
www.allitebooks.com

http://www.allitebooks.org

TestComplete
Cookbook

Over 110 practical recipes teaching you to master
TestComplete – one of the most popular tools for
testing automation

Gennadiy Alpaev

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

TestComplete Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2013

Production Reference: 1091213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-358-5

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Gennadiy Alpaev

Reviewers
Mykola Kolisnyk

Giri Prasad Palanivel

Drashti Pandya

Rakesh Kumar Singh

Acquisition Editors
Amarabha Banerjee

Usha Iyer

Nikhil Karkal

Lead Technical Editor
Priya Singh

Technical Editors
Tanvi Bhatt

Zainab Fatakdawala

Pankaj Kadam

Hardik B. Soni

Project Coordinator
Priyanka Goel

Proofreader
Jenny Blake

Indexer
Mehreen Deshmukh

Graphics
Sheetal Aute

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Gennadiy Alpaev has been working as a test automation engineer since he graduated
in 2003. During these 10 years he has worked with many automation tools including
TestComplete, SilkTest, Selenium, and Squish and participated in more than 10 projects,
both as an employee and on contract basis.

He gained his first experience of writing tutorials when he created a tutorial on SilkTest
together with his colleague Mykola Kolisnyk. His second big project on test automation
was a complete tutorial on TestComplete. These two tutorials are available online in Russian.

Starting in 2011, he is running online and on-site courses on TestComplete and test
automation for independent students and companies. He is also actively participating
in different forums trying to help others solve problems as fast as possible.

The main principles that he follows in his training are simplicity and brevity, especially
when explaining complex things.

First of all I'd like to thank Andrew Grinchak who helped me with the English
version of the book. Without him the work would have been much more
complicated.

Many thanks to all forum participants for their questions and answers. There
are so many of them that it is impossible to mention them all, but without
them I would have never got all the experience I have now. Also during these
10 years, I had great pleasure working with different people who influenced
my vision and qualification. Thank you all, every communication was helpful
and interesting, and introduced its part to this book.

And finally thanks to my family for their patience and support during the
process of writing this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Mykola Kolisnyk has been in test automation since 2004, being involved in various
activities including creating test automation solutions from scratch, leading test automation
team, and performing consultancy regarding test automation processes. During his working
career he has worked with different test automation tools such as Mercury WinRunner,
MicroFocus SilkTest, SmartBear TestComplete, Selenium-RC, WebDriver, SoapUI, BDD
frameworks, and many other different engines and solutions. He has also had experience
with different domain areas such as healthcare, mobile, telecom, social networking, business
process modeling, performance and talent management, multimedia, e-commerce, and
investment banking.

He has worked as the permanent employee at ISD, GlobalLogic, and Luxoft, is experienced
in freelance activities, and was invited as an independent consultant to introduce test
automation approaches and practices to external companies.

He's one of the authors (together with Gennadiy Alpaev) of online SilkTest Manual
(http://silktutorial.ru/) and has participated in the creation of TestComplete
tutorial (http://tctutorial.ru/) which are some of the biggest related documentation
available in RU-net.

Giri Prasad Palanivel, a Senior Test Automation Engineer, has expertise in test
automation, agile, and performance testing. He is an enthusiast and explorer, and is
passionate about working with the latest technologies and tools. His areas of interest
are designing automation frameworks and managing overall QA activities. He believes in
collaborative learning, contributes to testing community, and mentors juniors.

I wish to thank all those who, in various ways, have helped me in my career
and special thanks to my family for their support and care.

www.allitebooks.com

http://www.allitebooks.org

Drashti Pandya is a Bachelor of Engineering from Mumbai University. She has 5 years
of experience in IT industry with expertise on Software Testing.

I would like to thank my family for their support.

Rakesh Kumar Singh is a QA Manager at Airpush, Inc. with more than 7 years of
experience in the field of software quality assurance. He has worked in USA and India
with majority of work experience in USA.

He has done his Master of Science in Computer Engineering from California State University,
Chico in USA and Bachelor of Engineering in Electronics and Communications from VTU,
Karnataka in India.

He has worked in several fields of quality assurance including manual, automation,
performance, and load testing.

He has worked in companies such as Airpush Inc, Jutera Inc, Dynamic Logic—a WPP company,
BlackRock Solutions, and GSI Commerce—an Ebay company.

I would like to thank my family.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your
book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started 7

Introduction 7
Installing TestComplete 8
Creating your first project 11
Choosing a scripting language for the project 13
Recording your first test 15
Modifying the recorded test 18
Saving and restoring user settings 20
Creating code templates 22
Delaying script execution 24
Adding and removing project items 25
Understanding how TestComplete interacts with tested applications 27
Understanding Object Browser 29
 Using Object Spy 32

Chapter 2: Working with Tested Applications 35
Introduction 35
Adding a tested application project item 36
Running a tested application from the script 38
Terminating a tested application 40
Killing several instances of a tested application 41
Closing a tested application 43
Running a tested application in the Debug mode 45
Running a tested application under a different user account 47
Changing tested application settings dynamically from the script 49
Running external programs and DOS commands 50
Testing installers – running an MSI file 52

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Scripting 55
Introduction 55
Entering text into text fields 56
Using wildcards to process objects with variable names 58
Structuring code using loops 61
Creating property checkpoints 64
Creating object checkpoints 68
Using global variables 73
Testing multilingual applications 75
Working with nonstandard controls 79
Organizing script code in the project 83
Handling exceptions 86
Handling exceptions from a different unit 89
Creating framework using the OOP approach 92

Chapter 4: Running Tests 97
Introduction 97
Running a single function 98
Verifying test accuracy 100
Creating a test plan for regular runs 101
Running tests from the command line 103
Passing additional parameters to test from the command line 106
Organizing test plan runs 109
Scheduling automatic runs at nighttime 110
Running tests via Remote Desktop 112
Changing playback options 113
Increasing run speed 115
Disabling a screensaver when running scripts 116
Sending messages to Indicator 118
Showing a message window during a script run 119

Chapter 5: Accessing Windows, Controls, and Properties 121
Introduction 122
Choosing Object Tree Model 122
Understanding the window's life cycle 124
Ignoring overlapping windows 125
Dragging one object into another 127
Calling methods asynchronously 131
Verifying if an object has a specific property 132
Finding objects by properties' values 134
Waiting for an object to appear 136

iii

Table of Contents

Waiting for a property value 139
Mapping custom control classes to standard ones 140
Using text recognition to access text from nonstandard controls 143
Using Optical Character Recognition (OCR) 145
Dealing with self-drawn controls not supported by TestComplete 149

Chapter 6: Logging Capabilities 153
Introduction 153
Posting messages to the log 154
Posting screenshots to the log 156
Creating folders in the log 158
Changing log messages' appearance 159
Assessing the number of errors in the log 161
Changing pictures' format 163
Comparing screenshots with dynamic content 165
Decreasing log size 167
Generating log in our own format 168
Exporting log to MHT format 170
Sending logs via e-mail 171

Chapter 7: Debugging Scripts 175
Introduction 175
Enabling and disabling debugging 176
Using breakpoints to pause script execution 177
Viewing variables' values 179
Debugging tests step by step 181
Evaluating expressions 182

Chapter 8: Keyword Tests 185
Introduction 185
Recording and understanding Keyword Tests 186
Adding new actions to existing Keyword Tests 188
Enhancing Keyword Tests using loops 191
Creating object checkpoints 193
Calling script functions from Keyword Tests 195
Converting Keyword Tests to scripts 198
Creating our own Keyword driver 199

Chapter 9: Data-driven Testing 203
Introduction 203
Generating random data for tests 204
Accessing a specific cell in a table 206
Reading all data from a table 208

iv

Table of Contents

Using DDT tables for storing expected values 209
Changing CSV delimiter and other parameters 212
Driving data without using loops 214
Accessing Excel spreadsheets without having MS Office installed 215
Auto-detecting Excel driver 216

Chapter 10: Testing Web Applications 217
Introduction 217
Choosing Web Tree Model 218
Using updates for the latest browser versions 221
Performing cross-browser testing 222
Verifying if a text exists on a page 224
Waiting for an element to appear on a page 225
Saving screenshots of an entire page 228
Running scripts on a page 229

Chapter 11: Distributed Testing 231
Introduction 231
Setting up Network Suite and understanding distributed testing 232
Copying Project Suite to a Slave workstation 234
Using a Master workstation to run tests 235
Using different configuration files for each workstation 236
Sharing data between workstations 237
Synchronizing test runs on several workstations 239

Chapter 12: Events Handling 241
Introduction 241
Creating event handlers 242
Disabling the postage of certain error messages 244
Clicking on disabled controls without an error message 245
Handling unexpected windows that affect TestComplete 248
Handling unexpected windows that don't affect TestComplete 249
Saving the log to a disk after each test 251
Sending a notification e-mail on timeouts 253
Creating preconditions and postconditions for tests 254

Index 257

Preface
Testing automation is a tricky and complex area of computer science, as it requires not
only experience in both testing and programming, but also knowing some specifics of using
Graphical User Interface (GUI).

During the last several years a lot of software has been created to help to automate testing by
emulating users' actions. Some of these programs are strictly specialized, while others allow
users to automate a wide range of software.

TestComplete is one of the tools which supports testing of software developed on different
platforms and application types (.NET, Win32, Java, Delphi, Web, and so on), at the same
time using similar techniques for all of them, thus simplifying process of automation by
software testers.

This book will teach you how to effectively use TestComplete by many simple and well
thought-out examples, at the same time showing how to solve the most frequently asked
questions. By executing the steps from each recipe and then reading the explanation
text of what has been done, you will master TestComplete quickly and easily.

We hope this book will be a great support to you in studying TestComplete and testing
automation principles.

What this book covers
Chapter 1, Getting Started, provides basic information about TestComplete and prepares
you for further topics. This chapter will be helpful if you are new to TestComplete.

Chapter 2, Working with Tested Applications, explains how to work with tested applications
in TestComplete using different approaches.

Chapter 3, Scripting, provides programming solutions for frequently asked questions and
shows examples of different testing methodologies and frameworks.

Preface

2

Chapter 4, Running Tests, explains how to run your TestComplete tests including running
from command line and scheduling automatic test runs.

Chapter 5, Accessing Windows, Controls, and Properties, explains how TestComplete interacts
with tested applications, their controls, and data within windows.

Chapter 6, Logging Capabilities, covers several topics related to TestComplete log including
working with screenshots, exporting logs, and sending results via e-mail.

Chapter 7, Debugging Scripts, describes how to use TestComplete debug capabilities when
maintaining tests.

Chapter 8, Keyword Tests, introduces a simple way to create automated tests which doesn't
require programming skills.

Chapter 9, Data-driven Testing, explains how to separate scripts code from test data and
effectively work with it in tests.

Chapter 10, Testing Web Applications, covers Web-specific topics which were not covered
in other chapters.

Chapter 11, Distributed Testing, shows how to run tests on several workstations and share
data between them.

Chapter 12, Events Handling, introduces TestComplete events—a powerful tool to customize
and improve your testing framework.

What you need for this book
To run the examples in the book the following software will be required:

 f Microsoft Windows 7 x86 (32 bits) Home, Professional, Ultimate, or Enterprise Edition
(most examples will also work in 64-bits version of the OS)

 f SmartBear TestComplete 9.0 or higher (most examples will also work in TestComplete
7.x and 8.x)

 f Microsoft Calculator Plus 1.0

 f Mozilla Firefox (any version supported by selected TestComplete version)

Who this book is for
If you wish to use TestComplete for testing automation, this book will help you learn the very
basics of the tool, as well as improve your knowledge if you already have some experience
in working with TestComplete.

Preface

3

The recipes provided in this book can be studied one by one, thus improving your knowledge
step-by-step. The book can also be read randomly, depending on the type of problem that you
are trying to resolve.

It is implied that you are already aware of the programming basics (knowing what is a
variable, loop, condition, function). This will tremendously facilitate further understanding
of the approaches and solutions that are being considered. Nonetheless, we have tried to
select examples that would be easy to understand, even for a novice in programming. These
examples are easily scalable for your specific needs, as well as portable and scalable.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles, are shown as follows: "The
Runner.CallObjectMethodAsync method accepts two parameters: the object
and the callee method."

A block of code is set as follows:

function testPirtureFormat()
{
 Options.Images.ImageFormat = "BMP";
 Log.Picture(Sys.Desktop.Picture(), "BMP screenshot");
 Options.Images.ImageFormat = "PNG";
 Log.Picture(Sys.Desktop.Picture(), "PNG screenshot");
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

TestedApps.notepad.Close();
 if(pNotepad.WaitWindow("#32770", "Notepad", -1, 1000).Exists)
 {
 pNotepad.Window("#32770", "Notepad").Keys("~n");
 }

Any command-line input or output is written as follows:

C:\Program Files\SmartBear\TestComplete 9\Bin\TestComplete.
exe" "z:\TestCompleteCookBook\TestCompleteCookBook.pjs" /run /
project:Chapter4 /Unit:Unit1 /routine:testDemoTestItems2

Preface

4

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the Configure button
in the Images group".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Preface

5

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

1
Getting Started

In this chapter we will cover the following recipes:

 f Installing TestComplete

 f Creating your first project

 f Choosing a scripting language for the project

 f Recording your first test

 f Modifying the recorded test

 f Saving and restoring user settings

 f Creating code templates

 f Delaying script execution

 f Adding and removing project items

 f Understanding how TestComplete interacts with tested applications

 f Understanding Object Browser

 f Using Object Spy

Introduction
TestComplete is one of the most popular commercial tools for automation testing. It allows
us to automate testing of wide variety different applications (such as Win32, .NET, Java,
Web, Delphi, and many others) using the same testing methodologies and similar
programming approaches.

TestComplete supports testing on all Windows platforms being supported by Microsoft
(both 32- and 64-bit configurations) and allows using several scripting languages for creating
scripts as well as nonscripting tests for users who do not have programming experience
(keyword-driven testing).

Getting Started

8

Recommended system requirements for TestComplete are:

 f Processor: Intel Pentium 4 (3 GHz) or Intel Core 2 Duo (2 GHz or higher)

 f RAM: 2 GB

 f HDD: 700 MB free space

 f Monitor: 1280 x 1024 or higher resolution

You can find the full list of requirements on the SmartBear website (http://smartbear.
com/products/qa-tools/automated-testing-tools/testcomplete-
specifications/testcomplete-system-requirements).

In this book we use the following configuration:

 f Microsoft Windows 7 x86 (32-bits) operating system installed on a virtual PC

 f 1 GB of RAM

 f TestComplete Version 9.30 (most examples will also work in TestComplete 7.x and 8x)

Most examples in this book use standard Windows applications (Notepad, Internet Explorer,
and Paint). Additionally, you will need to install free Microsoft Calculator Plus application,
which can be downloaded from the Microsoft's website (http://www.microsoft.com/en-
us/download/details.aspx?id=21622). Standard calculator application of the Windows
Vista/7/8 will not work as its controls are recognized differently and require additional
adjustment.

In this chapter, we are going to cover the basic actions one can perform with TestComplete in
order to get acquainted with TestComplete IDE and its tools.

Installing TestComplete
Before getting down to TestComplete, make sure it is installed to begin with.

Installing TestComplete is quite simple; it is no different from installing most Windows
applications.

Getting ready
To install TestComplete, we will need to download installation file from the SmartBear website:

 f If you are up for using a trial version of TestComplete, please follow the link http://
smartbear.com/products/qa-tools/automated-testing-tools/free-
testcomplete-trial, enter all the required data (name, e-mail, company, and
so on), and click on the Sign Up Now button. Thus, you will receive a letter with a
download link and activation code for a 30-days trial version of TestComplete.

Chapter 1

9

 f If you are registered as a SmartBear client and have an account on their website,
please follow the link https://my.smartbear.com/login.asp, enter your
account data, and click on the Login button. After this, you will be redirected to the
page with available programs to download and install. Clicking on the link with the
version near the TestComplete, you will find yourself on the page for the download
with the link and the license key.

After this you will have an installation file named TestCompleteXYY.exe (where XYY stands
for the current TestComplete version).

How to do it...
To accomplish successful TestComplete installation, follow these steps:

1. Launch the downloaded .exe file and wait for the InstallShield Wizard window
to appear.

2. Click on Next.

3. In the License Agreement window, check the I agree… option and then click on Next.

4. In the Customer Information window enter a user name and that of a company
(it may be arbitrary, not necessarily corresponding with the information from the
TestComplete license). Select the type of installation (for any users or only for the
current one), and then click on Next.

5. In the Choose Destination Location window, select the destination folder to install
TestComplete and then click on Next.

6. In the Select Program Folder window, signify the folder in the main menu to target
the shortcut of the program and click on Next.

7. In the Select Features window, select necessary components to install and click on
Next. If you are not sure which components to install, leave all the options by default.

Getting Started

10

8. Click on Next in the Start Installation window and wait for the installation
to complete.

9. Click on Finish.

10. Now, all we have got left to do is activate the TestComplete. In order to do
so launch TestComplete application.

11. In the new popped-up window, click on the Activate license button.

12. Check the Automatic activation option and then click on Next.

13. Enter your data (name, company, e-mail, and key) that you signified for the
registration and activation code that you have received by the e-mail. Click on Next.

14. If necessary, input the parameters of your proxy server and click on the Activate
button.

15. In a matter of several minutes, necessary to connect to the server and validate
registration data, you will receive the notification: Your license has been activated
successfully. Thank you.. Click on the Finish button. TestComplete will fire up to
the starting pane. Now you are able to begin your working expertise.

How it works...
During the installation process TestComplete verifies programs installed on your computer.
The Select Features window displays only components which are installable at the moment.
All other features (which are not accessible at the moment) will be turned off.

So far, we have considered the simplest method of activation: automatic activation of the
trial TestComplete license on the SmartBear server. Automatic activation of the node-locked
license is not complex either.

TestComplete uses two license types:

 f Node-locked license: This type of license is attached to one computer and cannot
be used on virtual machines

 f Floating license: This type of license allows running several copies on multiple
workstation in the local network (the number of copies is determined by the
license key) and can be used on virtual machines

There's more...
If you are occupied as a system administrator in your company and need to install
TestComplete on several computers, you can cut back on the installation time by
using silent installation mode from command prompt.

Chapter 1

11

In order to do that, you should extract the content of the downloaded archive
TestCompleteXYY.exe and launch the installation file Setup.exe with the /r parameter:

<path_to_extracted_files>\Setup.exe /r

The downloaded archive file can be opened with the help of any archiver that supports RAR
SFX formats (for example, WinRAR or 7-Zip).

Having done so, you should carry out the previously listed steps. As a result, there will appear
the Setup.iss file in the Windows folder. Move this file to the folder with the files for
TestComplete installation and copy the content of the folder to the targeted computers for
TestComplete installation. Launch the installation file with the /s parameter:

<path_to_extracted_files>\Setup.exe /s

As a result of this TestComplete will be installed with the same settings as the first installation.

See also
 f In the event of a floating license activation as well as license activation on a

computer that is not connected to the Internet, it is recommended that you
read up on SmartBear article via the following link:

http://support.smartbear.com/viewarticle/33840/

Creating your first project
Similar to many other IDEs, TestComplete binds all the elements together in a single project;
and the projects, in their due turn, are joined into project suites.

First and foremost, it is necessary to create a project suite and then create one or more
projects in it to be able to add all the necessary elements for the project.

How to do it...
In order to create a project we need to perform the following steps:

1. Select the following menu item File | New | New Project Suite.

2. In the Create Project Suite window signify the name of the project suite and the
path to it.

3. Click on OK. In the result, there will appear the created project suite on the Project
Explorer panel in the left part of the TestComplete window.

Getting Started

12

4. Right-click on the created project suite and select menu item Add | New Item,
as shown in the following screenshot:

5. In the opened Create New Project window enter the name of the project and
the path to it, as you have just done in the previous instance.

6. In the Language drop-down menu select the necessary programming language
of your choice and click on the Create button (if you do not know which language
to choose, please read the Choosing scripting language for the project recipe).

7. In the result, a project will be created into which we will be able to write the
testing scripts.

You can also start creating a new project without creating a
project suite first. In this case project suite will be created
automatically.

How it works...
Each project suite and project has corresponding files in the XML format with the extensions
of .pjs and .mds respectively. In these files, all the necessary information is stored:
elements that are constituent parts of the project at hand or a number of projects, paths
to them, their parameters, and so on.

Usually, the folders with the projects are stored in the same folder with the project suite.
This is quite handy since the same TestComplete structure is stored on your hard disk drive
(HDD) as well.

If, in any event or reason, you need to store the project separately from the project suite
where it is located, it is sufficient at the point of creation to signify a different path. Please
note, however, that in case of moving projects to another computer in the future, you will come
up against another problem: migrating all the projects together with the project suite, which
are located in different folders or even on separate discs. In this case, when opening the
project suite, TestComplete will prompt you with an error message Project
not found.

Chapter 1

13

There's more...
Try to give the projects and project suites some sensible names; do not use the default
names (Project1, Project2, and so on). Otherwise, you will forget which project stands
for which data.

The names of the projects and project suites are also used at the point of launching tests
from the command prompt.

Choosing a scripting language for the
project

Choosing a scripting language for the project is the first important choice to make before
creating a project. Choosing a language should be a careful and circumspect process, since
it shall not be possible to change the choice in the future. If you would like to change the
selected project's scripting language, you would have to redo the project from scratch!

How to do it...
In order to select a scripting language for a new project we need to perform the following steps:

1. Start creating a new project (by selecting File | New | New Project).

2. In the Language combobox, you will see a list of five languages available.

3. Select one of them depending on your needs.

How it works...
TestComplete provides a possibility of choice from the following three programming
languages: JScript, VBScript, and DelphiScript. Apart from these three languages, the
following two are also available: C++Script and C#Script. The latter two languages are in
fact the same as JScript, with somewhat modified syntax. That's why everything that goes
for JScript is just as applicable for these two scripting languages also.

The C++Script and C#Script scripting languages have nothing in common
with C++ and C#! It's the same JScript with a slightly changed syntax. By
using C#Script you will not have the possibilities extended in the C#! The
same goes for C++Script.

The next important thing: if you are planning to create tests only in TestComplete and then
launch them with the help of TestComplete (or with the help of TestExecute – a command-
prompt utility), you can select absolutely any language, regardless of the application that
you are about to test.

Getting Started

14

For example, you may use VBScript language to test applications coded in C#, or select
DelphiScript to test web-applications. In any case, you will enjoy complete access to all the
TestComplete possibilities. For example, to access standard .NET classes in TestComplete, there
is a special dotNET object up for grabs. This object can be used in any programming language.

If you are already familiar with one of the languages suggested by TestComplete, selecting just
that will be better for you. If none of the languages are familiar to you, the following tips may
come in mighty handy:

 f VBScript: This language is very simple to learn, and therefore is recommended
for beginners who are not proficient in programming.

 f JScript: This language (JavaScript engine from Microsoft) is a more powerful and
flexible language in comparison to the VBScript; it also has more compact syntax
and its code constructions are shorter and faster to type. JScript is recommended
for those who have some programming background.

 f DelphiScript: This language is a procedural scripting language used only in
TestComplete. Its syntax resembles a skimpy version of Delphi. It is recommended
only for creation of connected and self-tested applications (see later in this chapter).

There's more…
Now, we shall consider why we need such languages as DelphiScript, C++Script,
and C#Script.

TestComplete allows scripting in more advanced languages (C#, C++, Delphi, and Visual
Basic). Meanwhile, you are using all the functionalities of a given language, writing up tests
in any appropriate IDE, using the functionalities extended by TestComplete to gain access
to the tested application. If you plan to record scripts with the help of TestComplete first
and then convert them to tests in more advanced languages, you will need to apply these
three languages. You can select a scripting language to comply with what it will be converted
to (for example, C++Script to convert to C++code, DelphiScript for converting to Delphi).
Having resolved that, the process of converting becomes hands-down easy. You will only
need to make several similar changes in the code. In other cases, usage of the languages
DelphiScript, C++Script, and C#Script is usually not considered expedient.

See also
 f Of course, each language has its flaws. A complete listing of limitations can

be found at http://support.smartbear.com/viewarticle/32212/.

 f Differences in the scripting tests and tests written in advanced-level languages
is explained at http://support.smartbear.com/viewarticle/27178/.

Chapter 1

15

Recording your first test
Recording is the simplest way to create you first auto test. No programming skills are required
as it is extremely simplistic to go about and execute. In this recipe, we will make a recording
of the first executable test to be launched to make sure it is workable.

Getting ready
Before recording the first test, we need to perform some prerequisite steps:

1. Create a new project in TestComplete, as described in the Creating your first
project recipe.

2. Download the Calculator Plus application from the Microsoft website, if you have
not yet done so, and install it (http://www.microsoft.com/en-us/download/
details.aspx?id=21622). This application will be needed for many examples
in the book.

3. Launch the Calculator Plus and opt for the View | Classic View menu, so that
the Calculator Plus could look like a no-frill Windows application, without bells
and whistles.

4. Select the View | Standard menu item. Having done so, Calculator is switched
to the Standard working mode.

If you are working in the Windows XP or Windows Vista operation
systems, you can get by with a usual calculator that comes along as an
embedded system component. For Windows 7 and later, the embedded
calculator will not work to handle the examples at hand, because it is
much harder to obtain the calculus results from its text output field.

How to do it...
In order to record a test we need to perform the following steps:

1. Select the Test | Record | Record Script menu item or go for the appropriate option
from the drop-down menu on the toolbox, as shown in the following screenshot:

At this point, we would have a floating window widget Recording with the buttons
Rec., Stop, and Pause.

Getting Started

16

2. In the Calculator Plus window, click on the buttons 2, +, 2, *, 5, and =. In the end
result, the result of the calculation will appear in the text output to the following
effect: 2+2*5 = 20. This is a standard calculation mode for the calculator where
operation priorities are not accounted for.

3. Click the Stop button in the Recording window, as shown in the following screenshot:

4. If you have the Create Project Item window opened afterwards, prompting for adding
the NameMapping element to the project, click on the Cancel button, as shown on
the following screenshot:

5. In the result, the TestComplete editor will contain the following script:
function Test1()
{
 var wndSciCalc;
 var btn2;
 wndSciCalc = Sys.Process("CalcPlus").Window("SciCalc",
"Calculator Plus");
 btn2 = wndSciCalc.Window("Button", "2");
 btn2.ClickButton();
 wndSciCalc.Window("Button", "+").ClickButton();
 btn2.ClickButton();
 wndSciCalc.Window("Button", "**").ClickButton();
 wndSciCalc.Window("Button", "5").ClickButton();
 wndSciCalc.Window("Button", "=").ClickButton();
}

Chapter 1

17

6. Now, we can go ahead and double-check if the recorded script works as it's been
intended. For this purpose, we right-click on any spot in the Test1 function, and
from the context menu select the Run Current Routine menu item:

7. As a result, the script will launch and execute all the prerecorded actions.

How it works...
All the actions made during the script recording are transformed by TestComplete to the
corresponding scripting commands, that is, mouse-clicks, text input, and selection of elements
from a drop-down list; all these actions are covered by specific corresponding commands.

In our example:

 f In the first two lines, there appear variables for the calculator window and the
button 2.

 f In the following two lines these variables are initialized and they have specific
objects assigned.

 f Now, it is possible to carry out different actions with these objects.

 f In the further six lines of code, we reproduce one and the same action with the
help of several buttons, that is, the button-click, in particular.

 f Please note that the button 2 has become peculiar. Only for this button do we have
a variable (btn2) declared, while other buttons are handled through the window
variable (wndSciCalc). This happens because the button 2 is being used more than
once, which was duly recognized by TestComplete and further on transmuted into the
recursively applied code in view.

There's more...
Although TestComplete is generating a readable code at the point of recording, all the
recorded scripts are the least readable and not easily maintainable. Sometimes, in case of
changes in the tested application, the prerecorded scripts should be redone from the scratch
rather than unraveled or modified to fit new conditions. Hence, the recording technicalities
are not recommended to be applied to create scripts that should be workable recursively
with intention to be applied for regression testing.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

18

However, there are several cases when recording is useful, for example:

 f To learn and understand how TestComplete interacts with a tested application
and controls within it

 f To quickly implement a simple script for a one-time task

 f To record several actions for future modifications

See also
 f Recording scripts is just a first step towards creating effective scripts. To learn

how to improve your tests, read the Modifying the recorded test recipe.

 f If you want to better understand how TestComplete works with windows and
controls, refer to the Understanding how TestComplete interacts with tested
applications recipe.

 f Running functions is explained in detail in Chapter 4, Running Tests.

Modifying the recorded test
As we have seen in the previous recipe, a script can be recorded automatically; however, in
the result of such recording, an unreadable code will be generated, which is difficult to modify.

Let's suppose that in the result of requirements for the tested application altering, we have to
add 20 more button-clicks to various buttons. The simplest way is to copy the last line of code
(in which the = button is clicked), however, the size of our script will increase significantly,
which will worsen the readability.

In this recipe, we will modify the recorded code in such a way that we will minimize the
necessitated actions to append the new Calculator Plus button-clicks.

How to do it...
In order to modify a test we need to perform the following steps:

1. First and foremost, we will make the code conformable to a unified style so that
button-clicks appear in the same way in any given case. To this end, we should get
rid of the variable btn2; and the code that stands for the button-click should be re-
written in exactly the same manner that the button-clicks for the rest of the buttons
have been coded.

2. Together with that, we will join declaration of the wndSciCalc variable with its
initialization and assign the variable a different name. In the result, the code will
appear as follows:

Chapter 1

19

function Test1Modified1()
{
 wndSciCalc = Sys.Process("CalcPlus").Window("SciCalc",
"Calculator Plus");
 wndSciCalc.Window("Button", "2").ClickButton();
 wndSciCalc.Window("Button", "+").ClickButton();
 wndSciCalc.Window("Button", "2").ClickButton();
 wndSciCalc.Window("Button", "**").ClickButton();
 wndSciCalc.Window("Button", "5").ClickButton();
 wndSciCalc.Window("Button", "=").ClickButton();
}

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com.
If you purchased this book elsewhere, you can visit http://www.
PacktPub.com/support and register to have the files e-mailed
directly to you.

3. The same repetitive actions are best to be coded as loops. In the given case, we will
use the for loop, and the text of the major buttons will be announced as an array:
function Test1Modified2()
{
 var aButtons = ["2", "+", "2", "**", "5", "="];
 var wCalcPlus = Sys.Process("CalcPlus").Window("SciCalc",
 "Calculator Plus");
 for(var i = 0; i < aButtons.length; i++)
 {
 wCalcPlus.Window("Button", aButtons[i]).ClickButton();
 }
}

4. Lastly place code for button-clicks into a separate function:

function clickCalcButton(caption)
{
 var wCalcPlus = Sys.Process("CalcPlus").Window("SciCalc",
 "Calculator Plus");
 wCalcPlus.Window("Button", caption).ClickButton();
}
 function Test1Modified3()
{
 var aButtons = ["2", "+", "2", "**", "5", "="];
 for(var i = 0; i < aButtons.length; i++)
 {
 clickCalcButton(aButtons[i]);
 }
}

Getting Started

20

How it works...
We have completed the modification of the recorded code within the three steps:

 f On the first step we simply arranged the code so that it followed the same
style. These changes are cosmetic; we need them just to simplify the
following modifications.

 f On the second step we made a serious change: made an addition of the loop to
iterate through the repetitive actions of the button-click. As a result, first of all, we
reduced by half the size of the function; secondly, we facilitated further work. Now,
if we need to add new button-clicks, it would be enough to add the heading of the
button to the array, and the loop will automate any further actions with the button.

 f Finally, on the third step, we have organized the calculator into a separate function.
Thus, we have concealed the details of the realization of these actions by leaving
only high-level actions in the testing function Test1Modified3. This three-step
accomplishment is called functional decomposition.

See also
 f The Organizing script code in the project and Creating framework using the OOP

approach recipes in Chapter 3, Scripting, will help you to arrange you modifications
in script code

Saving and restoring user settings
In TestComplete there are three types of customizable settings:

 f Settings of the TestComplete itself (various parameters that influence regimes
of work with TestComplete are available in the Tools | Options menu)

 f Interface settings

 f Project settings (in the Tools | Current Project Properties menu)

The first two types of the settings are easy to save and restore at any time.

How to do it...
The following steps should be performed to save and restore settings:

1. In order to save the settings from the Tools | Options menu, opt for the Tools |
Settings | Export Settings menu item, and in the opened window signify which
settings you would like to save and the name of the file to save them into; then,
click on the Export button.

Chapter 1

21

2. To upload the settings saved earlier, opt for the Tools | Settings | Import Settings
menu item, and in the opened window opt for the file of the settings and click on the
Import button. All the settings will be uploaded in the same format they had been
initially saved in.

3. To save the settings of the external view (panels and toolbars), opt for the View |
Desktop | Save Desktop As menu item and input the name of the file which you
would like to save the settings of the external view.

4. In order to upload the previously saved settings, opt for the View | Desktop | Load
Desktop menu item, and select the earlier saved file, and then click on the Open
button. All the settings of the interface will return to the earlier saved variation.

How it works...
Depending on the type of settings, they will be saved into the file with different extensions
(.desktop for the settings of the interface and .acnfg for the settings of the program). If
you're working on different computers and wish to work everywhere with the same habitual
selection of settings, you can implement this, but also make it so it only takes a couple
of seconds to restore previous settings on other computers. The same can be done after
TestComplete has been re-installed or in case these files are stored in the source control along
with the project suite; updating local copy of the project affects TestComplete's appearance.

There's more...
Sometimes, it comes to pass that by experimenting with the re-positioning of various panes or
control panels, you cannot restore their initial positions. In order to resolve this problem, there
are respective options View | Desktop | Restore Default Docking (restoring initial view of the
panes and panels) and View | Toolbars | Restore Default Toolbar (restoring toolbars).

These two options can sometimes become a point-of-care rescue if you have no
saved settings.

Although we have no method to save and upload settings of a separate project, we can clone
the existing project (it will be copied completely, including its settings), and then remove the
unnecessary elements from the new project.

To clone a project, right-click on its name and opt for the Clone Project menu. Then, enter the
name and path for the new project and click on the OK button.

Apart from this, we can assign the initial settings of the project (that is, the settings by
default). This can be done via the Tools | Default Project Properties menu option.

Getting Started

22

Creating code templates
When coding tests, we are using different programming constructs (for example, if…else,
try…catch, and so on). Some of them are used rarely, while others, conversely, are used
very often.

TestComplete allows us to accelerate input of some of the programming constructs with the
help of so called code templates.

Several of the templates are already predefined in TestComplete; however, they do not always
suffice for the job. That is why we will learn how to apply the preset templates and to create
some of our own.

How to do it...
Suppose we would like to create a template of our own for the if…else block of JScript code:

1. Select the Tools | Options menu item, and in the opened dialog window, select the
Panels | Code Editor | Code Templates option.

2. In the opened right-hand window panel select the target language that we want to
add a new template for.

3. Click on the Add button.

4. Enter the name and description of the new template in the list of templates (to
change the inputted values into the table, it is enough to make a single mouse-click
on the cell).

5. In the field under the list, enter the code of the script that should correspond with
the template in view.

Please take note of the symbol | (the pipeline): it defines the spot for
the cursor to appear after the template has been inserted into the
editor.

6. Click on the OK button.

7. Now, proceed to open any unit and press the following keys combination: Ctrl + J.
You will see a listing of available templates on the screen.

8. Select the newly created template ifelse to witness exactly the same code appear
in the editor as previously inputted in the listing of the templates.

Chapter 1

23

How it works...
We have added a new code template for the if...else construction for JScript language,
and it can now be used in any TestComplete project.

Please note that code templates are different for all languages, so if you want to add the
same construction for C++Script language, you need to repeat the preceding steps again.

In the following screenshot you can see how our template will look after performing all
these steps:

There's more...
Just as TestComplete settings, code templates are possible to save onto the file on a HDD
to be used afterwards on another computer. It can be done using the Save to File and
Load From File buttons in the templates' settings panel.

Getting Started

24

Delaying script execution
Sometimes, there is a need to suspend script execution for some time to allow for
synchronization with the work of the application. In this recipe, we will deal with the
simplest method to provide such a timeout.

How to do it...
In order to demonstrate the delay, we will use the Test1Modified2 function from
the Modifying the recorded test recipe:

1. Modify the Test1Modified2 function by adding one line into it:
for(var i = 0; i < aButtons.length; i++)
{
 wCalcPlus.Window("Button", aButtons[i]).ClickButton();
 aqUtils.Delay(2000);
}

2. If you launch the function Test1Modified2, it will be apparent that upon each
Calculator Plus button-click TestComplete will delay execution of the script at the
rate of 2 seconds, and then continues with the flow of execution.

How it works...
The aqUtils.Delay method pauses script execution for a specific range of milliseconds
(for example, 2000 milliseconds equals 2 seconds).

This delay does not account for any factors (for example, CPU speed of the computer or
network connectivity speed), which means one and the same delay can be too large or too
small in different conditions. In first case, we will continually have errors in the log; while in
the second case, scripts will have a useless standstill over the given period of time.

This is why it is not recommended to use this method too often as it's
not reliable enough. Instead, it is better to use the Wait method that
observes the moment an event is triggered.

Chapter 1

25

There's more...
There's one case when usage of the method aqUtils.Delay method is mandatory: when
we expect a specific event in the loop to be triggered. Let's say we need to wait for the creation
of the c:\somefile.txt file. In this case, the code will be as follows:

while(!aqFile.Exists("c:\\somefile.txt"))
{
 aqUtils.Delay(500, "Waiting for file...");
}

If the delay is not added to this code, TestComplete will keep checking too often, driving the CPU
usage up to 100 percent, and thereby significantly slowing down work of other applications.

See also
 f You can learn more about synchronization in scripts in the Waiting for an object to

appear and Waiting for a property value recipes in Chapter 5, Accessing Windows,
Controls, and Properties

Adding and removing project items
In TestComplete, a lot of features are implemented as project items, which implies the need to
add a corresponding element to the project prior to using "this or that" functionality.

In this recipe, we will look into an example for adding a Manual Tests element to the project
(the element is meant to store the tests that are necessary to run manually). Additions of
other elements to the project are done similarly.

How to do it...
In order to add a project item, we need to perform the following steps:

1. Right-click on the name of the project in the Project Explorer panel and select the
Add | New Item menu item:

Getting Started

26

2. In the opened Create Project Item dialog window, select the necessary element
(Manual Tests in our case):

3. Click on OK.

As a result there will appear in our project a new element Manual Tests, which is
workable as if from within TestComplete as well as directly from the scripts (if such
a possibility is in store for the element in view).

4. To delete the project item from the project, right-click on it and select the Remove
menu item.

5. In the opened window, select one of the removal methods: Remove or Delete.

How it works...
It is necessary to use the same action (Add | New Item) for adding elements to the project and
for addition of other sibling elements. For example, to add a new test to the Manual Tests group,
right-click on the Manual Tests element and go for the Add | New Item menu item.

 f The Remove operation removes only the element of the project, while the element
itself remains on your HDD. Later on, it could be added back into the project by
selecting Add | Existing Item from the contextual menu of the project.

 f The Delete operation will remove the elements of the project and all the
project-related files.

Chapter 1

27

There's more...
Support of different components (.NET, Java, Win API, and others) as well as of third-party
controls (Infragistics, DevExpress, and others) is implemented in TestComplete with the
help of extensions. To look up the list of supported and included extensions, and to disable
those which you don't use, opt for the File | Install Extension menu item and uncheck the
unnecessary ones.

Understanding how TestComplete interacts
with tested applications

In this recipe we will deal with TestComplete workings with various windows and
control elements.

Getting ready
Launch the Calculator Plus application (C:\Program Files\Microsoft Calculator
Plus\CalcPlus.exe) and make sure it is in Standard mode (the View | Standard menu
item is checked).

How to do it...
In order to learn how TestComplete works with tested applications we need to perform the
following steps:

1. Let's make a simple test and run it.
function Test2()
{
 var pCalc = Sys.Process("CalcPlus");
 var wCalc = pCalc.Window("SciCalc", "Calculator Plus", 1);
 wCalc.Activate();
 wCalc.Window("Button", "2").Click();
 wCalc.Window("Button", "+").Click();
 wCalc.Window("Button", "2").Click();
 wCalc.Window("Button", "=").Click();
 var result = wCalc.Window("Edit", "").wText;
 Log.Message(result);
}

2. In the result of the calculus, the log will have several messages on the buttons that
have been clicked and the result of the add-up equation 2+2 from the text field.

Getting Started

28

How it works...
In the first line, we initialize the pCalc variable and assign it with the object that is returnable
by the Process method. The Process method takes two parameters: the name of the
process and its index. By default, the index is equal to 1 and can be omitted.

In the next line, we initialize a new variable wCalc, while using the previously created variable
pCalc this time around.

The wCalc variable will have a value assigned that is returned by the Window method.
This method takes in three parameters:

 f WndClass: This parameter specifies the window class. The value of this property
is viewable in Object Browser (the WndClass property).

 f WndCaption: This parameter specifies a heading of the window, as seen by the user.
The value of this property is also viewable in Object Browser.

 f GroupIndex: This parameter specifies the current state of the window among
the other windows of the same class (the so called, Z ordering). The GroupIndex
parameter can also be omitted in case of unique control.

In the four lines to follow, we are working with the control elements of the type Button,
while using the same Window method.

In the last line but one, we are working with a new control element Edit, by respectively
signifying such a class for it. Since this element has no heading at all, the second parameter
is an empty string.

In this same string, we go about creating a new variable result and assigning it with a value
of the wText property of the text field—in order to have this value outputted to the log.

Please note that access to any control element, regardless of its class
and level of hierarchy, is carried out with the help of the Window
method! This is true only for Win32 applications.
If you do not know which class or heading of the necessary control
element is to be taken up, make use of the Object Spy utility and look
up the corresponding properties of the control element of choice.

Chapter 1

29

There's more...
In our examples we are handling an ordinary Win32 application.

Apart from this, there is a good deal of other types of applications (.NET, Java, Delphi, and
so on), and for each type there are proprietary methods of access and control. For example,
for .NET applications it is the WinFormsObject method, for Delphi applications it is the
VCLObject method, and so on.

Hence, if you have, say, a control element, that is identifiable by TestComplete as

Sys.Process("myapp").WinFormsObject("DotNetWinClass", "App Caption")

you will not be able to address it with the help of the Window method:

Sys.Process("myapp").Window("DotNetWinClass", "App Caption") // <=
WRONG!

This is incorrect and will not work! For each type of application, correct methods should be
used (they can be looked up in Object Browser).

See also
 f Usage of the Log.Message method is considered in greater detail in Chapter 6,

Logging Capabilities, that is dedicated to working with the log

Understanding Object Browser
In this recipe we will get familiar with an important TestComplete tool – namely, the Object
Browser panel.

The Object Browser panel represents all the processes and objects visible for TestComplete
in the system, which are workable from within TestComplete.

Getting ready
We will need to run Calculator Plus as a target application to learn on (C:\Program Files\
Microsoft Calculator Plus\CalcPlus.exe).

Getting Started

30

How to do it...
In order to get acquainted with Object Browser we need to perform several steps:

1. Click on the Object Browser tab in the left part of the TestComplete window (near the
Project Workspace pane) or press the following key combination: Ctrl + Alt + O.

2. In the collapsible list, expand the node Sys, and then the Process ("CalcPlus") node.

3. In the opened node, click on Window("SciCalc", "Calculator Plus", 1).

4. On the right-hand panel click on the link View more members (Advanced view):

How it works...
The Object Browser tab displays all the system nodes within immediate access. On the
Objects panel in the left-hand part of the collapsible list, all the system objects are shown.
The root node Sys is the main object in the given hierarchy; it is particularly instrumental
for accessing all the system nodes.

Sibling nodes of the Sys object are the processes. Each process, in its turn, has child
elements, the windows. Also, the main window has child elements, the controls, with
which we are working (buttons, data input, lists, toolbars, and others).

Chapter 1

31

Depending on the application type, its complexity, and the customizable settings of the
project, this hierarchy may be quite sophisticated. The matter is that TestComplete represents
all the application elements, even invisible ones (which are used for positioning controls).

Each item of the Objects tree is an object itself (including the Sys object) with various
properties and methods. By default, a short-list view is enabled for the displayed properties.
By clicking on the View more members (Advanced view) link we have displayed a complete
list without any exceptions.

Properties and methods of the selected item are displayed on the corresponding tabs in the
right-hand part of the TestComplete window. Every element has several standard properties
always available (such as width, ID, and class); also, the extended properties may be available.

The majority of properties are read-only; however, some of them can be accessed in read-write
mode to have them changed. If that's the case, we will see a small circle near the name of the
property (for example, the WndCaption property of the main Calculator Plus window). Such
properties can be modified from the scripts directly.

Apart from simple properties there are compound properties with values as objects. In this
case, in the property-value field, the value of (Object) will be signified. In order to view the
value of such property, it is necessary to double-click on its name; this will cause the list to
update by displaying properties and methods of the viewed compound property.

For example, double-clicking on the MainMenu property, we will see a list from two properties:
the number of child elements and the menu items.

In this example, the Items property is also a compound one, meanwhile this is a property with
parameters. Clicking on the Params button, we can have either the index of the menu item
assigned or its caption and once more the compound property that corresponds the menu item.

In the process of work (especially, with complex control items), we will be working with Object
Browser in order to locate the necessary properties.

There's more...
In the topmost part of the Object Browser panel above the Objects tree, there are several
buttons which make it possible to filter the displayed, processed, and other objects. For
example, it is possible to hide invisible objects, system processes, and so on; and even
selectively display the processes with the help of the filter.

Getting Started

32

The fewer processes and objects displayed on the Objects panel, the faster the information
is updated for all the objects in view.

We recommend usage of the Show Tested Applications Only mode when it is possible. If
necessary, one can connect, with the help of the filter window, only those processes
with which you are currently working.

See also
 f Tested applications are considered in greater detail in the next chapter.

 f If you are unable to find necessary control within the Object Browser tree, read
the Using Object Spy recipe.

 f The complexity of object hierarchy may be changed by modifying the Object Tree
Model option. The Choosing Object Tree Model recipe in Chapter 5, Accessing
Windows, Controls, and Properties, will help you to learn more about it.

 f The following two recipes will give even more useful information on controls
and windows:

 � The Understanding how TestComplete interacts with tested
applications recipe

 � The Understanding the window's life cycle recipe in Chapter 5,
Accessing Windows, Controls, and Properties

 Using Object Spy
If the tested application is a quite complex one and contains many different controls,
locating the necessary element in the Object Browser panel may be quite a challenge.

To facilitate the task at hand, we can use the Object Spy utility.

If you are using TestComplete of Version 7 or below, Object Spy will go by the
name of Object Properties, and is no different otherwise from Object Spy.

How to do it...
In order to get acquainted with Object Spy we need to perform several steps:

1. Click on the Display Object Spy button on the toolbar.

Chapter 1

33

2. In the result, the TestComplete window will minimize and the screen will have the
Object Spy window displayed.

3. Now we need to signify the particularly necessary object in the Object Spy window.
To this end, we have the following two methods:

 � Drag-and-drop by the mouse the sign of the target onto the necessary object
and wait until the control element highlights it in red. Once this has occurred
let go of the mouse button.

 � Press the Point and fix icon, hover the mouse cursor over the necessary
object and press the following combination of keys: Shift + Ctrl + A.

Getting Started

34

In any case, in the list below, we will see a list of available properties similar to the list
in Object Browser.

4. In order to see the selected element in Object Browser, click on the Highlight Object
button in the Objects tree in the top-right corner of the Object Spy window.

How it works...
TestComplete highlights the control elements, which it can identify. Do not be surprised if
you happen to find out that some of the elements (for example, menu items, toolbar buttons,
individual table elements, and so on) are not highlighted, while the whole group of elements
is. Such behavior stands for either of the two:

 f This is a compound control element and TestComplete can't highlight its internal
component, only a whole compound control can be recognized and highlighted

 f A given control element is not supported by TestComplete altogether

The Object Spy window displays information about controls the same way as Object Browser
does. There is a tab control with available properties and methods at the bottom and a full
name of the control above it. There is also a Search field, which allows us to quickly apply
a filter to the list of properties and methods to find the necessary item in the list.

See also
 f The Working with nonstandard controls recipe in Chapter 3, Scripting, will guide you

on working with nonstandard controls which are not recognized by TestComplete

 f If you want to know how to find specific control by coded script, you can move to
the Finding objects by properties' values recipe in Chapter 5, Accessing Windows,
Controls, and Properties

2
Working with Tested

Applications

In this chapter we will cover the following recipes:

 f Adding a tested application project item

 f Running a tested application from the script

 f Terminating a tested application

 f Killing several instances of a tested application

 f Closing a tested application

 f Running a tested application in the Debug mode

 f Running a tested application under a different user account

 f Changing tested application settings dynamically from the script

 f Running external programs and DOS commands

 f Testing installers – running an MSI file

Introduction
TestComplete can be used for testing different types of applications: desktop, console, web,
and web services. In all cases we need to be able to run applications under test in different
ways (with different command-line parameters or under different user's accounts), terminate
them, and analyze the application's state.

In this chapter we will learn how to work with tested applications in TestComplete. In most
cases, a special project item TestedApps is used for this purpose; however, in some cases
other approaches may be of better use.

Working with Tested Applications

36

Adding a tested application project item
Before getting down to the tested applications, it is necessary to add a corresponding
project item to the project and come to an understanding of its parameters and settings.

Getting ready
Any project can contain only one tested application project item, therefore prior to performing
the following steps, make sure that the TestedApps element doesn't exist in the project.
Otherwise, remove it by right-clicking on its name and selecting the Remove menu item.

How to do it...
For adding tested application project item perform the steps given as follows:

1. Right-click on the name of the project and opt for the Add | New Item menu item.

2. In the Create Project Item window select the Tested Applications element and click
on the OK button.

There will appear a new TestedApps element in the project.

3. Right-click on the TestedApps element and opt for the Add | New Item menu item.

4. In the Parameters window enter the full path to the executable file (in our case, it is
C:\Program Files\Microsoft Calculator Plus\CalcPlus.exe) in the
Application field or click on the button next to the Application field and locate this
file with the help of the Select Tested Application window.

Chapter 2

37

5. Click on the OK button.

6. Double-click on the TestedApps element in the project. On the Workspace
panel there will appear a list of tested applications.

7. To launch the added application, right-click on the CalcPlus element in the project
tree and opt for the Run menu item.

How it works...
We can add as many applications to TestedApps as we see fit to work in TestComplete, and even
several clones of the same application. For example, if you need to launch an application with
different parameters, it is possible to add several copies of the same application and uncheck
the Launch Application option for those clones that are not necessary at the moment.

www.allitebooks.com

http://www.allitebooks.org

Working with Tested Applications

38

There's more...
All the parameters of the tested application (for example, Name, Run Mode, Working folder,
and so forth) can be changed at any given moment of time, and not only in the TestedApps
window, but also via the scripts directly.

If you need to launch several clones of the application, change the Count parameter for the
tested application by signifying the necessary number of launchable copies in it.

In order to launch all the applications from the list, right-click on the TestedApps element and
opt for the Run All menu item.

See also
 f If you want to learn more about tested applications in TestComplete,

please visit the following link on the SmartBear website:
http://support.smartbear.com/viewarticle/31408/

 f More information about running tested applications can be found in the
following recipes:

 � The Running a tested application from the script recipe

 � The Changing tested application settings dynamically from the script recipe

Running a tested application from the script
In most cases we will need to run tested applications automatically from the test scripts,
not manually from TestComplete IDE.

In this recipe we will learn how to launch tested applications from the script.

Getting ready
Add the Calculator Plus and Notepad applications to the application project (right-click on
TestedApps, and select Add | New Item). These applications can be located through
the following paths:

 f C:\Program Files\Microsoft Calculator Plus\CalcPlus.exe

 f C:\Windows\notepad.exe

Chapter 2

39

Pay attention, in our book we use Windows 7 32-bit machine for our
example. The path to CalcPlus.exe on 64-bit machine will be
different (C:\Program Files (x86)\Microsoft Calculator
Plus\CalcPlus.exe)!

How to do it...
In order to run a tested application we need to perform the following steps:

1. Create the following function and launch it:
function testRunApps()
{
 var pCalc = TestedApps.CalcPlus.Run();
 var pNotepad = TestedApps.notepad.Run();
}

This code will run both tested applications using the Run method.

2. In the result, both of the applications will launch, and the log will have the following
messages written on the launched applications:

How it works...
Each tested application item has the Run method, which is used for running applications
under test. With help of this method, the application is launched in the mode specified
by its Run Mode property.

The Run method returns the process object of the launched application, which can be
used further in script for interaction with the application under test.

If for some reason run attempt fails, an error will be generated: Unable to run "<PATH_TO_
THE_APPLICATION>".

Working with Tested Applications

40

There's more...
If you have several applications in the project, it is not necessary to launch each one of them
one by one, as it is possible to launch all of them at once with the help of the RunAll method:

TestedApps.RunAll();

See also
 f In some cases there is no need to add an application to the TestedApps object

to run it (for instance, to run a DOS command). The Running external programs
and DOS commands recipe explains another approach to run applications.

Terminating a tested application
Sometimes it becomes necessary to quickly terminate an application (for example,
if we don't care about saving application results or the application stopped responding).

In this recipe we will learn how to forcibly close the application using a script.

Getting ready
Add the Notepad application to TestedApps.

How to do it...
In order to terminate a tested application we need to perform the following steps:

1. Create and launch the following function:
function testRunApps()
{
 TestedApps.notepad.Run();
 TestedApps.notepad.Terminate();
}

2. In the result of the function call, the Notepad application will be launched
and then closed.

Chapter 2

41

How it works...
The Terminate method will forcibly kill the process of the application, without giving it a
possibility to perform standard actions that are executable in the normal termination mode
(for example, when a user presses the termination button to close the program). This action
is analogous to terminating the process thread in the Task Manager.

This is why we should use the Terminate method only when we are sure that it will not lead
to data loss or application intactness.

Another reason to apply the Terminate method is validation of the tested application's
behavior in case of emergency shutdown (for example, will it notify us of its shutdown upon
the next startup, will it restore the files that were being edited on the verge of the termination,
and so on).

Usage of this method for normal termination of the program is not recommended.

See also
 f If you need to terminate all instances of the application, the Killing several instances

of a tested application recipe will help you

 f The better way of closing applications under test is explained in the Closing a tested
application recipe

Killing several instances of a tested
application

Sometimes, there arises a necessity to terminate several processes under one and the
same name, while the number of open processes may vary; hence, the exact number
of the processes to terminate remains unknown.

Getting ready
Add the Calculator Plus application to TestedApps and launch its copies (three or more).

Working with Tested Applications

42

How to do it...
In order to terminate several instances of the tested application we need to perform the
following steps:

1. Launch the following function:
function testTerminateProcesses()
{
 var procName = "CalcPlus";
 while(Sys.WaitProcess(procName, 10).Exists)
 {
 Sys.Process(procName).Terminate();
 aqUtils.Delay(500);
 }
}

2. In the result of the function call, all the instances of Calculator Plus application
will be terminated.

How it works...
Since we do not know the exact number of launched processes, we resort to the loop, in
which, with the help of the WaitProcess method, we check against the availability of any of
the sought processes. If such a process is located, we then terminate it with the Terminate
method and wait the half a second (500 milliseconds) that might be necessary for the
termination to complete. Then, we check again for any outstanding processes running under
the same name.

Exiting the loop takes place when there is no process under the given name.

There's more...
We can make this function more universal by declaring procName as a parameter
(and removing declaration of the variable in the very beginning of the function):

function terminateProcesses(procName)

Now we can call this function for termination of any of the processes, not just of the
Calculator Plus termination, for example:

terminateProcesses("notepad");

If you need to close only one process, provided you know its index, it is possible to do
it the following way:

Sys.Process("CalcPlus", 2).Terminate();

Here, 2 stands for the index of the process.

Chapter 2

43

See also
 f Here we used the WaitProcess method for verifying the process' existence.

The Wait methods are explained in details in the Waiting for an object to appear
recipe in Chapter 5, Accessing Windows, Controls, and Properties.

Closing a tested application
In the Terminating a tested application recipe we have come to understand how to forcibly
terminate the tested application, as well as ascertained that this method suits emergency
cases exclusively.

In this recipe at hand we will take up an example of application termination.

Getting ready
Add a standard Notepad application to TestedApps (right-click on the TestedApps node in
the project, then select Add | New Item and choose the C:\Windows\notepad.exe file).

How to do it...
In order to close a tested application we need to perform the following steps:

1. Create and launch the following function:
function testCloseNotepad()
{
 var pNotepad = TestedApps.notepad.Run();
 var wNotepad = pNotepad.Window("Notepad", "Untitled -
 Notepad");
 wNotepad.Activate();
 wNotepad.Keys("Some text to prevent closing");
 TestedApps.notepad.Close();
}

2. In the result, the Notepad application will remain running, and in the log we will spot
the following notification:

The application "C:\Windows\notepad.exe" got a command to close, but it is still
running, though the default timeout has expired.

Working with Tested Applications

44

3. Now, modify the function by adding the following code to it, as shown in this example:
function testCloseNotepad()
{
 var pNotepad = TestedApps.notepad.Run();
 var wNotepad = pNotepad.Window("Notepad", "Untitled - Notepad");
 wNotepad.Activate();
 wNotepad.Keys("Some text to prevent closing");
 TestedApps.notepad.Close();
 if(pNotepad.WaitWindow("#32770", "Notepad", -1, 1000).Exists)
 {
 pNotepad.Window("#32770", "Notepad").Keys("~n");
 }
}

4. Now the Notepad application has closed; however, the notification is still there in the
log. In order to get rid of the notification, let's replace the following line:
TestedApps.notepad.Close();

With this one:
wNotepad.Close();

Then launch the function again.

5. In the result, the Notepad application is closed and there are no notifications in the
log about it.

How it works...
When we close an application via the TestedApps object (as we have done in the first two
examples), TestComplete prompts the application with a termination command and awaits
for the application to complete. If this does not happen (as in our case, when Notepad awaits
for us to push the button), TestComplete notifies us about that in the log.

Further on, we add the code, which verifies with the help of the WaitWindow method,
whether the message box has appeared, and if so, we close it by pressing the buttons
combination: Alt + N (which corresponds with pressing the Don't Save button). This way,
we achieve the correct termination of the application.

And, finally, we substitute the call of the Close method for TestedApps with analogous
one of the window. Thereby, the termination command is sent to the window and
TestComplete does not wait for the application to close down.

Chapter 2

45

There's more...
To close the application, it is not necessary to call the Close method. Instead, one could
apply other methods for termination, for example, opting for the File | Exit menu item or
sending such a combination of keys as Alt + F4 with the help of Keys method. Note, however,
that sending key sequence requires that the target window be active, otherwise, it is possible
to send the sequence to another window.

See also
 f If you are still unsure how the WaitWindow method works in the previous example,

read the Waiting for an object to appear recipe in Chapter 5, Accessing Windows,
Controls, and Properties

Running a tested application in the Debug
mode

Sometimes, at the point of an application launch, we need to know the details like which
modules are being loaded by the application in view. To this end, TestComplete has an option
for launching a debugger mode.

Getting ready
Add a standard Notepad application in TestedApps.

How to do it...
In order to run a tested application in Debug we need to perform the following steps:

1. Double-click on the TestedApps project's element.
2. In the open TestedApps pane go for Notepad.
3. Set the Run Mode option to the Debug value.

4. Create a new function with a single code line TestedApps.notepad.Run() and
execute it.

Working with Tested Applications

46

In the result, as shown in the following screenshot, the log will have the information about all
the files that are being uploaded by the application at the point of launch:

How it works...
When we start the application in the Debug mode, TestComplete takes over as debugger
for the application and keeps track of all the modules that have been uploaded by the
application, all the emergent exceptions, and so on.

It is also possible to view detailed information for each individual message. To do so, one
should click on the message in the log and switch to the Additional Info tab (under the
log messages).

Meanwhile, a vast amount of information is entered to the log, thereby making it cluttered,
this is why it is recommended that the Debug option should be used only in case of need
(for example, if the application triggers fallback closing at the point of being launched, due
to some unknown reasons), in other cases a simple mode is used.

Besides, in the Debug mode, the application works slower than in the simple ordinary mode.

Chapter 2

47

Running a tested application under a
different user account

By default, TestComplete launches tested applications under the same user account under
which TestComplete itself had been launched. At other times, however, it stands to reason
one should be able to verify workability of the application under a different account name(s),
for example, one with restricted permissions, and so on. To this end, the Run As option of the
tested application has been specifically earmarked.

Getting ready
Create a new user in the system:

1. Right-click on the Computer element in the main menu and opt for the Manage
menu item.

2. Expand the System Tools | Local Users and Groups | Users element.

3. In the main menu, go for the Action | New User option.

4. In the open New User window, enter a user name (for example, user1), a password
and disable the User must change password at next logon option.

5. Click on Create.

Add the Calculator Plus application to TestedApps and make sure it appears as a
commonplace Windows application, as it's being launched (that is, the View | Classic
View option has been enabled).

How to do it...
In order to run a tested application as a different user we need to perform the following steps:

1. Double-click the TestedApps element and select the Calculator Plus in the right-
hand pane.

2. In the Basic Parameters section, select the Run As element in the Run Mode drop-
down list.

Working with Tested Applications

48

3. In the Run-Mode Parameters section, signify the name of the created user and
the password.

4. Launch the application by either selecting the option Run from the contextual
application menu in TestedApps, or by using the TestedApps.CalcPlus.Run()
command in the script.

5. Calculator Plus will start up with the default view (not the Classic View option).

How it works...
When we have changed the launching parameters of the calculator by setting the Classic
View option, these customizations were saved for the current user. For a newly created user,
it was the very first calculator application launch, and that's why default settings were applied.
If we set the settings to Classic View once again (after calculator had been launched from
under the user1 account name), the settings would have to be saved to be accounted for
upon subsequent launches of the application.

Chapter 2

49

There's more...
In order to launch the application from under another user, it is not entirely necessary
to change application parameters, as one could simply apply the RunAs method of
TestedApps. For example, in our example, the function call would look like this:

TestedApps.CalcPlus.RunAs("", "user1", "123456");

Changing tested application settings
dynamically from the script

In some cases, the path to the tested application may vary from one computer to another. For
example, installing the 32-bit application onto the 32-bit system, application shall default to
the Program Files folder; and in case of 64-bit system, programs end up in the Program
Files (x86) folder.

Another example of using dynamic paths is testing different versions of the same application,
when the application path also includes the version number.

We can simply create two copies of the tested application in TestedApps and toggle-switch
each one on and off, depending on the system type. Otherwise, we could define the pathname
dynamically and modify it (along the other parameters) prior to the launch.

Getting ready
Add the Calculator Plus application to TestedApps.

How to do it...
In order to change the tested application's path we need to perform the following steps:

1. The following example shows how we can change parameters of the application
directly by scripting:
function testChangeAppSettings()
{
 if(Sys.OSInfo.Windows64bit)
 {
 TestedApps.CalcPlus.Path = "C:\\Program Files (x86)\\Microsoft
 Calculator Plus";
 }
 else
 {

Working with Tested Applications

50

 TestedApps.CalcPlus.Path = "C:\\Program Files\\Microsoft
Calculator Plus";
 }
 TestedApps.CalcPlus.Run();
}

2. Launch it to verify that it is workable.

How it works...
Here we define the bitness of the system with the help of the Sys.OSInfo.Windows64bit
property and set the path to the tested application depending on the value of the passed
variable.

In a similar manner, we can change other application parameters as well (name, parameters,
and so on).

Before applying a certain property, read up on it in the reference book
to make sure this property is not obsolete. Deprecated properties and
methods are not recommended for use, as in the following versions of
TestComplete they could be removed, for obsolescent properties and
methods can be always replaced with more user-friendly alternatives.

Running external programs and DOS
commands

Sometimes, there arises a need to launch a program without adding it to TestedApps.
This could be, as an example, a DOS command (dir, del, copy, and so on), one of the
programs in use, or asynchronous launch of the program without awaiting its completion.

To do just that, we will apply the WScript.Shell object that is a standard component
of the Windows Script Host.

We will consider three possible use cases for the launch: standard program launch,
parameterized launch, and execution of the program from the DOS command prompt.

Getting ready
On C:\\ create the file with the name of myfile.txt.

Chapter 2

51

How to do it...
In order to run different commands we need to perform the following steps:

1. Create and launch the following function:
function runExternalCommand()
{
 var calc = "\"C:\\Program Files\\Microsoft Calculator Plus\\
CalcPlus.exe\"";
 var notepad = "C:\\Windows\\notepad.exe c:\\myfile.txt";
 var doscmd = "cmd /c copy c:\\myfile.txt c:\\myfilecopy.txt";

 var ws = Sys.OleObject("WScript.Shell");
 ws.Run(calc, SW_SHOWNORMAL);
 ws.Run(notepad, SW_MINIMIZE);
 ws.Run(doscmd);
}

2. In the result of the function call, the Calculator Plus and Notepad applications will
be launched with the myfile.txt file opened; and the file myfile.txt will be
copied to the myfilecopy.txt.

How it works...
To launch the commands we applied the Run method of the WScript.Shell object. The
first parameter that is passed to this method is the to-be-executed command per se. The
second parameter is the mode of showing the window. We have launched the calculator
in the standard mode, and the Notepad in the minimized mode. The second parameter
is optional and can be omitted (as shown on the following example).

Please, pay attention to specificity of this method's workings:

 f If the path to the file contains spaces, it has to be escaped with double quotes
(for example, Calculator Plus instance). The same should be done if the spaces
are encountered in the parameters.

 f Parameters are passed in the same line of code together with the path of the
launched file.

 f To prompt DOS commands, we apply the cmd program with the parameter /c,
which is a parameterized command that launches it and completes its session.

Working with Tested Applications

52

There's more...
The Run method of the WScript.Shell object can also open files with the help of mapped
(associated) applications. For example, opening the myfile.txt file is also doable as
follows:

Sys.OleObject("WScript.Shell").Run("c:\\myfile.txt");

Another method to launch programs is through use of WinAPI. For example, you can
launch Notepad using WinAPI like this:

Win32API.WinExec("C:\\Windows\\notepad.exe", SW_SHOWNORMAL);

See also
 f A good example of running external commands is running an MSI file, which

is explained in the Testing installers – running an MSI file recipe

Testing installers – running an MSI file
Launching MSI files is controlled by the msiexec program. When we launch MSI file, the
msiexec.exe program is the one that's being launched for real, from the C:\Windows\
System32\ folder.

This is why, as in the case of launching the other file types (taken up in the previous recipe),
we can launch MSI files in two of the possible ways: launch the MSI file directly or pass it as
a parameter to the msiexec program.

Getting ready
Place the Calculator Plus installer (the CalcPlus.msi file) to the root directory of C:\\.

How to do it...
In order to run an MSI file we need to perform the following steps:

1. Launch the following function:
function testRunMSI()
{
 var msi1 = "C:\\CalcPlus.msi";
 var msi2 = "msiexec.exe /i C:\\CalcPlus.msi";

Chapter 2

53

 var ws = Sys.OleObject("WScript.Shell");
 ws.Run(msi1);
 ws.Run(msi2);
}

2. In the result, we will have two copies of the Calculator Plus installer launched.

How it works...
The inner workings are the same as in the previous recipe; however, the only peculiarity
is that, in order to launch the MSI file as a parameter of the msiexec program, we will
have to attach the parameter /i to it, in order to signify the path to the installer, to be
passed further on.

There's more...
If the msiexec program were to be launched without parameters, it would display only the
window with the list of usable options that are available. For example, the /quiet parameter
allows launching silent mode installation, that is, without interacting with the user. This
parameter is handy to use in case we need to install a new version of the tested application
before running tests.

See also
 f Launching different applications and commands is discussed in detail in the Running

external programs and DOS commands recipe

3
Scripting

In this chapter we will cover the following recipes:

 f Entering text into text fields

 f Using wildcards to process objects with variable names

 f Structuring code using loops

 f Creating property checkpoints

 f Creating object checkpoints

 f Using global variables

 f Testing multilingual applications

 f Working with nonstandard controls

 f Organizing script code in the project

 f Handling exceptions

 f Handling exceptions from a different unit

 f Creating framework using the OOP approach

Introduction
Recording in TestComplete allows us to fast create testing scripts, and recorded tests are easy
to read and maintain. Scripting allows us to create powerful and maintainable tests. It also
allows us to create handy testing frameworks and solve complicated tasks with programming.
Scripting also requires good programming skills and general understanding of project's
design. In this chapter, we will consider different programming tasks one may face when
manually creating test scripts. We will use JScript programming language for our examples.

Scripting

56

Entering text into text fields
The major TestComplete workload consists of interacting with the tested application via text-input,
button-click, selecting elements from the drop-down list, and so on. Of course, automated checks
execution is the basic purpose of our tests; however, in order to carry out any checks whatsoever,
one should begin with a number of actions, all of which can take much time to complete.

In this recipe, we will consider two methods to work with the controls elements, using text
field as an example and decide when it's better to apply either method.

Getting ready...
Launch the standard Notepad application (C:\Windows\notepad.exe).

How to do it...
In order to review two methods of text inputting, we will create two functions
testEditControl1 and testEditControl2.

1. Create and launch the first function:
function testEditControl1()
{
 var pNotepad = Sys.Process("notepad");
 var wNotepad = pNotepad.Window("Notepad", "*");
 var tEdit = wNotepad.Window("Edit");
 var str = "let's try writing something here[Enter]in two
 lines";

 wNotepad.Activate();
 tEdit.Keys("^a[Del]")
 tEdit.Keys(str);
}

2. The second function is as follows:
function testEditControl2()
{
 var pNotepad = Sys.Process("notepad");
 var wNotepad = pNotepad.Window("Notepad", "*");
 var tEdit = wNotepad.Window("Edit");
 var enterStr = String.fromCharCode(13) +
 String.fromCharCode(10);
 var str = "let's try writing something else here" +
 enterStr + "in two lines again";
 wNotepad.Activate();
 tEdit.wText = "";
 tEdit.wText = str;
}

Chapter 3

57

3. After executing these two functions, the difference is clear: the speed of executing
the second function is much faster than the first one, though the result is the same
in both cases.

How it works...
The first few lines of both of the preceding functions are the same. We simply declare the
variables corresponding to the application objects (process, main window, and text field) that
are to be used further. After that, we declare a variable of the String type, whose text we will
enter to a Notepad input field (note that the values of the same variable are different in these
functions. We will talk about this difference later in this recipe).

Further, we will activate the Notepad window and clear the text field, for starters (against
any prior possibility of some text therein). Then we will proceed in inputting a new text. The
procedure of clearing the field and inputting text is of an interest to us in particular.

In the first instance, we have applied the Keys method, which allows inputting text to any
window or a controls element, as does the user.

In the second instance, we assign new values to the wText property directly, as seen in the
example, and this method works faster than the Keys method.

This, however, does not mean one should always use the second method. To tell the truth,
assigning values directly to a property is not a straightforward method, since users behave
otherwise. This is just a method to expedite filling out the window data, and in some cases it is
truly justifiable. For example, when working with Internet Explorer, the Keys method works quite
slowly (due to Internet Explorer peculiarities, TestComplete has to forcibly decrease the inputting
speed, otherwise a number of symbols will be omitted at the point of entry). This is why, when
testing applications in Internet Explorer, it is best to apply the properties intrinsically.

There's more...
Another example, when using properties is preferable is when entering large amount of
data. If we have many text fields having several text lines inputted into, the process will be a
bottleneck. By assigning values directly to the properties, we can significantly bring our scripts
execution up to speed.

However, along with its advantages, working directly with properties has some downsides.
Specifically, when assigning values to properties directly, some events may misfire (for
example, an event-handler that is bound onto inputted text to the text field, thus providing
the auto-filling of the text). In simple cases, we will not be able to test such a function.

Scripting

58

In sophisticated instances, we will be able to impact application performance and evoke some
errors, otherwise not reproducible manually. This is why the thumb rule of applying properties
instead of the Keys method is this: use the property-assigning method only in those cases
when you are absolutely positive that this will not impact the application workability! It is best
to discuss with the programmers, who are responsible for the application interface creation,
whether or not it is acceptable to access properties directly.

Another complexity of the two methods lies in the fact they handle specific symbols differently.
The Keys method transmutes some specific lines into button-click events. In our example,
we are dealing with the [Enter] line, which is getting transmuted to pressing the Enter key
at the point of text entry. If we are to try assigning this value directly to the property, the text
field will have the [Enter] line appearing. This is why, in order to break over to the new line
in the second function, we have to create a specific variable enterStr with the two symbols
that correspond with returning the caret in Windows OS. Should we wish for the line to be
outputted to the log with the help of the Log.Message method, we would have to replace the
sequence with the symbol of \n (which corresponds to the line-break in JScript). Thus, if we
would like to use one and the same string for both of the methods, we may come across some
hardships which we would have to resolve additionally by replacing the symbols in the string,
which can be grueling at times.

The names of the properties can be different for various controls
elements. For instance, in our example, the text of the input field is stored
in the property wText; however, for the other types of controls elements
(.NET, Java, or simply own-drawn controls elements) this could be the
Text, Caption, or any other property.

Using wildcards to process objects with
variable names

The majority of the controls elements have unchanging headers, texts, and so on (that is,
properties by which TestComplete makes a difference). In some cases, these properties are
dynamic, that means, they change depending on their conditions. For example, heading of
the Notepad application starts with the name of the open file (or the word Untitled for a newly
created file). Some URLs contain dynamic parts in parameters (for example, session identifier,
which is not liable to change, but to be generated randomly). In such cases we apply symbols
of the batch replacement (that is, the wildcards).

Getting ready...
Create the file myfile.txt in the root directory of the disk C:\ with any contents.

Chapter 3

59

How to do it...
In order to handle dynamic caption of the Notepad application we need to do the following:

1. Create and call the function that would open the Notepad application in dual modes:
in the mode of a new file and in the mode of opening existing file, as shown in the
following example:
function testWildcardsUsage()
{
 var notepad;
 var filename = "C:\\myfile.txt";
 var notepadCmd = "C:\\Windows\\notepad.exe";
 var ws = Sys.OleObject("WScript.Shell");

 ws.Run(notepadCmd);
 notepad = Sys.Process("notepad").Window("Notepad", "* -
 Notepad");
 Log.Message(notepad.WndCaption);
 notepad.Close();

 ws.Run(notepadCmd + " " + filename);
 notepad = Sys.Process("notepad").Window("Notepad", "* -
 Notepad");
 Log.Message(notepad.WndCaption);
 notepad.Close();
}

2. While the function is executing, Notepad will be opened twice and successfully
recognized by TestComplete in both cases (the notepad variable is successfully
initialized and used for closing Notepad); regardless of the fact that the heading
of the file is different in either case.

How it works...
In the first block of code, we declared and initialized a variable for further usage. In the
two subsequent blocks of code, we will execute similar actions: opening the Notepad
application, sending the header of the just-opened window to the log, and then closing
the Notepad application.

These two recurring blocks of code are not a good example for programming
style, because they contain one and the same code with an insignificant
difference. We have used this approach only for the purpose of helping
visualize the example, in real projects such an approach is banned from
usage and should not be recommended.

Scripting

60

There are only minute differences in these two blocks of code. In each case the headings
of the Notepad window are different; however, we still have the possibility to use one and
the same code to work with the window (this has been highlighted with the bold text). This
is achieved by using a batch-replacement symbol * (the asterisk). In TestComplete, we have
two symbols for the batch-replacement:

 f * (asterisk): This corresponds to any sequence of symbols (stands for several
symbols, one symbol, or a lack of any symbol)

 f ? (question mark): This stands for any singular symbol

We use such a form to address the Notepad window:

Window("Notepad", "* - Notepad")

We have notified in TestComplete that the window should pertain to the Notepad class, and
the heading of the file should begin with any sequence of symbols and end with the line " -
Notepad ". This is exactly why in both the cases we could leave the script code unchanged
in order to proceed working with the window of the application. Batch-replacement symbols
can be placed anywhere across the string of symbols (in the beginning, in the middle, or at
the end) or they can crop up anywhere inside the string once or multiple times.

Besides, batch-replacement symbols can be usable in TestComplete almost everywhere,
not just to cover the heading of the applications windows. For example, we could create
description of the Notepad window as follows:

Window("*", "* - Notepad")

This would correspond to the window with any class with the heading that we have taken up
so far. We should, however, abide by discretion not to use batch-replacement symbols just
anywhere, as too generic makeup of the such strings can lead to conflicting matches and
mismatches (when one and the same description of an object matches several real objects
in the application).

There's more…
The preceding example will not work for non-English system locales, because the name of
the Notepad window will be different in the application caption. To solve this, we can also use
wildcards: Window("Notepad", "* - *"). Here, we left the class Window untouched
(as it is the same for all locales), but replaced the Notepad text in the caption with asterisk
to match any word. If the text in the control contains asterisk, you can use double-asterisk to
match the character. For instance, a Calculator application has multiplication button. We can
address this button like this:

Window("Button", "**")

Chapter 3

61

See also
To know more about how to launch applications refer to the following recipes:

 f The Running external programs and DOS commands recipe in Chapter 2,
Working with Tested Applications

 f The Posting messages to the log recipe in Chapter 6, Logging Capabilities

 f The Organizing script code in the project recipe

 f The Finding objects by properties' values recipe in Chapter 5, Accessing Windows,
Controls, and Properties

Structuring code using loops
In the Modifying the recorded test recipe in Chapter 1, Getting Started, we have briefly dwelled
on the topic of loops, having used the for loop for clicking several buttons. In this recipe, we will
consider this issue in greater detail. Testers who are not familiar with programming, would often
make the error of redundantly repeating code. This may relate to recording tests via recorder or
with copying blocks of code with further insignificant changes. This is considered to be bad style
in programming, because, in the future, when we would need to introduce any changes into the
code, we would have to change it in all the places where it had been copied to.

Let's consider such an assignment. We have to create a smoke-test for Notepad, which will
be, first of all, quick, and secondly, will carry out only superficial checks just to make sure
that the application does not have some critical drawbacks that could stand in the way of
conducting complete testing. As a task for such a smoke-test, we will open all the available
dialog windows that can be opened in the Notepad application, to check their headings, and
then close them. Such windows in Notepad application are eight in number: Open, Save As,
Page Setup, Print, Find, Replace, Go To, and Font.

The simplest way to create such a test would be just recording it. However, if in the future
we will have new windows to be added to the test, we would have to copy the available code
(several lines), change the headings of the menu items and headings of the windows and
insert them at the end of the test. In the result, with each added window, our test will tend to
bloat. If we make up our minds in the future to check availability of the Cancel button in the
test on top of checking the heading of the window, we would have to re-write several lines of
code and copy them as many times as many windows are set on testing. And this is just a
smoke-test! If we are automating more complicated scenarios, the changes would be just as
complex as well.

Let's take a look at how it would be possible to implement such a check correctly.

Scripting

62

Getting ready...
Create the file myfile.txt with any contents in the root directory of the C:\ disk and start
the Notepad application

How to do it...
In order to structure code we need to perform the following steps:

1. First, let's write a script that will launch Notepad with the open file of C:\myfile.
txt, select one of the necessary menu items (for example, File | Open) and close
the dialog window that was opened at the point of selecting the underlying menu
item. In the result we will obtain the following function:
function smokeTest()
{
 var pNotepad = Sys.Process("notepad");
 var wNotepad = pNotepad.Window("Notepad", "* - Notepad");
 wNotepad.MainMenu.Click("File|Open...");

 var dlg = pNotepad.WaitWindow("#32770", "Open", -1,
 3000);
 if(!dlg.Exists)
 {
 Log.Error("Dialog window didn't open");
 }
 else
 {
 dlg.Close();
 }
}

2. Now, it is necessary to modify the function in such a way that Notepad could open
to the next file: C:\myfile.txt, and then go through several menu items and
check whether the necessary window has been opened.

3. We have several menu items and several window headings that correspond to the
given menu. The simplest way would be declaring two arrays: in the first array we
would enumerate the menu items, and in the second array, the window headings.

4. After that in the loop we would iterate through the loop and select the necessary
menu items one-by-one, checking into the corresponding window headings. The
new function would look like this:
function smokeTest()
{
 var menus = ["File|Open...", "File|Save As...",
 "File|Page Setup...", "File|Print...",

Chapter 3

63

 "Edit|Find...", "Edit|Replace...",
 "Edit|Go To...", "Format|Font..."];
 var captions = ["Open", "Save As", "Page Setup",
 "Print", "Find", "Replace",
 "Go To Line", "Font"];

 Win32API.WinExec("notepad.exe c:\\myfile.txt",
 SW_NORMAL);
 var pNotepad = Sys.Process("notepad");
 var wNotepad = pNotepad.Window("Notepad", "* - Notepad");

 for(var i = 0; i < menus.length; i++)
 {
 wNotepad.MainMenu.Click(menus[i]);
 var dlg = pNotepad.WaitWindow("#32770", captions[i], -
 1, 3000);

 if(!dlg.Exists)
 {
 Log.Error("Dialog window didn't open");
 }
 else
 {
 dlg.Close();
 }
 }
}

5. This new code variation works in the loop with several windows. If, in the future,
we have a new window to be added to the given test, we will simply add two new
elements to the arrays menus and caption, while the script would already be aware
how it should be handling things.

How it works...
At first, we declare the two arrays which contain menu items and windows' headings. If new
menu items are added to the tested application in the future, we will be able to add them for
testing simply by adding new items to these arrays. Then we would launch the Notepad and
initialize variables to work with the application.

Further on, in the loop, we go through all the elements of the menu (the menus array) and
select the menu items one-by-one. Each time, having chosen the next menu item, we wait for
the new window to appear with the help of the method WaitWindow lasting 3 seconds (3000
milliseconds). If the window does not pop up, the error notification is logged, if the window
pops up, it is then closed.

Scripting

64

Creating property checkpoints
The pith and marrow of any testing lies in the execution of various kinds of checks. In this
recipe we will come to grips with the simplest type of checks: property checkpoint.

This means that for a selected object we check the value of a certain property (for example,
text, availability, visibility, and so on).

Getting ready
Launch the Calculator Plus application (C:\Program Files\Microsoft Calculator
Plus\CalcPlus.exe).

How to do it...
In order to create a property checkpoint we need to perform the following steps:

1. Begin recording of the script (go to Test | Record | Record Script menu).

2. Switch to the Calculator Plus window and calculate some mathematical expression,
for example, 2+7.

3. On the Recording pane, in the Create New Property Checkpoint drop-down menu,
go for the Create Property Checkpoint option.

As a result, the Create Property Checkpoint window will show up on the screen.

4. Drag-and-drop the target icon on the results field in the Calculator Plus application,
and release the mouse button. In the result, the Object field will contain the full
name of the element for which the check will be carried out, as its screenshot
appears in the Preview field.

Chapter 3

65

5. Click on the Next button.

6. On the Select a object property to compare panel, select the property wText and
click on Next.

Scripting

66

7. In the Specify comparison settings panel, among the comparison settings, opt
for the Equals option in the Condition drop-down, and click on the Finish button.

8. Now, click on the Stop button in the Recording panel.

9. In the result, in the TestComplete editor, we will obtain the following code:
function Test1()
{
 var wndSciCalc;
 wndSciCalc = Sys.Process("CalcPlus").Window("SciCalc",
 "Calculator Plus");
 wndSciCalc.Window("Button", "2").ClickButton();
 wndSciCalc.Window("Button", "+").ClickButton();
 wndSciCalc.Window("Button", "5").ClickButton();
 wndSciCalc.Window("Button", "=").ClickButton();
 var field = wndSciCalc.Window("Edit", "", 1);
 aqObject.CheckProperty(field, "wText", cmpEqual, "7, ");
}

We have changed the generated code a little to make the code
more readable.

Chapter 3

67

10. If we would launch the function, the log will have a notification, generated by
the method CheckProperty. When the message is selected in the log, on the
Additional Info tab, we would see the detailed description of the checkpoint.

How it works...
In the first several lines of code, we simply click on the buttons. The check itself is executed
by the method aqObject.CheckProperty, in which function call was properly generated
for us by the wizard.

The method CheckProperty receives four parameters:

 f Object: This is an object, that would undergo the testing.

 f Property: This is the property that is being verified.

 f Condition: This is the type of the test. In our case, we have used exact comparison
(the Equals type); however, it is also possible to use other types. For example,
for the line, it is possible to check if a substring matches the line, and if it begins
or ends with a specifically signified substring. For digits, one could apply fewer types
of comparison. Altogether, there are about 16 types of tests.

 f Value: This is the value itself that is expected to be obtained as a result of the check.

Scripting

68

If the test fails, the log will contain substantial information on the possible reasons for
the errors.

There's more...
Apart from the method aqObject.CheckProperty there is a similar function aqObject.
CompareProperty. The difference is in the accepted parameters: the CompareProperty
method takes property as a parameter and it's not the object or the property as in case of the
CheckProperty method. Moreover, the CompareProperty method has another parameter,
MessageType, which allows it to assign, which type of message will be generated in the event
of a failure (an error, a warning, or an ordinary notification).

Creating object checkpoints
The purpose of testing is all about executing different types of verifications, and at times we
need to check both—one property of the controls elements (for example, text in the text input
field) and several other properties at a time (for example, text, availability, and visibility). To
this end, there exists the object checkpoint method. It affords the checking of both several
properties of a specific controls element, and several properties of its children elements.

In this recipe, we will create a object checkpoint for the Calculator Plus window along with
all of its child elements (buttons and a text field).

Chapter 3

69

Getting ready
Add the Stores element to the project by right-clicking on the name of the project, then Add |
New Item..., and select the Stores element. It will be necessary for us to store the data on the
objects. Then launch the Calculator Plus application.

How to do it...
The following are the steps for creating the object checkpoints:

1. Begin recording the script (go to Test | Record | Record Script menu).

2. On the Recording panel, opt for the Create Object Checkpoint element from
the Create New Property Checkpoint drop-down menu.

3. In the opened Create Object Checkpoint window, drag-and-drop the target icon onto
the heading of the Calculator Plus window. In the result, the Object field will contain
the full name of the object, and in the Preview field there will be the screenshot of
the window.

Scripting

70

4. Click on the Next button.

5. Leave the Retrieve data from an object option selected by default and click on
the Next button.

6. In the next step, we can select whether we should check the information from the child
windows. As we would like to check all the children objects inclusively (buttons and text
fields), we select the second option, Store data of the selected object and its children.

7. In the result, we will have a tree view of all the objects for which the check will be
performed. Let's disable all the unnecessary elements (in our case these are all the
objects of the type Static) and click on the Properties... button.

8. Now, with the help of the left and right arrow buttons, for each of the elements we
can add or remove the properties that are necessary to check. For the text field, we
will need this properties: Enabled, Visible, and wText, and for the buttons: Enabled,
Visible, and Caption, accordingly.

Chapter 3

71

9. Add all the necessary properties and remove the unnecessary, after which click on
the OK button.

10. Click on the Finish button.

11. Stop the recording by clicking on the Stop button in the Recording panel. In the
result, we will have created a script with just a single line:
Objects.wndSciCalc.Check(Sys.Process("CalcPlus").Window
("SciCalc", "Calculator Plus"));

12. In the Stores element of the project, a new Objects element will be created. When
clicking on the element, we will see a list with just a single wndSciCalc element
which we have just created.

13. By clicking on the Edit... button, we can edit the tested properties and their values.

14. If now, one wants to launch the generated function, TestComplete would compare
all the selected properties of all the controls elements that are stored in the
wndSciCalc object, with all those that are really available in the application.
In case of any mismatch, an error will be generated.

Scripting

72

How it works...
An object checkpoint facilitates verification of several objects' properties (or even all of them),
including its child objects. The object to be verified can be either added during creation of the
checkpoint (as we have done in the preceding steps), or selected from the existing objects
from the Stores project item. In this case, the object should be added to the Stores element
before starting to create the checkpoint. If later, the expected values of the properties change,
we will not have to create the checkpoint again, but only edit the corresponding object in the
Stores element.

There's more...
It might happen that the object checkpoints are put to use in the project quite frequently, and
sometimes, due to changes in the tested application, one has to trace back to make lots of
changes to the objects. If you have encountered such a problem, and wish to work your way
around making a great deal of manual changes, it is possible to launch scripts in the update
mode. To do that, follow these steps:

1. Open the settings for TestComplete (Tools | Options...), opt for Stores in the Engines
section, and turn on the Update objects option. Having done so, for each element in
the Objects list that should be customized, set the Update option.

2. Launch the scripts, TestComplete will update all the values of the properties for
the selected elements.

Do not forget to turn off the Update option for all the objects after making
all the necessary changes, otherwise, at each launch, updating will take
place rather than checking!

See also
 f The Creating property checkpoints recipe

Chapter 3

73

Using global variables
Usually, to pass data between functions, parameters are used. However, this isn't always
possible. In such instances, global variables come in mighty handy. These go by the names
of project variables and project suite variables in TestComplete.

How to do it...
In order to use a global variable, we need to perform the following steps:

1. Right-click on the name of the project and select the Edit | Variables menu item.
The panel with two types of variable will open up: Persistent Variables and
Temporary Variables.

2. Right-click on the empty area of Persistent Variables and opt for the New Item
menu. In the result there will appear a new variable by the name of Var1, and the
type of String with other empty fields.

3. Enter the default string value in the Default Value field, and the local
string value in the Local Value field.

4. Open any module and create therein the following three functions:
function testVariables()
{
 testExistingVars();
 testNewVars();
}
function testExistingVars()
{
 Log.Message(Project.Variables.Var1);
 Log.Message(Project.Variables.GetVariableDefaultValue
 ("Var1"));
 Project.Variables.Var1 = "new string";
 Log.Message(Project.Variables.Var1);
}
function testNewVars()
{

Scripting

74

 Project.Variables.AddVariable("Var2", "Integer");
 Project.Variables.Var2 = 123;
 var variable1 = Project.Variables.Var1;
 var variable2 = Project.Variables.Var2;
 Log.Message(variable1);
 Log.Message(variable2);
}

5. If the testVariables function is called, we will obtain the following result:

How it works...
In TestComplete there are two types of variables: persistent and temporary. Values of the
persistent variable are saved even if the TestComplete is closed and re-opened anew. The
values of the temporary variables exist only at the point of working of the scripts. On the
next script run their values will be set to default.

Persistent variables can be of four types: Integer, Boolean, String, and Double.
For temporary variables two additional types are available: Table and Object.

First, we have created the persistent variable Var1 with the help of the TestComplete editor,
assigning it with the default value and the current (local) value. The default value is needed
in case several people are working with the same project, the ad hoc value in view will be the
same across all the computers.

The function testVariables is needed only for the purpose of demonstrating of the fact that
values of the variable may differ in one function, and then correctly show up in another.

In the testExistingVars function, we are working with the created variable Var1,
first outputting its value and the default value to the log, and then changing its value and
outputting the same to the log again.

In the testNewVars function, we consider several possibilities of handling the variable
at once:

 f Creating a new variable dynamically in the course of script execution, and then
changing its value.

Chapter 3

75

 f Demonstrating a possibility for counting the value of the variable, previously changed
by another function.

 f We show that in the course of handling variables, it is not necessary to use their
full names (for example, Project.Variables.Var1). And for brevity's sake,
just assign the value of the newly created variable to the global variable and
work with the latter, in turn. Meanwhile, changes of the new variable in no way
affect the global variable.

There's more...
Apart from the project variables, there exist project suite level variables. Working with them
is no different than working with the variables of the project, with the only reservation for
accessing. To access project suite level variables from scripts, one should use the code
ProjectSuite.Variables instead of Project.Variables.

Similarly, to work with these variables in TestComplete itself, it is necessary to select the
Edit | Variables menu from the Project Suite context menu, and not from the project. The
advantage of using the variables of this type lies in the possibility of handling one and the
same variable from different projects (even those using different programming languages!),
and so passing data in-between.

Using global variables is considered a bad style in programming, so
use it only when there is no other way to achieve the result you need.

Testing multilingual applications
Many applications are designed for use in different countries, with different languages. Such
applications usually allow switching between application languages, so that all the writings,
headings, and other interface elements are displayed in the local language. More often than
not, the functionality of the application as a whole is not subject to change; therefore, there
is no sense in carrying out functional or regression testing for all the localized versions.
Sometimes, however, the application should comply with more stringent requirements, in
which case it becomes necessary to launch all the tests (or at least some of them) for all
the available languages.

In this recipe, we will learn to work with multilingual application in such a way that the
scripts code remains intact as we make it possible to easily switch between the languages
of the tested application. Let's suppose we need to create such a possibility for a standard
application of Notepad that is a part of the Windows suite.

Scripting

76

Getting ready
We need to perform several preparation steps before start:

1. Add the Name Mapping element to the project (right-click on the name of the project,
go to Add | New Item, then click on NameMapping).

2. Make sure the automatic short names generation option has been enabled or enable
it by going to Tools | Options..., then Engines | NameMapping, and check the Map
object names automatically checkbox.

3. Launch the Notepad application.

How to do it...
In order to create a test for multilingual application, we need to perform the following actions:

1. Begin recording in TestComplete, and execute the following actions in the Notepad.

2. Input some text into the text field.

3. Then press Ctrl + Home.

4. Opt for the Edit | Find... menu item.

5. In the Find what field, get the word text inputted.

6. Click on the Find Next button.

7. And then click on the Cancel button.

8. Stop recording by clicking on the Stop button in the Recording panel.

9. In the result, the following script will be recorded:
function testMultilanguageApp()
{
 var notepad;
 var wndNotepad;
 var dlgFind;
 var btnFindNext;
 notepad = Aliases.notepad;
 wndNotepad = notepad.wndNotepad;
 wndNotepad.Edit.Keys("Some text^[Home]");
 wndNotepad.MainMenu.Click("Edit|Find...");
 dlgFind = notepad.dlgFind;
 dlgFind.Edit.SetText("text");
 btnFindNext = dlgFind.btnFindNext;
 btnFindNext.ClickButton();
 dlgFind.btnCancel.ClickButton();
}

Chapter 3

77

10. Click twice on the NameMapping project element.

11. In the right-hand side window part, click on the Mapped Objects heading to open
it up.

12. From the Configurations drop-down menu on the right-hand side part of the panel,
select the Configuration Manager... element.

You will have Configuration Manager window opened with one configuration (Default
Configuration).

13. Click on the Copy As New button, and in the opened Add New Configuration window,
type in a new configuration title (in our case, the name of the configuration may overlap
with the language that's up for testing, for example, Russian, Danish, and so on).

14. Click on the OK button in the Add New Configuration window.

15. Close the Configuration Manager window.

16. Now, in the Configurations drop-down list on the right-hand side panel, the
newly created configuration is active (if that's not so, please select it from the
Configurations drop-down list).

17. Expand the Sys | Notepad elements in the Mapped Objects panel, and select the
dlgFind element.

18. In the right-hand side part, change the WndCaption property in such a way that it
tallies up with the heading of the Find window for the selected language.

19. Click on the button with the ellipsis to the right of the property value and in the
opened Edit the WndCaption Property Value window, change the value of the Value
field, and then click on the OK button. An example of the Russian configuration is
shown in the following screenshot:

Scripting

78

20. In the same way, change the properties for all the controls elements, in which the text
is to be changed at the point of changing the application language (in our case, these
are btnCancel and btnFindNext).

21. Now, if we launch the previously recorded script, we will see this error in the log:
The control item 'Edit' not found. That has happened because we have changed
the headings for all the controls elements that are available in the NameMapping
element; however, the names of the menu items have been written directly in the
code, and they were not possible to transpose to NameMapping. The simplest way to
resolve this problem is to create two objects that will contain the names of the menu
items in different languages:
var menuEng = {
 Edit: "Edit",
 EditFind: "Edit|Find..."
};
var menuRus = {
 Edit: "Правка",
 EditFind: "Правка|Найти..."
};

22. We will place these two objects outside our function and the function should be
then modified in the following manner:

function testMultilanguageApp()
{
 var menu = menuRus;

 var notepad;
 var wndNotepad;
 var dlgFind;
 var btnFindNext;
 notepad = Aliases.notepad;
 wndNotepad = notepad.wndNotepad;
 wndNotepad.Edit.Keys("Some text^[Home]");
 wndNotepad.MainMenu.Click(menu.EditFind);
 dlgFind = notepad.dlgFind;
 dlgFind.Edit.SetText("text");
 btnFindNext = dlgFind.btnFindNext;
 btnFindNext.ClickButton();
 dlgFind.btnCancel.ClickButton();
}

Chapter 3

79

How it works...
NameMapping can contain as many configurations as possible, each one corresponding
to the languages of the tested application. Perhaps the most difficult aspect of handling
such applications is manual renaming of all the properties of all the elements used in
NameMapping; however, this should be done just once. In order to launch the scripts for
another application language, it is sufficient to change the current configuration on the
NameMapping panel, and have the possibility to quickly change the language that is being
used for the menu (both for the main and all other contextual menus of the application that
are evoked by the right-click). In our case, we have decided to form up the elements of the
main menu as objects.

A more successful solution for information storage would be the usage of data-driven
approach. This would allow inputting all the data on the menu into separate files with tables
(for example, each language would match individual Excel files). Implementation of such
an approach, however, would be overkill for the given recipe.

There's more...
Changing configurations for the NameMapping element is possible not only from the
TestComplete window, rather directly from the script code. To this end, it is necessary to set
the required value for the CurrentConfigurationName property property of the NameMapping
object. For example, switching the Russian configuration on would have the following effect:

NameMapping.CurrentConfigurationName = "Russian";

See also
 f You can read more about the data-driven approach in the Chapter 9, Data-driven

Testing.

 f If you want to learn more about how NameMapping and Aliases are working, refer
to the article at http://support.smartbear.com/viewarticle/27370/.

Working with nonstandard controls
Sometimes, the possibilities extended by TestComplete are not sufficient to properly handle
the controls elements. If that's the case, we need to extend TestComplete possibilities by
using private properties and methods of objects that are within TestComplete's access.
The brightest example of the situation at hand lies in working with the grids. Grids are quite
complex controls elements, changeable and customizable, depending on the situation.

Scripting

80

In this recipe, we will use a simple example of the Microsoft DataGridView control to see how
standard control properties can be used for solving nonstandard situations. Our task consists
of placing a screenshot to the log of a single cell of the grid (by pre-assigned column and row
number).TestComplete allows making a screenshot only of the whole grid, but combining
native properties of the control with the TestComplete possibilities, we will be able to come by
the targeted result. As a tested application, we will use a simple .NET application, which has
only one grid with two rows and two columns.

How to do it...
In order to create a code which gets a screenshot of a specific cell, we need to perform
the following steps:

1. First of all, we will need to clarify which means are at our disposal. TestComplete has
the Picture method, which returns a screenshot of the controls elements, for which
it has been called. This won't do us any good, however, as this method has optional
parameters (ClientX, ClientY, OffsetX, and OffsetY), which allow making a
screenshot of its specific region impossible.

2. Now we will have to ascertain if we could get a hold on the coordinates and the size
of the specific cell in the grid. By carefully looking into the properties of the grid with
the help of the Object Browser tab, we will locate the Item property that takes two
parameters—number of the row and the number of the column—and returns the
object that corresponds with these coordinates.

Chapter 3

81

3. In turn, this object has a property AccessibilityObject, while it has another
property Bounds, which just fills the bill with the necessary information. Thus, the full
path to the left coordinate of the grid will be WinFormsObject("dataGridView1").
AccessibilityObject.Bounds.Left.

Here, however, we encounter a difficulty: the given properties of Bounds are stored
in relation to the screen (for example, the property Bounds.Left contains the
X-coordinate relative to the left-border of the screen), and not relative to the grid.
This means, we will have to transform the absolute screen coordinates that are
returned by the object of Bounds, into relative ones.

4. Again, having perused the properties of the grid, we will get around to its properties
of ScreenLeft and ScreenTop, which also spell out absolute positioning in relation
to the screen. This way, subtracting the coordinate grid.ScreenLeft from the cell
coordinate Item.AccessibilityObject.Bounds.Left, we will get the distance
measured in pixels from the left border of the grid to the cell. This is exactly what we
need to pass to the Picture method.

5. In exactly the same manner we will calculate the vertical coordinates (to this end,
we will use the grid.ScreenTop and Item.AccessibilityObject.Bounds.
Top properties).

6. While dealing with the two more parameters of the Picture method (OffsetX and
OffsetY)—they simply correspond to the width and height of the cell, and we can
obtain them directly from the Bounds property.

Scripting

82

7. In the result, the function that returns the screenshot of the cell will be constructed
programmatically to the following effect:
function getGridCellPicture(grid, row, col)
{
 var cellBounds = grid.Item(col,
 row).AccessibilityObject.Bounds;
 var xOffset = cellBounds.Left - grid.ScreenLeft;
 var yOffset = cellBounds.Top - grid.ScreenTop;
 return grid.Picture(xOffset, yOffset, cellBounds.Width,
 cellBounds.Height);
}

8. Looking up the example of the function at work is possible by writing up a
simple function.
function testGrid()
{
 var wnd =
 Sys.Process("TestGrid").WinFormsObject("Form1");
 var grid = wnd.WinFormsObject("dataGridView1");
 wnd.Activate();
 Log.Picture(getGridCellPicture(grid, 0, 1));
}

9. In the result of the preceding function, the screenshot of the cell will be found in
the log with the coordinates (0;1) (that is, from the first row of the first column,
as numbering starts with zero).

How it works...
Despite the seeming simplicity of the solution of the task, writing a similar universal function
may take up from several hours to several days on end. The whole matter is that locating the
necessary property and understanding how it works is quite a difficult task, especially so when
it has never been done before. Another factor that influences speed of the solution of a similar
task is the internal complexity of the controls element that you are handling.

Moreover, the solution that suits a specific instance may be a misfit for another. Then a
programmer has to tentatively try various solutions. Unfortunately, in such cases there is no
other way around. We come up with a solution and try to implement it by looking for necessary
properties and methods. One should be looking with the help of Object Browser or in the
documentation on the controls element that is being worked over. Often, the selected approach
turns out to be improper, and we have to keep looking for newer ways towards the solution.

Chapter 3

83

Sometimes, it is useful to request a consultation from programmers that are coding the
tested application, as they are working with these elements on a day-to-day basis and may
give you a hint off the top of their heads. Nonetheless, it should be known that programmers
practically never go about such tasks, for example, getting coordinates (just the thing we
had to accomplish); and the best-case scenario would be combining efforts of programmers
and testers.

There's more...
The given example is quite simple, however, in real projects one should account for many
additional factors. For example, what would happen if the passed number of the row is greater
than the overall number of the rows? What would happen if the cell or its part is found outside
the ambits of the screen or beyond the border of the controls element? What would happen if
the cell is hidden with the settings of a filter in the grid? All of these points are quite realistic,
which may lead to emergence of errors, and this is why such functions should be written really
carefully, thought through, and reproduced in as many scenarios as possible.

See also
 f The Mapping custom control classes to standard ones recipe in Chapter 5,

Accessing Windows, Controls, and Properties

 f The Using text recognition to access text from nonstandard controls recipe in
Chapter 5, Accessing Windows, Controls, and Properties

 f The Using Optical Character Recognition (OCR) recipe in Chapter 5, Accessing
Windows, Controls, and Properties

Organizing script code in the project
When working with the real project, it is necessary to somehow organize code repository
to be able to easily locate the code. This can be achieved through placing functions and
variables that are bound to a specific functionality, into separate units. This approach is
called functional decomposition.

In this recipe, we will take on an example of such decomposition for testing the Calculator Plus.

Scripting

84

How to do it...
1. First of all, we need to find out which layers are going to break down the code of our

project. Usually, there are three such levels:

 � The level of the libraries: In this level, we create functions and classes that
may be used in any project. For example, functions operating with strings,
arrays, and databases (unbound to any specific database) and functions
created for simplification of the data-driven approach, for working with the
e-mails and another code that is liable to come in mighty handy not only in
the given project, but in any project (both existing and prospective ones).

On this level, the units may apply functions from other units, only being on
the same level (that is, on the level of the libraries).

 � The level of the application's common code layer: Here we will go about
creating functions to work with the application (or several applications) of the
given project. For example, launching and terminating the application, login
functions, and various checkers that are specific for the project.

Functions of this level can be used by other functions of the same level and
the functions from the libraries (as this is the original intent of them having
been created). Functions of this level in their turn, will be used on the next
level of the tests.

 � The level of the tests: In this level, we store only those tests, for example,
scripts, which are meant to execute specific actions within the application.
Functions of this level can apply other functions of the level of the libraries,
and functions of the level of application code.

2. These three layers in TestComplete are easier to implement with the help of the
folders that are created in the Scripts element. On each level, we will have several
files, and that's why it would be logical to place them in separate folders.

Let's consider each level individually.

3. Everything is quite simple with the level of the libraries. Here, for each of the library
types, we have a separate unit; moreover, the name of each unit will correspond
to the original intent of the inherent functions. For example, StrLib is meant for
working with the strings, DBLib in its turn is meant for working with databases,
and so on. If such a level of abstraction is not sufficient (for example, when we have
different functions for working with databases Oracle and MS SQL), one can create
another folder within the libraries folder, and place therein several individual units,
each having a set of functions for a singular database.

4. Level of the application code is more complex and depends much on the complexity
of the tested application itself. Here, we need to break the code down into logical and
functional applicability. For example, in order to test Calculator Plus, we may have the
following units:

Chapter 3

85

 � Common: This unit can be used for functions of the generic intent: for
opening or closing the application, clearing the results field, and so on.

 � CommonOperations: This unit can be used for operations that are available
from any modus operandi (summing up, subtraction, and work with the
memory).

 � ScientificOperations: This unit can be used for operations that are available
only in the scientific mode (logarithms, exponentiation, working with the
corners, and different numerical systems).

 � ConversionOperations: This unit can be used to work with the functions
that are available in the conversion mode only.

 � Edit: This unit will comprise functions that correspond the Edit menu
(copying and pasting).

 � Help: This unit can be used to work with the Help menu (evoking the Help
and About windows).

This structure can be changed as the tester sees fit, with the only reservation about
the code being logically layered in the project.

5. In the level of tests, a certain clear-cut structure should also be pursued to steer
clear of confusion in the existing tests. For example, it is possible to store tests by
organizing them according to the same principles that are applied to structure the
application code. If you have some manual tests that you are trying to automate,
stored according to an existing logic (for example, in the bug tracking system),
you can duplicate the same structure into the TestComplete project. There are
no stringent rules here, it is only important to avoid chaos.

6. An example is depicted on the following screenshot concerning the way a project
may appear in order to test the Calculator Plus application.

Scripting

86

How it works...
At first glance, it may appear that for such a small application as Calculator or Notepad,
there is no sense in creating such a structure, however, the truth is just the opposite. The
structured code is much easier to maintain and build up; and it's much easier to get your
bearings straight in efficiently thought-through project. A small application with time may grow
into a larger one, medium size application and then into an enormous one: if the rules are
broken from the beginning, with time it will only be more difficult to recollect the whereabouts
of things and the underlying reasons. The method of functional decomposition also allows
creation of readable tests. Such tests consist of functions calls of the lower-level and grasping
them is much easier than just written code, as the names of the called functions are usually
self-explanatory. Such test is of easy understanding even for a person who is not well
cognizant in programming.

There's more...
If you have several different projects in your company that are applying TestComplete but that
do not intersect with each other, it does make sense to organize the libraries into a separate
project and store it separately. This, however, requires discretion at the point of making
changes, since these changes will affect everything.

Also note that, changes in the application under test will affect the script code as well.

See also
 f The Creating framework using the OOP approach recipe

Handling exceptions
In case of emergence of any exceptional situation during script execution, TestComplete will
stop the execution and display the error message. For example, when attempting to open a
non-existing file, we will get an error message Unable to open the file.

To resolve this problem and continue script execution, we can apply a standard try…catch…
finally construct.

This recipe contains information which is only applied for JScript
programming language!

Chapter 3

87

How to do it...
For example, let's suppose we need to read the contents of a file into a variable, if the
file exists, after which the file should be deleted and a new eponymous empty file should
be created.

1. First of all, let's write up the code that is responsible for reading the contents of
the original file and then deletes the same:
var fileContent = "";
var fileName = "c:\\non-existing-file.txt";
try
{
 var f = aqFile.OpenTextFile(fileName, aqFile.faRead,
 aqFile.ctUTF8);
 fileContent = f.ReadAll();
 f.Close();
 aqFile.Delete(fileName);
}

This code has been placed into the try block at once, because it is fraught with an
occurrence of an exceptional situation if the file does not exist. In this case, we need
to simply ignore the exception by logging the occurrence to the log (in case, we have
to analyze the flow of script execution later).

2. Now, let's write up the contingency code for processing the exceptional situation.
catch(ex)
{
 switch(ex.number)
 {
 case -2147467259:
 Log.Message("File does not exist");
 break;
 default:
 throw ex;
 }
}

Prior to ignoring the exception, we check its code (ex.number) and
proceed with ignoring the exception only in the case that its number
matches with the code of the missing file error (that is, -2147467259).
If, at this point, another exception takes place (for example, the file
is existing, but it has been blocked by another application), we will
generate the exception anew with the help of the throw instruction,
since we do not know how to further treat the situation.

www.allitebooks.com

http://www.allitebooks.org

Scripting

88

3. And in the end, in the final block finally, we will execute actions that it is
necessary to execute regardless of whether the exception has taken place or not:
finally
{
 aqFile.Create(fileName);
}

4. Here, we create a new file without second thoughts about the file with the same
name that may already exist: in first case we delete the file ourselves, and in the
second case the file was not in existence to begin with.

If we were to merge all the written code into a single function and launch it, the function would
work successfully regardless of the fact whether the c:\\non-existingfile.txt file
exists or not.

How it works...
The try…catch…finally block is meant to process various nonstandard situations
when we have a little knowledge of how the code will end up working:

 f In the try block, the code with potential errors is placed.

 f In the catch block, we handle these errors and continue to carry out all the
necessary actions (for example, in our case, it is enough to enter the information on
the arisen exception to the log). If we need to ignore all the errors, this block could
be simply left empty, however, this is considered bad style in programming.

 f In the finally block, we are busy carrying out the actions which should be
performed regardless of the emergent situation. This block is optional; however, there
may be some situations where it is indispensable. For example, if we have opened a
file and get some actions done over it, it has to be closed despite any possible errors
that emerged, otherwise, this may tamper with the filesystem integrity.

There's more…
TestComplete does not signify the number of the emergent errors upon exceptional situation,
which means that in order to find out the code of the error we are interested in, we first resort
to the catch block to the following effect:

catch(ex)
{
 Log.Message(ex.number);
}

Chapter 3

89

After this, the function has been called to make sure the file is missing on the disk. In the
result, in the log we had the error's number, which was then used in the switch construct.

If, further on, we are up against other situations, which we would like to ignore or process
in a different manner, we would simply add another block case and write all the necessary
actions into it.

See also
 f The Handling exceptions from a different unit recipe

Handling exceptions from a different unit
The engine of the Jscript language, used in TestComplete, does not support working with
several units. Such a possibility is provided by the TestComplete itself. One of the side effects
consists in the following situation: if we are in one unit inside the try...catch block calling
the function from another unit, and this second function raises an exception, it will not be
caught by the try block. In the result, TestComplete will stop script execution.

The simplest way to solve this challenge is creation of the try...catch block in the called
function and using the returned value of the function for analysis in the function-call. This
solution, however, may misfire in several situations, this is why in the given recipe we will
consider one of the methods to intercept exceptions in the functions of another unit.

Getting ready
Before we start, we need to perform the following preparation steps:

1. Create two new units UnitA and UnitB (right-click on the Script element,
and go to Add | New Item).

2. Place the following function into UnitA:
function calledFunction()
{
 Log.Message("Called function from UnitA");
 throw "exception from UnitA";
}

We will call this function from another unit.

3. Into the UnitB unit, place the following code:
function callerFunction()
{

Scripting

90

 Log.Message("Message from caller function");
 try
 {
 UnitA.calledFunction();
 }
 catch(ex)
 {
 Log.Message("Exception caught!", ex);
 }
}

In this function we are calling the calledFunction function from the UnitA,
meanwhile trying to intercept all the arisen exceptions. If this function is launched,
we would see that the exception is not intercepted, rather the following error message
is displayed on the screen: Exception thrown and not caught.

Namely this problem we are supposed to resolve right now.

How to do it...
In order to catch the exception from a different unit, we need to perform the following steps:

1. Create a new call function and place it into any of the two existing units:
function call(functionName)
{
 var fnArray = functionName.toString().split("\n");
 fnArray[0] = fnArray[1] = fnArray[fnArray.length-1] = "";
 return fnArray.join("\n");
}

2. In the callerFunction function replace the direct call of the function (UnitA.
calledFunction()) with the following programming construct:
var str = call(UnitA.calledFunction);
eval(str);

3. Launch the callerFunction function. In the result, the error message will not
appear, and in the log, we will have the following message written down: Exception
caught!. If you select this message in the log, on the Additional information
panel, we will see the text of the caught exception that is generated by the
calledFunction function: exception from UnitA.

Chapter 3

91

How it works...
Since exceptions from other units are not intercepted, our task consists of launching the code
we are interested in from the current unit via the instrumental function call of the additional
call function. In JScript language everything is an object, including a function. This is why
we can pass the function as a parameter. Then, with the help of the toString method, we
obtain the code of the very function as an ordinary text string. With the help of the split
method, we transform this string into an array so that in the future we could remove all the
unnecessary strings from it (the first two lines are the declaration of the function and the
opening curved bracket, as well as the closing curved bracket). These lines are, for the
sake of simplicity, to be replaced with empty lines.

In the result, in the array, we have only the body of the function left. The array will be
transformed back into the string with help of the join method, and it will return the resulting
string of code back to the callerFunction function). Further, with the help of the built-in
eval function, we execute the code that was returned as a string with the call function.
Since, this code is in fact executed in a single unit UnitB, we have a possibility to intercept
the exception.

There's more...
Despite the fact that examined approach allows resolving a fairly complex problem, it is easy
to see its shortcomings:

 f The given example allows launching only a function without parameters. Writing of
the same function with parameters would significantly complicate the code of the
call function.

 f The function implies that the code conforms to a specific style (the first line is the
heading of the function, and the next line is the opening bracket). To better transform
the function into the executable code, one would have to write up a smarter function.

 f In the result of adding the new function, we have in fact two lines of code instead of
one line. Although, this could be simply resolved by joining the two lines of code into
a single one:

eval(call(UnitA.calledFunction));

Scripting

92

Creating framework using the OOP approach
Object-oriented Programming (OOP) is widely used not only in program development,
in automated testing as well. With its help, tests become more readable and simple in
maintenance and follow up.

In the given recipe, we will consider an example of creating a simple object-oriented
framework for testing the Notepad application and writing up a simple test applying the OOP
approach. The task of the test is launching the Notepad application, open the existing file,
check if the file has opened, and then close the Notepad application.

Getting ready
Perform the following steps before starting:

1. Add the TestedApps element to your project (right-click on the project name,
and select Add | New Item).

2. Add the standard Windows Notepad application to the TestedApps element
(right-click on the TestedApps element, then select Add | New Item, and enter
this path C:\Windows\notepad.exe).

3. Create a file with the name of C:\testfile.txt, in which only one string
should be written: test string.

How to do it...
In order to create a simple OOP test, we need to perform the following steps:

1. First of all, it is necessary to think through the structure of the class for our
application. We will need four methods for working with the Notepad application:

 � start: This method is used to launch the Notepad application

 � close: This method is used to close the Notepad application

 � openFile: This method is used to open the file

 � checkContent: This method is used to check the text in the Notepad
application

We will also need two methods to access the windows of the application:

 � wMain: This method is used to access the main Notepad window

 � wOpen: This method is used to access the Open window

Chapter 3

93

2. The template of our class will look as follows:
function Notepad()
{
 this.wMain = function() {}
 this.wOpen = function() {}

 this.start = function() {}
 this.close = function() {}
 this.openFile = function(fileName) {}
 this.checkContent = function(content) {}
}

3. Now, we will consider each method separately. We have specifically implemented
them to the simplest effect ever, so that there's no need to dwell on the particulars
of the realization of the methods by and large.

4. The wMain and wOpen methods simply return the main window of the Notepad
application and the dialog window Open.
this.wMain = function()
{
 return Sys.Process("notepad").Window("Notepad", "*");
}
this.wOpen = function()
{
 return Sys.Process("notepad").Window("#32770", "Open");
}

5. The start and close methods are also quite simple ones.
this.start = function()
{
 TestedApps.notepad.Run();
}
this.close = function()
{
 TestedApps.notepad.Terminate();
}

Scripting

94

6. The openFile method gets more complicated and includes several actions:
menu selection, file name input, and clicking on the Open button.
this.openFile = function(fileName)
{
 this.wMain().Activate();
 this.wMain().MainMenu.Click("File|Open...");
 var fileEdit = this.wOpen().Window("ComboBoxEx32").
 Window("ComboBox").Window("Edit");
 fileEdit.Keys(fileName)
 this.wOpen().Window("Button", "*Open").Click();
}

7. And, finally, the checkContent method is also very simple, as it compares
real value in the text field with the expected one.
this.checkContent = function(content)
{
 var editArea = this.wMain().Window("Edit");
 aqObject.CompareProperty(editArea.wText, cmpEqual,
 content);
}

8. Now, we have a simple class to work with Notepad, and we can get down to writing up
the test. The test will consist of just four steps: open the Notepad application, open a
file within Notepad by a specified filename, and check the contents of the opened file,
after which Notepad will be closed. The test will look as follows:

function TestNotepad()
{
 var expectedContent = "test string";
 var wNotepad = new Notepad();
 wNotepad.start();
 wNotepad.openFile("c:\\testfile.txt")
 wNotepad.checkContent(expectedContent);
 wNotepad.close();
}

How it works...
Peculiarity of the object-oriented approach to test creation consists of encapsulated
realization inside the methods so that the tests themselves would be more simplistically
written, maintained, and followed up.

Chapter 3

95

Pay attention to all the available methods in our class. If we had recorded the same actions,
the code would consist of tens of lines and would be more difficult to understand. In case of
the OOP approach, the test consists of just four lines of code, each being understandable
effortlessly, since the names of the methods are self-explanatory.

Ideally, working with the tested application in the test should consist of calls of various
methods of the class only. This is not always possible, but this should be strived for. Of
course, this method has its drawbacks. For example, TestComplete does not support
object-oriented possibilities of Jscript language, that's why you won't be able to see the
names of the methods in the drop-down auto-filled list, and won't be able to move to the
necessary method by keeping the Ctrl key pressed and clicking on the name of the method.
However, these drawbacks are well made up for by convenience of handling the tests that
have been written in the preceding mentioned manner.

Another gap is that the writing effort increases in case of growing number of GUI controls
 to describe. But in return we're gaining an advantage in maintainability.

There's more...
JScript and VBScript languages support object-oriented programming. The DelphiScript
language is short of such possibilities. This is why, if you are set upon usage of OOP approach
together with the DelphiScript language, please use the ODT (Object-Driven Testing) object
extended by TestComplete.

See also
 f The Organizing script code in the project recipe

4
Running Tests

In this chapter we will cover the following recipes:

 f Running a single function

 f Verifying test accuracy

 f Creating a test plan for regular runs

 f Running tests from the command line

 f Passing additional parameters to test from the command line

 f Organizing test plan runs

 f Scheduling automatic runs at nighttime

 f Running tests via Remote Desktop

 f Changing playback options

 f Increasing run speed

 f Disabling a screensaver when running scripts

 f Sending messages to Indicator

 f Showing a message window during a script run

Introduction
All the tests we create should be run as often as possible. It doesn't only allow to test the
application, but also to stabilize our test scripts. By constantly running and improving the
tests, we make sure that they only fail in case there are problems with the tested application,
not the scripts themselves.

In this chapter, we will consider different ways of running test scripts and organizing script runs.

Running Tests

98

Running a single function
During writing code or debugging a test, we, from time to time, would launch it in order to
make sure that we are doing everything right and the test is working properly, according to
our original intent.

Getting ready
Create a function, which executes a simple action (for example, enters a message into
the log with the help of the Log.Message method).

How to do it...
In order to run a function, we will perform the following steps:

1. Right-click on any place in the function that you would like to launch.

2. Select the Run Current Routine option. In the result, the function will be launched.
By default, for this option there is no predefined keys combination, however, we can
easily create it if we wish to launch the function at a single key stroke.

3. Now, select the Tools | Customize Keyboard... option.

4. In the Categories list, select the Edit option.

5. In the Commands listing, go for the Run Current Routine element.

6. Click on the Press new shortcut key field and press the key or combination of
keys which you would like to use to launch the current function. If the selected
combination is already in use and thus reserved for another action, the name
of the action will be displayed in the Shortcut currently used by field.

7. Click on the Apply button.

Chapter 4

99

8. If in the Keyboard mapping scheme field, the Default scheme has been selected,
TestComplete will suggest creating a new one, since that scheme is a read-only one.
Click on Yes and assign the name of the new scheme in the Create a New Keyboard
Scheme window.

Now, we can launch the currently selected function with the use of the selected key
or keys combination.

How it works...
We can only run those functions which do not accept parameters, otherwise the Run option
will be disabled. The default keyboard mapping scheme always remains read-only so that
we can easily roll back the changes if necessary.

Running Tests

100

Verifying test accuracy
After having written a test and done all the necessary checks, it is necessary to make sure that,
at least those cross-checks which we have explicitly assigned are working properly. The simplest
way to get this done is to change the expected values to the opposite ones (or different ones)
and launch the test again. Let's suppose that one of the working conditions of our tests
is launching them on the 64-bit system, which is the first check we are making in our tests.

Getting ready
Write up the following function that checks the bit rate of the system:

function isWin64()
{
 aqObject.CompareProperty(Sys.OSInfo.Windows64bit, cmpEqual,
 true);
}

At the point of launching our test this check will successfully go over and in the log there
will appear messages about the verified values.

How to do it...
To verify test accuracy, we will need to perform the following steps:

1. Change the expected value to a different one. In our case, we will replace true
with false:
aqObject.CompareProperty(Sys.OSInfo.Windows64bit, cmpEqual,
false);

2. Now, we will launch our test and make sure that in the log we indeed receive the
warning or an error message, as initially intended by test conditions.

3. If no error message or a warning appears in the log, this means that the check has
not worked correctly (for example, a wrong property or controls element has been
selected for the check); and we should make the necessary changes in the test.

Chapter 4

101

How it works...
We check all the checkpoints throughout the test in the same way, after which the test can be
added to the testing plan for routine launches. This ought to be done in order to verify that the
checks in the test are working properly, concordant to the original intent at creation. It is also
possible to emulate other situations (for example, as the test is working, close the window
manually (the one the test is checking) and see that the log has a clearly generated entry
about the error). If these checks are not being done, it may turn out that the created tests
never generate error messages, even though there are errors to be found in the application.
We have no use for such tests.

After all the undertaken checks, correct values should be returned
in the result!

See also
Checkpoints are explained in details in the following recipes:

 f The Creating property checkpoints recipe in Chapter 3, Scripting

 f The Creating object checkpoints recipe in Chapter 3, Scripting

Creating a test plan for regular runs
The written tests should be regularly launched, wherein it is preferable to have a handy tool
for organizing and launching the tests. In TestComplete, there is Test Items project element
that is meant for organizing and launching the available tests.

In this recipe, we will learn how to add Test Items to the project and customize tests parameters.

Getting ready
Create several functions which will be treated as tests to be added to Test Items. They can
contain any actions or even lead to no action at all.

Running Tests

102

How to do it…
In order to create test plan, we need to perform the following steps:

1. Right-click on the project name and select the Edit | Test Items option. In the result,
the Test Items panel with an empty list will be opened in the right-hand side of the
TestComplete window.

2. Click on the New Test Item button on the workspace toolbar above the list. In the
result, a new element with the default name as ProjectTestItem1 will be added to
the list. This is the name of our Test Item. It can be changed by clicking once on the
name and by entering a new name therein.

3. Click on the button with the ellipsis in the Test column. The Select test window
will open, select the Script element, and then the unit, in which the necessary test
is to be found.

4. In the Available Tests column, opt for the function you would like to map to the
created Test Item, and click on OK.

5. After this we readily have a prepared Test Item that can be launched using one
of the two methods:

 � By selecting the Run Focused Item item from the context menu

 � By running the whole project (right-click on the name of the project and
run the project).

How it works...
Test Item is a special element of the project, which is designed for easy management of tests
launches. To the left-hand side of each Test Item there is the Enabled checkbox, which allows
at a single mouse-click to exclude the tests from being launched.

Chapter 4

103

Besides, for each of the Test Items there are two more interesting customizations: Count
and Timeout (they are assigned in the corresponding columns). The first one of them allows
launching the test several times consecutively when needed, while the second method allows
setting time in terms of minutes, upon expiry of which the test will be considered as a hung-up
and stopped with a corresponding error entered in the log. Meanwhile, all the other tests will
be launched as usual.

Moreover, if the tests accept some parameters, they can be assigned in the Parameters
column. All the Test Items are independent of each other and in particular, on the functions
they are bound to, this is why it is possible to create several Test Items that would launch one
and the same function (for example, with different parameters or at a different time).

Working with the Test Items is possible directly from the tests, as the Project.TestItems
object is being used to this end. For example, in the following code, we place the name of the
current Test Item into the log:

Log.Message(Project.TestItems.Current.Name);

There's more...
The only inconvenience of using Test Items is an impossibility of launching separate Test
Item from the command prompt (see the recipe Running tests from the command line);
this could be done only for a separate function, nonetheless, we are devoid of the possibility
to set the timeout.

See also
Test Items are usually used for running tests regularly from command line. These questions
will be covered in the following recipes:

 f The Running tests from the command line recipe

 f The Organizing test plan runs recipe

Running tests from the command line
One of the most important tasks in test automation is a possibility to launch tests from the
command prompt (for example, in order to have tests run automatically at a preset time or
embed launching tests to the system at application compilation). TestComplete supports a
wide variety of parameters for usage of the command line prompt (for launching tests and
some additional customizations). In this recipe, we will deal with two possibilities: launching
a separate function and launching the test plan.

Running Tests

104

Getting ready
Create several functions with any contents (even empty functions will do, that do not execute
any actions whatsoever) and add these functions to Test Items (this we have seen in the
Creating a test plan for regular runs recipe).

How to do it...
In order to run tests from command line, we need to perform the following steps:

1. First, let's launch all the project tests to be executed.

1. Launch the interpreter of the command line (for example, click on
the Start button, write cmd in the search box, and press Enter).

2. Write the following command in the interpreters window:

"C:\Program Files\SmartBear\TestComplete 9\Bin\TestComplete.
exe" z:\TestCompleteCookBook\TestCompleteCookBook.pjs /run /
project:Chapter4

Here, we have a full path to the signified executable TestComplete file.

Please pay attention to the double quotation marks, they are necessary
since the file path contains spaces.

2. Then goes the name to the project suite. Further on come the parameters:

 � The /run parameter tells TestComplete that test or set of tests has to
be launched, and not simply open the IDE.

 � The /project parameter expresses namely what should be launched
(in the given case, the whole of the project, that is, all the Test Items of
the project). Via the semi-column, the name of the project is to be written
down (in our case, this is Chapter4).

3. Now, let's launch to execute a separate function. To do this, we need to run the
following command from a command line:
"C:\Program Files\SmartBear\TestComplete 9\Bin\TestComplete.
exe" "z:\TestCompleteCookBook\TestCompleteCookBook.pjs" /run /
project:Chapter4 /Unit:Unit1 /routine:testDemoTestItems2

4. In this example, apart from the already known parameters, two more have been added:

 � /Unit: This signifies the unit in which the function for the launch is located

 � /routine: This signifies the name of the specific function that should
be launched

Chapter 4

105

Pay attention to the name of the unit being signified without
the extension!

How it works...
The first method of launching allows the launch of all the enabled tests from the Test Items
list. The second method allows to launch a single function. Certainly, we can create just a
single function that nests calls of several functions within it, thus covering the whole of the
testing plan. Nonetheless, in this case, contingent upon TestComplete getting accidentally
hung-up, the possibility of losing entire log entries is much likelier, since Test Items are not
used. At the point of using Test Items, the contents of the TestComplete memory, related to
the logs, is committed to HDD upon completion of each of the tests.

Another inconvenience lies in the fact that we would have to comment all of the function calls
of the corresponding functions to disable specific tests in the second case. Therefore, in the
event of using Test Items, it will be sufficient to uncheck the corresponding Test Items.

There's more...
In TestComplete, there is a variety of additional parameters, allowing us in one way or another
to influence the tests launching procedure: disabling the splash screen, silent mode (in
which tests execution will not be stopped even in the event of a critical error), exiting upon
completion of scripts processing (to continue batch-file execution), exiting codes (useful at
the point of integration with the systems of continuous integration), and so on.

For running tests from command line you can use a special command-line tool called
TestExecute. It uses the same parameters as TestComplete, but doesn't have IDE and
can be used only for running tests.

If you have TestComplete Enterprise, then you also have one license
for TestExecute. Additionally, TestExecute licenses can be purchased
separately on the SmartBear website at http://smartbear.
com/products/qa-tools/automated-testing-tools/
automated-testing-add-ons/test-execute.

See also
Running scripts from command line is usually used for creating regular runs:

 f The Creating test plan for regular runs recipe

Running Tests

106

We can also pass additional parameters to script from command line:

 f The Passing additional parameters to test from the command line recipe

 f All these parameters could be read up on in greater detail at this link:
http://support.smartbear.com/viewarticle/33353/.

Passing additional parameters to test from
the command line

At the point of launching tests from the command line, there may arise a need to pass some
information to be further used in the tests. In another case, while the script being executed,
there may turn up a necessity to find out which parameters the TestComplete has been
started with that serves the basis for decision-making. In this recipe, we will deal with the
methods of working with parameters from the command line, which have been assigned
at the point of starting the TestComplete application.

Getting ready
Launch the TestComplete application with the /ns parameter (this parameter blocks display
of the so-called splash screen—the picture that appears on the screen right after the application
has been launched—until the main window of the application is successfully opened).

How to do it...
In order to work with command-line parameters, we need to perform the following steps:

1. This simple script will make consecutive log entries of all the command-line
parameters of TestComplete:
for(var i = 0; i <= BuiltIn.ParamCount(); i++)
{
 Log.Message(BuiltIn.ParamStr(i));
}

2. In the result of this code, the log will contain two messages: the pathname to the
TestComplete.exe file and the /ns string.

How it works...
The BuiltIn.ParamCount method gives us the count of the parameters, which have been
passed to TestComplete, while the BuiltIn.ParamStr method allows obtaining a separate
parameter, by assigning its index.

Chapter 4

107

Pay attention to the next peculiarity of these methods: zero-indexed element of the BuiltIn.
ParamStr method contains the pathname to the executed TestComplete file, however, the
BuiltIn.ParamCount method does not take into account this zero-indexed element and
returns only the count of the parameters.

There's more...
Parameters of any of the process can be obtained with the help of the CommandLine
property. For instance, in the following example, we receive the entire command line
of the TestComplete parameter:

var cmdLine = Sys.Process ("TestComplete").CommandLine;

Since the CommandLine property contains the whole of the command line, working with
the parameters is not convenient, which is why it is good to write up a function that would
return an array of parameters to be accessed, analogous to the BuiltIn.ParamStr
method at work.

At the point of processing the line we should account for the path to the file, any other
parameter may be enclosed in quotation marks and contain blank spaces. This is why
the logic of the function will be to the following effect:

 f We consecutively obtain command-line symbols.

 f If the received symbol is not a blank space or a double quotation mark, we simply
add the symbol to the parameter-to-be.

 f If this is a double quotation mark, we set or disannul a Boolean flag for substring
detection.

 f If this is a blank space, first, we are supposed to check if we are inside a substring.
If this is so, then we add the blank space to the parameter-to-be. If not, we add the
current parameter to the array.

In the result, the function for parsing the command line will appear to the following effect:

function parseCommandLine(cmdLine)
{
 var chr, parameter = "";
 var parameters = [];
 var isString = false;

 for(var i = 0; i < cmdLine.length; i++)
 {

Running Tests

108

 chr = cmdLine.substr(i, 1);
 switch(chr)
 {
 case '"':
 isString = !isString;
 break;
 case ' ':
 if(isString)
 {
 parameter += chr;
 }
 else
 {
 parameters.push(parameter);
 parameter = "";
 }
 break;
 default:
 parameter += chr;
 break;
 }
 }
 if(parameter != "")
 {
 parameters.push(parameter);
 }
 return parameters;
}

And an example of the script, which employs the function in view:

function RunTests()
{
 var arr =
 parseCommandLine(Sys.Process("TestComplete").CommandLine);
 for(var i = 0; i < arr.length; i++)
 {
 Log.Message(arr[i]);
 }
}

This example outputs all parameters of TestComplete to the test log.

Chapter 4

109

Organizing test plan runs
Tests are useful to group in such a manner that there is a possibility to launch them not only
one-by-one or all at once, but also in re-grouped batches. Such a re-grouping may be useful in
case there is no necessity to go through the whole of the project suite, and when it is sufficient
to test a specific functionality (for example, at the point of delivering a hot fix). The Test Items
page, dealt with earlier in the Creating a test plan for regular runs recipe, allows us to create
a similar structure with the help of groups.

Getting ready
Create several functions, which we will be able to add to the list of Test Items.

How to do it...
In order to group the tests, we need to perform the following steps:

1. Open the Test Items panel by right-clicking on project name, select Edit | Test Items.

2. Right-click on the list of Test Items and opt for the New Group option. In the result,
we will have a group with the title Group1.

3. Rename the group Group1 according to the name of the functionality that will be
tested by the tests from this group (for example, for Calculator, this could be a
group of TestMemory, which will comprise all the tests meant to check the memory
functionality). To rename, it is enough to click once on the name of the group and
enter a new name.

4. Right-click on the created group and select the New Child Test Item option. In the
result, the group will have a new Test Item added, which we will handle just like we
handled the ordinary Test Items (bound it to the function, set the timeout, and so on).

Running Tests

110

How it works...
Having created several groups like that (each corresponding to a specific functionality), we can
enable and disable the tests in batch as groups, which will significantly simplify our work. At
the end, we need to click on the checkbox to the left-hand side of the group name, and in the
result, the status of all the tests in the group will change (it will become enabled or disabled).

Pay attention to the fact that when in the disabled state, the flags do not have an ordinary
appearance of the unchecked checkboxes, but rather appear as grey disabled controls.

This happens because the sibling Test Items have three inherent states: enabled, disabled
by group, and disabled completely. Completely disabled Test Items (white squares) cannot
be enabled even if the entire group is enabled. This may be useful in case a test is presently
under construction, or is being modified, as launching such Tests is untenable.

Scheduling automatic runs at nighttime
When working with a hefty backlog of automated tests, launching those may be long-winded
and take hours. One of the effective methods to resolve this problem is automatic launch
of the tests when there is no one at work, and tests are not in anyone's way. This could be
nighttime, weekends, or holidays. In this recipe, we will consider automatic launch of the
tests every night.

Getting ready
In order to learn how to launch the executable tests from the command line, read the
Running tests from the command line recipe.

How to do it...
In order to schedule test run, we need to perform the following steps:

1. Create the starttc.bat file with the following entrails:
taskkill /f /t /im testcomplete.exe
timeout /T 10
set TCPATH=C:\Program Files\SmartBear\TestComplete 9\Bin
"%TCPATH%\TestComplete.exe" Z:\TestCompleteCookBook\
TestCompleteCookBook.pjs /run /project:Chapter4 /exit

we will be launching this file by the schedule.

Chapter 4

111

2. Launch Windows Task Scheduler by going to Start | All Programs | Accessories |
System Tools | Task Scheduler.

3. In the Task Scheduler window, select Action | Create Basic Task...

4. In the appearing window, Create Basic Task Wizard, enter the name of the task
(for example, TestComplete Tests), and click on the Next button.

5. In the Task Trigger window, select the Daily option, and click on Next.

6. In the next window, signify the date and time for the first launch (the date may
be left at present, the time as 00:00:00), and then click on Next.

7. In the Action window, select the Start a program option, and click on Next.

8. Click on the Browse... button and select the created starttc.bat file.

9. Click on Next.

10. In the Summary window, check all the entered data is correct or not, and click
on Finish.

11. In the left-hand side part of the Task Scheduler window, select the Task Scheduler
Library element.

12. In the right-hand side part of the Task Scheduler window, locate the newly created
task TestComplete Tests, and right-click thereon to further select the Run option.

If everything has been properly done, the tests will be automatically launched for execution.

This task will be launched every night.

How it works...
Since we cannot launch more than one copy of TestComplete, the first and foremost thing to
do in the .bat file is closing the respective process thread with the help of the taskkill
command, which is a part of Windows. This is done despite the possibility of TestComplete
remaining open for some reason at the moment of the task's launch.

Running Tests

112

Further on, with the help of the standard timeout command, we await for 10 seconds. It is
necessary to have all the resources duly released that are being utilized by TestComplete, or
else upon successive launch we could run amuck with error messages. Depending on the
speed of the computer, this parameter may be greater or lesser, nonetheless we recommend
it be left at a greater value (for example, 30 seconds). Such an insignificant lag will have
no impact on the timing of the test's execution, rather this parameter will not have to be
customized each time against launches being transferred onto another computer.

Further more, with the help of the set command, we create a TCPATH variable, which will
contain the pathway to the folder wherein TestComplete resides. This is optional, however the
pathway can be signified fully in the following command, but then the command line could be
long-drawn-out. In the last command, we launch the tests from the Chapter4 project up to
execution. With the help of /exit parameter, we signify that, having completed all the tests,
TestComplete should close down.

See also
Running tests from command line is explained in detail in the following recipe:

 f The Running tests from the command line recipe

Running tests via Remote Desktop
If you launch tests remotely via Remote Desktop connectivity to your computer, you should
follow two important rules:

 f Do not minimize the Remote Desktop window

 f Do not close the Remote Desktop window

If any of the above mentioned rules are not followed, the system ceases redrawing GUI
elements on the remote computer and TestComplete will not be able to continue working with
the controls elements (this is not the TestComplete-specific problem, it is OS-related and will
reproduce for all automation tools that work with applications via GUI). This does not mean
that it is necessary to incessantly keep the window open over the whole screen upfront. It is
possible to change the sizing of the Remote Desktop window down to its minimum (which
will make the screen of the remote computer invisible) and place it onto the back burner
against the background to keep it out of your way for the work at hand. At this time, you can
simultaneously run any actions on the local computer, which will not cramp up the tests on
the remote computer. If even this doesn't work then you can customize the system so that
the Remote Desktop window can be minimized out of view.

Chapter 4

113

How to do it...
To be able to minimize the Remote Desktop window, the following steps should be performed
on a local computer which is used to connect to the remote PC:

1. Click on Start, in the Search box, write in regedit, and press Enter. The Registry
Editor window will open up.

2. In the left-hand side part of the window, navigate to HKEY_CURRENT_USER |
Software | Microsoft | Terminal Server Client.

3. Select the Edit | New | DWORD (32-bit) Value option. In the right-hand side part
of the window, new value will be assigned.

4. Rename it to RemoteDesktop_SuppressWhenMinimized.

5. Double-click on the newly created element and in the Value data field, input the
value 2.

6. Repeat the steps 3 to 5 by navigating to the following element: HKEY_LOCAL_
MACHINE | SOFTWARE | Microsoft | Terminal Server Client.

7. Now you can go ahead and safely minimize the Remote Desktop window, however,
it should not be closed anyways.

How it works...
Closing the Remote Desktop window is tantamount to blocking the computer (which occurs
when pressing this key combination: Ctrl + Alt + Delete).

Since the system stops redrawing GUI element upon being blocked, TestComplete cannot
interact with the tested application.

Changing playback options
Parameters of playback of the tested scripts can be customized with the help of the Playback
options page.

In this recipe, we will consider some of the most interesting options and the way they
influence the performance of the scripts.

Running Tests

114

How to do it...
In order to change playback options, perform the following steps:

1. In the TestComplete application, right-click on the name of the project, and go for
the Edit | Properties option.

2. In the opened project panel, on left-hand side, select the Playback element.

3. In the result, the Playback properties page will open up. Here you can customize
the playback parameters of the tested scripts.

How it works...
 f Stop on error, Stop on warning, and Stop on window recognition error: These

options allow stopping scripts execution contingent upon any of the signified events
having occurred. It is usually recommend one should disable these options, since
they influence all the tests.

 f Minimize TestComplete: This option minimizes the main TestComplete window for
the time being while tests are being executed, which prevents the possibility that the
TestComplete window might appear on the foreground instead of in the window of
the tested application.

 f Disable mouse: This option disables the possibility of a user using a mouse,
and thus impeding with the test's results. This is especially recommended when
employing low-level procedures.

 f Auto-wait timeout: This is the waiting time for the windows and controls elements
that mark their failure to appear. This parameter should be increased at the time
of transference of testing to a slower computer.

 f Delay between events, Key pressing delay, Dragging delay, and Mouse movement
delay: These options allow changing the delay between corresponding events—the
data input from the keyboard, mouse-clicks, and operations with windows. Increasing
these parameters is recommended when errors related to the speed of execution
occur during scripts playback (for example, admission rate of typed symbols during
text input, dragging-and-dropping incorrect objects, and so forth.). Another possibility
can be timing slowdown to visually monitor all the actions and pinpoint the reason
for the mistake.

 f On unexpected window: Options from this group allow assigning TestComplete
behavior against the appearance of a window that will hinder the flow of test execution
(for example, a modal window with an error). In the meantime, the log will contain an
error and the actions that have been undertaken for the appeared window.

Chapter 4

115

 f Ignore overlapping window: This option allows the program to ignore the overlapping
windows and controls elements. These are GUI elements that overshadow the
controls elements, with which TestComplete is currently working, however, it does not
block the tested application. Often, it is worthwhile to switch on this option, if the log
contains the Overlapping Window error, however, visually nothing stands in the way.

 f Post image on error: This is a very useful option, allowing automatically placing a
screenshot in the event of emergent error. This option is preferable to be switched
on all the time, since the screenshot will help to detect the underlying cause of the
problem.

 f Save log every N minutes: This option stores the log to the disk within the
preassigned interval, preventing its loss in critical cases such as blackout, emergency
shutdown of the TestComplete application, and so on.

 f Store last N events: This option allows to specify the minimum number of events to
be entered to the log. Usually the events logs take up the largest portion of the log,
although there is no need to keep them all. In the case that this option has been set
and an error has occurred, only the specified number of events will be stored in the log.

Increasing run speed
If your tests are being executed slowly, it may be down to a number of factors. In this recipe,
we will consider the most frequently emerging problems and their possible resolutions.

How to do it...
In order to increase run speed, we can perform the following changes:

1. Disable Visualizer (detailed steps can be found here: http://support.
smartbear.com/viewarticle/28968/#Enabling).

2. Use the filters in the Object Browser tab to decrease number of the objects
displayed.

3. Work directly with the properties (an example can be found in the Entering text into
text fields recipe in Chapter 3, Scripting).

4. Disable the unused TestComplete plugins by going to File | Install Extension... menu
and unchecking the unnecessary plugins.

5. Disable Debug Agent (detailed information can be found here: http://support.
smartbear.com/viewarticle/27468/.

Running Tests

116

How it works...
Visualizer allows us to capture screenshots of the window that TestComplete is currently
working with each time TestComplete interacts with the controls elements. Since this can
happen quite often, creation of the screenshots will be time consuming, and there is no
necessity to capture all the resulting screenshots, so, it is recommended that the Visualizer be
turned off. The method to turn off the Visualizer varies in different versions of TestComplete.

Frequent resorting to the aqUtils.Delay method in the tests may significantly slow down
scripts execution time. Try to avoid usage of this method by replacing it with the corresponding
Wait functions.

The Object Browser tab allows us to flexibly customize the displayed objects with the help
of the filters buttons in the upper part of the Object Browser panel. It is recommended
to disable the invisible objects and display only the processes that pertain to the tested
applications. This will expedite renewal of the tree of objects.

See also
 f The Waiting for an object to appear recipe in Chapter 5, Accessing Windows,

Controls, and Properties

 f The Entering text into text fields recipe in Chapter 3, Scripting

Disabling a screensaver when running
scripts

During the time the scripts are being executed, at the most malapropos moment, the
screensaver may kick in or the computer may go into the sleep mode. The simplest way to
avoid such mishaps is to completely turn off these working modes manually. In this recipe,
we will consider a way to do so programmatically, if switching those modes manually is not
acceptable to you by any reason.

How to do it...
To programmatically disable the monitor, we need to perform the following steps:

1. To disable the screensaver, it is enough to evoke the API-function
SystemParametersInfo, passing it the necessary parameters:
Win32API.SystemParametersInfo
(Win32API.SPI_SETSCREENSAVEACTIVE, false, null, 0);

Chapter 4

117

2. Disabling the sleep mode of your computer and preventing the monitor snooze is
a little more complicated and requires calling the SetThreadExecutionState
function from the kernel32.dll file within the predefined time intervals. The
function itself will appear as follows:
function disableSleep()
{
 var ES_SYSTEM_REQUIRED = 0x00000001;
 var ES_DISPLAY_REQUIRED = 0x00000002;

 var kernel = DLL.DefineDLL("kernel32");
 var lib =
 DLL.Load("c:\\Windows\\System32\\kernel32.dll");
 var proc = kernel.DefineProc("SetThreadExecutionState",
 vt_i2, vt_void);
 lib.SetThreadExecutionState(ES_SYSTEM_REQUIRED |
 ES_DISPLAY_REQUIRED);
}

3. The function call in the script will be made in the following manner:

Utils.Timers.Add(30000, "Unit1.disableSleep", true);

Here Unit1 is the name of the unit, in which the disableSleep function has
been defined.

How it works...
With the help of the Utils.Timers.Add method, we create a timer that will launch a
specific function (in our case, disableSleep from the Unit1 unit) within the set interval
(in our case, within 30 seconds).

The disableSleep function itself will include the dynamic kernel32.dll library and
call the predefined SetThreadExecutionState function. We pass into this function the
only parameter that contains the following two flags:

 f ES_SYSTEM_REQUIRED: This flag requires the system should work in the normal
working mode, preventing sleep or snoozing inactivity.

 f ES_DISPLAY_REQUIRED: This flag prevents monitor fading.

Note that disabling the screensaver makes permanent system changes, while preventing
the monitor fading works only when scripts run.

Running Tests

118

Sending messages to Indicator
Indicator is a small window that is displayed in the upper-right corner of the screen when the
scripts are being executed which displays the information about the processes taking place
at the given moment of time. With the help of the Indicator object, we can display our
messages in this window.

How to do it...
In order to display messages in the Indicator window we need to perform the following steps:

1. The following script demonstrates basic possibilities of work with Indicator:
function testIndicator()
{
 Indicator.PushText("Waiting for ABCD process...");
 Log.Message(Indicator.Text);
 if(!Sys.WaitProcess("ABCD", 10000).Exists)
 {
 Log.Message("Process not found");
 }
 Indicator.Clear();
 aqUtils.Delay(5000, "Waiting 5 seconds...");
 Indicator.Hide();
 aqUtils.Delay(5000, "Waiting 5 more seconds...");
 Indicator.Show();
}

2. This function will first show the Waiting for ABCD process... message and
put the message from the Indicator object to log.

3. Then Indicator.Text will be cleared and a new message Waiting 5
seconds... will be shown.

4. The last message sent to the Indicator object, Waiting 5 more seconds...,
will not be visible since we hide the whole Indicator object before posting it.

How it works...
With the help of the PushText method, we place the text into the Indicator object
that is possible to be read via the Text property. The Clear method clears the text in the
Indicator object. The Hide and Show methods allow hiding and displaying anew the
Indicator object on the screen.

Chapter 4

119

If you would like to create a delay in the script with the help of the aqUtils.Delay method,
you can also place an arbitrary text into the Indicator object, having passed it through the
second parameter to the Delay method.

There's more...
The PushText method does not simply place a new text into the Indicator object, but
rather retains the previously inputted text. Subsequently, the obsolescent text can be restored
with the help of the PopText method.

Showing a message window during
a script run

Sometimes it is necessary to interrupt the script being executed and display a certain
message to the user, and then continue script execution only on condition the user closes
the message.

Note however, that interaction of the automated tests with the user is considered bad style
in testing automation, however, there could be instances when this cannot be avoided. For
example, if we are running a lengthy test with a lot of actions, we may require that something
be done manually in the middle of the test execution (for example, connect a device or reboot
a remote server).

How to do it...
1. To display the message and waiting for the coming interaction on behalf of the user,

the BuiltIn.ShowMessage method is to be applied.

2. In the following example its use is demonstrated:

function testShowMessage()
{
 Log.Message("This code will run before showing a
 message.");
 BuiltIn.ShowMessage("Press OK to continue execution...");
 Log.Message("This code will run after message has been
 closed");
}

How it works...
The BuiltIn.ShowMessage method disrupts text execution and waits till the user clicks
on the OK button. Meanwhile, access to other TestComplete possibilities is shut off. Test
execution is expected to continue after the window has been closed.

Running Tests

120

There's more...
In TestComplete there is more advanced feature for user interactions—User Forms. With the
help of User Forms one can create complex dialog windows with various controls elements.
In fact, it is possible to create a small application within the TestComplete application. These
forms can be useful if, before launching the tests, we would like to assign testing parameters
(for example, address of the server, user name, tested application version, and any other
customizable parameters).

If you would like, however, to have the possibility of launching tests in the automated mode
without human interactions (for example, at night, on the weekend, or each time after the
application has been compiled), these parameters are best stored in a configuration file.

5
Accessing Windows,

Controls, and
Properties

In this chapter we will cover the following recipes:

 f Choosing Object Tree Model

 f Understanding the window's life cycle

 f Ignoring overlapping windows

 f Dragging one object into another

 f Calling methods asynchronously

 f Verifying if an object has a specific property

 f Finding objects by properties' values

 f Waiting for an object to appear

 f Waiting for a property value

 f Mapping custom control classes to standard ones

 f Using text recognition to access text from nonstandard controls

 f Using Optical Character Recognition (OCR)

 f Dealing with self-drawn controls not supported by TestComplete

Accessing Windows, Controls, and Properties

122

Introduction
In order to efficiently work with applications under test, we need to know how TestComplete
interacts with tested applications, namely with windows and objects within the windows.

In this chapter, we will cover different ways of interacting with controls and learn how
TestComplete works with them.

Choosing Object Tree Model
Object Tree Model is a very important project setting, which influences object recognition in
the Object Browser. Selection of just one of the models would not make it possible to simply
switch between models in the future, keeping the existing scripts; since these models are
altogether different. In this recipe we will consider two supported Flat and Tree models,
their pros and cons, and provide counsel on the choice of a certain model for your project.

Getting ready
Launch a standard application Paint from the Windows suite by navigating to Start | All
Programs | Accessories | Paint.

How to do it...
To see the difference between two models, we need to perform the following steps:

1. Open the properties of the project (right-click on the name of the project and
navigate to Edit | Properties).

2. Opt for the General group of options.

3. Set the Object tree model parameter value to Tree, as shown in the following
screenshot:

4. Begin recording of the script and click on any button on the Home panel in the
Paint window, and then stop the recording.

Chapter 5

123

5. If, in the meantime, the NameMapping window appears, click on the Cancel button.

6. In the result, the following script string will be recorded:
Sys.Process("mspaint").Window("MSPaintApp",
 "*").Window("UIRibbonCommandBarDock",
 "UIRibbonDockTop").Window("UIRibbonCommandBar",
 "Ribbon").Window("UIRibbonWorkPane",
 "Ribbon").Window("NUIPane").
 Window("NetUIHWND").Click(260, 78);

7. Reiterate steps 1 through 4, however, on the first step, set the Object tree
model parameter value to Flat.

8. In the result, the following code will be recorded:

Sys.Process("mspaint").Window("MSPaintApp",
 "*").Window("NetUIHWND").Click(260, 78);

How it works...
The difference between the Flat and the Tree models is clearly distinguishable; the Tree model
yields a much greater number of nested objects as compared to the Flat one. This occurs due
to the Tree Object Browser mode displaying controls elements in exactly the same way as
they are located in the tested application itself. In the Flat model, all the controls elements
are sibling elements to the window, regardless of their internal mapping in the application.
As the toolbar, usable in Paint (Ribbon), is quite a complicated control element, we observe a
complex element structure in the Tree model between the window and the toolbar; there are
to be found as many as four elements. Naturally, the Flat model seems more user friendly,
and it is indeed so. If you are not running up against a difficulty in naming the controls
elements in this mode, this is to be preferred as your first option.

Sometimes, however, there arise use cases that make it difficult to apply the Flat model.
For example, if there are too many eponymous controls elements in the window that are
instanced to the same classes, then all of them are outputted equally on the same level of
the hierarchy (that is, as sibling elements in relation to the window they have taken after);
therefore, it becomes quite hard to sort out where each and every controls element exactly
belongs. The only way of extrication consists in using the indices (which is not really a
convenient thing). This is why the thumb rule for choosing Object Tree Model runs as follows:
for simple applications where you don't have problems with recognizing controls, use Flat
model. In other cases use Tree model.

If you use the Tree model, it is recommended that you should apply the controls element of
the NameMapping project item and its extension of Aliases. NameMapping allows us to assign
the controls elements with simple and brief names, while the Aliases allows us to create a
hierarchy from these named objects (regardless of the way they have been mapped in the
application and in the Object Browser).

Accessing Windows, Controls, and Properties

124

See also
 f If you are applying the Flat model and often come up against an issue of elements

recognition with the same names, it is recommended that you revert to the Finding
objects by properties' values recipe

 f If you test web applications, we recommend reading the Choosing Web Tree Model
recipe in Chapter 10, Testing Web Applications

Understanding the window's life cycle
For the sake of code decomposition towards simplification, we create variables that
correspond to the objects (processes, windows, and controls elements). In this recipe,
we are about to deal with correct appropriation of such variables in TestComplete.

Getting ready
Add Calculator Plus to TestedApps (C:\Program Files\Microsoft Calculator Plus\
CalcPlus.exe).

How to do it...
In order to understand the life cycle of windows we will perform the following steps:

1. Launch the following function to be executed:
function testVariables()
{
 TestedApps.CalcPlus.Run();
 var wCalc = Sys.Process("CalcPlus").Window("SciCalc",
 "Calculator Plus");
 wCalc.Activate();
 wCalc.Close();
 aqUtils.Delay(2000);
 TestedApps.CalcPlus.Run();
 wCalc.Activate();
}

2. In the result, we will get the error message The window was destroyed during
method execution.

Chapter 5

125

How it works...
We launch the calculator and create a wCalc variable corresponding to the main window of
the calculator. Then we close the calculator and reopen it again in an attempt to activate the
same using the pre-existing variable wCalc.

At first, everything should work without a hitch, because in both instances access to the main
window takes place in seemingly the same way: the application has been launched and appears
just like it did the first time; nonetheless, we are in receipt of the error message.

This is happening because the wCalc variable has been assigned to an object which is no
longer in existence as of the moment the program was closed down with the help of the
Close method. If a new object has the same name, it does not mean it is the same object.
The variable wCalc still tries working with the older window, which has been closed by now,
and will never reinstate. When the variable is being addressed, TestComplete does not
recalculate the expression, which we assigned to the variable in the beginning.

If we attempt to use the variable wCalc again to work with the newer window, we need
to initialize it again with the same expression as done initially:

wCalc = Sys.Process("CalcPlus").Window("SciCalc", "Calculator
 Plus");

For brevity's sake, the right-hand part of the expression can be made into a function,
which returns the window object.

This example is quite a vivid one; however, in our tested applications, there may arise less
obvious and underhanded situations. For example, the window remains intact, while the
elements inside are being renewed. Such a peculiarity should always be kept in the back
of your mind if you are using variables to handle screen (that is, display) objects.

Ignoring overlapping windows
Sometimes, at the point of scripts being executed in an application at hand, there are
windows or other controls elements being simultaneously opened to overlap the controls
elements that are being referred to by the scripts, at the given moment of time. As a result,
in the log, there appear error messages.

Overlapping window is the window that overrides the controls element, which TestComplete
is handling at the moment; however, it does not block the working with the controls element.

In this recipe, we will learn to rid ourselves of the previous-mentioned error in the simplest
manner imaginable.

Accessing Windows, Controls, and Properties

126

Getting ready
Launch a standard Windows Notepad application (C:\Windows\notepad.exe).

How to do it...
In order to deal with overlapping windows we need to perform the following steps:

1. Create the following function:
function testOverlappingWindow()
{
 var wNotepad = Sys.Process("NOTEPAD").Window("Notepad",
 "*");
 edit = wNotepad.Window("Edit");
 edit.Keys("first string[Enter]");
 wNotepad.MainMenu.Click("Edit|Find...");
 edit.Click(100, 120);
 edit.Keys("second string");
 var wFind = Sys.Process("NOTEPAD").Window("#32770",
 "Find");
 wFind.Window("Button", "Cancel").ClickButton();
}

2. In the line edit.Click(100, 120); change the parameters that are being
passed to the method so that the mouse-click would be made at a point close
by the Find window (you might need several tries to find the correct coordinates).
Launch the function.

3. In the result, we will have the following error message in the log: There was
an attempt to perform an action at point (802, 545), which is overlapped
by another window.

4. Now, open the properties of the project (right-click on the name of the project
and navigate to Edit | Properties).

5. Open the Playback group of settings.

6. Enable the Ignore overlapping window option as shown in the following screenshot:

7. Launch the function again. This time, there are no errors in the log.

Chapter 5

127

How it works...
First we try to run the function which clicks on an object which is hidden by another window.
As a result, an error message is put to the log showing that overlapping window prevents
TestComplete performing the click action.

After we had made changes to project options, the error wasn't sent to the log again.

The example with the Find window in Notepad shows that error with overlapping windows isn't
critical, since the script keeps successfully on after posting an error. Another example of such
a behavior is an invisible controls element, which is located above the targeted element in
mind, however, not standing in the script's way. Since such messages in the log may hinder
us, we can simply ignore them, as shown in this recipe.

There's more...
If the window is blocking script workings with the application, it is called Unexpected,
not Overlapping. In Playback group of project settings, one can customize behavior of
TestComplete at work with the same windows, and we will also get to grip with the way
to process those from the scripts in Chapter 12, Events Handling.

See also
 f If you don't want to ignore all overlapping windows, but only some of them

avail yourself of the Disabling certain error messages recipe in Chapter 12,
Events Handling

 f To deal with Unexpected windows refer to the Handling unexpected windows, part 1
and Handling unexpected windows, part 2 recipes in Chapter 12, Event Handling

Dragging one object into another
With the help of the Drag method in TestComplete, we are able to drag-and-drop any object
onto the predefined location in terms of pixels vertically and horizontally (on condition, of
course, that the object supports the drag-and-drop behavior); however, there is no built-in
possibility to drag one object onto or over another.

We can create a function to tackle such a feat by using coordinates of the objects. The task
at hand is writing a script that would drag the Find window in the Notepad and place the
same on the center of the main window, regardless of its dimensions and initial whereabouts.

Accessing Windows, Controls, and Properties

128

Getting ready
Launch the Notepad application (C:\Windows\notepad.exe).

How to do it...
The process of creating a function for dragging a window consists of the following steps:

1. The Drag method takes four parameters: coordinates inside the window on which
the mouse-click is expected to be made at the point of dragging (X and Y) and offset
coordinates by width and height for dropping (offsetX and offsetY). In our case,
the object that is being dragged-and-dropped is the Find window which is shown in
the following screenshot:

2. The X parameter inside the window, would be set equal to half the width of the
Find window, while the Y parameter would be equal to 10 (the height of the heading
of the window, tantamount to 21 pixels by default; so target coordinate will be in the
middle of the window caption).

3. The offset parameters should be calculated, taking the dimensions of both of the
windows into account (the main Notepad window and the Find window).

4. To figure out the distance along the horizontal line at which the window is to be
relocated on the screen, we need to obtain the coordinates of the center of the main
window, and add to it the distance from the border of the window down to that of the
screen. Then we subtract the difference from the border of the Find window down
to the beginning of the screen, subtracting half the width of the Find window (as we
will be dragging the Find window by its middle, as the pivotal point), as shown in the
following screenshot:

Chapter 5

129

5. Similarly, the vertical offset is to be calculated by using the height of the window
and the vertical distance.

If you have a hard time understanding the logic of the calculations, you
may feel lead to draw schematic view of the location of the windows on
the screen, and thus, shape up the formula by cracking numbers, and
then transform those numbers into the meaningful variables.

6. As a result of this, we can write up the following function. This function would open the
Notepad and maximizes it over the whole screen, then opens the Find window and
drags it to relocate onto the center of the main window. After this, the function restores
the original size of the main window, and again, places the Find window on the center.

function testDragDrop()
{
 var pNotepad = Sys.Process("notepad");
 var wNotepad = pNotepad.Window("Notepad");
 wNotepad.Activate();
 wNotepad.Keys("Some text");
 wNotepad.Maximize();
 wNotepad.MainMenu.Click("Edit|Find...");
 var wFind = pNotepad.Window("*", "Find");

Accessing Windows, Controls, and Properties

130

 var offsetX = wNotepad.Width/2 + wNotepad.ScreenLeft -
 wFind.ScreenLeft - wFind.Width/2;
 var offsetY = wNotepad.Height/2 + wNotepad.ScreenTop -
 wFind.ScreenTop - wFind.Height/2;
 wFind.Drag(wFind.Width/2, 10, offsetX, offsetY);

 wNotepad.Restore();
 offsetX = wNotepad.Width/2 + wNotepad.ScreenLeft -
 wFind.ScreenLeft - wFind.Width/2;
 offsetY = wNotepad.Height/2 + wNotepad.ScreenTop -
 wFind.ScreenTop - wFind.Height/2;
 wFind.Drag(wFind.Width/2, 10, offsetX, offsetY);

 wFind.Close();
}

How it works...
With the help of the Width, Height, ScreenLeft, and ScreenTop properties of both
of the controls elements (in our use case, we are talking about windows), we calculate the
distance at which it is necessary to relocate the object to have it appear over the center
of another object in play.

As seen from this example, the code for calculation of the coordinates is re-iterated,
and this is why it is better to extract it into a separate function. The function would accept
two parameters: the object that is being dragged, and the pivotal object onto which the
drag-and-drop is targeted.

There's more...
Here is an example of universal function which can be used for dragging objects:

function dragObject(objDrag, objTo)
{
 var offsetX = objTo.Width/2 + objTo.ScreenLeft -
 objDrag.ScreenLeft - objDrag.Width/2;
 var offsetY = objTo.Height/2 + objTo.ScreenTop -
 objDrag.ScreenTop - objDrag.Height/2;
 objDrag.Drag(objDrag.Width/2, 10, offsetX, offsetY);
}

Our initial code could be simplified by replacing the blocks from the three lines of code,
which calculate coordinates and evoke the Drag method, with the following singular function:

dragObject(wFind, wNotepad);

Chapter 5

131

The Y parameter has been hard-coded as being equal to 10, since we
have been at that point in the window. To drag other objects, it makes
sense to replace this value for half the height of the object that is being
dragged (objDrag.Height/2), so that mouse-click would always
target the center of the object.

Calling methods asynchronously
Sometimes, there arises a necessity to launch some by-process in the tested application
(for example, some long-drawn mathematical calculation), and to simultaneously carry out
other actions, unhindered. In this recipe we will consider how this can be achieved.

Getting ready
Launch the Calculator Plus (C:\Program Files\Microsoft Calculator Plus\
CalcPlus.exe) and Notepad (C:\Windows\notepad.exe) applications.

How to do it...
We need to perform the following steps:

1. The following function launches the calculator for factorial calculation of a hefty
number. This takes up a long time, during which the calculator is unavailable for
the user. Let's suppose a user has to fulfill certain operations in the meantime,
and that in the Notepad.
function testAsynch()
{
 var wCalc = Sys.Process("CalcPlus").Window("SciCalc",
"Calculator Plus");
 wCalc.Keys("123321123321");
 var button = wCalc.Window("Button", "n!");
 button.Click();
 var wNotepad = Sys.Process("notepad").Window("Notepad");
 wNotepad.Activate();
 wNotepad.Keys("some text");
}

2. After calling the Click method for the button of the factorial calculation, our function
will keep waiting until the calculator is made available again (about 20 seconds,
after which a window shows up with a warning). Only afterwards would the Notepad
window be enabled with some text inputted into it.

Accessing Windows, Controls, and Properties

132

3. Now, let's replace the following string:
button.Click();

With the next one:

Runner.CallObjectMethodAsync(button, "Click");

And evoke the function again.

4. At this time, manipulations with the Notepad would occur immediately after
clicking on the button for factorial calculations in the calculator.

How it works...
The Runner.CallObjectMethodAsync method accepts two parameters: the object
and the callee method. If the method takes these parameters, they should be passed on to
the CallObjectMethodAsync method immediately after the name of the evoked method.

In the result, the method of the object will be called asynchronously, and the thread of
execution will be relegated to the line of the script that follows.

The CallObjectMethodAsync method does not create a new thread of execution, which in
turn implies we cannot, as an example, launch the method aqFile.Copy asynchronously in
order to copy a large file. Use of this method is recommended only for calling private methods
of the tested application.

There's more...
If, upon execution of several actions, we still need to wait for the operation to be completed,
having been launched asynchronously, we could resort to the value that is
to be returned by the CallObjectMethodAsync method:

var res = Runner.CallObjectMethodAsync(button, "Click");
// some actions
res.WaitForCompletion(20000);

The WaitForCompletion method has one mandatory parameter: maximal waiting time.

Verifying if an object has a specific property
If we try addressing an unsupported property of an object's method an error would show
up in the log.

To first verify if a property or a method is supported by the given controls element, we can
use a specific method of IsSupported, that is extended by the aqObject object.

In this recipe, we will consider an example of using the IsSupported method.

Chapter 5

133

Getting ready
Launch Calculator Plus (C:\Program Files\Microsoft Calculator Plus\
CalcPlus.exe).

How to do it...
The following function demonstrates usage of the aqObject.IsSupported method with
the example of the Calculator Plus application:

1. In the loop, we will fine-tooth-comb all the sibling controls elements of the application
and have the value of the wText property outputted to the log, if the same is
available in the given controls element.

2. Write and launch the following function:
function testPropertySupported()
{
 var wCalc = Sys.Process("CalcPlus").Window("SciCalc");
 wCalc.Activate();
 var objects = wCalc.FindAllChildren("Visible", true);
 objects = (new VBArray(objects)).toArray();

 for(var i = 0; i < objects.length; i++)
 {
 if(aqObject.IsSupported(objects[i], "wText"))
 {
 Log.Message(objects[i].wText);
 }
 else
 {
 Log.Warning("Object '" + objects[i].Name + "' doesn't
 have wText property");
 }
 }
}

3. In the result of the preceding function call, we will obtain one message with the
text 0. (the text from the result output field of the calculator) and several warnings
concerning the property being unsupported.

Accessing Windows, Controls, and Properties

134

How it works...
With the help of the FindAllChildren method, we will obtain an array of all the sibling
objects of the calculator window. Since the FindAllChildren method returns an array
suite-formatted after Visual Basic, we need to transmute the same to fit the JScript array
format with the help of the toArray method.

Further on in the loop, with the help of the aqObject.IsSupported method, we check if
the wText property is available for each controls element, and thus we output the value of
this property, provided it exists for the given controls element, else a warning occurs related
to the missing property of the ith object in the loop.

Property availability validation for an object of a specific method is executed in a similar way.

See also
 f To learn more about finding objects by property values refer to the Finding objects by

properties' values recipe

Finding objects by properties' values
Sometimes, there arises a need to locate an object by a number of characteristic
properties (for example, choosing an enabled element from among several look-alike ones).
TestComplete provides the Find method, allowing location of the controls element by several
properties and their values.

In this recipe, we will search for and find one of the two buttons with the same text of C.
There are two such buttons: one works to clear the results input and the other stands for
hexadecimal calculations. We need to select and click on the button for clearing the results.

Getting ready
Launch the Calculator Plus application (C:\Program Files\Microsoft Calculator
Plus\CalcPlus.exe) and switch it to Scientific mode (navigate to View | Scientific).

How to do it...
The following example demonstrates usage of the Find method:

1. First we declare two arrays which contain properties and values of the desired
object as follows:

Chapter 5

135

var properties = ["WndCaption", "Enabled"];
var values = ["C", true];

2. Then we call the Find method for the object where we look for the control:
var button = wCalc.Find(properties, values);

3. This method returns the object which corresponds to given properties.

4. The following function executes search of the targeted button (C) and triggers a
mouse-click on it:

function testFindControl()
{
 var wCalc = Sys.Process("CalcPlus").Window("SciCalc");
 wCalc.MainMenu.Click("View|Scientific");
 wCalc.Refresh();

 var properties = ["WndCaption", "Enabled"];
 var values = ["C", true];
 var button = wCalc.Find(properties, values);
 button.Click();
}

How it works...
First of all, we select the required mode (Scientific), then update the information about
the main calculator window with the help of the Refresh method. If this is left undone,
TestComplete would pick up the obsolete copy of the window, which used to be available in
the Standard mode of the calculator.

Then we declare two arrays. The first array (properties) contains the names of all the
properties, which we will loop through searching for the targeted element, while the second
array (values) contains values of these properties.

In our case, we are searching for the controls element by screening the text of the button
(WndCaption) and by looking up its availability (Enabled), since the Enabled property is
different for the two buttons in view.

Further on, with the help of the Find method, called for the window of the calculator, we get
busy with the search of the targeted controls element. The Find method returns the found
object, on which we make a mouse-click.

The number of the properties and their values may be arbitrary; however, one should desist
from complicating them too much. It is sufficient to write in only the number of the properties
that will conclusively pinpoint the object.

Accessing Windows, Controls, and Properties

136

There's more...
We can also pass a third parameter to the method Find, namely that of Depth (the nesting
depth for the searching procedure). By default, this parameter is equal to 1, that is, the search
is carried out only amongst the sibling objects of the controls element, targeted by the Find
method. If the Depth parameter is too large (for example, 999), the search would be carried out
throughout the whole of the objects tree, beginning with the main element therein.

Apart from the Find method, there is another method called FindChild. The difference
between the Find and FindChild methods is the fact that the Find method checks not only
the sibling objects up to matching the pre-assigned search criteria, but also the object itself.

The methods Find and FindChild return the first controls element that has matched the
search criteria. If there is a need to find several controls elements, we could use the methods
FindAll and FindAllChildren, which return all of the matches by pre-assigned properties
and values, not just those of one object. In this case, the returned value would be that of an
array formatted as VBArray.

In case of JScript, the array in format of VBArray should be type-cast to the format of JScript.
This type-case is done via the VBArray object and the toArray method. For example:

var controls = wCalc.FindAll(properties, values) ;
controls = (new VBArray(controls)).toArray();

Waiting for an object to appear
Sometimes, there arises a need to pause script execution until a certain window shows up.
It usually happens when scripts expect an application to work faster than it actually does.

For example, this would be the case, when the tested application executes time-consuming
calculations, and displays the window with the result once these are completed.

To resolve this task in TestComplete there are so called Wait methods; we will consider the
WaitWindow method as an example.

Getting ready
For our example, we will launch Calculator Plus (C:\Program Files\Microsoft
Calculator Plus\CalcPlus.exe) and launch factorial calculation for quite a large
number. In case of prolonged operation, the calculator displays a message every 40 seconds
to notify that the operation could last quite a long time, suggesting one either continue to
wait or stop the calculation.

Make sure, that the calculator has the Digit grouping option disabled from the View tab.

Chapter 5

137

How to do it...
We will create a simple function which will launch the factorial execution for the number
200,000, and then continually check if the notification window, with the warning, is up
and running via the method of WaitWindow.

1. The function we have will look as follows:
function testFactorial()
{
 var num = "200000";
 var timeout = 50000;

 var pCalc = Sys.Process("CalcPlus");
 var wCalc = pCalc.Window("SciCalc", "Calculator Plus");

 wCalc.Activate();
 wCalc.Keys("[Esc]");
 wCalc.Keys(num);
 wCalc.Window("Button", "n!").Click();

 while(pCalc.WaitWindow("#32770", "*", -1,
 timeout).Exists)
 {
 Log.Message("Warning message appeared, continuing...");
 pCalc.Window("#32770", "*").Window("Button",
 "*Continue").Click();
 }

 Log.Message(wCalc.Window("Edit").wText);
}

2. In the result of the given function execution, the window with the warning will show up
several consecutive times (the number depends on how fast the computer is), and at
the end, the log will have the result appended.

How it works...
In the beginning of the function, we initialize the variable of timeout with the value of 50
seconds—namely the time-span needed to wait for the window to appear. If, in 50 seconds,
the window with the warning has not shown up, the script assumes the calculation is over,
and obtains the results from the text field.

Accessing Windows, Controls, and Properties

138

After the entry of the number and clicking on the button for factorial calculations (n!), we
get into an endless loop waiting for the warning window to appear. After that we call the
WaitWindow method for the parent object (in our case, it is the object of the process).

The WaitWindow method accepts four parameters: the name of the window class, the
heading of the window, the position of the window in relation to the other windows of the
same class, and the waiting time. In the result of this function execution, the method returns
an object with the property Exists which we must check in order to find out if the window
has appeared.

The Wait methods always return an object, not a Boolean value. To check
if the window exists, it is necessary to use the Exists property, as in our
example, or any other suitable property.

If the window is existent (the property Exists is equal to true), we enter a corresponding
message to the log and click on the button Continue to go on with the loop execution.

Unlike the aqUtils.Delay method, the Wait methods are very flexible and allow more
efficient usage of the waiting time. For example, if next time around, we have to calculate
the factorial value for the number being 10 times greater, we would not have to make any
changes in the function (although, the time of execution may exponentially increase,
because the complexity of the factorial calculation goes up in geometrical progression).

There's more...
In our example, we are working with an ordinary Win32 application and use the WaitWindow
method. For the other types of applications, there exist corresponding Wait methods. For
example, WaitWinFormsObject for .NET applications or WaitQtObject for Qt applications.
Do always use the correct Wait methods, depending on the type of application and the
controls element!

WaitWindow exists immutably in a singular instance, that is, it always accepts one and
the same number of parameters. However, some of the Wait methods have several
implementations. For example, WaitQtObject has three differing implementations with a
various set of parameters, each being usable depending on the situation. Before putting the
Wait methods to use, read up on them in the reference literature in the TestComplete system.

See also
 f To learn more about waiting objects refer to the Waiting for a property value recipe

Chapter 5

139

Waiting for a property value
Sometimes, an application may be instrumental in a prolonged routine, during which the test
should await its completion. Usually, an application prompts users upon completing the work.
One of the examples of the completed operations state is a change of the property of the
existing controls element (for example, the button Continue becomes enabled, background
color is changed, and so on).

In this recipe, we will deal with a convenient know-how concerning waiting for the properties
to be changed with the help of the WaitProperty method.

Getting ready
Launch Calculator Plus (C:\Program Files\Microsoft Calculator Plus\
CalcPlus.exe) and make sure it is started in either Standard or in Scientific mode.
Make sure that the Digit grouping option from the View tab is unchecked.

How to do it...
Our task is inputting one and the same digit into the calculator (for example, the digit 2)
until the value in the text output field is equal to 2222222.

1. To make this happen, we will turn the following script to use:
function testWaitProperty()
{
 var expected = "2222222. ";
 var wCalc = Sys.Process("CalcPlus").Window("SciCalc",
"Calculator Plus");
 var edit = wCalc.Window("Edit");

 wCalc.Activate();
 while(!edit.WaitProperty("wText", expected, 1000))
 {
 wCalc.Keys("2");
 }
}

Accessing Windows, Controls, and Properties

140

2. When the value in the text field becomes equal to the expected one, the function
will stop working.

How it works...
Expected value contains an extra space character at the end of the string - this happens
because the calculator applications add this space so that result wouldn't be too close
to the right border of the text field. Users don't notice it, but TestComplete certainly does.

The method WaitProperty takes three parameters:

 f PropertyName: This parameter specifies the name of the property whose value is
verified

 f PropertyValue: This parameter specifies the expected value

 f Timeout: This parameter specifies the maximal waiting time

If the property has gotten the expected value, the WaitProperty method returns true,
otherwise, upon expiry of a set time frame, the method returns false.

This method is recommended for use instead of an ordinary delay (aqUtils.Delay) in the
case that the completion of the monitored operation can be tracked by a given property of any
of the controls element.

Mapping custom control classes to standard
ones

At times, in tested applications, there crop up controls elements that are unknown in
TestComplete and therefore, are unworkable; although, externally, a controls element of the
kind appears to be a standard one (for example, a text field or a list of elements). It happens
because programmers create controls with custom names and TestComplete doesn't know
how to work with them.

The simplest way to resolve this issue is to try to explain this to TestComplete: this class is in
reality a standard one (to be more exact, has been inherited from its standard class). In such
a situation, we would be working with such an element as if it were a standard one, meaning
the one taken after by inheritance. Certainly, in this case, we cannot use the extended
possibilities of the controls element in view, while at least, we could execute some standard
actions with it. For this purpose, TestComplete has specific project settings, which are called
Object Mapping.

Since creation of a similar controls element or search for existing application to a similar
effect is quite a difficult task indeed, we are using a workaround: teaching TestComplete not to
work with the standard controls elements in order to obtain the data from a controls element
of an entirely different type.

Chapter 5

141

In Calculator Plus application (as in the standard Windows calculator), the controls element of
the SysLink class is being used. This element is visible if the menu item About is selected from
the Help tab. The text this product is licensed under… is the element we are talking about. If
one were to look up its properties in Object Browser, the wText property would stand out as
containing the text and the parameters, Link and LinkCount, allowing for more information
about the links within the element. This element is our "guinea pig".

Getting ready
First we need to remove the existing object mapping for the SysLink elements as follows:

1. Open the properties of the project (right-click on the name of the project and navigate
to Edit | Properties).

2. On the toolbar to the right, go to the section Object Mapping.

3. Unfold the controls element Win32 Controls and Windows in the tree to the
right, and uncheck the flag from the controls element of SysLink, as shown in
the following screenshot:

4. Now TestComplete has no idea about recognizing the SysLink controls elements.

How to do it...
In order to be able to recognize the SysLink elements as text fields we need to perform
the following steps:

1. Launch Calculator Plus and opt for the menu item About in the Help tab.
The window About Calculator Plus will show up on the screen.

2. Open up Object Browser and locate the controls element of the SysLink type
inside the About window (this element is unique therein).

3. Look up the property of this element on the panel to the right and make sure
that none of them contain the text This product is licensed under….

4. Open up project properties (right-click on the name of the project and navigate
to Edit | Properties).

5. On the panel to the right, go to the Object Mapping section.

6. Open up the Win32 Controls and Windows controls element, and in it check
the element Edit box.

Accessing Windows, Controls, and Properties

142

7. Click on the button Add Class Name and into the appearing new controls element
input the name of the SysLink class, as shown in the following screenshot:

8. Again, open up Object Browser, make the right-click on the Sys element and opt for
the Refresh All menu item.

9. Locate the element of the SysLink type again in the tree of objects, and go through
its properties. Now we have the wText property available, from which we could get
a hold on the readable text, as shown in the following screenshot:

How it works...
Usage of the Object Mapping is the simplest method to work with nonstandard controls
elements in case they are inherited from the standard ones.

Usually, in the inherited controls elements, some standard methods and properties
still remain, which can be resorted to in order to obtain all (or almost all) the necessary
information. This is exactly what we have done in the example of the SysLink element:
we have taught TestComplete to work with this element as with a text field.

In truth we are bereft of some of the possibilities that the former properties held (for example,
in the previous-mentioned example, we are short of accessing the Link and LinkCount
properties); nonetheless, quite often all of what's within reach is enough for creation of
genuine test scripts.

Chapter 5

143

There's more...
If Mapping has not been a real help, and you are still up against an unwieldy controls element,
you will have to come up with some more advanced methodology, such as:

 f Writing an extension of your own (quite a complicated approach, usually requires
help of the developers of the tested application)

 f Usage of the provide properties and methods of the controls element to make
it workable

 f Usage of text recognition possibilities and optical recognition

 f Working with the element as with an image

See also
For more advanced ways of working with nonstandard controls refer the following recipes:

 f The Working with nonstandard controls recipe in Chapter 3, Scripting

 f The Using text recognition to access text from nonstandard controls and
Using Optical Character Recognition (OCR) recipes

Using text recognition to access text from
nonstandard controls

In some cases, if a controls element in the tested application has not been completely
recognizable (for example, nonstandard toolbar), TestComplete can still provide us with access
to some of the private properties of the element in view using the text recognition method.

In this recipe, we will consider usage of the text recognition method for accessing buttons on
the toolbars in Paint application.

Getting ready
Launch a standard Paint Windows application (navigate to Start | All programs | Accessories
| Paint).

How to do it...
In order to recognize text from controls we need to perform the following steps:

1. Open up Object Browser and click through to the following element therein:

Accessing Windows, Controls, and Properties

144

Sys.Process("mspaint").Window("MSPaintApp", "Untitled
- Paint", 1).Window("UIRibbonCommandBarDock",
"UIRibbonDockTop", 3).Window("UIRibbonCommandBar", "Ribbon",
1).Window("UIRibbonWorkPane", "Ribbon", 1).Window("NUIPane", "",
1).Window("NetUIHWND", "", 1).

2. The Window("NetUIHWND", "", 1) is the panel where the buttons are located;
however, we have no possibility to work with these buttons, as the toolbar in view
is not a standard one.

3. Now, open the Project Workspace tab and pass on to project properties (right-click
on the name of the project and navigate to Edit | Properties).

4. Open up the group of options Open Applications – Text Recognition.

5. Click on the Add button and add the class of NetUIHWND to the list of List of
accepted windows.

6. Include this class with the help of the checkbox near the name of the class and
save the changes (press Ctrl + S) as shown in the following screenshot:

7. Again, open up the Object Browser and update the element of
Window("NetUIHWND", "", 1), by right-clicking on it and opting for the Refresh All
menu item.

Chapter 5

145

8. In the result, we will see several sibling objects that now are recognizable by
TestComplete, as shown in the following screenshot:

How it works...
If a nonstandard controls element uses a standard Windows API for text output, we could
recognize the text within it with the help of Text Recognition method, as described.

With the elements of the TextObject type we can make ordinary actions (for example,
triggering mouse-clicks on them, obtaining values of the properties, and so on); however,
having no possibility to normally work with their parent objects. For example, in case of
the Select button in Paint, we are getting access only to the text Select, and not to all
the buttons with image. Nonetheless, these simple possibilities are usually sufficient for
functional testing.

See also
 f Text Recognition is one of the simplest methods to work with nonstandard controls

elements. If this approach could not help you cope the issue of elements recognition,
it's time to turn to more sophisticated recipes. For this refer to the Using Optical
Character Recognition (OCR) and Dealing with self-drawn controls not supported
by TestComplete recipes.

Using Optical Character Recognition (OCR)
Optical text recognition (OCR) is usable in cases where other methods of obtaining text from
the targeted controls element are not up to the task for whatever reason.

We will supply an example of searching for the sqrt text in the calculator window, and making
a mouse-click in the center of the located text.

Accessing Windows, Controls, and Properties

146

Getting ready
Before embarking on the optical recognition, it is necessary to disable screen font's smooth
view which is done as follows:

1. Right-click on the Computer icon (on the desktop or in the Start menu) and go for
the Properties menu item.

2. Click on Advanced system setting to the right of the window pane.

3. Go to the Advanced tab and click on the Settings button in the Performance group
of options.

4. On the Visual effects tab disable option Smooth edges of screen fonts and click
on OK. Besides, it is recommended one uses standard Windows theme instead of
classic. To shuffle this off:

 � Make the right-hand mouse-click on the desktop and opt for the Personalize
menu item.

 � Opt for Windows Classic in the Basic and High Contrast Themes group.

5. Launch Calculator Plus and set the standard mode operandi to it (navigate to
View | Standard).

How to do it...
In order to recognize text from a control we need to perform the following steps:

1. First of all, let's enable the calculator window and get the number 16 inputted to it to
have a possibility to check that the sqrt button has been truly pushed as shown in the
following screenshot:

Chapter 5

147

var wCalc = Sys.Process("CalcPlus").Window("SciCalc",
 "Calculator Plus");
wCalc.Activate();
wCalc.Keys("16");

2. Then we will create a new object OCR for all the calculator window and enter all of the
text into the log, that is, the one TestComplete can recognize text in:
var calcOCR = OCR.CreateObject(wCalc);
Log.Message("All text from Calc", calcOCR.GetText());

Usage of the GetText method in this case is not mandatory; however, having all
the recognized text in the log can simplify analysis of recognition errors and their
underlying causes.

3. Further, we will locate the sqrt text, place the found image into the log, and make a
mouse-click on it.
if(calcOCR.FindRectByText("sqrt"))

 {

 var sqrtPic = wCalc.Picture(calcOCR.FoundLeft,
 calcOCR.FoundTop, calcOCR.FoundWidth,
 calcOCR.FoundHeight);

 Log.Picture(sqrtPic, "Found sqrt image");

 wCalc.Click(calcOCR.FoundX, calcOCR.FoundY);

 }

4. Now, if one were to launch the function, the sqrt button would be clicked on and the
square root calculations for 16, that is, the result being 4, would be inputted into the
results field.

How it works...
The FindRectByText method places coordinates of the located text (FoundX, FoundTop,
FoundWidth, and so on) into the object of the OCRObject type. Thanks to these coordinates,
we have the possibility to make the mouse-click or obtain the image with the targeted text.

It is recommended that one should always place the located image(s) into the log (as we have
done so with the help of the Log.Picture method); because there always exists a possibility
of an incorrect recognition, the image up your sleeve might help you dig out the reason for any
incorrect script's behavior, making the task much simpler.

Accessing Windows, Controls, and Properties

148

TestComplete by default is capable of recognizing all the symbols of the Latin alphabet,
digits, and some specific symbols, covering practically all the standard fonts, sizes, and
drawings; however, the quality of recognition may vary from one case to another. Besides,
text recognition within images is a prolonged operation.

This is why it is recommended one should apply OCR approach only in some rare and
extreme use cases.

There's more...
If the needed text is recognized in part, there are two methods to resolve the issue of partially
incorrect recognition. They are as follows:

 f Usage of the wildcard when passing parameter to the FindRectByText method.
For example:
calcOCR.FindRectByText("s*rt")

 f Usage of an imprecise search and impermissible mistakes. To this end, it is
necessary to set the property of OCROptions.ExactSearch to be equal to false,
and in the property of OCROptions.SearchAccuracy the value of the error margin
should range from 1 (successful match) to 0. For example, the following code would
be searching for sort text in the calculator window; however, it would click on the
button sqrt, because text matching would fall within the arranged error margin:

var OCROpt = calcOCR.CreateOptions();
OCROpt.ExactSearch = false;
OCROpt.SearchAccuracy = 0.8;
if(calcOCR.FindRectByText("sort", OCROpt))
{
 var sqrtPic = wCalc.Picture(calcOCR.FoundLeft,
 calcOCR.FoundTop, calcOCR.FoundWidth,
 calcOCR.FoundHeight);
 Log.Picture(sqrtPic, "Found sqrt image");
 wCalc.Click(calcOCR.FoundX, calcOCR.FoundY);
}

Chapter 5

149

Dealing with self-drawn controls not
supported by TestComplete

If you have encountered a controls element which is not supported by TestComplete, and
has no text to bind to (for example, with the use of text recognition or optical character
recognition), working with such an element is possible as with an image, while looking up for
other nested images, saved previously. This is done without a tie-up to the parent container-
element coordinates, rather operating with the images themselves.

In this recipe we will suppose that no button inside the calculator window is accessible (which
means we cannot work with them by using the Window method). First, we would save all the
images of the buttons with the numbers to a special element of Stores, and then we would
undertake searching for these images inside the calculator window image.

Getting ready
First of all, we need to go ahead and add the new project elements, namely, Stores and
Regions.

1. Right-click on the name of the project and navigate to Add | New Item.

2. In the opened window, go to the Stores option.

3. Right-click on the added element of Stores and navigate to Add | New Item.

4. In the opened window, go to the Regions option as shown in the following screenshot:

5. Launch Calculator Plus.

Accessing Windows, Controls, and Properties

150

How to do it...
In order to deal with nonstandard controls we will need to perform the following steps:

1. First of all, with the help of a simple function, we will add all of the buttons at once,
the images will be worked on later:
function prepareOwnDrawnButtonsImages()
{
 var wCalc = Sys.Process("CalcPlus").Window("SciCalc",
"Calculator Plus");
 for(var i = 0; i <= 9; i++)
 {
 Regions.AddPicture(wCalc.Window("Button", i), i.toString());
 }
}

Here we have simply gone through all the sibling objects with the corresponding
headings, and thus have added their images to Regions. In real project we would
not have had such a possibility, and this is why we would have to call the Picture
method for the whole of the calculator window, passing the coordinates of each
button as follows:

Regions.AddPicture(wCalc.Picture(150, 50, 30, 25),
 i.toString());

In the given instance, we have simplified our task for the sake of
demonstrating the search for the images.

2. Now, as we have got the stored images of all the necessary controls elements at our
disposal, we can search for them inside the calculator window image. To this end,
we will need to resort to the Regions.FindRegion method. The following function
demonstrates how one should click on the button 0, using only the saved image
thereof:
function testOwnDrawnControls()
{
 var wCalc = Sys.Process("CalcPlus").Window("SciCalc",
 "Calculator Plus");
 wCalc.Activate();

 var btnRect = Regions.FindRegion("0", wCalc);
 var xCenter = btnRect.Left + btnRect.Width/2;
 var yCenter = btnRect.Top + btnRect.Height/2;
 wCalc.Click(xCenter, yCenter);
}

Chapter 5

151

3. Now we can wrap the code for clicking on the button into a separate function in such
a way that we call just one function, without complicating the tests, as follows:
function clickWindowButton(window, imageName)
{
 var btnRect = Regions.FindRegion(imageName, window);
 var xCenter = btnRect.Left + btnRect.Width/2;
 var yCenter = btnRect.Top + btnRect.Height/2;
 window.Click(xCenter, yCenter);
}

4. In the result, the code for clicking on the calculator button will look as follows:

clickWindowButton(wCalc, "5");

How it works...
The Regions.FindRegion method allows searching for one image (the first parameter,
which is the named element of the Regions group, in our case) inside the other.

This method returns the Rect object, which is the information repository for the located
image (coordinates and the size) in relation to their image, within which the search has
been performed.

If the image has not been found, the Regions.FindRegion method returns the value null.

Since a mouse-click is made in the center of the object, we obtain the coordinates of the
located image with the help of the image coordinates and its dimensions.

The advantage of this approach's usability over just clicks on the coordinates of an element
is the fact that this approach will be correctly workable even if the size and location of the
elements are being changed (you can verify this by changing the calculator mode from
Standard to Scientific or vice versa).

There's more...
We add the images of the buttons to the Regions repository with the help of the Regions.
AddPicture method. This is optionally done via scripts, but can be done manually just
as well.

To this end, we need to make a right-hand mouse-click on the Regions element, navigate
to Add | New Item, and then follow the instructions of the wizard.

This is exactly the way we would add the images in case the objects inside the main calculator
window would be past recognition.

6
Logging Capabilities

In this chapter we will cover the following recipes:

 f Posting messages to the log

 f Posting screenshots to the log

 f Creating folders in the log

 f Changing log messages' appearance

 f Getting the number of errors in the log

 f Changing pictures' format

 f Comparing screenshots with dynamic content

 f Decreasing log size

 f Generating log in our own format

 f Exporting log to MHT format

 f Sending logs via e-mail

Introduction
One of the most important feature in every automation tool is logging capabilities. Well-
implemented test logs allow easy discovery, help to fix script problems, and identify reasons
for failure.

In this chapter, we will discuss frequently used log features and issues one may face while
working with TestComplete.

Logging Capabilities

154

Posting messages to the log
TestComplete allows committing various types of messages to the log: ordinary messages,
warnings, logs, and so on.

In this recipe, we will consider examples of how to use these messages.

Getting ready
Create a file with the name myfile.txt in the root directory of C:.

How to do it...
In order to see examples of all the message types in the log, the following steps should
be performed:

1. Create and launch the following function:

function testMessages()
{
 Log.Event("An event", "Event additional Info");
 Log.Message("A message", "Message additional Info");
 Log.Warning("A warning", "Warning additional Info");
 Log.Error("An error", "Error additional Info");
 Log.File("C:\\somefile.txt", "A file posted to the log");
 Log.Link("C:\\somefile.txt", "A link to a file");
 Log.Link("http://smartbear.com/", "HTTP link");
 Log.Link("ftp://smartbear.com/", "FTP link");
}

In the result, we will get the following screenshot of the log:

Chapter 6

155

How it works...
In the given example, we have used four different types of messages. They are as follows:

 f Log.Event: This message is an event which occurs when TestComplete interacts
with a tested application. Usually, messages of this type are placed into the log at
the point of text input or mouse-clicks; however, we can also place custom-made
events into the log.

 f Log.Message: This message is an ordinary message that is usually used for
prompting a user concerning current actions that are being executed by the script
(usually, of a higher level than that of the events; for example, creation of a user,
searching for a record, and so on).

 f Log.Warning: This message is a non-critical error. It is used in case the results of
the check are different from those expected; nonetheless, execution of the script
can carry on.

 f Log.Error: This message is a critical error usually used when an error is a critical
one, making any further execution of the test would be futile

These four types of message are based on several parameters. The first of them is a string
that we observe in the log itself; the second one contains additional information which can
be seen in the Additional Info tab, if the message has been clicked on. The second parameter
is optional and can be omitted as well as all other parameters.

There are two more types of messages:

 f Log.File: This message copies the assigned file into the file with the log, and places
a reference-pointer to it. Meanwhile, TestComplete renames the file to avoid naming
conflicts, leaving only the original extension intact.

 f Log.Link: This message places a link to the web page or a file, without making a copy
of the file itself in the folder with the log. On clicking on the link, the file will open with
the help of the associated program or a link in the browser.

These two types of message accept the link as the first parameter, and then the message
parameters, and those pertaining to the additional information (as the previous four).
Only the first parameter is mandatory.

See also
 f The Posting screenshots to the log and Creating folders in the log recipes

 f Also, if you want to learn more about additional parameters of different log
messages, you can refer to the corresponding help pages by navigating to
http://support.smartbear.com/viewarticle/32871/

Logging Capabilities

156

Posting screenshots to the log
Sometimes, it is necessary to place an image into the log; often, it may be a window
screenshot, an image of a controls element, or even that of the whole of the screen.
To this end, we use the Log.Picture method.

In this recipe we will consider different ways to place an image into the log.

How to do it...
The following steps should be performed to place an image to the log:

1. First of all, we will create two image objects for the enabled window and the whole
of the screen:
var picWindow = Sys.Desktop.ActiveWindow().Picture();
var picDesktop = Sys.Desktop.Picture();

2. The image of the active window, now being stored in the picWindow variable,
will be placed into the log, unchanged:
Log.Picture(picWindow, "Active window");

3. The image of the desktop is reduced by four times via the Stretch method, and
then saved on to the file with the help of the SaveToFile method:
picDesktop.Stretch(picDesktop.Size.Width/2,
 picDesktop.Size.Height/2);
picDesktop.SaveToFile("c:\\desktop.png");

4. Now we go about creating a new variable of the Picture type, loading up an image
into it from the earlier saved file, and then placing the same into the log:
var pic = Utils.Picture;
pic.LoadFromFile("c:\\desktop.png");
Log.Picture(pic, "Resized Desktop");

5. As a result of function's execution, the log will contain the two images placed therein:
that of the enabled window at the moment of test execution, and that of the reduced
desktop copy.

How it works...
The Log.Picture method has one mandatory parameter that is, the image itself;
the other parameters being optional.

Chapter 6

157

Images of any of the onscreen objects (of a window, of a singular controls element, of the
desktop) can be obtained via the Picture method. In our example, with the help of the
method, we get the image of the desktop and that of the active window. Instead of the active
window, we could use any variable that corresponds to a window or a controls element.

Any image can be saved onto the disk with the help of the SaveToFile method. The format
of the saved image is determined by its extension (in our case, it is the PNG).

If it's necessary to obtain a variable containing the image from the file, we are supposed to
create an empty variable placeholder with the help of the Utils.Picture property, and
then with the help of the LoadFromFile method, we upload the image into it. In the future,
one could handle the image as any other, received with the help of the Picture method.

Great-size images can be minified with the help of the Stretch method. The Stretch
method uses two parameters: the new width and height of the image. With the help of
the Size.Width and Size.Height properties, we could zoom in or out on the image
in relation to its original size, without setting the dimensions explicitly.

There's more...
With the help of the Picture method, we could obtain not only the image of the whole
window or a controls element, but just a part of it. For example, the following code gets
an image of the upper left square of the desktop within the sizing of 50 x 50 pixels:

var picDesktop = Sys.Desktop.Picture(0,0, 50, 50);

The values of the parameters are as follows: coordinates of the left and right top corner,
and its width and height.

There is one important project setting which allows automatic posting
images in case of error. To enable this option, right-click on the project
name, navigate to Edit | Properties, click on Playback item from the
list of options, and enable checkbox Post image on error.

Apart from changing the dimensions of the image, TestComplete allows for the execution of
several, quite complicated imaging manipulations. For example, the comparison of the two
images (the Compare method), searching for one image inside the other (the Find method),
and so on. Click on the following link to get to know more about these possibilities:

http://support.smartbear.com/viewarticle/32131/

Logging Capabilities

158

Creating folders in the log
In some cases, it is useful to conceal some of the messages in the log in such a way that they
are not seen all the time, rather than have them be easily accessible. For example, in case of
looping through the lines of the table to locate the needed one, we could place each indexed
line into the log; however, they could be rather a lot in number, making it unnecessary to view
them on the top-level all the time.

To resolve this issue, TestComplete extends a possibility to create special folders in the log,
where the messages could be successfully placed.

How to do it...
The following steps should be performed to create folders in the log:

1. For creation of the new folder in the log, the method of Log.CreateFolder
is to be used, the folder name expected to be passed as a parameter:
var folder = Log.CreateFolder("1st folder");

2. Now, for the sake of appropriating all the messages into the folder, it is necessary
to enable the same with the help of the method of Log.PushLogFolder:
Log.PushLogFolder(folder);
Log.Message("This message will appear in the 1st folder");
Log.Event("This event will appear in the 1st folder");

3. To close the current folder and revert to the previous one, the method of Log.
PopLogFolder is to be utilized:

Log.PopLogFolder();
Log.Message("This message will appear in the root folder");

In the result, the log will assume the shape and form as shown in the following
screenshot:

Chapter 6

159

How it works...
The method of Log.CreateFolder returns an integer (Folder ID), which uniquely
identifies the folder. With the help of the Log.PushLogFolder method, we enable the folder,
whose Folder ID has been signified as a parameter.

The folder can be nested inside each other as many times as necessary, thus segregating
the information in the log by levels (low-level operations will be the most nested, while the
operations of the upper level will be nested above).

Such an approach is really handy, for example, in the case that each test provides a number
of steps. Each step will be located on the upper level, while the details of the operations will
be hidden out of view. Using such an approach, if an error has emerged, it is easy to see all
of it at once: what stage did the error spring up on, since (in case of error generation in the
nested folder) the sibling elements are also displayed with an error sign, or with a warning
sign, depending on the type of error generated.

Remember to maintain consistency between PushLogFolder and
PopLogFolder, otherwise your results will be pushed to a wrong
folder and it will be difficult to find the necessary information in the log!

There's more...
If you need to send a one-off message into the closed folder, it is not necessary to open it
and then close it. All the message methods of the log accept an optional parameter of Folder
ID, with the help of which one could place messages into the assigned folder. For example,
if we had a folder created, as in the previous example, we can place a message into it in the
following manner:

Log.Message("Posting message to the specified log folder", null,
 pmNormal, null, null, folder);

Here, we pass only the message priority (pmNormal) and the folder identifier (folder),
all the optional parameters are set to null, which implies that default values will be used.

Changing log messages' appearance
If you are unhappy with the standard font style and color in the log, they can be changed with
the help of the log's attributes. In this recipe, we will deal with outputting the message with
changed parameters for the font.

Logging Capabilities

160

How to do it...
To post a message with a different style perform the following steps:

1. Create a new object with the help of the Log.CreateNewAttributes method
and change the following parameters: Bold, FontColor, and BackColor in the
following manner:
var attrBoldBlue = Log.CreateNewAttributes();
attrBoldBlue.Bold = true;
attrBoldBlue.FontColor = clWhite;
attrBoldBlue.BackColor = clBlue;

2. Now we will evoke the method of Log.Message and, with the fourth parameter, we
will pass the created variable of attrBoldBlue to it:

Log.Message("Customized message", null, pmNormal,
 attrBoldBlue);

In the result, the message will get outputted into the log as follows:

How it works...
With the help of the attributes, we can change the color of the fonts and the background
(the properties FontColor and BackColor) and the text decoration (Bold, Italic,
Underline, and StrikeOut).

In TestComplete, there is a set of supported standard font colors (such as clWhite and
clBlue), which can be used as settings for the font and background color. Similarly, it is
possible to change the text display style for other types of messages (errors, warnings,
and so on) also.

See also
 f The complete list of the colors can be found at http://support.smartbear.

com/viewarticle/33785/

Chapter 6

161

Assessing the number of errors in the log
TestComplete allows you to retrieve the number of errors for the current test item (with
the help of the Log.ErrCount property); however, there is no way of finding out the total
number of errors in all the executed tests. Such a possibility can be useful only if a certain
predefined number of errors is treated as critical, upon reaching which test execution should
be stopped altogether.

How to do it...
First of all, we will add two new variables on the level of Project Suite as follows:

1. Right-click on the name of the Project Suite (in the Project Workspace toolbar,
to the left) and navigate to Edit | Variables.

2. On the Temporary Variables list, right-click on the New Item menu item.

3. In the Name field, input the name of the ErrorsTotal variable, into the field
Type select Integer, and set the Default Value field to 0.

This variable will be a counter of the errors.

4. Similarly, add the variable with the name of ErrorsMax. As Default Value, set
the number of errors which should signal stopping test execution (in our example,
those are equal to 3).

In the result, we will have two new variables created, as shown in the following
screenshot:

5. Now we will create a handler for the OnLogError event, which will increase
the counter of the errors. For this purpose, perform the following steps:

1. Add the Events element to the project, if it is still missing (right-click on
the name of the project and navigate to Add | New Item | Events).

2. Navigate to Events | General Events on the element. In the result, the
events panel will be opened.

3. In the right section of the panel (the Events to Handle column), unfold
the element of General Events and highlight the event of OnLogError.

4. Click on the button New inside the OnLogError element.

Logging Capabilities

162

5. In the opened window New Event Handler, select the module in which
you will store the event handler, and then click on the OK button.

6. In the result, we will have an empty function created with the name
of GeneralEvents_OnLogError.

7. Change the function in the following manner:
function GeneralEvents_OnLogError(Sender, LogParams)
{
 ProjectSuite.Variables.ErrorsTotal += 1;
 if(ProjectSuite.Variables.ErrorsTotal >
 ProjectSuite.Variables.ErrorsMax)
 {
 Runner.Stop();
 }
}

8. Now we will write a simple function which will create 10 error messages
in the log:
function testErrorsCount()
{
 for(var i = 0; i < 10; i++)
 {
 Log.Error("Error #" + i);
 }
}

9. If we launch the testErrorsCount function now we would see that upon the
fourth emergent error, test execution would be stopped, since the number of
arisen errors exceeded the preset value of the ErrorsMax variable.

How it works...
In the OnLogError events handler, we increase the number of emerging errors each time
the error is generated in the log (no matter how: either with the help of the method Log.
Error or via TestComplete in itself, the event will be processed all the time).

When the number of errors exceed the preset threshold, we stop execution of the tests
with the help of the Runner.Stop method.

Chapter 6

163

To the variables on the level of Project Suite there exists access from any project. Therefore it is
unimportant how exactly tests are launched: from the Project Suite, or just a project or several
separate functions. In any case, the variable will be updated each time an error occurs.

It's worthwhile to note, if you have several projects running in Project Suite, each one of
them should contain some sort of handler. To this end, it is much easier to create such
a handler in one project and in the other projects add an existing module (by right-clicking
on the Script element, thus opting for the Existing Item menu item in the Add menu).
This allows us to avoid code duplication.

There's more...
In the same manner, one could trace the number of other messages (Event, Warning,
File, and so on), since for each of them there exists a corresponding property, containing
their number in the current test item (Log.EvnCount, Log.WrnCount, Log.FileCount,
and so on).

See also
 f To know more about event handlers in TestComplete, refer to the Creating even

handlers recipe in Chapter 12, Events Handling

Changing pictures' format
In TestComplete, there are several components and processing images such as testing log,
region checkpoints, and Visualizer. In all the cases, TestComplete uses a specific image
format for storing pictures.

In this recipe we will learn the ropes concerning the alteration of these images' format, which
TestComplete is processing.

How to do it...
In order to change pictures' format we need to perform the following steps:

1. Navigate to Tools | Options and open the group of Engines in the General options.

Here in the Images group, the currently used format is displayed (for example, PNG).

2. Click on the Configure button in the Images group.

Logging Capabilities

164

3. In the opened Image Settings window, opt for the necessary format.

4. In the group of Format Configuration options, set other parameters for the
selected image (for example, quality or depth of the color gamut).

5. Click on OK.

6. Now TestComplete will use the currently selected format.

How it works...
TestComplete supports four image formats, each of them having certain advantages and
shortcomings as follows:

 f BMP: This is the uncompressed format, used in cases where we need precision
in imaging. The major drawback of this format is its humongous size.

 f JPEG: This is the most thrifty format (form the viewpoint of the size of the file);
however, its image can be less precise.

 f PNG: This is a better trade-off in-between quality and size criteria and is usually
used when you need to have images with lossless compression.

 f TIFF: This is used in specific cases (for example, for typography), if it's necessary
for the project in a certain case.

For the vast majority of cases, the variant with the PNG format is of a greater avail than others.

Chapter 6

165

There's more...
If, in majority of the cases, you are better off with one of the economizing formats (PNG or
JPEG), and it is seldom you need to create precise images in the BMP format, you can still
change the format of the images on the fly.

The following example demonstrates creation of a screenshot with the use of the following
two differing formats:

function testPirtureFormat()
{
 Options.Images.ImageFormat = "BMP";
 Log.Picture(Sys.Desktop.Picture(), "BMP screenshot");
 Options.Images.ImageFormat = "PNG";
 Log.Picture(Sys.Desktop.Picture(), "PNG screenshot");
}

Comparing screenshots with dynamic
content

Let's suppose you need to compare windows images or those of controls elements with some
dynamic contents (that is, if part of the image is being changed every time). This could be the
case when a given controls element displays current date or time. In this situation, the image
would be different every time; nonetheless, there is a way to resolve this holdup.

Getting ready
First we will do some preparations:

1. Launch Calculator Plus in the standard mode (navigate to View | Standard).

2. Add the element of Stores (right-click on the name of the project and navigate to
Add | New Item | Stores).

3. Add the element of Regions to your project (right-click on Stores and navigate to
Add | New Item | Regions).

4. Launch the following code (it will create an image of the main calculator window
in Regions):
var wCalc = Sys.Process("CalcPlus").Window("SciCalc");
Regions.AddPicture(wCalc.Picture(), "Calculator");

Logging Capabilities

166

5. Enter any digit to the calculator (different from the data inputted initially at the
moment of image creation) and launch the following code:
var wCalc = Sys.Process("CalcPlus").Window("SciCalc");
Regions.Compare("Calculator", wCalc.Picture());

6. In the result, we will get the error The regions are not equal.

How to do it...
Now we are going to prepare the image so that we can compare it by performing the
following steps:

1. Open the Calculator file in any graphic editor (for example, Paint), which was created
via the method Regions.AddPicture (it is located in the folder with the project,
subfolder to Regions).

2. Select any color which is not used in the window (for example, green).

3. Fill out the upper-left pixel of the image with this color.

4. With the same color, fill out all the dynamic area (in our case, the whole of the
text field).

5. Save the image and launch the following script:
var wCalc = Sys.Process("CalcPlus").Window("SciCalc");
Regions.Compare("Calculator", wCalc.Picture(), true);

6. In the result, in the log, we will see the message The regions are the same.

How it works...
If the Transparent parameter (the third parameter of the Regions.Compare method)
would be set to true, TestComplete reads the color of the upper-left pixel of the image and
interprets the same as transparent, that is, does not include the areas of the color in
the check.

As a result, the images are considered the same, although a part of them is different.

Chapter 6

167

There's more...
Sometimes, it is not sufficient to add transparent areas, for example, if the dynamically
changing data appears in different parts of the screen.

To resolve the task, the Regions.Compare method has another parameter, namely that of
Tolerance. This should be an integer number, which is the maximal number of the different
pixels. In this case, TestComplete will assume that images are the same, unless the number
of the differing pixels exceeds the value of the Tolerance parameter.

Decreasing log size
When having a great deal of tests, the size of the log, as generated by TestComplete, can be
really big.

In this recipe we will take into consideration several methods to decrease the size of the log.

How to do it...
In order to decrease the log file size perform the following steps:

1. Disable the Visualizer: To this end, open the properties of the project (right-click on
the name of the project and navigate to Edit | Properties), click on the Visualizer
group of parameters, and set the Collect Test Visualizer data during test run option
to the value Off.

2. Disable the events generation: To do so, open the properties of the project (right-
click on the project and navigate to Edit | Properties), click on the Playback group
of parameters, and set the option of Store last to a value that is different from zero
(for example, 20).

3. Change the format of the used images: To this end, open the properties for the
project (right-click on the name of the project and navigate to Edit | Properties), click
on the group of General parameters, click on the Configure button, and in the Image
format field, select the format, different from that of BMP. If this is insufficient, you
could diminish the quality of the stored images (parameters of Compression level
and Compression quality, depending on the format).

Logging Capabilities

168

How it works...
Each of the mentioned actions influences the project in a different manner:

 f Visualizer: This action allows you to automatically save objects' screenshots with
which TestComplete is interacting; however, in the majority of cases, this is quite
redundant. It suffices to get a screenshot of the main screen in case of an error.
To this end, in the project's properties, in the Playback section, it is necessary to
enable the option of Post image on error.

 f Events: They are generated quite frequently (upon each interaction with the tested
application), which means this also takes up some space. By setting a certain value into
the field of Store last … events, we get the possibility to review the assigned number of
the last events in case of an emerging error; all the other events will be erased.

 f Image formats: They also influence the size of the logs. For example, the BMP format
is not recommended to be used in the majority of cases, since images of this format,
take up lots of space on the HDD. The most economizing format is that of JPEG.

Generating log in our own format
In this recipe, we will undertake the study of a simple example of generating our own log in
the text format, which could be used in addition to the standard TestComplete log or even
instead thereof.

For this purpose, we need to redefine the standard events.

How to do it...
In order to generate our own log we need to perform the following steps:

1. Add the element Events to your project, if it has not been added yet (right-click on
the name of the project and navigate to Add | New Item | Events).

2. Double-click on Events in the General events element.

3. In the right part of the window, unfold the element of General events and select
the OnLogMessage element.

Chapter 6

169

4. Click on the button New inside the OnLogMessage element.

5. In the opened New Event Handler window, select the module in which the new
handler will be located, and click on the OK button.

6. In the result, within the selected module, there appears the following function:
GeneralEvents_OnLogMessage

7. Write the following code for the function:
function GeneralEvents_OnLogMessage(Sender, LogParams)
{
 var logFilePath = "c:\\tclog.txt";
 if(!aqFile.Exists(logFilePath))
 {
 aqFile.Create(logFilePath);
 }
 var logFile = aqFile.OpenTextFile(logFilePath,
 aqFile.faReadWrite, aqFile.ctUTF8);
 logFile.WriteLine(aqDateTime.Now() + " MESSAGE: " +
 LogParams.Str);
 logFile.Close();
}

8. Similarly, create other handlers for all the types of messages which you would
like to have outputted into the external log-file (OnLogError, OnLogEvent,
OnLogWarning, and so on).

9. Write and launch a simple function, which will call the next methods Log.Message,
Log.Warning, and all the other redefined handlers. For example:

function testOwnLog()
{
 Log.Message("Demo message");
 Log.Warning("Demo warning");
}

As a result, in addition to the ordinarily generated log, we will have the following file
created: C:\tclog.txt, where each log message will be duplicated in the file.

How it works...
First, we check if the file of the log exists, and then create it, if needed. Hereafter, we open it
in "read-and-write" mode.

Into this file, we place the current date and time and the text of the message (which we obtain
from the method of LogParams.Str), after which we go ahead and close the file.

Logging Capabilities

170

This is quite an inefficient method of working with the file, since for each of the messages
we have to open and close it, which is telling on the performance; however, this example
demonstrates the possibility of creating our own log with the help of intercepting logging events.

In a true-to-life project, we would need to think through a more advanced variant. For example,
storing the messages into an array and saving the changes onto the disk, if the array reaches
a certain amount of messages.

There's more...
If you would like to block output of the information into a standard TestComplete log on top
of duplicating the messages into a separate file, it is enough to write the following line in the
beginning of the handler:

LogParams.Locked = true;

Exporting log to MHT format
If you need to make a report, generated by TestComplete, to somebody who has no
TestComplete pre-installed, it would be more convenient to generate it in a format which
can be portably opened on any computer.

TestComplete allows saving reports in the MHT format (archived HTML), which can be opened
in any version of Internet Explorer browser.

How to do it...
In order to generate an MHT file we need to perform the following steps:

1. Create and launch the following function:
function testExportResults()
{
 Log.Message("Message 1");
 Log.Error("Error 1");
 Log.SaveResultsAs("c:\\results.mht", lsMHT);
}

In the result, we get the log in TestComplete window and the file c:\results.mht
with similar contents.

2. Open the following file c:\results.mht (by double-clicking on its name in the
Explorer window) and make sure it can be opened in the browser (Internet Explorer,
by default).

Chapter 6

171

How it works...
The method of Log.SaveResultsAs stores the log into the file of the MHT format,
regardless of the number of scripts launched; therefore this method should be evoked just
once at the end of working of all the scripts.

As the first parameter, the full name of the file has to be signified, the second parameter
assigns the following format: lsMHT, lsHTML, or lsXML. The most convenient format is that
of MHT, as a result, just one file will be generated, which is viewable on any computer.

If there arises an error during the export, the Log.SaveResultsAs method returns false.

Sending logs via e-mail
The simplest method to send an e-mail in TestComplete is that of BuiltIn.SendMail;
however, it is appropriate only in case the mail server requires no authentication.

This is why in the given recipe we will consider a universal method to dispatch logs with
the help of Collaboration Data Objects (CDO). The example we use will employ the Gmail
mail server.

How to do it...
We need to perform the following steps to send an e-mail:

1. To begin with, we will write the function which sends the mail. To this end, we will
need to correctly fill out all the fields of the CDO object. Configuration is to the
following effect:
function SendEmail(mFrom, mTo, mSubject, mBody, mAttach)
{
 var schema, mConfig, mMessage;
 schema = "http://schemas.microsoft.com/
 cdo/configuration/";
 mConfig = Sys.OleObject("CDO.Configuration");
 mConfig.Fields.Item(schema + "sendusing") = 2;
 mConfig.Fields.Item(schema + "smtpserver") =
 "smtp.googlemail.com";
 mConfig.Fields.Item(schema + "smtpserverport") = 465;
 mConfig.Fields.Item(schema + "smtpauthenticate") = 1;
 mConfig.Fields.Item(schema + "smtpusessl") = true;
 mConfig.Fields.Item(schema + "sendusername") =
 "MYGMAIL@gmail.com";

Logging Capabilities

172

 mConfig.Fields.Item(schema + "sendpassword") =
 "MY_PASSWORD";
 mConfig.Fields.Update();

 mMessage = Sys.OleObject("CDO.Message");
 mMessage.Configuration = mConfig;
 mMessage.From = mFrom;
 mMessage.To = mTo;
 mMessage.Subject = mSubject;
 mMessage.HTMLBody = mBody;

 aqString.ListSeparator = ",";
 for(var i = 0; i < aqString.GetListLength(mAttach); i++)
 mMessage.AddAttachment(aqString.GetListItem(mAttach, i));
 mMessage.Send();
}

2. Now we will archive the current log with the help of the slPacker object:
slPacker.PackCurrentTest("c:\\testresults.zip");

3. Hence, we send the resulting archive with the help of the earlier written SendEmail
function:

SendEmail("MYGMAIL@gmail.com", "destination@example.com",
 "Test results", "Email body", ["c:\\testresults.zip"]);

In the result, from the address of MYGMAIL@gmail.com to the address of
destination@example.com, a letter will be sent with the archive attached,
containing the tests results.

How it works...
In our case, the gmail.com server was used as an example, since it is one of the most
frequently used mail services. However, the parameters of each of the servers vary, and this is
why one should consult with the system administrator of your network (if you send letters from
your corporate mail system).

The filled out object of CDO.Configuration is passed as a Configuration property to the
object of CDO.Message. This same object has parameters of the letter preassigned (the
address of the sender and the recipient, the theme and the body of the letter, and the files
attached), after which the method Send is to be called to CDO.Message.

Chapter 6

173

The method slPacker.PackCurrentTest allows archiving the results of the current test
(this is necessary for more convenient manipulations of the attachments, as handling a single
file is easier than several).

If all the parameters are signified correctly, the e-mail will be sent.

Naturally, instead of packing up logs, it is also possible to export them into the MHT file
and send it via e-mail.

See also
 f To learn how to export logs into MHT format, read the Exporting log to MHT

format recipe

7
Debugging Scripts

In this chapter we will cover the following recipes:

 f Enabling and disabling debugging

 f Using breakpoints to pause script execution

 f Viewing variables' values

 f Debugging tests step by step

 f Evaluating expressions

Introduction
Debugging is one of the most important actions when you create or modify test scripts. It
allows you to run tests step by step, view variables' values, evaluate complex expressions
related to variable and objects' states, and so on.

In this chapter we will discuss the most frequently used techniques and approaches of
debugging available in TestComplete. These techniques are similar for most development
environments.

If you use TestComplete 8 or earlier, you need to install Microsoft Script
Debugger to enable debugging in TestComplete. You can download Script
Debugger from the following link: http://www.microsoft.com/en-
us/download/details.aspx?id=22185.

Debugging Scripts

176

Enabling and disabling debugging
Sometimes in the process of script debugging you might add a lot of breakpoints, which then
intervene in running the test without pauses.

If you want to have the breakpoints disabled, but do not want to disable all breakpoints
one-by-one, it is enough to disable the debugging mode.

How to do it...
Enabling and disabling the debugging mode in TestComplete is quite simple and is done
as follows:

1. To deactivate the debugging mode, navigate to Debug | Enable Debugging.
Meanwhile, all the breakpoint icons will change (instead of the solid circle,
an empty circle will appear).

2. To switch back to the debugging mode, navigate to Debug | Enable Debugging
again. In between, the icons of the breakpoints will again become solidly painted.

How it works...
As the debugging mode is rendered inactive, TestComplete will ignore all the breakpoints,
allowing test execution entirely without pausing and without removing the breakpoint itself.

There's more...
If you are launching automated tests to be executed from the command line, it is usually
unacceptable to have any stops during script run. To avoid such stops, it's enough to pass
the /SilentMode parameter to TestComplete. In this case, breakpoints are also ignored.

Chapter 7

177

Using breakpoints to pause script execution
To pause automated test execution at a specific point, the breakpoints are applied. In this
recipe we will learn to work with the breakpoints in TestComplete.

Getting ready
Create the following function:

function testBreakpoints()
{
 for(var i = 0; i < 10; i++)
 {
 Log.Message("Iteration #" + i);
 }
}

This function will simply output the messages 10 consecutive times.

How to do it...
To demonstrate working with the breakpoints, perform the following steps:

1. Click on the line with the Log.Message method call and press the F9 key (or click
on the column with the numbers to the left of the editor, opposite the previous line).
In the result, the line will be highlighted in red against its background, and in the
column to the left, a red circle will appear, as shown in the following screenshot:

2. Launch the function for execution. The function execution will pause at the first
breakpoint in the script.

3. Stop the script execution (for example, by pressing the buttons combination: Shift
+ F2). Make sure the log contains only the error message Script execution was
interrupted., since we have stopped the script without ever executing the Log.
Message line.

4. Right-click on the red circle of the breakpoint and select the Properties menu item.

Debugging Scripts

178

5. In the opened Breakpoint Properties window, input the value of i == 4 in the
Condition field and click on the OK button:

6. Pay attention that the icon of the breakpoint has changed, and now contains the
f symbol:

7. Launch the function again and break its execution as soon as the script execution
has been paused.

8. Pay attention that besides the error message in the log, there are several messages
with the following text: Iteration #N.

How it works...
In the first instance we have used a simple breakpoint. It fires as soon as script execution
reaches the given code line and pauses the execution, pending further action from the user.

In the second instance, we have used a conditional breakpoint, which allows pausing the
execution only in case a certain condition is met (in our case, the variable i should be
equal to 4).

Conditional breakpoints are very convenient in those cases when we have a loop,
which is executable in part by pausing the execution under conditions specified.

Besides a condition of the kind, one can make use of another condition of Pass Count. In this
field, it is possible to assign the number of loops of the script, after which the breakpoint should
fire (for example, in our case, we could simply set the value to 4 in the Pass Count field).

Chapter 7

179

There's more...
There also exists another method for setting a conditional pause into the script execution,
namely that of the Runner.Pause method. The result of this is analogous to the workings
of the breakpoint.

If you have a breakpoint, which is of use from time to time (for example, a non-stable script,
often requiring debugging), we can simply disable the breakpoint instead of completely
removing it. To this end, it is necessary to right-click on it and select the Enable menu item.

See also
 f The examples of the situations when we need breakpoints are also available in the

Viewing variables' values and Debugging tests step by step recipes

Viewing variables' values
During the script debugging, there often arises a need to look at the current values of the
variables used in the script.

In this recipe we will deal with several methods of doing this.

Getting ready
Launch a standard Windows Notepad application (C:\Windows\notepad.exe).

How to do it...
In order to familiarize ourselves with the lookup possibility of the variable values, we will
need to write a small script with the use of different variable types.

1. Write the following function:
function testDebug1()
{
 var pNotepad = Sys.Process("notepad");
 var num = 15.8;
 var str = "string value";
 var bool = true;
 Log.Message("Dummy message");
}

2. Set the breakpoint on the last line, where the Log.Message method call takes place
(set the cursor on the line and press F9 button).

Debugging Scripts

180

3. Launch the function. In the result, the function execution will pause on the line with
the breakpoint and we will be able to look up the values of all the created variables.

4. In the lower part of the TestComplete window, open the Watch List tab.

5. Right-click on the empty list and select the New Item menu item.

6. In the Expression field of the opened Watch Properties window, enter the name of
the pNotepad variable and click on OK. The variable will show up in the list of those
being tracked.

7. Similarly, add all the other variables (num, str, bool, and so on).

As a result, all the variables will appear on the list. One can also look up their values
and types there (if TestComplete can determine the value for the given variable type).

How it works...
To the Watch List list we can add any variables and even entire expressions for the lookup
of their current values. For example, if we enter num+str as an expression, the values of
the same will be tantamount to 15.8 string value, since TestComplete will automatically
transmute the number to the string and join two string-type expressions together.

If we are working with the objects (pNotepad, in our instance), we can also look up their values
via the uncollapsed view of the tree of the sibling objects, as shown in the previous screenshot.

Values on Watch List are updated automatically, and this is why usage of the list is especially
handy when using loops, when it's required to track the variable value at each iteration.

There's more...
For quick lookup of the values of a given variable, it is not necessary to add it to Watch List,
as it's enough to hover the mouse cursor over the name of the variable at any place of the
script and TestComplete will show the tool tip with the value of the variable at hand.

Another method to quickly view the values of the variables is the Locals listing, in which all
the local variables are shown (that is, the variables from the current function). The Locals
list can be found on the same panel where Watch List is located.

Chapter 7

181

See also
 f The Evaluating expressions recipe

Debugging tests step by step
In this recipe we will consider scripts debugging by doing a set of step-by-step instructions.
This is necessary if we are left with some vague results after test execution, and a simple
variable values lookup, at a given point of time, is insufficient.

Getting ready
To begin, we will require two functions, one of which is to be called from the other:

1. Let's create the first function fn1:
function fn1()
{
 var n = 5, s = "str";
 Log.Message(n);
 Log.Message(s);
 return s;
}

2. Let's create the second function main so that it calls the first one twice, and then
outputs the results into the log, as obtained due to the fn1 function call:

function main()
{
 var res1 = fn1();
 var res2 = fn1();
 Log.Message(res1);
 Log.Message(res2);
}

How to do it...
In order to perform step-by-step execution in the debugging mode, it is necessary to complete
the following actions:

1. Set the breakpoint on the first line of the main function (to this end, set the cursor
at this line, and press F9 button).

2. Launch the main function. In the result, the function execution will pause.

Debugging Scripts

182

3. Press F10. As the result, the line where the cursor is set will be executed, and the
fn1 function will come through; the res1 variable will have the str value assigned.

4. Now the cursor is located on the following line with the second call of the fn1 function.

5. Press F11. In the result, the cursor will relocate into the fn1 function, and we will
have a possibility to execute the function step by step by pressing F10 key.

6. Press F5. This will bring off the continuation of the function execution till the very end.

How it works...
In the debugging mode, we can perform the following commands:

 f Step Over (F10): This command executes the entire line of code and allows transition
to the following code statement.

 f Step Into (F11): This command steps into the function that is being called in the
current line (if possible). If one cannot step into the function, the Step Over
command is to be executed.

 f Continue Execution (F5): This command continues the script execution from the
current place down to the next breakpoint.

 f Run to Cursor (F4): This command goes on executing the function from the current
line to the place where the text cursor has been set.

Evaluating expressions
Most often, to look up the variables' values in the debugging mode, it is enough to resort to the
Watch List and Locals possibilities. For more complex tasks, we can use the Evaluate window.

Getting ready
Create the following function:

function testEvaluate()
{
 var pEx = Sys.Process("explorer");
 Log.Message("");
}

and set the breakpoint on the second line of the function (set the cursor on this line and
press F9).

Chapter 7

183

How to do it...
To get acquainted with the possibilities of the Evaluate window, we will need to implement the
following actions:

1. Launch the created testEvaluate function. Its execution will be stopped and
TestComplete will switch to the debugging mode.

2. Navigate to Debug | Evaluate or press the following combination of keys: Ctrl + F12.
In the result, the Evaluate window will appear on the screen.

3. Input pEx into the Expression field and click on the Evaluate button. In the result,
the Result field will get the current value of the pEx variable ([Object]) inputted.

4. If we click on the Inspect button, the screen would have the Inspect window
displayed, which is analogous to that of Object Browser, where all the properties
and methods are viewable.

5. Close the Inspect window and input the "string value" string (by all means,
with the quotation marks!) into the New value field and press Enter.

In the result, the string value line will show up in the Result field. Now, the pEx
variable contains a new value.

How it works...
The Evaluate window extends wider possibilities of working with various expressions as
compared to that of the Watch List list:

 f The first major difference consists in the possibility of assigning the variables with the
new values, while the variables' types can be altogether different (for example, in our
case, the variable of pEx first contained the object, and then the line).

Debugging Scripts

184

 f The second difference consists in the Inspect window. In this sense, it resembles
Object Browser; however, we can use it to look up not only the sibling objects of
the Sys element, but rather any other objects as well. For example, it is possible to
enter the BuiltIn value into the Expression field and look up all the properties and
methods of the BuiltIn object, which are extended by TestComplete.

Also, from the Evaluate window, one can add a current expression to the Watch List list
(with the help of Add Watch) for further tracking.

8
Keyword Tests

In this chapter we will cover the following recipes:

 f Recording and understanding Keyword Tests

 f Adding new actions to existing Keyword Tests

 f Enhancing Keyword Tests using loops

 f Creating object checkpoints

 f Calling script functions from Keyword Tests

 f Converting Keyword Tests to scripts

 f Creating our own Keyword driver

Introduction
Automated tests are sometimes created by people who do not have experience in
programming. For such cases TestComplete has a feature called Keyword Tests.

On the one hand, Keyword Tests are designed to be easily created and supported in a visual
way, when users don't need to write code. On the other hand, Keyword Tests have almost the
same abilities as Script Tests do: we can record them, modify them, and debug them.

Another advantage of the Keyword Tests is that they look the same for different types
of application (Win32, .NET, Web, and so on), thus allowing us to concentrate on the
tests themselves.

In this chapter we will consider some of the most important aspects of Keyword Tests
and finally will create our own Keyword driver with user-defined keywords.

Keyword Tests

186

Recording and understanding Keyword Tests
Keyword-driven Testing is such an approach to automated tests creation that goes together
with visual representation of user-actions.

Each action is twofold involving the following two parts:

 f An object, which is being handled

 f An action, which is necessary to accomplish for the object at hand

The simplest way to create a Keyword Test is recording it. In this recipe, we will learn on
a simple example of a Keyword Test.

Getting ready
Launch the Calculator Plus application (C:\Program Files (x86)\Microsoft
Calculator Plus\CalcPlus.exe).

How to do it...
To record the Keyword Test, it is necessary to complete the following actions:

1. Navigate to Test | Record | Record Keyword Test menu item. This will kick off
the recording.

2. Switch to the Calculator Plus window and click on several buttons (for example,
6, +, 3, =).

3. Stop the recording by clicking on the button Stop on the Recording panel.

4. Click on the OK button in the opened Create Project Item window for automatic
creation of the NameMapping project element.

5. As a result, we will have the new Keyword Test created.

Chapter 8

187

How it works...
Each operation in Keyword Test is represented in TestComplete by the four columns:

 f Item: This is the controls element which will undergo the action. In our example,
it is mapped to the following four buttons: btn, btn1, btn3, and btn6; which are
sibling objects of the wndSciCalc window. The wndSciCalc window, in its turn,
is a sibling object of the CalcPlus process.

 f Operation: This is the action we perform over the object. In our example,
we are performing the action of ClickButton throughout.

 f Value: This stands for optional parameters, which are passed to the action.
For the ClickButton action no parameters are implied.

 f Description: This is a more detailed explanation of the executed action.

There's more...
If, in the process of recording, you have committed some wrong actions (for example, by having
clicked on a wrong button, as in case with the calculator), there is no need to redo the recording
of the test all over again. The objects and actions are easily changeable in TestComplete editor.

Let's take the ClickButton operation for an example. This operation will trigger a mouse-click
in the center of the object. If we would like to click in the preassigned button coordinates,
we would have to use the Click operation, which accepts the parameters for the given
button-click coordinates.

To change the used operation for the btn6 button perform the following steps:

1. Double-click on the name of the operation.

2. In the On-Screen Action window, select the Click element and click on Next,
as shown in the following screenshot:

Keyword Tests

186

3. Assign values for the parameters ClientX and ClientY and click on Finish.
These values should not exceed the object's width and height, these can be
viewed in the Object Browser:

4. Now, the click on the btn6 button will always be made in the coordinate of 5,5:

The object (item) can be changed the same way.

Adding new actions to existing Keyword
Tests

In this recipe we will deal with the manual addition of actions to the Keyword Tests without
resorting to the means of recording scripts. As an example, we will consider an operation
of a mouse-click on the CE button.

Getting ready
Create a new empty Keyword Test (right-click on the Keyword Tests element, Add | New Item)
and launch the Calculator Plus application ("C:\Program Files (x86)\Microsoft
Calculator Plus\CalcPlus.exe").

Chapter 8

189

How to do it...
To add the operation for clicking on the button, it is necessary to perform the following steps:

1. Select the Test Actions on the Operations toolbar.

2. Double-click on the On-Screen Action element:

3. Drag-and-drop the sign of the target onto the button of CE and click on Next:

4. On the list of available methods, leave the ClickButton element selected by default,
and click on the Finish button.

Keyword Tests

186

5. In the result, we will have the created action appearing in our test:

How it works...
It is not only possible to record the actions in the Keyword Tests through the recording
means—they can be created manually as well. Meanwhile, we need to signify a specific object
for each action that we are handling: including the action we undertake and their parameters
(if they are necessary for the action in view).

In the Operations list, there are several available operations:

 f Test actions: These are operations used to work with screen elements, tests, objects
search, and execution of code snippets

 f Logging: These are actions used to work with the log (output of messages,
screenshots,
and so on)

 f Web: This is a group of actions used to work with the browser

 f Checkpoints : These are used to create various checks in the tests

 f Statements: These are analogues of the for, while, if…then…else, try…catch
loops, and statements

 f Miscellaneous: These are actions for other possibilities (working with the Indicator,
insertion of a delay, and so on)

There's more...
Sometimes, it is easier to add new actions to test by recording them into the existing test,
other than manually creating those. To this end, we need to click on the Append to Test
button on the Keyword Test toolbar and record the actions:

The actions can be easily reordered by simply dragging them to a new location, yet any
keyword test can be run from any step by right-clicking on the step and selecting Run from
the selected operation menu item.

Chapter 8

191

Enhancing Keyword Tests using loops
Loops are used for the purpose of executing repetitive actions in a test. With the help of the
operations related to the Statements group, we can add such actions to the Keyword Test.

In this recipe, we will take up an example of clicking on one and the same button for several
consecutive times with the help of the For Loop.

Getting ready
First, let's record a simple script for further modification:

1. Launch the Calculator Plus application: (C:\Program Files (x86)\Microsoft
Calculator Plus\CalcPlus.exe).

2. Begin the recording (Test | Record | Record Keyword Test).

3. Click on the 2 button in the calculator and stop the recording by clicking on the Stop
button on the Recording toolbar.

How to do it...
For creation of the for loop, it is first necessary to create a counter-variable:

1. Click on the Add Variable button on the Keyword Test toolbar:

2. In the open Add Variable to Keyword Test window, input the name of the variable
(counter) and the type (Integer), and click on Finish.

3. Now we will add the loop itself.

Keyword Tests

186

4. In the list of Operations, opt for the Statements group and drag-and-drop the
For Loop element onto the CalcPlus element:

5. In the For Loop window, input the loop parameters: Loop Variable by selecting the
previously created variable (counter), Start Value (1), and End Value (5):

6. Click on the OK button.

Chapter 8

193

7. Now we need to place the ClickButton operation inside the loop.

8. Select the CalcPlus element and press the following keys combination: Ctrl + right
arrow key.

9. In the result, the ClickButton operation will become a sibling element of the
For Loop:

10. Now, if you would launch the test to be executed, the 2 button will be clicked down
five times in a row.

How it works...
The For Loop in the Keyword Test is workable in the same manner as the for loop in any kind
of programming. Specific actions, placed inside the loop, are executed for a pre-set amount of
times. To assign a specific number of iterations, a loop variable is to be used (in our case, it is
the counter variable). During each iteration the value of the variable is incremented by the
value of Step (we have left it to be equal to 1 by default). When the value of the loop variable
is greater than the End Value, the loop execution is terminated.

In a similar way the While Loop and If...Then condition can also be created.

Creating object checkpoints
As in run-of-the-mill scripts in Keyword Tests, we can add the checkpoints. In this recipe,
we will consider a simple example of Object Checkpoint creation.

Getting ready
Launch the Calculator Plus application (C:\Program Files (x86)\Microsoft
Calculator Plus\CalcPlus.exe).

Keyword Tests

186

How to do it...
To create an Object Checkpoint, it is necessary to complete the following actions:

1. In the list of Operations, select the Checkpoints element and drag-and-drop the
Object Checkpoint element to the place in the test where you are going to add the
checkpoint (in our example, we are using a new test with no actions whatsoever).

2. In the opened Create Object Checkpoint window, drag-and-drop the sign of the
target onto the text field of the calculator.

3. Click on Next three times, and then click on Finish.

Chapter 8

195

4. In the result, checkpoints of the object, that is, the text field of the calculator,
will be added to the test.

How it works...
With the help of Object Checkpoint, it is possible to check several properties of the object
at once (for example, text, visibility, availability, and any others).

The object itself will be stored in the project element of Stores | Objects. In the future,
all the verifiable properties can be changed, if needed.

See also
 f In this recipe we have taken up the process of Object Checkpoint creation, and that—

quite briefly. If you would like to learn in greater detail about creation parameters and
checkpoint editing possibilities, refer to the Creating object checkpoints recipe from
Chapter 3, Scripting.

Calling script functions from Keyword Tests
Sometimes, it is easier to write up a simple function with the help of a programming language
than implement the same functionality with the help of the keywords in the Keyword Tests.

In this recipe we will consider how to call an ordinary function from the Keyword Test.

Getting ready
Create the following function in the module of Unit1:

function testRunFromKeywordTest(param1)
{
 Log.Message("Parameter: " + param1);
}

Keyword Tests

186

How to do it...
To evoke the function, it is necessary to do the following actions:

1. In the Operation list, select the Test Actions element and drag-and-drop the Run
Script Routine element to the spot, where you plan to call the created function.

2. In the opened Select Test window, select the necessary function and click on OK:

3. If the function accepts parameters, a new Operation Parameters window will
open up, where it is necessary to signify the values of the parameters of the
called function, and then click on OK again:

Chapter 8

197

4. In the result, the call of the function will be added to the test.

If the test should be launched, the log would contain the following message: Parameter:
test string.

How it works...
With the help of the Run Script Routine operation, we can call any function from the
current project.

If it's necessary to call the function from a different project, we must add the respective
module to the current project by beforehand right-clicking on the Script element,
and navigating to Add | Existing Item menu item.

There's more...
Besides calling the ordinary functions, Keyword Tests allow us to call code snippets,
without creating individual functions (the Run Code Snippet operation), as well as the
methods of screen objects (the Call Object Method operation). It is also possible to call
other Keyword Tests by using the Run Keyword Test action from the Test Action group.

If you want to use values calculated earlier as parameters, you can use Project variables or
Script variables to store the value and then specify it by clicking on the button with three dots
next to the Value field.

Keyword Tests

186

Converting Keyword Tests to scripts
If you have used the Keyword Tests, and made up your mind to switch to writing scripts,
you can easily convert the existing scripts into the scripting format.

How to do it...
To convert the Keyword Test to a script:

1. Right-click on the name of the test and select the Convert to Script menu item.

2. In the opened Specify Routine Name window, select the module into which you
would like to save the script, assign it with a name and click on OK.

3. In the result, the selected module will contain the created function with all the
converted actions.

Chapter 8

199

How it works...
With the help of the Click here to add a new script unit link, it is possible to create a new
module immediately at the point of converting the test. At the point of converting the Keyword
Test to a script, the same language is used, as then pre-selected for the whole project.

Please keep in mind that the reverse operation (script converting to a
Keyword Test) is not possible!

Creating our own Keyword driver
Keyword-driven Testing does not only consist in possibilities that are provided by TestComplete.
In a wider sense, Keyword-driven testing is such an approach to testing: when we are creating
our own keywords, and in the result, tests creation is nothing short of evoking these keywords.
Ideally, tests are created as tables, where each line stands for one test action (call of the
keywords with parameters). Apart from the tables, we also have the code written with the help
of the programming language and the driver (a class, function or several functions) used, which
read keywords from the tables and call the corresponding code from the project.

Schematically, the simplified Keyword-driven approach will appear as follows:

The major advantage of the approach consists in the fact that the code of the scripts and
the driver are written and maintained by programmers, while the tests can be created by
anyone, including those who are not well-cognizant in programming (that is, testers, product
specialists, or customers).

In this recipe we will take up a simple example of creating our own Keyword-driven Tests,
for consideration. As a tested application, we will use a standard Notepad application.

Keyword Tests

186

Getting ready
We will create three components for our keyword-driven framework:

 f Functions for launching and closing the Notepad

 f Test in Excel table, where we will store the necessary calls of the keywords

 f Driver-function that will read the steps from the test one-by-one and execute the
necessary actions

Also, for our example, it is necessary to create the C:\somefile.txt file with any contents.

How to do it...
First and foremost, we will create a function to work with the Notepad:

1. The function startNotepad will launch the Notepad and open the file that
was passed as a fileName parameter:
function startNotepad(fileName)
{
 if(fileName == undefined)
 { fileName = ""; }
 Win32API.WinExec("notepad.exe " + fileName, SW_SHOWNORMAL)
}

2. The closeNotepad function closes all the open copies of the Notepad:
function closeNotepad()
{
 while(Sys.WaitProcess("notepad", 500).Exists)
 { Sys.Process("notepad").Terminate(); }
}

3. The checkNotepadFileName function checks if the correct file has been opened:
function checkNotepadFileName(expectedName)
{
 var np = Sys.Process("notepad").Window("Notepad");
 aqObject.CompareProperty(np.WndCaption, cmpStartsWith,
expectedName);
}

4. Now we will define the keywords. We will need the OPEN, CLOSE, and CHECK keys
(as they correspond to the operations, which are to be executed in the test: open
the Notepad, check if the correct file has been opened, and then close the Notepad).
The keywords OPEN and CHECK will also have their parameters.

Chapter 8

201

5. From these keywords we will create tests and make them up into Excel table. In the
result, our test will appear in the following manner:

6. The last stage: driver creation. In our case, this is one and the same function, which
scampers through all the lines of the assigned table and executes all the instructions
one-by-one:
function driver(fileName, table)
{
 var steps = DDT.ExcelDriver(fileName, table);
 while(!steps.EOF())
 {
 var stepNum = steps.Value("Step");
 var action = steps.Value("Action");
 var param = steps.Value("Param1");

 switch(action)
 {
 case "OPEN":
 startNotepad(param);
 break;
 case "CHECK":
 checkNotepadFileName(param);
 break;
 case "CLOSE":
 closeNotepad();
 break;
 default:
 Log.Error("Unknown action: " + action);
 }
 steps.Next();
 }
}

Keyword Tests

186

7. Now, everything is all-set, and we can go ahead and launch the created test. To this
end, we will need but a single line:
driver("C:\\notepad.xls", "Sheet1");

8. In the result, the Notepad will be launched twice: first, without the parameters (a new
document will be created); and second, the Notepad will open up the C:\somefile.
txt file.

How it works...
The driver calls the functions that correspond to each keyword, which is encountered in the
test. Fine-tooth-combing of the file is made possible with the help of the DDT driver, provided
by TestComplete.

The tests themselves are separated from the code, that is working with the tested application,
this is why they are easy to comprehend even for a person who is not learned in programming
(quite naturally, the keywords should correspond with the actions that are to be performed at
the call of the keyword).

There's more...
This is a very simple example, wherein we have the basics of the Keyword-driven approach
demonstrated. In more complex situations (for example, when testing several or more
multiple-components applications), more complicated approaches are usually used.
For example, several self-standing drivers, each being meant for a separate application
or a component, or a more complex structure of the tables (for example, we can add an
Application column, wherein the presently workable application is to be signified),
and so forth.

See also
 f Reading up on DDT, and the used driver, in greater details, is possible in the

Chapter 9, Data-driven Testing

9
Data-driven Testing

In this chapter we will cover the following recipes:

 f Generating random data for tests

 f Accessing a specific cell in a table

 f Reading all data from a table

 f Using DDT tables for storing expected values

 f Changing CSV delimiter and other parameters

 f Driving data without using loops

 f Accessing Excel spreadsheets without having MS Office installed

 f Auto-detecting Excel driver

Introduction
When performing functional testing of any application, it is often required that we use various
input parameters to verify that the application produces correct results in all cases.

TestComplete has a specific feature for storing such data, it is called Data-driven Testing
(DDT). In case of using DDT approach, data can be stored in different database-like storages
(Excel files, CSV files, or databases). To access data in these files, TestComplete provides
a special object DDT.

In this chapter we will consider different tasks related to DDT approach. Most of our examples
will use Excel for storing data, but these principles can be easily extended to other types
of storage.

Data-driven Testing

204

Generating random data for tests
If you need to generate a great deal of various data, TestComplete will come in mighty
handy with a special tool called Data Generator.

How to do it...
Let's suppose we need to generate a list of 100 people. To this end:

1. Select the Test | Generate Data menu item.

2. In the opened Data Generator Wizard window, select the Microsoft Excel
worksheet option, and input the wanted file by name and then click on Next:

3. On the following screen, with the help of the Insert button, add as many fields
as you need, and then rename them (for example, Last Name and First Name).

4. For each of the fields, assign the appropriate data type (String, Integer, and so
on) depending on the data type you are going to store in this field. With the help of
the Edit button inside each data line, it is possible to customize the parameters of
the generated data (intervals for numbers, length and type of the symbols for strings,
and so on).

5. In the Number of rows field signify the number of lines (100, in our case),
that you would like to have generated, then click on Finish:

Chapter 9

205

6. In the result, a file with all the necessary data will be generated for us:

How it works...
TestComplete allows generation of different data types (strings, names, numbers,
addresses, cities, and so on), diversifying their parameters within a wide range
(the interval for the numbers, types of the symbols for strings, and so on).

Besides, it is possible to save the selected parameters with the help of the Save to
User-defined button in order to have an available template for new data generation
at your disposal in the future.

Data-driven Testing

206

Accessing a specific cell in a table
In this recipe, we will consider creation of a function, which allows reading values out
from a single cell in an Excel file with the help of the DDT capabilities.

Getting ready
Create an Excel file c:\readcell.xls with the following contents:

How to do it...
In order to retrieve a value from a specific cell:

1. It is necessary to first of all, get your bearings straight with function declaration.
We will need to specify the name of the file, name of the spreadsheet, the number
of the line and that of the column:
function readCell(file, sheet, row, col)

2. The body of the function will be to the following effect:
var data = DDT.ExcelDriver(file, sheet);
var currentRow = 1;
var value;
while(!data.EOF())
{
 if(currentRow == row)
 {
 value = data.Value(col - 1);
 DDT.CloseDriver(data.Name);
 return value;
 }
 currentRow++;
 data.Next();
}
Log.Error("Row #" + row + " not found");
DDT.CloseDriver(data.Name);

Chapter 9

207

3. Retrieving the value from the cell in the script will look as follows:

Log.Message(readCell("C:\\readcell.xls", "Sheet1", 4, 4));

This example will get the word Tester outputted to the log (the contents of the D5 cell).

How it works...
The only method to retrieve the value from the targeted line via the DDT is looping through all
the previous lines. To this end, we make use of the while loop and the currentRow variable
(the number of the current line has to be calculated independently, as TestComplete does not
extend such a possibility).

The Value property allows retrieval of the value from an assigned column (by referring to its
heading or a column number).

As soon as we reach the targeted line if(currentRow == row), we store the value from
the current line and the specified column and then quit the loop.

Pay attention to the use of the Next and CloseDriver methods:

 f The Next method places the file pointer to the next line. If, at the end of the loop, we
forget to evoke this method, the loop will carry on endlessly in the first line of the data
file.

 f The CloseDriver method closes the driver, averting overflow above the maximally
allowed number of the opened drivers (the maximal number thereof can stand at 64)
and releases the file to be possible to access by other applications.

Also, pay attention to the fact we have started lines numbering from one (var currentRow
= 1), thus, we pre-suppose that numbers of the columns also 1-based (data.Value(col
- 1)): because in TestComplete columns are 0-based. We have permuted this behavior, as
indexing to start with one seems to be more logical.

See also
 f If you have to retrieve values from singular cells in an Excel file quite frequently, it

is much better to read all of the contents of cells to an array, and then retrieve the
necessary data from it (see the following recipe Reading all data from a table).

Data-driven Testing

208

Reading all data from a table
If it is necessary to frequently read data from files (Excel or CSV), it is better to once read the
data to an array, and then address the array to screen its elements for the retrieval.

In this recipe we will take up an example of assigning the data from Excel file to an array in
such a manner that the elements of the array are easily accessible via the use of the line
number and the column heading of the table.

Getting ready
Create an Excel file c:\readall.xls with the following contents:

How to do it...
To read the data from the file into an array, we will need to go about the following actions:

1. First open the file with the help of the DDT.ExcelDriver method (to this end,
we will need the path to the file and the name of the spreadsheet).

2. With the help of the while loop, iterate through all of the lines of the file, each time
adding a new element to the lines array.

3. For each of the elements of the lines array that correspond to the line, create the
properties with the names that tally up with the names of the columns. For example,
if the table has a FirstName column, then each element of the array will have the
FirstName property.

4. In the result, the function will appear as follows:

function DDTReadAll(file, sheet)
{
 var lines = [];

 var data = DDT.ExcelDriver(file, sheet);
 while(!data.EOF())
 {

Chapter 9

209

 var line = {};
 for(var i = 0; i < data.ColumnCount; i++)
 {
 var colName = data.ColumnName(i);
 line[colName] = data.Value(colName);
 }
 lines.push(line);
 data.Next();
 }
 return lines;
}

5. The following example demonstrates use of the function:

var people = DDTReadAll("C:\\readall.xls", "Sheet1");
Log.Message(people[1].First);

How it works...
This example will output the message John to the log (the name from the first line of the file).
After having read the data once into the people variable, we can address similarly any other
fields and lines.

The same approach to handle the data retrieval from a file allows, first of all, to bring up to
speed accessing the data since we need to just once open the file and read all of its content
out, after which referrals are made inside the computer memory; secondly, this will improve
code readability due to the comprehensible names of the properties and lines indices.

Besides, it is much easier and handy to manipulate the data that are being stored in the
variables, rather than with the data that is being stored in a file.

Using DDT tables for storing expected
values

Most often, the Data-driven approach is used to store the expected values in the process of
testing. In this case, all the testing data are to be stored in one place, which really facilitates
their overhaul and modification on as need-be-basis.

In this recipe we will consider an example of storing expected values for computing via the
Calculator application.

Data-driven Testing

210

Getting ready
Launch the Calculator Plus application in the Standard mode by selecting View | Standard
and create the file c:\test_expected_values.xls with the following content:

How to do it...
To complete the task, we will need to create the following three functions:

1. The testExpectedValues function contains the main logic, it loops through
all the lines in the table, reading out the values from the cells:
function testExpectedValues()
{
 var data = DDT.ExcelDriver("C:\\test_expected_values.xls",
"Sheet1");
 clickCalcButton("C");
 while(!data.EOF())
 {
 var expression = data.Value("Expression");
 var result = data.Value("Result");

 for(i = 0; i < expression.length; i++)
 {
 var button = expression.substr(i, 1);
 clickCalcButton(button);
 }
 clickCalcButton("=");
 checkCalcResult(result);
 data.Next();
 }
 DDT.CloseDriver(data.Name);
}

Chapter 9

211

2. The clickCalcButton function simulates clicking on a button in the calculator,
which has been passed as a parameter:

function clickCalcButton(button)
{
 if(button == "*")
 {
 button = "**";
 }
 var calc = Sys.Process("CalcPlus").Window("SciCalc");
 calc.Window("Button", button).Click();
}

3. The checkCalcResult function compares the expected result with that which
is factually obtained:

function checkCalcResult(result)
{
 var calc = Sys.Process("CalcPlus").Window("SciCalc");
 var edit = calc.Window("Edit");
 aqObject.CompareProperty(edit.wText, cmpEqual, result);
}

4. By launching the testExpectedValues function, you will see that each expression
among those assigned in the cells of the Expression columns has been calculated,
and the result will be compared with the expected one (from the Result column).

How it works...
First of all, we click on the C button to clear the results.

Further, the testExpectedValues function calculates one by one from each of the lines of
the Expression, after which we obtain each symbol in the loop with the help of the substr
method. This symbol is passed as a parameter to the clickCalcButton function.

The clickCalcButton function simply simulates clicks on the button with the passed
heading. Exceptions arise only with the multiplication button: to click on the button with an
asterisk, it is necessary to duplicate the same in the heading.

Then, with the help of the checkCalcResult function, we compare the obtained result with
the expected ones.

Operations of clicks on a button and results verification are made into separate functions for
better readability of the code and to avert code duplication.

Data-driven Testing

212

There's more...
Since in the Excel file the expected values have been inputted as numbers, the aqObject.
CompareProperty method transforms the text from the Calculator into an integer value. If
the expected values had been placed into the Excel files as stings, we would have gotten an
error for each of the cases in view, as the real value of the text field of the Calculator contains
a point and a space at the end.

Changing CSV delimiter and other
parameters

By default in the CSV-files a comma is used as a separator for the fields.

In some instances however, it is more convenient to use another separator (for example, a
semicolon, if the data often contains text with commas).

In this recipe we will consider changing the separators in the given CSV files.

Getting ready
First of all, let's create a file and a script, which will be working with customizations by default:

1. Create a file C:\data.csv with the following content:
id,First,Last
1,John,Doe
2,Jane,Smith

2. Now, let's create a script, which will be reading the data from the given file:
function testCSVDelimiter()
{
 var data = DDT.CSVDriver("c:\\data.csv");
 while(!data.EOF())
 {
 Log.Message(data.Value("First"), data.Value("Last"));
 data.Next();
 }
 DDT.CloseDriver(data.Name);
}

Chapter 9

213

How to do it...
In order to have TestComplete read out the data that are separated by semicolon,
it is necessary to complete the following actions:

1. Change the file C:\data.csv by changing commas to semicolons:
id;First;Last
1;John;Doe
2;Jane;Smith

2. Create the C:\schema.ini file with the following content:

[data.csv]
Format=Delimited(;)

3. Launch the testCSVDelimiter function. In the result, the function will
correctly read all the data, pre-separated by semicolon instead of the comma.

How it works...
The file schema.ini is an ordinary INI file, which contains various parameters for CSV files
in the same folder, where it is to be found. As a name of the section, the name of the file is
used, and then their values are signified also. For example, in our case, we have denoted that
data is to be separated by semicolon (the parameter Format=Delimited(;)).

This file can contain settings for several files that are to be found in the same catalogue.

Note that the name of the INI file should be exactly schema.
ini.

There's more...
Apart from the data separators, the schema.ini file can contain many more customizations
(whether the file contains headings of the columns, the text encoding, data types for each of
the columns, and so on). Reading up in greater detail about these settings is possible via the
following link: http://msdn.microsoft.com/en-us/library/ms709353.aspx.

Data-driven Testing

214

Driving data without using loops
As in many examples (both in this book, and in the TestComplete documentation) to iterate
through the data with the help of the DDT method, the while loop is usually applied.

This is not the only method to handle the DDT tables, and in this recipe we will consider
another method, namely that of DDTDriver.DriveMethod.

Getting ready
Create the file c:\drivemethod.xls with the following content:

How to do it...
To go through all the records in the file without the loop, it is necessary to:

1. First create a function that will read all of the data from the currently handled
column of the table:
function printPersonLastName()
{
 Log.Message(DDT.CurrentDriver.Value("Last"));
}

2. Create the function, which will call the earlier written function:
printPersonLastName with the help of the DriveMethod method:
function testDriveMethod()
{
 var data = DDT.ExcelDriver("C:\\drivemethod.xls", "Sheet1");
 data.DriveMethod("Unit1.printPersonLastName");
 DDT.CloseDriver(data.Name);
}

3. If the function testDriveMethod is now be launched, the log will contain
all of the names from the First column of the file c:\drivemethod.xls.

Chapter 9

215

How it works...
The DriveMethod method iterates through all the records in the current driver, each
time applying the method, which was passed as a parameter to the DriveMethod
method. The name of the launched method is passed wholly, because it has to contain
the name of the module (in our case, the Unit1) and the name of the function itself
(printPersonLastName). The type of the parameter is string.

To access the current parameters (properties and methods) of the DDT driver from within
the evoked function, we use the CurrentDriver property.

Thus, with the help of the DriveMethod method, we have significantly simplified the code
of the scripts, ridding ourselves of the loops and the need to non-forgetfully call the Next
method at the end of the loop.

Accessing Excel spreadsheets without
having MS Office installed

If you try accessing the DDT.ExcelDriver method from your scripts without having
MS Office installed, you will get the error Provider cannot be found. It may not be
properly installed.

In this recipe we will learn how to avoid this problem without installing MS Office.

How to do it...
In order to have access to Excel files via DDT perform the following steps:

1. Visit the following URL http://www.microsoft.com/en-us/download/
details.aspx?id=23734.

2. Download and install Data Connectivity Components on your computer.

3. Now you can access DDT data from scripts.

How it works...
Data Connectivity Components is a part of MS Office system, but it can be also installed
separately to have access to xlsx files (files created in MS Excel 2007 or higher).

If you also need to edit Excel files on this computer, you can use the LibreOffice suite
(http://www.libreoffice.org/) which is free.

Data-driven Testing

216

Auto-detecting Excel driver
The DDT.ExcelDriver method allows auto-detecting the Excel driver with the help of
Open Database Connectivity (ODBC) or the Microsoft Access Database Engine (ACE)
driver depending on the Excel file format after saving.

To this end, the UseACEDriver parameter is to be used. If you would not like to have
these parameters signified explicitly each time, it is possible to write a wrapper function
to do this automatically.

How to do it...
To automatically define the type of the driver, we need to perform the following steps:

1. First we define the required DDTExcel function:
function DDTExcel(fileName, sheetName)
{
 var useACE = aqFileSystem.GetFileExtension(fileName) == "xlsx";
 return DDT.ExcelDriver(fileName, sheetName, useACE);
}

2. Now we can dismiss the necessity to think about the type of the file as it will be
defined automatically. The following two examples will work similarly:

var data = DDTExcel("C:\\data.xls", "Sheet1");
var data = DDTExcel("C:\\data.xlsx", "Sheet1");

How it works...
The useACE parameter of the ExcelDriver method specifies which exact driver (ODBC or
ACE) should be used to access file data.

To automatically define the type of the driver, we have used the simplest method of file-
extension analysis. For the files with xls extension, the ODBC driver is used, while the driver
of the type of ACE is utilized for the xlsx files.

There's more...
It is possible to use the ACE driver both for the files of the xls type, and for the xlsx files
as well. The following two examples will handle the task of file recognition equally effectively:

var data = DDT.ExcelDriver("C:\\data.xls", "Sheet1", true);
var data = DDT.ExcelDriver("C:\\data.xlsx", "Sheet1", true);

10
Testing Web
Applications

In this chapter we will cover the following recipes:

 f Choosing Web Tree Model

 f Using updates for the latest browser versions

 f Performing cross-browser testing

 f Verifying if a text exists on a page

 f Waiting for an element to appear on a page

 f Saving screenshots of an entire page

 f Running scripts on a page

Introduction
Nowadays, a lot of applications being developed are web based and most tools for automated
testing have special abilities to test these types of applications. Such applications may be very
complicated and include complex element structure and behavioral logic.

TestComplete supports testing web applications in all popular web browsers: Internet Explorer,
Mozilla Firefox, Google Chrome, Apple Safari, and Opera. It also allows performing with web-
based application all the things we can do with desktop software: search for elements, wait
for elements, get pages' screenshots, and so on.

In this chapter we will discuss some of the frequently arisen topics related to testing web
applications in TestComplete.

Testing Web Applications

218

Choosing Web Tree Model
The structure of web-elements representation in Object Browser depends on the project
setting Web Tree Model. This setting affects the way that web elements are displayed in
Object Browser and accessed from scripts.

In this recipe we will consider the available web application models.

How to do it...
To change the Web Tree Model settings, it is necessary to perform the following actions:

1. Right-click on the name of the project and navigate to the Edit | Properties menu
item.

2. Open the following group of settings: Open Application | Web Testing | General.

3. In the Tree model drop-down list, select one of the elements (Tree, DOM, Tag,
or Hybrid).

4. Save the changes by pressing Ctrl + S.

5. The controls elements in the browser will be shown differently, depending on the
selected model. Accessing those from the scripts will be different as well.

Chapter 10

219

How it works...
TestComplete supports the following models for web applications:

 f Tree: This is the recommended model (in TestComplete 9 all the other models are
considered as obsolete and necessary only for backward compatibility with the
previous versions). When the Tree is being used, the hierarchy of control elements in
Object Browser corresponds with that of the application. The Tree is the only model
with cross-browser testing support.

 f DOM: In this model all the webpage elements are available as siblings of the
document.all element. If the page contains frames, they can be accessed
via the document.frames object, similarly to the way they are represented in
the DOM model of the webpages.

Testing Web Applications

220

 f Tag: When using this model, the control elements are grouped by tags in the
elements with the corresponding names. The elements that are found to be
singular (for example, HTML, BODY, and so on) do not have sibling elements;
rather they directly correspond to the eponymous page elements.

 f Hybrid: This is a combination of models Tree and DOM that is meant for creation
of the new scripts with the use of the recommended Tree model, simultaneously
lending support for the older scripts which utilized the DOM model:

If you are not content with the recommended Tree model, you can try using other models;
however, the cross-browser TestComplete testing possibilities will not be available.

Chapter 10

221

There's more...
If you have some older scripts, written with the help of the Tag model, and you're willing to
write some new ones using the recommended Tree model, you could dynamically signify
which model to use for each of the tests. An instance of dynamically changing the objects
model from script is shown in the following code snippet:

Options.Web.TreeModel = "Tag"
Options.Web.TreeModel = "Tree"

See also
 f You can read more about cross-browser testing in the Performing Cross-browser

testing recipe in this chapter

Using updates for the latest browser
versions

Every TestComplete release supports a certain browser version (the latest version at the
release date). In this recipe, we will consider how to download and install support for newer
browser versions.

How to do it...
In order to add support for a new browser version we need to perform the following steps:

1. Navigate to the following URL: http://support.smartbear.com/downloads/
testcomplete/.

2. Click on the link with corresponding browser name (for example, Firefox Patches).
3. Download the archive which corresponds to your TestComplete version and necessary

browser version (for instance, Firefox 24, TestComplete 9.31).
4. Unpack the archive content and open the file Installation_Notes.htm.
5. Follow the instructions from the file.

How it works...
Since it is impossible to guarantee support for the future browser versions, SmartBear
publishes patches once a new version of browser is released. Creating such a patch may
take some time, therefore it is recommended to disable automatic updates in your browser,
otherwise your regular script runs may be affected while waiting for the patch release.

It is also recommended that you create reserve copies of the files which you replace when
applying a patch.

Testing Web Applications

222

Performing cross-browser testing
TestComplete provides a possibility to perform Web-applications testing in all of the popular
browsers (Internet Explorer, Mozilla Firefox, Google Chrome, Apple Safari, and Opera), easily
switching in-between.

In this recipe we will consider launching one script in several browsers.

Getting ready
With the help of recording means let's make a record of any test in any of the available browser
at hand. In our example, Internet Explorer is used to carry out the following actions:

1. In TestComplete go to Test | Record | Record Script menu item.

2. Open the browser.

3. Navigate to the following page: http://smartbear.com/.

4. Click on the Free Trial link.

5. In the result, the following script will be recorded:

function Test1()
{
 var form;
 Browsers.Item(btIExplorer).Run("http://smartbear.com/");
 browser = Aliases.browser;
 page = browser.pageAutomationTestingWebMonitori;
 page.formAspnetform.linkLookingForAFreeTrial.Click();
 browser.pageSoftwareTestingWebMonitoring.Wait();
}

How to do it...
To launch the recorded script in several browsers, go about the following actions:

1. Create a new test with the following code:
function Test2()
{
 var browsers = ["iexplore", "firefox"];
 for(var i = 0; i < browsers.length; i++)
 {
 //TODO: place code here
 }
}

Chapter 10

223

2. Remove the //TODO comment and place the contents of the earlier written Test1
function instead.

3. Replace the line Browsers.Item(btIExplorer) with the following: Browsers.
Item(browsers[i]). In the result, we will have the next function ready:
function Test2()
{
 var browsers = ["iexplore", "firefox"];
 for(var i = 0; i < browsers.length; i++)
 {
 var form;
 Browsers.Item(browsers[i]).Run("http://smartbear.com/");
 browser = Aliases.browser;
 page = browser.pageAutomationTestingWebMonitori;
 page.formAspnetform.linkLookingForAFreeTrial.Click();
 browser.pageSoftwareTestingWebMonitoring.Wait();
 }
}

4. By launching the Test2 function, we will see that the same actions were initially
executed in the Internet Explorer browser, and then in Mozilla Firefox.

How it works...
The object Browsers provides access to any installed browser via the Item property.
This property takes the Index parameter, with the help of which we are able to assign the
particular browser we would like to work in. The Index parameter can be any number (of a
named constant value, just like the btIExplorer in our case), or the name of a process.

Since working with control elements in all the browsers is executed in a similar fashion, we
can record a script in one browser to execute in another or in several others (in our example,
we have used the for loop).

In a real project, it is more convenient to create tests that accept a parameter (the name
of browser process), and then launch the tests by passing the name of the browser as a
parameter. The resulting function will assume the following shape and form:

function Test3(browserName)
{
 var form;
 Browsers.Item(browserName).Run("http://smartbear.com/");
}

Testing Web Applications

224

The launch of this from the test items will appear as follows:

See also
 f Although TestComplete does provide wide possibilities for cross-browser testing in

some cases, however, browsers may behave differently, thus requiring additional
settings and code. If you create a lot of cross-browser tests, make sure you read
up on the following article: Handling Browser Differences, located at the following
address: http://support.smartbear.com/viewarticle/27716/.

Verifying if a text exists on a page
Sometimes, to check if the targeted webpage has been completely opened (instead of
receiving an instance of the 404 page not found error), it is enough to see if the page contains
some specific text (usually, the text is unique for the given page).

In this recipe we will consider an example of such verification.

Getting ready
Launch the Internet Explorer and open the following site: http://smartbear.com/.

On the main page, locate any text, which will be unique namely for the given page
(in our example, we will be using the Tools for your needs text).

How to do it...
To check if the targeted text is available on a page, it is necessary to perform the
following actions:

1. Write the isTextPresent function that executes the verification:
function isTextPresent(element, text)
{
 return aqString.Find(element.contentText, text) > -1;
}

Chapter 10

225

2. Let's now write a simple script, using the isTextPresent function (replace the
highlighted text with the one you have located in the beginning of this recipe):
function testVerifyText()
{
 var br = Sys.Browser("iexplore");
 var page = br.Page("http://smartbear.com/");
 var form = page.Form("aspnetForm");
 Log.Message(isTextPresent(form, "Tools for your needs"));
}

3. If you launch the testVerifyText function, the result in the log will be True.

How it works...
The contentText property contains the whole text of the element, including related child
elements. This property is analogous to those of innerText and textContent; however,
unlike those, it works equally in all the browsers.

In our example, we have used the contentText property for the whole of the page (that
is, for the element that corresponds to the page), which means we have obtained all the
available text on-site.

Similarly, we can obtain all the text of any other web-element (that is, Panel or TextNode).

Waiting for an element to appear on a page
In the majority of cases, to determine the completion of the page download, we can use the
Wait method. However, in some cases, download completion is determined by appearance
of a specific element (occurring after the page download is flagged as completed).

In this recipe we will consider some methods to bind handler-functions to an event, signaling
appearance of a certain webpage element. As an example, we would make use of the Login
link on SmartBear main page.

Getting ready
Before we turn to waiting for the Login link to appear straight off the bat, we can make some
simple preparations to simplify the task at hand:

1. Open the main page of SmartBear company (http://smartbear.com/) in your
browser (in our examples, we are using Internet Explorer).

Testing Web Applications

226

2. In TestComplete, open Object Browser and locate an element therein, which would
correspond to the Login link (to this end, you could make use of the Object Spy tool).

3. Right-click on this element and opt for the Map Object menu item.

4. In the opened window, click on Yes to automatically add the element with the given
properties by default.

5. Open the element of the NameMapping project and locate the created linkLoginLink
element therein.

6. With the mouse, drag-and-drop the targeted element onto the element of
formAspnetform. Now, the link has become a sibling element of the page.

7. We have additionally renamed the control elements by giving them succinct names
for brevity and convenience's sake (pageMain, formMain, and so on).

Chapter 10

227

How to do it...
To bind to the linkLogin element, we will use the WaitAliasChild method:

1. Let's write the following code, which will be waiting for the link to appear:
var br = Aliases.browser;
br.ToUrl("http://smartbear.com");
var page = br.pageMain;
var form = page.formMain;
var login = form.WaitAliasChild("linkLogin", 5000);

2. Now we will additionally check if the element is available on the page:
if(!login.Exists)
{
 Log.Error("Login link didn't appear on the page");
}

3. If you were to evoke this function again, it would transfer onto the SmartBear.com
site and will wait for the Login link to appear.

How it works...
The WaitAliasChild method allows waiting for the appearance of a sibling element within
the preset timeout, assigned by the second parameter of the method (in our case, we are
dealing with 5000 milliseconds or 5 seconds).

This method returns the object, whose Exists method contains the information, whether the
element has made it to the webpage or not. In case the element fails to show up, the Exists
property will contain the False value, and we will see the error message in the log.

Such a method of handling web-pages is usually used at working with applications, where
AJAX is employed, since some of the control elements may have extended latency, compared
to that of the main page.

There's more...
Along with the WaitAliasChild method, there also exists a similar method of
WaitNamedChild, allowing one to wait and observer the element, passing its name
as a parameter from NameMapping instead of the Aliases.

See also
 f Working with the Wait methods is dealt with in greater detail in the Waiting for an

object to appear recipe from Chapter 5, Accessing Windows, Controls, and Properties

Testing Web Applications

228

Saving screenshots of an entire page
Some of the webpages exceed the height of the browser and require use of scrollbars
to view the contents in the bottom of the page.

This influences creation of screenshots of the pages: concealed contents are not visible
at the point of making a screenshot via the Picture method.

In this recipe we will learn how to create screenshots regardless of the dimensions
of the window in the browser.

How to do it...
To create the screenshot of the whole of the webpage:

1. Let's write a script to open the main page of the site of the SmartBear company:
var br = Aliases.browser;
br.ToUrl("http://smartbear.com");
var page = br.pageMain;

2. With the help of the PagePicture method we will save the screenshot of the page
to the log:
Log.Picture(page.PagePicture());

3. If you launch the example, you will see the whole of the page saved to the log,
including the section whose window-overflow parts were hidden.

How it works...
The method of PagePicture automatically scrolls the page making screenshots of its parts,
and then automatically splices them to make a screenshot of the whole of the page.

Please note that, unlike the Picture method, the PagePicture method creates the
screenshot of the page alone, and not that of the whole screen. This means: if there's a
window on screen at the moment the screenshot is made (for example, an error alert that
impacts work of the tested application), the screenshot will not show the window.

See also
 f More on screenshots creation could be learned from the Posting screenshots

to the log recipe Chapter 6, Logging

Chapter 10

229

Running scripts on a page
Sometimes, when testing web applications, there arises a need to launch some script
on the page.

The easiest way to do so is launching the script directly from the address bar of the browser.

How to do it...
To launch the script in the browser, it is necessary to:

1. First of all, write the script which transfers current URL location to a specific address:
var br = Aliases.browser;
br.ToUrl("http://smartbear.com");
var page = br.pageMain;

2. Now we will launch the script that will execute JavaScript code on the page:
page.NavigateTo("javascript: alert('A message from script');");

3. In the result, the browser window will have the following message appear:

How it works...
To execute the JavaScript code in the browser window, it is sufficient to input the code into
the address bar of the browser as a string, placing the keyword javascript: before the
pasted code.

The method NavigateTo lets us open the page specified by the URL parameter. Unlike the
ToUrl method, method NavigateTo doesn't return any value after the page is loaded.

In our case, the method of NavigateTo is used to execute the JavaScript code on the page.

Testing Web Applications

230

See also
 f Some browsers do not support the described method of launching scripts. If you

have come up against such a problem, you could implement the code of the script
to the opened page and then execute the same. This method is described in the
article Embedding Test Scripts Into Web Pages on the SmartBear website. (http://
support.smartbear.com/articles/testcomplete/embedding-scripts-
into-web-pages).

11
Distributed Testing

In this chapter we will cover the following recipes:

 f Setting up Network Suite and understanding distributed testing

 f Copying Project Suite to a Slave workstation

 f Using a Master workstation to run tests

 f Using different configuration files for each workstation

 f Sharing data between workstations

 f Synchronizing test runs on several workstations

Introduction
Sometimes, acceptance testing is performed on several workstations. There may be different
reasons for this: time required for running all tests is too much to run whole Project Suite on
one computer or we might need to run tests on computers with different operating systems,
and so on.

In any case, it would be nice to be able to run and control all these tests from a single
computer, and then to be able to collect and analyze test results in one place.

TestComplete provides us with a feature called Network Suite which allows running tests on
several workstations simultaneously and yet controls the execution flow from a single place.

In this chapter, we will discuss some frequently asked questions about Network Suite usage.

Distributed Testing

232

Setting up Network Suite and understanding
distributed testing

Distributed testing is applied against impossibilities to launch and to run tests on the same
computer. For example, if the total working time of the scripts is up sky-high or it is necessary
to test simultaneously via different configurations, the distributed testing is necessary.

In this recipe, we will consider an example of making the necessary customizations for the
distributed testing.

How to do it...
To set the stage for distributed testing, it will take two computers: the local one (hereafter,
the Master computer) and the remote one (later referred to as Slave):

1. Install TestComplete or TestExecute on the Slave computer. The versions of the
applications on the Master and Slave computers should be the same.

2. Add the Network Suite element to the main project of the current Project Suite
(right-click on the name of the project and select Add | New Item). The main
project is highlighted in bold font in the Project Explorer tab.

3. Add the new Host computer to the NetworkSuite element (expand the NetworkSuite
element, right-click on the Hosts element, and select Add | New Item...). Now, click
on OK.

4. Double-click on the added host Host1 and input the parameters for the Slave
computer in the right-hand side section of the TestComplete window:

 � Address: Enter the name of the computer or its IP address

 � Login Mode: Choose the [Manual] option from dropdown

 � Domain, User name, and Password: Enter account parameters for
the Slave computer

 � Base Path: Enter the path on the Slave computer to clone the current
project to

5. Right-click on the edited host and select the Copy Project to Slave option. The Slave
computer is now ready to work. Let's get the Master computer customized for the
launch.

6. Right-click on the Jobs project element, select the Add | New Item... option, and,
click on OK.

Chapter 11

233

7. Now, right-click on the Job1 created element, select the Add | New Item... option,
and click on OK.

8. Double-click on the created Task1 task and, in the right-hand side part of the
TestComplete screen, input its parameters as follows:

 � Name: Enter the name of the task

 � Host: Enter the name of the earlier created host, Host1, in our example

 � Remote application: Enter the name of the application, installed on the
Slave computer

 � Test: Enter the name of the test which is bring launched

9. Now, it is possible to launch the selected test on the Slave computer. To this end, on
the Master computer, right-click on the Task1 element and select the Run option.

10. In the result, the Slave computer will run the test items of the project and the
generated report in the MHT format will be opened; the whole of the process will be
controlled and displayed on the Master computer.

How it works...
In distributed testing, the two types of computers that participate are:

 f Master: This is the main computer that will launch and control all of the launches

 f Slave: These are the computers that have the tests performed on them

When cloning a local project onto the Slave computer, the project folder will get copied by
default. If it's necessary to copy some other folder, you should signify the same in the Source
path field of the host. If, by default, the Source path column is not visible, it can be added
by right-clicking on the columns' names, having selected the Field Chooser option, and then
dragging-and-dropping the name of the column onto the heading of the hosts' tables.

Distributed Testing

234

Jobs is a list of tasks that are executed simultaneously on several computers. Besides the
parameters considered earlier, each job is comprised of some additional parameters which
are given as follows:

 f Copy remote log: This is a condition which specifies when the log from the Slave
computer should be copied onto the Master computer (always, never, or in case of errors)

 f Action after run: This is the action upon the end of the launch (closing the
application, reboot, or shut the Slave computer down)

 f Use previous instance: This is the action against attempts to launch the application
(TestComplete or TestExecute) when it is already up-and-running (use the available
one, re-launch the application, or notify of the error)

There's more...
In some cases, you might need to perform additional actions to be able to use Network
Suite. For example, configure Windows Firewall if it is enabled or make changes to an
antivirus program. You can find the requirements for Distributed Testing using this link:
http://support.smartbear.com/viewarticle/27241/.

Copying Project Suite to a Slave workstation
Copying a project into the Slave computer manually is not that practical (since you would
have to keep doing so regularly without forgetting), this is why this process would be better
to automate. In this recipe, we will consider how to do this.

How to do it...
To automatically copy the project into the Slave computer, it is necessary to perform
the following actions:

1. Double-click on the NetworkSuite projects element.

2. In the right-hand side part of the TestComplete window, in the Deploy mode
drop-down list, select Automatic.

3. Save the changes (for example, pressing the Ctrl + S keys).

Chapter 11

235

How it works...
When the distributed testing starts, TestComplete automatically copies the projects from
the Master computer into the Slave computer. The source folder and the destination folder
for copying is to be signified in the Source path and Base path input fields of the host
respectively. If nothing is signified in the Source path field, TestComplete will copy the
current project into the destination folder.

There's more...
Copying the project is also possible from the scripts, invoking the CopyProjectToSlave
method for the corresponding host, for example:

var host = NetworkSuite.Hosts.ItemByName("Host1");
host.CopyProjectToSlave();

Using a Master workstation to run tests
TestComplete does not allow adding a Master computer to the hosts listing (thus, using the
same as a Slave computer); however, the possibility to launch and run tests on the Master
computer is still there.

How to do it...
To launch the tests simultaneously on the Slave and Master computers, it is necessary
to go about the following steps:

1. Start a job on the Slave computer:
NetworkSuite.Jobs.ItemByName("Job1").Run(false);

2. Then launch the tests on the local computer:
test1();
test2();

testN();

3. Finally, wait for the tests to complete on all the Slave computers:

NetworkSuite.WaitForState(ns_Idle);

Distributed Testing

236

How it works...
The only parameter of the Run method is the WaitForCompletion parameter that is preset
to the value of False, which allows launching the tests on the Slave computers and carries
on with the script's execution.

Further on, we launch any tests locally, after which using the NetworkSuite.
WaitForState method we wait for the script's execution to come through on all the Slave
computers. Without this method's invocation, execution of the tests on the Slave computers
will terminate, if the execution on the Master computer completes beforehand.

Using different configuration files for each
workstation

When testing on several different computers, there sometimes arises a necessity to use
various testing data or parameters. It may depend on the version of the operational system,
its bit-rate, or it can even be different for every computer.

The simplest method to use different testing data in such cases is having data sets for
each particular case—each time reading the data from the appropriate file.

Getting ready
Let's suppose, we have a file settings.ini, that contains all the preset parameters
for the tests, to be declared in the code as follows:

var file = "settings.ini";
// code for settings read

At the point of launching tests on various operational systems, it turned out that each
OS requires different settings.

How to do it...
To read supply settings from different files depending on the OS version, it is necessary
to perform the following steps:

1. Make several copies of the settings.ini file with the following names: WinXP.
ini, WinVista.ini, Win7.ini, and Win8.ini.

2. Write parameters in each file that are necessary for the eponymous OS.

3. Change the code for the variable declaration in the following manner:
var file = Sys.OSInfo.Name + ".ini";

Chapter 11

237

4. Now, the settings will be read from different files, depending on the Windows version
used to launch and run the scripts.

How it works...
The OSInfo.Name parameter returns a short name of the current operational system. The
unbridged name of the OS is possible to obtain from the OSInfo.FullName property.

Similarly, it is possible to organize reading the data for other cases of the kind. For example,
if the data differs for every computer, the file names can be given by computer name, while
variables could be created via the Sys.HostName property.

In case of the Data-driven Testing (DDT) approach, it is possible to store the data for different
operational systems on different pages of the document, each corresponding to the proper
operating system.

Sharing data between workstations
To exchange the data between the Slave computers, the Network Suite variables are designed
to make this available at any given moment on any Slave and the Master computer.

In this recipe, we will deal with an example of data exchange with the help of Network variables.

Getting ready
First of all, we need to create the Network variable. To this end:

1. Right-click on the NetworkSuite project element and select the Edit | Variables
option.

2. Right-click on the Persistent Variables area and select the New Item option.
In the result, a new variable Var1 of the String type will appear on the list.

Distributed Testing

238

How to do it...
To change the value of the Network variable, it is necessary to accomplish the following steps:

1. First of all, enter the code critical section:
NetworkSuite.EnterCriticalSection("Change Variable");

2. Change the value of the variable:
NetworkSuite.Variables.Var1 = "NEW VALUE";

3. And finally, exit the critical code section:

NetworkSuite.LeaveCriticalSection("Change Variable");

4. Now, the NetworkSuite.Variables.Var1 variable contains a new value,
which is accessible to any computer for the distributed testing.

5. It is possible to write a function that will do so, automatically:
function changeNetworkVar(varName, value)
{
 NetworkSuite.EnterCriticalSection(varName);
 NetworkSuite.Variables.VariableByName(varName) = value;
 NetworkSuite.LeaveCriticalSection(varName);
}

6. Now, changing the variable will look as follows:

changeNetworkVar("Var1", "NEW VALUE");

How it works...
The variables of the NetworkSuite level are accessible for the scripts on all the computers
throughout the distributed testing.

Usage of the code critical sections allows avoiding conflicts while simultaneously changing one
and the same variable from different locations, all at once. As soon as one of the projects starts
the critical code section, other projects will not be able to get on with the same critical code
section under the same name, and would be waiting for its closure. This is why, to change one
variable, it is always necessary to use the same names of the code critical sections.

When reading the values of the variables, the earlier mentioned conflicts will not arise, and
this is why, for reading the values, we don't have to use code critical sections.

Usage of the code critical sections for changing variables is not mandatory; however, it is
strongly recommended to preclude the synchronization errors. Locating the reasons of such
errors is quite a task.

Chapter 11

239

There's more...
Another useful possibility to work with the Network variable is waiting for the variable to
assume the assigned value. To this end, the WaitForNetVarChange method is used:

NetworkSuite.WaitForNetVarChange("Var1", "NEW VALUE", 10000);

This example shows the variable Var1 is set to wait for maximum 10 seconds to assume the
NEW VALUE value. If the last parameter is set equal to zero, the waiting would be endless.

This method would help to synchronize tests execution on different Slave computers.

See also
 f The variables of the NetworkSuite level are analogous to the Project variables,

which are dealt with in the Using global variables recipe in Chapter 3, Scripting.

Synchronizing test runs on several
workstations

Sometimes, there arises a need to synchronize tests launches from various projects to
have specific actions executed at the same time. Usually, it is necessary when we perform
concurrent testing or testing workflows which require simultaneous actions of multiple users.

To this end, synch points are applied, which will be thoroughly dealt with in this recipe.

How to do it...
To synchronize tests on several Slave computers, we need to perform the following steps:

1. Expand the NetworkSuite element, right-click on the SynchPoints element, and
opt for the Add | New Item... option.

2. In the opened Create Project Item window, enter the name of the synch point
(for example, MyPoint), and click on OK.

Distributed Testing

240

3. Repeat the steps for all the projects that needs to be synchronized.

4. Now, add the following code in the code earmarked for synching:

NetworkSuite.Synchronize("MyPoint");

How it works...
At the point of distributed tests launch, when reaching the synching points, the tests will
pause; continuation of the tests will take place only after all the tasks have reached the
synch point.

In the case that a project contains a synch point, and at least one of the projects fails to evoke
the NetworkSuite.Synchronize method, this would lead to script hang-ups, as the scripts
would be waiting for all the projects to reach the synch point in view. In this case we will have
to stop test execution manually.

This is why it is recommended that we attentively follow through the NetworkSuite.
Synchronize invocation, if the project contains synch points.

See also
 f Another method for synchronization with the help of the variables is described in the

Sharing data between workstations recipe.

 f All the synchronization variants are given an in-depth description in the Synchronizing
Distributed Tests article, located on the SmartBear website: http://support.
smartbear.com/articles/testcomplete/synchronizing-distributed-
tests.

12
Events Handling

In this chapter we will cover the following recipes:

 f Creating event handlers

 f Disabling the postage of certain error messages

 f Clicking on disabled controls without an error message

 f Handling unexpected windows that affect TestComplete

 f Handling unexpected windows that don't affect TestComplete

 f Saving the log to a disk after each test

 f Sending a notification e-mail on timeouts

 f Creating preconditions and postconditions for tests

Introduction
Every development environment allows handling events, that is, creating custom actions
for different situations an application may face during its work.

TestComplete is also a development environment with its own events, and it also allows
us to create handlers for different events: Log events, Network Suite events, general events
of test engine, and so on.

In this chapter, we will consider the most frequently used events handlers one may need to
know when performing test automation with TestComplete. We will also consider some
tasks which can be best solved with the help of event's handlers.

Events Handling

242

Creating event handlers
In order to operate with events, we need to learn how to create event's handlers in
TestComplete. This recipe will guide you on creating an event handler for the OnLogError
event (this event fires every time error is posted to the TestComplete log).

Getting ready
Before creating the event handler, we need to add the Events project item if it is not added
to project yet:

1. Right-click on the project name in the Project Explorer tab and navigate to Add |
New Item.

2. In the opened Create Project Item window, select the Events item and click on OK:

How to do it...
To create the event handler for the OnLogError event we need to perform the following steps:

1. Expand the Events node in the project and double-click on the General Events item.

2. In the Events to Handle list, expand the General Events node and select the
OnLogError item.

Chapter 12

243

3. Click on the New button which is located inside the OnLogError element:

4. In the New Event Handler window, select the script unit where you want to
create the handler and click on the OK button:

As a result, a new function GeneralEvents_OnLogError will be created in the
selected unit. This function will fire every time some is posted to the log and all
actions from it will be executed.

How it works...
It is not enough to just create a new function manually with corresponding name (for example,
GeneralEvents_OnLogError) to create an event handler. We have to perform all the
previous steps described to accomplish the task.

When selecting a script unit for storing event handlers, we can create a new one by clicking on
the Click here to add a new script unit... node inside the Script node. It is recommended to
store all events in one separate unit for easier maintenance.

Events Handling

244

We can also use an existing function as an event handler by selecting its name in the
Available Tests list in the New Event Handler window.

Please note that event's handlers should have exactly the same
parameters as they are expected by TestComplete, that's why it is better
to create event's handlers by TestComplete means.

There's more...
To remove an existing event handler (not the function itself), right-click on its name in the
Events to Handle list and select menu item Remove Event Handler.

If you want to completely remove the function, simply remove it from the unit in the editor.

Disabling the postage of certain error
messages

Any message in the log can be captured and processed. In this recipe we will consider
the following example. When interacting with the Infragistic controls elements in the
TestComplete log, there sometimes arises a message Improper command. This message
in no way influences the script's performance and only causes an issue when reviewing log
entries; this is why we will simply ignore it.

This is a true-to-life example, which is successfully applied in a commercial project.

To try this example, you can simply create a function with several calls
of the Log.Error method. At least one of these calls should contain
Improper command text as an error message.

How to do it...
To avoid logging of the Improper command message, it is necessary to perform the
following actions:

1. Create an OnLogError event handler.

2. Interject the following code into the event handler:

if(LogParams.MessageText == "Improper command")
{
 Log.Message("'Improper command' error is ignored");
 LogParams.Locked = true;
}

Now, all the errors with the Improper command text will be ignored.

Chapter 12

245

How it works...
The LogParams object contains all the information on the outputted message to the log.

The MessageText parameter contains the text of the message, and the Locked parameter,
preset to the true value is blocking the entry of the message to the log. This block only
affects the current event, not the others.

Simple ignoring the errors is a not a good practice, this is why we additionally notify in an
ordinary message what exactly is being blocked. If, in the future, due to this error, there
emerges any technicalities with the control elements, we will be able to spot these issues
in the log and thus will be in the know for the root-cause analysis.

Similarly, other events of the log are to be handled (OnLogEvent, OnLogMessage,
and so on).

In the earlier versions of TestComplete (up to 7 inclusively), instead of
the MessageText property, the Str property was put to use. Their
inner workings are the same; however, the Str property (and the StrEx
one, corresponding to that of AdditionalText) are now considered
as deprecated and are not recommended for use in the new scripts.

See also
 f The process of creation of the event handler is thoroughly dealt with in the Creating

event handlers recipe

Clicking on disabled controls without an
error message

If you need to trigger mouse-clicks on a disabled controls element, recording such a script
would be a pushover; however, when executing the script, TestComplete will output the
following error message to the log: The window is disabled. The action cannot be executed.

In this recipe, we will consider emulating a mouse-click on the disabled controls elements,
following an example of button A in the calculator.

Getting ready
Launch the Calculator Plus application in the Scientific mode (navigate to View | Scientific).

Events Handling

246

How to do it...
To click on the disabled controls element, it is necessary to perform the following steps:

1. First of all, let's write up some code to trigger a mouse-click on the A button
(executing this code will lead to the previous discussed error in the log):
function testClickDisabledButton()
{
 var wCalc = Sys.Process("CalcPlus").Window("SciCalc");
 wCalc.Window("Button", "A").Click();
}

2. Now, let's write up a function that will trigger a mouse-click on a disabled controls
element:
function clickDisabledObject(obj)
{
 var x = obj.ScreenLeft + obj.Width/2;
 var y = obj.ScreenTop + obj.Height/2;
 Sys.Desktop.MouseDown(VK_LBUTTON, x, y);
 Sys.Desktop.MouseUp(VK_LBUTTON, x, y);
}

3. Now, create an event handler for the OnLogError event.

4. Interpolate the created event handler into the following code:
if(aqString.Find(LogParams.MessageText, "The window is
 disabled") > -1)
{
 Log.Message("The window is disabled");
 var objText = LogParams.AdditionalText.split("\n")[1];
 var obj = eval(objText);
 clickDisabledObject(obj);
 Log.Event("Disabled object was clicked", objText);
 LogParams.Locked = true;
}

5. If we launch the testClickDisabledButton function again, clicking on the A button
will be reproduced, and the log would contain two messages posted by using the Log.
Event and Log.Message methods. There would be no errors in the log.

Chapter 12

247

How it works...
Standard TestComplete means do not allow for a mouse-click on the disabled controls
element: this is why, to resolve the task, we have made use of these methods: Sys.
Desktop.MouseDown and Sys.Desktop.MouseUp. These two methods trigger the mouse-
click and release the assigned mouse-button (in our case, the left one that is, VK_LBUTTON),
in the assigned screen coordinates (x and y). To obtain the screen coordinates of the center
of the object, we have used the following properties: ScreenLeft, ScreenTop, Width, and
Height.

In the event handler itself, we are checking if the error message contains the following string:
The window is disabled. If so, we will get an object targeted for the mouse-click, and pass it
as a parameter to the clickDisabledObject function.

Finally, with the help of setting the property LogParams.Locked = true, the error output
to the log is blocked.

The process of obtaining the object needs to be explained in more detail. Since we cannot
get the object directly from any of the properties of the LogParams object, we have to retract
it from the AdditionalText property. First, via the split method, we obtain the second
string of the message (this string contains the complete name of the controls element), and
then with the help of the eval function, the text is further transformed to the object (the eval
function transforms the string into the executable JScript code).

Pay attention that all the executable actions are being logged (with the
help of the Log.Message and Log.Event methods). This is a good style
of writing similar event handlers as well as any other generic code, since
further on, when analyzing the logs, this information might come in handy.

See also
 f The process of creation of an event handler is dealt with in greater detail in the

Creating event handlers recipe

Events Handling

248

Handling unexpected windows that affect
TestComplete

An unexpected window is a window which shows up as scripts are being executed, affecting
TestComplete interaction with tested application. In the project settings, it is possible to
specify what should be done with such windows (whether they should be ignored, paused,
or stopped; or a number of simple actions could occur); however, in some cases, it is
convenient to handle some of the windows (known to us) independently.

In this recipe, we will consider an example of working with the Print window of the Notepad
application. To simulate unexpected appearance of the window, we would be evoking it
ourselves, pressing the Ctrl + P keys combination. Our script would input the text into Notepad
and, upon the Print window appearing, enter a corresponding message to the log about the
event; and then simply wait for the window to close out. Closing the window is also expected
to be done manually.

Getting ready
Launch the standard Windows Notepad (C:\Windows\notepad.exe) application.

How to do it...
To create the Print window handler, it is necessary to perform the following steps:

1. First of all, let's create a script which will execute some actions (for example,
type a text) in the Notepad:
function testUnexpectedWindowHandling1()
{
 var np = Sys.Process("NOTEPAD").Window("Notepad");
 np.Activate();
 for(var i = 1; i < 1000; i++)
 {
 np.Keys(i + "[Enter]");
 }
}

2. Create the OnUnexpectedWindow event handler.

3. In the created event handler write the following code:
if(Window.WndCaption == "Print")
{

Chapter 12

249

 Log.Message("Print window appeared, waiting...");
 while(Window.Exists)
 {
 aqUtils.Delay(500, "Print window appeared, waiting...");
 }
}

4. Launch the testUnexpectedWindowHandling1 function. As the function is
working, press the following Ctrl + P keys combination, wait a little, and close the
Print window.

5. Repeat the action several times. You will notice that script execution will be paused
each time as the Print window shows up, and resumed after the Print window is closed.

How it works...
The OnUnexpectedWindow event handler has the Window parameter, which is the targeted
unexpected window, hindering work with TestComplete. This window could be handled as any
other of its kind (refer to its properties and evoke its methods).

Via the aqUtils.Delay method, we are pausing the execution; otherwise, the TestComplete
process will perform many checks in-between small intervals, which could slow down other
running programs.

See also
 f The process of the event handler creation is thoroughly dealt with in the Creating

event handlers recipe

Handling unexpected windows that don't
affect TestComplete

In some cases, it is necessary to capture appearance of a window which doesn't affect
TestComplete, for example, a non-modal window that has been launched by another process.
In this case, handling the OnUnexpectedWindow event will be of little use for us.

In this recipe, we will deal with an example of working with such a window. Our script will
be working with the Notepad application, meanwhile closing the calculator window, if it has
showed up.

Events Handling

250

Getting ready
Launch the standard Windows Notepad (C:\Windows\notepad.exe) application and make
sure that you can quickly launch Calculator Plus (for example, with the help of a shortcut or a
given key's combination).

How to do it...
To capture the Calculator Plus window appearing, it is necessary to perform the following actions:

1. First of all, we shall create a function that will execute the needed actions (that is,
check if the calculator is up and running, and close it, if so):
function killCalc()
{
 if(Sys.WaitProcess("CalcPlus", 1, 1).Exists)
 {
 Log.Message("Calculator has been found");
 Sys.Process("CalcPlus").Terminate();
 }
}

2. Let's now create the function which will execute some of the timed actions: we will
place a timer at its beginning with successive invocation of the previously created
killCalc function:
function testUnexpectedWindowHandling2()
{
 Utils.Timers.Add(500, "Unit1.killCalc", true);
 var np = Sys.Process("NOTEPAD").Window("Notepad");
 np.Activate();
 for(var i = 1; i < 1000; i++)
 {
 np.Keys(i + "[Enter]");
 aqUtils.Delay(500);
 }
}

3. Launch the testUnexpectedWindowHandling2 function. During its execution
time, launch the Calculator Plus once in a while.

You will see that each time the Calculator Plus is closed by TestComplete,
the log is receiving the Calculator has been found message.

Chapter 12

251

How it works...
With the help of the Utils.Timers.Add method, we are creating a new timer, in line with
the following parameters:

 f The interval in terms of milliseconds within which the timer will fire up (in our
case, 500 milliseconds)

 f The name of the function which is necessary to launch as the timer fires up (in our
case, it is the Unit1.killCalc function)

Please note that it is necessary to pass its complete name, that is, the
name of the module and the name of the function, as dot-separated values.

 f A Boolean to indicate if the timer should be on or off at its creation (in our case, this
parameter is set to true, that is, the timer is created and immediately turned on)

Now, within the equal intervals, preset by the Interval parameter, any predefined and
passed function will fire up. In our case, this function checks if the calculator has been
launched, if so the function in view closes the calculator down.

Saving the log to a disk after each test
One of the possible applications for capturing events is regular saving of the log to HDD to
avoid the loss of results against unforeseen situations (blackouts, emergency TestComplete
termination, and so on). This is particularly important in big projects, where there are many
tests being executed and results being checked regularly.

In this recipe, we will consider how to store the log as each test completes.

How to do it...
To save the results after each test execution is over, it is necessary to perform the following steps:

1. Create an event handle for the OnStopTest event.

2. Place the following code into the created handler:
Log.Event("Saving results to disk");
Log.SaveToDisk();

3. Create several testing functions with any contents, for example:
function Test1()
{
 Log.Message("Test 1");
}

Events Handling

252

4. Add these functions to test items (right-click on the name of the project, and navigate
to Edit | Test Items). In the result, the listing of the tests will appear, as follows:

5. Launch the whole project for execution by right-clicking on the name of the project
and selecting the Run menu item.

In the result, a log will be instanced, thereby the results of each test execution will
be saved to HDD (this is easy to verify by checking for the message at the end of
each test):

How it works...
Saving the log to HDD is possible at any given moment of time by invoking the Log.
SaveToDisk method.

We are doing so at the end of each test, using the OnStopTest event. Pay attention that the
event is triggered at the end of each test and launched via test items. If you simply launch
the function from which you call several tests, the event will fire just once (as each invoked
function completes its call), rather than upon each invoked test. For example:

function TestAll()
{
 Test1();
 Test2();
 // OnStopTest
}

See also
 f More details about adding event handlers can be read about in the Creating event

handlers recipe

 f Creation of test items is thoroughly dealt with in the Creating a test plan for regular
runs recipe in Chapter 4, Running Tests

Chapter 12

253

Sending a notification e-mail on timeouts
In this recipe we will deal with an example of dispatching an e-mail in case the execution time
of any given test exceeds the maximally assigned time frame.

How to do it...
To send an e-mail upon reaching the timeout, it is necessary to follow through these actions:

1. Create an OnTimeout event handler.

2. Add the following code into the created handler:
BuiltIn.SendMail("recipient@example.com", "example.com",
 "Sender Name", "sender@example.com", "Subject", "Body");

3. Create a function that will work for 62 seconds. For example, as follows:
function testEmailOnTimeout()
{
 aqUtils.Delay(62*1000);
}

4. Create the test item (right-click on the name of the project and navigate to Edit |
Test Items) and set the timeout to be equal to 1 minute as shown in the following
screenshot:

5. Launch the project for execution (right-click on the name of the project and select the
Run menu).

In the result, as the one-minute timespan goes out, the timeout will trigger the e-mail
dispatch.

How it works...
If a timeout has been signified for the test item, as it fires, the corresponding event will be
triggered. In our case, as the timeout fires, the e-mail will be sent to the following address:
recipient@example.com.

Events Handling

254

We have used 62-seconds timeout because the minimum timeout is 1 minute and our
example should work for more than 1 minute. In such cases it's usually better to have some
reserve (for example, 2 seconds, as we have here) to avoid casual firing of the events.

It is also a good practice to specify timeouts by multiplying the number of seconds directly
in the code (as we have done here), because such constructions are more maintainable
in the future.

See also
 f The considered example of dispatching an e-mail does not suit all of the instances. A

more universal method is considered in the Sending logs via e-mail recipe in Chapter
6, Logging Capabilities.

 f The process of creation of the event handler is thoroughly dealt with in the Creating
event handlers recipe.

 f Test Items creation is described in greater detail in the Creating a test plan for regular
runs recipe in Chapter 4, Running Tests.

Creating preconditions and postconditions
for tests

Preconditions and postconditions are often used both in manual and in automated tests for
the purpose of assigning testing conditions or for returning the settings previously changed
in the process of the test execution.

One of the most frequently used examples of pre-and postconditions for automated tests
is launching and closing of the testing application. Such an approach explicitly allows us
to avoid having to repeat these actions at the beginning of the test.

In this recipe we will consider an example of handling the Notepad application, which will
automatically open and close in the pre-and postconditions, respectively.

How to do it...
To create the tests with pre- and postconditions, it is necessary to carry out the following actions:

1. Create the OnStartTest event handler and add the following code to it:
Log.Event("Starting Notepad");
Sys.OleObject("WScript.Shell").Run("notepad.exe");

Chapter 12

255

2. Create the OnStopTest event handler and add the following code to it:
Log.Event("Stopping Notepad");
Sys.Process("notepad").Terminate();

3. Now, let's create several test examples:
function testNotepad1()
{
 var np = Sys.Process("NOTEPAD").Window("Notepad");
 np.Keys("Test #1");
}
function testNotepad2()
{
 var np = Sys.Process("NOTEPAD").Window("Notepad");
 np.Keys("Test #2");
}

4. Let's create the corresponding test items (right-click on the name of the project
and navigate to Edit | Test Items). This should appear as follows in the end-result:

5. Let's launch the project (right-click on the name of the project and select the Run
menu item).

In the result, all the tests will be launched, while each one of them will have a new
copy of the notepad opened. As the test completes, the Notepad application will
be closed.

How it works...
The events OnStartTest and OnStopTest will be processed accordingly, before and after
the tests are launched.

These events will be triggered individually per each test only in case the tests are launched via
test items. If several tests should be launched in series from one and the same function, the
events will be triggered just once (before the main function invocation and on its completion).

Events Handling

256

See also
 f Reading up on adding event handlers is available in the Creating event

handlers recipe

 f Launching and completion of programs is particularly dealt with in the Running
external programs and DOS commands, Running a tested application from the
script, and Terminating a tested application recipes in Chapter 2, Working with
Tested Applications

Index
Symbols
/exit parameter 112
/ns parameter 106
/project parameter 104
/quiet parameter 53
/routine parameter 104
/run parameter 104
/SilentMode parameter 176
(UnitA.calledFunction()) function 90
/Unit parameter 104

A
Access Database Engine. See ACE
AccessibilityObject property 81
ACE 216
Action after run parameter 234
actions

adding, to Keyword Tests 188-190
Activate button 10
Activate license button 10
Add button 144
additional parameters

passed, for testing 106-108
AdditionalText property 247
Add Variable button 191
Append to Test button 190
aqObject.CheckProperty method 67, 68
aqObject.CompareProperty function 68
aqObject.CompareProperty method 212
aqObject.IsSupported method 133, 134
aqObject object 132
aqUtils.Delay method 24, 116, 138, 249

attrBoldBlue variable 160
Automatic activation option 10
automatic runs

scheduling, at nighttime 110-112

B
BackColor parameter 160
batch-replacement symbols

* (asterisk) 60
? (question mark) 60

Bold parameter 160
Bounds.Left property 81
Bounds property 81
Breakpoint Properties window 178
breakpoints

used, for script execution pausing 177-179
Browsers object 223
btn2 variable 17, 18
btn6 button 187, 188
BuiltIn object 184
BuiltIn.ParamCount method 106
BuiltIn.ParamStr method 106
BuiltIn.ShowMessage method 119

C
CalcPlus element 37, 193
calledFunction function 90
callee method 132
callerFunction function 90, 91
call function 91
CallObjectMethodAsync method 132
Cancel button 16
catch block 88

258

CDO 171
CE button 188
checkCalcResult function 211
checkContent method 92, 94
CHECK keyword 200
checkNotepadFileName function 200
Checkpoints element 194
CheckProperty method 67
Clear method 118
ClickButton element 189
clickCalcButton function 211
clickDisabledObject function 247
Click method 131
ClientX parameter 188
ClientY parameter 188
CloseDriver method 207
CLOSE keyword 200
Close method 44, 45, 92, 93, 125
closeNotepad function 200
code

structuring, loops used 61-63
code templates

creating 22, 23
Collaboration Data Objects. See CDO
command line

additional parameters passed, for testing
106-108

tests, running from 103-106
CommandLine property 107
CommonOperations unit 85
Common unit 85
Compare method 157
CompareProperty method 68
Computer element 47
Condition drop-down 66
condition parameter 67
configuration files

using, for workstations 236, 237
Configure button 167
contentText property 225
Continue Execution command 182
ConversionOperations unit 85
Convert to Script menu item 198
CopyProjectToSlave method 235
Copy remote log parameter 234
counter variable 191, 193
Count parameter 38

Create button 12
Create Object Checkpoint window 194
Create Project Item dialog window 26
Create Project Item window 16, 242
Create Property Checkpoint option 64
cross-browser testing

performing 222-224
CSV delimiter

changing 212, 213
CurrentDriver property 215
currentRow variable 207
custom control classes

mapping, to standard classes 140-143
customizable settings

restoring 20, 21
saving 20, 21

D
data

generating, Data Generator used 204, 205
reading, from table 208, 209
sharing, between workstations 237-239

Data Connectivity Components 215
data-driven approach 79
Data-driven Testing. See DDT
Data Generator

used, for data generating 204, 205
Data Generator Wizard window 204
DDT

about 203, 237
Excel spreadsheets, handling 215
used, for accessing cell in Excel 206, 207

DDT.ExcelDriver method 208, 215, 216
DDTExcel function 216
DDT tables

handling 214
used, for expected values storing 209-211

debugging
about 175
disabling 176
enabling 176
step-by-step instructions 181, 182

Debug mode
tested application, running in 45, 46

Delay method 119
Delete operation 26

259

DelphiScript language 14
Depth parameter 136
description column 187
Digit grouping option 136
disabled controls

clicking 245-247
disableSleep function 117
disk

log, saving to 251, 252
Display Object Spy button 32
distributed testing

about 232
Master computer 233
Network Suite, configuring for 232-234
Slave computer 233

document.all element 219
document.frames object 219
DOS commands

running 50-52
dotNET object 14
Drag method 127, 130
DriveMethod method 214
dynamic content

screenshots, comparing with 165-167

E
Edit button 204
Edit unit 85
element appearance

awaiting, on webpage 225-227
e-mail

log, sending via 171-173
Enabled property 135
enterStr variable 58
error count

obtaining, in log 161-163
error messages post

disabling 244, 245
ErrorsMax variable 162
ErrorsTotal variable 161
eval function 247
Evaluate button 183
Evaluate window

about 183
working 183, 184

events action 168
Events element 161
events handlers

creating 242-244
Excel cell

accessing, DDT used 206, 207
Excel driver

auto-detecting 216
ExcelDriver method 216
Excel spreadsheets

accessing, via DDT 215
exceptions

handling 86-88
handling, from different unit 89-91

Exists method 227
Exists property 138, 227
expected values

storing, DDT tables used 209-211
Export button 20
expressions

evaluating 182-184
external programs

running 50-52

F
fileName parameter 200
finally block 88
FindAllChildren method 134, 136
FindAll method 136
FindChild method 136
Find method 134, 135, 157
FindRectByText method 147
Find window 126, 127
Finish button 66
FirstName property 208
fn1 function 182
folders

creating, in log 158, 159
FontColor parameter 160
For Loop window 192
framework

creating, OOP approach used 92-95
function

running 98, 99
functional decomposition approach 83

260

G
GeneralEvents_OnLogError function 243
global variables

using 73-75
grid.ScreenTop property 81
GroupIndex parameter 28

H
hard disk drive (HDD) 12
Help unit 85
Hide method 118
Highlight Object button 34

I
image format action 168
Import button 21
Index parameter 223
Indicator

messages, sending to 118, 119
Indicator object 118
Insert button 204
Inspect button 183
installers

testing 52, 53
Interval parameter 251
IsSupported method 132
isTextPresent function 225
item column 187
Item property 80, 223
Items property 31

J
jobs

about 234
parameters 234

join method 91
JScript language 14

K
Keys method 45, 57, 58
Keyword-driven Testing 186

Keyword driver
components 200
creating 199-202

Keyword Tests
about 185
actions, adding to 188-190
converting, to scripts 198, 199
enhancing, loops used 191-193
operations, representing 187
recording 186-188
script functions, calling from 195-197

Keyword Tests element 188
killCalc function 250

L
Language combobox 13
latest browsers versions

updates, using 221
level of application’s common code layer 84
level of libraries 84
level of tests 84
LinkCount parameter 141
linkLogin element 227
linkLoginLink element 226
Link parameter 141
Load From File button 23
LoadFromFile method 157
Locked parameter 245
log

error count, obtaining 161-163
exporting, in MHT format 170, 171
folders, creating in 158, 159
generating, in text format 168-170
message appearance, changing 159, 160
messages, posting to 154, 155
saving, to disk after each test 251, 252
screenshots, posting to 156, 157
sending, via e-mail 171-173

Log.CreateFolder method 158, 159
Log.CreateNewAttributes method 160
Log.ErrCount property 161
Log.Error method 244
Log.Event method 246
Login button 9

261

Log.Message method 29, 58, 98, 160, 177
LogParams object 245, 247
LogParams.Str method 169
Log.Picture method 147, 156
Log.PopLogFolder method 158
Log.PushLogFolder method 158, 159
Log.SaveResultsAs method 171
Log.SaveToDisk method 252
log size

decreasing 167, 168
log size, decreasing

events generation, disabling 167
image format, changing 167
Visualizer, disabling 167

loops
used, for code structuring 61-63
used, for Keyword Tests enhancing 191-193

M
main function 181
MainMenu property 31
Manual Tests element

adding, to project 25-27
Master workstation

used, for running tests 235
messages

Log.Error message 155
Log.Event message 155
Log.File message 155
Log.Link message 155
Log.Message message 155
Log.Warning message 155
posting, to logs 154, 155
sending, to Indicator 118, 119

MessageText parameter 245
MessageText property 245
MessageType parameter 68
message window

showing, during script run 119, 120
methods

asynchronously calling 131, 132
MHT format

log, exporting in 170
MSI file

running 52, 53

multilingual applications
testing 75-79

N
NameMapping element 16, 78, 79
NameMapping object 79
NameMapping window 123
NavigateTo method 229
Network Suite

about 231
configuring, for distributed testing 232-234

NetworkSuite element 239
NetworkSuite.Synchronize method 240
NetworkSuite.Variables.Var1 variable 238
NetworkSuite.WaitForState method 236
Network variables

used, for data sharing between workstations
237-239

New Event Handler window 243
New Test Item button 102
Next method 207
nonstandard controls

working with 79-83
nonstandard controls text

accessing, text recognition used 143-145
notepad variable 59
notification e-mail

sending, on timeouts 253, 254

O
object

appearance, awaiting 136-138
dragging, onto object 127-130
finding, property values used 134, 135

Object Browser panel
about 29
working 30-32

Object Browser tab 30
Object Browser tree 32
Object Checkpoint

creating, in Keyword Tests 193-195
object checkpoints

creating 68-72
Object Mapping 140
Object-Oriented Programming. See OOP

262

object parameter 67
Objects element 71
Object Spy utility

about 28
using 32-34

Object Spy window 33
Object Tree Model

preferring 122-124
Object tree model parameter 122, 123
OCR

using 145-149
OCROptions.ExactSearch property 148
OCROptions.SearchAccuracy property 148
ODBC 216
ODT (Object-Driven Testing) object 95
OnLogError element 243
OnLogError event 161, 242, 246
On-Screen Action element 189
On-Screen Action window 187
OnStartTest event 254
OnStopTest event 251, 252, 255
OnTimeout event 253
OnUnexpectedWindow event 248, 249
OOP

about 92
used, for framework creating 92-95

Open Database Connectivity. See ODBC
openFile method 92, 94
OPEN keyword 200
operation column 187
Operation Parameters window 196
Optical Character Recognition. See OCR
OSInfo.FullName property 237
OSInfo.Name parameter 237
overlapping windows

ignoring 125-127

P
PagePicture method 228
Params button 31
pCalc variable 28
people variable 209
persistent variable 74
pEx variable 183

picture format
BMP 164
changing 163-165
JPEG 164
PNG 164
TIFF 164

Picture method 80, 150, 157, 228
picWindow variable 156
Playback element 114
playback options

Auto-wait timeout 114
changing 113-115
Delay between events 114
Disable mouse 114
Dragging delay 114
Ignore overlapping window 115
Key pressing delay 114
Minimize TestComplete 114
Mouse movement delay 114
On unexpected window 114
Post image on error 115
Save log every N minutes 115
Stop on error 114
Stop on warning 114
Stop on window recognition error 114
Store last N events 115

pNotepad variable 180
PopText method 119
postconditions

creating, for tests 254, 255
preconditions

creating, for tests 254, 255
printPersonLastName function 214
Process method 28
procName parameter 42
project

copying, to Slave workstation 234
creating 11, 12
script code, organizing in 83-86
scripting language, selecting 13, 14

Project Explorer panel 11
project items

adding 25-27
removing 25-27

Project.TestItems object 103
Properties... button 70

263

property checkpoint
creating 64-68

PropertyName parameter 140
property parameter 67
PropertyValue parameter 140
property values

awaiting 139, 140
used. for objects finding 134-136

PushText method 118

R
recorded test

modifying 18-20
Recording pane 64
Recording panel 69, 71
Rect object 151
Refresh method 135
Regions.AddPicture method 151, 166
Regions.Compare method 166, 167
Regions element 151
Regions.FindRegion method 150
regular runs

test plans, creating for 101-103
Remote Desktop

tests, running via 112, 113
Remove operation 26
res1 variable 182
RunAll method 40
RunAs method 49
Run method 39, 52, 236
Run Mode property 39
Runner.CallObjectMethodAsync method 132
Runner.Pause method 179
Runner.Stop method 162
Run Script Routine element 196
run speed

increasing 115, 116
Run to Cursor command 182

S
Save to File button 23
SaveToFile method 156, 157
Save to User-defined button 205
ScientificOperations unit 85

screensaver
disabling, during script execution 116, 117

screenshots
comparing, with dynamic content 165-167
posting, to logs 156, 157

script code
organizing, in project 83-86

Script element 102, 163, 197
script execution

delaying 24, 25
pausing, breakpoints used 177-179
screensaver, disabling during 116, 117

script functions
calling, Keyword Tests used 195-197

scripting 55
script run

message window, showing during 119, 120
scripts

Keyword Tests, converting to 198, 199
running, on webpage 229, 230
tested application, running from 38-40
tested application settings, dynamically

changing from 49, 50
Scripts element 84
Select button 145
Select Features window 9
Select Test window 196
SendEmail function 172
Send method 172
set command 112
SetThreadExecutionState function 117
Settings button 146
Show method 118
Sign Up Now button 8
Size.Height property 157
Size.Width property 157
Slave workstation

project, copying to 234
slPacker object 172
slPacker.PackCurrentTest method 173
specific object property

verifying 132-134
Specify Routine Name window 198
split method 91, 247
sqrt button 146, 147
standard classes

custom control classes, mapping to 140-143

264

start method 92, 93
startNotepad function 200
Step Into command 182
Step Over command 182
Stop button 16, 66
Stores element 71, 72, 149
Stretch method 156, 157
Str property 245
substr method 211
SynchPoints element 239
Sys.Desktop.MouseDown method 247
Sys.Desktop.MouseUp method 247
Sys element 142
Sys.HostName property 237
SysLink class 142
SysLink element 142
Sys object 30
Sys.OSInfo.Windows64bit property 50
SystemParametersInfo function 116

T
table

data, reading from 208, 209
taskkill command 111
Task Scheduler window 111
TCPATH variable 112
Terminate method 41, 42
test

debugging, instructions 181, 182
postconditions, creating 254-256
preconditions, creating 254-256
recording 15-17
recording, prerequisite steps 15
recording, steps 15-17
running, from command line 103-106
running, Master workstation used 235
running, via Remote Desktop 112, 113

Test1 function 17, 223
Test1Modified2 function 24
Test1Modified3 function 20
Test2 function 223
test accuracy

verifying 100, 101
Test Actions element 196
testClickDisabledButton function 246

TestComplete
about 7
batch-replacement symbols 60
customizable settings 20
installing 8-11
interacting, with tested applications 27-29
license types 10
logging capabilities 153
Network Suite feature 231
project, creating 11, 12
system requirements 8
tested application project item,

adding to 36-38
unexpected windows, handling 248-251
unsupported controls, using 149-151
variables 74

TestComplete license types
floating license 10
node-locked license 10

TestComplete parameter 107
testCSVDelimiter function 213
testDriveMethod function 214
tested application

closing 43-45
instances, killing 41, 42
running, from script 38-40
running, in Debug mode 45, 46
running, under different user account 47-49
settings, dynamically changing from

script 49, 50
terminating 40, 41
TestComplete, interacting with 27-29

tested application project item
adding, to TestComplete 36-38

TestedApps.CalcPlus.Run() command 48
TestedApps element 36, 37, 47, 92
TestedApps.notepad.Run() function 45
testEditControl1 function 56
testEditControl2 function 56
testErrorsCount function 162
testEvaluate function 183
testExistingVars function 74
testExpectedValues function 210, 211
Test Items project element 101
testNewVars function 74

265

test plan
creating, for regular runs 101-103

test plan runs
organizing 109, 110

test runs
synchronizing, on workstations 239, 240

testUnexpectedWindowHandling1
function 249

testUnexpectedWindowHandling2
function 250

testVariables function 74
testVerifyText function 225
text

entering, into text fields 56-58
text availability

verifying, on webpage 224, 225
text fields

text, entering into 56-58
Text property 118
text recognition method

used, for nonstandard controls text
accessing 143-145

Timeout parameter 140
timeouts

notification e-mail, sending on 253, 254
toArray method 134, 136
Tolerance parameter 167
toString method 91
ToUrl method 229
Transparent parameter 166
try block 88

U
Unexpected window 127
unexpected windows, handling

TestComplete, affecting 248, 249
TestComplete, not affecting 249-251

Unit1.killCalc function 251
Update objects option 72
URL parameter 229
UseACEDriver parameter 216
Use previous instance parameter 234
User Forms 120

Utils.Picture property 157
Utils.Timers.Add method 117, 251

V
value column 187
value parameter 67
Var1 variable 237, 239
variable values

viewing 179, 180
varying name objects

processing, wildcards used 58-61
VBArray object 136
VBScript language 14
VCLObject method 29
visualizer action 168

W
WaitAliasChild method 227
WaitForCompletion method 132
WaitForCompletion parameter 236
WaitForNetVarChange method 239
Wait method 24, 225
WaitNamedChild method 227
WaitProcess method 42, 43
WaitProperty method 139, 140
WaitQtObject method 138
WaitWindow method 44, 63, 136
WaitWinFormsObject method 138
wCalc variable 28, 125
web applications

models 219, 220
testing 217

web applications models
DOM 219
Hybrid 220
Tag 220
Tree 219

webpage
element appearance, awaiting on 225-227
screenshot, creating 228
scripts, running on 229, 230
text availability, verifying on 224, 225

Web Tree Model
settings, changing 218-221

266

wildcards
used, for varying name objects processing

58-61
Window class 60
Window method 28
Window parameter 249
windows life cycle

about 124, 125
WinFormsObject method 29
wMain method 92, 93
WndCaption parameter 28
WndCaption property 31, 77
WndClass parameter 28
WndClass property 28
wndSciCalc element 71
wndSciCalc object 71
wndSciCalc variable 17, 18
wOpen method 92, 93
workstations

data, sharing between 237-239
different configuration files, using

for 236, 237
test runs, synchronizing on 239, 240

WScript.Shell object 50-52
wText property 28, 57, 133, 141

X
X parameter 128

Y
Y parameter 128

Thank you for buying
TestComplete Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Selenium Testing Tools
Cookbook
ISBN: 978-1-84951-574-0 Paperback: 326 pages

Over 90 recipes to build, maintain, and improve test
automation with Selenium WebDriver

1. Learn to leverage the power of Selenium
WebDriver with simple examples that illustrate
real world problems and their workarounds

2. Each sample demonstrates key concepts allowing
you to advance your knowledge of Selenium
WebDriver in a practical and incremental way

3. Explains testing of mobile web applications with
Selenium Drivers for platforms such as iOS and
Android

Selenium 2 Testing Tools
Beginner's Guide
ISBN: 978-1-84951-830-7 Paperback: 232 pages

Learn to use Selenium testing tools from scratch

1. Automate web browsers with Selenium WebDriver
to test web applications

2. Set up Java Environment for using Selenium
WebDriver

3. Learn good design patterns for testing web
applications

Please check www.PacktPub.com for information on our titles

TestNG Beginner's Guide
ISBN: 978-1-78216-600-9 Paperback: 276 pages

Write robust unit and functional tests with the power of
TestNG

1. Step-by-step guide to learn and practise any
given feature

2. Detailed understanding of the features and
core concepts

3. Learn about writing custom reporting

Learning Software Testing
with Test Studio
ISBN: 978-1-84968-890-1 Paperback: 376 pages

Embark on the exciting journey of test automation,
execution, and reporting in Test Studio with this practical
tutorial

1. Learn to use Test Studio to design and automate
tests valued with their functionality and
maintainability

2. Run manual and automated test suites and view
reports on them

3. Filled with practical examples, snapshots and
Test Studio hints to automate and substitute
throwaway tests with long term frameworks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Installing TestComplete
	Creating your first project
	Choosing scripting language for the project
	Recording your first test
	Modifying the recorded test
	Saving and restoring user settings
	Creating code templates
	Delaying script execution
	Adding and removing project items
	Understanding how TestComplete interacts with tested applications
	Understanding Object Browser
	 Using Object Spy

	Chapter 2: Working with Tested Applications
	Introduction
	Adding a tested application project item
	Running a tested application from the script
	Terminating a tested application
	Killing several instances of a tested application
	Closing a tested application
	Running a tested application in the Debug mode
	Running a tested application under different user account
	Changing tested application settings dynamically from the script
	Running external programs and DOS commands
	Testing installers – running an MSI file

	Chapter 3: Scripting
	Introduction
	Entering text into text fields
	Using wildcards to process objects with variable names
	Structuring code using loops
	Creating property checkpoints
	Creating object checkpoints
	Using global variables
	Testing multilingual applications
	Working with nonstandard controls
	Organizing script code in the project
	Handling exceptions
	Handling exceptions from a different unit
	Creating framework using the OOP approach

	Chapter 4: Running Tests
	Introduction
	Running a single function
	Verifying test accuracy
	Creating a test plan for regular runs
	Running tests from command line
	Passing additional parameters to test from command line
	Organizing test plan runs
	Scheduling automatic runs at nighttime
	Running tests via Remote Desktop
	Changing playback options
	Increasing run speed
	Disabling screensaver when running scripts
	Sending messages to Indicator
	Showing a message window during script run

	Chapter 5: Accessing Windows, Controls, and Properties
	Introduction
	Choosing Object Tree Model
	Understanding windows life cycle
	Ignoring overlapping windows
	Dragging an object onto another one
	Calling methods asynchronously
	Verifying if an object has specific property
	Finding objects by properties' values
	Waiting for an object to appear
	Waiting for a property value
	Mapping custom control classes to standard ones
	Using text recognition to access text from nonstandard controls
	Using Optical Character Recognition (OCR)
	Dealing with own-drawn controls not supported by TestComplete

	Chapter 6: Logging Capabilities
	Introduction
	Posting messages to the log
	Posting screenshots to the log
	Creating folders in the log
	Changing log messages' appearance
	Assessing the number of errors in the log
	Changing pictures' format
	Comparing screenshots with dynamic content
	Decreasing log size
	Generating log in our own format
	Exporting log to MHT format
	Sending logs via e-mail

	Chapter 7: Debugging Scripts
	Introduction
	Enabling and disabling debugging
	Using breakpoints to pause script execution
	Viewing variables' values
	Debugging tests step-by-step
	Evaluating expressions

	Chapter 8: Keyword Tests
	Introduction
	Recording and understanding Keyword Tests
	Adding new actions to existing Keyword Tests
	Enhancing Keyword Tests using loops
	Creating object checkpoints
	Calling script functions from Keyword Tests
	Converting Keyword Tests to scripts
	Creating our own Keyword driver

	Chapter 9: Data-driven Testing
	Introduction
	Generating random data for tests
	Accessing specific cell in a table
	Reading all data from a table
	Using DDT tables for storing expected values
	Changing CSV delimiter and other parameters
	Driving the data without using loops
	Accessing Excel spreadsheets without having MS Office installed
	Auto-detecting Excel driver

	Chapter 10: Testing Web Applications
	Introduction
	Choosing Web Tree Model
	Using updates for latest browser versions
	Performing cross-browser testing
	Verifying if a text exists on a page
	Waiting for an element to appear on a page
	Saving screenshots of an entire page
	Running scripts on a page

	Chapter 11: Distributed Testing
	Introduction
	Setting up Network Suite and understanding distributed testing
	Copying Project Suite to a Slave workstation
	Using a Master workstation to run tests
	Using different configuration files for each workstation
	Sharing data between workstations
	Synchronizing test runs on several workstations

	Chapter 12: Events Handling
	Introduction
	Creating event's handlers
	Disabling the postage of certain error messages
	Clicking disabled controls without an error message
	Handling unexpected windows which affect TestComplete
	Handling unexpected windows which don't affect TestComplete
	Saving the log to disk after each test
	Sending notification e-mail on timeouts
	Creating preconditions and postconditions for tests

	Index

