --with-large-files

The preceding command will run for a while, probing the system for various capabilities
and making decisions on the basis of the available libraries and modules. The configure
writes debugging output to the config.log file in the same directory. It is always wise
to check the config.log for any errors which may have occurred while running the
configure command.

If everything goes fine, configure will generate the makefiles in several directories
which will be required for compiling the source code in the next step.

Getting Started with Squid

[26]

What just happened?
Running the configure program with the options mentioned in the previous code example,
will generate the makefiles needed to compile the Squid source code and source code of
the modules enabled. It will also generate the config.log and config.status files. All the
messages which are generated during the running of the configure program are logged to
the config.log file. The config.status file is an executable which can be run to recreate
the makefiles.

Have a go hero – debugging configure errors
In the Squid source directory, run the configure command, as shown in the following code:

./configure --enable-storeio='aufs,disk'

Now try to check what went wrong and fix the errors.

Time for action – compiling the source
After specifying our environment and building the requirements, we need to do the actual
compilation. Compiling source code is very easy and is a matter of just one command:

make

We do not need to be the root or super user to execute this command. This command may
take a considerable amount of time to execute, depending on the system hardware. Running
make will produce a lot of output in the terminal. It may also produce a lot of compiler
warnings which can safely be ignored in most cases.

If make ends with errors, we should check Squid bugzilla for similar problems. We can update
an existing bug with our error report or create a new bug report if there is no similar bug
already. For details on troubleshooting and completing bug reports, please refer to
Chapter 12, Troubleshooting Squid.

If make ends without any errors, we can quickly proceed to the installation phase. We can
also run make again to verify that everything is compiled successfully. Running make again
should produce a lot of lines similar to the following:

Making all in compat
make[1]: Entering directory '/home/user/squid-source/compat'
make[1]: Nothing to be done for 'all'.
make[1]: Leaving directory '/home/user/squid-source/compat'

What just happened?
We have just run the make command that will compile the source code of Squid and related
modules, to generate executables, if it finishes without errors. The generated executables
are ready to be installed now.

Chapter 1

[27]

Time for action – installing Squid
The successful compilation of the source code in the previous section will generate the
required programs depending on the features and packages we have enabled or disabled.
However, they should be moved to their designated locations, so that they can be used.
Let's perform the final steps of the installation.

1. Depending on the ${prefix}, we may need root or super user privileges for
installing Squid. If root or super user privileges are needed, we should first switch
to root or super user by using the following command:

su

2.	 Now all we need to do is to run the make command with install as the argument:

make install

This will install or simply move programs to their designated locations, depending on
the path used with the --prefix option while running the configure program.

What just happened?
We just learned how to perform the final step in installing Squid, which is to place the
generated programs and other essential files in their designated locations.

Time for action – exploring Squid files
Let's have a look at the files and directories generated during installation. The easiest way
to checkout the directories and files generated is to use the tree command. If the tree
command is not available, we can list files using the ls command as well.

tree ${prefix} | less

${prefix} is the directory used with the --prefix option for configure. Now let's
have a brief overview at the important files generated by Squid during installation. All
of the following directories and files listed, reside in ${prefix}:

bin
This directory contains programs which can be executed or run by a user without root or
super user privileges.

bin/squidclient
squidclient is a HTTP client with advanced capabilities, which allow it to tinker HTTP
requests to test the Squid server. Run squidclient to checkout the available options:

${prefix}/bin/squidclient

Getting Started with Squid

[2�]

etc
This is the place where for all the configuration files related to Squid are located.

It's a good idea to use the --sysconfdir=/etc/squid/ option
with configure, so that you can share the configuration across
different Squid installations while testing.

etc/squid.conf
This is the default location for the Squid configuration file. The squid.conf generated
during installation is the bare minimum configuration required for Squid to be used.
We always make changes to this file if we need to alter the Squid configuration.

etc/squid.conf.default
Squid generates this default configuration file so that we can copy and rename it to
squid.conf and start afresh.

etc/squid.conf.documented
This is a fully documented version of squid.conf, containing thousands of lines of
comments. We should always refer to this file for the available configuration tags for
the version of Squid when we have installed.

libexec
This directory contains helper programs built during Squid compilation.

libexec/cachemgr.cgi
This CGI program provides a web interface for managing the Squid cache called
Cache Manager.

sbin
This directory contains programs which can only be executed by a user with root or super
user privileges.

sbin/squid
This is the actual Squid program, which is generally run as a daemon.

share
This is the location for error page templates, documentation, and other files used by Squid.

share/errors
This directory contains localized error page templates. The templates are HTML pages and we
can customize the error messages displayed by Squid, by modifying these HTML templates.

Chapter 1

[2�]

share/icons
This directory contains a number of small images used for FTP or gopher directory listing.

share/man
This is the place where the man pages for squid, squidclient, and helpers are built during
compilation. Man pages are manual or help pages which can be viewed using the command
man (available on all Linux/Unix distributions). To view a man page located at /opt/squid/
share/man/man8/squid.8, we can use the man command as follows:

man /opt/squid/share/man/man8/squid.8

For more details about man pages, please visit
http://en.wikipedia.org/wiki/Man_page.

var
A place for files that change frequently while Squid is running.

var/cache
This is the default directory for storing the cached web documents on a hard disk.

var/logs
This is the default home for all the log files (such as cache.log, access.log, and so on)
used by Squid.

What just happened?
We have just looked at the various files and directories generated during installation and
a had brief overview of what each directory contains.

Installing Squid from binary packages
Squid binary packages are available in the software repositories of most operating systems
and we can install them by using the package managers provided by the respective operating
systems. Next, we'll see how to use a package manager on a few operating systems to
install Squid.

The latest or beta versions may not be available in software repositories of all
the operating systems. In such cases, we should get the latest or beta versions
from the Squid website, as explained earlier in this chapter.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Squid

[30]

Fedora, CentOS or Red Hat
Yum is a popular package manager on RPM-based operating systems. Squid RPM is available
in the Fedora, CentOS, and Red Hat repositories. To install Squid, we can simply use the
following command:

yum install squid

Debian or Ubuntu
We can use apt-get to install Squid on Debian or Ubuntu:

apt-get install squid3

FreeBSD
Squid is available in the FreeBSD ports collection. The following command can be used to
install Squid on FreeBSD:

pkg_add -r squid31

For more information on package management in FreeBSD, please go to
http://www.freebsd.org/doc/handbook/packages-using.html.

OpenBSD or NetBSD
Installing Squid on OpenBSD or NetBSD is similar to installing it on FreeBSD and can be
performed using the following command:

pkd_add squid31

To learn more about the package management system in OpenBSD and NetBSD, please
refer to http://www.openbsd.org/ports.html#Get and http://www.netbsd.org/
docs/pkgsrc/using.html#installing-binary-packages respectively.

Dragonfly BSD
To install Squid on Dragonfly BSD, we can use the following command:

pkg_radd squid31

For more information on installing binary packages on Dragonfly BSD, please visit
http://www.dragonflybsd.org/docs/newhandbook/pkgsrc/.

Gentoo
We can install Squid on Gentoo Linux using emerge, as shown next:

emerge =squid-3.1*

Chapter 1

[31]

Arch Linux
To install Squid on Arch Linux, we can use the package manager pacman, as shown in the
following command:

pacman -S squid

For more information on pacman, please visit
https://wiki.archlinux.org/index.php/Pacman.

Pop quiz
1. Which of the following web documents can't be cached by a proxy server?

a. A HTML page

b. A JPEG image

c. A PHP script that produces output based on a client's IP Address

d. A JavaScript file

2. In which of the following scenarios, should we worry about the
--enable-diskio option?

a. Caching in RAM (main memory) is enabled

b. Caching on hard disk is enabled

c. Caching is disabled

d. None of the above

3. When does a removal policy selection affect the overall Squid performance?

a. If caching is disabled

b. If caching on the hard disk and RAM is enabled

c. A removal policy selection is not related to caching

d. A removal policy doesn't affect overall Squid performance

Getting Started with Squid

[32]

Summary
We learned about proxy servers and web caching in general and the ways in which they
can be useful, especially for saving bandwidth and improving end user experience. Then we
moved on to exploring Squid, which is a powerful caching proxy server. The following are the
important things that we learned in this chapter:

Various ways to grab Squid for production use or development

Meaning of various configure options

Compiling Squid source code

Installing Squid from source and binary package

Pros and cons of compiling Squid from source

We also discussed about the directory structure and files generated by Squid
during installation.

Now that we know how to install Squid, we are ready to learn how to configure Squid
according to requirements for a given network environment. We'll learn about this with
a few examples in the next chapter.

2
Configuring Squid

We have learned about compiling Squid source code and installing Squid from
a source and binary package. In this chapter, we are going to learn to configure
Squid according to the requirements of a given network. We will learn about
the general syntax used for a Squid configuration file and then we will move on
to exploring the different options available to fine tune Squid. There will be a
few options which we will only cover briefly but there will be chapters dedicated
to them while we will explore other options in detail.

In this chapter, we will cover the following:

Quick exposure to Squid

Syntax of the configuration file

HTTP port, the most important configuration directive

Access Control Lists (ACLs)

Controlling access to various components of Squid

Cache peers or neighbors

Caching the web documents in the main memory and hard disk

Tuning Squid to enhance bandwidth savings and reduce latency

Modifying the HTTP headers accompanied with requests and responses

Configuring Squid to use DNS servers

A few directives related to logging

Other important or commonly used configuration directives

So let's get started.

Configuring Squid

[34]

Quick start
Before we explore a configuration file in detail, let's have a look at the minimal
configuration that you will need to get started. Get ready with the configuration file located
at /opt/squid/etc/squid.conf, as we are going to make the changes and additions
necessary to quickly set up a minimal proxy server.

cache_dir ufs /opt/squid/var/cache/ 500 16 256
acl my_machine src 192.0.2.21 # Replace with your IP address
http_access allow my_machine

We should add the previous lines at the top of our current configuration file (ensuring that
we change the IP address accordingly). Now, we need to create the cache directories. We
can do that by using the following command:

$ /opt/squid/sbin/squid -z

We are now ready to run our proxy server, and this can be done by running the
following command:

$ /opt/squid/sbin/squid

Squid will start listening on port 3128 (default) on all network interfaces on our machine.
Now we can configure our browser to use Squid as an HTTP proxy server with the host as
the IP address of our machine and port 3128.

Once the browser is configured, try browsing to http://www.example.com/.
That's it! We have configured Squid as an HTTP proxy server! Now try to browse to
http://www.example.com:897/ and observe the message you receive. The message
shown is an access denied message sent to you by Squid.

Now, let's move on to understanding the configuration file in detail.

Syntax of the configuration file
Squid's configuration file can normally be found at /etc/squid/squid.conf,
/usr/local/squid/etc/squid.conf, or ${prefix}/etc/squid.conf where
${prefix} is the value passed to the --prefix option, which is passed to the
configure command before compiling Squid.

In the newer versions of Squid, a documented version of squid.conf, known as squid.
conf.documented, can be found along side squid.conf. In this chapter, we'll cover some
of the import directives available in the configuration file. For a detailed description of all the
directives used in the configuration file, please check http://www.squid-cache.org/
Doc/config/.

Chapter 2

[35]

The syntax for Squid's documented configuration file is similar to many other programs for
Linux/Unix. Generally, there are a few lines of comments containing useful related
documentation before every directive used in the configuration file. This makes it easier to
understand and configure directives, even for people who are not familiar with configuring
applications using configuration files. Normally, we just need to read the comments and use
the appropriate options available for a particular directive.

The lines beginning with the character # are treated as comments and are completely ignored
by Squid while parsing the configuration file. Additionally, any blank lines are also ignored.

Test comment. This and the above blank line will be ignored by
Squid.

Let's see a snippet from the documented configuration file (squid.conf.documented)

TAG: cache_effective_user
If you start Squid as root, it will change its effective/real
UID/GID to the user specified below. The default is to change
to UID of nobody.
see also; cache_effective_group
#Default:
cache_effective_user nobody

In the previous snippet, the first line mentions the name of the directive, that is in this case,
cache_effective_user. The lines following the tag line provide brief information about
the usage of a directive. The last line shows the default value for the directive, if none
is specified.

Types of directives
Now, let's have a brief look at the different types of directives and the values that can
be specified.

Single valued directives
These are directives which take only one value. These directives should not be used multiple
times in the configuration file because the last occurrence of the directive will override all
the previous declarations. For example, logfile_rotate should be specified only once.

logfile_rotate 10
Few lines containing other configuration directives
logfile_rotate 5

In this case, five logfile rotations will be made when we trigger Squid to rotate logfiles.

Configuring Squid

[36]

Boolean-valued or toggle directives
These are also single valued directives, but these directives are generally used to toggle
features on or off.

query_icmp on
log_icp_queries off
url_rewrite_bypass off

We use these directives when we need to change the default behavior.

Multi-valued directives
Directives of this type generally take one or more than one value. We can either specify all the
values on a single line after the directive or we can write them on multiple lines with a directive
repeated every time. All the values for a directive are aggregated from different lines:

hostname_aliases proxy.exmaple.com squid.example.com

Optionally, we can pass them on separate lines as follows:

dns_nameservers proxy.example.com
dns_nameservers squid.example.com

Both the previous code snippets will instruct Squid to use proxy.example.com and
squid.example.com as aliases for the hostname of our proxy server.

Directives with time as a value
There are a few directives which take values with time as the unit. Squid understands the
words seconds, minutes, hours, and so on, and these can be suffixed to numerical values
to specify actual values. For example:

request_timeout 3 hours
persistent_request_timeout 2 minutes

Directives with file or memory size as values
The values passed to these directives are generally suffixed with file or memory size units like
bytes, KB, MB, or GB. For example:

reply_body_max_size 10 MB
cache_mem 512 MB
maximum_object_in_memory 8192 KB

As we are familiar with the configuration file syntax now, let's open the squid.conf file and
learn about the frequently used directives.

Chapter 2

[37]

Have a go hero – categorize the directives
Open the documented Squid configuration file and find out at least three directives of each
type that we discussed before. Don't use the directives already used in the examples.

HTTP port
This directive is used to specify the port where Squid will listen for client connections. The
default behavior is to listen on port 3128 on all the available interfaces on a machine.

Time for action – setting the HTTP port
Now, we'll see the various ways to set the HTTP port in the squid.conf file:

In its simplest form, we just specify the port on which we want Squid to listen:

http_port 8080

We can also specify the IP address and port combination on which we want Squid
to listen. We normally use this approach when we have multiple interfaces on our
machine and we want Squid to listen only on the interface connected to local area
network (LAN):

http_port 192.0.2.25:3128

This will instruct Squid to listen on port 3128 on the interface with the IP address as
192.0.2.25.

Another form in which we can specify http_port is by using hostname and
port combination:

http_port myproxy.example.com:8080

The hostname will be translated to an IP address by Squid and then Squid will listen
on port 8080 on that particular IP address.

Another aspect of this directive is that, it can take multiple values on separate lines.
Let's see what the following lines will do:

http_port 192.0.2.25:8080
http_port lan1.example.com:3128
http_port lan2.example.com:8081

These lines will trigger Squid to listen on three different IP addresses and port
combinations. This is generally helpful when we have clients in different LANs,
which are configured to use different ports for the proxy server.

Configuring Squid

[3�]

In the newer versions of Squid, we may also specify the mode of operation such as
intercept, tproxy, accel, and so on.

Intercept mode will support the interception of requests without needing to
configure the client machines. We'll learn more about interception proxy
servers in Chapter 10, Squid in Intercept Mode.

http_port 3128 intercept

tproxy mode is used to enable Linux Transparent Proxy support for spoofing
outgoing connections using the client's IP address.

http_port 8080 tproxy

We should note that enabling intercept or tproxy mode
disables any configured authentication mechanism. Also, IPv6 is
supported for tproxy but requires very recent kernel versions. IPv6
is not supported in the intercept mode.

Accelerator mode is enabled using the mode accel. It's a good idea to listen on
port 80, if we are configuring Squid in accelerator mode. This mode can't be used as
it is. We must specify at least one website we want to accelerate. We'll learn more
about the accelerator mode in Chapter 9, Squid in Accelerator Mode.

http_port 80 accel defaultsite=website.example.com

We should set the HTTP port carefully as the standard ports like 3128
or 8080 can pose a security risk if we don't secure the port properly.
If we don't want to spend time on securing the port, we can use any
arbitrary port number above 10000.

What just happened?
In this section, we learned about the usage of one of the most important directives, namely,
http_port. We have learned about the various ways in which we can specify HTTP port,
depending on the requirement. We can force Squid to listen on multiple interfaces and on
different ports, on different interfaces.

Access control lists
Access Control Lists (ACLs) are the base elements for access control and are normally
used in combination with other directives such as http_access, icp_access, and so
on, to control access to various Squid components and web resources. ACLs identify a web
transaction and then directives such as http_access, cache, and then decides whether
the transaction should be allowed or not. Also, we should note that the directives related
to accessing resources generally end with _access.

Chapter 2

[3�]

Every access control list definition must have a name and type, followed by the values for
that particular ACL type:

acl ACL_NAME ACL_TYPE value
acl ACL_NAME ACL_TYPE "/path/to/filename"

The values for any ACL name can either be specified directly after ACL_TYPE or Squid can
read them from a separate file. Here we should note that the values in the file should be
written as one value per line.

Time for action – constructing simple ACLs
Let's construct an access control list for the domain name example.com:

acl example_site dstdomain example.com

In this code, example_site is the name of the ACL with type dstdomain, which reflects
that the value, example.com, is the domain name.

Now if we want to construct an access control list which can cover a lot of example websites,
we have the following three possible ways of doing it:

1.	 Values on a single line: We can specify all the possible values on a single line:

acl example_sites dstdomain example.com example.net example.org

This works fine as long as there are only a few values.

2.	 Values on multiple lines: In case the list of values that we want to specify grows
significantly, we can split the list and pass values on multiple lines:

acl example_sites dstdomain example.com example.net
acl example_sites dstdomain example.org

3.	 Values from a file: If case the number of values we want to specify is quite large, we
can put them in a dedicated file and then instruct Squid to read the values from that
particular file:

acl example_sites dstdomain '/opt/squid/etc/example_sites.txt'

We can place the example_sites.txt file in the same directory as squid.conf
so that it's easy to locate. The contents of the example_sites.txt file should be
as follows:

This file can also have comments
Write one value (domain name) per line
example.net
example.org # Temporarily remove example.org from example_sites
acl
example.com

Configuring Squid

[40]

ACL names are case-insensitive and are multi-valued. So we can use them, multiple times,
and the values will aggregate:

acl NiCe_NaMe src 192.0.2.21
acl nIcE_nAmE src 192.0.2.23

This code doesn't represent two different access control lists. It's just one ACL with two
addresses, namely, 192.0.2.21 and 192.0.2.23, as values.

We should carefully note that one ACL name can't be used with more than one
ACL type.

acl destination dstdomain example.com

acl destination dst 192.0.2.24

The above code is invalid as it uses ACL name destination across two
different ACL types.

The previous examples of access lists are very basic and are simply to get us started. We'll
explore access lists and controls in Chapter 4, Getting Started with Squid's Powerful ACLs
and Access Rules.

What just happened?
We have just learned to create some simple ACLs of the ACL type dstdomain, which
identifies the destination domain in a request.

Have a go hero – understanding the pre-defined ACLs
Jump to the ACL section in the Squid configuration file and try to understand the ACLs
provided by Squid, by default.

Controlling access to the proxy server
While Squid is running on our server, it can be accessed in several ways for example, via
normal web browsing by end users or as a parent or sibling proxy server by neighboring
proxy servers. Squid provides various directives to control access to different resources.
Next, we'll learn about granting or revoking access to different resources.

HTTP access control
ACLs help only in identifying requests based on different rules. ACLs are of no use by
themselves, they should be combined with access control directives to allow or deny access
to various resources. http_access is one such directive which is used to grant access to
perform HTTP transactions through Squid.

Chapter 2

[41]

Let's have a look at the syntax of http_access:

http_access allow|deny [!]ACL_NAME

Using http_access, we can either allow or deny access to the HTTP transactions through
Squid. The ACL_NAME in the code signifies the requests for which the access must be granted
or revoked. If a bang (!) is prefixed to the ACL_NAME, the access will be granted or revoked
for all the requests that are not identified by ACL_NAME.

Time for action – combining ACLs and HTTP access
Let's have a look at a few cases for controlling HTTP access using example ACLs. When we
have multiple access rules, Squid matches a particular request against them from top to
bottom and keeps doing so until a definite action (allow or deny) is determined. Please
note that if we have multiple ACLs within a single access rule, then a request is matched
against all the ACLs from left to right, and Squid stops processing the rule as soon as it
encounters an ACL that can't identify the request. An access rule with multiple ACLs results
in a definite action, only if the request is identified by all the ACLs used in the rule.

acl my_home_machine src 192.0.2.21
acl my_lab_machine src 198.51.100.86
http_access allow my_home_machine
http_access allow my_lab_machine

The ACLs and access rules in the previous code will allow hosts 192.0.2.21 and
198.51.100.86 to access the proxy server. The aforementioned access rules may
also be written as:

acl my_machines src 192.0.2.21 198.51.100.86
http_access allow my_machines

Default behavior is to allow access to all the clients in a local area network and deny access
to all the other clients. If we want clients (who are not in our local area network) to be able
to use our proxy server, we must add additional access rules to allow them.

The default behavior of HTTP access control is a bit tricky if access for a client
can't be identified by any of the access rules. In such cases, the default behavior
is to do the opposite of the last access rule. If last access rule is deny, then the
action will be to allow access and vice-versa. Therefore, to avoid any confusion
or undesired behavior, it's a good practice to add a deny all line after the
access rules.

http_access deny all

Configuring Squid

[42]

The parameter all is a special ACL element provided by Squid and it represents all the
IP addresses. This line will deny access to everything. As this goes after all other access rules,
requests from unknown clients will be denied.

What just happened?
We learned to combine ACLs with the http_access directive to allow or deny access to
clients. We also learned how to group different ACLs of the same type and then use them
to control access.

HTTP reply access
HTTP reply is the response received from the web server corresponding to a request initiated
by a client. Using the http_reply_access directive, we can control the access to the
replies received. The syntax of http_reply_access is similar to http_access.

http_reply_access allow|deny [!]ACL_NAME

This directive partially overrides the permissions granted by http_access. Let's see
an example:

acl my_machine src 192.0.2.21
http_access allow my_machine
http_reply_access deny my_machine

We have allowed http_access to host 192.0.2.21 but still it will not be able to access
the websites properly as it's not allowed to receive any replies. The host can only make
requests to a proxy server for web documents but won't receive any reply.

This directive is normally used to deny access for content types such as audio, video,
and so on, to prevent users from accessing media content.

We should be really careful while using the http_reply_access directive.
When a request is allowed by http_access, Squid will contact the original
server, even if a rule with the http_reply_access directive denies the
response. This may lead to serious security issues. For example, consider a client
receiving a malicious URL, which can submit a client's critical private information
using the HTTP POST method. If the client's request passes through http_
access rules but the response is denied by an http_reply_access rule,
then the client will be under the impression that nothing happened but a hacker
will have cleverly stolen our client's private information.

Chapter 2

[43]

ICP access
This directive is used to control the query access by our neighboring caches using the
Internet Cache Protocol (ICP). It basically allows or denies access to the ICP port. The syntax
is similar to http_access and the default behavior is to deny all ICP queries.

icp_access allow|deny [!]ACL_NAME

HTCP access
Using this directive, we can control whether Squid will respond to certain HTCP requests or
not. The syntax is similar to http_access and the default behavior is to deny all queries.

HTCP CLR access
Neighboring caches can make requests to purge or remove cache objects in the form of HTCP
CLR requests. The htcp_clr_access directive can be used to grant purge access to only
trusted cache peers.

Miss access
This directive is used to specify which all cache peers or clients can use as their parent cache.
When a cache peer or client tries to fetch content using our proxy server, the request may
result in a MISS (not present in cache) or a HIT (can be satisfied from our cache). Generally, a
MISS is fetched by our server on behalf of a client or peer. If we don't want our clients or peers
to fetch content using our proxy, then we can use the miss_access directive, as shown:

acl bad_clients src 192.0.2.0/24
miss_access deny bad_clients
miss_access allow all

This code will not allow bad_clients to use our proxy server as a parent proxy. The default
behavior is to allow all the clients who pass the http_access rule to use the proxy server
as a parent.

Ident lookup access
This directive determines whether or not Squid should perform a username lookup for the
client TCP requests.

acl ident_aware_hosts src 192.0.2.0/24
ident_lookup_access allow ident_aware_hosts
ident_lookup_access deny all

This code will allow Squid to perform ident lookups only for ident_aware_hosts. The
default behavior is not to perform ident lookups for all queries.

Configuring Squid

[44]

Only TCP/IP-based ACLs are supported with this directive.

Cache peers or neighbors
Cache peers or neighbors are the other proxy servers with which our Squid proxy server can:

Share its cache with to reduce bandwidth usage and access time

Use it as a parent or sibling proxy server to satisfy its clients' requests

Use it as a parent or sibling proxy server

We normally deploy more than one proxy server in the same network to share the load of
a single server for better performance. The proxy servers can use each other's cache to
retrieve the cached web documents locally to improve performance. Let's have a brief look
at the directives provided by Squid for communication among different cache peers.

Declaring cache peers
The directive cache_peer is used to tell Squid about proxy servers in our neighborhood.
Let's have a quick look at the syntax for this directive:

cache_peer HOSTNAME_OR_IP_ADDRESS TYPE PROXY_PORT ICP_PORT [OPTIONS]

In this code, HOSTNAME_OR_IP_ADDRESS is the hostname or IP address of the target proxy
server or cache peer. TYPE specifies the type of the proxy server, which in turn, determines
how that proxy server will be used by our proxy server. The other proxy servers can be used
as a parent, sibling, or a member of a multicast group.

Time for action – adding a cache peer
Let's add a proxy server (parent.example.com) that will act as a parent proxy to our
proxy server:

cache_peer parent.example.com parent 3128 3130 default proxy-only

3130 is the standard ICP port. If the other proxy server is not using the standard ICP port, we
should change the code accordingly. This code will direct Squid to use parent.example.com
as a proxy server to satisfy client requests in case it's not able to do so itself.

Chapter 2

[45]

The option default specifies that this cache peer should be used as a last resort in
the scenario where other peers can't be contacted. The option proxy-only specifies
that the content fetched using this peer should not be cached locally. This is helpful when
we don't want to replicate cached web documents, especially when the two peers are
connected with a high bandwidth backbone.

What just happened?
We added parent.example.com as a cache peer or parent proxy to our Squid proxy server.
We also used the option proxy-only, which means the requests fetched using this cache
peer will not be cached on our proxy server.

There are several other options in which you can add cache peers, for various purposes,
such as, a hierarchy. We'll discuss cache peers in detail in Chapter 8, Building a Hierarchy
of Squid Caches.

Quickly restricting access to domains using peers
If we have added a few proxy servers as cache peers to our Squid server, we may have the
desire to have a little bit of control over the requests being forwarded to the peers. The
directive cache_peer_domain is a quick way to achieve the desired control. The syntax
of this directive is quite simple:

cache_peer_domain CACHE_PEER_HOSTNAME [!]DOMAIN1 [[!]DOMAIN2 ...]

In the code, CACHE_PEER_HOSTNAME is the hostname or IP address of the cache peer being
used when declaring it as a cache peer, using the cache_peer directive. We can specify any
number of domains which may be fetched through this cache peer. Adding a bang (!) as a
prefix to the domain name will prevent the use of this cache peer for that particular domain.

Let's say we want to use the videoproxy.example.com cache peer for browsing video
portals like Youtube, Netflix, Metacafe, and so on.

cache_peer_domain videoproxy.example.com .youtube.com .netflix.com
cache_peer_domain videoproxy.example.com .metacafe.com

These two lines will configure Squid to use the videoproxy.example.com cache peer for
requests to the domains youtube.com, netflix.com, and metacafe.com only. Requests
to other domains will not be forwarded using this peer.

Configuring Squid

[46]

Advanced control on access using peers
We just learned about cache_peer_domain, which provides a way to control access using
cache peers. However, it's not really flexible in granting or revoking access. That's when
cache_peer_access comes into the picture, which provides a very flexible way to control
access using cache peers using ACLs. The syntax and implications are similar to other access
directives such as http_access.

cache_peer_access CACHE_PEER_HOSTNAME allow|deny [!]ACL_NAME

Let's write the following configuration lines, which will allow only the clients on the network
192.0.2.0/24 to use the cache peer acadproxy.example.com for accessing Youtube,
Netflix, and Metacafe.

acl my_network src 192.0.2.0/24
acl video_sites dstdomain .youtube.com .netflix.com .metacafe.com
cache_peer_access acadproxy.example.com allow my_network video_sites
cache_peer_access acadproxy.example.com deny all

In the same way, we can use other ACL types to achieve better control over access to various
websites using cache peers.

Caching web documents
All this time, we have been talking about the caching of web documents and how it helps in
saving bandwidth and improving the end user experience, now it's time to learn how and
where Squid actually keeps these cached documents so that they can be served on demand.
Squid uses main memory (RAM) and hard disks for storing or caching the web documents.

Caching is a complex process but Squid handles it beautifully and exposes the directives
using squid.conf, so that we can control how much should be cached and what should
be given the highest priority while caching. Let's have a brief look at the caching-related
directives provided by Squid.

Using main memory (RAM) for caching
The web documents cached in the main memory or RAM can be served very quickly as data
read/write speeds of RAM are very high compared to hard disks with mechanical parts.
However, as the amount of space available in RAM for caching is very low compared to the
cache space available on hard disks, only very popular objects or the documents with a very
high probability of being requested again, are stored in cache space available in RAM.

As the cache space in memory is precious, the documents are stored on a priority basis.
Let's have a look at the different types of objects which can be cached.

Chapter 2

[47]

In-transit objects or current requests
These are the objects related to the current requests and they have the highest priority to be
kept in the cache space in RAM. These objects must be kept in RAM and if there is a situation
where the incoming request rate is quite high and we are about to overflow the cache space
in RAM, Squid will try to keep the served part (the part which has already been sent to the
client) on the disk to create free space in RAM.

Hot or popular objects
These objects or web documents are popular and are requested quite frequently compared to
others. These are stored in the cache space left after storing the in-transit objects as these have
a lower priority than in-transit objects. These objects are generally pushed to disk when there
is a need to generate more in RAM cache space for storing the in-transit objects.

Negatively cached objects
Negatively cached objects are error messages which Squid has encountered while fetching
a page or web document on behalf of a client. For example, if a request to a web page has
resulted in a HTTP error 404 (page not found), and Squid receives a subsequent request for
the same web page, then Squid will check if the response is still fresh and will return a reply
from the cache itself. If there is a request for the same page after the negatively cached
object corresponding to that page has expired, Squid will check again if the page is available.

Negatively cached objects have the same priority as hot or popular objects and they can be
pushed to disk at any time in favor of in-transit objects.

Specifying cache space in RAM
So far we have learned about how the available cache space is utilized for storing or caching
different types of objects with different priorities. Now, it's time to learn about specifying
the amount of RAM space we want to dedicate for caching. While deciding the RAM space
for caching, we should be neither greedy nor paranoid. If we specify a large percentage
of RAM for caching, the overall system performance will suffer as the system will start
swapping processes in case there is no free RAM left for other processes. If we use a very
low percentage of RAM for caching, then we'll not be able to take full advantage of Squid's
caching mechanism. The default size of the memory cache is 256 MB.

Configuring Squid

[4�]

Time for action – specifying space for memory caching
We can use extra RAM space available on a running system after sparing a chunk of memory
that can be utilized by the running process under heavy load. To find out the amount of free
RAM available on our system, we can use either the top or free command. To find out the
free RAM in Megabytes, we can use the free command as follows:

$ free -m

For more details, please check the top(1) and free(1) man pages.

Now, let's say we have 4 GB of total RAM on the server and all the processes are running
comfortably in 1 GB of RAM space. After securing another 512 MB for emergency situations
where running processes may take extra memory, we can safely allocate 2.5 GB of RAM
for caching.

To specify the cache size in the main memory, we use the directive cache_mem. It has a very
simple format. As we have learned before, we can specify the memory size in bytes, KB, MB,
or GB. Let's specify the cache memory size for the previous example:

cache_mem 2500 MB

The previous value specified with cache_mem is in Megabytes.

What just happened?
We learned about calculating the approximate space in the main memory, which can be used
to cache web documents and therefore enhance the performance of the Squid server by a
significant margin.

Have a go hero – calculating cache_mem for your machine
Note down the total RAM on your machine and calculate the approximate space in
megabytes that you can allocate for memory caching.

Maximum object size in memory
As we have limited space in memory available for caching objects, we need to use the space
in an optimized way. We should plan to set this a bit low, as setting it to a too larger size will
mean that there will be a lesser number of cached objects in the memory and the HIT (being
found in cache) rate will suffer significantly. The default maximum size used by Squid is 512
KB, but we can change it depending on our value for cache_mem. So, if we want to set it to
1 MB, as we have a lot of RAM available for caching (as in the previous example), we can use
the maximum_object_size_in_memory directive as follows:

maximum_object_size_in_memory 1 MB

This command will set the allowed maximum object size in memory cache to 1 MB.

Chapter 2

[4�]

Memory cache mode
With the newer versions of Squid, we can control which objects we want to keep in the
memory cache for optimizing the performance. Squid offers the directive memory_cache_
mode to set the mode that Squid should use to utilize the space available in memory cache.
There are three different modes available:

Mode Description

always The mode always is used to keep all the most recently fetched objects that can fit
in the available space. This is the default mode used by Squid.

disk When the disk mode is set, only the objects which are already cached on a hard
disk and have received a HIT (meaning they were requested subsequently after being
cached), will be stored in the memory cache.

network Only the objects which have been fetched from the network (including neighbors)
are kept in the memory cache, if the network mode is set.

Setting the mode is easy and can be set using the memory_cache_mode directive as shown:

memory_cache_mode always

This configuration line will set memory cache mode to always; this means that most
recently fetched objects will be kept in the memory.

Using hard disks for caching
In the previous section, we learned about using the main memory for caching various
types of objects or web documents to reduce bandwidth usage and enhance the end user
experience. However, as the space available in RAM is small in size and we can't really invest
a lot in the main memory as it's very expensive in terms of bytes per unit of money. As
opposed to the mechanical disks, we prefer to deploy proxy servers with huge storage space
which can be used for caching objects. Let's have a look at how to tell Squid about caching
objects to disks.

Specifying the storage space
The directive cache_dir is used to declare the space on the hard disk where Squid will
store or cache the web documents for use in future. Let's have a look at the syntax of
cache_dir and try to understand the different arguments and options:

cache_dir STORAGE_TYPE DIRECTORY SIZE_IN_Mbytes L1 L2 [OPTIONS]

Configuring Squid

[50]

Storage types
Operating systems implement filesystems to store files and directories on the disk drives. In
the Linux/Unix world, ext2, ext3, ext4, reiserfs, xfs, UFS (Unix File System), and so
on, are the popular filesystems. Filesystems also expose a few system calls such as open(),
close(), read(), and so on, so that other programs can read/write/remove files from the
storage. Squid also uses these system calls to interact with the filesystems and manage the
cached objects on the disk.

On top of the filesystems and with the help of the available system calls exposed by the
filesystems, Squid implements storage schemes such as ufs, aufs, and diskd.

All the storage schemes supported by the operating system are built by default. The ufs
is a very simple storage scheme and all the I/O transactions are done using the main Squid
process. As some of the system calls are blocking (meaning the system call will not return
until the I/O transaction is complete) in nature, they sometimes cause delays in processing
requests, especially under heavy load, resulting in an overall bad performance. ufs is good
for servers with less load and high speed disks, but is not really preferable for busy caches.

aufs is an improved version of ufs where a stands for asynchronous I/O. In other words, aufs
is ufs with asynchronous I/O support, which is achieved by utilizing POSIX-threads (pthreads
library). Asynchronous I/O prevents blocking of the main Squid process by some system calls,
meaning that Squid can keep on serving requests while we are waiting for some I/O transaction
to complete. So, if we have the pthreads library support on our operating system, we should
always go for aufs instead of ufs, especially for heavily loaded proxy servers.

The Disk Daemon (diskd) storage scheme is similar to aufs. The only difference is that diskd
uses an external process for I/O transactions instead of threads. Squid and diskd process
for each cache_dir (of the diskd type) to communicate using message queues and shared
memory. As diskd involves a queuing system, it may get overloaded over time in a busy proxy
server. So, we can pass two additional options to cache_dir which determines how Squid
will behave in case there are more messages in the queues than diskd is able to process. Let's
have a look at the syntax of the cache_dir directive for diskd as STORAGE_TYPE

cache_dir diskd DIRECTORY SIZE_Mbytes L1 L2 [OPTIONS] [Q1=n] [Q2=n]

The value of Q1 signifies the number of pending messages in the queue beyond which Squid
will not place new requests for I/O transactions. Though Squid will keep on entertaining
requests normally, it'll not be able to cache new objects or check cache for any HITs. HIT
performance will suffer in this period of time. The default value of Q1 is 64.

The value of Q2 signifies the number of pending messages in the queue beyond which Squid
will cease to operate and will go in to block mode. No new requests will be served in this
period until Squid receives a reply or the messages in the queue fall below this number. The
default number of Q2 is 72.

Chapter 2

[51]

As you can see from the explanation of Q1 and Q2, if the value of Q1 is more than Q2, Squid
will go in to block mode first. If the queue is full it will result in higher latency but better
HIT ratio. If the value of Q1 is less than Q2, Squid will keep on serving the requests from the
network even if there is no I/O. This will result in lower latency, but the HIT ratio will suffer
considerably.

Choosing a directory name or location
We can specify any location on the filesystem for the directory name. Squid will populate it
with its own directory structure and will start storing or caching web documents in the space
available. However, we must make sure that the directory already exists and is writable by
the Squid process. Squid will not create the directory if it doesn't exist already.

Time for action – creating a cache directory
The cache directory location may not be on the same disk or partition. We can mount
another disk drive and specify that as the directory for caching. For example, let's say we
have another drive connected as /dev/sdb and one of the partitions is /dev/sdb1, we
can mount it to the /drive/ and use it right away.

$ mkdir /drive/

$ mount /dev/sdb1 /drive/squid_cache/

$ mkdir /drive/squid_cache

$ chown squid:squid /drive/squid_cache/

In the previous code, we created a directory /drive/ and mounted /dev/sdb1, the
partition from the other disk drive, to it. Then, we created a directory squid_cache in the
directory /drive/ and changed the ownership of the directory to Squid, so that Squid can
have write access to this directory. Now we can use /drive/squid_cache/ as one of the
directories with the cache_dir directive.

What just happened?
We mounted a partition from a different hard disk and assigned the correct ownership to use
it as a cache directory for disk caching.

Declaring the size of the cache
This is the easy part. We must keep in mind that we should not append MB or GB to
the number while specifying the size in this directive. The size is always specified in
Megabytes. So, if we want to use 100 GB of disk space for caching, we should set size
to 102400 (102400 MB/1024 = 100 GB).

Configuring Squid

[52]

If we want to use the entire disk partition for caching, we should not set the cache size to be
equal to the size of the partition because Squid may need some extra space for temporary
files and the swap.state file. So, it's good practice to subtract 5-15 percent from the total
disk space for temporary files and then set the cache size.

Configuring the number of sub directories
There are two arguments to cache_dir named as L1 and L2. Squid stores the cacheable
objects in a hierarchical fashion in directories named so that it'll be faster to lookup an object
in the cache. The hierarchy is of two-levels, where L1 determines the number of directories
at the first level and L2 determines the number of directories in each of the directories at
the first level. We should set L1 and L2 high enough so that directories at the second level
don't have a huge number of files.

Read-only cache
Sometimes we may want our cache to be in read-only mode so that Squid doesn't store
or remove any cached objects from it but continues to serve the content from it. This is
achieved by using an additional option named no-store with the cache_dir directive.
Please note that Squid will not update any content in the read-only cache directory. This
feature is used very rarely.

Time for action – adding a cache directory
So far we have learned the meaning of different parameters used with the cache_dir
directive. Let's see an example of the cache directory /squid_cache/ with 50GB of
free space:

cache_dir aufs /squid_cache/ 51200 32 512

We have a cache directory /squid_cache/ with 50 GB of free space with the values of L1
and L2 as 32 and 512 respectively. So, if we assume the average size of a cached object to be
16 KB, there will be 51200x1024÷(32x512x16) = 200 cached objects in each of the directories
at the second level, which is quite good.

What just happened?
We added /squid_cache/ with a 50 GB free disk space as a cache directory to cache web
documents on the hard disk. Following the previous instructions, we can add as many cache
directories as we want, depending on the availability of space.

Chapter 2

[53]

Cache directory selection
If we have specified multiple caching directories, we may need a more efficient algorithm to
ensure optimal performance. For example, when under a heavy load, Squid will perform a lot
of I/O transactions. In such cases, if the load is split across the directories, this will obviously
result in low latency.

Squid provides the directive store_dir_select_algorithm, which can be used to specify
the way in which the cache directories should be used. It takes one of the values from
least-load and round-robin.

store_dir_select_algorithm least-load|round-robin

If we want to distribute cached objects evenly across the caching directories, we should go
for round-robin. If we want the best performance with least latency, we should certainly
go for least-load, where Squid will try to pick the directory with the least I/O operations.

Cache object size limits
It is important to place limits on the size of the web documents which we are going to
cache for achieving a better HIT ratio. Depending on the results we want to achieve, we
may want to keep the maximum limit a bit higher than the default, which is 4 MB, which in
turn depends on the size of the cache we have specified. For example, if we have a cache
directory with a size of 10 GB and we set the maximum cacheable object size to 500 MB,
there will be fewer objects in the cache and the HIT ratio will suffer significantly resulting in
high latency. However, we shouldn't keep it really low either, as this will result in lots of I/O
but fewer bandwidth savings.

Squid provides two directives known as minimum_object_size and maximum_object_
size to set the object size limits. The minimum size is 0 KB, by default, meaning that there is
no lower limit on the object size. If we have a huge amount of storage dedicated to caching,
we can set the maximum limit to something around 100 MB, which will make sure that
the popular software, audio/video content, and so on, are also cached, which may lead
to significant bandwidth savings.

minimum_object_size 0 KB
maximum_object_size 96 MB

This configuration will set the minimum and maximum object size in the cache to 0 (zero) and
96 MB respectively, which means that objects with a size larger than 96 MB will not be cached.

Configuring Squid

[54]

Setting limits on object replacement
Over a period of time, the allocated space for the caching directories starts to fill up.
Squid starts deleting cached objects from the cache once the occupied space by the objects
crosses a certain threshold, which is determined by using the cache_swap_low and
cache_swap_high directives. These directives take integral values between 0 and 100.

cache_swap_low 96
cache_swap_high 97

So, in accordance with these values, when the space occupied for a cache directory crosses
96 percent, Squid will start deleting objects from the cache and will try to maintain the
utilization near 96 percent. However, if the incoming rate is high and the space utilization
starts to touch the high limit (97 percent), the deletion becomes quite frequent until
utilization moves towards the lower limit.

Squid's defaults for low and high limits are 90 percent and 95 percent respectively, which
are good if the size of cache directory is low (like 10 GB). However, if we have a large amount
of space for caching (such as a few hundreds GBs), we can push the limits a bit higher and
closer because even 1 percent will mean a difference of more than a gigabyte.

Cache replacement policies
In the previous two sections, we learned about using the main memory and hard disks
for caching web documents and how to configure Squid for optimal performance. As time
passes, cache will start to fill and at some point in time, Squid will need to purge or delete
old objects from the cache to make space for new ones. Removal of objects from the cache
can be achieved in several ways. One of the simplest ways to do this is to start by removing
the least recently used or least frequently used objects from the cache.

Squid builds different removal or replacement policies on top of the list and heap data
structures. Let's have a look at the different policies provided by Squid.

Least recently used (LRU)
Least recently used (lru) is the simplest removal policy built by Squid by default. Squid starts
by removing the cached objects that are oldest (since the last HIT). The LRU policy utilizes the
list data structure, but there is also a heap-based implementation of LRU known as heap lru.

Greedy dual size frequency (GDSF)
GDSF (heap GDSF) is a heap-based removal policy. In this policy, Squid tries to keep popular
objects with a smaller size in the cache. In other words, if there are two cached objects with
the same popularity, the object with the larger size will be purged so that we can make space
for more of the less popular objects, which will eventually lead to a better HIT ratio. While
using this policy, the HIT ratio is better, but overall bandwidth savings are small.

Chapter 2

[55]

Least frequently used with dynamic aging (LFUDA)
LFUDA (heap LFUDA) is also a heap-based replacement policy. Squid keeps the most
popular objects in the cache, irrespective of their size. So, this policy compromises a bit of
the HIT ratio, but may result in better bandwidth savings compared to GDSF. For example, if
a cached object with a large size encounters a HIT, it'll be equal to HITs for several small sized
popular objects. So, this policy tries to optimize bandwidth savings instead of the HIT ratio.
We should keep the maximum object size in the cache high if we use this policy to further
optimize the bandwidth savings.

Now we need to specify one of the policies which we have just learned, for cache
replacement for the main memory caching as well as hard disk caching. Squid provides
the directives memory_replacement_policy and cache_replacement_policy for
specifying the removal policies.

memory_replacement_policy lru
cache_replacement_policy heap LFUDA

These configuration lines will set the memory replacement policy to lru and the on disk
cache replacement policy to heap LFUDA.

Tuning Squid for enhanced caching
Although Squid performs quite well with default caching options, we can tune it to perform
even better, by not caching the unwanted web objects and caching a few non-cacheable web
documents. This will achieve higher bandwidth savings and reduced latency. Let's have a look
at a few techniques that can be helpful.

Selective caching
There may be cases when we don't want to cache certain web documents or requests from
clients. The directive cache is very helpful in such cases and is very easy to use.

Time for action – preventing the caching of local content
If we don't want to cache responses for certain requests or clients, we can deny it using this
option. The default behavior is to allow all cacheable responses to be cached. As servers in
our local area network are close enough that we may not want to waste cache space on our
proxy server by caching responses from these servers, we can selectively deny caching for
responses from local servers.

acl local_machines dst 192.0.2.0/24 198.51.100.0/24
cache deny local_machines

This code will prevent responses from the servers in the networks 192.0.2.0/24 and
198.51.100.0/24 from being cached by the proxy server.

Configuring Squid

[56]

What just happened?
To optimize the performance (especially the HIT ratio), we have configured Squid not to
cache the objects that are available on the local area network. We have also learned how
to selectively deny caching of such content.

Refresh patterns for cached objects
Squid provides the directive refresh_pattern, using which we can control the status of
a cached object.

Using refresh_pattern to cache the non-cacheable responses or to
alter the lifetime of the cached objects, may lead to unexpected behavior or
responses from the web servers. We should use this directive very carefully.

Refresh patterns can be used to achieve higher HIT ratios by keeping the recently expired
objects fresh for a short period of time, or by overriding some of the HTTP headers sent by
the web servers. While the cache directive can make use of ACLs, refresh_pattern uses
regular expressions. The advantage of using the refresh_pattern directive is that we can
alter the lifetime of the cached objects, while with the cache directive we can only control
whether a request should be cached or not.

Let's have a look at the syntax of the refresh_pattern directive:

refresh_pattern [-i] regex min percent max [OPTIONS]

The parameter regex should be a regular expression describing the request URL. A refresh
pattern line is applied to any URL matching the corresponding regular expression. There can
be multiple lines of refresh patterns. The first line, whose regular expression matches the
current URL, is used. By default, the regular expression is case-sensitive, but we can use -i
to make it case-insensitive.

Some objects or responses from web servers may not carry an expiry time. Using the min
parameter, we can specify the time (in minutes) for which the object or response should be
considered fresh. The default and recommended value for this parameter is 0 because altering
it may cause problems or unexpected behavior with dynamic web pages. We can use a higher
value when we are absolutely sure that a website doesn't supply any dynamic content.

The parameter percent determines the life of a cached object in the absence of the
Expires headers. An object's life time is considered to be the difference between the times
extracted from the Last-Modified and Date headers. So, if we set the value of percent
to 50 , and the difference between the times from Last-Modified and Date headers is
one hour, then the object will be considered fresh for the next 30 minutes. The response
age is simply the time that has passed since the response was generated by the web server
or was validated by the proxy server for the freshness. The ratio of the response age to the
object life time is termed as lm-factor in the Squid world.

Chapter 2

[57]

Similarly the min, max parameters are the minimum and maximum times (in minutes) for
which a cached object is considered fresh. If a cached object has spent more time in the
cache than max, then it won't be considered fresh anymore.

We should note that the Expires HTTP header
overrides min and max values.

Let's have a look at the method used for determining the freshness or staleness of a cached
object. A cached object is considered:

Stale (or expired), if the expiry time that was mentioned in the HTTP response
header is in the past.

Fresh, if the expiry time mentioned in the HTTP response headers is in the future.

Stale, if response age is more than the max value.

Fresh, if lm-factor is less than the percent value.

Fresh, if the response age is less than the min value.

Stale, otherwise.

Time for action – calculating the freshness of cached objects
Let's see an example of a refresh_pattern and try to calculate the freshness of an object:

refresh_patten -i ^http://example.com/test.jpg$ 0 60% 1440

Let's say a client requested the image at http://example.com/text.jpg an hour ago,
and the image was last modified (created) on the web server six hours ago. Let's assume
that the web server didn't specify the expiry time. So, we have the following values for the
different variables:

At the time of the request, the object age was (6 - 1) = 5 hours.

Currently, the response age is 1 hour.

Currently, the lm-factor is 1÷5 = 20 percent

Let's check whether the object is still fresh or not:

The response age is 60 minutes, which is not more than 1440 (max value), so this
can't be the deciding factor.

lm-factor is 20 percent, which is less than 60 percent, so the object is still fresh.

Now, let's calculate the time when the object will expire. The object age is 5 hours and
percent value is 60 percent. So, object will expire in (5 x 60) ÷100 = 3 hours from the last
request, that is, 2 hours from now.

Configuring Squid

[5�]

What just happened?
We learned the formula for calculating the freshness or staleness of a cached object and
also the time after which a cached object will expire. We also learned about specifying
refresh patterns for the different content types to optimize performance.

Options for refresh pattern
Most of the time, the expiry time is specified by the web servers for all requests. But some
web documents such as style sheets (CSS) or JavaScript (JS) files included on web page,
change quite rarely and we can bump up their expiry time to a higher value to take full
advantage of caching. As the web servers already specify the expiry time, the cached CSS/
JS file will automatically expire. To forcibly ignore the Expires and a lot of other headers
related to caching, we can pass options to the refresh_pattern directive.

Let's have a look at the options available for the refresh_pattern directive and how they
can help us improve the HIT ratio.

Please be warned that using the following options violates HTTP
standards and may also cause unexpected browsing problems.

override-expire
The option override-expire, overrides or ignores the Expires header, which is the
main player for determining the expiry time of a cached response. As the Expires header
is ignored, the values of the min, max, and percent parameters will play an essential role
in determining the freshness of a response.

override-lastmod
The option override-lastmod will force Squid to ignore the Last-Modified header,
which will eventually enforce the use of min value to determine the freshness of an object.
This option is of no use, if we have set the value of min to zero.

reload-into-ims
Using the reload-into-ims option will force Squid to convert the no-cache directives in
the HTTP headers to the If-Modified-Since headers. The use of this option is useful only
when the Last-Modified header is present.

ignore-reload
Using the option ignore-reload will simply ignore the no-cache or reload directives
present in the HTTP headers.

Chapter 2

[5�]

ignore-no-cache
When the option ignore-no-cache is used, Squid simply ignores the no-cache directive
in the HTTP headers.

ignore-no-store
The HTTP header Cache-Control: no-store is used to tell clients that they are not
allowed to store the data being transmitted. If the option ignore-no-store is set, Squid
will simply ignore this HTTP header and will cache the response if it's cacheable.

ignore-must-revalidate
The HTTP header Cache-Control: must-revalidate means that the response must
be revalidated with the originating web server before it's used again. Setting the option
ignore-must-revalidate will enforce Squid to ignore this header.

ignore-private
Private information or sensitive data generally carries an HTTP header known as
Cache-Control: private so that intermediate servers don't cache the responses.
However, the option ignore-private can be used to ignore this header.

ignore-auth
If the option ignore-auth is set, then Squid will be able to cache the authorization
requests. Using this option may be really risky.

refresh-ims
This option can be pretty useful. The option refresh-ims forces Squid to validate the
cached object with the original server whenever an If-Modified-Since request header is
received from a client. Using this may increase the latency, but the clients will always get the
latest data.

Let's see an example with these options:

refresh_pattern -i .jpg$ 0 60% 1440 ignore-no-cache ignore-no-store
reload-into-ims

This code will force all the JPEG images to be cached whether the original servers want us to
cache them or not. They will be refreshed only:

If the Expires HTTP header was present and the expiry time is in past.

If the Expires HTTP header was missing and the response age has exceeded the
max value.

Configuring Squid

[60]

Have a go hero – forcing the Google homepage to be cached for longer
Write a refresh_pattern configuration that forces the Google homepage to be cached for
six hours.

Solution:

refresh_pattern -i ^http:\/\/www\.google\.com\/$ 0 20% 360 override-
expire override-lastmod ignore-reload ignore-no-cache ignore-no-store
reload-into-ims ignore-must-revalidate

Aborting the partial retrievals
When a client initiates a request for fetching some data and aborts it prematurely, Squid
may continue to try and fetch the data. This may cause bandwidth and other resources
such as processing power and memory to be wasted, however if we get subsequent
requests for the same object, it'll result in a better HIT ratio. To counter act this problem,
Squid provides three directives quick_abort_min (KB), quick_abort_max (KB), and
quick_abort_pct (percent).

For all the aborted requests, Squid will check the values for these directives and will take the
appropriate action according to the following rules:

If the remaining data that should be fetched is less than the value of
quick_abort_min, Squid will continue to fetch it.

If the remaining data to be transferred is more than the value of
quick_abort_max, Squid will immediately abort the request.

If the data that has already been transferred is more than quick_abort_pct
percent of the total data, then Squid will keep retrieving the data.

Both the quick_abort_min and quick_abort_max values are in KiloBytes (KB) (or any
allowed memory size unit) while quick_abort_pct is a percentage value. If we want to abort
the requests in all cases, which may be required if we are short of bandwidth. We should set
quick_abort_min and quick_abort_max to zero. If we have a lot of spare bandwidth, we
can set a higher values for quick_abort_min and quick_abort_max, and a relatively low
value for quick_abort_pct. Let's see an example for a high bandwidth case:

quick_abort_min 1024 KB
quick_abort_max 2048 KB
quick_abort_pct 90

Chapter 2

[61]

Caching the failed requests
Requests for resources which doesn't exist (HTTP Error 404) or a client doesn't have
permission to access the requested resource (HTTP Error 403) are common and requests
to such resources make up a significant percentage of the total requests. These responses
are cacheable by Squid. However, sometimes web servers don't send the Expires HTTP
headers in responses, which prevents Squid from caching these responses. To solve this
problem, Squid provides the directive negative_ttl that forces such responses to be
cached for the time specified. The syntax of negative_ttl is as follows:

negative_ttl TIME_UNITS

Previously, this value was five minutes by default, but in the newer versions of Squid, it is set
to zero seconds by default.

Playing around with HTTP headers
As all the requests and responses pass through Squid, it can add, modify, or delete the HTTP
headers accompanied with requests and responses. These actions are usually performed
to achieve anonymity or to hide the client-specific information. Squid has three directives,
namely, request_header_access, reply_header_access, and header_replace to
modify the HTTP headers in requests and responses. Let's have a brief look at them.

Please be warned that using any of these directives
violates HTTP standards and may cause problems.

Controlling HTTP headers in requests
The directive request_header_access is used in combination with ACLs to determine
whether a particular HTTP header will be retained in a request or if it will be dropped before
forwarding the request. The advantage of having ACLs here is that they provide a lot of
flexibility. We can selectively drop some HTTP headers for a few clients.

Let's have a look at the syntax of request_header_access:

request_header_access HEADER_NAME allow|deny [!]ACL_NAME ...

So, if we are not willing to expose what browsers our clients are using, we can easily drop the
User-Agent header from requests. The following code will drop this particular header for
all the requests:

request_header_access User-Agent deny all

Configuring Squid

[62]

The parameter all is a special keyword here representing all the HTTP headers. Similarly, if
we don't want web servers to know about the browsing habits of our clients, we can start by
dropping the Referer header from all the requests.

request_header_access Referer deny all

Again, please be warned that dropping these headers may cause serious problems in
browsing. By default, no headers are removed.

Controlling HTTP headers in responses
Similar to the directive request_header_access, we have the reply_header_access
directive to drop the HTTP headers in responses. The syntax and usage is similar. For
example, for dropping the Server HTTP header, the example configuration line will be:

reply_header_access Server deny all

By default, all headers are retained and are sent they are received.

Replacing the contents of HTTP headers
While the previous two directives can only be used to drop any unwanted HTTP headers, the
directive header_replace can be used to send false information to replace the contents
of the headers. Please note that this directive replaces contents of headers which have been
denied using the request_header_access directive and is valid only for requests and not
responses. We use this directive to replace the contents of the headers with a static fixed
value. Let's have a look at the syntax of header_replace:

header_replace HEADER_NAME TEXT_VALUE

For example, we can send out the User-Agent header reflecting that all our clients use the
Firefox web browser. Let's see the code for this example:

header_replace User-Agent Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:0.9.3) Gecko/20010801

Again, we want to warn you that web servers generally validate or need the User-Agent
and other HTTP headers to serve the right content for a client, and modifying these headers
may cause unexpected problems.

DNS server configuration
For every request received from a client, Squid needs to resolve the domain name before it
can contact the target web server. For this purpose, Squid can either use the built-in internal
DNS client or, external DNS program to resolve the hostnames. The default behavior is to

Chapter 2

[63]

use the internal DNS client for resolving hostnames unless we have used the --disable-
internal-dns option but it must be set with the configure program before compiling
Squid, as shown:

$./configure --disable-internal-dns

Let's have a quick look at the DNS-related configuration directives provided by Squid.

Specifying the DNS program path
The directive cache_dns_program is used to specify the path of the external DNS program
built with Squid. If we have not moved the Squid-related file after installing, this directive
will have the correct value, by default. However, if the DNS program is located at a different
location, we can specify the path using the following directive:

cache_dns_program /path/to/dnsprogram

Controlling the number of DNS client processes
The number of parallel instances of the DNS program specified by cache_dns_program
can be controlled by using the directive dns_children. The syntax of the directive
dns_children is as follows:

dns_children max startup=n idle=n

The parameter max determines the maximum number of DNS programs which can run at any
one time. We should set it to a significantly high value as Squid has to wait for the response
from the DNS program before it can proceed any further and setting this number to a lower
value will keep Squid waiting for the response. The default value is set to 32.

The value of the parameter startup determines the number of DNS programs that will be
started when Squid starts. This can be set to zero and Squid will not start any processes by
default. The first ever request to Squid will result in the creation of the first child process.

The value of the parameter idle determines the number of processes that will be available
at any one time. More requests will result in the creation of more processes, but keeping this
many processes free (available) is subject to a total of max processes. A minimum acceptable
value for this parameter is 1.

Setting the DNS name servers
By default, Squid picks up the name servers from the file /etc/resolv.conf.
However, if we want to specify a list of different name servers, we can use the directive
dns_nameservers.

Configuring Squid

[64]

Time for action – adding DNS name servers
A list of IP addresses can be passed to this directive or several IP addresses can be written on
different lines like the following:

dns_nameservers 192.0.2.25 198.51.100.25
dns_nameservers 203.0.113.25

The previous configuration lines will set the name servers to 192.0.2.25, 198.51.100.25,
and 203.0.113.25.

What just happened?
We added three DNS name servers to the Squid configuration file which will be used by
Squid to resolve the domain names corresponding to the requests received from the clients.

Setting the hosts file
Squid can read the hostname and IP address associations from the hosts file generally found
at /etc/hosts. This file normally contains hostnames for the machines or servers in the
local area network. We can specify the host's file location using the directive hosts_file
as shown:

hosts_file /etc/hosts

If we don't want Squid to read the host's file, we can set the value to none.

Default domain name for requests
Using the directive append_domain, we can append a default domain name to the
hostnames without any period (.) in them. This is generally useful for handling local domain
names. The value of the append_domain must begin with a period (.). For example:

append_domain .example.com

Timeout for DNS queries
If the DNS servers do not respond to the query within the time specified by the directive
dns_timeout, they are assumed to be unavailable. The default timeout value is two
minutes. Considering the ever increasing network speeds, we can set this to a slightly lower
value. For example, if there is no response within one minute, we can consider the DNS
service to be unavailable.

Chapter 2

[65]

Caching the DNS responses
The IP addresses of most domains change quite rarely, so it's safe to cache the positive
responses from DNS servers for a few hours. This doesn't provide much of a saving in
bandwidth, but caching DNS responses may reduce the latency quite significantly because
a DNS query is done for every request. For caching DNS responses while using an external
DNS program, Squid provides two directives known as positive_dns_ttl and
negative_dns_ttl to tune the caching of DNS responses.

The directive positive_dns_ttl determines the maximum time for which a positive
DNS response will be cached while negative_dns_ttl determines the time for which
a negative DNS response will be cached. The directive negative_dns_ttl also serves as
a minimum time for which the positive DNS responses can be cached.

Let's see the example values for both of the directives:

positive_dns_ttl 8 hours
negative_dns_ttl 30 seconds

We should keep the time to live (TTL) for negative responses to a lower value as the negative
responses may be due to problems with the DNS servers.

Setting the size of the DNS cache
Squid performs domain name to address lookups for all the MISS requests and address
to domain name lookups for requests involving ACLs such as dstdomain. These lookups
are cached. To control the size of these cached lookups, Squid exposes four directives—
ipcache_size (number), ipcache_low (percent), ipcache_high (percent),
and fqdncache_size (number). Let's see what these directives mean.

The directive ipcache_size determines the maximum number of entries that can be
cached for domain name to address lookups. As these entries take really small amounts of
memory and the amount of available main memory is enormous these days, we can cache
tens of thousands of these entries. The default value for this directive is 1024, but we can
easily push it to 15,000 on busy caches.

The directives ipcache_low (let's say 95) and ipcache_high (let's say 97) are low and
high water marks for the IP cache. So, Squid will try to keep the number of entries in the
cache between 95 percent and 97 percent.

Using fqdncache_size, we can simply set the maximum number of address to domain
name lookups that can be in the cache at any time. These entries also take really small
amounts of memory, so we can cache a large number of these. The default value is 1024,
but we can easily push it to 10,000 on busy caches.

Configuring Squid

[66]

Logging
Squid logs all the client requests and events to files. Squid provides various directives to
control the location of log files, format of log messages, and to choose which requests to
log. Let's have a brief look at some of the directives. We'll learn about logging in detail in
Chapter 5, Understanding Log Files and Log Formats.

Log formats
We can define multiple log formats using the directive logformat as well as the pre-defined
log formats supplied by Squid. Log formats are basically an arrangement of one or more
pre-defined format codes. Various log formats such as squid, common, combined, and so
on, are provided by Squid, by default. We'll have a detailed look at defining additional log
formats in Chapter 5.

Log file rotation or log file backups
Over a period of time, the log files grow in size. The common practice is to move the older
logs to separate files as a backup or for analysis, and then continue writing the logs to the
original log file. The default Squid behavior is to keep 10 backups of log files. We can change
this behavior with the directive logfile_rotate as follows:

logfile_rotate 20

Log access
By default, Squid logs requests from all the clients to the log file set by the directive
access_log. If we want to prevent some client requests from being logged by Squid,
we can use the log_access directive along with ACLs. An example may be that the
CEO doesn't want his requests to be logged:

acl ceo_laptop src 192.0.2.21
log_access deny ceo_laptop

We should note that the requests denied for logging using this
directive will not count towards performance measurements.

Buffered logs
By default, all the log files are written without buffering any output. Buffering the logs
enhances/improves performance under heavy usage or when debugging is enabled.
This directive is rarely used.

Chapter 2

[67]

Strip query terms
Query terms are key-value pairs passed using a URL in a HTTP request. Sometimes, this may
contain sensitive or private information about the client requesting the web resource. By
default, Squid strips all the query terms from a request URL before logging it. Another reason
for stripping query terms is that the query terms are often very long and can make monitoring
the access log very painful. However, we may want to disable it sometime, especially while
debugging a problem, for example, a client is not able to access a website properly.

strip_query_terms off

This configuration will prevent query terms from being stripped before requests are logged.
It's a good practice to set this directive to on for protecting clients' privacy.

URL rewriters and redirectors
URL rewriters and redirectors are third party, independent helper programs that we can use
with Squid to modify or rewrite requests from clients. In most cases, we try to redirect a client
to a different web page or resource from the one that was initially requested by the client.

The interesting part is that URL rewriters can be coded in any programming language. URL
rewriters are run as independent processes and communicate with Squid using standard I/O.

URL rewriters provide a totally new area of opportunity as we can redirect clients to custom
error pages for different scenarios, redirect users to local mirrors of websites or software
repositories, block advertisements with small blank images, and so on.

Squid doesn't have any URL rewriters by default as we are supposed to write our own
URL rewriters because the possibilities are enormous. It is also possible to download URL
rewriters written by others and use them right away. We'll learn about how to use or write
our own URL rewriters in detail in Chapter 11, Writing URL Redirectors and Rewriters.

Other configuration directives
Squid has hundreds of configuration directives to control it in various ways. It's not possible
to discuss all of them here, we'll try to cover the important ones.

Configuring Squid

[6�]

Setting the effective user for running Squid
Although we generally start the Squid server as root, it never runs with the privileges of the
root user. Right after starting, Squid changes its real UID (User ID)/GID (Group ID) to the user
determined by the directive cache_effective_user. By default, it is set to nobody. We
can create a separate user for running Squid and set the value of this directive accordingly.
For example, on some operating systems, Squid is run as squid user. The corresponding
configuration line will be as follows:

cache_effective_user squid

Please make sure that the user specified as the value for cache_effective_user exists.

Configuring hostnames for the proxy server
Squid uses hostnames for the server for forwarding requests to other cache peers or for
detecting the neighbor caches. There two different directives named visible_hostname
and unique_hostname which are used to set the hostname of the proxy server for different
purposes. Let's have a quick look at these directives.

Hostname visible to everyone
The directive visible_hostname is used to set the hostname, which will be visible on all
the error or information pages used by Squid. We can set it as shown:

visible_hostname proxy.example.com

Unique hostname for the server
If we want to name all the proxy servers in our network as proxy.example.com, we can
achieve it by setting visible_hostname for all of them to proxy.example.com. However,
doing so will cause problems in forwarding requests among the caches and detecting
forward loops. To solve this problem, Squid provides the directive unique_hostname. We
should set this to a unique hostname value to get rid of forward loops.

unique_hostname proxy1.example.com

Controlling the request forwarding
If we have cache peers or neighbors in our network, Squid will try to contact them for HITs
or for forwarding requests. We can control the manner in which the requests are forwarded
to other caches using the directives always_direct, never_direct, hierarchy_
stoplist, prefer_direct, and cache_peer_access. Next we'll have a look at
a few of these directives with examples.

Chapter 2

[6�]

Always direct
Sometimes we may want Squid to fetch the content directly from origin servers instead
of forwarding the queries to neighboring caches. This is achieved using the directive
always_direct. The syntax is similar to http_access:

always_direct allow|deny [!]ACL_NAME

This directive is very useful in forwarding requests to servers in the local area network
directly because contacting cache peers may introduce an unnecessary delay.

acl lan_servers dst 192.0.2.0/24
always_direct allow lan_servers

This code will instruct Squid to forward requests to destination servers identified by
lan_servers directly to the origin servers and the requests will not be routed through
other cache peers.

Never direct
This directive is opposite of always_direct, but we should understand it carefully before
using it. If we want to enforce the use of a proxy server for all the client requests, then this
directive comes handy.

never_direct allow all

This rule will enforce the usage of a proxy server for all the requests. However, generally, it's
a good practice to allow clients to connect directly to local servers. So, we can use something
similar to the following:

acl lan_servers dst 192.0.2.0/24
never_direct deny lan_servers
never_direct allow all

These rules will make sure that requests to all the servers, except those identified by
lan_servers, go through another proxy server.

Hierarchy stoplist
This is a simple directive preventing the forwarding of client requests to neighbor caches.
Let's have a look at the syntax:

hierarchy_stoplist word1 word2 word3 ...

Configuring Squid

[70]

If any of the words from the list of words is found in the request URL, the request will not
be forwarded to the neighbor caches and the origin servers will be contacted directly. This
directive is generally helpful for handling dynamic pages directly instead of routing them
using cache peers.

hierarchy_stoplist cgi-bin jsp ?

This code will prevent the forwarding of URLs containing any of cgi-bin, jsp, or ? to
cache peers.

Please note that the directive never_direct
overrides hierarchy_stoplist.

Broken posts
Some web servers have broken implementations of the POST method (a method using which
we can securely send data to the web server) and they expect a pair of CRLF (new-line) after
the POST request data. Using the broken_posts directive, we can request Squid to send an
extra CRLF pair after the POST request data.

acl bad_server dstdomain broken.example.com
broken_posts allow bad_server

The rules in this code will take care of the broken implementation of the POST method
on the host broken.example.com. We should use this directive only if its absolutely
necessary.

TCP outgoing address
This directive is useful for forwarding requests to different network interfaces, depending on
the client's network. Let's have a look at the syntax for this directive:

tcp_outgoing_address ip_address [[!]ACL_NAME]

In this line, ip_address is the IP address of the outgoing interface which we want to use.
The ACL name is totally optional. An example case may be when we want to route traffic
for a specific network using a different network interface:

acl special_network src 192.0.2.0/24
tcp_outgoing_address 198.51.100.25 special_network
tcp_outgoing_address 198.51.100.86

The previous code will set the outgoing address for requests from clients in the network
192.0.2.0/24 to 198.51.100.25, and for all other requests the outgoing address
will be set to 198.51.100.86.

Chapter 2

[71]

PID filename
Just like several other programs for Unix/Linux, Squid writes the process ID of the current
process in a PID file. This directive is used to control the location of a PID file.

pid_filename /var/run/squid.pid

If we don't want Squid to write its process ID to any file, we can use none instead of filename:

pid_filename none

Setting the path of the PID file to none will prevent regular management
operations like automatic log rotation or restarting Squid. The operating system
will not be able to stop Squid at the time of a shutdown or restart.

Client netmask
By default Squid logs the complete IP address of the client for every request. To enhance the
privacy of our clients, we can use this directive to hide the actual IP addresses of the clients.
Let's see an example:

client_netmask 255.255.255.0

If a client with the IP address 192.0.2.21 accesses our proxy server, then his address will
be logged as 192.0.2.0 instead of 192.0.2.21 because Squid will set the last 8 bits of the
IP address to zero. Basically, a logical AND operation is performed between binary version of
the netmask and the IP address to be logged. The same IP address will also be reflected in
the cache manager's web interface.

Pop quiz
1. Consider the following snippet from the Squid configuration file:

http_port 192.0.2.22:8080
http_port 192.0.2.22:3128

Which one of the following is true?

a. Squid will listen on port 8080 on all interfaces.

b. Squid will listen on port 3128 on all interfaces.

c. Squid will listen on port 8080 and 3128 on all interfaces.

d. Squid will listen on port 8080 and 3128 on interface with IP address 192.0.2.22.

Configuring Squid

[72]

2. Consider the following lines from the Squid configuration file:

acl exapmile_sites dstdomain .example.com .example.net

We want to deny access to the requests identified by the ACL example_sites.
Which one of the following rules will not do it?

a. http_access deny example_sites

b. http_access deny Example_sites

c. http_access deny ExampleSites

d. http_access deny Example_Sites

3. Consider the following Squid configuration:

acl blocked_clients src 192.0.2.0/24
acl special_client src 192.0.2.21
http_access deny blocked_clients
http_access allow special_client

What will happen when a client with an IP Address 192.0.2.21 tries to access the
web through our Squid proxy server?

a. They will be denied access.

b. Sometimes because of the allow rule.

c. The configuration is ambiguous and Squid will crash.

d. Squid will not crash but it'll not be able to determine definite access permissions.

4. Which of the following is correct?

a. Total memory used by Squid is determined by cache_mem.

b. Total memory used by Squid is more than that specified using cache_mem.

c. Total memory used by Squid is less than that specified using cache_mem.

d. Total memory used by Squid is independent of the memory specified using
cache_mem.

5. Let's say we have the following line in our configuration file:

append_domain .google.com

If a client tries to browse to the website http://mail/. What will the result be?

a. The client will get an error saying domain not found.

b. Nothing will happen.

c. Squid will crash.

d. Client will automatically be redirected to http://mail.google.com/.

Chapter 2

[73]

Summary
We have learned a lot in this chapter about configuring Squid. After this chapter, we should
feel more comfortable in dealing with the Squid configuration file. We should be able to
apply the things we learnt in this chapter to fine tune Squid to achieve better performance.

Although we learned about a lot of configuration directives, we specifically covered:

The syntax of the configuration file. We learned about various types of directives
generally used in the configuration file and the possible types of values that
they take.

Caching in the main memory and hard disk in detail. We learned about using RAM
and disks for caching in an optimized manner to achieve higher HIT ratio.

Fine tuning the cache. We learned about achieving a better HIT ratio by tinkering
with various HTTP headers.

The required DNS configuration for Squid. We learned about specifying DNS servers
and optimizing the DNS cache to reduce latency.

We also discussed restricting access to the Squid server, modifying HTTP headers, and had
a brief overview of cache peers and the logging system.

Now that we have learned about configuring Squid, we are ready to proceed with running
the Squid server, which is the topic of the next chapter.

3
Running Squid

In the previous chapters, we had learned about compiling, installing, and
configuring the Squid proxy server. In this chapter, we are going to learn about
the different ways of running Squid and the available options that can be
passed to Squid from the command line. We will also learn about debugging
the Squid configuration file.

In this chapter, we will learn the following:

Various command line options for running Squid

Parsing the squid configuration file for syntax errors

Using an alternate squid configuration file for testing purposes

Different ways of starting Squid

Rotating log files generated by Squid

Let's get started and explore the previous points.

Command line options
Normally, all of the Squid configuration options reside with in the squid.conf file (the main
Squid configuration file). To tweak the Squid functionality, the preferred method is to change
the options in the squid.conf file. However there are some options which can also be
controlled using additional command line options while running Squid.

These options are not very popular and are rarely used, but these are very useful for
debugging problems without the Squid proxy server. Before exploring the command line
options, let's see how Squid is run from the command line.

Running Squid

[76]

As we saw in the first chapter, the location of the Squid binary file depends on the --prefix
option passed to the configure command before compiling. So, depending upon the value
of the --prefix option, the location of the Squid executable may be one of /usr/local/
sbin/squid or ${prefix}/sbin/squid, where ${prefix} is the value of the option
--prefix passed to the configure command. Therefore, to run Squid, we need to run
one of the following commands on the terminal:

When the --prefix option was not used with the configure command, the
default location of the Squid executable will be /usr/local/sbin/squid.

When the --prefix option was used and was set to a directory, then the location
of the Squid executable will be ${prefix}/sbin/squid.

It's painful to type the absolute path for Squid to run. So, to avoid typing the absolute path,
we can include the path to the Squid executable in our PATH shell variable, using the export
command as shown in the following example:

$ export PATH=$PATH:/usr/local/sbin/

Alternatively, we can use the following command:

$ export PATH=$PATH:/opt/squid/sbin/

We can also add the preceding command to our ~/.bashrc or ~/.bash_profile file
to avoid running the export command every time we enter a new shell.

After setting the PATH shell variable appropriately, we can run Squid by simply typing the
following command on shell:

$ squid

This command will run Squid after loading the configuration options from the
squid.conf file.

We'll be using the squid command without an absolute path for
running the Squid process. Please use the appropriate path according
to the installation prefix which you have chosen.

Now that we know how to run Squid from the command line, let's have a look at the various
command line options.

Getting a list of available options
Before actually moving forward, we should firstly check the available set of options for our
Squid installation.

Chapter 3

[77]

Time for action – listing the options
Like a lot of other Linux programs, Squid also provides the option -h which can be used
to retrieve a list of options:

squid -h

The previous command will result in the following output:

Usage: squid [-cdhvzCFNRVYX] [-s | -l facility] [-f config-file] [-[au]
port] [-k signal]

 -a port Specify HTTP port number (default: 3128).

 -d level Write debugging to stderr also.

 -f file Use given config-file instead of

 /opt/squid/etc/squid.conf.

 -h Print help message.

 -k reconfigure|rotate|shutdown|interrupt|kill|debug|check|parse

 Parse configuration file, then send signal to

 running copy (except -k parse) and exit.

 -s | -l facility

 Enable logging to syslog.

 -u port Specify ICP port number (default: 3130), disable with 0.

 -v Print version.

 -z Create swap directories.

 -C Do not catch fatal signals.

 -F Don't serve any requests until store is rebuilt.

 -N No daemon mode.

 -R Do not set REUSEADDR on port.

 -S Double-check swap during rebuild.

...

We will now have a look at a few important options from the preceding list. We will also,
have a look at the squid(8) man page or http://linux.die.net/man/8/squid for
more details.

What just happened?
We have just used the squid command to list the available options which we can use on the
command line.

Running Squid

[7�]

Getting information about our Squid installation
Various features may vary across different versions of Squid. Before proceeding any further,
it's a good idea to know the version of Squid installed on our machine.

Time for action – finding out the Squid version
Just in case we want to check which version of Squid we are using or the options we
used with the configure command before compiling, we can use the option -v on the
command line. Let's run Squid with this option:

squid -v

If we try to run the preceding command in the terminal, it will produce an output similar to
the following:

Squid Cache: Version 3.1.10

configure options: '--config-cache' '--prefix=/opt/squid/' '--enable-
storeio=ufs,aufs' '--enable-removal-policies=lru,heap' '--enable-icmp'
'--enable-useragent-log' '--enable-referer-log' '--enable-cache-digests'
'--with-large-files' --enable-ltdl-convenience

What just happened?
We used the squid command with the -v option to find out the version of Squid installed on
our machine, and the options used with the configure command before compiling Squid.

Creating cache or swap directories
As we learned in the previous chapter, the cache directories specified using the cache_dir
directive in the squid.conf file, must already exist before Squid can actually use them.

Time for action – creating cache directories
Squid provides the -z command line option to create the swap directories. Let's see
an example:

squid -z

If this option is used and the cache directories don't exist already, the output will look similar
to the following:

2010/07/20 21:48:35| Creating Swap Directories

2010/07/20 21:48:35| Making directories in /squid_cache/00

Chapter 3

[7�]

2010/07/20 21:48:35| Making directories in /squid_cache/01

2010/07/20 21:48:35| Making directories in /squid_cache/02

2010/07/20 21:48:35| Making directories in /squid_cache/03

...

We should use this option whenever we add new cache directories in the Squid
configuration file.

What just happened?
When the squid command is run with the option -z, Squid reads all the cache directories
from the configuration file and checks if they already exist. It will then create the directory
structure for all the cache directories that don't exist.

Have a go hero – adding cache directories
Add two or three test cache directories with different values of level 1 (8, 16, and 32) and
level 2 (64, 256, and 512) to the configuration file. Then try creating them using the squid
command. Now study the difference in the directory structure.

Using a different configuration file
The default location for Squid's main configuration file is ${prefix}/etc/squid/squid.
conf. Whenever we run Squid, the main configuration is read from the default location.
While testing or deploying a new configuration, we may want to use a different configuration
file just to check whether it will work or not. We can achieve this by using the option -f,
which allows us to specify a custom location for the configuration file. Let's see an example:

squid -f /etc/squid.minimal.conf

OR

squid -f /etc/squid.alternate.conf

If Squid is run this way, Squid will try to load the configuration from /etc/squid.minimal.
conf or /etc/squid.alternate.conf, and it will completely ignore the squid.conf
from the default location.

Getting verbose output
When we run Squid from the terminal without any additional command line options, only
warnings and errors are displayed on the terminal (or stderr). However, while testing,
we would like to get a verbose output on the terminal, to see what is happening when
Squid starts up.

www.allitebooks.com

http://www.allitebooks.org

Running Squid

[�0]

Time for action – debugging output in the console
To get more information on the terminal, we can use the option -d. The following is
an example:

squid -d 2

We must specify an integer with the option -d to indicate the verbosity level. Let's have
a look at the meaning of the different levels:

Only critical and fatal errors are logged when level 0 (zero) is used.

Level 1 includes the logging of important problems.

Level 2 and higher includes the logging of informative details and other actions.

Higher levels result in more output on the terminal. A sample output on the terminal with
level 2 would look similar to the following:

2010/07/20 21:40:53| Starting Squid Cache version 3.1.10 for i686-pc-
linux-gnu...

2010/07/20 21:40:53| Process ID 15861

2010/07/20 21:40:53| With 1024 file descriptors available

2010/07/20 21:40:53| Initializing IP Cache...

2010/07/20 21:40:53| DNS Socket created at [::], FD 7

2010/07/20 21:40:53| Adding nameserver 192.168.36.222 from /etc/resolv.
conf

2010/07/20 21:40:53| User-Agent logging is disabled.

2010/07/20 21:40:53| Referer logging is disabled.

2010/07/20 21:40:53| Unlinkd pipe opened on FD 13

2010/07/20 21:40:53| Local cache digest enabled; rebuild/rewrite every
3600/3600 sec

2010/07/20 21:40:53| Store logging disabled

2010/07/20 21:40:53| Swap maxSize 0 + 262144 KB, estimated 20164 objects

2010/07/20 21:40:53| Target number of buckets: 1008

2010/07/20 21:40:53| Using 8192 Store buckets

2010/07/20 21:40:53| Max Mem size: 262144 KB

2010/07/20 21:40:53| Max Swap size: 0 KB

2010/07/20 21:40:53| Using Least Load store dir selection

2010/07/20 21:40:53| Current Directory is /opt/squid/sbin

2010/07/20 21:40:53| Loaded Icons.

Chapter 3

[�1]

2010/07/20 21:40:53| Accepting HTTP connections at [::]:3128, FD 14.

2010/07/20 21:40:53| HTCP Disabled.

2010/07/20 21:40:53| Squid modules loaded: 0

2010/07/20 21:40:53| Ready to serve requests.

2010/07/20 21:40:54| storeLateRelease: released 0 objects

...

As we can see, Squid is trying to dump a log of actions that it is performing. The messages
shown are mostly startup messages and there will be fewer messages when Squid starts
accepting connections.

Starting Squid in debug mode is quite helpful when Squid is up and running and
users complain about poor speeds or being unable to connect. We can have a
look at the debugging output and the appropriate actions to take.

What just happened?
We started Squid in debugging mode and can now see Squid writing an output on
the command line, which is basically a log of the actions which Squid is performing. If Squid
is not working, we'll be able to see the reasons on the command line and we'll be able to
take actions accordingly.

Full debugging output on the terminal
The option -d specifies the verbosity level of the output dumped by Squid on the terminal.
If we require all of the debugging information on the terminal, we can use the option -X,
which will force Squid to write debugging information at every single step. If the option
-X is used, we'll see information about parsing the squid.conf file and the actions taken
by Squid, based on the configuration directives encountered. Let's see a sample output
produced when option -X is used:

...

2010/07/21 21:50:51.515| Processing: 'acl my_machines src 172.17.8.175
10.2.44.46 127.0.0.1 172.17.11.68 192.168.1.3'

2010/07/21 21:50:51.515| ACL::Prototype::Registered: invoked for type src

2010/07/21 21:50:51.515| ACL::Prototype::Registered: yes

2010/07/21 21:50:51.515| ACL::FindByName 'my_machines'

2010/07/21 21:50:51.515| ACL::FindByName found no match

2010/07/21 21:50:51.515| aclParseAclLine: Creating ACL 'my_machines'

2010/07/21 21:50:51.515| ACL::Prototype::Factory: cloning an object for
type 'src'

Running Squid

[�2]

2010/07/21 21:50:51.515| aclParseIpData: 172.17.8.175

2010/07/21 21:50:51.515| aclParseIpData: 10.2.44.46

2010/07/21 21:50:51.515| aclParseIpData: 127.0.0.1

2010/07/21 21:50:51.515| aclParseIpData: 172.17.11.68

2010/07/21 21:50:51.515| aclParseIpData: 192.168.1.3

...

Let's see what this output means. In the first line, Squid encountered a line defining an ACL
my_machines. The next few lines in the output describe Squid invoking different methods
to parse, creating a new ACL, and then assigning values to it. This option can be very helpful
while debugging ambiguous ACLs.

Running as a normal process
Sometime during testing, we may not want Squid to run as a daemon. Instead, we may
want it to run as a normal process which we can interrupt easily by pressing CTRL-C. To
achieve this, we can use the option -N. When this option is used, Squid will not run in the
background it will run in the current shell instead.

Parsing the Squid configuration file for errors or warnings
It's a good idea to parse or check the configuration file (squid.conf) for any errors or
warnings before we actually try to run Squid, or reload a Squid process which is already
running in a production deployment. Squid provides an option -k with an argument parse,
which, if supplied, will force Squid to parse the current Squid configuration file and report
any errors and warnings. Squid -k is also used to check and report directive and option
changes when we upgrade our Squid version.

Time for action – testing our configuration file
As we learned before, we can use the -k parse option to test our configuration file. Now,
we are going to add a test line and see if Squid can catch the error.

1. For example, let's add the following line to our squid.conf file:

unknown_directive 1234

2. Now we'll run Squid with the -k parse option as follows:

squid -k parse

Chapter 3

[�3]

3. As unknown_directive is not a valid directive for the Squid configuration file, we
should get an error similar to the following:

2010/07/21 22:28:40| cache_cf.cc(346) squid.conf:945 unrecognized:
'unknown_directive'

So, if we find an error within our configuration file, we can go back and fix the errors and
then parse the configuration file again.

What just happened?
We first added an invalid line in to our configuration file and then tried to parse it using
a squid command which resulted in an error. It is a good idea to always parse the
configuration file before starting Squid.

Sending various signals to a running Squid process
Squid provides the -k option to send various signals to a Squid process which is already
running. Using this option, we can send various management signals such as, reload the
configuration file, rotate the log files, shut down the proxy server, switch to debug mode,
and many more. Let's have a look at some of the important signals which are available.

Please note that when the argument parse is used with the option -k, no
signal is sent to the running Squid process.

Reloading a new configuration file in a running process
We may need to make changes to our Squid configuration file sometimes, even when it is
deployed in production mode. In such cases, after making changes, we don't want to restart
our proxy server because that will introduce a significant downtime and will also interrupt
active connections between clients and remote servers. In these situations, we can use the
option -k with reconfigure as an argument, to signal Squid to re-read the configuration
file and apply the new settings:

squid -k reconfigure

The previous command will force Squid to re-read the configuration file, while serving the
requests normally and not terminating any active connections.

It's good practice to parse the configuration file for any errors or warning using
the -k parse option before issuing the reconfigure signal.

Running Squid

[�4]

Shutting down the Squid process
To shut down a Squid process which is already running, we can issue a shutdown signal with
the help of the option -k as follows:

squid -k shutdown

Squid tries to terminate connections gracefully when it receives a shutdown signal. It will allow
the active connection to finish before the process is completely shut down or terminated.

Interrupting or killing a running Squid process
If we have a lot of clients, Squid can take a significant amount of time before it completely
terminates itself on receiving the -k shutdown signal. To get Squid to immediately stop
serving requests, we can use the -k interrupt signal. The -k interrupt signal will not
allow Squid to wait for active connections to finish and will stop the process immediately.

In some cases, the Squid process may not be stopped using -k shutdown or -k
interrupt signals. If we want to terminate the process immediately, we can issue a -k
kill signal, which will immediately kill the process. This signal should only be used when
Squid can't be stopped with -k shutdown or -k interrupt. For example, to send a -k
kill signal to Squid, we can use the following command:

squid -k kill

This command will kill the Squid process immediately.

Please note that shutdown, interrupt, and kill are Squid signals and not
the system kill signals which are emulated.

Checking the status of a running Squid process
To know whether a Squid process is already running or not, we can issue a check signal
which will tell us the status of the Squid process. Squid will also validate the configuration file
and report any fatal problems. If the Squid process is running fine, the following command
will exit without printing anything:

squid -k check

Otherwise, if the process has exited, this command will give an error similar to the following
error message:

squid: ERROR: Could not send signal 0 to process 25243: (3) No such
process

Chapter 3

[�5]

Have a go hero – check the return value
After running squid -k check, find out the return value or status in scenarios when:

Squid was running

Squid was not running

Solution: The return value or the status of a command can be found out by using the
command echo $?. This will print the return status or value of the previous command
that was executed in the same shell. Return values should be (1) -> 0, (2) -> 1.

Sending a running process in to debug mode
If we didn't start Squid in debug mode and for testing we don't want to stop an already
running Squid process, we can issue a debug signal which will send the already running
process into debug mode. The debugging output will then be written to Squid's cache.log
file located at ${prefix}/var/logs/cache.log or /var/log/squid/cache.log.

The Squid process running in debug mode may write a log of debugging output
to the cache.log file and may quickly consume a lot of disk space.

Rotating the log files
The log files used by Squid grow in size over a period of time and can consume a significant
amount of disk space. To get rid of the older logs, Squid provides a rotate signal that can
be issued when we want to rotate the existing log files. Upon receiving this signal, Squid
will close the current log files, move them to other filenames, or delete them based on the
configuration directive logfile_rotate (in squid.conf) then reopen the files to write
the logs.

It's quite inconvenient to rotate log files manually. So, we can automate the process of log
file rotation with the help of a cron job. Let's say we want to rotate the log files at midnight,
the corresponding cron tab entry will be:

59 23 * * * /opt/squid/sbin/squid -k rotate

Please note that the path to Squid executable may differ depending on the installation prefix.
We'll learn more about log files in Chapter 5, Understanding Log Files and Log Formats.

Running Squid

[�6]

Forcing the storage metadata to rebuild
When Squid starts, it tries to load the storage metadata. If Squid fails to load the storage
metadata, then it will try to rebuild it. If it receives any requests during that period, Squid
will try to satisfy those requests in parallel, which results in slow rebuild. We can force Squid
to rebuild the metadata before it starts processing any requests using the option -F on the
command line. This may result in a quick rebuild of storage metadata but clients may have
to wait for a significant time, if the cache is large. For large caches, we should try to avoid
this option:

squid -F

Squid will now rebuild the cache metadata and will not serve any client requests until the
metadata rebuild process is complete.

Double checking swap during rebuild
The option -F determines whether Squid should serve requests while the storage metadata
is being rebuilt. We have another option, -S, which can be used to force Squid to double
check the cache during rebuild. If we use the -S option along with the option -d as follows:

squid -S -d 1

This will produce a debugging output on the terminal which will look similar to the following:

2010/07/21 21:29:22| Beginning Validation Procedure

2010/07/21 21:29:22| UFSSwapDir::doubleCheck: SIZE MISMATCH

2010/07/21 21:29:22| UFSSwapDir::doubleCheck: ENTRY SIZE: 1332, FILE
SIZE: 114

2010/07/21 21:29:22| UFSSwapDir::dumpEntry: FILENO 00000092

2010/07/21 21:29:22| UFSSwapDir::dumpEntry: PATH /squid_
cache/00/00/00000092

2010/07/21 21:29:22| StoreEntry->key: 0060E9E547F3A1AAEEDE369C5573F8D9

2010/07/21 21:29:22| StoreEntry->next: 0

2010/07/21 21:29:22| StoreEntry->mem_obj: 0

2010/07/21 21:29:22| StoreEntry->timestamp: 1248375049

2010/07/21 21:29:22| StoreEntry->lastref: 1248375754

2010/07/21 21:29:22| StoreEntry->expires: 1279911049

2010/07/21 21:29:22| StoreEntry->lastmod: 1205097338

2010/07/21 21:29:22| StoreEntry->swap_file_sz: 1332

2010/07/21 21:29:22| StoreEntry->refcount: 1

2010/07/21 21:29:22| StoreEntry->flags: CACHABLE,DISPATCHED

2010/07/21 21:29:22| StoreEntry->swap_dirn: 0

Chapter 3

[�7]

2010/07/21 21:29:22| StoreEntry->swap_filen: 146

2010/07/21 21:29:22| StoreEntry->lock_count: 0

2010/07/21 21:29:22| StoreEntry->mem_status: 0

...

Squid is basically trying to validate each and every cached object on the disk.

Automatically starting Squid at system startup
Once we have a properly configured and running proxy server, we would like it to start
whenever the system is started or rebooted. Next, we'll have a brief look at the most
common ways of adding or modifying the boot scripts for popular operating systems. These
methods will most probably work on your operating system. If they don't, please refer to the
corresponding operating system manual for information on boot scripts.

Adding Squid command to /etc/rc.local file
Adding the full path of the Squid executable file is the easiest way to start Squid on system
startup. The file /etc/rc.local is executed after the system boots as the super or root
user. We can place the Squid command in this file and it will run every time the system
boots up. Add the following line at the end of the /etc/rc.local file:

${prefix}/sbin/squid

Please replace ${prefix} with the installation prefix which you used before compiling Squid.

Adding init script
Alternatively, we can add a simple init script which will be a simple shell script to start the
Squid process or send various signals to a running Squid process. Init scripts are supported
by most operating systems and are generally located at /etc/init.d/, /etc/rc.d/, or
/etc/rc.d/init.d/. Any shell script placed in any of these directories is executed at
system startup with root privileges.

Time for action – adding the init script
We are going to use a simple shell script, as shown in the following example, which takes
a single command line argument and acts accordingly:

#!/bin/bash

init script to control Squid server

case "$1" in

Running Squid

[��]

start)

 /opt/squid/sbin/squid

 ;;

stop)

 /opt/squid/sbin/squid -k shutdown

 ;;

reload)

 /opt/squid/sbin/squid -k reconfigure

 ;;

restart)

 /opt/squid/sbin/squid -k shutdown

 sleep 2

 /opt/squid/sbin/squid

 ;;

*)

 echo $"Usage: $0 {start|stop|reload|restart}"

 exit 2

esac

exit $?

Please note the absolute path to the Squid executable here and change it accordingly. We
can save this shell script to a file with the name squid and then move it to one of the
directories we discussed earlier depending on our operating system.

The Squid source carries an init script located at contrib/squid.
rc, but it's installed only on a few systems by default.

What just happened?
We added an init script to control the Squid proxy server. Using this script, we can start,
stop, restart, or reload the process. It's important that the script is placed in the correct
directory, otherwise the Squid proxy server will not start on system startup.

Chapter 3

[��]

Pop quiz
1. What should be the first step undertaken after adding new cache directories to the

configuration file?

a. Reboot the server.

b. Run the squid command with the -z option.

c. Do nothing, Squid will take care of everything by itself.

d. Run Squid with root privileges.

2. Where should we look for errors in case Squid is not running properly?

a. Access log file.

b. Cache log file.

c. Squid configuration file.

d. None of the above.

3. In which scenario should we avoid debug mode?

a. While testing the server.

b. While Squid is deployed in production mode.

c. When we have a lot of spare disk space.

d. When we have a lot of spare RAM.

Summary
In this chapter, we learned about the various command line options which can be used while
running Squid, how to start the Squid process in a different mode, and how to send signals
to a process which is already running. We also learned about creating new cache directories
after adding them to the Squid configuration file.

We specifically covered the following:

Parsing the Squid configuration file for errors and warnings.

Using various options to get suitable debugging outputs while testing.

Reloading a new configuration in a Squid process which is already running, without
interrupting service.

Automatic rotation of log files to recover disk space.

Running Squid

[�0]

We also learned about configuring our system to start a Squid process whenever the system
boots up.

Now that we have learned about running a Squid process, we're ready to explore access
control lists in detail and test them on a live Squid server.

4
Getting Started with Squid's Powerful

ACLs and Access Rules

In the previous chapters, we learned about installing, configuring, and running
Squid in different modes. We also learned the basics of protecting our Squid
proxy server from unauthorized access, and granting or revoking access based
on different criteria. We previously had a brief overview of Access Control
Lists in Chapter 2, Configuring Squid. However, in this chapter, we are going
to explore Access Control Lists in detail. We'll also construct rules for a few
example scenarios.

In this chapter, we will learn about:

Various types of ACL lists

Types of access rules

Mixing ACL lists and access list rules to achieve complex access rules

Testing access rules with squidclient

Once we have a Squid proxy server up and running, we can define rules for allowing or
denying access to different people or to control the usage of resources. It is also possible
to define lower and upper limits on the usage of different resources. Access list rules, which
are basically combinations of allow or deny keyword and ACL elements, play a vital role in
achieving this type of control. So let's get started.

Getting Started with Squid’s Powerful ACLs and Access Rules

[�2]

Access control lists
Access Control Lists are the base elements in the Squid configuration file, which help in
identifying web transactions, by various attributes of that transaction. We have already
learned about the syntax for constructing ACLs in Chapter 2. So, let's write an ACL element
that can identify all the requests from a group of clients in the IP range 192.0.2.1 to
192.0.2.127.

acl clients src 192.0.2.0/25

That was quite easy, as 192.0.2.0/25 denotes that the first 25 bits of the available 32 bits
in the IP address are fixed and only the last seven bits can vary, which will result in the range
0-127. In the configuration above, 192.0.2.0/25 denotes a subnet with 127 possible IP
addresses. For more information on subnets, please check http://en.wikipedia.org/
wiki/Subnetwork#IPv4_subnetting.

In the previous ACL element, we used the src ACL type to identify the IP address of the
source of the request. There are various other ACL types available, which can be used to
identify requests and specify actions that should be taken for the identified requests.
So, let's have a look at a few important ACL types.

Fast and slow ACL types
All ACL types fall into two major categories known as fast and slow ACL types. The fast ACL
types use information accompanied with a web transaction. These ACL types generally
perform matching against the source IP address, destination domain name, URL, HTTP
request header fields, and so on. The slow ACL types need to perform additional lookups,
and this introduces a significant delay which is why they are known as the slow ACL types.
The examples of slow ACL types are dst and srcdomain, as these will involve DNS and
reverse DNS lookups respectively. For a list of the latest fast and slow ACL types, please check
http://wiki.squid-cache.org/SquidFaq/SquidAcl#Fast_and_Slow_ACLs.

Source and destination IP address
Every request received by Squid from a client has several properties such as the source
IP address, destination IP address, source domain, destination domain, source MAC address,
and so on. So, when we define an ACL element, we basically try to pick up a request and
match its properties with a pre-determined value.

Chapter 4

[�3]

Time for action – constructing ACL lists using IP addresses
1.	 The two ACL types, src and dst, are used to identify the source and destination

IP addresses of a particular request. There are different ways to specify the IP
addresses. The first one is to specify a single IP address per ACL element, as follows:

acl client src 192.0.2.25/32

2.	 The previous ACL element will match all the requests being generated from the
client 192.0.2.25. We are supposed to specify a mask while specifying the IP
address, but if we don't then, Squid will try to determine the mask automatically.
To learn more about mask, and Classless Inter Domain Routing (CIDR) notation,
please check http://en.wikipedia.org/wiki/Classless_Inter-Domain_
Routing and http://en.wikipedia.org/wiki/CIDR_notation.
For example, the ACL following element will also identify the requests from the
client 192.0.2.25:

acl client src 192.0.2.25

3.	 Therefore, in the previous example, Squid will automatically set the mask to 32.
So we have covered the ways to specify a single IP address, now let's a have a look
at the ways in which to specify multiple IP address.

In its simplest form, we can specify multiple addresses using subnets. If we want to specify
clients in multiple continuous subnets which can't be represented as a single subnet, we can
specify them using a range of subnets. Let's say we want to identify all the clients in a small
research lab which has IP addresses ranging from 192.0.2.0 to 192.0.2.31. Let's see the
ACL for this case:

acl research_lab src 192.0.2.0/27

The above ACL element will identify the IP addresses in the range 192.0.2.0 to
192.0.2.31 as only the last five bits of the last octet in the IP address are variable.

Constructing an ACL element with the ACL type dst is similar. Let's say we want to write an
ACL that will identify all requests destined to 198.51.100.86. We can use the following
dst ACL type:

acl website dst 198.51.100.86

The previous ACL element will identify all requests that are destined to the IP address
198.51.100.86.

The src and dst are fast and slow ACL types respectively.

Getting Started with Squid’s Powerful ACLs and Access Rules

[�4]

What just happened?
We have just learned about two simple ways of specifying multiple IP addresses while
constructing ACL lists which use source and destination IP addresses in a request. These are
the most popular techniques of specifying IP addresses because they are simple to interpret
and chances of confusion are very low.

Time for action – using a range of IP addresses to build ACL lists
Now, let's say in a company, the marketing department is spread over five floors. We
have used a convention 10.1.FLOOR_NUM.MACHINE_NUM to assign IP addresses to each
machine on every floor. The floor number starts from two and goes up to six. So, we basically
have the following subnets.

10.1.2.0/24 # 2nd Floor
10.1.3.0/24 # 3rd Floor
10.1.4.0/24 # 4th Floor
10.1.5.0/24 # 5th Floor
10.1.6.0/24 # 6th Floor

A simple way to identify all these client computers is defined in the following ACL:

acl mkt_dept src 10.1.2.0/24 10.1.3.0/24 10.1.4.0/24 10.1.5.0/24
10.1.6.0/24

The previous methods are a bit cluttered and long winded. Squid provides a simple way to
specify multiple addresses the following is an example of this:

acl mkt_dept src 10.1.2.0-10.1.6.0/24

The preceding ACL defining mkt_dept is simply a shortened version of the following:

acl mkt_dept src 10.1.2.0/24
acl mkt_dept src 10.1.3.0/24
acl mkt_dept src 10.1.4.0/24
acl mkt_dept src 10.1.5.0/24
acl mkt_dept src 10.1.6.0/24

So, we can use the shortened example for specifying continuous subnets. Another good
use of this method is to specify continuous IP addresses in a subnet. For example, let's say
we want to identify all the requests from client in the range of 10.2.44.25 to 10.2.44.35.
The IP address range we are trying to identify can't be put under a subnet as that will include
other IP addresses too. So, we can use the shortened version to identify this IP address range
as follows:

acl bad_clients src 10.2.44.25-10.2.44.35/32

Chapter 4

[�5]

or

acl bad_clients src 10.2.44.25-10.2.44.35

The previous example also works, as Squid will try to establish a mask automatically.

So far in this section, we learned about the different ways in which to identify client requests
on the basis of clients' IP addresses. The method to identify the requests on the basis of
destination IP addresses is similar. We just need to use the dst ACL type instead of src.

ACL elements configured with dst as a ACL type works slower compared
to ACLs with the src ACL type, as Squid will have to resolve the destination
domain name before evaluating the ACL, which will involve a DNS query.

What just happened?
We have just learned how to utilize the range feature to specify a range of IP addresses to
minimize the number of IP addresses we have to specify while constructing ACL lists. We also
learned that we should try not to use the ACL type dst, as it's slower compared to the src
ACL type because Squid will have to resolve the destination domain before it can match ACL
lists of the dst type.

Have a go hero – make a list of the client IP addresses in your network
Try to make an exhaustive list of clients' IP addresses on your network and then construct
ACL lists of the ACL type src. Now try to adjust the predefined ACL localnet in the Squid
configuration file and remove the ranges which are not present in your network.

Identifying local IP addresses
There is one more ACL type, myip, which falls in to this category. This can be used to identify
the local IP address on which Squid is serving requests. This is useful only if the server
running Squid has more than one network interface.

For example, if we have a proxy server with the IP addresses 192.0.2.25, 198.51.100.25,
and a public IP address. Let's say our research centers use 198.51.100.25 to connect to the
Squid proxy, and student labs use 192.0.2.25 to connect to Squid, then we can define the
following two ACLs:

acl research_center_net myip 198.51.100.25
acl student_lab_ip myip 192.0.2.25

Getting Started with Squid’s Powerful ACLs and Access Rules

[�6]

Now using these ACLs, we can easily provide different services to different subnets
connecting to different interfaces on the proxy servers.

Although we use IP addresses to identify clients, in some rare cases, we can use a client's
MAC address for identification. Let's have a look at this.

Client MAC addresses
We can identify client requests on the basis of a client's MAC (Media Access Control
address) address. A MAC address is a unique identifier assigned to network interface cards
usually by the manufacturer, for identification. Squid provides a special ACL type arp to
identify requests. MAC addresses are generally represented as XX:XX:XX:XX:XX:XX, where
X is a hexadecimal number. Let's construct an ACL using a client's MAC address

acl mac_acl arp 00:1D:7D:D4:F3:EE

So, the previous ACL mac_acl will match all requests originating from a client with the MAC
address 00:1D:7D:D4:F3:EE.

This ACL type is available only if Squid was compiled with the
--enable-eui or --enable-arp-acl option, depending on
the Squid version we have.

Please note that this ACL type is not supported on all operating systems and we should
confirm it's availability on our operating system before using it.

Squid can only detect MAC addresses of clients on the same broadcast
domain. For more information on broadcast domains, please check
http://en.wikipedia.org/wiki/Broadcast_domain.

Source and destination domain names
It's convenient to use IP addresses while identifying requests with respect to client IP
addresses because we already know the network for which we are defining the ACLs.
However, when we want to identify requests on the basis of destination addresses, it's
not convenient or foolproof to use IP addresses because:

The IP address of the remote host providing the blocked service may change

Resolving the destination address is a slow process, which will introduce latency

Chapter 4

[�7]

Squid provides two ACL types namely, srcdomain and dstdomain, to construct ACLs based
on source and destination domain names respectively. However, we prefer using domain
names instead of IP addresses for identifying requests with respect to the destination ,
for the reason which we have explained previously. We should note that srcdomain and
dstdomain are slow and fast ACL types respectively.

Time for action – constructing ACL lists using domain names
Let's construct an ACL to identify requests for pages on www.example.com.

acl example dstdomain www.example.com

The previous ACL element will be able to identify any request for any web page on the
domain www.example.com. So, if we try to browse http://www.example.com/ or
http://www.example.com/index.html, the URLs will be identified by the ACL example.

However, the problem with this ACL is that it will not be able to identify requests to
example.com or some.example.com and so on. So, if we browse to http://example.
com/ or http://video.example.com/, our requests will not be identified
by the ACL example.

To overcome this problem, we can prefix the domain name with a period or dot (.). A dot is
treated as a wildcard by Squid and an ACL will match that domain or any sub-domain of that
particular domain. Let's see an example.

acl example dstdomain .example.com

The previous ACL element will match example.com or any of its sub-domains such as
video.example.com, news.example.com, www.exmaple.com and so on.

Similarly, if we have an ACL defined as follows:

acl example_uk dstdomain .uk.example.com

We will be able to match requests to uk.example.com or any sub-domain of
uk.example.com but not example.com, as it's not a sub-domain of uk.example.com.

So, now we know how to construct ACLs using destination domain names. Using source
domain names to identify requests is similar, and the ACL type for that is srcdomain.
Here is an example:

acl our_network srcdomain .company.example.com

The ACL our_network will match any requests originating from company.example.com or
any of its sub-domains.

Getting Started with Squid’s Powerful ACLs and Access Rules

[��]

ACL elements with srcdomain as ACL types works slower, compared to
ACLs with the dstdomain ACL type because Squid will have to perform
a reverse DNS lookup before evaluating ACL. This will introduce significant
latency. Moreover, the reverse DNS lookup may not work properly with
local IP addresses.

What just happened?
In this section, we saw how we can specify domains or sub-domains of a domain while
building ACL lists of the srcdomain or dstdomain type. We should also note here that
ACL lists of the type srcdomain are slower than the ones of the type dstdomain, as Squid
will try a reverse lookup on the source IP address before matching.

Have a go hero – make a list of domains hosted in your local network
Try to find out all the domains and their sub-domains which are hosted in your local area
network and organize them into an ACL list local_domains.

Regular expressions for domain names
Squid provides two interesting ACL types, namely, srcdom_regex and dstdom_regex,
which can be used to identify requests based on the source or destination domain names
attached with each request. Let's say, we don't want to allow websites that have a torrent
in their domain names, we would therefore need to construct the following ACL:

acl torrent_sites dstdom_regex -i torrent
http_access deny torrent_sites

This configuration will simply deny access to any website that has a torrent in its domain
name. The ACL type srcdom_regex can be used in a similar way to control access from
domains matching a specific regular expression.

Destination port
Whenever a client requests some web documents, Squid needs to connect to the remote
server on a specific port number. For example, if a client requests http://example.com/,
Squid will try to connect to a server at example.com on port 80, because that's the default
port used for HTTP communication. Now, let's say a client requests https://example.com/,
then Squid will try to connect to the server example.com on port 443 because 443 is the
default port for secure HTTP (or HTTPS) communication.

Chapter 4

[��]

Time for action – building ACL lists using destination ports
So, we can use network port numbers to identify requests and then combine them with an
access rule to control access to resources. Squid provides an ACL type port, which can be
used to declare one or more port numbers to construct an ACL. Let's see a simple example:

acl allowed_port port 80

The previous ACL will match any request for port 80 on the destination server requests. The
ACL type port can take more than one port or a range of ports as an argument. So, if we
want to assign multiple ports, we can list them as follows:

acl allowed_ports port 80 443 1025-65535

The ACL allowed_ports will match all the requests requesting a connection to ports 80,
443, or any within the range of 1025 to 65535.

Normally, the policy is to allow only needed ports and deny connection to all other ports
to prevent any type of illegal or unauthorized access. Squid has a lot of pre-defined ports
aggregated under the ACLs named SSL_ports and Safe_ports. The following lines are
from the default configuration file:

acl SSL_ports port 443

acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 # https
acl Safe_ports port 70 # gopher
acl Safe_ports port 210 # wais

acl Safe_ports port 280 # http-mgmt
acl Safe_ports port 488 # gss-http
acl Safe_ports port 591 # filemaker
acl Safe_ports port 777 # multiling http
acl Safe_ports port 1025-65535 # unregistered ports

The preceding example contains a list of ports for well-known services such as, HTTP, FTP,
HTTPS, and so on and other ports over which HTTP is known to be safely transmitted. We
should be careful while adding new ports to the safe ports lists. For example, if we add port
25 (Simple Mail Transfer Protocol or SMTP) to the safe ports list, clients will be able to relay
mails through our proxy server due to the design similarities in HTTP and SMTP protocols. So,
we should not add port 25 to safe ports list unless we are fully aware of the implications.

Getting Started with Squid’s Powerful ACLs and Access Rules

[100]

Also, the ports listed previously may not be an exhaustive list of allowed ports for our
environment and we may need to allow more ports, depending upon the client requirements.
For example, we don't have port 873 (rsync) listed above, which may be needed in some
cases. So, we keep adding more ports to the safe ports list. Let's see an example:

acl SSL_ports port 443 563
acl SSL_ports port 444 # other SSL ports

acl Safe_ports port 80 # http
acl Safe_ports port 21 # ftp
acl Safe_ports port 443 563 444 # https
acl Safe_ports port 70 # gopher
acl Safe_ports port 119 # Usenet news group
acl Safe_ports port 210 # wais
acl Safe_ports port 280 # http-mgmt
acl Safe_ports port 488 # gss-http
acl Safe_ports port 591 # filemaker
acl Safe_ports port 777 # multiling http
acl Safe_ports port 873 # rsync
acl Safe_ports port 1025-65535 # unregistered ports

The general approach is to deny access to all the ports that are not in the allowed list. To
deny all the unsafe ports, we'll write:

http_access deny !Safe_ports

Now, clients will not be able to connect to any port on the remote server, which is not listed
in the Safe_ports list.

What just happened?
In this section, we learned to specify ports or a range of ports for constructing ACL lists of
the type port. We also learned that we shouldn't allow all ports by default as that can lead
to illegal or unauthorized access.

Local port name
Squid provides another ACL type myportname, to identify the network port name but it's
different to port. The ACL type myportname identifies the port number on the Squid proxy
server where clients connect to Squid. Just like the ACL type myip, myportname is also
useful if we configure Squid to listen on more than one port using the http_port directive
in the Squid configuration file.

Chapter 4

[101]

Let's say we have Squid listening on port 3128 and 8080. Therefore, we can have the
following ACLs:

http_port 192.0.2.21:3128 name=research_port
http_port 192.0.2.25:8080 name=student_port
acl research_lab_net myportname research_port
acl student_lab_net myportname student_port

Now, we can use these two ACLs to control access to different subnets.

HTTP methods
Every HTTP request is accompanied by a HTTP method. For example, when we type
http://example.com/ in our web browser's address bar, we make a GET request to the
example.com server. Also, when we submit an online form, we make a POST request
to the server. Similarly, PUT, DELETE, CONNECT, and so on, are other commonly used
HTTP methods.

Squid provides the ACL type method to identify requests based on the HTTP method
used for that particular request. Normally, all the methods are allowed by default, except
the CONNECT method. The HTTP method CONNECT is a bit tricky and is used to tunnel
requests through HTTP proxies. So, we should allow only trusted requests such as HTTPS
through CONNECT.

Let's see an example of a method ACL from Squid's default configuration:

acl CONNECT method CONNECT

Don't confuse CONNECT the ACL name, with CONNECT the HTTP method. The, ACL CONNECT
will identify all the requests with the HTTP method CONNECT. Now, let's see Squid's default
configuration for using the CONNECT method:

acl SSL_ports port 443
http_access deny CONNECT !SSL_ports

By default, Squid will allow the CONNECT HTTP method only for SSL port 443, which is the
standard port for HTTPS communication. Again, we should go with the default configuration
and add more ports to the SSL_ports ACL as the need arises.

We should note that the port numbers we add to the SSL ports list
should be added to the safe ports list as well.

Getting Started with Squid’s Powerful ACLs and Access Rules

[102]

Identifying requests using the request protocol
Squid provides another ACL type, proto, which can be used to identify the communication
protocol or URL scheme for a request. For example, when we access http://example.com/,
the URL scheme used is HTTP and when we browse ftp://example.com/, the URL scheme
being used is FTP. Other commonly used URL schemes are gopher, urn, https, and whois.

Time for action – using a request protocol
to construct access rules

Let's say we want to deny all FTP requests from a particular subnet, known as, research labs.
The configuration should look similar to the following:

acl ftp_requests proto FTP
acl research_labs src 192.0.2.0/24
http_access deny research_labs ftp_requests

The previous configuration lines will instruct Squid to deny all the FTP requests from the
network 192.0.2.0/24.

Please note that some firewalls block active FTP by default. Please
check http://www.ncftp.com/ncftpd/doc/misc/
ftp_and_firewalls.html for more information.

Apart from the previously mentioned standard schemes, we have a Squid specific URL
scheme called cache_object, which is used for the cache manager (cachemgr) interface.
By default, the cache manager can only be accessed from the Squid proxy server itself
because of the following code in squid.conf:

acl manager proto cache_object
acl localhost src 127.0.0.1/32
http_access allow manager localhost
http_access deny manager

Therefore the URL scheme cache_object can only be accessed from the localhost
(the proxy server itself). If we want to access the cache_object URL scheme from other
machines (for example, from the machines of all our administrators), we can add the
following special access rules as follows:

acl manager proto cache_object
acl localhost src 127.0.0.1/32
acl admin_machines src 192.0.2.86 192.0.2.10
http_access allow manager localhost
http_access allow manager admin_machines
http_access deny manager

Chapter 4

[103]

The previous configuration lines will ensure that only administrators can use Squid's cache
manager interface.

What just happened?
We have just seen that it is possible to build ACL lists based on the protocol used by the
client in the requests. By using this type of ACL we can completely deny requests to all
other protocols than HTTP and HTTPS, in very restricted environments.

Time-based ACLs
Access control based on time is one of the most exciting features of Squid. Using the time
ACL type, we can specify a time period in the form of day(s) or time range. Then the requests
during that time period will be matched or identified by that ACL. The format of the time
ACL type is as follows:

acl ACL_NAME time [day-abbreviation] [h1:m1-h2:m2]

Specifying days and time range are optional, but one of them must be specified. The
following are the abbreviations used:

Day Abbreviation

Sunday S

Monday M

Tuesday T

Wednesday W

Thursday H

Friday F

Saturday A

All Weekdays D

We should note that time is taken only when the ACL is checked.
Therefore, it may not affect the requests made during the allow
period and performed during the deny period and vice-versa.

So, for identifying all the requests on Sunday, Monday, and Wednesday, we'll have the
following ACL:

acl days time SMW

Getting Started with Squid’s Powerful ACLs and Access Rules

[104]

The day abbreviations should be written altogether. While specifying the time, h1:m1 should
be less than h2:m2. Moreover, time should be in a 24 hour format. Now, let's construct a few
ACLs for the typical office hours:

acl morning_hrs time MTWHF 09:00-12:59
acl lunch_hrs time D 13:00-13:59
acl evening_hrs time MTWHF 14:00-18:00

Now, let's say we don't want our clients to access YouTube during office hours, but it's ok if
they access it during lunch hours. Also, we will allow browsing only in office hours. So, we'll
have the following lines in our configuration file:

acl youtube dstdomain .youtube.com
acl office dstdomain .office.example.com
http_access allow office
http_access allow youtube !morning_hours !evening_hours
http_access deny all

URL and URL path-based identification
Squid provides the ACL type url_regex, using which we can specify regular expressions
which will be matched against the entire URL. URLs are generally of the form http://
example.com/path/directory/index.php?page=2&count=10 or http://example.
com/path2/index.html#example-section. So, let's construct an ACL that will match all
requests to JPG images on the example.com server.

acl example_com_jpg url_regex ^http://example.com/.*\.jpg$

By default, the regular expressions passed to any ACL type are treated as case-sensitive.
Hence, the previous regular expression will not match if a JPG image on the server has a
filename linux.JPG. To make the regular expressions case-insensitive, we can use the
option -i while defining ACL. For example:

acl example_com_jpg url_regex -i ^http://example.com/.*\.jpg$

Now, the ACL example_com_jpg will match all the JPG images on the server
example.com.

In the URL http://example.com/path/directory/index.php?page=2&count=10,
the section path/directory/index.php?page=2&count=10 is the URL path. So, the
URL path is basically the URL minus the URL scheme and hostname.

Similar to url_regex, we have another ACL type called urlpath_regex. The only
difference is that url_regex searches for the regular expression in the complete URL
while urlpath_regex searches only in the URL path.

Chapter 4

[105]

This ACL type is specifically helpful when we only want to search a string in the path and not
in the hostname. Let's see an example:

acl torrent urlpath_regex -i torrent

In another example, let's try to block some video content:

acl videos urlpath_regex -i \.(avi|mp4|mov|m4v|mkv|flv)(\?.*)?$

The above ACL videos will match a few of the well known video formats.

Please note that regular expression matching is slower than other
ACL type matching. It is highly recommended to break the regular
expression into dstdomain and urlpath_regex to enhance
ACL matching performance.

Have a go hero – ACL list for audio content
Construct an ACL list which can be used to identify requests for at least three types of
audio files.

Matching client usernames
Squid supports identifying clients using the ident protocol by providing the ACL type ident.
Squid tries to connect to the ident server on the client machine and get the username
corresponding to the current request, when the ident ACL type is used. The username that
Squid will receive may not be the username of the logged in user. For example, when Squid
tries to get the username of a down-stream proxy server, it may get the username squid,
proxy, or nobody, depending on the value of the cache_effective_user directive.

The ident protocol is not really secure and it's very easy to spoof an ident
server. So, it should be used carefully.

If we have an exhaustive list of usernames for our network, we can construct an ACL
as follows:

acl friends ident john sarah michelle priya
http_access allow friends
http_access deny all

If the previous configuration is used, only the users specified previously will be able to access
our proxy server.

Getting Started with Squid’s Powerful ACLs and Access Rules

[106]

Please note that the ident lookups are blocking calls and Squid will wait for the
reply before it can proceed with processing the request, and that may increase
the delays by a significant margin.

Normally, it's not possible to specify all users especially if we have a large network. For
such cases, Squid provides a special keyword, REQUIRED, which can be used to enforce
a username for all the requests. If an ident lookup results in any username, the ACL is
matched, otherwise the ACL will not be matched.

To know more about the ident protocol, please visit
http://en.wikipedia.org/wiki/Ident.

So, to enforce a username, we can have the following configuration in our Squid
configuration file:

acl username ident REQUIRED
http_access allow username
http_access deny all

Regular expressions for client usernames
Similar to ident, we have another ACL type, ident_regex, which can be used to specify
regular expressions instead of complete usernames. This is helpful in networks, where we
have specific formats for usernames. For example, let's say we use the department name as
a suffix to the usernames. Then we can construct the following ACLs:

acl mkt_dept ident_regex -i \.marketing$
acl cust_care_dept ident_regex -i \.cust_care$

Now, based on the above ACLs, we can have control over the way the resources are used by
the two departments.

Proxy authentication
The best way to keep bad guys out of a proxy server is to use proxy authentication. In this
case, a client will need to enter a username and password to be able to use our proxy
server. If proxy authentication is enabled, the client will send an additional header with
authentication credentials, which Squid will evaluate and check whether the client should be
allowed to use our proxy server. The interesting part is that Squid can't validate credentials
sent by the client on its own. Squid passes the credentials it receives from a client to a helper
process, and the validity of credentials is determined by the external process.

Chapter 4

[107]

So, we have the proxy_auth ACL type where we can specify a list of usernames for
authentication. However, as we saw previously, Squid can't validate credentials itself; we
must specify at least one authentication scheme for validating the username and password
sent by the client. Authentication schemes are configured using the auth_param directives
in our Squid configuration file.

Squid supports the Basic, Digest, NTLM, and Negotiate authentication schemes, and all of
them are built by default.

Time for action – enforcing proxy authentication
If we want to enforce proxy authentication, we can add the following lines to our
configuration file:

acl authenticated proxy_auth REQUIRED
http_access allow authenticated
http_access deny all

With the previous configuration, only authenticated users will be able to access the proxy
server. If we want to specifically identify individual clients with usernames, we can pass
a list of users as well. This may be needed if we want to give extra privileges to some users.
For example:

acl authenticated proxy_auth REQUIRED
acl admins proxy_auth john sarah
acl special_website dstdomain admin.example.com
http_access allow admins special_website
http_access deny special_website
http_access allow authenticated
http_access deny all

Therefore, if we have the preceding lines in our configuration file, only the users john and
sarah will be able to access admin.example.com, but other authenticated users will be
able to access all websites except admin.example.com.

Regular expressions for usernames
Similar to proxy_auth, we have the proxy_auth_regex ACL type, which can be used
to identify usernames using a regular expression. Let's say, we follow a nomenclature for
allotting usernames to our employees and all employees in the accounts department will
have the username of accounts_username, then we can construct an ACL matching the
usernames of the employees from the accounts department as follows:

acl accounts_dept proxy_auth_regex ^accounts_

Getting Started with Squid’s Powerful ACLs and Access Rules

[10�]

If we want employees in the accounts department to access only the accounts website, we
can have the following configuration:

acl accounts_dept proxy_auth_regex ^accounts_
acl accounts_web dstdomain .account.example.com

http_access allow accounts_dept accounts_web
http_access deny all

In accordance with the previous configuration, employees in the accounts department will
be able to access only the accounts website.

What just happened?
In the previous example, we saw how we can enforce proxy authentication for all the clients'
or only a group of clients using different types of ACL lists. We'll learn more about proxy
authentication in Chapter 7.

User limits
Squid provides different ACL types, using which we can construct ACL lists to limit the
number of connections from a client and the number of logins per user. Let's have a look.

Maximum number of connections per client
Generally, we want to place a limit on the number of parallel connections a client can utilize
to enforce a fair usage policy. Squid provides an ACL type maxconn, which will match if a
client's IP address has more than the maximum specified active connections. An example
of this could be if we want to enforce a maximum of 25 connections per client:

acl connections maxconn 25
http_access deny connections

According to the preceding configuration lines, a client will return an access denied error if it
tries to open more than 25 parallel connections.

In a different scenario, we may want to enforce different parallel connection limits for
different user groups. Let's see an example of such a configuration:

acl normal_users src 10.2.0.0/16
acl corporate_users src 10.1.0.0/16
acl norm_conn maxconn 15
acl corp_conn maxconn 30
http_access deny normal_users norm_conn
http_access deny corporate_users corp_conn

Chapter 4

[10�]

So, according to the preceding configuration lines, normal_users will have a maximum
limit of 15 parallel connections, while corporate_users will enjoy a maximum limit of
30 parallel connections.

Maximum logins per user
Squid provides an ACL type max_user_ip, which is matched when a single username
is used for authentication from more than a specified number of machines. A directive
authenticate_ip_ttl is used to determine the timeout for the IP address entries. So,
if we want our clients to log in from, no more than, three different machines, we can
use the following configuration:

acl ip_limit max_user_ip 3
http_access deny ip_limit

The default behavior is to deny random requests once the limit is reached. We can deny
complete access by specifying the option -s while constructing an ACL.

At least one of the authentication schemes must be configured before we
can use this feature.

Identification based on various HTTP headers
Requests or replies can be identified based on the information hidden in HTTP headers,
which accompany every HTTP request or reply. Let's have a look at some of the important
HTTP headers used for identifying requests.

User-agent or browser
Almost all the HTTP requests carry a User-Agent string in their headers, which is basically
a string to identify the name and version of the HTTP client. For a certain version of Mozilla
Firefox, it may look like:

Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.9.2.6) Gecko/20100625
Firefox/3.6.6 GTB7.1

The previous User-Agent string represents Mozilla Firefox 3.6.6 on a Linux-based 32 bit
operating system.

Squid provides an ACL type browser, using which we can identify client requests based on
the User-Agent header and combine that with an access rule to grant access to users with
specific HTTP clients. The ACL type browser takes a regular expression as an argument. For
example, if we want to restrict access to Mozilla Firefox and Internet Explorer, we can add
following lines to our configuration files:

acl allowed_clients browser -i firefox msie
http_access allow allowed_clients
http_access deny all

Getting Started with Squid’s Powerful ACLs and Access Rules

[110]

It's very easy to spoof User-Agent header strings and we should not rely
solely on User-Agent to control access.

Referer identification
HTTP requests generally carry a Referer header string, which represents the website from
which the client was directed to the current request. An example Referer header string is
http://www.google.com/search?rlz=1C1GGLS_enIN345IN345&sourceid=chrom
e&ie=UTF-8&q=what+my+user+agent. Squid has an ACL type referer_regex, which
can be used to match requests on the basis of the Referer header string. It's useful when we
don't want users to be directed to genuine websites from a malicious website. For example:

acl malicious_website dstdomain .malicious.example.com
acl malicious_referer referer_regex -i malicious.example.com
http_access deny malicious_website
http_access deny malicious_referer

The previous configuration will prevent our clients from visiting the malicious website and
will also prevent them from being directed to genuine websites from the malicious website.
This will in turn will prevent them from attacks like phishing.

Content type-based identification
Squid provides two ACL types, req_mime_type and rep_mime_type, which can be used
to match the content type of requests and replies respectively. These are generally helpful in
controlling the access to file uploads and downloads. Both these ACL types try to match the
Content-Type HTTP header accompanied with requests and replies.

For uploads, the req_mime_type is used. For example, if we want to prevent the uploading
of an MPEG video file, then we can have the following lines in our configuration file:

acl mpeg_upload req_mime_type -i video/mpeg
http_access deny mpeg_upload

Similarly, rep_mime_type is used for matching against the Content-Type header of replies
from remote servers. To disable all video downloads, we can use the http_reply_access
directive, which is used to control access to replies received from the remote servers.
Therefore, we can have the following lines in our configuration file.

acl video_download rep_mime_type -i ^video/
http_reply_access deny video_download

These ACL types are only effective if the HTTP client and remote web servers set
the Content-Type HTTP header properly.

Chapter 4

[111]

Other HTTP headers
We have learned about the browser, referer, req_mime_type, and rep_mime_type
ACL types, which identify requests or replies by matching a regular expression against
different HTTP header fields. Squid provides two additional ACL types, namely, req_header
and rep_header, which can be used to match any of the HTTP header fields in requests
or replies.

The req_header ACL type is used to match HTTP headers in requests. Let's see an example:

acl user_agent req_header User-Agent -i ^Mozilla
http_access allow user_agent
http_access deny all

In the previous configuration, User-Agent is a HTTP header. Similarly, we can specify any of
the known HTTP headers and Squid will try to match the regular expression against the value
of that particular HTTP header.

In a similar manner, we can use rep_header for matching HTTP header fields in replies.
However, it is worth noting that the rep_header ACL type is useful only when used with
the http_reply_access directive as only replies can be matched.

HTTP reply status
When Squid tries to contact the remote server on the client's behalf, it'll receive a reply
corresponding to every request. Depending upon the remote web server's ability to serve
the current request, the reply will have a status code. For example, if the request can be
served, a status code 200 will be returned.

Please visit http://en.wikipedia.org/wiki/List_of_HTTP_
status_codes for a complete list of HTTP status codes.

Squid has the ACL type http_status to identify replies on the basis of the HTTP status
codes returned by a remote server. Let's say we want to identify all the server errors (5xx),
our configuration would look similar to the following:

acl server_errors http_status 500-510

Similar to the src and port ACL types, we can pass a range as an argument to http_status.
We can take the appropriate action based on the HTTP status or reply codes. The
https_status ACL type can be helpful in bypassing adaptation rules.

Getting Started with Squid’s Powerful ACLs and Access Rules

[112]

Identifying random requests
The ACL type random can be used to identify random requests with a pre-defined
probability. The following is the format for constructing ACLs of the type random:

acl ACL_NAME random probability

The parameter probability can be specified in the following three ways:

Fraction: In the form of a fraction. For example, 2/3, 3/4, and so on.

Decimal: In the form of a decimal number. For example, 0.67, 0.2, and so on.

Ration: In the form of a matches:non-matches ratio. For example, 3:4, 2:3,
and so on.

So, an example ACL matching 70 percent of requests can be written as:

acl random_req random 0.7

The ACL random_req will randomly match 70 percent of the total requests received by the
Squid proxy server.

Access list rules
In the previous section, we learned about ACL lists in detail. However, as we saw, ACL lists
can only be used to identify, and that is only of use if they are combined with some access
rules to control access to various components of our proxy server. Squid provides a lot of
access list rules, with http_access being the most widely used.

As we have learned in Chapter 2, when we have multiple access rules, Squid matches a
particular request against them from top to bottom and keeps doing so until a definite action
(allow or deny) is determined. We also learned that if we have multiple ACLs within a single
access rule, then a request is matched against all the ACLs from left to right and Squid stops
processing the rule as soon as it encounters an ACL that can't identify the request. An access
rule with multiple ACLs results in a definite action only if the request is identified by all the
ACLs used in the rule.

Now, let's have a brief look at the different access list rules provided by Squid.

Access to HTTP protocol
The http_access is the most important access list rule. Only the client allowed by this
rule will be able to send HTTP requests and requests from all other clients will be denied.
However, the behavior of this access list rule is a bit tricky.

Chapter 4

[113]

The default behavior is to allow requests only from LAN clients. If no access rules are
configured, then the default behavior is to deny all requests. Squid will stop at the first
access rule with an ACL list matching the current request and will allow or deny the request
depending on the rule. If the current request is not identified by any of the ACL lists in the
access rules, the opposite action of the last access rule is performed. So, if the last access
rule is to deny a request, the unmatched request will be allow and vice-versa.

Because of the above behavior, a deny all ACL rule is always recommended in the end, so
that Squid can identify a definite action. The general rule is to allow known clients and deny
the rest by default. So, our configuration file should look something like:

http_access allow employees
http_access allow customers
http_access allow guests
http_access allow vpn_users
http_access deny all

So, we allowed all of the possible genuine users and then at the end denied all the requests.
If the need arises to add more users, we can simply add them to an existing or another ACL
list and will add an allow access rule.

The line that denies all the requests at the end also prevents our proxy server from
unauthorized access as a result of misconfiguration.

Adapted HTTP access
Squid provides the adapted_http_access rule, which is similar to http_acces but is
checked after all the redirectors, URL rewriters, or ICAP/eCAP adaptations, which allows
access control based on the output returned. This is only useful when we are using
redirectors, URL rewriters, or ICAP/eCAP adaptation.

For more information on ICAP/eCAP, please visit http://wiki.
squid-cache.org/Features/ICAP and http://wiki.squid-
cache.org/Features/eCAP.

It is not absolutely necessary to use this rule. The syntax and behavior is similar
to http_access.

HTTP access for replies
We have seen that there are ACL types that can identify requests and replies. For example,
src, dst, dstdomain, req_header, and so on are a few ACL types that identify clients
on the basis of requests, while rep_header, http_status, rep_mime_type, and so on
can identify replies. The ACL lists that identify replies should be used with the access rule
http_reply_access to control access.

Getting Started with Squid’s Powerful ACLs and Access Rules

[114]

Squid fetches the replies from a remote server, even if the replies are denied using the
http_reply_access rules, but they are not delivered to the clients. On the other hand,
even when the replies are denied using the http_reply_acess rules, the clients will still
receive replies in the form of access denied messages from Squid.

The usage and behavior of http_reply_access is similar to http_access.

If a client is denied access by the http_access rule, it'll never match
an http_reply_access rule. This is because, if a client's request is
denied then Squid will not fetch a reply.

Access to other ports
Our neighbor proxy server can access a proxy server via ICP and HTCP ports. Also, our proxy
server can be accessed via the SNMP port. Let's see how to control access to these ports.

ICP port
We have seen the icp_port directive in Squid, which is used to set the ICP port for
communication with neighboring proxy servers. To limit access to the ICP port of our proxy
server, we have an access list rule called icp_access. The default behavior is to deny all the
requests to the ICP port. Generally, we prefer to enable ICP port access for all clients in our
local area network, but it totally depends on our network policies.

The default Squid configuration file contains an ACL list, localnet, which identifies all the
clients on our LAN. So, if we want to allow ICP access to all our local clients, we can use the
following lines in the configuration file:

acl localnet src 10.0.0.0/8
acl localnet src 172.16.0.0/12
acl localnet src 192.168.0.0/16
acl localnet src fc00::/7
acl localnet src fe80::/10
icp_access allow localnet
icp_access deny all

HTCP port
HTCP (Hypertext Caching Protocol) is used for discovering HTTP caches and communication
among the proxy servers. We set the HTCP port in the configuration file using the
htcp_port directive. We can prevent access to the HTCP port on our proxy server by using
the access list rule htcp_access, which has usage and behavior similar to icp_access.
The default behavior is to deny all requests to the HTCP port.

Chapter 4

[115]

Purge access via HTCP
A proxy server can send HTCP CLR or purge requests to other proxy servers using HTCP. We
may want to allow access to only trusted clients to prevent a proxy server from unauthorized
access. Squid provides the access rule htcp_clr_access, which can be used to determine
the clients that will be able to issue HTCP CLR requests to purge content.

We should note that HTCP CLR requests are relayed regardless
of whether they are acted on locally.

SNMP port
We can restrict access to the SNMP port (specified by the snmp_port directive) on our proxy
server using a combination of the access list rule snmp_access, the ACL list constructed
from the ACL type snmp_community and any other ACL identifying the client requesting
SNMP access. Let's see the following example:

acl admins src 127.0.0.1 192.0.2.21 192.0.2.86
acl snmppublic snmp_community public
snmp_access allow snmppublic admins
snmp_access deny all

So, now only admins will be able to access the SNMP port. The default behavior is to deny
access to all clients.

Enforcing limited access to neighbors
When we have cache peers or neighbor proxy servers in our network, they can use our proxy
server as a sibling or a parent proxy server. When they use our proxy server as a sibling proxy
server, only HITS will be fetched from our proxy server and they will fetch all the MISS(s) on
their own. However, if they are using our proxy server as a parent, then they'll be able to
fetch MISS(s) via our proxy server. In some cases, this may not be a desirable behavior,
as it will consume our upstream bandwidth.

Time for action – denying miss_access to neighbors
To force other proxy servers to use our proxy server as a sibling proxy server, we have
an access rule miss_access. Let's say we have two neighbor proxy servers, namely,
192.0.2.25 and 198.51.100.25, in our network. Now, we don't mind if 192.0.2.25
uses our proxy server as a parent proxy server, but we don't want to allow 198.51.100.25
to fetch MISS(s) via our proxy server. So, we can have the following configuration:

acl good_neighbour src 192.0.2.25
acl bad_neighbour src 198.51.100.25

Getting Started with Squid’s Powerful ACLs and Access Rules

[116]

miss_access allow good_neighbour # This line is not needed. Why?
miss_access deny bad_neighbour
miss_access allow all

The default behavior is to allow all proxy servers to fetch MISS(s) via our proxy server. In the
previous configuration line, the first allow rule is not needed because we have the allow
all rule at the end. The allow rule was just used to draw your attention towards the nature
of miss_access directive.

What just happened?
We just learned the usage of the miss_access access list rule to prevent leakage of
upstream bandwidth to unknown or misbehaving clients.

Requesting neighbor proxy servers
If there are neighbor proxy servers or cache peers in our network and we have added them
to our Squid configuration file using the cache_peer directive, then our proxy server will
try to contact those servers using HTTP, ICP, or HTCP protocols based on the options we used
with the cache_peer directive. By default, Squid will select the first or closest proxy server
to contact for various communications. We can however control the selection with the
access list rule cache_peer_access.

We can combine cache_peer_access, cache peer name, and the ACL lists to achieve
control over a selection of the proxy servers for different domains, clients, or any other
criterion. The following is the format for constructing a cache_peer_access rule:

cache_peer_access CACHE_HOST allow allow|deny [!]ACL_NAME ...

Let's have a look at the following example. We have two cache peers, namely, cache1.
example.com and cache2.example.com, and we want all YouTube traffic to go through
cache1.example.com and all Google traffic to go through cache2.example.com.

cache_peer cache1.example.com parent 8080 3130 proxy-only weight=1
cache_peer cache2.example.com parent 3128 3130 proxy-only weight=2
acl youtube dstdomain .youtube.com
acl google dstdomain .google.com
cache_peer_access cache1.example.com allow youtube
cache_peer_access cache1.example.com deny all
cache_peer_access cache2.example.com allow google
cache_peer_access cache2.example.com deny all

Have a go hero – make a list of proxy servers in your network
Make a list of the available proxy servers in your environment and add them as cache peers
to your configuration file.

Chapter 4

[117]

Forwarding requests to remote servers
When we have neighboring proxy servers or cache peers in our network and we have
configured our Squid proxy server to use them via the cache_peer directive, then the
requests from the clients will be forwarded through the peers depending on the options
used with cache_peer while adding the peer hosts. However, Squid provides the following
access list rules, namely, always_direct and never_direct, which can be used to
determine whether a request should be forwarded through other peers or the remote
servers should be contacted directly.

When we want to forward requests directly to remote servers without using any peers, we
can use the always_direct access list rule. This is generally used to avoid contacting peers
for serving content from websites on the local area network. For example, for forwarding
requests to local web servers directly, we can use the following configuration:

acl local_domains dstdomain .local.example.com
acl local_ips dst 192.0.2.0/24
always_direct allow local_domains
always_direct allow local_ips

The previous configuration will successfully reduce the unnecessary latency introduced
because of communication with peers while serving local content.

The access list rule never_direct is the opposite of always_direct. So, if we decided
that all the requests must not be forwarded to remote servers directly, then we can have
the following configuration:

never_direct allow all

Ident lookup access
We learned that we have the ACL type ident, using which we can force username
identification before allowing any clients to access our proxy server. However by default,
ident lookups are not performed even if we have ACL lists with the ident ACL type, unless
the current requests are allowed by the access rule ident_lookup_access. The default
behavior is not to perform any ident lookups at all.

It's actually a good idea to perform selective ident lookups because not all hosts support
this feature. So, let's say we want to perform ident lookups for all the Unix/Linux hosts in
our network 192.0.2.0/24. We can add the following lines to our configuration file:

acl nix_hosts src 192.0.2.0/24
ident_lookup_access allow nix_hosts
ident_lookup_access deny all

Getting Started with Squid’s Powerful ACLs and Access Rules

[11�]

Controlled caching of web documents
Squid tries to cache all the cacheable web documents for satisfying the subsequent requests
for the same content. However, there may be times when we may not want to cache all of
the replies. A good example is the content from websites on our local area network. We have
an access list rule, cache, using which we can allow or deny caching of content with the help
of ACL lists.

For example, for denying caching of any content on the local area network, we can add the
following lines to our configuration file:

acl local_domain dstdomain .local.example.com
cache deny local_domain
cache allow all

Don't use the localnet ACL list here because that identifies
requests on the basis of source IP addresses and not on the basis of
destination IP addresses.

URL rewrite access
When we have configured our Squid proxy server to use URL rewriters, Squid will send all
the incoming requests to URL rewriters for further processing. Generally, URL rewriters are
plugins designed for a specific purpose and will operate on selective websites. So, it's good
practice to pass only selective URLs to a URL rewriter to save some CPU cycles, and Squid will
not have to wait for the rewriter to process a URL that is not meant to be processed by the
rewriter. We should also avoid rewriting CONNECT requests. Rewriting HTTP PUT and POST
requests can also result in unexpected behavior.

We can pass only selective requests to URL rewriters using the access list rule
url_rewrite_access. This access list rule is similar to http_access and cache_peer_
access and only requests allowed by url_rewrite_access will be passed to the URL
rewriter. Let's say we have defined a URL rewriter that acts only on the videos.example.
com URLs; we would need the following configuration:

acl video_web dstdomain .videos.example.com
url_rewrite_access allow video_web
url_rewrite_access deny all

In accordance with the previous configuration, Squid will pass all the URLs to the URL
rewriter program, which are matched by the video_web ACL.

Chapter 4

[11�]

HTTP header access
Another couple of access list rules which we have are request_header_access and
reply_header_access. These can be combined with ACL lists to control access to
different headers in HTTP requests and replies respectively. If we deny access to a certain
HTTP header for some requests, then that particular HTTP header will be dropped from the
headers while sending the request to remote servers. We should note that dropping HTTP
headers from requests or replies is a violation of HTTP protocol standards.

Let's say we want to remove the User-Agent HTTP header from both requests and
replies from the subnet 192.0.2.0/24. We would need the following configuration
for achieving this:

acl special_net src 192.0.2.0/24
request_header_access User-Agent deny special_net
reply_header_access Content-Type deny special_net
request_header_access User-Agent allow all
reply_header_access Content-Type allow all

Custom error pages
Whenever access is denied to a client for a particular request, Squid sends a standard access
denied page to a client with instructions on contacting the system administrator. We can
send custom error pages to the clients, redirect them to a different URL, or reset the TCP
connection using the access list rule deny_info. There are three possible ways to do this by
using deny_info; let's have a look at them. In the first form, we return a custom error page:

deny_info ERR_PAGE ACL_NAME

In this form, we write a HTML page and store it in the errors directory defined by the
error_directory directive in squid.conf. Let's say we have a custom access denied
error message in the ERR_CUSTOM_ACCESS_DENIED file in our errors directory. We would
need the following configuration:

acl bad_guys src 192.0.2.0/24
deny_info ERR_CUSTOM_ACCESS_DENIED bad_guys

In the next form, we redirect clients to a custom URL:

acl bad_guys src 192.0.2.0/24
deny_info http://errors.example.com/access_denied.html bad_guys

In the last form, we simply reset the TCP connection:

acl bad_guys src 192.0.2.0/24
deny_info TCP_RESET bad_guys

Getting Started with Squid’s Powerful ACLs and Access Rules

[120]

Have a go hero – custom access denied page
Design a custom access denied page for your Squid proxy server, which explains the reason
for revoking access.

Maximum size of the reply body
In some environments, where we don't have enough bandwidth, we may want to restrict
people from downloading large files like movies, music, games, and so on. To achieve this
goal, we can use the access list rule reply_body_max_size to put a limit on the maximum
size of the reply body that a client can access. If the size of the reply body exceeds the
maximum size, the client will be sent a proper denial message.

The syntax for using reply_body_max_size is as follows:

reply_body_max_size SIZE UNITS ACLNAME

So, let's say we want to limit the maximum reply body size to 10MB and 20MB for different
subnets. We can have the following configuration:

acl max_size_10 src 192.0.2.0/24
acl max_size_20 src 198.51.100.0/24
reply_body_max_size 10 MB max_size_10
reply_body_max_size 20 MB max_size_20
reply_body_max_size none

The reply size is calculated on the basis of the CONTENT-LENGTH HTTP header received
from the remote server. If the value is larger than the maximum allowed size for the current
request, the client will get a 'reply too large' error. If there is no CONTENT-LENGTH HTTP
header in the reply and the reply size is more than the maximum allowed, the connection
is closed and client receives only a partial reply.

Logging requests selectively
By default, all the client requests are logged to Squid's access log file whose location is
determined by the access_log directive in the configuration file. However, there may
be requests which we may not want to log to the access log for privacy reasons.

For example, let's say we have a research lab in subnet 192.0.2.0/24 where people
work on a secret project and we don't want their requests to be logged to the access log to
prevent any collection of browsing patterns. We can use the access list rule log_access to
prevent logging for certain requests as shown in the following example:

acl secret_req src 192.0.2.0/24
log_access deny secret_req
log_access allow all

Chapter 4

[121]

The previous configuration will prevent logging of requests from the 192.0.2.0/24 subnet.
We learn about gaining fine control over logging in Chapter 5.

Mixing ACL lists and rules – example scenarios
We have seen various ways in which to construct ACL lists to identify different requests from
clients, and replies in some cases. We have also learned about the basic usage of access list
rules. In this section, we'll be defining configurations for the different scenarios that a Squid
administrator may face in day-to-day life.

Handling caching of local content
When we deploy a proxy server, normally all requests to external and internal websites flows
through the proxy server. If we have caching enabled on our proxy server, then it's going
to cache everything that is cacheable, which will result in caching of content from internal
websites also. When we cache content from internal websites, we are unnecessarily wasting
disk space on the proxy server because the advantage of caching the local content is almost
none, as we generally have lots of free bandwidth on LAN.

Time for action – avoiding caching of local content
First of all, we'll need to identify the requests in which content on your local area network is
being requested. So, let's say in our network, some clients have hosted FTP and HTTP servers
on their machines to share content on the intranet. The client machines have IP addresses
in the subnets 192.0.2.0/24 and 198.51.100.0/24. So, we need to construct an ACL
list that can identify all the requests directed to these machines. The following ACL list does
exactly that:

acl client_servers dst 192.0.2.0/24 198.51.100.0/24

Also, we have mail.internal.example.com and docs.internal.example.com
hosted in the local network. So, let's construct an ACL list to identify all the requests
to these websites:

acl internal_websites dstdomain .internal.example.com

So, as we have identified the requests for local content, we just need to instruct Squid
not to cache replies to any of these requests. Therefore, we will use the access list rule
cache to deny caching, as shown in the following example:

cache deny client_servers
cache deny internal_websites
cache allow all

Getting Started with Squid’s Powerful ACLs and Access Rules

[122]

What just happened?
We just learned about optimizing our Squid proxy server to cache only the content
that actually needs to be cached and will not waste the disk space on the proxy server
unnecessarily. We can keep updating these ACL lists as we encounter the requests that
do not need to be cached.

Denying access from external networks
When we deploy a proxy server, we normally want it to be available to users on our local
area network and no other person should be able to use our proxy server to browse
websites. In this case we will also have to identify all our clients on the local area network
by using ACL lists. Generally, we assign IP addresses in the local network from the private
address space. Squid already has ACL lists defined to identify the machines in the local
network. If we go ahead with the default Squid configuration, requests from the local
network will be allowed and all other requests will be denied. Let's have a look at the
default configuration provided by Squid:

acl localhost src 127.0.0.1/32
acl localnet src 10.0.0.0/8
acl localnet src 172.16.0.0/12
acl localnet src 192.168.0.0/16
acl localnet src fc00::/7
acl localnet src fe80::/10
http_access allow localnet
http_access allow localhost
http_access deny all

If we want to allow any other clients from outside our network, we'll have to construct
additional ACL lists and allow them by using http_access.

Denying access to selective clients
There may be several reasons for blocking a particular client but one of the most common
reasons is a huge number of requests being sent from a single client to a particular website.
This may be due to a virus infected computer or download managers with very low retry
time in case access is denied.

For revoking access from such clients, first we'll need to construct an ACL list to identify such
users and then we'll need to deny access using the http_access access list rule. We'll have
to take care that the deny rule goes above all the allow rules, in case there are any.

acl bad_clients src 192.0.2.21 198.51.100.25
http_access deny bad_clients
http_access allow localnet
http_access allow localhost
http_access deny all

Chapter 4

[123]

Blocking the download of video content
Most of the bandwidth is consumed by only a few clients for downloading video content
such as movies, TV shows, and so on. So, we may want to deny access to all the video
content so that we can provide quality bandwidth to the clients trying to browse other
websites. This is generally required only when we have low bandwidth and a lot of clients.

Time for action – blocking video content
So, for blocking the video content, first we'll need to identify all the requests for video
content. For this purpose, we can simply use the ACL type url_regex as follows:

acl video_content urlpath_regex -i \.(mpg|mpeg|avi|mov|flv|wmv|mkv|rm
vb)(\?.*)?$

The previous ACL list will match all the URLs ending with extensions of common video formats.

As a video can be served using dynamic URLs, the URL returning video content may not look
like a URL to a video file at all. For achieving better control, we also need to use the ACL type
rep_mime_type to detect the content type of the replies returned by webservers. So, we
can construct another ACL list as follows:

acl video_in_reply rep_mime_type -i ^video\/

The previous ACL list will match all the replies with video as a part of their content
type. So, now we need to deny access to these ACL lists, which we can do by using
the following rules:

http_access deny video_content
http_reply_access deny video_in_reply
http_reply_access allow all

What just happened?
We have just seen a real life example of http_reply_access, in which we used it to
control the download of video content. The previous list is not foolproof and it will not be
able to match the replies containing video content if the remote web server doesn't send
the Content-Type HTTP header.

Special access for certain clients
This is a common scenario when clients have restricted access. Generally, we need to provide
special access to administrators. If this is the case, we need to identify all the requests by
administrators either by their usernames or by the origin of the requests.

Getting Started with Squid’s Powerful ACLs and Access Rules

[124]

Time for action – writing rules for special access
Let's say john, michelle, and sarah are the usernames allotted to our administrators and
192.0.2.46, 192.0.2.9, and 192.0.2.182 are their respective IP addresses allotted to
their laptops. In this case, we are allowing additional access when the requests are originating
from the above IP addresses or if the requests are authenticated with the credentials of the
aforementioned users. The required ACL lists should look similar to the following:

acl admin_laptops src 192.0.2.46 192.0.2.9 192.0.2.182
acl authenticated proxy_auth REQUIRED
acl admin_user proxy_auth john michelle sarah
acl work_related_websites dstdomain "/opt/squid/etc/work_websites"

Now, we need to allow everyone to access only work related websites, except administrators
who should be able to access everything. Therefore, we should build the following
access rules:

http_access allow admin_laptops
http_access allow admin_user
http_access allow localnet work_related_websites authenticated
http_access deny all

So, in accordance to the previous rules, requests identified by admin_laptops and
admin_user are always allowed, but all other requests have to pass through three filters.
First of all, the requests should be authenticated, then it should originate from an IP
address in the local network, and then the requests should be to a website listed in the
/opt/squid/etc/work_websites file. If all these criteria are matched, only then will
a request be allowed; otherwise it's denied.

What just happened?
In the ACL lists we used a mixture of types (such as src, dstdomain, and proxy_auth) to
achieve special access for a set of users. Similarly, we can use various other types of ACL lists
to fine-tune our access control configuration.

Limited access during working hours
In some organizations, it's a part of the network usage policy to restrict access to only
work related websites during working hours. This is mostly done either due to a lack of
bandwidth or to enforce people to focus on work. In such cases, we will first need to
construct an ACL list defining the working hours. This should look similar to the following:

acl working_hours time D 10:00-13:00
acl working_hours time D 14:00-18:00

Chapter 4

[125]

In the previous code, we have kept 1300HRS - 1400HRS as lunch time, and we don't really
mind what people browse in that period.

Now, we need to construct a list of allowed websites, which are allowed during working
hours. Let's say we are going to load them from the file work_related.txt. So, we
construct another ACL type as:

acl work_related dstdomain "/opt/squid/etc/work_related.txt"

As we have now identified the working hours and the websites which can be accessed during
working hours, we can proceed with writing the following rules:

http_access allow working_hours localnet work_related
http_access allow !working_hours localnet
http_access deny all

If the previous configuration is applied, clients on the local network will be able to access
only work related websites during working hours. However, they will be able to access all
websites during non working hours.

Allowing some clients to connect to special ports
From time-to–time, there may be requests from various clients that need to connect to a
website on a non-HTTP port. To handle such requests, we need to use the ACL type port to
construct an ACL list of additional ports which are allowed for only a few clients.

For example, let's say we have requests for opening ports 119 (Usenet News Group), 2082,
3389, and 9418 (Git version control system). If we add these ports to the list of Safe_ports,
which is a default ACL list provided by Squid, then everyone will be able to connect to these
ports. However, we want only a few clients (who have requested to the special access) to
connect to these ports. So, we'll need to construct another ACL list as follows:

acl special_ports port 119 2082 3389 9418

After identifying the ports, we need to identify the requests from the clients requesting
special access. This can be achieved in two ways. The first, and most simple method is to
identify the clients by their IP addresses. The other way is to identify the special clients by
their usernames, but this method only works when we have authentication enforced. So,
to identify the clients, we can use the following ACL lists:

acl special_clients src 192.0.2.9 192.0.2.46 192.0.2.182
acl authenticated proxy_auth REQUIRED
acl special_users proxy_auth sarah john michelle

Getting Started with Squid’s Powerful ACLs and Access Rules

[126]

Now we need to allow special_clients or special_users to connect to
special_ports. However, we should remember that the rules we are going to construct
for this scenario should go before the following line in squid.conf.

http_access deny !Safe_ports

The previous line will deny access to any port that doesn't exist in the Safe_ports ACL list.

So, the rules which we will need to construct will be as follows:

http_access allow special_ports special_clients
http_access allow special_ports special_user
http_access deny !Safe_ports

Testing access control with squidclient
We learned in Chapter 3 that we should always test our configuration file for errors or
warnings before deploying it on the production servers. Squid provides the command-line
option -k parse using which the configuration file can be parsed quickly.

However, successful parsing of the configuration file doesn't guarantee that Squid will
be able to allow or deny the requests or replies in the manner we are expecting. As the
configuration files grows in size, the number ACL lists and corresponding rules keeps on
increasing, which may sometimes lead to confusion. To test the access control in our new
configuration file, we can use the squidclient program.

For this purpose, we'll either need a different test server or we'll need to compile Squid on
the production server with a different --prefix option with the configure program. For
example, we can compile Squid using the following commands:

configure --prefix=/opt/squidtest/
make
make install

The previous commands will install Squid in the /opt/squidtest/ directory. We'll need
to change the http_port option and set the port to 8080 or something other than the port
which is used by the original installation.

After this, we need to copy the access control part from our new configuration file to the
configuration file of our new test Squid installation in /opt/squidtest/. Once we have
finished copying the access control configuration, we can start our test proxy server.

Chapter 4

[127]

Options for squidclient
Squidclient executable or binary is generally located at ${prefix}/bin/squidclient.
If we run squidclient without any arguments, it'll display a list of available options which
we can specify on the command line. So, let's take a look at the available options for our
version of the squidclient.

./squidclient
Version: 3.1.4
Usage: ./squidclient [options] url

The following table shows a brief overview of supported options:

Option Usage

-a Don't include the Accept HTTP header.

-g count Ping mode. Performs count iterations (0 to count until interrupted).

-h host Retrieve a URL from the proxy server on hostname. The default is
localhost.

-H 'string' Extra HTTP headers to send. We can use \n for new lines.

-i IMS Specifies the If-Modified-Since time (in Epoch seconds).

-I interval Ping interval in seconds. The default is 1 second.

-j hosthdr Host HTTP header to send.

-k Keep the connection active. The default is only one request.

-l host Specify a local IP address to bind to. The default is none.

-m method HTTP Request method to use. The default is GET.

-p port Port number of the proxy server. The default is 3128.

-P filename HTTP PUT request using the file named filename.

-r Force proxy server to reload the URL.

-s Operate in silent mode. Do not print data to the standard output
(stdout).

-t count Trace count proxy server hops.

-T timeout Timeout value (in seconds) for read/write operations.

-u username Provide username for proxy authentication.

-U username Provide username for WWW authentication.

-v Operate in verbose mode. Print outgoing messages to standard error
(stderr).

-V version HTTP Version to use. Use hyphen (-) for the HTTP/0.9 omitted case.

-w password Provide password for proxy authentication.

-W password Provide password for WWW authentication.

Getting Started with Squid’s Powerful ACLs and Access Rules

[12�]

As you can see from the previous table, the options are pretty easy to understand. We don't
really need to use all of them. We are most likely to need options such as -i, -j, -l, -h, -p,
-u, -w, -m, and -H.

Using the squidclient
So, let's get started and begin testing our Squid server. Let's say we have blocked access
to the website malware.example.com using the following access control in our
configuration file:

acl malware dstdomain malware.example.com
http_access deny malware

Time for action – testing our access control example
with squidclient

We now need to run the squidclient to fetch http://malware.example.com/ to
check if we get an access denied error or not. If we are running the squidclient on the
production server, then we don't need to use the -h option to specify the hostname. In this
scenario, we can run the squidclient with the -p option to specify the port.

./squidclient -p 8080 http://malware.example.com

However, if we are running the squidclient on a different machine, we will have to use
the -h option to specify the hostname of the proxy server. In this scenario, we can run the
squidclient with the following configuration:

./squidclient -h proxy.example.com -p 8080 http://malware.example.com

If our access control rules are working and they are rightly placed in the configuration file,
we should get an output similar to the following:

HTTP/1.0 403 Forbidden
Server: squid/3.1.4
Date: Mon, 06 Sep 2010 09:28:38 GMT
Content-Type: text/html
Content-Length: 2408
Expires: Mon, 06 Sep 2010 09:28:38 GMT
X-Squid-Error: ERR_ACCESS_DENIED 0
X-Cache: MISS from proxy.example.com
X-Cache-Lookup: NONE from proxy.example.com:8080
Via: 1.0 proxy.example.com:8080 (squid/3.1.4)
Proxy-Connection: close

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html><head>

Chapter 4

[12�]

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
<title>ERROR: The requested URL could not be retrieved</title>
...

In the previous output, the first line contains the HTTP status of the reply which denotes
that the request was denied. So, we can say that the access rule which we have used in the
configuration file is working fine.

What just happened?
We have seen an example of the basic usage of the squidclient to test the access control
configuration before deploying a new configuration on the production server.

Time for action – testing a complex access control
An access control involving IP addresses from different subnets is a bit difficult to test
but can be tested using the squidclient. This can be done by creating virtual or alias
network interfaces on the machine. For example, the IP address of our proxy server is
192.168.36.204 and we have the following access control configuration in our
squid.conf, which we want to test:

acl bad_guys src 10.1.33.9 10.1.33.182
http_access deny bad_guys

We can't test these rules directly as our IP address is different from the clients we have
blocked and Squid will check for the source IP address in the requests. However, we can
use option -l, which is available with the squidclient, which will bind it to a different
IP address while sending requests to the Squid proxy server. To achieve this, we need to
create an alias network interface on our server. In most Linux/Unix-based systems, this
can be achieved by using the following command:

ifconfig eth0:0 10.1.33.9 up

Once the alias interface is up, we can use the following command to test our
new configuration:

./squidclient -l 10.1.33.9 -p 8080 http://www.example.com/

We should get an output similar to the following:

HTTP/1.0 403 Forbidden
Server: squid/3.1.4
Mime-Version: 1.0
Date: Mon, 06 Sep 2010 09:40:22 GMT
Content-Type: text/html
Content-Length: 1361

Getting Started with Squid’s Powerful ACLs and Access Rules

[130]

Expires: Mon, 06 Sep 2010 09:40:22 GMT
X-Squid-Error: ERR_ACCESS_DENIED 0
X-Cache: MISS from proxy.example.com
X-Cache-Lookup: NONE from proxy.example.com:8080
Via: 1.0 proxy.bordeaux.com:8080 (squid/3.1.4)
Proxy-Connection: close

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/
TR/html4/strict.dtd">
<html><head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1">
<title>ERROR: The requested URL could not be retrieved</title>
...

What just happened?
We created a virtual network interface or alias network interface and asked the
squidclient to project us as a totally different client by sending out the IP address of the
alias interface as the source IP address of the request. This helped us in testing our access
control configuration in the reference frame of another client.

Similarly, we can use other options to test different access control configurations before
deploying them on our production servers.

Pop quiz
1. Consider the following lines in the Squid configuration file:

acl client1 src 10.1.33.9/255.255.255.255
acl client2 src 10.1.33.9/32
acl client3 src 10.1.33.0/24
acl client4 src 10.1.33.0/30

Which of the following ACL lists will not match a request from a client with the
IP address 10.1.33.9?

a. client1

b. client2

c. client3

d. client4

Chapter 4

[131]

2. Consider the following line in the Squid configuration file:

acl domain dstdomain amazon.com

Which requests to of the following domain names will be matched by the ACL
list domain?

a. amazon.com

b. www.amazon.com

c. mail.amazon.com

d. amazon.com.au

3. Consider the following configuration:

acl manager proto cache_object
acl localhost src 127.0.0.1
acl admin1 src 10.2.44.46
acl admin2 src 10.1.33.182
http_access allow manager localhost
http_access allow manager admin1 admin2
http_access deny manager

Which of the following clients will be able to access Squid's cache manager?

a. localhost

b. 10.1.33.9

c. 10.1.33.182

d. clients b and c

4. Consider the following configuration:

acl client1 src 10.2.44.46
acl client2 src 10.1.33.9
http_access allow client1
http_access allow client2
http_reply_access deny all

Which of the following clients will be able to view websites using our
proxy server?

a. 10.2.44.46

b. 10.1.33.9

c. a and b both

d. None

Getting Started with Squid’s Powerful ACLs and Access Rules

[132]

Summary
We have learned a lot about access control lists and access list rules in this chapter. We
had a detailed look at the various types of ACL and how to construct ACL lists for different
scenarios. We took examples describing a general situation in which we needed to use
a mixture of ACL types and rules to achieve the desired access control.

Specifically, we covered:

Different types of ACL which can identify individual requests and replies.

Different types of access list rules which can be used to control access to various
components of the Squid proxy server.

Achieving desired access control by mixing various ACL types with access rules.

Testing our new Squid configuration with the squidclient before actually using it
in a production environment.

We also discussed some example scenarios which can serve as the base configuration for
various organizations.

Now that we have learned about compiling, installing, configuring, and running Squid, we
can try to deploy Squid on some test machines and begin testing them. In the next chapter,
we'll learn about logging in detail.

5
Understanding Log Files and

Log Formats

Understanding Squid log files and log formats is pretty easy. In this chapter,
we'll present a brief explanation of the log format and how we can customize
it to fit our needs. We will cover the related Squid configuration options
and look at how a client's privacy can be protected, by ensuring Squid is
properly configured.

In this chapter, we will learn to interpret the different log files. We will also
learn about configuring Squid to achieve different log messages, depending
on requirements or network policies.

In this chapter, we shall learn about the following:

Cache log

Access log

Customizing the access log

Selective logging or protecting clients' privacy

Referer log

User agent log

Emulating the HTTP server like logs

Log file rotation

So let's get on with it.

Understanding Log Files and Log Formats

[134]

Log messages
Log messages are a nice way for any application to convey messages about its current
actions to human users. A log message is basically a computer-generated message that can
be interpreted by a human being with prior knowledge of the location of the different fields
in the message. Squid also tries to log every possible action in different log files at different
stages. When Squid encounters any errors before starting, it logs them to the output log
which generally goes to a file named cache.log. Similarly, when clients access our proxy
server, a message is logged to the file named access.log whose location is determined by
the access_log directive in the Squid configuration file.

Squid uses different formats for logging messages to these files. Log files are important and
we can analyze resource consumption and the performance of our proxy server by reading
through the log files, or by using various log file parsers available. In this chapter, we will
learn to interpret the different log files.

Cache log or debug log
Squid logs all the errors and debugging messages to the cache.log file. This log file also
contains messages about the integrity checks such as, availability and validity of cache
directories, which are performed by Squid.

Time for action – understanding the cache log
Let's go through the log messages for a test Squid run and see what each line means:

2010/09/10 23:31:10| Starting Squid Cache version 3.1.10 for i686-pc-
linux-gnu...
2010/09/10 23:31:10| Process ID 14892

Looking at the preceding example, the first line represents the version of Squid we are
currently running and provides some information about the platform. The next line contains
the process ID for this instance of Squid.

2010/09/10 23:31:10| With 1024 file descriptors available

This line shows the number of file descriptors available for Squid in this run. We can check
back similar lines in our cache log, if we increase or decrease the available number of file
descriptors and restart the Squid process. Please refer to the section on Configure or system
check in Chapter 1, Getting Started with Squid.

2010/09/10 23:31:10| Initializing IP Cache...
2010/09/10 23:31:10| DNS Socket created at [::], FD 7
2010/09/10 23:31:10| Adding nameserver 192.0.2.86 from /etc/resolv.
conf

Chapter 5

[135]

When Squid is started, it'll initialize the DNS systems starting with IP cache, as shown in the
first line. The second and third lines show information about the DNS configuration. Squid
added 192.0.2.86 as a DNS server from the file /etc/resolv.conf, which is the default
location for specifying DNS servers on Linux machines. If we have more than one DNS server
in the /etc/resolv.conf file, there will be more lines similar to the last line.

2010/09/10 23:31:10| User-Agent logging is disabled.
2010/09/10 23:31:10| Referer logging is disabled.

In the aforementioned lines, Squid is trying to show the status of the optional modules which
we have enabled while compiling Squid. It is clear to see in these lines, User-Agent and
Referer logging is disabled for this run.

The following are the log messages related to logging:

2010/09/10 23:31:10| Logfile: opening log daemon:/opt/squid/var/logs/
access.log
2010/09/10 23:31:10| Unlinkd pipe opened on FD 13
2010/09/10 23:31:10| Local cache digest enabled; rebuild/rewrite every
3600/3600 sec
2010/09/10 23:31:10| Store logging disabled

In the preceding log message shown, the first line shows that Squid is going to use the file
/opt/squid/var/logs/access.log as an access log file. It also shows that unlinkd is
being used as the program to purge stale cache objects. Additionally, cache digest is enabled
and will be rebuilt and rewritten every hour. The last line demonstrates that the logging of all
storage-related activities has been disabled.

2010/09/10 23:31:10| Swap maxSize 1024000 + 262144 KB, estimated 98934
objects
2010/09/10 23:31:10| Target number of buckets: 4946
2010/09/10 23:31:10| Using 8192 Store buckets
2010/09/10 23:31:10| Max Mem size: 262144 KB
2010/09/10 23:31:10| Max Swap size: 1024000 KB
2010/09/10 23:31:10| Version 1 of swap file with LFS support
detected...
2010/09/10 23:31:10| Rebuilding storage in /opt/squid/var/cache
(DIRTY)
2010/09/10 23:31:10| Using Least Load store dir selection
2010/09/10 23:31:10| Set Current Directory to /opt/squid/var/cache

The previous log message is referring to the cache directories and represents information
about the various parameters involved in caching web documents onto the hard disks. The
Swap in this log message refers to the Squid disk cache storage and should not be confused
with the system swap memory.

2010/09/10 23:31:10| Loaded Icons.
2010/09/10 23:31:10| Accepting HTTP connections at [::]:3128, FD 16.
2010/09/10 23:31:10| HTCP Disabled.

Understanding Log Files and Log Formats

[136]

2010/09/10 23:31:10| Squid plugin modules loaded: 0
2010/09/10 23:31:10| Ready to serve requests.

From these lines, we can interpret that Squid has loaded the required modules and is now
ready to accept connections from clients. We can also see that the HTCP module is disabled.

2010/09/10 23:31:10| Done reading /opt/squid/var/cache swaplog (0
entries)
2010/09/10 23:31:10| Finished rebuilding storage from disk.
2010/09/10 23:31:10| 0 Entries scanned
2010/09/10 23:31:10| 0 Invalid entries.
2010/09/10 23:31:10| 0 With invalid flags.
2010/09/10 23:31:10| 0 Objects loaded.
2010/09/10 23:31:10| 0 Objects expired.
2010/09/10 23:31:10| 0 Objects cancelled.
2010/09/10 23:31:10| 0 Duplicate URLs purged.
2010/09/10 23:31:10| 0 Swapfile clashes avoided.
2010/09/10 23:31:10| Took 0.03 seconds (0.00 objects/sec).
2010/09/10 23:31:10| Beginning Validation Procedure
2010/09/10 23:31:10| Completed Validation Procedure
2010/09/10 23:31:10| Validated 25 Entries
2010/09/10 23:31:10| store_swap_size = 0
2010/09/10 23:31:11| storeLateRelease: released 0 objects

This log message contains information on the rebuilding of the cache from the hard disks.

The previous examples of log messages which we have looked at are for a successful startup
of Squid. Let's see how the log messages look when Squid encounters some problems. For
example, if Squid doesn't have write permissions on the cache directory, then the following
log message will appear in the cache log:

2010/09/10 01:42:30| Max Mem size: 262144 KB
2010/09/10 01:42:30| Max Swap size: 1024000 KB
2010/09/10 01:42:30| /opt/squid/var/cache/00: (13) Permission denied
FATAL: Failed to verify one of the swap directories, Check cache.log
 for details. Run 'squid -z' to create swap directories
 if needed, or if running Squid for the first time.
Squid Cache (Version 3.1.10): Terminated abnormally.

So, we can see that Squid is reporting 'Permission denied' on the cache directory. Whenever
there is a problem, Squid will try to describe the possible cause and a resolution, or the most
appropriate action that may fix the problem.

Chapter 5

[137]

What just happened?
We learned the meaning of the various messages popping up in a cache log. Generally, if
anything goes wrong with our proxy server, the first thing we should do is check the cache
log for any error messages or warnings. If Squid is running out of resources such as memory,
file descriptors, or disk space for example, then it will log appropriate messages in the cache
log and will also try to log the possible fixes for the problems.

Have a go hero – exploring the cache log
Run the Squid proxy server and try to understand the messages being logged by Squid in the
cache log file.

Access log
The cache.log file is important for debugging if Squid is misbehaving. But the most
important log file is the access.log file, where Squid logs the live information about who is
accessing our proxy server, and related information about the status of requests and replies.
The location of the access.log file is determined by the directive access_log, in the Squid
configuration file. By default it is set defaults to ${prefix}/var/logs/access.log.

Understanding the access log
The log messages in the access.log file are not as readable as messages in the cache.log
file, but once we understand what the different fields mean, it's very easy to interpret the log
messages. There are multiple formats in which messages are logged in the access.log file.
The messages that we are going to see next, are in the default log format called squid.

Time for action – understanding the access log messages
Let's look at a few lines from the access.log file before we actually explore the different
fields in the log message:

1284565351.509 114 127.0.0.1 TCP_MISS/302 781 GET http://www.
google.com/ - FIRST_UP_PARENT/proxy.example.com text/html

1284565351.633 108 127.0.0.1 TCP_MISS/200 6526 GET http://www.
google.co.in/ - FIRST_UP_PARENT/proxy.example.com text/html

1284565352.610 517 127.0.0.1 TCP_MISS/200 29963 GET http://www.
google.co.in/images/srpr/nav_logo14.png - FIRST_UP_PARENT/proxy.
example.com image/png

1284565354.102 147 127.0.0.1 TCP_MISS/200 1786 GET http://www.
google.co.in/favicon.ico - FIRST_UP_PARENT/proxy.example.com image/x-
icon

Understanding Log Files and Log Formats

[13�]

In the previous example of a log message, the first column represents the seconds
elapsed since a Unix epoch (for more information on the Unix epoch, refer to http://
en.wikipedia.org/wiki/Unix_epoch), which can't really be interpreted by human
users. To quickly convert the timestamps in access log messages, we can use Perl, as shown:

$ perl -p -e 's/^([0-9]*)/"[".localtime($1)."]"/e' < access.log > access.
log.h

Now the access log messages should look similar to the following with timestamps converted
to normal time:

[Wed Sep 15 21:12:31 2010].509 114 127.0.0.1 TCP_MISS/302 781 GET
http://www.google.com/ - FIRST_UP_PARENT/proxy.example.com text/html

[Wed Sep 15 21:12:31 2010].633 108 127.0.0.1 TCP_MISS/200 6526 GET
http://www.google.co.in/ - FIRST_UP_PARENT/proxy.example.com text/html

[Wed Sep 15 21:12:32 2010].610 517 127.0.0.1 TCP_MISS/200 29963 GET
http://www.google.co.in/images/srpr/nav_logo14.png - FIRST_UP_PARENT/
proxy.example.com image/png

[Wed Sep 15 21:12:34 2010].102 147 127.0.0.1 TCP_MISS/200 1786 GET
http://www.google.co.in/favicon.ico - FIRST_UP_PARENT/proxy.example.com
image/x-icon

The second column represents the response time in milliseconds. The third column
represents the client's IP address. The fourth column is a combination of Squid's requests
status and the HTTP status code. The fifth column represents the size of the reply including
HTTP headers. The sixth column in the log message represents the HTTP request method
which will be GET most of the time, but may also have values such as POST, PUT, DELETE,
and so on.

The seventh column represents the request URL. The eighth column is the username, which
is blank in this case because the request was not authenticated. The ninth column is a
combination of the Squid hierarchy status and IP address or peer name of the cache peer.
The last column represents the content type of the replies.

What just happened?
We had a look at a few log messages generated by Squid in the default log format. We also
learned what the individual columns mean in the messages. We don't need to memorize
this as the meaning of these columns will become obvious once we learn about the various
format codes to construct the log formats.

Chapter 5

[13�]

Access log syntax
We can use different places for logging access log messages. We can use a combination
of access_log and logformat directives to specify the location and format of the log
messages. Next, we are going to explore them one by one.

Time for action – analyzing a syntax to specify access log
Let's have a look at the syntax of the access_log directive:

access_log <module>:<place> [<logformat name> [acl acl ...]]

The field module is one of the none, stdio, daemon, syslog, tcp, and udp methods,
which determine how the messages will be logged to a place, and is the absolute path to
the file or place where the messages should be logged. Let's take a brief look at the meaning
of different modules:

none—The log messages will not be logged at all.

stdio—The log messages will be logged to a file immediately after the completion
of each request.

daemon—This module is similar to stdio module, however the log messages are
not written to the disk and are passed to a daemon helper for asynchronous
handling instead.

syslog—This module is used to log each message using the syslog facility. The
parameter place is specified in the form of the syslog facility and the priority
level for the log entries. For example, daemon.info will use the daemon syslog
facility and messages will be logged with the info priority.

The valid values of the syslog facilities are authpriv, daemon, local0, local1,
..., local7, and user. The valid values of priority are err, warning, notice,
info, and debug.

tcp—When the tcp module is used, the log messages are sent to a TCP receiver.
The format for specifying the place parameter is \\host:port.

udp—When the udp module is used, the log messages are sent to a UDP receiver.
The format for specifying a place parameter is \\host:port.

We can specify an optional logformat name and can control logging using ACL lists as well.
The following is the default access log configuration used by Squid:

access_log daemon:/opt/squid/var/logs/access.log squid

In this configuration, /opt/squid/ is the ${prefix} and squid is the logformat
being used.

Understanding Log Files and Log Formats

[140]

What just happened?
We learned about specifying options for the access_log directive. We also had a brief look
at the various modules available for writing logs. We also learned about optional controlling
of log messages using ACL lists so that we can log the only requests that we are interested in.

Have a go hero – logging messages to the syslog module
Use the access_log directive to configure Squid to send log messages to the
syslog module.

Log format
In the previous section, we had learned about sending log messages to different places. Now,
we are going to learn about formatting the log messages according to our needs.

Time for action – learning log format and format codes
Log format can be defined using the logformat directive available in the Squid
configuration file. The syntax for defining logformat is as follows:

logformat <name> <format specification>

Format specification is a series of format code, as described in the following information:

Format code Format description

% A literal % character.

sn Unique sequence number per log line entry.

err_code The ID of an error response served by Squid or a similar internal error identifier.

err_detail Additional err_code dependent error information.

>a Client's source IP address.

>A Client's FQDN (Fully Qualified Domain Name).

>p Client's source port.

<A Server's IP address or peer name.

la Local IP address of the Squid proxy server.

lp Local port number on which Squid is listening.

<lp Local port number of the last server or peer connection.

ts Seconds since Unix epoch.

tu Sub-second time (in milliseconds).

tl Local time. Optional strftime format argument. The default is %d/%b/
%Y:%H:%M:%S %z

Chapter 5

[141]

Format code Format description

tg GMT time. Optional strftime format argument. The default is %d/%b/
%Y:%H:%M:%S %z

tr Response time (milliseconds).

dt Total time spent making DNS lookups (milliseconds).

[http::]>h Original request header. Optional header name argument on the format header
[:[separator]element].

[http::]>ha The HTTP request headers after adaptation and redirection. Optional header
name argument as for >h.

[http::]un User name.

[http::]<h Reply header. Optional header name argument as for >h.

[http::]ul User name from authentication.

[http::]ui User name from ident request.

[http::]>Hs HTTP status code sent to the client.

[http::]<Hs HTTP status code received from the next hop.

[http::]<bs Number of HTTP-equivalent message body bytes received from the next hop,
excluding chunked transfer encoding and control messages. Generated FTP/
Gopher listings are treated as received bodies.

[http::]Ss Squid request status (TCP_MISS, and so on).

[http::]Sh Squid hierarchy status (DEFAULT_PARENT, and so on).

[http::]mt MIME content type of the reply.

[http::]rm HTTP request method (GET/POST, and so on).

[http::]ru Request URL.

[http::]rp Request URL path, excluding hostname.

[http::]rv Request protocol version.

[http::]<st Sent reply size including HTTP headers.

[http::]>st Received request size including HTTP headers. In the case of chunked requests,
the chunked encoding metadata is not included.

[http::]>sh Received HTTP request headers' size.

[http::]<sh Sent HTTP reply headers' size.

[http::]st Request and reply size including HTTP headers.

[http::]<sH Reply high offset sent.

[http::]<sS Upstream object size.

[http::]<pt Peer response time in milliseconds. The timer starts when the last request byte
is sent to the next hop and stops when the last response byte is received.

[http::]<tt Total server-side time in milliseconds. The timer starts with the first connect
request (or write I/O) sent to the first selected peer. The timer stops with the
last I/O with the last peer.

Understanding Log Files and Log Formats

[142]

We can use any number of the aforementioned format codes to construct a log format
according to our choice or requirement. While specifying a format code, we must prefix
the format code with a % so that Squid can evaluate it.

What just happened?
We have just learned about the syntax for building new log formats that can be used with
the access_log directive at a later stage, for custom logging. We also saw a list of format
codes available for logging different information about a particular request from a client. Log
formats are always a combination of these format codes.

Log formats provided by Squid
By default, Squid provides four log formats that can be used right away. Let's see the default
log formats provided by Squid:

logformat squid %ts.%03tu %6tr %>a %Ss/%03>Hs %<st %rm %ru %un %Sh/%<A
%mt

logformat squidmime %ts.%03tu %6tr %>a %Ss/%03>Hs %<st %rm %ru %un
%Sh/%<A %mt [%>h] [%<h]

logformat common %>a %ui %un [%tl] "%rm %ru HTTP/%rv" %>Hs %<st
%Ss:%Sh

logformat combined %>a %ui %un [%tl] "%rm %ru HTTP/%rv" %>Hs %<st
"%{Referer}>h" "%{User-Agent}>h" %Ss:%Sh

As we saw, the default log format for access log is squid, therefore we can now interpret the
log messages we saw earlier very easily. Let's see one of the lines from the log messages
shown earlier:

1284565354.102 147 127.0.0.1 TCP_MISS/200 1786 GET http://www.
google.co.in/favicon.ico - FIRST_UP_PARENT/proxy.example.com image/x-
icon

If we refer to the table of format codes, we can observe that the seventh column (%ru)
represents the request URL sent by the HTTP client.

Time for action – customizing the access log with
a new log format

Squid has a lot of information about every client request and reply, however it writes only the
requested information to the log file, which we can customize by defining several log formats.

Chapter 5

[143]

Now, let's define a log format in which the time will appear in a human-readable format and
use it with access_log:

logformat minimal %tl %>a %Ss/%03>Hs %rm %ru
access_log daemon:/opt/squid/var/logs/access.log minimal

So, we have constructed a new log format that will log the information we are most
interested in. Let's see a few log messages in the preceding format:

11/Sep/2010:23:52:33 +0530 127.0.0.1 TCP_MISS/200 GET http://
en.wikipedia.org/wiki/Main_Page

11/Sep/2010:23:52:34 +0530 127.0.0.1 TCP_MISS/200 GET http://
en.wikipedia.org/images/wikimedia-button.png

Now the time in the log messages is human-readable and we can therefore tell when
a particular URL was accessed.

We should note that if we are using custom formats for access log, then we may not be able to
use several external programs that can parse and analyze Squid's access log. However, we can
solve this problem by using multiple access log directives to log the messages in more than one
format so that one log file is for analyzing, and the other file can be used for manual viewing.

What just happened?
We constructed a new log format and used it with the access_log directive. Now the
time of requests in all the log messages will be in a human-readable format. Next, we can
construct any number of log formats and use them with the access_log directive to
achieve different types of log messages.

Selective logging of requests
Sometimes we may not want to log requests from certain clients. This could be because of
several reasons. One reason may be that a team is working on a highly secret project and we
don't want to leave any impressions of their browsing patterns anywhere.

Logging of requests can be controlled using two directives, namely, log_access and
access_log. These directives may look confusing when used in the same sentence but
we can interpret the meaning by the sequence in which the individual words appear in
the directive name. The directive access_log is used for controlling the format of the
log messages and the location where the messages will be logged. While the directive
log_access is used to control whether a particular request should be logged or not.

We have already learned about the log_access directive in the Log Access section in
Chapter 2, Configuring Squid. Now, we will learn about using the access_log directive
to cache selective requests.

Understanding Log Files and Log Formats

[144]

Time for action – using access_log to control logging
of requests

As we have seen in a previous section of this chapter, the syntax of the access_log directive
is as follows:

access_log <module>:<path> [<logformat name> [acl acl ...]]

So, here we have an option to specify ACL lists which we can use to control where the
different requests will be logged, if at all. Let's consider a scenario where we don't want
to log requests to Yahoo! servers and we do want to log requests to Google and Facebook
servers to separate files, and all other requests go to the access log. This scenario can be
realized with the following configuration:

acl yahoo dstdomain .yahoo.com
acl google dstdomain .google.com
acl facebook dstdomain .facebook.com
log_access deny yahoo
log_access allow all
access_log /opt/squid/var/logs/google.log squid google
access_log /opt/squid/var/logs/facebook.log squid facebook
access_log /opt/squid/var/logs/access.log

If we look at the configuration carefully, we are denying log_access for all the requests
to Yahoo! servers. This means that clients will be able to browse Yahoo! websites, but
the information will not be logged to any access log. Also, we are logging requests to
Google websites in a file named google.log and requests to Facebook in a file named
facebook.log. All requests will be logged to the access.log file, which is the default
log file used by Squid.

What just happened?
We just learned about the control provided by Squid, using which we can log various
requests to different log files for analysis at a later stage.

Referer log
When a client clicks a link to other.example.com on the website example.com, then
the website example.com is a referrer and the client is referred to the website other.
example.com. When a client is referred by a website, a HTTP header referer is sent by
the HTTP clients. Squid has the ability to log referer HTTP headers, which can later be used
for analyzing traffic patterns.

Chapter 5

[145]

"Referer" is actually a misspelling of the word "Referrer",
but it has been officially specified that way in HTTP RFCs.

Time for action – enabling the referer log
By default, there is no referer log. We can enable the referer log using the access_log
directive in combination with a custom log format. To generate the referer log, first of all,
we need to create a log format as shown:

logformat referer %ts.%03tu %>a %{Referer}>h %ru

This configuration defines a new log format called referer, which contains a request
timestamp, IP address of the client, the referer URL, and the request URL. Now, we need to
use the access_log directive with the aforementioned constructed log format as shown:

access_log /opt/squid/var/logs/referer.log referer

Now, let's look at a few lines from the referer log file:

1284576601.898 127.0.0.1 http://en.wikipedia.org/wiki/Main_Page
http://en.wikiquote.org/wiki/Main_Page

1284576607.732 127.0.0.1 http://en.wikiquote.org/wiki/Main_Page
http://upload.wikimedia.org/wikiquote/en/b/bc/Wiki.png

The referer log is a bit easier to understand. The first column is the time elapsed since epoch,
which can't be customized to a human-readable time. The second column is the client's IP
address. The third column is the referer link, and the fourth column is the link to which the
client is referred.

What just happened?
We enabled the logging of referrers, which is not present by default. Now we can observe the
web browsing patterns on our network. Referer logging is done mostly for analysis purposes.

Time for action – translating the referer logs to a
human-readable format

We can translate a referer log to a human-readable format by using the command line utility
awk. We can convert the entire referer.log file to a human-readable format by using the
following command sequence:

$ cat referer.log | awk '{printf("%s ", strftime("%d/%b/
%Y:%H:%M:%S",$1)); print $2 " " $3 " " $4;}' > referer_human_readable.log

Understanding Log Files and Log Formats

[146]

The log messages from referer.log, as shown, should look like the following messages
after conversion:

12/Sep/2010:01:36:06 127.0.0.1 http://en.wikipedia.org/wiki/Main_Page
http://en.wikiquote.org/

12/Sep/2010:01:36:12 127.0.0.1 http://en.wikiquote.org/wiki/Main_Page
http://upload.wikimedia.org/wikiquote/en/b/bc/Wiki.png

The command we saw before works fine for the conversion of the entire log file, but is not
useful if we want to see the live referer log with human-readable timestamps. For achieving
this, we can use the following command:

$ tail -f referer.log | awk '{printf("%s ", strftime("%d/%b/
%Y:%H:%M:%S",$1)); print $2 " " $3 " " $4;}'

This will convert the timestamp to a human-readable time on the fly.

If we don't want to use the previous command combinations, we can modify our referer log
format to log timestamps in a human-readable format, as shown:

logformat referer %tl %>a %{Referer}>h %ru

This log format contains the timestamp in a human-readable local time format.

What just happened?
We learned to use the command line utilities like cat, tail, and awk to print the
timestamps in our proxy server's referer logs in a more user-friendly format.

Have a go hero – referer log
Enable referer logging on your proxy server. Now, using your proxy server, browse to any
website and click a few links on that website. Now check your referer log file and observe
the referer links.

User agent log
All requests from clients generally contain the User-Agent HTTP header, which is basically
a formatted string describing the HTTP client being used for the current request. As Squid
knows everything about the requests, it can log this HTTP header field to the log file defined
by the useragent_log directive in the Squid configuration file.

Chapter 5

[147]

Time for action – enabling user agent logging
By default, the user agent log is disabled and we can enable it by using the following line in
our configuration file:

useragent_log /opt/squid/var/logs/useragent.log

Once we have the user agent log enabled, Squid will start logging the User-Agent HTTP
header field from the requests, depending on the availability of the field. Let's see a few lines
from an example user agent log:

127.0.0.1 [12/Sep/2010:01:55:33 +0530] "Mozilla/5.0 (X11; U; Linux
i686; en-US; rv:1.9.2.6) Gecko/20100625 Firefox/3.6.6 GTB7.1"
127.0.0.1 [12/Sep/2010:01:55:33 +0530] "Mozilla/5.0 (X11; U; Linux
i686; en-US; rv:1.9.2.6) Gecko/20100625 Firefox/3.6.6 GTB7.1
GoogleToolbarFF 7.1.20100830 GTBA"

The format of this file is quite simple and only the last column, representing the user agent,
is of interest here. The user agent log can be used to analyze the popular web browsers on
a network.

What just happened?
We learned to enable logging of the User-Agent HTTP header field from all client requests,
which are subject to availability, and can be used for analyzing the popular HTTP clients at
a later stage.

Emulating HTTP server-like logs
Squid has an optional feature that can help in generating log messages similar to messages
generated for most HTTP servers. We can use the access_log directive to log messages
with the log format common.

Time for action – enabling HTTP server log emulation
By default, Squid will generate a native log, which contains more information than the
logs generated with the HTTP log emulation on. We can use the following line in our
configuration line:

access_log daemon:/opt/squid/var/logs/access.log common

Understanding Log Files and Log Formats

[14�]

This configuration will log messages in a web server-like format. Let's have a look at a few log
messages in the HTTP server-like log format:

127.0.0.1 - - [13/Sep/2010:17:38:57 +0530] "GET http://www.google.com/
HTTP/1.1" 200 6637 TCP_MISS:FIRSTUP_PARENT

127.0.0.1 - - [13/Sep/2010:17:40:11 +0530] "GET http://example.com/
HTTP/1.1" 200 1147 TCP_HIT:HIER_NONE

127.0.0.1 - - [13/Sep/2010:17:40:12 +0530] "GET http://example.com/
favicon.ico HTTP/1.1" 404 717 TCP_MISS:FIRSTUP_PARENT

These log messages are similar to log messages generated by the famous open source web
server Apache and many others.

What just happened?
We learned to switch on the HTTP server-like log emulation of Squid access logs. Squid
access logs can be easy to understand if we are already familiar with web server logs.

Log file rotation
As time passes, the size of the log files increases rapidly and starts occupying more and more
disk space. To overcome this problem of the accumulation of logs over time, we generally
keep the logs for the previous one or two weeks. To remove old log messages and retain
the recent ones, Squid has a built-in feature of log file rotation, which can move older log
messages to separate files. Moreover, Squid stores the incremental copy of the storage index
in a file swap.state, which is also pruned down during log rotation.

To rotate logs, we have to use the squid command as follows:

$ squid -k rotate

This command will rotate logs depending on the value specified with the directive
logfile_rotate in the configuration file. The default value of logfile_rotate is 10.
This means that 10 older versions of all log files will be retained.

Have a go hero – rotate log files
Try to rotate log files on your proxy server and see how the log files are renamed.

Other log related features
We discussed important logging related directives in the previous sections. Squid has
more directives related to logging, but they are less important and we should not have any
problems in operating Squid normally, even if we are not aware of these features.

Chapter 5

[14�]

Cache store log
If we have disk caching enabled on our proxy server, Squid can log its entire disk
caching related activities to a separate log file whose location is determined by the directive
cache_store_log. This log file, contains information about the web objects being cached
on the disk, stale objects being removed from the cache, and how long an object was in the
cache. The information logged in this file is not particularly user-friendly. By default, logging
of storage activity is disabled.

Pop quiz
1. Consider the following configuration line:

access_log daemon:/opt/squid/var/logs/access.log

Which log format will be used by Squid in accordance with the previous configuration?

a. common

b. squid

c. combined

d. squidmime

2. Which one of the following is a disadvantage of logging client requests?

a. An administrator can figure out resource usage by several clients.

b. A client's browsing behavior can be predicted by analyzing requests.

c. It can help administrators in debugging anomalies.

d. Logs can fill up hard disks.

3. Which of the following is a not valid reason for log rotation?

a. Keeping old logs is a violation of client privacy.

b. Old logs are generally not needed.

c. Log rotation can help us in recovering disk space periodically.

d. Generally, we analyze logs, store the results, and delete logs to save disk space.

Understanding Log Files and Log Formats

[150]

Summary
In this chapter, we have learned to interpret several log files generated by Squid. We had
a detailed look at the format codes that Squid uses to construct log messages and how
we can construct custom log formats depending on the requirements.

Specifically, we understood cache log, debugged messages generated by Squid, and had a
detailed overview of access log and format codes. We customized log messages using several
log formats and selectively logged requests to various log files, and enabled the referer and
user agent log messages.

We also discussed about rotating log files to prevent unnecessary wastage of disk space.

Now that we have learned about the various log files and log messages, we will go
on to learn about using these messages to monitor our proxy server and analyze the
performance of our cache, in the next chapter.

6
Managing Squid and

Monitoring Traffic

In the previous chapter on log files, we learned about the different types of log
messages generated by Squid and the various log files containing the different
types of log messages. So, in the last few chapters, we have learned about
running a Squid proxy server and interpreting the various log files. As it's not
convenient to manually check log files every time, and as it's almost impossible
to analyze traffic by manually going through the log files, it's time to explore
Squid's cache manager which is a web interface which is used to monitor and
manage the proxy server. We'll also look at a few log file analyzers that can
directly parse log files generated by Squid and then present a statistical analysis
of web pages browsed by clients.

In this chapter, we shall learn the following:

Using cache manager (web interface)

Installing the external log file analyzer software

So, let's get started.

Cache manager
As described briefly in the earlier chapters, cache manager (cachemgr) is a web interface
for managing the Squid proxy servers. It is provided by default. This means that we don't
have to install any additional module, or software, other than a web server to have a web
interface to manage our proxy server. Also, cache manager is not just an interface to manage
our proxy server. It provides various statistics about the usage of different resources that can
help us in monitoring the proxy server from a web interface.

Managing Squid and Monitoring Traffic

[152]

But before we can use the cache manager web interface, we need to configure Squid and our
web server to use the cachmgr.cgi program for providing the web interface.

Installing the Apache Web server
Although this topic is out of the scope of this book, we'll have a quick look at installing
Apache, which is a very popular open source Web server and is available for free from
http://httpd.apache.org/. Apache is available in software repositories of most
Linux/Unix-based operating systems under different names.

Time for action – installing Apache Web server
To install Apache on Red Hat Enterprise Linux, CentOS, or Fedora, we can use yum, the
default package manager for these distributions, for example:

$ yum install httpd

To install Apache Ubuntu or Debian, we can use the aptitude package manager, as shown
in the following example:

$ aptitude install apache2

For installing Apache on other operating systems, please check the package installation
manual of the operating system.

What just happened?
We learned to install the very popular open source Web server, Apache, using the package
manager for our operating system. This will help us in getting the web interface for the
cache manager up and running.

Configuring Apache for providing the cache manager
web interface
After installing Apache, we need to configure it to use cachemgr.cgi. The file cachemgr.
cgi is generally located at ${prefix}/libexec/cachemgr.cgi where ${prefix} is the
value specified for the --prefix option, before running configure.

On some operating systems like OpenBSD, Apache is chrooted by default. Please
visit http://www.openbsd.org/faq/faq10.html#httpdchroot for
more information.

Chapter 6

[153]

Time for action – configuring Apache to use cachemgr.cgi
To complete this task quickly we need to put the following lines in a file named
squid-cachemgr.conf and then move that file to our Apache installation's conf.d
directory (which is generally /etc/httpd/conf.d/ or /etc/apache2/conf.d/).

ScriptAlias /Squid/cgi-bin/cachemgr.cgi /opt/squid/libexec/cachemgr.
cgi

Only allow access from localhost by default
<Location /Squid/cgi-bin/cachemgr.cgi>
 order allow,deny
 allow from localhost
 # If we want to allow access to cache manager from 192.0.2.25,
 # uncomment the following line
 # allow from 192.0.2.25
 # Add additional allowed hosts as needed
 # allow from .example.com
</Location>

Once we have copied these lines in to a file called squid-cachemgr.conf and moved that
file to the appropriate directory, we need to restart or reload the Apache Web server using
the following command:

$ apachectl graceful

To learn more about configuring Apache, please check: http://httpd.apache.org/
docs/current/configuring.html.

What just happened?
We configured Apache to use cachemgr.cgi as a cgi script to provide the cache manager
web interface, which is a source of a lot of useful information about Squid's runtime.

Accessing the cache manager web interface
Before we can use the cache manager, we need to configure Squid to allow us to log in to
the cache manager interface. The cache manager specific directives are cache_mgr and
cachemgr_passwd. Let's learn how to use these directives.

Managing Squid and Monitoring Traffic

[154]

Configuring Squid
The directive cache_mgr is used to specify the e-mail address of a local administrator who
will receive an e-mail if the Squid proxy server stops functioning. The default is webmaster,
however, we can change it to something better such as admin@example.com. For example:

cache_mgr admin@example.com

This configuration will set the administrators e-mail address to admin@example.com and
an e-mail alert will be sent to this e-mail address if Squid stops functioning.

The directive cachemgr_passwd is used for controlling access to various parts of the cache
manager web interface. The format for using the cachemgr_passwd directive is as follows:

cachemgr_passwd PASSWORD ACTION ACTION ...

The parameter PASSWORD in the configuration line is the password for the cache manager
web interface in plain text format. There are two special values to the password named
disable and none. The value disable will disable access to actions specified. The value
none can be used if we want to give password less access to some actions.

The parameter ACTION can be replaced with the names one or more parts of the cache
manager web interface. This parameter has a special value all, which means all parts
of the cache manager web interface.

To allow access to all parts of the cache manager web interface using a password, we can use
the following configuration line:

cachemgr_passwd s3cr3tP4sS all

This configuration will allow this password access to all parts of the cache manager
web interface.

Log in to cache manger
To access the cache manager's web interface, we can launch a web browser and go
to the URL http://localhost/Squid/cgi-bin/cachemgr.cgi. We should replace
localhost with the IP address of the proxy server, if we are accessing the web interface
from a different machine.

Chapter 6

[155]

When we go to the previously mentioned URL, Squid will present us with a login screen, as
shown in the following screenshot:

Here we can enter admin@example.com as Manager name and Password (which we
set to s3cr3tP4sS in a previous example) and then click on the Continue button. Once we
authenticate, we'll see a list of links that we can use to find out about the different statistics
of Squid. The following screenshot shows some of the links:

The previous screenshot doesn't display all the links available and the number of links
available in the cache manager menu will depend on the version of Squid installed, and
the features which were enabled before compiling.

Now, let's go through some of the pages in the cache manager and see what they represent.

Managing Squid and Monitoring Traffic

[156]

General Runtime Information
We can learn more about Squid and its resource usage from the General Runtime
Information link in the Cache Manager menu. This link will take us to a page displaying
information about the various components of our proxy server:

The first table in the previous screenshot displays information about the time when Squid
was started and the current time.

Following that, the first block of details gives out information about the client connections.
So, according to the statistics, we have 1146 clients accessing our proxy server and the proxy
server has received more than 60 million requests since starting. Also, we can see that our
proxy server has been serving more than five thousand requests per minute, on average
since it started.

The second block of details displays information about the performance of disk and memory
caching. Request Hit Ratios is the ratio of requests served from the cache to the total
number of requests in a particular interval of time. Byte Hit Ratios is the ratio of the
bytes served from the cache to the total bytes served by the proxy server.

The previous screenshot is only a subset of the total information displayed on the page.

Chapter 6

[157]

IP Cache Stats and Contents
Find IP Cache Stats and Contents in the Cache Manager menu and click on it. This will take
us to a page containing statistics about the IP address cache which Squid has built over time
(refer to the ipcache_size, ipcache_low, and ipcache_high directives in the Squid
configuration file).

The statistics will be displayed on the top and should look similar to the following:

IP Cache Statistics:
IPcache Entries: 14550
IPcache Requests: 139729579
IPcache Hits: 119273350
IPcache Negative Hits: 2619823
IPcache Numeric Hits: 8339299
IPcache Misses: 9496827
IPcache Invalid Requests: 280

Next is an explanation of the previous statistics:

Entry name Description

IPcache Entries The total number of entries in the IP cache. This can be limited using
the ipcache_size directive in squid.conf.

IPcache Requests The total number of requests to resolve domain names that Squid has
received so far.

IPcache Hits The number of requests which could be satisfied from the IP cache
itself, saving a DNS query.

IPcache Negative
Hits

The number of hits for failed DNS requests due to various errors such
as temporary routing issues.

IPcache Numeric
Hits

Numeric hits occur when a request is for an IP address instead of a
domain name which results in zero DNS queries.

IPcache Misses IP cache misses is the number of DNS queries that Squid had to make
because the IP addresses for those domain names were not present in
the cache.

IPcache Invalid
Requests

Invalid requests are caused by badly formatted domain names.

Apart from the aforementioned statistics, cache manager can also show detailed contents of
IP cache. The following is an example of this:

IP Cache Contents:

 Hostname Flg lstref TTL N
 chesscube.com 0 12 1(0) 174.129.143.69-OK

Managing Squid and Monitoring Traffic

[15�]

 policy.chesscube.com 0 42 1(0) 75.101.157.73-OK
 www.warez-bb.org 0 8084 1(0) 119.42.146.35-OK
 rooms.chesscube.com 0 42 1(0) 174.129.144.56-OK
 proxy.example.com H 187749 -1 1(0) 127.0.0.1-OK

The first column in the contents list is the Hostname or domain name seen in
the request.

The second column is Flg (flag) if present. Flag is blank most of the time. Other
possible values of flag are N, representing a negatively cached entry and H,
representing an entry used from host files generally located at /etc/hosts
(refer to the hosts_file directive in squid.conf).

The third column represents the number of seconds elapsed since the IP address
for this domain name was last requested.

The fourth column represents the time remaining after which the cached entry
will expire.

The fifth column represents the number of IP addresses cached for this domain
name and number of addresses in the parentheses that can't be contacted due
to temporary routing issues.

The last column represents a list of IP addresses with suffix OK for good entries and
BAD for corrupted entries.

FQDN Cache Statistics
FQDN (Fully Qualified Domain Name) is a domain name that specifies its exact location in
the tree hierarchy of the Domain Name System (DNS). We can configure Squid to limit the
FQDN entries in the cache using the fqdncache_size directive in the Squid configure
file. From the list of links on the Cache Manager home page, go to FQDN Cache Statistics.

On this page, we'll see statistics similar to the IP cache statistics. The statistics should look
like the following:

FQDN Cache Statistics:
FQDNcache Entries: 13499
FQDNcache Requests: 13252038
FQDNcache Hits: 7097795
FQDNcache Negative Hits: 2787241
FQDNcache Misses: 3367002

These stats are self descriptive, and in case of any problems, please refer to the IP cache
statistics in the previous section. Now, let's have a look at a few FQDN cache contents.

Address Flg TTL Cnt Hostnames
79.100.155.138 28678 1 79-100-155-138.btc-net.bg
209.197.11.179 22931 1 cds055.lo1.hwcdn.net

Chapter 6

[15�]

114.178.90.174 9099 1 p13174-ipngn501funabasi.chiba.ocn.ne.jp
190.228.215.10 36224 1 host10.190-228-215.telecom.net.ar
80.221.230.176 6887 1 cable-imt-fee6dd00-176.dhcp.inet.fi
190.178.245.105 6597 1 190-178-245-105.speedy.com.ar
187.36.54.232 -3809 1 bb2436e8.virtua.com.br
88.230.162.6 N -10941 0

The format of the FQDN cache contents is similar to the IP cache contents. The only
differences are:

Hostnames and IP addresses have swapped columns.

The Count column doesn't have any entries for BAD or corrupt FQDN entries.

There is no column representing the time since the entry was last referenced.

HTTP Header Statistics
We have learned about the various HTTP header fields in all requests and replies in the
previous chapters. Squid maintains counters for all the header fields it encounters in the
requests and replies. Click the link to HTTP Header Statistics in the Cache Manager menu.

On this page, we can see statistics about the various header fields in requests and replies,
in a nicely formatted tabular form. Let's have a look at a few entries from one of the tables.

These are a few entries for the counters of the header fields in client requests:

The first column is id, which is for Squid's internal use.

The second column represents the name of the HTTP header field.

The third column represents the number of times a particular header field was
found in the HTTP headers, in all client requests.

Managing Squid and Monitoring Traffic

[160]

The fourth column represents the percentage of cases when a particular header
field occurred. For example, in the previous screenshot, the occurrence of the
Accept header field is 88 percent.

Traffic and Resource Counters
Squid keeps tracks of all the requests and data flowing through it. A detailed view of these
counters is available using the link Traffic and Resource Counters in the Cache Manager
menu. Although a lot of data is available on this page, it's not nicely formatted and is really
only meant for advanced users. Still, let's try to understand a few fields in the following
screenshot of the page:

Let's try and understand the meaning of a few of the counters in the previous screenshot:

Field Description

client_http.requests Total number of requests received by the proxy server so far,
which is 61 million in this case.

client_http.hits Total number of requests that could be served from the cache
itself without making a request to the remote web servers. In
this case, the total hits are 22 million which is quite significant.

client_http.errors Total number of requests which resulted in an HTTP error like
404 (Page Not Found), 403 (Access Denied), and so on.

client_http.kbytes_in Total data uploaded by clients in the form of requests or file
uploads. In this case, 187 GB of data has been uploaded by
clients so far.

Chapter 6

[161]

Field Description

client_http.kbytes_out Total data downloaded by clients in the form of web pages
or file downloads. In this case, 1.6 TB of data has been
downloaded so far since Squid was started.

client_http.hit_
kbytes_out

Total data sent to clients as a result of cache hits. In this case, a
total 279 GB of data has been served as a result of cache hits.

All other fields are similar and can be interpreted easily.

Request Forwarding Statistics
When a request from a client is received by Squid, it identifies a set of possible servers
and tries to forward the request to remote servers. If request forwarding fails, Squid will
try again. A table containing complete statistics about the number of tries versus the HTTP
status code received from the remote server can be accessed using the Request Forwarding
Statistics link in the Cache Manager menu.

The first column represents HTTP status code (for a list of HTTP status codes and their
meanings, check http://en.wikipedia.org/wiki/List_of_HTTP_status_codes).
The numbers in the cells represent the number of requests. For example, 26.8 million
request forwards resulted in HTTP status code 200 in the first attempt.

It's worth noting that small numbers of second or third tries are normal, but
if these numbers get large in proportion, it's a sign of network trouble.

Managing Squid and Monitoring Traffic

[162]

Cache Client List
Squid maintains a list of clients which have been served in the past 24 hours. The entries may
fade out depending on the frequency of requests. It also maintains a few statistics related to
each client, which may be of interest when we want to check what a particular client is up to.
Find the Cache Client List link in the Cache Manager menu and browse to it. The page will
contain a complete list of all the clients.

Let's have a look at the details for the first client. The first line represents the IP address
of the client. The second line represents the domain name corresponding to the client's IP
address (will be omitted if domain name is not available or if reverse lookups are disabled).

The third line shows the Currently established connections to this client which is currently
zero. The next line shows the total number of ICP Requests made by this client which is
also zero.

Chapter 6

[163]

The following line represents the number of HTTP requests made by that particular client.
The list may also contain a line which will show the clients login username, if it's known. The
next few lines in the HTTP requests block show the counts and percentages of various Squid
statuses for those requests. For the latest list of Squid status codes, check http://wiki.
squid-cache.org/SquidFaq/SquidLogs#Squid_result_codes.

Memory Utilization
Squid provides detailed statistics about its memory utilization. You will find a link to
Memory Utilization in the Cache Manager menu, click and browse to it. The following
table of information is a small section of the memory utilization page:

These statistics are mainly targeted at developers trying to analyze the memory utilized by
various components. The first column represents the component occupying the memory.
As we can see, the components are acl, acl_deny_info_list, acl_ip_data, and so
on. Therefore, according to the previous table of information, a total of 3 KB of memory has
been allocated to the acl component.

This table doesn't represent the total memory occupied by all of Squid's
components. The actual memory utilization will be higher than shown in
this table because this table doesn't contain the memory consumption
by all components.

Managing Squid and Monitoring Traffic

[164]

Internal DNS Statistics
As we learned in the previous chapters, Squid has its own built-in implementation of a
DNS client, which helps it in resolving domain names to IP addresses. If we click on the
Internal DNS Statistics link in the Cache Manager menu, we'll be presented with various
statistics about the requests performed by the internal DNS client. See the following
screenshot for an example of these statistics:

The first table represents any DNS queries in the queue for which Squid has not received any
response yet. This table is generally empty or has only a few entries. If this table has a lot
of entries, then that may be an indication of a problem with our DNS servers.

The second table shows the number of queries and replies for each DNS server we have
specified, which is pretty simple to understand.

The last table is a table representing the response code of a DNS query against the
number of attempts to resolve a domain name. The count in the cell represents the
number of DNS queries. RCODE value zero (0) means a successful completion of a DNS
query. For more details on the various values of RCODE, check page 27 of RFC 1035 at
http://tools.ietf.org/html/rfc1035.

Chapter 6

[165]

Have a go hero – exploring cache manager
There are a lot of other pages available through the cache manager web interface. Explore
them and check what statistics they provide about your proxy server. Its also worth noting
that the Squid components which we have disabled, are missing from the cache manager
menu or have empty statistics pages.

So, we have learned about using cache manager to obtain information about resource
utilization and general performance statistics over a period of time. Now it's time to install
a Squid log file analyzer which can read and analyze Squid's access log file to generate
interesting statistics.

Log file analyzers
In the previous chapter, we learned about Squid's access log file where every client request
is logged unless configured otherwise. Over a period of time, it's not possible to evaluate this
file manually as it may contain tens of thousands or even millions of entries. To parse and
analyze this file, there are a lot of open source and free third party programs available. A list
of these programs can be accessed at http://www.squid-cache.org/Scripts/.

In this book, we'll have a look at Calamaris, which is a Perl (http://www.perl.org/) based
log fine analyzer and statistics generator. So, let's have a look at Calamaris.

Calamaris
Calamaris is a Perl-based script that can analyze Squid's access log files and generate
interesting statistics about the usage and performance of the proxy server. The following
are a few of the types reports that Calamaris can produce:

A brief summary of the requests, clients served, bandwidth used, plus statistics
about cache hits and hit rate

Incoming requests by HTTP methods

Incoming TCP/UDP requests by status

Outgoing requests by status, destination

Domain-level data flow

Request analysis based on content type (audio, video, images, HTML, and so on) of
the requests.

Managing Squid and Monitoring Traffic

[166]

Calamaris proves to be a good choice because of the following features:

It can cache the parsed data for the file which has already been parsed so we don't
need to parse the same file again to generate reports

It can produce nicely formatted printable plain text reports that look good

It can also generate graphical reports which are a good way to analyze usage
and performance

It can be run using cron to periodically update the document root of a website,
configured in a web server, to view the statistics in a web browser

For the most recent information on Calamaris, check the Calamaris official website at
http://cord.de/tools/squid/calamaris/.

Installing Calamaris
We must have Perl installed on our server before we can install Calamaris. Perl is available
in software repositories of almost all Linux/Unix operating systems. Check the installation
manual for your operating system to install Perl.

Time for action – installing Calamaris
Calamaris can be installed using a package manager for our operating system. For installing
Calamaris on Red Hat Enterprise Linux, CentOS, or Fedora, we can use yum as follows:

$ yum install calamaris

To install Calamaris on Debian, Ubuntu, or other Debian-like operating systems, we can use
aptitude as follows:

$ aptitude install calamaris

If Calamaris is not available in our operating system's software repository, we can visit the
Calamaris official website and download the latest version. Please follow the installation
instructions in the software bundle. We'll be using version 2.99.4.0 in this book.

What just happened?
We learned how to install Calamaris using the package managers for several
operating systems.

Chapter 6

[167]

Using Calamaris to generate statistics
Once we have finished installing Calamaris, we can use it on the command line to parse our
log files.

Time for action – generating stats in plain text format
Let's say we want to parse our current log file; we can use Calamaris as follows:

$ cd /opt/squid/var/logs/

$ cat access.log | calamaris -a

By default, Calamaris generates stats in plain text format and prints them on a standard
output. To output the stats to a text file, we can use Calamaris as follows:

$ cat access.log | calamaris -a --output-file access_stats.txt

The content of access_stats.txt should look similar to the following:

Summary

Calamaris statistics

-- ----------- --------

lines parsed: lines 50405872

invalid lines: lines 1

parse time: sec 2456

parse speed: lines/sec 20524

-- ----------- --------

Proxy statistics

-- ----------- --------

Total amount: requests 50405872

unique hosts/users: hosts 1606

Total Bandwidth: Byte 1582G

Proxy efficiency: factor 54.85

(HIT [kB/sec] / DIRECT [kB/sec])

Average speed increase: % 15.81

TCP response time of 86.96% requests: msec 241

(requests > 2000 msec skipped)

-- ----------- --------

Cache statistics

-- ----------- --------

Total amount cached: requests 17955880

Managing Squid and Monitoring Traffic

[16�]

Request hit rate: % 35.62

Bandwidth savings: Byte 220G

Bandwidth savings in Percent % 13.90

(Byte hit rate):

Average cached object size: Byte 13149

Average direct object size: Byte 45056

Average object size: Byte 33690

-- ----------- --------

The previous output is self descriptive, we can analyze the bandwidth we have been saving
by enabling disk caching and the requests we have served so far. We can also see the stats
about object sizes we have in our cache.

What just happened?
We used Calamaris on the command line to generate plain text reports for our current
access log file. We also learned that Calamaris will print the reports to standard output or
the terminal by default, and we can use the --output-file option to output the reports
to a file.

Have a go hero – exploring the reports
There will be stats using several other criteria in the stats file generated by Calamaris. Study
them to see what the most popular websites are among your clients.

Time for action – generating graphical reports with Calamaris
Now, let's learn to generate HTML and graphical statistics using Calamaris. To generate
graphical stats, we need to create a directory where Calamaris can dump image files.
So, let's see how it works:

$ mkdir stats

$ cat access.log | calamaris -a --output-file access_stats.html -F
html,graph --output-path ./stats/

Chapter 6

[16�]

The previous command will generate an access_stats.html file along with a few image
files in the stats directory. Let's have a look at a few images from the stats directory:

This image is a graph of TCP requests by the Squid status. On the left-hand side is a scale
representing the number of requests, and on the right-hand side is a scale representing the
data transferred in Gigabytes. As we can see from the previous graph, around 17 million
requests resulted in a hit. This means that they could be served from the cache without
fetching data from remote servers.

Managing Squid and Monitoring Traffic

[170]

Let's have a look at another graph:

The previous screenshot shows is a graph of request destinations by the second level
domain. As we can observe from the graph, a total of 9 million requests were sent to
Facebook servers (*.fbcdn.net and *.facebook.com).

Calamaris generates a lot of interesting graphs like the ones shown, which can be helpful in
analyzing and optimizing our proxy server to enable it to perform better.

What just happened?
We learned how to use the various options with Calamaris to generate HTML and graphical
reports for better analysis.

Have a go hero – exploring Calamaris
Have a look at the Calamaris man page for more details about the different options which
can be used on the command line.

Chapter 6

[171]

Pop quiz
1. Which of the following is a correct choice for running the cache manager

CGI program?

a. Apache Web Server

b. Lighttpd

c. Roxen Web Server

d. All of the above

2. Which of the following is the correct formula to calculate cache hit ratio?

a. Number of cache hits * 100 / Number of requests

b. Number of cache hits * 100 / Number of cache misses

c. Number of bytes served as hits * 100 / Total Number of bytes served

d. Number of cache misses * 100 / Number of requests.

3. Which of the following is the correct formula for calculating byte hit rate?

a. Number of bytes served as cache hits * 100 / Total Number of requests served

b. Number of bytes served in the past 24 hours * 100 / Total Number of
bytes served

c. Number of bytes served as cache hits * 100 / Total Number of requests served

d. Number of bytes served as cache hits / Number of bytes served as cache misses

Summary
We have learned about using the cache manager to monitor our Squid proxy server for
various statistics.

Specifically, we have covered the following:

Installing and configuring Apache to use the cachemgr.cgi program to provide a
web interface for the cache manager.

Various types of information and statistics about our running proxy server

An overview of log file analyzers

Installing and using Calamaris to generate interesting statistics about the usage and
performance of our proxy server.

Now that we have learned about monitoring the performance of our proxy server, we'll learn
about protecting our proxy server with authentication in the next chapter.

7
Protecting your Squid Proxy Server

with Authentication

In the previous chapters, we have learned about installing, configuring, running,
and monitoring our Squid proxy server. In the last chapter, we also learned about
analyzing the performance of our proxy server along with the usage statistics for
different resources. In this chapter, we'll learn about protecting our Squid proxy
server from unauthorized access, using the various authentication systems which
are available. We'll also learn to develop a custom authentication helper, using
which, we can design our own authentication system for our proxy server.

In this chapter, we will learn about:

Squid authentication

HTTP basic authentication

HTTP digest authentication

Microsoft NTLM authentication

Negotiate authentication

Using multiple authentication schemes

Writing a custom authentication helper

Making non-concurrent helpers concurrent

Common issues with authentication

So let's get on with it.

Protecting your Squid Proxy Server with Authentication

[174]

HTTP authentication
So far we have learned about various ways of controlling access to our Squid proxy server.
Using IP addresses and MAC addresses to identify clients provides significant access control,
but these properties can be spoofed our proxy server can still be accessed by unauthorized
people. Using Squid authentication helpers, we can enforce username/password/based
authentication which can guarantee a higher level of access control.

Squid authentication helpers work in a simple way by which the user agent or browser sends
out an Authentication HTTP header field, containing encoded credentials filled in by
the user. Squid tries to decode the Authentication header field and passes the decoded
fields to the helper, which then checks the credentials against a preconfigured service. If the
credentials provided were valid, the client is allowed to access our proxy server; otherwise a
HTTP status 407 (Proxy Authentication Required) is sent back. This is the complete process of
authenticating a client using the Squid authentication helper against a preconfigured service.

Squid currently supports four types of authentication schemes named Basic, Digest, NTML,
and Negotiate, which have their own advantages and disadvantages. Authentication schemes
are configured using the auth_param directive in the Squid configuration file that supports
various options for different authentication schemes. So let's move on and discuss the various
authentication schemes and some of the corresponding helpers provided by Squid.

Basic authentication
Basic authentication is the simplest scheme to configure so that our proxy server enforces
authentication, but it's the most insecure scheme. This is due to the fact that credentials
are transmitted in a Base64-encoded string format, which can be decoded very easily to
get the original credentials, such as, the username and password supplied by the client to
authenticate with Squid.

This authentication scheme is generally discouraged because anyone who is able to sniff
your user's network packets will be able to see that person's username and password and
will be able to exploit it very easily. The authentication schemes Digest or Negotiate are
recommended over the Basic authentication scheme.

This scheme can be used in small, isolated networks where the chances of packet sniffing
are low and because of the simplicity of configuring Squid to use this scheme.

Time for action – exploring Basic authentication
HTTP Basic authentication supports the following auth_param options:

auth_param basic program COMMAND
auth_param basic utf8 on|off
auth_param basic children NUMBER [startup=N] [idle=N] [concurrency=N]

Chapter 7

[175]

auth_param basic realm STRING
auth_param basic credentialsttl TIME_TO_LIVE
auth_param basic casesensitive on|off

Now let's discuss what each parameter specifies and what possible values can be passed
with it.

Please note that the options startup, idle, and concurrency are
available only in Squid version 3.2 or later.

The program parameter specifies the absolute path to the authentication helper we are
trying to configure. We should note that, we can also specify additional arguments to the
program on the same line. By default, all the authentication helpers reside in ${prefix}/
libexec/ where ${prefix} is the value supplied to the --prefix option while running
the configure program.

The aforementioned code is given the username password string after decoding the
Authentication HTTP header received from the client and the program should output
either OK or ERR, depending on the validity of the credentials. The program should work in
an endless loop following the logic just described.

The utf8 parameter specifies whether the credentials 'with' will be translated to UTF-8
encoding before they are passed to the authentication helper. This is because the HTTP
uses ISO Latin-1 encoding and some authentication helpers may expect UTF-8.

The children parameter sets various options for the authentication helper. Normally, Squid
will run more than one instance of the authentication helper, depending on the number
of requests being received from clients. This ensures that the delay caused due to the
authentication helper, while processing, can be minimized. NUMBER specifies the number of
child helpers Squid is allowed to spawn. This number should be kept high enough, so that
Squid will not be choked because of a high waiting time introduced by authentication helpers,
and low enough so that the authentication helpers don't take all the system resources.

The startup and idle options with the children parameter specifies the number of the
processes that should be started when Squid is started or reconfigured, and the maximum
number of idle helpers present at any time. These numbers help Squid in spawning the
appropriate number of authentication helpers depending on the current traffic.

The concurrency option specifies the number of concurrent credential validation requests
one instance of an authentication helper can process at a time. Most authentication helpers
will process only one request at a time, per instance, so the default value of concurrency
is 0 (zero) to turn it off. If we are using an authentication helper that can process multiple
requests concurrently, we can set this value accordingly. Please note that this feature is
available only with Squid version 3.2 or later, we can however, make our existing helpers
concurrent using helper -mux, which we'll discuss at the end of this chapter.

Protecting your Squid Proxy Server with Authentication

[176]

The realm parameter specifies the message presented to the user by the HTTP client.

The credentialsttl parameter sets the time after which Squid will ask the authentication
helper whether the credentials provided by the client are still valid or the time for which
they will remain valid. This value should be set high enough to ensure that the user is not
prompted to enter their credentials time and time again. This should be set to a lower value
if there is a short-lived password system in place.

The casesensitive parameter sets whether the usernames will be case sensitive or not.
Most databases for storing user information are case insensitive and allow usernames in any
case. Setting this parameter to on or off will affect the max_user_ip ACL type, so we should
use it carefully.

Let's see a configuration example of an authentication helper using the Basic
authentication scheme:

auth_param basic program /opt/squid/libexec/basic_pam_auth
auth_param basic utf8 on
auth_param basic children 15 start=1 idle=1
auth_param basic realm Squid proxy Server at proxy.example.com
auth_param basic credentialsttl 4 hours
auth_param basic casesensitive off
acl authenticated proxy_auth REQUIRED
http_access allow authenticated
http_access deny all

Configuring authentication helpers is of no use unless
we use the proxy_auth ACL type to control access.

What just happened?
We learned about the various options available for configuring HTTP Basic authentication.
We also learned that we must construct ACL lists of the ACL type proxy_auth in order
to enforce proxy authentication.

Now, we'll have a look at the various authentication helpers which implement the Basic
authentication scheme.

Database authentication
The authentication helper basic_db_auth can validate credentials provided by a client
against a database containing usernames and passwords. For every set of usernames and
passwords supplied, basic_db_auth will try to match it against an existing database table
containing the username and password columns.

Chapter 7

[177]

Configuring database authentication
We need to pass additional options to this authentication helper to tell it about the database
table which should be used for authentication. Let's have a quick look at the options that can
be passed.

Option Description

--dsn The --dsn option is used to specify the Database Source Name (DSN) that will
be used by the authentication helper to connect to a particular database. The
default value is DBI:mysql:database=squid (replacing the word 'squid'
with the name of the relevant database). So, if we set our database name as
'clients', the corresponding DSN will be DBI:mysql:database=clients.
This helper uses Perl's database library, so any SQL style database can be used.
For a database on a different server, we can set the DSN to DBI:mysql:
database=clients:example.com:3306.

--user The --user option specifies the username that will be used while connecting
to the database.

--password The --password option specifies the password that will be used while
connecting to the database.

--table The database table where Squid will look for usernames and passwords is
specified using the --table options. The default table name used is
passwd.

--usercol The column name for the usernames is specified using the --usercol option.
The default value is user.

--passwdcol The --passwdcol option can be used to specify the password column name
in the database table. The default value is password.

--plaintext The --plaintext option determines whether the passwords stored in the
database are plain text or encrypted. Then authentication helper assumes
that they are encrypted by default. We can set this option's value to 1 if the
passwords are stored in plaintext format.

--cond The --cond option is quite handy when we want to temporarily deny access
to certain clients using a flag or several conditions set using a database table.
The default value of --cond is enabled=1, which means the authentication
helper will add another condition, AND enabled = 1, in the SQL query
before querying the database. We must set this option to " " (blank string) if we
don't want any additional conditions to be used.

--md5 We can use the --md5 option if the database contains unsalted passwords.

--salt Using the --salt option, we can specify the salt to hash passwords.

--persist The connections to the database will be persistent and will remain open in
between queries if the --persist option is used.

--joomla We can set the --joomla option to tell the helper that the database we are
using is a Joomla database, so that it can use appropriate salt hashing. For more
information on Joomla, please visit http://www.joomla.org/.

Protecting your Squid Proxy Server with Authentication

[17�]

So, an example configuration for basic_db_auth will look like the following:

auth_param basic program /opt/squid/libexec/basic_db_auth --dsn "DBI:
mysql:database=squid_auth" --user 'db_squid' --password 'sQu1Dp4sS' --
table 'clients' --cond ''

This configuration line will configure basic_db_auth as a basic authentication helper and
will also supply various options to the authentication helper basic_db_auth.

NCSA authentication
NCSA authentication is an authentication against a NCSA HTTPd style password file. To know
more about NCSA HTTPd, refer to http://en.wikipedia.org/wiki/NCSA_HTTPd.
Basic NCSA authentication is easy to set up and manage. All we need to do is, create a file
containing usernames and passwords in a special format and use that password file as an
option with the authentication helper program.

Time for action – configuring NCSA authentication
To create and manage users, we can use the htpasswd program, which is a part of httpd
(Apache Web Server).

Let's say we are going to keep the passwords in the /opt/squid/etc/passwd file, then we
can add some users as follows:

htpasswd /opt/squid/etc/passwd saini

New password:

Re-type new password:

We should enter the password when asked and a combination of a username and
encrypted password will be written to the password file. To add more users, we can
use the same command.

Now we need to configure the NCSA authentication helper to use this password file. We can
do so using the following command:

auth_param basic program /opt/squid/libexec/basic_ncsa_auth /opt/
squid/etc/passwd

What just happened?
We learned to add new users to the password file, which is then used by the NCSA
authentication helper to validate the credentials provided by the user.

Chapter 7

[17�]

NIS authentication
The network Information Service or NIS (previously Yellow Pages or YP) is a client-server
directory protocol developed by Sun Microsystems. To be able to use NIS authentication with
Squid, we need to provide the NIS domain name and the password database, as shown:

auth_param basic program /opt/squid/libexec/basic_nis_auth example.com
passwd.byname

LDAP authentication
The basic LDAP (Lightweight Directory Access Protocol) authentication helper (basic_
ldap_auth) provides authentication using an LDAP server. For this to work, we should have
the OpenLDAP development libraries installed. Refer to http://www.openldap.org/ for
details on installing and configuring an LDAP server.

The basic_ldap_auth helper has a large number of options available to configure different
settings for authenticating against the LDAP server. However, in this book we will cover only
the necessary options to get LDAP authentication working. For the details of all the available
options, we can always refer to the basic_ldap_auth man page provided by Squid.

Therefore, an example configuration for proxy authentication against the LDAP server
ldap.example.com will be as follows:

auth_param basic program /opt/squid/libexec/basic_ldap_auth -b
"dc=example,dc=com" ldap.example.com

In the configuration shown, ldap.example.com is our LDAP server. The domain
example.com is the base distinguished name (DN).

SMB authentication
SMB authentication or basic_smb_auth is a very simple way to authenticate against SMB
servers like Microsoft Windows NT or Samba. To be able to use basic_smb_auth, we
should have Samba (http://www.samba.org/) installed on our machine or on another
machine accessible to Squid. Samba is available in software repositories of most Linux/Unix
distributions.

Once everything is installed and configured properly, we can add the following configuration
line to use SMB authentication:

auth_param basic program /opt/squid/libexec/basic_smb_auth -W
WORKGROUP

The option -W specifies the Windows domain name.

Protecting your Squid Proxy Server with Authentication

[1�0]

PAM authentication
Pluggable Authentication Modules (PAM, http://www.sun.com/software/solaris/
pam/) is a mechanism to integrate several low-level authentication schemes such as,
fingerprint, smart cards, one time keys, and so on, into a high-level API. We should note that
PAM is not available on systems such as BSD. Squid provides the basic_pam_auth helper,
which provides authentication against the PAM database. However, to be able to use PAM
authentication, we need to configure the Squid (or any other name) service in the
/etc/pam.d/ directory and configure the PAM modules we plan to use.

Time for action – configuring PAM service
An example /etc/pam.d/ Squid file may look similar to the following:

#%PAM-1.0
auth include password-auth
account include password-auth

Once the Squid service is configured in /etc/pam.d/, we need to configure Squid to use the
PAM authentication. The following configuration example will allow Squid to authenticate
using the PAM database:

auth_param basic program /opt/squid/libexec/basic_pam_auth

For more information on configuring basic_pam_auth, refer to the basic_pam_auth
man page.

What just happened?
We learned to configure PAM and to use the basic_pam_auth Squid helper for authentication.

MSNT authentication
The MSNT Basic authentication helper provides a way to authenticate against NT domain
controllers on Windows or Samba.

Time for action – configuring MSNT authentication
Configuring the MSNT authentication helper is quite easy and is done by modifying the
/opt/squid/etc/msntauth.conf file. The default configuration file looks as follows:

NT domain hosts. Best to put the hostnames in /etc/hosts.
server myPDC myBDC myNTdomain
Denied and allowed users. Comment these if not needed.
denyusers /opt/squid/etc/msntauth.denyusers
allowusers /opt/squid/etc/msntauth.allowusers

Chapter 7

[1�1]

We should replace myPDC (Primary Domain Controller), myBDC (Backup Domain Controller),
and myNTdomain (Windows NT Domain) with values for our environment. We can add as
many as five different domains in this configuration file.

Also notice the denyusers and allowusers directives. The denyusers directive specifies
a file that contains all the usernames that must not be allowed to access our proxy server.
The helper will not even bother to check the credentials of the usernames in this file.

The directive allowusers specifies a file which contains a list of usernames that
should always be allowed to access the proxy server, even if the credentials result
in failed validation.

Once we have finished configuring the MSNT authentication helper, we can add the following
line in our Squid configuration file:

auth_param basic program /opt/squid/libexec/msnt_auth

What just happened?
We just learned to create the configuration file for MSNT authentication. We have also
learned to create exceptions (allow or deny) for certain users without validating the
credentials provided by them.

MSNT multi domain authentication
The MSNT multi domain authentication works similar to the MSNT authenticator, except that
with MSNT multi domain, the client has to enter the Windows NT domain name before the
username, as follows:

workgroup\sarah

The configuration line for the MSNT multi domain authentication helper will look similar
to the following:

auth_param basic program /opt/squid/libexec/basic_msnt_multi_domain_
auth

This authentication helper is a Perl script.

This authentication helper needs the Authen::SMB Perl package.
Moreover, Samba should be installed on the same system or any
other system accessible to Squid. On the same system, we need the
nmblookup and smbclient binaries.

Protecting your Squid Proxy Server with Authentication

[1�2]

SASL authentication
Simple Authentication and Secure Layer (SASL) is a framework for authentication that
decouples the authentication mechanism from application protocols. The SASL authentication
helper (basic_sasl_auth) for Squid is similar to the PAM authentication helper.

Time for action – configuring Squid to use SASL authentication
To configure the SASL authenticator, we need to create a file named basic_sasl_auth.
conf with the following content:

pwcheck_method:sasldb

1.	 Move this file to the /usr/lib/sasl2/ directory.

2.	 Once we have placed the configuration file in the appropriate directory, we can add
the following line in our configuration file to ensure the use of SASL authentication:

auth_param basic program /opt/squid/libexec/basic_sasl_auth

This command will configure Squid to use the basic_sasl_auth program as an SASL
authentication helper.

The basic_sasl_auth requires the Cyrus SASL
library (http://asg.web.cmu.edu/sasl/).

What just happened?
We learned to configure the SASL authenticator and then configure Squid to use SASL
authentication.

getpwnam authentication
The getpwnam authentication helper can allow Squid to authenticate local users. This
authentication helper uses the getpwnam() Unix utility to locate users who have login
accounts on the Squid server and authenticate them. Additionally, it can authenticate
users against NIS, LDAP, and PAM databases.

To use the getpwnam authentication helper, we need to add the following line in our
configuration file:

auth_param basic program /opt/squid/libexec/basic_getpwnam_auth

Chapter 7

[1�3]

POP3 authentication
Squid can authenticate clients against an existing POP3 (Post Office Protocol Version 3)
user database using the authentication helper basic_pop3_auth. To use POP3, we need
to specify the IP address or domain name of the server running the POP3 service. We can
configure Squid to use POP3 authentication, as shown:

auth_param basic program /opt/squid/libexec/basic_pop3_auth pop3.
example.com

The basic_pop3_auth helper uses the Net::POP3 Perl package. So,
we should make sure that we have this package installed before using the
authentication helper.

RADIUS authentication
The basic_radius_auth authentication helper allows Squid to connect to a RADIUS server
(for more information on RADIUS servers, refer to http://en.wikipedia.org/wiki/
RADIUS) and then validate the credentials provided by the HTTP client.

Time for action – configuring RADIUS authentication
We can add the following line to our Squid configuration file to use the RADIUS server for
authentication:

auth_param basic program /opt/squid/libexec/basic_radius_auth -h
radius.example.com -p 1645 -i squid_proxy -w s3cR37 -t 15

In this configuration line, the option -h specifies the RADIUS server to connect to. The option
-p identifies which port to use to connect to the RADIUS server. The option -i specifies the
unique identifier for identifying the Squid proxy server on the RADIUS server. If option -i
is not specified, the authentication helper will use the IP address of the proxy server. The
shared secret with the RADIUS server is specified using the -w option. Finally, the option -t
specifies the request timeout. The default request timeout is 10 seconds.

In order to avoid specifying a lot of options in the Squid configuration file, we can create a
separate configuration file containing connection-related information. Let's say, we are going
to place the configuration file at /opt/squid/etc/basic_radius_auth.conf, then we
can write the following lines in the file:

server radius.example.com
port 1645
identifier squid_proxy
secret s3cR37

Protecting your Squid Proxy Server with Authentication

[1�4]

Now, we can replace the line in our Squid configuration file with the following line:

auth_param basic program /opt/squid/libexec/basic_radius_auth -f /opt/
squid/etc/basic_radius_auth.conf -t 15

The option -f is used to specify the configuration file that will be used by the
basic_radius_auth helper to connect to the RADIUS server.

What just happened?
We learned two ways of using the basic_radius_auth helper. In one method, we can
pass all options as arguments, and in the other, we can create a separate file containing
information about the RADIUS server. Using a separate configuration file is the more
convenient and recommended method.

Fake Basic authentication
Squid includes an interesting authentication helper called basic_fake_auth. This
authentication helper is used for logging clients' credentials without actually checking them
against any user database or service. This authentication helper is mainly used for testing and
as a base helper which can be extended to implement complex Basic authentication helpers.

Digest authentication
HTTP Digest authentication is an improvement over the regular unencrypted HTTP Basic
authentication mechanism, allowing user identity to be established securely without having
to send a password over the network. HTTP Digest authentication is an application of
MD5 cryptographic hashing with the use of the nonce value (for more information on the
nonce value, refer to http://en.wikipedia.org/wiki/Cryptographic_nonce)
to prevent cryptanalysis.

The following auth_param parameters are available for configuring HTTP Digest
authentication helpers:

auth_param digest program COMMAND
auth_param digest utf8 on|off
auth_param digest children NUMBER [startup=N] [idle=N] [concurrency=N]
auth_param digest realm STRING
auth_param digest nonce_garbage_interval TIME
auth_param digest nonce_max_duration TIME
auth_param digest nonce_max_count NUMBER
auth_param digest nonce_strictness on|off
auth_param digest check_nonce_count on|off
auth_param digest post_workaround on|off

Chapter 7

[1�5]

The parameters program, utf8, children, and realm have the same meanings as in HTTP
Basic authentication. The following is a description of the remaining parameters:

Parameter Description

nonce_garbage_
interval

The parameter nonce_garbage_interval is used to specify
the time interval after which the nonces that have been issued are
checked for validity.

nonce_max_duration The nonce_max_duration parameter specifies the time for
which a given nonce will remain valid.

nonce_max_count The parameter nonce_max_count defines the maximum number
of times a nonce can be used.

nonce_strictness The client may eventually skip some values while generating nonce
counts like 3, 4, 5, 6, 8, 9, 11, and so on. The parameter nonce_
strictness determines whether Squid should allow cases where
the user agent or client misses a count value. The default value is off
and the user agent is allowed to miss values.

check_nonce_count The parameter check_nonce_count enforces Squid to check
the nonce count, and in case of failure, the client will be sent
the HTTP status 401 (Unauthorized). This is generally helpful
against authentication replay attacks. For more information on
authentication replay attacks, refer to http://en.wikipedia.
org/wiki/Replay_attack.

post_workaround Certain buggy HTTP clients send incorrect request digests in HTTP
POST requests while utilizing the nonce acquired in an earlier HTTP
GET request. The parameter post_workaround is a workaround
for this situation.

Time for action – configuring Digest authentication
Therefore, an example HTTP Digest authentication with Squid will look similar to the following:

auth_param digest program /opt/squid/libexec/digest_file_auth
auth_param digest utf8 on
auth_param digest children 20 startup=0 idle=1
auth_param digest realm Squid proxy server at proxy.example.com
auth_param digest nonce_garbage_interval 5 minutes
auth_param digest nonce_max_duration 30 minutes
auth_param digest nonce_max_count 50
auth_param digest nonce_strictness on
auth_param digest check_nonce_count on
auth_param digest post_workaround on
acl authenticated proxy_auth REQUIRED
http_access allow authenticated
http_access deny all

Protecting your Squid Proxy Server with Authentication

[1�6]

Now, let's have a look at the available HTTP Digest authentication helpers provided by Squid.

What just happened?
We learned about the different options available while configuration HTTP Digest
authentication. We also saw an example configuration that will fit most cases.

File authentication
The authentication helper digest_file_auth (previously known as digest_pw_auth)
authenticates credentials provided by the client, against a password file containing
passwords, either in plain text or MD5 encrypted.

If the passwords are stored in a plain text format, a line containing the username and
password will look like the following:

username:password

However, if we store passwords in a plain text format we would not be helping ourselves in
improving security. The only advantage is that we are not transmitting passwords in a plain text
format over the network. So, there is another format using which we can store the passwords
in the encrypted format. The format for storing the encrypted passwords is as follows:

username:realm:HA1

In this format code, HA1 is MD5(username:realm:password). So, once we have our
password file ready, we can proceed to configure Squid to use Digest authentication by
adding the following line in our Squid configuration file:

auth_param digest program /opt/squid/libexec/digest_file_auth -c /opt/
squid/etc/digest_file_passwd

Note that we have used the option -c while specifying the digest password file because we
are using encrypted passwords in our password file. In case where the digest password file
contains passwords in a plain text format, we should not pass the option -c.

LDAP authentication
We can use LDAP authentication using the digest_ldap_auth helper for HTTP
Digest authentication. The configuration and parameters are similar to the LDAP Basic
authentication helper. To use digest_ldap_auth with Squid, we can add the following
to the configuration file:

auth_param digest program /opt/squid/libexec/digest_ldap_auth
-b "ou=clients,dc=example,dc=com" -u "uid" -A "l"
-D "uid=digest,dc=example,dc=com"
-W "/opt/squid/etc/digest_cred" -e -v 3 -h ldap.example.com

Chapter 7

[1�7]

The following is an explanation of the options used in the preceding configuration
file addition:

Option Description

-b The option -b specifies the base distinguished name (DN)

-u The option -u specifies the attribute that should be used along with base
DN to generate user DN.

-A The option -A identifies the password attribute.

-D The option -D represents the DN to bind, to perform searches.

-W The option -W represents a path to the file containing the digest password.

-e The option -e enforces encrypted passwords.

-v The option -v represents the LDAP version.

-h The last option -h represents the LDAP server to connect to.

eDirectory authentication
Squid supports Digest authentication against Novell eDirectory using the digest_
edirectory_auth authentication helper. The configuration options and usage of this
authentication helper is similar to the digest_ldap_auth authentication helper. For more
information on Novell eDirectory, refer to http://en.wikipedia.org/wiki/Novell_
eDirectory.

Microsoft NTLM authentication
NTLM (NT LAN Manager) is a proprietary connection authentication protocol developed
by Microsoft. The following are some important facts that we should know about
NTLM authentication:

NTLM authentication only authenticates a TCP connection and not the user using it.

It requires a three-way handshake, which puts a limit on the speed and maximum
client capacity.

It is a binary protocol. So only the windows domain controller can be used.

For more details about NTLM, refer to http://en.wikipedia.org/wiki/NTLM. The
following auth_param parameters are supported by the NTLM authentication helpers:

auth_param ntlm program COMMAND
auth_param ntlm children NUMBER [startup=N] [idle=N] [concurrency=N]
auth_param ntlm keep_alive on|off

Protecting your Squid Proxy Server with Authentication

[1��]

The parameters program and children are similar to the ones in HTTP Basic and Digest
authentication. If the parameter keep_alive is set to off, Squid will terminate the
connection after the initial requests where browsers enquire about the supported schemes.
Default value of the keep_alive parameter is on.

Therefore, an example configuration with NTLM authentication will be as follows:

auth_param ntlm program /opt/squid/libexec/ntlm_smb_lm_auth
auth_param ntlm children 20 startup=0 idle=1
auth_param ntlm keep_alive on
acl authenticated proxy_auth REQUIRED
http_access allow authenticated
http_access deny all

Samba's NTLM authentication
We can use NTLM authentication with the help of the ntlm_auth program, which is a part
of Samba. To configure Squid to use ntlm_auth as an NTLM authentication helper, we need
to add the following line to our Squid configuration file:

auth_param ntlm program /absolute/path/to/ntlm_auth
--helper-protocol=squid-2.5-ntlmssp

Please make sure that the path to the ntlm_auth program provided by Samba
is correct in the configuration line.

We can also force a group limitation with the ntlm_auth program using the
--require-membership-of option, as shown as follows:

auth_param ntlm program /absolute/path/to/ntlm_auth
--helper-protocol=squid-2.5-ntlmssp
--require-membership-of="WORKGROUP\Domain Users"

This configuration will allow users to log in if they are members of a particular group. To
explore all of the options available with the ntlm_auth program, refer to http://www.
samba.org/samba/docs/man/manpages/ntlm_auth.1.html.

Fake NTLM authentication
Similar to the basic_fake_auth authentication helper, we have the ntlm_fake_auth
authentication helper, which acts as a fake NTLM authenticator. This authentication helper
doesn't authenticate credentials provided by the client. It is generally used for logging
purposes while testing NTLM authentication.

Chapter 7

[1��]

Negotiate authentication
Negotiate authentication is a wrapper of GSSAPI, which in turn is a wrapper over Kerberos
or NTLM authentication schemes. This protocol is used in Microsoft Active Directory enabled
environments with modern versions of the Microsoft Internet Explorer, Mozilla Firefox, and
Google Chrome browsers. In this protocol, the credentials are exchanged with the Squid
proxy server using the Kerberos mechanism. This authentication scheme is more secure
compared to NTLM authentication and is preferred over NTLM.

Time for action – configuring Negotiate authentication
Negotiate/Kerberos authentication is provided by the negotiate_kerberos_auth
authentication helper. Next, we'll learn to configure the system running Squid to enable
Negotiate authentication.

1.	 First of all, we need to generate a keytab file using the ktpass utility on a
Windows machine, as shown:

ktpass -princ HTTP/proxy.example.com@REALM
-mapuser proxy.example.com -crypto rc4-hmac-nt pass s3cr3t
-ptype KRB5_NT_SRV_HST -out squid.keytab

We should make sure that we have a proxy.example.com user account on our
Windows machine before generating the keytab file. Once the keytab file is
generated, move it to an appropriate location on the Squid server, for example,
/opt/squid/etc/squid.keytab. We should make sure that only the Squid
user has access to the keytab file on our system.

2.	 Now, we need to configure Kerberos on our Squid proxy server. For that, we need
to change the libdefaults section in our Kerberos configuration file, which is
generally located at /etc/krb5.conf, to the following:

[libdefaults]
 default_realm = REALM
 dns_lookup_realm = true
 dns_lookup_kdc = true
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true

3.	 After making changes to the Kerberos configuration file, we need to make
changes to our Squid startup file. Please refer to Chapter 3, Running Squid for
determining the location of the startup script. We should add the following
line to our startup script:

export KRB5_KTNAME=/etc/squid/squid.keytab

Protecting your Squid Proxy Server with Authentication

[1�0]

4.	 Finally, we need to add the following lines to our Squid configuration file:

auth_param negotiate program /opt/squid/libexec/negotiate_
kerberos_auth
auth_param negotiate children 15
auth_param negotiate keep_alive on
acl authenticated proxy_auth REQUIRED
http_access allow authenticated
http_access deny all

This configuration will enable Squid to use Negotiate authentication using the
negotiate_kerberos_auth authentication helper.

What just happened?
We just learned about Negotiate authentication using Kerberos and how we can configure
our Squid proxy server to use Negotiate authentication for stronger security.

Using multiple authentication schemes
We can configure Squid to use multiple authentication schemes by using the auth_param
directive for each authentication scheme. If we use multiple authentication schemes, then
Squid will present the clients with a list of available authentication schemes. According to
RFC 2617 (http://www.ietf.org/rfc/rfc2617), a client must select the strongest
authentication scheme that it understands. However, due to bugs in various user agents,
they generally pick the first one.

So, while adding the configuration lines with the auth_param directive in our configuration
file, we should consider the following order (strongest first) for the different authentication
schemes:

1. Negotiate/Kerberos Authentication

2. Microsoft NTLM Authentication

3. Digest Authentication

4. Basic Authentication

Also, it's not compulsory to use configure helpers for all authentication schemes. We
can configure helpers for any number of authentication schemes. All we need to do is
preserve the aforementioned order so that even the buggy clients will pick up a stronger
authentication scheme to authenticate the users.

Chapter 7

[1�1]

Writing a custom authentication helper
There is no need to worry if none of the existing authentication helpers seem to fit your
needs. It is possible to write your own HTTP Basic authentication helper relatively quickly.
The HTTP Basic authentication helpers are very simple programs that read username
password strings from standard input, extract the username and password from the string,
match them against an existing user database, and then write OK or ERR on the standard
output in a never ending loop.

Time for action – writing a helper program
So, let's write a dummy Python script that can act as a Basic authentication helper:

#!/usr/bin/env python

import sys

def validate_credentials(username, password):
 """
 Returns True if the username and password are valid.
 False otherwise
 """
 # Write your own function definition.
 # Use mysql, files, /etc/passwd or some service you want
 return False

if __name__ == '__main__':
 while True:
 # Read a line from stdin
 line = sys.stdin.readline()
 # Remove '\n' from line
 line = line.strip()

 # Check if string contains two entities
 parts = line.split(' ', 1)
 if len(parts) == 2:
 # Extract username and password from line
 username, password = parts
 # Check if username and password are valid
 if validate_credentials(username, password):
 sys.stdout.write('OK\n')
 else:
 sys.stdout.write('ERR Wrong username or password\n')
 else:
 # Unexpected input
 sys.stdout.write('ERR Invalid input\n')

 # Flush the output to stdout.
 sys.stdout.flush()

Protecting your Squid Proxy Server with Authentication

[1�2]

What just happened?
In the previous program, we are reading one line from the standard input at a time. Then
we go on to extracting the username and password from the input provided. Then, we
try to validate the username and password using our validate_credentials method,
which is a skeleton method and can be implemented to validate the username and
password provided against any system. Depending on the return value of the validate_
credentials method, we write either OK or ERR on the standard output, which is read by
Squid and it authenticates the client accordingly.

We can save the preceding program in a file named basic_generic_auth.py and move it
to the /opt/squid/libexec/ directory. Now, we can add the following lines to our Squid
configuration file to use this as a Basic authentication helper:

auth_param basic program /opt/squid/libexec/basic_generic_auth.py
auth_param basic children 15 startup=0 idle=1
auth_param basic realm Squid proxy server at proxy.example.com
auth_param basic credentialsttl 4 hours
auth_param basic casesensitive on
acl authenticated proxy_auth REQUIRED
http_access allow authenticated
http_access deny all

Have a go hero – implementing the validation function
Implement the validate_credentials method in the previous program such that when
a user enters a password that is a palindrome, the program will consider the supplied
username and password valid.

Making non-concurrent helpers concurrent
Helper concurrency is a relatively new concept in Squid and is supported only within
Squid versions 3.2 or later. However, there is a contributed script called helper-mux that
can convert our old style non-concurrent helper programs into a concurrent helper, thus
improving the overall helper performance by a significant amount.

The purpose of the helper-mux program is to share some of the load that Squid has to
handle while dealing with relatively slower helper programs. The helper multiplexer program
acts as a medium through which Squid and actual helper programs exchange messages. So,
the helper multiplexer's interface with Squid is totally concurrent and while talking to the
actual helper program, it uses a non-concurrent interface.

The helper-mux program can start helper programs on demand and can handle up to 1000
helpers per instance. The helper-mux program doesn't know anything about the messages
being exchanged between Squid and the actual helper program.

Chapter 7

[1�3]

Therefore, we can use the helper-mux program to make our Basic NCSA authentication
helper concurrent, as demonstrated:

auth_param basic program /opt/squid/libexec/helper-mux.pl /opt/squid/
libexec/basic_ncsa_auth /opt/squid/etc/passwd
auth_param basic children 1 startup=1 idle=1 concurrency=5
auth_param basic realm Squid proxy-caching web server
auth_param basic credentialsttl 2 hours

The previous configuration is equivalent to the following configuration without concurrency:

auth_param basic program /opt/squid/libexec/basic_ncsa_auth /opt/
squid/etc/passwd
auth_param basic children 5
auth_param basic realm Squid proxy-caching web server
auth_param basic credentialsttl 2 hours

We'll have five helper processes running if the concurrent configuration is used.

So, we learned how we can make the old style non-concurrent helpers concurrent using the
helper multiplexer program available with Squid.

Common issues with authentication
Sometimes, we may run into problems with authentication helpers due to incorrect
configuration. Next, we'll have a look at a few commonly known issues that can be
fixed easily by modifying our main configuration file.

Whitelisting selected websites
Depending on our environment, there may be some websites which can be accessed by our
users without authenticating with the proxy server. We can create special ACL lists for such
websites and allow non-authenticated users access to those websites. Let's have a look at
the configuration lines we need to add to our configuration file:

acl whitelisted dstdomain .example.com .news.example.net
acl authenticated proxy_auth REQUIRED

Allow access to whitelisted websites.
But only from our local network.
localnet is default ACL list provided by Squid.
http_access allow localnet whitelisted

Allow access to authenticated users.
http_access allow authenticated

Deny access to everyone else.
http_access deny all

Protecting your Squid Proxy Server with Authentication

[1�4]

This configuration will allow users in our LAN access to whitelisted websites, and they will
not have to authenticate with our proxy server to use or browse these websites. To browse
websites other than ones which are whitelisted, all users will have to be authenticated.

Challenge loops
Squid asks HTTP clients for login credentials if the client is denied access by a proxy
authentication-related ACL (proxy_auth, proxy_auth_regex, external ACL using
%LOGIN). The order of ACLs in an http_access rule determines whether Squid will ask for
login credentials again. This will result in continuous login pop ups by the browsers, which
can get really annoying.

Normally, a user will see a login pop up once when they open or re-open (after closing)
their browser for Basic or Digest authentication. A login pop up may not appear or may
appear once in case of NTLM or Kerberos authentication. A login pop up may appear again
if the user changes his/her password in the master system. If there are more pop ups than
described here, then we might have some configuration issues.

Let's have a look at two different configurations.

First of all, let's consider the following configuration:

Below auth_acl is of type proxy_auth, proxy_auth_regex
or externl_acl using %LOGIN
http_access deny non_auth_acl auth_acl

Squid will prompt for new login credentials if the preceding http_access rule is matched
and access is denied because of auth_acl.

Now, consider the following configuration:

Below auth_acl is of type proxy_auth, proxy_auth_regex
or externl_acl using %LOGIN
http_access deny auth_acl non_auth_acl

According this configuration, Squid will not prompt for new login credentials if this
http_access rule is matched and access is denied because of non_auth_acl. In this case,
the client will be presented with a simple access denied page if the authentication fails.

To prevent challenge loops, we can keep all as the last ACL element in our http_access
rule, as shown:

http_access deny !authenticated all

This configuration will prevent challenge loops as the last ACL element all in the
http_access rule will always match.

Chapter 7

[1�5]

Authentication in the intercept or transparent mode
It is not possible to achieve proxy authentication when Squid is operating in intercept or
transparent mode because the HTTP client is not aware that there is a proxy in between
the client and remote server and hence it doesn't send the credentials required for
authenticating a user.

Pop quiz
1. In what format are usernames and passwords transmitted over the network while

using HTTP Basic authentication?

a. Plain text

b. HTML

c. Encrypted text which can't be decrypted

d. Encoded in base64

2. Why should we use case insensitive usernames when using database authentication?

a. Squid can't differentiate between upper and lower case characters

b. Browser's can't differentiate between upper and lower case characters

c. String comparisons in most databases are case insensitive

d. There is no such limitation. We can use case-sensitive usernames with all
the databases.

3. Which of the following is the correct command line utility to change a user's
password in an NCSA HTTPd style password file?

a. passwd

b. chpasswd

c. htpasswd

d. kpasswd

Protecting your Squid Proxy Server with Authentication

[1�6]

Summary
We have learned the various authentication schemes supported by Squid. We also learned
about the various authentication helpers available for different authentication schemes.

Specifically, we have covered:

A lot of different ways to authenticate using the HTTP Basic authentication

HTTP Digest authentication and helpers supporting Digest authentication

Microsoft NTLM authentication

Negotiate authentication

Writing our own custom authentication helper, using which we can authenticate
against various types of user databases.

Now, we know several ways to protect our Squid proxy server from unauthorized access. In
the next chapter, we'll learn about building a hierarchy of Squid proxy servers to distribute
load and optimize performance.

�
Building a Hierarchy of Squid Caches

In the previous chapters, we learned that the Squid proxy server can talk
to other proxy servers over the network to share information about cached
content, to fetch content from remote servers on behalf of other proxy servers,
or to use other proxy servers to fetch content from remote servers. In this
chapter, we will explore cache hierarchies in detail. We'll also learn to configure
Squid to act as a parent or a sibling proxy server in a hierarchy, and use other
proxy servers as parent or sibling proxy servers.

In this chapter, we will learn about the following:

Cache hierarchies

Reasons to use hierarchical caching

Problems with hierarchical caching

Related Squid configuration

Controlling communication with peers

Peer communication protocols

So let's get started.

Building a Hierarchy of Squid Caches

[1��]

Cache hierarchies
A cache hierarchy is the name given to an arrangement of proxy servers which can
communicate with each other to forward requests. The arrangement is typically a tree
structure in which the proxy servers have a parent-child or sibling relationship. Parent proxy
servers are closer to the remote servers, compared to the child servers, and the child servers
typically use the parent servers to fetch content for their clients. Child servers can act as a
parent server to other proxy servers. Let's have a look at the following diagram:

Siblings are the proxy servers at the same level in the tree structure. In a cache hierarchy,
proxy servers use protocols like ICP, HTCP, Cache Digests, and CARP to identify a useful
source. The other peering types are origin server, which is generally a special type of parent
and multicast, which in essence is a special type of sibling.

Reasons to use hierarchical caching
Sometimes, it's necessary to be a part of a cache hierarchy. For example, in a large network
where all packets must pass through a firewall proxy we will be forced to use the firewall
proxy server as a parent proxy, as it's the only point of contact with the Internet. So, all our
cache misses will be fetched by the firewall proxy.

Chapter 8

[1��]

Sometimes, we join a cache hierarchy to reduce the average page load time. It helps only
when the fetch time from neighbors is significantly less than the fetch time from remote
servers. Therefore, if some requests result in a cache MISS in our proxy's cache, it may be
a cache HIT in one of our neighbors caches.

Another example may be, a network where we have a large number of clients and one proxy
server is not able to handle all the traffic. In this case, we'll split the load by deploying two
proxy servers as siblings. Two servers will be able to serve HITs from each other's cache,
which will further enhance the performance.

An example that is becoming increasingly popular and important for scalability and
availability of modern day websites, in a hierarchy of proxy servers, is the reverse proxy
mode. Reverse proxy mode is more commonly known as Content Delivery Networks
(CDNs). The main purpose of a CDN is to replicate the content of one or more websites to
various geographic locations across the Internet and then transparently direct the client web
browsers to the nearest or most responsive cache. For more information on CDN, refer to
http://en.wikipedia.org/wiki/Content_delivery_network.

We can also join a cache hierarchy to redirect traffic, based on different criteria such as, domain
names, content type, request origins, and so on. We'll see examples later in this chapter.

Problems with hierarchical caching
When we are a part of a cache hierarchy, we serve the content received from neighbors
directly to our clients. So, there is a serious problem if content received from neighbors is not
genuine. For example, let's say we are a part of a cache hierarchy and one of our neighbor
proxy servers is compromised. In such a scenario, the compromised proxy server can serve
any content for the requests we are forwarding. This generally leads to propagation of
viruses and worms on a network. Therefore, all our neighbors should be properly secured
and up-to-date so that we don't end up compromising our client for the sake of increasing
our hit ratio.

We'll essentially be forwarding a lot of our client's requests to our neighbor proxy servers.
This may result in leakage of private information of our clients. For example, a lot of data is
sent as a part of the URL in HTTP GET requests. If a neighbor cache is not properly striping
query terms from the URL before logging, then the complete URL will be logged in the access
log file, which can be later parsed for retrieving sensitive information about clients. Hence,
client privacy is also one of the problems we face when we are a part of cache hierarchy.

Building a Hierarchy of Squid Caches

[200]

Another common problem with hierarchical caching is forwarding loops as a result of
misconfiguration. The following is an example scenario:

In the preceding diagram, a request is sent from a client machine to the proxy server 1,
which may in turn, forward the request to proxy server 2 or 3. Let's say the request is
forwarded to proxy server 2, as shown in this scenario. Also, as proxy servers 2 and 3 are
siblings, proxy server 2 will check if proxy server 3 has a cached response for the current
request. Now, if the request results in a cache miss in proxy server 3, then it'll again forward
the request to proxy server 2 to check for a cache hit. This will go on forever, resulting in a
forwarding loop.

Avoiding a forwarding loop
We can avoid such situations easily by configuring our proxy server properly. We don't have to
forward a request to a proxy server if that proxy server itself was the source of the request.

One quick and partial solution for this problem is to set the value of the directive via to on.
If via is set to on, then Squid will include a via header in requests and replies as required
by RFC 2616. In the presence of a via header, peers will abort early and log an error
message instead of consuming network bandwidth and memory on the proxy servers.

Chapter 8

[201]

Another foolproof solution is to have a proper configuration. Consider the following Squid
configuration on the proxy server s1.example.com (192.0.2.25):

cache_peer s2.example.com sibling 3128 3130

And the following configuration on a proxy server s2.example.com (198.51.100.86):

cache_peer s1.example.com sibling 3128 3130

This configuration may result in a forwarding loop. Now we'll edit the configuration on both
the servers to avoid forwarding loops.

The configuration on s1.example.com should be:

cache_peer s2.example.com sibling 3128 3130
acl sibling2 src 198.51.100.86
cache_peer_access s2.example.com deny sibling2

And the configuration on s2.example.com should be:

cache_peer s1.example.com sibling 3128 3130
acl sibling1 src 192.0.2.25
cache_peer_access s2.example.com deny sibling1

These configurations will prevent any possible forwarding loops.

Joining a cache hierarchy
In the previous chapters, we learned about the cache_peer directive in the Squid
configuration file and how to use cache_peer to add other proxy servers in our
configuration file, so that our proxy server can forward requests to neighbors. However, we
only had a brief overview of the options used along with cache_peer. In this chapter, we'll
explore cache_peer and its various options in detail.

The following is the format to add a proxy server in a configuration file using cache_peer:

cache_peer HOSTNAME TYPE HTTP_PORT ICP_OR_HTCP_PORT [OPTIONS]

The parameter HOSTNAME is the IP address or domain name of the proxy server we
are trying to add to the configuration file. The TYPE parameter takes one of the values
parent, sibling, or multicast, and specifies the type of the proxy server, which further
determines the type of communication between the two servers.

Building a Hierarchy of Squid Caches

[202]

Please note that DNS resolution must be working if you want to use domain
name as a value for the HOSTNAME parameter. Also note that future releases
will support originserver as a type for the TYPE parameter.

The HTTP_PORT parameter specifies the port on which a neighbor or peer accepts HTTP
requests on the hostname specified with the HOSTNAME parameter. Normally it's 3128.

The ICP_OR_HTCP_PORT parameter specifies the ICP or HTCP port for peer communication.
The default ICP port is 3130, but we still need to specify it. Also, if we specify the HTCP port
(default 4827), we must append htcp so that Squid can send HTCP queries to the peer. We
can set this to 0 if we don't want any ICP or HTCP communication with the peer.

Time for action – joining a cache hierarchy
Let's add two proxy servers to our Squid configuration file:

cache_peer parent.example.com parent 3128 3130 default
cache_peer sib.example.com sibling 3128 3130 proxy-only

So, according to this configuration, parent.example.com is a parent proxy server and
sib.example.com is a sibling proxy server.

What just happened?
We just learned how to add a proxy server or neighbors to our Squid configuration file,
so that our proxy server can be a part of a cache hierarchy.

Now, let's have a look at the options which can be used to control ICP or HTCP communication.

ICP options
When we configure a peer with ICP communication, we must configure the icp_port and
icp_access directives properly. Next, we'll have a look at the ICP-related options for the
cache_peer directive.

no-query
If we use the option no-query, then Squid will never send any ICP queries to this peer.

multicast-responder
The option multicast-responder specifies that this peer is a member of a multicast
group and Squid should not send ICP queries directly to this peer, however, we can receive
ICP replies from this host.

Chapter 8

[203]

closest-only
When the closest-only option is used, and in case there are ICP_OP_MISS replies,
Squid will not forward requests resulting in FIRST_PARENT_MISS. However, Squid can still
forward requests resulting in CLOSEST_PARENT_MISS.

background-ping
The background-ping option instructs Squid to send ICP queries to this peer in the
background only and that too infrequently. This is generally used to update the round trip time.

HTCP options
When we configure a peer with HTCP communication, we must properly configure the
htcp_port and htcp_access directives in the Squid configuration file. Let's have a look
at the additional options for HTCP communication. Refer to http://tools.ietf.org/
html/rfc2756 for details on the HTCP protocol.

htcp
If we want Squid to use HTCP instead of ICP for communication, we must append the htcp
option with the ICP_PORT parameter, while adding a neighbor using the cache_peer
directive. Also, we should specify the port 4827 instead of 3130. This directive accepts a
comma-separated list of the options described below.

htcp=oldsquid
If we use the option htcp=oldsquid, Squid will treat this neighbor as Squid version 2.5
or earlier and send HTCP queries accordingly.

htcp=no-clr
When the htcp=no-clr option is used, Squid is allowed to send HTCP queries to this
neighbor, but CLR requests will not be sent. This option conflicts with the htcp=only-clr
option and they should not be used together.

htcp=only-clr
The option htcp=only-clr instructs Squid to send only HTCP CLR requests to this neighbor.

htcp=no-purge-clr
When the option htcp=no-purge-clr is used, Squid is allowed to send HTCP queries
including CLR requests, only when CLR requests don't result from PURGE requests.

htcp=forward-clr
If the option htcp=forward-clr is used and our proxy server receives a HTCP CLR request,
they will be forwarded to this peer.

Building a Hierarchy of Squid Caches

[204]

Peer or neighbor selection
If we add more than one cache peer or neighbor to our Squid configuration file, then we may
be concerned about how Squid should select the peer to forward misses or send ICP or HTCP
queries to. Squid provides the following options or methods for peer selection, depending on
our environment or needs. By default, ICP is used for peer selection.

default
If we specify the option default while adding a peer or neighbor, then this parent will
be used when no other peer can be located using any other peer selection algorithm. We
should not use this option with more than one peer because this will mean that only the
first one with the default option will be used.

round-robin
The option round-robin can be used to enable a very simple form of load balancing. The
requests will be forwarded to cache peers marked with the round-robin option in an
alternate order. This option is useful only when we use it with at least two peers. The option
weight, which we'll see in the next section, biases the request counter which results in
biased peer selection.

weighted-round-robin
The option weighted-round-robin instructs Squid to load balance requests among
peers based on the round trip time, calculated by the background-ping option which we
saw earlier. When this option is used, closer parents are used more often than other peers.
We can also use the weight option which biases the round trip time, resulting in a biased
peer selection.

userhash
The option userhash load balances requests on the basis of the client proxy_auth or the
ident username.

sourcehash
The option sourcehash is similar to userhash, but the load balancing is done on the basis
of the clients source IP address.

carp
The Cache Array Routing Protocol (CARP) is used to load balance HTTP requests across
multiple caching proxy servers by generating a hash for individual URLs. For more
information about CARP protocol, please visit http://icp.ircache.net/carp.txt. The
option carp makes a parent peer a part of the cache array. The requests will be distributed
uniformly among the parents in this cache array based on the CARP load balancing hash
function. The option weight will cause biased peer selection in this case also.

Chapter 8

[205]

multicast-siblings
The option multicast-siblings can be used only with multicast peers. The members
of the multicast group must have a sibling relationship with this cache peer. This option is
particularly useful when we want to configure a pool of redundant proxies that are members
of the same multicast group, which are also known as a cluster of siblings, where multicast is
used to speed up and reduce the ICP query overhead.

Options for peer selection methods
Along with the various peer selection methods we discussed previously, there are various
options that can be combined with peer selection methods to further optimize the load
balancing. Let's have a look at the available options.

weight
The option weight (weight=N) is used to affect the peer selection in methods that perform
a weighted peer selection. The larger value of weight means that we are favoring a cache
peer more over other cache peers with smaller values of weight. By default, the value of
weight is 1, which means that all peers are equally favored.

basetime
The option basetime (basetime=N) is used to specify an amount of time that will be
subtracted from the round trip time of all the parents, before dividing it by the weight
to decide or select the parent to fetch from.

ttl
The option ttl (ttl=N) is specific to multicast groups. This option can be used to specify
a Time to Live (TTL) when sending ICP queries to the multicast group. Other peers or the
members of the multicast group must be configured with the multicast-responder
option so that they can receive ICP replies properly. For more information on TTL, please
check http://en.wikipedia.org/wiki/Time_to_live.

no-delay
If we are using Squid delay pools and we have added several peers to our configuration file,
then the cache hits from peer proxy servers will be included in the client's delay pools. We
don't want cache hits from other peers to be limited and they should not affect the delay
pools. To achieve such behavior, we can use the no-delay option to ensure maximum speed.

digest-URL
If cache digests are enabled, Squid will try to fetch them using the standard location for
cache digests. However, if we want Squid to fetch cache digests from an alternate URL, we
can use the option digest-URL (digest-URL=URL) to instruct Squid to fetch digests from
a different URL.

Building a Hierarchy of Squid Caches

[206]

no-digest
The option no-digest disables fetching of cache digests from this peer.

SSL or HTTPS options

We can encrypt our connections to a cache peer with SSL or TLS. Squid provides a series of
related options using which we can customize the connection parameters. Later, we'll have
a look at these options.

ssl
When the option ssl is set, the communication to this cache peer will be encrypted with SSL
or TLS.

sslcert
The option sslcert (sslcert=FILE) is used to specify the absolute path of a file containing
the client SSL certificate, which should be used while connecting to this cache peer.

sslkey
We can optionally use the sslkey (sslkey=FILE) option to specify the absolute path to
a file containing private SSL key, corresponding to the SSL certificate, specified using the
sslcert option. If this option is not specified, then the SSL certificate file specified using
the sslcert option is assumed to be a combined file containing the SSL certificate and the
private key.

sslversion
The option sslversion (sslversion=NUMBER) can be used to specify the version of the
SSL/TLS protocols we need to support. The following are the possible values of sslversion:

1: Automatic detection. This is the default value.

2: SSLv2 only.

3: SSLv3 only.

4: TLSv1 only.

sslcipher
We can specify a colon separated list of supported ciphers using the sslcipher
(sslcipher=COLON_SEPARATED_LIST) option. Please check man page for ciphers(1)
or visit http://www.openssl.org/docs/apps/ciphers.html for more information on
ciphers supported by OpenSSL. Please note that the availability of ciphers depends on the
version of OpenSSL being used.

Chapter 8

[207]

ssloptions
We can specify various SSL engine-specific options in the form of a colon separated list
using the ssloptions (ssloptions=LIST) parameter. Please check the SSL_CTX_set_
options(3) man page or visit http://www.openssl.org/docs/ssl/SSL_CTX_set_
options.html for a list of supported SSL engine options.

sslcafile
We can specify a file containing additional CA certificates using the option sslcafile
(sslcafile=FILE), which can be used to verify the cache peer certificates.

sslcapath
The option sslcapath (sslcapath=DIRECTORY) is used to specify the absolute path to
a directory containing additional certificates and CRL (Certificate Revocation List) lists that
should be used while verifying the cache peer certificates.

sslcrlfile
The option sslcrlfile (sslcrlfile=FILE) is the absolute path to a file containing
additional CRL lists, which should be used to verify cache peer certificates. These CRL lists
will be used in addition to the CRL lists stored in sslcapath.

sslflags
Using the option sslflags (sslflags=LIST_OF_FLAGS), we can specify one or more
flags, which will modify the usage of SSL. Let's have a look at the available flags:

DONT_VERIFY_PEER: Accept the peer certificates, even if they fail to verify.

NO_DEFAULT_CA: If the flag NO_DEFAULT_CA is used, the default CA lists built in
OpenSSL will not be used.

DONT_VERIFY_DOMAIN: If the DONT_VERIFY_DOMAIN flag is used, the peer
certificate will not be verified if the domain matches the server name.

ssldomain
The option ssldomain (ssldomain=DOMAIN_NAME) can be used to specify the peer
domain name, as mentioned in the peer certificate. This option is used to verify the received
peer certificates. If this option is not specified, then the peer hostname will be used.

front-end-https
Using the option front-end-https will enable the Front-End-Https: On header when
Squid is used as a SSL frontend in front of Microsoft Outlook Web Access (OWA). For more
information on why this header is needed, please check http://support.microsoft.
com/kb/307347.

Building a Hierarchy of Squid Caches

[20�]

Other cache peer options
Until now, we have learned about various options that can be specified for optimizing
peer selection and hence optimizing the flow of traffic. Now, let's have a look at the other
important options provided by Squid.

login=username:password
Some of our peers may require proxy authentication for access. For such scenarios, we can
use login option (login=username:password) to authenticate our cache so that it can
use this peer.

login=PASS
The option login=PASS is used when we want to pass on login details received from the
client to this particular peer. Proxy authentication is not a requirement for using this option.
Also, if Squid didn't receive any authentication headers from the client but the username and
password are available from external ACL user= and password= result tags, then they may
be sent instead.

If we want to use proxy authentication on our proxy server as well as with this peer, then
both the proxies must share the same user database, as HTTP allows only a single login
(one for the proxy server and one for the origin server).

login=PASSTHRU
The option login=PASSTHRU is used when we want to forward HTTP authentication
(Proxy-Authentication and WWW-Authorization) headers to this peer without
any modification.

login=NEGOTIATE
We can use the option login=NEGOTIATE if this is a personal or a workgroup proxy
server and the parent proxy server requires a secure proxy authentication. The first
Service Principal Name (SPN) from the default keytab or defined by the environment
variable KRB5_KTNAME will be used.

connect-timeout
The option connect-timeout determines the connection timeout to this peer. This can be
different for different peers. If this option is not used, then Squid will determine the timeout
from the peer_connect_timeout directive.

connect-fail-limit
The option connect-fail-limit (connect-fail-limit=N) determines the number
of connection failures to this peer or neighbor, after which it will be declared dead or
unreachable. The default value of connect-fail-limit is 10.

Chapter 8

[20�]

max-conn
The number of parallel connections that can be opened to this peer is determined by the
option max-conn (max-conn=N).

name
There may be cases when we have multiple peers on the same host listening on different
ports. In such cases, the hostname will not be able to uniquely identify a peer or neighbor.
So, we can use the name (name=STRING) option to specify a unique name for this peer. Also,
this option is always set and defaults to either the hostname, the IP address, or the cache
peer. The name specified using this option is used with directives like cache_peer_access
and cache_peer_domain.

proxy-only
Normally, Squid will try to store the responses locally if the requests are cacheable. However,
if the request is fetched from peers in the local area network, then this will result in the
unnecessary waste of disk space on our proxy servers if the responses can be fetched at a very
high speed from our peers. Specifying the proxy-only option will instruct Squid not to cache
any responses from this peer. Please note that we should use this option only when the cache
peer is connected with a low latency and high speed connection to our proxy server.

allow-miss
The client requests are forwarded to a sibling only when they result in hits. We can use the
allow-miss option to forward cache misses to siblings. We should use this option carefully
as this may result in forward loops.

Controlling communication with peers
Unil now we have learned about various options that can be used to configure cache peers or
neighbors as parents or siblings. Now, we'll learn about controlling access to different peers
and sending a variety of requests to different peers, depending on various rules. Access control
over peer communication is achieved via various directives in the Squid configuration file. We
have learned about these directives briefly, but we'll explore them in detail now.

Domain-based forwarding
Squid provides a directive cache_peer_domain, using which we can restrict the domains
for which a particular peer or neighbor will be referred. The general format for the
cache_peer_domain directive is:

cache_peer_domain NAME [!]domain [[!]domain] ...

In the preceding format, NAME is the name of the neighbor cache, which will be either the
values of the name option, the hostname, or the IP address specified while declaring it as
a peer using the cache_peer directive.

Building a Hierarchy of Squid Caches

[210]

We can specify any number of domains with the cache_peer_domain directive, either on
the same line or multiple lines. Prefixing a domain name with '!' will result in all domains
being matched except the specified one.

Time for action – configuring Squid for domain-based
forwarding

Let's see an example configuration:

cache_peer parent.example.com parent 3128 3130 default proxy-only
cache_peer acad.example.com parent 3128 3130 proxy-only
cache_peer video.example.com parent 3128 3130 proxy-only
cache_peer social.example.com parent 3128 3130 proxy-only
cache_peer search.example.com parent 3128 3130 proxy-only

cache_peer_domain acad.example.com .edu
cache_peer_domain video.example.com .youtube.com .vimeo.com
cache_peer_domain video.example.com .metacafe.com .dailymotion.com
cache_peer_domain social.example.com .facebook.com .myspace.com
cache_peer_domain social.example.com .twitter.com
cache_peer_domain search.example.com .google.com .yahoo.com .bing.com

According to the previous configuration example, the proxy server acad.example.com can
be used to forward requests for the .edu domains only. A cache peer can only be contacted
for the domain names matching the ones specified with cache_peer_domain. If we don't
specify any domain name for a peer (parent.example.com in the above example), then it
can be used to forward all requests.

So, we can see how straight forward it is to partition traffic by using some simple rules such
as those in the previous configuration.

What just happened?
We learned to use the directive cache_peer_domain to partition the traffic or client requests
based on domain names so that the requests can be forwarded to different proxy servers.

Cache peer access
Squid provides another directive named cache_peer_access, which is a more flexible
version of cache_peer_domain as we can control request forwarding using powerful
access control lists. The format of the cache_peer_access directive is as follows:

cache_peer_access NAME allow|deny [!]ACL_NAME [[!]ACL_NAME] ...

Chapter 8

[211]

The NAME parameter is the same as the one used with cache_peer_domain and specifies
the name of the cache peer or neighbor. The options allow or deny will determine whether
a request will be forwarded or not to this cache peer.

Time for action – forwarding requests to cache peers
using ACLs

Let's say we have three parent proxy servers (p1.exmaple.com, p2.example.com, and
p3.example.com). The proxy server p3.example.com is connected to the internet with a
highly reliable, but expensive connection, with a fair usage policy. The proxy servers p1 and
p2 are cheaper but unreliable. Also, we have three subnets (academic, research, and finance)
on our local area network, according to the following diagram:

Now, let's have a look at the following configuration:

cache_peer p1.example.com parent 3128 3130 round-robin
cache_peer p2.example.com parent 3128 3130 round-robin
cache_peer p3.example.com parent 8080 3130

acl academic src 192.0.2.0/16
acl finance src 198.51.100.0/16
acl research src 203.0.13.0/16

acl imp_domains dstdomain .corporate.example.com .edu

Building a Hierarchy of Squid Caches

[212]

acl ftp proto FTP

cache_peer_access p3.example.com deny ftp
cache_peer_access p3.example.com allow research
cache_peer_access p3.exmaple.com allow academic imp_domains
cache_peer_access p3.exmaple.com allow finance imp_domains
cache_peer_access p3.example.com deny academic
cache_peer_access p3.example.com deny finance

As we can see in the previous example, we have allowed request forwarding to the parent proxy
server p3.example.com for the requests originating from the research subnet only. We have
allowed other subnets to access some important domains using the highly reliable connection
and we have completely disabled the use of this connection for the FTP protocol. Also, note
that the requests will be forwarded to the proxy server p3.example.com only when both
p1.example.com and p2.example.com are not reachable. The requests will be forwarded
to the p1.example.com and p2.example.com proxy servers in a round robin fashion.

We can achieve even better control by using ACL lists of different ACL types.

What just happened?
We just explored the power of the cache_peer_access directive, which in combination
with Squid's access control lists, provides a powerful way to forward requests to different
peers. We can further improve the request forwarding by using the time-based ACLs along
with cache_peer_access.

Have a go hero – join a cache hierarchy
Make a list of proxy servers on your network. Add these proxy servers to the Squid
configuration file and then partition traffic to these proxy servers in such a way that the
requests go to one group of servers in the day time, and to a different group at night.

Switching peer relationship
As we saw earlier, we have to specify the peer relationship while adding a peer to our
Squid configuration file. However, there may be cache peers who can offer to serve cache
misses only for certain domains, while serving cache hits for all domains. The misses and
hits mentioned above are corresponding to the ICP, Cache Digest, or HTCP, misses and
hits. An ICP, Cache Digest, or HTCP miss means that the peer does not have the required
object. The peer relationship switch for certain domains can be achieved using the
neighbor_type_domain directive in the configuration file. The following format
uses the neighbor_type_domain directive:

neighbor_type_domain CACHE_HOST parent|sibling domain [domain] ...

Chapter 8

[213]

Time for action – configuring Squid to switch peer relationship
For example, let's say we have configured sibling.example.com as a sibling proxy server
but sibling.example.com allows us to forward requests to .edu domains, even if there
are cache misses. So, we can have the following configuration:

cache_peer parent.example.com parent 3128 3130 default proxy-only
cache_peer sibling.example.com sibling 3128 3130 proxy-only

neighbor_type_domain sibling.example.com parent .edu

In accordance with the previous configuration, we can fetch cache misses for .edu domains
using sibling.example.com.

What just happened?
In this section, we learned to switch the peer relationship, from sibling to parent,
dynamically for certain domains.

Controlling request redirects
We have just seen a list of directives, using which, we can use different peers to forward
requests based on various parameters. In addition to the previously mentioned directives, Squid
provides a few more directives, using which we can force certain requests to be forwarded to
remote servers directly or to always pass through peers. Let's have a look at these directives.

hierarchy_stoplist
We normally use cache peers to increase the cache hit ratio, but there are certain requests
which can't be cached as the content served in response to these requests is dynamic and
changes every time it's requested. It's of no use to query our cache peers for such requests.
We can instruct Squid to stop forwarding requests to peers and instead contact the remote
servers directly using the directive hierarchy_stoplist. The directive hierarchy_
stoplist essentially takes a list of words, which if found in a request URL, will mean that
the URL will be handled by this cache and will not be forwarded to any of the neighbors.

hierarchy_stoplist cgi-bin ? jsp

We should note that never_direct overrides
the directive hierarchy_stoplist.

Building a Hierarchy of Squid Caches

[214]

always_direct
There may be certain requests which we always want to forward to remote servers instead
of forwarding them to neighbor caches. We can use the directive always_direct to direct
or forward such requests directly to remote servers. This is generally helpful in retrieving
the content on the local area network directly because cache peers will introduce
unnecessary delay.

For example, consider the following configuration:

acl local_domain dstdomain .local.example.com
always_direct allow local_domain

The requests destined to .local.example.com will be sent directly to the corresponding
servers instead of routing them through cache peers.

never_direct
Using the directive never_direct, we can control the requests which must not be sent
to remote servers directly and must be forwarded to a peer cache. This is generally helpful
when all the packets going to internet must pass through a proxy firewall, which is normally
configured as a default parent.

Let's say we have firewall.example.com as a firewall proxy which must be used for
forwarding all requests, but we can still forward all requests for local servers directly. So,
we can have the following configuration:

cache_peer firewall.example.com parent 3128 3130 default

acl local_domain dstdomain .local.example.com
always_direct allow local_domain
never_direct allow all

The previous configuration will configure Squid so that all requests to the local servers are
forwarded directly to the destination servers and that all external requests pass through the
firewall proxy server firewall.example.com.

prefer_direct
Any requests which are cacheable by Squid are routed via peers so that we can utilize
neighbor caches to improve the average page load time. However, in case we are willing
to forward the cacheable requests directly to remote servers, we can set the value of the
prefer_direct directive to on. The default value of this directive is off and Squid will try
to use neighbor caches first instead of forwarding the requests directly to remote servers.

Chapter 8

[215]

The directive prefer_direct modifies Squid's behavior only for cacheable
requests. If we want to route all requests through a firewall proxy, we should use
never_direct instead.

nonhierarchical_direct
Non-hierarchical requests are the requests that are either identified by the hierarchy_
stoplist directive or can't be cached by Squid. Such requests should not be sent to
cache peers because they will not result in cache hits. Therefore it's a good idea to forward
these requests directly to remote servers. We achieve this behavior by setting the value
of the directive nonhierarchical_direct to on. If we set this directive's value to off,
these requests will not be sent to remote servers directly. Please note that although HTTPS
requests are not cacheable, nonhierarchical_direct must be set to off for HTTPS
requests to be relayed through a firewall parent proxy.

It's not recommended to set the value of nonhierarchical_
direct to off. If we want to direct all requests via a firewall
proxy, we should use the never_direct directive instead.

Have a go hero – proxy server behind a firewall
Configure your proxy server so that it forwards all the requests to a parent proxy server and
never contacts the remote servers directly.

Peer communication protocols
We have learned about configuring Squid to be a part of a cache hierarchy. When many
proxy servers are a part of cache hierarchy, they need to communicate to share information
about the objects present in their cache so that neighbors can utilize these cached objects
as hits. For communication among peers, Squid implements ICP, HTCP, and Cache Digest
protocols. Later on, we'll have a brief look at ICP, HTCP, and Cache Digest protocols.

Internet Cache Protocol
ICP or Internet Cache Protocol is a simple web-caching protocol used to query proxy
servers (cache peers) about the existence of a particular object in their cache. Depending
on the replies received from the neighbors, Squid will decide the forwarding path for the
particular request.

Building a Hierarchy of Squid Caches

[216]

As we saw in the peer selection algorithms, ICP is also used to calculate the round trip
time and also for detecting dead peers in a hierarchy. The round trip time calculation is
an important measure as it can help Squid in dynamically rerouting the traffic to a less
congested network route.

Although ICP is a simple protocol and it's very easy to configure proxy servers to communicate
with each other using it, ICP also suffers from a lot of problems. The first one is latency. Squid
doesn't know whether an object is present in a peer cache or not. It has to query all the peer
caches for each object, which in some cases (if the number of peers is large), will introduce a
significant delay as it will take time to query all of them. So, if we have a large number of peers,
there will be a lot of ICP packets floating around on the network which may end up causing
congestion. To get around the congestion issue here, we can use the multicast ICP protocol.

Other flaws in the ICP protocol are false hits, security, and so on. For more details on the ICP
protocol, please visit http://icp.ircache.net/rfc2186.txt. Another interesting read
about the application of the ICP protocol is at http://tools.ietf.org/html/rfc2187.

The HTCP protocol is recommended over the ICP protocol to avoid problems like latency,
false hits, and so on.

Cache digests
Squid keeps a list of all the cached objects in the main memory in the form of a hash, so that
it can quickly guess whether a URI will result in a hit or miss without actually searching for
the files on disk. Cache digest is a summary of these cached objects into a compact bitmap
using the Bloom Filter data structure (for more information on the Bloom Filter, please visit
http://en.wikipedia.org/wiki/Bloom_filter). The value of the bit determines
whether a particular object is present in the cache or not. If the bit is on or set to 1, the object
is present in the cache, otherwise it's not in the cache. This summary is available to other peers
via a special URL over the HTTP protocol. When a cache digest is retrieved by peers they can
determine, by checking the digest, whether a particular URI is present in the cache or not.

So, cache digests significantly reduce the number of packets flowing on the network which
are just for querying the other peers, but the total data transfer amount increases as the
cache digests are fetched by all the peers periodically. However, this helps in significantly
decreasing the delay introduced by ICP queries.

With the cache digest protocol, the problem of false hits get worse as the digest grows older.
The digest is rebuilt only periodically (hourly by default). This also introduces the problems of
false misses. The false misses are for web objects which were cached after the cache digest
was built.

Chapter 8

[217]

Squid and cache digest configuration
To be able to use cache digests, we must enable cache digests using the --enable-cache-
digests option with the configure program before compiling Squid. Let's have a look at
the cache digest related directives available in the Squid configuration file.

Digest generation
It makes sense to generate cache digests only when we plan to use cache digests for peer
communication. Therefore, we can use the digest_generation directive in the configuration
file to select whether the digest will be generated or not. The possible values for this directive
can be on or off. By default, this directive is set to on and Squid generates cache digests.

Digest bits per entry
The data structure, Bloom Filter, which is used to build cache digest, provides a lossy
encoding and there may be false hits even in the cache digests. The directive digest_bits_
per_entry determines the number of bits that will be used for encoding one single entry
or a cached object. The larger value of bits per entry will result in higher accuracy and hence
lesser false hits, but will this consume more space in the main memory and more bandwidth
while transferring over the network. The default value of digest_bits_per_entry is 5
but we can safely push it to 7 for more accuracy if we have a large cache.

Digest rebuild period
We can use the directive digest_rebuild_period to set the time interval, after which
the cache digest will be rebuilt. One hour is the default, which will result in a not so up-to-
date cache digest, but rebuilding a cache digest is a CPU-intensive job and this time interval
should be set depending on the hardware capabilities and load on the proxy server. We can
safely set it to 10 or 15 minutes to keep things fresh.

Digest rebuild period implies the time after which the cache
digest will be rebuilt in memory. This time doesn't imply the
time after which the cache digest will be written to disk.

Digest rebuild chunk percentage
The directive digest_rebuild_chunk_percentage determines the percentage of the cache
which will be added to the cache digest every time the rebuild routine is called on schedule. The
default behavior is to add 10 percent of the cache to the cache digest every rebuild.

Digest swapout chunk
The amount or number of bytes of the cache digest that will be written to the disk at a time
is determined by the directive digest_swapout_chunk. The default behavior is to write
4096 bytes at a time.

Building a Hierarchy of Squid Caches

[21�]

Digest rewrite period
The digest rewrite period is the time interval after which the cache digest is written to disk,
which then can be served to other peers. We can configure this time interval using the
digest_rewrite_period directive. Generally, it should be equal to digest the rebuild period.

Hypertext Caching Protocol
HTCP or Hypertext Caching Protocol is similar to ICP but has advanced features and
generally results in better performance compared to the ICP protocol. Both the ICP and HTCP
protocols use UDP for communication and TCP communication is optionally allowed for HTCP
for protocol debugging. HTCP has the following advantages over the ICP protocol:

ICP queries include only URI while HTCP queries include full HTTP headers. HTCP also
includes HTTP headers in a request, which helps the server avoid false hits, but would
be true only for a URL key and would be false if more headers are known.

HTCP allows third party replies, using which a peer can inform us about an alternate
location of a cached object. ICP doesn't have a similar provision.

HTCP supports monitoring of peers for cache additions or deletions while ICP doesn't.

HTCP uses a variable sized binary message format, which can be used for extending
the protocol, while ICP uses a fixed size binary message format rendering ICP to be
very difficult to extend.

HTCP provides optional message authentication using shared secret keys while
ICP doesn't.

For more details on the HTCP protocol, please visit http://tools.ietf.org/html/
rfc2756.

Pop quiz
1. Consider the following configuration and then select the most appropriate answer

from the following selection:

cache_peer p1.example.com parent 3128 3130 default weight=1
cache_peer p2.example.com parent 3128 3130 default weight=10
cache_peer s1.example.com sibling 3128 3130 default
cache_peer s2.example.com sibling 3128 3130 default

If all siblings are dead, then which parent proxy servers will be used for forwarding
requests?

a. p1.example.com

b. s1.example.com

c. p2.example.com

d. s2.example.com

Chapter 8

[21�]

2. Consider the following Squid configuration and then select the most appropriate
answer from the following selection:

cache_peer sibling.example.com sibling 3128 0 no-query no-digest

Which of the following directives can be used for forwarding all requests, except
requests to local.example.com?

a. cache_peer_domain

b. cache_peer_access

c. Both a and b

d. None

Summary
In this chapter, we have learned about configuring the Squid proxy server to join a
cache hierarchy. We also learned about the various relationships between cache
peers or neighbors. We also learned about various peer selection mechanisms for
forwarding requests.

Specifically, we covered:

Advantages and disadvantages of joining a cache hierarchy

Various configuration options while adding peers

Ways to restrict access to cache peers

Various configuration directives to control request forwarding to peers

The protocols used for communication among cache peers

In the next chapter, we'll learn about configuring Squid in the reverse proxy mode.

�
Squid in Reverse Proxy Mode

So far, we have learned to use Squid for caching the requests to various
websites on the Internet, and for hiding a number of clients behind a single or
a hierarchy of proxy servers. The Squid proxy server can also act as an origin
server accelerator in which it accepts normal HTTP requests and forwards the
cache misses to the origin servers. This is commonly known as surrogate mode.
In this chapter, we'll learn about configuring Squid in reverse proxy mode.

In this chapter, we will learn about:

Reverse proxy mode

Configuring Squid as a server surrogate (also known as an accelerator)

Access controls in reverse proxy mode

Example configurations

So let's get started...

Squid in Reverse Proxy Mode

[222]

What is reverse proxy mode?
In previous chapters, we have learned to use Squid to cache the web documents locally so
that we can enhance the user experience. This is done by serving the cached web documents
from the proxy server, which is generally on the same local network as the clients. So, we can
visualize this behavior using the following diagram:

As we can see in the previous diagram, we try to cache the responses received from various
web servers on the Internet and then use those cached responses to serve the subsequent
requests for the same web documents. In short, we are using Squid to improve the
performance of our Internet connection.

Exploring reverse proxy mode
Now, consider the scenario from a point of view of a web server. Let's say that the website
www.example.com is hosted on a web server and there are tens of thousands of clients
browsing the website. So, in the scenario where a website gets way too many visitors, the
web server will be overloaded and we would have to distribute the load by deploying more
servers. We can visualize this situation using the following diagram:

In the previous diagram, a group of web servers are hosting the domain www.example.com
and serving the responses to the requests from all over the internet.

Chapter 9

[223]

As we know, most of the content served to clients by a web server hosting a website doesn't
change frequently. For example, the additional files like JavaScript files, CSS style sheets,
and images embedded in a web page, which constitute the major part of a web page, don't
change frequently. So, we can introduce a Squid proxy server in a reverse proxy mode (also
known as a surrogate or an accelerator), which will cache the content that doesn't change
frequently. It will also try to help the otherwise overloaded web server by responding to the
majority of requests targeted to the web server, by serving the content from its cache. Let's
have a look at the following diagram:

In the preceding diagram, we placed a Squid proxy server in front of the web servers so that
all the requests to the web servers are passing through the proxy server. Therefore in this
scenario, Squid will be accepting the HTTP requests. Squid will forward all the requests to
the origin web servers, except the requests that it has already cached. So, web servers will
not have to deal with the requests that are already cached on the proxy server. This mode
of Squid is called reverse proxy mode or server accelerator mode.

Now that we have understood the reverse proxy mode, it's time to learn to configure Squid
as a server accelerator.

Configuring Squid as a server surrogate
To configure Squid as a server surrogate, we need to provide the appropriate options with
various directives, depending on the requirements. We can configure Squid to act as a
forward proxy and server surrogate at the same time. However, the access control rules must
be written very carefully in such cases, which we will cover in our special section on Access
Control Configuration for surrogate servers. However, to omit any possible confusion, it's
always better to have a dedicated instance of Squid for server acceleration and a separate
instance for the forward proxy.

Squid in Reverse Proxy Mode

[224]

Also, as Squid will be listening on port 80 to accept HTTP requests, our web server can't
listen on the same IP address as Squid. In this scenario, we have the following options:

Squid can listen on port 80 on the public IP address and the web server can listen on
port 80 on the loopback (127.0.0.1) address.

The web server can listen on port 80 on a virtual network interface with an IP
address from the private address space. If the web server and Squid are on different
machines, then this is not going to be a problem at all.

HTTP port
As we learned that Squid will be accepting HTTP requests on behalf of the web servers
sitting behind it, the most important configuration directive is http_port. We need to
set the HTTP port with the appropriate options. Let's have a look at the general format of
http_port for configuring Squid in the reverse proxy mode.

http_port 80 accel [options]

So, we need to specify a port number, such as 80. Apart from the port, we need to use the
option accel, which will tell Squid that port 80 will be used for server acceleration. Also,
there are additional options that are required to properly configure Squid so that it can
communicate with the web servers.

Please note that while configuring Squid in surrogate mode, we need to specify at
least one option from defaultsite, vhost, or vport. We should also note
that the CONNECT requests are blocked from receiving accel flagged ports.

HTTP options in reverse proxy mode
Let's have a look at the other options that can be used with the http_port directive.

defaultsite
The option defaultsite (defaultsite=domain_name) specifies the domain name or site
that will be used to construct the Host HTTP header if it is missing. The domain name here is
the public domain name that a visitor types in his/her browser to access the website.

vhost
If we specify the option vhost, Squid will support domains hosted as virtualhosts.

vport
To enable IP-based virtual host support, we can use the vport option. The option vport can
be specified in the following two ways:

Chapter 9

[225]

If we specify the vport option, Squid will use the port from the Host HTTP header. If the
port in the Host header is missing, then it'll use http_port (port) for virtual host support.

If we specify the vport option along with the port (vport=PORT_NUMBER), Squid will use
PORT_NUMBER instead of the port specified with http_port.

allow-direct
The direct forwarding of requests is denied in reverse proxy mode, by default, for security
reasons. When we have direct forwarding enabled in reverse proxy mode, a rogue client may
send a forged request with any external domain name in the Host HTTP header and Squid
will fetch and forward the response to the client. This will permit relay attacks. A very strict
access control is required to prevent such attacks when direct forwarding is enabled. If we
want, we can enable direct forwarding by specifying the option allow-direct.

protocol
The protocol (protocol=STRING) option can be used to reconstruct the requests.
The default is HTTP.

ignore-cc
The HTTP requests carry Cache-Control HTTP headers from the clients which determine
whether the cached response should be flushed or reloaded. If we use the option ignore-
cc, the Cache-Control headers will be ignored and Squid will serve the cached response
if it's still fresh.

The following are a few examples showing the usage of http_port.

http_port 80 accel defaultsite=www.example.com
http_port 80 accel vhost
http_port 80 accel vport ignore-cc

HTTPS port
Let's consider a scenario where we are serving a website or a few pages on a website over an
encrypted secure connection using secure HTTP or HTTPS. We can outsource the encryption
and decryption work to the Squid proxy server, which can handle HTTPS requests. So, when
we configure Squid to accept HTTPS connections or requests, it'll decrypt the requests and
forward the unencrypted requests to the web server.

Please note that we should use the --enable-ssl option with the
configure program before compiling, if we want Squid to accept HTTPS
requests. Also note that several operating systems don't provide packages
capable of HTTPS reverse-proxy due to GPL and policy constraints.

Squid in Reverse Proxy Mode

[226]

HTTPS options in reverse proxy mode
Let's have a look at the syntax for the https_port directive.

https_port [IP_ADDRESS:]port accel cert=certificate.pem [key=key.pem]
[options]

In the preceding configuration line, the IP_ADDRESS to which Squid will bind to can be
optionally specified. The option port determines the port on which Squid will listen for
HTTPS requests.

The cert parameter is used to specify the absolute path to either the SSL certificate file
or an OpenSSL-compatible combined certificate and private key file. The key parameter
is optional and is used to specify the absolute path to the SSL private key file. If we don't
specify the key parameter, Squid will assume the file specified by the cert parameter
as a combined certificate and private key file.

Please note that we should have OpenSSL installed on our system. Please check
http://www.openssl.org/ for more information on OpenSSL. It is also
recommended to keep an eye on the latest OpenSSL vulnerabilities and to apply
the patches as soon as they are available at http://www.openssl.org/
news/vulnerabilities.html.

Let's have a quick look at the other options available with the https_port directive.

defaultsite
The option defaultsite (defaultsite=domain_name) can be used to specify the
default HTTPS website which should be used in case HTTP Host header is missing.

vhost
Identical to http_port, the vhost option can be used to support virtually-hosted domains.
Please note that if the vhost option is used, the certificate specified should be either a
wildcard certificate or one that is valid for more than one domain.

version
The option version (version=NUMBER) can be used to specify the version of the SSL/TLS
protocols which we need to support. The following are the possible values of version:

1: Automatic detection. This is the default value.

2: SSLv2 only.

3: SSLv3 only.

4: TLSv1 only.

Chapter 9

[227]

cipher
We can specify a colon separated list of supported ciphers using the cipher
(cipher=COLON_SEPARATED_LIST) option. Please check the man page for ciphers(1)
or visit http://www.openssl.org/docs/apps/ciphers.html for more information
on ciphers supported by OpenSSL. Please note that this list of ciphers is directly passed to
OpenSSL libraries and we should check the availability of ciphers for our version of OpenSSL
before specifying them.

options
We can specify various SSL engine-specific options in the form of a colon separated list using
the options (options=LIST) parameter. Please check the SSL_CTX_set_options(3)
man page or visit http://www.openssl.org/docs/ssl/SSL_CTX_set_options.html
for a list of supported SSL engine options. Please note that these options are directly passed to
OpenSSL libraries and we should check the availability of these options for our OpenSSL version.

clientca
The option clientca (clientca=FILE) is used to specify the absolute path to the file
containing a list of Certificate Authorities (CAs) to be used while requesting a client certificate.

cafile
We can specify a file containing additional CA certificates using the option cafile
(cafile=FILE), which can be used to verify client certificates.

capath
The option capath (capath=DIRECTORY) is used to specify the absolute path to a directory
containing additional certificates and CRL (Certificate Revocation List) lists that should be
used while verifying the client certificates.

Please note that if we don't specify the clientca, cafile, or capath
options, then SSL library defaults will be used.

crlfile
The option crlfile (crlfile=FILE) is the absolute path to a file containing additional
CRL lists, which should be used to verify client certificates. These CRL lists will be used in
addition to the CRL lists stored in capath.

dhparams
We can specify a file containing DH parameters for DH key exchanges using the option
dhparams (dhparams=FILE). For more information on DH parameter generation, please
check the dhparam(1) man page or visit http://www.openssl.org/docs/apps/
dhparam.html.

Squid in Reverse Proxy Mode

[22�]

sslflags
Using the option sslflags (sslflags=LIST_OF_FLAGS), we can specify one or more
flags, which will modify the usage of SSL. Let's have a look at the available flags:

NO_DEFAULT_CA
If the flag NO_DEFAULT_CA is used, the default CA lists built in OpenSSL will not be used.

NO_SESSION_REUSE
When NO_SESSION_REUSE is used, every new connection will be a new SSL connection and
no connection will be reused.

VERIFY_CRL
The CRL lists contained in the files specified using crlfile or capath options will be used
to verify the client certificates before accepting them, if the VERIFY_CRL flag is used.

VERIFY_CRL_ALL
If we use the VERIFY_CRL_ALL flag, then all the certificates in the client certificate chain
will be verified.

sslcontext
Using the option sslcontext (sslcontext=ID) we can set the SSL session ID
context identifier.

vport
The option vport is used to enable the IP-based virtual host support. Its usage is identical to
the vport option in the http_port directive.

Let's see a few examples showing the usage of the https_port directive:

https_port 443 accel defaultsite=secure.example.com cert=/opt/squid/
etc/squid_combined.pem sslflags=NO_DEFAULT_CA

https_port 443 accel vhost cert=/opt/squid/etc/squid.pem key=/opt/
squid/etc/squid_key.pem

Have a go hero – exploring OpenSSL
Try to read the OpenSSL documentation for generating various certificates and private keys.

Chapter 9

[22�]

Adding backend web servers
So far, we learned about configuring Squid to accept HTTP or HTTPS connections on behalf of
our web servers. Once Squid has received a HTTP or HTTPS request, it needs to forward it to
a web server so that it can fetch content from the web server. It will then pass that content
back to the client requesting the content. So, we need to tell Squid about our backend
servers to which it will connect to satisfy the client requests. We can add one or more web
servers using the cache_peer directive in the Squid configuration.

Cache peer options for reverse proxy mode
Let's have a look at the options for the cache_peer directive specifically meant for Squid in
reverse proxy mode.

originserver
If the option originserver is used with a cache peer, Squid will treat it as an origin
web server.

forcedomain
The forcedomain (forcedomain=domain_name) can be used to configure Squid to always
send the host header with the domain name specified. This option is generally used to fix
broken origin servers which are publicly available over multiple domains. This option should
be avoided if the origin server is capable of handling the multiple domains.

Time for action – adding backend web servers
We learned about cache_peer in detail in the previous chapter and previously, we saw two
options specifically meant for Squid in reverse proxy mode. Now, let's see a few examples
showing the usage of the cache_peer directive to add backend web servers.

cache_peer 127.0.0.1 parent 80 0 no-query no-digest originserver
cache_peer local_ip_of_web_server parent 80 no-query originserver
forcedomain=www.example.com

What just happened?
We learned to add backend web servers in our Squid configuration file as cache peers or
neighbors so that Squid can forward them the requests which it receives from clients.

Squid in Reverse Proxy Mode

[230]

Support for surrogate protocol
The requests and responses for a web document may pass through a series of server
surrogates (reverse proxies or origin server accelerators) and forward caching proxies. While
the server surrogates are used for scaling individual or a group of websites, the forward proxies
are used to provide a better browsing experience by caching the content locally. The server
surrogates act on behalf of the origin server and they act with the same authority as the origin
server. So, we need a different cache control mechanism or a different way to control these
server surrogates to achieve higher performance while maintaining the data accuracy.

Surrogate protocol extensions to the HTTP protocol provides a way to assign controls to server
surrogates, which can be different from controls assigned to the intermediary forward proxies
or the HTTP clients. Now, we'll explore the surrogate protocol and a few related aspects.

Understanding the surrogate protocol
Let's see how the surrogate protocol works and how the surrogate capabilities and controls
are passed using HTTP header fields.

When a surrogate receives a request, it builds a request which will look similar to
the following:

GET / HTTP/1.1
...
Surrogate-Capability: mirror.example.com="Surrogate/1.0"
...

Notice the special header field Surrogate-Capability. The Squid proxy server is
advertising itself as a surrogate (mirror.example.com). Now this request will be
forwarded to the origin web server.

Upon receiving the request from a surrogate, the web server will construct a
response with the appropriate surrogate control HTTP header, shown in the
following example:

HTTP/1.1 200OK
...
Cache-Control: no-cache, max-age=1800, s-max-age=3600
Surrogate-Control: max-age=43200;mirror.example.com
...

Let's see what controls are being passed by the origin server to surrogates,
forward proxies, and HTTP clients. The end clients (HTTP clients) can store the
response for a maximum time of half an hour, as determined by Cache-Control:
max-age=1800. The forward proxies on the way can store the response for an hour,
as determined by Cache-Control:s-max-age=3600. The surrogate known by
the identification token mirror.example.com can store the response for half a
day, as defined in Surrogate-Control: max-age=43200.

Chapter 9

[231]

So, as we can see from the previous examples, the surrogate protocol extensions to
HTTP have facilitated the different controls for the HTTP clients, the intermediary forward
proxies and server surrogates. For more details on the surrogate protocol, please visit
http://www.w3.org/TR/edge-arch.

Configuration options for surrogate support
We have two directives in the Squid configuration file related to surrogate protocol. Let's
have a look at these directives.

httpd_accel_surrogate_id
All server surrogates need an identification token, which is sent to origin servers so that
they can send appropriate controls to a surrogate gateway. This identification token can be
unique for a surrogate or can be shared among a cluster of proxy servers, depending on the
gateway design.

The default value of this identification token is the same as the value of visible_
hostname. To set it to a different value, we can use the httpd_accel_surrogate_id as
shown in the following example:

httpd_accel_surrogate_id mirror1.example.com

The previous configuration line will set the surrogate ID to mirror1.example.com.

httpd_accel_surrogate_remote
The remote surrogates (such as those in a Content Delivery Network or CDN) honor the
Surrogate-Control: no-store-remote directive in the HTTP header, which means that
the response should not be stored in cache. Such a response can only be sent in a reply to
the original request. We can advertise our proxy server as a remote surrogate by setting the
directive http_accel_surrogate_remote to on, which is shown in the following example:

http_accel_surrogate_remote on

We should only set this option to on when our proxy server is two or more hops away from
the origin server.

Support for ESI protocol
ESI or Edge Side Includes is an XML-based markup language that can facilitate the dynamic
assembling of HTML content at the edge of the Internet or near the end user. ESI is designed
for processing on surrogates capable of processing the ESI language. Its capability token is
ESI/1.0. The following are a few advantages of the ESI protocol:

Allows surrogates to cache parts of web documents, which result in a better
HIT ratio.

Reduces processing overhead on the origin servers as the resource assembling can
be performed by the surrogates or HTTP clients themselves.

Squid in Reverse Proxy Mode

[232]

Enhances the availability of content.

Improves the performance for the end user as content can be fetched from
multiple caches.

For more information on the ESI protocol and the ESI language, please visit
http://www.akamai.com/html/support/esi.html.

Configuring Squid for ESI support
To enable ESI support, we need to use the --enable-esi option with the configure
program before compiling Squid. If Squid is built with ESI, then we can use the esi_parser
directive in the Squid configuration file to choose the appropriate parser for ESI markup.

We can use the esi_parser directive, as shown in the following example:

esi_parser libxml2

This configuration line will set libxml2 as the parser for ESI markup. We can choose a
parser from libxml2, expat, or custom. The default parser is custom.

We should note that ESI markup is not strictly XML compatible. The custom ESI parser
provides higher performance compared to the other two, however it can't handle non
ASCII character encoding, which may result in unexpected behavior.

Logging messages in web server log format
When we use Squid in reverse proxy mode, most of our web server log messages will go
missing as the requests which can be satisfied from Squid's cache will never make it to the
web server. So, Squid's access log will be our source of web server logs now. However, the
problem is that, by default Squid's access log format is completely different to the log format
used by most web servers. To get rid of this problem, we can use the common log format with
the access_log directive and this will allow Squid to start logging messages in the Apache
web server log format.

Ignoring the browser reloads
Most browsers have a reload button, which if used, sets the Cache-Control HTTP header
to no-cache. This will force Squid to purge the cached content and fetch it from the origin
server even if the content in the cache was still valid, which results in a waste of resources.

Chapter 9

[233]

Time for action – configuring Squid to ignore the
browser reloads

There are three ways to fix this issue using http_port and refresh_pattern directives
in the Squid configuration file. Please note that the refresh_pattern rules apply to both
server and client headers and can pose issues if we ignore certain headers and clients may
receive stale replies.

Using ignore-cc
We have seen the ignore-cc option in the HTTP port section previously. If we use this
option while specifying the HTTP port, Squid will ignore the Cache-Control HTTP header
from clients and will completely depend on the Cache-Control headers supplied by the
backend web servers. For example:

http_port 80 accel defaultsite=example.com vhost ignore-cc

Using ignore-reload
Using the option ignore-reload with the refresh_pattern directive, we can
completely ignore the browser reloads and serve the content from cache anyway. However,
this may result in serving stale content in some cases. For example:

refresh_pattern . 0 20% 4320 ignore-reload

Using reload-into-ims
If we don't want to completely ignore the browser reloads using the previously explained
ignore-reload option, we can use the reload-into-ims option. This will downgrade
the reload into an IfModifiedSince check, allowing less bandwidth to be wasted while
retaining the data accuracy. For example:

refresh_pattern . 0 20% 4320 reload-into-ims

What just happened?
We learned about three available options using which we can configure Squid to properly
handle the reloads forced by the browser reload button.

Access controls in reverse proxy mode
When Squid is configured in reverse proxy mode or our proxy server is acting as a surrogate,
it'll be accepting requests from all over the Internet. In this case, we can't form a list of
clients or subnets to allow access to HTTP via our proxy server, as we did in forward proxy
mode. However, we'll have to make sure that our proxy server doesn't accept requests for
origin servers that we are not accelerating.

Squid in Reverse Proxy Mode

[234]

We should note that we'll have to be clever while constructing access rules when we are
using the same Squid instance for reverse proxying as well as forward proxying. We'll have
to allow access to foreign origin servers so that our clients can access foreign websites using
our proxy server. Later, we'll have a look at the access control configuration for various types
of setups.

Squid in only reverse proxy mode
When we have configured Squid to work only as a reverse proxy, we need to restrict access
to the origin server which we are accelerating. Let's say, the origin servers configured for
our proxy servers are www.example.com and www.example.net, then we can have the
following access control rules:

acl orign_servers dstdomain www.example.com www.example.net
http_access allow origin_servers
http_access deny all

The preceding configuration will allow all requests destined for www.example.com and
www.example.net.

Please note that these access control rules should be above Squid's default
access controls, otherwise requests from clients will be denied by the default
Squid access controls.

Squid in reverse proxy and forward proxy mode
When Squid is configured to operate in reverse proxy and forward proxy modes
simultaneously, we need to be careful while designing our access controls. We need to keep
the following points in mind:

Clients using our proxy server as a forward proxy should be able to access all the
websites, except the ones that we have blacklisted.

Squid should accept all the requests destined to the origin servers we are
accelerating, except the requests from the clients that we have blacklisted.

Let's say our clients in subnet 192.0.2.0/24 will be using our proxy server as a forward
proxy and they are allowed to access all the websites except www.example.net. We can
therefore, write the access rules as follows:

acl our_clients src 192.0.2.0/24
acl blacklisted_websites dstdomain www.example.net
http_access allow our_clients !blacklisted_websites
http_access deny all

Chapter 9

[235]

Now, let's say we have configured our proxy server to accelerate the origin server www.
example.com. However, we have found some suspicious activity on our origin server from
the subnet 203.0.113.0/24 and don't want these visitors to access our website. So, we
can have the following access rules:

acl origin_servers dstdomain www.example.com
acl bad_visitors src 203.0.113.0/24
http_access allow origin_servers !bad_visitors
http_access deny all

We can combine the preceding two configurations into one configuration as follows:

ACLs for Forward Proxy
acl our_clients src 192.0.2.0/24
acl blacklisted_websites dstdomain www.example.net

ACLs for Reverse Proxy
acl origin_servers dstdomain www.example.com
acl bad_visitors src 203.0.113.0/24

Allow local clients to access allowed websites
http_access allow our_clients !blacklisted_websites

Allow visitors to access origin servers
http_access allow origin_servers !bad_visitors

Deny access to everyone else
http_access deny all

The preceding configuration will allow our local clients to access all websites except
www.example.net. Also, it'll allow all visitors (except from the subnet 203.0.113.0/24)
to access our origin server www.example.com. We can extend this configuration according
to our environment.

Example configurations
Let's have a look at a few common examples of Squid in reverse proxy mode. For the access
control configuration for the following examples, please refer to the section on access
controls in reverse proxy mode.

Squid in Reverse Proxy Mode

[236]

Web server and Squid server on the same machine
In this example, we'll write the Squid configuration for accelerating a web server hosting
www.example.com. As we will run Squid and the web server on the same machine, we must
ensure that the web server is bound to the loopback address (127.0.0.1) and listening on
port 80. Let's write this configuration.

http_port 192.0.2.25:80 accel defaultsite=www.example.com

cache_peer 127.0.0.1 parent 80 0 no-query originserver name=example

cache_peer_domain example .exmaple.com

In the first configuration line of the previous example, we have configured Squid to bind
to the IP address 192.0.2.25 and it'll listen on port 80 where it will be accepting visitor
requests on behalf of our origin web server. In the second line, we have added 127.0.0.1
(port 80) as a cache peer where our web server is listening for requests. In the last
configuration line, we are allowing a cache peer named example to be used for fetching only
example.com and its sub-domains.

Accelerating multiple backend web servers hosting one website
In this example, we have three servers with IP addresses 192.0.2.25, 192.0.2.26,
and 192.0.2.27, which host the same website www.example.com. All web servers are
listening on port 80. Squid is hosted on a different machine with a public IP address and
www.example.com points to the public IP address of the Squid server. Let's see an example
of this configuration:

http_port 80 accel defaultsite=www.example.com

cache_peer 192.0.2.25 parent 80 0 no-query originserver round-robin
name=server1
cache_peer 192.0.2.26 parent 80 0 no-query originserver round-robin
name=server2
cache_peer 192.0.2.27 parent 80 0 no-query originserver round-robin
name=server3

cache_peer_domain server1 .example.com
cache_peer_domain server2 .example.com
cache_peer_domain server3 .example.com

As we have used the round-robin option with cache_peer in the preceding configuration,
this will also load balance the requests between the three web servers.

Chapter 9

[237]

Accelerating multiple web servers hosting multiple websites
In this example, we have example.com and its sub-domains hosted on 192.0.2.25,
example.net and its sub-domains hosted on 192.0.2.26, and example.org and its
sub-domains hosted on 192.0.2.27. We have a Squid server installed on a different
machine with a public IP address and all the domains (example.com, example.net,
example.org, and their sub-domains) point to the public IP address of the Squid server.
The following is an example of such a configuration:

http_port 80 accel vhost defaultsite=www.example.com ignore-cc

cache_peer 192.0.2.25 parent 80 0 no-query originserver name=server1
cache_peer 192.0.2.26 parent 80 0 no-query originserver name=server2
cache_peer 192.0.2.27 parent 80 0 no-query originserver name=server3

cache_peer_domain server1 .example.com
cache_peer_domain server2 .example.net
cache_peer_domain server3 .example.org

Note that we can't use the round-robin option with the cache_peer directive here
because different web servers are hosting different domains. We have also restricted request
forwarding using the cache_peer_domain directive so that we contact only the relevant
web server for forwarding the requests.

Have a go hero – set up a Squid proxy server in reverse proxy mode
Try to set up a Squid proxy server in reverse proxy mode as a server accelerator for your
website on the same server as web server.

Pop quiz
1. When the ignore-cc option is used while specifying http_port as follows:

http_port 80 accel vhost ignore-cc

What will happen when a client clicks on the reload button in the browser?

a. Squid will not receive the Cache-Control HTTP headers.

b. The ignore-cc option doesn't affect client requests.

c. Squid will ignore the Cache-Control HTTP header from the request.

d. The backend web server will ignore the Cache-Control HTTP header.

Squid in Reverse Proxy Mode

[23�]

2. Consider the following configuration:

http_port 80 accel defaultsite=www.example.com

cache_peer 192.0.2.25 parent 80 0 no-query originserver
forcedomain=example.com name=example

What will the contents of the Host HTTP header sent to the backend web server
when a client requests http://www.example.com/ be?

a. www.example.com

b. example.com

c. example

d. 192.0.2.25

Summary
In this chapter, we learned about Squid's reverse proxy mode, which can be used to share
the load of a very busy web server or a cluster of web servers. We also learned about the
various configuration options to configure Squid in reverse proxy mode.

Specifically, we covered:

What is a web server accelerator and how does Squid fit in this model.

Configuring Squid to accept HTTP and HTTPS requests from clients on behalf of our
web servers.

Adding backend web servers to Squid so that it can forward requests to origin
servers appropriately.

We also saw a few configuration examples in which we tried to accelerate various
web servers hosting different websites.

In the next chapter, we'll learn about configuring Squid in intercept mode.

10
Squid in Intercept Mode

In previous chapters, we have learned about using Squid in the forward proxy
and accelerator or reverse proxy modes. In this chapter, we are going to learn
about configuring Squid in the intercept (or transparent) mode. We'll learn
about Squid's behavior in the intercept mode and also the basic configuration
required for achieving interception caching.

In this chapter, we shall discuss:

Interception caching

Advantages of running Squid in the intercept mode

Problems with the intercept mode

Diverting HTTP traffic to Squid

Implementing interception caching

So let's get started...

Interception caching
When the requests from clients are intercepted by a proxy server or are redirected to one
or more proxy servers, without configuring the HTTP clients on the client machines or
without the knowledge of clients, it's known as interception proxying. As proxying is mostly
accompanied by caching, it's known as interception caching. Interception caching is also
known by several other names, such as, transparent caching, cache redirection, and so
on. Squid can be configured to intercept requests from clients so that we can leverage the
benefits of caching without explicitly configuring each one of our clients.

Squid in Intercept Mode

[240]

Time for action – understanding interception caching
Interception caching is generally implemented by configuring a network device (router
or switch) on our network perimeter to divert client requests to our Squid server. Other
components that need to be configured include packet filtering software on the operating
system running Squid, and finally Squid itself. First of all, let's see how the interception
of requests occurs:

1.	 A client requests a web page http://www.example.com/index.html.

2.	 First of all, the client needs to resolve the domain name to determine the IP address,
so that it can connect to the remote server. Next, the client contacts the DNS server
and resolves the domain name www.example.com to 192.0.2.10.

3.	 Now, the client initiates a TCP connection to 192.0.2.10 on port 80.

4.	 The connection request in the previous step is intercepted by the router/switch and
is directed to the Squid proxy server instead of sending it directly to a remote server.

5.	 On the Squid proxy server, the packet is received by the packet filtering tool, which
is configured to redirect all packets on port 80 to a port where Squid is listening.

6.	 Finally the packet reaches Squid, which then pretends its the remote server and
establishes the TCP connection with the client.

7.	 At this point, the client is under the impression that it has established a connection
with the remote server when it's actually connected to the Squid server.

8.	 Once the connection is established, the client sends a HTTP request to the remote
server asking for a specific URL (/index.html in this case).

9.	 When Squid receives the request, it then pretends to be a client and establishes
a connection to the remote server, if the client request can't be satisfied from the
cache, and then fetches the content the client has requested.

So, the idea is to redirect all our HTTP traffic to the Squid server using router/switch and
host-based IP packet filtering tools.

What just happened?
We just learned how HTTP packets flow from clients to a router or a switch, which redirects
these packets to the server running Squid. We also saw how these packets are redirected
to Squid by the IP filtering tools on the server and finally how Squid reconstructs clients'
requests using the HTTP headers.

Chapter 10

[241]

Advantages of interception caching
There are several advantages to using Squid in the intercept mode instead of the normal
caching mode. A few of them are as follows:

Zero client configuration
As we discussed previously, we don't need to configure HTTP clients at all, as all the request
redirection magic is performed by the switch and routers. This is one of the most prominent
reasons for using interception caching in networks where we have thousands of clients,
and it's not possible to configure each and every client to use the proxy server.

Better control
As a user cannot configure their HTTP clients to bypass a proxy server, it's easy to enforce
network usage policies as only administrators can control network devices and the Squid
proxy servers. However, the policies can still be bypassed by clients using tunnels or using
specially designed software.

Increased reliability
We can configure our router or switch to forward the client requests directly to the internet
in case our Squid proxy server goes down, which will mean that clients can still access the
internet without any problems. This results in better uptime and increased reliability.

These few advantages are the reasons for the popularity of interception caching among
organizations with a large number of clients and a requirement for higher uptime.

Problems with interception caching
Although interception caching is attractive and there are a few advantages as well, it has got
some serious disadvantages, which can make it painful to manage or debug if something
goes wrong. Let's have a look at a few disadvantages of interception caching:

Violates TCP/IP standards
The routers or switches in a network are supposed to forward packets to the hosts to which
they are destined. Diverting packets to proxy servers violates the TCP/IP standards. Also, the
proxy server accepts TCP/IP packets which are not destined for it, which is another violation
of the TCP/IP standards.

The proxy server often has a different OS to the client, which confuses the end-to-end
packet management outside of the HTTP packets. Which in turn can cause servers and
the remote networks to become completely inaccessible or the transfer rates may drop
down considerably.

Squid in Intercept Mode

[242]

Susceptible to routing problems
Interception caching relies on stable routed paths and the diversion of the traffic to caching
proxies by a router or a switch. As routes or network paths are determined dynamically,
requests may flow via a different path, which may not have a router that will divert the traffic
to a caching proxy and a user's session will be lost. Also, sometimes the replies may not
return to a proxy server, resulting in long timeouts and unavailable websites.

No authentication
Proxy authentication doesn't work as browsers and HTTP clients are not aware that they are
connected to remote servers via a proxy server, and will refuse to send credentials to the
unknown middleware. The IP-based authentication doesn't work because the proxy server is
initiating connections on behalf of all the clients and the remote server thinks that only one
client is trying to access the website.

Supports only HTTP interception
Squid can intercept only HTTP traffic as the HTTP request contains Host header and Squid
can fetch content on behalf of the client using the Host and other HTTP headers. It can't
intercept other protocols, as it will not be able to process them.

Client exposure
Since we will be able to intercept only HTTP traffic, clients will still need to go on the
internet directly to make DNS queries or use other protocols like HTTPS, FTP, and so on.
So, essentially we'll have all our clients exposed on the internet, which is not desirable in
most networks.

IP filtering
Interception caching is incompatible with IP filtering, which prevents IP address spoofing. We
must create exceptions in our network devices to allow address spoofing.

Protocol support
Although this is not a major issue with the modern browsers and newer versions of the
legacy browsers, it may be a significant problem with older browsers supporting only
HTTP/1.0 (or older) or buggy HTTP clients. As we learned previously, that Squid in intercept
mode totally depends on the Host HTTP header supplied within the HTTP request by the
client, if a client doesn't send the HTTP header, Squid will have no idea what to do with the
HTTP request.

The protocol support problem may be present the other way around as well. This occurs
when the client uses a HTTP feature, which is still not implemented in Squid or if Squid
doesn't know how to handle the feature. For example, chunked encoding HTTP/1.1 was
not supported by Squid 3.0 or earlier and hence cannot be intercepted.

Chapter 10

[243]

Security vulnerabilities
We learned that Squid in intercept mode is totally dependent on the Host HTTP header
supplied by the clients. The Host header can be easily forged by malware or rouge
applications to poison our proxy server's cache, which can result in the spread of the
poisoned (cached) content across the whole network.

So, as we can see, there are a lot of disadvantages of using interception caching, but it's up
to us to analyze our network and see if the advantages outweigh the disadvantages. Please
also have a look at other alternative solutions such as, Web Proxy Auto-Discovery Protocol
(WPAD, http://en.wikipedia.org/wiki/Web_Proxy_Autodiscovery_Protocol),
Proxy auto config (PAC, http://en.wikipedia.org/wiki/Proxy_auto-config), and
Captive portal (http://en.wikipedia.org/wiki/Captive_portal).

Have a go hero – interception caching for your network
Based on the advantages and disadvantages of interception caching we saw previously,
check if it will be beneficial to implement interception caching in your network. Also, check
whether you'll be using a router or switch to divert traffic to the Squid server.

Diverting HTTP traffic to Squid
We learned in previous sections that we need to divert all HTTP traffic from our clients to our
proxy server. Later, we'll have a look at the ways in which we can divert HTTP traffic to our
Squid proxy server.

Using a router's policy routing to divert requests
If we have an arrangement where all our client requests are passing through a router, we can
utilize the router's ability to divert the packets, to redirect them to our Squid proxy server.
Therefore if we set our router's policy to redirect all the packets with port 80 to the Squid
server and all other traffic is sent to the internet directly, it will look like the following diagram:

Squid in Intercept Mode

[244]

In the previous diagram, we can see that the router is passing all the HTTP requests to the
Squid proxy server and all the non-HTTP traffic is going to the internet directly. A router
can only modify the IP address of a packet. So, we must configure an IP packet filtering tool
(iptables, ipfw) to redirect traffic on port 80 to the port on which Squid is listening.

Using rule-based switching to divert requests
We can also use a Layer 4 (L4) or Layer 7 (L7) switch to divert HTTP requests from our clients
to the Squid proxy server, as shown the in the following diagram:

In the previous diagram, we can see that the switch is passing HTTP traffic to the Squid proxy
server based on rules configured in the switch. All the non-HTTP traffic is directly forwarded
to the internet.

Using Squid server as a bridge
In this scenario, the machine running Squid proxy server also acts as a gateway to the internet
for all the clients. So, all the packets or requests to remote servers pass through the Squid
server. The IP packet filtering tool can be configured to redirect all HTTP traffic to the Squid
process and all the non-HTTP traffic can be forwarded to the Internet directly.

Chapter 10

[245]

In the preceding diagram, we can see that we are not using any switch or router to direct
HTTP traffic to the Squid server. Instead, all the traffic is passing through the Squid server
and the iptables direct HTTP traffic to the Squid process, and passes the rest to the router
connected to internet. This is the easiest of the three ways to achieve interception caching as
we don't have to configure our router or switch, which is generally a relatively complex task.

Using WCCP tunnel
Web Cache Coordination Protocol (WCCP) is a protocol developed by Cisco to route content
with a mechanism to redirect traffic in real-time. We can utilize WCCP in the absence of a
Layer4 switch . It is sometimes preferred over Policy-based Routing as it allows multiple
proxy servers to participate compared to Policy-based Routing, which allows only one server.
WCCP has built-in features such as scaling, load balancing, fault tolerance, and failover
mechanisms.

When using WCCP, a GRE (Generic Routing Encapsulation) tunnel is established between the
router and the machine running the Squid proxy server. The redirected requests from the
router are encapsulated in GRE packets and sent to the proxy server through the GRE tunnel.
The job of decapsulating the GRE packets and redirecting them to Squid is done by the host
machine using iptables. Then Squid will either fetch the content from the original server or
pull it from the cache and deliver the content back to the router. The router then sends the
response to the HTTP client. For configuring various Cisco devices, the host operating system,
and Squid to use WCCP, please visit http://wiki.squid-cache.org/Features/Wccp2.

Implementing interception caching
After going through the advantages and disadvantages of interception caching, if we choose
to go with the interception caching, then as described previously, we need to configure three
different components to implement interception caching. We need to configure a network
device (not needed if we are using the Squid server as a gateway or bridge), the IP filtering
tool (iptables, ipfw, and so on.) on a server running Squid and then Squid itself. Let's have
a quick look at the configuration of the different components.

Configuring the network devices
If we are using a network device to divert traffic to our Squid proxy server, then we need to
configure the network device so that it can identify all the HTTP traffic and redirect it to our
Squid proxy server. As different routers and switches have different configuration tools, please
refer to the documentation or instruction manual for the router or switch which is going
to divert the traffic.

Squid in Intercept Mode

[246]

Configuring the operating system
Once the packets or HTTP requests reach our machine running Squid, they'll have a
destination port 80. Now we need to configure an IP filtering tool, which goes by the
different names of different operating systems, to divert these packets to the port where
Squid is configured to listen. We should note that the port on which Squid is listening, is used
between the filtering tool and Squid. So, we should firewall this port from external access.

However, before configuring that, we need to configure our operating system to accept
packets that are not destined to it. This is because the packets diverted by the routers or
switches will have a destination IP of the remote server. These packets will be dropped
immediately by the kernel because the destination IP address doesn't match the address
of any of the interfaces. We need to use the IP forwarding feature in the kernel so that our
server can accept packets that are not destined to it.

Enabling IP forwarding
There are different ways to enable IP forwarding for different operating systems. Let's have
a look at few of them:

Time for action – enabling IP forwarding
1.	 To enable IP forwarding on Linux-based operating systems, we can use any of the

following methods.

Using the sysctl command:

sysctl -w net.ipv4.ip_forward=1

This method doesn't need a reboot and will enable IP forwarding on the fly but will
not be preserved after a reboot.

Using the sysctl configuration file, we can add the following line in the
/etc/sysctl.conf file:

net.ipv4.ip_forward = 1

2.	 To enable the changes made to the /etc/sysctl.conf file, we need to run the
following command:

sysctl -p /etc/sysctl.conf

These changes will be preserved after a reboot.

3.	 Enabling IP forwarding on BSD operating systems is almost similar. We can use any
of the following methods:

Using the sysctl command.

sysctl -w net.inet.ip.forwarding=1

Chapter 10

[247]

This method doesn't need a reboot and will enable IP forwarding on the fly but will
not be preserved after a reboot. Please note that we don't need the -w option on
OpenBSD and DragonFlyBSD.

We can add the following line in the /etc/rc.conf file:

gateway_enable="YES"

4.	 To enable these changes made to the /etc/rc.conf file, we need to reboot our
server. The changes made will be preserved after further reboots. Note that we
don't need to perform this step for OpenBSD.

What just happened?
We learned about various commands and methods, using which we can enable IP forwarding
on our operating system so that it can accept packets which are not destined for it.

For other operating systems, please check the respective instruction manual.

Redirecting packets to Squid
Once we have enabled our operating system to accept packets on behalf of others, we'll
start getting packets diverted by the router or switch. Now, we need to get these packets
to our Squid process. For this we need to configure iptables (Linux), ipf/ipnat/ipfw
(BSD variants) to redirect the packets which we have received on port 80 to port 3128.X.

Time for action – redirecting HTTP traffic to Squid
Let's have a quick look at the configuration we need to perform. For the following, we'll
assume that the IP for the Squid proxy server is 192.0.2.25.

1.	 Working with Linux:

To redirect traffic destined to port 80, we can use iptables as follows:

iptables -t nat -A PREROUTING -s 192.0.2.25 -p tcp --dport 80 -j
ACCEPT
iptables -t nat -A PREROUTING -p tcp --dport 80 -j DNAT --to-
destination 192.0.2.25:3128
iptables -t nat -A POSTROUTING -j MASQUERADE

In the previous list of commands, the first command prevents the redirecting HTTP
traffic from the Squid server itself. If we don't have the first line in place, we'll face
forwarding loops and requests will not be satisfied. The second command captures
all the traffic on port 80 and redirects it to the IP address to which Squid is bound
and port 3128 where Squid is listening. The last command allows Network Address
Translation (NAT, for more details, please check http://en.wikipedia.org/
wiki/Network_address_translation).

Squid in Intercept Mode

[24�]

We can achieve a fully transparent setup using the Tproxy feature. However, we
should note that we'll need a relatively newer Linux kernel version and iptables with
support for Tproxy version 4.1 or later. Please check http://wiki.squid-cache.
org/Features/Tproxy4 for details.

2.	 Working with BSD:

There are many packet filtering programs available for various flavors of BSD but
OpenBSD's Packet Filter (pf) is one of the most popular programs. Please refer to
the Packet Filter manual at http://www.openbsd.org/faq/pf/. The Packet
Filter has been integrated in NetBSD as well. Please have a look at the NetBSD's
manual for pf at http://www.netbsd.org/docs/network/pf.html.

What just happened?
We learned how we can redirect HTTP traffic destined to port 80 to port 3128 (to Squid)
using iptables on Linux. We also learned that we have to create an exception for the
IP address to which Squid is bound, to avoid any forwarding loops.

Have a go hero – testing the traffic diversion
Once you have finished enabling IP forwarding and configuring the appropriate rules in the
firewall to redirect traffic to port 3128, try accessing any website from a client machine.
Now, check if packets are being directed properly using tcpdump or wireshark.

Configuring Squid
So far, we have configured our environment to divert all HTTP traffic to port 3128 on the
Squid server. Finally, it's time to check what configuration we need to do in Squid so that
it can intercept all the diverted traffic.

Configuring HTTP port
Finally, we need to tell Squid that we will be intercepting the client requests. We can do so
by using the appropriate option with the http_port directive as follows:

http_port 3128 intercept
http_port 8080

Chapter 10

[24�]

If we use the previous configuration, the requests on port 3128 will be intercepted and
port 8080 will be used for normal forward proxying. It's not necessary to have the port
8080 configuration above, but it's useful for proxy management access, which will not
work through the intercept port.

So, that's all we need to do for interception caching. Now, Squid will handle all the requests
normally and cached responses will be served from the cache.

Pop quiz
1. Which of the following protocols can be intercepted by Squid?

a. HTTP

b. FTP

c. Gopher

d. HTTPS

2. Which one of the following is an essential HTTP header for the proper functioning
of Squid in intercept mode?

a. Cache-Control

b. Proxy-Authorization

c. Host

d. User-Agent

3. Why can't we use proxy authentication with Squid in intercept mode?

a. Squid is not responsible for providing authentication in intercept mode.

b. HTTP clients are not aware of a proxy and don't send the Proxy-Authorization
HTTP header.

c. It's not possible to assign usernames and passwords to thousands of clients.

d. Proxy-Authorization HTTP headers are removed by the routers or switches on
the way, when using interception caching.

Squid in Intercept Mode

[250]

Summary
We have learned about the basics of interception caching in this chapter. We have also
learned how the requests flow and packets are diverted to our Squid server so that Squid
can fetch content on behalf of clients, without explicitly configuring all the clients on
our network.

Specifically, we have covered:

Interception caching and how it works.

Different ways in which to implement interception caching.

Advantages and drawbacks of interception caching.

Configuring our operating systems to forward IP packets.

Configuring IP filtering tools for our operating systems to redirect web traffic to the
Squid server.

Various compile options that can be used to implement interception caching on
different operating systems.

In the next chapter, we'll learn about writing Squid plugins or helpers to customize
Squid's behavior.

11
Writing URL Redirectors and

Rewriters

In the previous chapters, we have learned about installing and configuring
the Squid proxy server for various scenarios. In this chapter, we'll learn about
writing our own URL redirectors or rewriters to customize Squid's behavior.
We'll also see a few examples that can be helpful in enhancing the caching
performance of Squid or enforcing the access control.

In this chapter, we shall learn about:

URL redirectors and rewriters

Writing our own URL helper

Configuring Squid

A special URL redirector - deny_info

Popular URL helpers

So let's get started….

URL redirectors and rewriters
URL redirectors are external helper processes that can redirect the HTTP clients to alternate
URLs using HTTP redirect messages. Similarly, URL rewriters are also external helper
processes that can rewrite the URLs requested by the client with another URL. When a URL
is rewritten by a helper process, Squid fetches the rewritten URL transparently and sends
the response to the end client as if it was the one originally requested by the client.

Writing URL Redirectors and Rewriters

[252]

The URL redirectors can be used to send HTTP redirect messages like 301, 302, 303, 307,
or 3xx, along with an alternate URL to the HTTP clients. When a HTTP client receives
a redirect message, the client will request the new URL. So, the major difference between
URL redirectors and URL rewriters is that the client is aware of a URL redirect, while rewritten
URLs are fetched transparently by Squid, and the client remains unaware of a rewritten URL.
Let's try to understand the workings of URL redirector and rewriter helper programs in detail.

Understanding URL redirectors
Now, we'll try to see what happens when we are using a URL redirector helper with the Squid
proxy server and a client tries to access a webpage at http://example.com/index.html.

The previous diagram shows the flow of requests and responses using numbered steps. Let's
try to learn what is happening at each step in the previous diagram:

1. The Client requests the webpage http://example.com/index.html.

2. The Squid Proxy Server receives the requests and forwards the essential details
related to the request to the URL redirector helper program.

3. The URL redirector helper program processes the details and issues a 303 HTTP
redirect with an alternate URL http://example.net/index.html. In other
words, the URL redirector program suggests to Squid that the client should be
redirected to a different URL.

4. Squid, as suggested by the URL redirector helper, sends the redirect message to the
client with the alternate URL.

5. The client, on receiving the redirect message, initiates another request for the new
URL http://example.net/index.html.

6. When Squid receives the new request, it is again sent to the URL redirector
helper program.

Chapter 11

[253]

7. The URL redirector program processes the request and suggests to Squid that this
URL can be fetched and we don't need to redirect the client to an alternate URL.

8. Squid fetches the URL http://example.net/index.html.

9. The response received by Squid from the origin server at example.net is delivered
to the client.

We have just learned how the client initiated a request, which was redirected to an alternate
URL by the URL redirector helper program. We'll learn about the logic followed by the URL
redirector program for redirecting URLs at a later stage in this chapter. Now, let's try to
understand the useful HTTP status codes for redirection and where they can be used.

HTTP status codes for redirection
We have learned that we can use various HTTP redirect codes for redirecting clients
to a different URL. Now let's try to understand when and where we can use these
HTTP redirect codes.

Code Description and usage

301 The HTTP status code 301 means that the URL requested by the client has moved
permanently and all the future requests should be made to the redirected URL. This
status code should be used in reverse proxy setups only.

302 The HTTP status code 302 means that the content can be fetched using an alternate
URL. This status code should be used with GET or HEAD requests.

303 The code 303 means that the request can be satisfied with an alternate URL but the
alternate URL should be fetched using a GET request. This status code can be used with
POST or PUT requests.

305 The status code 305 indicates that the client should use a proxy for fetching the
content. This status code is intended to be used by interception proxies needing to
switch to a forward proxy for the request.

307 The status code 307 means a temporary HTTP redirect to a different URL but the
future requests should use the original URL. In this case, the request method should
not be changed while requesting the redirected URL. This status code can be used for
CONNECT/HTTPS requests.

For more information on HTTP status codes for redirection, please visit
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes#3xx_Redirection.

It's now time to learn how the URL rewriter helper programs rewrite URLs.

Writing URL Redirectors and Rewriters

[254]

Understanding URL rewriters
URL rewriters are almost similar to URL redirectors, with a major difference being that they
never tell the client about the change of URLs. Let's say, a client is trying to retrieve the
webpage at http://example.com/index.html and we have a URL rewriter program
working on our proxy server. Now, have a look at the following diagram:

The numbered steps in the previous diagram represent the flow of requests and responses.
Let's try to understand the steps shown in the diagram as follows:

1. The client requests a URL http://example.com/index.html using our
proxy server.

2. Squid receives the request and forwards the essential details about the request
to the URL rewriter helper program.

3. The URL rewriter helper program processes the details received from Squid and
suggests to Squid that it should fetch http://example.net/index.html instead
of http://example.com/index.html. In other words, the rewriter program has
rewritten the URL with a new URL.

4. Squid receives the rewritten URL (http://example.net/index.html) from
the rewriter program and contacts the origin server at example.net instead of
contacting example.com.

5. Squid delivers the response returned by the origin server at example.net to
the client.

So, we have seen how client requests are rewritten by the URL rewriter helper programs and
the client is not even informed about it. The client still thinks that the response was fetched
from the origin server example.com and not example.net.

Chapter 11

[255]

So far, we have learned about URL redirector and rewriter programs. The basic difference
between the two is the presence or absence of a 3xx HTTP redirect code. When a 3xx
redirect code is present, the client is redirected to a new URL. On the other hand, in the
absence of a 3xx redirect code, the URL is simply rewritten by Squid transparently.

Issues with URL rewriters
There are some known issues when rewriting URLs, which can result in unexpected behavior
from original servers or the proxy server itself. Let's have a look at a few possible issues with
URL rewriters.

Rewriting URLs on a criterion other than the URL may result in unpredictable cached
responses. Moreover, the same response may be cached for several URLs. This may
expose our proxy server to cache poisoning attacks. This is not a problem when
redirecting URLs as the client will request the redirected URL, and the response if
cached, will correspond to the correct URL.

Rewriting upload, POST, or WebDAV requests may result in unpredictable alterations
on origin servers.

If a rewriter passes an invalid URL back to Squid, it may result in unexpected
behavior from Squid. For example, we may consider that a hash (#) character is
valid in a URL as our browser understands it. However, when we rewrite a URL with
a different URL containing a hash (#) character, the proxy doesn't know what to do
with it. Hence, Squid will reject the new URL and will either send an error message
to the client or bypass the rewrite depending on the Squid version. A HTTP redirect
to a URL with a hash (#) in it will work as the browser understands what to do
with fragments.

Rewriting CONNECT/HTTPS requests may result in HTTPS errors breaking the
security channels.

As we saw previously, rewriting URLs poses more problems compared to URL redirection.
Hence, URL redirectors are recommended over URL rewriters, as the client is fully aware
in case of redirections.

This ability of a redirector to rewrite the originally requested URL exposes a lot of power
to the developers or administrators. We can use this feature to redirect clients to alternate
access-denied pages, help, or documentation pages, block ads from well known ad networks,
implement more affective filters, or redirect clients to a locally mirrored content.

Writing URL Redirectors and Rewriters

[256]

Squid, URL redirectors, and rewriters
Squid and URL redirector (or rewriter) programs work closely and every request is passed
through the specified URL redirector (or rewriter) program and then Squid acts accordingly
(redirects the HTTP client to the rewritten URL or fetches the rewritten URL). Let's have
a look at a few details about Squid and URL redirectors.

Communication interface
The URL redirectors and rewriters communicate with Squid using a similar and simple
interface, which is very easy to understand as well as implement. For each request, the
following details are passed to a helper program in one line.

ID URL client_IP/FQDN username method myip=IP myport=PORT [kv-pairs]

The following table gives a brief explanation of the fields passed by Squid to the redirectors:

Field Description

ID The ID is used for identifying each request that Squid passes on as the
standard input to the redirector program. The redirector program is supposed
to pass the ID back to Squid so that it can relate the returned URL to an
appropriate request. This ID is used to achieve concurrency. This field will be
missing with non-concurrent helpers.

URL The URL field is the actual URL requested by the client and is passed to
rewriters as it is.

client_IP The field client_IP represents the IP address of the client.

FQDN The FQDN (Fully Qualified Domain Name) field contains the fully
qualified domain name of the client, if present. If FQDN is not set, a hyphen
(-) is put in its place. Please note that FQDN will not be available at all when
reverse DNS lookup is not set for the IP address.

username The username field contains the username of the client for the current
request, as determined by Squid. The username field will be replaced by a
hyphen (-) if Squid was unable to determine the username.

method The method field contains the HTTP request method used by the client to
request the current URL. The values will be GET, POST, DELETE, and so on.

myip=IP The myip (myip=IP_ADDRESS) represents the Squid receiving IP address to
which the client request was sent. It is helpful if there is more than one network
interface on the server and Squid is bound to more than one IP address.

myport=PORT The field myport (myport=PORT_NUMBER) represents the Squid port on
which the client request was sent. It is helpful in case Squid is listening on more
than one port.

kv-pairs There may be other key value pairs which may be made available to rewriter
programs in the future.

Chapter 11

[257]

The URL helper program can process the previous fields and take appropriate actions
according to a predefined login in the helper program. Now, it's time to explore how the
messages are passed between Squid and URL helpers.

Time for action – exploring the message flow between
 Squid and redirectors

Let's try to understand the message flow between Squid and the redirector (or rewriter)
programs.

1.	 A line containing the fields shown previously (separated by spaces) is passed by
Squid to the URL redirector program using a single line for each client request.
Once the helper program has finished processing the fields, it must write one of the
following messages on the standard output. Please note that the new line (\n) at
the end of the message is important and must not be omitted:

2.	 The line containing the fields is read by the URL redirector program from the
standard input.

3.	 After reading the line from the standard input, the redirector (or rewriter) program
can process the fields and make decisions based on the values of different fields.

A line containing only the identifier (ID \n).

A modified URL with an HTTP redirect code followed by a new line.

(ID 3XX:URL \n). The HTTP redirect code and the URL should be
separated by a colon.

A modified URL followed by a new line (ID URL \n)

4.	 The message written by the helper program on the standard output is read by Squid
for further processing. It then takes one of the following actions:

If the helper program wrote a blank line on the standard output, Squid
treats it as if we didn't modify the URL at all and the original URL will be
used by Squid to fetch the content.

If the helper program wrote a different URL with a redirect code, then Squid
will send a response to the client redirecting it to the alternate URL.

If a different URL without a redirect code was written, Squid will treat it as
if that was the original URL requested by the client, will fetch the content
transparently, and return it to the client.

So, as we have seen previously, a single program can act as a URL redirector as well as a URL
rewriter program by executing conditional redirection or rewriting URLs. In the following
sections, we'll be using the URL redirector to mean both URL redirector and URL rewriter,
unless specified otherwise.

Writing URL Redirectors and Rewriters

[25�]

What just happened?
We have just learned how Squid communicates with URL redirector programs using standard
I/O. Squid sends some details about each request to the URL redirector program. Then the
URL redirector program processes the fields sent by Squid and makes a decision accordingly.
After making the decision, the redirector sends back the appropriate message, which is then
read by Squid.

Now, let's have a look at a few example fields sent by Squid to a URL redirector program:

http://www.example.com/ 127.0.0.1/localhost - GET myip=127.0.0.1
myport=3128

http://www.example.net/index.php?test=123 192.0.2.25/- john GET
myip=192.0.2.25 myport=8080

http://www.example.org/login.php 198.51.100.86/- saini POST
myip=192.0.2.25 myport=8080

As shown in the previous examples, the entire URL is passed to a URL redirector program
along with the query parameters, if any. The fragment identifiers are removed from the URL,
while Squid passes the URL to the redirector program.

We should be careful while using URL redirector programs because Squid
passes the entire URL along with query parameters to the URL redirector
program. This may lead to leakage of sensitive client information as some
websites use HTTP GET methods for passing clients' private information.

The URL redirector program has to read lines, as shown in above examples, in an endless
loop unless an EOF (end of file) occurs on the standard input. The program should not
exit. However, if the program exits prematurely, Squid tries to respawn another instance of
the redirector program and writes a message (as shown in the following example) to the
Squid cache log, warning the user of a probable problem with the redirector program:

2010/11/08 22:01:19| WARNING: redirector #1 (FD 8) exited

Time for action – writing a simple URL redirector program
Let's see a very simple Perl script that can act as a URL redirector program.

$|=1;
while (<>) {
 s@http://www.example.com@303:http://www.example.net@;
 print;
}

Chapter 11

[25�]

The previous code is a URL redirector program in its simplest form. It redirects all URLs
containing the URL www.example.com to www.example.net without inspecting values
of any of the fields by Squid.

What just happened?
We have just seen a simplistic Perl script which can act as a URL redirector program and can
be used with Squid.

Have a go hero – modify the redirector program
Modify the previous URL redirector program so that all requests to google.co.uk can be
redirected to google.com.

Concurrency
We can make our URL redirector programs concurrent for better performance. When we
configure Squid to use a concurrent URL redirector program, it passes an additional field, ID,
on the standard input to the redirector program. This is used to achieve concurrency as we
learned in the previous section.

It's always better to have more concurrency than more children helpers for
better performance.

Handling whitespace in URLs
There are different ways to handle whitespaces in URLs. A few techniques that can be used
are as follows:

Using the uri_whitespace directive
We can use the uri_whitespace directive to drop, truncate, or encode the whitespaces in
URLs. Let's have a look at the format for using the uri_whitespace directive.

uri_whitespace OPTION

The possible values that OPTION can have are as follows:

Strip whitespaces
When we use the strip option, the whitespace characters are completely stripped from the
URL. This behavior is recommended.

Writing URL Redirectors and Rewriters

[260]

Deny URLs with whitespaces
The requests to URLs containing whitespaces are denied and the user gets an Invalid
Request message when the deny option is used.

Encode whitespaces in URLs
When the encode option is used, the whitespaces in the URLs are encoded. This is a
violation of HTTP protocol as proxies should not make changes to a URL. It is however,
what the browser should have sent, so it is relatively safe to do if needed.

Chop URLs
When the chop option is used, the URL is chopped at the first whitespace. This is not
recommended and may lead to unexpected behavior. This is also a violation of
HTTP protocol.

Allow URLs with whitespaces
The request URL is not changed at all when the allow option is used.

So, to remove whitespaces from the URLs before they are passed to the URL
redirector programs, we can use the strip, encode, deny, or chop options with the
uri_whitespace directive, and the redirector program will never have to worry about
whitespaces in the URLs. For example:

uri_whitespace deny

Please note that the default Squid behavior is to strip whitespaces from
all the URLs in compliance with RFC 2396.

Making redirector programs intelligent
Just in case we choose to allow whitespaces in URLs, then we'll need to make our redirector
programs a bit more intelligent. In non-concurrent redirectors, we can remove the five
fields from the end and whatever is left will be the URL (with or without whitespaces). For
concurrent redirector programs, the logic will be a bit different and we'll need to remove one
field (ID) from the beginning, five fields from the end, and whatever is left will be the URL
(with or without whitespaces).

Writing our own URL redirector program
Based on the concepts we learned earlier about the URL redirector helper programs, we
can write a program that can redirect/rewrite URLs conditionally. So, let's have a look at
an example:

Chapter 11

[261]

Time for action – writing our own template for a URL redirector
Now, let's have a look at an example URL redirector program in Python, which can be
extended to fit any scenario:

#!/usr/bin/env python

import sys

def redirect_url(line, concurrent):
 list = line.split(' ')
 # 1st or 2nd element of the list
 # is the URL depending on concurrency
 if concurrent:
 old_url = list[1]
 else:
 old_url = list[0]

 # Do remember that the new_url
 # should contain a '\n' at the end.
 new_url = '\n'
 # Take the decision and modify the url if needed
 if old_url.endswith('.avi'):
 # Rewrite example
 new_url = 'http://example.com/' + new_url
 elif old_url.endswith('.exe'):
 # Redirect example
 new_url = '302:http://google.co.in/' + new_url
 return new_url

def main(concurrent = True):
 # the format of the line read from stdin with concurrency is
 # ID URL ip-address/fqdn ident method myip=ip myport=port
 # and with concurrency disabled is
 # URL ip-address/fqdn ident method myip=ip myport=port
 line = sys.stdin.readline().strip()

 # We are to keep doing this unless there is EOF
 while line:
 # new_url will be a URL, URL prefixed with 3xx code
 # or just a blank line.
 new_url = redirect_url(line, concurrent)

Writing URL Redirectors and Rewriters

[262]

 id = ''
 # Add ID for concurrency if concurrency is enabled.
 if concurrent:
 id += line.split(' ')[0] + ' '
 new_url = id + new_url
 # Write the new_url to standard output and
 # flush immediately so that it's available to Squid
 sys.stdout.write(new_url)
 sys.stdout.flush()
 # Read the next line
 line = sys.stdin.readline().strip()

if __name__ == '__main__':
 # Check if concurrency is enabled or not
 main(len(sys.argv) > 1 and sys.argv[1] == '-c')

The previous program is a bit more powerful than the Perl script we saw before. In the
previous program, we first read the data (a single line) from a standard input and removed
any unwanted characters from it. Then we call the redirect_url function using the data
obtained from a standard input. Then we split the data on whitespace and extract the URL
from it (the second element).

If the URL ends with .avi, we rewrite the URL with a URL to our custom access denied page.
If the URL ends with .exe, then we redirect the user to a different URL, warning them of
a probable virus.

We can extend the redirect_url function according to our needs and return a
rewritten URL.

What just happened?
We wrote our own URL redirector program, which is more of a template, and can be
extended to fit any scenario. We can use any programming language to write such URL
redirector programs.

Have a go hero – extend the redirector program
Extend the URL redirector program, shown previously, to redirect all requests from flash
animation files to a tiny GIF image located at http://www.example.com/ban.gif.

Configuring Squid
Once we have finished writing the redirector program, we need to configure Squid to use it
properly. There are a few directives in the Squid configuration file using which we can control
how Squid will use our URL redirector program. Let's have a quick look at these directives.

Chapter 11

[263]

Specifying the URL redirector program
We can specify the absolute path to our URL redirector program using the
url_rewrite_program directive. We can also specify any additional interpreter or
command line arguments that the program expects. The following are a few examples:

url_rewrite_program /opt/squid/libexec/custom_rewriter

url_rewrite_program /usr/bin/python /opt/squid/libexec/my_rewriter.py

url_rewrite_program /usr/bin/python /opt/squid/libexec/another_
rewriter.py --concurrent

Squid can use only one URL redirector program at a time, so we should
specify only one program using the url_rewrite_program directive.

Controlling redirector children
Once we have specified the redirector program, we need to use the url_rewrite_
children directive to specify the number of instances of the redirector program (children)
that Squid is allowed to spawn. The format of the url_rewrite_children directive is
given as follows:

url_rewrite_children CHILDREN startup=N idle=N concurrency=N

In the previous configuration line, the parameter CHILDREN represents the maximum
number of children or the maximum number of instances of the redirector program
that Squid is allowed to spawn.

We should choose this value carefully because if we keep this value very low, Squid may have
to wait for the redirector programs to process and write data to a standard output, which
may lead to significant delays in processing client requests. Also, if we keep this value very
high, then the redirector programs will consume a significant amount of resources (RAM,
CPU) on the server, which in turn may slow down the server, leading to delays in processing
client requests. The default value is 20.

The argument startup (startup=N) is used to specify the minimum number of children
that will be spawned when Squid is started or reconfigured. If we set the value of startup
to zero (0), the first child will be spawned on the first request. The default value of the
startup argument is zero (0).

Setting startup to a low value will cause initial slowdown if Squid
receives a large number of requests, as it'll have to spawn a lot of children.

Writing URL Redirectors and Rewriters

[264]

The argument idle (idle=N) is used to set the minimum number of children processes that
should be idle at any point of time. The number of children processes rises with the traffic
up to the maximum number, set previously. The minimum and default value of idle
argument is 1.

The value of the argument concurrency (concurrency=N) determines the number of
concurrent requests that each redirector program can process in parallel. The default value
of concurrency is zero (0) which means that the rewriter program is single threaded.

Controlling requests passed to the redirector program
By default, all the requests are passed to the URL redirector program. However, this may
not be the desired behavior. We can control what requests Squid passes to the redirector
program using the url_rewrite_access directive. The format and usage of the
url_rewrite_access directive is similar to http_access.

Let's say our URL redirector program redirects/rewrites URLs only for the domain
example.com. Now, we can add the following configuration lines to our Squid
configuration file:

acl rewrite_domain dstdom .example.com
url_rewrite_access allow rewrite_domain
url_rewrite_access deny all

In accordance to the previous configuration, Squid will only pass requests whose domain
is example.com or any of its sub-domains. Similarly, we can create powerful filters by
combining Access Control Lists and the url_rewrite_access directive.

Please note that certain request types such as POST and CONNECT must not
be rewritten as they may lead to errors and unexpected behavior. It's a good
idea to block them using the url_rewrite_access directive.

Bypassing URL redirector programs when under heavy load
When the redirector programs are under heavy load (receiving more requests than they can
process), Squid will have to wait until a redirector program returns the redirected or rewritten
URL. This will introduce significant delays in processing the user requests. In such situations,
we can use the url_rewrite_bypass directive to skip passing the requests to the redirector
program so that Squid can handle them on its own. So, to bypass the redirector program, we
can add the following configuration line to our Squid configuration file.

url_rewrite_bypass on

Chapter 11

[265]

The default Squid behavior is not to bypass any request and wait for a redirector to become
free, if all of them are busy.

Bypassing redirector programs may not be desirable in some cases,
especially if the redirector program is being used to limit access to certain
resources, because it may give clients access to resources which are not
accessible otherwise.

Rewriting the Host HTTP header
When we use a URL redirector program to send HTTP redirect messages to the client,
Squid rewrites the Host HTTP header in the redirected requests. This may work when
Squid is configured in the forward proxy mode. However, when in reverse proxy mode,
rewriting the Host header may cause problems. To prevent the rewriting of the Host
header, we can use the url_rewrite_host_header directive. When set to off, the
url_rewrite_host_header will stop Squid from rewriting the Host HTTP header.

The default Squid behavior is to rewrite the Host HTTP header in all
redirected requests.

A special URL redirector – deny_info
The deny_info option is a directive in the Squid configuration file, which can be used to:

Present clients with a custom access denied page.

Redirect (HTTP 302) the clients to a different URL, displaying more information
about why access was denied or containing help messages.

Reset the TCP connection.

Let's have a look at the three syntaxes of the deny_info directive:

deny_info CUSTOM_ERROR_PAGE ACL_NAME
deny_info ALTERNATE_URL ACL_NAME
deny_info TCP_RESET ACL_NAME

The syntaxes shown previously correspond to the uses we have just discussed. In the first
syntax, the parameter CUSTOM_ERROR_PAGE specifies a custom error page written in HTML
or plain text, which will be displayed instead of Squid's default access denied page. The
error page written in English should be placed in the ${prefix}/share/errors/en-us/
directory or another appropriate location for other languages. We can also place this errors
file in a custom location such as /etc/squid/local-errors/.

Writing URL Redirectors and Rewriters

[266]

In the second syntax, the client will be redirected (HTTP 302) to an alternate URL specified
using the ALTERNATE_URL parameter. In the last syntax, the connection with the client will
be reset.

In all of the previous syntaxes, ACL_NAME represents the ACL name that must match for
rendering the corresponding access denied page or resetting the TCP connection.

When the http_access rules result in denied access, Squid remembers the last ACL it
evaluated in the http_access rules. If a deny_info line exists for the ACL last evaluated,
then Squid will render the corresponding error page. Now, let's try to understand this in
detail using examples.

Consider the following configuration:

acl example_com dstdomain .example.com
acl example_net dstdomain .example.net
acl png_file urlpath_regex -i \.png$

http_access allow example_net
http_access deny example_com png_file
http_access deny all

deny_info TCP_RESET example_com
deny_info http://example.net/ png_file

Now, let's say a client tries to access http://www.example.com/default.png. According
to the previous configuration, the first access rule with the example_net ACL doesn't
match. So, we proceed to the second access rule. The URL mentioned here is matched by
both the example_com and png_file ACLs. However, note that the last ACL evaluated by
Squid which resulted in denied access is png_file. So, Squid will try to find a deny_info
line corresponding to the png_file ACL. As a result, the HTTP client will be sent a HTTP 302
redirect, redirecting the client to http://example.net/.

Now, we are going to modify our configuration by switching the position of ACL names in the
access rule, shown as follows:

acl example_com dstdomain .example.com
acl example_net dstdomain .example.net
acl png_file urlpath_regex -i \.png$

http_access allow example_net
Notice the switch
http_access deny png_file example_com
http_access deny all

deny_info TCP_RESET example_com
deny_info http://example.net/ png_file

Chapter 11

[267]

If a client tries to access the same URL http://www.example.com/default.png, the
result will be a TCP connection reset. This is because the last ACL resulting in denied access
will be example_com and not png_file.

The deny_info directive is preferred over custom URL redirects when we need
to redirect our client to alternate URLs pointing to custom error pages.

Popular URL redirectors
So far, we have learned about how URL redirector programs communicate with Squid
and how we can write our own URL redirector programs. Now, let's have a look at
a few popular URL redirectors. For a full list of available redirector programs, please
visit http://www.squid-cache.org/Misc/related-software.html.

SquidGuard
SquidGuard is a combination of filter, URL rewriter, and an access control plugin for Squid.
The main features of SquidGuard includes the fact that it is fast, free, flexible, and ease of
installation. Below are a few use cases of SquidGuard:

Limiting access for some users to a list of well known web servers or URLs

Blocking access for some users based on blacklists

Redirect blocked URLs to pages containing helpful information

Redirect unregistered users to registration pages

And much more...

For more details on SquidGuard, please see http://www.squidguard.org/.

Squirm
Squirm is a fast and configurable URL rewriter for Squid. Please check http://squirm.
foote.com.au/ for more details. A few features of Squirm are as follows:

It is very fast and uses almost no memory

It can read the configuration file again even when running

It can run in bypass mode in case the configuration file contains errors

It has an interactive mode for testing new configuration files

Writing URL Redirectors and Rewriters

[26�]

Ad Zapper
Ad Zapper is another popular Squid URL rewriter for removing ad banners, flash animations,
pop-up windows, page counters, and other web bugs. Ad zapper maintains a list of regular
expressions for well known ad networks. For more details on ad zapper, please check
http://adzapper.sourceforge.net/.

Pop quiz
1. If a client requests a URL http://www.example.com/users/list.

php?start=10&end=20#top, then which one of the following is the URL
which will be received by a URL rewriter program?

a. http://www.example.com

b. http://www.example.com/users/list.php

c. http://www.example.com/users/list.php?start=10&end=20

d. http://www.example.com/users/list.php?start=10&end=20#top

2. How many different URL rewriter programs can be used by Squid at any time?

a. Unlimited

b. Depends on the RAM and CPU power of the machine

c. Depends on the number of network interfaces available on the server

d. 1

3. Consider the following snippet from a Squid configuration file:

url_rewrite_program /opt/squid/libexec/rewriter

acl rewrite_domain dstdom example.com
url_rewrite_access allow rewrite_domain
url_rewrite_access deny all

url_rewrite_bypass off

Now, consider a situation when all the URL rewriter programs are busy and a client
requests a URL http://www.example.com/index.html. What will Squid do?

a. Return an access denied message

b. Wait for a rewriter program to become free

c. Crash

d. Will not wait for the rewriter and will process the request normally

Chapter 11

[26�]

Summary
In this chapter, we have learned about URL redirector and rewriter programs, which are
very helpful in extending the basic Squid functionality. We have also learned about
the deny_info directive which is a better fit for redirecting users to better and more
understandable error pages. We also learned how Squid communicates with URL helpers.

Specifically, we covered:

URL redirectors and their use

How Squid communicates with the URL redirector programs

Writing our own URL redirector program

Configuring Squid to use our URL redirector program

A few popular URL redirectors that are helpful in saving bandwidth and providing
better access control

Now that we have learned about most of the components of Squid, we need to learn about
troubleshooting in case a component doesn't behave appropriately, and that is the topic of
our next chapter.

12
Troubleshooting Squid

In the previous chapters, we have learned about installing and configuring the
Squid proxy server in different modes. Then we moved on to learning about and
further customizing Squid using the powerful URL redirector programs. Though
we may take utmost care while configuring Squid and testing everything before
deploying changes in production mode, sometimes we may face issues which
can affect our clients. The issues may be a result of configuration glitches, Squid
bugs, operating system limitations, or even because of the network issues. In
this chapter, we'll learn about common known issues and how we can go about
the troubleshooting of these issues in a strategic manner.

In this chapter, we shall learn about:

Some common issues

Debugging problems

Getting help online and reporting bugs

So let's begin...

Some common issues
Most of the issues which arise are due to configuration errors and ambiguous configurations,
which are known as Squid bugs or operating system issues. You can fix these issues quickly
if you are aware of the issues which are commonly faced by Squid users, as these types of
issues generally have standard solutions. So, let's have a look at a few common problems.

Troubleshooting Squid

[272]

Cannot write to log files
Sometimes, while starting Squid, we may get a warning similar to the following:

WARNING: Cannot write log file: /opt/squid/var/logs/cache.log
/opt/squid/var/logs/cache.log: Permission denied
 messages will be sent to 'stderr'.

This generally happens when the user running Squid doesn't have write permissions to the
directory containing log files or the log files themselves. This error can be avoided to a large
extent if we use binary packages for our operating system because the permissions and
ownerships will be set up properly by the packet installer during installation.

Time for action – changing the ownership of log files
This issue can be quickly fixed by changing the ownership of the log directory and files
within. Squid is either run by the user nobody or by the user mentioned using the
cache_effective_user directive in the Squid configuration file. So, to change the
ownership of the log directory and files within, we can use the chown command as follows:

chown –R nobody:nobody /opt/squid/var/logs/

Don't forget to replace username, group name, and log directory
in accordance with your Squid installation.

What just happened?
We learned that Squid should have the ownership of the directory containing log files
to be able to log messages properly. We also learned how to change the ownership
using the chown command.

Could not determine hostname
Another error encountered commonly is shown as follows:

FATAL: Could not determine fully qualified hostname. Please set
'visible_hostname'
Squid Cache (Version 3.1.10): Terminated abnormally.

This happens when Squid is not able to determine the fully-qualified hostname for the
IP address it's binding to.

Please note that with Squid version 3.2 onwards, this error will be converted from FATAL
to WARNING and Squid will still run using the name localhost.

Chapter 12

[273]

This issue can be resolved quickly by setting an appropriate hostname using the
visible_hostname directive in the Squid configuration, demonstrated in the
following example:

visible_hostname proxy.example.com

The hostname provided previously should now have DNS records resolving it to the
IP address of the proxy server. In a cluster of proxies, this hostname should be unique
for every proxy server to tackle IP-forwarding issues.

Cannot create swap directories
When we try to create new swap directories using the Squid command, we may get an error
shown as follows:

[root@saini ~]# /opt/squid/sbin/squid -z
2010/11/10 00:42:34| Creating Swap Directories
FATAL: Failed to make swap directory /opt/squid/var/cache: (13)
Permission denied
[root@saini ~]#

As it is clear from the previous error message, Squid didn't have enough permission to create
the swap directories.

Time for action – fixing cache directory permissions
We can fix this issue by creating the cache directory and then transferring the ownership
to the Squid user manually.

mkdir /opt/squid/var/cache
chown nobody:nobody /opt/squid/var/cache

The previous commands will create the cache directory and will transfer the ownership
to the Squid user.

If we try to create the swap directories now, the command will succeed and will output
something like this:

[root@saini etc]# /opt/squid/sbin/squid -z
2010/11/10 00:44:16| Creating Swap Directories
2010/11/10 00:44:16| /opt/squid/var/cache exists
2010/11/10 00:44:16| Making directories in /opt/squid/var/cache/00
2010/11/10 00:44:16| Making directories in /opt/squid/var/cache/01
...

Troubleshooting Squid

[274]

What just happened?
We learned how to create the cache directory with proper ownership, so that Squid can
create the swap directories without any problems.

Failed verification of swap directories
In most cases, we'll be using Squid as a caching proxy server and we'll have disk caching
enabled. A common error related to cache or swap directories is as follows:

2010/11/10 00:33:56| /opt/squid/var/cache: (2) No such file or
directory
FATAL: Failed to verify one of the swap directories, Check cache.log
 for details. Run 'squid -z' to create swap directories
 if needed, or if running Squid for the first time.
Squid Cache (Version 3.1.10): Terminated abnormally.

This error generally occurs when:

We run Squid for the first time without creating swap directories

We run Squid after updating (adding/modifying) the existing swap directories using
the cache_dir directive.

Time for action – creating swap directories
This error can be fixed by running the following command:

squid -z

This should be run every time we add new swap directories or modify the existing
cache_dir lines in our configuration file. If we run Squid after running the previous
command, everything will be fine.

What just happened?
We learned that we should run Squid with the -z option whenever we make changes to the
Squid cache directories, so that Squid can create swap directories properly.

Address already in use
Another commonly encountered error is Address already in use, Cannot bind
socket, or Cannot open HTTP port, shown as follows:

2010/11/10 01:04:20| commBind: Cannot bind socket FD 16 to [::]:8080:
(98) Address already in use
FATAL: Cannot open HTTP Port
Squid Cache (Version 3.1.10): Terminated abnormally.

Chapter 12

[275]

When we start Squid, it tries to bind itself to one or more network interfaces, on the
port mentioned using the http_port directive in the Squid configuration file. The error
mentioned previously occurs when another program is already listening on the port Squid
is trying to bind to.

Time for action – finding the program listening
on a specific port

To resolve this issue, we first have to find out which program is listening on the port in
question. The process of finding out the program listening on a port depends the operating
system we are using. The following methods are used for popular operating systems:

For Linux-based operating systems
For Linux-based operating systems, we can use the following command:

lsof –i :8080

Don't forget to replace 8080 with the appropriate port number.

For OpenBSD and NetBSD
For OpenBSD and NetBSD, we can use the fstat command as follows:

fstat | grep 8080

This will give us a list of connections involving port 8080.

For FreeBSD and DragonFlyBSD
The program for determining a program listening on a port for FreeBSD and DragonFlyBSD
is sockstat and can be used as follows:

sockstat -4l | grep 8080

The previous command will show us the program listening on port 8080.

Once we have identified the program listening on port 8080, we can resolve the issues in the
following two ways:

If the program is important, we may need to change the Squid HTTP port using the
http_port directive and then restart Squid.

Close the program already listening on port 8080 and then start Squid. However,
this may affect the clients using the services offered by the other program.

Troubleshooting Squid

[276]

This issue can also occur if we configure the same port twice in the configuration file with an
IP and/or wildcard. So, it's a good idea to double the configuration file also.

What just happened?
We learned about the usage of the lsof, fstat, and sockstat commands to find out the
program listening on a particular port on our system. We also learned about the possible
ways to make Squid work when another program is listening on the same port.

URLs with underscore results in an invalid URL
This error doesn't occur with the default Squid configuration, but may occur when we
enforce Squid to check URLs against standards. In the public DNS system, an underscore is
not allowed. It is only workable for locally-resolved hosts when the local resolver has been
configured to allow it. There are two important directives related to this issue. Let's have a
look at them.

Enforce hostname checks
The directive that enforces Squid to check every hostname against standards is
check_hostnames. The default Squid behavior is not to restrict hostnames to standards
only, but when this directive is set to on, Squid will enforce checks and requests to URLs with
illegal hostnames, and this will result in an Invalid URL message. To resolve this issue, we
can simply reset this directive to off so that Squid doesn't enforce checks.

Allow underscore
Another directive that determines whether underscores in domains names will be allowed or
not is allow_underscore. The default Squid behavior is to allow underscores. If we don't
want to allow underscores in domain names, we can set this option to off. To resolve the
issue mentioned previously, this option should be reset to its default value, namely, on.

Please note that the directive allow_underscore is used
only when the check_hostnames directive is set to on.

Squid becomes slow over time
This is another common issue faced when we try to get too much out of our system. In
most cases, it happens because we have set cache_mem to a very high value and there is
not enough memory available for other processes to perform normally, and the system
as a whole is running short of memory.

Chapter 12

[277]

As we have learned in the previous chapters, cache_mem is the amount of memory used for
caching web documents in the main memory and the total memory occupied by Squid will
always be more than cache_mem.

We can resolve this issue in three incremental steps.

We should analyze the total memory available on our system besides the memory
consumed by the operating system and other essential processes. Then we should
set cache_mem accordingly so that there will enough free memory for Squid and
other processes to perform without any swapping.

Secondly, we can try turning off the memory pools using the memory_pools
directive as follows:

memory_pools off

We know that Squid keeps an index of all the cached documents on disk in the main
memory. So, if we have large disk caches, the index will be proportionally large and
will take a significant amount of memory. If neither of the previous two techniques
work, we can try reducing the size of our cache directories.

The request or reply is too large
Sometimes, clients may report that they are periodically getting the error message
"The request or reply is too large". This error occurs when either the reply,
the request headers, or body size exceeds the maximum permitted values.

This error is related to the directives request_header_max_size, request_body_max_
size, reply_header_max_size, and reply_body_max_size in the Squid configuration
file. Adjusting the values of these directives will fix this issue.

Access denied on the proxy server
Sometimes a tricky situation may occur, whereby, all of our clients are able to access
websites via our proxy server, but when we try to access websites on our server running
Squid using our own proxy server, we may be denied access. This generally happens because
while configuring Squid, we allowed all our networks using ACLs, but forgot to allow our
Squid server's IP address. We can tackle this issue by extending the localhost ACL
provided by Squid to include other IP addresses assigned to our proxy server. Please don't
forget to reload or restart the Squid proxy server daemon after modifying the ACL.

Troubleshooting Squid

[27�]

Connection refused when reaching a sibling proxy server
While adding a sibling using the cache_peer directive, if we happen to enter a wrong HTTP
port and a correct ICP port for the sibling, the ICP communication will work fine and our
cache will believe that the configuration is correct. However, this will result in the connection
being refused because of the wrong HTTP port. This may happen even if our configuration is
correct and our sibling has changed their HTTP port. Double-checking the HTTP port will fix
this solution.

Debugging problems
Mostly, we encounter problems that are well-known and are a result of configuration
glitches or operating system limitations. So, those problems can be fixed easily by tweaking
configuration files. However, sometimes we may face problems that cannot be solved
directly or we may not even be able to identify them by simply looking at the log files.

By default, Squid only logs the essential information to cache.log. To inspect or debug
problems, we need to increase the verbosity of the logs so that Squid can tell us more about
the actions it's taking, which may help us find the source of the problem. We can extract
information from Squid about its actions at our convenience by using the debug_options
directive in the Squid configuration file.

Let's have a look at the format of the debug_options directive:

debug_options rotate=N section,verbosity [section,verbosity]...

The parameter rotate (rotate=N) specifies the number of cache.log files that will
be maintained when Squid logs are rotated. The default value of N is 1. The rotate option
helps in preventing disk space from being wasted due to excessive log messages when the
verbosity level is high.

The parameter section is an integer identifying a particular component of Squid. It can
have a special value, ALL, which represents all components of Squid. The verbosity
parameter is also an integer representing the verbosity level for each section. Let's have
a look at the meaning of different verbosity levels:

Verbosity level Description

0 Only critical or fatal messages will be logged.

1 Warnings and important problems will be logged.

2 At verbosity level 2, the minor problems, recovery, and regular high-level
actions will be logged.

3-5 Almost everything useful is covered by verbosity level 5.

6-9 Above verbosity level 5, it is extremely verbose. Individual events, signals,
and so on are described in detail.

Chapter 12

[27�]

The following is the default configuration:

debug_options rotate=1 ALL,1

The preceding configuration line sets the verbosity level for all sections of Squid to 1, which
means that Squid will try to log the minimum amount of information possible.

The section number can be determined by looking at the source of the file. In most source
files, we can locate a commented line, as shown in the following example, which is from
access_log.cc:

/*
...
 * DEBUG: section 46 Access Log
...
*/

The previous comment tells us that the section number for the Access Log is 46.
A list of section numbers and corresponding Squid components can be found at
doc/debug-sections.txt in Squid's source code. The following table represents
some of the important section numbers for Squid version 3.1.10:

Section
number

Squid components

0 Announcement Server, Client Database, Debug Routines, DNS Resolver Daemon,
UFS Store Dump Tool

1 Main Loop, Startup

2 Unlink Daemon

3 Configuration File Parsing, Configuration Settings

4 Error Generation

6 Disk I/O Routines

9 File Transfer Protocol (FTP)

11 Hypertext Transfer Protocol (HTTP)

12 Internet Cache Protocol (ICP)

14 IP Cache, IP Storage, and Handling

15 Neighbor Routines

16 Cache Manager Objects

17 Request Forwarding

18 Cache Manager Statistics

Troubleshooting Squid

[2�0]

Section
number

Squid components

20 Storage Manager, Storage Manager Heap-based replacement, Storage Manager
Logging Functions, Storage Manager MD5 Cache Keys, Storage Manager Swapfile
Metadata, Storage Manager Swapfile Unpacker, Storage Manager Swapin
Functions, Storage Manager Swapout Functions, Store Rebuild Routines, Swap Dir
base object

23 URL Parsing, URL Scheme parsing

28 Access Control

29 Authenticator, Negotiate Authenticator, NTLM Authenticator

31 Hypertext Caching Protocol

32 Asynchronous Disk I/O

34 Dnsserver interface

35 FQDN Cache

44 Peer Selection Algorithm

46 Access Log

50 Log file handling

51 Filedescriptor Functions

55 HTTP Header

56 HTTP Message Body

57 HTTP Status-line

58 HTTP Reply (Response)

61 Redirector

64 HTTP Range Header

65 HTTP Cache Control Header

66 HTTP Header Tools

67 String

68 HTTP Content-Range Header

70 Cache Digest

71 Store Digest Manager

72 Peer Digest Routines

73 HTTP Request

74 HTTP Message

76 Internal Squid Object handling

78 DNS lookups, DNS lookups; interacts with lib/rfc1035.c

Chapter 12

[2�1]

Section
number

Squid components

79 Disk IO Routines, Squid-side DISKD I/O functions, Squid-side Disk I/O functions,
Storage Manager COSS Interface, Storage Manager UFS Interface

84 Helper process maintenance

89 NAT / IP Interception

90 HTTP Cache Control Header, Storage Manager Client-Side Interface

92 Storage File System

Time for action – debugging HTTP requests
So, let's say that we need to debug a problem with HTTP, then we can set a higher verbosity
level for section number 11, as shown in the following example:

debug_options ALL,1 11,5

We need to reconfigure or restart the Squid server after modifying the Squid configuration
file. Now, if we try to browse www.example.com using our proxy server, then we'll notice
an output similar to the following, in our cache.log file. Please note that we have removed
the timestamp from the following log messages for a clearer view:

httpStart: "GET http://www.example.com/"
http.cc(86) HttpStateData: HttpStateData 0x8fc4318 created
httpSendRequest: FD 14, request 0x8f73678, this 0x8fc4318.
The AsyncCall HttpStateData::httpTimeout constructed, this=0x8daead0
[call315]
The AsyncCall HttpStateData::readReply constructed, this=0x8daf0c8
[call316]
The AsyncCall HttpStateData::SendComplete constructed, this=0x8daf120
[call317]
httpBuildRequestHeader: Host: example.com
httpBuildRequestHeader: User-Agent: Mozilla/5.0 (X11; U; Linux i686;
en-US; rv:1.9.2.3) Gecko/20100403 Fedora/3.6.3-4.fc13 Firefox/3.6.3
GTB7.1
httpBuildRequestHeader: Accept: text/html,application/
xhtml+xml,application/xml;q=0.9,*/*;q=0.8
httpBuildRequestHeader: Accept-Language: en-us,en;q=0.5
httpBuildRequestHeader: Accept-Encoding: gzip,deflate
httpBuildRequestHeader: Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
httpBuildRequestHeader: Keep-Alive: 115
httpBuildRequestHeader: Proxy-Connection: keep-alive

Troubleshooting Squid

[2�2]

httpBuildRequestHeader: If-Modified-Since: Fri, 30 Jul 2010 15:30:18
GMT
httpBuildRequestHeader: If-None-Match: "573c1-254-48c9c87349680"
comm.cc(166) will call HttpStateData::SendComplete(FD 14,
data=0x8fc4318) [call317]
entering HttpStateData::SendComplete(FD 14, data=0x8fc4318)
AsyncCall.cc(32) make: make call HttpStateData::SendComplete [call317]
...

As shown in the previous example, Squid will try to log as much information as possible. We
can clearly see how the HTTP request is being built with appropriate HTTP headers. To debug
problems with other components, we can set their verbosity level to a higher value and then
inspect the cache.log file for possible problems.

What just happened?
We learned to use the debug_options directive to generate more debugging output for
HTTP requests in the cache.log file. Similarly, we can debug other the components of Squid.

Now, let's learn a way to debug our access controls using the debug_options directive
and cache.log.

Time for action – debugging access control
Normally, it's easy to construct ACLs using various ACL types and they will work as expected.
However, as our configuration gets bigger, ACLs may get confusing and it'll be hard to point
out the exact culprit ACL causing problems such as, access denied messages or allowing
access to a denied object. To debug our ACLs in such a situation, we can take advantage of
the debug_options directive so that we can see the step-by-step processing of ACLs by
Squid. We'll learn to debug our example configuration.

Consider the following access control lines in our configuration file:

acl example dstdomain .example.com
acl png urlpath_regex -i \.png$

http_access deny png example
http_access allow localhost
http_access allow localnet
http_access deny all

If we consult the table of section numbers for the Squid components, the section number
for access control is 28. So, we will add the following line to our configuration file:

debug_options ALL,1 28,3

Chapter 12

[2�3]

The previous configuration line will set the verbosity level for the access control section
to 3 and 1 for all other sections. Once we have added the previous line, we can reload or
restart our Squid proxy server daemon.

Now, open a browser and try to access the URL http://www.example.com/default.
png. We'll get an access-denied page. Now, if we look at our cache.log file, we can find
a few lines similar to the following:

...
1. ACLChecklist::preCheck: 0x8fa3220 checking 'http_access deny png
example'
2. ACLList::matches: checking png
3. ACL::checklistMatches: checking 'png'
4. aclRegexData::match: checking '/default.png'
5. aclRegexData::match: looking for '\.png$'
6. aclRegexData::match: match '\.png$' found in '/default.png'
7. ACL::ChecklistMatches: result for 'png' is 1
8. ACLList::matches: checking example
9. ACL::checklistMatches: checking 'example'
10. aclMatchDomainList: checking 'www.example.com'
11. aclMatchDomainList: 'www.example.com' found
12. ACL::ChecklistMatches: result for 'example' is 1
13. aclmatchAclList: 0x8fa3220 returning true (AND list satisfied)
...

Please note that timestamps have been removed from log messages for easier
viewing and the messages have been numbered for explanation purpose only.

Now, let's try to understand what the different log messages listed previously mean. In the
first line, Squid says that it's going to process the current request against the access rule
http_access deny png example. In the second line, Squid picks up the first ACL used in
the rule, png, for further processing. In the fourth line, Squid says that the ACL png is being
checked against /default.png, which is the URL path in the URL we have requested.

In the sixth line, Squid logs that it has found the match for ACL png in the URL path for the
current request. The seventh line declares the result for the ACL png, which is 1, meaning
that the ACL was matched successfully. As a definite result for the access rule can't be
determined yet, Squid will proceed with processing the rule further.

Troubleshooting Squid

[2�4]

The eighth and ninth line says that the example ACL will be processed now. The tenth line
says that Squid will be matching the ACL example against www.example.com, which is
the destination domain in our request. The eleventh line says that the match is found. The
thirteenth line says that it's returning true and that the AND list (AND operation on png and
example ACLs) was satisfied. The current access rule http_access deny png example
has been matched and access will be denied to this URL.

So, as we saw, we can configure Squid to log messages and then go on debugging our ACLs.

What just happened?
We just learned how to debug access controls by configuring Squid to log more information
while processing individual access rules.

Have a go Hero – debugging HTTP responses
Try to debug HTTP responses from various servers using the debug_options directive.

Getting help online and reporting bugs
If we are really stuck with a Squid error and are not able to solve it ourselves, then we
should consider posting the error or problem to the Squid users' mailing list. Information
on the different mailing lists related to Squid is available at http://www.squid-cache.
org/Support/mailing-lists.html. We should also consider subscribing to the
Squid announce list using, from which we'll be able to get critical security and release
announcements regularly. We can even participate in Squid development and can learn
what Squid developers are up to by subscribing to the Squid developers mailing list.

Another good source of online information about Squid is the Squid wiki itself, which can be
reached at http://wiki.squid-cache.org/. The Squid wiki contains a lot of FAQs and
configuration examples for various operating systems. The Squid wiki is a community effort,
and if outdated examples or configuration are found, then we can report them to Bugzilla
under website bugs. Alternatively, we can get an account and help in improving the articles
on wiki.

Finally, if we have really hit a bug in Squid itself, then we can file a detailed bug report at
http://bugs.squid-cache.org/. Before filing a new bug, we must check if a similar bug
exists. If a similar bug exists, we should append the bug report to the existing bug. We need
to create a Bugzilla account before we can file a bug. Also, we should mention the following
information while filing a bug report so that the developers can have enough information at
hand while they try to get to the source of the bug:

The version and release number of our Squid installation.

The operating system name and version.

Chapter 12

[2�5]

What we were trying to do when the bug occurred?

Is there a way to reproduce this bug? If yes, mention all the steps.

Any trace backs or core dumps. Please check http://wiki.squid-cache.org/
SquidFaq/BugReporting for getting trace backs or core dumps.

Any other related system specific information that may help developers.

After filing a bug, we should regularly check the bug page for updates and should provide
any additional information requested by the developers.

Pop quiz
1. What will be your first step when you encounter a problem with Squid?

a. Send a personal message to a Squid developer about it

b. Report a bug in Squid Bugzilla

c. Check cache.log file for warnings or errors

d. Restart Squid server

2. What is wrong with the following configuration line?

debug_options 3,5 9,4 28,4 ALL,1

a. Its the wrong syntax

b. We can't use multiple section, verbosity level pairs

c. ALL is not an integer and will result in a configuration error

d. Although syntactically correct, this configuration line has semantic errors. The
verbosity levels or all the sections will be set to 1 because ALL, 1 is mentioned
last and will overwrite the previous verbosity levels.

3. Generally, we should keep a low verbosity level in production mode. Why?

a. Squid will not write to the access log when the verbosity level is set high.

b. Squid will flood the cache.log file, resulting in unnecessary consumption of
disk space when the verbosity level is high.

c. Squid doesn't support a high verbosity level when deployed in
production mode.

d. Verbose logs can protect clients' private information.

Troubleshooting Squid

[2�6]

Summary
We learned about some of the common problems faced by Squid users and how we can
solve them quickly by modifying various directives in the Squid configuration file. We also
learned about debugging various components of Squid via cache.log.

Specifically, we covered:

Some commonly known problems and their solutions

Debugging specific components of Squid via the cache.log file

Using online resources to get help to solve issues with Squid

Reporting bugs to Squid developers

We learned the various ways to track problems with Squid and steps to strategically debug
and solve the issues. If we get stuck with a problem, we can always get in touch with fellow
Squid users through the Squid users mailing list.

Pop Quiz Answers

Chapter 1, Getting Started with Squid
Question Answer

1 c.

Because all other web documents are static in nature and will not change over time.

2 b.

Because the I/O option will only affect performance when caching on hard disks
is enabled.

3 b.

As better removal policy will utilize the available space more efficiently, whether
the space is in RAM or hard disk.

Chapter 2, Configuring Squid
Question Answer

1 d

2 c

3 a.

No, because 192.0.2.21 will match against ACL blocked_clients and will be
denied access. Squid stops looking for access rules after the first match.

4 b.

The directive cache_mem specifies the space that can be used by Squid to cache the
web documents in main memory. The actual memory occupied by Squid will be more
than that specified using cache_mem.

5 d

Pop Quiz Answers

[2��]

Chapter 3, Running Squid

Question Answer

1 b

2 b

3 b.

While in debug mode, Squid produces a lot of output which may fill disks very
quickly. But we can still use Squid in debug mode sometimes as it may be
necessary to use it to debug critical problems.

Chapter 4, Getting Started with Squid’s Powerful ACLs and
Access Rules

Question Answer

1 d

2 a

3 a.

The second access rule will never be matched as a request can come either
from 10.1.33.9 or 10.1.33.182 and all the three conditions will never be
matched at the same time.

4 d.

Because the last rule denies access to all replies which will not allow Squid to
send any received data to clients and they will not be able to browse.

Chapter 5, Understanding Log Files and Log Formats

Question Answer

1 b.

Squid. It is the default log format.

2 b

3 a

Appendix

[2��]

Chapter 6, Managing Squid and Monitoring Traffic
Question Answer

1 d

2 a

3 c

Chapter 7, Protecting your Squid with Authentication

Question Answer

1 d.

Username and password are transmitted after encoding the combination in
base64. But they can be easily decoded back to plaintext.

2 c.

Because string comparisons in most databases are case insensitive which will
allow usernames john, John, jOhN, and so on provided correct password is
entered. This will prevent us from detecting them as one user in case we have
case-sensitive usernames which in turn will affect max_user_ip ACL lists.

3 c

Chapter �, Building a Hierarchy of Squid Caches
Question Answer

1 a.

p1.example.com. When the default option is used with more than one peer,
only the first one is considered irrespective of the other options specified.

2 c.

Two possible ways:

Using cache_peer_domain

cache_peer sibling.example.com sibling 3128 0 no-query no-digest

cache_peer_domain sibling.example.com !.local.example.com

Using cache_peer_access

cache_peer sibling.example.com sibling 3128 0 no-query no-digest

acl local_example dstdomain .local.example.com

cache_peer_access sibling.example.com deny local_example

cache_peer_access sibling.example.com allow all

Pop Quiz Answers

[2�0]

Chapter �, Squid in Reverse Proxy Mode

Question Answer

1 c

2 b

Chapter 10, Squid in Intercept Mode

Question Answer

1 a.

HTTP only.

2 c.

Host

3 b

Chapter 11: Writing URL Redirectors and Rewriters

Question Answer

1 c

2 d

3 d.

Squid will process the request normally as the domain in the
URL will not be matched by the ACL list rewrite_domain.

Chapter 12: Troubleshooting Squid

Question Answer

1 c

2 d

3 b

Index
Symbols
${prefix}

bin 27
bin/squidclient 27
etc 28
etc/squid.conf 28
etc/squid.conf.default 28
etc/squid.conf.documented 28
libexec 28
libexec/cachemgr.cgi 28
sbin 28
sbin/squid 28
share 28
share/errors 28
share/icons 29
share/man 29
var 29
var/cache 29
var/logs 29

--cond option, database authentication options
177

--disable-auth-ntlm option 22
--disable-auto-locale, configuration options 23
--disable-htcp, configuration options 19
--disable-http-violations, configuration options

20
--disable-ident-lookups, configuration options

21
--disable-inline, configuration options 17
--disable-internal-dns, configuration options 21
--disable-optimizations, configuration options

17
--disable-snmp, configuration options 18
--disable-translation, configuration options 23
--disable-unlinkd, configuration options 23

--disable-wccp, configuration options 18
--disable-wccpv2, configuration options 18
--dsn option, database authentication options

177
--enable-arp-acl, configuration options 19
--enable-auth, configuration options 21
--enable-auth-basic, configuration options 22
--enable-auth-digest, configuration options 22
--enable-auth-negotiate, configuration options

22
--enable-auth-ntlm, configuration options 22
--enable-cache-digests, configuration options 19
--enable-cachemgr-hostname, configuration

options 19
--enable-default-err-language, configuration

options 19
--enable-default-hostsfile, configuration options

21
--enable-delay-pools, configuration options 18
--enable-err-languages, configuration options 20
--enable-esi, configuration options 18
--enable-external-acl-helpers, configuration op-

tions 23
--enable-follow-x-forwarded-for, configuration

options 20
--enable-gnuregex, configuration options 17
--enable-icmp, configuration options 18
--enable-ipf-transparent, configuration options

20
--enable-ipfw-transparent, configuration options

20
--enable-linux-netfliter, configuration options 20
--enable-ntlm-fail-open, configuration options

22
--enable-pf-transparent, configuration options

20

[�9�]

--enable-referer-log, configuration options 18
--enable-removal-policies, configuration options

17
--enable-ssl, configuration options 19
--enable-storeio, configuration options 17
--enable-useragent-log, configuration options 18
--help option, configuration options 16
--joomla option, database authentication op-

tions 177
--md5 option, database authentication options

177
--passwdcol option, database authentication

options 177
--password option, database authentication op-

tions 177
--persist option, database authentication options

177
--plaintext option, database authentication op-

tions 177
--prefix option, configuration options 16
--salt option, database authentication options

177
--table option, database authentication options

177
--usercol option, database authentication op-

tions 177
--user option, database authentication options

177
--with-aufs-threads, configuration options 24
--with-default-user, configuration options 23
--with-filedescriptors, configuration options 24
--with-large-files, configuration options 24
--with-logdir, configuration options 23
--with-openssl, configuration options 24
--with-pidfile, configuration options 24
--without-pthreads, configuration options 24
/etc/rc.local file 87

A
access, to ports

HTCP port 114
ICP port 114
purge access via HTCP 115
SNMP port 115

access_log directive 232

access control
debugging 282, 283
testing, squidclient used 126

access control configuration
example configurations 235
Squid in only reverse proxy mode 234
Squid in reverse proxy and forward proxy mode

234
Access Control Lists. See ACLs
access list rules

about 112
access to HTTP protocol 112, 113
access to other ports 114
always_direct 117
cache_peer_access rule 116
constructing, request protocol used 102, 103
controlled caching of web documents 118
custom error pages 119
deny_info 119
htcp_clr_access 115
HTTP header access 119
icp_access 114
ident_lookup_access 117
ident lookup access 117
limited access to neighbors 115
log_access rule 120
miss_access rule 115
never_direct 117
prefer_direct 117
reply_body_max_size 120
reply_header_access 119
reply size 120
request_header_access 119
requests, forwarding to remote servers 117
requests, logging selectively 120
requests to neighbor proxy servers 116
snmp_access 115
url_rewrite_access 118

access log
about 137, 138
access log messages 137, 138
customizing 142, 143
daemon module 139
format codes 140-142
log format 140-142
log formats, by Squid 142
log messages, sending to syslog 140

[�9�]

none module 139
stdio module 139
syntax, analyzing 139
syslog module 139
tcp module 139
udp module 139

access to HTTP protocol
about 112, 113
adapted HTTP access 113
HTTP access for replies 113, 114

ACL lists
constructing, destination ports used 99, 100
constructing, domain names used 97
constructing, for audio content 105
constructing, IP adresses used 93
constructing, range of IP addresses used 94

ACL lists and rules
example scenarios 121

ACLs
about 38, 92
constructing 39, 40
client usernames, identifying 105
destination port 98
fast ACL types 92
HTTP methods 101
HTTP reply status 111
identification, based on HTTP headers 109
pre-defined ACLs 40
proxy authentication 106
random requests, identifying 112
request protocol, using 102
slow ACL types 92
source and destination domain names 96
source and destination IP address 92
time-based ACLs 103
URL path-based identification 104
user limits 108

ACL types
arp 96
browser 111
dst 93
dstdom_regex 98
dstdomain 97
https_status 111
ident 105
mac_acl 96
max_user_ip 109

maxconn 108
myip 95
myportname 100
our_network 97
port 99
proto 102
proxy_auth 107
proxy_auth_regex 107
random 112
referer_regex 110
rep_mime_type 110
req_header 111
req_mime_type 110
src 93
srcdom_regex 98
srcdomain 92, 97
time 103
url_regex 104
urlpath_regex 104

address already in use issue, solving
program listening, finding on specific port 275

advantages, interception caching
better control 241
increased reliability 241
zero client configuration 241

Ad Zapper
about 268
features 268

allow-direct, HTTP options 225
allowed_ports ACL 99
always_direct access list rule 117
always_direct directive 214 69
Apache Web server

configuring, for providing cache manager web
interface 152

configuring, to use cachemgr.cgi 153
installing 152

append_domain directive 64
Arch Linux

Squid installation 31
arp, ACL types 96
aufs 50
auth_param directives 107
auth_param parameters 184
authenticate_ip_ttl directive 109
authentication issues

about 193

[�9�]

in intercept or transparent mode 195
loops, challenging 194
whitelisting selected websites 193

B
backend web servers

adding, to Squid 229
backend web servers, adding

cache peer options 229
basic_db_auth helper 176
basic_fake_auth helper 184
basic_ldap_auth helper 179
basic_pam_auth helper 180
basic_pam_auth Squid helper 180
basic_radius_auth helper 184
basic_smb_auth helper 179
basic authentication, Squid

about 174
database authentication 176
database authentication, configuring 177, 178
exploring 174-176
fake basic authentication 184
getpwnam authentication 182
LDAP authentication 179
MSNT authentication 180
MSNT authentication, configuring 180
MSNT multi domain authentication 181
NCSA authentication 178
NCSA authentication, configuring 178
NIS authentication 179
PAM Authentication 180
POP3 authentication 183
RADIUS authentication 183
SASL authentication 182
SMB authentication 179

Bazaar
about 12
URL 12

Bloom Filter
about 216
URL 216

broken_posts directive 70
browser, ACL types 111
browser reloads, ignoring

ignore-cc option, used 233
ignore-reload option, used 233

reload-into-ims, used 233
bug report

about 284
URL 284

Bugzilla account 284

C
cache_dir directive 52, 274
cache_dns_program directive 63
cache_effective_user directive 35, 68, 105, 272
cache_mem 276
cache_object URL scheme 102
cache_peer_access directive 210
cache_peer_access rule 116
cache_peer_domain directive 209
cache_peer directive 44, 116, 201, 278
cache_replacement_policy directive 55
cache_swap_high directive 54
cache_swap_low directive 54
cache client list 162
cache digest configuration

about 217
digest_bits_per_entry directive 217
digest_rebuild_chunk_percentage directive 217
digest_rebuild_period directive 217
digest_rewrite_period directive 218
digest_swapout_chunk directive 217
digest generation directive 217

cache digests
about 216
enabling 217

cache directories
adding 79
creating 78

cache directory permissions
fixing 273

cached objects, in hard disks
about 49
cache directory, adding 52
cache directory, creating 51
cache directory, selecting 53
cache size, declaring 51
object replacement limits, setting 54
read-only cache 52
size limits 53
storage space, specifying 49

[�9�]

sub directories, configuring 52
cached objects, in RAM

current requests 47
in-transit objects 47
memory cache mode 49
negatively cached objects 47
object size, in memory 48
popular objects 47

cache hierarchy
about 198
Cache Digests protocol, using 198
cache peer options 208
CARP protocol, using 198
HTCP options 203
HTCP protocol, using 198
ICP options 202
ICP protocol, using 198
joining 201, 202
peer selection options 204
SSL or HTTPS options 206

cache log
about 134-136
exploring 137

cache manager 151
cache manager web interface

accessing 153
Apache, configuring 152
Apache Web server, installing 152
cache client list 162
cache manager, exploring 165
cache manger, logging in 154, 155
FQDN Cache Statistics 158
general runtime information 156
HTTP Header Statistics 159
internal DNS statistics 164
IP Cache Stats and Contents 157
memory utilization 163
request forwarding statistics 161
Squid, configuring 154
traffic and resource counters 160

cache peer options
about 208
allow-miss 209
connect-fail-limit 208
connect-timeout 208
login=NEGOTIATE 208
login=PASS 208

login=PASSTHRU 208
login=username
login=usernamepassword 208
max-conn 209
name 209
proxy-only 209

cache peer options, for reverse proxy mode
about 229
forcedomain 229
originserver 229

cache peers
about 44
access, controlling 46
adding 44
declaring 44
domain access, restricting 45

cache replacement policies
about 54
GDSF 54
least recently used (lru) 54
LFUDA 55

cache store log 149
caching 46
cafile, HTTPS options 227
Calamaris

about 165
exploring 170
features 166
graphical reports, generating 168-170
installing 166
reports 165
reports, exploring 168
statistics, generating 167
statistics, generating in plain text format 167,

168
capath, HTTPS options 227
Captive portal

reference link 243
CDN

about 199
function 199
resources 199

CentOS
Squid installation 30

Certificate Authorities (CAs) 227
cert parameter 226
check_nonce_count parameter 185

[�9�]

children parameter 175
chown command 272
cipher, HTTPS options 227
Cisco devices 245
clientca, HTTPS options 227
client IP addresses

client MAC addresses 96
listing 95
local IP address, identifying 95

client MAC addresses 96
Client netmask 71
client usernames

identifying 105
Regular expressions 106

command line options, Squid 75
communication interface, Squid-URL redirector

communication
about 256
fields 256
message flow, exploring 257, 258
URL redirector program, writing 258

compiling Squid
about 14
advantages 14, 15

complex access control
testing, squidclient used 129

configuration directives
about 67
always_direct directive 68, 69
broken_posts directive 70
cache_effective_user directive 68
cache_peer_access directive 68
Client netmask 71
effective user, setting 68
hierarchy_stoplist directive 68, 69
hostnames, configuring 68
never_direct directive 68, 69
PID filename 71
prefer_direct directive 68
request forwarding, controlling 68
TCP outgoing address 70
unique_hostname directive 68
unique hostname 68
visible_hostname 68
visible_hostname directive 68

configuration options
--disable-auto-locale 23

--disable-htcp 19
--disable-http-violations 20
--disable-ident-lookups 21
--disable-inline 17
--disable-internal-dns 21
--disable-optimizations 17
--disable-snmp 18
--disable-translation 23
--disable-unlinkd 23
--disable-wccp 18
--disable-wccpv2 18
--enable-arp-acl 19
--enable-auth 21
--enable-auth-basic 22
--enable-auth-digest 22
--enable-auth-negotiate 22
--enable-auth-ntlm 22
--enable-cache-digests 19
--enable-cachemgr-hostname 19
--enable-default-err-language 19
--enable-default-hostsfile 21
--enable-delay-pools 18
--enable-err-languages 20
--enable-esi 18
--enable-external-acl-helpers 23
--enable-follow-x-forwarded-for 20
--enable-gnuregex 17
--enable-icmp 18
--enable-ipf-transparent 20
--enable-ipfw-transparent 20
--enable-linux-netfliter 20
--enable-ntlm-fail-open 22
--enable-pf-transparent 20
--enable-referer-log 18
--enable-removal-policies 17
--enable-ssl 19
--enable-storeio 17
--enable-useragent-log 18
--help option 16
--prefix option 16
--with-aufs-threads 24
--with-default-user 23
--with-filedescriptors 24
--with-large-files 24
--with-logdir 23
--with-openssl 24
--with-pidfile 24

[�97]

--without-pthreads 24
listing 76, 77
new syntax, --enable-auth 21
old syntax, --enable-auth 21

configuration options, surrogate protocol
about 231
httpd_accel_surrogate_id 231
httpd_accel_surrogate_remote 231

configure command 16
configure or system check

about 15
CONNECT method 101
Content-Type HTTP header 110
Content Delivery Network. See CDN
credentialsttl parameter 176
CRL (Certificate Revocation List) 227
crlfile, HTTPS options 227
custom access denied page 120
custom authentication helper

writing 191, 192
custom error pages 119
custom URL redirector program

custom template, writing 261, 262
redirector program, extending 262
writing 260

D
daemon module, access log 139
database authentication

about 176
configuring 177
options 177

database authentication options
--cond 177
--dsn 177
--joomla 177
--md5 177
--passwdcol 177
--password 177
--persist 177
--plaintext 177
--salt 177
--table 177
--user 177
--usercol 177

Debian
Squid installation 30

debug_options directive 278
debug log 134
default domain name

appending 64
defaultsite, HTTP options 224
defaultsite, HTTPS options 226
DELETE method 101
deny_info access list rule 119
deny_info directive 265, 266
destination ports

used, for building ACL lists 99, 100
dhparams, HTTPS options 227
different configuration file

using 79
different versions, Squid 11
digest_bits_per_entry directive 217
digest_edirectory_auth authentication helper

187
digest_file_auth helper 186
digest_generation directive 217
digest_ldap_auth authentication helper 187
digest_ldap_auth helper 186
digest_rebuild_chunk_percentage directive 217
digest_rebuild_period directive 217
digest_rewrite_period directive 218
digest_swapout_chunk directive 217
directives, types

about 35
boolean-valued or toggle directives 36
categorizing 37
directives with file or memory size as values 36
directives with time as value 36
multi-valued directives 36
single valued directives 35

disadvantages, interception caching
client exposure 242
IP filtering 242
no authentication 242
Protocol support 242
security vulnerabilities 243
supports only HTTP interception 242
susceptible to routing problems 242
violates TCP/IP standards 241

Disk Daemon (diskd) storage 50

[�98]

dns_children directive 63
dns_timeout directive 64
DNS cache size

setting 65
DNS client processes

controlling 63
DNS name servers

adding, to Squid 64
setting 63

DNS program path
specifying 63

DNS responses
caching 65

DNS server configuration
about 62
default domain name, appending 64
DNS cache size, setting 65
DNS client processes, controlling 63
DNS name servers, setting 63
DNS program path, specifying 63
DNS queries timeout 64
DNS responses, caching 65
hosts file, setting 64

domain-based forwarding
about 209
Squid, configuring for 210

domains, hosted in local network
listing 98

Dragonfly BSD
about 247
Squid installation 30

dst, ACL types 93
dstdom_regex, ACL types 98
dstdomain, ACL types 97

E
Edge Side Includes. See ESI
eDirectory authentication 187
error_directory tag 23
ESI 231
esi_parser directive 232
ESI protocol

about 231
advantages 231, 232
reference link 232

ESI support
enabling 232
Squid, configuring for 232

example_com_jpg ACL 104
example configurations, Squid in reverse proxy

mode
accelerating multiple backend web servers host-

ing one website 236
accelerating multiple web servers hosting multi-

ple websites 237
configuration for accelerating a web server

hosting 236
example scenarios

about 121
access, denying from external networks 122
access, denying to selective clients 122
caching local content, avoiding 121
caching local content, handling 121
limited access, during working hours 124
rules, for special access 124
special ports connection, allowing 125
video content, blocking 123

F
failed requests

caching 61
fake basic authentication

configuring 184
fake NTLM authentication 188
fast ACL types 92
Fedora

Squid installation 30
field module, access log 139
fields, communication interface

client_IP 256
FQDN 256
ID 256
kv-pairs 256
method 256
myip=IP 256
myport=PORT 256
URL 256
username 256

file authentication 186
file descriptors 25

[�99]

format codes, access log 140, 141
FQDN cache statistics 158, 159
FreeBSD

Squid installation 30
fstat command 275

G
GDSF 54
general runtime information 156
Gentoo

Squid installation 30
GET method 101
getpwnam() 182
getpwnam authentication 182
getpwnam authentication helper 182
GRE (Generic Routing Encapsulation) tunnel 245
Greedy dual size frequency policy. See GDSF

policy

H
hard disks, for cached objects

cache directory, adding 52
cache directory, creating 51
cache directory, selecting 51, 53
cache object size limits 53
cache size, declaring 51
object replacement limits, setting 54
storage space, specifying 49
storage types 50
sub directories, configuring 52

header_replace directive 61
helper-mux program 192
helper concurrency 192
hierarchical caching

about 198
benefits 199
example 199
forwarding loop, avoiding 200
issues 199, 200
issues, example scenario 200

hierarchy_stoplist directive 69, 213
Host HTTP header

rewriting 265
hosts_file directive 64
hosts file

setting 64

HTCP
about 19, 114 218
advantages, over ICP protocol 218
reference link 218

htcp_access directive 203
htcp_clr_access directive 43
htcp_clr_access rule 115
htcp_port directive 203
HTCP access 43
HTCP CLR access 43
HTCP CLR requests 115
HTCP options, cache hierarchy

about 203
htcp 203
htcp=forward-clr 203
htcp=no-clr 203
htcp=no-purge-clr 203
htcp=oldsquid 203
htcp=only-clr 203

http_access directive 38
http_port directive 233, 275
HTTP_PORT parameter 202
http_reply_access directive 42, 110
http_reply_acess rules 114
HTTP access control

about 40
with ACLs 41

HTTP authentication, Squid 174
httpd_accel_surrogate_id 231
httpd_accel_surrogate_remote 231
HTTP Digest authentication

about 184
auth_param parameters 184
check_nonce_count parameter 185
configuring 185
eDirectory authentication 187
file authentication 186
LDAP authentication 186
nonce_garbage_interval parameter 185
nonce_max_count parameter 185
nonce_max_duration parameter 185
nonce_strictness parameter 185
parameters 185
post_workaround parameter 185

HTTP headers
about 61
contents, replacing 62

[�00]

controlling, in request 61
controlling, in responses 62

HTTP headers, used for indentifying requests
Content-Type header 110
Referer header 110
req_header 111
user-agent or browser 109

HTTP header statistics 159
HTTP methods

about 101
CONNECT 101
DELETE 101
GET 101
POST 101
PUT 101

HTTP options, in reverse proxy mode
about 224
allow-direct 225
defaultsite 224
ignore-cc 225
protocol 225
vhost 224
vport 224

HTTP port
about 37, 224
setting 37
ways of setting 37, 38

HTTP redirect codes 253
HTTP reply access 42
HTTP reply status, ACLs 111
HTTP requests

debugging 281
HTTP responses

debugging 284
https_status ACL type 111
HTTP server log emulation

about 147
enabling 147, 148

HTTPS options, in reverse proxy mode
about 226
cafile 227
capath 227
cipher 227
clientca 227
crlfile 227
defaultsite 226
dhparams 227

options 227
sslcontext 228
sslflags 228
version 226
vhost 226
vport 228

HTTP traffic, diverting to Squid
about 243
HTTP port, configuring 248
interception caching, implementing 245
network devices, configuring 245
operating system, configuring 246
router's policy routing, using 243, 244
rule-based switching, using 244
Squid, configuring 248
Squid server, using as bridge 244, 245
WCCP tunnel, using 245

HTTP traffic diversion
testing 248

Hypertext Caching Protocol. See HTPC

I
ICAP/eCAP adaptation 113

reference link 113
ICP

about 215
limitations 216

icp_access directive 38, 202
icp_access rule 114
ICP_OR_HTCP_PORT parameter 202
icp_port directive 114, 202
ICP access 43
ICP options, cache hierarchy

about 202
background-ping 203
closest-only 203
multicast-responder 202
no-query 202

ident_lookup_access list rule 117
ident ACL type 105
ident lookup access 43, 117
ident protocol 105
ignore-cc, HTTP options 225
ignore-cc option 233
ignore-reload option 233

[�01]

installation
Squid 14
Squid, from binary packages 29
Squid, from source code 14

installation methods, Squid
binary packages, using 14
latest source code, getting from Bazaar VCS 12
source archive, using 11
source code, fetching 13

interception caching
about 240
advantages 241
disadvantages 241
implementing 245

interception of requests
occurring 240

interception proxying 239
internal DNS statistics 164
Internet Cache Protocol. See ICP
ipcache_high directive 65
ipcache_low directive 65
ipcache_size directive 65
IP cache stats and contents 157, 158
IPFilter (IPF) 20
IPFIREWALL (IPFW) 20
issues, Squid

access denied 277
address already in use 274
can't create swap directories 273
can't write to log files 272
connection refused when reaching a sibling

proxy server 278
could not determine hostname 272
failed verification of swap directories 274
request or reply is too large 277
squid becomes slow over time 276
URLs with underscore results in an invalid URL

276
issues, URL rewriters 255

K
keep_alive parameter 188
key parameter 226

L
LDAP authentication 179, 186
Least frequently used with dynamic aging policy.

See LFUDA policy
least recently used (LRU) 54
LFUDA policy 55
limited access to neighbors

enforcing 115
miss_access rule, denying 115

local_domains, ACL list 98
localnet 95
log_access directive 66
log_access rule 120
logfile_rotate directive 66
log file analyzers

about 165
Calamaris 165

log files
about 133
access log 137, 138
cache log 134-136
HTTP server log emualtion 147
log-related features 148
log file rotation 148
logging of requests 143
log messages 134
referer log 144
rotating 85, 148
user agent log 146

log formats
about 66, 133
buffered logs 66
log access 66
log file backups 66
log file rotation 66
strip query terms 67

logging of requests
about 143
controlling, access_log used 144

log messages 134
lsof command 276

[�0�]

M
MAC (Media Access Control address) 96
mac_acl, ACL types 96
mailing lists

URL 284
max_user_ip, ACL types 109
maxconn, ACL types 108
maximum_object_size directive 53
memory_cache_mode directive 49
memory_pools directive 277
memory_replacement_policy directive 55
memory cache mode

about 49
always 49
disk 49
network 49

memory utilization
about 163

Microsoft NTLM authentication
about 187
fake NTLM authentication 188
Samba's NTLM authentication 188

minimum_object_size directive 53
miss_access directive 43
miss_access rule 115
Miss access 43
MSNT authentication

about 180
configuring 180, 181

MSNT multi domain authentication 181
multiple authentication schemes

implementing 190
myip, ACL types 95
myportname, ACL types 100

N
NCSA authentication

about 178
configuring 178

negative_dns_ttl directive 65
negative_ttl directive 61
negotiate_kerberos_auth authentication helper

190
Negotiate authentication

about 189
configuring 189

neighbor proxy servers
requesting 116

NetBSD
Squid installation 30

Network Address Translation (NAT) 247
network devices

configuring, for diverting HTTP requests 245
never_direct access list rule 117
never_direct directive 69, 214
new syntax, --enable-auth configuration option

21
NIS authentication 179
non-concurrent helpers

making concurrent 192, 193
nonce_garbage_interval parameter 185
nonce_max_count parameter 185
nonce_max_duration parameter 185
nonce_strictness parameter 185
none module, access log 139
nonhierarchical_direct directive 215
NTLM (NT LAN Manager)

about 187
reference link 187

ntlm_auth program 188
ntlm_fake_auth authentication helper 188
NTLM authentication. See Microsoft NTLM

authentication

O
old syntax, --enable-auth configuration option

21
OpenBSD 247

Squid installation 30
OpenSSL

about 226
URL 226

operating system
configuring, for diverting HTTP requests 246
IP forwarding, enabling 246
packets, redirecting to Squid 247

options, HTTPS options 227
our_network ACL 97
output

debugging, in console 80, 81
debugging, in terminal 81, 82

[�0�]

ownership of log files
changing 272

P
Packet Filter (PF) 20
PAM Authentication 180
PAM service

configuring 180
parameters, Digest authentication

check_nonce_count 185
nonce_garbage_interval 185
nonce_max_count 185
nonce_max_duration 185
nonce_strictness 185
post_workaround 185

partial retrievals
aborting 60

peer communication
cache peer access 210
controlling 209
domain-based forwarding 209
peer relationship, switching 212
request redirects, controlling 213
requests, forwarding to cache using ACLs 211,

212
peer communication protocols

about 215
cache digests 216
HTCP 218
ICP 215

peer relationship
switching 212, 213

peer selection methods options, cache hierarchy
about 205
basetime 205
digest-URL 205
no-delay 205
no-digest 206
ttl 205
weight 205

peer selection options, cache hierarchy
about 204
carp 204
default 204
multicast-siblings 205

round-robin 204
sourcehash 204
userhash 204
weighted-round-robin 204

Perl
about 165
URL 165

PID filename 71
Policy-based Routing 245
POP3 authentication 183
port, ACL types 99
positive_dns_ttl directive 65
post_workaround parameter 185
POST method 101
preceding access control

testing, squidclient used 128
prefer_direct access list rule 117
prefer_direct directive 68, 214
program listening, finding on specific port

for FreeBSD and DragonFlyBSD 275
for Linux-based operating systems 275
for OpenBSD and NetBSD 275

program parameter 175
proto, ACL types 102
protocol, HTTP options 225
proxy_auth_regex ACL type 107
proxy_auth ACL type 107
proxy authentication

enforcing 106, 107
regular expressions, for usernames 107

Proxy auto config (PAC)
about 243
reference link 243

proxy servers
about 7
features 8
functions 8
listing 116

PUT method 101

Q
quick_abort_max (KB) directive 60
quick_abort_min (KB) directive 60
quick_abort_pct (percent) directive 60

[�0�]

R
RADIUS authentication

about 183
configuring 183

RAM
cache_mem, calculating 48
cache space, specifying 47, 48
using, for caching web documents 46

random_req ACL 112
random ACL type 112
random requests, ACLs

identifying 112
realm parameter 176
recommended versions 10
Red Hat

Squid installation 30
redirect_url function 262
referer_regex, ACL types 110
Referer header 110
referer log

about 144
enabling 145
translating, to readable format 145

refresh_pattern
using 56

refresh_pattern, options
ignore-auth 59
ignore-must-revalidate 59
ignore-no-cache 59
ignore-no-store 59
ignore-private 59
ignore-reload 58
override-expire 58
override-lastmod 58
refresh-ims 59
reload-into-ims 58

refresh_pattern directive 233
regular expressions, domain names 98
reload-into-ims option 233
rep_mime_type, ACL types 110
reply_body_max_size access list rule 120
reply_header_access directive 61
reply_header_access list rule 119
req_header 111
req_mime_type, ACL types 110

request
forwarding, to remote servers 117
identifying, request protocol used 102
logging, selectively 120

request_header_access 61
request_header_access directive 61
request_header_access list rule 119
request forwarding statistics 161
request protocol

using, for constructing access rules 102, 103
using, for identification 102

request redirects
always_direct 214
controlling 213
hierarchy_stoplist 213
never_direct 214
nonhierarchical_direct 215
prefer_direct 214

reverse proxying 9
reverse proxy mode

about 222
exploring 222, 223
HTTP options 224
HTTPS options 226

router's policy routing
using, for diverting HTTP request 243, 244

rule-based switching
using, for diverting HTTP request 244

S
Safe_ports ACL 99
Samba's NTLM authentication 188
SASL authentication

about 182
configuring 182

signals, sending to Squid process
configuration file, reloading 83
return value, checking 85
Squid process, interrupting 84
Squid process, shutting down 84
status of Squid process, checking 84

slow ACL types 92
SMB authentication 179
snmp_access rule 115
snmp_community ACL type 115

[�0�]

SNMP port 115
sockstat command 275
source and destination domain names, ACLs

about 96
ACL lists, constructing using domain names 97

source and destination IP address, ACLs
about 92
ACL lists, constructing using IP addresses 93
ACL lists, constructing using range of IP ad-

dresses 94, 95
source archive

uncompressing 15
source code

fetching 13
obtaining, Bazaar used 13

Squid
about 9
access control configuration 233
access control, debugging 282, 283
access list rules 112
ACLs 38
authentication issues 193
automatic start, at system startup 87
available options, listing 76, 77
backend web servers, adding 229
cache digest configuration 217
cache directories, adding 79
cache directories, creating 78
cache hierarchies 198
cache hierarchy, joining 201
cache manager 151
cache peers or neighbors 44
command line options 75
communicating, with URL redirector 256
configuration directives 67
configuring, as server surrogate 223, 224
configuring, for ESI support 232
configuring, to start with system startup 87
different configuration file, using 79
downloading 9-11
DNS server configuration 62
hierarchical caching 198
hostname checks, enforcing 276
HTCP access 43
HTCP CLR access 43
HTTP access, controlling with ACLs 41
HTTP access control 40

HTTP headers 61
HTTP port 37
HTTP reply access 42
HTTP requests, debugging 281
HTTP responses, debugging 284
ICP access 43
Ident lookup access 43
installation methods 11
installing 14, 27
issues 271
log file analyzers 165
log files 133
log formats 66, 133
log messages 134
minimal configuration 34
Miss access 43
normal process, running 82
output, debugging in console 80, 81
output, debugging in terminal 81, 82
peer communication, controlling 209
peer communication protocols 215
proxy server access, controlling 40
recommended versions 10, 11
reference link 284
reverse proxy mode 222, 223
signals, sending to Squid process 83
storage metadata, forcing to rebuild 86
surrogate protocol 230
surrogate protocol, working 230
swap, double checking 86, 87
troubleshooting 271
tuning 55
underscore, allowing in URLs 276
verbose output, getting 79
version, checking 78
versions 10
web documents, caching 46

Squid, in reverse proxy mode
access controls 233
HTTP requests, accepting 224
HTTPS requests, accepting 225
web server log format, logging in 232

Squid, starting with system startup
init script, adding 87
Squid command, adding to /etc/rc.local file 87

[�0�]

Squid, tuning
cached objects freshness, calculating 57
caching, preventing of local content 55
failed requests, caching 61
Google homepage, caching 60
options, for refresh pattern 58
partial retrievals, aborting 60
refresh_pattern, using 56
selective caching 55

Squid-URL redirector communication
about 256
communication interface 256
message flow, exploring 257

squid.conf 28
Squid 3.1.4

downloading 11
Squid authentication

basic authentication 174
custom authentication helper, writing 191
Digest authentication 184
HTTP authentication 174
Microsoft NTLM authentication 187
multiple authentication schemes, using 190
Negotiate authentication 189

Squid binary packages 14, 29
squidclient

about 27, 126
implementing 128
options 127
supported options 127

Squid code repository 12
Squid configuration, for URL redirector program

about 262
Host HTTP header, rewriting 265
redirector children, controlling 263
requests, controlling 264
URL redirector program, bypassing when under

heavy load 264
URL redirector program, specifying 263

Squid configuration file
DNS name servers, adding 64
parsing, for errors 82
syntax 34, 35
types of directives 35
testing 82

Squid files
exploring 27

SquidGuard
about 267
features 267
URL 267

Squid installation, from binary packages
about 29
on Arch Linux 31
on Debian or Ubuntu 30
on Dragonfly BSD 30
on Fedora, CentOS or Red Hat 30
on FreeBSD 30
on Gentoo 30
on OpenBSD or NetBSD 30

Squid installation, from source code
about 14
compiling Squid 14
configure command, running 25
configure errors, debugging 26
configure or system check 15
file descriptors 25
source, compiling 26
source archive, uncompressing 15
Squid, installing 27
Squid files, exploring 27

Squid process
configuration file, reloading 83
interrupting 84
log files, rotating 85
return value, checking 85
running 83
sending, in debug mode 85
shutting down 84
status, checking 84

Squid proxy server
setting up 237

Squid server
using as bridge, for diverting HTTP request 244,

245
Squirm

features 267
URL 267

src, ACL types 93
srcdom_regex, ACL types 98
srcdomain, ACL types 92, 97
SSL_ports ACL 99
sslcontext, HTTPS options 228

[�07]

sslflags, HTTPS options
about 228
NO_DEFAULT_CA 228
NO_SESSION_RESUE 228
VERIFY_CRL 228
VERIFY_CRL_ALL 228

SSL or HTTPS options, cache hierarchy
about 206
front-end-https 207
ssl 206
sslcafile 207
sslcapath 207
sslcert 206
sslcrlfile 207
ssldomain 207
sslflags 207
sslkey 206
ssloptions 207
sslversion 206

stdio module, access log 139
supported options, squidclient

-a 127
-g count 127
-H 'string' 127
-h host 127
-i IMS 127
-I interval 127
-j hosthdr 127
-k 127
-l host 127
-m method 127
-P filename 127
-p port 127
-r 127
-s 127
-t count 127
-T timeout 127
-U username 127
-u username 127
-v 127
-V version 127
-W password 127
-w password 127

surrogate protocol
about 230
configuration options 231
reference link 231

working 230
swap directories

creating 274
syslog module, access log 139

T
tcp module, access log 139
TCP outgoing address 70
time-based ACLs 103
time ACL type 103
traffic and resource counters 160

U
Ubuntu

Squid installation 30
udp module, access log 139
ufs 50
unique_hostname directive 68
unlinkd 23
uri_whitespace directive 259
uri_whitespace directive, options

allow 260
chop 260
deny 260
encode 260
strip 259

url_regex, ACL types 104
url_rewrite_access directive 264
url_rewrite_access list rule 118
url_rewrite_children directive 263
url_rewrite_program directive 263
URL path-based identification 104
urlpath_regex, ACL types 104
URL redirector program

concurrency 259
modifying 259
writing 258

URL redirectors
about 67, 251, 252
Ad Zapper 268
deny_info 265
HTTP status codes 253
reference link 267
SquidGuard 267
Squirm 267
working 252, 253

[�08]

URL rewriters
about 67, 254
issues 255
working 254, 255

User-Agent header 109
user agent log

about 146
enabling 147

user limits, ACLs
maximum logins per user 109
maximum number of connections per client

108
utf8 parameter 175

V
validate_credentials method 192
verbose output

getting 79
verbosity 278
verbosity levels 278
version, HTTPS options 226
Version Control Systems (VCS) 12
vhost, HTTP options 224
vhost, HTTPS options 226
visible_hostname directive 273 68
vport, HTTP options 224
vport, HTTPS options 228

W
WCCP 245
WCCP tunnel

using, for diverting HTTP request 245
Web Cache Coordination Protocol. See WCCP
web caching 9
web documents

cache replacement policies 54
caching 46
caching, hard disk used 49
caching, RAM used 46

web documents caching
controlling 118

Web Proxy Auto-Discovery Protocol, (WPAD)
about 243
reference link 243

web server log format, logging
browser reloads, ignoring 232, 233

whitespaces, URLs
handling 259
handling, uri_whitespace directive used 259

Y
Yum 30

Thank you for buying

Squid Proxy Server 3.1 Beginner’s Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're
using to get the job done. Packt books are more specific and less general than the IT books
you have seen in the past. Our unique business model allows us to bring you more focused
information, giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licences, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get
some additional reward for your expertise.

Nginx HTTP Server
ISBN: 978-1-849510-86-8 Paperback: 348 pages

Adopt Nginx for your web applications to make the
most of your infrastructure and serve pages faster
than ever

1. Get started with Nginx to serve websites faster and
safer

2. Learn to configure your servers and virtual hosts
efficiently

3. Set up Nginx to work with PHP and other
applications via FastCGI

4. Explore possible interactions between Nginx and
Apache to get the best of both worlds

OpenVPN: Building and Integrating Virtual Private
Networks
ISBN: 978-1-904811-85-5 Paperback: 272 pages

Learn how to build secure VPNs using this powerful
Open Source application

1. Learn how to install, configure, and create tunnels
with OpenVPN on Linux, Windows, and MacOSX

2. Use OpenVPN with DHCP, routers, firewall, and
HTTP proxy servers

3. Advanced management of security certificates

Please check www.PacktPub.com for information on our titles

Cacti 0.� Network Monitoring
ISBN: 978-1-847195-96-8 Paperback: 132 pages

Monitor your network with ease!

1. Install and setup Cacti to monitor your network and
assign permissions to this setup in no time at all

2. Create, edit, test, and host a graph template to
customize your output graph

3. Create new data input methods, SNMP, and Script
XML data query

4. Full of screenshots and step-by-step instructions to
monitor your network with Cacti

Tcl �.5 Network Programming
ISBN: 978-1-849510-96-7 Paperback: 588 pages

Build network-aware applications using Tcl, a
powerful dynamic programming language

1. Develop network-aware applications with Tcl

2. Implement the most important network
protocols in Tcl

3. Packed with hands-on-examples, case studies, and
clear explanations for better understanding

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Squid
	Proxy server
	Reverse proxy
	Getting Squid
	Time for action – identifying the right version
	Methods of obtaining Squid
	Using source archives

	Time for action – downloading Squid
	Obtaining the latest source code from Bazaar VCS

	Time for action – using Bazaar to obtain source code
	Using binary packages

	Installing Squid
	Installing Squid from source code
	Compiling Squid
	Uncompressing the source archive
	Configure or system check

	Time for action – running the configure command
	Time for action – compiling the source
	Time for action – installing Squid
	Time for action – exploring Squid files
	Installing Squid from binary packages
	Fedora, CentOS or Red Hat
	Debian or Ubuntu
	FreeBSD
	OpenBSD or NetBSD
	Dragonfly BSD
	Gentoo
	Arch Linux

	Summary

	Chapter 2: Configuring Squid
	Quick start
	Syntax of the configuration file
	Types of directives

	HTTP port
	Time for action – setting the HTTP port
	Access control lists
	Time for action – constructing simple ACLs
	Controlling access to the proxy server
	HTTP access control

	Time for action – combining ACLs and HTTP access
	HTTP reply access
	ICP access
	HTCP access
	HTCP CLR access
	Miss access
	Ident lookup access

	Cache peers or Neighbors
	Declaring cache peers

	Time for action – adding a cache peer
	Quickly restricting access to domains using peers
	Advanced control on access using peers

	Caching web documents
	Using main memory (RAM) for caching
	In-transit objects or current requests
	Hot or popular objects
	Negatively cached objects
	Specifying cache space in RAM

	Time for action – specifying space for memory caching
	Maximum object size in memory
	Memory cache mode

	Using hard disks for caching
	Specifying the storage space

	Time for action – creating a cache directory
	Configuring the number of sub directories

	Time for action – adding a cache directory
	Cache directory selection
	Cache object size limits
	Setting limits on object replacement

	Cache replacement policies
	Least recently used (LRU)
	Greedy dual size frequency (GDSF)
	Least frequently used with dynamic aging (LFUDA)

	Tuning Squid for enhanced caching
	Selective caching

	Time for action – preventing the caching of local content
	Refresh patterns for cached objects

	Time for action – calculating the freshness of cached objects
	Options for refresh pattern
	Aborting the partial retrievals
	Caching the failed requests

	Playing around with HTTP headers
	Controlling HTTP headers in requests
	Controlling HTTP headers in responses
	Replacing the contents of HTTP headers

	DNS server configuration
	Specifying the DNS program path
	Controlling the number of DNS client processes
	Setting the DNS name servers

	Time for action – let's add DNS name servers
	Setting the hosts file
	Default domain name for Requests
	Timeout for DNS queries
	Caching the DNS responses
	Setting the size of the DNS cache

	Logging
	Log formats
	Log file rotation or log file backups
	Log access
	Buffered logs
	Strip query terms

	URL rewriters and redirectors
	Other configuration directives
	Setting the effective user for running Squid
	Configuring hostnames for the proxy server
	Hostname visible to everyone
	Unique hostname for the server

	Controlling the request forwarding
	Always direct
	Never direct
	Hierarchy stoplist

	Broken posts
	TCP outgoing address
	PID filename
	Client netmask

	Summary

	Chapter 3: Running Squid
	Command line options
	Getting a list of available options

	Time for action – listing the options
	Getting information about our Squid installation

	Time for action – finding out the Squid version
	Creating cache or swap directories

	Time for action – creating cache directories
	Using a different configuration file
	Getting verbose output

	Time for action – debugging output in the console
	Full debugging output on the terminal
	Running as a normal process
	Parsing the Squid configuration file for errors or warnings

	Time for action – testing our configuration file
	Sending various signals to a running Squid process
	Reloading a new configuration file in a running process
	Shutting down the Squid process
	Interrupting or killing a running Squid process
	Checking the status of a running Squid process
	Sending a running process in to debug mode
	Rotating the log files

	Forcing the storage metadata to rebuild
	Double checking swap during rebuild

	Automatically starting Squid at system startup
	Adding Squid command to /etc/rc.local file
	Adding init script

	Time for action – adding the init script
	Summary

	Chapter 4: Getting Started with Squid's Powerful ACLs and Access Rules
	Access Control Lists
	Fast and slow ACL types
	Source and destination IP address

	Time for action – constructing ACL lists using IP addresses
	Time for action – using a range of IP addresses to build ACL lists
	Source and destination domain names

	Time for action – constructing ACL lists using domain names
	Destination port

	Time for action – building ACL lists using destination ports
	HTTP methods
	Identifying requests using the request protocol

	Time for action – using a request protocol
	to construct access rules
	Time-based ACLs
	URL and URL path-based identification
	Matching client usernames
	Proxy authentication

	Time for action – enforcing proxy authentication
	User limits
	Identification based on various HTTP headers
	HTTP reply status
	Identifying random requests

	Access list rules
	Access to HTTP protocol
	Access to other ports
	Enforce limited access to neighbors

	Time for action – deny miss access to neighbors
	Requests to neighbor proxy servers
	Forwarding requests to remote servers
	Ident lookup access
	Controlled caching of web documents
	URL rewrite access
	HTTP header access
	Custom error pages
	Maximum size of the reply body
	Logging requests selectively

	Mixing ACL lists and rules – example scenarios
	Handling caching of local content

	Time for action – avoiding caching of local content
	Deny access from external networks
	Deny access to selective clients
	Blocking the downloading of video content

	Time for action – blocking video content
	Special access for certain clients

	Time for action – writing rules for special access
	Limited access during working hours
	Allow some clients to connect to special ports

	Testing access control with squidclient
	Time for action – testing our access control example
	with squidclient
	Time for action – testing a complex access control
	Summary

	Chapter 5: Understanding Log Files and Log Formats
	Log messages
	Cache log or debug log
	Time for action – understanding the cache log
	Access log
	Understanding the access log

	Time for action – understanding the access log messages
	Access log syntax

	Time for action – analyzing a syntax to specify access log
	Log format

	Time for action – learning log format and format codes
	Log formats provided by Squid

	Time for action – customizing the access log with
	a new log format
	Selective logging of requests
	Time for action – using the access_log to control logging
	of requests
	Referer log
	Time for action – enabling the referer log
	Time for action – translating the referer logs to a
	human-readable format
	User agent log
	Time for action – enabling user agent logging
	Emulating HTTP server-like logs
	Time for action – enabling HTTP server log emulation
	Log file rotation
	Other log related features
	Cache store log

	Summary

	Chapter 6: Managing Squid and Monitoring Traffic
	Cache manager
	Installing the Apache Web server

	Time for action – installing Apache Web server
	Configuring Apache for providing the cache manager web interface

	Time for action – configuring Apache to use cachemgr.cgi
	Accessing the cache manager web interface
	Configuring Squid
	Log in to cache manger
	General Runtime Information
	IP Cache Stats and Contents
	FQDN Cache Statistics
	HTTP Header Statistics
	Traffic and Resource Counters
	Request Forwarding Statistics
	Cache Client List
	Memory Utilization
	Internal DNS Statistics

	Log file analyzers
	Calamaris
	Installing Calamaris

	Time for action – Installing Calamaris
	Using Calamaris to generate statistics

	Time for action – generating stats in plain text format
	Time for action – generating graphical reports with Calamaris
	Summary

	Chapter 7: Protecting your Squid Proxy Server with Authentication
	HTTP authentication
	Basic authentication
	Time for action – exploring Basic authentication
	Database authentication
	Configuring database authentication

	NCSA authentication

	Time for action – configuring NCSA authentication
	NIS authentication
	LDAP authentication
	SMB authentication
	PAM Authentication

	Time for action – configuring PAM service
	MSNT authentication

	Time for action – configuring MSNT authentication
	MSNT multi domain authentication
	SASL authentication

	Time for action – configuring Squid to use SASL authentication
	getpwnam authentication
	POP3 authentication
	RADIUS authentication

	Time for action – configuring RADIUS authentication
	Fake Basic authentication

	Digest authentication
	Time for action – configuring Digest authentication
	File authentication
	LDAP authentication
	eDirectory authentication

	Microsoft NTLM authentication
	Samba's NTLM authentication
	Fake NTLM authentication

	Negotiate authentication
	Time for action – configuring Negotiate authentication
	Using multiple authentication schemes
	Writing a custom authentication helper
	Time for action – writing a helper program
	Making non-concurrent helpers concurrent
	Common issues with authentication
	Summary

	Chapter 8: Building a Hierarchy of Squid Caches
	Cache hierarchies
	Reasons to use hierarchical caching
	Problems with hierarchical caching
	Joining a cache hierarchy
	Time for action – joining a cache hierarchy
	ICP options
	HTCP options
	Peer or neighbor selection
	Options for peer selection methods

	Other cache peer options

	Controlling communication with peers
	Domain-based forwarding

	Time for action – configuring Squid for domain-based
	forwarding
	Cache peer access

	Time for action – forwarding requests to cache peers
	using ACLs
	Switching peer relationship

	Time for action – configuring Squid to switch peer relationship
	Controlling request redirects

	Peer communication protocols
	Internet Cache Protocol
	Cache digests
	Squid and cache digest configuration

	Hypertext Caching Protocol

	Summary

	Chapter 9: Squid in Reverse Proxy Mode
	What is reverse proxy mode?
	Exploring reverse proxy mode

	Configuring Squid as a server surrogate
	HTTP port
	HTTP options in reverse proxy mode

	HTTPS port
	HTTPS options in reverse proxy mode
	Adding backend web servers
	Cache peer options for reverse proxy mode

	Time for action – adding backend web servers
	Support for surrogate protocol
	Understanding the surrogate protocol
	Configuration options for surrogate support

	Support for ESI protocol
	Configuring Squid for ESI support

	Logging messages in web server log format
	Ignoring the browser reloads

	Time for action – configuring Squid to ignore the
	browser reloads
	Access controls in reverse proxy mode
	Squid in only reverse proxy mode
	Squid in reverse proxy and forward proxy mode
	Example configurations
	Web server and Squid server on the same machine
	Accelerating multiple backend web servers hosting one website
	Accelerating multiple web servers hosting multiple websites

	Summary

	Chapter 10: Squid in Intercept Mode
	Interception caching
	Time for action – understanding interception caching
	Advantages of interception caching
	Problems with interception caching
	Diverting HTTP traffic to Squid
	Using a router's policy routing to divert requests
	Using rule-based switching to divert requests
	Using Squid server as a bridge
	Using WCCP tunnel
	Implementing interception caching
	Configuring the network devices
	Configuring the operating system

	Time for action – enabling IP forwarding
	Time for action – redirecting HTTP traffic to Squid
	Configuring Squid
	Configuring HTTP port

	Summary

	Chapter 11: Writing URL Redirectors and Rewriters
	URL redirectors and rewriters
	Understanding URL redirectors
	HTTP status codes for redirection

	Understanding URL rewriters
	Issues with URL rewriters

	Squid, URL redirectors, and rewriters
	Communication interface

	Time for action – exploring the message flow between
	 Squid and redirectors
	Time for action – writing a simple URL redirector program
	Concurrency
	Handling whitespace in URLs
	Using the uri_whitespace directive
	By making redirector programs intelligent

	Writing our own URL redirector program
	Time for action – writing our own template for a URL redirector
	Configuring Squid
	Specifying the URL redirector program
	Controlling redirector children
	Controlling requests passed to the redirector program
	Bypassing URL redirector programs when under heavy load
	Rewriting the Host HTTP header

	A special URL redirector – deny_info
	Popular URL redirectors
	SquidGuard
	Squirm
	Ad Zapper

	Summary

	Chapter 12: Troubleshooting Squid
	Some common issues
	Can't write to log files

	Time for action – changing the ownership of log files
	Could not determine hostname
	Can't create swap directories

	Time for action – fixing cache directory permissions
	Failed verification of swap directories

	Time for action – creating swap directories
	Address already in use

	Time for action – finding the program listening
	on a specific port
	URLs with underscore results in an invalid URL
	Enforce hostname checks
	Allow underscore

	Squid becomes slow over time
	The request or reply is too large
	Access denied on the proxy server
	Connection refused when reaching a sibling proxy server

	Debugging problems
	Time for action – debugging HTTP requests
	Time for action – debugging access control
	Getting Help online and reporting bugs

	Summary

	Pop Quiz Answers
	Index

