
www.allitebooks.com

http://www.allitebooks.org

Talend Open Studio
Cookbook

Over 100 recipes to help you master Talend Open Studio
and become a more effective data integration developer

Rick Barton

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Talend Open Studio Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 2221013

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-726-6

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Rick Barton

Reviewers
Robert Baumgartner

Mustapha EL HASSAK

Viral Patel

Stéphane Planquart

Acquisition Editor
James Jones

Lead Technical Editor
Amey Varangaonkar

Technical Editors
Monica John

Mrunmayee Patil

Tarunveer Shetty

Sonali Vernekar

Project Coordinator
Abhijit Suvarna

Proofreader
Clyde Jenkins

Indexer
Tejal R. Soni

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rick Barton is a freelance consultant who has specialized in data integration and ETL for
the last 13 years as part of an IT career spanning over 25 years.

After gaining a degree in Computer Systems from Cardiff University, he began his career as a
firmware programmer before moving into Mainframe data processing and then into ETL tools
in 1999.

He has provided technical consultancy to some of the UK’s largest companies, including
banks and telecommunications companies, and was a founding partner of a “Big Data”
integration consultancy.

Four years ago he moved back into freelance development and has been working almost
exclusively with Talend Open Studio and Talend Integration Suite, on multiple projects, of
various sizes, in UK. It is on these projects that he has learned many of the lessons that can
be found in this, his first book.

I would like to thank my wife Ange for support and my children, Alice and Ed
for putting up with my weekend writing sessions.

I’d also like to thank the guys at Packt for keeping me motivated and
productive and for making it so easy to get started. Their professionalism
and most especially their confidence in me, has allowed me to do something
I never thought I would.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Robert Baumgartner has a degree in Business Informatics from Austria, Europe, where
he is living today. He began his career in 2002 as a business intelligence consultant working
for different service companies. After this he was working in the paper industry sector as a
consultant and project manager for an enterprise resource planning (ERP) system. In 2009
he founded his company “datenpol”—a service integrator specialist in selected open source
software products focusing on business intelligence and ERP. Robert is an open source
enthusiast who held several speeches at open source events. The products he is working
on are OpenERP, Talend Data Integration, and JasperReports. He is contributing to the open
source community by sharing his knowledge with blog entries at his company blog http://
www.datenpol.at/blog and he commits software to github like the OpenERP Talend
Connector component which can be found at https://github.com/baumgaro/OpenERP-
Talend-Component.

Mustapha EL HASSAK is a computer sciences fanatic since many years, he obtained
a Bachelor’s Degree in Mathematics in 2003 then attended university to study Information
Technology. After five years of study, he joined the largest investment bank in Morocco as an
IT engineer. After that he worked in EAI, an IT services company specialized in insurance, as
a senior developer responsible of data migration. He has always worked with Talend Open
Studio and sometimes with Business Objects. This is the first time he is working on a book,
but he wrote several articles in French and English about Talend on his personal blog.

I would like to thank my parents, Khadija and Hassan, Said, my brother and
Asmae, my sister for their support over the years. And I express my gratitude
to Halima, my wife for her continued support and encouragement. Finally, I
would like to thank Sirine, my little girl.

www.allitebooks.com

http://www.allitebooks.org

Viral Patel holds Masters in Information Technology (Professional) from University of
Southern Queensland, Australia. He loves playing with Data. His area of interest and current
work includes Data Analytics, Data Mining, and Data warehousing. He holds Certification in
Talend Open Studio and Talend Enterprise Data Integration. He has more than four years of
experience in Data Analytics, Business Intelligence, and Data warehousing.

He currently works as ETL Consultant for Steria India Limited. It is an European MNC providing
consulting services in various sectors. Prior to Steria, he was working as BI Consultant where
he has successfully implemented BI/DW cycle and provided consultation to various clients.

I would like to thank my grandfather Vallabhbhai, father Manubhai (who
is my role model), mother Geetaben, my wife Hina, my sister Toral and my
lovely son Vraj. Without their love and support, I would be incomplete in my
life. I thank them all for being in my life and supporting me.

Stéphane Planquart is a Lead Developer with a long expertise in Data Management. He
started to program when he was ten years old. In twenty years, he worked on C, C++, Java,
Python, Oracle, DB2, MySql, PostgreSQL. From the last ten years, he worked on distinct types
of projects like the database of the largest warehouse logistics in Europe where he designed
the data-warehouse and new client/server application. He worked also on an ETL for the
electric grid of France or 3D program for a web browser. Now he works on the application of a
payment system in Europe where he designs database and API.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Introduction and General Principles	 5

Before you begin	 6
Installing the software	 7
Enabling tHashInput and tHashOutput	 9

Chapter 2: Metadata and Schemas	 11
Introduction	 11
Hand-cranking a built-in schema	 14
Propagating schema changes	 17
Creating a generic schema from the existing metadata	 20
Cutting and pasting schema information	 22
Dropping schemas to empty components	 23
Creating schemas from lists 	 24

Chapter 3: Validating Data	 29
Introduction	 29
Enabling and disabling reject flows	 30
Gathering all rejects prior to killing a job	 32
Validating against the schema	 34
Rejecting rows using tMap	 35
Checking a column against a list of allowed values	 37
Checking a column against a lookup	 38
Creating validation rules for more complex requirements	 40
Creating binary error codes to store multiple test results	 42

Chapter 4: Mapping Data	 47
Introduction	 47
Simple mapping and tMap time savers	 48
Creating tMap expressions	 52

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Using the ternary operator for conditional logic	 55
Using intermediate variables in tMap	 57
Filtering input rows	 59
Splitting an input row into multiple outputs based on input conditions	 61
Joining data using tMap	 63
Hierarchical joins using tMap	 66
Using reload at each row to process real-time / near real-time data	 67

Chapter 5: Using Java in Talend	 71
Introduction	 71
Performing one-off pieces of logic using tJava	 72
Setting the context and globalMap variables using tJava	 72
Adding complex logic into a flow using tJavaRow	 74
Creating pseudo components using tJavaFlex	 76
Creating custom functions using code routines	 78
Importing JAR files to allow use of external Java classes	 81

Chapter 6: Managing Context Variables	 85
Introduction	 85
Creating a context group	 86
Adding a context group to your job	 88
Adding contexts to a context group	 90
Using tContextLoad to load contexts	 92
Using implicit context loading to load contexts	 93
Turning implicit context loading on and off in a job	 94
Setting the context file location in the operating system	 95

Chapter 7: Working with Databases	 99
Introduction	 100
Setting up a database connection	 100
Importing the table schemas	 103
Reading from database tables	 104
Using context and globalMap variables in SQL queries	 107
Printing your input query	 109
Writing to a database table	 110
Printing your output query	 112
Managing database sessions	 114
Passing a session to a child job	 116
Selecting different fields and keys for insert, update, and delete	 117
Capturing individual rejects and errors	 119
Database and table management	 121
Managing surrogate keys for parent and child tables	 122
Rewritable lookups using an in-process database	 125

iii

Table of Contents

Chapter 8: Managing Files	 129
Introduction	 130
Appending records to a file	 130
Reading rows using a regular expression	 132
Using temporary files	 134
Storing intermediate data in the memory using tHashMap	 136
Reading headers and trailers using tMap	 137
Reading headers and trailers with no identifiers	 140
Using the information in the header and trailer	 141
Adding a header and trailer to a file	 145
Moving, copying, renaming, and deleting files and folders	 146
Capturing file information	 147
Processing multiple files at once	 150
Processing control/validation files	 153
Creating and writing files depending on the input data	 155

Chapter 9: Working with XML, Queues, and Web Services	 159
Introduction	 159
Using tXMLMap to read XML	 160
Using tXMLMap to create an XML document	 163
Reading complex hierarchical XML	 165
Writing complex XML	 169
Calling a SOAP web service	 177
Calling a RESTful web service	 180
Reading and writing to a queue	 182
Ensuring lossless queues using sessions 	 184

Chapter 10: Debugging, Logging, and Testing	 187
Introduction	 188
Find the location of compilation errors using the Problems tab	 188
Locating execution errors from the console output	 190
Using the Talend debug mode – row-by-row execution	 192
Using the Java debugger to debug Talend jobs	 194
Using tLogRow to show data in a row	 197
Using tJavaRow to display row information	 199
Using tJava to display status messages and variables	 201
Printing out the context	 202
Dumping the console output to a file from within a job	 203
Creating simple test data using tRowGenerator	 204
Creating complex test data using tRowGenerator,
tFlowToIterate, tMap, and sequences	 205
Creating random test data using lookups	 207

iv

Table of Contents

Creating test data using Excel	 209
Testing logic – the most-used pattern	 211
Killing a job from within tJavaRow	 212

Chapter 11: Deploying and Scheduling Talend Code	 215
Introduction	 215
Creating compiled executables	 216
Using a different context	 218
Adding command-line context parameters	 219
Managing job dependencies	 220
Capturing and acting on different return codes	 222
Returning codes from a child job without tDie	 224
Passing parameters to a child job	 226
Executing non-Talend objects and operating system commands	 227

Chapter 12: Common Mistakes and Other Useful Hints and Tips	 229
Introduction	 229
My tab is missing	 230
Finding the code routine	 231
Finding a new context variable	 233
Reloads going missing at each row global variable	 233
Dragging component globalMap variables	 234
Some complex date formats	 235
Capturing tMap rejects	 235
Adding job name, project name, and other job specific information	 236
Printing tMap variables	 237
Stopping memory errors in Talend	 238

Appendix A: Common Type Conversions	 241
Appendix B: Management of Contexts	 243

Introduction	 243
Manipulating contexts in Talend Open Studio	 243
Understanding implicit context loading 	 244
Understanding tContextLoad	 245
Manually checking and setting contexts	 246

Index	 247

Preface
Talend Open Studio is the world’s leading open source data integration solution
that enables rapid development of data transformation processes using an intuitive
drag-and-drop user interface.

Talend Open Studio Cookbook contains a host of techniques, design patterns, and tips and
tricks, based on real-life applications, that will help developers to become more effective in
their use of Talend Open Studio.

What this book covers
Chapter 1, Introduction and General Principles, introduces some of the key principles for
Talend development and explains how to install the provided code examples.

Chapter 2, Metadata and Schemas, shows how to build and make use of Talend data schemas.

Chapter 3, Validating Data, demonstrates different methods of validating input data and
handling invalid data.

Chapter 4, Mapping Data, shows how to map, join, and filter data from input to output in both
batch and real-time modes.

Chapter 5, Using Java in Talend, introduces the different methods for extending Talend
functionality using Java.

Chapter 6, Managing Context Variables, illustrates the different methods for handling context
variables and context groups within Talend projects and jobs.

Chapter 7, Working with Databases, provides insight into reading from and writing to a
database, generating and managing surrogate keys, and managing database objects.

Chapter 8, Managing Files, covers a mix of techniques for reading and writing different file
types including header and trailer processing. It also includes methods for managing files.

Preface

2

Chapter 9, Working with XML, Queues, and Web Services, covers tools and techniques for real-
time/web service processing including XML, and reading and writing to services and queues.

Chapter 10, Debugging, Logging, and Testing, demonstrates the different methods for
finding problems within Talend code, and how to log status and issues and techniques for
generating test data.

Chapter 11, Deployment and Scheduling Talend Code, introduces the Talend executable and
parameters, as well as managing job dependencies.

Chapter 12, Common Mistakes and Other Useful Hints and Tips, contains valuable tools and
techniques that don’t quite fit into any of the other chapters.

Appendix A, Common Type Conversions, is a useful table containing the methods for
converting between Talend data types.

Appendix B, Management of Contexts, is a in-depth discussion as to the pros and cons of the
various methods for managing project parameters, and what types of projects the different
methods are suited to.

What you need for this book
To attempt the exercises in this book, you will need the following software

ff The latest version of Talend Studio for ESB. At the time of writing, this was 5.3

ff The latest version of MySQL

ff Microsoft Office Word & Excel or other compatible office software.

It is also recommended that you find a good text editor, such as Notepad++.

Who this book is for
This book is intended for beginners and intermediate Talend users who have a basic working
knowledge of the Talend Open Studio software, but wish to know more.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Talend component names, variable names, and code snippets that appear in text are shown
like this: “open the tFlowToIterate component”

Preface

3

A block of code is set as follows:

if ((errorCode & (1<<3)) > 0) {
System.out.println("age is null");
}
if ((errorCode & (1<<4)) > 0) {
System.out.println("countryOfBirth is empty");
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

XMLUtils.addChildAtPath(customerXML, "/customer
 /orders/order[orderId = "+((Integer)globalMap.get
 ("order.orderId"))+"]", input_row.itemXML);

New terms and important words are shown in bold.Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “ Click on Finish to import all
the Talend artifacts”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

4

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Introduction and

General Principles

The aim of this book is to provide you, the Talend developer, with a set of common (and
sometimes not so common) tasks and examples that, we hope, will help you in:

ff Developing Talend jobs more rapidly

ff Solving Talend issues more quickly

ff Gaining a wider knowledge of the Talend product

ff Gaining a better understanding of the capabilities of Talend

This cookbook is primarily intended as a reference guide, however, the chapters have been
organized in such a way that it can also be used as a means of rapidly developing your Talend
skills by working through the exercises in sequence from front to back.

For the more experienced developers, some of the recipes in this book may seem very simple,
because they describe a feature of Talend that you may already know, but we are hoping that
this isn't the case for everyone, and that there will be something in the book for developers of
all levels of experience.

Many of the recipes in the book require you to complete sections of a partially built job, so it
is assumed that in the real world you would be able to get to the starting point independently.
Our thinking behind this is that we wanted to squeeze in as many recipes in the book as
possible, so only the relevant steps that need to be performed and understood for a particular
point to be made, are described in detail within each recipe.

Many any of the examples will write their output to the Talend log/console window when we
could easily have written the data out to files or tables. However, the decision was made to
provide an easy means (in most cases) of viewing the results of an exercise without having to
leave the studio.

Introduction and General Principles

6

Before you begin
Before you begin the exercises in the book, it is worth becoming familiar with some of the key
concepts and best practices.

Keep code changes small and test often

When developing using Talend, as with any other development tool, it is recommended to
code in short bursts and test (run) frequently.

By keeping each change small, it is much easier to find where and what has caused problems
during compilation and execution.

Chapter 10, Debugging, Logging, and Testing, is dedicated to debugging and logging; however,
observing the preceding method will save time having to perform debugging steps that can
sometimes take a long time.

Document your code

Talend sub-jobs have the ability to add titles, and every component in Talend has the option
to add documentation for the component. Where you use Java, you should use the Java
comment structures to document the code. Remember to use all these methods as you go
along to ensure that your code is well documented.

Contexts and globalMap

context and globalMap are global areas used to store data that can be used by all
components within a Talend job.

context variables are predefined prior to job execution in a context group, whereas
globalMap variables are created on the fly at any point within a job.

Context variables

Context variables are used by Talend to store parameter information, and can be used:

ff To pass information into a job from the command line and/or a parent job

ff To manage values of parameters between environments

ff To store values within a job or set of jobs

Chapter 6, Managing Context Variables, is dedicated to the use and management of context
variables within Talend

Chapter 1

7

globalMap

globalMap is a very important construct within Talend, in that:

ff Almost every component will write information to globalMap once it completes
execution (for example NB_LINE is the number of rows processed in a component).

ff Certain components, such as tFlowToIterate or tFileList, will store data in
globalMap variables for use by downstream components.

ff Developers can read and write to globalMap to create global variables in an ad
hoc fashion. The use of global variables can often be the best way to ensure code is
simple and efficient.

Java

Talend is a Java code generator, so having a little Java knowledge can help when using Talend.
There are many Java tutorials for beginners online, and a little time spent learning the basics
will help speed up your understanding of Talend.

Other background knowledge

As a data integrator, you will be expected to understand many technologies and how to
interface with them, and this book assumes a basic knowledge of many of the most frequent
data sources and targets.

Chapter 7, Working with Databases, relates to using Talend with databases.
We have chosen to use MySQL, because it is quick to install, simple to use, and readily
available. Basic knowledge of SQL and MySQL will therefore be required to perform the
exercises in this chapter.

Other chapters will also assume knowledge of csv files, MS Excel, XML, and web services.

Installing the software
This cookbook comes with a package of jobs and scripts that you will need to complete the
recipes. The instructions for installing the code and scripts are detailed in the following section:

How to do it…
1.	 All templates, completed code, and data are in the cookbook.zip file.

2.	 Unzip cookbook.zip into a folder on your machine.

3.	 Copy the directory cookbookData to a directory on your machine (we recommend
C:\cookbookData or the linux/MacOS equivalent)

4.	 Download and install the latest version of Talend Open Studio for enterprise service
bus (ESB) from www.talend.com.

Introduction and General Principles

8

5.	 Open Talend Open Studio, and you will be prompted to create a new project.

6.	 Name the new project cookbook.

7.	 Open the project.

8.	 Right mouse click on the Job Designs folder in the Repository panel, and select the
option Import Items.

9.	 This opens the import wizard. Click the Select archive file option, and then
navigate to your unzipped cookbook directory and select the zip file named
cookbookTalendJobs.zip.

10.	 Click on Finish to import all the Talend artifacts.

11.	 If you copied your data to C:\cookbookData, then you can ignore the next steps,
and you have completed the installation of the cookbook software.

12.	 Open the cookbook context, as shown in the following screenshot, and click Next at
the first window.

Chapter 1

9

13.	 Open the Values as a table panel and change the value of cookbookData to your
chosen directory, as shown in the following screenshot:

14.	 Click Finish to complete the installation process.

Enabling tHashInput and tHashOutput
Many of the exercises rely on the use of tHashInput and tHashOutput components. Talend
5.2.3 does not automatically enable these components for use in jobs. To enable these
components perform the instructions in the following section:

How to do it…

1.	 On the main menu bar navigate to File | Edit Project properties to open the
properties dialogue.

2.	 Select Designer then Palette Settings.

Introduction and General Principles

10

3.	 Click on the Technical folder and then click on the button shown in the following
screenshot to add this folder to the Show panel.

4.	 Click on OK to exit the project settings.

2
Metadata and Schemas

This chapter contains a detailed discussion about metadata and Talend schemas and recipes
that highlight some of the less used / less known features associated with schemas, along
with more commonly used features, such as generic and fixed schemas:

ff Hand-cranking a built-in schema

ff Propagating schema changes

ff Creating a generic schema from existing metadata

ff Cutting and pasting schema information

ff Dropping schemas to empty components

ff Creating schemas from lists

Introduction
Managing metadata is one of the most important aspects of developing Talend jobs, and the
most common form of metadata used within Talend jobs is the schema.

Schema metadata
For successful development of jobs, it is essential that the metadata defined for a data source
accurately describes the format of its underlying data. Failure to correctly define the data will
result in numerous errors and waste of time tracking down problems with data formats that
could otherwise be avoided.

Talend provides a host of wizards for capturing metadata from a variety of data sources such
as database tables, delimited files, and Excel worksheets and stores them within its built-in
metadata repository.

Metadata and Schemas

12

Schemas
Talend stores metadata definitions in schemas, which may be built in to individual
components or stored in its metadata repository, as shown in the following screenshot:

In general, it is best practice to define source and target metadata using a repository schema
and mid-flow metadata as a Built-In schema.

The main exception to this rule is when dealing with one-off generated source data, such as
a database query. Despite being a data source, it is easier to store the schemas for these
custom queries as Built-In rather than cluttering the repository with single-use schemas.

Repository schemas
The benefits of using Repository schemas are:

1.	 They can be re-used across multiple jobs, thus reducing the amount of re-keying.

2.	 Talend will ensure that changes made to a Repository schema are cascaded to all
jobs that use the schema, thus avoiding the need to scan jobs manually for Built-In
schemas that need to be changed.

3.	 Impact analysis reports can be generated showing where a Repository schema is
being used within a project. This enables the impact of changes to be more assessed
more accurately when planning changes to any underlying data sources.

Chapter 2

13

Generic schemas
Generic schemas aren’t tied to a particular source, so they can be used as a shared resource
across multiple types of data source or they can be used to define data sources that are
generated, such as the output from custom SQL queries.

Shared schemas
Schemas captured from a particular type of data source are stored in the metadata repository
in a folder for that data type (for example, CSV file schemas are stored in the directory for
delimited files).

There are however instances where schemas will be shared across multiple types. For
example, a CSV file and Excel file could be used to directly load a database table.

If you import the metadata from one of the sources, it will be stored in the folder for that
source, which could make it hard to find.

By storing the schema as a Generic schema, it is more obvious that the schema isn’t used
just for a single source.

Generated data sources
It is often necessary to perform a query against a database and return the result set to the
Talend job. It is often the case that the same query is used multiple times in many jobs.

By storing the schema for the result set in a generic schema, it removes the tedious process of
having to create the same schema over and over again manually every time the query is used.

Another very common use for generic schemas is within the tHashInput
and tHashOutput components. If you are using the hash components as
lookups, then one tHashOutput could be linked to many tHashInput
components and all will share the same schema. By exporting the output
schema to a generic schema, tHashInputs can be set up much more
quickly in comparison to hand-cranking or cutting and pasting schemas from
the output. This also has the benefit of ensuring that changes to the format
are cascaded to all related components.

Fixed schemas and columns
Some components, such as tLogCatcher, have predefined schemas that are read-only.
These can be easily recognized due to the fact that the whole schema is gray.

You may also find that certain flows, for instance the reject flows, have fixed columns that
have been added to the original schema. This is because Talend will add the errorCode and
errorMessage fields to the schema to store the error information. These additional fields will
be green to distinguish them as Talend fields.

Metadata and Schemas

14

Hand-cranking a built-in schema
In this recipe, we are presented with a CSV file that does not have a heading row and needs
to create a schema for the data. This is a basic recipe with which most readers should be
familiar: however, it does provide a framework for discussion of some of the more important
principles of Talend schemas.

The record we will be defining is as follows:

John Smith,27/11/1990,2012-01-10 10:24:54.953

As you can see this contains the fields; first name, last name, date of birth, timestamp, and
age. Note that age is an empty string.

Getting ready
Open a new Talend Job (jo_cook_ch02_0000_handCrankedSchema), so that the right-
hand palette becomes available.

How to do it…
1.	 Drag a tFileInputDelimited component from the palette, and open it by double

clicking it.

2.	 Click the Edit Schema button (…), shown in the following screenshot, to open the
schema editor:

Chapter 2

15

3.	 Click the + button to add a column:

4.	 Type name into the column, and set the length to 50.

5.	 Click the + button three more times to add three more columns.

6.	 Type dateOfBirth into the second column, select a type of date, and set the date
pattern to dd/MM/yyyy. Alternatively, press Ctrl+Space to open a list of common
patterns and select this one.

7.	 Type timestamp into the third column, select a type of date and set the date pattern
to yyyy-MM-dd HH:mm:ss.SSS.

8.	 Type age into the fourth column, set the type to Integer, tick the Null box, and set
the length to 3. Your schema should now look like the following screenshot:

9.	 Click OK to return to the component view.

Metadata and Schemas

16

How it works…
The schema has now been defined for the component, and data may then be read into the job
by linking a flow from tFileInputDelimited to tLogRow, for example.

There’s more...
As you saw in the preceding section, Talend can handle many different types of data format.
The following sections describe some of the common ones in little more detail.

Date patterns
Date patterns within Talend conform to the Java date format, and full definitions of the
possible values to be used can be found at:

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.
html

Date patterns are case sensitive in Java, and upper and lower case letters often have a very
different function.

In the timestamp, there are MM and mm characters. These are the month and
minute definitions and care should be taken to ensure that they are used
correctly in the date and time portions of a date field.

Note also the ss and SSS fields. These are seconds and milliseconds. Again,
care must be taken in their use within the time portion of a date.

HH and hh are also case sensitive. HH is the hour portion of a 24-hour
timestamp, whereas hh is 12-hour time.

Nullable elements
All Talend data types have the potential to be set to null, but in some cases, this may result in
a type change, as described in the following section.

Try removing the tick from the null box for age. You will notice that the type changes from
Integer to int. This is because int is a primitive Java type that cannot be null, whereas for
the Object type Integer null is an acceptable value.

A good example of the use of int over Integer is when mandatory values are required for
say a database table. If the field is set as int, a null value will cause an error to be thrown,
highlighting either a data or job error.

Chapter 2

17

The distinction between primitives and objects becomes more
important as you use Talend and Java more frequently, because
primitive types do not always act in the same way or have the same
range of features as object types.

Field lengths

Talend will generally ignore field lengths in a schema, but that does not mean that they
are unimportant. In fact, it is best practice to ensure that field lengths are completed and
accurate for all schemas, especially database schemas.

When creating a temporary table in a database using Talend, all field
lengths must be present for the DBMS to create the table. Failure to do so
will result in job errors.

Keys

Most schemas will not require any keys; however, like field lengths, they become very
important for database schemas.

Key fields are used during database update statements to match records
to be updated. If the insert or update method is used to populate a
table, then failure to specify the correct key(s) will result in a record being
inserted rather than updated.

Propagating schema changes
Often during development, it is necessary to change schemas by adding, removing, or
re-ordering columns. This often is a very onerous task, especially if a schema is used in
multiple jobs.

As discussed earlier in this chapter, storing schemas in the metadata enables the schema to
be re-used. If a shared schema is changed, then Talend will prompt to find out if the changes
should be applied to all jobs.

If the change is performed, then the next time that the job is opened, the component using
the schema will normally be highlighted as in error, because the schema no longer matches.

Talend provides mechanisms within the schema dialogues that takes some of the pain away
from ensuring that changes are assimilated into all the jobs.

www.allitebooks.com

http://www.allitebooks.org

Metadata and Schemas

18

Getting ready
Open the Talend Job jo_cook_ch02_0010_propagateSchema so that the right-hand
palette becomes available. Then, from the metadata palette, open the Generic schema sc_
cook_0010_genericCustomer.

How to do it…
1.	 Add a new field emailAddress, as shown in the following screenshot:

2.	 Click Finish to save the change to the schema. Then, click Yes to apply the changes
to all jobs when prompted.

3.	 Click Ok to accept the changes in the next dialogue box. You will now see that the job
has an error on the output.

1.	 Open the tFileOutputDelimited, and click the Edit Schema button to open the
schema and select the View Schema option.

2.	 As you can see in the following screenshot, the table on the left-hand side is different

from that on the right-hand side. Click the to copy the right hand schema into
the left-hand panel.

Chapter 2

19

3.	 Click Ok to save the changes.

How it works…
When Talend updates the job schema for an output component, it does not propagate the
change to the upstream component. Using the << option allows the developer to copy all
the changes from the output schema back into the previous component, ready for a rule to
be applied.

There’s more…
Using this method also ensures that the link to the Generic schema is maintained. It is
possible to make the change in the previous tMap output; however, this would cause the
output schema to become Built-in, which is an undesirable result.

In the preceding example, only one component is changed and the error is removed; however,
in many jobs, this will not ensure that the changes are complete. It is a rarity to add fields
only to then do nothing with them. Thus it is often necessary to propagate the changed row
forward through all components in a job to ensure it is copied to the output correctly or ensure
that a field that has been reverse propagated is correctly populated from upstream data.

Metadata and Schemas

20

When adding new fields to an output, it is best to change the schema of the
output and reverse propagate the new field, especially when using Repository
schemas. The reason for this is that if the schema is changed using tMap,
then Talend will automatically change the type of schema from repository to
Built-In, thus breaking the link to the Repository schema. In most cases, this
is not a desirable outcome.

Be careful during reverse propagation that field names have not changed,
especially with the tMap outputs. If you change the name of a field and
reverse propagate to tMap, then the rule will disappear and will need to be
re-entered.

In these cases, it is worth changing the field names in the tMap output
schema prior to reverse propagating a schema. Make sure that you choose
not to propagate this change from tMap to avoid the output being changed
to Built-in. This will cause the output file to be in error, but when the
Repository schema change is applied, the schemas will match, and the error
will disappear.

Creating a generic schema from the existing
metadata

Any schema can be easily converted into a generic schema to enable it to be re-used. The
following recipe shows two methods of creating generic schemas; the first from a pre-existing
schema in the metadata repository and the second from a built-in schema.

How to do it…
From repository schema:

1.	 Open repository schema fd_cook_0020_customerDelimited that can be
found in the delimited schemas section under Chapter2, ensuring that you click the
metadata, rather than the parent schema.

Chapter 2

21

2.	 Right-click metadata, and then select copy to Generic schema. This creates a
schema fd_cook_0020_customerDelimited.

3.	 Move the new schema to the chapter 2 folder and double click it to edit it.

4.	 Change the name to sc_cook_0020_genericCustomer1.

From a built-in schema

1.	 Open the Talend Job jo_cook_ch02_0020_builtInSchema and open the
tFileOutput Delimited component.

2.	 Click the highlighted button, shown in the following screenshot:

3.	 This will open a windows file save dialogue. Save the file as sc_cook_0020_
genericCustomer.xml.

4.	 Now create a new generic schema from the saved XML file by right-clicking Generic
schemas, and selecting the option Create generic schema from xml:

5.	 Select the XML file that was just saved, and click finish to create the new Generic
schema sc_cook_0020_genericCustomer2.

Metadata and Schemas

22

How it works…
Under the covers, Talend stores schemas in XML format files, regardless of the type of
schema. This means that schemas can be easily converted between types, in this case
between built-in and repository.

Cutting and pasting schema information
This technique is a real time saver, but isn’t always immediately obvious, because the schema
dialogue does not contain a right-click option.

Getting ready
Make a copy of the job jo_cook_ch02_0020_builtInSchema, rename it to jo_cook_
ch02_0030_copySchema, and open the new job.

How to do it…
1.	 Drag a tFileOutputExcel component from the right-hand palette.

2.	 Open tFileOutputDelimited, and then open the schema.

3.	 Click the left-hand panel and press Ctrl+A to select all the columns.

4.	 Press Ctrl+C to copy the highlighted columns.

5.	 Open the tFileOutputExcel component, and then open the schema. It
should be blank.

6.	 Press CTRL+V to paste the columns.

How it works…
Talend allows the standard windows shortcut keys to be used to cut and paste column
information between schemas.

There’s more…
You can also use Ctrl+left mouse button to highlight individual columns and Shift+left mouse
button to highlight a range as per the usual Windows conventions.

Chapter 2

23

Note that the pasted columns are added to the end of a schema,
they do not replace existing columns. This means that in many cases
further work will be needed to move the new columns to the correct
place in the schema.

Dropping schemas to empty components
This simple tip is a useful time saver, especially when using generic schemas and the
Hash components.

Getting ready
Open the job jo_cook_ch02_0040_dragSchema. If you open the tHashOutput
components, you will see that they all share the same schema; the schemas are all Built-In.

How to do it…
1.	 In the left-hand window open the generic schema sc_cook_0040_

genericCustomer so that you can see the actual metadata.

2.	 Drag the metadata icon over each of the tHashOutput components.

3.	 You will now see that all three components share the same generic schema.

How it works…
When you drag a metadata schema onto a component, the component is automatically
populated with the new schema.

Metadata and Schemas

24

This is not generally a well-known feature of Talend, but it saves you having to navigate
through the schema dialogues when you wish to share a common schema.

There’s more…
This method is particularly useful when using tHashInput components as re-usable lookups,
based upon the schema of an existing tHashOutput. Each time you add an additional
lookup, the generic schema can simply be dragged from the repository onto the new
component, saving time and effort.

Creating schemas from lists
This next recipe doesn’t make use of Talend at all. Rather, it is a technique to save lots of
tedious typing when creating schemas from documents and/or spreadsheets.

Getting ready
Open the MS Word document customerFieldList.docx. As you can see, there are a
reasonable number of field descriptions that would take a reasonable amount of time to
define individually.

How to do it...
1.	 Select all the column names from the word document and paste into an

Excel spreadsheet:

Chapter 2

25

2.	 Now select all the fields, right click it, and select Copy.

3.	 Go to the second worksheet and click the top-left cell.

4.	 Then, right-click and select Paste Special, and select the option Transpose:

5.	 This will copy the previous vertical list into a horizontal list.

6.	 Delete the initial worksheet and save the file as a CSV file named
TransposedCustomer.csv

7.	 You can then import the CSV file using the wizard for File delimited
and stating that the file has a heading row.

Metadata and Schemas

26

8.	 Set the field separator as Comma, and tick the box Set heading row as
column names.

9.	 Click on Next, and you should see the individual fields listed in the schema.You are
now able to add the field types and lengths.

10.	 If you wish, you can then copy the delimited schema to a generic schema.

How it works…
The transpose facility of the spreadsheet enables a vertical list of fields to be converted into
a horizontal list. By saving this list as a CSV file, the horizontal field list can be highlighted as
a heading row during an import into Talend. This automatically fills in the field names in the
schema, thus avoiding the need to type in the names of the columns individually.

There’s more…
Even after importing a list using this method, you will still have to ensure that column types
and lengths are populated, however, if you also add data to the CSV file prior to importing it,
Talend will try to guess the type and length of each column during the import stage

It is possible to force Talend to guess correctly by adding data to the file that matches the type
exactly. There are two methods that can be used:

Chapter 2

27

Transpose the data

Starting with the original list, add a second column to the list, and populate it with data values
for each of the fields.

When transposing the data in the spreadsheet, copy both the column of field names and the
data; and transpose both list columns, so that they become a heading row and a row of data.

Edit the CSV file

The second method is to add a row of data either to excel or CSV files manually prior to
importing the metadata.

What data to add? If you take care to add data that is the maximum representative size of the
column, then Talend will usually guess the correct types and lengths.

For example, if the field is a ten character string, for example, then ensure that you add ten
characters to the data in either the list column or the CSV file. For numbers, ensure that you
use numbers to let Talend know that the field is numeric.

In the preceding example, if you only set the number fields to 99999999.999 prior to import,
it will save significant time. This is easy to do in Word or Excel and can save time when
defining large schemas.

3
Validating Data

This chapter contains recipes that show some of the techniques for validating data and
handling invalid rows.

ff Enabling and disabling reject flows

ff Gathering all rejects prior to killing a job

ff Validating against the schema

ff Rejecting rows using tMap

ff Checking a column against a list of allowed values

ff Checking a column against a lookup

ff Creating validation rules for more complex requirements

ff Creating binary error codes to store multiple test results

Introduction
Clean, timely, and correct data is a business-critical resource for most organizations,
because it enables (but is not restricted to) more accurate decision making, compliance, and
improved efficiency.

Data integration is often the first point of contact for data arriving into a business (from third
parties), and the hub for data held within a business, and as such, plays a key part in ensuring
that data is fit for use.

This section concentrates on some of the features and methods within Talend that enable the
developer to identify and capture invalid data, so that it can be reported.

Validating Data

30

Enabling and disabling reject flows
Rejected data is closely coupled to schemas (Chapter 2, Metadata and Schemas), as many of
the input and output components will validate data according to a schema definition and then
pass any incorrect data to a reject flow.

Reject flows thus allow non-conforming data to be collected and handled as per the needs of
a project.

In some cases, depending upon the business requirement, rejects are not acceptable. In
these cases, reject flows should be disabled and the job allowed to fail.

Whether a job dies on the first incorrect record, collects rejects in a file,
or completely ignores rejects is a design decision that should be based
upon the requirements for the process. Where possible, designers and
developers should attempt to define how errors and rejects are handled
before coding begins.

Getting ready
Open the job jo_cook_ch03_0000_inputReject.

How to do it…
1.	 Run the job and it will fail with an unparseable date error.

2.	 Open the tFileInputDelimited component and in the Basic settings tab
uncheck the Die on error box.

3.	 Drag a new tLogRow to the canvas, open it and set the mode to Table.

4.	 Right-click the tFileInputDelimited component, and select Row, then reject.
Connect this row to the new tLogRow.Your job should look like the following:

Chapter 3

31

5.	 Run the job. You should see that two records have now been passed to the reject flow.

How it works…
When Talend reads an input data source, it attempts to parse the data into the schema. If it
cannot parse the data, then it will fail with a Java error.

When the die on error box is unchecked, Talend enables a reject flow to be added to the
component and changes the action of the component, so that instead of killing the job, invalid
rows are passed to a reject flow.

There's more...
You can, if required, ignore any rejects by not attaching a reject flow, but it is wise to double
check first if this is a genuine requirement for the process. Most cases of rejects being ignored
are down to programmers forgetting to check if there is a reject flow for the given component.

In the tFileInputDelimited component, there is an Advanced tab that enables data
to be validated against the schema and for dates to be checked. These options provide an
added level of validation for the input data.

It is always worth checking every input component for the presence of
reject flow when die on error is unchecked, or for additional validation
options.

In many cases, these validations will not be explicitly stated in a
specification, so it is always worth checking with the customer to see if
they require rejects and/or validation rules to be added.

Validating Data

32

See also
ff Gathering all rejects from an input, in this chapter.

Gathering all rejects prior to killing a job
As an alternative to collecting incorrect rows up to the point where a job fails (Die on error),
you may wish to capture all rejects from an input before killing a job.

This has the advantage of enabling support personnel to identify all problems with source
data in a single pass, rather than having to re-execute a job continually to find and fix a single
error / set of errors at a time.

Getting ready
Open the job jo_cook_ch03_0010_validationSubjob. As you can see, the reject flow
has been attached and the output is being sent to a temporary store (tHashMap).

How to do it…
1.	 Add the tJava, tDie, tHashInput, and tFileOutputDelimited components.

2.	 Add onSubjobOk to tJava from the tFileInputDelimited component.

3.	 Add a flow from the tHashInput component to the tFileOutputDelimited
component.

4.	 Right-click the tJava component, select Trigger and then Runif. Link the trigger to
the tDie component. Click the if link, and add the following code
((Integer)globalMap.get("tFileOutputDelimited_1_NB_LINE")) > 0

5.	 Right-click the tJava component, select Trigger, and then Runif. Link this trigger to
the tHashInput component.
((Integer)globalMap.get("tFileOutputDelimited_1_NB_LINE")) == 0

Chapter 3

33

The job should now look like the following:

6.	 Drag the generic schema sc_cook_ch3_0010_genericCustomer to both the
tHashInput and tFileOutputDelimited.

7.	 Run the job. You should see that the tDie component is activated, because the file
contained two errors.

How it works…
What we have done in this exercise is created a validation stage prior to processing the data.

Valid rows are held in temporary storage (tHashOutput) and invalid rows are written to a
reject file until all input rows are processed.

The job then checks to see how many records are rejected (using the RunIf link). In this
instance, there are invalid rows, so the RunIf link is triggered, and the job is killed using tDie.

Validating Data

34

By ensuring that the data is correct before we start to process it into a
target, we know that the data will be fit for writing to the target, and thus
avoiding the need for rollback procedures.

The records captured can then be sent to the support team, who will then
have a record of all incorrect rows. These rows can be fixed in situ within
the source file and the job simply re-run from the beginning.

There's more...
This recipe is particularly important when rollback/correction of a job may be particularly
complex, or where there may be a higher than expected number of errors in an input.

An example would be when there are multiple executions of a job that appends to a target
file. If the job fails midway through, then rolling back involves identifying which records were
appended to the file by the job before failure, removing them from the file, fixing the offending
record, and then re-running. This runs the risk of a second error causing the same thing to
happen again.

On the other hand, if the job does not die, but a subsection of the data is rejected, then the
rejects must be manipulated into the target file via a second manual execution of the job.

So, this method enables us to be certain that our records will not fail to write due to incorrect
data, and therefore saves our target from becoming corrupted.

See also
ff The Validating against the schema recipe, in this chapter.

Validating against the schema
The tSchemaComplianceCheck is a very useful component for ensuring that the data
passing downstream is correct with respect to the defined schema.

This simple exercise demonstrates how rows can be rejected using this component.

Getting ready
Open the job jo_cook_ch03_0020_schemaCompliance.

Chapter 3

35

How to do it…
1.	 Run the job. You should see two rows being rejected.

2.	 Add a tSchemaComplianceCheck and two tLogRow, right click on
tSchemaComplianceCheck_1 and select Row then Rejects. Join the
flow one of the new tLogRow. Connect the main to the other as shown:

3.	 Now, when you run the job, you will see an additional reject row being output from the
tSchemaComplianceCheck component.

How it works…
The tFileInputDelimited component will detect only some of the anomalies within
the data, whereas the tSchemaComplianceCheck component will perform a much more
thorough validation of the data.

If you look at the output, you will see the log entry, which shows that the name field has
exceeded the maximum for the schema:

Rejecting rows using tMap
This recipe shows how tMap can be used to ensure that unwanted rows are not propagated
downstream. This may be as a result of the filter criteria or a validation rule.

Validating Data

36

Getting ready
Open the job jo_cook_ch03_0030_tMapRejects.

How to do it…
1.	 Open the tMap and click the Activate/unactivate expression filter button for the

validRows output.

2.	 In the Expression box add the code customer.age >= 18.

3.	 Click on the tMapRejects output and then on the tMapSettings button.

4.	 Click on Catch output reject value column to set it to true.

5.	 Run the job. You should see that one of the rows has been rejected.

How it works…
In this example, tMap is working like an if statement. Therefore, if customer's age is
greater than eighteen, then write the record to validRows or else pass the data to the
tMapRejects.

Chapter 3

37

There's more…
You can use this method to test for multiple different rejects, by adding additional outputs and
adding different filter criteria to each output.

The tMap component will process any number of filter criteria from top to bottom, so long as
you remember to catch the output rejects for each additional output table.

Note that if you forget to set catch output rejects to true, then all the input
records will be passed to all the outputs. Sometimes, this may be what
you want to do, but in the case of the preceding exercise, forgetting to set
the catch output rejects would result in rows being duplicated in both of
the output streams.

Checking a column against a list of allowed
values

Often it is necessary to ensure that a column contains only values as defined in a list. This
recipe shows how this can be achieved using a tMap expression.

Getting ready
Open the job jo_cook_ch03_0040_tMapValuesInList. You will notice that the job is very
similar to the previous recipe Rejecting rows using tMap.

How to do it…
1.	 Open tMap and click the expression builder button (…), and add the test criteria, as

shown in the following screenshot:

2.	 Run the job and you should see that one of the rows is rejected.

www.allitebooks.com

http://www.allitebooks.org

Validating Data

38

How it works…
The tMap conditions are the same as Java conditions, so the symbol || (pipe pipe) is a
logical OR.

Thus, the condition checks for the value being UK or USA or France.

There's more…
This method is fine if the list is quite small and isn't liable to change. If the list is too large
or subject to frequent changes, then the code will be hard to maintain and/or will need to
be changed often, which will require re-testing of the code. In these cases, refer to the next
recipe for a more suitable method.

See also
ff Checking a column against a lookup, in this chapter.

ff Rejecting rows using tMap, in this chapter.

Checking a column against a lookup
Another method for validating a column is to refer to a lookup containing a list of allowed
values that can be stored in any format (file, table, XML for example).

Getting ready
Open the job jo_cook_ch03_0050_tMapValuesInLookup.You will see that there are two
inputs to the tMap: customer and country.

How to do it…
1.	 Open tMap, and drag the field countryOfBirth from the customer input to the

countryName field in the country input. This will create a key link, as shown in the
following screenshot:

Chapter 3

39

2.	 Click the button tMap settings and set the value for Join Model to Inner Join.

3.	 In the reject output, click on the button for tMap settings, and set the value for
Catch lookup inner join reject to true.

Validating Data

40

4.	 Run the job and you will see that three of the records have been rejected.

5.	 Re-open the tMap and change the Expr.key on the country to StringHandling.
UPCASE(customer.countryOfBirth)

6.	 Re-run the job and you will see that now only one record has been rejected.

How it works…
The tMap is performing an inner join between the customer data and the country data using
the country name as the key, so any rows that do not join have an invalid countryOfBirth.

When a match is found, the record is passed to the valid rows output.

If no match is found, then the customer record is passed to the invalid output, which is set up
to catch any row from the main flow that does not fulfill the inner join criteria.

On the first execution of the job, the values being checked were not in upper case, so only
'USA' matched. On the second execution after the customer countries had been converted to
upper case, three of the records matched.

Creating validation rules for more complex
requirements

Sometimes validation rules require multiple inputs to provide a pass/fail result, so it is often
easier to build and understand the code if it is written using Java.

If you aren't familiar with code routines in Talend, it is recommended that you first complete
the recipe Creating custom functions using code routines, Chapter 5, Using Java in Talend
that will take you through the setup of code routines.

Getting ready
Open the job jo_cook_ch03_0060_validationCodeRoutine.

How to do it…
1.	 Create a new code routine called validation, and copy the following code into it:

 /**
 * validateCustomerAge: Check customer is 18 or over for UK,
21 or over for rest of world.
 * returns true if valid, false if invalid
 * e.g. validateCustomerAge(23,"UK")
 *

Chapter 3

41

 * {talendTypes} Boolean
 *
 * {Category} Validation
 *
 * {param} string(age) input: Customer age
 * {param} string(country) input: Customer country
 *
 * {example} validateCustomerAge(23,"UK") # true
 */
 public static Boolean validateCustomerAge(Integer customerAge,
String customerCountry) {
 if (customerAge == null || customerCountry == null) {
 return false;
 }else
 if (customerCountry.equals("UK".toUpperCase()) &&
customerAge >= 18){
 		 return true;
 	 } else {
 if (!(customerCountry.equals("UK".toUpperCase())) &&
customerAge >= 21){
 return true;
 }else{
 return false;
 }
 }
 }

2.	 Open the tMap component, and in the filter criteria for the validRows output, click on
the expression button (…)

3.	 Select the function validateCustomerAge from the validation category and
doubleclick to copy the example code to the editor.

4.	 Change the expression to match the following:
validation.validateCustomerAge(customer.age,customer.
countryOfBirth)

5.	 Also, add the same expression to the output column validationResult for
both outputs.

6.	 Run the job and you should see that two of the records are rejected and three
are valid.

How it works…
The tMap expressions are limited to a single line of code, so complex tests on data cannot
generally be performed directly within tMap.

Validating Data

42

The validateCustomerAge method returns a single Boolean value, so can be easily used
within tMap expressions and filters was demonstrated in this recipe..

There's more…
Most data processes require validation of some sort or another, so it is a good idea to create a
routine just for managing validations.

By collecting all the validation routines together, it makes them easier to find and removes the
need for duplicated code.

Because they are stored centrally, a change to a routine is immediately available to all
jobs using that particular routine, thus reducing time spent finding and fixing duplicated
code in a project.

While the rule can be created directly using a tJavarow component,
using a code routine enables the validation to be re-used across
multiple jobs in a project as well as allowing the routine to be used
within tMap. Another downside of the tJavaRow method is that a
pass/fail flag would need to be added to each row to enable them to
be filtered out in a downstream tMap.

See also
ff Creating custom functions using code routines in Chapter 5, Using Java in Talend.

Creating binary error codes to store multiple
test results

Prior to doing this exercise, it is recommended that you first jump forward
to Chapter 4, Mapping Data, and do the exercises related to ternary
operators and using variables in tMap.

Sometimes, it is desirable to perform multiple checks on a row at the same time, so that
when a row is rejected, all of the problems with the data can be identified from a single error
message. An excellent method of recording this is to create a binary error code.

A binary error code is a binary number, where each of the digit position represents the result
of a validation test: 0 being pass and 1 being fail.

For example, 1101 = failed test 1 (rightmost digit), test 3 and test 4 and passed test 2. This
binary value can be held as a decimal integer, in this case 13.

Chapter 3

43

Getting ready
Open the job jo_cook_ch03_0070_binaryErrorCode.

How to do it…
1.	 Open tMap and create six new Integer type variables: nameTest,

dateOfBirthTest, timestampTest, ageTest, countryOfBirthTest and
errorCode.

2.	 Copy the following lines into the Expressions:
customer.name.equals("") ? 1 << 0 : 0
customer.dateOfBirth == null ? 1 << 1 : 0
customer.timestamp == null ? 1 << 2 : 0
customer.age == null ? 1 << 3 : 0
customer.countryOfBirth.equals("") ? 1 << 4 : 0
Var.nameTest + Var.dateOfBirthTest + Var.
 timestampTest + Var.ageTest + Var.countryOfBirthTest

3.	 Add a condition in the ValidRows output
Var.errorCode == 0

4.	 Set the tMap Settings for the rejects output to Catch output reject.

5.	 Your tMap should now look like this:

6.	 Run the job. You should see that the error codes are populated for all the rows where
at least one field is null.

How it works…
The operator << performs a bitwise shift of the value by the relevant number of places. For
example 1<<3 would place a 1 in the 4th position of a binary number (0 being the first position).

Validating Data

44

So if the field is null, the variable is assigned a bit-shifted value, otherwise it is set to 0.

By adding the numbers together, we eventually arrive at a decimal value which represents a 1
in each of the positions where a null is found.

This may be simpler to explain using an example. The following is the output from tLogRow. In
this case, it is one of the rejects where three nulls have been found

So from this output the binary value will be built as shown:

ff The nameTest variable is assigned 0

ff The dateOfBirthTest variable is assigned 1 << 1 = 10 (Binary) = 2 (Decimal)

ff The timestampTest variable is assigned 1 << 2 = 100 (Binary) = 4 (Decimal)

ff The ageTest variable is assigned 1 << 3 =1000 (Binary) = 8 (Decimal)

ff The countryOfBirthTest variable is assigned 0

So the decimal total is 0+2+4+8+0 = 14

There's more…
An alternative to using the << operator is to assign the actual decimal values to each position:
1,2,4,8 (2 power 0, 2 power 1, and so on) being positions 0 to 3. Again, adding the values
gives us the desired integer result.

Decrypting the error code
Decrypting a binary error message is achieved by testing the individual bits in the integer. This
can be achieved by using the shift function to create the binary bit position and performing a
bitwise AND against the integer value. If the result is greater than 0, then the position is set.

For instance, if we have the value 0101 (7) in an integer column:

0101 & 1 (where the 1 equates to 1 <<0) = 1 (test 1 failed)

0101 & 10 (where 10 equates to 1<<1) = 0 (test 2 passed)

Chapter 3

45

0101 & 100 (where 100 equates to 1<<2) = 100 (test 3 failed)

0101 & 1000 (where 1000 equates to 1<<3) = 0 (test 4 passed)

So the logic for our errors will look like this:

if ((errorCode & (1<<0)) > 0) {
 System.out.println("name is empty");
}
if ((errorCode & (1<<1)) > 0) {
 System.out.println("dateOfBirth is null");
}
if ((errorCode & (1<<2)) > 0) {
 System.out.println("timestamp is null");
}
if ((errorCode & (1<<3)) > 0) {
 System.out.println("age is null");
}
if ((errorCode & (1<<4)) > 0) {
 System.out.println("countryOfBirth is empty");
}

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

4
Mapping Data

This chapter contains recipes that show some of the techniques used to map input data to the
desired output format.

ff Simple mapping and tMap time savers

ff Creating tMap expressions

ff Using the ternary operator for conditional logic

ff Using intermediate variables in tMap

ff Filtering input rows

ff Splitting an input row into multiple outputs based upon input conditions

ff Joining data using tMap

ff Hierarchical join using tMap

ff Using reload at each row to process real-time/near real-time data

Introduction
This chapter mainly deals with the tMap component which is usually the main processing
component at the heart of any Talend transformation job.

The tMap component
The tMap component has extensive transformation capabilities and has thus become the
data integration developer's tool of choice. Among the tMap component's capabilities are the
ability to:

ff Add and remove columns

ff Apply transformation rules to one or more columns

Mapping Data

48

ff Filter input and output data

ff Join data from multiple sources into one or many outputs

ff Split source data into multiple outputs

Flexibility

The tMap component is multipurpose and very flexible and because of this there is often the
temptation to do as much as possible in a single tMap component. This isn't recommended,
since this can raise the complexity to a level where the code becomes difficult to understand
and to maintain. It is recommended that multiple tMap components be used to manage
complex transformations, so that the code is more easily understood.

Single line of code
One of the main limitations of tMap is that the output expressions for transformation are
limited to just a single line. This can be overcome using code routines that perform complex
logic or utilizing tMap variables and the Java ternary operation can be used to perform
conditional logic.

All these techniques will be demonstrated in this chapter.

Batch versus real time
The operation of lookups (for joining) can be manipulated in tMap to enable efficient joining
in both batch and real-time mode. The reload at each row option for real-time lookups will be
detailed later in the chapter.

Simple mapping and tMap time savers
This recipe will illustrate the most basic mapping options within the tMap component and
some of the column level tricks that can be used to speed up mapping by removing large
amounts of repetitive actions.

Getting ready
Open the job jo_cook_ch04_0010_basicMapping.

How to do it...
1.	 Drag a tMap component from the right-hand panel.

2.	 Connect the tFileInputDelimited component to tMap.

3.	 Connect the output, name it as outputCustomer and accept the schema of the
target component.

Chapter 4

49

4.	 Open tMap and you will notice that the inputs and outputs are named the same as
the flows.

Rename the flows

5.	 Close tMap and left-click the input flow so that row1 is highlighted. Take a short
pause; click again on the row1 text and the text will be editable. Rename the flow to
customer.

6.	 Open tMap and you will see that the names of the tMap input table have now
changed to match the row name of the input flow.

Manually dragging columns

7.	 Click the left mouse button on dateOfBirth and drag to dateOfBirth expression
in the output. This is the most basic method of copying data from input to output.

Create new columns by dragging

8.	 Press Ctrl and left mouse click the annualTotal and prevYearTotal columns.

9.	 Release Ctrl and left mouse click annualTotal.

10.	 Holding down the left mouse button, drag the columns to the very bottom of the
output table.

11.	 Do not release the left mouse button until you see a blue line at the end of the table
and an information box that states Insert all selected entries.

12.	 You will see that the new columns have been added to the output, and their values
automatically mapped from the input.

Mapping Data

50

Reposition a column

13.	 Use the up and down arrows in the schema tab to move the new columns to the
positions below dateOfBirth.

Deleting a column

14.	 Highlight totalTwoYears in the output table and then click the X button to delete it.

Adding a column manually

15.	 In the Schema editor for the output, left mouse click the name field, then click the +
button to create a new column.

16.	 Change the name of newColumn to postcode.

Automapping same named columns

17.	 Click the output table and then click Auto map!, as shown in the following screenshot:

18.	 You should notice that all the columns that share the same input and output name
have been mapped automatically.

Concatenating input columns

19.	 Highlight the firstName, middleName, and lastName input columns by holding
down Ctrl and left mouse clicking each one individually.

20.	 Drag them across to the output name column but do not release the left mouse
button yet. While hovering over the name column, notice the floating information box.
This tells us that the mode is append.

21.	 Release the left mouse button and notice that the three columns have been copied
to the same expression.

Chapter 4

51

22.	 Repeat steps 10 to 12, and you will see that the columns have been appended yet
again. Append is the default mode when dragging and dropping.

Overwriting columns

23.	 Repeat steps 10 to 12, however before releasing the left mouse button hold down
Ctrl. You will see that the information box changes to Overwrite mode.

24.	 Release the left mouse button, and you will see that the expression containing six
fields has been overwritten by three.

25.	 Add +" "+ between each of the columns to complete the expression.

Copy columns by position

26.	 Highlight the payment1 column.

27.	 Hold the Shift key and click payment4.

28.	 Release the left mouse button, select the payment1 column and drag the group
across to the lastFourPayments1 column in the output.

29.	 Drag the four columns to the output, but do not release the mouse button. Notice
that the floating box says that this is the append mode.

30.	 Press Ctrl and you will see that the mode changes to overwrite mode

31.	 Press Shift and the mode changes to each source entry to each target expression.

32.	 This is the mode we want, so release the left mouse button. You will see that the
columns have been mapped individually. Note that the copy of multiple columns by
position can also be performed with non-sequential columns selected using Ctrl and
left mouse click.

33.	 Your tMap should now look like the following and you can run the job.

Mapping Data

52

How it works...
tMap enables columns to be mapped, ignored, and added to the output very easily to ensure
that the correct results are produced.

Shortcuts such as Auto map! and the group copies, enable many rows to be copied at once,
saving time and effort.

New columns can be created by dragging and dropping from the input, as well as via the
schema editor.

There's more…
In this recipe there is just a single input and output, so recognizing the source column in an
expression is simple. When multiple inputs and outputs are used, then this is no longer true,
unless flows are named sensibly. This is why we have included the renaming of the flows in
this, the most basic recipe.

Always name the inputs to tMap. Often, tMaps have multiple
inputs and outputs. Ensuring that the flow names are consistent
helps in identifying from where a data element has been sourced,
which will make debugging easier.

Creating tMap expressions
In the previous example, we demonstrated how to manipulate the schemas and basic
mapping of input columns to output columns. This recipe will show how to add much more
complex rules to tMap and how to use the Talend supplied functions.

Expressions are limited to a single line of Java code, but can contain any of the following:

ff Constants

ff Input variables

ff The globalMap and context variables

ff The tMap variables (see next recipe)

ff Talend supplied functions

ff User supplied code routines

ff Standard Custom java functions

ff Included methods from JAR files

Chapter 4

53

Getting ready
Open the job jo_cook_ch04_0020_usingExpressions

How to do it...
1.	 Open tMap.

2.	 Click the left mouse button on the output transactionDateTime column.

3.	 You will notice that the expression button looks like the following:

4.	 Click on the … button to open the Expression Builder dialogue.

Adding a Talend function

5.	 The bottom-left panel lists the Categories of Talend functions. Scroll down to the
TalendDate category and click the left mouse button.

6.	 You should now see a list of available functions. Scroll down to the getCurrentDate
function, and double-click the left mouse button.

7.	 The function has now been added to the Expression panel, as shown in the
following screenshot:

8.	 Exit Expression builder by clicking on Ok, and you will now see the function present
in the expression column for transactionDateTime.

Transforming input columns

9.	 Select the output cleanName column and open Expression builder.

10.	 Select Category of StringHandling and the Function of UPCASE and double-click it
to add it to the expression. Delete the text "Hello".

Mapping Data

54

11.	 In the middle-top panel, you will see the input columns available to add to the
expression. From this panel, drag customer.firstname into the brackets and add
+" "+.

12.	 Double-click customer.middleName, add +" "+ then double-click customer.
lastName. Your expression should now look like the following:

13.	 Exit Expression builder and run the job.

How it works...
The expression editor allows drag-and-drop creation of complex transformation rules. It also
includes panels for accessing Talend supplied and user created functions to make building
rules much easier.

There's more…
The expression builder also has test functionality, making it a powerful Talend feature, but it
isn't the only way to create expressions.

Testing expressions
The expression builder will also allow an expression to be tested by filling in values in the
Value column and clicking the Test! button, as shown:

Chapter 4

55

Expression editor
Although the expression builder is useful, it can also be time consuming to open and close
the editor continuously. More seasoned Talend developers will often not use the expression
builder, preferring instead to edit the line directly in the main tMap window expression column
or in the expanded expression window, which is an alternative tab of the schema panel,
shown in the following screenshot:

Getting around the 'one line' limitation
Although tMap expressions are limited to a single line of code, the use of the tMap variables,
ternary expressions, and code routines do allow very complex mappings to be handled within
a single expression.

See Also
Using the tMap variables and ternary expressions are handled later in this chapter. The use of
code routines is handled in Chapter 10, Debugging, Logging, and Testing.

Using the ternary operator for conditional
logic

The previous recipe mentions that a tMap expression cannot be more than a single line of
Java code. This means that we cannot use the normal if-then-else logic to test for conditions.

Fortunately, Java does provide a mechanism by which we can perform tests on a single line:
the ternary expression.

Mapping Data

56

Getting ready
Open the job jo_cook_ch04_0030_ternaryExpressions.

How to do it...
We'll be looking at two similar scenarios using the ternary expression.

Single ternary expression: if-then-else
1.	 Open tMap and click the output singleTernaryLocality column.

2.	 Enter the following code:
customer.countryOfBirth.equals("UK") ? "UK" : "RestOfWorld"

3.	 Run the job. You will see that all countries apart from the UK have a locality of
RestOfWorld.

Ternary in ternary: if-then-elsif-then-else
1.	 Open tMap and click the output column multiTernaryLocality.

2.	 Enter the following code:
customer.countryOfBirth.equals("UK") ? "UK" : customer.
countryOfBirth.equals("France") ? "Europe" : customer.
countryOfBirth.equals("Germany") ? "Europe" :"RestOfWorld"

3.	 Run the job. You should now see that France and Germany are now classified
as Europe.

How it works…
The Java ternary expression is the equivalent to an if-then-else statement in Java, but on
a single line. If we were coding in Java, the test for locality would look like the following:

outputRow.locality = customer.countryOfBirth.equals("UK") ? "UK" :
"RestOfWorld"

or we could write it longhand as:

if (customer.countryOfBirth.equals("UK")) {
 output_row.locality="UK";
}else{
 output_row.locality="RestOfWorld"
}

It also happens that the ternary else clause ':' can also be a ternary expression, thus
enabling more complex if-then-elseif-then-else type expressions.

Chapter 4

57

There's more…
As with all coding constructs, beware of making them too complex, otherwise they may
become un-maintainable. If you have many levels of ternary expressions, then it is probably
time to consider using code routine or performing the logic in tJavaRow.

If you do use multilevel ternary expressions, then they can be broken over many lines and
commented appropriately using /*……*/ comments. This usually makes the code easier to
understand. An example is shown in the following screenshot:

Using intermediate variables in tMap
The tMap component is the most flexible and most used component in Talend, despite having
the limitation on multiple lines for an expression. In the previous recipe, we saw how ternary
expressions can be used to extend the capability of the tMap expressions. In this recipe, we
will see that the tMap variables can also extend the capability of tMap.

Getting ready
Open the job jo_cook_ch04_0040_tMapVariables.

How to do it…
1.	 In the Var section, click + to add a new variable, set the name to paymentTotal and

Type to float, as shown in the following screenshot:

Mapping Data

58

2.	 Insert the following code into the expression field:
customer.payment1+customer.payment2+customer.payment3+customer.
payment4+customer.payment5+customer.payment6

3.	 Repeat step 1 for a variable named averageLastSixMonths with Type set to
float, and a variable named averageAnnual also with Type set to float.

4.	 Select paymentTotalRow by clicking the left mouse button.

5.	 Drag the paymentTotalRow variable into the Expression column for the new
variable averageLastSixMonths.

6.	 Add /6 to the end of the expression to get:
Var.paymentTotal / 6

7.	 Drag the input column annualTotal into the Expression column for the variable
averageAnnual and add /12 to the end of the expression.

8.	 Add a final float variable called variance.

9.	 Drag in the variable averageLastSixMonths add – (minus) then drag in the
variable averageAnnual.

10.	 Highlight all the four columns using the Shift and right mouse click method and add
them to the end of the output table.

11.	 Your tMap should now look like the following screenshot:

12.	 Run the job to show the results.

How it works…
The variables are created in a structure called Var. New columns can be added to Var and can
be assigned expressions just like output columns and also copied to output columns, just like
input columns.

Chapter 4

59

These variables can also be dragged and dropped in the same way that the input columns
can, which means that the methods mentioned in the section tMap time savers can also be
applied to the tMap variables

There's more…
As you can see, the tMap variables allow us to create new variables that enable us to build
complex mappings using many variables, and then these variables can then be used in later
variables, just like in normal Java coding.

As usual though, it is advisable to keep the number of new variables low in tMap to avoid
maintenance headaches.

If you find that you are using many variables, and the code is becoming very
complex then consider splitting tMap into multiple simpler tMaps or creating
one or more code routines or using tJavaRow; with the advantage of using
code routines or tJavaRow being that inline comments can be added to
document the code, thus making it easier to debug and maintain.

Filtering input rows
Often, rows can be filtered out of a flow because they do not fulfill the required criteria for
processing. This example shows how this can be achieved within the tMap component, so as
to avoid costly join logic.

Note that you should not concern yourself too much with the complexity
of tMap in this recipe; rather you should concentrate on the filters.
Joining is covered in later recipes in this chapter.

Getting ready
Open the job jo_cook_ch04_0050_tMapInputFilter.

How to do it...
1.	 Run the job. You will see that there are many records read from orderItemFile

and all are being output.

2.	 Kill the job and view the output. You will see many order items being displayed, all of
which are duplicates. These are the ones we will need to remove.

Mapping Data

60

3.	 Open tMap and click the Activate/unactivate expression button for the
customer input table.

4.	 Add the filter expression customer.customerId == 2 || customer.customerId
== 3 into the input expression filter, as shown in the following screenshot:

5.	 Run the job and you will see that only two records have been output.

How it works…
Adding the filter enabled us to reduce the number of customers to two; either the customer
with an ID of 2 or the customer with an ID of 3.

There's more…
Talend does provide a separate component for filtering (tFilterRow) and it is generally a
matter of personal style or development standards as to which method you use for filtering
data prior to processing in tMap.

Note that when input filtering is used, the rows are simply discarded. Whether the rows should
be discarded is a design decision, and the developer should be clear on the fact that it is ok to
discard the rows.

If the requirement states that rejects must be recorded, then do not use an
input filter in tMap. Instead, use tFilterRow prior to tMap to enable the
rejected rows to be captured or, if tFilterRow cannot be used on the input,
then the rows will have to be processed and then filtered at the output.

When using database inputs, it is usually better and more efficient to filter within the SQL
query, rather than within the Talend job.

Chapter 4

61

Splitting an input row into multiple outputs
based on input conditions

Often, it is required to filter input data into multiple outputs depending upon given criteria,
for instance, splitting customer data by region, as in this example, or by team. Another very
common example is to split the input data into validated records and records that have been
rejected due to having failed a quality check (see Checking a column against a list of allowed
values in Chapter 3, Validating Data for examples of using tMap to filter invalid rows).

This recipe shows how the tMap output Expression filters are used to perform filtering of the
nature described precedingly.

Getting ready
Open the job jo_cook_ch04_0060_multipleOutputs.

How to do it...
1.	 When you open tMap you will see three identical output tables

2.	 Click the Expression filter button for the table UK to open an expression field, as
shown in the next screenshot.

3.	 Drag the input column countryOfBirth into this box.

4.	 Add .equals("UK") to the end of the expression to give the expression:
customer.countryOfBirth.equals("UK")

5.	 Your table should now look like the following:

6.	 Repeat the same for the USA table to give the expression:
customer.countryOfBirth.equals("USA")

Mapping Data

62

7.	 Click the tMapSettings button for the final table, restOfWorld, to open the table
properties.

8.	 Set Catch output reject to true, as shown in the following screenshot:

9.	 Exit tMap and run the job to see the results.

How it works…
tMap will pass an input row to the output from the top of the output table list downwards,
depending upon their settings.

tMap will only pass data to an output if:

ff It has no filter expression and is not a catch output reject

ff It has a filter expression and is not a catch output reject the condition is met

ff It is a catch output reject with a filter expression and the row has been rejected from
previous output and the condition is met

ff If it is a catch output reject with no filter expression

It is sometimes easy to think of this list as a set of if-then-else criteria.

It is recommended that lists of outputs be ordered like if-then-else to make
understanding easier. It is also recommended that multiple tMaps be used
in the scenario where many outputs are created, depending upon complex
conditions. It is not that tMap cannot handle a high level of complexity,
rather the impact of changes may be difficult to calculate if there are many
inputs, outputs, joins, and conditions.

Chapter 4

63

There's more…
In this recipe, we have multiple copies of the input being created using input criteria. It is
worth noting that the outputs do not need to be copies of each other.

It is also worth noting that if no criteria is specified for any output, then tMap will copy every
input row to every output. What's more is that each of the output can be of a different format
and have different rules for the same input row. In this instance, tMap becomes a means of
creating multiple different views of the same output data.

What is also possible is that multiple outputs can be specified with catch output reject
specified. This means that multiple views of rejected data can also be created.

Joining data using tMap
So far, we have seen how tMap can be used to transform and filter input data. But this is only
a part of the tMap functionality. The tMap component is also the main component used to
perform join logic between multiple input sources. This recipe demonstrates the basics of
using tMap to join multiple data sources.

Getting ready
Open the job jo_cook_ch04_0070_tMapJoin.

How to do it...
1.	 Right-click tFileInputDelimited. Go to Row | Main and connect it to tMap_1.

Change the name of the flow to order.

2.	 Open tMap, and you should see two input tables: customer and order.

3.	 Select the customerId field from the customer table and drag it to the
customerId Expr. key in the order table.

4.	 You will see a purple key icon and a flow showing the linked fields.

5.	 Type "Card" into the Expr. key field for orderType.

Mapping Data

64

6.	 Drag all the order fields apart from customerId to the output. Your tMap should
now look like the following screenshot:

7.	 Close tMap and run the job.

8.	 You will see that there is a single row for each customer, and many of the fields
are null.

9.	 Re-open the tMap, and click tMap settings for the input flow order.

10.	 Change Match Model to All matches and Join Model to Inner Join.

11.	 Close tMap and run the job.You will see that only the rows that have an orderType
of card have been output, but there are now multiple records per customer.

12.	 Add a new output to tMap and rename it to notMatched.

13.	 Drag all the customer fields into the new output.

14.	 Click tMap settings, and set Catch lookup inner join reject to true.

15.	 Close tMap and add another tLogRow. Select tLogRow mode of Table (print values
in cells of a table).

16.	 Join the notMatched flow from tMap to the new tLogRow and run the job.

17.	 You should now see two tables: one containing all Card transactions for customers
and another showing all customers who have no Card transactions.

How it works…
tMap allows for different join types to be defined using expressions as keys. In this example,
we used a variable from the main flow plus a constant ("Card") as our join keys.

The first execution of the job performed a left outer join, so all input records are output
and non-matched fields are set to null (or default value if they are Java primitives). In addition,
the first execution also specified to use only a unique match, thus printing out only one row
per customer.

Chapter 4

65

The second execution, however, specified that we wanted to do an inner join with all matches,
so the output contained all orders where the customer paid with a credit card.

In the second execution, we also defined a second output that caught all the rows from the
main flow that did not have any matches to the lookup.

There's more…
This recipe illustrates the main features of joining using tMap, but only joins one table to
another. It is also possible to join the same table to many others of a variety of different keys
from many lookups in a single tMap.

The next two recipes will show some examples of this.

The eagle-eyed among you may have noticed that the lookups are processed slightly earlier
than the main flow. Due to the small volumes of data in this recipe, it isn't apparent, but if you
replace the file for tFileInputDelimited_2 with chapter04_jo_0080_orderData_
large.csv, then this will become very apparent (unless you have a very fast hard disk!).

What you will see is that tMap loads the lookup data into memory tables at the start of the job
before it begins processing the main data flow.

For batch data integration jobs this is an efficient method, since it reduces the lookup time
per transaction on the main flow, however, in the recipe Using reload at each row to process
real-time/near real-time data, we will see how this method is not appropriate for small
volume, real-time or near real-time data.

Also, be aware that in order to process large lookups, you will need to ensure that you have
enough memory available and allocated to hold all the lookup data. If not, then the process
will return out of memory errors. The recipe Stopping memory errors in Chapter 12, Common
Mistakes and Other Useful Hints and Tips, describes the techniques that can help mitigate
against out of memory errors in Talend.

See Also
ff Hierarchical join using tMap in this chapter.

ff Using reload at each row to process real-time/near real-time data in this chapter.

ff Stopping memory errors in Talend in Chapter 12, Common Mistakes and Other
Useful Hints and Tips.

Mapping Data

66

Hierarchical joins using tMap
The previous recipe covered the basics of tMap joining, but tMap has another level of joining
capability, in that it can join together data in a hierarchical fashion. This simple example
shows how easily this can be achieved using tMap.

Getting ready
Open the job jo_cook_ch04_0080_hierarchicaltMapJoin.

How to do it...
1.	 Open the tMap component. You will see three input tables.

2.	 Select customerId from the customer table and drag it into Expr. key of the
customerId in the order table.

3.	 You will see that a join link, a purple key symbol has been added to the column.

4.	 Change the tMap settings for the order table to Inner Join and All Matches (see
previous recipe if you are not sure how to do this)

5.	 Now, select orderId from the order table and drag it to orderId in the
orderItem table.

6.	 Change the tMap settings for the orderItem table to Inner Join and All
Matches. Exit tMap and run the job.

7.	 You should see a printed table containing denormalized customer/order/order
item rows.

How it works…
This job works on the hierarchy that exists between customer, order, and order item. A
customer has many orders and an order has many order items.

The key for orders is customer, and the key for order items is order. Thus, to get all the order
items for a customer, it is necessary to first find the keys for all the orders, and then find all
the order items that match the order keys.

As you can see. tMap allows this relationship to be defined easily simply by dragging the
relevant parent key to the child structure.

Chapter 4

67

Using reload at each row to process
real-time / near real-time data

Prior to attempting this recipe, you will need to ensure that you have an active MySQL
database and have updated the context variables within the context MySQL to contain your
database and login details. See the recipe Setting up a database connection in Chapter 7,
Working with databases, for details on how to do this.

As we mentioned in the recipe Joining using tMap, tMap will load the join data into memory
prior to processing the main input rows. This works fine for a batch processing model, because
the overhead of loading large lookups in memory is offset against the efficiency in processing
the joins against the data held in memory.

This paradigm does not however work in a real-time situation. In a real-time process, it would
be unacceptable to wait for say 5 minutes to unload a large database table prior to processing
a single record.

This recipe shows how the tMap 'reload at each row' feature can be used to process small
volumes of real-time information in an efficient manner.

Getting ready
Open the job jo_cook_ch04_0090_prepTheDatabase and run it. Once the database has
been loaded, open the job jo_cook_ch04_0090_reloadAtEachRow.

How to do it...
Run the job. You will see that over 500,000 records are read from the order table into memory
prior to the single customer record being processed and the job will take a number of seconds
to process.

1.	 Open tMap and change the tMap option for the input order table to Reload at each
row. You will see a new header bar appear.

Mapping Data

68

2.	 Click the + button and enter generatedCustomer.customerId into the Expr.
field. Enter "generatedCustomer.customerId" (including quotes) into the
globalMap Key column. Your order table should now look as the following screenshot:

3.	 Close tMap and enter the MySQLInput component for order.

4.	 Remove the trailing double quote and add a WHERE clause to the query so that it
looks like the query shown:

5.	 Run the job again. You will see that only 84 rows have been returned from the
order table.

Chapter 4

69

How it works…
There are four key elements to making this technique work.

Loading the data into memory
The normal tMap join process is to load all the lookup data into memory once, prior to
processing the main flow data.

The reload at each row option, however, forces the lookup to reload its data many
times; once for each row that is read from the main flow. In this example, it therefore
forces tMySqlInput for the order to re-execute its query as each row from the main flow
(generatedCustomer) arrives at the tMap.

The globalMap key
The inclusion of a globalMap key value in tMap forces tMap to populate the globalMap
value for customerId with the customerId value of the generatedCustomer row. This
means that the globalMap customerId is changed every time a new customer record
arrives
at the tMap.

The WHERE clause
The addition of the WHERE clause containing the globalMap customerId in the query forces
the WHERE clause to change every time the customerId changes. Because we are using reload
at each row, this has the effect of changing the query for each record that arrives at tMap.

The result
The net effect is therefore that the query is executed for each row from the main flow and that
the result set returned from the database for a given input will only contain rows that match
on customerId.

This action therefore minimizes the number of rows to be loaded into memory, as you can see
when you execute the job. The number of rows for the order lookup is 84, even though there
are over 500,000 rows on the database.

So, this means that the load of the lookup is very small in comparison to a complete dump of
the whole table, which would happen without reload at each row being used.

Mapping Data

70

There's more…
This method will only work efficiently if the number of input rows is small, or the lookup is
massive in comparison to the main flow. This is because the number of individual reads to the
database is minimal in comparison to the amount of time taken to unload the whole table.
As the number of input rows rises, the overhead associated with processing many individual
queries will rise significantly, and will eventually overtake the time taken to process a single
query and unload the whole table.

For small lookups in this scenario, it is often more efficient to load the
whole lookup into memory, rather than process them using reload at
each row. Whether or not to load whole or reload at each row is best
determined during volume testing.

5
Using Java in Talend

Java is a hugely popular and incredibly rich programming language. Talend is a Java code
generator which makes use of many open source Java libraries, so this means that Talend
functionality can easily be extended by integrating Java code into Talend jobs.

This chapter contains recipes that show some of the techniques for making use of Java within
Talend jobs.

ff Performing one-off pieces of logic using tJava

ff Setting the context and globalMap variables using tJava

ff Adding complex logic into a flow using tJavaRow

ff Creating pseudo components using tJavaFlex

ff Creating custom functions using code routines

ff Importing JAR files to allow use of external Java classes

Introduction
For many data integration requirements, the standard Talend components provides the means
to process the data from start to end without needing to use Java code apart from in tMap.

For more complex requirements, it is often necessary to add additional Java logic to a job, and
in other cases it may be that adding custom Java code will provide a simpler or more elegant
or more efficient code than using the standard components.

Using Java in Talend

72

Performing one-off pieces of logic using
tJava

The tJava component allows one-off logic to be added to a job. Common uses of tJava
include setting global or context variables prior to the main data processing stages and
printing logging messages.

Getting ready
Open the job jo_cook_ch05_0000_tJava.

How to do it…
1.	 Open the tJava component.

2.	 Type in the following code:
System.out.println("Executing job "+jobName+" at "+TalendDate.
getDate("CCYY-MM-dd HH:mm:ss"));

3.	 Run the job. You will see that message is printed showing the job name and the
date and time of execution.

How it works…
If you examine the code, you will see that the Java code is simply added to the
generated code as is. This is why you must remember to add ; to the end of the line
to avoid compilation errors.

See also
ff Setting context variables and globalMap variables using tJava, in this chapter.

Setting the context and globalMap variables
using tJava

Although this recipe is centered on the use of tJava, it also acts as a convenient means of
illustrating how the context and globalMap variables can be directly referenced from
within the majority of Talend components.

Chapter 5

73

Getting ready
Open jo_cook_ch05_0010_tJavaContextGlobalMap, then open the context panel, and
you should see a variable named testValue.

How to do it…
1.	 Open tMap_1 and type in the following code:

System.out.println("tJava_1");
context.testValue ="testValue is now initialized";
globalMap.put("gmTestValue", "gmTestValue is now initialized");

2.	 Open tMap_2 and type in the following code:
System.out.println("tJava_2");
System.out.println("context.testValue is: "+context.testValue);
System.out.println("gmTestValue is: "+(String) globalMap.
get("gmTestValue"));

3.	 Run the job. You will see that the variables initialized in the first tJava are printed
correctly in the second.

How it works…
The context and globalMap variables are stored as globally available Java hashMaps,
meaning that they are keyed values. This enables these values to be referenced within any of
the other components, such as tMap, tFixedFlowInput, and tFileInputDelimited.

Using Java in Talend

74

There's more…
This recipe shows variables being set in a one-off fashion using tJava. It is worth noting
that the same principles apply to tJavaRow. Because tJavaRow is called for every row
processed, it is possible to create a global variable for a row that can be referenced by all
components in a flow. This can be useful when pre and post field values are required for
comparison purposes later in the flow. Storing in the globalMap variables avoids the need to
create additional schema columns.

See also
ff Managing contexts

Adding complex logic into a flow using
tJavaRow

The tJavaRow component allows Java logic to be performed for every record within a flow.

Getting ready
Open the job jo_cook_ch05_0020_tJavaRow.

How to do it…
1.	 Add the tJavaRow and tLogRow components.

2.	 Link the flows as shown in the following screenshot:

Chapter 5

75

3.	 Open the schema and you will see that there are no fields in the output. Highlight
name, dateOfBirth, and age, and click on the single arrow.

4.	 Use the + button to add new columns cleansedName (String) and rowCount
(Integer), so that the schema looks like the following:

5.	 Close the schema by pressing ok and then press the Generate code button in the
main tJavaRow screen. The generated code will be as follows:
//Code generated according to input schema and output schema
output_row.name = input_row.name;
output_row.dateOfBirth = input_row.dateOfBirth;
output_row.age = input_row.timestamp;
output_row.cleanedName = input_row.age;
output_row.rowCount = input_row.age;

6.	 Change the row output_row.age = input_row.timestamp from the code to
read output_row.age = input_row.age.

7.	 Remove the rows for output_row.cleanedName and output_row.rowCount,
and replace with the following code:
if (input_row.name.startsWith("J ")) {

 output_row.cleanedName = StringHandling.EREPLACE(input_row.
name, "J ", "James ");

}

if (input_row.name.startsWith("Jo ")) {

 output_row.cleanedName = StringHandling.EREPLACE(input_row.
name, "Jo ", "Joanne ");

}

output_row.rowCount=Numeric.sequence("s1",1,1);
output_row.rowCount=Numeric.sequence("s1",1,1);

Using Java in Talend

76

8.	 Run the job. You will see that "J " and "Jo " have been replaced, and each row
now has a rowCount value

How it works…
The tJavaRow component is much like a 1 input to 1 output tMap, in that input columns can
be ignored and new columns can be added to the output.

Once the output fields have been defined the Generate code button will create a Java
mapping for every output field. If the names are the same, then it will map correctly. If input
fields are not found or are named differently, then it will automatically map the field in the
same position in the input or the last known input field, so be careful when using this option
if you have removed fields. In some cases, it is best to propagate all fields, generate the
mappings and then remove unwanted fields and mappings.

Also, be aware that the Generate Code option will remove all code in the
window. If you have code that you wish to keep, then ensure that you copy it
into a text editor before regenerating the code.

As you can also see from the code that was added it is possible to use Talend's own functions
(StringHandling.EREPLACE, Numeric.sequence) in the Java components along with
any other normal Java syntax, like the if statement and startsWith String method.

Creating pseudo components using
tJavaFlex

The tJavaFlex component is similar to the tJavaRow component, in that it is included
into a flow. The difference between the two components is that the tJavaFlex component
has pre and post processes that are performed before and after the individual rows are
processed, so it is similar to a pre-built Talend component.

Getting ready
Open the job jo_cook_ch05_0030_tJavaFlex.

How to do it…
1.	 Open the tJavaFlex component.

2.	 In the Start Code section, enter the following:
String allNames = "";
Integer NB_LINE = 0;

Chapter 5

77

3.	 In the Main Code section enter the following:
allNames = allNames + row1.name + "|";
NB_LINE += 1;

4.	 In the End Code section, enter the following:
globalMap.put("allNames", allNames);
globalMap.put("tJavaFlex_1_NB_LINE", NB_LINE);

5.	 Open tJava and enter the following:
System.out.println("All names concatenated: "+(String) globalMap.
get("allNames"));
System.out.println("Count of rows: "+(Integer) globalMap.
get("tJavaFlex_1_NB_LINE"));

6.	 Run the job. You will see that the concatenated names and NB_LINE have both been
printed by the tJava component.

How it works…
The Start code is executed prior to any rows being processed, so it is used to initialize
the variables.

The Main code is executed for every row, so the name is added to the concatenated name
string, and number of lines is incremented.

The End code is executed after all the rows have finished processing, so the completed name
string and counters can be copied to globalMap, so that it is available to other components.

There's more…
If you examine the globalMap variables published by most of the components, you will see that
most will have a variable NB_LINE. This is because the pre-built Talend components perform a
beginning, main, and end routine like tJavaFlex, and publish a count of lines at the end.

Because tJavaFlex has the start and end procedures it makes it
ideal for complex aggregations or loading of structures such as arrays
or lists that can then be accessed downstream after they publishing to
globalMap.

Using Java in Talend

78

Creating custom functions using code
routines

Code routines enable the developer to create re-usable Java classes that can be integrated
into Talend jobs, and in particular within tMap.

In the validation chapter, there is an example of a simple code routine. This recipe is a fuller
explanation of creating and using code routines within Talend.

Getting ready
Open the job jo_cook_ch05_0040_codeRoutine.

How to do it…
1.	 In the metadata section, open the Code folder and right-click on Routines. Select

Create routine.

2.	 Name the routine regexUtilities and click on Finish. This will open a Java
package and create a new class called regexUtilities, and a test method called
helloExample.

3.	 Copy the following code immediately after the end of the helloExample method.
 /**
 * regexData: return the first instance of regex pattern in a
string.
 * Returns null if there is no text matching the pattern.
 * e.g. regexData(".*r", "world") # returns "wor"

Chapter 5

79

 *
 * {talendTypes} String
 *
 * {Category} regexUtilities
 *
 * {param} string("regex Pattern") input: The regex pattern to
find
 * {param} string("string") input: The string to search
 *
 * {example} regexData(".*r", "world") # returns "wor"
 */
 public static String regexData(String inputPattern, String
inputString) {
 java.util.regex.Pattern p = java.util.regex.Pattern.
compile(inputPattern);
 java.util.regex.Matcher m = p.matcher(inputString);
 if (m.find()) {
 return m.group(0);
 } else {
 return null;
 }
 }

4.	 Save and close the code routine.

5.	 Open tMap.

6.	 Click on expression builder button for the output field result.

7.	 Note that the category of regexUtilities is now present; click on it.

8.	 Then, click on the Function regexData. This will copy the example function call into
the Expression panel, as shown in the following screenshot:

Using Java in Talend

80

9.	 Run the job. You will see in the log output the results of the regexData calls using
the data defined in the tFixedFlowInput.

How it works…
Code routines are Java classes whose static methods are made available to all jobs in a project.

Talend uses the comments for the method to define the category and show the help
information in the expression builder.

Once defined, the new method can be used anywhere in the Talend project that allows Java
code to be entered.

Always ensure that you complete the comment block for a new method
fully and accurately. This ensures that the method is correctly categorized
and provides all the required documentation for the expression builder.

There's more…
If you view the underlying code for a tMap expression you will see that it is of the form:

<output variable> = <expression>;

This means that a tMap expression is limited to a single line of code, so more complex logic
becomes impossible.

This is why the most common use of code routines is to provide a method returning a single
value that can be used within tMap, as demonstrated within this example.

If you open the system folder under code routines, you will see the Talend
provided routines that are available. It is always worth referring to these if
you get stuck with a code routine or wish to understand fully how the talend
function works.

See also
ff Creating validation routines in Chapter 3, Validating Data.

ff I can't find my code routine in Chapter 12, Common Mistakes and Other Useful Hints
and Tips.

Chapter 5

81

Importing JAR files to allow use of external
Java classes

Occasionally, during development it is necessary (or simpler) to make use of Java classes that
aren't already included within Talend. These may be pre-existing Java code such as financial
calculations or open source libraries, which are provided by The Apache Software Foundation
(www.apache.org).

In this example, we will make use of a simple Java class ExternalValidations and its
ExternalValidateCustomerName method. This class performs the following simple
validation:

if (customerName.startsWith("J ")) {
 return customerName.replace("J ", "James ");
} else {
 if (customerName.startsWith("Jo ")) {
 return customerName.replace("Jo ", "Joanne ");
 } else {
 return customerName;
 }
}

Getting ready
Open job jo_cook_ch05_0050_externalClasses.

How to do it…
1.	 Create a code routine called externalValidation.

2.	 Right-click and select the option Edit routine Libraries.

Using Java in Talend

82

3.	 In the next dialogue, click on New.

4.	 Select the option Browse a library file, and browse to the cookbookData folder
which contains a sub-folder named externalJar. Click on talendExternalJar.
jar, then click Ok to confirm. The import dialogue should now look as the following:

5.	 Return to the job and open tJavaRow, and click on the Advanced settings tab.

6.	 Add the following code:
import talendExternalClass.ExternalValidations;

7.	 Return to the Basic tab and add the following code:
output_row.validatedName =ExternalValidations.
ExternalValidateCustomerName
 (input_row.name);

8.	 Run the job. You will see that the validations have taken place, and the customer
names have been changed.

If you get an error when running this job then it is possibly because the
new class has not been set up as a dependency automatically. Check the
Finding code routine recipe in Chapter 12, Common Mistakes and Other
Useful Hints and Tips for details on how to fix this.

Chapter 5

83

How it works…
The code routine externalValidations is a dummy routine used to attach the external
jar file and make it available to all jobs in the project.

In order to use the classes in the JAR file, it is necessary to add an import statement within
the tJavaRow so that the code knows where to find the methods.

There's more…
An alternate method of achieving this for just a single job is to use the tLibraryLoad
components at the start of the job to define the location of the external libraries and the JAR
files required.

6
Managing Context

Variables

This chapter contains exercises that illustrate some of the methods for managing context
variables within projects and jobs.

ff Creating a context group

ff Adding a context group to your job

ff Adding contexts to a context group

ff Using tContextLoad to load contexts

ff Using implicit context load to load contexts

ff Turning implicit context load on and off in a job

ff Setting the context file location in the operating system

Introduction
In this chapter, we will perform fairly simple tasks for performing basic operations on context
variables, but do not take this as a reflection of the unimportance of context variables.

The use of context variables is a fundamental requirement for creating production quality
Talend applications. Appendix B, Management of Contexts, deals with some of the
implications of the different methods of managing context variables within a project.

Managing Context Variables

86

Transportable code
For code to be of production quality, it must be transportable between environments. This
means that, when we move code from the development environment to the test environment,
it should execute properly even if we are using different file paths, file names, database
names, database user IDs, and so on.

Context variables
Context variables are parameters that Talend uses, that can be set to different values in
different environments.

Assuming that the Talend code has been built to use these parameters and they have been
set correctly for each environment, a job will execute happily using one set of resources in
development, and a completely different set of resources in test.

Common values in contexts
Another use of context variables is to define values that are commonly used within a project,
such as data inbox directory, staging area directory, and constants.

Passing command line parameters
Context variables are also used to pass parameters to a job, either via the command line
or from a calling a (parent) job. See the Deploying and Scheduling recipe of Chapter 11,
Deploying and Scheduling Talend Code for more information regarding this.

Setting context variables in the code
The ability to manipulate context variables within the code is covered in the Setting context
variables and globalMap variables using tJava recipe in Chapter 5, Using Java in Talend.

Database context variables
Creating a context group for database connections is covered in Chapter 7, Working
with Databases.

Creating a context group
A context group is a set of (usually) related context variables for use within a project. This
recipe shows how to create a new context group.

Chapter 6

87

How to do it...
The steps for creating a context group are as follows:

1.	 Open the metadata panel, and right-click on the context section.

2.	 Select the Create context group option.

3.	 Name the new group cookbookGeneral.

4.	 Click on the Next button, and you will see the main context variable panel.

5.	 Click on + to add a new variable and type in cookbookDirectory.

6.	 Set the type to Directory.

7.	 Now, click on the Values as a table tab, and click on the Default column for
cookbookDirectory. Click on the … icon.

8.	 This will open a directory navigation window, so navigate to the cookbook data
directory, and click on Finish.

How it works...
The context group is created in the metadata panel, and the individual context variables can
then be added, along with their default values. Because we chose the type as Directory,
Talend gives us the option of using a windows dialogue to simplify the mechanism for
selecting the directory we wish to use.

There’s more…
In this recipe, we have created a basic context, but there are more features that you can explore.

Context types
The context dialogue allows many different types of context variables to be defined, and in
some cases, as in this recipe, it will provide a dialogue to make definition easier.

Prompt for variable values using the tree mode
Updating values in the context group can also be done in the tree mode. This is an alternative
method that differs in one important way.

The tree mode provides an option that will prompt for a value to be displayed at runtime, by
checking the prompt box for a variable.

www.allitebooks.com

http://www.allitebooks.org

Managing Context Variables

88

The prompt will appear at runtime, as shown in the following screenshot, and is a useful
means for providing test values when developing a job:

Adding a context group to your job
A job will not automatically use a context group. This exercise shows how to add a context
group to a job.

Getting ready
Open the jo_cook_ch06_0010_addContextGroup job.

How to do it...
The steps for adding a context group to your job are as follows:

1.	 Open the context panel, and click on the context icon shown as follows:

Chapter 6

89

2.	 You will then be presented with the list of available context groups.

3.	 Select cookbookDB, and then Ok.

4.	 You will now see that the cookbookDB context variables have been added as read-
only variables into the job.

How it works…
The context dialogue within a job allows single (in job) contexts, as well as context groups, to
be added to a job.

Managing Context Variables

90

There’s more…
The preceding method shows how to add all context variables into a job. There is also an
option to add only a subset of the variables within the group, if you drill down into the context
group when selecting, demonstrated as follows:

Another method of adding the context to the job from the metadata is to
drag the context metadata icon into the Contexts panel.

Adding contexts to a context group
Talend provides a means for defining multiple different sets of values for the parameters in a
group, one for each environment (or context).

Getting ready
Open the jo_cook_ch06_0010_addContextGroup job, and open the context group
cookbookGeneral.

Chapter 6

91

How to do it...
The steps for adding contexts to a context group are as follows:

1.	 Open the context panel, and click on the context icon shown as follows:

2.	 Click on Default, click on the Edit button, and then change the name to
development.

3.	 Click on the New button, and add a context named test.

4.	 Click on the New button, and add a context named production.

5.	 Click on Ok to exit the dialogue.

6.	 Now you will see that there are now additional columns for the new contexts.

There’s more…
The additional columns will define the values of a context variable in each context, and these will
most likely contain different values, depending upon the environment illustrated as follows:

These contexts can then be selected at runtime via the shell launcher, thus ensuring that the
correct values are used in the correct environment.

Managing Context Variables

92

Using tContextLoad to load contexts
A second method for defining context variables in different environment is to store them in a
file or database external to Talend, and then load them as part of a job.

Getting ready
Open the jo_cook_ch06_0020_loadContextData job.

How to do it...
The steps for using tContextLoad to load contexts are as follows:

1.	 Open the tFileInputDelimited component and change the delimiter to, so that it
matches the format in the file.

2.	 Drag a tContextLoad component onto the canvas and link it to
tFileInputDelimited.

3.	 Open tContextLoad, and click on the option Print operations.

4.	 Unclick Disable warnings.

5.	 Run the job.

How it works...
The context file contains name/value pairs in the form of key=value, so setting the delimiter to
= means that we can identify each as columns in the Talend schema.

When we click on the print operations, it causes Talend to print out what is happening with
the context.

There’s more…
The tContextLoad does have some additional features that you may wish to use. They are
described in the following sections.

Print operations
It is usually only necessary to set print operations when debugging code, since it isn’t usually
good practice to print the values of say passwords in a log file. It is better, if you wish to log the
values, to use the tContextDump component.

Chapter 6

93

Warnings
The tContextLoad component allows different variations of warnings and error conditions to
be specified, depending upon your requirements. It is therefore possible to check for context
variables being correctly set, prior to a job running, and to fail the job if they are not.

However, you have to take care with this approach, because job-specific
context variables can cause errors and warnings if you do not set them in
the file, despite the fact that they may not need a value to be set at the
start of the job.

Context file location
The downside of this method as shown is that the context file must reside in the same
location on every machine. To get around this limitation, see the later Setting the context file
location in the operating system recipe.

Using implicit context loading to load
contexts

This method is very similar to the one discussed previously, that the context data is
external to Talend, but differs in the fact that the context data is loaded automatically for
every job in a project.

Getting ready
Open the jo_cook_ch06_0030_implicitContextLoad job.

How to do it...
The steps for using implicit context load to load contexts are as follows:

1.	 Click on File then Edit project properties.

2.	 From the dialogue box, expand Job Settings and select the option for Implicit context
load.

3.	 Check the option for Implicit tContextLoad.

4.	 Check the option From File.

5.	 Set the From File name to C:/cookbookData/chapter6/chapter6_jo_0020_
cookbookContextFile.txt.

6.	 Set the Field Separator to =.

Managing Context Variables

94

7.	 Click on the Print operations box.

8.	 Click on Ok to finish.

9.	 Run the job, and you will see the context data being loaded and the warnings
being produced.

How it works...
The implicit context load functionality reproduces the code in the previous exercise for all jobs
in the project.

As with the previous exercise, the context file, the delimiter, and the actions to be taken while
loading the contexts are all specified, just that with this method, it is global for every job.

There’s more…
This method suffers from the same shortcomings as the method in the previous exercise, but
is easier to maintain and implement, because the values are set centrally.

Remember to set the project properties back to normal once you have
completed this exercise, unless you plan to perform the next one.

Turning implicit context loading on and off
in a job

Implicit context load can sometimes be annoying, especially when you have many variables,
and you are running test jobs. It can sometimes be hard to see the wood from the trees. This
exercise show how you can turn off implicit context load if you wish to do so.

Getting ready
Open the jo_cook_ch06_0040_turnOffImplicit job.

How to do it...
The steps for turning implicit context load on and off in a job are as follows:

1.	 Open the Job tab.

2.	 Select the Extra tab.

3.	 Uncheck Use Project Settings.

Chapter 6

95

4.	 Uncheck Implicit tContextLoad. Your Job tab should look like the one shown as
follows:

5.	 Run the job, and you will see that the initial context load is no longer performed.

How it works...
Talend allows the option to perform an implicit tContextLoad to be turned off for individual
jobs within a project.

Setting the context file location in the
operating system

The initial context load method and the tContextLoad methods do suffer from having to use
a predetermined file location. This exercise shows how it is possible to overcome this via the
use of system variables.

Note that this exercise is demonstrated on Microsoft Windows 7; however, it is possible to set
and use global environment variables in Talend in any version of Windows, Linux, or Mac OS.

Getting ready
Copy the systemValueContext.txt file from the cookbook directory/chapter6 to
C:\TalendContextDirectory.

How to do it...
The steps for setting the context file location in the operating system are as follows:

1.	 Run the job, and you will notice that the value of the context variable is set to In
the job.

Managing Context Variables

96

2.	 Go to Start | Control Panel | System and Security.

3.	 Select System, then click the right-hand side Advanced system settings.

4.	 Click on the Environment Variables button.

5.	 Under the System variables, click on New.

6.	 Enter Variable name as TALEND_CONTEXT_DIRECTORY.

7.	 Enter value as C:\TalendContextDirectory\.

Chapter 6

97

8.	 Click on OK to save.

9.	 Restart Talend Open Studio.

10.	 Open the jo_cook_ch06_0050_systemVariableContext job.

11.	 Open tContextLoad and change the file location to System.getenv(“TALEND_
CONTEXT_DIRECTORY”)+ “systemValueContext.txt”.

12.	 Run the job, and you will see that the context variable is now displaying context file in
Talend directory.

How it works…
As with most fields in Talend, the text can be replaced with a variable or snippet of Java code,
and tContextLoad is no different.

By replacing the cookbook context variable with a command to read the system variable,
we are able to redirect the component to pick up the data from a directory that can be
altered at runtime.

There’s more…
There are a couple of other things that we will need to consider when using this method. They
are discussed next.

Variable not present
Note that we had to stop and start Talend Studio to enable the new variable to be picked up.
This is because the variable is included as a part of the Eclipse build, so was not recognized
until we restarted the job.

Implicit context load
This method can also be used for the implicit context load method, and is recommended over
setting a fixed file location.

7
Working with

Databases

This chapter contains recipes that show some of the techniques used to read and write
data to databases. It also contains recipes that show techniques to manage tables within a
database. In this chapter we will learn:

ff Setting up a database connection

ff Importing the table schemas

ff Reading from database tables

ff Using context and globalMap variables in SQL queries

ff Printing your input query

ff Writing to a database table

ff Printing your output query

ff Managing database sessions

ff Passing a session to a child job

ff Selecting different fields for insert, update, and delete

ff Capturing individual rejects and errors

ff Database and table management

ff Managing surrogate keys for parent and child tables

ff Rewritable lookups using an in-process database

Working with Databases

100

Introduction
Many applications and organizations rely on databases to store their corporate data. These
can be application databases to support operational systems, data warehouses, data marts,
or ODS (Operational Data Store), and any data integration developer must understand how to
manipulate the database objects and the data held within the database.

Talend usually connects to a database using JDBC, so it can connect to any datasource for
which there is a JDBC driver, which means that Talend can connect to all of the most popular
databases and a host of less well-known ones too.

In order to perform the recipes in this chapter, you need to ensure that you have a database
installed. This book uses MySQL, a popular open source database that is freely downloadable.
In addition, some of the recipes will make use of the HSQL database driver as a means of
creating transient in-memory tables.

You will also need a general working knowledge of databases and have a reasonable
understanding of SQL.

It's worth noting that there are many flavors of databases and while all act generally in the same
manner, there are nuances and extensions that may exist in say, Oracle, but not in MySQL.

In this chapter we shall attempt to cover functionality common to the majority of databases
supported within Talend, but there may be some functionality not supported by your database
of choice (for example, not all of the supported databases have a slowly changing dimension
or SCD component).

Prior to attempting any of the exercises in this chapter, you will need to
open a MySQL window and execute the command: CREATE SCHEMA
COOKBOOKDB. You then need to perform the following recipe, Setting
up a database connection, and then run job jo_cook_ch07_
setUpDBForExercises, to create the tables and data required for
the rest of the exercises.

Setting up a database connection
This recipe shows how a database connection can be easily created using the Talend
supplied wizard. Note that this recipe and the next use the connection cookbookDB_myCopy.
This version of the database metadata is used for demonstration only. All the other jobs in this
chapter use the connection cookbookDB unless explicitly stated otherwise.

Chapter 7

101

Getting ready
Ensure that MySQL is running and you have executed the command mentioned in the
Introduction section.

How to do it...
The steps to be performed are as follows:

1.	 Navigate to Metadata | Db Connections. Right-click on it and select Create
connection.

2.	 Set the name as cookbookDB_myCopy and click on Next.

3.	 Select the database as MySQL from the drop-down list and then enter the
details as shown in the following screenshot: Note that I have set up a talend
login on MySQL, so I use this. You will need to set up the information to match your
database credentials.

Working with Databases

102

4.	 Click on the Check button and you should see the message: cookbookDB_myCopy
connection successful.

5.	 Next, click on the button Export as context.

6.	 The context dialogue will appear.

7.	 Change the name to CookbookDB_myCopy, click on Next then Finish.

8.	 Click on Finish, then Yes to the modifications, then Ok to complete the setup.

Now that you have the required parameters for connection, you will need
to update the context information in the databases cookbookDB and
cookbookDBCompleted to ensure that the recipes in this section will
complete successfully. You can do this by amending the details in the
contexts for both connections.

Once you have changed the context variables. Go back to the metadata and
check connections for both.

How it works...
This wizard allows you to easily build up the JDBC connection string for your MySQL database
and check that you can connect to it.

The database information is then exported to a context of the same name.

There's more…
Database connections are very important within Talend and can be a great time-saver.

Using the connection
If you drag the connection to an open job, you will be presented with a list of options to create
components that are pre-populated with the job information.

If, however, you decide to use a component from the palette, then the database information
can be populated in the component by dragging the connection and dropping it on the
component. This should work for most of the components, but for those where it doesn't, for
example, tCreateTable, you need to open the component, change the Property Type to
repository, and then select the connection.

Always create database connections
While you can work with all the database components without using a metadata connection, it
is highly recommended that you set one up for every database you use. The short time taken
to do this is easily recovered later on.

Chapter 7

103

Connection names
As with all Talend artifacts, careful naming can make life easier in the long term, so do check
to see if you have naming standards regarding connections already defined.

If not, then it is recommended that database connections be named exactly the same as
the database/schema (including case) for easy identification. If you are using schema within
database then include both, separated by underscore, for example, FINANCE_SALES.

Context
You will notice that immediately after checking the connection, we exported the settings
to a context. This is a good practice and worth doing immediately after the connection has
been tested and is working, since it will allow the database settings to be defined as context
parameters; a must when the code is promoted between environments.

Importing the table schemas
Once we have the connection set up, it is very easy to grab table metadata from the database
for use in our jobs. The following example shows how simple this is.

Getting ready
If you have set up the database correctly, then you should be able to see three tables in the
database; customer, order, and order_item.

How to do it…
The steps to be performed are as follows:

1.	 Right-click on the cookbookDB_myCopy database connection and select Retrieve
Schema.

2.	 This opens up a dialogue that will enable you to define filters. We do not need to filter,
so click on Next.

3.	 View the list of tables in the cookbookDB database by clicking on >. This dialogue
also enables us to filter the tables that we are interested in.

4.	 Since we want all the tables, click on Select All. You will see that Talend generates
the schemas.

5.	 Once all the selected tables have been generated successfully, click on Next.

6.	 You can now examine and make changes to each of the schemas by clicking on the
table in the left-hand side panel.

7.	 We do not want to make any changes, so click on Finish.

Working with Databases

104

8.	 In the cookbookDB_myCopy metadata, you will now see that the tables have been
added to the Table schemas folder as shown in the following screenshot:

How it works...
Talend uses the connection information to gather schema and table information from
the database for presenting to the wizard. When we selected the tables, Talend used the
information to create Talend schemas for use in our jobs.

There's more…
As with database connections, schemas, when dragged onto the canvas, will provide us a host
of options as to how we wish to use the schema; for example, as an input table or output table.

It is quicker and easier to work with schemas via the metadata panel
than to try to hand-crank them from the palette, so do get into the habit
of using the metadata panel for data sources and targets. It will save
you time.

Reading from database tables
Now that we have the Talend schemas available, we can start to use them to access the data
in the database.

Chapter 7

105

Getting ready
Create a job jo_cook_ch07_0010_readTables.

How to do it…
The default mode of reading a table in Talend is to read all the rows and columns of a table:

1.	 Drag the customer table from the left-hand side panel. This will open up a list
of options.

2.	 Select tMysqlInput.

3.	 Add a tLogRow component and create a flow between tMysqlInput and tLogRow.
Change the Mode of tLogRow to table.

4.	 Run the job and you will see that the complete table has been read.

Selected rows and columns
In many cases we do not want the whole table, so it is more efficient to filter the data in the
database via a query:

1.	 Open tMysqlInput and change the query to:
"

SELECT

 `customer`.`name`,

 `customer`.`countryOfResidence`

FROM `customer`

WHERE `customer`.`countryOfResidence` = 'USA'

"

2.	 Open the schema, change the type to built-in, and remove the customerId field.

3.	 Click on the guess schema button to remove the customerId field. This will save
you from making the change manually.

4.	 Run the job and you will see that the rows and columns have been filtered to match
the query.

Working with Databases

106

Multiple tables and complex queries
Sometimes it is easier or more efficient to let the database do some of the heavy lifting with
regards to the data prior to processing:

1.	 Open tMysqlInput and change the query to:
"

SELECT

 c.name,

 SUM(o.orderTotal)

FROM customer c

INNER JOIN `order` o ON c.customerId = o.customerId

GROUP BY c.name

HAVING SUM(o.orderTotal) > 50

"

2.	 Click on the guess schema button to refresh the built-in schema.

3.	 Run the job and you will see the list of customers that have total orders over 50.

How it works…
Talend will execute the SQL query defined in the component and will allocate the fields in the
order they occur in the schema.

Thus, we can develop queries that span multiple tables within a database and we can make use
of the rich functionality of SQL to create the result set that we need for downstream processing.

There's more…
There are some additional things worth considering when using Talend with databases.

Efficiency versus readability
This book is about Talend, which is a visual tool. This therefore makes it simpler to understand
what the code is doing just by viewing the job in the studio.

The SQL in the input component, however, hides many of the true input sources from the
viewer, as we could see in the preceding complex example.

Thus, we are faced with an issue of efficiency versus transparency.

In the main, efficiency should win. Databases are designed to perform joins internally very
efficiently, so do make use of this.

Chapter 7

107

On the flip side, however, do not be tempted to create massive and super complex queries
unless it is absolutely unavoidable. Breaking down a complex problem into smaller and
simpler chunks aids understanding and maintainability.

SQL string
You may have noticed that tMysqlInput requires the SQL to be defined as a string and that
the SQL defined previously is formatted like:

"
…… SQL in here
"

This is deliberate and a small time-saver. It means that a query can easily and simply be cut
and pasted from and to a database client (such as, MySQL Workbench and TOAD) without
having to remember to add the quotes or remove them.

It's a small detail, but it does help.

SQL style
You may have also noticed that the SQL generated by Talend is as per the correct standards
for the database and is thus a little more long-winded than the SQL that most developers
would write. For instance, if the database connection has a database and schema defined,
then you do not need to include the schema name in the SQL.

In addition, you do not need to include the ` characters around every object unless the
database absolutely requires it.

Feel free to change the SQL to be more readable, add comments (/*……*/
type only) and shorten it, but be aware that unless you save the query,
it will be lost should you ever decide to replace the component from
metadata or regenerate it from the schema.

Using context and globalMap variables in
SQL queries

It is possible to use parameters passed or created in a job to drive the results of a SQL query.
This short recipe shows how.

Getting ready
Open the job jo_cook_ch07_0020_contextInQuery, which is a copy of the job from the
previous recipe.

Working with Databases

108

How to do it…
The steps to be performed are as follows:

1.	 Open the tMysqlInput component.
2.	 Change the final line to HAVING SUM(o.`orderTotal`) > "+context.

minOrderValue.
3.	 Run the job and you will be prompted for a value.
4.	 Enter 10 and click on Ok.
5.	 You should see that the result set contains orders where the sum of the lines is > 10.

How it works…
The SQL statement used by tMysqlInput is held in a string, so can be manipulated just
as any other string in Java. Thus, we can alter the value of the string using normal Java
conventions; in this case a concatenate (+).

The statement is thus translated at runtime and the value of the context substituted into the
SQL query, which returns the customized resultset.

There's more…
Following are some additional points to be noted regarding the use of parameterized queries.

The globalMap variables
globalMap variables can be used in exactly the same way as the context variable.

Developing the query
In most cases, it is better to test a query using fixed values in the database client and then
substitute these for variables once the query has been proven.

Following are some other notes on developing queries with parameters:

ff Be careful of spacing. If the query needs a space in place between items, then the
space needs to exist in the query.

ff String values need to be quoted in the query for example, the code where
name = 'Fred', would be parameterized as where name = '"+context.
selectedName+"'".

ff As usual, make small changes then test, especially with SQL strings. In fact, it is wise
to make changes to SQL that use parameters in isolation, since missed quotation
marks will often result in a large number of compile-time errors.

Chapter 7

109

Reloading at each row
This technique is absolutely essential for the reload at each row processing used in realtime
scenarios that is described in detail in Chapter 4, Mapping Data.

Printing your input query
If your result set isn't as expected and you are struggling to understand why, then it is really
useful to be able to see the query that was executed to give you the result. This recipe shows
how this can be done.

Getting ready
Open the job jo_cook_ch07_0030_printInputQuery, which is a copy of the job from the
previous recipe.

How to do it…
The steps to be performed are as follows:

1.	 Add a tJava component.

2.	 Add OnSubjobOk from tMysqlInput to tJava.

3.	 Open tJava and add the following line:
System.out.println("\nExecuted query:
 \n"+((String)globalMap.get("tMysqlInput_1_QUERY")));

4.	 Run the job and you will see the query as it was sent to the database.

How it works…
As we have seen in other recipes, many of the Talend components will drop information to
globalMap, for use by downstream components/subjobs.

In the case of tMysqlInput, one of the values written to globalMap is the query that was
used to produce the result set, which is what we printed in the tJava component.

There's more…
Knowing what query was actually used in a database component is the key to debugging
database related jobs, so this technique is invaluable.

It becomes particularly useful, as in this example, when parts of the query are parameterized,
because you can see the fully completed query with the parameters inserted.

Working with Databases

110

Writing to a database table
Writing to tables using Talend can seem very simple, but in fact is a very big topic, since
different databases have multiple modes of writing to tables. In this simple recipe, we'll
perform a basic write of data to a table as a basis for a much deeper conversation regarding
this very important database requirement.

Getting ready
Open the job jo_cook_ch07_0040_writingTable.

How to do it…
The steps to be performed are as follows:

1.	 Open the cookbookDB connection and drag the schema for the table customer to
the canvas.

2.	 Select the Component tMysqlOutput.

3.	 Open tMysqlOutput and change Table to customerWriteTest.

4.	 Connect it to tFileInputDelimited.

5.	 Run the job and you will get the message Table'cookbookdb.customer_write_test'
doesn't exist.

6.	 Open tMysqlOutput and change Action on table to Create table if not exists.

7.	 Run the job again and you will see that the table customer_write_test has been
created.

8.	 Run the job again and you will see that the job fails with the message Duplicate entry
'1' for key 'PRIMARY'.

9.	 Open tMysqlOutput and change Action on data to Insert or update.

10.	 Open tFileInputDelimited and change the input file name to chapter07_
jo_0040_customerData_update.csv.

11.	 Run the job again and you will see that the records with primary keys 1 and 2, now
have updated countryOfResidence.

12.	 Open tMysqlOutput and change Action on data to Delete.

13.	 Open tFileInputDelimited and change the input file name to chapter07_
jo_0040_customerData_delete.csv.

14.	 Run the job again and you will see that the records with primary keys 5 and 8 have
been deleted.

Chapter 7

111

How it works…
Dragging the metadata for the table allows us to quickly set up an output component for the
table. When we first execute the job, the table does not exist, so it failed. Changing Action on
Table, allowed us to create the table automatically, so the second execution inserted the data.

When we tried to write to the table again, the job failed because the record we were trying to
write to was already present. Since we wanted to do an update, changing Action on Data to
Insert or Update allowed us to successfully update a couple of the records.

Finally, we have seen that using Action on data set to Delete can allow us to delete records
from a table.

There's more…
As you have seen, the tMysqlOutput component is very powerful and flexible and we have
only touched on the basic functions of this component. The following sections contain some
additional notes regarding its use.

Creating tables
In most organizations, responsibility for defining and creating database tables will rest with a
database administrator (DBA) or the data analysts. The exception is usually when temporary
tables are required. Usually these are created and deleted by the developer and in Talend this
can be achieved using the tMysqlOutput component.

By changing the value of Action on table, it is possible to create tables from the Talend job.

In order for the tMysqlOutput component to create a table,
it must know the primary keys and the column lengths, so these
must be defined in the schema. Failure to define these will lead to
runtime errors.

Update and delete keys
Always ensure that when you are updating or deleting rows from a table, the fields that you
wish to use as keys are defined in the schema or in the field options as keys.

Batches
Many of the database output components enable records to be processed in batches (see the
advanced tab for tMysqlOutput) and this is often the default method for the component.
MySQL has a function called extended insert to perform batch inserts and other databases
have other methods.

Working with Databases

112

You should, however, be aware of the fact that when you are updating
and committing using batches, if one record fails, then the whole batch
is rejected.

It is therefore important to ensure that processes are in place for identifying
batches of records and for fixing rejected batches when an error occurs.

Thus, it is important when designing and building your job that you decide on a strategy with
respect to batching of writes before building, since the write strategy can and often will result
in a very different code.

Bulk loading
Most databases provide a bulk loading facility to enable rapid insertion of data into the
database. Talend does support bulk loading facilities for many databases by wrapping a
component around the native bulk loaders supplied by the database manufacturer. This
means that the options for bulk loading differ between the Talend components across the
different database bulk load components.

It is worth noting though, that only some of the databases and some of the Talend bulk loader
components will provide a reject file option. An example is Oracle's bad file option, where
rejected records can be routed to a named file.

Most databases will have some documented method for reject handling when using bulk
insertion; however, it will usually differ between databases, so is not covered here.

Bulk loading to temp table
If you cannot route bulk error data to a reject file, or capture some file reject information,
then it is worth considering inserting to an empty temporary table, where errors are unlikely.
After checking row counts, you can then merge the temporary table into the main table. Even
though there is the overhead of multiple stages, it will often be quicker than non-bulk updates
when dealing with large number of inserts.

Printing your output query
In one of the previous recipes, we saw how we can print the input and select query for
debugging. This recipe shows how this can be achieved for an update, delete, or insert, which
are all functions available through tMysqlOutput.

Getting ready
Open the job jo_cook_ch07_0050_printOutputSQL, which is a copy of the job from the
previous recipe.

Chapter 7

113

How to do it…
The steps to be performed are as follows:

1.	 Add tJavaRow and link it to tMysqlOutput.

2.	 Add the following code:
System.out.println(((String)globalMap.get("tMysqlOutput_1_
QUERY")));

3.	 Run the job. You will see that the output is all null.

4.	 Open the tMysqlOutput component and click on the Advanced settings tab.

5.	 Click the field Enable debug mode as shown in the following screenshot:

6.	 Run the job and you will see the individual SQL statements that were executed.

How it works…
Before using a tMysqlOutput component, you must first set the Mode to Debug in the
Advanced tab for the component. This will allow you to capture the query for every row written
to the table.

There's more…
Debug mode is expensive; every row written to the database will have the SQL statement
returned to the job, which is why the feature is initially turned off. So you should ensure that
when you no longer need to debug it, you turn it off.

Working with Databases

114

Managing database sessions
Database sessions allow the developer to control how and when the data is committed to a
database. This recipe shows how this is achieved in Talend.

Getting ready
Open the job jo_cook_ch07_0060_databaseSession. On inspection, you will see that the
job has been set up to commit after each record has been written.

How to do it…
The steps to be performed are as follows:

1.	 Run the job. You will see that it is very slowly adding the records to the database.

2.	 Kill the job. If you inspect the database table testSession, you will see that the
records have been added to the database.

3.	 Drag tMysqlConnection from the metadata panel and tMysqlCommit from
the palette (note that this isn't available from the Repository panel) and wire up as
shown in the following screenshot:

4.	 Open tMysqlOutput and tick the option for Use an existing connection. You will
see that all the connection information is now hidden.

5.	 Run the job and Kill it before all ten records have been processed. If you examine the
table you will see that it has no data in it.

6.	 Run the job and allow it to complete. The data has now been written to the table.

Chapter 7

115

How it works…
The tMysqlConnection component establishes a connection and begins a session. When
you select Use an existing connection in an output component, it adds the component to
the session, thus ensuring that the records written require an explicit commit. The commit
component will commit the writes to the database and close the session.

Executions
The first execution of the job shows how each record is committed as an atomic transaction.

The second execution shows that records output without a commit will not be added to the
database when attached to a connection.

The final execution shows that all the records are committed as a single transaction.

There's more…
When to use sessions and when not to use them are defined by requirements, so it is good to
confirm the commit strategy with the process designer during development.

Multiple outputs
Multiple output components can be added to a session in order for a transaction to include
multiple tables. For example, we may wish to abort the writing of customer and order if the
write for an order item fails.

By ensuring that all three output tables use the same connection, we ensure that they
are either committed all together as a single transaction or none are written if any other
dependent rows fail.

Don't forget the commit
A common beginner's error is to assume that the connection simply shortcuts the need for
manually setting up a component, which is true, but it also begins a database session. So, if
you do not add a commit component, you will not get any data written to the database.

Committing but not closing
The commit component is automatically set to close a session. If you wish to commit but keep
a session open, then the tMysqlCommit component has an option to enable the session to
be kept open after the commit.

Working with Databases

116

Passing a session to a child job
Following on from the previous task, this recipe shows how a common connection can be
passed from a parent job to a child job.

Getting ready
Open the job jo_cook_ch07_0070_databaseSessionParent, which is the same as the
completed version from the previous recipe, but with the main process replaced with a child
job. On inspection you should see that the child job has a connection set up and it is the same
connection as the parent job.

How to do it…
The steps to be performed are as follows:

1.	 Run the job. If you inspect the database table testSessionChild, you will see that
no records have been added to the database.

2.	 Open tMysqlConnection in the parent job.

3.	 Tick the box Use or register a shared DB Connection, and set the Shared DB
Connection Name to "cookbook", as shown in the following screenshot:

4.	 Repeat the same for the connection in the child job.

5.	 Run the job. When you now inspect the database table testSessionChild, you will
see that the records have been added to the database.

How it works…
The tMysqlConnection component establishes a connection and begins a session in the
parent job, as does tMysqlConnection in the child job. The problem in this scenario is
that they both create individual sessions, so that when we run the parent, no records are
committed to the database despite records being written by the child (we can see this in the
console output).

Chapter 7

117

When we define a shared connection in the parent of "cookbook", the session information
then becomes available as a session in the child if we choose to use it, and in this example
we do so by using the shared connection registered by the parent.

So the connection for the parent and child are now using the same session and when the
commit is executed, the records added by the child are committed.

Selecting different fields and keys for insert,
update, and delete

Many applications will write to/delete from the same table in many different ways, using
different fields as keys and often updating different fields at different times. This recipe shows
how this can be achieved without having to create new schemas each time.

Getting ready
Open the job jo_cook_ch07_0080_fieldSelection.

How to do it…
The steps to be performed are as follows:

1.	 Open the tMysqlOutput component and change the field Action on data from
Insert to Insert or update.

2.	 Now click on the Advanced settings tab.

3.	 Tick the box Use field options to reveal the Field Options panel. You should see that
all the fields are set as Insertable and Updatable.

4.	 Uncheck createdDate and createdBy in the column Updatable.

5.	 Uncheck updatedDate and updatedBy in the column Insertable.

6.	 Finally check the Update Key column for the column id. Your Field options should
now look as shown in the following screenshot:

Working with Databases

118

7.	 Run the job and inspect the table. You will see that the record has been created and
that the updatedDate and updatedBy fields are blank.

8.	 Open tFixedFlowInput, and remove the values for insertedDate and insertedBy.

9.	 Add a value to updatedDate of TalendDate.parseDate("yyyy-MM-
dd","2012-05-22").

10.	 Add a value of updatedBy of "ZZ".

11.	 Change the customerName value to "testCustomerNewName".

12.	 Run the job and inspect the table. You will see that the name has been changed and
the updatedDate and updatedBy fields have been written.

How it works…
First, we set the insert method to Insert or update. This allows us to write to new and existing
records using the same component.

The first execution is an insert, so that the createdDate and createdBy columns are
populated for the record in the table and the updatedDate and updatedBy columns are null.

Any subsequent write to this table for the given key is an update, so this will leave the
createdDate and createdDate fields as they were set when first inserted and now populates
the updatedDate and updatedBy columns and the new value of customerName.

There's more...
This is a great method for ensuring that pre-defined schemas are used within the jobs, thus
encouraging re-usability and traceability, and also allows us to update rows using a different
set of key values depending upon the data we have at hand.

Updating
Any key may be used to perform an update, not just the primary key for the table, since Talend
will create a SQL WHERE clause under the covers. You simply need to select the fields that you
wish to use as the key in the column, Update key within the Field options section.

Deleting
You should also notice that there is a column in the list of fields for defining the deletion key.
The same method applies to deleting rows as for update; however, the column Deletion key
should be used instead in the Advanced settings tab and the Action on data set to Delete in
the Basic settings.

Chapter 7

119

Capturing individual rejects and errors
Many database applications require a log of rejects and errors to be kept to enable erroneous
records to be identified, so that manual repairs can take place. This recipe shows how to
capture errors for individual rows using the reject row facility.

Getting ready
Open the job jo_cook_ch07_0090_rejectsAndErrors.

How to do it…
The steps to be performed are as follows:

1.	 Copy the customer table from metadata and create a tMysqlOutput component.

2.	 Change the Table to "customer_reject_test", and change Action on table to
Drop table if exists and create.

3.	 Right-click the tMysqlOutput component and you will see that the only Row option
is Main.

4.	 Run the job. You will see that there are errors in the console and that the table
is empty.

5.	 Open tMysqlOutput, and click on Advanced settings.

6.	 Uncheck Extend Insert.

7.	 Right-click on the tMysqlOutput component and you will now see a flow
labeled Rejects.

8.	 Send this flow to a tLogRow component which has Mode set to Vertical.

9.	 Run the job. You will now see a reject row printed in the console with a duplicate
key error.

10.	 You should also see that, apart from the reject row, the rest of the input rows have
been written to the database.

How it works…
In its default mode, tMysqlOutput is inserting in bulk mode known as extended insert. This
allows many rows to be written as a single SQL statement.

Our data contains a problem row and this means that when we tried to insert this row it is
rejected along with all of the rows in the same group (see later in this section for additional
details on this).

Working with Databases

120

When batch insert methods are turned off, the tMysqlOutput component will allow a Reject
flow to be created. Like other Reject flows in Talend it contains a copy of the input record plus
a reason for rejection.

Thus, when we first examined the row output from tMysqlOutput, we could only see the
Main row. After turning off the Extend Insert option, we were then allowed to connect a
rejects flow.

With the bulk insert option turned off, we can now reject individual rows, so the second
execution of the job completes successfully, the valid records are written to the table and the
rejects are captured and printed in the console.

There's more…
There are some more points which we will cover in this recipe.

Die on error
In addition to having any bulk insert methods deactivated, the option to Die on error must
also be deactivated in order for rejects to be captured using this method.

Efficiency
The ability to reject rows without killing the job is incredibly useful and does make for simpler
code and error management, but does come at a cost; namely the rows must be inserted one
at a time.

Inserting rows one at a time is nowhere near as efficient as using bulk insertion methods or by
specifying block sizes, so you may find that for some databases there is a trade-off between
loading speeds and error reporting and management.

Error management
Having individual rows being rejected makes fixing a problem much simpler, since we have a
one-to-one match between the error for a single reject row.

In contrast, the use of batch insert methods, such as the MySQL extended insert method will
return one error, but reject a whole batch of rows, both good and bad.

So this gives us slightly more of a headache, as when one row fails, the whole batch is
rejected, giving us a situation of having good and bad records in a batch of rejects, which in
turn forces us to create more complex methods of fixing than for a single reject.

Chapter 7

121

Database and table management
This simple recipe shows how to execute database management and table related commands.

Getting ready
Create a new job jo_cook_ch07_0100_tableManagement.

How to do it…
The steps to be performed are as follows:

1.	 Drag the cookbookDB connection onto the canvas and select the component
tMysqlRow.

2.	 In the Query area add the following code:
"
CREATE TABLE `test_mysqlrow` (
 `id` int(11) NOT NULL,
 `data` varchar(45) DEFAULT NULL,
 PRIMARY KEY (`id`)
)
"

3.	 Run the job and you will see that the table testMysqlRow has been created.

How it works…
The tMysqlRow component is the database equivalent of both tJava and tJavaRow, it can
be used within a flow like tJavaRow or standalone like tJava.

That said, the tMysqlRow component is most commonly used standalone, like tJava, as in
this case, where we create a table.

There's more…
This simple example shows a single, isolated use of tMysqlRow. On most occasions it is
used prior to processing to create temporary tables or to drop constraints or indexes prior
to bulk loading, and also after processing to remove temporary tables and restore constraints
or indexes.

Working with Databases

122

tMysqlRow can also be used on a row-by-row basis to perform say
inserts, but this is usually simpler to do using tMySQLOutput, as
demonstrated in the previous examples.

Managing surrogate keys for parent and
child tables

Many application databases will use surrogate keys as a means of uniquely identifying rows
in a table. As a result of this, it is often necessary to capture the surrogate key for the record
after writing a record, so that any associated child elements will be able to reference the
parent's surrogate as a foreign key. This recipe shows one method of creating surrogate keys
in a relation and later discusses few more methods.

Many aspects of this job should be familiar, especially if you have completed the previous
recipes in this chapter, so only a few key points have been highlighted.

Getting ready
Open the job jo_cook_ch07_0110_surrogateKeys.

How to do it…
The steps to be performed are as follows:

1.	 Open the tMysqlInput component labeled globalCustomer, and add the
following query:
"
SELECT COALESCE(MAX(customerId),0) FROM globalCustomer
"

2.	 Open tJavaRow_1, and add the following code:
globalMap.put("maxCustomerId",input_row.maxCustomerId);
System.out.println("Max customer id = " +
 globalMap.get("maxCustomerId"));

3.	 Open tMap_1, and add the following code into the Expression field for customerId:
Numeric.sequence("customer",((Integer)

 globalMap.get("maxCustomerId"))+1,1)

4.	 Open tMap_2, and add the customerURN and source as join keys for the
globalCustomer lookup.

Chapter 7

123

5.	 Add the following code into the Expression field for the orderId:
Numeric.sequence("order",((Integer)
 globalMap.get("maxOrderId"))+1,1)

6.	 tMap_2 should now look like the following screenshot:

7.	 Run the job. You will see that the customer and order records have been added, the
surrogate keys have been generated correctly, and foreign key references between
customer and order are correct.

How it works…
The unique keys are created through the following two stages:

ff The first stage is performed in tMysqlInput, and that is to capture the maximum
value for the key in the customer3NF and order3NF table. These values are then
written to the globalMap variables for later use.

ff Now that we know the highest key value in the customer3NF table, the second
stage is to create a sequence that starts at the maximum value plus one and use the
result of the sequence as the surrogate key for each input in the customer row.

We then write the customer data to the customer3NF table, then read the order data and in
tMap, join to the customer table on the natural key(customerURN and source), so that we
can get the customer surrogate for use as the foreign key for the order data.

In tMap, we also generate the order surrogate and then write the completed order row to
 the database.

Working with Databases

124

There's more...
The method shown is very efficient for batch processing or data migrations where we can
blitz a table at a time. There is one note of caution, we need to be certain that no other job or
process is writing to the same table using the same method at the same time. If we cannot be
certain then we should use an alternative method.

Added efficiency using hashMap key table
This method can be made more efficient by not re-reading the globalCustomer table.
Provided you have enough memory, it is better to copy the surrogate key (generated) and
natural keys (customerURN and source) into a hashMap. This hashMap can then be used
as a lookup, avoiding the need to reload the customer table in its entirety from the database,
instead of simply reading data already stored in memory.

Ranges
A slight variation in the preceding method is to earmark a range of values prior to writing. This
can be achieved by writing a temporary marker record into the table with a key of the current
maximum value plus the number of records to be written plus one (or a given range plus one).
This means that a second process will start its load at the top of the range, thus avoiding any
overlap. Remember, though, to remove the marker record at the end of the writes for the range.

Sequences
Sequences are database objects that will return a unique value every time they are read. To
generate surrogate keys, the process simply adds a lookup to the main flow that will select the
next sequence value for the table and use the returned lookup.

Note that the lookup must be made to reload at each row to ensure each row
gets a value.

This method is good for both real-time and batch updates, however, not all database versions
support sequences.

It is slightly less efficient than the Talend generated sequence method, but this method does
have the advantage of being usable by many processes at the same time. It is therefore the
best method to use in real-time/web service-based environment.

Auto increment keys
Some databases will allow fields that will automatically generate a new one-up number
whenever a record is written to the table. If the key field is set as auto increment then we
do not need to generate a key, we simply need to write the record to a table and the database
will do the rest.

Chapter 7

125

This method, however, does have a downside in that we need to re-read the table using the
natural key to find the database created surrogate.

The LastInsertId component
A slightly more efficient alternative to re-reading using the natural key is to use the
tMysqlLastInsertedId component in the flow.

This component will automatically add a field to the existing schema and populate it with
the most recently written record.

This component will return the last value for a connection, so be very careful to only write
one table at a time for a given database session.

Also note that this component is only available for a small subset of databases.

Auto increment procedure
The final option in this list is to use an auto increment key field, but to write the record to
the database via a stored procedure. The procedure can then write the record and capture
the last value written. This has the advantage of working with most databases, but the
disadvantage of having to maintain a stored procedure/function.

Rewritable lookups using an in-process
database

The tHash components are great for storing intermediate data in memory and are very
efficient, but do not allow updates. Database tables allow updates, but aren't as efficient
when writing and reading data on a row-by-row basis, especially when there are large
numbers of rows to be processed.

This recipe shows how we can get the best of both worlds using a feature of the HSQL
database that allows us to define databases that only reside in memory for the given process.

Due to this job being fairly complex, there are a few techniques used that can be found in
other chapters of the book, but aren't explained in detail in this chapter. In addition, it will aid
understanding if we provide a background for this scenario.

Background
In this recipe we are presented with a list of customers with their countries of residence. We
wish to cross-reference their residence country with our list of countries held in our MySQL
database and:

ff if the country is found, add the country ID to the customer record

Working with Databases

126

ff if the country is not found, add a new country to our MySQL table and add the new
country ID to the customer record

Getting ready
Open the new job jo_cook_ch07_0120_inProcessDatabase.

How to do it…
The first thing we need to do is to create a memory copy of the current MySQL country table,
by copying the previous execution position from the persistent table in MySQL:

1.	 Drag the table schema countryRef from the connection cookbookDB and select
the component tMysqlInput.

2.	 Drag a tHSQLDBOutput component onto the canvas and configure it as shown in
the following screenshot:

3.	 Connect tMySQLInput to tHSQLDBOutput and execute the code.

4.	 You will see that two rows are copied from the database table into the in-memory table.

Reading and updating the in memory table

5.	 Uncomment the final section and join to the previous subjob via an OnSubjobOk link
as shown in the following screenshot:

Chapter 7

127

6.	 Run the job.

7.	 You will see that four new rows have been added to the country table and the
customer records all have correct country IDs.

How it works…
The key features of the job are as described in the following section.

In-memory components
All of the HSQLDB components are set up in the same way and use the same database (inmem).

Initialize the data
The data is initialized from the persistent copy of the country table.

tMap
There are a few key features to be noted within tMap:

ff Both the lookups are reloaded at each row. This is to ensure that any in-flight changes
are made available immediately after the update.

Working with Databases

128

ff We have a lookup for the maximum value of the ID in the country table. This is used
when we aren't able to find a country and need a new key, which will be the highest
current ID plus one.

ff So when writing to the output, we either copy the country key (if the country is found)
or we copy the ID for a new country record (maximum ID value plus one). This is
achieved using the code: country.id == null ? maxCountryId.id + 1 :
country.id.

ff When a new country is found then we create the new ID using max ID plus one
and write it to the newCountry flow. This flow is used to insert the new row in the
inline table.

Write back
Finally, we need to copy the new version of the table to the persistent country table ready for
the next execution.

There's more…
This method is most useful when you need to refer values in a table, but where those values
are likely to change during the course of a single execution.

This example is a fairly typical application of this method and while it is possible to achieve
the same results using other techniques, this method is by far the simplest to understand and
to implement.

It is also incredibly valuable when large numbers of records are to be processed, which would
normally mean large numbers of individual reads into the database, which will be very slow.

If the in-memory table is very large then consider using the reload at each row method with a
key as detailed in the the recipe Using reload at each row to process real-time/near real-time
data in Chapter 4, Mapping Data.

Memory
As with all memory storage techniques, ensure that you have enough memory to hold all of
the reference tables, before and after the execution. Ensuring that you only store the fields
that are required in memory will allow you to fit a large number of records in the memory.

See also
ff The Using reload at each row to process real-time/near real-time data recipe in

Chapter 4, Mapping Data

8
Managing Files

This chapter contains recipes that show some of the techniques used to read and write data
to files. It also contains recipes that show techniques to manage files within a file system. We
will cover the following recipes in this chapter:

ff Appending records to a file

ff Reading rows using a regular expression

ff Using temporary files

ff Storing data in memory using tHashMap

ff Reading headers and trailers using tMap

ff Reading headers and trailers with no identifiers

ff Using the information in the header and trailer

ff Adding a header and trailer to a file

ff Moving, copying, renaming, and deleting files and folders

ff Capturing file information

ff Processing multiple files at once

ff Processing control/validation files

ff Create and write files depending upon input data

Managing Files

130

Introduction
It isn't very efficient to process large batches of information via a web service, nor is it
particularly desirable to pull data from an application database during peak hours. Thus,
many organizations still maintain a file-based overnight batch processes using large extracts
in file format.

In addition, many older, legacy applications rely solely on file-based data for communicating
with the outside world.

It is therefore very important for the data integration developer to understand many file types
and be able to manage them efficiently and effectively.

This chapter deals with "flat" files, which, for our purposes means
files that do not carry their metadata with them, such as XML or
JSON, that are described in Chapter 9, Working with XML, Queues,
and Web Services.

This does not mean that we will only deal with simple files. Some of the recipes in this chapter
will deal with complex hierarchical file structures.

Appending records to a file
This simple recipe shows how a file can be built in within different sub jobs by appending
data to an existing file. The append method is one way of building complex files, as will be
demonstrated in later recipes in this chapter.

Getting ready
Open the jo_cook_ch08_0010_fileAppend job.

How to do it...
The steps for appending records to a file are as follows:

1.	 Copy the complete subjob1 – copy me sub job and paste it to create a second
sub job.

2.	 Link the two sub jobs using an onSubjobOK link.

3.	 Open tFixedFlowInput, and change Records from first subjob to
Records from second subjob.

Chapter 8

131

4.	 Open tFileOutputDelimited on the new sub job, and tick Append, as shown in
the following screenshot:

How it works...
The first sub job creates the file, and the second sub job appends to the same file.

There's more…
While relatively trivial, this recipe demonstrates a very powerful method for creating files that
do not adhere to the norm, such as files containing a mixture of fixed and delimited data or
free format strings.

Concatenating files using the append method
In addition to concatenating records using the append method, it is also possible to use the
same method to concatenate many files into one file.

In most cases, the files would be identified using tFileList, and then appended to a single
output file. One word of caution though; if you forget to set the mode to append, it will result in
each file overwriting its predecessor, leaving you with just the output from a single file; the last
one to be found.

It also presents an additional problem when the job is run for a second time. In that the file
will already exist, and the new data will simply be added to the old data.

Managing Files

132

It is thus a good idea when using file append to add a tFileDelete
component to the beginning of the job. This means that a file is always
created anew by the first iteration (but always make sure Fail on error
is unchecked for the deleted component, otherwise it will fail when
you run the job at the first time).

Ensure that the file name is unique for each run, perhaps by adding
the process ID to the file name or even the datetime including
milliseconds.

Reading rows using a regular expression
Regular expression (regex) is a powerful method for pattern matching and replacement
within many programming languages, and is outside the scope of this book (a good starting
point is the javadocs for regex patterns at http://docs.oracle.com/javase/1.4.2/
docs/api/java/util/regex/Pattern.html). One interesting use for regular
expressions is when dealing with unusual input formats that are difficult to describe using
normal delimited or fixed-width file formatting. This recipe shows how regex can be used to
identify a set of input columns from an unstructured input row.

Getting ready
The screenshot of the chapter8_jo_0020_jobLogData.txt file is as follows:

You should notice that there is neither an obvious delimiter, nor does each record fit a fixed
width format.

Now, open the jo_cook_ch08_0020_readRegexData job.

Chapter 8

133

How to do it...
The steps for reading rows using regular expressions are as follows:

1.	 Open tFileInputRegex and enter the following code:
"^job: "+
"([a-zA-Z0-9_]*)"+
"\\. *start *"+
"([0-9][0-9]:[0-9][0-9]:[0-9][0-9])"+
" - "+
"(success|failure)"+
".*"

2.	 Run the job, and you will see that jobName, startTime, and status have been
successfully extracted from the string, as shown in the following screenshot:

How it works...
Regular expressions require a pattern that will match a whole line of data, with parts of the
pattern in brackets being retained and the rest being discarded. A short explanation of the
regular expression code for the preceding example is detailed as follows:

ff The first line of the regex starts with ^ (the symbol for start of line) followed by the
text job and two spaces.

ff The second line details that we want a combination of letters, numbers, and
underscores. This part of the pattern is in brackets, so is put into the first field;
jobName.

ff The third line details the filler text, which consists of a dot (\\. which needs to be
escaped), two spaces, the text start, and another space. This text is not in brackets,
so is discarded.

Managing Files

134

ff The fourth line details two numbers and a colon repeated three times. This text is in
brackets, and is copied to field two in the schema; startTime.

ff The fifth line consists of a space, then a minus, then a space. This is discarded.

ff The sixth line describes a pattern that is either success or failure. This value is
retained in the third column in the schema; status.

ff The final line consists of any number of any characters, and it is discarded.

As mentioned, this is only a brief description of the previous code and of regular expressions.
A full explanation of regular expressions is beyond the scope of this book, and it is
recommended that you find out more about regular expressions, because they are a powerful
means of matching patterns within unstructured strings.

There's more…
You will probably have noticed that the lines in the pattern are organized in terms of patterns
to keep and those to discard. The regular expression doesn't need to be specified in this way;
however, it does make identifying the fields much easier than if the whole pattern were simply
on a single line.

Java regular expressions will not ignore carriage return or newline
characters, unless explicitly told to do so. If you need to create regular
expressions that span multiple lines, then simply add (?s) to the
beginning of a regular expression. This has the same effect as the Java
DOTALL option.

Using temporary files
Occasionally, it is necessary to create intermediate files within a job that are only used during
the lifetime of the job. This recipe shows how to use Talend temporary files.

Getting ready
Open the jo_cook_ch04_0030_temporaryFile job.

Chapter 8

135

How to do it...
The steps for using temporary files are as follows:

1.	 Open the tCreateFileTemporary component, and change the name to
customerTemp_XXXX.

2.	 Select the options Remove file when execution is over, and Use temporary system
directory.

3.	 Open the tempCustomerOut component, and change File Name to ((String)
globalMap.get("tCreateTemporaryFile_1_FILEPATH")).

4.	 Repeat the steps for the tempCustomerIn component.

5.	 Run the job, and you will see that data is written to and read from the
temporary file.

How it works...
The tCreateTemporaryFile component creates an empty file that is then available
for writing in the main sub job. The name of the file is stored in the globalMap
variable tCreateTemporaryFile_1_FILEPATH, which is referenced by both the
output and input components.

At the end of the job, Talend then deletes the temporary file to free the space.

Temporary files are best used when there are large volumes of data that would or could
possibly cause memory issues. For lower volume data, it is recommended that tHashMap or
an in process table is used instead, because this will create much more performant code. The
next section demonstrates the use of tHashMap as an alternative for using a temporary file.
See Chapter 7, Working with Databases, for an example of using the in process table.

There's more…
It is necessary to keep the XXXX format in the temporary file name, because Talend uses this
to add additional information to the file name to ensure that it is unique for the job instance.
This is very important if multiple instances of a job are executed at the same time, because it
would be catastrophic if all of the jobs wrote to the same temporary file.

Managing Files

136

See also
ff Chapter 7, Working with Databases

ff The Storing intermediate data in memory using tHashMap recipe

Storing intermediate data in the memory
using tHashMap

While not strictly file based, there are alternative methods for storing intermediate data which
are more efficient than using temporary files, so long as there is enough memory to hold the
temporary data. This recipe shows how to do this using the tHashMap component.

Getting ready
Open the jo_cook_ch08_0040_temporaryDatatHashMap job. You will notice that this is
the same job as in the previous recipe.

How to do it...
The steps for storing intermediate data in memory using tHashMap are as follows:

1.	 Delete the tCreateTemporaryfile component.

2.	 Replace the tFileOutputDelimited with a tHashInput component, having a
generic schema of sc_cook_ch8_0040_genericCustomerOut.

3.	 Replace tFileInputDelimited with tHashInput component sc_cook_
ch8_0040_genericCustomerOut.

4.	 Add the onSubjobOk link.

5.	 Run the job, and the results will be the same as for the previous recipe.

How it works...
tHashMap creates an in memory structure that holds all the data in the flow. It can then be
used as an input in a downstream sub job.

There's more…
tHashMap relies on enough memory being present for all the hash mapped data to be stored.
If there is not enough memory, then it is best to use a temporary file.

Chapter 8

137

tHashMap is a very useful component for storing data in memory, and can also be used to
store lookup data that can be reused across multiple joins. See Chapter 4, Mapping Data for
more examples of the use of tHashMap.

Reading headers and trailers using tMap
This recipe shows how to parse a file that has header and trailer records, and a record type at
the start of a line.

Getting ready
Open the jo_cook_ch08_0060_headTrailtMap job.

How to do it...
The steps for reading headers and trailers using tMap are as follows:

1.	 Drag a tMap component onto the canvas.

2.	 Connect the tFileInputFullRow to tMap, and rename the flow to customerIn.

3.	 Open tMap, and create three new outputs. Name them header, detail, and
trailer.

4.	 Copy the input field line into each of the new outputs.

5.	 Add the expression filter customerIn.line.startsWith("00") to the header
output table.

6.	 Add the expression filter customerIn.line.startsWith("01") to the detail
output table.

7.	 Add the expression filter customerIn.line.startsWith("99") to the trailer
output table.

Managing Files

138

8.	 Your tMap should now look like the one shown as follows:

9.	 Close tMap, and drag three tExtractDelimitedFields components to the
canvas, along with three tLogRow components.

10.	 Join each output from tMap to each of the tExtractDelimitedFields
components.

11.	 Change the delimiter in each of the tExtractDelimitedFields components to
comma (,).

12.	 Open the tLogRow components, and assign each one a schema from those listed, as
follows. This is quickly and easily done by dragging the metadata onto the tLogRow
component as described in Chapter 2, Metadata and Schemas.

�� sc_cook_ch8_0060_genericCustomerHeader

�� sc_cook_ch8_0060_genericCustomerDetail

�� sc_cook_ch8_0060_genericCustomerTrailer

13.	 Link the tExtractDelimitedFields to the tLogRows, making sure that you
accept the output schema.

Chapter 8

139

14.	 Your job should now look like this:

15.	 Change the tLogRow components to the output Mode of Vertical, and run the job.

How it works...
tFileInputFullRow allows us to read a row of any format into tMap. This is important,
because we do not want records to be rejected due to schema errors at this stage.

The start of each row is then tested for the record type; 00, 01, or 02, the header, detail, or
trailer records respectively.

The different rows are then passed to a tExtractDelimitedFields component for
breaking down into the individual schema columns.

There's more…
This isn't the only method of reading files with headers and trailers, and in fact, the best Talend
method would be to use the tFileInputMSDelimited component for this example.

This method, however, is much more flexible, in which the conditions for sending in the data
as an output to each of the flows does not depend upon a fixed field being present. The next
recipe shows this in action.

Managing Files

140

Reading headers and trailers with no
identifiers

This recipe shows how to parse a file that has header and trailer records, but does not have
an associated record type. Instead, the header is the first record in the file, and the trailer is
the last record in the file.

Getting ready
Open the jo_cook_ch08_0070_headTrailtMapNoType job. You will see that it is a
slightly changed version of the completed job from the previous recipe; the output schemas
have changed.

How to do it...
The steps for reading headers and trailers with no identifiers are as follows:

1.	 Drag a tFileRowCount component onto the canvas.

2.	 Open the tFileRowCount, and change File Name to context.cookbookData+"/
chapter8/chapter08_jo_0070_customerData.txt", which is the same as
our input file.

3.	 Connect an onSubJobOk trigger from the tFileRowCount component to the
tFileInputDelimited.

4.	 Open the tMap, and add a new variable rowCount. Set its expression to Numeric.
sequence("rowNumber",1,1).

5.	 Change the Filter expressions for header, detail, and trailer to those shown as follows:

�� Var.rowNumber == 1

�� Var.rowNumber != ((Integer)globalMap.
get("tFileRowCount_1_COUNT"))

�� Var.rowNumber == ((Integer)globalMap.
get("tFileRowCount_1_COUNT"))

6.	 Set the detail and trailer output options to Catch output rejects.

Chapter 8

141

7.	 Your tMap should now look like this:

8.	 Run the job, and you should see the individual row types being printed.

How it works...
The tFileRowCount component tells us how many rows there are in the file.

In the tMap, we use a sequence to calculate the current line number. If the line number is 1,
then we have a header row. If it is equal to the row count (held in globalMap), then we have
a trailer row, and all other rows are detail rows.

We then use the tExtractDelimitedFields to extract the individual delimited fields into a
different schema for each of the row types.

Using the information in the header and
trailer

This recipe follows on from the previous recipe, but shows how the information in the header
can be added to the detail data, and the data in the trailer used for validation, as is typically
the case with files of this type.

Managing Files

142

Getting ready
Open the jo_cook_ch08_0080_useHeaderAndTrailerInfo job. This job is the
completed job from the previous recipe; however, do note that the tLogRow components
have now been replaced with tHashOutput components. Also, note that three tHashInput
components have also been added and configured.

How to do it...
We will be performing two main tasks; the first is to use the trailer information to validate the
file, and then take a column from the header to use in all the output records.

Validation subjob
1.	 Drag a tMap component onto the canvas, and join the trailer input to it. Rename the

flow to trailerIn.

2.	 Open the tMap component, and create an output table named rowCountError.

3.	 Drag the input detailCount field to the output.

4.	 Add a new Integer output field named actualCount.

5.	 Add a new Integer variable also named actualCount. Set its expression to
((Integer)globalMap.get("tExtractDelimitedFields_2_NB_LINE")).

6.	 Copy this to the output field actualCount.

7.	 Add a filter expression to the output table; trailerIn.detailCount != Var.
actualCount.

8.	 Your tMap should now look like this:

Chapter 8

143

9.	 Add a tDie component, and connect the output of the tMap to the tDie.

10.	 Run the job, and you will see that it fails, because the number of rows in the file is 4,
yet the trailer says 5.

Use the header information subjob
1.	 Activate the header and detail tHashInput components.

2.	 Drag a tMap component onto the canvas, and join the detail input to it. Rename the
flow to detail1.

3.	 Join the header as a lookup to the tMap, and rename the flow to header1.

4.	 Create an output named detailHeader, and drag all the input detail fields to the
output from both the detail and header inputs.

5.	 Your tMap should now look like this:

6.	 Add a tLogRow, and join the output of the tMap to the tLogRow component. Change
the Mode of the tLogRow to Table.

7.	 Manually edit the input file context.cookbookData+"/chapter8/chapter08_
jo_0080_customerData.txt, and change the final row in the file to 00004.

8.	 Run the job, and you will see that the job no longer fails, and that each detail row has
the same file data as copied from the header record.

Managing Files

144

How it works...
The job first separates the header trailer and detail rows, validates the row count in the trailer
against the number of physical rows read, and then adds the file date to each detail row.

Validating using the trailer information
The validation sub job compares the row count from the trailer with the actual row count. The
only output from tMap is controlled by a condition that checks the value of the trailer count
with the number of lines (tExtractDelimitedFields_2_NB_LINE) passed through the
tExtractDelimitedFields component, which is stored in globalMap.

Using the header information in the detail
The header data is added to the tMap as a lookup. You will notice that there are no join
links between the detail row and the header, which means that we have an all-all-join. So,
every detail record is matched to the header record, thus populating the file date for every
detail record.

There's more…
You could choose to copy the header and trailer information into globalMap as an alternative
to using tHashMap components, using a tFlowToIterate component in place of the
header and trailer components, or a tJava component, where the column values are
explicitly copied into globalMap.

This method does make adding the data to the detail simpler (because no join is needed,
just a reference to globalMap); however, it also makes the validation slightly more complex,
because the compare function does need a row to be created using a tFixedFlowInput.

Which method to use is a matter of preference and coding style.

The tDie message in this job isn't very useful. If you wish to make it more useful, then
change the message to that given as follows:

"Error: Counts do not match. Trailer: "+rowCountError.
trailerCount+". Actual : "+rowCountError.actualCount

An example of copying data to globalMap automatically using tFlowToIterate can be
found in the Capturing file information recipe later in this chapter.

To copy data to globalMap using tJava, see the Setting context variables and globalMap
variables using tJava recipe in Chapter 5, Using Java in Talend.

Chapter 8

145

Adding a header and trailer to a file
This recipe details a method for creating a file with a header and trailer record, which makes
use of file append.

Getting ready
Open the jo_cook_ch08_0090_createHeaderAndTrailer job.

How to do it...
The steps for adding a header and trailer to a file are as follows:

1.	 Open the tFixedFlowInput_1 component.

2.	 Add the following for the field fileDate; TalendDate.getDate("CCYY-MM-DD").

3.	 Open the tFixedFlowInput_2 component.

4.	 Add the following for the field fileDate; ((Integer)globalMap.
get("tFileInputDelimited_1_NB_LINE")).

5.	 Open tFileOutputDelimited_1, and change the type to Append.

6.	 Open tFileOutputDelimited_4, and change the type to Append.

7.	 Run the job, and if you examine the output file, you should see that it has created a file
with the current date in the header and the correct number of detail lines in the trailer.

How it works...
tFixedFlowInputs are used to generate a single row each for the header and the trailer.

The header sub job will create the file and add the header with the field being set to the
current date.

The detail sub job adds the detail records using file append.

The trailer sub job adds the trailer record with the count value set to the number of lines read
from the customer input file. This ensures that the detail count for the trailer matches the
number of lines written.

There's more…
Talend does supply a component for creating complex files; tFileOutputMSDelimited;
however, this method is not as strict as the MSDelimited component, in that records of any
schema type can be added in any order at any time during the job.

Managing Files

146

Thus, this method avoids the need to either structure your job in a way so that the flows merge
into a single end component, or to drop the data to intermediate storage prior to merging in a
final sub job.

This method usually therefore creates more efficient and readable code.

For these reasons, this is probably the easiest method for creating complex files.

If you require additional aggregates to be added to the trailer, such as
checksums, add a tAggregate to the output of the detail sub job, and
store the result in a tHashMap.

See also
ff The Appending records to a file recipe in this chapter

Moving, copying, renaming, and deleting
files and folders

As well as reading from and writing to files, Talend has a set of components that allow
developers to perform file functions without the need to call native operating system
commands. This recipe shows the basic file management components.

Getting ready
Open the job jo_cook_ch08_0100_basicFileCommands.

How to do it...
In the following recipes, it is worth noting that Talend uses the Linux style forward slash (/) in
the file paths, as opposed to the Windows backslash (\).

Copying a file to another directory
1.	 Drag tFileCopy to the job.

2.	 Set the file name to be context.cookbookData+"/chapter8/chapter08_
jo_0100_copyFile.txt".

3.	 Set the output directory to be context.cookbookData+"/outputData/
chapter8".

4.	 Run the job, and you will see that the new file has been created: This is a simple copy.

Chapter 8

147

Copying file to a different name
1.	 Open tFileCopy, tick the Rename box, and then add a Destination filename of

chapter08_jo_0100_copyFileRenamed.txt.

2.	 Run the job, and you will see that there is now a renamed copy of the file.

Renaming a file
1.	 Open tFileCopy, and change the Input filename to be context.

cookbookData+"/outputData/chapter8/ chapter08_jo_0100_
copyFileRenamed.txt".

2.	 You will see that the input file is in the same directory as the Destination directory.

3.	 Change the Destination filename to chapter08_jo_0100_renamed.txt.

4.	 Click the box Remove source file.

5.	 Run the job, and you will see that the original file has been renamed.

Moving a file
This is the same as the previous (see The Copying file to a different name recipe), but click the
box Remove source file.

Deleting a file
To delete a file, simply add the file path to the tFileDelete component.

How it works...
As you will see, the tFileCopy is used to copy, move, and rename files, depending upon the
options selected.

The tFileDelete component is simply used to delete files.

There's more…
You should have noticed that the tFileDelete and tFileCopy components allow us to tick
boxes to copy and delete directories as required. It does go without saying that the utmost
care should be taken when deleting files, and even more especially when deleting directories
using Talend.

Capturing file information
Another useful Talend feature is the ability to capture information about a file for use within
downstream processing, most probably to perform validation prior to processing.

Managing Files

148

Getting ready
Open the jo_cook_ch08_0110_fileInformation job.

How to do it...
The steps for capturing file information are as follows:

1.	 Drag a tFileProperties component from the right-hand panel. Open
tFileProperties, and set the file name to context.cookbookData+"/
chapter8/chapter08_jo_0110_customerData.txt".

2.	 Drag tFlowToIterate to the canvas, and link the row from tFileProperties to
it. Name the flow properties.

3.	 Drag tFileRowCount to the canvas and set the filename to match the
tFileProperties component.

4.	 Add onSubjobOk from tFileProperties to tFileRowCount, and then to
tFixedFlowInput, so that your job looks like the one shown as follows:

5.	 Open tFixedFlowInput.

6.	 Add ((Long)globalMap.get("properties.size")) to the field fileSize.

Chapter 8

149

7.	 Add ((Integer)globalMap.get("tFileRowCount_1_COUNT")) to the field
numberOfRows.

8.	 Your tFixedFlowInput should look like the one as follows:

9.	 Run the job, and you will see the file information in the console.

How it works...
The tFileProperties component captures file information and passes the data in a row to
the next component. The tFlowToIterate component is used as a shorthand method for
adding the file information to globalMap.

The tFileRowCount component counts the number of rows in a file, and presents the count
as a globalMap variable.

The final sub job shows the data held in globalMap being used in a process flow.

There's more…
The final sub job simply prints out some of the information; however, a good, real-life example is
to use the file size from the properties to check against the file size written in a file trailer record
or a validation file. This would ensure that a file transmitted from, a third party application, for
example, is received in its entirety before it is processed by the receiving application.

Managing Files

150

One field in tFileProperties can be difficult to use; the file
creation datetime, which is a complex string format of a date. If you
need to read this into a date column, then use the following date
pattern:

TalendDate.parseDateLocale("EEE MMM dd HH:mm:ss z
yyyy",input_row.mtime_string,"EN")

where EN is the locale that you may need to change.

Processing multiple files at once
Often, with batch processes, it is required that multiple files are processed by the same job in
a single tranche. This example shows how this can be achieved by merging a group of input
files into a single output.

Getting ready
Open the jo_cook_ch08_0120_multipleFiles job. You will notice that it is
currently reading a single file to a temporary file, and then copying the temporary file
 to a permanent output.

How to do it...
The steps for processing multiple files at once are as follows:

1.	 Add a tFileList component, open it, and set the directory to context.
cookbookData+"/chapter8".

2.	 Click on the + button under the Filemask box, and add the filemask "chapter08_
jo_0120_customerData_*.txt".

Chapter 8

151

3.	 Your tFileList should look like the one shown, as follows:

4.	 Move the OnSubjobOk from the tFileInputDelimited to the tFileList.

5.	 Add a tJava component.

6.	 Right-click on tFileList and select Row, then Iterate, and link to the tJava.

7.	 Right-click on the tJava and select Trigger, then OnComponentOk.

8.	 Link it to the tFileInputDelimited (customer) component.

9.	 Open the tFileInputDelimited component, and change the file name to
((String)globalMap.get("tFileList_1_CURRENT_FILEPATH")).

10.	 Move the OnSubjobOk link from tFileInputDelimited (customer) to the
tFileList component.

11.	 Your job should look like the one shown as follows:

Managing Files

152

12.	 Run the job, and you will see that the output file contains information from the three
input files.

13.	 To make the job output more useful, open tJava and insert the following code
System.out.println("Processing file: "+((String)globalMap.
get("tFileList_1_CURRENT_FILE"))).

14.	 Run the job again, and you will see that the console now logs the individual files as
they are found.

How it works...
This job merges all files in a directory into a temporary file ready for processing as a single
entity; in this case, renaming the temporary file to a permanent output file name.

The tFileList component is an iterator that is triggered by each file found that fits the
specified mask.

So as each file is found, the file details are stored in globalMap, and then all linked
components and sub jobs will be processed until no more files are found.

As you can see from the job, the tFileInputDelimited component reads from the
file specified in globalMap by tFileList, and tFileOutputDelimited writes to the
globalMap variable specified by tCreateTemporaryFile.

Once all files have been read and processed, tFileList is then complete, and
the onSubjobOk link will be triggered, thus copying the temporary file into a final
permanent merged file.

There's more…
In this job, we have only one sub job that is executed as part of the Iterate, but it is probably
more common to have many. In a traditional programming language, this would mean that all
the processing linked to the Iterate would be in a programming loop.

It is also possible to have further iterations below the first one, for instance, if you are
navigating your way down a set of directories to find input files for processing.

The tJava component named dummy is just that. It performs no logic
(though I will often add in logging line detailing the file name) and is
present in the code just to make it more readable. This is because it
allows the processing for each iteration to sit in individual sub jobs as if
they are within a normal, atomic job that processes just one file.

Chapter 8

153

Processing control/validation files
Some organizations prefer to use a companion (control/validation) file containing file
information instead of storing the information in the file header or trailer. This means that the
detail file is much simpler to process, because it is a normal flat file.

In this recipe, the control file has the same name as the detail file; however, it is suffixed with
.ctrl rather than .txt. This recipe shows how the control file is processed.

Getting ready
Open the jo_cook_ch08_0130_controlFile job. You will see that tFileList_1 is
looking for files with the mask of chapter08_jo_0130_customerData*.txt. There are
two of these in the directory.

How to do it...
The steps for processing control/validation files

1.	 Copy the first sub job.

2.	 Change the new tFileList mask to StringHandling.EREPLACE(((String)
globalMap.get("tFileList_1_CURRENT_FILE")),"txt","ctrl").

3.	 Open tJava_2 and change the command to System.out.println("Found
control file: "+((String)globalMap.get("tFileList_2_CURRENT_
FILE")));.

4.	 Connect the first and second sub job using OnComponentOk.

5.	 Repeat the same for the second and third sub jobs.

Managing Files

154

6.	 Your job should now look like this:

7.	 Run the job and you will see that the main process is called once per file/control
combination.

How it works...
The first tFileList looks for files that fit the mask "chapter08_jo_0130_
customerData*.txt", of which there are three.

For each .txt file, it finds the file that fits the mask, and then performs another tFileList.
This time, however, the mask is the actual file name, but with .txt replaced with .ctrl. This
has the effect of searching for a control file that has exactly the same name as the text file.

Once a match is found then we have both file names in globalMap together, and the file
details can be validated and processed by whatever means within the main processing
section (represented here by tJava_3 and tJava_4).

There's more…
In the version of the job that we have just coded, if a .txt file arrives without a control file
then it is simply ignored.

Chapter 8

155

In a production version of this job, we would also add a validation step to check that the
control file is found for a job. This can be achieved with an if link that checks ((Integer)
globalMap.get("tFileList_2_NB_FILE")) !=1, shown as follows:

Creating and writing files depending on the
input data

Sometimes it is required that multiple files are written from a single data source where
the file name is dependent upon the data held within the row. This recipe shows how this
can be achieved.

Getting ready
Open the jo_cook_ch08_0140_filesFromInputData job.

How to do it...
The steps for creating and writing files depending on the input data are as follows:

1.	 Run the job, and you will see that the file dummy.txt has been created and
populated with six rows.

2.	 Open the tJavaRow component, and you will see that the move of data from input to
output has already been performed.

Managing Files

156

3.	 Add in the following code after the generated code:
// test for change of input_row.key
if (Numeric.sequence(input_row.key, 1, 1) == 1) {
 outtFileOutputDelimited_1.flush();

 // if this is the first record then do not flush and close - do
not want to create dummy.txt
 // otherwish if sequence > 1 then we will close the previous
file
 if(Numeric.sequence("all", 1, 1) !=1) {

 outtFileOutputDelimited_1.close();
 }

 // build the new file name
 fileName_tFileOutputDelimited_1 = context.cookbookData+"/
outputData/chapter8/"+input_row.key+".txt";

 // create new writer for the new filename. Talend uses this for
writing the record
 outtFileOutputDelimited_1 = new java.io.BufferedWriter(
 new java.io.OutputStreamWriter(
 new java.io.FileOutputStream(
 fileName_tFileOutputDelimited_1,
 false), "ISO-8859-15"));
}

4.	 Run the job. You will see that besides the dummy file, there are three additional files:
a.txt containing the records with key a, b.txt containing records with key b, and
c.txt containing rows with key c.

How it works...
The code in tJavaRow makes use of the fact that Talend code is a series of loops within
loops. Because the tJavaRow loop is within the tFileOutputDelimited loop in the
generated Java code, we can change variables within the inner loop, which will affect the
processing within the outer loop.

The variable that we will change is the writer that Talend uses for the
tFileOutputDelimited component.

Chapter 8

157

tJavaRow code explained
The Numeric.sequence command uses input_row.key as the name, thus, causing a
new sequence to be created whenever the key changes. Thus by testing the sequence as 1,
we know that the key has changed.

Once we know that the key changed, we can then close the previous file.

Then we create a new file name consisting of the output directory plus the input_row.key
suffixed with .txt. Thus if the key is changed we create a file named a.txt.

The next statement then creates a new writer for the tFileOutputDelimited component
and Talend will use this writer when writing to the output.

There's more…
This method will only work with sorted input data. It is possible to create much more
sophisticated file management routines using similar principles that would not need to have
the data pre-sorted, however, this isn't covered in this book.

In addition, this method does not remove the dummy.txt file. For production versions of this
code it would be worthwhile adding tFileDelete to the job to remove the dummy file.

9
Working with XML,

Queues, and Web
Services

This chapter describes some of the features of the Talend data integration suite that
interfaces with technologies used in the Talend ESB (Enterprise Service Bus) Studio. We will
cover the following recipes in this chapter:

ff Using tXMLMap to read XML

ff Using tXMLMap to create an XML document

ff Reading complex hierarchical XML

ff Writing complex XML

ff Calling a SOAP web service

ff Calling a RESTful web service

ff Reading and writing to a queue

ff Ensuring lossless queue using sessions

Introduction
It is for this chapter that we are using Talend Studio for ESB. This chapter is an amalgam of
tools and techniques associated with low latency or real-time processing. It also covers the
areas where the Talend DI tool set overlaps with the Talend ESB tool set.

Working with XML, Queues, and Web Services

160

But first, let's look at some of the key principles required for this chapter:

ff tXMLMap: tXMLMap is the XML equivalent of tMap, providing most of the same
functionality as tMap, but with the added ability to process XML data as well.

ff XPATH: tXMLMap is good for moderately complex XML; however, processing complex
multi-level XML is more complex. This is where XPATH is used: to decompose the
input XML into more manageable chunks.

ff tXMLOutput, tWriteXMLField: These components are used to create complex multi-
level XML structures from flat structures.

ff Web services: The Talend studio for ESB provides simple to use capabilities for
creating and consuming both SOAP and RESTful web services.

ff Message Queues: Talend ESB contains a copy of ActiveMQ, which will be used for
the queue based recipes in this section.

Using tXMLMap to read XML
This recipe shows how we can convert an XML record stored in a file into a format that is
readable by tXMLMap, and how we can then read and process the data in the XML record.

Getting ready
Open the job jo_cook_ch09_0010_readXMLFile.

How to do it...
The first stage of this process is to convert the XML file into Java Document format for use by
the downstream component.

1.	 Drag a tFileInputXML component onto the canvas.

2.	 Edit the schema and add a column named payload. Make it a type of Document, as
shown in the screenshot:

Chapter 9

161

3.	 Open the tFileInputXML component and change the File name/Stream field to
context.cookbookData+"/chapter9/chapter09_jo_0010_customerData.
xml".

4.	 Change the Loop Xpath query field to "/".

5.	 Add an Xpath query of ".", and tick the box Get Nodes.

6.	 Your tFileInputXML should look like the one shown in the next screenshot:

Reading using tXMLMap

7.	 Add a tXMLMap component to the canvas and link to the tFileInputXML
component.

8.	 Open the tXMLMap component and right-click on payload.

9.	 Select Import from file.

10.	 Navigate to the input xml file in the folder for this chapter, and when you select
the file you will see that the XML structure has now been added to the tXMLMap
component's input table.

Working with XML, Queues, and Web Services

162

11.	 Add an output table named customerOut, and drag the fields from the input to the
output. Your tXMLMap should now look like the one in the next screenshot:

12.	 Add a tLogRow to the job, connect it to the output of tXMLMap and then run the job.
You will see that the XML data has now been flattened into a normal Talend row.

How it works...
The tXMLInput component uses XPATH to convert the input XML into a Java Document
object, so that an XML tree can be created by the tXMLMap component.

Note that the XPATH settings are not covered in this book. For more information on XPATH, you
may wish to visit http://www.w3schools.com/xpath/.

By pointing tXMLMap at our XML file, we were able to import the XML structure from the file,
so that we could manipulate the fields individually.

Once the document tree has been defined, elements can then be copied from the output to
the input, as with a normal tMap.

There's more…
Note that the tXMLMap component does have its limitations though and isn't the best
component to use in in all scenarios.

Chapter 9

163

Document objects
The Java Document object is the key to being able to define input and output trees in
tXMLMap. If we do not define a document either as input or output, then the tXMLMap
component performs in the same way as a tMap component, so if you aren't processing input
and/or output XML, then use tMap, because it has more functionality.

XML Structure
In this recipe we used a populated XML file to define our XML structure. While this is fine for
an example, it would be unusual in the real world.

It is more likely that we would use an XML Schema Definition (XSD) to define the format of
the XML structure, because we cannot always guarantee that our file does not have some
optional elements missing.

Using tXMLMap to create an XML document
This recipe is the reverse of the previous recipe, in that we'll be reading in a flat format and
converting it to an XML document for output. It is recommended that you have understood the
previous recipe prior to attempting this one.

Getting ready
Open the job jo_cook_ch09_0020_createXMLDocument file.

How to do it...
The first stage of the process is to convert the input data into a Java Document that can store
the XML.

1.	 Drag a tXMLMap component onto the canvas, and link the tFileInputDelimited
component to it.

2.	 Create an output table named customerDocumentOut, and add a field named
payload. Make the field a type of Document.

3.	 You will see that the field in the output table has changed to become a simple
XML structure.

4.	 As we did in the previous recipe, retrieve the XML format from the file containing
our target XML structure.

5.	 Drag the fields from input to output, and set the countryOfResidence
component to UK.

Working with XML, Queues, and Web Services

164

6.	 Your tXMLMap component should look like the one in the next screenshot:

Output the Document to a file

7.	 Add a tFileOutputXML component and link it to the tXMLMap component.

8.	 Open tFileOutputXML, tick the box Incoming record is a document and set the
File Name to context.cookbookData+"/outputData/chapter9/jo_cook_
ch9_0020_customer.xml".

9.	 Run the job file to create the XML file.

How it works...
As discussed in the first recipe, defining the output type of Document allows us to define an
XML format within the tXMLMap component into which we can then map our input data.

The tFileOutputXML component by default will create an XML structure from a normal
schema; however, it is possible to force it to handle a document as we did in this recipe.

There's more…
We have seen in this recipe how we can map from XML to a Talend schema and the reverse,
but tXMLMap does allow us map combinations of inputs (flat or XML) with combinations of
outputs, so we can reformat one XML format into another, or join an XML file with a second
XML file to produce a normal Talend record.

Chapter 9

165

Reading complex hierarchical XML
The first two recipes show how tXMLMap can be used to map between XML formats visually,
much like the tMap component; however, it can become overly complex and difficult to
manage when there are multiple levels of hierarchy and multiple loops within the XML. This
recipe shows how we can deconstruct a more complex XML record into individual sets of data
while ensuring that the hierarchical relationships between the data are not lost.

Getting ready
Open the job jo_cook_ch09_0040_readComplexXML file. If you view the input file
chapter09_jo_0040_orderDate.xml, you will see that we have a hierarchy of customer
that has many orders, and orders have many items.

How to do it...
First, we will create a customer schema using the XML schema wizard.

1.	 In the metadata panel under File XML | Chapter 09 right-click and select the option
Create file xml.

2.	 Name the XML file sc_cook_ch9_0040_XMLorderDataCustomer.

3.	 Select Input XML, then click on Next.

4.	 Click on Browser to select the XML file C:/cookbookData/chapter9/
chapter09_jo_0040_customerData.xml.

5.	 In the Schema Viewer, you can check that this is the correct file then click on Next.

6.	 Drag the field customer from the Source Schema panel to the Target Schema
panel Xpath loop expression.

7.	 Drag name and age to the Target Schema panel Fields to extract.

8.	 Drag the field customer from the Refresh Preview panel, and you will see the values
as they will appear in the schema.

Working with XML, Queues, and Web Services

166

9.	 Your screen should now look like the next screenshot:

10.	 Click on Next.

11.	 The next step allows you to validate and change the extracted field names and
lengths if you need to. For this recipe, we will not worry about this.

12.	 Click on Finish to complete the schema.

Creating order schema

13.	 Repeat the steps above for a schema named sc_cook_ch9_0040_
XMLorderDataOrder.

14.	 Map the customerId and the order fields so that your mapping looks like the one in
the next screenshot:

Chapter 9

167

Creating order item schema

15.	 Repeat the steps above for a schema named sc_cook_ch9_0040_
XMLorderDataOrderItem.

16.	 Map the customerId, orderNumber, and the order item fields so that your
mapping looks like the one in the next screenshot:

Working with XML, Queues, and Web Services

168

Adding to the job

17.	 Finally, drag all three schemas to the canvas, selecting the component type of
tFileInputXML, join them up as shown in the next screenshot and run the job.

How it works...
The XML schema component allows us to map data from the XML structure into a flattened
Talend schema easily, ready for use in the downstream components.

First, we defined an XML schema to extract just the customer fields.

Then we did the same for the order fields, but remembered to also extract the key for the
customer, which is customerId. This will ensure that for each set of order data, of which
there are two, the customerId is present.

We repeated this process again for the orderItem fields, remembering to extract the
customer and order fields.

Finally, we dragged the schemas to the canvas, linked them and added the tLogRow outputs.

There's more…
This method is the basis for a very useful Talend design pattern, and the key principles and
how it can be used are described ahead.

Chapter 9

169

Managing the relationships
The thing to remember about this method is that for each branch we process from the
XML tree, we need to capture the keys for the parent branches, so that we do not lose the
relationships that are implicit in the structure of the input XML.

File information
In this recipe, we changed the file path to built in for this example, and added in the name
relative to our cookbook context variable. There is also the option to store the file and XPATH
information to a context if you so desire.

XML to database mapping
This design pattern is perfect for mapping an XML structure to a relational (third normal form)
database. When viewing the log output, we can see that the XML loops have been normalized
into individual entities (customer, order, and order item), and that we have captured the
primary and foreign keys for each of the table entities.

See Chapter 7, Working with Databases for an example of writing hierarchies to a database.

XPATH
You may have noticed that the XML file wizard produces XPATH expressions when creating the
schema, and it is also noteworthy that this isn't the only component to use XPATH to extract
information from an XML structure.

Web service XML
When reading XML data from say a web service, it would not be efficient to write it to a disk
file prior to reading the data, so the same method can be applied to extract the data, but we
would use tExtractXMLField rather than tFileInputXML. This method is slightly harder,
in that there isn't a drag-and-drop editor, so the XPATH expressions must be done by hand.

Writing complex XML
This is a very useful recipe for building complex XML structures containing many looping
elements and deep hierarchies, and once the principles are understood, it is simple and
quick to implement. If you use XML frequently, then we hope that this will become one of
your staple recipes.

To make this exercise more understandable, it is necessary to understand a little about the
method prior to using it.

Working with XML, Queues, and Web Services

170

Understanding the XML structure
The XML structure we are aiming to create is shown in the following screenshot:

As you can see, a customer can have many orders, and an order can have many order items.

Chapter 9

171

Node

I am using the term node to describe an XML tag that contains one or
more other tags or nodes. For example a customer node may contain
many order nodes.

Method
We will build a three-tier XML structure building the hierarchy one level at a time:

1.	 First, we build the customer node.

2.	 Then, we build an orders node that contains many individual order nodes and add
them as a child of the customer node.

3.	 Finally, we will build the order items node that contains one or more items and add
them to the individual order nodes.

Java DOM
This recipe depends upon the Java DOM (XML document) format and three code routines
that have been built to manipulate it; however, beyond knowing how to use the routines, this
method does not require an in-depth knowledge of Java XML Documents.

Getting ready
Open the job jo_cook_ch09_0050_writeComplexXML. If you look at the whole job, you
will notice that it seems to have a hierarchy, a little like the XML structure itself.

How to do it...
The first action is to create the top-level node, customer:

1.	 Add a tWriteXMLField component to the canvas, and add a row from
tFixedFlowInput_2.

2.	 Open tWriteXMLField_1 and change rootTag in the right-hand panel to
customer.

3.	 Drag the columns customerId, name, and countryOfResidence from the left-
hand panel to the right-hand panel onto the field customer.

4.	 You will be prompted as to how you wish to treat the fields. Select the default, Create
as sub element of the target node.

Working with XML, Queues, and Web Services

172

5.	 Right-click on the field customerId in the right-hand panel and select the option
to Set As Loop Element. You will notice that the error condition in the top left hand
corner disappears.

6.	 Your tWriteXMLField should now look like the one in the next screenshot:

7.	 Finally, in the component panel for your tWriteXMLField, open the schema
and add a String field to the right-hand side called customerXML, as shown in the
next screenshot:

Creating the customer document

8.	 Add a tJavaRow component, link it to the tWriteXMLField component, and open it.

Chapter 9

173

9.	 Add the following code:
// Initialize the document using the customer details
 and then write it to globalMap
globalMap.put("customerXML",XMLUtils.createDomFromString
 (input_row.customerXML));

System.out.println("**********************
 Customer xml ********************************");
System.out.println(XMLUtils.DOMToString(
(org.w3c.dom.Document) globalMap.get("customerXML")));

10.	 Run the job, and you will see the customer Strings and customer documents.

Creating the orders XML String

11.	 Activate the next subjob and tJava_2.

12.	 Open tMap_3, and you will see that we are finding the orders for the given
customerId, which are then stored in the orders hash map.

13.	 Open tWriteXMLField_2, and you will see that this time we have created two
levels; orders and within that, order, and that we have set the loop element to
be the order node. This allows us to store the individual order nodes in the top-level
orders node.

14.	 Open the component panel for the tWriteXMLField_2 component, click on the +
button for the Group By section, and select the field customerId as shown in the
next screenshot. This ensures that only one string will be written with all the orders
for the customer in it.

Working with XML, Queues, and Web Services

174

15.	 Open tJavaRow_3 and add the following code:
System.out.println("********************** Order XML *************
*******************");
System.out.println(input_row.orderXML);

// read the document
org.w3c.dom.Document customerXML =
 (org.w3c.dom.Document) globalMap.get("customerXML");

XMLUtils.addChildAtPath
 (customerXML, "/customer", input_row.orderXML);

//Put the document back into globalMap
globalMap.put("customerXML",customerXML);

16.	 Run the job, and you will see the orders XML structure that is generated and how
it has been added to the customer XML. Note how for customerId = 1 there are
multiple order records within the orders node.

Adding the order items

17.	 Reactivate the remaining components. If you examine the components you will see
that they are set up in the same way as the order XML creation, except the parent is
now order, and thus the group is now by orderId.

18.	 Open tJavaRow_4 and insert the following code:
System.out.println("********************** Order item XML ********
************************");
System.out.println(input_row.itemXML);

// read the document
org.w3c.dom.Document customerXML =
 (org.w3c.dom.Document) globalMap.get("customerXML");

// write the order items XML into the main structure
 where the order node has an id = the current id
XMLUtils.addChildAtPath(customerXML, "/customer
 /orders/order[orderId = "+((Integer)globalMap.get
 ("order.orderId"))+"]", input_row.itemXML);

// put the main XML back into globalMap
globalMap.put("customerXML",customerXML);

Chapter 9

175

System.out.println("********************** Document
 with item added ********************************");
System.out.println(XMLUtils.DOMToString(
 (org.w3c.dom.Document) globalMap.get("customerXML")));

19.	 Note the highlighted section. This will be explained later.

20.	 Run the job, and you will see that individual item nodes are grouped within the
items node and that the correct items nodes have been added to the correct
order nodes.

How it works...
This is probably the most complex exercise in the book to explain, so while you are reading
this, we would recommend that you also reference the output of the job. The job log has been
designed to illustrate the concepts in the section Putting It All Together.

So here we go…
This method revolves around five main principles:

ff tWriteXMLField allows us to build XML strings from the input data.

ff Code utilities allow us to create a document, add nodes to it, and then convert it back
to a String.

ff tFlowToIterate allows us to create Talend looping sections for managing
repeating groups of child nodes.

ff tHash components allow us to store the keys for the parent elements that we then
use to find the data for the child elements. These keys also allow us to locate the
correct node to which the children need to be added.

ff XPATH condition logic that allows us to add order items into the relevant node using
the orderId field as the key.

And here, they are explained in more detail.

tWriteXMLField
tWriteXMLField allows us to build XML Strings from flat data. When building the top-level
node, its use is simple and obvious, but when we come to building the repeating nodes, you
must remember to add a Group By field.

Working with XML, Queues, and Web Services

176

Code utilities
You will notice that we used three methods in the code routine XMLUtils:

ff createDomFromString: We took the customer XML String and created a new
Document from the String.

ff addChildAtPath: This will take an XML String, and add it into an existing node in
the Document. It uses an XPATH expression to locate the correct node.

ff DOMToString: This converts a Document into a String.

tFlowToIterate
tFlowToIterate is used whenever we have a node that contains repeated children. In our
case, this is customer and order.

tHash components
The tHashOutput components are used to store the keys for the repeating parent elements.
These keys are then used to drive a lookup process to join to the child data, so that it can be
added to the parent node.

XPATH Condition
You will have noticed that when adding the items node, the addChildAtPath expression
was more complex than for the orders node. This is because it uses an XPATH condition. If we
take orderId of 1 for this example, the condition would be expressed as the following:

/customer/orders/order[orderId = 1]

which is translated as the order node where the orderId = 1.

Putting it all together
So, putting all of this together, here is what we did in this recipe:

1.	 We first created an XML string version of the customer data using tWriteXMLField.

2.	 Using createDomFromString, we then created a Document object for the customer.

3.	 Using the customerId as the key, we then found all the orders for that customer
using tMap.

4.	 We used the order data to create a node (orders) that consisted of all the individual
order nodes using tWriteXMLField. We also stored the key values for the orders
in a tHashOutput component for later use with the order items.

5.	 Next, we used addChildAtPath to add the node containing all the orders into the
customer node.

Chapter 9

177

6.	 Then, for each order, we performed the following steps:

1.	 Get the order item data for all items within the order.

2.	 Create an XML string (items) containing all the individual order item nodes
for the current order iteration.

3.	 Add the items XML string to the Document under the relevant order using an
XPATH expression that uses the orderId as a condition, to ensure that the
items node was inserted into the correct order node.

There's more…
But that's not all that we think you need to know about this recipe.

Job "shape"
In the Getting ready section, I mentioned that the job itself has a hierarchy. It is visible to one
level in this job; however, when you are using much deeper hierarchies, it becomes totally
obvious and gives a rough indication as to the shape of the XML hierarchy being built.

We have changed the color of the subjobs for the order level in this job to make this more
obvious, and this is something you may wish to adopt. Subjob colors can be changed in the
subjob component tab.

We would recommend that you try this with a deeper hierarchy; for example, country has
regions as branch has employees, to get accustomed to working with multiple nested levels.
Then, try with additional nodes at the same level, for example customer has many addresses,
many telephone numbers and many e-mail addresses, to get you accustomed to building lots
of additional nodes under the same parent node. With practice, this technique can help you
produce extremely complex XML structures quickly and efficiently.

Calling a SOAP web service
This recipe shows how a SOAP-based web service can be called from Talend. We will be using
a very simple Talend web service that will return the weather conditions in a given city.

Getting ready...
1.	 Open the job jo_cook_ch09_weatherService and run it. You will see the output

in the console, the last line of which will be web service [endpoint: http://
localhost:8090/services/cookbookWeatherService] published.

2.	 This means that the web service is now available to be called by our consumer job.

3.	 Now open the job jo_cook_ch09_0060_consumeSOAP.

Working with XML, Queues, and Web Services

178

How to do it...
1.	 Drag a tESBConsumer component to the canvas and open it.

2.	 Change the WSDL to http://localhost:8090/services/
cookbookWeatherService?wsdl.

3.	 Tick the box for Populate schema to repository on finish. This will ensure the XML
metadata schemas we need for the SOAP request and response are created in the
repository for us to use later.

4.	 Click on the button to refresh the details, as highlighted in the following screenshot, and
you will see that the details for the web service we are calling have been populated.

5.	 Click on Finish.

6.	 Add tXMLMap before the tESBConsumer component and tLogRow after and join as
shown in the next screenshot:

Chapter 9

179

7.	 Open the tXMLMap component and import the request from the repository for the
output table from the repository location shown in the next screenshot:

8.	 Now you can copy the input city field to the output request city field as shown in
the following screenshot:

9.	 Run the job. The response XML will appear in the console.

10.	 You can now stop the job jo_cook_ch09_weatherService.

How it works...
The tESBConsumer component will connect to the service and use the WSDL definition to
create the XML schemas required for the SOAP request and response.

The XML schema for the request is then defined in the tXMLMap component and the input
columns are mapped to the XML request.

Working with XML, Queues, and Web Services

180

There’s more…
This job calls a very simple web service with a flat XML structure, so the same result could
be achieved much more simply using tWebServiceInput. However, it should be noted that
the tWebServiceInput component is very limited in terms of complexity of request and
response. The method used in this recipe provides a pattern for use with SOAP services where
the request and the response can be very complex.

Decoding the response
When the tESBConsumer component creates the request XML it also creates the response
XML that can be used in tXMLMap to decode the response into a Talend schema.

Using web service calls in-flow
This service does not return the input information when the output is returned, so the job as
set up currently requires additional work to output the city and the weather in the same row.

If there is a requirement to do this then the flow as shown here can be added to a tMap
component as a lookup with reload at each row active. The input data can then be configured
via globalMap variables set from the input fields.

Calling a RESTful web service
This recipe shows how a RESTful web service can be called from Talend. The REST service
we will be using is a Google maps service, so you will need to be connected to the Internet to
perform this recipe.

Getting ready
Open the job jo_cook_ch09_0070_consumeRestService.

How to do it...
1.	 Drag a tRESTClient component onto the canvas.

2.	 Set the URL to http://maps.googleapis.com the Relative Path to "maps/api/
geocode/xml".

3.	 Add two Query Parameters "address" with a value of "Trafalgar Square" and
"sensor" with a value of "false".

Chapter 9

181

4.	 Your tRestClient should look like the one below:

5.	 Link a tLogRow component to the response and error flows out of the
tRestClient component.

6.	 Run the job.

How it works...
The tRestClient is a component that enables us to define all of the features of a REST
request. In this case, we define the URL of the Google APIs, and then the Geocoder API within
the maps functions.

Finally, we define the address for which we wish to provide the information.

There's more…
This recipe is similar to the previous SOAP recipe; however, the request does not require as
much setup as the SOAP recipe.

The downside of this method as it stands, is that the data is held in parameters, so we can
only do one request at a time.

Similarly to the SOAP request, if we wish to use this component in-flow, we'll need to add a
tMap component in reload at each row made, and use the tRESTClient component as a
lookup, where the Query Parameter for address in the tRestClient component would be
specified via globalMap variables.

Working with XML, Queues, and Web Services

182

Reading and writing to a queue
Talend ESB is supplied with the Apache ActiveMQ software for creating message queues and
topics. This recipe shows how we can write to and read from an ActiveMQ queue.

Getting ready
First, we'll need to start ActiveMQ.

1.	 Navigate to the folder <talend installation folder>\Runtime_ESBSE\
activemq\bin and double-click on the file activemq.bat.

2.	 This will open a command window. Do not close this command window while you are
doing this recipe.

3.	 You can access the ActiveMQ administration console by opening the URL
localhost:8161/admin. This will allow you to view your queues and topics.

4.	 Open the job jo_cook_ch09_0080_readWriteQueue.

How to do it...
The first thing to do is to write a message to a queue.

Writing to the queue

1.	 Drag a tMomOutput component to the canvas.

2.	 Create a flow between the tFileInputXML and the tMomOutput components.

3.	 Open the component and set the MQ Server to ActiveMQ, the To field to
customerData, and the MessageType to Queue. Your tMomOuptut should look like
the one in the next screenshot:

4.	 Run the job.

Chapter 9

183

5.	 Open a browser and navigate to the URL http://localhost:8161/admin

6.	 Click Queues on the navigation bar. You will see the queue you just created with one
message enqueued.

7.	 Double-click on the link customerData, and then click on the message.

8.	 You should now see the customer XML data in the message.

Reading the message from the queue

9.	 Now deactivate the subjob that writes to the queue.

10.	 Copy a tMomInput component to the canvas and change the settings to match
those for the tMomOutput component, as shown below:

11.	 Add a tLogRow component and run the job.

12.	 The message will now be displayed in the log.

13.	 Return to the browser and click on the Queues option on the navigation bar

14.	 You will see that the number of pending messages is now 0.

How it works...
The first subjob wrote an XML message to the queue named customerData. We then viewed
the customer data in the queue.

The second subjob then read the XML message from the queue, and we were able to see that
the message had been removed (dequeued).

Working with XML, Queues, and Web Services

184

There's more…
The tMomOutput and tMomInput components in this recipe were configured manually and
will commit records as soon as they are read and/or written.

The next recipe shows how we can treat data being read or written from a queue as a
transaction in a similar fashion to the session based transaction in the database chapter.

Ensuring lossless queues using sessions
In any production system, it is imperative that the data isn't lost when being read/written to or
from a data source/target. This recipe shows how this is achieved when reading and writing to
queues using the tMom component.

Getting ready
Open the job jo_cook_ch09_0090_losslesQueues.

How to do it...
In a similar fashion to creating sessions with a database, we will first add ActiveMQ
connection that will create the session.

1.	 Open the tMomConnection component to the canvas and tick the box
Use Transacted.

2.	 Open the tMomOutput component and tick the Use existing connection box.

3.	 Set the To field to losslessQueue, and the Message Type to Queue.

Add the rollback and commit components

4.	 Drag a tMomCommit component to the canvas and link this to the
tFixedFlowInput using an OnSubjobOk trigger.

5.	 Open the component and set the MQ Server to ActivMQ.

Successful run

6.	 Run the job and then check the queue in the web browser.

7.	 You will see that the queue losslessQueue has been created with 10
messages enqueued.

8.	 Delete the queue.

Chapter 9

185

Failed run

9.	 Open the tMap component and change the Expression field in the table killjob to
Numeric.sequence("s2",1,1) > 8.

10.	 Run the job and then check the queue in the web browser.

11.	 You will see that the queue losslessQueue has been created, however there are 0
records enqueued.

How it works...
We first created a session that allows transaction style processing by defining a
tMomConnection component as transacted.

We then ensured that our tMomOutput component is linked to the session by setting the Use
existing connection option to true.

When we ran the first time, rows were sent down the flow killjob, so all 10 records are
written to the queue when the commit is processed.

Then, the condition in the tMap component is set to mimic a job failure on the eigth record.
When we ran the job after the condition was changed, the commit was never processed, so
none of the records written to the queue were persisted.

There's more…
Like the database sessions, the rollback on a queue is automatic if a job fails, so the job only
needs to have a tMomCommit component.

The tMomInput component works in the same way as the tMomOutput when using a
connection, in that messages written to the queue will be removed if no commit takes place.

10
Debugging, Logging,

and Testing

This chapter contains exercises that illustrate the methods provided by Talend to locate and
correct code, display logging information, and create test data. They are as follows:

ff Finding the location of compilation errors using the Problems tab

ff Locating execution errors from the console output

ff Using the Talend debug mode – row-by-row execution

ff Using the Java debugger to debug Talend jobs

ff Using tLogRow to show data in a row

ff Using tJavaRow to display row information

ff Using tJava to display status messages and variables

ff Printing out the context

ff Dumping console output to a file from within a job

ff Creating simple test data using tRowGenerator

ff Creating complex test data using tRowGenerator, tFlowToIterate, tMap, and
sequences

ff Creating random test data using lookups

ff Creating test data using Excel

ff Testing logic – most used pattern

ff Killing a job from within tJavaRow

Debugging, Logging, and Testing

188

Introduction
When our code eventually runs as a production job, it is expected that it will be robust,
reliable, and bug free. For this to happen, it will usually pass through various stages of testing,
including the unit test stage performed by the developer.

This section shows some of the methods that can be used to ensure that developers can find
and fix problems quickly during this testing phase.

Debugging
The ability to find and locate issues within code quickly and efficiently is the key to successful
delivery of projects. Talend provides methods for debugging, and so does Eclipse.

Logging
Talend provides useful components for logging and capturing errors in tWarn, tDie, and
tFlowMeter. It also provides mechanisms for logging information to the console, which can
be a quick and valuable debugging tool, and is a vital part of the developers' armory. It is often
quicker to send and view messages and information to the log output during development
than it is to do the same to say a database or files.

Testing
It is obvious that code needs to be tested, and creation of unit testing data is usually part of
the developer's responsibilities. In many cases, Talend can be utilized as part of the test data
creation process to enable jobs to be properly tested.

Find the location of compilation errors using
the Problems tab

When you begin working with Talend, you will inevitably hit compilation errors when you run a
job. This recipe will show you how to easily identify the errors using Talend.

Getting ready
Open the jo_cook_ch10_0010_findCompilationErrors job.

How to do it...
The steps for finding the location of compilation errors using the Problems tab is as follows:

1.	 Run the job, and Talend will notify you that the job has compilation errors. Click on
Cancel to stop the job executing.

Chapter 10

189

2.	 Now click on the Problems tab, and you will see the errors, as shown in the
following screenshot:

3.	 If you click one each on you will see that the focus moves between the two tMap
components. This means that there is an error in each of the tMap components.

4.	 To locate the error exactly, click on the Code tab, highlighted in the previous diagram.

5.	 You should now see the generated Java code and that there are two red markers on
the right-hand side of the code.

6.	 Click on the top marker, and it will automatically take you to the line shown as follows:

7.	 This matches the line in the Problems tab with the error Syntax error on token "]",)
expected.

8.	 Click on the second marker, and it shows the line:

9.	 This matches the second error in the Problems tab.

Debugging, Logging, and Testing

190

How it works...
When Talend recognizes that there are one or more compilation errors during execution, it will
populate the Problems tab with the errors. Crossing over to the Java code enables the exact
lines to be located and fixed.

To fix the problems mentioned previously, replace the] with) in the first tMap, and change
the type of yearOfBirth to Integer in the output schema of the second tMap.

There's more…
If you follow the best practice regarding keeping changes small and executing often, then you
won't have to use this method often, because you should be aware of what changes you have
made since the last successful execution.

That said, it is a very quick and easy way to find lines that have errors and very useful when
you have lots of fields within a tMap or other component.

Locating execution errors from the console
output

This recipe shows that the often complex errors returned by Java can, in the main, be located
fairly easily if you know how.

If you are already familiar with Java, this exercise is trivial; however, if you are not then Java
errors can often seem very intimidating.

Getting ready
Open the jo_cook_ch10_0020_findExecutionError job.

How to do it...
The steps for locating execution errors from the console output are as follows:

1.	 Run the job. It will fail with a null pointer error. Note the line number from the first
line of the list of lines; 2636.

2.	 Open the Code tab and press CTRL + L.

Chapter 10

191

3.	 Type 2636 as the line number, and you will be taken to the following line:

4.	 This is the line that caused the job to fail. There is null data in the
customer.age field.

How it works...
It is fairly obvious from the message that the error occurred in tMap_1, but it's not so obvious
unless you know Java error messages. Unlike compilation errors, Talend does not list the error
in the problems log, so a bit of combined Talend and Java understanding is required here.

In most cases, the first line of the main body of the error message will show the job and line
number for the error. In our case, you will see that the first line ends with:

jo_cook_ch10_0020_findExecutionError.java:2636

This is the line number of the error within the job.

When working in the Code tab, CTRL + L will take you to a line number, in our case, 2636. This
is the line that failed, and we can see that the field is the customer age field.

From the job, we can also see that three rows had been read from the input, but only two have
been processed. This means that we have an error with the third row in the file.

When you look at the chapter10_jo_0020_customerData.csv file, you will see that the
age field for the third row is blank.

Debugging, Logging, and Testing

192

If you also look at tMap_1, you will see that the age field is non-nullable.

Thus, it is the blank age value that is causing this job to fail with a null pointer exception.

If you change the blank age to an integer value in the file, then the job should run ok.

There's more…
This method is a general rule of thumb and works for many Talend errors. Sometimes, the
error message occurs within a Java method for which there is no source code. In these cases,
it may help to use the Java debugging method as described later in this chapter.

Sometimes for deployed jobs in different environments the line numbers
in the errors do not match the line numbers in the Studio version of the
code. It is thus a good idea when deploying the code to ensure that the
source code is also deployed. The line number in the error will always
match the line number in the deployed code.

See also
ff Using the Java debugger to debug Talend jobs recipe later in this chapter

Using the Talend debug mode – row-by-row
execution

This recipe will show how we can find Talend data issues by watching the data as it flows
between components using the Talend debug mode.

Getting ready
Open the jo_cook_ch10_0030_useDebugMode job.

How to do it...
The steps for using the Talend debug mode are as follows:

1.	 Open the run tab, and select the Debug Run option on the left-hand side as shown in
the following screenshot:

Chapter 10

193

2.	 Click on Traces Debug and the job will execute, and you can watch the data in the
rows as they progress along the main flow of the sub-job until the error is hit, and the
job fails.

How it works...
Being able to view the data progressing through the job in real time allows us to see that the
third row failed. Because the reported error is a null pointer exception and the only field in the
row that has a null pointer is the age, we can confirm if the input age value is incorrect.

There's more…
You will notice that the execution of a job is slowed down considerably by using this method
for debugging because of the amount of data that is refreshed on the screen. This means that
this method isn't the most practical method for large volumes of data, unless you are happy to
wait for a while for the job to fail.

In case of larger datasets, it is better to use either logging or Java methods to debug the code.

Debugging, Logging, and Testing

194

See also
ff The Locating execution errors from the console output recipe in this chapter

ff The Using the Java debugger to debug Talend jobs recipe in this chapter

Using the Java debugger to debug Talend
jobs

Occasionally, it is necessary to delve deeper into the Java code generated by Talend in order
to locate and understand the cause of a bug. This recipe is a very light introduction for
debugging Talend code using the Java debugging mode in Talend.

Getting ready
Open the jo_cook_ch10_0040_useJavaDebugger job.

How to do it...
The steps for using the Java debugger to debug Talend jobs are as follows:

1.	 Select the Debug Run option from the Run dialogue and click on the down arrow for
the run type. Select Java Debug to run using the Java option.

2.	 Confirm the perspective switch by clicking Yes.

Chapter 10

195

3.	 Click the resume icon to start the job running.

4.	 The job will execute and return an error. Scroll through the console output (bottom
panel), and you will see the error, as shown in the following screenshot:

5.	 Click the hyperlink for line 2574. This will take you to the line that is causing an error.

Adding a breakpoint to allow inspection of data:

6.	 Right-click on the line number, and select Toggle Breakpoint. The line now has a
blue button next to it.

7.	 Run the job again using the Debug button , then the resume button , and it
will stop before the line is executed.

8.	 Highlight the code customer.age using the mouse, then right-click and select
Inspect. You will see that the value is 23.

Debugging, Logging, and Testing

196

9.	 Right-click again and select the option Watch. Repeat this for the customer name.
You will see that these fields have been added to the watch list in the top right hand
corner, as shown in the following screenshot:

10.	 Click the resume button twice more, and you will eventually hit the row where the
value is null. This will give you the name of the customer (J Smith) for the erroneous
age.

11.	 End the job by clicking on the resume button.

Adding a conditional breakpoint to find the row quickly:

12.	 Right-click on the line where we previously added the breakpoint (2574). Select the
option Breakpoint properties. This will open the following condition dialog, as shown
in the next screenshot.

13.	 Select Conditional breakpoint, and type customer.age == null into the text field
as shown in the following screenshot:

14.	 Run the job using the bug button and the resume button, and you will now see that
the debugger stops on the record with the null value for age.

Chapter 10

197

How it works...
Adding a breakpoint tells the debugger to stop before the line is executed, which allows us to
then view values of fields, and add them to the watch list if required.

When the resume button is then pressed, it will continue execution of the job until the next
breakpoint is reached, or the job finishes. In our case, because the error is on the fourth row,
the breakpoint will be hit two more times before we find the record with a null age.

Adding conditional breakpoints enables us to skip records, in which we aren't interested, and
only break the process for inspection when the condition is met. This is why when we start the
job and click resume, the first value for age in the watch list is null.

There's more…
The Java debug perspective allows for much more in-depth debugging; however, some Java
knowledge is essential for use, as is the knowledge of how Talend builds the Java code. Both
are outside the scope of this book.

This is only a very brief introduction to the Java debugger in Talend, which is actually based
upon the Eclipse debugger. More information and useful techniques for using the Eclipse
debugger can be found at the following link:

http://www.vogella.com/articles/EclipseDebugging/article.html

Using tLogRow to show data in a row
This recipe demonstrates some simple but interesting features of tLogRow, one of the
simplest components in Talend.

Getting ready
Open the jo_cook_ch10_0050_tLogRow job and run it. This is the default format for
tLogRow.

How to do it...
The steps for using tLogRow display data in a row are as follows:

1.	 Open the tLogRow component and change the Field Seperator to, and execute.
This will give you a CSV output.

Debugging, Logging, and Testing

198

2.	 Click on the option Use fixed lengths for values, and set all the Length columns to
30. You will see a formatted output. If not ,then you will need to copy the console
output to a text editor. Note that you will need to use CTRL + A followed by CTRL + C
to copy, because right-click does not work in the console.

3.	 Now, change the Length columns to -30. Notice that, the information is now
left-justified rather than right-justified.

4.	 Close tLogRow and change the component name from tLogRow_1 to customers.

5.	 Open the tLogRow component and change the type to Vertical.

6.	 You will see that the output is now a set of name/value pairs, and the name is still
being shown as tLogRow_1. This is the Unique name.

7.	 Open the tLogRow component and select the option Print label. Run the job.

8.	 You will see that the heading is now customers.

How it works...
As you can see, the tLogRow component is a very flexible method for adding runtime logging
information, and for aiding in the debugging process.

tLogRow uses Java print formatters under the covers to enable a variety of different methods
of logging row data.

If you do use tLogRow for debugging, then remember to either remove
it or deactivate the component prior to releasing the code to test.

There's more…
The Vertical feature with Print label is very useful when you have multiple tLogRow
components in a job. It allows them to be distinguished more easily.

tLogRow is a valuable tool for logging and debugging; however, it can really slow down
execution when run in the Studio. For larger volumes of log data, consider either:

ff Exporting the job and running as a batch process. You can then redirect the log
output to a file.

ff Use the Dumping console output to a file from within a job recipe in this chapter to
dump the log information to a file.

ff Write the data to a temporary file rather than tLogRow.

Chapter 10

199

Using tJavaRow to display row information
Although tLogRow is flexible and very useful, it does have some limitations, in that it only
prints what is defined in a schema. tJavaRow doesn't have the same limitations. This recipe
will show you how it can be utilized.

Getting ready
Open the jo_cook_ch10_0060_tJavaRow job.

How to do it...
The steps for using tJavaRow to display row information are as follows:

1.	 Run the job. You will see data in the console output sorted by customer key.

2.	 Remove the tLogRow component, and add a tJavaRow component in its place.

3.	 Open the tJavaRow component and add the following code:
//Test for change of key and print heading lines if key has
changed
if (Numeric.sequence(input_row.name, 1, 1) == 1){
 System.out.println("\n\n******************** Records for
customer name: "+input_row.name+" ***********************");
 System.out.printf("%-20s %-20s %-30s %-3s \n","name","DOB","ti
mestamp","age");
}

// print formatted output fields
System.out.printf("%-20s %-20s %-30s %-3s \n",input_
row.name,TalendDate.formatDate("dd/MM/yyyy",input_row.
dateOfBirth),TalendDate.formatDate("dd/MM/yyyy HH:mm:ss",input_
row.timestamp),input_row.age+"");

Debugging, Logging, and Testing

200

4.	 Run the job, and you will see that the simple list of records is now grouped within
headings, as shown in the following screenshot:

How it works...
System.out.println() is the Java function to print a line of text to the console, and is
what you will most commonly use when logging using tJava (and tJavaRow) and System.
out.printf, which allows a formatted string to be printed.

The if statement uses a sequence generated from the name to test whether this record is
the first for the name (sequence is 1). If the sequence is 1, then the heading lines are printed.

The data is then formatted and printed for each line.

There's more…
Although it is fairly rare to need tJavaRow for logging, it does provide much more flexibility
than tLogRow. Although it is probably even more of a rarity to produce formatted reports
using Talend, the exercise above is a good one for demonstrating the flexibility of tJavaRow
over other methods.

If you use tJavaRow within a flow, then make sure that you remember to
propagate the data using the Generate code option.

Note also that, if you simply want to capture the value of, say a globalMap field, you could
just add a temporary field to the schema, and then use tLogRow, but remember to delete the
temporary fields once your testing is over.

Chapter 10

201

Using tJava to display status messages
and variables
tJava is a very useful component for logging purposes, because it can be used in its own
sub job. This enables tJava to be used to print job status information at given points in the
process. The following recipe demonstrates this.

Getting ready
Open the jo_cook_ch10_0070_loggingWithtJava job.

How to do it...
The steps for using tJava to display status messages and variables are as follows:

1.	 Open tJava_1 and add the following code:
System.out.println("\n\nSearching directory "+context.
cookbookData+"chapter10 for files matching wildcard *jo*\n\n");

2.	 Open tJava_2 and add the following code:
System.out.println("Processing file: "+((String)globalMap.
get("tFileList_1_CURRENT_FILE")));

3.	 Open tJava_3 and add the following code:

System.out.println("\n\nCompleted......"+((Integer)globalMap.
get("tFileList_1_NB_FILE"))+" files found\n\n");

How it works...
tJava_1 and tJava_3 simply print out process status information (starting process and
process end). tJava_2 however, it is more interesting.

The tFileList component uses an iterator link to enable the components following it to be
executed multiple times. This means tJava_2 is called once for each file found in the source
directory that matches the wildcard expression.

Thus tJava_2 is used to log information regarding each of the files being processed, which is
a very useful piece of log information.

Debugging, Logging, and Testing

202

Printing out the context
This recipe here is for completeness rather than because it is in any way complex.

Getting ready
Open the jo_cook_ch10_0080_tContextDump job.

How to do it...
The steps for printing out the context are as follows:

1.	 Open the Context tab, and you will see a set of context variables.

2.	 Drag a tContextDump component from the palette.

3.	 Attach a tLogRow component.

4.	 Run the job.

How it works...
tContextDump simply dumps all the context variables defined within the job into a flow that
can then be logged via tLogRow.

There's more…
This component is most useful when running code that has been deployed to a server,
because the log information is usually stored in a file. This allows us to check the values of
the context variables at the time of execution that would otherwise be hidden from us. This is
invaluable for debugging a deployed process that has failed.

Chapter 10

203

Often, contexts contain sensitive information, such as user names and
passwords to system resources. If you do not want these to be shown, then
ensure that when you dump the data, you tick the Hide Password option.

Dumping the console output to a file from
within a job

This recipe shows how you can dump all logging data to a file, while still running the job in the
Studio. It is particularly useful when debugging large data sets.

Getting ready
Open the jo_cook_ch10_0090_consoleToFile job.

How to do it...
The steps for dumping console output to a file from within a job are as follows:

1.	 Run the job and view the console output.

2.	 Add the following code to tJava_1:
// redirect the console output to a file from within studio
System.setOut(new java.io.PrintStream(new java.
io.BufferedOutputStream(new java.io.FileOutputStream(context.
cookbookData+"outputData/chapter10/chapter10_jo_0090_consoleOut.
txt"))));

3.	 Run the job. You will see only the job's start and end messages.

4.	 Open the file in the cookbook data directory under output/chapter10 named
chapter10_jo_0090_consoleOut.txt. You will see that the logging information
has been copied to the file, as shown in the following screenshot:

Debugging, Logging, and Testing

204

How it works...
When the java statement is added to tJava_1 it causes virtually everything that is normally
written to the console (System.out.println(), tLogRow) to be directed to a file instead.

There's more…
The benefit of this technique is that debugging large datasets can be performed in the Studio
without the massive performance hit of logging to console and without the need to export the
job each time you wish to run it.

It also has added benefit over writing logging information via a fileOutput component, in
that it retains the formatting of tLogRow/tJavaRow and tJava as if it was being output to
the console, making the flow of the job logging information easier to understand.

Creating simple test data using
tRowGenerator

This recipe shows how tRowGenerator allows dummy data to be created for test purposes.

Getting ready
1.	 Open the jo_cook_ch10_0100_tRowGenerator job.

2.	 Open the tRowGenerator component.

How to do it...
The steps for creating simple test data using tRowGenerator are as follows:

1.	 Click on the Functions cell for customerId and select Numeric.sequence.

2.	 Click on the Functions cell for firstName and select TalendDataGenerator.
getFirstName.

3.	 Click on the Functions cell for lastName and select TalendDataGenerator.
getLastName.

Chapter 10

205

4.	 Click on the Functions cell for DOB and select TalendDate.getRandomDate. Your
tRowGenerator should be as shown in the following screenshot:

5.	 Exit the tRowGenerator component ,and run the job.

How it works...
Talend provides a set of random generators for different field types to enable test data to
be created very easily. So, as you can see, we are using a sequence to create sequential
customer key, random first names and last names, and a random date of birth.

There's more…
If you wish to add in a fixed values or Java/Talend method calls, then use the Functions
option "…", that allows you to add in values manually in the bottom section of the screen.

If you have created any custom code routines, you will see that these also appear in the list,
along with the Talend-provided data generation routines. It is therefore possible to create your
own routines to generate data, such as UK postcodes in the same way as Talend does, and
make them available to tRowGenerator.

Creating complex test data using
tRowGenerator, tFlowToIterate, tMap,
and sequences

This recipe shows how a more complex set of test data can be created. In this example, we will
build a set of CSV data ready to be loaded into a database which has the following structure:

ff Customer has 1 or more orders

ff Order has 1 or more order items

Debugging, Logging, and Testing

206

Getting ready
1.	 Open the jo_cook_ch10_0110_complexTestData job.

2.	 You will see a section of code that has been deactivated. Do not activate this code
until later in the exercise.

3.	 Run the job, and you will see that the customer file is created.

How to do it...
The steps for creating complex test data using tRowGenerator, tFlowTolterate, tMap, and
sequences are as follows:

1.	 Activate components tFixedFlowInput_2, tMap_2, and
tFileOutputDelimited_2. These are exact copies of the customer create
components.

2.	 Change these newly activated components detailed as follows:

1.	 Open tFixedFlowInput_2 and change Number of rows to Numeric.
random(1,5).

2.	 Open tMap_2. Change the name of the variable to orderId, and the name
of the sequence to order.

3.	 Add a new column to the output named orderId, and copy the variable
var.orderId to it.

4.	 Delete the customerName output column.

5.	 In the customer expression field, press CTRL + SPACE, and select the
tFlowToIterate value for customerId. It will populate as ((Integer)
globalMap.get("row3.customerId")).

6.	 Change the name of the file in tFileOutputDelimited to context.
cookbookData+"outputData/chapter10/chapter10_jo_0110_
order.csv" and tick the Append option.

3.	 Run the job. You will see that the order file has been created with between 1 and 5
orders for each customer.

4.	 Activate the rest of the components and run the job. You will see that the order item
file has been created with between 1 and 5 items per order.

Chapter 10

207

How it works...
The tFlowToIterate components and the Numeric.sequence commands are the key
to this method. The tFlowToIterate component allows us to cascade the key information
down from the highest level (customer) to the lowest level (order item), and the uniquely named
sequences enable us to generate unique keys for each type (customer, order, order item).

The Numeric.random commands are also useful, in that they make the data "interesting". It
allows us to generate a random number of orders per customer and items per order.

Note also the use of the lookup and the random function again to assign products to each
item randomly. This is described in more detail in the next exercise.

Also note the deletes at the beginning. They have been set to delete the created files prior
to execution, and you may also notice that they are set to never fail. The former is due to
the fact that we are appending to the order and order item files; failure to do this will result
in continually growing files. The latter ensures that when we first run the job, it does not fail
because the files aren't found in the directory, which they will not be.

There's more…
Using all the test data generation techniques detailed in this chapter, it is possible to create
varied but referentially accurate data, which will provide a platform for testing of Talend jobs.

It is also possible to use these as a basis for generating Excel files that can then be
hand-cranked with additional data to make the tests even more realistic.

Warning: This method uses random values to create data, so will probably
never create the same data twice. Once you are happy with a test data set,
then copy it to another directory to avoid it being overwritten. If you want
repeatable tests, then use actual numbers rather than random numbers.

Creating random test data using lookups
This simple technique shows how we can randomly assign values using lookups.

Getting ready
Open the jo_cook_ch10_0120_randomTestDataLookups job.

Debugging, Logging, and Testing

208

How to do it...
The steps for creating random test data using lookups are as follows:

1.	 Open tMap.

2.	 Open the tMap settings for the productData input flow.

3.	 Change the Match Model to First Match.

4.	 For the Expr. key for productData, add the code:
Numeric.random(1,15)

5.	 Drag all columns from both inputs to the output.

6.	 Your tMap should now look like this:

7.	 Exit tMap and run the job.

How it works...
As you will see from the output, the job will add a random product ID and product description
to each order item row.

The match model of First Match ensures that only one match is returned for each order
item line.

The Numeric.random(1,15) function returns a value from 1 through to 15, which is the
number of products in the products list CSV file.

Thus the process will generate a random number for each order line and then use this random
number as a key to look up against the product list and assign a product to the order line.

Chapter 10

209

There's more…
Although the data in the previous example is technically correct, it is fairly uninteresting,
because there is no deviation in the products held in the order item. This technique can be
used to enhance the data further to ensure that a more realistic test set is created. This is
because it uses genuine data but in a random manner, which is usually more reflective of
actual order data. It is possible to use one tMap to reference many lookups, so a fairly small
job can create rich and realistic data rows for testing.

Be aware, though, that random data cannot be reproduced. Thus, it is
usually wise to only run this job once during testing and store the results
in tables or files that will be copied into the tables you will be using for the
tests. This ensures that the tests are repeatable.

Creating test data using Excel
Another useful method of creating test data is to define the data in MS Excel, and then create
a job to convert the Excel worksheets into the format required by the application, such as a
CSV file or database table.

Getting ready
Open the Excel workbook chapter10_jo_0130_ExcelTestData.xlsx that can be found
in the data directory. You will see two worksheets: customer and item.

How to do it...
The steps for creating test data using Excel are as follows:

1.	 Highlight the first two rows in the customer table and drag them down to create two
more customers.

2.	 Copy the first 4 lines from the order workbook and change the customers to be 3 for
the first two new rows and 4 for the final two. Ensure that order ids are contiguous.

3.	 Open the jo_cook_ch10_0130_excelTestDataLoad job. You will see that the
customer Excel file is being copied to an equivalent XML file.

Debugging, Logging, and Testing

210

4.	 Drag the order Excel object from the repository location, shown as follows:

5.	 Drag a tXMLOutput component and link it to tFileInputExcel.

6.	 Open tFileOutputXML and change the File Name to context.
cookbookData+"/outputData/chapter10/order.xml".

7.	 Change the Row Tag to order.

8.	 Create an onSubjobOk link from the customer Excel to the order Excel components.

9.	 Run the job. You will see that the two XML files have been populated.

How it works...
This exercise shows how MS Excel can be used to create test data quickly. Because Talend
is able to read MS Excel files directly, our test data created in the Excel spreadsheet can be
transformed into any other format, such as a CSV file, a database table, or an XML file that
can be consumed by a downstream process.

In this example, the inputs to our process to be tested are a customer XML file and an
order XML.

There's more…
This is a great technique for creating test data, because Excel allows columns of data to be
viewed, created and managed much more easily than say a set of XML files.

This technique is usually popular with testers, because they are usually very familiar and
productive with Excel.

Chapter 10

211

Testing logic – the most-used pattern
This is probably the most-used job design in Talend programming, and is used to ensure that a
snippet of new code is not influenced by external factors within a large and complex job. This
simple recipe shows how this can easily be achieved.

Getting ready
Open the jo_cook_ch10_0140_logicTest job.

How to do it...
The steps for testing logic are as follows:

1.	 In tFixedFlowInput, tick the box labeled Use Inline Table.

2.	 Add the values, as shown in the following screenshot:

3.	 In the tMap, add a new field to the output named ageCheckValid, and populate it
with the following code:
customer.age >= 21 && customer.country.equals("UK") ? true :
customer.age >= 18 && !customer.country.equals("UK") ? true : false

4.	 Run the job to see the results of the test.

Debugging, Logging, and Testing

212

How it works...
In this example, we are testing an age limit; 21 or over is valid for the UK, 18 or over valid for
the rest of the world.

In tFixedFlowInput, we defined a set of test values that would prove that the logic test in
tMap is working correctly.

The tLogRow component then allows us to see the inputs and corresponding results.

There's more…
This example is great for testing new rules, and especially for testing new code routines prior
to adding to a complex job. It is quick to create, and the tFixedFlowInput component
allows us to build a controlled set of test data that should test all return values, thus giving us
confidence in the correctness of the new code or code routine.

Killing a job from within tJavaRow
Most jobs at some point require validation and will often need to be stopped if the data is
found to be in error. In most cases, you can use tDie, however, if your error is found in a
tJavaRow or tJava, then using tDie becomes quite convoluted. This exercise shows how
the same results can be achieved using simple Java functionality.

Getting ready
Open the jo_cook_ch10_0150_killingJobtJavaRow job.

How to do it...
The steps for killing a job from within tJavaRow are as follows:

1.	 Run the job. You will see that it fails with a null pointer exception.

2.	 Change the line output_row.age = input_row.age; to the following code:
if (input.age == null) {
 System.out.println("Fatal Error: age is null");
 System.exit(99);
} else {
 output_row.age = input_row.age;
}

Chapter 10

213

3.	 Run the job again. You will see that the job has been killed in a much more elegant
fashion, as shown in the following screenshot:

How it works...
System.exit is a Java kill command and as such will cause an immediate exit from the
Talend code. The value of 99 is the user-defined return code for the process.

11
Deploying and

Scheduling Talend Code

In this chapter we will cover the following recipes:

ff Creating compiled executables

ff Using a different context

ff Adding command line context parameters

ff Managing job dependencies

ff Capturing and acting on different return codes

ff Returning codes from a child job without tDie

ff Passing parameters to a child job

ff Executing non-Talend objects and operating system commands

Introduction
Now, we are really down to the business end of using Talend Open Studio. All the coding
techniques described in all the other chapters count for nothing if we cannot execute the jobs
we create in the real world on real data.

So, this chapter shows the methods used to deploy and schedule your Talend code once you
have fully coded and tested it.

This, chapter covers two main topics required to execute our Talend jobs in real-world
environments; how to generate executable code that can be used within a scheduling tool or
script, and how to create schedules within Talend if we wish to use Talend for scheduling.

Deploying and Scheduling Talend Code

216

Whichever method you choose, Talend can easily call or be called by a variety of other tools.

But first, there are a few points of note that you should read before continuing on to the recipes.

Context Variables
Some of these exercises will make reference to the context variables. It is recommended that
you first complete Chapter 6, Managing Context Variables prior to tackling these exercises. There
is also a detailed discussion on managing contexts in Appendix B, Management of Contexts.

Executable code
The code generated by Talend Open Studio is fully functional Java code that can be deployed
as an executable jar file, the same as any other Java code.

This means that the code, once compiled, can be called via a command line, which means
that it can be scheduled, just like any other Java code via any normal scheduling method,
such as an enterprise scheduling tool, Quartz, cron, or Windows scheduler. It is even possible
to write scheduling scripts via Linux bash scripts or Windows PowerShell.

Because Talend code is compiled into JAR files, pretty much any scheduler will be able to
execute a Talend object within a schedule.

Managing job dependencies within Talend
If you choose to, it is also possible to manage complex job dependencies within Talend Open
Studio, because it is possible to build a job that can call one or many other jobs. Along with a
variety of trigger possibilities, it is possible to create complex sequences and dependencies.

You should be aware, however, that it can become quite complex, and additional work may be
required to implement features that would be out of the box for a normal scheduling system.
A good example of this would be restartability of a schedule should it fail in the middle. This
feature can be added to Talend, but is given for most scheduling tools.

Creating compiled executables
This recipe shows how we create compiled code from the job we have created. First, we will
export the code into a compiled executable, and then we will execute it via the command line.

Chapter 11

217

How to do it...
1.	 Open the folder chapter11 in the metadata repository.

2.	 Right-click on the job jo_cook_ch10_0010_helloWorld, and select the option
to Export Job.

3.	 Click on Browse to navigate to the folder compiledCode within the cookbook
directory.

4.	 Ensure the Export type is Autonomous Job, and tick Extract the zip file.

5.	 In the options tick Shell launcher and Context Scripts, and tick Apply Context to
children Jobs.

6.	 Your dialog should look like the one in the next screenshot:

Deploying and Scheduling Talend Code

218

7.	 Click on Finish to compile the job.

8.	 Navigate to the compiledCode folder, and you will see a zip file and a directory for
the compiled job.

Executing the job

9.	 Open a command window within Windows or a shell window in Linux.

10.	 Navigate to the cookbook compiledCode\jo_cook_ch10_0010_helloWorld
directory, and execute the .bat file for Windows or the .sh file for Linux.

11.	 The output will contain the words Hello World as expected.

How it works…
The export dialog exports the Talend job as a ZIP file that contains everything required to
execute the Talend job.

Because we chose to unzip the ZIP file, and to create scripts and launchers, Talend unpacks
the ZIP file into a directory and creates the job launcher scripts for the environment to enable
us to run the Talend jobs easily manually.

Using a different context
If you have decided to use multiple contexts as a means of defining your runtime properties,
then they can be selected at runtime using the following method.

Getting ready
Export the job jo_cook_ch11_0020_differentContext, as shown in the previous recipe.

How to do it…
1.	 Open a command window, navigate to the job directory, and execute the shell

launcher for your environment (see previous exercise).

2.	 You will see that the output contains the text Value = ABC.

3.	 Open the shell launcher, and scroll to the very end of the command line.

4.	 Change the context from --context=development to –context=test as shown
in the next screenshot:

Chapter 11

219

5.	 Save the change, and then rerun the shell launcher.

6.	 You will see that the output contains the text Value = DEF.

How it works…
The launcher file contains the command line used to execute the Talend job, one of whose
parameters is the context being used by the job.

By setting the context variable to point to a different context, then the job will run using the
different variables defined for that context.

There's more…
In addition to being able to select a different context, the context files can be amended in situ,
thus allowing parameters to be changed within the deployed environment.

These files can be found in the directories below the main compiledCode folder. It is best to
perform a search for .properties to find the files.

This is a reasonably good way of protecting an environment, because the context variables
and launchers in production are usually available only to operational personnel, so the values
available to a job in production, for example, passwords, can be set in production by operation
staff, and will never be known by other personnel.

Great care must be taken when using this method to ensure that after
the first deployment of the context variables and launchers in production,
that they are not accidentally copied over when deploying a new version,
or that the support staff remember to update them if the new version of
the code is copied to different folder.

Adding command-line context parameters
Often, it is required that one or more parameters are passed at runtime to a process to affect
its behavior, such as a schedule identifier, or for instance, if the process is common for many
different sources, a file identifier. This recipe shows how parameters can be passed into a job
via the command line.

Getting ready
Export the job jo_cook_ch11_0030_differentContextVariable.

Deploying and Scheduling Talend Code

220

How to do it…
1.	 Run the exported job.

2.	 You will see the output contains Hello World.

3.	 Open the launcher.

4.	 Scroll to the end of the line, and add the line --context_param name=Dave.

5.	 Run the job again. You will see that the output now contains Hello Dave.

How it works…
Adding the new value to the command line instructs Talend to override any value that has
been set within the job context, regardless of the environment.

There's more…

You can add as many parameters to the command line as there are in
your context simply by appending them to the end of the command line,
one after the other. Remember, though, to use the exact name that is
used in the context.

This method is great for creating utility jobs that can be called via the command line. This
can be achieved by wrapping the launcher in another .bat/.sh file, and mapping the calling
parameters to context parameters.

Managing job dependencies
This recipe shows how simple, serial job dependencies can be managed using Talend.

Getting ready
Open the job jo_cook_ch11_0040_simpleSchedule.

How to do it…
1.	 Drag the job jo_cook_ch11_0040_task1 onto the canvas.

2.	 Drag the job jo_cook_ch11_0040_task2 onto the canvas, and link from task 1
using an OnSubjobOk trigger link.

Chapter 11

221

3.	 Drag the job jo_cook_ch11_0040_task3 onto the canvas, and link from task 1
using an OnSubjobOk trigger link.

4.	 Your job should now look like the one in the next screenshot below:

5.	 Run the job to see the output of the three tasks.

How it works…
Dragging each of the jobs onto the canvas automatically creates a tRunjob component.

Each tRunjob is a subjob in its own right, so testing for onSubjobOk will result in the jobs
executing serially, assuming that they all run without error.

There's more…
The following are some additional points to be noted regarding job dependencies.

Die on error
The tRunJob components will die if an error occurs, because they are by default set to
Die on error.

If you wish to allow jobs to fail, but the schedule to continue, then uncheck the Die on child
error boxes for each of the tRunJob components.

Deploying and Scheduling Talend Code

222

Adding error checks to the schedule
If you wish to perform an error-check process, should one of the process fail, then ensure that
Die on child error is unchecked, and then add an OnSubJobError trigger link from the child
job to the error job.

Restartability
If you wish to add restartability to your job, then it is necessary to hold the runtime status of
each step of a job in a persistent store, and add a status test to each step of the schedule
before processing.

The status test can be performed using an If trigger, which is demonstrated in the next exercise.

Capturing and acting on different return
codes

This recipe shows how we can use the return codes from a child job to control the process flow
in a schedule more effectively.

Getting ready
Open the job jo_cook_ch11_0050_ChildReturnCodes. You will see that it is a simpler
version of the job from the previous exercise.

How to do it…
We will begin by printing the return code from a child job.

Printing return code

1.	 Add a tJava component with the following code:
System.out.println("Return code is: "+((Integer)
 globalMap.get("tRunJob_1_CHILD_RETURN_CODE")));

2.	 Link from the task to the tJava component using OnSubjobOk.

3.	 Run the job—you will see that the return code is 0.

Setting the return code

4.	 Double-click on the child job to open it.

5.	 Add a tDie component, and link it to the tJava component using OnSubjobOk.

6.	 Open the tDie component, and change the code to 4 . Now return to the calling
(parent) job.

Chapter 11

223

7.	 Open the component tab for the task, and untick Die on error.

8.	 Run the job—you will see that the return code is 4.

Routing using the return code

9.	 Add the jobs jo_cook_ch11_0050_task2 and jo_cook_ch11_0050_
errorHandler to the canvas.

10.	 Right-click on the tJava component, and select Trigger, then select Run If.

11.	 Join it to task 2.

12.	 Repeat for the errorHandler task, as shown in the next screenshot:

13.	 Click on the task 2 If link, and in the Component tab, add the the code ((Integer)
globalMap.get("tRunJob_1_CHILD_RETURN_CODE")).equals(0), as
shown in the next screenshot:

14.	 Repeat for the errorHandler if link, but this time, check for value of 4.

15.	 Run the job, and you will see that the error handler child job is executed.

Deploying and Scheduling Talend Code

224

How it works…
In the child job, we can change the return code by using a tDie component.

It is then necessary to ensure that the parent job does not die on error, otherwise the job will
terminate immediately, and we won't be able to test the return codes.

In the parent, we then use an If Trigger for a return code of 0, and an If trigger for a return
code of 4 to route the schedule to the appropriate next stage.

There's more…
This method relies on the use of tDie components, meaning that this method can only be
used when the child job fails.

To return codes without killing the job, see the next section, Returning codes from a child job
without tDie.

Returning codes from a child job without
tDie

In this recipe we will show how return codes can be set in a child job and used in a parent,
without having to kill the child process.

Getting ready
Open the job jo_cook_ch11_0060_childReturnCodesNoDie. This job is the end state of
the previous recipe.

How to do it…
The first thing we need to do is add the return code value to a buffer for the parent job to
pick up.

Buffering the return code

1.	 Open task_1 and replace the tDie component with a tFixedFlowInput
component.

2.	 Add an Integer column to the tFixedFlowInput component called returnCode.

3.	 Set the value to 4.

4.	 Add a tBufferOutput component and add a flow from the tFixedFlowInput
component to it.

Chapter 11

225

Capturing and storing the return code in the parent

5.	 Return to the parent job.

6.	 Add a tJavaRow component to the job.

7.	 Create a flow from the tRunJob component for task 1 to the tJavaRow component.

8.	 Open the tRunJob component, and click on Copy Child JobSchema, as shown in the
next screenshot:

9.	 Open the tJavaRow component, and insert the following code:
globalMap.put("returnCode", input_row.returnCode);

10.	 Change the the tJava component and the two If links to use returnCode instead
of tRunJob_1_CHILD_RETURN_CODE.

11.	 Run the job.

How it works…
The tBufferOut component is used to transmit data from a child job to a parent, and we
can easily access the schema of the child job (as set in the tBufferOut component) using
the Copy Child Job Schema option in the tRunJob component.

When the parent picks up the code, it stores it in a globalMap variable for use by the
If conditions.

There's more…
Even though this method takes slightly more effort, it does mean that we aren't forced to kill a
child job to return a non-zero return code, which does make it more flexible.

Deploying and Scheduling Talend Code

226

This method has the benefit of allowing us to return warning messages or even to return codes
that will allow us to process different legs of a schedule, depending upon the returned value.

Passing parameters to a child job
In this recipe, we will show how parameters can be passed to a common child job.

Getting ready
Open the job jo_cook_ch11_0070_childParameters. This job simply executes a child
job. If you examine the child job, you will see that it prints the value of the context parameter
inputParameter.

How to do it…
1.	 Run the parent job.

2.	 You will see that the value for inputParameter is fromChild.

3.	 Open the tRun component tab, and click on + to add a Context Param option.

4.	 Untick Transmit whole context.

5.	 Select inputParameter in the Parameters column, and set the Value to
fromParent, as shown in the next screenshot:

6.	 Run the job, and you will see that the value for inputParameter has changed to
fromParent.

How it works…
All context variables defined for a child process are made available to a calling parent job via
the tRunJob component, as we saw previously.

Chapter 11

227

There's more
In this exercise, we chose to send selected context variables to the child. This is generally a
good practice because it forces us to think about what data we wish to communicate from
parent to child. That said, if there are many context variables, this method becomes unwieldy,
or if we wish to send them all, then we can use the option Transmit whole context.

Executing non-Talend objects and operating
system commands

Often, when running a schedule, it is necessary to execute a mixture of Talend and non-Talend
objects, such as database scripts, batch files, or shell scripts. This exercise shows how this is
easily achieved using Talend.

Note that this exercise is for Windows only.

Getting ready
Open the job jo_cook_ch11_0080_systemCalls.

How to do it…
1.	 Drag a tSystem component onto the canvas.

2.	 Set the Command to the following:
"cmd /c"+context.cookbookData+"/batchFiles
 /jo_cook_ch11_0080_batchFile.bat"

3.	 Add a tJava component, and add the following code:
System.out.println("Return code"+
 ((Integer)globalMap.get("tSystem_1_EXIT_VALUE")));

4.	 Link the two components using and onSubjobOk trigger and then run the job.

Deploying and Scheduling Talend Code

228

How it works…
The tSystem component sends a call to the operating system to execute a native command.
In our case, the command is to execute a .bat file that we have coded.

When the .bat file completes, the return code can be accessed using the EXIT_VALUE
global map variable.

There's more…
Although this exercise is for Windows, the same principle applies for Linux. The only difference
being that cmd /c is not required on the command line.

12
Common Mistakes and

Other Useful Hints
and Tips

This chapter contains a collection of useful tips and information that should help resolve
some common issues and answer some common questions.

ff My tab is missing

ff Finding code routine

ff Finding a new context variable

ff Missing reload at each row global variable

ff Dragging component globalMap variables

ff Some complex date formats

ff Capturing tMap rejects

ff Adding job name, project name, and other job-specific information

ff Printing tMap variables

ff Stopping memory errors in Talend

Introduction
This chapter is unlike any of the other chapters, because it doesn't contain a set of exercises,
rather it is a collection of useful information and techniques that don't really fit into the
earlier chapters.

Common Mistakes and Other Useful Hints and Tips

230

It is impossible to include everything that is missing from the previous chapters, so we have
tried to incorporate hints and tips that we believe will prove most useful.

My tab is missing
If you find that, say, your Run job or context tab has gone missing, perhaps as a result of you
accidentally closing them, then there are two options for getting them back.

How to do it…
The first option will restore a tab, the second will reset your whole UI.

Show view:
This method allows you to simply restore a missing tab.

1.	 In show view method, Click on Window then click on Show view.

2.	 Open the Talend folder if it isn't already open then click on the tab that you
are missing.

Chapter 12

231

Reset the perspective
This option allows you to reset the UI to its original format, so is more disruptive than the
previous method.

1.	 In reset the perspective method, at the top right-hand side of the Studio is a list
of perspectives.

2.	 Click the integration perspective option.

3.	 Right-click then click, on Reset, as shown in the next screenshot:

4.	 Click on OK on the dialog and your whole Integration view will be reset to the default,
which will return your missing tabs.

Finding the code routine
Occasionally, when you call a Talend function or a function that you have created in a code
routine, you will receive a compilation error message about your routine, such as: myRoutines
cannot be resolved.

This is usually because the link between the code routine and the job has been lost. This can
easily be re-established.

How to do it…
1.	 Close the job on which you are working.

Common Mistakes and Other Useful Hints and Tips

232

2.	 Right-click the job in the Repository panel, and click Setup routine dependencies.

3.	 You should find that your routine is missing from the list that is displayed in the
following dialogue. (Note we do not have any attached routines here).

4.	 Click on +, then select your routine from the list that is then displayed. You should
then see your routine in the User routines tab.

Chapter 12

233

Finding a new context variable
If you add a new variable to a context group in the Repository while you have a job open
(which is a normal thing to do), then Talend will not automatically add it to your job.

This means that when you run your job, expecting your new context variable to be present, you
will get a compile error.

How to do it…
1.	 Open the context tab in your job.

2.	 Click the group you have just changed, then the button.

3.	 You will see that the tick box is a blob, not a tick.

4.	 If you expand the context, you will see your new variable, but it will not be ticked.

5.	 Tick your variable to include it in your job, and exit the context tab.

Reloads going missing at each row global
variable

When using reload at each row with globalMap Key (as seen in the next screenshot), Talend
allows you to cut and paste expressions into the globalMap variable, but when you go out of
the tMap component and come back in again, you will see that it hasn't changed.

Common Mistakes and Other Useful Hints and Tips

234

How to do it...
To get around this, you have one of two options:

1.	 Drag the field from an input source. This option is limited, in that the expression will
be just the field name, so you cannot apply any other logic to the variable, such as
substring or uppercase.

2.	 The second (and preferred option) is to edit the expression in the Expression editor
tab. This method allows any expression to be coded to ensure that the variable is set
correctly, as shown in the next screenshot:

Dragging component globalMap variables
All components produce one or more globalMap variables that can be used within other
components, such as tJavaRow.

If you do have lots of components, then using Ctrl + Space to locate your specific globalMap
variable may be difficult.

A simpler method is to open the component tab for the component, ensuring that it is in panel
mode, and that you can see the outline view in the bottom right-hand side of the studio.

Chapter 12

235

You can then simply expand the given component and drag the variables from the outline
panel into your code panel, as shown in the next screenshot:

Some complex date formats
Java provides a wide range of date options that can be used to define date formats, but
sometimes the options to choose for a particular date time string aren't immediately obvious.

Some date formats that may prove useful are as follows:

ff ISO 8601 with offset standard: This format contains date, time, and the offset from
UTC, as well as the T character that designates the start of the time, for example,
2007-04-05T12:30:22-02:00.

The pattern for this date and time format is yyyy-MM-dd'T'HH:mm:ssXXX.

ff Mtime pattern: The tFileProperties component returns a field named mtime_
string that is a string representation of a date and time format, for example, Wed
Mar 13 23:53:07 GMT 2013.

The pattern for this date and time format is EEE MMM dd HH:mm:ss z yyyy.

Capturing tMap rejects
The tMap component is the most powerful and flexible of the Talend components, but unless
you know where to look, some of the options available aren't immediately obvious. Take for
example, the Die on error flag.

Common Mistakes and Other Useful Hints and Tips

236

For most components, this is in the main component panel, but for tMap, it is in the tMap
configurations dialog, as shown in the next screenshot:

Unchecking the Die on error box will create a new output error flow called ErrorReject,
containing a message and a stack trace. Additional fields may be added if required, as shown
in the next screenshot:

Adding job name, project name, and other
job specific information

Often, for logging or error messaging purposes it is required to capture information about the
job, such as the job name or the project name.

Chapter 12

237

Three common values that can be used in a job are shown in the following table:

Job version jobVersion

Job name jobName

Talend project name projectName

Talend also stores a host of other variables, such as parent and child process IDs that can be
easily found by opening an empty job and inspecting the Java code.

Printing tMap variables
If you inspect code generated from a tMap variable, you will see that each of the expressions
are converted into a line of the following format:output column = expression;.

This suggests that the expression is limited to one line of Java code.

Although this is how we would normally treat tMap expressions (in order to avoid confusion),
this isn't strictly true, and there is one scenario where breaking this rule may be useful.

The scenario in question relates to tMap variables. If a tMap variable fails due to an exception
in a variable expression that is itself a result of a variable expression, then the job can
become quite difficult to debug.

To make it easier to see what is happening in each step, we can add a System.out.
println code to an expression to print the state prior to execution of the failing step.

In this case, we simply force the expression logic in the generated code to become: output
column = expression; System.out.println(output column);

This is how it looks in the expression editor in Talend:

Common Mistakes and Other Useful Hints and Tips

238

Stopping memory errors in Talend
When dealing with large amounts of data, there is often a trade-off between performance and
memory usage, so it is likely that at some point in your Talend career, you will encounter a
problem which is memory related.

This section will cover many of the actions that can be taken to ensure that you are able to
deal with your memory errors quickly and efficiently.

Increasing the memory allocated to a job
If you have enough memory and yet your job is failing, then it is worth increasing the amount
of memory available to the job you are running. You can do this by changing the value of the
Java Xmx setting.

This setting is available via the Advanced Settings option from the Run tab, as shown in the
next screenshot. Simply tick the box for Use specific JVM arguments, and change the value
to suit your needs. Note that you can use g for gigabytes, for example, –Xmx3g.

Reducing lookup data
The tMap lookup data is by default stored in memory, so large lookups will consume large
amounts of memory. Wherever possible, ensure the following:

ff You only keep columns in a lookup that you need within the tMap. Drop all other
columns prior to the tMap.

Chapter 12

239

ff You only keep rows that you need; filter out any extraneous or duplicate rows prior to
the tMap.

This should be best practice for any lookup, regardless of size, but for large lookups the
removal of just a couple of columns for every row can sometimes reduce the memory
requirement significantly.

Using hashMap/in-memory tables
If you need to read the same lookup data multiple times in a job, then it is wise to load only
one copy of the data into either a tHashOutput component or an in-memory table at the
start of the job, and then read the lookups directly from the in-memory constructs.

This technique will also ensure that your job start-up time is lower, since there will be no
requirement to load multiple versions of the same data from a file or a database.

Splitting the job
You may also consider splitting the job into multiple jobs, assuming that the process can
be split. This enables the memory to be freed at the end of each job, meaning that each
individual job can have access to the whole of the memory available.

Be aware that this method will require one or more temporary tables to be created to hold the
data between jobs.

Dropping data to disk
1.	 The tMap does allow the option to dump lookup data to disk. This method is useful

when you have one or more large lookups that take up more memory than the
input data would. First, you need to define the properties for the files. The tMap
configurations options allow you to define a folder and the size of the temporary files
that will be stored, as shown in the next screenshot:

Common Mistakes and Other Useful Hints and Tips

240

2.	 Note that if you choose not to do this, Talend will write to a default folder.

3.	 Next, select the lookups that you wish to drop to disk, as shown in the next screenshot:

When Talend executes a tMap where this method is used it will write the lookups to disk, and
then read the input data into memory prior to processing.

If you choose to use this method, then you must ensure that the input data to be processed
takes less memory than the lookup, and you should also be aware that the order of the input
records is not maintained.

Split the files
If the disk method would struggle because the input is too large, then you could consider using
the same method but splitting the input into a number of files and processing them individually.

While this may affect your processing time, it will stop you from running out of memory.

Hardware solutions
As a last resort, or if an increase in the time to process is not acceptable, then consider
adding more memory to your server.

It would also be possible to add additional servers and processing subsets of the input data
on different servers at the same time, and then recombining the output data in a final stage.

A
Common Type

Conversions

The following table is a set of Java and Talend methods that allow conversion between
different data types. This is by no means an exhaustive list, but will cover many of type
conversions that you will encounter.

From Type To Type Example
String Integer Integer.parseInt(row1.myString)

String Date TalendDate.parseDate("dd-MM-
yyyy",row1.myString)

String BigDecimal new BigDecimal(row1.myString) where
myString can include decimal places. For example,
99.00

String Float Float.parseFloat(row1.myString)

String Long Long.parseLong(row1.myString)

Integer String variable+"" or variable.toString()
Date String TalendDate.formatDate("yy-MM-dd",

row1.myDate)

BigDecimal String row1.myBigDecimal.toString()

Float String row1.myFloat.toString()

Long String row1.myLong.toString()

Integer Long row1.myInteger.longValue()

Integer BigDecimal new BigDecimal(row1.myInteger)

Integer Float new Float(row1.myInteger)

Common Type Conversions

242

From Type To Type Example
Float Integer To do this conversion you need to decide on a

rounding methods such as Math.round(),
Math.ceil(), Math.floor() and then cast
the result to Integer.

BigDecimal Integer As with Float, BigDecimal can have decimal places,
so will need to be rounded prior to casting to
Integer.

Float BigDecimal new BigDecimal(Float.toString(row1.
myFloat))

B
Management of

Contexts

Context variables are very important within Talend for managing code through environments
from development to production. This appendix describes different approaches for managing
context variables and context groups within a project in terms of their pros and cons.

Introduction
The methods described here are all different in approach from each other and are all viable
for use within a Talend project.

Which method you choose to use should be dependent upon the nature of your Talend project
and the skills within the team.

It is recommended that before making any decision on contexts for your project, you should
first perform a small trial of each method to understand the pros and cons more completely
and then decide which one most closely suits your requirements.

Manipulating contexts in Talend Open Studio
Creating contexts in the studio is described in the recipe Adding contexts to a context group in
Chapter 6, Managing Context Variables.

Management of Contexts

244

Pros
This is the simplest method of managing contexts. It all takes place in the Studio and is very
visible to the developer.

It is also is a reasonably good way of protecting an environment, because when the code
has been deployed, the context variables and launchers in production are usually available
only to operational personnel. This means that the values available to a job in production, for
example, passwords, can only be set in production by operation staff and will never be known
by other personnel.

Cons
The number of contexts can easily get out of hand and become unmanageable, especially
when multiple developers are working on the same project. Each will usually require a copy of
the context, uniquely named, containing their information for their test environment.

Another downside is that it is very easy to create different context groups with different
contexts, so that you end up with a variety of flavors or development, for instance, dev, DEV,
Dev, and so on.

However, great care must be taken when using this method to ensure that after the first
deployment of the context variables and launchers in production, they are not accidentally
copied over when deploying a new version, or that the support staff remembers to update
them if the new version of the code is copied to different folder.

Conclusion
If the processes surrounding this method are robust, then this can be a reasonable method
for deployment in a small environment.

Understanding implicit context loading
The implicit context load method as described in the recipe Using implicit context load to load
contexts in Chapter 6, Managing Context Variables.

Pros
The implicit context load technique is centrally managed, thus ensuring consistent use across
a project. Developers do not need to remember to set context variables, because they will be
set automatically.

The use of external files is good practice for managing contexts, as they are less likely to be
overwritten during deployment.

Appendix B

245

Cons
This method provides the option to fail if a context variable is not present or does not contain
data, which is great for validating your parameters. Unfortunately this option checks against
the whole context of a job, including context variables that are only used locally within the job
and will fail if the local job variables are not present in the external file. Thus we have a choice;
we can add single use variables to our shared context, potentially making it very messy, or we
have to turn off the option to fail the job if we find problems with the context variables, thus
removing a level of validation that we may prefer to keep.

Conclusion
The implicit context load method provides a consistent method for loading contexts and
requires the least effort to set up and maintain, but it does suffer from a lack of fine grain
since the context variables are applied to every job in a project.

It is good for projects where there is high degree of commonality in the processing and
the resources.

Understanding tContextLoad
The tContextLoad method as described in the recipe Using tContextLoad to load contexts
in Chapter 6, Managing Context Variables.

Pros
tContextLoad is more fine-grained than the other methods described previously, which
means that context values could be set up for individual jobs within a project.

As with the implicit context load, use of external files is good practice for managing contexts,
because they are less likely to be overwritten during deployment.

Cons
tContextLoad suffers from the same failings as implicit context load; that is, the
context variable checks are against all variables or none of them. The fine grain can also
be a weakness, because this method does allow much more freedom to developers and could
become unmanageable.

Conclusion
The tContextLoad method provides a more fine-grained approach to contexts, giving
choice to the developer as to which files and which variables within the files are required for a
particular task.

Unfortunately, it does suffer from not being able to check context variables individually,
which is a liability; however, if this is not so important, it does mean only a small amount of
additional coding is required per job to give you the fine grain context loading.

Management of Contexts

246

Manually checking and setting contexts
This method is very similar to the tContextLoad; however, instead of using tContextLoad
to select the file and load and validate the key value pairs, this is performed by custom Java
code, within a tJavaRow component, as described in the recipe Setting context variables and
globalMap variables using tJava in Chapter 5, Using Java in Talend.

Pros
This method allows the finest grain selection and setting of context variables.

As with the implicit context load and tContextLoad, use of external files is a good practice
for managing contexts, because they are less likely to be overwritten during deployment.

This method provides the developer with the ability to validate individual values and kill the
job if they are invalid, without having to worry about local context variables.

Cons
The fine grain can also be a weakness. This method does give much more freedom to
developers and could become unmanageable.

More manual code is required to manage this method than for managing any of the
other methods.

Conclusion

Despite being the most complex method, it is a very good method for managing contexts in a
project, so long as the processes are well defined, and the developers are diligent in following
the processes.

It provides a high degree of control and is not hampered by the fact that single use context
variables may exist within the jobs in the project.

Index
A
ActiveMQ

about 160
starting 182

append method
used, for concatenating files 131

auto increment keys 124
auto increment procedure 125

B
batches 111
benefits, repository schemas 12
binary error codes

creating, for multiple test results storage 42-
44

decrypting 44
built-in schema

hand-cranking 14, 15
bulk loading facility 112

C
capabilities, tMap component 47, 48
child job

parameters, passing to 226, 227
sessions, passing to 116, 117

child tables
surrogate keys, managing for 122, 123

code routines
about 78
finding 231, 232
used, for creating custom functions 78-80

codes
documenting 6
returning, from child job without tDie 224-

226
code utilities, XMLUtils

addChildAtPath 176
createDomFromString 176
DOMToString 176

column
checking, against list of allowed values 37
checking, against lookup 38-40

command line context parameters
adding 219, 220

command line parameters
passing, to job 86

compilation errors
location, searching with problems tab 188-

190
compiled executables

creating 217, 218
complex date formats

about 235
ISO 8601 with offset standard 235
Mtime pattern 235

complex hierarchical XML
file information 169
reading 165-168
relationships, managing 169
web service XML 169
XML, to database mapping 169
XPATH 169

complex logic
adding, into flow 74-76

complex queries 106
complex test data

creating, sequences used 205-207
creating, tFlowToIterate component used

205-207
creating, tMap component used 205-207

248

creating, tRowGenerator component used
205, 207

complex XML
writing 169-175

component globalMap variables
dragging 234

conditional logic
ternary operator, using for 55-57

considerations, databases
efficiency versus readability 106, 107
SQL string 107
SQL style 107

console output
execution errors, locating from 190, 191

context file location
setting, in operating system 95-97

context group
about 86
adding, to job 88, 89
contexts, adding to 91
creating 87
managing 243
variable values, updaing in 87

contexts
adding, to context group 91
common values 86
loading, implicit context load used 93, 94
loading, tContextLoad used 92
printing out 202
using, in SQL queries 107

context types 87
context variables

about 6, 85, 86, 216
checking 246
checking, cons 246
checking, pros 246
finding 233
managing 243
manipulating 243, 244
manipulating, cons 244
manipulating, pros 244
setting 246
setting, cons 246
setting, in code 86
setting, pros 246
setting, tJava component used 72, 73

control files

processing 153, 154
custom functions

creating, code routines used 78-80

D
data

joining, tMap component used 63-65
database connection

considerations 102, 103
setting up, Talend supplied wizard used 100,

102
using 102

database context variables 86
database management

executing 121
databases

considerations 106
database sessions

managing 114, 115
database tables

reading from 104, 105
writing to 110, 111

data formats, Talend
about 16
date patterns 16
field lengths 17
keys 17
nullable elements 16

data integration 29
data tables

selected columns, filtering 105
selected rows, filtering 105

data types
conversions 241, 242

debugging 188
Die on error option 120

E
enterprise scheduling tool 216
errors

capturing, for individual rows 119
Excel

used, for creating test data 209, 210
executable code 216
execution errors

locating, from console output 190, 191

249

F
features, job 127
features, tMap component 127
fields

selecting 117, 118
file

concatenating, append method used 131
copying, to different directory 146
copying, to different name 147
creating, depending on input data 155, 156
deleting 147
header, adding to 145
logging data, dumping to 203, 204
moving 147
records, appending to 130, 131
renaming 147
trailer, adding to 145
writing, depending on input data 155, 156

file information
capturing 147, 149

file management components 146
fixed schemas 13
flow

complex logic, adding into 74-76

G
generic schemas

about 13
creating, from existing metadata 20-22
generated data sources 13
shared schemas 13

globalMap 7
globalMap variables

about 108
setting, tJava component used 72, 73
using, in SQL queries 107

H
hashMap key table

used, for adding efficiency 124
hashMaps 73
header

adding, to file 145
information, using in 141
reading, tMap component used 137-139

reading, with no identifiers 140
header information

using, in detail 144
header information subjob

using 143

I
implicit context load

about 94
turning off, in job 94
turning on, in job 94
used, for loading contexts 93, 94

implicit context load method 97
about 244, 245
cons 245
pros 244

information
using, in header 141
using, in trailer 141

in-process database
using 125, 126

input query
printing 109

input row
splitting, into multiple outputs 61-63

input rows
filtering 59, 60

installation, Talend Open Studio 7-9
intermediate data

storing, in memory 136
intermediate variables

using, in tMap component 57-59

J
JAR files

importing 81, 82
Java 7, 71
Java debugger

used, for debugging Talend jobs 194-197
Java Document format 160
Java Document object 163
Java DOM 171
JDBC 100
job

context group, adding to 88, 89
features 127

250

killing, from within tJavaRow component 212,
213

values, adding 236
job dependencies

Die on error option 221
error checks, adding to schedule 222
managing 220, 221
managing, within Talend 216
restartability, adding to job 222

K
keys

deleting 111
selecting 117, 118
updating 111

L
LastInsertId component 125
lists

schemas, creating from 24-26
logging 188
logging data

dumping, to file 203, 204
logic

testing 211, 212
lookup

columns, checking against 38-40
used, for creating random test 207, 208

lossless queue
ensuring, sessions used 184, 185

M
Math.ceil() function 242
Math.floor() function 242
Math.round() function 242
memory

intermediate data, storing in 136
memory errors, stopping in Talend

data, dropping to disk 239, 240
files, splitting 240
hardware solutions 240
hashMap, using 239
in-memory tables, using 239
job, splitting 239
lookup data, reducing 238, 239

memory allocated, increasing of job 238
message

writing, to queue 182, 183
message queues 160
metadata

about 11
generic schema, creating from 20-22

missing tab
restoring 230

MSDelimited component 145
multiple contexts

using 218
multiple files

processing, at once 150, 152
multiple outputs

input rows, splitting into 61-63
multiple tables 106
MySQL 100

N
node 171
non-Talend objects

executing 227, 228

O
ODS (Operational Data Store) 100
one-off logic

adding, to job 72
operating system

context file location, setting in 95-97
operating system commands

executing 227, 228
output query

printing 112, 113

P
parameters

passing, to child jobs 226, 227
parent tables

surrogate keys, managing for 122, 123
problems tab

used, for searching location of compilation
errors 188-190

pseudo components
creating, tJavaFlex component used 76, 77

251

Q
Quartz 216
query

developing 108
queue

message, writing to 182, 183

R
random test data

creating, lookups used 207, 208
ranges 124
records

appending, to file 130, 131
regular expression (regex)

about 132
used, for reading rows 132-134

rejected data 30
reject flows

about 30
disbaling 30, 31
enabling 30, 31
gathering 32-34

reject row facility
erros, capturing for individual rows 119

reload
missing, at each row global variable 233, 234
used, at each row for processing real-time

data 67-69
reload at each row option 48
repository schemas

benefits 12
RESTful web service

about 160
calling 180, 181

return codes
acting on 222-224
capturing 222-224

rewritable lookups
in-process database, using 125, 126

row information
displaying, tJavaRow component used 199,

200
rows

components, rejecting 35
reading, regular expression used 132-134
rejecting, tMap used 35, 36

S
schema changes

propagating 17-19
schema information

cutting 22
psting 22

schema metadata 11
schemas

about 11, 12
creating, from lists 24-26
dropping 23, 24
fixed schemas 13
generic schemas 13
repository schemas 12

sequences
about 124
used, for creating complex test data 205-207

sessions
commit strategy, confirming 115
passing, to child job 116, 117
used, for ensuring lossless queue 184, 185

shared schemas 13
show view method 230
simple mapping 48
single ternary expression 56
SOAP web service

about 160
calling 177-180
response, decoding 180

SQL queries
context variables, using 107
globalMap variables, using 107

SQL string 107
SQL style 107
status messages

displaying, tJava component used 201
subjob component tab 177
surrogate keys

managing, for child tables 122, 123
managing, for parent tables 122, 123

System.exit command 213

T
table related commands

executing 121
tables

252

creating 111
table schemas

importing 103, 104
Talend

about 71
job dependencies, managing within 216

Talend 5.2.3 9
Talend debug mode

about 192
using, steps 192, 193

Talend ESB 159
Talend jobs

about 11
debugging, Java debugger used 194-197

Talend Open Studio
context variables, manipulating 244
installing 7-9
key concepts 6, 7
URL, for downloading 8

Talend supplied wizard
used, for setting up database connection

100-102
tContextDump component 202
tContextLoad component

context file location 93
print operations 92
used, for loading contexts 92
variations, of warnings 93

tContextLoad method
about 245
cons 245
pros 245

tCreateFileTemporary component 135
tCreateTemporaryFile component 135
tDie component 33, 143, 212
temporary files

using 134, 135
ternary in ternary expression 56
ternary operator

using, for conditional logic 55-57
tESBConsumer component 178
test data

creating, Excel used 209, 210
creating, tRowGenerator component used

204, 205
testing 188
tFileCopy component 147

tFileDelete component 147
tFileInputDelimited component 30, 31, 35,

163
tFileInputFullRow component 139
tFileInputRegex component 133
tFileInputXML component 160
tFileList component 131
tFileOutputDelimited component 131, 157
tFileOutputMSDelimited component 145
tFileProperties component 148, 149
tFileRowCount component 141, 149
tFixedFlowInputs component 145
tFlowToIterate component

about 149, 175, 176
used, for creating complex test data 205-207

tHash components 175, 176
tHashInput component

enabling 9
tHashMap component

used, for storing intermediate data in memory
136

tHashOutput component
enabling 9

three-tier XML structure
building 171

time servers, tMap component 48-52
tJava component

about 72, 152, 201
one-off logic, adding to job 72
used, for displaying status messages 201
used, for displaying variables 201
used, for setting context variables 72, 73
used, for setting globalMap variables 72, 73

tJavaFlex component
about 76
used, for creating pseudo components 76, 77

tJavaRow component
about 74
job, killing from within 212, 213
used, for adding complex logic into flow 74-76
used, for displaying row information 199, 200

tLogRow component
used, for displaying data in row 197, 198

tMap component
about 47, 160
batch versus real time 48
capabilities 47, 48

253

data, joining in hierarchical fashion 66
espression editors 55
features 127
flexibility feature 48
input rows, filtering 59, 60
intermediate variables, using 57, 58
rejects, capturing 235, 236
reload, used at each row for processing real-

time data 67-69
single line of code 48
time servers 48-52
used, for creating complex test data 205-207
used, for joining data 63-65
used, for reading headers 137-139
used, for reading trailers 137-139
used, for rejecting rows 35, 36
variables, printing 237

tMap expressions
creating 52-54
testing 54

tMomCommit component 185
tMomInput component 185
tMysqlCommit component 115
tMysqlConnection component 116 115
tMysqlOutput component 113
tMysqlRow component 121
trailer

adding, to file 145
information, using in 141
reading, tMap component used 137, 139
reading, with no identifiers 140, 141

trailer information
used, for validation 144

tRestClient component 181
tRowGenerator component

about 204
test data, creating 204, 205
used, for creating complex test data 205, 207

tRunjob component 221
tSchemaComplianceCheck component 34,

35
tSystem component 227, 228
tWriteXMLField component 160, 175
tXMLMap component

about 160
used, for creating XML document 163, 164
used, for reading XML 160-162

tXMLOutput component 160

U
UI

resetting, to original format 231

V
validateCustomerAge method 42
validation files

processing 153, 154
validation rules

creating 40-42
validation subjob 142, 143
variables

displaying, tJava component used 201
variable values

updating, in context group 87

W
web service calls in-flow

using 180
web services 160
web service XML 169

X
XML

reading, tXMLMap component used 160-162
XML document

creating, tXMLMap component used 163,
164

XML Schema Definition (XSD) 163
XML structure 163, 170
XPATH 160, 169
XPATH Condition 176

Thank you for buying

Talend Open Studio Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with Talend
Open Studio for Data
Integration
ISBN: 978-1-849514-72-9 Paperback: 320 pages

Develop system integrations with speed and quality
using Talend Open Studio for Data Integration

1.	 Develop complex integration jobs without writing
code

2.	 Go beyond "extract, transform and load" by
constructing end-to-end integrations

3.	 Learn how to package your jobs for production use

SQL Server 2012 with
PowerShell V3 Cookbook
ISBN: 978-1-849686-46-4 Paperback: 634 pages

Increase your productivity as a DBA, developer, or IT
Pro, by using PowerShell with SQL Server to simplify
database management and automate repetitive,
mundane tasks

1.	 Provides over a hundred practical recipes that
utilize PowerShell to automate, integrate and
simplify SQL Server tasks

2.	 Offers easy to follow, step-by-step guide to getting
the most out of SQL Server and PowerShell

3.	 Covers numerous guidelines, tips, and
explanations on how and when to use PowerShell
cmdlets, WMI, SMO, .NET classes or other
components

Please check www.PacktPub.com for information on our titles

Learning RStudio for R
Statistical Computing
ISBN: 978-1-782160-60-1 Paperback: 126 pages

Learn to effectively perform R development, statistical
analysis, and reporting with the most popular R IDE

1.	 A complete practical tutorial for RStudio, designed
keeping in mind the needs of analysts and R
developers alike

2.	 Step-by-step examples that apply the principles
of reproducible research and good programming
practices to R projects

3.	 Learn to effectively generate reports, create
graphics, and perform analysis, and even build
R-packages with RStudio

SDL Trados Studio: A
Practical Guide
ISBN: 978-1-849699-63-1 Paperback: 100 pages

Get to grips with the most useful translation features of
SDL Trados Studio

1.	 Unleash the power of Trados's many features to
boost your efficiency as a translator

2.	 Take a fresh look at Trados from a practical,
translator-centred perspective

3.	 Self-contained sections on topics such as
translation, formatting, editing, quality assurance,
billing clients, and translating groups of files

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction and General Principles
	Before you begin
	Installing the software
	Enabling tHashInput and tHashOutput

	Chapter 2: Metadata and Schemas
	Introduction
	Hand-cranking a built-in schema
	Propagating schema changes
	Creating a generic schema from the existing metadata
	Cutting and pasting schema information
	Dropping schemas to empty components
	Creating schemas from lists

	Chapter 3: Validating Data
	Introduction
	Enabling and disabling reject flows
	Gathering all rejects prior to killing a job
	Validating against the schema
	Rejecting rows using tMap
	Checking a column against a list of allowed values
	Checking a column against a lookup
	Creating validation rules for more complex requirements
	Creating binary error codes to store multiple test results

	Chapter 4: Mapping Data
	Introduction
	Simple mapping and tMap time savers
	Creating tMap expressions
	Using the ternary operator for conditional logic
	Using intermediate variables in tMap
	Filtering input rows
	Splitting an input row into multiple outputs based on input conditions
	Joining data using tMap
	Hierarchical joins using tMap
	Using reload at each row to process
real-time / near real-time data

	Chapter 5: Using Java in Talend
	Introduction
	Performing one-off pieces of logic using tJava
	Setting the context and globalMap variables using tJava
	Adding complex logic into a flow using tJavaRow
	Creating pseudo components using tJavaFlex
	Creating custom functions using code routines
	Importing JAR files to allow use of external Java classes

	Chapter 6: Managing Context Variables
	Introduction
	Creating a context group
	Adding a context group to your job
	Adding contexts to a context group
	Using tContextLoad to load contexts
	Using implicit context loading to load contexts
	Turning implicit context loading on and off in a job
	Setting the context file location in the operating system

	Chapter 7: Working with Databases
	Introduction
	Setting up a database connection
	Importing the table schemas
	Reading from database tables
	Using context and globalMap variables in SQL queries
	Printing your input query
	Writing to a database table
	Printing your output query
	Managing database sessions
	Passing a session to a child job
	Selecting different fields and keys for insert, update, and delete
	Capturing individual rejects and errors
	Database and table management
	Managing surrogate keys for parent and child tables
	Rewritable lookups using an in-process database

	Chapter 8: Managing Files
	Introduction
	Appending records to a file
	Reading rows using a regular expression
	Using temporary files
	Storing intermediate data in the memory using tHashMap
	Reading headers and trailers using tMap
	Reading headers and trailers with no identifiers
	Using the information in the header and trailer
	Adding a header and trailer to a file
	Moving, copying, renaming, and deleting files and folders
	Capturing file information
	Processing multiple files at once
	Processing control/validation files
	Creating and writing files depending on the input data

	Chapter 9: Working with XML, Queues, and Web Services
	Introduction
	Using tXMLMap to read XML
	Using tXMLMap to create an XML document
	Reading complex hierarchical XML
	Writing complex XML
	Calling a SOAP web service
	Calling a RESTful web service
	Reading and writing to a queue
	Ensuring lossless queues using sessions

	Chapter 10: Debugging, Logging, and Testing
	Introduction
	Find the location of compilation errors using the Problems tab
	Locating execution errors from the console output
	Using the Talend debug mode – row-by-row execution
	Using the Java debugger to debug Talend jobs
	Using tLogRow to show data in a row
	Using tJavaRow to display row information
	Using tJava to display status messages
and variables
	Printing out the context
	Dumping the console output to a file from within a job
	Creating simple test data using tRowGenerator
	Creating complex test data using tRowGenerator, tFlowToIterate, tMap,
and sequences
	Creating random test data using lookups
	Creating test data using Excel
	Testing logic – the most-used pattern
	Killing a job from within tJavaRow

	Chapter 11: Deploying and Scheduling Talend Code
	Introduction
	Creating compiled executables
	Using a different context
	Adding command-line context parameters
	Managing job dependencies
	Capturing and acting on different return codes
	Returning codes from a child job without tDie
	Passing parameters to a child job
	Executing non-Talend objects and operating system commands

	Chapter 12: Common Mistakes and Other Useful Hints
and Tips
	Introduction
	My tab is missing
	Finding the code routine
	Finding a new context variable
	Reloads going missing at each row global variable
	Dragging component globalMap variables
	Some complex date formats
	Capturing tMap rejects
	Adding job name, project name, and other job specific information
	Printing tMap variables
	Stopping memory errors in Talend

	Appendix A: Common Type Conversions
	Appendix B: Management of Contexts
	Introduction
	Manipulating contexts in Talend Open Studio
	Understanding implicit context loading
	Understanding tContextLoad
	Manually checking and setting contexts

	Index

