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Introduction 

After a number of outages that clearly indicated a complete network redesign 
was in order, the vice president of a large company demanded that every 
network designer on the Cisco Global Escalation Team gather in a single 
conference room and perform the necessary work. One of the designers 
responded with what is bound to be the classic response to anyone who 
wants to nail network design down to a science. “The only problem with this 
plan,” he said, “is there will be one person drawing, and fifteen people 
erasing.” 
This story perfectly illustrates the problems we face in defining the idea of 
network architecture. If you take 16 people and confine them to a room with 
the assignment to “define network architecture,” you will have one person 
writing and 15 erasing. Clearly, then, we must begin this book with some 
definitions. 
What is network architecture? What’s the difference between architecture 
and design? Why is it an art? 

What Is Network Architecture? 
If you examine any corporate organization chart, you’re likely to see a 
number of positions labeled “Architect.” The title of “Architect” includes 
people who design buildings, people who design applications, and people who 
design networks. What can these three different disciplines have in common 
that they should all bear the same title? 
A simple point of commonality is they are all concerned with the combination 
of systems. A building consists of air conditioning, electrical, lighting, and 
various other services that must all interact in some way. An application is 
made up of many modules that must all interact, as well as any interaction 
with other applications, the hardware on which the application runs, and the 
network across which the application runs. A network is made up of layers of 
protocols, the applications that run on the network, and the network 
hardware. 
But this definition, although appealing, doesn’t withstand closer scrutiny, for 
it is too broad to be useful. The person driving a car must manage the 
interaction between the brakes and the engine, both of which are complex 
systems; is a driver an architect because of this? Clearly the answer is no. 
What else do building architects, application architects, and network 
architects have in common? 
 

Defining Architecture 
First, there is interaction with flow. For those who deal with physical spaces, 
there is traffic flow and mechanical flow. How will people and equipment get 
from here to there? How will their needs be met? How can groups of people 
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be given access to priority pathways for emergencies, or to promote the 
most efficient use of time and resources? 
For those who deal with applications and networks, the questions are the 
same, but the units in question are different. How does information move 
from place to place and state to state? How will different sorts of information 
or data be given priority access? These interactions define the technical 
requirements of a network. 
Second, there is interaction with time. For those who design buildings, it is 
crucial to know how this particular building will be used now and also how it 
might be used in the future. Will it be residential or commercial space? What 
are the possible future uses, and how do they impact the way the building 
needs to be built today? Will the building be expanded? Will it be broken into 
smaller units? 
Network designers face this challenge as well. How can you design a network 
to roll with the business punches, to take changes in stride? Will the network 
need to be expanded, broken into multiple pieces, or otherwise radically 
changed over time? Can the network be designed to adapt to changes in 
technology requirements without building up ossified layers of equipment and 
protocols, like so many layers of paint or so many useless wires running 
nowhere? 
Third, and finally, there is interaction with people. Although the concept of 
flow involves interaction with people in the design of buildings, there is much 
more than just flow. Buildings have interfaces, entry areas and exit areas, 
common spaces, and transportation hubs. Buildings also interact with people 
on other levels. What does a person feel when they walk through this space 
or approach the building from the outside? A building’s design conveys more 
than utility; it conveys intangibles such as prosperity, humility, strength, or 
subtle charm. 
It might seem to the casual observer that this is where buildings and 
networks part company, but the casual observer is wrong. In reality, 
networks also have common spaces, entry points, and transportation hubs. 
Networks impress on their customers—both internal and external—something 
about the businesses that build and use them. What impression does a 
company’s network leave? It might show that the business is conservative in 
its approach to technology, or that it risks being bleeding edge. Is it 
concerned with practical matters, using whatever works so long as it works? 
Or does this company embrace technology leadership? 
Network architecture, then, is as much about overlapping spaces as other 
forms of architecture. Networks must interact with flow, time, and people. It 
is at this intersection that the network architect works. Throughout this book, 
we examine the intersection of flow, time, and people across two broadly 
competing and more widely understood realms: business and technology. 

Get Out of the Silo 
One way to view network architecture is to look at each specific area of 
expertise, and each piece of the network, as a silo. Over here is a data 
center that seems to be the center of its own universe, with its own 

www.allitebooks.com

http://www.allitebooks.org


protocols, processes, and people. Over there is the wide-area network, 
carrying data from continent to continent. Each of these “places in the 
network,” seems to be a separate entity, and it’s tempting to see them as 
little self-contained worlds that touch only at the edges—the “interconnects.” 
The world of network engineering is largely to blame for this perception of 
networks being places with interconnects; we ride the pendulum between 
centralization in the data center and decentralization through local 
processing. As centralization sets in, the data center takes central stage in 
whatever form it might be called. Centralization is the most logical idea, 
devices connected to the network will be thin, and the world will be happy. 
This almost never works as promised, so it is followed by a wave of 
decentralization. 
Just as social structures go through pushes for centralization (no one has his 
or her own place to work, all spaces are open spaces) and decentralization (if 
you want productivity, give each person his or her own office), so, too, 
networks go through these phases. What’s the solution to these swings? 
Get out of the silo. 
A network is not a single thing; it is made up of many smaller parts. A 
network is also not a lot of smaller parts with simple and easy-to-find 
interconnects. It is a whole system with complexity that rises above each 
individual piece. Part of the challenge of this book is to combine these two, to 
work in the intersection of the parts and the whole, and to understand how 
they relate to one another and to the businesses they support. 
 

Why Is Network Architecture an Art? 
Why is network architecture—the intersection of time, flow, and people—an 
art? This is the simpler question to answer, and the answer can be given in a 
single word: elegance. 
Networks not only need to work well now, they must also provide a 
foundation for business and transform business, provide boundaries for 
information and people, and yet enable collaboration. To do all these things, 
network designs must go beyond mechanical algorithms, and even beyond 
the uncertain heuristic, into the world of abstract concept, mathematical 
theory, and raw power. 
Interaction with people is the clearest point where network architecture 
becomes an art. What is the perception of the network within the company? 
What is the perception of the technology stance beyond the company? If 
competitors see your network design, will they wonder why they didn’t think 
of it, or just wonder why it works at all? If a potential partner sees your 
network design, will that partner see the future or the past? 
All these things contribute art to the world of network architecture. 
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A Look Ahead 
This book is laid out in several large sections. The first two 
sections, Chapters 1 through 3, examine the interaction between business 
needs and network design, the type of business information a designer needs 
to consider, and how to collect that information. It looks at various business 
challenges and how network design helps address them. Then, Chapter 
4 discusses different design models. 
The third section, Chapters 4 through 10, discusses concepts such as 
modularity, resilience, security, and management. Here we cover various 
ways of conceiving of a network. One of the most important problem-solving 
skills an architect can develop is the ability to use frameworks, or conceptual 
models, to understand the way something works. Virtually everyone is 
familiar with the seven-layer model of networks; these chapters provide you 
with other models and frameworks that may prove as—or more—useful over 
time. 
The fourth section, Chapters 11 through 14, dives deeper into the structure 
of a network by covering various topologies—going beyond the normal rings 
and meshes used in most networks. It looks at network virtualization and 
overlay networks, routing and the design implications of routing choices, and 
network complexity. 
Finally, Chapters 15 through 18 bring together the concepts of business 
requirements, design framework, and network structure in considering 
several specific design challenges. This section addresses the network 
changes brought about by increasing user mobility, working with “the cloud,” 
software-defined networking, and changes to data center structure and 
usage. 
 

A Final Word 
For those readers who are technical, this book might feel like it is too much 
about business and not enough about technology. For those who are 
approaching network architecture from a business perspective, the opposite 
is going to seem true—there’s too much technology here and not enough 
business. In reality, there’s probably too much of both (at least it seems so, 
judging by fingers numb from typing), or perhaps there’s not enough of 
either. This is going to be the nature of a book that covers such a broad 
cross-section of ideas that are each very deep in their own right. We’ve done 
our best to cover every topic in the world of network architecture with a 
depth that will enable you to understand the outlines of the problem and to 
know the right questions to ask. 
Remember the questions. 
The questions are really the key to fitting new business problems, and new 
technologies, into the world of network architecture. 
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Part I: Framing the Problem 
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Chapter 1. Business and Technology 

Most businesses rely on at least one network for their smooth, efficient 
functioning. A small company that takes credit cards relies on the network or 
Internet to get purchases approved and recorded. Even a cash-only company 
relies on the bank’s network when it deposits its money. Networks have 
become essential parts of business infrastructure, critical to business 
operations. Who bridges the gap between business and technology? The 
same person who bridges the gap between a family’s needs and the design 
of a new house—the architect. A network architect develops and implements 
technical solutions to business problems. 
This reliance on the network makes the job of the network architect more 
difficult in some ways and easier in others. It is more difficult in part because 
technology is changing. We are in a time of fast development in networking 
equipment and technologies. Where do you jump into that stream? Choose 
the wrong point and you may end up limiting the business functions down 
the road. Requirements change, as new technologies bring about new ways 
of working, and it is difficult to design for both today’s needs and tomorrow’s. 
On the other hand, the job of a network architect is easier because creating a 
business-centric network provides some parameters to design within. One 
technology may suit the business requirements better than another, making 
the decision process more straightforward (and more business relevant). But 
regardless of whether it makes the architect’s job easier or more difficult, 
increasing reliance on the network means that good network architecture is 
critical to business success. 
In this chapter, we discuss what information you need to determine business 
requirements, and how to gather that information. In later chapters, we’ll 
address how to use the information to tailor your network design to the 
business requirements. 

Note: In this book, we use the terms “business,” “enterprise,” and 
“company” interchangeably; the concepts covered under these terms apply 
equally to small enterprises, large enterprises, educational, and public 
agencies. All these entities are in the business of providing something to 
someone and want their networks to support or improve their ability to do 
that. 

 

Business Drives Technology 
Before an architect designs a building, he or she needs to know something 
about how it will be used. Will it be a professional building or a home? If it’s 
a home, what are the needs of the family that will live there? How many 
bedrooms, bathrooms, and common areas will they need? Are there any 
special requirements, such as handicap adjustments? Likewise, before you 
design a network you should learn about the business functions it will 
support. Networks don’t exist in a vacuum; they exist to perform a service, 
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connecting people and things together. This can be as mundane as checking 
your friend’s online status or as sublime as doctors assisting a surgery on a 
child’s cleft palate from the other side of the world. From an operational 
standpoint, a well-designed and well-run network has the capability to 
transform how an enterprise does business. It helps you function internally 
as well as reach customers—and be reached by them—quickly, efficiently, 
and optimally. 
Architects rely on business to drive the network technology, choosing the 
technologies and design patterns that will best fit the business requirements. 
But saying, “Let business drive technology,” is easy. Actually doing it is 
another problem entirely. Determining business requirements isn’t always 
straightforward; people don’t always know or say exactly what they want, 
and forecasting for the future is challenging if you are in a constantly 
changing industry. Many IT people shrink from the thought of becoming 
“business-y,” but to create a network that functions as a business enabler 
rather than a cost center, you must start with the underlying business goals 
and build on that. You must be able to ask the right questions about 
business—and understand the answers well enough to translate them into 
design decisions. When you have a good understanding of the business 
environment, you are able to choose technologies that benefit the company 
and design networks that move it forward. Plus, you’re much more likely to 
get a project funded if you can solidly align your design with business 
initiatives! So, the first step is to learn something about the business. 

The Business Environment 
To learn about a company, you need to look at both the company itself (the 
internal environment) and the market in which it operates (the external 
environment). Understanding the internal environment will give you the 
ability to determine what technologies will help the business thrive, and 
design the network to support those. Looking at the external environment, 
the industry in which the business operates, will allow you to make an 
educated guess about future changes and design the network to support 
those also. Understanding the competitive landscape and evaluating the 
company against others in the field gives you a good idea of where the 
industry is headed and what capabilities the business will need in order to be 
competitive. 
If you are involved in your company’s management or business decision 
making, you probably already know most of the information you will need. 
You may want to scan this section to make sure you are taking everything 
into account. If you are a network engineer, consultant, or architect, the 
following sections will help you start the process of gathering and 
understanding business requirements. 

The Big Picture 

A good place to start gathering business intelligence is with a high-level 
overview of the company, its goals, issues, and future direction. If you’re 
designing for your employer or a long-time customer, you probably already 
have a good idea of what the company is about; otherwise, you will need to 
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do some research. Given that architecture happens at the intersection of 
business and technology, you’re going to need information from both sides of 
the house to really understand the challenges ahead. 
Begin with basic information about the networking environment. How big is 
the company—how many users are connected to the network, how many 
sites, and where are they located? Answering these questions will give you a 
basic overview of what the network looks like right now. A corporate website 
might give you basic information about company locations and number of 
employees, but you will have to find out how large the network is from 
internal, rather than external, sources. 
To learn about enterprise goals and future plans, you will probably need to 
look outside of IT. All too often, the IT staff learns about a business initiative 
only when they’re asked to make last-minute changes to the network! Find 
out the corporate goals and business strategies. Look for vision statements. 
Learn where the company is investing its resources—its money, people, time, 
and technologies—because that shows what is important to them. Look for 
information on business initiatives planned or in progress, and ask about the 
drivers for those initiatives. 
Some good sources for this information are the following: 

 Upper management and executives: They are the ones who 
determine the company’s goals and create strategies and 
initiatives to meet them. Although this is a great place to start, we 
understand that, depending on your role within the organization, it 
might be difficult to identify the right person and have a business-
related conversation with them. 

 Line of business manager: Managers responsible for a specific 
corporate business unit may be more accessible. Their 
departments consume IT resources as they work to achieve the 
company’s initiatives and are frequently very aware of where IT 
changes could help them. 

 Corporate website(s): Vision and goals statements are 
frequently on the website. 

 Press releases and articles: Many times, initiatives, 
acquisitions, mergers, or divestments are announced publicly 
before they are widely known internally. I once told an IT manager 
about an article quoting the company CTO concerning an 
enterprise-wide video initiative. This was a done deal in the CTO’s 
mind, but a complete surprise to the IT manager. If you are 
involved in network design, keep on top of what your company (or 
your client) says publicly. 

 Third-party analysts: Websites and papers from groups that 
evaluate and report on companies can add valuable insights. 

After you know the basics, gain an understanding of the future. For the 
internal environment, much of this is going to relate to what people expect 
from the technologies they interact with to do their jobs. People are able to 
do so much from their home computers, smartphones, and tablets. 
Employees expect that a corporate network will be even faster, more 
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powerful, with more capabilities. It can be a rude awakening when faced with 
a company that hasn’t kept pace, and whose network reflects outdated 
processes and technologies. It can even cost you employees as more people 
expect and place a high value on having the technical tools to do their jobs 
easily and well. 
For the external environment, turn your focus to customer expectations. It is 
likely that the way you interact with your customers has changed in recent 
years in response to changes in technology and expectations. For instance, 
how many times have you not bought something because the website was so 
slow or poorly designed? Many studies have shown that even small increases 
in website delay result in a significant loss of sales because customers have 
come to expect quick service. If you learn how and where changing 
expectations affect the company, your network design can provide the 
capability to meet those expectations. 

The Competition 

The competitive landscape has changed for most companies in the past 10 to 
15 years; gone are the days when they were competing in only a narrow 
geographic range. If your local store doesn’t have what you want, you can go 
online and order it without much regard for where it’s coming from. If a 
service doesn’t require someone’s physical presence, it can be provided by a 
competitor anywhere in the world (given the right network setup, of course). 
Because business is so global, it can be affected by global events, such as an 
earthquake or volcano halfway around the world. The ability to move with 
changes in the market is now a matter of gathering, processing, and 
understanding market data, then making changes to business plans and 
products very quickly. Every company is now an information company, no 
matter what other service it might offer, or what product it might make. 
When you understand the competitive forces facing a business, you can build 
agility into the network to minimize the effects of events outside the 
business’s control. 
Use the same sources as before, but ask different questions. 

 Who are the company’s biggest competitors? 
 How has the competitive landscape changed in the past several 

years? 
 Which new companies have entered the field and which have 

dropped out? 
 What has your business done in response to those changes? 
 How and where does the company interact with the information it 

needs to survive? 
After you have this information, do some research on the competition. Find 
out how they are performing—are they growing, shrinking, or pretty stable? 
Are they profitable or struggling? If possible, find out something about the 
technologies used by competitors. Understanding your competitors helps you 
to understand what the future may hold for your company. It will also give 
you a basis for explaining how your design will help the business compete. 



The Business Side of the Network 
Notice that we have not yet mentioned anything about assessing the 
company’s existing network from a technology perspective. Learning about 
the enterprise itself gives you a standard against which to measure the 
overall design. Until you know what the network should be doing, you don’t 
know how well it’s meeting that goal. 

Technologies and Applications 

Take a look at the technologies that contribute to business success and 
determine what other capabilities or technologies are needed or planned. 
Look at the applications being used. For instance, how does the company 
communicate? Does it rely on email, voice, or video? Are virtual desktops 
used? Are there a lot of remote users accessing the network? What 
applications are most critical for the business to do its job well? Are these 
technologies filling the enterprise’s needs now, or do they need to expand or 
add capabilities? You may find that you need to recommend different 
technologies, which may lead to different business processes, which will, in 
turn, put different demands on the network and on your design. 

Note: The term “applications” is used here and throughout the book in a 
broad sense to encompass those network-wide high-level applications that 
support the technologies in use.

 

For each application you find, ask questions such as the following to 
understand the requirements it places on the network. 

 How well is the application working today? Are there any issues 
with slowness, or are there other things that might prevent the 
application from running optimally? 

 How much data does it produce, and what type of data is it? 
 Where does the data need to go? How fast does it need to get 

there? How important is consistency in the delivery of data? 
 Does the application’s traffic need to be separated from other 

data, or can it be mixed? 
 Where in the life cycle is the application? Is it just installed, in 

midlife, or in the process of being replaced? 
 What of the future requirements for those applications? How long 

will they be in use? 
These types of questions allow an architect to determine just how far the 
network should be driven to support each application. The answers may lead 
to technical recommendations for changes in things such as quality of 
service, speeds and feeds, network topology, and virtualization. An important 
application that will soon be replaced might not merit a large scale redesign, 
whereas an important application that is just being deployed likely would. 



Network Evaluation 

You will want to evaluate the current state of the network. Depending on how 
familiar you are already with the environment, this might be as exhaustive as 
a complete assessment, or it might simply entail sitting back and taking a 
bird’s-eye view of the network. You may already have a good idea of which 
portions of the network will need changing; if so, concentrate on those. But 
don’t forget to gather information about all parts of the network that might 
be affected by a changing design or a new application. 
In your evaluation, be sure to include three things: 

 Profile of the current network 
 Profile of the current support staff 
 Profile of the current network management, monitoring, and 

support methods 
It obviously makes sense to look at the network, but you might be wondering 
why you should bother to examine support staff and the network monitoring. 
The answer is that these may have an impact on the new network design. 
You may need to tailor network design to the company’s ability to support it. 
You may need to recommend changes or additions to the current staff, or 
training for them. More than likely you will need to recommend changes or 
additions to the network management tools or processes. People have been 
trying to perfect network management for as long as there have been 
networks, yet there is almost always room for improvement. 

The Network’s Customers 
The interface between the network and people is as important as the 
interface between any specific application and people. It’s part of the time, 
flow, and people triad that’s so important to going beyond design into the 
realm of architecture. 
The “customers” of the network include employee end users (internal users) 
as well as customers of the business itself (external users). There are several 
things you need to learn about the network’s customers in general. First, find 
out who they are (in general terms, not names and addresses!). Are they 
centrally located or widespread? How does the business interact with them, 
and how would it like to interact with them? How does information flow 
between users and systems? How hard is it for them to use the network? It’s 
always easier to toss problems like this into someone else’s court: “Data 
access is the responsibility of the applications folks”—but architects shouldn’t 
participate in such games. Instead, your design should be conscious of users’ 
willingness to interact with technology and should build around their 
expectations and desires. 

Internal Users 

When describing the internal company users, you need to consider both user 
endpoints and the people themselves. The front line for IT within an 
organization is the devices users interact with to reach the data they need to 
do their jobs. Desktops have different requirements than tablets do, and the 



location of the endpoints (static, mobile, or both) will determine the network 
design needed to support them. When learning about user endpoints, ask 
questions such as these: 

 What computing environment are the users accustomed to? How 
well is this environment serving them and the business? 

 Is there a need for real computing power at the user’s end of the 
network, or would tablets or thin clients suffice? An increasing 
number of companies are moving to thin clients due to the easier 
management and increased security that they provide, but this 
means they’ll need a network that can deliver the type of service 
these clients require. 

 Are there proprietary endpoints, and are endpoints static or 
mobile? For example, hospitals have computers with proprietary 
applications on carts that might roam throughout the entire 
hospital. They must always be able to reach their servers and data 
while maintaining the security of patient information. Retailers 
might have static proprietary endpoints running proprietary 
applications, or mobile tablets with a point-of-sale application. All 
these require different types of network support and perhaps 
different network security solutions. 

 Is there any compliance checking needed for endpoints to ensure 
they meet company policies? 

Wise network architects never forget the “people” element of network 
design. Making changes to a network, or introducing new technologies, 
involves some nontechnical risks. New technologies bring a change in 
established processes, which may entail a change in behavior for employees 
and customers. A different network design might require the IT staff to learn 
new skills or support it differently. Change can be scary, and the prospect of 
scary change can derail a project, so address this early and often. Learn the 
current way things are done, and discuss with users how things will change. 
Include training for IT staff and users in your plan. Help everyone affected 
understand how the advantages to them and to the business will make the 
risk worthwhile. 
To this end, it helps to have both a technical and a nontechnical profile of the 
users themselves. Some of the questions the architect can ask in this space 
include the following: 

 Are the people who use this network interested in change, or 
resistant? If a new system is rolled out, will they take to it quickly 
or take months (or years) to develop an interest? 

 Who are the influential users in this company, and who are the 
power users? These are the people that can tell you what changes 
are really needed. And these are the people you will want to 
include in a pilot of any new network technologies. 

 How do users typically manage their data? Do most users take 
responsibility for their own data? You may need to design in some 
sort of network-based backup for users who do not protect or back 
up their data themselves. 



 Do the users travel extensively or often work from home? How 
important is it to replicate the “in office” work environment while 
users are away from their office? 

 How do people within the company communicate with each other 
and with external partners? How well is this working for them? 

External Users 

The next thing you need to learn about is the company’s external users, 
those who access enterprise resources from outside the corporate network. 
There are typically two types of external users: business partners and 
everyone else. Many companies have a business relationship with partner 
organizations and share a network component with them. Partner users 
might access applications and data held within the company, and vice versa. 
For example, an HVAC maintenance supplier might need to securely reach 
device management servers, or a food services supplier might need to check 
inventory. Access is sometimes given to specific servers on the inside of the 
network, but more frequently to a DMZ device with controlled access to the 
inside of the network. A network architect would evaluate partners’ 
connectivity needs in order to choose the appropriate type and bandwidth, 
and to build in the appropriate security. 
“Everyone else” includes those who access company resources but don’t 
maintain a constant connection with them. They may have only an occasional 
business relationship with the company, such as people buying from an 
online reseller. Or they may be long-term customers who regularly access 
company data. The important thing to learn in this case is what types of 
users they are, how the company wants to communicate with them, and 
what it wants their experience to be. For instance, a high-end investment 
firm would likely want to maintain a high level of personal touch with its 
customers, so you would probably include video conferencing and a lot of 
personalization of customer experience into the design. Calls into a contact 
center would be quickly routed to an expert (or the correct auto attendant, at 
least). In contrast, when you or I interact with our bank, we probably go 
through a standard web portal, or our calls are queued until an agent is free. 
Different types of customers require different types of services from the 
network, and thus different network designs. 

Guest Users 

Guest users compose a third category that falls between internal and 
external users. Guests usually connect to the network, but their access to 
enterprise resources is either controlled or denied altogether. A contractor 
working onsite may be allowed to log in to certain portions of the network, 
and may be allowed to perform only specific procedures or access specific 
resources. Their laptops or tablets may need to be checked for compliance 
with corporate policies before being granted access. Users who are true 
guests are typically sent directly to the Internet. If you’re designing for guest 
users, you need to know what the company policy is toward contractors and 
guests. Will it be enough to use access control lists (ACL) to protect the 
corporate network, or will some type of virtual separation (such as Virtual 



Routing and Forwarding [VRF]) or a Guest VLAN be needed? A more scalable, 
dynamic security structure will be able to identify users and place them in 
groups with the correct access level. 
This might seem like a lot of information to gather and, in truth, it may not 
all be needed at once. The amount and type of technical and business data 
required will depend on why you need it. What is enough for a specific 
project would differ from what is needed to set the technology direction for 
the entire company. In the long run, keeping abreast of the overall business 
and network environment will give you the knowledge to handle both specific 
initiatives and the ongoing interaction between business and technology-
focused staff. 

Technology Drives Business 
We just spent the first part of this chapter making the point that business 
should drive design. Virtually every network designer in the world knows this 
concept. What separates the good from the great is turning the question 
around. 

How does design drive the business? 

The triad of time, flow, and people make it obvious that architects should be 
asking this question. Not only does the flow of information impact the way 
the network needs to work, the way the network actually works impacts the 
way information is able to flow. Over time, the network’s abilities and 
limitations affect what the company is able to do on that network. How 
people are able to interact with and leverage the network affects their 
performance, and thus the company’s. So, what question can we ask here? 

If I choose this technology, or if I use this design paradigm, what impact 
will it have on the business in the future? 

Quick, choose a new network WAN. If you answered “an L3VPN service,” 
you’re on the same page as a large majority of network designers (and 
service provider salesmen). It’s cheap and it’s (relatively) easy, sure, but 
what are the future effects of leasing a WAN based on an MPLS service from 
a provider? If you can’t think of any, then you need to think harder. What if 
the business wants to provide a virtual topology for four or five business 
units? What is the added complexity of providing such services over a service 
that’s already a virtual overlay on top of a service provider’s network? Will it 
drive up the ultimate cost? What about the service level to the business? 
How about this: name a simple way to save money on network operations. If 
you said “outsource operations,” you’re on the same page as some 
companies. But again, you need to ask what constraints outsourcing might 
impose on the way the business operates. Specifically, consider the time 
element in network architecture. What happens, for instance, if the company 
decides to enter a new line of business? How quickly can you negotiate a new 
contract with the outsourcer, spin up the network changes, put them through 
an acceptance test, and get them into production? A crucial point you must 
remember when outsourcing is that you’re assuming your business goals will 
match those of the outsourcer, particularly in terms of new services. An 



architect should not only think about these questions, but press for 
acceptable answers. 
Is standardizing the end systems with which users can attach to the network 
a net positive, or a net negative? It certainly simplifies administration in 
many ways, but what are the negative effects? Assuming all hosts (or any 
other class of device) are the same can actually make it more difficult to 
replace these devices when the need arises. This assumption can also lead to 
a narrowed view of network security, leaving dangerous holes that simply 
aren’t visible to network managers. 
Thus, in every situation, the architect needs to go beyond asking how to 
design the network to fit the business. It’s just as important to ask how the 
network could constrain the business, or how the presuppositions built into 
technical choices made today can backfire into bad business choices in the 
future. 
Chapters 2 and 3 discuss how to apply the business information gathered in 
this chapter. They look at the common problems of designing for an ever-
changing network and using network architecture to improve business 
operations. Further chapters of the book go in depth into the models and 
frameworks for a business-driven design. 
  



Part II: Business-Driven Design 
  



Chapter 2. Designing for Change 

Chapter 1 discussed some of the business knowledge you need when 
designing a network. This chapter examines how to apply that knowledge in 
creating the network blueprint. 
We all understand that typically families grow and shrink as children are 
born, mature, and leave home—but you can’t assume that every family will 
follow the same pattern. Some will have different needs. Children could 
return home, perhaps bringing their own children in tow; aging parents may 
need a place to live for the final years of their lives; death or divorce may 
shrink the family; or, as in older times, the family may spread out into 
several houses on one large piece of property. If, like most of us, you live in 
a house that was designed for a limited number of family possibilities, you 
might find yourself needing to make structural changes to your home, or to 
move to a larger house, a larger piece of property, or even move to a smaller 
house or a smaller piece of property. 
The life cycle of a company’s network is similar in many ways. Although we 
all hope our companies will succeed and grow, the reality is this isn’t always 
what happens in real life. Those that do grow might experience organic 
growth from within or might expand the business through mergers and 
acquisitions. Those that decline might experience an organic decrease in 
network use, or the company might divest itself of portions of the business. 
The pendulum of network centralization versus decentralization also leads to 
structural network changes, as does the swing between insourcing and 
outsourcing. Although you can’t foresee or design for every possibility, you 
can strive to create a design that meets the current needs, yet is flexible 
enough to accommodate changes down the road. 
Three tools are your friends when designing and managing a network in the 
process of change: 

 Network management 
 Modularity 
 Simplicity 

Other chapters in this book will discuss each of these three tools in depth; 
this chapter examines common business-related causes for changes in 
network design and outlines ways to address them. 
  



Organic Growth and Decline 
Organic growth or decline comes from a company’s normal business 
activities, rather than through acquisitions or divestments. The organic 
growth or decline of a business could be analogous to a family’s increase in 
grocery bills as their children grow older and eat more. Unless you pay close 
attention to your budget, this increase can be difficult to notice and plan for 
accurately, because it is gradual. It might seem like your grocery bills have 
doubled overnight. Similarly, as businesses add users or applications over 
time, the load on the network increases gradually. Unless you are watching 
carefully, it can seem like the network needs have changed overnight. 
Changes in usage patterns can also cause organic change in network 
requirements. For instance, you might have deployed a wireless network 
solely for guest use, and then find that your employees are using it for their 
personal devices. Many companies are giving their employees laptops rather 
than desktop computers, and then find that employees don’t bother 
connecting them to the wired LAN. Wireless printers have left the home and 
are becoming popular in the enterprise. This leads to growth in wireless 
network usage. In another example, increased employee mobility might lead 
to more remote users connecting via VPN, which could overload your 
Internet connection and also your VPN termination device. Both of these 
patterns could lead to a decline in usage of your wired network infrastructure 
as fewer devices are connecting to the wired LAN. 
Good network monitoring and management can alert you to organic growth 
or decline and allow you to proactively adjust your design. You need to have 
good baseline measurements for each portion of your network and 
comparative measurements over time. 
Another type of network growth or decline occurs as sites are added or 
removed from the network. This is much easier to see because the network 
team is (hopefully!) involved when an office is added or shut down. The 
effect on your overall network may be a little less apparent, however. For 
example, suppose you have the network shown in Figure 2-1. Your company 
is growing, you’re adding sites, and things are going along fine, when one 
day a link goes down. And routing never converges. 

 
Figure 2-1 Organic Network Growth 



This might seem like a problem with the hub router being undersized to 
handle the load, but it is actually a design problem. If the organic growth had 
been measured and planned for proactively, the network might not have 
failed. Network monitoring that included routing counters such as Shortest 
Path First (SPF) runtimes could have warned you that routing was 
approaching a critical limit, thus giving you time to make changes in the 
network. 
Modularity is an important tool when you are experiencing network growth or 
decline. A modular design breaks the network into pieces that can easily be 
added or removed as requirements change. It aids in proactive planning by 
setting limits on module size, based on testing, best practices, and 
documentation. Then, with good network monitoring and measurement, the 
need for new modules can be predicted and planned. In the case of this 
example, when the topology approached a predetermined size, the company 
could make an intentional decision about how to respond—perhaps to build a 
second module such as in Figure 2-2, or increase the size of the hub router. 

 

Figure 2-2 Modular Design 

Design simplicity is another important tool. Some level of complexity is a 
given in networks of any size, but the more logical simplicity you can build 
into the network design, the better you can respond to changes in network 
requirements. Think of the 2:00 a.m. test—if you were awakened in the 
middle of the night because of a network problem and had to figure out the 
traffic flows in your network while you were half asleep, could you do it? 
During times of organic growth or decline, you might need to add or remove 
portions of your infrastructure. A logically simple design will help you better 
understand and account for the effects these changes will have on the 
network as a whole. 
Modularity and the trade-off between network simplicity and complexity are 
such critical design concepts that we have devoted separate chapters to 
them later in this book. 



Mergers, Acquisitions, and Divestments 
Mergers, acquisitions, and divestments can be very disruptive to the 
network. When two companies merge, or when one company acquires 
another, their IT infrastructure must be joined in some way. Sometimes each 
original company maintains a portion of its network, with an area joining it to 
the larger company, and sometimes one company is brought completely into 
the fold of the other company. During divestment, a company sells or closes 
down a portion of its business, or spins it off into its own entity. This requires 
separating a part of the network and accounting for any services it may have 
provided to the parent company. 
Mergers and acquisitions by definition involve the joining of two companies, 
and thus two different IT infrastructures—LAN, WAN, communications, data 
centers—which often reflect two different design philosophies. Frequently, 
there are different routing protocols, with the attendant decisions to be made 
about migrating to a new protocol or route redistribution. You will likely need 
to work out a myriad of differences, such as spending priorities, degrees of 
redundancy, equipment vendors, change control, and technology deployment 
processes. IP addressing issues can complicate network mergers. You might 
find IP address overlap, or just a difference in addressing philosophies, such 
as one company that always uses a /24 mask and another that tailors the 
mask to the subnet size. Readdressing entire sections of a network becomes 
complex and time consuming. In a best-case scenario, both networks are 
well documented and have good, up-to-date management data. The authors 
have never actually experienced this best-case scenario, though. 
Good management provides information about the current state of the 
networks to be merged, so that proper planning can be done. Checking the 
documentation and filling in the gaps are among the first things that need to 
be done. Be prepared to conduct a network assessment if needed. Then 
compare your findings to current best practices and design standards to 
determine where changes need to be made. Don’t minimize the personnel 
issues that a merger or acquisition brings, because there is also a need to 
join two different IT groups that each has a stake in its own network. 
An acquisition typically involves bringing the new company in line with the 
existing standards and practices of the acquiring company. In a merger, you 
will hopefully be able to draw from the best portions of both companies’ 
networks to create joint standards and design practices. You might find that 
each network has some strong points and some weaker points. Both 
networks must be in line with company standards, and in a merger that 
might require negotiation of what those standards will be, with a creation of 
a new set of standards for the merged company. Find out the business 
requirements for the merged network. Let the requirements inform the 
decisions about how each portion of the network will continue to operate and 
what services or servers will be pulled into the larger company. 
Modular design is a great help, especially during divestment, because 
separating a module from the rest of the network is much easier than 
redesigning the entire network. Modularization allows the network to be 
broken apart and reformed with new locations or regions, and so on. In a 



merger or acquisition, where one portion of the network needs to be brought 
in line with standard best practices, modular design reduces the amount of 
new design work necessary. The standards are already in place, and the 
effort then becomes one of bringing the new network in line with those 
standards. The goal is to use the same design everywhere—a “cookie cutter” 
approach—so there is no need to spend a lot of time and effort on one-off 
design problems. Additionally, modular design aids in the budget planning for 
network mergers and divestments—because you have a pretty good idea 
what the network will look like, you can determine fairly accurate budgetary 
costs for current and future functions. 
Simplicity of design aids in mergers and acquisitions by reducing the amount 
of time it takes for IT staff to fully understand all components of the network. 
This understanding will help necessary changes to the network go more 
smoothly with fewer problems. It helps in designing those changes to the 
network so that they provide as much benefit and create as little downtime 
as possible. During divestments, simplicity makes removing pieces of the 
network much easier. It also makes troubleshooting easier by allowing a 
faster understanding of how the network is set up. 

Centralizing Versus Decentralizing 
The centralizing/decentralizing game has always been a series of pendulum 
swings. For a while, all servers and services were hosted in the data center; 
then they were all moved out to individual sites, and currently they are being 
brought back into data centers again. The increased bandwidth of Internet 
and WAN links allow the progression to extend even further to include 
outsourced, cloud, and hosted solutions. Changes in the location of network 
services have tremendous implications for network and data center design. 
When servers and services are centralized, it becomes critically important 
that all users are able to reliably reach their data centers. This means that 
company locations require connections of sufficient bandwidth and reliability 
that users are able to perform their functions. These might be direct 
connections, WAN connections, or tunnels over the Internet, depending on 
the business requirements. Critical sites will require redundant connections; 
other sites may need just a primary link and a lower speed backup link. The 
LAN design becomes focused primarily on optimizing user traffic to and from 
the WAN edge. Two exceptions to this are IP voice traffic and wireless 
control. You are likely to see voice traffic flows between users within the LAN, 
although the voice control is still typically centralized. As wireless 
deployments become denser, the trend is shifting away from centralized 
controllers to either wireless controllers on individual access switches or site-
based controllers. 
Tremendous advances are being made in data center design. New switches 
are being developed that are faster and tailored to data center needs. New 
technologies are being developed to deal with an unprecedented, ever-
increasing amount of data and number of servers. Data center design is a 
topic that is critical enough to have a chapter of its own in this book—
Chapter 18, “Data Center Design.” For the purposes of this chapter, we 
would like you to understand the importance of designing your data center 



with as much flexibility as possible, so that it is capable of robustly 
supporting your business for the future. A modular design that is simple to 
understand and implement will help you as changes develop in data center 
design. 
Deciding to use hosted, cloud-based, or outsourced applications, services, or 
data center infrastructure will change the WAN and/or Internet requirements 
for each of your locations. Instead of user traffic being directed to the data 
centers, more user traffic will be directed to external locations. Whereas 
hosting sites and outsourced services may have a connection into your WAN, 
cloud-based solutions are usually reached over the Internet. If you centralize 
Internet access, WAN traffic may not change much, but Internet traffic will 
increase. Enough cloud usage may lead to the return of local Internet access 
at each site. If you’re outsourcing some of your applications, servers, and 
storage as a backup or Disaster Recovery (DR) to your production data 
centers, there must be a good connection between the production and the 
outsourced data centers to support timely data replication. Outsourced 
services such as network monitoring usually require a VPN to the monitoring 
company from every site being monitored. 
Services that provide monitoring and management can be a big help in 
keeping your network stable and reliable, especially for small to medium 
companies without 24-hour IT staff. Cloud-based applications can help make 
your users more productive by providing anywhere/anytime access to those 
applications without tying up company resources to manage and maintain 
that constant uptime. Co-located (co-lo) or multitenant data centers have 
many qualities that are attractive to businesses as well. The vendors in 
essence divide the cost of setting up, equipping, and running multiple data 
centers among all their customers. This lets each individual company trade 
the upfront capital expenditures to build high-speed, redundant data centers, 
and the operating expenses to operate and maintain them, for the recurring 
expense of leasing those services. One big caveat around outsourcing any 
functionality is that this does not remove your responsibility for the security 
of your data and applications. Carry out your due diligence when selecting a 
co-lo or services provider. Find out how they protect your data at rest and in 
motion, what hardening they have in place, and what their track record is for 
response to attacks. 
Good network management data can provide the measurements required to 
accurately judge the cost of making a change in network services or network 
operations. It can help you compare your current performance against the 
projected future performance after the change. As you centralize servers and 
services or move them to the cloud, network management data can also give 
you a good idea of the bandwidth and other access parameters needed to 
optimize results. Monitoring after a network change can alert you to any 
needed future adjustments. 
Simplicity in network design reduces the time required to move, add, or 
change connections and equipment. It also reduces the background time 
required for staff to understand and consider network policies and security 
when making a change to services. 



For in-depth discussions of the topics covered in this chapter, see the 
following chapters of this book: 

  Chapter 6, “Principles of Modularity” 
  Chapter 7, “Applying Modularity” 
  Chapter 10, “Measure Twice” 
  Chapter 14, “Considering Complexity” 
  Chapter 18, “Data Center Design” 

  



Chapter 3. Improving Business Operations 

Effective network architects must be more than technical—they must have a 
foot in the business world also. Chapter 1 reviewed some of the business 
knowledge required when designing a network. This chapter examines at a 
high level how you can use that knowledge to create a custom network 
design that helps support or even improve the way the company does 
business. It discusses three common areas where network design and 
business operations intersect and impact each other: 

 Workflow 
 BYOD 
 Business continuity 

Understanding the data flows and business processes used within these three 
areas of your business will allow you to create a good technical solution to 
support the company, and also to explain that solution in terms of how it 
answers business needs and enables the business to improve. 
Subsequent chapters in the book build on this high-level overview to provide 
detail on network technologies and design choices. 

Workflow 
One of the main criteria people use in evaluating a house is traffic flow. In 
designing a house, architects have to consider how it will be used, which 
determines how traffic will flow, which in turn should influence the design 
decision. For instance, a house used for frequent entertaining would need 
good, open paths between public areas and between the kitchen and public 
areas. On the other hand, a young family might want quick access between 
the kitchen and the children’s play area. The flow within the kitchen can be 
just as important as the flow between the kitchen and other rooms—the path 
between the refrigerator, stove, and sink is described as a “magic triangle,” 
which should be no more than a few steps along each side. The right house 
design can make its occupants’ lives easier and improve communication 
among the occupants. 
Similarly, network design should take into account how traffic needs to flow 
within the company—who talks to whom? What applications are in use? 
Where is quick access needed? The right design can make business 
processes easier and improve communication within the business. For this 
reason, you need to have at least a high-level understanding of your 
business processes and workflows before beginning the network design. 
Additionally, it will help to know whether any changes in process are planned 
or being considered. 
Take, for example, the case of a retail company with many fairly small 
stores. Sales information is uploaded to a couple of data centers, and stock 
information is downloaded from these same data centers. On the surface you 
might think that a hub-and-spoke WAN would serve this company well, with 
hubs located at the data centers and perhaps the company headquarters. If 



the status quo is fine, the surface might be an appropriate place to stay. But 
further investigation might reveal the potential for an improvement in 
processes, leading to a change in workflow and thus a different network 
design. Consider the case of a company that sells some specialty items. It is 
expensive to train and place experts on every item in every local store. 
However, if staff could quickly locate someone with the needed expertise and 
get them on the phone with a customer, sales would likely improve. Adding 
video would let the expert demonstrate how to use the items, giving terrific 
customer service and resulting in even higher sales. With these changes, the 
expert staff can be physically located wherever is best—perhaps at higher-
volume stores, at a call center, or even at home. These changed information 
flow requirements would probably drive the network design from hub and 
spoke to full mesh connectivity, with support for QoS for voice and video. By 
using technology to drive efficiency, IT has also gone from supporting the 
current business processes to enabling improvements in the business, which 
would allow the company to stay one step ahead of the competition and 
increase its market share. 

Matching Data Flow and Network Design 
As you can see, matching your network design to the flow of data is not just 
a matter of “paving where the grass is worn out.” The goal is to create a 
network that is customized to support and optimize your business processes 
now and also into the foreseeable future. This can also help you control 
network growth and costs by providing a blueprint to follow. One place to 
start your flow analysis is by examining the consumption of data within the 
company. Who uses what data? Where is that data located? How is it 
obtained? Information from the network management software can help you 
uncover traffic patterns (assuming that software, and information, exists) but 
don’t just stop there. Look at how existing data flows fit with best practices 
and any standards the business has established. Check for outliers—such as 
a big flow to one legacy server in a remote site that should have been 
decommissioned or moved to a data center long ago. What you learn about 
current data flows can be merged with the current business process 
information to help determine any needed changes in flow patterns or 
network design. 
Data flows can be broken into three general categories: 

 Person to person 
 Person to machine 
 Machine to machine 

We’ll examine each of these, and their network design implications, in the 
following sections. 

Person-to-Person Communication 

This is usually real-time or near real-time communication, such as phone 
calls, interactive video, or instant messaging. Voice and video are sensitive 
to latency and drops and thus require QoS on the network; instant 
messaging is less so. Voice and instant messaging are low-bandwidth 



applications, whereas video is higher bandwidth and typically bursty. Video 
may need multicast to be configured. 
The people communicating could be dispersed throughout the network, so 
full-mesh WAN connectivity is needed to facilitate this. For best performance, 
the WAN solution also needs to support QoS. Don’t forget about the control 
traffic that facilitates this communication—be sure to provide bandwidth and 
appropriate QoS for that traffic. Call/messaging management servers need to 
be highly available, redundant, and reachable by every user. You may want 
to provide local backup call-control solutions for remote offices in case the 
WAN link goes down. Management applications that monitor voice and video 
quality will help you proactively respond to degradation in network service 
for these data flows. 

Person-to-Machine Communication 

This category includes users accessing centralized data and applications, 
such as pulling data from, or saving data to, company servers or storage 
devices. Data flow for person-to-machine communication is typically hub and 
spoke, with data centers as the hubs. Spokes (users) may be at company 
sites, partner sites, or coming in over the Internet. Data centers may be 
company owned and managed or hosted in the cloud. In the case of web 
servers especially, users may not even be affiliated with the company. 
One example of person-to-machine communication is a virtual desktop 
infrastructure (VDI) such as VMware’s View or Citrix’s XenDesktop. These 
provide an image or set of applications that exist only on company servers 
and must be downloaded through a LAN or VPN connection. When using VDI, 
network bandwidth along with storage and capacity must all be sized 
appropriately. VDI can be either server-based or client-based. If the image 
stays on the server, users cannot work if the image is inaccessible, so both 
good network connectivity and server redundancy are critical. Latency must 
be low enough to give users the most “desktop-like” experience possible. The 
amount of traffic varies depending on what users are doing on their VDI 
clients. If the image is downloaded to the client device, users can work 
offline, but the initial download is fairly large. You may want to implement 
WAN optimization to reduce the bandwidth load for both types of VDI. 
Not all person-to-machine communication is as time critical as server-based 
VDI. If users can’t upload a file, back up their computers, or download a 
virus patch, they can usually retry later. But if an ecommerce website is 
unavailable, it can cost the company money. Or a critical file that can’t be 
downloaded can interfere with business function. Know your application 
needs and traffic-flow patterns, and tailor your design to support them. 
A highly available, resilient data center with fast internal communication is, 
of course, important for all types of user-to-machine communication. Chapter 
18, “Data Center Design,” goes into further depth but, at a high level, 
Internet bandwidth and link redundancy into the data center is important for 
VPN, web, and remote VDI users. Within the data center, build in security 
between users and servers, and between front-end DMZ servers and back-
end database or other servers. Data center security is a balance between 
policy and throughput; avoid creating bottlenecks at your policy points—use 



virtual security or policy devices, use data screening techniques that can be 
done at line speed, or at least be aware of the actual measured throughput 
of any security devices you use in the data center. 

Machine-to-Machine Communication 

Machine-to-machine data flows are growing rapidly within most businesses. 
Within this category you typically think of the traditional data backup 
between computers/servers and storage devices, as well as data replication 
between storage systems. Network engineers used to be able to ignore 
storage traffic—that “other” team ran fiber channel from each server to their 
own fiber switch that connected to the storage and never touched the “real” 
network. Those days are gone. The popularity of Fibre Channel over Ethernet 
(FCoE) and iSCSI means that storage traffic is running on your network, over 
your switches. Replication traffic between data centers traverses your 
network, along with virtual servers moving between physical servers and 
between data centers. Server, storage, application, and network teams all 
need to learn a little bit about each other’s worlds and work together on data 
center design. 
Speaking of data replication and backup, it’s important to understand the 
amount of data that will travel between users, servers, and storage, and the 
times of day this data will be sent. When planning the links between data 
centers, and between offices and data centers, take into account the volume 
of data and the way storage data will be replicated. For instance, data that is 
backed up asynchronously, such as at night, will take high sustained 
bandwidth during the backup period. Data that is synchronized in real time 
will need less bandwidth, but that bandwidth must be constantly available 
and guaranteed. 
Another, even faster growing, type of machine-to-machine communication is 
between other kinds of networked devices—sensors whose job it is to gather 
information. That information is then transmitted to or read by other devices 
that use the data to make decisions or issue instructions to other machines. 
One example of this is an airport that uses RFID-embedded baggage tags 
linked to your flight and destination information. RFID readers tell the 
automated system to route your luggage onto the correct conveyor belts as 
it goes through security checking and ultimately on to the loading area for 
your airplane. This minimizes human error in potentially misrouting a 
suitcase. It also provides tracking data for bags as they pass each RFID 
reader, helping to minimize loss. 
Another example comes from the medical field. Patients may use monitors in 
the hospital or even at home for critical information such as their heart rate, 
blood pressure, or blood sugar. These monitors then report the results back 
to an application that records them in the patient’s electronic medical record 
and that can alert the patient’s caregiver for values outside of normal ranges. 
Sensor traffic is usually low bandwidth and small packets. It could come from 
either fixed or mobile locations, but usually is bound for static sites. It may 
seem as though data traffic patterns are fairly straightforward—just from 
sensor or device to data center. But this is another place where it is 
important to understand the process. The data may travel from sensor to 



collector to data center, but it may then be acted on by a server in the data 
center that sends out an alert to someone remote, perhaps as a text or 
email. That data may also trigger an instruction back to the host device, 
perhaps something like a medical refrigerator that needs to adjust its 
temperature. Make sure you understand all the various traffic flows so that 
your design supports them. 

Bringing It All Together 

Most networks include all three types of data flows, which add to the 
complexity of the network design. Most companies find that they need full-
mesh WAN connectivity between sites with employees at them, to allow for 
person-to-person communication. They frequently choose an MPLS or 
Ethernet WAN, or dynamic Internet tunnels for this. Some companies route 
interdata center traffic through their WAN; others implement dedicated high-
bandwidth links between data centers to accommodate backup and 
replication traffic. If your company has unmanned locations that primarily 
monitor and report on the operation of onsite equipment, you may need only 
small bandwidth links. The decision about whether to make these point-to-
point links or rings connecting into the data centers or aggregation sites, or 
part of the corporate multiaccess WAN, frequently comes down to cost. 
Using the services of a cloud provider may change where your data travels, 
but it does not change the basic premise of “know your flows.” How will you 
access those cloud services? You might choose a connection from your WAN, 
dedicated links perhaps from your data centers, a VPN over the Internet, or 
just a secure browser session over the Internet, depending on your needs. 
For example, a cloud-based application that users access at work may lead 
you to extend the company WAN to a provider site or set up a “split tunnel” 
arrangement where a single link from each office gives access to both the 
WAN and the Internet. Or you may choose to rely on your existing corporate 
Internet connection, depending on the criticality of the application and the 
amount of anticipated traffic. On the other hand, using a cloud provider to 
back up your data would call for a more secure and higher-bandwidth 
connection. In that case, you may opt for either a WAN connection to the 
provider or a VPN over the Internet. 
A good understanding of your traffic flows and how they work together with 
your business processes will help you make the best design decisions. 

BYOD 
Bring Your Own Device (BYOD) has become a catchphrase that includes so 
much more than its original meaning. It was originally driven by user desire 
to use their smartphones, tablets, or personal laptops at work—or at least to 
access some company applications or data, such as email, on those devices. 
But it has evolved to more of a “Choose Your Own Device” movement that 
implies the capability to be mobile both within the enterprise network and 
outside it. Users want to access company resources with the most 
appropriate device at the time. Companies, on the other hand, want to 
control and protect access to resources. Loss of company and customer data 
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are major concerns for those considering BYOD, and maintaining data 
security is a major success criterion for a BYOD implementation. As with 
most things, there is a trade-off. 
The business case for BYOD is mixed. Employee-owned devices can actually 
wind up costing more when you consider no longer being able to buy 
equipment and cellular plans at bulk prices (assuming the company 
reimburses employees for at least some of the device costs), the likely need 
to upgrade the corporate wireless network, and the additional management 
and security resources that will be required. On the other hand, there are 
benefits in terms of increased productivity, increased worker satisfaction, 
reduced help desk support, and the ability to work remotely in case of an 
emergency. In fact, multiple surveys tell us that for a majority of companies, 
the main driver for BYOD is not cost reduction, but employee satisfaction. 
Employee mobility and productivity are also important drivers. 
At this point, it’s pretty futile to try to prevent the use of personal devices 
completely, unless you require a very high level of security and have a closed 
network. So from a design standpoint, the main questions to ask are: Which 
aspects of BYOD will provide the most benefit? How does that, then, impact 
my network design? 

BYOD Options 
How people implement the different aspects of BYOD varies greatly. Almost 
everyone expects to at least get work email on his or her smartphone. 
Beyond that, at its most basic, companies may provide Internet access for 
guests or allow company employees to get on the guest network with their 
personal devices. This has become almost an expected level of access; it can 
greatly increase customer and employee satisfaction and can even be used 
for business purposes. Consider a hospital patient, the parents of a new 
baby, or a sick child, and think how Internet access could make their time in 
the hospital much more pleasant, plus increase satisfaction scores for the 
hospital itself. Stores that offer Internet access not only provide a way for 
you to get more information on their products, they can use location 
information to track the displays you view or the departments in which you 
spend time, and then tailor offers or coupons based on your interests. 
This raises a couple of network design issues: 

 Separation of Internet and internal traffic: The most basic, if 
most expensive, way to do this is to have a guest SSID that sends 
traffic to a guest VLAN that is routed to a separate Internet 
connection. Sometimes a Virtual Routing and Forwarding (VRF) 
instance is used to separate guest traffic. A slightly more involved 
solution requires login to a guest portal, which then allows that 
device to access the guest SSID. One advantage of this solution is 
that you can require guests to agree to an acceptable use policy 
that limits the company’s legal liability in case of a misbehaving 
user. Most companies don’t need a separate guest Internet 
connection or physical infrastructure. Most business requirements 
can be met by routing guest traffic to a separate firewall 
interface—with or without VRFs—and then disallowing that traffic 



to “hairpin” back into your internal network. This lets you 
aggregate Internet bandwidth for economies of scale and 
administration, plus save the cost of a dedicated LAN 
infrastructure. 

 Network bandwidth: With an increase in devices on your 
network comes an increase in demands on network bandwidth. 
Typically, both guest and internal traffic use the same wireless 
network. Even if guest and internal traffic are in separate VLANs 
or VRFs, they travel through a shared LAN to reach the Internet 
edge. Be sure to plan for the additional bandwidth. Quality of 
Service (QoS) can be used to control guest bandwidth and ensure 
enough for internal traffic. 

The next level of BYOD is to separate guest traffic but also provide some 
level of access to company resources for authorized users. That access could 
range from just email or the ability to print, to full functionality as if you 
were using a corporate-owned device on the LAN. This is the point where 
legal, security, and access control issues typically raise their head. Nobody 
wants a virus-infected laptop connecting to the network. The same with 
jailbroken phones or devices that might be infected with malware. No users 
want their smartphones or tablets seized as evidence in a legal case because 
they contain company files, or completely erased when they leave the 
company. Data loss prevention becomes a real issue, because email that 
might contain sensitive information now sits on a device that can be easily 
lost or stolen. But how do you control that? And how are you going to 
authenticate users, then make sure they can access only the company 
resources they should? Some frequently used solutions include the following: 

 Authentication: This is typically against a centralized database 
such as Active Directory (AD) to identify users and place them in 
groups. Access to resources can be controlled on a per-group 
basis. One implication of this is that you need to make sure the 
authentication database is highly available, reliably reachable, and 
accurate. 

 Tracking: After users are authenticated and placed in a group, 
how do you track their traffic to make sure they’re able to reach 
the appropriate resources and are blocked from inappropriate 
resources? One option is to place them in VLANs by group, and 
then use access lists to filter by address. A more scalable option is 
to use software that can tag traffic by security group and network 
equipment that can read and filter on those tags. 

 Mobile Device Managers (MDM): Whereas authentication and 
tracking concentrate on users, MDMs provide the tools to find out 
information about the mobile devices themselves—phones and 
tablets. For instance, you can learn if a phone has been jailbroken, 
if a device has a password or PIN code, and what OS version it 
has. Some authentication solutions can interact with MDMs to 
prevent a device from accessing company resources unless it 
meets standards set in the MDM. For instance, you may want to 
require a PIN code on a smartphone before allowing it to access 



email. MDMs can also remotely find, access, configure, and erase 
devices. 

 Posture Assessment: To help secure the network, companies 
may set policies outlining minimum levels of settings, such as 
antivirus or OS patch level. This may entail a scan of the 
computer’s registry when it tries to get on the network, or a small 
client that’s installed on the machine and tracks posture status. 
Enforcing very rigid posture requirements can become difficult and 
time consuming in a large network. Track posture without 
enforcing it for a while until you get most people into compliance—
it will make your life much easier. 

Note: Authentication, tracking, mobile device management, and posture 
assessment are functional areas that may be combined in the same software 
solution.

 

 Virtualization: One way to prevent company information from 
being obtained from a stolen laptop or mobile device is keep it off 
the device altogether. A virtual desktop infrastructure (VDI) is 
one way to do this. Because applications and data are never on 
the device itself, a lost or stolen laptop or mobile device presents 
less of a security risk, and terminated employees can be 
prevented from downloading data before they leave. This also 
allows IT to control the desktop image and applications used. A 
similar solution is an SSL VPN that uses a temporary memory 
space that is then erased when the VPN terminates. Some MDMs 
can create a separate container on mobile devices for email or 
other corporate data. That container can then be wiped if 
necessary without erasing all the device apps and content. 

All these solutions present specific challenges to a network designer. Because 
they rely on users being able to reach security-related servers, these must 
be always reachable and sized to handle the load. The LAN and WAN 
networks must support the bandwidth and QoS needed. Virtual desktops 
place an additional load on your data center network, servers, and storage, 
as well as network requirements for latency and bandwidth. Scalability is also 
a concern; devices proliferate, and your solutions must be scalable to handle 
the increasing load without becoming a management nightmare. Pay 
attention to “bump in the wire” devices such as IPS or web anti-malware 
equipment that tend to be ignored until you have to troubleshoot a traffic 
flow through them. Manageable versions that give you useful data such as 
throughput, CPU, memory use, and dropped packets will help verify that they 
are able to handle the load. 

BYOD Design Considerations 
No matter where you fall on the BYOD/CYOD/Mobility spectrum, you will 
need to address a few problems common to all solutions. The first is IP 
addressing. Think of all the wireless enabled devices in your network, each 



one looking for an IP address. Although limiting your DHCP scope is a way to 
limit the number of guest devices that can connect, it is likely to increase 
support calls and decrease user satisfaction when people are not able to 
connect. Make sure you plan adequately sized DHCP scopes, and allow for 
the additional traffic traveling to and from the DHCP servers. Also make sure 
your servers are sized correctly and placed in optimal locations. 
VLAN planning goes along with planning your IP addressing. Will you have 
separate guest VLANs per Layer 3 boundaries, just as you have separate 
user VLANs, or will you set up one guest VLAN that spans the entire 
network? The authors hope you choose the former! VRF planning is similar to 
this. A VRF provides separation at Layer 3 similar to the way a VLAN provides 
separation at Layer 2. Guest users are still associated with a VLAN at the 
point where they enter the network, so VLAN planning must still be done. 
After that, the first Layer 3 device places them in a VRF, and their traffic is 
carried through the network in that VRF until they hit the Internet edge. 
For devices on the LAN, wireless design must be considered. When people 
walk in the door, their devices look for a wireless network and try to get an 
IP address. Fortunately, people don’t usually stay by the door, or those 
would be the most overloaded access points. This does, however, point out 
the need for a well-thought-out wireless design that looks at usage patterns 
as well as walls and microwave ovens. This lesson was reinforced recently 
while troubleshooting a problem with wireless IP phones in a hospital surgical 
suite. Voice quality was poor, packets were dropped, and sometimes phones 
had problems connecting, but only near the entrance to the operating room 
area. It turned out that operating room staff were stowing their smartphones 
and other personal devices there during surgeries and overloading the access 
point located at the entrance to the suite. Again, know your flows and 
processes. 
With BYOD, it is no longer just a one-to-one ratio for users and networked 
devices. Assume at least three devices per user when doing your wireless 
capacity planning. 
The fact that mobile devices are mobile means that you have to consider that 
users will want to connect remotely to enterprise resources. Chapter 15, 
“Network in Motion,” considers the network design implications of supporting 
remote users. From a BYOD perspective, the issues of security, user and 
device authentication, and data access control apply whether you are on a 
LAN or coming across a WAN. 
BYOD can also be part of your disaster recovery/business continuity plan; if 
so, it becomes critical to design a secure, highly available BYOD solution (see 
the later section, “Business Continuity,” for more on this topic). 

BYOD Policy 
Probably the biggest consideration in implementing BYOD has nothing to do 
with the network; it’s the “Layer 8” issue of deciding what policies will be 
used—who and what will be allowed on the network, what company 
resources will be accessible, and by whom. Do not underestimate the 
importance of this step or the length of time it can take to make these 



decisions. These policies determine what your BYOD design must look like. 
They determine how flexible your business will be with personal and wireless 
devices. They determine how many user complaints the Help Desk has to 
deal with! This is not something to be taken lightly and is not a decision to be 
made completely by the IT department. Because potentially everyone in the 
company could be affected, it is important to involve other groups within the 
company and to get management buy-in for the final set of policies. 
A good BYOD policy details both company rights to monitor and manage 
corporate data on mobile devices and employee rights to privacy for their 
personal data on mobile devices. Some difficult decisions are required in 
several areas, such as the following: 

 Minimum security baseline that any device accessing the network 
must meet. 

 Identifying which company-owned and user-owned devices will be 
allowed on the network. 

 Identifying user groups and determining the access each needs; 
this is typically the toughest decision to make and one that will 
definitely require management involvement. 

 Protection from data loss. Will you erase an entire lost 
smartphone, or will you segment company data in some way? 
Bear in mind that it may not be so easy to separate personal and 
business information. For instance, considering photographs as 
“personal” would leave open the possibility of losing corporate 
data because people have pictures of whiteboard drawings on 
their device. This is another tough decision. 

 How will you “onboard” users and devices? 
 Regulatory compliance. Are you subject to any regulations that 

would influence your BYOD strategy? 
 Expense reimbursement or other stipend for personal device use. 

This policy should be written, and then signed by every employee who 
accesses corporate resources with a mobile device, whether company 
provided or not. If you are an employee, you will want to read it carefully 
and make sure you understand what your rights and obligations are before 
signing. 
The BYOD policy will guide your network design. It determines what kind of 
security controls to put in place and who needs to reach them, the wireless 
design, and how much additional traffic to plan for on the WAN and LAN. It’s 
a wise—and rare—company that figures out the policies first, designs the 
network to support them second, and only then rolls out BYOD. 

Business Continuity 
In the past several years, terrorist attacks, weather events, political 
upheavals, and natural disasters have shown us the fragility of our daily 
systems and pointed out the need for contingency planning. Different 
businesses depend more or less on their IT infrastructure, but most would be 
adversely affected in some way by a network, server, or ISP outage. How 



much money your particular business would lose depends on many factors—
the type of business, the type of outage, the time of day, and the length of 
downtime. Even short outages can cause major losses from factors, such as 
the following: 

 Revenue from lost sales 
 Loss of customers to competitor 
 Damages from lawsuits due to late deliveries, medical injuries, or 

SLA payments 
 Damage to company reputation 
 Lost employee productivity due to people unable to work 
 Lost employee productivity due to people having to spend time 

diagnosing and fixing the problem (and perhaps lost money from 
paying overtime) 

Business Continuity Versus Disaster Recovery 
There are a lot of definitions and understandings of disaster recovery (DR) 
and business continuity (BC), but what we will use for the purposes of this 
book are these: Business continuity involves proactively planning and 
building a system that will allow your business to continue to operate the 
way you want it to if some event compromises your systems, data, or part of 
your ability to function. This may mean that you have redundancy or 
resiliency already in place for critical systems or functions, and failover 
happens quickly. Disaster recovery is more reactive and might involve 
bringing up a secondary server, or loading back up data, or relocating staff, 
for instance, and could take days or weeks. DR may be a portion of your BC 
strategy, especially for less-critical systems and functions. It may also be all 
that some businesses need, depending on how long an outage they are able 
to sustain. 

 

Business Continuity in Real Life 
Stories abound of business failure because of technology failures. In 
one situation, a company had two data centers within a couple of 
miles of each other. A hurricane hit the city, and both data centers 
were taken offline. One was severely damaged by the storm. The 
other was located on a high floor in the building, so it escaped with 
little damage, but the fuel tanks for the generators were in the 
basement, and those fuel tanks floated away. The company was able 
to get that data center functioning again when fuel was available a 
few days later, but had to operate for months on just one data center 
until power and WAN links were fully restored. In another instance, 
two senior engineers sat idle while outsourced contractors attempted 
to bring up an IPsec tunnel to restore operations worth millions of 
dollars a minute. Why weren’t the senior engineers engaged? Because 
the terms of the outsourcing contract forbade anyone but an 
employee of the outsourcer to touch device configurations. And let’s 



not even think about the impact of a network outage in a medical 
facility, or at a construction site where a failure could cost lives rather 
than money. 
With all the apocryphal stories that abound, why don’t managers and 
network engineers pay more attention to failure modes and business 
continuity? Why aren’t geodiversity and diversity of power, telecom, 
and road grids top-of-mind subjects? There seem to be a number of 
reasons. 
Many engineers just don’t think it could happen “here.” There is little 
sense of the urgency or importance of this system from a business 
perspective, so there is little planning around failures. Or perhaps IT 
staff are too busy with the day-to-day tasks to have time to worry 
about how a failure will impact the network, and hence the business. 
Much of the time it’s a lack of understanding and appreciation of the 
complexity and interdependence of the IT systems we build and 
maintain. Our ability to abstract, although required to help us focus on 
solving one specific problem at one specific point in time, is also our 
enemy when it comes to failures and failure modes. We need to seek 
out the interconnections between systems and try to understand them 
so we can really understand all the different areas that would be 
impacted by an outage. 

 

Business Continuity Planning 
More and more businesses are creating a business continuity management 
plan to help guide them in building the components needed to minimize loss 
during an unplanned outage and provide guidelines for staff to follow when 
one happens. When business continuity is mentioned, IT people frequently 
think of their own network going down, but what about the network of a 
major supplier? Or a business partner that has an outage in one of its 
processes? A full BC plan covers all the facets that you need to consider in 
order to restore processes and functions, such as staffing, application access, 
network access, data integrity, and communications. For manufacturing and 
sales companies, it will need to include the physical facilities, product 
inventory, and machinery required. 
Some typical components of a BC plan include the following: 

 Risk Assessment: What events might affect your company? How 
much of an outage would each of these cause? Which ones are 
most likely to happen and thus should have mitigation plans, and 
which can you fairly safely ignore? You can’t plan for every 
contingency. Try to plan for the most likely ones, if possible in a 
way that also covers you for less likely ones. The final decision 
about which risks are highest priority to mitigate should come 
from the company management, taking into account business as 
well as technical factors. 

 Business Impact Analysis: What would an outage cost? How 
long could you sustain an outage? Remember to include both 



partial and full outages—the loss of an application, loss of staff, 
loss of some data—not just the loss of an entire data center or 
office site. This plan does not have to be a huge document 
(although it could be for some companies). Its purpose is to give 
the company a basis for prioritizing and focusing its BC plans and 
designs. 

 Continuity Requirements: Based on the Risk Assessment and 
the Business Impact Analysis, decide what systems you need to 
have working, and when. On the networking front, the BC 
spectrum ranges from multiple fully redundant active sites to 
offsite backup data you can restore onto a cold standby system. 
Your continuity requirements will help you determine where along 
this spectrum your company falls and help you decide how best to 
fulfill the requirements. 

 Business Continuity Plan: This provides guidelines on how your 
company will manage a disaster. Each company’s plan will be 
different and will be more or less complex as needed. It typically 
includes topics such as the failover, redundancy, and contingency 
mechanisms for critical functions, how management and staff will 
communicate in an emergency, which personnel will continue to 
work, and how, and how processes will be restored. 

Security is crucial during major disasters to safeguard business data. This 
goes beyond the data and network access security we typically think of to 
include physical device security. If a building is destroyed and your switches 
and servers are strewn across a field, how will you secure physical access to 
them and the data they hold? Or if an area is quarantined, who is authorized 
to enter your building and retrieve or secure your equipment? These are 
decisions better considered in advance because the necessary decision 
makers may not be available following a disaster. If you are using a cloud 
provider, find out its policies concerning physical security of equipment 
containing your data. 
Because this book covers network architecture, the rest of this section will 
concentrate on how network design can help your business continue in the 
face of a disaster. 

Business Continuity Design Considerations 
Probably the best way to ensure the continuity of your business is to avoid 
preventable problems. Look at the most likely events in your Risk 
Assessment—are there network design changes that will help mitigate some 
of those risks? Perhaps you could create geodiverse data centers, add some 
redundancy, strategically distribute spares, provide hot or cold standbys, or 
set up remote working. Good network management will help you here in two 
ways. It will provide a baseline for how the network operates normally and 
alert you as problems develop, allowing you to take remedial action faster 
and possibly prevent a large outage. 
Good network management and an understanding of how your business 
processes work will also help you with making the decision of when to call a 



network “down” and initiate your contingency plans. This often isn’t easy to 
measure or understand. Is the failure of a single application enough to call 
the entire network “down”? Or is the failure of a single section of the network 
enough to call the network “down”? Strive to build a resilient network that 
adapts to changing conditions rapidly with minimal impact on the services 
running over the network. A resilient network can adapt to hard failures, 
such as network or service outages, as well as soft failures. A soft failure can 
be harder to define and detect because the network might be operational, 
but be 

 Not usable to solve business problems 
 Not running optimally 
 Running in a “fragile state,” with little capability to cope with 

changes beyond the current ones. 
Business requirements will set the standards for which applications, sites, 
and portions of the network are critical. The question of how to make your 
network more resilient so that your data and applications are always 
available to your users is addressed in detail in subsequent chapters of this 
book. 
A lot of business continuity planning focuses around data centers. Will you 
have multiple active, redundant data centers, or will you have a primary site 
and one or more backup sites? Or if you have some critical applications that 
must be always up, you might choose to have active/active data centers for 
those applications in combination with a primary/backup design for less-
critical applications. Another option is to use online services that provide 
completely cloud-based applications accessible over the Internet, or host 
your servers and storage. Location of the data centers is another point of 
discussion. You want them far enough away from each other that they aren’t 
likely to be affected by the same events, but close enough that latency for 
data replication isn’t too high. Again, you cannot plan for every scenario, so 
plan for the most likely ones. 
Don’t forget about staffing. If your staff is affected by the same natural 
disaster that brought down the data center, for instance, they are likely not 
going to be able to travel to a backup location. They might need to help their 
own families or be evacuated. Staff that are onsite at a data center or office 
during an emergency may not be able to leave; how will you feed and clothe 
them? An existing BYOD system can help with business continuity if it allows 
staff to work remotely. To make this work, VPN termination points must be 
up and available, the servers or data needed must be up and available, and 
network and Internet connections must be present to make these available 
to remote users. Keep in mind, however, that your staff may not have 
electricity or Internet access to work remotely. 
Staffing also plays a factor in designing your network for business continuity. 
When choosing a design, make things simple enough that they can be 
understood by a broad range of engineers, because your primary staff may 
not be available, or you may have to call in outside help. There are three 
main components involved in recovering from a network failure, and they all 
depend on staff knowledge for their success: 



 Detection: How long does it take to detect a failure condition? 
This is impacted by the level of monitoring and management you 
have deployed, and by how complete a picture you have of the 
ideal system state. Rapid response will be improved if your 
engineers understand the software and are comfortable working 
with it. 

 Troubleshooting: How long does it take to chase the problem to 
the root cause? This is highly dependent on the skill of the person 
doing the troubleshooting. The complexity of the network design 
also impacts it, as do your monitoring and management platforms 
and the knowledge of the ideal system state. 

 Repair: How long does it take to repair the problem after it’s 
discovered? This again is highly dependent on the skill of the 
person accomplishing the repair, and his or her knowledge of the 
ideal system state. 

Hopefully, your company will never face a major disaster or failure. However, 
every complex system is likely to experience some level of degradation or 
failure during its lifetime. Advance planning will help minimize the impact to 
your business and speed recovery of your system’s functionality. 

Summary 
The creation of a network that functions as a strategic part of the business, 
rather than just a cost center, starts with a good understanding of business 
requirements and processes. This leads to an examination and understanding 
of data flows involved in those processes. With that knowledge, you are able 
to create high-level LAN, WAN, and data center designs that support and 
enable the business. From this knowledge also flows lower-level decisions, 
such as whether to use single or dual supervisors in a specific switch. 
This chapter looked at three areas where business requirements and network 
design commonly intersect: workflow and processes, BYOD, and business 
continuity. The main takeaways from all these examples are to know your 
data flows and the business functions and processes they support. Then use 
that knowledge to inform your network design decisions. 
  



Part III: Tools of the Trade 
  



Chapter 4. Models 

Models have always served a place in conceptualizing and understanding 
ideas and spaces. In fact, for many years the U.S. Patent Office required that 
every patent filing required a physical model implementing the idea. This 
would not only allow the patent examiner to fully understand the idea in an 
intuitive way, it would also allow easy comparison of new ideas to old by 
comparing the models. In the world of networking, models serve much the 
same purpose—to illustrate an idea in a way that makes it intuitive, or easy 
to grasp. 
If you’re thinking about the seven-layer International Standards Organization 
(ISO) model of computer networks, you’re on the right track. But unless 
you’ve explored other possible models of network architecture, you’re 
working with a rather constrained view of how models can improve your 
understanding of networking technology and networks. 
There are, in reality, different types of models used in the world of computer 
networks, including models of how the various protocols interact to transport 
data across a network, models that examine how protocols and network 
devices interact, and models that interact with design and architecture. 
This chapter begins with models describing how protocols interact to 
transport data across a network, including the well-known ISO seven-layer 
model,1 the lesser-known four-layer Department of Defense (DoD) model, 
and the little known iterative model. Working from the theoretical to the 
more practical, we present a hybrid model that provides a conceptual 
overview of not only protocol interaction, but also the operation of forwarding 
devices. Using the concepts of control and data planes, the concepts of 
reactive and proactive network elements are explored. 

1. “ISO/IEC 7498-1:1994 - Information Technology—Open Systems 
Interconnection—Basic Reference Model: The Basic Model.” 

After this, we move into models used in network architecture and design. 
Specifically, we’ll address the waterfall model of traffic flow and routing, and 
contrast this with treating the network as a set of flows. In the area of 
network design, we’ll examine Places in the Network (PIN). Another model 
for understanding network design—hierarchy—is covered in Chapter 6, 
“Principles of Modularity,” and Chapter 7, “Applying Modularity.” 

The Seven-Layer Model 
Virtually anyone who has ever been through a networking class or studied for 
a network engineering certification is familiar with using the seven-layer 
model to describe the way networks work. Connectionless Networking 
Protocol (CLNP) and a routing protocol, Intermediate System to Intermediate 
System (IS-IS), were designed by the ISO to meet the requirements given 
within the seven-layer model. These protocols are still in wide use, 
particularly IS-IS, which has been modified to support routing in IP 
networks. Figure 4-1 illustrates the seven-layer model. 



 

Figure 4-1 Seven-Layer Model 

The genius of modeling a network in this way is that it makes the 
interactions between the various pieces much easier to see and understand. 
Each pair of layers, moving vertically through the model, interacts through 
an application programming interface (API). So to connect to a particular 
physical port, a piece of code at the data link layer would connect to the 
socket for that port. This allows the interaction between the various layers to 
be abstracted and standardized. A piece of software at the network layer 
doesn’t need to know how to deal with various sorts of physical interfaces, 
only how to get data to the data link layer software on the same system. 
Each layer has a specific set of functions to perform: 

 The physical layer (Layer 1) is responsible for getting the 0s and 
1s modulated, or serialized, onto the physical link. Each link type 
has a different format for signaling a 0 or 1; the physical layer is 
responsible for translating 0s and 1s into these physical signals. 

 The data link layer is responsible for making certain that 
transmitted information is sent to the right computer on the other 
side of the link. Each device has a different data link (Layer 2) 
address that can be used to send traffic to that specific device. 
The data link layer assumes each frame within a flow of 
information is separate from all other packets within that same 
flow and only provides communication for devices that are 
connected through a single physical link. 

 The network layer is responsible for transporting data between 
systems that are not connected through a single physical link. The 
network layer, then, provides network-wide (or Layer 3) 



addresses, rather than link local addresses, and also provides 
some means for discovering the set of devices and links that must 
be crossed to reach these destinations. 

 The transport layer (Layer 4) is responsible for the transparent 
transfer of data between different devices. Transport layer 
protocols can be either be “reliable,” which means the transport 
layer will retransmit data lost at some lower layer, or “unreliable,” 
which means that data lost at lower layers must be retransmitted 
by some higher-layer application. 

 The session layer (Layer 5) doesn’t really transport data, but 
manages the connections between applications running on two 
different computers. The session layer makes certain that the type 
of data, the form of the data, and the reliability of the data stream 
are all exposed and accounted for. 

 The presentation layer (Layer 6) formats data in a way that the 
application running on the two devices can understand and 
process. Encryption, flow control, and any other manipulation of 
data required to provide an interface between the application and 
the network happen here. Applications interact with the 
presentation layer through sockets. 

 The application layer (Layer 7) provides the interface between the 
user and the application, which in turn interacts with the network 
through the presentation layer. 

Each layer in the model provides the information the layer below it is 
carrying; for instance, Layer 3 provides the bits Layer 2 encapsulates and 
transmits using Layer 1. This leads to the following observation: not only can 
the interaction between the layers be described in precise terms within the 
seven-layer model, the interaction between parallel layers on multiple 
computers can be described precisely. The physical layer on the first device 
can be said to communicate with the physical layer on the second device, the 
data link layer on the first device with the data link layer on the second 
device, and so on. Just as interactions between two layers on a device are 
handled through sockets, interactions between parallel layers on different 
devices are handled through network protocols: 

 Ethernet describes the signaling of 0s and 1s onto a physical piece 
of wire, a format for starting and stopping a frame of data, and a 
means of addressing a single device among all the devices 
connected to a single wire. Ethernet, then, falls within both Layer 
1 and Layer 2 in the OSI model. 

 IP describes the formatting of data into packets, and the 
addressing and other means necessary to send packets across 
multiple Layer 2 links to reach a device that is several hops away. 
IP, then, falls within Layer 3 of the OSI model. 

 TCP describes session setup and maintenance, data 
retransmission, and interaction with applications. TCP, then, falls 
within the transport and session layers of the OSI model. 



This was illustrated in Figure 4-1, where each “layer-wise” interaction is 
labeled using the name used to describe the blocks of information 
transferred. For instance, segments are transferred from the transport layer 
on one device to another, while packets are transferred from the network 
layer on one device to another. 

Problems with the Seven-Layer Model 
Although the OSI model represented a huge leap forward in modeling and 
understanding the operation of networked systems, it doesn’t truly fit the 
protocol suite most commonly used today—TCP/IP. Two glaring examples are 
routing protocols and IPsec. 
Routing protocols in the OSI model run directly on the data link layer; 
however, OSPF, EIGRP, and BGP, three of the most commonly used routing 
protocols in TCP/IP networks, run above the data link layer. OSPF and EIGRP 
run directly on top of IP, and BGP runs on top of TCP. How can a protocol 
that fits into the purpose ascribed to the network layer run on top of the 
network layer, or even on top of the transport and session layers? 
IPsec is another difficult case, because it’s designed to manage the privacy of 
a connection—a function specifically given to the session layer. And yet TCP, 
which is at the transport and session layers, runs on top of IPsec. How can 
IPsec, which handles the presentation of data, really be said to run at the 
network layer? 
These mismatches might cause you to wonder what the relationship between 
the OSI model and TCP/IP really is—the surprising answer is the OSI model 
and TCP/IP were developed independently. The IP suite of protocols was 
developed around another model, the four-layer DoD model. 

The Four-Layer Model 
One of the reasons we have so much difficulty fitting TCP/IP to the seven-
layer model is that TCP/IP was developed with a different model of network 
communications in mind. Instead of a seven-layer model, TCP/IP was 
designed around a four-layer model, roughly described in RFC 1122 and 
illustrated in Figure 4-2. 

 

Figure 4-2 Four-Layer Model 



In this model 
 The link layer is roughly responsible for the same functions as the 

physical and data link layers in the OSI model—controlling the use 
of physical links, link-local addressing, and carrying frames as 
individual bits across an individual physical link. 

 The Internet layer is roughly responsible for the same things as 
the network layer in the OSI model—providing addressing and 
reachability across multiple physical links and providing a single 
packet format and interface regardless of the actual physical link 
type. 

 The transport layer is responsible for building and maintaining 
sessions between communicating devices and providing a common 
transparent data transmission mechanism for streams or blocks of 
data. Flow control and reliable transport may also be implemented 
in this layer, as in the case of TCP. 

 The application layer is the interface between the user and the 
network resources, or specific applications that use and provide 
data to other devices attached to the network. 

In this model, Ethernet fits wholly within the link layer; IP and all routing 
protocols fit in the Internet layer; and TCP and UDP fit within the transport 
layer. Because of this neatness, this is a cleaner model for understanding 
TCP/IP as it is deployed today, although it doesn’t provide the detailed 
structure of splitting up the various levels of signaling that might be useful in 
a more research-oriented environment. 

Iterative Layering Model 
The seven- and four-layer models rely on the concept that as we move up 
the stack from the physical to the application, each layer adds some specific 
function not provided by the layer below. If you examine the actual function 
of each layer, however, you’ll find many similarities between them. For 
instance, the Ethernet data link layer provides transport and multiplexing 
across a single link, while IP provides transport and multiplexing across a 
multihop path. 

Note: For a fuller development of this model of network operation, see John 
Day’s Patterns in Network Architecture.2. Day, Patterns in Network Architecture: A 
Return to Fundamentals. Indianapolis: Prentice Hall, 2008.

 

This leads to the following observation: There are really only four functions 
that any data carrying protocol can serve: transport, multiplexing, error 
correction, and flow control. There are two natural groupings within these 
four functions: transport and multiplexing, error and flow control. So most 
protocols fall into doing one of two things: 

 The protocol provides transport, including some form of translation 
from one data format to another, and multiplexing, the ability of 



the protocol to keep data from different hosts and applications 
separate. 

 The protocol provides error control, either through the capability 
to correct small errors or to retransmit lost or corrupted data, and 
flow control, which prevents undue data loss because of a 
mismatch between the network’s capability to deliver data and the 
application’s capability to generate data. 

From this perspective, Ethernet provides transport services and flow control, 
so it is a mixed bag concentrated on a single link, port to port (or tunnel 
endpoint to tunnel endpoint) within a network. IP is a multihop protocol (a 
protocol that spans more than one physical link) providing transport services, 
whereas TCP is a multihop protocol that uses IP’s transport mechanisms and 
provides error correction and flow control. Figure 4-3 illustrates the iterative 
model. 

 

Figure 4-3 Iterative Model of Network Protocols 

Each layer of the model has one of the same two functions, just at a different 
scope. This model hasn’t caught on widely in network protocol work, but it 
provides a much simpler view of network protocol dynamics and operations 
than either the seven- or four-layer models, and it adds the concept of 
“scope”, which is of vital importance in considering network operation. The 
scope of information and interaction is the foundation of network stability 
and resilience. 
As an example of how using the iterative model can provide a better feel for 
specific protocols, let’s consider the case of EIGRP. Within the OSI model, 
does EIGRP operate at Layer 3, 4, or even 7? Because EIGRP uses IP as a 
transport, it doesn’t really fit at Layer 3—but it provides the information 
necessary to make Layer 3 routing happen, so it’s traditionally considered a 
Layer 3 protocol. There is no “end-to-end” error correction or flow control in 
EIGRP, just hop-by-hop, so it’s difficult to place it at Layer 4, either. 
The four-layer DoD model, described earlier, resolves the problem by placing 
all routing within the network layer. But doesn’t EIGRP act like an 
application, riding on top of IP? Simply putting a routing protocol into the 
network layer doesn’t make it a network layer protocol. 
The iterative model resolves this problem by classifying protocols by their 
function in terms of data transport, rather than in terms of their application. 
From the perspective of the iterative model, EIGRP relies on IP for 
transport—IP fulfills the role of the first, or lower, protocol, within each layer 
in the model. EIGRP itself provides flow control and error correction through 
its own transport mechanism, so EIGRP neatly fits within the space of the 



upper, or second, protocol found at each layer. That EIGRP “tops” the layer 
as an application providing metadata to the networking system isn’t an 
issue; it simply runs in parallel with other applications. Applications that need 
end-to-end functionality can build in another layer on top of IP (TCP and 
UDP) to supply those functions, or they might not—because EIGRP performs 
only hop-by-hop transport, it doesn’t need the end-to-end functionality of 
any additional layers. 
The iterative model, then, adds value in not trying to force artificial layers 
into the networking stack; rather, it classifies by observing similarity of 
purpose, which helps to apply common solutions to common problems. 

Connection-Oriented and Connectionless 
The iterative model also brings the concepts of connection-oriented and 
connectionless network protocols out into the light of day again. 
Connection-oriented protocols set up an end-to-end connection, including all 
the state to transfer meaningful data, before sending the first bit of data. 
“State” could include such things as quality of service requirements, the path 
the traffic will take through the network, the specific applications that will 
send and receive the data, the rate at which data can be sent, and other 
information. After the connection is set up, data can be transferred with very 
little overhead. 
Connectionless services, on the other hand, combine the data required to 
transmit data with the data itself, carrying both in a single packet (or 
protocol data unit). Connectionless protocols spread the state required to 
carry data through the network to every possible device that might need that 
data, whereas connection-oriented models constrain state to only devices 
that need to know about a specific flow of packets. As a result, single device 
or link failures in a connectionless network can be healed by moving the 
traffic onto another possible path, rather than redoing all the work needed to 
build the state to continue carrying traffic from source to destination. 
Most modern networks are built with connectionless transport models 
combined with connection-oriented quality of service, error control, and flow 
control models. This combination isn’t always ideal—for instance, quality of 
service (QoS) is normally configured along specific paths to match specific 
flows that should be following those paths. This treatment of QoS as more 
connection oriented than the actual traffic flows being managed causes 
strong disconnects between the ideal state of a network and various possible 
failure modes. 

A Hybrid Model 
The models discussed so far describe traffic flow and protocol interaction, 
particularly shaped around end host to end host, or application to 
application, communications. Keeping interfaces between layers clean, and 
thinking about what each protocol in each layer should do, provides a solid 
foundation for developing well-behaved network applications and protocols. 
Although these models are helpful in understanding protocol operation, they 
aren’t generally useful in network design and architecture. How does 



understanding that TCP presents data, Ethernet carries it across single links, 
and IP carries it across multihop links help us with network design and 
architecture? 
What we need is a model of how network protocols interact with network 
forwarding hardware and software—routers and switches. The model 
illustrated in Figure 4-4 begins with the four-layer model and expands it 
where necessary to create a useful model for understanding network 
protocols and interfaces in the context of network architecture. It has 
functional modules rather than layers, and the arrows show how modules 
communicate with each other. 

 

Figure 4-4 Hybrid Network Operation Model 

This model looks much more confusing than the previous ones, but don’t let 
it scare you. Rather than focusing on the flow of information between two 
applications, the hybrid model focuses on the relationships between each of 
the moving parts (including hardware) and protocols that make a network 
work, concentrating on the forwarding devices that make up the majority of 
the equipment deployed in real networks. 
As with the four-layer model, the link, network, and transport modules 
provide physical connectivity, end-to-end connectivity, and session services. 
These three modules are provided, for instance, by Ethernet, IP, and TCP or 
UDP, respectively. 
The virtualization module is new and provides virtualization services that 
interact with both the control plane and the network layer. Virtualization 
services don’t fit in just one place on the diagram because they can run over 
link (such as MPLS and 802.1Q), network (such as GRE and IPsec tunnels), 
or transport (such as TCP-based tunneling mechanisms) protocols. The 
placement of the virtualization module in the diagram, then, is a compromise 
that illustrates where they are most commonly found in the network. 
The control plane is new as well, and is described in more detail in the 
following section. 



The Control Plane 
The control plane includes any protocol that provides the information needed 
to move traffic from one device to another through the network. To put it in 
simple terms, the control plane answers three questions: 

 What am I trying to reach? 
 Where is it? 
 How do I get there? 

What Am I Trying to Reach? 

The first of these three questions is the simplest: What am I trying to reach? 
Am I trying to retrieve a web page, an application, or a piece of data? Am I 
trying to write data to some service, such as file storage, a database, or a 
printer? Services are the focus at this level, rather than hosts. I don’t really 
care which server I connect to, so long as I connect to a server that has the 
information (or service) I want to reach. 
The most widely deployed control plane protocol that interacts with this 
question is the Domain Name System (DNS). DNS interacts with the location 
of services in many ways, such as 

 Through load sharing between multiple instances of the same 
service. When a DNS server receives a query for a particular 
server or service, it might return an answer based on current load, 
geographic location, or any number of other factors. 

 The concept of subdomains, which are effectively services 
available at a particular domain. For instance, 
mail.somedomain.com will generally indicate a mail service 
located within a particular organization’s network, and 
www.somedomain.com will generally indicate an HTTP service 
within that same organization’s service. 

The DNS service also acts as a way to find out where a service is located 
based on knowing whatthe service is—or rather, DNS provides service to 
location mapping. 

Where Is It? 

The DNS takes a name and provides an address—and just like in the real 
world, an address tells you where something is. But we need to be careful at 
this point to differentiate between “where it is” in a physical sense, and 
“where it is” in a logical sense. Although a service must, ultimately, live on a 
physical server, located in a physical rack, in a physical data center, it can be 
logically attached to a network just about anywhere. Figure 4-5 illustrates 
the difference between these concepts. 
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Figure 4-5 Physical Versus Topological Locations 

In Figure 4-5, Atlanta and Raleigh are both closer to each other than they 
are to New York City physically, but there is no network link directly between 
Atlanta and Raleigh—so from the network topology’s perspective, Atlanta is 
actually closer to New York City than it is to Raleigh. 
Why is this so important? Because it impacts addressing, information hiding, 
traffic flow, and almost everything else about network design. The first 
abstraction a network engineer must make is between the physical and the 
logical. 
This abstraction between the physical and the logical is crucial because it 
clearly shows the point behind IP addresses in the first place—an IP address 
does not label a specific computer or device, it labels a specific location in the 
network. If you move a house from one place to another, the house’s 
address changes; it would be insane to move a house from 120 Elm Street to 
a location between 110 South Street and 112 South Street, and yet leave its 



address as 120 Elm Street. Enough moving, and the entire postal system 
would collapse in a heap. 
To overcome this problem, layers of indirection must be put into the network 
so a device can be mapped to a location. “Indirection” inserts a relay point 
between hosts that are communicating. A host sending data communicates 
with the relay, or indirection, point, which knows how to reach the receiving 
host. This is the concept behind mobile IP, for instance, with the home agent 
being the indirection point. One of the worst habits of network engineering is 
treating the location as an identifier, which eventually causes massive scale 
problems, and then inserting a new layer of indirection to solve the massive 
scale problem created through poor discipline in the first place. 

How Do I Get There? 

After you have an address, you need to know how to reach that address. The 
control plane employs routing protocols to solve this problem. Routing 
protocols map the best path through a set of physical links and devices to 
reach any topological location or any device. Routing has been modeled in a 
number of ways through the years; each of these models is useful in its own 
way: 

 Routing as an application running on top of the network: In 
this model, routing is a distributed application that interconnects 
the various devices that make up a network. For instance, routing 
protocols are seen as part of the application layer within the DoD 
and ISO network models. Because routing protocols rely on the 
host-to-host transport mechanisms provided by network protocols, 
this makes sense only from the perspective of these models. 

 Routing as a widely distributed real-time database: This 
model treats the routing table (or the protocol tables) as the 
primary end of routing, and the protocols themselves as a 
language or system used to produce those tables. The emphasis 
here is on the concept of real time, because the routing database 
must reflect the state of the real topology within seconds (and 
increasingly milliseconds) of changes in that topology. For 
instance, OSPF and IS-IS model routing within a single flooding 
domain as a set of a synchronized databases. A set of on-the-wire 
protocols are specified to keep this distributed database 
synchronized in near real time, along with a set of operations 
every node on the network must perform on these synchronized 
databases. OSPF, specifically, is described as a set of state 
machines around a distributed database. 

 Routing as a widely distributed policy database: This model 
not only treats routing as a distributed database, but as a 
distributed database containing policy—one link is preferred over 
another link because of costs or because it better supports a 
specific application, and so on. This layers policy on top of the 
distributed database view, adding complexity. For instance, the 
process of carrying BGP information through a network is 
described as a set of interactions with policies local to each device 



and autonomous system through which the routing information 
passes. 

 Routing as a set of algorithms running on a centralized set 
of controllers: This is the model of bandwidth brokers, 
centralized traffic engineering, and Software Defined Networks 
(SDN), which will be covered in greater depth in Chapter 17, 
“Software-Defined Networks.” 

We won’t spend a lot of time in this book explaining routing; instead, we 
refer to the many fine books published through Cisco Press that explain the 
operation and deployment of various routing protocols. 

Other Network Metadata 

A network not only needs names, addresses, and road maps to operate, it 
also needs information about the current state of devices and links, policies 
that are outside the routing database and quality of service. This piece of the 
control plane puzzle is provided through protocols such as SNMP, RSVP, 
ICMP, NetFlow, and many others. Each of these protocols is designed to run 
on top of the network itself and provide information about the network. 

Control Plane Relationships 
The control plane consists of a number of different classes of protocols and 
services, including routing, quality of service, and measurement. Network 
engineers tend to think of the control plane as being restricted to the 
automated process (such as routing protocols) that provide the metadata—
the information about the network—that makes the network itself “go.” 
However, the control plane, in theory at least, reaches into manual 
configurations provided by network operators, routing protocols, quality of 
service information, and network management. It’s not easy to draw a 
definitive line around what is part of the control plane and what isn’t; for this 
discussion, we’ll draw the line rather broadly. Each of these different 
relationships is discussed in the following sections. 

Routing 

To determine where a packet has been in the Internet, all you have to do is 
look at the autonomous system path of the route that brought the packet to 
the local router, right? Although this way of thinking is widespread, it’s 
wrong. 
Packet-based networks are designed to allow traffic to continue flowing even 
when there are disruptions in the topology—the control plane discovers the 
change in the underlying network, reacts to it, and moves flows from one 
path to another. There is not, in reality, a single control plane in most 
networks. Any given router might be running multiple routing protocols, and 
there’s always static routing, policy-based routing, traffic engineering, 
tunneling, and any number of other mechanisms that can direct traffic down 
a given path. 
This loose coupling of the data plane and the control plane is a difficult 
concept, and not grasping it leads to all sorts of mistaken thinking about 



network engineering in general, such as the idea that you can determine how 
a packet arrived at the local router by simply looking at the autonomous 
system path in a BGP update. The control plane, in essence, is not a single 
“thing,” but a collection of different protocols and mechanisms, each of which 
can direct a packet down a different path moment by moment. Further, the 
control plane in a packet-switched network is designed so that every router 
and every switch makes a decision about which path it thinks is best to reach 
any given destination independent of any other device in the network. 
To illustrate this concept, let’s use Figure 4-6. 

 

Figure 4-6 Examples of Path Modifications in Routing 

Three networks are depicted in Figure 4-6; let’s examine each one in turn. 
The top network illustrates what most engineers think about when they look 
at the routing table at Router A. Traffic from the host on the far right travels 
along the same path as traffic sent to Host F, so the routing information 
shown in the routing table at Router A accurately describes the path any 
particular traffic has taken from the host to the local router. 
The middle illustration shows a situation that’s far more common than most 
engineers imagine, asymmetric routes. Here, the traffic from the host on the 
far right travels along the path (E,D,B,A), even though the local routing table 
shows the best path as being (A,B,C,D,E). Looking at the routing table at 



Router A, you would assume the traffic travels the same path in both 
directions, but because of asymmetric costs across the (B,C) link, the traffic 
actually passes along two different paths. 
The bottom illustration shows the same network with a bit of manually 
configured policy; a static route has been configured at Router D. The result 
is that examining the routing table at either Routers A or E will provide a 
false view of the path traffic takes between Host F and Router A. 
Other examples of the control plane at any particular device in the network 
not actually showing the path any particular traffic has traveled to reach a 
specific destination include packets routed around a failure during the time of 
network convergence, traffic that is tunneled or traffic engineered through 
tunneling techniques, and any situation where there are two routing 
protocols interacting with one another in the same network. 
RFC5123, Considerations in Validating the Path in BGP, provides a more 
detailed set of examples drawn from experience with interdomain routing. 
Another interaction between the control plane and lower layers of the 
network stack is the use of the lower layers as a transport for the control 
plane itself. Routing protocols use transport, network, and link services to 
transport the metadata that keeps the network running; for instance, BGP 
runs over TCP (a transport protocol), OSPF runs over IP (a network protocol), 
and IS-IS runs directly over link layer services. 
Routing protocols don’t pull link (or interface) state directly from the link 
layer in IOS (nor most other implementations); routing doesn’t interact with 
physical interfaces at this level. Instead, routing protocols read link status 
from the network layer, specifically by receiving updates about the state of 
connected routes through the routing table. 
Virtualization’s interface with routing is the same as the remainder of the 
network—routing protocols provide reachability information through the 
tunnels. A control plane process must be used to separate or segment traffic 
at the point where the virtual topology separates from the physical topology 
in order to pull the correct traffic into the virtual topology. 

Quality of Service 

The control plane’s interface to network and link services includes the 
distribution and implementation (including manual configuration!) of quality 
of service (QoS), which is designed to control the order in which packets are 
transmitted on either the outbound or inbound side of each device in the 
path. QoS also interacts with traffic engineering mechanisms and 
virtualization services to channel traffic of various types along specific paths 
through the network to support policies such as better bandwidth usage, or 
the lowest possible delay and jitter through the network. 
For instance, Resource Reservation Protocol (RSVP) reserves bandwidth 
along a given path in a network, and MPLS/TE modifies the path traffic takes 
through a network to ensure link utilization is optimized for all applications. 
As noted previously in the “Iterative Layering Model” section, QoS is one of 
the outliers in the general design of connection-oriented services running 
over connectionless transport protocols. This is easily seen in the operation 



of protocols such as RSVP, which introduce state end-to-end in a specific 
path before the first packet is transmitted along the path. 

Network Measurement and Management 

Measurement is critical to operating a network. Network engineers need to 
know what the normal state of the network is and how the network is 
changing over time. Measuring the state of a network involves control plane 
protocols such as NetFlow and SNMP that run on top of network and 
transport protocols. 
Chapter 10, “Measure Twice,” covers network measurement and 
management in more detail. 

Interaction Between Control Planes 

The hybrid model also provides a solid basis on which to understand the 
relationship between multiple control planes running on the same 
network. Figure 4-7 illustrates the interaction between different routing 
protocols. 

 

Figure 4-7 Redistribution and Import/Export 

The first interface between routing protocols shown in Figure 4-7 is 
redistribution. It’s common to think of redistribution as the insertion of 
routes learned by one protocol into another protocol—in the figure, 
reachability information learned by OSPF 20 is injected into EIGRP 30. But 
although this is the way redistribution is configured, this isn’t the way 
redistribution actually works. 
In reality: 

 OSPF 20 installs routing information it has learned into the 
Routing Information Base (RIB). 

 EIGRP 30 is notified when OSPF 20 installs a new route into the 
RIB, and pulls this route out of the RIB, assigning some locally 



derived metric and other information to the route in the EIGRP 
topology table. 

In other words, all redistributed routing information is redistributed through 
the RIB, rather than protocol to protocol. 
The second interface shown in Figure 4-7 is the import/export interface. This 
interface is specific to BGP and is used only for carrying OSPF and EIGRP 
routing information across an L3VPN service. Even though import/export is 
configured using redistribution commands in Cisco IOS Software (within the 
address family configuration), it really isn’t redistribution at all. How does 
this interface operate? 

 OSPF 10, at Router B, installs a prefix into a Virtual Routing and 
Forwarding (VRF) table, which is a RIB with forwarding information 
restricted to a specific virtual interface (or virtual topology). 

 BGP is notified of this prefix installation. 
 BGP communicates directly with OSPF to obtain any information 

about this prefix OSPF would like to insert into the BGP extended 
communities—this information is completely opaque to BGP itself. 

 BGP carries the route, including this additional information OSPF 
has handed off, across the network to Router A. 

 The BGP process at Router A installs the route into the correct 
VRF, causing OSPF to be notified of this new destination. 

 OSPF 10 communicates with BGP directly to retrieve the 
information attached to the route by OSPF 10 in Router B—this 
information is still completely opaque to BGP itself. 

 OSPF 10 at Router A uses this information to reconstruct the 
proper metrics and other information about the route for its local 
link state database. 

In no case is internal routing information, such as metrics or policy markers, 
transferred from one routing protocol to another. The only information 
redistributed between two different routing protocols is the destination and 
the next hop. In the case of the import/export interface, two OSPF processes 
are using BGP as a signaling channel to communicate; the routing 
information transferred between the OSPF and BGP processes (that BGP 
actually uses) is still only the reachable destination and the next hop. 
Furthermore, routes are transferred only if the route is being used to forward 
packets on the local device. The second-best route to a destination in OSPF 
20 at Router A isn’t ever redistributed to EIGRP 30. Backup routes, such as 
Loop Free Alternates (LFA) and EIGRP Feasible Successors, are never 
redistributed from one routing protocol to another. 
Why do we go to so much trouble to provide this type of separation between 
different routing processes? 
Because the capability of a routing protocol to determine loop-free routes is 
based on internally consistent state. Injecting random state into a routing 
protocol can (and sometimes does) cause major network failures. 



Note: It might be interesting to consider, for a moment, the difference 
between internal and external routing information. Because routing protocols 
draw their information from the local RIB, and more specifically from what 
we might consider the “connected process,” on the router, what is—really—
the difference between internal routes and redistributed routes? The real 
difference is not in the origin of the routing information, but in the type of 
metric itself. If the metric of the route is “native” to the protocol, the route is 
an internal route. If the metric is “not native” to the protocol, the route is an 
external route. The process of redistribution, then, tells the routing process, 
“this metric isn’t like your internal metrics, so treat it differently.” The 
process of distribution tells the routing process, “this metric is like your 
internal metrics, so treat this route as an internal route.” The case of 
redistributed connected routes and distributed connected routes (connected 
routes distributed through a network statement in Cisco IOS Software), is 
illustrative—there’s no real difference in the actual metrics involved; it’s just 
an administrative (or policy) decision at the point of origination. The 
administrative nature of metric types is seen even more clearly in BGP, which 
almost always draws its routing information from a local IGP routing process. 
Should the metrics be considered internal or external? It depends on the 
configuration.

 

 
 
 

Reactive and Proactive 
We’ve moved from models of network protocol operation to a model that sits 
on the edge between network protocols and network operation at the level 
where it impacts design. Before moving into pure design models, it’s 
important to discuss one aspect of network operation that interacts with both 
the control and data planes in more detail—the concepts 
of reactiveness andproactiveness. 
The concept of a reactive control plane is simple to understand in theory: the 
control plane finds the information required to forward a particular packet 
only when there is an actual packet to be forwarded. In a proactive control 
plane, information about every reachable destination is always available at 
every device that might be on a path toward that destination. 
Reactive data planes are a bit more complex to understand, but they 
essentially always involve a cache of forwarding information of some type. 
This cache is updated only when there is a packet presented to the control 
plane that needs to be forwarded. Proactive data planes are built just like 
proactive control planes (and require a proactive control plane to build); data 
plane forwarding tables are built based on information about the state of the 
network, rather than on traffic flows. 



Combining these two concepts, we find there are four models of interaction 
between control and data planes: 

 A proactive control plane with a proactive data plane, where every 
reachable destination within the network is known by every node 
in the network (note that aggregated routing information still fits 
this definition) through a routing protocol (or other control plane), 
and this reachability information is installed in the local forwarding 
table of every device in the network. An example of this is a 
network running OSPF to provide routing information combined 
with a fully populated forwarding table through Cisco Express 
Forwarding (CEF). 

 A proactive control plane with a reactive data plane, where every 
reachable destination within the network is known by every node 
in the network through a routing protocol (or other control plane), 
but forwarding information is installed only when a packet needs 
to be forwarded to a specific destination. An example of this is a 
network running OSPF to provide routing information combined 
with a cached forwarding table, such as Cisco’s fast cache. If a 
packet to a particular destination is received for which there is no 
forwarding information, the forwarding process queries the control 
plane, which knows all reachable destinations, for that 
information. The forwarding process will cache information learned 
from the control plane for some period of time; some caching 
systems attempt to intelligently decide when forwarding 
information is no longer needed by examining local traffic 
patterns. 

 A reactive control plane with a reactive data plane, where 
information about every reachable destination is available on some 
node someplace in the network, but not on any particular node in 
the network. When a packet is received for which there is no 
forwarding information, the forwarding process will query the 
control plane for information about this destination. The control 
plane, in turn, queries the other nodes on the network to discover 
the location of the destination, and then does whatever processing 
is necessary to find the best path to that destination. The 
information discovered through this process is often cached in 
both the data and control planes until these processes determine it 
is no longer needed. An example of this type of implementation is 
the Locator Identifier Separation Protocol (LISP), where the 
information required to forward packets is discovered only as 
packets arrive at some network edge. 

 A topology only control plane with a reactive data plane, a 
variation on a reactive control plane with a reactive data plane. In 
this type of design, the control plane is only responsible for 
building a single loop-free topology that connects all reachable 
destinations, rather than finding the best path to every reachable 
destination from every network device. Reachability information is 
discovered by examining actual traffic flows on the network itself 



and is cached by the data plane’s forwarding processes until it is 
deemed out of date or otherwise not needed. Spanning tree is an 
example of this type of operation. 

Why should a protocol designer or implementer choose one model over 
another? Why should you, as a network architect, be concerned about which 
model a specific protocol uses? 
Reactive systems can introduce unpredictable and difficult to manage delay 
and jitter into the network. Although faster reaction times, and more 
intelligent caching rules, can reduce the impact of the reaction time in the 
network, the reaction time will always remain—and because applications 
don’t know about this reaction time, it’s difficult for them to manage and 
account for it. Should the first packet’s round-trip time be taken as normal 
for the connection to a particular destination, or is it just an artifact of a 
reactive control plane? From the application’s perspective, there’s no way to 
know. 
Reactive systems can, however, reduce the amount of state in any given 
network device—so long as the reactive control or data plane is properly 
designed and managed. Reactive state is almost always kept at the host 
reachability level, rather than the aggregated level. Reactive forwarding 
devices often must buffer the first few packets in a flow so traffic isn’t 
dropped while a path to the destination is being discovered through the 
control plane. These two factors combined often counteract any savings the 
control plane realizes by keeping less state information at each device. 

  



The Waterfall Model 
The waterfall model isn’t a model of network operation, but rather a model of 
traffic flows. This model is based on the basic insight that all routing and 
switching protocols essentially build a tree sourced at the destination and 
spreading out to each available source. Figure 4-8 shows the waterfall model. 

 

Figure 4-8 Waterfall Model 

The waterfall model shows how data flow splits in a network at every router 
(Layer 3 junction), so that a single stream becomes a series of streams. 
Although the data flow is upside down (data actually flows in the opposite 
direction of the water flow, so it’s more like a salmon leaping up the waterfall 
towards the head of the falls), the imagery is useful. After any network data 
stream has split, there is no way to rejoin the streams back into a single 
stream of data without risking loops in the network topology. To understand 
how this relates to modeling a network, consider the difference between 
spanning tree and routing operation in a waterfall model. 
Spanning tree builds one large tree that is shared by every source and 
destination pair. This single tree means that all traffic must “leap up the 
waterfall” to the head end, where it can then follow the flow of water back 
toward its real destination. With OSPF, for instance, not only is every router 
the head end of a waterfall (a spanning tree), every destination is the head 
end of a waterfall. 



The most efficient path through the network is always going to be against the 
flow of the water in this model. Any network in which data must switch 
directions in relation to the current represents suboptimal traffic flow. The 
higher the number of destinations that must switch directions relative to the 
direction of the current, the more inefficient the network is. 
This effect will be discussed in terms of network stretch in Chapter 6, 
“Principles of Modularity.” 

Places in the Network 
Places In the Network (PINs) are a way to divide a network along functional, 
rather than topological, links. Figure 4-9 illustrates a PINs view of a network. 

 

Figure 4-9 PINs View of a Network 

Each functional section of the network is separated into a different 
component, such as the two data centers, two campuses, and so on. Splitting 
the network up in this way emphasizes the function of each piece of the 
network. Different design paradigms can be used in each section to match 
the specific purpose of the PIN being designed. For instance, a large scale 
hub-and-spoke topology might dominate the retail environment, and the first 
data center might be designed as a full mesh of tunnels, and the second as a 
Clos design. Clos network design is discussed in Chapter 11, “The Floor 
Plan.” 
Security, management mechanisms, and other aspects of each PIN can also 
be different; Data Center 1 might have an open security policy within the 
data center itself, and strong restrictions on outside access, while Data 
Center 2 might have no entrance policies, but strong per server/application 



security mechanisms. Every PIN is completely opaque to every other PIN in 
the network. Data Center 1 is simply a traffic sink for Data Center 2, and the 
WAN PIN is simply a transport mechanism to reach the other PINs in the 
network. 
Connecting these different PINs is a series of interconnects, shown as the 
small circles labeled IC inFigure 4-9. Some PINs might connect directly to 
each other as well as to the Core WAN PIN, as illustrated with the DMZ and 
Data Center 2 PINs. Others might connect only to the Core. Each PIN’s 
internal structure is completely different from every other PIN’s. For 
instance, Data Center 1 might have core, distribution, and access layers, and 
Data Center 2 might have only core and aggregation layers. These layers are 
completely independent of the overall network design. 
PINs are useful for understanding a network design from an operational 
perspective, because they provide a strong functional view based on business 
use for each PIN. This allows each business problem to be approached 
independently, which can often clarify the problems involved. Vendor sales 
folks tend to work within PINs almost exclusively because it helps to narrow 
the solution to a particular environment, helping to drive requirements. 
PINs are also useful for network planning; data center equipment, for 
instance, can be handled on a different replacement schedule than the 
remaining equipment in the network. Prioritized business needs fall naturally 
into the various PINs, making cost management easier and more effective. 
As a network design paradigm, however, PINs fail on several counts. First, 
PINs treat the network as a series of interconnected black boxes that have 
little relationship to one another. This encourages thinking in bits and pieces, 
rather than treating the network as an end-to-end system. As an example, 
consider the case of QoS controls; if each PIN handles quality of service 
independently, with various mechanisms simply interfaced at the 
interconnect points, the ability of a network engineer to understand the 
actual QoS implemented for a particular stream end-to-end is severely 
compromised. 
Second, PINs encourage spaghetti topologies and fragmented policy 
implementation. Overall traffic planning is not normally a consideration in 
PINs, and overall scalability is assumed from splitting functionality into 
multiple pieces. This clearly doesn’t work—too many interconnects between 
PINs that don’t run through the WAN PIN will destroy any ability to hide 
information along module boundaries. If each PIN is managed with an 
independent security policy to best support the purpose of the PIN itself, 
building an overall security policy that can be applied to any location in the 
network becomes almost impossible. 
An illustration may help to drive these points home. 
Suppose you decide to build a new house. You proceed to a local builder’s 
office and select from among all the available living room designs one that 
you think will fit your needs. From another stack of designs, you select a 
kitchen that will best fit your needs and budget. Next, you select three 
bedrooms from the stack of available bedroom designs and select some 
bathroom designs from the stack of bathroom designs. 



You then take all these different designs, pile them on the builder’s desk, and 
say, “Now build me a hallway that will connect all these pieces, and I’ll have 
a nice house.” 
PINs fail as a network design paradigm for all the same reasons building a 
house room by room, with an interconnection hallway, fails. They may help 
the architect understand the way a network is laid out, and connect the 
network to the business in a more apparent way, but they aren’t a solid 
network design tool. 

Summary 
This chapter has covered a dizzying array of models, from the esoteric to the 
well-known. What’s the point of all this modeling? 
Each model provides a view into the mind of protocol designers, network 
equipment designers, and network designers through the years of 
networking as a profession. Each one brings some new information to the 
table and hence is worth digging in to and understanding on its own. As a 
whole, finding, learning, and understanding every model on its own terms 
provides a deeper understanding of network design and operation from a 
number of different perspectives. 
   



Chapter 5. Underlying Support 

No matter how far up the networking stack you might roam, you’ll always 
come back down to speeds and feeds—as rule 9 in RFC1925 states, “For all 
resources, whatever it is, you need more.” But how does the physical layer, 
with all those bits and bytes and headers and trailers and stuff, relate to 
network architecture? 
The first part of this chapter discusses the crucial questions every network 
designer needs to be able to answer about every link type (virtual or real), 
and why each of these questions matters. The second section provides an 
overview of the Spanning Tree Protocol (STP) and the points you need to 
remember to design for STP. The third section covers Transparent 
Interconnection of Lots of Links (TRILL) as a standards-based example of the 
various data center fabrics that are now available. 

Questions You Should Ask 
Have you ever sat and had a long discussion with a network link? If you 
haven’t, you really should sometime—the physical links that run rack to rack, 
building to building, and city to city are the real workhorses of the 
networking industry. Okay, so maybe you can’t talk to a physical link, but if 
you could, what would you ask? 
Here are the absolutely crucial questions to understand before using a 
particular link type. 

What Happens When the Link Fails? 
The first question an engineer might ask about a link is, “How does this 
work?” Is the signaling optical, or electronic? What sort of modulation is 
used? What’s the maximum length of a single run? Is the link multiplexed or 
not? All these questions are interesting, but they aren’t the first question a 
network designer should ask. So what is the first question a network 
designer should ask? 

What happens when the link fails? 

This might seem a little pessimistic, but it’s important because link failure is 
where network design really interacts with the physical characteristics of the 
link itself. Link failures cause loss of service, jitter, and changes in end-to-
end delay for applications running on top of the network. 
To put the problem another way: a network’s performance is closely tied to 
the speed at which the control plane reacts to changes in network topology. 
It’s very difficult to react to a change the control plane doesn’t know about, 
so it’s crucial to consider how long it takes to discover a failure across this 
type of link. 
The classic example of a link type with no real down notification is a switched 
Ethernet segment—all reachability to every device across the segment could 
be lost, but as long as there is a carrier between the router interface and the 



switch, the link will be shown as operational in the local routing table. 
Multicast only failures, unidirectional failures, and other failure types can also 
post serious challenges to the capability to deliver traffic across a link while 
allowing the link to appear operational from the routing protocol’s 
perspective. 
What options does the designer have in those situations where the network 
must converge more quickly than the physical link will detect a failure and 
notify the routing protocol? An alternative polling mechanism such as fast 
hellos at the protocol level or Bidirectional Forwarding Detection (BFD) can 
be used to detect link failures quickly where needed. Reachability to external 
devices can be tracked using solutions such as IP Service Level Agreement 
(IP SLA); however, it’s important to remember that polling mechanisms are 
always slower than event-driven mechanisms, and require a lot more 
processing and work to provide good failure detection while minimizing false 
positives and other problems. 

What Types of Virtualization Can Be Run Over This Link? 
Virtualization through tunneling is a common feature of most network 
technologies in current architectures; this means it’s very important to think 
about what types of tunnels a particular link can support. For instance, if you 
are running a set of circuits across an L3VPN provided using MPLS, the only 
way to run MPLS on top of the service is to run some other tunneling protocol 
(such as Multipoint Generic Routing Encapsulation [MGRE]) on top of the IP 
service, then configure MPLS forwarding on top of the second tunneling 
protocol. This could be a problem if you’re planning to use an MPLS Layer 2 
service to provide data center interconnect over the L3VPN service. You may 
wind up with less useable bandwidth than you thought. 
For instance, Maximum Transmission Unit (MTU) is a major consideration 
when determining whether to run a virtual link across any given transport. 
An L2TPv3 link running over an L3VPN provided on top of an MPLS service 
has a local header for each link, an MPLS header, an IP header, an L2TPv3 
header, another IP header, and finally any other transport headers on top of 
that. It’s possible to eat up the entire MTU of some link types with headers. 
You can also run into performance and throughput issues if the tunnel 
processing is done in software rather than hardware. It is difficult to get 
accurate data from most vendors, so be sure to do your own testing before 
making production decisions. 
Another aspect of virtualization to consider is fate sharing; anytime you run 
multiple virtual links over a single physical link, the virtual links will share the 
fate of the physical link. If 100 VLANs are carried over a single Ethernet 
segment using trunking or 802.1Q, then all 100 virtual links fail when the 
single Ethernet segment fails. Fate sharing is a major problem when a virtual 
link and its backup are both carried across a single physical link—a single 
failure can take out all available paths, a fact that can be easily hidden on 
network diagrams. 



How Does the Link Support Quality of Service? 
Quality of service (QoS) support will generally fall into three broad areas: 

 The ability to mark packets on each link type based on the priority 
or class of service a particular stream or application expects 

 The ability of each interface implementation along the path to 
read, understand, and act on these packet markings 

 The types of queues and rate limiting mechanisms available on the 
interfaces along a particular path, as well as the parameters and 
adjustments the operator can make to these queues and rate 
limiters 

Marking Packets 

How many bits are available for marking packets on this link type? The 
number of bits available determines the number of queues any interface 
along the path is going to be able to act on. If there are only 3 bits to use for 
marking the class of service, then there will only be 8 possible classes (0–7) 
with which you can mark the traffic. Some link types will have no bits 
available to mark traffic; for instance, an Ethernet link without trunking 
enabled. In this case QoS will have to rely on a higher-level protocol for 
marking, such as the TOS bits in IP. 
Remember that when you rely on a higher-level transport protocol to mark 
packets for specific quality of service handling, there is often no way to 
translate those markings into actual differences in the way traffic is handled 
when being forwarded through the network. Layer 2 devices, such as 
switches, may not pay attention to QoS or Type of Service (ToS) markings in 
the IP packet header if these headers are not examined during packet 
forwarding operation. Other switches can, and will, look at higher-layer 
marking such as DSCP if they are configured to do so. 

Queues and Rate Limiters 

It’s also important to understand the types of queues and rate limiters 
available across a particular transport system. When and where can traffic be 
rate limited or shaped? Based on what information—the type of service bits 
in the packet headers, the protocol type, or other factors? How does shaping 
work along this circuit, and what impact will shaping (which necessarily 
involves queuing packets for some period of time) have on critical business 
applications? 
Another queuing consideration is related to the type of interface a link uses. 
For switches, the number of queues available, the existence of a priority 
queue, and the number of drop thresholds within each queue all vary 
depending on the type of device and the module within the device. It’s 
important to check this when deciding what equipment will fit your network 
design. 
Also note where queuing takes place in a device, or rather what types of 
quality of service controls are implemented at various points in the 
processing of a packet in any given device. Queuing is normally implemented 



after switching, in between the switching process and the output interface. 
Queuing might also be implemented across the fabric or BUS that connects 
line cards. Rate limiting might take place on the outbound interface, the 
inbound interface, or both—it’s very important to understand which when 
you’re considering how to manage the amount of traffic accepted into the 
network from any given edge device. 

Speeds and Feeds Versus Quality of Service 

Talk to any network engineer long enough about quality of service, and 
you’re likely to hear something like this: “Quality of service is only necessary 
when there are bandwidth constraints; if you have enough bandwidth, you 
don’t need QoS.” There is some truth in this statement. If there were always 
enough bandwidth to transmit every packet offered to the network, there 
would be less need to control how traffic is transmitted. However, you might 
still have the problem of a large packet delaying the transmittal of a small 
packet, and thus introducing jitter into a real-time traffic stream. 
Additionally, people often forget that even the most granular link usage 
statistics are but an average. You can have microbursts of data that cause 
critical packets to be dropped but never show up in your network 
management reports. So no matter how big your pipe is, or how lightly used 
you think it is, it might save the day to have at least some basic QoS 
implemented. 
On the other hand, the cost of links sometimes drive network engineers to 
use highly tuned QoS systems to reduce bandwidth usage to the minimum 
possible. In this valiant effort, traffic is classified into as many different 
buckets as possible, with strict rules on how packets from different classes of 
service should be serialized onto the wire. “Maybe we can wring just one 
more flow out of this link, if only we can figure out how to...” 
So how do we balance between the two? When do we upgrade our links, and 
when do we introduce finer-grained QoS to resolve problems with a particular 
application? The key to this problem lies in naming and understanding both 
sides of the equation. 
What is the cost of increasingly complex QoS? The first cost is in the time 
required to set up and run the QoS system, including managing the 
unexpected flows and situations that will arise in any complex system. Keep 
in mind that you want to standardize your QOS settings as much as possible 
across the entire enterprise. That means you’ll need to design for 
applications and traffic flow throughout your entire network. And any QOS 
changes will need to be deployed throughout your entire network. The 
second cost is in the time required to troubleshoot the QoS system when it 
fails, or when the network itself fails. To make this problem worse, most QoS 
problems show up as difficult to diagnose application performance problems. 
The third cost is in the time and processing required for routers and switches 
to build and manage large numbers of queues, and in the diminishing returns 
of slicing traffic into smaller and smaller queues, each of which will 
necessarily receive an ever smaller piece of the available bandwidth. 
The cost of adding higher bandwidth connections includes, of course, the cost 
of the link itself. For a WAN link this might be a real drawback. On both LAN 



and WAN connections there may be additional interfaces required or even an 
upgrade to your network equipment. Configuration changes will be needed. 
Good QoS design is not a trivial exercise. There have been entire books 
written on quality of service, such as End-to-End QoS, Second Edition, by 
Tim Szigeti, and we refer you to them for complete understanding of QoS. 
From a network design standpoint, it boils down to understanding your 
business and understanding the needs of your business applications, then 
designing a network that can support the QoS requirements. 

Spanning Tree 
The Spanning Tree Protocol (STP) is one of the simplest control planes 
available, and also probably one of the most widely deployed. Three specific 
points are important for the network designers to consider in using STP: 

 STP builds a single tree of the entire topology, rather than per 
destination/device. This implies that the topology must match the 
tree STP will build, or only those parts of the physical topology 
that match a spanning tree will be used by the protocol. Figure 5-
1 provides an example. 

 

Figure 5-1 Spanning Tree Inefficiency 

While this topology is a loop, STP needs to build a single tree that can be 
used to forward traffic. Assuming Switch C is chosen as the root of the 
spanning tree, the link between Switches B and F will be blocked, so traffic 
from Server A to Host G is switched along the path [B,C,E,F]. This is clearly a 
much longer path than the optimal, which is [B,F]. 

 All reachability (for both network nodes and end hosts) is learned 
in the data plane, rather than being carried through the network 
in the control plane. In the network in Figure 5-1, the spanning 
tree across the network is built node-to-node to include the links 
[B,C], [C,E], and [E,F]. This tree is enforced by shutting off all 
traffic along the [B,F] link, rather than actually building a local 
forwarding table based on reachability information learned from 
the control plane. 

The implication for design is that mobility and loop-freeness are built 
on the back of data plane timers, rather than control plane 
convergence speed. To increase the speed of convergence in an STP 



network, the protocol is removed from edge links (such as [A,B]) by 
techniques such as the Cisco PortFast, timers are adjusted to produce 
faster detection of link and node failures, and faster link layer failure 
detection mechanisms are deployed, such as Ethernet OAM. 

 There are no loop breaking mechanisms in most data link layer 
protocol specifications, such as a time-to-live counter in the 
header; if a loop occurs, packets will loop until the control plane 
breaks the loop. If the looping packet interferes with the control 
plane’s capability to break the loop, it could be impossible to 
break the loop, causing a permanent failure condition (until a 
network operator intervenes and manually breaks the loop). 

Some large scale data center networks have moved away from using STP by 
designing their physical topologies in the form of a spanning tree, and then 
using MAC address filtering or multiple spanning tree domains to prevent 
packet loops. One example of such designs is covered in Chapter 12, 
“Building the Second Floor.” 

TRILL 
Transparent Interconnection of Lots of Links (TRILL) was originally conceived 
with a simple idea: what happens if we replace STP with a link state 
protocol? A common misconception engineers often form from this simple 
basis is that TRILL routes Layer 2 frames much like any traditional routing 
protocol routes Layer 3 (IP) packets—but this isn’t really the idea behind 
TRILL, nor the way TRILL actually operates. 

TRILL Operation 
Figure 5-2 is used as a reference for explaining TRILL operation. 

 

Figure 5-2 Example Network for TRILL Operation 

TRILL operation proceeds in three steps. 
In the first step, a set of shortest path trees are built node to node (not edge 
to edge, as in routing), across all the switches in the network. IS-IS is used 
to find neighbors, advertise node-to-node links, and build the trees that 
provide connectivity across the switches. In this example, H would build a 
tree that includes reachability to the following: 

 Switch F along the path [H,F] 



 Switch C along the path [H,F,C] 
 Switch G along the path [H,G] 
 Switch E along the path [H,G,E] 
 Switch D along the path [H,G,E,D] 

After this set of shortest path trees is built through the network, the second 
step, learning reachability, can begin. Unlike routing (and like STP), 
reachability is learned through the data plane. If Server A forwards a packet 
toward Host K, Switch C now learns that Server A is reachable through 
interface C.1. Assuming Switch C doesn’t have any forwarding information 
for Host K, it will place this packet onto a multicast tree that reaches every 
other edge node in the TRILL domain. The packet isn’t transmitted “natively,” 
but is encapsulated in a TRILL header (like Q-in-Q) that contains additional 
information, such as a TTL and information about the source switch in the 
TRILL domain. In this case, the header would contain Switch 
C’s nickname, which is simply a unique identifier on the TRILL domain that 
can be used to forward packets directly to Switch C. 
On receiving this packet from this multicast tree, each edge node will 
examine the TRILL header and inner (original) packet and learn that Server A 
is reachable through Switch C. Again, assuming Switches D and H have no 
prior knowledge of Host K, they will both unwrap the TRILL encapsulation 
and flood this packet to an unknown destination onto their attached 
segments. Note that the “core switches,” or switches that are not on the 
edge, do not examine these packets, nor learn the MAC addresses carried in 
them. In this way, TRILL protects the core switches from learning the entire 
table of reachable Layer 2 addresses in the network. 
In the third step, normal switching begins. Assume Host K responds; we can 
trace this response back through the process of being forwarded to Server A. 
When Host K transmits a packet to Server A, Switch H receives this packet at 
interface H.1 and examines its local forwarding table for information about 
the destination address. Switch H finds it does have a forwarding entry; 
Server A is reachable through Switch C. Switch H encapsulates the original 
packet into a TRILL header and forwards the packet to Switch F. 
Switch F examines the TRILL header and finds the packet is destined to 
Switch C, so it simply forwards the packet on toward the correct destination. 
When Switch C receives the packet, it looks at the TRILL header and the 
source address, and learns that Host K is reachable through Switch H. After 
this information is entered into its local forwarding table, Switch C removes 
the outer TRILL header and forwards the packet onto the correct local link 
based on the forwarding information built previously—forwarding information 
discovered when the first packet from Server A was transmitted. 

TRILL in the Design Landscape 
What are the practical implications of TRILL operation? The most obvious is 
that TRILL allows every link in the TRILL domain to be used, rather than just 
those links that fall along a single spanning tree for the entire physical 
topology. This makes for more efficient link utilization. TRILL’s use of a link 
state protocol to discover topology also implies that all the positive and 



negative aspects of a distributed link state control plane are brought into 
play in the TRILL domain. 
Microloops are bound to be a part of any TRILL domain while it’s converging, 
just as they are in IS-IS and OSPF networks supporting IPv4 and IPv6. 
Techniques used to provide fast reroute in link state based IP networks 
should also be applicable to TRILL domain, as well (although there are no 
standards in this space, nor has any vender expressed plans to implement 
fast reroute in TRILL based fabrics). Note the TRILL header does include a 
TTL to prevent either microloops or more permanent forwarding loops from 
looping individual packets until the control plane or manual intervention 
breaks the loop. 
Although TRILL uses a link state protocol to discover the network topology, it 
does not use the link state protocol to discover reachability. This means that 
like STP, TRILL is reliant on data plane timers to discover when a device has 
moved from one place in the network to another; the current forwarding 
table information must time out in all nodes before devices can be assured 
their traffic is delivered to the correct end host in a TRILL network. 
TRILL is also capable of providing control plane operations for large 
multitenant data centers supporting millions of virtual networks through 
various extensions and modifications to the base protocol. 

TRILL and the Fabrics 
TRILL and its close cousin, IEEE 802.1aq (Shortest Path Bridging), are both 
the foundation for a number of vendor fabric offerings, including 
Cisco’s FabricPath. These offerings generally operate in a way that is similar 
enough to TRILL to be treated as a TRILL domain from a design perspective. 
One major difference between these offerings and TRILL’s basic operation is 
that it’s possible to include reachability information in the IS-IS process that 
provides topology information for the TRILL domain. In the case of the 
example given in Figure 5-2, Switch C, on discovering that Server A is locally 
attached, can send an IS-IS update including this bit of reachability 
information, so the first packet directed at Server A doesn’t need to be 
multicast through the TRILL domain. 

Note: Juniper’s Q Fabric is based on an MPLS overlay fabric (much like a 
Layer 2 VPN provided by a service provider), using BGP and route 
reflectors. Q Fabric isn’t based on TRILL, though it can still be treated as a 
single fast flat Layer 2 domain with optimal routing for the purposes of 
network design.

 

Final Thoughts on the Physical Layer 
The primary place where the network designer is going to interact with Layer 
2 control planes is in contained environments, such as a data center or 
campus network. Although these designs are an important component of the 
overall network, it’s important to keep their contained nature in mind; the 



data center is not the network, it is a single Layer 2 failure domain within a 
larger Layer 3 routed network design. 
Within the network at large, the primary considerations for a designer to 
consider when interacting with the physical infrastructure revolve around 
how it interacts with the routed control plane, quality of service, and 
virtualization. So as long as you can answer questions on these three areas 
about any physical link, you should be able to successfully design around the 
strengths and weaknesses of every available link type. 

  



Chapter 6. Principles of Modularity 

Modularity is one of those “tried and true” concepts in network design that 
very few people ever think about. Networks are modularized, well, because it 
has always been done that way. Everyone knows that too big is bad, right? 
But how big is too big? 
The biggest problem with answering this question is that not only is it 
dependent on what you’re trying to do, but also on what materials you’re 
working with and what year you live in. 
What year you live in? Suppose you went back to the turn of the 12th 
century and asked, “How big of a house do I need?” Given the materials they 
had to work with, the expense of the labor required to build and manage a 
large physical space, and the need to fit large numbers of people inside 
difficult to build and maintain city walls, the answer would be quite small 
compared to our modern standards. Moving to the turn of the 19th century, 
the answer would be much larger—in fact, it might even be larger than what 
we’re accustomed to today, in terms of sheer physical space (especially 
including outbuildings). The need to house large families along with the 
people needed to run a large farm, separating the kitchen from the main 
living area, and other factors would contribute to a “just right” living space 
being rather large. 
What we often fail to recognize is that, similarly, the answer to the question, 
“how big of a network is just right,” cycles through the years. Networking 
technologies are designed that will allow the size of a single domain within 
the network to grow large. Network engineers take this new technology as a 
way to build scale-free single domain networks, so they build huge domains. 
These huge domains fail for various reasons, injecting a little humility into 
the lives of network designers, the scale of a single domain contracts a little, 
and we relearn the lessons of modularity all over again using different terms 
and ideas. Then someone thinks of a new way to make huge flat domains, 
and we start all over again at the beginning. 
Wouldn’t it be better if we just learned the theory behind modularization, 
including the purpose, methods, and trade-offs, and then intelligently applied 
them so that we could right size every module in a network from the 
beginning? Why not look at the technology we have available, make an 
intelligent guess as to how large it can go, and then modularize above that 
size? 
This chapter starts with the question why modularize? In this section, we’ll 
put all the reasons you’ve ever heard, and some you might not have heard 
before, in one place. After this we’ll discuss how to modularize, and then 
consider the trade-offs between modularization and network efficiency. 

Why Modularize? 
There are, in essence, only two reasons to modularize networks: 



 To reduce the amount of data any particular network device must 
deal with when describing the topology and calculating the best 
path to any given destination 

 To reduce the amount of information the humans working on the 
network must deal with when designing, deploying, managing, and 
troubleshooting the network 

The following sections discuss these two concepts, including several areas of 
thought that branch off from each of them. Following these two discussions, 
there is an entire section on the Mean Time Between Failures (MTBF)/Mean 
Time to Repair (MTTR) curve. This is one of those foundational concepts in 
network design that you will meet time and time again; we’ll run into it again 
when discussing resilience, for instance (see Chapter 10, “Measure Twice,” 
for a complete discussion on MTBF and MTTR). 

Machine Level Information Overload 
Why shouldn’t we rebuild the Internet, or every large network, as one large 
flat switched domain? Couldn’t we find a way to build equipment that can 
handle one entry in the forwarding table per reachable host, or use caching 
to hold only the small part of the table any particular device needs at any 
given moment in time? 
The simple answer is that if you build a single large switched domain as large 
as the Internet, you’d find yourself with no way to reduce the amount of 
information contained in any single device’s control plane. Not only would 
every single device need to know how to reach every other device, each 
device would also need to know each and every time the state of any other 
device on the network changes. As an example, assume you built a network 
with 100,000 hosts attached, and where every forwarding device in the 
network knows about every host. If each device changes state once every 24 
hours (once a day), there would still be one state change per second in the 
entire network—and well over 100,000 devices would need to be notified of 
this change in near real time to maintain forwarding. This amount of state, 
and this rate of change, simply isn’t possible to maintain in the real world. 
What you’d have is a case of information overload at the machine level. 

Machine Level Information Overload Defined 

Information overload can be split into three independent problems: 
 Processing and memory utilization 
 Rate of state change 
 Positive feedback loops 

Processing and memory utilization is the simplest of these problems to 
understand—larger routing tables take up more physical memory and require 
more CPU cycles to process. 
Rate of state change is slightly more complex because of the added time 
factor. Every time the network topology changes, the control plane must 
recalculate the best path to some number of impacted destinations. The 
quicker the topology changes, the more often these best paths must be 



calculated. If the rate of change is faster than the control plane can calculate 
(or propagate) new best paths, the network will never converge. The global 
Internet is an example of a running network that never truly converges 
because the rate of topology change is so fast (due in part to the sheer 
number of devices interacting) that the control plane (BGP, in this case) 
cannot keep pace. 

 

What Is Network Convergence? 
We often speak of network convergence in the network design field, 
but we rarely define it in technical terms. What does convergence 
mean? 
If we treat the control plane as a distributed database, then the 
network is converged when every router (or device with a copy of the 
database) has the same view of the network’s state, or a consistent 
set of best paths through the network. This doesn’t mean that every 
device has the same database, only that the forwarding table on every 
router is consistent, there are no loops in the control plane, and there 
is no further information to be transmitted or processed. 
This is a superset of a link state’s protocol insistence that every router 
in a given flooding domain should have a consistent database, or that 
the link state databases of every device within a single flooding 
domain should be identical. 
Convergence is different from consistent database replication in two 
ways. First, the database of every device in a network need not be 
identical for every device to have a consistent view of the network’s 
topology. Devices in a network with aggregated information can have 
a consistent view of the network without having identical databases. 
Second, just having a matching database isn’t enough; the database 
must be processed on each device, and forwarding information that 
produces a consistent view throughout the network must be installed 
on every device. 

 

Positive feedback loops are the most complex of these three information 
overload problems because we must add the concept of rate of change with 
the rate of information flow. Figure 6-1illustrates a positive feedback loop. 



 

Figure 6-1 Positive Feedback Loop 

The example of a positive feedback loop in Figure 6-1 begins with some large 
scale change at Router A, causing Router A to send a large update toward 
Router B. This large scale control plane update is too large for Router B’s 
control plane to process in a reasonable amount of time (either due to lack of 
memory or processing power). Even while this update is being processed by 
Router B, it is forwarded (reflooded) to Router C, which also cannot process 
the information in a reasonable amount of time. While Router C is processing 
this information, it is passed to Router D. 
At Router D, the information overload is large enough that it causes the 
peering relationship between Routers C and D to reset. This causes an 
apparent change in the network topology, and Router D sends a large update 
to Router B with information about this topology change—which begins the 
cycle once again. Positive feedback loops can be stable (they do not spread 
throughout the control plane) or self-reinforcing in a way that causes the 
entire network control plane to fail. 

Note: A stable positive feedback loop can be either a good or a bad thing—
depending on the intention of the designer. For instance, in an electronic 
circuit that creates a continuous frequency signal, a positive feedback loop 
can be used to maintain a consistent output. On the other hand, a stable 
positive feedback loop that keeps a routing loop in place isn’t a good thing. 
Stable positive feedback loops are normally not a good thing in computer 
networks.

 

Reducing Machine Information Level Overload 

Given that “too much information” is a problem, what is the solution? The 
primary tool the network architect uses to overcome machine level 
information overload is information hiding. 



Information hiding reduces the routing table size by either combining 
multiple destinations into a single destination (aggregation, covered in more 
detail in Chapter 7, “Applying Modularity”) or separating destinations into sub 
topologies (virtualization, covered in more detail in Chapter 12, “Building the 
Second Floor”). 
Information hiding reduces the rate of state change in the same way—by 
hiding reachability information through aggregation or virtualization. Hiding 
reachability information hides changes in state, as Figure 6-2 shows. 

 

Figure 6-2 Example of Information Hiding and Rate of State Change 
Reduction 

Because Router B is hiding information about 192.0.2.0/24 through a route 
filter, Router C never receives any state about this destination—so it doesn’t 
have to do any recalculations if the reachability of that network changes. 
Information hiding, finally, reduces the possibility of positive feedback loops 
by reducing or removing control plane updates due to state change from the 
network. Returning to Figure 6-1, if Router B filters, hides, or otherwise 
blocks the updated information from Router A, the information would not be 
passed on to Router C, then to Router D, to cause the neighbor adjacency 
failure between Routers C and D, which causes a second change at Router B. 

 

Failure Domains and Modularity 
Put in the simplest terms possible, a failure domain is the set of 
devices that must recalculate their control plane information in the 
case of a topology change. As an example, in Figure 6-2, Routers A 
and B are in the same failure domain because they share a common 
view of the network. Router C, however, is in a separate failure 
domain, at least in regard to 192.0.2.0/24. 
What’s the difference between a network module and a failure 
domain? One is a demarcation of policy or intent, whereas the other is 
a demarcation in the flow of control plane information. A module is a 
clearly definable area of the network topology. 
The edges of network modules and the edges of failure domains 
coincide; where we find one, we often find the other. This is because 
policy implementation almostalways involves information hiding. This 
isn’t always true, but it’s true often enough that throughout this 
section we use the terms failure domain and network 
moduleinterchangeably. 



Remember, however, that failure domains and policy edges are not 
always in the same place in the network; although it’s convenient to 
think of them in the same way, they are really different things with 
different purposes. 
As an example, consider the network in Figure 6-3. 

 

Figure 6-3 Modules Versus Failure Domains 

In this example, the reachability within each data center is aggregated 
at the edge routers B and C. Aggregating so the data center routes 
are not transmitted into the network core is a policy, but it also 
creates a failure domain boundary, so routers B and C are the edge of 
both a module—a specific place in the network, the data center, with 
specific policies and reachability information—and the edge of a failure 
domain. However, because there is a Layer 2 tunnel stretched 
between the two data center fabrics, these two data centers represent 
a single failure domain. Information about a single link failure at A 
must be transmitted all the way to router D in order to keep the 
control plane synchronized. These two data centers, although they are 
in the same failure domain, would not be considered the same 
module; each data center may have different policy of service, 
different link bandwidth, and other policies. In this example, then, the 
failure domain edge aligns with the module edge in one case, and not 
in the other case. 

 

Separating Complexity from Complexity 

Where should you hide information in a network? The first general rule is to 
separate complexity from complexity. For instance, in the network shown 
in Figure 6-4, it’s possible to hide information at Routers A and B toward 
Router C, or at Router C toward Router D. Which would be more optimal? 



 

Figure 6-4 Optimal Information Hiding Points 

In this example, the difference between these two choices might seem to be 
minor, but let’s examine the two possibilities in more detail. From Router D’s 
perspective, the only difference between the two options is that it receives 
information about two more routers (Routers A and B), and two more links 
([A,C] and [B,C])—this isn’t that much information. From Router A’s 
perspective, however, the difference is between learning about every router, 
link, and destination reachable through Router B, including all state changes 
for those network elements, or only learning a single destination (in the 
optimal case), or destinations without links and routers (in the least optimal 
case) from B. 
Clearly, hiding information at Routers A and B reduces the total information 
carried across all routers more than hiding information at Routers C and D. 
You will always find that hiding information at the point where any two 
complex topologies meet will provide the largest reduction in network-wide 
table sizes. This simple rule, however, must be balanced against the 
suboptimal routing that is always caused by removing state in the control 
plane, a topic discussed in the section “Modularization and Optimization,” 
later in the chapter. 

Note: Another way of looking at this is to compartmentalize complexity—to 
separate complex bits of the topology from the rest of the network through a 
module edge or making it into a separate failure domain. Either way, the 
point is to make certain that complex topologies don’t interact in the control 
plane, either directly or through some simpler part of the network.

 

Human Level Information Overload 
There is a second piece to the information overload problem, as well—the 
ability of network operators to quickly understand, modify, and troubleshoot 
the network. Because this is clearly more of a business-related problem, 
impacting operational rather than capital costs, this side of information 
hiding rises above strict design and into the purview of the network architect. 
There are two aspects to this side of information hiding: the ability of the 



network designer to clearly assign functionality, and repeatable 
configurations. Each of these two aspects is discussed in the following 
sections. 

Clearly Assigned Functionality 

Imagine setting up the filters for the network in Figure 6-5 so that Host A can 
reach Servers M, N, and C, while Host K can reach Servers F, M, and N. 

 

Figure 6-5 Difficult Policy Problem 

There are a number of ways to solve this problem, including the following: 
 Set up filters using the correct source and destination addresses at 

Routers B and H to enforce this policy. 
 Set up filters using the correct source and destination addresses at 

Routers D, G, J, and L to enforce this policy. 
 Create two VLAN overlays on the network, each containing the set 

of servers that Hosts A and K are allowed to reach. 
All these solutions are going to be difficult to maintain over time. For 
instance, if Host A moves so it is no longer connected to Router B, but rather 
to Router H, then the filters associated with Host A must move with the host. 
If any of the servers move, the filters enforcing these policies need to be 
checked for correctness, as well. If the policies change, the network 
administrator must find every point at which each policy is enforced, and 
make the correct modifications there as well—the more widely these policies 
are dispersed in the network, the more difficult this will be. 
How could we make this problem easier to solve? By gathering each device in 
the network together by purpose or policy, so policies can be implemented 
along the edges leading to these groups of devices. This strategy of pulling 
devices with common policy requirements into a single module accomplishes 
the following: 



 Reduces the number of policy chokepoints in the network to the 
minimum possible, so network operators need to look in fewer 
places to understand end-to-end policy for a particular flow or set 
of hosts 

 Makes it possible to state a specific purpose for each module in 
the network, which allows the policies into and out of that module 
to be more easily defined and verified 

 Allows the gathering of policy problems into common sets 
This gathering of policy into specific points of the network is one of the ways 
modularization helps network operators focus on one problem at a time. 

Repeatable Configurations 

Gathering policy up along the edges between modules attacks the problem of 
operational complexity in a second way, as well. Each network device along 
the edge of a particular module should have a similar configuration, at least 
in terms of policy; hence they have repeatable configurations. Parameters 
such as IP address ranges may change, but the bulk of the configuration will 
remain the same. 
In the same way, once policy is removed from the network devices internal 
to a module, those configurations are simplified as well. With careful 
management, the configuration of every router and/or switch internal to a 
network module should be very similar. 

Mean Time to Repair and Modularization 
The Mean Time to Repair (MTTR) is the time it takes between a problem 
arising in the network and the network returning to fully operational state. 
This time can be broken down into two pieces: 

 The time it takes for the network to resume forwarding traffic 
between all reachable destinations 

 The time it takes to restore the network to its original design and 
operation 

The first definition relates to machine-level information overload; the less 
information there is in the control plane, the faster the network is going to 
converge. The second relates to operator information overload; the more 
consistent configurations are, and the easier it is to understand what the 
network should look like, the faster operators are going to be able to track 
down and find any network problems. The relationship between MTTR and 
modularization can be charted as shown in Figure 6-6. 



 

Figure 6-6 MTTR Versus Modularization 

As we move from a single flat failure domain into a more modularized design, 
the time it takes to find and repair problems in the network decreases 
rapidly, driving the MTTR down. However, there is a point at which additional 
modularity starts increasing MTTR, where breaking the network into smaller 
domains actually causes the network to become more complex. To 
understand this phenomenon, consider the case of a network where every 
network device, such as a router or switch, has become its own failure 
domain (think of a network configured completely with static routes and no 
dynamic routing protocol). It’s easy to see that there is no difference 
between this case and the case of a single large flat failure domain. 
How do you find the right point along the MTTR curve? The answer is always 
going to be, “it depends,” but let’s try to develop some general rules. 
First and foremost, the right size for any given failure domain is never going 
to be the entire network (unless the network is really and truly very small). 
Almost any size network can, and should, be broken into more than one 
failure domain. 
Second, the right size for a given failure domain is always going to depend 
on advances in control plane protocols, advances in processing power, and 
other factors. There were long and hard arguments over the optimal size of 
an OSPF area within the network world for years. How many LSAs could a 
single router handle? How fast would SPF run across a database of a given 
size? After years of work optimizing the way OSPF runs, and increases in 
processing power in the average router, this argument has generally been 
overcome by events. 
Over time, as technology improves, the optimal size for a single failure 
domain will increase. Over time, as networks increase in size, the optimal 
number of failure domains within a single network will tend to remain 
constant. These two trends tend to offset one another, so that most 
networks end up with about the same number of failure domains throughout 
their life, even as they grow and expand to meet the ever increasing 
demands of the business. 



So how big is too big? Start with the basic rules we’ve already talked about, 
building modules around policy requirements and separating complexity from 
complexity. After you get the lines drawn around these two things, and 
you’ve added natural boundaries based on business units, geographic 
locations, and other factors, you have a solid starting point for determining 
where failure domain boundaries should go. 
From this point, consider which services need to be more isolated than 
others, simply so they will have a better survivability rate, and look to 
measure the network’s performance to determine if there are any failure 
domains that are too large. 

How Do You Modularize? 
We know we want to build modules, we want to hide information, and we 
want to control the size of the failure domains we build in our networks. But 
given all of this, how do we go about modularizing a network? The primary 
means we have to implement policy and restrict the size of a failure domain 
is by hiding information. There are two ways to hide information in the 
control plane, and there are two types of information to hide. 

Topology and Reachability 
Whether you are hiding information horizontally or vertically, there are two 
types of information you can hide: topology and reachability. Figure 6-
7 illustrates the difference. 

 

Figure 6-7 Hiding Topology Versus Reachability 

Assume this network is running a link state protocol; in normal operation, 
Router A has the following information in its table: 

 Router E is connected to Router D, 192.0.2.64/27, and 
192.0.2.32/27. 

 Router D is connected to Router E, 192.0.2.32/27, and 
192.0.2.96/27. 

 Router C is connected to Router B, 192.0.2.0/27, and 
192.0.2.128/27. 

 Router B is connected to Router A, Router C, 192.0.2.160/27, 
192.0.2.128/27, and 192.0.2.96/27. 



 Router A is connected to Router B and 192.0.2.160/27. 
Let’s examine three possible ways of hiding information in this network, 
along with their results. 

Aggregating Topology Information at Router B 

What if Router B is configured to hide all the topology information it knows 
about from Router A? Router A’s database would contain the following: 

 Router B is connected to Router A, 192.0.2.160/27, 
192.0.2.128/27, 192.0.2.96/27, 192.0.2.0/27, 192.0.2.32/27, and 
192.0.2.64/27. 

 Router A is connected to Router B and 192.0.2.160/27. 
Notice that the connections between each pair of routers to the right of 
Router B are no longer listed in the database; every destination (including 
the links between the routers) is still reachable, but Router A no longer 
knows the specific paths available to reach each one. Instead, Router A 
knows only that every destination is reachable through Router B and 
assumes Router B knows the more specific information required to reach 
them. Another way to look at this hiding of the topology is that Router A now 
believes every one of the destinations reachable to the right of Router B is 
directly connected to Router B itself, rather than through some multihop path 
that passes through Router B. 
This is precisely the database Router A would have if this network were 
running a distance-vector protocol, or if Router B is configured as a flooding 
domain boundary in either OSPF or IS-IS. 

Aggregating Reachability Information at Router B 

What if Router B were configured to advertise the least amount of 
information possible while maintaining reachability to every destination on 
the network? In this network, all the addresses reachable via 192.0.2.0/27, 
192.0.2.32/27, 192.0.2.64/27, and 192.0.2.96/27 could be represented by a 
single address, 192.0.2.0/25. If Router B advertises just the minimal number 
of routes that still preserves all reachability, Router A’s database would 
contain the following: 

 Router B is connected to Router A, 192.0.2.160/27, 
192.0.2.128/27, and 192.0.2.0/25. 

 Router A is connected to Router B and 192.0.2.160/27. 
Notice that the topology information behind Router B is hidden as well as the 
more specific destination information; OSPF and IS-IS both allow route 
aggregation only at flooding domain borders, so there is no way to configure 
route aggregation in link state protocols without topology aggregation 
occurring as well. 
This is precisely the database Router A would have if route summarization 
were configured at Router B in OSPF or IS-IS (route summarization can be 
configured only at borders between different flooding domains), or if 
aggregation were configured at Router B in a distance-vector protocol. 



Filtering Routing Information at Router B 

Finally, it is possible to hide information by filtering routing information at 
various edges in the network. Router B could be configured to filter all the 
transit links out of the network; the resulting database at Router A would be 
as follows: 

 Router B is connected to Router A, 192.0.2.160/27,192.0.2.0/27, 
and 192.0.2.64/27. 

 Router A is connected to Router B and 192.0.2.160/27. 
Again, information about the topology to the right of Router B is not included 
in Router A’s database. This is because OSPF and IS-IS only allow routing 
information to be filtered at the same place topology information is 
aggregated—at a flooding domain boundary. 
To provide a more specific example of these two within OSPF, consider the 
various forms of information hiding OSPF provides at an Area Border Router 
(ABR): 

 A summary LSA (type 3) contains all the reachability information, 
but summarizes the topology to make all the destinations within 
the area appear to be connected to the ABR itself. 

 A summary LSA (type 3) with route summarization configured 
contains only partial reachability information (some destinations 
have been hidden within the single summary route), and these 
summary destinations appear to be attached directly to the ABR, 
hiding topology information. 

 A type 3 filter removes some reachability information, hiding 
reachability while also hiding the topology information by making 
all the routes remaining in the type 3 appear to be attached to the 
ABR. 

 An area border LSA (type 4) exposes the actual attachment point 
within an area of a specific external route. Here the topology 
information within an area is exposed to those routers outside the 
area, reversing the effect of a summary LSA (type 3). 

Splitting Failure Domains Horizontally and Vertically 
The first, and most commonly recognized, way to hide information in a 
network is through hierarchy. You can think of this as hiding information 
horizontally through the network. The second way to hide information in a 
network is a mechanism that isn’t normally thought of as information hiding 
at all—virtualization. You can think of virtualization as hiding information 
along vertical layers within a network. Figure 6-8 shows the relationship 
between virtualization and hierarchy in network architecture. 



 

Figure 6-8 Horizontal and Vertical Information Hiding 

Figure 6-8 shows three networks; the bottom network is the physical 
topology of a small network. The network administrator can decide to hide 
information about Routers D, E, and F from Routers A, B, and C, either 
through route filters or routing aggregation, at Routers G and H. This 
introduces a hierarchy into the network that hides information horizontally 
across the network, or within a single topology. 
In the first virtual (or overlay) topology, the network administrator has used 
some method to create a virtual network from a part of the physical 
topology. This second topology has a separate control plane that only knows 
about the four routers within the topology; the other routers and links are 
hidden from this second control plane. Although the overall control plane in 
this network may be more complex, this second control plane is simpler than 
the control plane in the physical topology because information has been 
hidden. 
In the second virtual (or overlay) topology, the network administrator has 
built tunnels along the path, [A,B,C,D,E,F]. This topology also must have a 



control plane (to draw traffic along the tunnel path). This second control 
plane will not have any information about Routers G and H, for instance, 
although traffic must physically pass through those routers as it traverses 
the tunnels. Again, although the overall network may be more complex, this 
second control plane is much simpler than the control plane in the physical 
topology because of information hiding. 
Virtualization and hierarchy are both methods of hiding information in order 
to solve for specific problems, and they are both forms of modularization. 
What form of problem might require virtualization? Carrying the traffic of 
multiple organizations that do not want to (or cannot) interconnect on the 
same physical infrastructure is a common use case. Carrying traffic that must 
be securely transported alongside traffic that doesn’t need to be secured on a 
single physical infrastructure is another. 

Modularization and Optimization 
If modularization brings so many benefits to network architecture, why 
shouldn’t every network be modularized at every point possible? Isn’t more 
aggregation always better than less aggregation? Network design is, as all 
things, a matter of choosing trade-offs—there is no such thing as a free 
lunch! One of the trade-offs we deal with all the time is state versus stretch. 
Stretch, quite simply, is the difference between the optimum path through 
the network (for any pair of hosts) and the actual path through the network. 
For instance, if the shortest actual path available is 2 hops, but traffic is 
flowing along a 3 hop path, the stretch is 1. Why should we ever have 
stretch in a network? It seems like you’d just never, ever, want stretch, 
because stretch always represents suboptimal use of available resources. 
But you always end up with stretch, because one of the other fundamental 
concepts of network design is the use of information hiding to break up 
failure domains. Hierarchical network design, in fact, is the intentional use of 
aggregation to reduce the state information—the routing table size, in most 
cases—in the control plane, so that changes in one area of the network don’t 
cause changes in the routing table halfway around the world. How does this 
relate to stretch? 

Anytime you hide state you increase stretch. 

This might not be obvious in all networks—specifically, anytime 100% of your 
traffic flows north/south, decreasing state will not impact stretch. But if you 
have a combination of north/south and east/west traffic, then aggregation—
reducing state—will always cause traffic to take a suboptimal path through 
the network—thus increasing stretch. 
Spanning tree is a perfect example of running to one extreme of the 
state/stretch trade-off. Spanning tree reduces the state by forcing all traffic 
along a single tree in the network and blocking links that don’t belong to that 
tree. Control plane state is absolutely minimized at the cost of increasing the 
stretch through the network to the maximum possible—to the point that we 
often design network topologies around the elimination of links not used on 
the single tree. TRILL and other fabric solutions break the single tree by 



injecting more state into the network. Another example is virtualization—
splitting traffic off into a separate virtual topology removes the state 
information for large numbers of destinations reachable through the physical 
network topology, at the cost of setting the stretch for those destinations to 
infinite (they become unreachable). 
So the reason you can’t hide information all the time is because doing so 
decreases the overall efficiency of the network by increasing stretch. 

Summary 
Information hiding is one of the most critical tools network designers and 
architects have in their tool set; developing a thorough understanding of 
these tools, then, is crucial in becoming a successful architect. One way to 
see this is to note how often these topics crop up in every other area of 
network design. In Chapter 8, “Weathering Storms,” you’re going to see how 
breaking failure domains apart impacts the ability of a network to survive 
failures of all kinds. In Chapter 9, “Securing the Premises,” failure and 
module boundaries form the firewalls through which attackers must pass to 
succeed in damaging the network. In Chapter 12, “Building the Second 
Floor,” vertical modularization through virtual overlays and tunneling comes 
to the fore. In Chapter 14, “Considering Complexity,” we spend time looking 
at the interaction between modularity, policy, and optimization. In virtually 
every area of network design, we’re going to encounter information hiding. 
   



Chapter 7. Applying Modularity 

Knowing and applying the principles of modular design are two different sorts 
of problems. But there are entire books just on practical modular design in 
large scale networks. What more can one single chapter add to the ink 
already spilled on this topic? The answer: a focus on why we use specific 
design patterns to implement modularity, rather than how to use modular 
design. Why should we use hierarchical design, specifically, to create a 
modular network design? Why should we use overlay networks to create 
virtualization, and what are the results of virtualization as a mechanism to 
provide modularity? 
We’ll begin with hierarchical design, considering what it is (and what it is 
not), and why hierarchical design works the way it does. Then we’ll delve 
into some general rules for building effective hierarchical designs, and some 
typical hierarchical design patterns. In the second section of this chapter, 
we’ll consider what virtualization is, why we virtualize, and some common 
problems and results of virtualization. 

What Is Hierarchical Design? 
Hierarchical designs consist of three network layers: the core, the 
distribution, and the access, with narrowly defined purposes within each 
layer and along each layer edge. 
Right? Wrong. 
Essentially, this definition takes one specific hierarchical design as the 
definition for all hierarchical design—we should never mistake one specific 
pattern for the whole design idea. What’s a better definition? 

A hub-and-spoke design pattern combined with an architecture 
methodology used to guide the placement and organizations of modular 
boundaries in a network. 

There are two specific components to this definition we need to discuss—the 
idea of a hub and spoke design pattern and this concept of an architecture 
methodology. What do these two mean? 

A Hub-and-Spoke Design Pattern 
Figure 7-1 illustrates a hub-and-spoke design pattern. 



 

Figure 7-1 Hub and Spoke Hierarchical Design Pattern 

Why should hierarchical design follow a hub-and-spoke pattern at the module 
level? Why not a ring of modules, instead? Aren’t ring topologies well known 
and understood in the network design world? Layered hub-and-spoke 
topologies are more widely used because they provide much better 
convergence than ring topologies. 
What about building a full mesh of modules? Although a full mesh design 
might work well for a network with a small set of modules, full mesh designs 
do not have stellar scaling characteristics, because they require an additional 
(and increasingly larger) set of ports and links for each module added to the 
network. Further, full mesh designs don’t lend themselves to efficient policy 
implementation; each link between every pair of modules must have policy 
configured and managed, a job that can become burdensome as the network 
grows. 
A partial, rather than full, mesh of modules might resolve the simple link 
count scaling issues of a full mesh design, but this leaves the difficulty of 
policy management along a mishmash of connections in place. 



There is a solid reason the tried-and-true hierarchical design has been the 
backbone of so many successful network designs over the years—it works 
well. 
See Chapter 12, “Building the Second Floor,” for more information on the 
performance and convergence characteristics of various network topologies. 

An Architectural Methodology 
Hierarchical network design reaches beyond hub-and-spoke topologies at the 
module level and provides rules, or general methods of design, that provide 
for the best overall network design. This section discusses each of these 
methods or rules—but remember these are generally accepted rules, not 
hard and fast laws. Part of the art of architecture is knowing when to break 
the rules. 

Assign Each Module One Function 

The first general rule in hierarchical network design is to assign each module 
a single function. What is a “function,” in networking terms? 

 User Connection: A form of traffic admission control, this is most 
often an edge function in the network. Here, traffic offered to the 
network by connected devices is checked for policy errors (is this 
user supposed to be sending traffic to that service?), marked for 
quality of service processing, managed in terms of flow rate, and 
otherwise prodded to ensure the traffic is handled properly 
throughout the network. 

 Service Connection: Another form of traffic admission control, 
which is most often an edge function as well. Here the edge 
function can be double sided; however, not only must the network 
decide what traffic should be accepted from connected devices, 
but it must also decide what traffic should be forwarded toward 
the services. Stateful packet filters, policy implementations, and 
other security functions are common along service connection 
edges. 

 Traffic Aggregation: Usually occurs at the edge of a module or a 
subtopology within a network module. Traffic aggregation is where 
smaller links are combined into bigger ones, such as the point 
where a higher-speed local area network meets a lower-speed (or 
more heavily used) wide area link. In a world full of high speed 
links, aggregation can be an important consideration almost any 
place in the network. Traffic can be shaped and processed based 
on the QoS markings given to packets at the network edge to 
provide effective aggregation services. 

 Traffic Forwarding: Specifically between modules or over longer 
geographic distances, this is a function that’s important enough to 
split off into a separate module; generally this function is assigned 
to core modules, whether local, regional, or global. 

 Control Plane Aggregation: This should happen only at module 
edges. Aggregating control plane information separates failure 



domains and provides an implementation point for control plane 
policy. 

It might not, in reality, be possible to assign each module in the network one 
function—a single module might need to support both traffic aggregation at 
several points, and user or service connection along the module edge. 
Reducing the number of functions assigned to any particular module, 
however, will simplify the configuration of devices within the module as well 
as along the module’s edge. 
How does assigning specific functionality to each module simplify network 
design? It’s all in the magic of the Rule of Unintended Consequences. If you 
mix aggregation of routing information with data plane filtering at the same 
place in the network, you must deal with not only the two separate policy 
structures, but also the interaction between the two different policy 
structures. As policies become more complex, the interaction between the 
policy spaces also ramps up in complexity. 
At some point, for instance, changing a filtering policy at the control plane 
can interact with filtering policy in the data plane in unexpected ways—and 
unexpected results are not what you want to see when you’re trying to get a 
new service implemented during a short downtime interval, or when you’re 
trying to troubleshoot a broken service at two in the morning. Predictability is 
the key to solid network operation; predictability and highly interactive 
policies implemented in a large number of places throughout a network are 
mutually exclusive in the real world. 

All Modules at a Given Level Should Share Common Functionality 

The second general rule in the hierarchical method is to design the network 
modules so every module at a given layer—or a given distance from the 
network core—has a roughly parallel function. Figure 7-2 shows two 
networks, one of which does not follow this rule and one which does. 

 



Figure 7-2 Poor and Corrected Hierarchical Layering Designs 

Only a few connecting lines make the difference between the poorly designed 
hierarchical layout and the corrected one. The data center that was 
connected through a regional core has been connected directly to the global 
core, a user access network that was connected directly to the global core 
has been moved so it now connects through a regional core, and the external 
access module has been moved from the regional core to the global core. 
The key point in Figure 7-2 is that the policies and aggregation points should 
be consistent across all the modules of the hierarchical network plan. 
Why does this matter? 
One of the objectives of hierarchical network design is to allow for consistent 
configuration throughout the network. In the case where the global core not 
only connects to regional cores, but also to user access modules, the devices 
in the global core along the edge to this single user access module must be 
configured in a different way from all the remaining devices. This is not only 
a network management problem, it’s also a network repair problem—at two 
in the morning, it’s difficult to remember why the configuration on any 
specific device might be different and what the impact might be if you 
change the configuration. In the same way, the single user access module 
that connects directly to the global core must be configured in different ways 
than the remaining user access modules. Policy and aggregation that would 
normally be configured in a regional core must be handled directly within the 
user edge module itself. 
Moving the data center and external access services so that they connect 
directly into the global core rather than into a regional core helps to 
centralize these services, allowing all users better access with shorter path 
lengths. It makes sense to connect them to the global core because most 
service modules have fewer aggregation requirements than user access 
modules and stronger requirements to connect to other services within the 
network. 
Frequently, simple changes of this type can have a huge impact on the 
operational overhead and performance of a network. 

Build Solid Redundancy at the Intermodule Level 

How much redundancy is there between Modules A and L in the network 
shown in Figure 7-3? 



 

Figure 7-3 Determining Redundancy in a Partial Mesh Topology 

It’s easy to count the number of links—but it’s difficult to know whether each 
path through this network can actually be considered a redundant path. Each 
path through the network must be examined individually, down to the policy 
level, to determine if every module along the path is configured and able to 
carry traffic between Modules A and L; determining the number of redundant 
paths becomes a matter of chasing through each available path and 
examining every policy to determine how it might impact traffic flow. 
Modifying a single policy in Module E may have the unintended side effect of 
removing the only redundant path between Modules A and L—and this little 
problem might not even be discovered until an early morning network 
outage. 
Contrast this with a layered hub and spoke hierarchical layout with well-
defined module functions. In that type of network, determining how much 
redundancy there is between any pair of points in the network is a simple 
matter of counting links combined with well-known policy sets. This greatly 
simplifies designing for resilience. 
Another way in which a hierarchical design makes designing for resilience 
easier is by breaking the resilience problem into two pieces—the resilience 
within a module and the resilience between modules. These become two 
separate problems that are kept apart through clear lines of functional 
separation. 
This leads to another general rule for hierarchical network design—build solid 
redundancy at the module interconnection points. 

Hide Information at Module Edges 

It’s quite common to see a purely switched network design broken into three 
layers—the core, the distribution, and the access—and the design called 
“hierarchical.” This concept of breaking a network into different pieces and 
simply calling those pieces different things, based on their function alone, 
removes one of the crucial pieces of hierarchical design theory: information 
hiding. 

If it doesn’t hide information, it’s not a layer. 



Information hiding is crucial because it is only by hiding information about 
the state of one part of a network from devices in another part of the 
network that the designer can separate different failure domains. A single 
switched domain is a single failure domain, and hence it must be considered 
one single failure domain (or module) from the perspective of a hierarchical 
design. 
A corollary to this is that the more information you can hide, the stronger the 
separation between failure domains is going to be, as changes in one area of 
the network will not “bleed over,” or impact other areas of the network. 
Aggregating or blocking topology information between two sections of the 
network (as in the case of breaking a spanning tree into pieces or link state 
topology aggregation at a flooding domain boundary) provides one degree of 
separation between two failure domains. Aggregating reachability 
information provides a second degree of separation. 
The stronger the separation of failure domains through information hiding, 
the more stability the information hiding will bring to the network. 

Typical Hierarchical Design Patterns 
There are two traditional hierarchical design patterns: two layer networks 
and three layer networks. These have been well covered in network design 
literature (for instance, see Optimal Routing Design), so we will provide only 
a high level overview of these two design patterns here.Figure 7-4 illustrates 
two- and three-layer designs. 

 

Figure 7-4 Two- and Three-Layer Hierarchical Design Patterns 

In the traditional three-layer hierarchical design: 
 The core is assigned the function of forwarding traffic between 

different modules within the distribution layer. Little to no control 
or data plane policy should be configured or implemented in the 
core of a traditional three-layer hierarchical design. 

 The distribution layer is assigned the functions of forwarding policy 
and traffic aggregation. Most control plane policy, including the 
aggregation of reachability and topology information, should be 
configured in the distribution layer of the traditional three layer 
hierarchical design. Blocking access to specific services, or 
forwarding plane filtering and policy, should be left out of the 



distribution layer, however, simply to keep the focus on each 
module narrow and easy to understand. 

 The access layer is assigned the functions of user attachment, 
user traffic aggregation, and data plane policy implementation. 
The access layer is where you would mark traffic for specific 
handling through quality of service, block specific sources from 
reaching specific destinations, and implement other policies of this 
type. 

In the traditional two-layer hierarchical design: 
 The core is assigned the function of forwarding traffic between 

different modules within the aggregation layer. The core edge, 
facing toward the aggregation layer, is also where any policy or 
aggregation toward the edge of the network is implemented. 

 The aggregation layer is assigned the functions of user 
attachment, user traffic aggregation, and data plane policy 
implementation. The aggregation layer is where you would mark 
traffic for special handling through quality of service, block access 
to specific services, and otherwise implement packet and flow 
level filters. The edge of the aggregation layer, facing the core, is 
also where any policy or aggregation at the control plane is 
implemented moving from the edge of the network toward the 
core. 

It’s easy to describe the two-layer network design as simply collapsing the 
distribution layer into the edge between the core and aggregation layers, or 
the three-layer design as an expanded two-layer design. Often the difference 
between the two is sheer size—three-layer designs are often used when the 
aggregation layer is so large that it would overwhelm the core or require 
excessive links to the core. Or if it’s used in a campus with multiple buildings 
containing large numbers of users. Geography often plays a part in choosing 
a three-layer design, such as a company that has regional cores connecting 
various sites within a given geographical area, and a global core connecting 
the various regional cores. 
Hierarchical network design doesn’t need to follow one of these design 
patterns, however. It’s possible to build a hierarchical network using layers of 
layers, as illustrated in Figure 7-5. 



 

Figure 7-5 Layers Within Layers 

Is the network shown in Figure 7-5 a four-layer design, a three-layer design 
with two layers within each aggregation module, a three-layer design with 
the distribution layer collapsed into the core, or a two-layer design with 
layers within each module? It really doesn’t matter, so long as you’re 
following the basic rules for hierarchical network design. 

Virtualization 
Virtualization is a key component of almost all modern network design. From 
the smallest single campus network to the largest globe-spanning service 
provider or enterprise, virtualization plays a key role in adapting networks to 
business needs. 

What Is Virtualization? 
Virtualization is deceptively easy to define: the creation of virtual topologies 
(or information subdomains) on top of a physical topology. But is it really this 
simple? Let’s look at some various network situations and determine whether 
they are virtualization. 

 A VLAN used to segregate voice traffic from other user traffic 
across a number of physical Ethernet segments in a network 

 An MPLS-based L3VPN offered as a service by a service provider 
 An MPLS-based L2VPN providing interconnect services between 

two data centers across an enterprise network core 
 A service provider splitting customer and internal routes using an 

interior gateway protocol (such as IS-IS) paired with BGP 
 An IPsec tunnel connecting a remote retail location to a data 

center across the public Internet 
 A pair of physical Ethernet links bonded into a single higher 

bandwidth link between two switches 
The first three are situations just about any network engineer would 
recognize as virtualization. They all involve full-blown technologies with their 



own control planes, tunneling mechanisms to carry traffic edge to edge, and 
clear-cut demarcation points. These are the types of services and 
configurations we normally think of when we think of virtualization. 
What about the fourth situation—a service provider splitting routing 
information between two different routing protocols in the same network? 
There is no tunneling of traffic from one point in the network to another, but 
is tunneling really necessary in order to call a solution “virtualization”? 
Consider why a service provider would divide routing information into two 
different domains. Breaking up networks in this way creates multiple 
mutually exclusive sets of information within the networks. The idea is that 
internal and external routing information should not be mixed. A failure in 
one domain is split off from a failure in another domain (just like failures in 
one module of a hierarchical design are prevented from leaking into a second 
module in the same hierarchical design), and policy is created that prevents 
reachability to internal devices from external sources. 
All these reasons and results sound like modularization in a hierarchical 
network. Thus, it only makes sense to treat the splitting of a single control 
plane to produce mutually exclusive sets of information as a form of 
virtualization. To the outside world, the entire network appears to be a single 
hop, edge-to-edge. The entire internal topology is hidden within the 
operation of BGP—hence there is a virtual topology, even if there is no 
tunneling. 

 

Is MPLS Tunneling? 
Is MPLS a tunneling technology? There has been a debate raging on 
this very topic for years within the network community, and there 
doesn’t seem to be a clear-cut answer to the question. MPLS acts like 
a tunneling technology in the addition of headers between the Layer 3 
transport and Layer 2 MAC headers. On the other hand, some forms 
of data can be placed directly into an MPLS frame and carried across 
an MPLS-enabled network as if MPLS were the data link layer. 
The answer must be both yes and no. Tunneling is a matter of usage, 
rather than a matter of packet formatting. If someone built a device 
that switched purely on GRE headers, rather than on the outer IP 
packet normally carried within a GRE packet, we’d be in the same 
position with GRE as we are with MPLS. 
When it’s used as an inner header between IP and some data link 
layer, and when the local control plane doesn’t understand the final 
destination—only the intermediate hops along the way—MPLS is 
clearly being used to tunnel. When it’s used as an outer header, and 
the header is directly used to switch the packet (and even rewritten at 
each hop like all other layer two MAC headers), it’s clearly not. 
In most MPLS deployments, then, MPLS is both a tunneling protocol 
(the inner header) and not (the outer header). In both cases, MPLS is 
used to build virtual topologies on top of physical topologies (just like 



IP and a host of other protocols), so it’s still a virtualization technique 
whether or not it’s used to tunnel packets. 

 

The fifth situation, a single IPsec tunnel from a retail store location into a 
data center, seems like it might even be too simple to be considered a case 
of virtualization. On the other hand, all the elements of virtualization are 
present, aren’t they? We have the hiding of information from the control 
plane—the end site control plane doesn’t need to be aware of the topology of 
the public Internet to reach the data center, and the routers along the path 
through the public Internet don’t know about the internal topology of the 
data center to which they’re forwarding packets. We have what is apparently 
a point-to-point link across multiple physical hops, so we also have a virtual 
topology, even if that topology is limited to a single link. 
The answer, then, is yes, this is virtualization. Anytime you encounter a 
tunnel, you are encountering virtualization—although tunneling isn’t a 
necessary part of virtualization. 
With the sixth situation—bonding multiple physical links into a single Layer 2 
link connecting two switches—again we have a virtual link that runs across 
multiple physical links, so this is virtualization as well. 
Essentially, virtualization appears anytime we have the following: 

 A logical topology that appears to be different from the physical 
topology 

 More than one control plane (one for each topology), even if one 
of the two control planes is manually configured (such as static 
routes) 

 Information hiding between the virtual topologies 

Virtualization as Vertical Hierarchy 

One way of looking at virtualization is as vertical hierarchy as Figure 7-
6 illustrates. 
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Figure 7-6 Virtualization as Vertical Hierarchy 

In this network, Routers A through F are not only a part of the physical 
topology, they are also part of a virtual topology, shown offset and in a 
lighter shade of gray. The primary topology is divided into three modules: 

 Routers A, B, G, and H 
 Routers C, D, J, and K (the network core) 
 Routers E, F, and L 

What’s important to note is that the virtual topology cuts across the 
hierarchical modules in the physical topology, overlaying across all of them, 
to form a separate information domain within the network. This virtual 
topology, then, can be seen as yet another module within the hierarchical 
system—but because it cuts across the modules in the physical topology, it 
can be seen as “rising out of” the physical topology—a vertical module rather 
than a topological module, built on top of the network, cutting through the 
network. 
How does seeing virtualization in this way help us? Being able to understand 
virtualization in this way allows us to understand virtual topologies in terms 
of the same requirements, solutions, and problems as hierarchical modules. 
Virtualization is just another mechanism network designers can use to hide 
information. 

Why We Virtualize 
What business problem can we solve through virtualization? If you listen to 
the chatter in modern network design circles, the answer is “almost 
anything.” But like any overused tool (hammer, anyone?), virtualization has 
some uses for which it’s very apt and others for which it’s not really such a 
good idea. Let’s examine two specific use cases. 



Communities of Interest 

Within any large organization there will invariably be multiple communities of 
interest—groups of users who would like to have a small part of the network 
they can call their own. This type of application is normally geared around 
the ability to control access to specific applications or data so only a small 
subset of the entire organization can reach these resources. 
For instance, it’s quite common for a human resources department to ask for 
a relatively secure “network within the network.” They need a way to transfer 
and store information without worrying about unauthorized users being able 
to reach it. An engineering, design, or animation department might have the 
same requirements for a “network within the network” for the same reasons. 
These communities of interest can often best be served by creating a virtual 
topology that only people within this group can access. Building a virtual 
topology for a community of interest can, of course, cause problems with the 
capability to share common resources—see the section “Consequences of 
Network Virtualization” later in the chapter. 

Network Desegmentation 

Network designers often segment networks by creating modules for various 
reasons (as explained in the previous sections of this chapter). Sometimes, 
however, a network can be unintentionally segmented. For instance, if the 
only (or most cost effective) way to connect a remote site to a headquarters 
or regional site is to connect them both to the public Internet, the corporate 
network is now unintentionally segmented. Building virtual networks that 
pass over (over the top of) the network in the middle is the only way to 
desegment the network in this situation. 
Common examples here include the following: 

 Connecting two data centers through a Layer 3 VPN service 
(provided by a service provider) 

 Connecting remote offices through the public Internet 
 Connecting specific subsets of the network between two partner 

networks connected through a single service provider 

Separation of Failure Domains 

As we’ve seen in the first part of this chapter, designers modularize networks 
to break large failure domains into smaller pieces. Because virtualization is 
just another form of hiding information, it can also be used to break large 
failure domains into smaller pieces. 
A perfect example of this is building a virtual topology for a community of 
interest that has a long record of “trying new things.” For instance, the 
animation department in a large entertainment company might have a habit 
of deploying new applications that sometimes adversely impact other 
applications running on the same network. By first separating a department 
that often deploys innovative new technology into its own community of 
interest, or making it a “network within the network,” the network designer 



can reduce or eliminate the impact of new applications deployed by this one 
department. 
Another version of this is the separation of customer and internal routes 
across two separate routing protocols (or rather two different control planes) 
by a service provider. This separation protects the service provider’s network 
from being impacted by modifications in any particular customer’s network. 

Consequences of Network Virtualization 
Just as modularizing a network has negative side effects, so does 
virtualization—and the first rule to return to is the one about hiding 
information and its effect on stretch in networks. Just as aggregation of 
control plane information to reduce state can increase the stretch in a 
network (or rather cause the routing of traffic through a network to be 
suboptimal), virtualization’s hiding of control plane information has the same 
potential effect. To understand this phenomenon, take a look at the network 
in Figure 7-7. 

 

Figure 7-7 Example of Stretch Through Virtualized Topologies 

In this case, host G is trying to reach a service on a server located in the 
rack represented by H. If both the host and the server were on the same 
virtual topology, the path between them would be one hop. Because they are 
on different topologies, however, traffic between the two devices must travel 
to the point where the two topologies meet, at Router F/F’, to be routed 
between the two topologies (to leak between the VLANs). 
If there are not services that need to be reached by all the hosts on the 
network, or each virtual topology acts as a complete island of its own, this 
problem may not arise in this specific form. But other forms exist, 
particularly when traffic must pass through filtering and other security 
devices while traveling through the network, or in the case of link or device 
failures along the path. 
A second consequence of virtualization is fate sharing. Fate sharing exists 
anytime there are two or more logical topologies that share the same 
physical infrastructure—so fate sharing and virtualization go hand in hand, 
no matter what the physical layer and logical overlays look like. For instance, 
fate sharing occurs when several VLANs run across the same physical 
Ethernet wire, just as much as it occurs when several L3VPN circuits 



run across the same provider edge router or when multiple frame relay 
circuits are routed across a single switch. There is also fate sharing purely at 
the physical level, such as two optical strands running through the same 
conduit. The concepts and solutions are the same in both cases. 
To return to the example in Figure 7-7, when the link between Routers E and 
F fails, the link between Routers E’ and F’ also fails. This may seem like a 
logical conclusion on its face, but fate sharing problems aren’t always so 
obvious, or easy to see. 
The final consequence of virtualization isn’t so much a technology or 
implementation problem as it is an attitude or set of habits on the part of 
network engineers, designers, and architects. RFC1925, rule 6, and the 
corollary rule 6a, state: “It is easier to move a problem around (for example, 
by moving the problem to a different part of the overall network 
architecture) than it is to solve it. ...It is always possible to add another level 
of indirection.” 
In the case of network design and architecture, it’s often (apparently) easier 
to add another virtual topology than it is to resolve a difficult and 
immediately present problem. For instance, suppose you’re deploying a new 
application with quality of service requirements that will be difficult to 
manage alongside existing quality of service configurations. It might seem 
easier to deploy a new topology, and push the new application onto the new 
topology, than to deal with the complex quality of service problems. Network 
architects need to be careful with this kind of thinking, though—the 
complexity of multiple virtual topologies can easily end up being much more 
difficult to manage than the alternative. 

Final Thoughts on Applying Modularity 
Network modularization provides clear and obvious points at which to 
configure and manage policy, clear trade-offs between state and stretch, and 
predictable reactions within the network to specific changes in the network 
topology. The general rules for using hierarchical design are as follows: 

 Break the network into modules, using information hiding to divide 
module from module. Layer edges exist only where information is 
hidden. 

 Assign each module as few functions as possible to promote clarity 
and repeatability in configurations, and reduce the unintended 
consequences of complex policy interactions. 

 Build networks using hub-and-spoke configurations of modules. 
 All modules at a given layer within a network should have similar 

functionality to promote ease of troubleshooting and reduce 
configuration complexity. 

 Build solid redundancy at module interconnection points. 
Overall, remember to be flexible with the modularization. Rather than 
focusing on a single design pattern as the solution to all design problems, 
focus on finding the best fit for the problem at hand. 
   



Chapter 8. Weathering Storms 

Why isn’t your CEO asking for six 9s of uptime? Because no one in the 
networking industry press is talking about how six 9s of availability are so 
much better than five 9s. 
Resilience is a big issue in network architecture—so big it’s almost the only 
thing many businesses are willing to put a lot of money into achieving. How 
do you build a resilient network? The traditional answer, widely used in 
almost every other field of architecture, is to overengineer the solution. If the 
floor needs to be able to handle one person walking across it, design the 
floor to support four or five people walking across it. If the highest wind a 
roof might encounter in a storm is 100 miles per hour, then design the roof 
to handle winds of 200 miles per hour. 
Network architecture is no different in this regard—if we want to prevent a 
single link’s failure from cutting off access to the network, we put in a second 
parallel link. Or maybe a third, just for good measure. 
But if adding parallel links and devices is all there is to building a resilient 
network, we wouldn’t need a chapter on the topic. So what else is there? 
We begin this chapter with a hard look at redundancy because it is the 
primary tool used to build resilience into a network. To really understand the 
limits of redundancy, though, we need to examine one of the not-so-common 
measures of network resilience—Mean Time to Repair (MTTR). After 
redundancy, this chapter will delve into reducing the MTTR by optimizing the 
operation of the control plane, including fast convergence techniques. 
Of course, resilience goes beyond the reaction of the control plane and into 
human factors; to build a truly resilient network, we need to chase those 
human factors down as well. Although resilience is also impacted by 
management practices and security, these two areas aren’t covered here 
because they have their own chapters (Chapter 10, “Measure Twice,” 
and Chapter 9, “Securing the Premises”). 

Redundancy as Resilience 
Adding a parallel path between any two points in a network will obviously 
increase resilience by removing a single point of failure; however, to get at a 
real understanding of resilience, we need to be able to measure just how 
much adding this second link increases resilience by reducing potential 
downtime. 

Network Availability Basics 
To get this answer, we must begin with an understanding of two key 
measures of network availability: Mean Time Between Failures (MTBF) and 
Mean Time to Repair (MTTR). Figure 8-1illustrates these two concepts. 



 

Figure 8-1 MTBF and MTTR 

MTBF is based on the amount of time that passes between failures in a 
system; just divide the number of failures in any slice of time into the total 
amount of time, and you have the MTBF for that system (during that time 
slice!). The longer the time slice (without changes in the system) you use, 
the more accurate the MTBF will be. 
MTTR is the amount of time it takes to bring the system back up after it has 
failed. To find the MTTR, divide the total length of all outages by the total 
number of outages. 
Availability is the total time the system should have been operational 
(without counting outages) divided by the amount of time the system was 
not operational. To get to availability from MTBF and MTTR, you can take the 
MTBF as a single operational period and divide it by the MTTR, like this: 

 

Note:Most of the time, you’ll see availability calculated by adding the uptime 
to the downtime, and then dividing the result by the downtime. This arrives 
at the same number, however, because the total uptime added to the total 
downtime should (in the case of networks) be the total amount of time the 
network should have been operational. You might also see this expressed 
using the idea of Mean Time to Failure (MTTF), which is just the MTBF minus 
the MTTR—so adding the MTTF and the MTTR should result in the same 
number as the MTBF.

Note: Although it’s common to exclude scheduled downtime from the total 
network outage time, there are a number of networks on which no scheduled 
downtime is possible, or for which there are no planned outages. It is a local 
policy whether to include scheduled downtime as part of the MTBF and MTTR 
calculations or not (to use total downtime or just unscheduled downtime).

 

Adding Redundancy 
How does redundancy aim to increase availability? Figure 8-2 illustrates. 



 

Figure 8-2 Redundancy and Availability 

When you add redundancy, you are essentially betting outages of the original 
path and the alternate path will not occur at the same time. How can we 
calculate the odds of both links failing at the same time? The math is 
deceptively simple: 

 

To put this in perspective, assume the paths through Routers B and C are 
each down for one second in every year. The total amount of time you can 
expect both paths to be down at the same time during the year is about 500 
milliseconds. What would be the impact of adding a third path with similar 
characteristics? The total downtime you could expect in a year—the amount 
of time all three paths are likely to be down at the same time—would be 
around 250 milliseconds. 

Note: This assumes the additional paths do not fate share with an existing 
path—that when the path through Router B fails, the path through Router C 
will not also fail because they share some common underlying infrastructure, 
such as two links passing through the same conduit, and a backhoe fade 
occurring across the entire conduit.

 

Note: This shouldn’t assume a backup path will be immediately available. 
Stateful devices in the path, for instance, can require sessions along the path 
to be reset or restarted.

 
This “halving effect” for every additional link is a general rule you can adopt 
throughout your network designs, unless you’re adding links with much 



higher than average rates of failure (such as satellite or long haul wireless) 
and are used to backfill for specific operational situations (large-scale power 
outages or natural disasters, for instance). 

MTTR, Resilience, and Redundancy 
Up to this point, we have a nice clean picture of increasing availability. 
Simply figure out what the availability is for each link type, then add links in 
parallel until you get the number of 9s you need to make your boss happy. 
This will work until your plan encounters the real world of complex systems, 
including limits on control plane convergence and feedback loops. 

Limits on Control Plane Convergence 
Time for a short review—the network’s control plane is tasked with finding 
the best path (not necessarily the shortest path, but the best path) from any 
given source to any given destination in the network. To do this, the control 
plane must react to modifications in the network topology quickly, but in a 
way that doesn’t cause more problems than it solves. We can break the 
reaction of the control plane to topology changes into four specific steps: 

1. Detecting the topology change 
2. Notifying the rest of the network about the change 
3. Calculating a new best path 
4. Switching to the new best path 

We’ll dive into each of these steps in more detail in the section “Fast 
Convergence Techniques” later in the chapter, but for now it’s important to 
see that the middle two steps in this process—notifying and calculating—are 
both affected by the amount of information that must be transmitted and 
calculated. Algorithms can be modified and adjusted to deal with larger 
amounts of information, but no matter how much tweaking you do, dealing 
with more information will always mean taking longer to converge. 
Reaching back into the discussion on redundancy, it’s easy enough to see 
how adding more links into the network adds information to the control 
plane. Hence, every link added will, ultimately, slow down the convergence 
of the control plane in some measurable amount. The entire time eliminating 
overlapping outages by adding redundancy, we’re also increasing the odds of 
having an overlapping outage by making the MTTR longer, as Figure 8-
3 shows. 



 

Figure 8-3 Impact of MTTR Through Additional Work in the Control Plane 
on Availability 

The actual amount of time each link is unavailable (because of physical 
outages, for instance), is shown in the top diagram. In the bottom diagram, 
the unavailable periods are longer. The outages are longer because of the 
time it takes for the control plane to converge so the link is used in the 
actual flow of traffic. When you add in this consideration, there is an 
overlapping outage. 

Feedback Loops 
The second important factor to consider when adding redundant links is the 
problem of positive feedback loops. Figure 8-4 illustrates a positive feedback 
loop in the control plane of a network. 



 

Figure 8-4 Positive Feedback Loop Resulting in a Network Failure 

In Figure 8-4, some event has caused the routing adjacency between 
Routers A and C to fail. This causes a massive routing recalculation at A and 
a huge routing update from Router A to Router B. The update is so large it 
brings down the adjacency between A and B. This causes B to go through the 
same process and send a huge update to Router C. Router C then does its 
own recalculations and sends a huge update to Router A, causing that 
adjacency to fail and sending these three routers into a positive feedback 
loop. 
Positive feedback loops of this sort don’t generally last long enough to bring 
a network down completely (as in no longer forwarding traffic), but they can 
last long enough to disrupt traffic flow, or to cause the network to converge 
more slowly than it should. 

Note: There are two cases where a positive feedback loop can be both long 
lived and devastating to the network’s control plane. The first is when 
redistribution of reachability information between multiple control planes is 
involved. Redistribution removes the information needed for a routing 
protocol to find loop-free paths, which can cause a permanent positive 
feedback loop. The second is when there are more paths available in any 
given routing process than are actually installed in the routing table. Distance 
vector routing protocols can interact with the routing table and split horizon 
rules in a way that prevents the routing protocol from effectively breaking a 
positive feedback loop.

 

For there to be a positive feedback loop, there must, of course, be a loop in 
the topology. Each parallel link or path added to the topology to provide 
additional resilience (availability) represents a potential feedback loop. 



Modifying routing protocol metrics though policy also heightens the 
possibility of positive feedback loops. 

Note: To increase the chances of a good positive feedback loop, make certain 
there’s a flapping link someplace that keeps changes flowing into the control 
plane. Constant changes in the control plane feed positive feedback loops, 
making control plane failure more certain.

 

The Interaction Between MTTR and Redundancy 
The chart in Figure 8-5 puts the interaction between MTTR and redundancy 
into perspective. 

 

Figure 8-5 Trade-offs in Redundancy and High Availability 

Moving from the left to the right along this chart represents an increasing 
number of links or paths in parallel. Moving from the bottom to the top 
represents increasing availability. You’ll notice that each additional path or 
link doesn’t increase availability as much as the last one. At the high end of 
additional links, the graph begins moving downward because of the impact of 
the additional links on control plane convergence time. 
The vertical line represents the upper end of the range of acceptable 
engineering solutions to the availability/redundancy trade-off. Within this 
range, the amount of configuration and maintenance required are 
acceptable; outside this range, maintaining the network becomes more 
expensive than providing the additional availability. 
The horizontal line across the graph represents the minimal acceptable 
availability floor. Any availability level below this line won’t satisfy the 
business requirements at hand. 
To correctly plan the number of redundant paths or links in a network design, 
the architect must find the best fit between the various points on this graph. 
Too many parallel paths, and the network becomes too complex and 
expensive to operate, especially given the diminishing nature of the return 
on each additional redundant link or path installed in the network. Too little 



redundancy, and the network will not meet the minimal business 
requirements. 
The process implied in this graph might appear to be complex—the architect 
must figure out what the minimal availability is, then calculate the level of 
availability for each proposed level of redundancy, consider the trade-off in 
additional complexity by adding redundancy (in network operations and in 
control plane convergence times), and then decide what level of redundancy 
is right. The right answer, in terms of trading off redundancy verses 
availability, is there should be two or three paths between any two points in 
the network. If you want to add redundancy between two specific devices, 
two or three links will be the (generally) optimal level of redundancy to 
provide for most network failures. The fourth link is not only likely to cost 
more money than it’s worth, it’s also likely to actually make the network 
converge more slowly. 

Fast Convergence Techniques 
A second route network engineers can take to increase availability is to make 
the network react more quickly to changes in the topology. These options are 
generally called fast convergence techniques, although they fall into many 
different categories. Fast convergence techniques address the four elements 
of convergence listed previously: 

 Detecting the topology change 
 Notifying the rest of the network about the change 
 Calculating a new best path 
 Switching to the new best path 

Each one has specific techniques that can be applied to make the control 
plane converge more quickly. 

Detecting the Topology Change 
The first and foremost problem facing the control plane is quickly detecting 
topology changes. Although detection can be made almost infinitely fast, 
infinitely fast detection also produces infinitely fast false failure reports and 
requires infinite amounts of processing power. Fast detection, then, is a 
trade-off, rather than an absolute good (like most things in the real world). 
There are a number of techniques that can be used to detect link failures, but 
they all come down to two basic types: 

 Event driven notifications: Includes the loss of carrier when a 
physical wire is cut, or when one element of the network detects a 
failure and notifies other networking devices. 

 Polling driven notifications: Generally “hello protocols,” which 
periodically test a path for reachability. Examples of polling 
mechanisms are routing protocol hello packets, Bidirectional 
Forwarding Detection (BFD), and TCP keepalives. 

Because of the requirement to reduce false positives, virtually all polling 
driven failure detection mechanisms wait until three polls (or three packets, 



in more common terms) are lost before declaring a path down. Because of 
this, event driven notification mechanisms will always outpace polling 
systems for fast and accurate path failure detection. Network engineers 
should always focus on finding event driven solutions and fall back to polling 
mechanisms only when an event driven mechanism cannot be found. 

Propagating Information About the Change 
When a change in the topology has been detected by the control plane, 
information about that topology change must be transmitted throughout the 
rest of the network. Figure 8-6 illustrates the difference between the 
propagation of information through a distance or path vector protocol and a 
link state protocol, highlighting the different techniques required to improve 
convergence in these two different environments. 

 

Figure 8-6 Distance Vector and Link State Convergence 

Link state protocols must flood information about the topology to every 
device in the network, and distance (and path) vector protocols must process 
the topology change information at every hop through the network. The 
operation of the two different kinds of protocols suggests they require two 
different sets of techniques to provide optimal convergence times. 

Note: It might seem natural to conclude, from this description of the 
operation of these different types of protocols, that link state protocols will 
always converge more quickly than distance or path vector protocols. This 
isn’t really the case—both types of protocols can converge very quickly given 
a network design optimized for their operation.

 

For link state protocols, it’s important to flood information about topology 
changes as quickly as possible while preventing false information about link 
failures from causing major disruptions throughout the network. Fast 
propagation techniques for link state protocols, then, revolve around 
providing fast propagation for a small number of changes in the network 
topology, while slowing down the rate at which information is flooded as the 
number of changes in the topology rises. In OSPF and IS-IS, this is 
accomplished with link state flooding timer tuning combined with exponential 



backoff systems. These techniques provide the necessary speed in flooding 
new topology information, without information overload or the risk of a 
positive feedback loop in the control plane. 

Note: The timers in link state protocols are there to prevent a control plane 
meltdown due to rapidly changing state. Generally speaking, you want to 
configure these times so the reaction to the first change is almost 
immediate—assuming the first change is normally a singular event in the 
state of the network. If multiple events normally happen close together in 
time, you’re better off to set these timers to react more slowly, so more 
information can be gathered before the first reaction; the more information 
SPF has when running, and the more closely all the router’s databases across 
the network match before SPF is run, the less likely routing loops will form 
for any length of time. Generally speaking, to set these timers, you need to 
examine the amount of time it takes for information to flow through the 
network, the amount of time it takes to calculate SPF, and the number of 
events that occur together (on average). From these, you can determine how 
long to wait before flooding a change in topology, and then how long to wait 
after receiving a new piece of topology information before running SPF.

 

For distance vector protocols, it’s important to reduce the number of routers 
that must be notified of any given topology change. EIGRP’s primary means 
of producing better convergence times, in terms of information distribution, 
is to reduce the number of devices that must be told about the topology 
change. This is accomplished through the aggregation and filtering of routing 
(or reachability) information—such as creating a summary route or 
designating a router as a Stub. 

Calculating the New Best Path 
The third step in fast convergence is to calculate a new best path through the 
network for destinations affected by the topology change. The first option for 
improving the calculation of new best paths is to improve routing algorithms 
and implementations—but this is outside the scope of the work of a network 
architect, so we’ll skip this step here. 
The second option, for a link state protocol specifically, is to improve the 
timing of the calculation of the best path after information about a topology 
change has been received. This is where exponential backoff—configuring 
and adjusting the amount of time OSPF or IS-IS wait after receiving new 
topology information before calculating the best path—comes into play. 
Exponential backoff plays a big role in making certain the information is 
processed as quickly as possible, while not causing information or processor 
overload. 
But beyond these techniques, what could be faster than simply calculating a 
new path before the old path fails? We’ll leave this topic for the “Fast 
Reroute” section of this chapter. 



Switching to the New Best Path 
Finally, after the topology change has been detected, information about the 
topology change has been propagated throughout the network, and the new 
best path has been calculated, the new best path must be installed and used. 
This might seem like a trivial issue, but in modern routers and switches it 
may, in fact, be a rather complex process. Most actual packet switching 
occurs in hardware on line cards, rather than software on the main 
processing card. Changes to the path traffic should take through the network 
because of a topology change must move from a routing process to the 
routing table, from the routing table to the central forwarding table, and from 
the central forwarding table through interprocess communication to the 
actual distributed forwarding tables on individual line cards. Most vendors 
now offer features that will install a new—or precomputed backup—path into 
the forwarding table so switching from one path to another can be done in a 
matter of milliseconds. 

The Impact of Fast Convergence 
What impact does fast convergence have on the trade-off between MTTR and 
redundancy? Figure 8-7 provides an updated graph to illustrate. 

 

Figure 8-7 Impact of Adding Fast Convergence Techniques to the 
Availability Versus Redundancy Graph 

Adding fast convergence techniques modifies the graph in two ways. First, 
the entire availability curve is pushed up, because deploying fast 
convergence techniques will allow the control plane to converge more quickly 
with the same number of parallel links. Previously, we said adding a fourth 
parallel path will often result in slower convergence; the addition of fast 
convergence alters this evaluation significantly. In practical applications, a 
network with two paths and well-designed fast convergence may converge 
more quickly than a network with three parallel paths and no fast 
convergence. The second impact is that the range of acceptable engineering 
options is narrowed a bit, simply because of the complexity of deploying and 
managing fast convergence techniques in the first place. 



The bottom line doesn’t change—the optimal spot on the chart is always 
going to be between two and three parallel paths through the network 
between any pair of destinations. Fast convergence techniques can raise 
network availability without a lot of additional management overhead, 
however, if properly designed and deployed. 

Fast Reroute 
One component of fast convergence is finding an alternate path on which to 
send traffic in the case of a network topology change. Why not precompute 
this path, rather than waiting for the actual change to occur? This is what 
Fast Reroute mechanisms aim to do. 
Fast Reroute (FRR), particularly IP Fast Reroute (IP/FRR), tends to be difficult 
math wrapped in even more difficult math. From a complexity perspective, 
FRR technologies seem to be something only the most accomplished network 
engineers would want to tackle, and hence they seem to be limited to only 
the largest networks. FRR is important to building well-architected networks 
with minimal amounts of parallelism, and to building networks that can 
converge in packets, rather than seconds. Let’s demystify FRR, beginning 
with Figure 8-8. 

 

Figure 8-8 The Fast Reroute Problem 

The simplest way to explain the problem FRR solves is by returning to a 
feature of all distance-vector routing protocols, split horizon. The split 
horizon rule is very simple: 

A router will not advertise a route to a destination through an interface it 
is using to reach that destination. 

Why should this rule be adopted in distance-vector protocols? In Figure 8-8, 
if Router B forwards traffic destined to 192.0.2.0/24 to Router C (trying to 
follow the path through Router D), the packets will simply be looped back to 
Router B itself. The easiest way to prevent this loop from forming is for 
Router C not to tell Router B that 192.0.2.0/24 is reachable through this 
path. What happens if the link between Routers A and B fails? 

Router B believes there is no alternate path to 192.0.2.0/24. 

When the link between Routers A and B fails, then, Router B must notify the 
rest of the routers in the network about the change in topology, and then 
wait for updates that might provide an alternate path to the destination it’s 



interested in. Although we’ve used a distance-vector protocol to illustrate the 
problem, it’s not limited to distance-vector protocols. If a link-state protocol, 
such as IS-IS, were deployed on this network, Router B would know about 
the alternate path, but it still couldn’t use the alternate path—Router C would 
still loop traffic destined to 192.0.2.0/24 back to Router B. 
The simplest solution to this problem is for Router B to tunnel any traffic 
destined to 192.0.2.0/24 to Router D, which has an alternate path that 
doesn’t pass through Router B itself. Essentially, all FRR mechanisms are 
designed to find this second path. Most then tunnel traffic to some point in 
the network that will cause packets to continue to be forwarded toward the 
right destination, rather than loop. 
With this in the background, let’s examine a few FRR mechanisms that have 
either been proposed or implemented. This overview isn’t intended to provide 
a complete listing of every proposed mechanism, but rather to show how a 
few representative mechanisms resolve this problem. 

P/Q Space 
Using the concept shown in Figure 8-8, we can divide any topology into two 
“spaces,” the P spaceand the Q space. Figure 8-9 illustrates. 

 

Figure 8-9 P Space and Q Space 

In FRR parlance, the P space is the area within the network where Router B 
can forward traffic and expect it to reach the destination without looping. If 
Router B attempts to forward traffic toward 192.0.2.0/24 by way of Router C, 
however, the packets will be looped back to Router B itself. In these terms, 
the point of FRR is to find a router in the Q space that Router B can forward 
traffic through without the traffic being forwarded back to Router B itself. 

Note: Another way to say this is the P space is the space that the destination 
router can reach without crossing the failed or protected link—in this case, 
the question could be phrased, “Which routers and links can Router A reach 
without passing through a potentially failed link, such as (D,E)?”

 

Because every router in a flooding domain in a link state protocol has a 
complete view of the entire topology, it’s possible to calculate the closest 



point in the network to which a router can tunnel traffic without the traffic 
looping. In Figure 8-8, for instance, Router B could simply calculate the best 
path to 192.0.2.0/24 from Router D’s perspective. On finding Router D’s path 
does not pass through Router B itself, Router B can add this as a backup 
path in its local forwarding table. If the Router A to Router B link fails, Router 
B can build a temporary tunnel (using MPLS) to Router D and forward traffic 
to 192.0.2.0/24 through that tunnel. When the network converges, the 
tunnel can be torn down. 

Loop-Free Alternates 
Loop-Free Alternates (LFA), known as Feasible Successors in EIGRP, don’t 
resolve the FRR problem with tunneling. Rather, an LFA is simply an 
alternate loop-free route as calculated at any router in the network. In Figure 
8-8, if Router C’s best path is through Router D rather than through Router 
B, then Router B can safely switch to Router C as its next hop when the 
Router A to Router B link fails. You’ll notice this can be true for only one 
direction in the ring—Routers B and D cannot both be using Router C as an 
LFA (or Feasible Successor). 

Remote Loop-Free Alternates 
In this network illustrated in Figure 8-10, we’re trying to make certain that 
traffic originating someplace beyond Router A can reach Router E even if the 
A to E link fails. 

 

Figure 8-10 Remote LFA Operation 

We can begin be examining Router A’s neighbors—in this case, only Router 
B—to determine whether there is an LFA available toward E. If all the link 
costs here are 1, we’ll find there isn’t an LFA from Router A toward Router E; 



Router B is using A as its best path, so any traffic forwarded by Router A 
toward Router E via Router B will simply be forwarded back to Router A itself. 
How can we solve this problem? We need to begin by recognizing that we’ll 
have to tunnel the traffic—but how can we figure out where to tunnel the 
traffic to? From the diagram, we can see the correct point to tunnel the 
traffic to is Router C, but the router can’t precisely look at a diagram of a 
network and figure it out. What other alternative is left? What’s needed is to 
calculate, at Router A, the closest node in the network to which traffic toward 
Router E can be forwarded without it looping back to Router A itself. 
We could simply remove the (A,E) link from the database and run SPF, but 
this won’t help us find anything more than the LFA—and we already know 
there isn’t an LFA here. What if we removed the A->E link and calculated the 
LFA of Router A’s neighbor, though? Because A has precisely the same 
information as its neighbor, in this case only Router B, Router A can calculate 
the best path from B’s perspective. If A were to calculate the best path to 
Router E from B’s perspective after removing the A->E link from the 
database, then A Router could discover what alternate paths Router B has 
(remember that once the (A,E) link is removed, Router B can no longer 
calculate the best path through Router A). 
Using this technique, Router A can quickly discover that Router B does, in 
fact, have an LFA—Router C. Moving to Router C, Router A performs the 
same calculation and finds the cost from (D,E) is the same or lower than the 
cost A->E, meaning the traffic cannot loop back through Router A if it is 
forwarded directly to Router C. Knowing this, A can now build a tunnel to 
Router C and place traffic with a next hop of Router E onto that tunnel if the 
(A,E) link fails. This is called the remote LFA because although Router C is 
not A’s LFA, it is Router A’s neighbor’s LFA—hence it is an LFA that is remote 
from Router A itself. 
What sort of tunnel should Router A use? The type of tunnel doesn’t really 
matter—it could be a GRE tunnel, an MPLS tunnel, an IP-in-IP tunnel, or just 
about any other encapsulation. All that matters is that Router D accepts the 
packets tunneled from Router A, removes the tunnel header, and then 
forwards the packets as normal. In practice, MPLS is the type of tunnel 
implemented by vendors, and hence used by network operators, for remote 
LFA. 

Not-Via Fast Reroute 
To understand Not-Via, consider the network illustrated in Figure 8-11. 



 

Figure 8-11 Not-Via Operation 

In this case, we’re trying to protect against Router A. To provide this 
protection, Router E is configured with an extra IP address on the E1 
interface, which is then only advertised toward D (not A). This is called the 
not-via address, because it is advertised as Router E not-via Router A. 
When Router B receives this special update, it will examine its local routes 
and find out what specific destinations are reachable through Router E. For 
each of these routes, it can now install a backup path with a next hop of this 
specific IP address. Of course, Router B must tunnel traffic to this not-via 
address, because it can’t be certain the traffic sent toward the destination 
beyond Router E won’t be forwarded back to Router B itself after it reaches 
Router C (for instance). 
Not-via is, on the whole, a really clever solution to the problem of finding a 
tunnel endpoint in the Q space onto which to drop traffic into an alternate 
path. As with all these solutions, however, there are trade-offs. 
First, you have to know what you’re protecting, and how to protect it. The 
actual calculation of where to drop the traffic is in the designer’s head, rather 
than the algorithm itself. If every node in the network were advertising not-
via addresses, there are ways to calculate the best place to drop traffic into 
the Q space without forming a data plane loop, but not-via was rejected by 
the IETF before the design reached that level of maturity. 



The second trade-off is that each interface on every device in the network 
must advertise a separate not-via address for every protected neighboring 
node. The amount of additional state was thought to overshadow the overall 
usefulness of the scheme. Of course, there are ways to optimize not-via to 
minimize this effect, but again, the idea was essentially rejected before any 
serious optimization work was done. 
Finally, not-via dumps the traffic at a point that’s suboptimal in the network. 
In this small network it doesn’t really matter, but if the ring were a couple of 
hops longer, if the failure point was B, the traffic can be pulled past the exit 
point to the tunnel tail end, then released to backtrack along the same path 
toward the destination. 

Maximally Redundant Trees 
The general idea behind IP fast reroute is to precalculate a set of alternate 
paths that can reach a specific destination without using the shortest path. 
MRTs take this one step further by building two entire topologies that touch 
every node in the network (note—not every edge, just every node). If the 
shortest path fails, traffic can be moved onto one of these two overlay 
topologies to be forwarded along a “less than best path” toward the 
destination. 
Let’s look at the two connected topologies in Figure 8-12 and sort out how 
this works. 

 

Figure 8-12 Sample Network for MRT 

Let’s begin at Router B and choose one link to remove from our local 
database; say the link between Routers B and C. After we’ve removed this 
link, Router B can calculate a path back to the neighbor reachable through 
the removed link (essentially finding a path back to itself, but breaking the 
path by removing a single link to prevent a cycle or loop in the topology). We 
can say this path is directed at Router B from Router C’s vantage point, so 



the path runs counterclockwise around the ring, in the direction 
[C,F,E,D,A,B]. Figure 8-13 illustrates. 

 

Figure 8-13 The First Tree Built Through MRT 

From this point, we can examine any rings attached to this first ring; in this 
case, we have the ring containing Router G. Because we are trying to build a 
topology directed toward Router B, we would choose the link between 
Routers G and D to include. We can call this the dashed topology. To build 
the second tree, we can simply reverse the direction when calculating from 
Router B; start by removing the [B,A] link, and calculate from Router B to 
Router C. Finally, include the [G,F] path to bring the second ring into the 
topology. We can call this second topology the dotted topology. After we 
reach this point, we have the topology shown in Figure 8-14, including the 
dashed and dotted overlay topologies. 

 



Figure 8-14 Final Blue and Red Trees Built by MRT 

Note: MRT doesn’t build these two trees in precisely the same way; instead, 
a Depth First Search (DFS) is performed across the topology, and each node 
(router) is assigned a number. Each router computes a low point and a high 
point, and then builds a tree based on the low and high points in the tree. 
Finally “ears,” which are the outlying rings attached to the main topology, 
are added. The result, however, is the same as what’s described here.

 

What is interesting about this calculation is that it doesn’t interact with the 
SPF algorithm used by either OSPF or IS-IS. Because of the differences in the 
way SPF and MRT compute the shortest path tree, they will produce trees 
that only overlap sometimes (on the back of a napkin, I’d expect either of 
the two MRT topologies to overlap with the normal shortest path computed 
by Dijkstra about 50% of the time). 
This means that by building a shortest path tree in the normal way, and then 
overlaying it with a pair of maximally redundant trees built using this 
process, you create three different topologies. These topologies will, of 
course, share some edges (links) and nodes (routers), but at least one of the 
three topologies will be able to reach any destination in the network in the 
case of a single link or router failure. If a link fails, then, the local router can 
place any traffic it would normally send across the failed link on an MRT 
topology that hasn’t been impacted by the failure. 
The one point to remember here is that after a packet has entered either of 
the two overlay topologies, it cannot leave that topology until it reaches its 
final destination. If it does leave the overlay topology before all the routers in 
the network have been notified of the failure, SPF has been run, and a new 
shortest path tree computed, there is a chance of a loop. 

Final Thoughts on Fast Reroute 
Although FRR might seem complex, it’s actually a simple set of concepts 
embedded in complex mechanisms with the goal of making certain the 
control plane does the right thing in the case of network failures. Should you 
design around FRR techniques, or deploy them in your network designs? The 
answer is mostly going to depend on the requirements of your applications 
and your business. 
FRR can, however, get you past the five 9s barrier with less topological 
complexity, and FRR is the only way to build a network that can truly 
converge in a matter of packets, rather than seconds. Don’t be overwhelmed 
by the apparent complexity of these mechanisms. Learn the underlying 
principles, and don’t be afraid to use them where they make sense. 

The Human Side of Resilience 
Resilience doesn’t just mean a faster control plane, or faster detection of link 
failures—MTTR, in the larger sense, includes the human element of finding 



and correcting problems in the network, and even the mistakes humans 
make when dealing with changes in complex configurations. Although there’s 
no official measure in the network world for this, network architects need to 
think in terms of Mean Time Between Mistakes (MTBM). 
What can network architects do to increase the MTBM and reduce the human 
element in MTTR? Although much of this is covered in more detail later 
in Chapter 10, “Measure Twice,” here is a short list to get you started: 

 Simplify: In general, when you’re considering whether to deploy a 
new feature, or even how to deploy a new feature, remember the 
2 a.m./15 minute rule: If it takes more than 15 minutes to explain 
at 2 a.m., while under the pressure of a network outage, it’s 
probably too complex. 

 Document: Solid documentation is important for understanding 
what the intent of the design was in the first place. It’s almost 
impossible to understand the configuration of a particular device in 
the network without understanding the intent of the configuration. 

 Baseline: Not only is it important to document what the intent of 
each element of a design is, it’s also important to document what 
really exists, not only in terms of wiring and configuration, but 
also in terms of traffic flow and current operation. 

 Train: The more the network operations staff understands the 
technologies in use, the intent of the network design, and the 
actual operation of the network, the better able they will be to run 
the network effectively. Further, just because a particular network 
runs IS-IS rather than OSPF doesn’t mean training in OSPF, or 
even EIGRP and BGP, won’t be helpful to the overall skill set of the 
engineers who are tasked with operating the network on a day-to-
day basis. 

Remember that a network is not just a system, but a system of systems; 
small changes in one system can have a huge impact in other systems. Try 
to decouple systems from one another through information hiding as much 
as possible. 
   



Chapter 9. Securing the Premises 

Someone walks in through your front door and takes your television, so you 
put a lock on the front door. The next time, they break a window to get in, so 
you put in better window locks and hurricane glass. They bump your front 
door lock, so you replace it with a higher quality model that can’t be 
bumped. They kick the door in, so you replace the latch and jamb with 
stronger ones... 
Security, in the real world, is like this—threat and attack, closing holes, and 
reacting to attacks. It’s a never-ending cycle (or even war) between attacker 
and defender; the attacker is always trying to find some new vulnerability to 
take advantage of, and the defender is always trying to remove 
vulnerabilities before they are exploited. 
It’s almost a cliché to say that security should be “built in” to a design from 
the beginning, rather than “bolted on” at the very end, but what does the 
cliché actually mean? How do you “design security in from the beginning?” 
How, precisely, do you build security in from the beginning? There are a 
number of answers to this question; this chapter will approach the problem 
from three different directions. 
We’ll begin by exploring the Observe, Orient, Decide, Act (OODA) loop and 
how it applies to this never-ending cycle of attack and defense. The OODA 
loop provides a solid paradigm for understanding the attack/defense cycle in 
the larger sense (understanding how to manage security threats in the 
strategic sense), but also how to manage security breaches in real time. 
Models like the OODA loop are powerful tools in the hands of good architects. 
Next we’ll discuss brittleness. This isn’t a topic that’s often discussed in 
security circles, but it’s a core part of designing security into a system. 
Finally, we’ll address the intersection of design tools and security. 
Specifically, we’ll see how modularization and resilience interact with security 
concepts. 
There are probably a number of concepts here you’ve never encountered 
when considering network security—but the point of the art of network 
architecture is to think through problems in different ways and to find 
solutions that address real concerns that face your network now. 

The OODA Loop 
Although there are a number of models network engineers can use to 
understand security, perhaps none is more useful than the OODA loop for 
addressing the process of managing the threat/defense cycle. The OODA loop 
can be applied in two ways to network security: 

 In a larger, or more strategic sense: The OODA loop can be 
applied to the “realm of security,” in terms of where the security 
world is, what common threats are, and how to react to them. 

 In a more immediate, or more tactical sense: The OODA loop 
was originally designed to handle threats in real time, so it’s a 



perfect model to deal with a DDoS or other attack happening right 
now. 

The OODA loop was first developed by a military strategist, Colonel John 
Boyd, in the context of air warfare. When it comes to air-to-air combat, how 
can one pilot gain the advantage needed to win on a consistent basis? 
Breaking the process into pieces, so it can be understood and managed, 
would allow pilots to address each part of the process as an independent 
“thing.” Understanding each step independently allows each part of the 
reaction process to be understood and optimized independently. The key 
question, when examining the OODA loop for any particular situation, is:How 
much of my reaction can I stage and prepare before the attack actually 
happens? 
Figure 9-1 shows the OODA loop. 

 

Figure 9-1 OODA Loop 

Attackers want to either “get inside the loop,” or “cut through the loop,” to 
achieve their goals. 

 Observe: If I can keep you from seeing what I’m doing (so you 
don’t notice at all), I have the ability to launch a successful attack. 
Here we see the use of open tunnels to reach into a network, or 
IPv6 attacks in networks where only IPv4 is being monitored, 
attacks against inside interfaces, and the like. 

 Orient: If I can make you think I’m trying to overwhelm your 
server with traffic, but I’m actually trying to install a Trojan by 
overflowing the input interface buffers, then you will react to the 
wrong problem, possibly even opening the door to the real attack. 
All sorts of feints fall into the category of orient, including most 
social engineering attacks. 

 Decide: If I can attack you when I know your decision process will 
be slow, I can take advantage of my speed of attack to act before 
you can put the proper defenses in place. For instance, a long 
holiday weekend at 2 o’clock in the morning might be ideal, 



because the people who know what to do will be out on a remote 
beach enjoying their time off. 

 Act: If I can prevent you from acting, or I can anticipate your 
action and use it against you, then I can launch a devastating 
attack against your network. For instance, if I can make an edge 
router unreachable from inside your network, I can use that 
moment to install a back door that allows me access later 
(whenever I want). Social engineering often uses peer pressure or 
social norms to prevent someone from acting when they should. 

Defense, in terms of the OODA loop, is to make the loop work right—to 
observe the attack, orient to the attack (understand what type of attack it 
is), decide how to act, and then to implement modifications in network policy 
to stop the attack from damaging the network or the business. The defense 
wants to contain the attacker within the OODA loop; the loop itself provides 
the means of controlling and addressing the attack with the minimal amount 
of damage possible. The “tighter” the loop, the more effective the defense 
against any particular attack will be. 
Let’s consider each of these four steps within the realm of security, 
considering both the larger and narrower sense in turn. 

Observe 
What should you observe? To answer this question, ask another 
question: What information is likely to be useful when diagnosing an attack 
on my network? 
But doesn’t this answer depend on the type of attack? Of course—and that’s 
why answering the question, “What should I observe,” never has a really 
good answer. “Observe everything,” isn’t really practical in real life, so we 
leave it on the side and consider some other possibilities. 
The first thing you should measure (or observe) is a general network 
baseline. For this first step, you want to ask yourself, “In what ways can I 
characterize network performance, and how can I produce a baseline of 
them?” Some examples might be: 

 The speed at which the network converges: 
o Measuring the delay and jitter of a stream as it passes across an 

intentionally failed path during a maintenance window. 
o Determining the average amount of time it takes for an active 

route to move into the passive state in an EIGRP network, which 
can be determined by examining the EIGRP event log across a 
number of events on a widely dispersed set of routers within the 
network. 

o Determining how long an average link state Shortest Path First 
(SPF) calculation takes. You can normally find this information 
through a show command on the router. 

o Determining how long it takes for BGP to converge on a new 
path when an old path fails. You can discover this by adding a 
new prefix and removing it, then watching how long it takes for 



specific routers to receive and act on the modifications to the 
BGP table. 

 The rate at which changes occur in the network: 
o How often do links of each type change state, and why? 
o How often does external routing information being fed into the 

network change? The speed at which BGP routes change from 
your ISP, partner, or other peer can be an important piece of 
information to consider when you’re facing an attack against a 
peering edge. 

 The utilization of links throughout the network: 
o Although you might not want to keep track of the utilization of 

every link in a truly large network, being able to classify links 
based on what role they play, where they are in the network, 
and what types of traffic pass over them, and relate this 
classification to a “normal load,” is very important. 

o A more complex—but probably just as important—measure is 
the utilization pattern across common periods of time. Hourly, 
daily, weekly, and monthly utilization rates can be very useful in 
determining whether there’s really a problem, or if what you’re 
seeing is actually normal network operation. 

o Who are the top talkers in each topological area of the network, 
and how often do they change? 

 The quality of traffic flow through the network: Applications rely 
on consistent jitter and delay to work correctly; you can’t know what 
“wrong” looks like unless you know what “correct” looks like. 

Beyond a network baseline, you should also have the following on hand: 
 Layer 3 network diagrams 
 Layer 2 network diagrams 
 Configurations for each device 

One of the most difficult things to document—and to keep current—is the 
policies implemented on the network. This documentation should include not 
only what the policy is, but where it’s implemented and what the intent of 
the policy is. 

Note: The mechanisms used to observe these and other network 
measurements will be discussed in Chapter 10, “Measure Twice.”

 

Although this is a long list, most network engineers can recite it by heart—
because it’s all about the network itself. There is another area that most 
network engineers miss in the realm of observing, however: 
the external security environment. 
Here you can ask questions such as these: 

 What attacks are other network operators seeing right now? 



 What are the political and economic trends that might impact 
network security? 

 What is the morale level within the company, and what impact will 
that have on the security of your network? 

 What processes are in place to gain physical access to buildings, 
and how do these policies interact with access to network 
resources? There are a lot of networks that require a password to 
connect to wireless access, but you can plug in to any random 
Ethernet jack in any building and gain access to the entire 
network. 

 Are there political events within the company planned or in 
progress that will impact network security, such as a massive 
layoff, the relocation of a major facility, or a merger with some 
other company? 

 Is there a sickness “going around,” and how will you respond to 
security incidents if half the network staff is out sick? 

 If, for some reason, network operations folks can’t leave the 
facility for several days (in the case of a lockdown or natural 
disaster), is there sufficient food and sanitary supplies to support 
them? 

 What kind of security training is supplied to the people who work 
on and around the network (including users of applications that 
have access to even moderately sensitive data)? If the training is 
minimal, what is the impact of social engineering attacks, and are 
there specific ways you can design your system to minimize these 
threats? 

In short, you should not limit yourself to observations about the network 
itself when considering the overall security of your systems. External factors 
can often play a bigger role in your ability to secure your network than 
internal ones—social engineering is probably a bigger factor in network 
security breaches than outright Distributed Denial of Service (DDoS) or other 
attacks. 
In the narrower sense, you want to be able to observe a specific attack 
within the context of the internal baseline information and external 
environment information you have on hand when the attack actually occurs. 
Because you can’t predict everything you might want to measure, the key 
here is to be open minded and flexible. Like a carpenter who has a lot of 
different tools, 80% of which are never used in the course of day-to-day 
work, a network engineer should have a wide array of measurement tools at 
hand. 
Quite often, the larger and narrower views of observation will involve the 
regular sampling of measurements combined with the ability to perform 
more specific, narrow measurements in a more complete way reserved for 
specific circumstances. An example of this might be the regular sampling of 
traffic patterns using NetFlow combined with the ability to span a port or 
insert a packet analyzer on-the-fly to measure traffic flows on an actual 
packet-by-packet basis. 



 

Sources for Security Information 
There are a number of sources for information on the current and 
projected state of security throughout the world, covering topics from 
computer viruses to attacks against the Internet routing system to 
terrorist attacks to natural disasters. As a network architect, it’s useful 
to keep up with at least one or two of these reports on a regular basis, 
just to have a good idea of current and projected problems. Some 
useful sources include the following: 

 The Symantic Internet Security Threat Report, published yearly 
athttp://www.symantec.com/security_response/publications/th
reatreport.jsp. 

 The Microsoft Security Intelligence Report, published 
athttp://www.microsoft.com/security/sir/default.aspx. 

 Cisco Security publishes yearly and interim reports on a wide 
variety of topics 
athttp://www.cisco.com/en/US/prod/vpndevc/annual_security_
report.html. 

 Arbor publishes an annual infrastructure security report, which 
mostly covers Internet-level threats to networks as a system, 
athttp://www.arbornetworks.com/resources/infrastructure-
security-report. 

 Verisign’s iDefense organization publishes reports on threats to 
the global Internet architecture 
at http://www.verisigninc.com/en_US/products-and-
services/network-intelligence-availability/idefense/why-
idefense-intelligence/index.xhtml. 

 Verizon publishes a yearly report covering public and private 
data breaches and/or leaks 
at http://www.verizonenterprise.com/Resources/Reports. 

There are a number of other large companies and organizations that 
build and publish reports yearly (or more often) that can be helpful to 
understanding the security environment, and hence to the observation 
stage of the OODA loop. 

 

Orient 
Orienting yourself to an attack is probably the most difficult part of the OODA 
loop, both in the larger and narrower senses. We all know the feeling of 
“sipping from the fire hose,” in terms of the amount of information our world 
throws at us moment to moment. 

It does no good to gather a lot of data that you can’t ultimately analyze 
and use. 



How do engineers deal with a flood of email and other information? By 
relying on filtering and machine learning techniques to bring the information 
that really counts to the top of our inboxes. 
How should engineers deal with the flood of information being produced by a 
network monitoring system? It’s easy to say “throw machine learning and 
automation at the problem”; however, it’s much harder to actually 
implement these ideas. A few suggestions follow: 

 Lump data together based on the type of information being 
gathered, rather than based on from where it was gathered. It’s 
really tempting to put all the information gathered in a particular 
data center in one pile, and all the data gathered at the network 
edge into another, but solid analytics will work better if they are 
run across a larger pool of like data. Put all the traffic statistics 
from the data center in with the traffic statistics from the network 
edge—correlations between the two sets of traffic data might 
break out of the noise level more quickly, and machine learning 
will be more effective at finding anomalies that really stand out. 

 Feed the “larger” strategic OODA loop into the monitoring and 
parsing process. If particular types of attacks are showing up in 
other company’s networks, it’s best to assume those same attacks 
are happening in your network—so you should look for their 
signatures specifically. This isn’t to say that you won’t find 
something completely new in your network, only that you should 
inject current trends and known problems into the data analysis 
phase to try to increase accuracy, both in terms of finding 
common problems and in terms of finding things that don’t fit any 
of the known patterns. 

 Layer data from the more abstract to the less. Don’t try to 
perform analysis on a seven tuple packet-level capture across 
several months of network traffic. Choose smaller data sets, and 
then when you find an interesting pattern, dive deeper. 

 When you find an anomaly, don’t let go until you’ve explained it. If 
necessary, keep a “dead cases file” of interesting events on your 
network that you can’t explain. You might find a relationship 
between multiple events you don’t understand that lead to an 
attack you weren’t expecting. Remember, attackers want to 
prevent you from observing what they are doing, so relating 
multiple apparently unrelated events might provide the key to 
understanding and shutting down a specific attack. 

 Practice with the data on a regular basis. There’s no substitute for 
working with the tools you intend to deploy in the face of a real 
attack on a regular basis. 

In large part, orienting yourself to the information flow during a specific 
attack (at the tactical level) is going to depend on how well you’ve oriented 
yourself before the attack (at the strategic level). There is no direct 
substitute for real experience in the trenches, of course, but an hour 



studying how a particular attack works could well save many hours in 
reaction time when that attack is in progress. 

Decide 
What do you do with the data you’ve collected and analyzed? You decide! But 
if you thought orienting yourself to huge data flows was the hardest part of 
the OODA loop, you’re wrong—deciding actually is. 
The bottom line problem is this: security is not checkers. Security is, instead, 
more like chess. Although both are played on the same board, there are 
massive differences between the two games. 
Checkers is a fairly easy game to learn and play; every piece has pretty 
much the same set of moves available, and games run pretty fast. There are, 
sometimes, unintended consequences, such as moving several pieces into a 
position where your opponent can take multiple pieces and crown a new king 
all in one turn; these are generally fairly obvious to the experienced 
observer. 
Chess, on the other hand, is a very complex game (although game theory 
people will tell you chess is not a game, because there is no real random 
chance involved). There are six different types of pieces on the board, each 
of which moves and takes other pieces in a distinct way. Some pieces can 
jump over other pieces, and others can’t. Lines of attack often cannot be 
direct, and feints are common. The key point to remember in a game of 
chess—particularly against a very good opponent—is that unintended 
consequences abound. It’s very easy to become focused on executing a 
particular plan, to the point where your opponent’s moves end up drawing 
you into a trap of your own devising. In fact, most chess games are lost 
because the loser is playing one side of the board, rather than both sides of 
the board. 
Playing defense in the security game is a lot like this: if you don’t play both 
sides of the board, you’re going to lose. You not only have to decide what 
you’re going to do, you have to decide what you think your opponent, the 
attacker, might do as well. 
How can we make the job of defending easier? 
First, use automation where possible to tighten the loop. Automating your 
response to a number of common, and well understood, attack situations will 
allow you to focus on the things that are different. 
Second, cycle back to observe and orient often. If your attacker draws you 
down one path to the point where you develop tunnel vision, then you’re 
likely to miss the second attack that comes from another angle. It’s only by 
moving back to observe and orient on a regular basis that you can prevent 
tunnel vision from setting in. 
Finally, build up a set of preset responses and policies around your network 
security. Policies are like muscle memory developed over years of practice in 
shooting or racing; they’re short cuts that allow you to tighten the OODA 
loop to a minimal size. If you’ve built the right policies, you’ll be able to react 
quickly to a wide range of situations. 



There’s another side to policies, however, that might not be so obvious. 
Returning to our previous metaphor, chess is full of situations where you face 
unintended consequences. When you’re in the middle of countering an 
attack, it’s very hard (if not impossible) to analyze all the possible 
unintended consequences and steer clear of them. Policies that are 
developed outside the attack time frame, especially when they take into 
account the larger, more strategic aspects of the OODA loop, are a guardrail 
against unintended consequences. 

Act 
Finally, you need to act. If you’ve done the other parts of the OODA loop 
well, acting should be the simplest piece of the puzzle. The main problem we 
all face when acting is holding our pattern, or trusting the work we’ve done 
when getting to the point of acting. 

Remember that losing your nerve can cost you. 

Two points to consider in the realm of acting: 
 Automation can help you tighten the loop, just like in the observe, 

orient, and decide phases of the OODA loop. 
 You should return through the loop as quickly as possible after 

taking action. Don’t rest on the action; go back to step one fast 
and re-execute the first three phases of the loop. The attacker 
might be counting on you deciding that the night is late, and the 
attack finished, to loosen up your network’s defenses. 

Brittleness 
The game of security, the back and forth between attack and defense, with 
spiraling ideas, openings, and tools, is a lot like chess. Building security 
systems, however, is more like working steel. If you’re trying to make 
something simple, say a blade for that perfect chef’s knife, you first rough 
shape the steel, then you harden it. The hardening process is both chemical 
and reactionary; you choose the right materials to start with, then you heat 
the metal to a particular point, and finally quench it. 
But if you stopped there in the process, you’d have a rather useless knife. It 
wouldn’t hold an edge very well, and it would break the first time you 
dropped it on a concrete floor. Optimally hardened steel is fairly useless in 
any sort of tool. So the blade maker softens the steel a bit, through another 
heating and annealing process, to produce a workable tool. 
We’ve spent some time discussing the use of automation as a tool to tighten 
the OODA loop in the previous sections—but there is a downside to 
automation. 

Automation is brittle. 

Just like an overhardened piece of steel needs to be drawn to make a useful 
tool, an overautomated security system needs regular human input. There 
need to be points in the defense system where the system itself doesn’t 
react, but rather it raises a flag that a human must respond to. And maybe 



it’s good, sometimes, to go in and check on the observation, orientation, and 
decide pieces you’ve built into your security system to make certain things 
haven’t changed. 
To think about this problem in a different way, consider that any security 
system you build is simply a static representation of your thinking about 
what sorts of attacks the network is going to face, and how to counter those 
attacks, at any moment in time. Although we might think of a security 
system as dynamic, in that it can have many different responses to any 
given attack, the reality is that the range of options the system has available 
is limited to the number of options you thought of when putting it together. 
And if you match a static system against a dynamic human or a team of 
humans who can explore the limits of the system, trigger responses, and 
adjust their attack based on the landscape they find through these 
explorations, the dynamic side will eventually win—every time. This is the 
problem of brittleness in a nutshell—a dynamic and learning attacker 
addressing a static responder. No matter how broadly the security system is, 
there will be holes, edges, and places where the attacker can gain a foothold 
inside the system. 
The simple solution to brittleness is to have at least some human 
involvement in different parts of the system. 

Building Defense In 
The point of the OODA loop is to short circuit the reaction process; in other 
words, to think through possible attack avenues and stage the equipment, 
monitoring points, and other information needed in the case of an attack 
before the attack occurs. This is great if you’re working specifically in the 
space of network security (or even management, as we’ll learn in the next 
chapter), but what about the network design itself? Where does security 
interact with the network design? 
There are two specific points to consider when thinking through the 
intersection of network design and network security: modularization and 
resilience. These two are the “natural defenses” of a well-designed network, 
particularly if they are thought out with security in mind from the very 
beginning. 

 

The Power of Unintended 
Consequences 
The Cisco Global Escalation Team is often called into some very 
difficult—and unusual—network problems. In one particular case, a 
large bank called into the Technical Assistance Center (TAC) because 
they were having massive failures in EIGRP routing throughout their 
network. The engineer who owned the case quickly realized this was 
something that was simply too big to handle in a couple of phone 
calls, so the case was escalated. 



The problem was manifesting itself as constant and widespread 
neighbor failures between EIGRP peers. Watching a small number of 
routers over a period of days closely, the failures were caught “in the 
act,” so we could examine the state of the links and peers when a 
neighbor relationship failed. Close examination showed the problem 
was not a link failure issue; unicast and multicast pings received quick 
replies, even when the EIGRP neighbors were failing across the same 
link. There was no heavy congestion that could explain the problem, 
either. 
Digging deeper, we discovered the input queues on the routers were 
filling up, resulting in a lot of the packets destined for the router itself 
being dropped. Clearly this was the source of the problem, as EIGRP 
counted on traffic being processed through the IP input queues to 
maintain neighbor relationships. But what was filling up these input 
queues? 
Watching the input queues on several routers carefully, we captured a 
number of packets for examination. The packets all seemed to be 
sourced from a small number of machines, and we didn’t recognize 
the formats of the captured traffic. The customer couldn’t figure out 
what this set of source IP addresses represented—their documentation 
was sloppy in this area. 
After several hours of tracing through the routing table to find each of 
the source addresses, we finally found the set of originating servers. 
Each of them was a RADIUS server; the customer had configured per 
command authentication on all of their routers to improve network 
security several weeks before, and the documentation hadn’t yet 
caught up with the changes. 
What we were seeing in the input queue each time we captured the 
packets waiting there were the replies from the RADIUS server giving 
us permission to capture the contents of the input queues. This was, 
in itself, a memorable lesson in the power of unintended 
consequences in the effort to provide bulletproof security for a 
network—but there was yet another lesson waiting for us when we 
finally discovered the root cause of the problem. 
After turning off the per command authentication process, we finally 
captured some of the packets that were clogging up the input queues, 
which in turn was causing massive EIGRP failures throughout the 
customer’s network. These packets exhibited several odd qualities; 
they were from a wide range of addresses, and the destination 
address was always along a classful IP address boundary. We isolated 
a small number of hosts that were among the wide array of available 
source addresses and traced the traffic between the host and its 
default gateway. 
The host was sending a series of packets destined to each subnet 
broadcast in the entire IP address space. On further investigation, we 
found the piece of software that was causing all of this havoc was a 
backup package. The company had mistakenly installed a server 



version of the software on every computer in their network; a part of 
the server’s functionality was to sweep the entire IP address range 
looking for hosts with clients installed that needed to be backed up. 
Two attempts to ensure the correct handling of data and the security 
of the network together resulted in days’ worth of network instability 
and many hours spent chasing down and resolving the problems. 

 

Modularization 
Modularization, as a design tool, is primarily aimed at the following: 

 Breaking up failure domains, which improves network resilience 
 Breaking up complexity, which allows for better reuse of design in 

multiple places, as well as designs that are more tuned to local 
and service requirements 

 Breaking up functionality, so any given device is performing a 
smaller number of functions, which limits cost and management 
complexity 

We’ve already discussed hierarchical design in Chapter 7, “Applying 
Modularity,” and we’ll discuss virtualization as a method of modularization 
in Chapter 12, “Building the Second Floor.” But what does modularization 
have to do with security? Security interacts with each of these modularity 
drivers in different ways. 

Modularity, Failure Domains, and Security 

From the perspective of control plane design, breaking a network up into 
multiple failure domains creates a set of “firewalls.” Failures that occur on 
one side of a failure domain boundary should impact the control plane on the 
other side of that same boundary in as minimal a way as possible. 
This type of separation between failure domains is also a solid design 
principle in security. Even if an attacker successfully takes down one set of 
servers or services, it should take some effort to spread the problem to other 
areas of the network—breaks in the control plane at the failure domain 
boundaries should act as a barrier to at least slow down the spread of the 
attack to the entire network. 

Modularity, Complexity, and Security 

One of the hardest points to consider in securing a system—a point made 
previously when discussing the similarities between the game of chess and 
network security—is unintended consequences. At some point, a system can 
become so large, and so complex, that you don’t really understand what all 
the various consequences of a specific action might be. When you’re in a 
middle of dealing with a large-scale attack that threatens the very usability 
of a network, the last question you want to ask is, “If I change the policy 
configured on this router, can I really know what the impact will be on all the 
applications and users?” 



How can you answer this question before it’s asked? By separating 
complexity from complexity. The same points that factor into modularization 
as generally good design practice will also factor into good security design. 
The simpler the configuration of any given device, the more likely you are to 
understand any possible side effects of modifying that configuration. 
Creating multiple simpler modules in your network helps you to react to 
security issues more quickly—because it allows you to understand the 
configuration and policy already in place faster, and to see and react to the 
consequences of a policy change more easily. 

Modularity, Functionality, and Security 

All the intersections between complexity and security apply to assigning 
modules specific functions, as well—by narrowing down the functional 
breadth of a given network module, you simplify configuration and make it 
easier to understand and work around the potential side effects of 
implementing a specific policy in reaction to an attack on the network. 
Beyond this, however, breaking up functionality provides one other beneficial 
side effect from a security perspective. 
Assigning modules within the network-specific functions provides a set of 
well-understood points at which to implement security policy on the fly. If a 
network is well divided along functional boundaries, applying defenses 
designed for one module to other similar modules should be a simple matter 
of small adaptations. When you’re fighting an attack in real time, you want to 
be able to quickly pinpoint a small number of devices on which to deploy 
policy across the network; functional separation enables this capability. 

Resilience 
Resilience is often first considered a business support and continuity issue—a 
network that isn’t available all the time, or can’t consistently support the 
applications the business needs to run, isn’t worth building. But there’s a 
security angle to network resilience, as well. Although it might not be 
obvious from a pure security perspective, the first line of defense against any 
sort of denial of service attack is the resilience built in to the network from 
the ground up. 
What this means is that you should build resilience not only around the 
possibility of network failures, but also to react to attacks. Being able to 
move an important application off a path congested by an attack to a 
possibly less optimal, but also untouched, path quickly is a key security 
response mechanism in the network design. 

Some Practical Considerations 
There are a number of places network engineers look by default for security 
holes; there are others that aren’t so obvious. In this section, we’ll try to 
cover some of the less obvious places to look for security holes so that you 
don’t find them the hard way. 



Close a Door, Open a Door 
One of the most important things to remember when building out a security 
system is that security—like all network design—is always a trade-off. For 
instance: 

 To prevent rogue routers from injecting false routing information, 
HMAC/SHA signatures are deployed across all the routing 
processes in a network. 

 To ensure compliance with change control mandates throughout a 
network, RADIUS authentication is enabled on all routers, and 
command logging per user is enabled as well. 

 To counter prefix hijacking, a service provider implements a global 
RPKI system and ties it to BGP policy so any route that isn’t 
authenticated is automatically rejected out of the BGP table. 

 To counter spam, a company connects its firewall to a 
whitelist/blacklist service, and sets its email servers to reject any 
email from domains that are not listed in the whitelist. 

Each of these may (or may not, depending on your point of view) be 
perfectly valid options in the war against security breaches in a network. But 
they all come with some form of costs. Before reading the following list, try 
to find the door that’s being opened to new attacks in the process of closing 
the door against other attacks. 
What new forms of attack have been added through these actions? 

 The amount of work required to process an HMAC/SHA (or 
otherwise cryptographically signed) packet is much higher than 
the work required to process an unsigned version of the very same 
packet. By turning encrypted signatures on, you’re opening each 
router in the network to a denial of service attack through 
overflowing the processor by streaming a high rate of 
cryptographically signed packets into a router’s interface. 

 If the RADIUS server itself is not reachable, what capability do 
network engineers have to modify the configurations on each 
individual router? If there is no “back door,” you’ve given the 
attacker a single point to attack that will cut off the network 
engineering team’s ability to manage the network—probably not a 
good thing. 

 If the global RPKI system becomes unreachable, what happens to 
the routing system itself? Will all routes be accepted, or all 
rejected? What can the attacker accomplish by bringing down the 
RPKI itself? 

 If all the mail servers in the network are configured to reject any 
mail that’s not on a whitelist provided by an external provider, 
what will happen when access to that provider fails? Will all email 
be rejected? The attacker, rather than focusing on hundreds of 
separate email accounts, now only has to focus on the connection 
to a single service to disrupt email throughout the entire 
enterprise. 



Each time a door is closed, a door is opened. It’s not that these secondary 
doors can’t be closed as well—but they do need to be considered. The cost of 
the first door needs to be weighed against the danger of opening the second 
door, the cost of closing that door, and any doors that might be opened by 
closing that second door. 
A useful way to think about this is to consider the entire security perimeter of 
the network anattack surface. What is the shape of that surface? Will closing 
a hole here open a hole there? Security is a system, not a set of individual 
components. 
There’s always a trade-off. The job of the network architect, the security 
professional, the network engineer, is to find that trade-off and consider it. 
There’s never a time when there isn’t a trade-off, so if you’ve not found it, 
you’re not done thinking through the implications of implementing some 
specific form of security. 

Beware of Virtualization 
When the IETF set about deliberating a new version of the Internet Protocol, 
one problem they ran into was the question, “How do we deploy this new 
protocol?” The answer the engineers involved in the process came to was, 
“We tunnel it over IPv4.” Tunneling, of course, is a fine answer; tunneling 
and tunneled protocols are widely deployed in the real world to meet all sorts 
of different needs. From backhaul to deploying new protocols and services to 
security, tunneling is almost ubiquitous. 
But as with all things in the real world, there are trade-offs. IPv6 transition 
mechanisms are a case in point. For instance, RFC6324 documents an attack 
using disjointed control plane information on either side of an automatic 6to4 
tunnel to loop packets along an IPv6 tunnel indefinitely, eating bandwidth 
and potentially acting as a denial of service attack against the path along 
which the tunnel travels. 
The only way to really be safe about tunnels is to treat each tunnel as if it 
were a physical link for security purposes. 
Now we know this is actually impossible; there are too many tunnels 
between too many devices using too many protocols to track every tunnel 
and monitor it for security breaches. There are just too many tunnel types, 
and too many places they’re used—SSL, IPsec, GRE, LISP, IPv6 transition, 
and a hundred other besides, running from routers to hosts, hosts to hosts, 
servers to hosts, and in many other combinations. 
Tunneling mechanisms, by providing virtual topologies attackers can take 
advantage of, create a major hole in the attack surface of your network. 
There is little you can do other than deploy effective monitoring to find as 
much of the tunnel traffic as you can and monitor and manage it as 
effectively as possible. 

Social Engineering 
The same property that allows humans in the security process to counter 
brittleness also creates holes in the security process through social 
engineering, a form of attack that leverages perceived trust to convince the 



people in your company to open security holes or provide information that 
can be used to open the right doors for the attacker to operate successfully 
within your network. Here are some examples of social engineering: 

 Calling an employee from an (apparently) internal line and asking 
for the employee’s current password to fix a problem the 
employee hasn’t noticed. If the attacker can convince the person 
that the attacker is a valid member of the company’s staff, there 
is a good chance the employee will work with the attacker to be 
helpful, or to correct the unseen problem. 

 Walking into a store wearing the right name badge or the right 
clothes (uniform) and asking to borrow a particular piece of 
equipment for some special project, or to transfer equipment from 
one store to another. Most people are going to trust the 
appearance of sincerity, rather than questioning and appearing to 
be unreasonable or unhelpful. 

 Posing as someone who should rightly be able to ask for specific 
information, or to access specific areas, such as a police officer, 
fireman, auditor, or a member of a partnering company’s staff. 

Don’t ever underestimate the power of social engineering. 

Even the best trained people can be caught in the web of trusting those they 
shouldn’t trust, particularly when the attacker poses as someone who is in 
desperate need, or someone who can really help them in some way. On the 
other hand, that doesn’t mean you shouldn’t put the right policies in place, 
and provide the right training, to cull out as many social engineering attacks 
as possible. For instance: 

 Have clear, written policies about who an employee can give any 
sort of information to, from phone numbers to passwords. 

 Get people in the habit of asking someone else, even if it’s just a 
co-worker, before helping anyone with anything that seems 
remotely unusual. In detecting scams, two heads are almost 
always better than one. 

 Encourage people to work horizontally within the company, rather 
than strictly vertically. The more people know the IT staff, the 
more likely they are to recognize an intruder or attacker as 
someone who doesn’t belong in the right group to be asking 
questions. 

Summary 
Yes, you should build security in, rather than bolting it on after. But how can 
a network architect actually build security in? 
First, use the OODA loop as a tool to help you analyze where and how you 
can provide the tools to tighten up your response times in the case of an 
attack. Second, remember that a lot of the good design principles you’re 
using to make the network scalable and resilient are also effective security 
tools. Think about modularization and resilience not only in terms of good 



design, but also in terms of secure design. Finally, watch your attack surface, 
and remember that when you close one hole, you’re most likely opening 
another. Never implement something new in security until you’ve chased 
down and studied the trade-off. There’s always a trade-off. 
Although this chapter hasn’t provided you with every tool you’ll ever need to 
be an effective security engineer, it has, hopefully, given you enough tools to 
interact with real security engineers effectively, and to think through where 
and how to build security in to the network design from the start. 
   



Chapter 10. Measure Twice 

If there were a poll taken for the least favorite topic among network 
engineers, network management would surely win without much trouble. And 
yet...without solid management, network engineers are running blind, like a 
builder without a level or a tape measure. It’s not good enough to have a 
blueprint; you need to know how your current building stacks up against that 
blueprint, and what and where to change to bring things into line. 
This chapter aims to minimize the pain of network management while 
maximizing the gain. In a perfect world, the measurements and analysis 
network architects need to manage a network would just “fall out” of the 
process of building the network. But networks are never perfect worlds, 
whether virtual or real. To begin, we’ll examine the “why” of network 
management; why trouble with measuring things? After this, we’ll consider 
some models to try and come to grips with the network management world a 
little better. In the third section of this chapter, we’ll look at some practical 
considerations in deployment management, and then finally we’ll take a tour 
of the documentation you should have on hand. 

Why Manage? 
There are five primary reasons to measure and manage the state of your 
network: 

 Justifying the cost of the network 
 Planning 
 Decreasing the Mean Time to Repair (MTTR) 
 Increasing the Mean Time Between Mistakes (MTBM) 
 Security 

Security is covered in depth in Chapter 9, “Securing the Premises,” so we 
won’t spend any time on it here. 

Justifying the Cost of the Network 
The first, and primary, reason should be to justify the cost of the network to 
those who are paying for it. This might seem like an unintuitive—or even 
counterintuitive—statement, but consider the consequences of failing to 
justify the cost of the network (and the technologies associated with it). To 
put it in the most essential of terms, nothing survives (or nothing should 
survive) in the business world unless it adds value. Networks are not an 
exception to this rule. 
The ability to point to “general goodness statements,” such as “the network 
allows us to stay in business,” or “the network allows email to work,” or even 
“the network supports this specific business critical application,” isn’t, in the 
end, sufficient justification for spending money on it. This might sound odd, 
but consider this: there is always someone willing to provide those very 



same services (even “business critical applications”), as a service of some 
sort. Outsourcing, in other words, is always an option. 

If the network architect cannot justify the cost of maintaining the 
network as an internal function, then the network architect should 
expect his job to be outsourced. 

An alternative way to look at this is in terms of return on investment (ROI)—
how much money does the network cost versus how much does the network 
bring into the company? How do you measure such a thing? Because cloud 
computing is really just another form of outsourcing, some of the questions 
you need to ask when comparing outsourced solutions versus running and 
managing services within your organizations will be dealt with in Chapter 16, 
“On Psychologists, Unicorns, and Clouds.” 
There are several things to pay close attention to in this area. 
First, make certain to account for the monetary value of time. Even small 
differentials in time can make a huge difference in productivity; when 
considering a large number of employees, small differences in productivity 
can account for large amounts of money. This is an issue both in outsourcing 
and in network operational upgrades. As an example, shaving a second off 
the handling time of each call in a call center might seem like a small bit of 
savings, not really worth making an investment in. But saving one second 
per call across 30,000 calls a day is, essentially, saving the cost of a full-time 
employee. 
Second, take into account the value of addressing unique business 
opportunities. If your company runs a chain of retail stores that cater to the 
outdoors (camping, hunting, fishing, and shooting) markets, consider the 
value of being the preferred supplier in severe weather events. What is the 
potential and historic upside to being open just after a hurricane or tornado, 
both in terms of goodwill within the community, and in terms of real sales 
when people are rebuilding or responding to such events? The cost of 
network upgrades designed to support operations during and after severe 
weather events, such as additional redundancy and hardened equipment, 
may easily be offset by such considerations. 
Third, take stock of the advantages of better security. There are only a few 
applications in the world that cannot be outsourced in terms of actual 
processing; with the advent of cloud computing, raw processing power on 
which you can run your own applications can be just a few clicks away. But 
the security assumptions of outsourced platforms are often a hidden, or 
unaddressed, cost. What is the additional cost to encrypt data and manage 
encrypted data? The cost of local storage and compute power must be 
weighed against the cost of the outsourced service plus the additional 
security requirements. 
Most of the ROI trade-offs around network management are going to be 
around improved network efficiency and increased availability, but make 
certain you pay attention to the less-common areas where big gains in 
savings or new revenue can be found. 



Planning 
“The past may not repeat itself, but it sure does rhyme”—Mark Twain 
As counterintuitive as it might seem, the key to understanding how and 
where your network will need to grow to meet current and future business 
challenges lies in the past. Although you can’t predict everything that might 
happen in a network through measurement and analysis, the growing 
emphasis on “big data” is resulting in the creation and improvement in a 
number of tools that can help. There are several places where the network 
architect should be looking for trends in network utilization to better 
understand what future improvements might be needed, or where the 
network is overbuilt (allowing investment to be shifted). 
Measuring real life Mean Time Between Failures (MTBF) should be one focus 
of the analysis by network engineers. Rather than depending on the “stated 
numbers” for the failure rate of a particular piece of equipment or link type, 
the historical data about link and equipment failures should be analyzed to 
gain a better understanding of how often failures can be expected. This type 
of analysis can help to reduce network costs by providing insight into how 
much redundancy is needed at each point in the network. 

Note: Examples of mining past performance to better understand the MTBF 
can be found in many unexpected areas, including theme parks and 
transportation companies. Large theme park operators can project the 
lifetime of the light bulbs they use in the various venues and replace them 
just before they fail, preventing unsafe conditions. In the transportation 
industry, long haul transportation (trucking) companies use data analysis to 
determine what type of accident each driver is likely to have, and how often 
these accidents will occur. By taking proactive steps to train their drivers, 
and routing trucks through specific paths at specific times, they can decrease 
the number of accidents per mile, thus reducing their cost of operations, 
increasing the longevity of their drivers, and increasing their operation 
efficiency.

 

Time and region based traffic shifts are another area to which network 
engineers should pay careful attention. Understanding traffic patterns can 
help determine the best time to make changes in the network, and also 
project when areas of the network might need to be upgraded (or 
downgraded). Beyond this, as the ability to measure traffic levels in real time 
is ramped up, the ability to use a higher percentage of the available network 
bandwidth increases. The ultimate goal of any traffic engineering effort in a 
network should be to buy only the bandwidth that is really needed to 
transport the traffic actually offered, plus some small amount of redundant 
path capability. The better your traffic history is, the more closely you’ll be 
able to match capacity against demand. 
Shifts in traffic caused by the deployment of a new application, protocol, or 
service can prove very helpful over time. While analysis of packet sizes, 
usage levels, and other projections can be useful, all of these suffer from a 



major flaw common to all technology—applications and protocols aren’t ever 
used the way their designers think they will be used. Rather, the use of a 
new application or protocol is limited only by the imagination and needs of 
those who will be using it. Mining data around changes in network patterns 
caused by the deployment of a new application or protocol can provide a 
real-life check point (or information source) when considering what network 
changes will be needed. 

Decreasing the Mean Time to Repair 
Fault management may be the most obvious use of network management 
software and processes, but that doesn’t mean it’s well understood—or even 
well defined. In fact, most network management software and processes are 
still far behind the curve when it comes to detecting, understanding, and 
alerting network operators to problems in the network. In particular, be 
careful to go beyond measuring total failures. Brownouts, increases in jitter 
and delay, link overloading, traffic leaking from one virtual network into 
another, and even slow control plane convergence are areas that are often 
overlooked. 
In general, network management should not only be useful for finding 
problems quickly, but also for resolving problems quickly. 

Increasing the Mean Time Between Mistakes 
There are two areas where network management can help increase the 
MTBM: change management and configuration automation. Change 
management generally works on the principle that two heads are better than 
one—the more people who look at a change before it’s put in place, the less 
likely it is there will be mistakes in the configuration or intent of the change 
itself. Configuration management attempts to battle policy dispersion 
(see Chapter 14, “Considering Complexity,” for more information on policy 
dispersion), as well as providing an “abstraction layer” between humans and 
raw configurations. Networks are often made up of devices from many 
different vendors, running different versions of software, each with its own 
command-line interface (CLI) and nuances; a configuration management 
system can provide a common way to manage all these disparate devices 
through a single interface and with a single syntax. 

 

Change Management Gone 
Wrong 
Although change management can be very beneficial to the operations 
of a network, it’s often easy to get wrapped up in the process of 
managing change because it reduces personal or institutional risk—
even when it doesn’t produce good results. Consider this example of 
network management gone wrong based on a real-life experience: 
After checking in through the front desk, I walked in to the area where 
the network engineering staff was located. Lugging a laptop and 



projector—this was the first day of a multiday workshop on EIGRP—I 
passed through the cubicles looking for the conference room that had 
been booked the week before. At the end of one row, I noticed a lot of 
people gathered around the opening of one of the cubicles, all 
apparently intent on something going on inside. The small crowd, in 
fact, consisted of just about every network engineer the company 
had. 
Approaching the cubicle, I asked, “What’s going on?” 
One of the engineers turned around. “Oh we’re working on a 
problem...” 
“Oh...What is it?” I set the laptop and projector on the floor, assuming 
the training class would be delayed until this problem was resolved. 
“Maybe I can help.” 
“There’s a routing loop that’s preventing access to one of the terminal 
servers, so a lot of people can’t get to the mainframe.” 
“Well, let’s fix it, so we can get on with this class.” 
The engineer continued looking over the shoulder of the person in 
front of him, into the surrounded cubicle. I could just see two people 
squeezed into the space in front of the desk, and two monitors with 
various real-time graphs displayed. “We know what the problem is. A 
static route was configured during this morning’s change window. It 
was misconfigured, so we have a routing loop.” 
“Why don’t you take the static route out?” 
The engineer turned to look at me again. “We can’t until the 
emergency change control board meets.” 

 

Management Models 
Management models, like network models, provide a framework within which 
to think about the purpose and deployment of network management. The 
first model we’ll discuss is Fault, Configuration, Accounting, Performance, 
and Security (FCAPS), which is widely used and well understood. The second 
model we’ll discuss is one we’ve looked at before, in the context of security, 
the Observe, Orient, Decide, and Act (OODA) loop. 

Fault, Configuration, Accounting, Performance, and Security 
FCAPS was first defined in ISO 10400 in the mid 1980s as a classification 
system for managing an entire IT infrastructure. It has, since then, been 
modified through various documents; the most recent version can be found 
in ITU-T M.3400, which deals with telecommunications network 
management. The Enhanced Telecommunications Operations Map (ETOM) 
has incorporated the ideas behind FCAPS into the Fulfillment, Assurance, and 
Billing (FAB) model, with each function of FCAPS being mapped to one of the 
functions of the FAB model. 



The focus in this model is on the various functions management provides, 
rather than on the methods, tools, or processes used to provide that 
functionality—so although this is a good structure to build a list of “what 
should I ask,” questions, it isn’t as useful for laying out what and how to 
measure. FCAPS approaches network management from the business, rather 
than operational, perspective, which means it can often provide a good 
model for interfacing with corporate management. 
FCAPS is a fairly straightforward model; what each section measures and 
manages is implied by the names themselves. 

 Fault management deals with the detection of faults and 
notification of fault conditions to network operators for repair. If 
corrective action to restore a network to full operation is taken 
automatically, the FCAPS model still mandates the logging of fault 
data for future analysis. This area of FCAPS overlaps with the 
previous section “Decreasing the Mean Time to Repair.” 

 Configuration management gathers the analysis and modification 
of device configurations across a broad spectrum of devices into 
one management console, or one system. Although the ideal 
solution would be a single device or application managing the 
configuration of every device in a network, the reality is often 
multiple configuration management stations with overlapping 
spans of control. This area of FCAPS overlaps with the previous 
section “Increasing Mean Time Between Mistakes.” 

 Accounting is primarily focused on determining how much to bill 
specific users for specific services provided through the network. 
Hence accounting, in a network management system, deals with 
things like total bandwidth used, peak versus non-peak usage, 
types of traffic offered to the network, and other measures of 
network utilization. This section of the FCAPS model is a superset 
of the previous section “Justifying the Cost of the Network.” 

 Performance management is focused on determining the current 
efficiency of the network and projecting the needs of the network 
in the future. This section of the FCAPS model overlaps with the 
previous section “Planning.” 

 Security, in the FCAPS model, is focused on system security, 
particularly at the level of authorizing individual users to access 
and use specific services available through the network. Network 
security tends to be more focused on infrastructure security than 
the security contained in the FCAPS model. This section of the 
FCAPS model is closely related to Authorization, Authentication, 
and Accounting (AAA) services, commonly implemented through 
RADIUS and other protocols and services. 

Observe, Orient, Decide, and Act (OODA) 
The OODA loop is described in Chapter 9 in some detail; rather than 
examining the history and the theory at a general level, we’ll consider how it 
can be applied to management here. Rather than focusing on what needs to 



be measured or managed, the OODA loop focuses on the management 
process itself—how does a network administrator determine what needs to 
be acted on, how to act on it, and what action needs to be taken? The OODA 
loop is complementary to the FCAPS model previously described—for 
example: 

 In the realm of fault management, the network engineer must 
first observe the current state of the network (build a network 
baseline) and the fault (fault notification). After the fault has been 
observed, orientation is required by troubleshooting the problem 
and determining the root cause. When the fault has been 
diagnosed, the correct form of action must be 
determined (decide), and action must be taken to resolve the 
problem (act). 

 In the realm of configuration management, the network 
engineer observes the configuration, policy, and policy dispersion 
within the network. Orientation requires the engineer to consider 
the commonality and differentials between the various policies and 
the configurations required to effect those policies. To decide, the 
network engineer must consider which of these policies can and 
should be gathered up into a centralized system, and how to 
divide the policies and configurations across a wide array of 
equipment into a single unified (and possibly abstract) interface or 
system. Finally, action must be taken to implement these 
decisions by building and/or deploying the appropriate 
configuration or network management software. 

 In the realm of network accounting, the network engineer must 
first observe a set of network capabilities or services, and 
then orient to those services by determining what it costs to 
provide those services. Observation, in this realm, will also be 
required to determine where and how to measure the usage of the 
services offered, and orientation will be required to understand the 
limitations of the measurement, and how that will offset the value 
of the service as a service. Decide will require the network 
engineer, in cooperation with the business, to determine how and 
what to measure, and how to bill. Act will require the actual 
building and billing of the service in question. 

 In the realm of performance management, the network engineer 
must observe the normal state of the network, the current state of 
the network, and the historical differential between the two (or 
changes over time). Orientation takes place as the network 
engineer determines whether current differentials are likely to 
continue into the future by examining why these differentials are 
occurring and whether the conditions causing the differentials will 
continue.Orientation will also involve examining the business 
environment for incipient changes and other issues that may 
impact the performance of the network or applications running on 
the network—such as a new application being deployed. The 
network engineer must decide what to do about the difference 



between the current performance, the ideal performance, and 
projected future changes to performance, and finally act by 
implementing the necessary changes to maintain network 
performance at some predetermined level. 

The OODA loop can be used across a wider cross-section of the different 
processes within each area of the FCAPs model; these are just examples. 
An interesting application of the OODA loop in network management is 
change management. A fairly standard change management process includes 
the following steps: 

Step 1. Define the requirement. 
Step 2. Request the change. 
Step 3. Review the change. 

a. Examine the costs and benefits. 
b. Examine the technical feasibility. 
c. Analyze the impact of the change on existing systems. 

Step 4. Plan the change. 
Step 5. Execute the change. 
Step 6. Review the change. 

a. Verify change operation. 
b. Verity change impacts. 

Steps 1 and 2 in this process are observe; step 3 is orient; step 4 is decide; 
step 5 is act; and step 6 returns to observe. Rephrasing the process in terms 
of an OODA loop may help clarify the steps involved in change management, 
including answering the question, “Why are we doing this?” 

Deploying Management 
Deploying management takes far more than finding the right things to 
measure, the right place to measure them, the right way to measure them, 
and the right processes to control the different management areas. This 
section details some of the practical points network architects need to 
consider when deploying network management. 

Loosen the Connection Between Collection and Management 
One of the major problems surrounding network management is the natural 
affinity, or tie in, between the reason for collecting data and the data store 
itself. Using the FCAPS model, for instance, the interface speed might be 
collected multiple times—once for fault management, once for configuration 
management, once for accounting, and once for performance management—
and processed and stored separately. 
This is a bad thing. 
Network architects should, instead, treat the measurements taken off the 
network as one large “pool” of data. Although specific questions might 
generate the original or ongoing data set, measurement data should be 



stored in a way that is only loosely connected with the original purpose for 
which the data is collected. There should be a conscious effort to provide 
interfaces into the network management data so it can be used for purposes 
other than the original intent. In other words, data collected off the network 
should be placed in a store with a common set of interfaces that anyone 
(with the right credentials and reasons) can access. 
Finally, the connection can be loosened by using monitoring information in 
new and unexpected ways. The entire field of data analytics can cross over 
from the big data and data science areas in the retail, production, or other 
operations area, and be used to mine for useful trends and analysis. You 
might know, for instance, that traffic in your network follows a working 
hours/off hours pattern, but are there deeper or less obvious patterns that 
might help you better use the bandwidth available? How can you relate 
network usage to energy usage in large-scale data centers, and what is the 
trade-off between moving loads to save energy versus the cost in terms of 
performance and the actual movement of the packets? 
Information gathered from all around the network should be available for 
uses far beyond the original intent; there should be processes and 
mechanisms in place to find the hard data that will help you predict failures, 
manage cost, and adjust to growth more quickly. 

Sampling Considerations 
The question often arises about whether to sample data, or to gather all the 
information—whether at the flow level (when using Netflow, for instance), or 
at the control plane level (should I capture the time required to run SPF on 
every router, or just a few?), or in many other places. In the end, you’re 
always going to end up sampling data; there’s simply too much of it to 
collect wholesale. The real question network architects should be asking is, 
“Which samples do I want to take, and why?” 
The answer to this question is the inevitable “it depends,” but there are some 
helpful guidelines: 

 How useful will the data be if it is only sampled, rather than 
collected wholesale? The behavior of an application that sends 
only a few dozen packets in each hour probably isn’t going to be 
discernible from a sampled measurement. On the other hand, the 
average time each SPF run takes in an IS-IS network can probably 
be correctly ascertained through sampled data. 

 Are you looking for trends or for hard data? Doctors often tell their 
patients, “Weight is a trend, not a number.” At least that’s what 
they say when they’re trying to be kind to their patients—but the 
point still holds. Sampling is often useful for spotting trends, 
whereas for hard numbers, you’ll need more precise wholesale 
monitoring. 

 How self-similar is the data you’re monitoring? If there is a larger 
network traffic pattern, such as a sudden uptick in traffic at the 
beginning of the workday, and a quick drop off at the end of the 
workday, and you already know about this daily change through 



gross sampling mechanisms (such as interface counters), you 
might want to focus your measurement efforts at the packet level 
on more fine-grained changes. In this case, you might want to 
modify the sampling rate so it’s in line with the known traffic 
patterns, collecting samples more frequently when the traffic 
levels are high, and less frequently when the traffic levels are 
lower. 

Where and What 
It’s useful to not only have a model of management techniques and 
processes, but also of the network as a measurable object. Although network 
engineers often think of the network within the context of the OSI (or seven 
layer) model, this isn’t necessarily the best model for determining what to 
measure, nor how to measure it (see Chapter 4, “Models,” for more 
information on a number of different models used to describe 
networks). Figure 10-1 illustrates a model that’s useful for thinking through 
network measurement techniques. 

 

Figure 10-1 Model of Network Measurement 

The objective of this model is to provide a framework for asking questions, 
rather than providing answers. At each of the intersections, there are a 
series of questions that can be asked, and a set of measurement techniques 
that will provide the answers. Along the bottom are different physical 
locations within the network, and along the right are different protocol 
layers. The key point is to determine which of these intersections need to be 
measured and how each measurement should be taken. Let’s examine some 
of these intersections to see how this works. 



End-to-End/Network 

For any given path taken by traffic through the network, the end-to-end 
performance of the network protocol (IPv4 or IPv6 in most cases) can be 
measured in a number of ways. For instance, the end-to-end delay, jitter, 
bandwidth, round-trip time, reachability, and packet loss can all be measured 
for each IP path through the network. Ways in which you might measure this 
information include the following: 

 Generating traffic along a given path and measuring the various 
parameters for the generated flow. This has the advantage of 
providing measurement traffic on demand, but it has the 
disadvantages of measuring traffic that’s not real and adding 
additional load to the network. A number of management software 
and network testing packages can produce traffic flows with 
specific characteristics for measuring the performance of an end-
to-end path through a network; IP/SLA is one example. 

 Passively measuring traffic generated by applications already 
running on the network. The advantages are that you’re 
measuring real traffic and you’re not adding additional load to the 
network. The disadvantage is that real application traffic might not 
always be available. NetFlow is probably the best known example 
of a measurement protocol in this area, although a number of 
other options might be viable in very narrow situations, such as 
logged access lists. 

Interface/Transport 

Every hop a transport layer packet, such as a Transmission Control Protocol 
(TCP) segment, passes through, must pass through a pair of interfaces. Each 
of these interfaces interacts with the packet through queuing, drops, 
serialization delay, and other factors. Each of these factors should (though 
they can’t always), in turn, be measured in some way—normally through 
device-levelshow commands, information retrieved through SNMP or 
NETCONF, or some other mechanism. 

Failure Domain/Control Plane 

The most crucial area in which control plane performance needs to be 
examined is not end-to-end, at the network level, but within each failure 
domain. Understanding the amount of time it takes for a routing protocol to 
converge around a failed link within each specific failure domain can expose 
which failure domains are likely too large, or poorly designed, and which can 
be expanded in scope and size with minimal risk. 
Most of the measurements taken here are going to (necessarily) be from 
Simple Network Management Protocol (SNMP), the Network Configuration 
Protocol (NETCONF), show commands, and other “white box” 
measurements. There are techniques to determine when an OSPF router has 
converged from within the protocol itself (see RFC 4061, RFC 4062, and RFC 
4063), but these techniques are not widely deployed by testing equipment 
vendors. So long as information in these areas is available directly from the 



devices, there is little reason to add the complexity of “off box 
measurements,” unless there’s some specific situation that requires it. 
Network engineers should primarily examine the amount of time required to 
calculate new routing information after a link or device changes state 
(remembering there are four steps to this process—see Chapter 8, 
“Weathering Storms,” for more information). Measurements should be taken 
both from the perspective of the network layer (IPv4 and IPv6) and from the 
perspective of the control plane protocols (time required to run an SPF, for 
instance, in an IS-IS deployment). 

Bare Necessities 
Every network engineer who’s worked in a customer supporting role at a 
consulting company or a vendor has had this conversation. 

“So, where in the network are you seeing the problem?” 

The customer walks over to the side of the conference room and pulls the 
projector screen so it snaps to the ceiling, revealing a wall chart containing 
hundreds of pages. “Let me find the right page...” The customer flips through 
the pages and reaches a chart containing port and cable numbers, a chart 
that looks like every other chart in the stack. “Right here; see, there are two 
Ethernet cables connecting these two routers...” 

“I thought we were looking at an OSPF problem?” 

“Yes, of course. I’m just showing you how the routers are connected.” 

“Well, what about the IP addresses, and the area borders, and the...” 

The customer starts flipping through pages, finally reaching a chart crammed 
with IP addresses. “Let’s see, the first link is 192.0.2.0/25 and the second is 
192.0.2.128/25. I’ll have to look at the configurations to figure out which 
router is configured as the ABR...” 
This leads, of course, to one of network engineering’s nightmares: figuring 
out what the network looks like before you can actually get any work done. 
What sort of documentation should every network have? A few pointers 
might be helpful: 

 A Layer 3 network diagram indicating the points at which 
aggregation and other policies are configured. For bonus points, 
the reasoning behind deploying specific policies at specific 
locations could be documented, as well. These policies should 
include the costs of links, and what the intent was behind costing 
specific links in specific ways. 

 A Layer 2 network diagram showing how each device is connected 
to each device around it. This should be a set of diagrams, rather 
than a single diagram, with Layer 3 references marked out, so any 
part of the Layer 3 diagram can be quickly correlated to a small 
and understandable physical wiring diagram. 



 A diagram of any overlay topologies, preferably keyed so they can 
be quickly cross-referenced to physical and Layer 3 diagrams. 

 An addressing plan marking out not only where specific addresses 
are deployed, but also how new addresses are chosen for specific 
places in the network, and why the specific process used is, in 
fact, used. 

 A sortable database of the address space, preferably with some 
way to determine what routes should be visible at each device in 
the network (for quick comparison and examination). 

 A minable database of past problems, useful for finding 
correlations between current network conditions and what has 
happened before. 

Summary 
Although this chapter doesn’t provide any advice on specific tools, it should 
give you some idea about the right questions to ask when building, 
evaluating, and justifying network management as a system (rather than 
network management systems). Network management is about far more 
than just measuring what’s measurable, or looking for outages on a network 
map in an out-of-the-box network management software package. Network 
management takes creativity and ingenuity, but in the end measuring the 
network will yield insight into what needs to happen next to fulfill business 
needs, where problems are that need to be addressed, and other valuable 
information about the network. 
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Chapter 11. The Floor Plan 

Topologies aren’t very exciting. In fact, in the realm of network design, the 
choice of which topology to use almost always “just happens”—it’s almost 
never a point of intentional thought and consideration. So why should this 
book include an entire chapter on network topologies? Isn’t stringing cables 
together just, well, stringing cables together? 
No, stringing cables together isn’t all there is to network topology, because 
determining which topology to use is far more than just stringing cables 
together. The topology is like a floor plan, in a sense; if you don’t get it right, 
people (and packets) are going to be bumping into each other constantly, 
and dirt’s going to be tracked into the wrong places. Traffic flow is no less a 
consideration when designing a network; the degree of hierarchy, the type of 
traffic, resilience, and other factors are crucial to supporting the business 
requirements and applications the network is bound to support. 

Rings 
Ring topologies are among the simplest to design and understand. They are 
also the least expensive option, especially when long haul links are involved, 
so they tend to predominate in wide area networks. Rings became so popular 
in long haul telephone networks, in fact, that there are several technologies 
designed around ring topologies, such as the original SONET specifications 
and Redundant Packet Rings (RPR). 

Scaling Characteristics 
Ring topologies have been scaled to large sizes; the additional cost to add a 
node is minimal. Generally, one new router (or switch), moving one circuit, 
and adding another new circuit is all that’s needed. With careful planning, the 
addition of a new node into the ring can be accomplished without any real 
impact to overall network operations. Figure 11-1 depicts adding a node to a 
ring. 



 

Figure 11-1 Adding a New Node in a Ring Network 

If the original link between Routers A and C is administratively disabled 
before work begins (preferably during an outage window), the link can be 
swung to its new termination point at Router A, Router B installed, and the 
new link between Routers B and C installed without disturbing existing traffic. 
The new links and equipment can be tested without impacting operational 
traffic, as well. After the new equipment is tested, another outage window of 
short duration can be used to bring it into the production network. 
Adding new nodes in a ring network, although simple enough, does increase 
the total number of hops through the network itself. Where before the 
change illustrated in Figure 11-1 Routers A and C were directly connected, 
they are now one hop apart. The total distance around the ring has also 
increased from 5 hops to 6. 
Adding new nodes into a ring topology does not impact control plane scaling 
in any noticeable way. Each router along the ring will have precisely two 
neighbors, no matter how large the ring becomes. Although the total length 
of the path through the ring increases as nodes are added, most modern 
implementations of routing protocols are fast enough that the additional path 
length is of little concern. Shortest Path First (SPF), which is used in OSPF 
and IS-IS to calculate the best path to each destination in the network, will 
handle long path lengths with little trouble. EIGRP, as an advanced distance 
vector protocol, doesn’t suffer from scaling issues in ring networks, either. 
Convergence does suffer with both of these two types of control planes, 
however—see the following section for a more detailed look at problems with 
convergence on ring topologies. 
As ring size increases, it becomes difficult to manage quality of service and 
optimal traffic flows. Two heavy users of bandwidth connected to Routers A 
and B in the network illustrated in Figure 11-2 might cause the intervening 
link to remain constantly congested, causing problems for real-time traffic 
(such as VoIP) passing between Routers A and C. Forcing traffic around the 
“back side” of the ring, the longer path, to avoid this congestion can be very 



difficult, generally requiring tunneling (such as Multiprotocol Label Switching, 
or MPLS), and added complexity in the control plane. 

 

Figure 11-2 Quality of Service Issues in Ring Topologies 

Furthermore, each additional hop in the ring represents an additional queue 
through which traffic must pass to reach its destination, and each queue 
represents an additional set of serialization delays, queuing delays, and 
possible queue holding time. Each additional hop in a ring network, then, will 
almost certainly cause not only longer delays for traffic passing through the 
network, but also more pronounced jitter. 
Some ring technologies are designed to remove these effects by separating 
the ring’s Layer 2 forwarding path from its Layer 3 forwarding path. Traffic 
from Router A destined to a host attached to Router C would be switched at 
Layer 2 by Router B, rather than routed at Layer 3. Configuring a ring in this 
way using SONET or RPR can reduce, but not wholly eliminate, the quality of 
service problems introduced by increasing the size of a ring topology. 

Resilience Characteristics 
Rings can withstand a single failure anyplace in the ring; any two failures will 
cause the ring to split. However, a single failure in the network can play 
havoc with carefully planned traffic flows, asFigure 11-3 illustrates. 



 

Figure 11-3 Traffic Engineering in a Ring Network 

If the link between Routers A and B fails, the high-bandwidth flow is thrown 
across the same path as the jitter-sensitive flow. This could cause major 
problems with the application running between Hosts D and G. To resolve 
these problems, ring topologies are often deployed in overlaid pairs, as 
illustrated in Figure 11-4, and designed to support about twice the normal 
traffic load. 



 

Figure 11-4 Dual Ring Deployment 

The dual ring deployment shown in Figure 11-4 is an instance of either 
a moderately or fully disjoint plane, both of which are discussed in more 
detail in following sections. 

Convergence Characteristics 
Convergence in ring topologies lays the foundation for truly understanding 
the convergence of every other network topology ever designed or deployed. 
After you understand the principles of routed convergence in a ring topology, 
it’s simple to apply these same principles to quickly understand the 
convergence of any other topology you might encounter. 

In other words, pay attention! 

The crucial point to remember when considering how any control plane 
protocol—routed or switched—will operate on a particular topology is to think 
in terms of the “prime directive”: thou shalt not loop packets! This aversion 
to looping packets explains the convergence properties of ring topologies. 
Consider the rings in Figure 11-5. 



 

Figure 11-5 Loop Avoidance in Ring Topologies 

In the two rings shown in Figure 11-5, the links over which a routing protocol 
will not forward packets toward the destination indicated are marked. 
We like to think of routing as a way to use every possible link in a network 
topology, but routing creates a spanning tree computed per destination. For 
any given destination, specific links are blocked out of the path to prevent a 
packet forwarded toward that destination from looping in the network. The 
primary difference between routing and spanning tree is this blocking occurs 
once per destination, rather than once per topology. Because every 
destination has different blocked links, all the links in a network are, on 
average, used. 
In the case of the four hop ring toward 192.0.2.0/24 

 The link between Routers B and C appears to be unidirectional 
toward Router B. 

 The link between Routers C and D appears to be unidirectional 
toward Router D. 

Why are these links blocked in this way by the routing protocol? To follow the 
prime directive—thou shalt not loop! 

 If a packet destined to 192.0.2.0/24 is forwarded from Router D to 
Router C, the packet will loop back to Router D. 

 If a packet destined to 192.0.2.0/24 is forwarded from Router B to 
Router C, the packet will loop back to Router D. 

In the case of the five-hop ring toward 192.0.2.0/24, the link between 
Routers G and H appears to be completely blocked. But why should this be? 
Suppose a packet destined to some host in 192.0.2.0/24 is forwarded from 
Router G to H. This packet will be forwarded correctly to Router F, then to 
Router E, and finally to the destination itself. 



But what if Router G is forwarding traffic to H for 192.0.2.0/24, and Router H 
is also forwarding traffic to G for 192.0.2.0/24? We have a permanent 
routing loop. 

 

Split Horizon and the P/Q Space 
There are a number of other ways to describe the way routing 
protocols block links in a topology to prevent data plane loops from 
forming. The first, and most familiar, of these is split horizon. 
Distance vector protocols split horizon a route advertisement by 
refusing to advertise a destination through an interface being used 
locally to forward traffic toward that destination. In the networks 
in Figure 11-5, Router C will split horizon the advertisement of 
192.0.2.0/24 toward both Routers B and D. While Router C can 
forward along both of these links to reach 192.0.2.0/24, Routers B 
and D have no knowledge of this destination being reachable through 
Router C, effectively causing these two links in the topology to be 
unidirectional toward the destination. 
Likewise, Router G will split horizon the advertisement of 192.0.2.0/24 
toward Router F, and Router H will refuse to advertise this same 
destination toward Router K. Again, the net effect is that the Router G 
to F link appears to be unidirectional toward 192.0.2.0/24, and the 
Router G to H link isn’t available to Router F at all to that network. 
Another way to express this is to split the network into P space and Q 
space (seeChapter 8, “Weathering Storms,” for more information 
about P and Q space in the context of fast convergence). To put it in 
the simplest terms possible, you can think of the network as a split 
waterfall. One side of the waterfall is the P space, the other is the Q 
space. The key point to remember, however, is that any packets 
forwarded into the P space from the Q space will be looped back to 
the P space. 
In the four-hop ring in Figure 11-5, Routers A, B, and C would be in 
the P space for 192.0.2.0/24, and Routers A, D, and C would be in the 
Q space. In the five-hop ring in Figure 11-5, Routers E, F, and G 
would be in the P space, and Routers E, K, and H would be in the Q 
space. 

 

This is all great theory, but what does this have to do with convergence? 
Let’s begin with some specific observations and then generalize those into 
some compact convergence rules we can apply to all topologies. 

If the link between Routers A and D fails in Figure 11-5, Router D has no 
way to forward traffic toward 192.0.2.0/24 until the routing protocol 
converges. 

If a distance vector protocol is deployed on this four-hop ring, the failure of 
the Router A to D link will cause traffic entering the ring at Router D to be 



dropped until the routing protocol converges. If a link state protocol is 
deployed on this four-hop ring, the failure of the Router A to D link will cause 
traffic entering the ring at Router D to be looped between it and Router C 
until the routing protocol converges—a microloop. 

If the link between Routers E and K fails in Figure 11-5, Router H has no 
way to forward traffic toward 192.0.2.0/24 until the routing protocol 
converges. 

If a distance vector protocol is deployed on this five-hop ring, the failure of 
the Router F to G link will cause traffic entering the ring at Router G to be 
dropped until the routing protocol converges. If a link state protocol is 
deployed instead, this same failure will result in a routing loop between 
Routers G and H until the routing protocol converges—a microloop. 

Generalizing Ring Convergence 
Why is all this so important to understand? Because virtually every topology 
you can envision that has any sort of redundancy is, ultimately, made up of 
rings (full mesh designs are considered by many to be an exception, and Clos 
fabrics are exceptions). To put it another way, virtually every network 
topology in the world can be broken into some set of interconnected rings, 
and each of these rings is going to converge according to a very basic set of 
rules. 

 Every ring has, for each destination, a set of links not used to 
forward traffic. 

 The failure of any link or node on a ring will cause traffic to either 
be dropped (distance vector) or looped (link state) until the 
routing protocol converges. 

In the “Fast Convergence” section in Chapter 8, we learned that the speed at 
which a routing protocol converges is directly related to the number of 
routers that need to be notified of a topology change. Applying this to ring 
topologies gives us a third rule: 

 The larger the ring, the more slowly the routing protocol will 
converge (and thus stop throwing packets on the floor or resolve 
the resulting microloop). 

These three rules apply to virtually every topology you encounter. Find the 
rings, and you’ve found the most basic element of network convergence. 

 

Rings and Fast Reroute 
These general rules on convergence in ring topologies wouldn’t be 
complete without some thoughts on how they impact fast reroute 
technologies. In the network illustrated in Figure 11-5, it is possible 
for Router D to continue forwarding traffic toward 192.0.2.0/24 if the 
Router A to D link fails—but only if it can get the traffic to Router B, 
rather than Router C. 



This simple insight is the foundation of every fast reroute scheme 
other than MPLS TE/FRR (which builds an end-to-end tunnel through 
the network across the “back side” of every ring in the topology 
between the source and destination). To quickly route around local 
failures, what we need is a system that allows Router D to discover 
that Router B is the closest “safe point” to which traffic destined to 
192.0.2.0/24 can be forwarded without looping, and then a tunneling 
mechanism that allows Router D to actually forward traffic to Router 
B, skipping over Router C’s forwarding table. 
For instance, if Remote LFAs are deployed in the four-hop ring 
in Figure 11-5, Router D would use constrained SPF to discover that 
any traffic forwarded to Router B toward 192.0.2.0/24 will not be 
forwarded back to Router D itself. After this discovery is made, a 
tunnel is constructed from Router D to Router B using MPLS (LDP), 
skipping Router C’s control plane. This tunnel becomes the backup 
path for Router D toward 192.0.2.0/24 (see draft-ietf-rtgwg-remote-
lfa for more information on remote LFAs). 

 

Final Thoughts on Ring Topologies 
What’s the bottom line on ring topologies? 

 Rings are cheap to deploy and simple to scale. 
 The larger the ring, the more difficult it is to predict and control 

quality of service issues resulting from link or device failures. 
 Redundancy in any ring generally requires every link in the ring to 

be able to carry double the normally offered load to provision for 
link and device failures in the ring. This can be somewhat 
mitigated by spreading traffic over a wider set of links in the case 
of link and device failures, or by carefully measuring traffic flows 
and planning their failover paths. 

 Smaller rings converge more quickly; triangles are the smallest 
ring possible, and therefore the “golden triangle” is the most 
desirable topology element for fast convergence. 

 Capacity planning is difficult in a ring topology because traffic 
flows are additive through the ring. 

Full Mesh 
Now we jump from the topology cheapest to deploy and simplest to scale to 
the topology that is the most expensive to deploy and the most difficult to 
scale—the full mesh, shown in Figure 11-6. However, full mesh topologies 
are simpler to understand, in terms of convergence and scaling, than ring 
topologies. 



 

Figure 11-6 Full Mesh Topology 

As Figure 11-6 shows, every node in a full mesh topology has a connection to 
every other node in the same full mesh topology. From Router A to D, there 
are 10 paths traffic can take: 

 (A,D) 
 (A,E,D) 
 (A,B,D) 
 (A,C,D) 
 (A,B,C,D) 
 (A,B,E,D) 
 (A,C,B,D) 
 (A,C,E,D) 
 (A,E,B,D) 
 (A,E,C,D) 

Traffic engineering techniques can be used to direct specific traffic onto any 
of these paths, allowing the network designer to design traffic flows for 
optimal performance. The number of paths through the network, and the 
number of links required to build a complete mesh between a set of nodes, is 
given in a simple (and well-known) formula: 

N(n−1)/2 

For the five-node network in Figure 11-6, this is 

5(5−1)/2 == 10 

This property of full mesh networks, however, also points to the weaknesses 
of this topology: scale and expense. These two weaknesses are closely 
related. Each new node added to the network means adding as many links as 
there are nodes already in the network. Adding a new node to the network 



in Figure 11-6 would mean adding five new links to bring the new node fully 
into the mesh. 
Each new link added means not only a cable, but also a new port used, and 
new ports mean new line cards, and so on. Each new link also represents a 
new set of neighbors for the control plane to manage, increasing memory 
utilization and processing requirements. The MTTR/MTBF curve quickly 
moves toward higher MTTR in full mesh topologies (see the discussion about 
control plane convergence speeds versus state in the control plane 
in Chapter 8). For these reasons, full mesh topologies are generally limited to 
small sizes, on the order of 10 to 20 nodes, in most real-world applications. 
There are protocol-level techniques that can reduce the control plane 
overhead in full mesh topologies, if they are properly managed and deployed. 
OSPF and IS-IS both have the capability to build a mesh group, which treats 
the full mesh topology similar to a broadcast network; a small number of 
routers at the edge of the mesh are designated to flood topology information 
onto the mesh, while the remainder of the attached routers passively listen. 
The one place where network engineers often encounter full mesh topologies 
is in virtual overlays, particularly in deployments where traffic engineering is 
a fundamental part of the reason for deploying the virtual overlay. Although 
the port and link costs are reduced (or eliminated) when building a full mesh 
of tunnels, the cost of managing and troubleshooting a full mesh remains. 

Clos Networks 
Charles Clos developed the Clos multistage switching fabric in 1953 as a 
means to overcome the cost and lack of availability of high-speed crossbar 
switches in telephone networks. The general idea behind a Clos fabric is that 
a network capable of carrying high traffic rates can be built from components 
that individually support only lower packet switching speeds. Clos designs are 
fairly common in data center environments, where the costs of nodes can 
easily outstrip the cost of links and ports. A small Clos design is illustrated 
in Figure 11-7. 



 

Figure 11-7 Clos Fabric 

The top half of Figure 11-7 illustrates the connections from two devices in 
the ingress/egress spines to the center spine to make the connection scheme 
easier to understand. The bottom half illustrates the full connection scheme 
for completeness. This might appear to be a full mesh, but there is one 
specific difference: nodes on the ingress and egress spines are not connected 
as they would be in a full mesh network. 
The effect of not including these cross-device links is to force traffic from any 
device attached to an ingress/egress spine to travel through the center spine 
to reach its destination. In data center centric terms, all traffic from any 



device must travel north/south, even when trying to reach a destination that 
is either east or west of the originator, as shown in Figure 11-8. 

 

Figure 11-8 Traffic Flow in a Clos Fabric 

Forcing traffic through the center spine might seem strange, or perhaps even 
a disadvantage from the perspective of managing bandwidth and quality of 
service. But the design has its advantages. 

Note: Spine and leaf designs, which are a variant of Clos designs, are 
covered in detail inChapter 18, “Data Center Design.”

 

Clos and the Control Plane 
This north/south only traffic pattern, up to the core and back out, might 
seem familiar because it is—the Clos fabric is a set of overlapping spanning 
trees, each rooted in a device in the center spine. If spanning tree is properly 
deployed on a Clos fabric, no link is ever blocked. In fact, it’s entirely 
possible to build a Clos fabric with no dynamic control plane at all. Simple 
reverse path forwarding checks configured at each interface can prevent any 
loops in this network topology. 
Almost all Clos designs are deployed with active control planes; really large 
ones are almost always deployed with a routed control plane to manage the 
size of the broadcast domain across the Clos fabric, which can reach to the 
hundreds of thousands of devices. The main challenge in these large 
deployments is state overlap. Figure 11-9 shows how a link state protocol 
operates on these highly meshed topologies. 



 

Figure 11-9 LSA Flooding Replication in Clos Fabrics 

Assume OSPF is deployed on the network shown in Figure 11-9. Routers G 
and H will each originate a single Type 1 (Router) LSA describing local links 
and reachable subnets. A copy of each of these LSAs is received by devices 
in the center spine (Routers C, D, E, and F). These routers reflood these two 
LSAs to their neighbors, so that Routers A and B each receive 4 copies of 
Router G’s Type 1 LSA, and 4 copies of Router H’s Type 1 LSA. Across a large 
Clos fabric, this packet replication can cause a lot of packet generation, 
queuing, and processing—even if the replicated LSAs are discarded by the 
OSPF process on each device. 
To make matters worse, link state protocols are designed to time their 
advertisements out periodically. In a network of a thousand routers and 
default OSPF timers, a new LSA would need to be generated and flooded 
every 3.5 seconds. 
How can network designers avoid these problems? Eliminating the reflooding 
of LSAs setting the OSPF Do Not Age (DNA) bit on all advertisements would 
be a good start at reducing the load on the control plane. Further reductions 
can be found in flooding reduction mechanisms done for MANET and other 
highly mobile and low-bandwidth environments. 

Clos and Capacity Planning 
A major advantage of Clos over more traditional designs is the relative ease 
of capacity planning in a Clos fabric. Given that all the links in the Clos fabric 
have the same bandwidth, the amount of bandwidth available for any device 
attached to a router on the ingress/egress spine is the total bandwidth 
available into the fabric divided by the number of nodes attached to each 
edge router. For instance, if each link in the network illustrated in Figure 11-



7 is a 1GB link, the total bandwidth available from each edge device is 4GB in 
total. If there are four devices attached to an ingress/egress router in this 
network, each device would have 1GB available bandwidth throughout the 
entire fabric. 
So long as the total amount of bandwidth available from the node within the 
ingress/egress spine is consistent across the entire network, and the total 
bandwidth offered by any node never exceeds the available bandwidth, the 
network will (theoretically) never block traffic between two nodes within the 
Clos fabric itself. This characteristic of the Clos fabric makes this topology 
extremely attractive in data center networks. 

Partial Mesh 
Partial mesh is a flexible term, generally used to describe a topology that is 
neither a single ring nor a full mesh. Most partial mesh topologies are 
collections of interconnected rings built to match the geography of the 
network and/or specific business needs. An example of a partial mesh 
topology is shown in Figure 11-10. 

 

Figure 11-10 Partial Mesh Topology 

In Figure 11-10, you can see this network can be seen as a single ring 
starting in Georgia, through North Carolina, New York, Illinois, Nebraska, 
Idaho, Utah, and then back to Georgia. Within this ring are a number of cut-
through loops that were put in place to provide bandwidth for specific traffic 
flows. Another way to look at this topology is as a set of interconnected 
rings. Starting in Georgia, a ring runs through North Carolina, to Illinois, and 
then back to Georgia. Starting in New York, another ring runs through 
Illinois, through North Carolina, and finally back to New York. 



Each ring within this topology will converge as any other single ring topology 
with the added complexity of the interaction between the overlapping links. 
The network will converge more slowly if the link between Utah and Georgia 
fails than if the link between Georgia and North Carolina fails. 
Partial mesh topologies are a good balance between traffic engineering and 
cost; because links can be installed just where they are needed to provide 
bandwidth to specific applications or sections of the network, the cost of the 
network can be finely tuned to the needs of the business with no outside 
restrictions. 
Partial mesh topologies can, on the other hand, promote uncontrolled organic 
growth. Because there is no specific topology the network designer is 
following, it’s tempting to simply add links wherever they are needed, as 
they are needed. The resulting network can be very difficult to understand, 
troubleshoot, and manage. Partial mesh topologies are also more difficult to 
easily divide into modular pieces. As new connections are made between 
various sites to account for growing bandwidth needs, it’s often possible to 
string all the nodes within the distribution or access layer together, cutting 
the network core out of the path for most applications and ruining carefully 
planned addressing and aggregation schemes. 

Disjoint Parallel Planes 
A disjoint topology is multiple ring or partial mesh topologies that are not 
connected either in the control or data plane through some portion of the 
network topology. In most networks where this type of topology is deployed, 
it is only the core which is fully disjoint; the distribution, access, and/or 
aggregation layers of the network are designed using more conventional 
topologies, such as rings, partial mesh, hub-and-spoke, or full mesh. Figure 
11-11 illustrates a network where the core has been deployed with fully 
disjoint topologies, while the remainder of the network is designed using 
small rings. 



 

Figure 11-11 Disjoint Parallel Ring Topology 

Routers A, B, C, D, and E are one core; Routers P, Q, R, S, and T are the 
second. These two cores are not connected in any way—there is no way to 
forward traffic from Router D to Router S, for instance, without passing 
through either Router Y or Z. Routers Y and Z, however, are configured so 
routing information is not shared between the two cores, to prevent traffic 
from passing through them between the cores. 
In most implementations, the two cores are configured to run two different 
BGP processes, and routes are redistributed into and out of these separate 
BGP processes at the core edge. Each core may run a different IGP 
(generally one core will run OSPF, while the other will run IS-IS), and may 
even be based on a different product line or products from different vendors. 
Each disjoint plane, being a ring topology, will converge in the same way that 
a normal ring topology converges. 
This type of topology is sometimes deployed in networks that require 
absolute availability—networks where five 9s of availability still isn’t enough 
(such as financial services companies, which rely on their networks to make 
money within slices of a second). 

Advantages of Disjoint Topologies 
Implementing dual cores provides the opportunity to guard against 
monoculture software and hardware failures by deploying hardware and 
software from different vendors (or from different lines of equipment from a 
single vendor), different routing protocols, and different processes in each 
core. In a single plane core deployed with a single type of equipment, a 
single routing protocol, and a common software implementation is 
susceptible to a new defect introduced across every router in the core 



through a software update, or discovered through a unique unanticipated 
(and untested) set of circumstances. 
In this case, Routers A, B, C, D, and E may run IS-IS from one vendor, while 
Routers P, Q, R, S, and T may run OSPF using equipment from a different 
vendor. A defect introduced when upgrading the software on one core cannot 
impact the overall reliability of the network; a failure in one core simply 
causes the distribution layer to reroute traffic to the second core. 
Beyond protecting against any sort of common defect among the two disjoint 
topologies, this type of design also allows services to be deployed in an 
incremental way on the production network without risking an outage or 
network service degradation. For instance, a new multicast service can be 
deployed across the first core in this network (Routers A through E) and 
placed into production. If the new service causes a network failure, or a 
service degradation, critical traffic can be moved to the unmodified alternate 
core quickly along the entire network edge. Service can be restored without 
backing the new service out of production, allowing network engineers the 
time needed to troubleshoot and repair the new service. 
Each core network in a pair of disjoint topologies can also be designed using 
the simplest possible topology, because the network’s resiliency isn’t 
dependent on a single topology reacting correctly to every possible failure. 
Instead of deploying full redundancy at each core site location, for instance, 
the network designer can slim down the design, so each core represents the 
simplest design that will provide the connectivity required. Again, resilience 
is provided by the second core, rather than by complex backup paths and 
links within each core. 

Added Complexity 
The major (and obvious) downside to disjoint parallel topologies of this type 
is the added complexity—particularly when you add two routing protocols 
and two vendors (or two different lines of equipment running different 
software from two vendors). This type of doubling can verge on requiring two 
different support teams, one for each network. Virtualization over disjoint 
parallel planes can also be difficult, because each routing protocol and each 
implementation interacts differently with each virtualization technology. 
Each failure in a single core will tend to drive greater resiliency within each 
disjoint topology, as well—it takes a good deal of discipline to control costs 
when you’re supporting two cores, rather than one. Each bit of redundancy 
removes value from the overall design. 

The Bottom Line 
Disjoint topologies are a solid choice for those situations when the network 
simply cannot fail—ever—and where costs aren’t as much of an issue. These 
are complex, difficult to manage topologies reserved for the largest of the 
large, where data processing is such an integral part of the business that a 
network failure costs more than the cost of deploying and managing this type 
of network. 
 



Divergent Data Planes 
Divergent data planes are an intermediate topology between a single ring 
and totally disjoint topologies. Whereas a single control plane operates over 
the entire topology, the data plane is intentionally split into two parts, with 
resiliency within each data plane preferred over alternate paths in the second 
data plane. Figure 11-12 provides an example of a dual data plane topology. 

 

Figure 11-12 Diverse Data Plane Topology 

This is very similar to the disjoint parallel topologies in Figure 11-11, with the 
addition of shunt linksbetween the two planes. These shunt links are 
configured with a very high cost in the routing protocol so traffic crosses 
them only if there is no other path to a given destination. 
This design allows each topology to be treated as a separate unit from a data 
path perspective. One plane can be taken down for maintenance without 
impacting traffic flow through the network (other than all traffic converging 
onto the single remaining path), and new applications or services can be 
deployed in one plane while not impacting traffic being routed through the 
second plane. 
The order of failover in a diverse data plane topology is important; traffic 
should fail over within a data plane first, then between data planes from the 
edge (rather than across the shunt links), and finally across the shunt links. 
This allows for the maximum separation of services being carried on the 
different data planes. 
Control plane failures will still impact the entire network in this design, 
possibly taking the entire network down in the case of a total control plane 



failure. Each plane, however, converges as a ring topology, with the added 
complexity of the shunt links. 
Diverse data planes would normally be deployed in the core of a large scale 
network using BGP. As with fully disjoint planes deployed in parallel, it takes 
discipline to control costs. 

Cubes 
Cubes, stacked cubes, and hypercubes, like Clos fabrics, have interesting 
mathematical properties that make them ideal network topologies in some 
situations. Figure 11-13 depicts each of these topologies. 

 

Figure 11-13 Cube Topologies 

The property that makes these designs interesting is that they represent the 
minimum set of links that can provide shortest (minimum stretch) paths 
between virtually any number of nodes. Cube designs, then, tend to be less 
expensive than more ad hoc partial mesh designs while providing either the 
same or a higher degree of connectivity. On the other hand, cube designs 
work only if the geographical shape of the network fits within a cube layout 
in some way. 
In a cube design, no node is ever more than two hops from any other node, 
and any pair of link failures will leave connectivity intact between every pair 
of nodes. Cubes can be deployed with two faces configured as disjoint data 
planes, as well. The cube is limited to 8 nodes; this limitation often makes a 
cube design less than ideal for large scale wide area or data center network 
cores. 
After the limit of 8 nodes is reached in a simple cube design, there are two 
ways to continue to scale the network design while remaining within the 
general outlines of a cube topology. The first of these is a stacked cube, 
illustrated in the center of the three networks in Figure 11-13. A stacked 
cube can be built up to larger “cubes of cubes,” (the next size is 4 cubes 
total, 2 cubes high by 2 cubes wide) while leaving every node within two 
hops of every other node in the network. Each layer of “stacking” adds one 
more hop to the maximum hop count between any two nodes. Four cubes in 



a stacked topology would have 27 nodes total—large enough for most wide 
area and data center core designs. Stacked cubes retain the property of 
being able to sustain any pair of link failures within each cube and maintain 
full connectivity between every node in the topology. 
Cubes can also be grown into hypercubes, shown on the right side of Figure 
11-13. This is more difficult to conceive, and almost impossible to draw in an 
intelligible way on a traditional flat network diagram. Hypercubes provide full 
connectivity between 16 nodes with a minimum of links, while keeping the 
maximum length of the path between any two nodes to 1 hop. A hypercube 
can withstand any three link failures while maintaining full connectivity 
between all the nodes. 
Hypercubes are a good choice for the core of a data center network, where 
the geographic layout of the network doesn’t constrain node placement, and 
high availability is an absolute requirement, so long as the 12 nodes offered 
by this topology are sufficient from a scaling perspective. They are difficult to 
conceptualize and, therefore, sometimes difficult to design, cable, and 
manage. 
Each face of each of these cube designs converges as a four-hop ring. If 
faster convergence is required, it is possible to put a single link across some 
or all of the cube’s faces to produce triangles, rather than four-hop rings. 
 

Toroid Topologies 
A final topology to consider is the toroid design. Although this isn’t a design 
most network architects will run into, toroid topologies are used in many 
supercomputing applications and internal fabrics in high-performance routers 
and switches. A two-dimensional toroid design is shown inFigure 11-14. 

 

Figure 11-14 Two-Dimensional Toroid Topology 

A two-dimensional toroid is essentially a mesh topology that has been “pulled 
together” along the outside edges with torus links. The significant point to 



note is that every node in the toroid fabric has precisely four links 
configured; the size of the fabric can be increased or decreased with the 
addition of new nodes and without increasing the number of ports required at 
each device. A new dimension can be added to the fabric with an increase of 
two ports per node, as well, making the fabric easy to scale to truly huge 
sizes. 
Torus fabrics are typically oversubscribed at high operational loads, and 
hence are considered a form of blocking fabric. Two mechanisms are often 
used to reduce blocking in a toroid fabric. The first is to localize the workload 
so work with a high affinity is placed on directly adjacent nodes where 
possible. The second is to build virtual channels across the topology, so each 
node has an apparent direct connection to every other node in the fabric. 
This replaces physical interface with virtual ones. The physical links, in this 
case, can be sized to provide no blocking to the aggregate bandwidth of all 
the virtual links, or blocking may occur in contention among the virtual links 
for the capacity of the underlying physical links. 
Toroid topologies are rare, but they are a solid design option for data center 
fabrics where work can be efficiently localized and port counts are a major 
scaling concern. 

Summary 
Network designers often “fall into” a particular topology without much 
thought—a little creativity can go a long way in the area of producing 
minimally connected networks to reduce deployment cost, or topologies 
optimized for resilience, or balanced topologies that match a variety of 
requirements. The bottom line, though, is that determining which topology to 
use shouldn’t be a matter of doing what’s always been done. The network 
topology must match the requirements laid on the network, allow for future 
scaling, and support the business in a way that makes sense. 
   



Chapter 12. Building the Second Floor 

Virtualization is building vertically with overlay topologies, rather than 
horizontally with a larger physical topology—this process can be described as 
building the “second floor” of a network. Just as a construction crew has 
specific tools and techniques they use to build the second floor of a building, 
the network architect has tools used to build the network’s second floor. 
To understand these tools and techniques, we need to first define tunneling—
something that’s harder to do than it might seem. Although there are 
virtualization techniques that do not rely on tunneling (such as 802.1Q in the 
Ethernet world), they still rely on multiple overlaying control planes, and 
hence often face the same sorts of control plane problems as virtualization 
techniques based on tunneling. After we’ve defined what a tunnel is, we need 
to consider the underlying questions any network designer or architect 
should ask about any virtualization technology. Finally, we’ll consider MPLS-
based L3VPNs as a specific example of applying these questions to a widely 
deployed virtualization solution. 

What Is a Tunnel? 
“What is a tunnel?” must rank very low on the scale of the most interesting 
questions in the world. Surely there are simple definitions for tunneling 
within the network world, right? For instance, “Anytime one packet is 
encapsulated inside another, the packet is being tunneled.” 
Yes, simple enough—but it’s often easy to create a simple definition that’s 
simply wrong. To understand why the initial definition given above is wrong, 
examine the normal operation of network protocols as they progress up and 
down a network stack, as shown in Figure 12-1. 

 

Figure 12-1 Layered Encapsulation 

Within normal network protocol layering, IP packets are placed inside 
Ethernet packets, TCP packets are placed inside IP packets, and some other 
data format is placed inside TCP packets. If we stick with the definition 
“Anytime a packet is placed inside another packet, the inner packet is being 
tunneled,” then IP tunnels TCP, and Ethernet tunnels IP. Clearly, our 
definition needs to be fine-tuned a bit to fit the real world. 
Let’s try to firm this definition up by adding a condition: “Anytime one packet 
is encapsulated inside another packet of the same or a higher layer, the 
packet is being tunneled.” This is a definition we can live with, so long as we 



assume each protocol can live at one (and only one) layer. In the real world, 
this one restriction is generally true, so this definition will work out most of 
the time from a packet perspective. 
What about from the data plane’s perspective? Here we can use this 
definition: “A tunnel is a path through the network where the forwarding 
devices along the path do not know the actual destination of nor have 
visibility into the data.” It is true that in all tunneling schemes, devices 
forward traffic to some intermediate device that then removes an outer 
header and forwards the traffic again toward its real and final destination. 
And the control plane? From a control plane perspective, the crucial point to 
remember is that there must be more than one control plane (or perhaps 
more than one view of the forwarding and reachability information across 
every link the virtual topology crosses) for a virtual topology or a tunnel to 
exist. To see this last rule in action, examine Figure 12-2. 

 

Figure 12-2 Control Plane Interaction with Tunnels 

Router A has three paths it can take to reach 192.0.2.0/24: (A,B,D,F), 
(A,C,E,F), and (A,tunnel,F). Which path should it take? How can we control 
which traffic enters the tunnel and which does not? 
The obvious answer is, of course, that you can control which traffic enters 
the tunnel by modifying the metrics for various destinations. The shortest 
path in terms of hop count to 192.0.2.0/24 from Router A would be through 
the tunnel, so traffic destined to hosts on that subnet should be forwarded 
along the tunnel path. But wouldn’t the link (E,F) also be reachable across 
the tunnel other than through the path (A,C,E)? If metrics are used to 
determine which traffic enters the tunnel and which does not, then the 
metrics must be carefully planned and managed to prevent routing loops or 
unintended suboptimal routing through the tunnel interfaces. 
The less obvious answer is the one that’s normally used to manage traffic 
flows through the tunnel—control routing so 192.0.2.0/24 is only advertised 
through the tunnel, and not through the underlying network. Although it is 
possible to filter routing information to achieve this effect, it’s much simpler 
in larger deployments to run a second control plane. This second control 
plane might be as simple as two static routes, or it might be a second layer 
of control plane information contained in the same routing protocol (such as 
carrying MPLS reachability information through a link state protocol), or it 
might be a completely different routing protocol. 
A side effect of deploying a second control plane is that the “routers in the 
middle” can’t reach the destinations on either end of the tunnel; Routers B 
and D can’t, in this case, reach 192.0.2.0/24 (and whatever hosts on that 
network are talking to beyond Router A). Normally this is the intended effect 



of tunneling; it reduces the forwarding information Routers B and D must 
carry in their tables, and helps to break the network into smaller failure 
domains (see Chapter 6, “Principles of Modularity”). 
So, then, tunneling involves three levels of definition: 

 From a packet’s perspective, a tunnel is created when one packet 
is encapsulated into another packet at an equal or higher level. 

 From the data plane’s perspective, tunnels allow the forwarding of 
traffic to destinations only some of the devices along the path 
know how to reach. 

 From the control plane perspective, tunneling involves the 
deployment of a second control plane (or precise controls and 
policies configured on one control plane), combined with breaking 
the network into multiple vertical failure domains. 

Is MPLS Tunneling? 
How does MPLS fit into this picture? On the one side are engineers who state 
MPLS is tunneling, and on the other side are engineers who insist MPLS is not 
tunneling. Entire shows and articles have been produced addressing this 
question, with the result normally being a draw. Resolving this long-standing 
dispute is a useful exercise in understanding the concept of tunneling. 
What are the attributes of MPLS that point toward its status as a tunneled 
solution? 

 It’s used to carry IP and other traffic through a network. 
 MPLS is normally deployed either with a separate control plane or 

with control plane information that’s not mixed with IP forwarding 
information. 

 MPLS connections between the edges of the network are explicitly 
called tunnels, with head and tail ends at either edge of the 
network. 

 MPLS is designed to reduce the IP forwarding information 
managed by the nodes in the center of the network by tunneling 
through them. 

All of these, combined, certainly make a strong case for MPLS to be 
considered tunneling. On the other hand, routers and switches in the core of 
an MPLS network must support MPLS forwarding for MPLS to be deployed 
edge-to-edge in the network. If MPLS is a tunneling technology, then why 
must core devices be MPLS aware? 
The resolution to this problem entails returning to what tunneling really 
means. Let’s take IP as an example: is IP a tunneling protocol, or isn’t it? IP 
normally provides end-to-end addressing and traffic delivery for higher layer 
protocols, and it relies on the control plane of every device an IP packet 
passes through to know how to reach the packet’s destination. It’s clearly not 
a tunneling protocol, correct? 
On the other hand, IP packets can be encapsulated inside other IP packets, 
to be carried across some part of the network that might not know about the 



destination in the inner packet header. MPLS, in fact, can also be 
encapsulated into a GRE packet, which is then encapsulated into an IP 
packet. These are all tunneled use cases, however—so IP must be a 
tunneling protocol, right? 
This confusion about what’s a tunneling protocol and what’s not comes about 
because we’ve approached the tunneling problem from the wrong end of the 
stick. 
In reality, there are no tunneling protocols. 
Tunneling is something that is done by stacking protocols; the protocols 
being stacked are not, in and of themselves, tunneling or “not tunneling” 
protocols, as Figure 12-3 illustrates. 

 

Figure 12-3 Tunneling or Not? 

Router A in Figure 12-3 receives a packet, consults its local forwarding 
information, and decides the packet needs to be transmitted over a tunnel 
interface toward Router D, rather than over the physical interface connected 
to Router B. To forward this packet over the tunnel, Router A encapsulates 
the packet into an outer header of some type and forwards the packet to 
Router B. Routers B and C forward the traffic according to this outer header 
(Router C removes the outer header because it is the penultimate hop, or the 
next to last hop, in the tunnel). 

Note:Penultimate label popping is something particular to MPLS; most 
tunneling protocols don’t pop the outer label until the packet has reached the 
tunnel end point, or tail. This doesn’t impact whether or not MPLS is a 
tunneling protocol, however; it’s just a matter of operational details within 
MPLS itself. In Figure 12-3, the dashed line shows where the outer header 
takes the packet, rather than where the tunnel terminates from a 
configuration perspective.

 

The question we need to ask to understand the problem of MPLS being a 
tunneling protocol is this:Does it matter what protocol the inner and outer 
headers are? 



The answer to this question must be no. What matters is that one packet is 
placed inside another header (the outer header) to form a second packet at 
the same or higher layer than the original packet, not what the inner protocol 
is, nor what the outer protocol is. In the case of IP in IP, the inner header is 
an IP header, and the outer header is an IP header. 
In the case of MPLS, the inner header is MPLS (normally carrying IP, 
Ethernet, or some other data link or transport layer protocol). The outer 
header is like an Ethernet header, used to carry traffic hop by hop. The inner 
header in MPLS defines the end-to-end tunnel between Routers A and D; the 
outer header is used to carry the packet along from Router A to Router B, 
from Router B to Router C, and so on. 
So the answer is this: MPLS is a protocol that can be used to tunnel traffic or 
as a data link protocol to carry packets hop by hop. The confusion in MPLS 
stems from the reality that the inner header is the tunneling header, while 
the outer header is the hop-by-hop header; normally these roles are 
reversed. However, if we think of the outer header just like an Ethernet 
header, and the inner header like a tunnel header, we get a clearer picture of 
what is going on. 
Protocols shouldn’t be classified as a “tunneling protocol” or not (with the 
exception of protocols specifically designed for the sole purpose of tunneling 
other protocols). Just as the inner label in an MPLS label stack can be defined 
as a tunnel, but the outer label is hop by hop and therefore not a tunnel, 
tunneling is defined by the way the packets are built, not by the protocols 
being used in the inner or outer headers. 

Fundamental Virtualization Questions 
Because virtualization is always going to involve inner and outer headers, 
there will be a number of questions network designers need to ask about the 
interaction of these two different headers, or tunneling protocols. In the 
same way, the use of multiple overlaying control planes is going to bring up 
a number of questions about the interactions between these control planes. 
Beyond these two areas, network engineers need to think through how the 
overlay network will interact with QoS, multicast, and security. 

Data Plane Interaction 
Let’s deal with the easy questions first: The first fundamental question 
network designers need to ask about the interaction of the different protocols 
is what traffic can be tunneled—or rather, what type of traffic the tunnel can 
support. There’s no point in specifying a tunneling mechanism that will not 
support the traffic that needs to be carried through the virtual topology. The 
second fundamental question network designers need to ask about the 
interaction of the different protocols is what transport is used to carry the 
tunneled traffic. Again, there’s little point in specifying a tunneling 
mechanism that won’t work on the underlying network. 
The first of the more difficult problems is the Maximum Transmission Unit 
(MTU) through the tunneled infrastructure. The MTU of a link determines the 
maximum size of packet that can be transmitted through it; the link with the 



smallest MTU along a path limits the maximum size of packets that can be 
transmitted through the entire path. The MTU is normally fixed on a per-link 
basis, determined by the hardware interfaces and specifications for that 
specific link type. Adding a new header onto a packet means the amount of 
space available for user traffic is made smaller by the size of this additional 
header, as Figure 12-4 illustrates. 

 

Figure 12-4 Impact of a Tunnel Header on User Data 

The amount of data an application can send through a tunneled link in each 
packet can have a major impact on the performance of applications, 
particularly streaming media and the transfer of large amounts of data. How 
can the network engineer account for the impact of decreasing MTUs on 
application performance? 
This comes back to knowing the applications running across the network, and 
focusing on the crucial questions you need to ask about each application in 
order to best understand the support it needs. It’s best to test applications in 
the lab using links with reduced MTUs to get a good idea of what impact 
tunneling application traffic will have on performance in various conditions, 
and use this information when considering when and where to tunnel traffic 
over a virtualized infrastructure. 
The second difficult problem network engineers face when dealing with 
tunneling is quality of service. There are two facets to this problem: the first 
is how the quality of service markings from the inner header are moved (or 
represented) in the outer header—if there’s the possibility of representing 
these markings in the outer header. If traffic from a streaming real-time 
application is moved into a tunnel, and the quality of service markings aren’t 
somehow transferred from the inner header to the outer, there is little 
chance the application will perform well over the tunnel. 
Beyond this, the underlying links and protocols supporting the virtual 
(tunneled) topology must be able to somehow coherently mix the various 
quality of service parameters from the tunneled packets into a consistent 
overall queuing structure. Should streaming traffic from any tunnel be 
preferred over file transfer from any tunnel? Or should the traffic from one 
tunnel always be preferred over the traffic from another tunnel? The 
combinations are almost limitless, and the answers all depend on knowing 
what service parameters each application needs in order to run effectively 
across the tunneled infrastructure. 



Control Plane Considerations 
Virtualization always overlays one control plane on another: the control plane 
that provides reachability through the virtual topology on top of the control 
plane that provides reachability to the tunnel end points. This added level of 
complexity brings its own set of problems into network design and 
management. Two specific areas of concern are the interaction between 
these two overlaid control planes and the scaling of the two overlaid control 
planes. 

Control Plane Interaction 

Although the tunneled virtual overlay topology looks and feels very much like 
a network that is independent of the underlying physical and logical topology, 
it is most certainly not an independent topology. The control plane of the 
virtual topology relies entirely on the control plane of the underlying network. 
Interaction between these two control planes adds a level of complexity that 
might be hidden but can come to the surface in unexpected ways. 
As an example, let’s look at Figure 12-5. 

 

Figure 12-5 Overlaying and Underlying Control Plane Interaction 

In Figure 12-5, there are two tunnels available between Routers A and F. The 
metrics across these tunnels are configured so the tunnel running through 
the path (A,B,D,F) is preferred over the tunnel running over the path 
(A,G,H,F). The paths between Routers A and F are configured so the 
(A,B,D,F) path is best, the (A,C,E,F) path is second, and the (A,G,H,F) path 
is the worst of the three available paths. 
Assume that the link between Routers B and D fails—what are the possible 
results? 

 The underlying control plane could converge more quickly than the 
overlaying control plane can detect the failure, in which case 
Tunnel1 will fail over to the (A,C,E,F) before the tunnel actually 
fails. This might cause an interruption in the application’s data 
flow without any corresponding notification at the tunnel interface 
level. 

 The underlying control plane could converge more slowly than the 
overlaying control plane can detect the failure, in which case the 
traffic will switch from Tunnel1 at the moment of failure to 



Tunnel2, then back to Tunnel1 when the underlying network has 
converged and service across Tunnel1 has been restored. 

 The underlying control plane could detect the failure at about the 
same time as the overlaying control plane, in which case 
convergence becomes a mess of switches between different 
tunnels, or temporary loss of traffic flow, while the various 
elements converge on some available path. 

In all these cases, a good deal of time and trouble could be spent trying to 
find problems in the performance of the application(s) running across the 
virtual topology. The tunnel interface may or may not fail, depending on the 
circumstances and the order in which the different control planes detect any 
given failure and react to it (such as the amount of time it takes for the 
overlay control plane to time out any keepalives and declare the virtual link 
down). 
To prevent very difficult convergence problems in virtual topologies, network 
engineers need to consider every possible convergence scenario, and either 
rule it out through careful configuration or document how the two control 
planes interact to help when that fateful call comes at two in the morning. 
It is generally best to design the network so the overlay control plane detects 
and reacts to network failures faster than the underlying control plane, or so 
the underlying control plane detects and reacts to failures faster than the 
overlay control plane. Allowing the two control planes to interplay freely is a 
recipe for long hard nights of troubleshooting difficult to understand and find 
problems. 

Scaling 

Scaling is the second most important control plane factor to consider when 
using tunneled overlays to build a virtualized network. Two specific factors 
need to be considered in this area. 
First, the number of endpoints the tunnel will be connecting needs to be 
considered. Unless hierarchy is specifically called out in the basic design of 
the overlay network, the entire virtual topology ends up looking like one flat 
broadcast domain in the case of Layer 2 overlays, and a single subnet or full 
mesh of point-to-point links in the case of Layer 3 overlays. This means the 
overlay control plane must scale with the size of the overlay in real terms. 
Overlay networks can be scaled by adding hierarchy (just as the underlying 
network is scaled), but hierarchy is generally difficult to deploy in overlay 
networks. Deploying hierarchy in an overlay network normally means pulling 
traffic out of a tunnel, switching it through a router or switch, and then 
reinjecting it into another set of tunnels. Matching up the correct sets of 
tunnels, handling the modifications to quality of service parameters into and 
out of the tunnels, and other control plane issues are generally left to the 
network engineer to work out through configuration on individual devices. 
Second, the configuration required to deploy and maintain large scale 
tunneled overlay environments must be considered. Each tunnel end point 
must be configured (and reconfigured for changes), and a second control 
plane must be configured and managed. As the size of the virtual topology 



increases over time, the sheer amount of configuration can often become 
daunting. Solutions to this problem generally revolve around using some 
automated configuration system, or an overlay control plane designed 
specifically to handle the necessary tunnel setup and teardown. Although 
these can ease configuration management costs, they cannot erase the cost 
entirely. 

Multicast 
Multicast is always tricky to successfully deploy and manage; overlay 
networks just make the problem more complex. There are two questions 
network engineers must ask about virtual topologies in regard to multicast. 
First, how are multicast groups advertised through the control plane (or 
rather how is multicast routing information carried)? Is a separate control 
plane required, such as Protocol Independent Multicast (PIM), or can 
multicast routing information be carried in the overlay control plane? For 
overlays that rely on standard IGPs, the answer is almost always that an 
additional control plane will be needed, making the total number of control 
planes involved in deploying a virtual topology 4 (2 for unicast, and 2 for 
multicast). Some virtualization technologies, however, have the capability to 
advertise multicast routing information through the overlay control plane. An 
example of this is BGP, which can carry multicast and unicast routing 
information in separate address families. 
The second question relates primarily to the performance of multicast across 
a virtual topology;Figure 12-6 illustrates. 

 

Figure 12-6 Multicast Replication in a Virtual Topology 

If multicast were being carried across the underlying network, Router C 
would replicate the multicast stream into two streams, one of which is 
transmitted toward Router D, the other of which is transmitted toward Router 
E. Router D would, in turn, replicate the multicast traffic into two streams 
again, one of which would be transmitted to Router F, and the other of which 
would be transmitted to Router G. 
Overlaying the three point-to-point tunnels shown in Figure 12-6 changes 
where multicast replication is performed. Instead of Routers C and D sharing 
the load of replication, the full weight of replication falls on Router B itself. As 
the head end of all three tunnels, Router B must replicate the single stream 
into three streams and transmit the traffic along all three tunnels. Note this 



also means that while the multicast traffic only passed along the Router B to 
Router C link once on the underlying topology, three copies of each packet in 
the stream must now pass along this same link, one in each tunnel. 

Security in a Virtual Topology 
Security, like all the other network design problems we’ve dealt with so far, 
is also more complex in a tunneled virtual topology—if the tunneled virtual 
topology is put into place to provide a secure topology on which to transmit 
sensitive information. There are two points that need to be considered in 
relation to virtual topologies and security. 
Does the tunnel increase the security of the information transmitted over the 
virtual topology? There has long been the impression that IP is somehow 
inherently insecure, so moving information off of IP and onto some other 
transport will make the network more secure. For instance, some companies 
consider an L3VPN service offered by a service provider to be more secure 
than a straight IP tunnel across that same service provider’s network. 
Why? Because there is a feeling that placing traffic inside an MPLS tunnel 
separates the traffic streams of different users at some fundamental level; 
that attackers can’t “get at” traffic within an MPLS tunnel in the same way 
they can traffic in an IP tunnel. Back in the real world, the type of 
encapsulation placed around a packet—unless that encapsulation includes 
some form of encryption—makes no difference. The traffic might be slightly 
harder to intercept, but one type of header is just as easy as another to strip 
off so the attacker can get to the underlying data. There is, in other words, 
no inherent security advantage to using one form of tunneling over another. 
Tunnels, however, do hide the path traffic is actually taking—a possible 
security risk. Figure 12-7illustrates. 

 

Figure 12-7 Tunnel Path Insecurity 

Because tunnels hide the underlying network topology, it’s possible for a 
tunnel originally set up to pass along one route to be moved to another route 
without either the network administrator or the users realizing the traffic has 
been shifted. In Figure 12-7, for instance, the lower tunnel is the original 
path intended for traffic between Hosts A and H. The tunnel, however, has 
been rerouted through Routers D and F so a monitoring station can snoop on 
the traffic as it passes by. Most of the time, this type of traffic misdirection is 



a mistake, but it is possible for an attacker to take advantage of traffic 
passing along an unintended path. 
How can you prevent this problem from happening? Routing is a hop-by-hop 
affair; each router in a network makes an independent decision about where 
traffic should be routed. This characteristic of packet-based switching is 
important to fast recovery from failures, or rather rapid adjustment to 
changes in network topology—the primary reason this form of switching was 
adopted in the original Internet architecture. Moving to a more circuit-based 
approach in order to circumvent problems with misdirected tunnels opens the 
network up to an entirely different set of problems; there is no relief in that 
direction. 
If the information in a stream is worth protecting, protect it with encryption. 
Don’t expect the network to magically protect information you’ve put on the 
wire by keeping it within some preset bounds. Even if the traffic is “inside” 
your corporate network, it’s still vulnerable. Sensitive data should be 
encrypted using a tunneling protocol specifically designed to protect it, such 
as IPsec. 
Virtual overlay networks can not only hide the physical routers, switches, and 
links between any two points on a network, they can also hide any security 
devices, or policy checkpoints, along the path. When small home routers first 
began adding firewalls into their software, many applications broke because 
these new firewalls wouldn’t allow the application’s traffic to pass. Rather 
than fixing the application (by installing a small local stub that would source 
connections from the local computer out through the firewall, or some other 
means), most application developers moved all their traffic to port 80. Why? 
Because all firewalls leave port 80 open to allow the Hypertext Transport 
Protocol (HTTP) through to support web browsing. 
IPv6 tunnels are particularly dangerous in this regard, primarily because a 
large number of network administrators are not paying attention to IPv6. 
Most devices now come with IPv6 enabled by default, but few network 
engineers have intentionally configured IPv6 security policies, leaving the 
attacker the perfect opportunity to set up a tunnel that bypasses all the 
security checks in a network. 

MPLS-Based L3VPNs 
How do you apply the ideas covered so far in this chapter? This section works 
through all the issues and questions raised in the previous sections for one 
specific type of overlay network—an L3VPN deployed over an MPLS core. 
Both self-deployed L3VPNs and an L3VPN service offered by a service 
provider are covered. 
The section begins with a short overview of the technology for readers who 
aren’t familiar with L3VPN operation, followed by a discussion of each specific 
question or issue raised in considering virtual overlay solutions. 

Operational Overview 
Figure 12-8 provides a simplified overview of the operation of an L3VPN 
provisioned over an MPLS core. 



 

Figure 12-8 Overview of MPLS-Based L3VPN Operation 

There are two flows of information to follow through any virtual overlay 
network—the flow of information being transmitted through the network, and 
the flow of control plane information that carries routing information through 
the network. Figure 12-8 shows both of these flows.. The upper labels on the 
routers shown are used to differentiate one router from another in the 
diagram; the lower labels indicate the function of the router within the 
network. These roles are the following: 

 C Router: Customer router, which only participates in the edge 
routing protocol, typically an Interior Gateway Protocol (IGP), such 
as IS-IS. 

 CE Router: Customer Edge router, which may only participate in 
the edge routing protocol, or may act as the point at which routing 
information is redistributed from the edge IGP into the PE to CE 
protocol. The PE to CE protocol is typically BGP, provisioned and 
managed either by the customer or the provider. 

 PE Router: Provider Edge router, which places routes learned 
from the CE into a per-customer routing table (a Virtual Routing 
and Forwarding instance, or VRF). The term VRF is often used 
loosely to refer to a virtual topology across the network core, as 
well as designating this separate routing table. 

 P Router: Provider router, which may run an IGP internal to the 
provider network, does not share routing information with the 
customer network at all, and also may run BGP. However, the 
customer routes learned from BGP are not installed in the local 
table on P routers. 

Although MPLS L3VPNs can be (and often are) deployed in large-scale 
enterprise networks, the names for the roles played by various routers have 
become fixed in the world of service provider networks. In an enterprise 
network, the role of the provider is played by the network core and whatever 
groups maintain and manage the network core. The role of the customer is 
played by business units, geographic sites, and other business users of the 
network. 
Begin at the right side of Figure 12-8 with a reachable destination being 
advertised by Router G. This route is advertised through the local (customer 



owned) IGP to the CE router, which is Router F in this network. The route 
may be redistributed into BGP, or otherwise processed by Router F, before it 
is advertised to the PE router, Router E. 
Router E places the route learned from the customer into a routing table 
specific to that customer network (or specific to that VRF). The local BGP 
process picks this new route up and marks it so BGP can associate this 
particular route with a particular virtual topology; these markings are called 
the Route Distinguisher and the Route Tag. The route is now carried across 
the provider network, either through the P router or through a separate path 
through a route reflector, to the other edge of the provider network at Router 
C. Here the route is exported from the BGP table into the correct local 
routing table (VRF) based on the information carried within the BGP route 
advertisement. The PE router, Router C, now advertises the route to Router 
B, using the configured PE to CE protocol. Router B performs whatever 
processing is needed on the route (redistribution, and so on), and advertises 
it into the customer’s local routing process. 

Note: For those unfamiliar with MPLS L3VPNs, the RD provides differentiation 
between multiple reachable destinations using the same address space, and 
the RT provides information about which virtual network a particular 
reachable destination belongs to. The RD combined with the actual IP 
address assigned to the reachable destination is called the VPNv4 address for 
the destination. For instance, 192.0.2.0/24 might be used to address two 
different networks attached to the same MPLS/L3VPN. The first of these two 
destinations might be assigned the RD 00FD:E901, while the second is 
assigned the RD 00FD:E902; BGP speakers along the path will combine these 
two RDs with the destination address itself, creating the destinations 
00FD:E901/192.0.2.0 and 00FD:E902/192.0.2.0, which will appear as two 
different destinations within their routing tables. The RT, on the other hand, 
is simply a number assigned by the MPLS/L3VPN network operator on a per 
virtual topology basis. This combination of numbers allows a single virtual 
network to have multiple logical destinations with the same IP address 
(which is useful for load sharing and multipath, among other things), and 
also to distinguish between different destinations on different virtual 
topologies that happen to share the same address space.

 

After the route is advertised into the customer network at Router B, traffic is 
drawn into the network toward Router G. Packets arriving at the PE (Router 
C) from the CE (Router B) are routed based on the VRF associated with the 
interface on which they arrived. This VRF contains two tags for any given 
destination, a tag that provides information about which VRF (or virtual 
topology) the packet belongs in and a tag that indicates how to reach the 
next hop toward the PE representing the exit point from the network to reach 
this destination. 
The tag indicating the topology to which this packet belongs is prepended to 
the packet as theinner tag (IT in the illustration) and is carried edge-to-edge 



in the provider’s network. This is thetunnel tag in the L3VPN system; it 
provides the virtual topology context that separates flows from one another 
within the system and allows the edge routers to forward the packet out the 
correct interface. 
The tag indicating the next hop is the outer tag. Each router that receives the 
packet strips off the outer tag and replaces it with a new outer tag indicating 
the next hop toward the destination. To put these two tags in context, the 
inner tag is much like the IP header of a packet travelling across a multihop 
Ethernet network, and the outer tag is much like the Ethernet header that is 
replaced at each hop to provide hop-by-hop forwarding through the network. 

Note: Another way to look at the separation of tunnels and tunneling 
protocols is to ask this question: What information is being used to switch 
the packet? As an example, packets passing through an MPLS/L3VPN 
network will have at least four headers: an IP header, the inner MPLS 
header, the outer MPLS header, and a Layer 2 header (assume it’s Ethernet 
for ease of discussion here). When a router receives a packet, what header is 
it using to decide how to forward the packet? For routers in the middle of the 
MPLS/L3VPN loud (P routers, in MPLS/L3VPN parlance), the outer MPLS 
header is the only one being switched on, so the inner MPLS header is being 
tunneled by the outer one. The IP header, however, is being tunneled by the 
inner MPLS header because the IP header is not used to make a forwarding 
decision either. The outer Ethernet header is not used for switching at all—
only to decide whether to accept the packet into the local interface—and 
hence is not a tunneling header. This type of distinction still leaves some 
questions to answer; for instance: Is the outer Ethernet header thus a 
tunneled header in a pure Layer 2 network? But we already know there is no 
single, clean definition for what tunneling is that will work in every possible 
situation, so we just have to take the definitions we have as useful general 
rules and live with the ambiguities along the way.

 

Fundamental Questions 
What type of traffic can an MPLS tunnel support? Virtually every protocol of 
note has a specification for running over MPLS, including Ethernet, IP, and 
many others. In the case of L3VPNs, however, support is built around 
tunneling IP over a provider’s network through a virtual topology. This focus 
is based on the control plane, however, rather than on the data plane. 
What type of transport is used to carry the tunneled traffic? MPLS is used 
both for the inner tag (the tunnel tag) and the outer tag (the forwarding tag) 
in an MPLS L3VPN. Again, remember that protocols (other than a few 
designed specifically for tunneling) are not really “tunneling protocols,” but 
rather that just about any protocol can be used to build a tunnel. 



The Maximum Transmission Unit 
MTU normally isn’t an issue in L3VPNs for two reasons. First, the MPLS 
header was designed to be minimal in size, so adding two MPLS headers to 
each packet represents very little decrease in overall packet-carrying 
capability. 
Second, most L3VPNs rely on links with large MTUs internally, while 
presenting an MTU at the user interface that’s similar to most Ethernet links 
in their default configuration. Internally, most providers configure their links 
with an MTU of at least 1520 bytes, while they present a 1500 byte MTU—the 
standard default MTU on most Ethernet links—at the PE edge interface facing 
the customer network. If the customer network has configured larger frame 
sizes, then it is possible for the MPLS headers to impose an MTU penalty on 
the total packet size available along the link, however. This is something 
network engineers need to take into consideration when implementing or 
planning around an MPLS-based L3VPN. 

Quality of Service 
Quality of service can be quite tricky with MPLS, primarily because there are 
only three bits with which to represent all possible classes of service in the 
MPLS header (the EXP bits). There can easily be many more classes of 
service among the various customer networks connected to the L3VPN 
network, so some aggregating is normally in order to translate the various 
classes of service in customer networks into a manageable set within the 
MPLS overlay. 
Most providers limit the available classes of service to three or four, labeling 
each with a specific color and providing bandwidth, delay, and jitter 
guarantees for these four classes. Each class of service can be placed on a 
different tunnel within the MPLS network (packets can be tagged so they can 
follow one tunnel within the provider’s network rather than another, so that 
packets with a higher class of service are grouped along less congested or 
shorter paths—although providers don’t normally provide one tunnel per 
class of service). 
When QoS is enabled on your MPLS WAN, the first three bits from the Type 
of Service byte (the IP Precedence [IPP] bits) in the IP header of packets 
received on the inbound interface of the PE are mapped into the EXP field of 
the inner tag. The packet is then placed into one of the classes offered by the 
provider based on the value of this field. These tags are copied, hop by hop, 
into the inner header as the packet is forwarded through the MPLS network. 
Providers also have the option to change the markings as they map them 
into the EXP field, based on the contracted level of service. For instance, if 
you contract for two classes, Expedited and Best Effort, the provider could 
mark all traffic that wasn’t IPP 5 down to 0. Or if you have contracted for 
specific bandwidth levels within each class, traffic that is above those levels 
might be marked so that they can map to a lower class or be dropped. 
It is critical to keep this process in mind when designing your network QoS. 
Your MPLS provider will tell you which bits it maps into each class; make sure 
your markings are set so that the right traffic is placed into each class. If 



your network has already deployed a QoS scheme that doesn’t fit into the 
provider’s mappings, you will need to re-mark traffic outbound from the CE 
to the PE. 

Control Plane Interaction 
There are, in reality, three (and possibly four) control planes in an MPLS-
based L3VPN. The first control plane is the IGP, or the routing protocol 
deployed at the customer edge sites. This protocol only interacts with the 
L3VPN control plane through redistribution or import/export. The interaction 
along this edge primarily must deal with the speed at which routes can be 
moved between the IGP in the customer network and BGP in the L3VPN 
overlay. 
This movement isn’t as simple as redistribution; normally there are timers 
here that prevent the customer’s control plane from overwhelming the 
provider’s control plane with route changes. This dampening effect can have 
a major impact on the end-to-end convergence of the network, so it’s well 
worth examining when deploying an MPLS-based L3VPN. 
There is also the interaction within the provider’s network between the 
provider’s IGP and BGP. The primary goal here is to prevent BGP from ever 
converging by provisioning very fast IGP convergence times within the 
provider’s network, so BGP never loses edge-to-edge (peer-to-peer) 
reachability, no matter what type of failure occurs in the provider network. 
Finally, there is BGP itself, which is carrying the customer’s routes through 
the provider network. BGP convergence tends to be very slow, limited by the 
hop-by-hop processing of a path-vector routing protocol combined with 
various timers that rate limit the speed at which BGP can send routing 
information. BGP can be tuned to converge within most networks in less than 
a few seconds, but it’s better to design the network so BGP never converges 
(if possible). This focuses all the fast convergence work in the network on 
one place: the IGP that provides BGP peer-to-peer reachability. 
Using BGP to carry customer routes through the provider network has a 
downside in terms of optimal routing, as well. Each BGP speaker in the 
network will choose only one route among the various available routes for 
any given destination. This prevents customers from being able to load share 
traffic across multiple links into the L3VPN topology, and it can lead to 
suboptimal routing between networks connected to the L3VPN. There are 
solutions providers can deploy to allow more than one route to any given 
destination, but these will necessarily increase the BGP table size within the 
provider network, which can become a control plane scaling issue. 

Scaling 
Control plane scaling can be a major issue in MPLS-based L3VPN 
deployments. Because each customer can see only one part of the total 
routing table being carried through BGP, there is a temptation to load a full 
set of internal routes into this table and “let the provider worry about the 
details.” Adding more routes into the L3VPN tables will increase the 



optimality of routing through the network, so there is an advantage to adding 
more routing information from the customer’s perspective. 
In large-scale deployments, it’s possible for hundreds or thousands of 
individual customers with small- to medium-sized routing tables to 
overwhelm the BGP processes carrying customer routes through the provider 
network. Most providers place some form of limits on the amount of 
information a single customer can inject into the virtual control plane to 
prevent problems in this area. 
A second scaling issue is that the MPLS tunnels carrying customer traffic (the 
inner label) are actually point-to-point, from a PE at one edge of the network 
to another PE at the opposite edge. The point-to-point nature of MPLS 
tunnels means that in order to build a full mesh of connectivity between all 
the PEs connected to a single virtual topology, every pair of PEs that 
participate in the topology must be connected with a tunnel—there must be a 
full mesh of tunnels to produce a full mesh topology on top of which 
customer traffic rides. This is obviously a scaling issue from a configuration 
and management perspective. 
To resolve this, most MPLS networks are deployed with automatic label 
distribution of some type to build the mesh of tunnels needed to create an 
edge-to-edge virtual topology. Either a special protocol is deployed (Label 
Distribution Protocol, or LDP), labels are distributed through an IGP (such as 
IS-IS), or labels are distributed through BGP. Using a label distribution 
protocol simplifies the configuration and provisioning of labels, but it adds a 
level of complexity to the overall deployment because “yet another control 
plane” must be deployed. 
Finally, from the customer’s perspective, L3VPNs provide excellent scaling 
characteristics; each edge site must maintain peering with only one other 
router, the PE, to reach every other destination available through the virtual 
topology. 

Multicast 
Because MPLS is based on point-to-point tunnels, the problem illustrated 
in Figure 12-6 applies; the PE is normally responsible for replicating packets 
into the various tunnels needed to reach all the receivers of any given 
multicast stream. 

Security in MPLS-Based L3VPNs 
Encapsulating traffic into an MPLS shim header to separate different virtual 
topologies (or VRFs) doesn’t really add any security to the network in terms 
of protecting data flowing through the L3VPN. In theory, if the network is 
configured correctly, the customer edge routers attached to one VRF can 
never receive traffic that’s within another VRF, but a simple misconfiguration 
of the Route Target, Route Distinguisher, route import, route export, or other 
filters can cause traffic from different customers to be mixed or misrouted. 
Within the provider’s network, all traffic (including MPLS tagged traffic) is 
open for inspection by anyone with access to the devices or the links 
themselves. It’s very difficult for traffic to be routed through an outside 



network with an MPLS deployment, however, because the tags used to 
identify the end-to-end tunnels, and to provide for hop-by-hop forwarding, 
are local to the provider network itself. 

MPLS-Based L3VPN Summary 
In general, we can make a few observations about MPLS-based L3VPN 
services based on the answers to the virtualization questions asked in the 
first part of this chapter. L3VPNs provide good scaling and simple 
configuration to customer networks, at the cost of much higher complexity 
and management costs in the provider network. The trade-off for this 
simplicity to the customer is lack of control over the path traffic takes in the 
provider network (potential suboptimal routing), and little control over the 
convergence speed, including potentially complex interactions between the 
L3VPN control plane and the customer’s control plane at the edge. 
Where enterprises deploy L3VPNs to provide virtual topologies across a 
network core to their customers, such as business units, there is more 
transparency in the process that can allow the virtual topologies to be better 
adjusted to fit application and business requirements. The cost of complexity 
is often worth the improved service levels and virtualization options for large 
enterprise networks considering large scale core virtualization options. 

VXLAN 
To further illustrate the concepts outlined here, let’s work through a second 
example, this time using VXLAN as the subject of our study. VXLAN has been 
specifically designed to provide Layer 2 over Layer 3 tunneling in the data 
center environment and is normally deployed from hypervisor to hypervisor 
(although some hardware implementations, such as the new Insieme line of 
Cisco switches, support VXLAN tunneling in hardware). 

Operational Overview 
VXLAN is, operationally, much simpler than an MPLS/L3VPN, because there is 
less interaction between the overlay and underlying control planes. Figure 
12-9 illustrates. 

 

Figure 12-9 VXLAN Traffic Flow 

Packets are transmitted by a virtual machine (VM) in a given pod to the local 
hypervisor, which then passes them to a local vSwitch for processing. The 



vSwitch examines the destination Ethernet address and determines the 
packet is destined to a VM located in some other pod within the data center, 
so it encapsulates the packet into a VXLAN header, and then places an outer 
IP header on the packet with the IP address of the vSwitch within the 
hypervisor on the pod where the destination VM is located. The packet is 
switched based on this outer IP header across the Top of Rack and Spine 
switches in the data center fabric (assuming this is a spine and leaf data 
center, rather than a toroid, or some other design) to the destination 
vSwitch, where the outer IP and VXLAN headers are removed, and the 
packet is delivered using the original Ethernet header. 
How does a vSwitch know about what VXLAN header and destination vSwitch 
IP address to use when switching the packet? VXLAN’s control plane is much 
like the spanning tree control plane. If the vSwitch receives a packet 
destined to an unknown address, the vSwitch will forward the packet to an IP 
address that floods the packet to all the other vSwitches in the data center—
the broadcast and unknown IP address. This IP address is, in turn, mapped 
to a multicast group across the IP network, under which lies the data center 
fabric. On receiving a packet from a remote vSwitch, the local vSwitch will 
cache the source MAC address/vSwitch IP address pair for future use. 

Fundamental Questions 
What type of traffic can a VXLAN tunnel support? The answer to this question 
is simple: Ethernet traffic. Of course, IP, CLNS, and other traffic can be 
carried across the Ethernet connection (that’s the point of the Ethernet 
connection in the first place!), but as far as the VXLAN tunnel is concerned, 
all this traffic is “just Ethernet.” 
What type of transport is used to carry the tunneled traffic? Again, the 
answer to this question is simple: IP. VXLAN is interesting because it really 
uses a “shim header,” rather than a full tunnel header. The tunnel header in 
VXLAN doesn’t really carry the tunnel endpoint information, but rather just 
the information needed to properly classify and direct the traffic at the tunnel 
tail (or termination point). The actual tunnel destination is carried in the IP 
header. 
This (once again) shows the difficulty in crafting a straightforward answer to 
the question, “What is a tunnel?” In the case of VXLAN, traffic is switched on 
the outer IP header, not the VXLAN header, so technically the outer IP 
header should be considered the tunnel header, not the VXLAN shim. It’s 
probably best to think of the tunnel header in a VXLAN network as the 
combined IP and VXLAN shim headers—because it takes both of these 
headers to properly manage the tunneled traffic through the overlay 
network. 

Control Plane Interaction 
Although VXLAN more cleanly separates the overlay and underlay control 
planes than MPLS/L3VPNs, there are still some complexities the network 
designer needs to think through when deploying this tunneling technology. 
Although the size and rate of change in the overlaying topology has no 
impact on the underlying control plane, the rate of change and convergence 



characteristics of the underlying control plane still have a major impact on 
the capability of the overlaying tunnels to support the applications running on 
the virtual topology. If the underlying IP network cannot converge quickly 
enough, not only can packets be dropped by VXLAN, but cache timeouts 
might be triggered, causing more work in the form of additional packets 
forwarded to the broadcast and unknown multicast group. The additional 
requirement of a multicast group added to the unicast IP control plane also 
adds complexity to the underlying control plane. 
Finally, it’s interesting to note the extended “reach” of the underlying control 
plane required for VXLAN operation. In a normal data center deployment, the 
designer might expect the fabric control plane to end at the ToR, and hence 
to plan scaling and other factors at this level. With VXLAN, however, the 
vSwitches below the ToR devices must have IP reachability visibility to every 
other vSwitch in the network. The only clear way to provide this reachability 
information is to extend the fabric control plane to the vSwitches themselves. 

Scaling 
There are a number of important scaling questions network designers can 
ask about VXLAN. 
First, there is the question of the number of multicast groups required in the 
underlying IP control plane providing reachability for the data center fabric. 
Each VXLAN virtual network (VLAN) configured over the IP fabric needs its 
own multicast group for broadcast and unknown packets (unless you’re going 
to mix broadcast and unknown traffic between virtual topologies—not a good 
idea). How many IP multicast groups can the IP control plane support, versus 
how many VLANs are needed within the data center? How much additional 
state, and how many additional protocols, will this multicast require? There 
are complexity questions here that need to be weighed carefully when 
deploying VXLAN. 
Second, there is the question of the cache size and speed of updates at the 
vSwitch. How many hosts will live on any given VLAN, and how large of a 
cache can the vSwitch support? Cached control planes are notorious for 
failing in unusual and unexpected ways. How will you monitor and manage 
this cache to prevent catastrophic failures? How do you plan around 
troubleshooting the operation of a traffic driven control plane? 
Finally, there is the fabric control plane extension mentioned above. How will 
you extend IP reachability into the vSwitch, or will you allow the vSwitch to 
send all VXLAN encapsulated traffic to its default gateway? Will traffic flow 
optimally through the network if the vSwitch is sending all VXLAN traffic to a 
single ToR, or will you need to provide more intelligence to the vSwitch—and 
how will you provide this intelligence, if it’s needed? 

VXLAN Summary 
VXLAN is an interesting (and useful) addition to the set of tools available to a 
network designer working in the data center space. As with any tool, 
however, there are scaling and other design challenges that need to be dealt 
with. The separation between control planes is cleaner, and the protocol is 



more clearly a tunneling protocol, but there are still control plane interactions 
that need to be considered. 

Summary 
Virtualization on a large scale often involves tunneling combined with 
multiple control planes. There are a number of crucial questions network 
engineers need to ask about any given virtualization solution before they 
determine which solution is best (or whether virtualization is needed at all), 
including questions about the interaction between multiple data planes, the 
interaction between multiple control planes, security, and scalability. 
Deploying virtual topologies can seem like a simple solution to complex 
problems—and sometimes they are, in fact, simple solutions to complex 
problems. But without proper planning, and unless the right questions are 
asked up front, virtualization can turn into a real mess. 
   



Chapter 13. Routing Choices 

In the early days of networking, huge projects were undertaken to determine 
the best routing protocol—for some definition of “best.” For instance, one 
project commissioned by the US Air Force attempted to measure the speed 
of convergence for each of the primary routing protocols (OSPF, IS-IS, and 
EIGRP), how much bandwidth each protocol used under normal operation, 
how much bandwidth was required when the protocol was converging (given 
a specific network topology and breakage scenarios), how many network 
engineers knew each of the protocols under investigation, and a number of 
other factors. Ultimately, the project was designed to churn all these factors 
together and produce a single answer. 
Underlying all these calculations was always some set of assumptions—
assumptions rarely ever brought out into the light of day and clearly 
examined, much less fully justified. These assumptions are, in reality, the 
interesting piece of the “which routing protocol” puzzle. Here you will find the 
real intersection between the business and technology choices. 
The first part of this chapter will deal with the “which routing protocol is best” 
question, but we’ll be concerned with exposing the questions network 
architects need to ask in order to answer that question, rather than providing 
a one size fits all solution. 
Beyond choosing a routing protocol, there are questions around best 
practices in deploying routing; this is where the second part of this chapter 
concentrates. For instance, how should flooding domain boundaries be set up 
in a link state protocol? Are there trade-offs in different plans or designs? 
Finally, we’ll consider a different set of questions about routing protocol 
deployment, specifically related to the current “BGP everywhere” trend so 
common in large scale networks designs. Is end-to-end BGP really the best 
answer to resolve the routing problems modern networks face? What 
problems do networks designed with end-to-end BGP face? 

Which Routing Protocol? 
What are the traditional questions surrounding the choice of a routing 
protocol? Most network operators will jump to two questions: 

 How fast does it converge? 
 Is it proprietary? 

These two questions quickly become the center of virtually any discussion on 
choosing a routing protocol. But are they the right questions? There is 
another set of questions every network designer should consider—questions 
that bring the relationship between the business and technology more into 
view. These questions include the following: 

 Which protocol is easier to configure? 
 Which protocol is easier to troubleshoot? 



 Which protocol degrades in a way that provides the best support 
for the business works during failures? 

 Which protocol works best on the topology the business usually 
builds? 

Let’s consider each of these questions in turn. 

How Fast Does the Routing Protocol Converge? 
Convergence speed, although often discussed, debated, and discovered, is a 
rather slippery concept to define. We must begin with the rather benign 
sounding question: What does it mean for the network to be converged? 
When testing for convergence, engineers often set up small, simple test beds 
that make for easy control and measurement. They then use various 
methods (such as those outlined in RFC 4061, 4062, and 4063), to 
determine when the routing protocol has finished calculating the best path to 
each possible destination within the (simple) network. Or the engineer might 
use a traffic generator to determine how many packets are dropped in the 
(simple) network during a convergence event. 
While all this measurement is fine, it doesn’t really answer real-world 
questions. As a counterexample, let’s consider the global Internet. The global 
Internet is made up of tens of thousands (if not hundreds of thousands) of 
autonomous systems. These autonomous systems are interconnected by 
somewhere between 250,000 and 1 million eBGP speakers. The number of 
BGP speakers within the global Internet (which would include iBGP speakers, 
route reflectors, and other BGP speaking devices) easily numbers over a 
million, and the total number of routers—adding routers that are not BGP 
speakers at all—is at least double the total number of BGP speakers. 
This scale, combined with the constant churn of modified policies, changing 
connectivity, and simple failures, produces a network that never converges. 
Does this mean BGP is a “bad” protocol from a convergence speed 
perspective? No, it simply means designers need to be realistic about 
network convergence. To get a handle on the real world, you need to turn 
the question around. 
The first question you need to ask is: How fast do you need the network to 
converge? 
In the real world, there won’t be one answer to this question—there will be 
one answer for every application, every business requirement, and every 
area of the network. With careful planning, you can build tiers of 
convergence requirements. The fastest convergence times should be 
contained in a small slice of the network (see Chapter 14, “Considering 
Complexity,” for a more complete discussion of the trade-off between speed 
and stability). 
The second question you need to ask is: How much are you willing to pay for 
faster convergence? 
Given a baseline of redundant links and equipment, fast convergence reverts 
to software and configuration. It’s often easy to see the additional software 
and configuration as “free,” in terms of investment, which skews the trade-
off between fast convergence and faster convergence. Remember the design, 



configuration, and equipment investment in faster convergence can be much 
higher than it appears in many areas. 
For instance, faster converging networks may be more brittle—although 
minor failures may be handled more quickly, major failures may not be 
handled at all. Modifying the topology in a network designed around fast 
convergence isn’t as simple as adding a new link here or there; real analysis 
work must be done to ensure that the overall convergence properties of the 
network remain stable or improve. Finally, fast convergence configurations 
aren’t often well understood by support personnel, even at the network 
vendor; this could make for long and difficult troubleshooting sessions over 
the smallest of problems. 
When all the right questions have been asked—and answered—we can return 
to the question at hand: Which protocol converges more quickly? 
EIGRP can converge around single link or node failures, given the correct 
design, in well under a second. The crucial point to consider in EIGRP fast 
convergence is the depth of the query process, or rather how many routers 
must process a query before the network can converge. As a general rule, 
EIGRP normally adds about 200 milliseconds to the convergence time for 
each hop that must process a query, so to converge in less than one second, 
you need to keep the query scope down in the two hop range. 
The upside to EIGRP fast convergence is there is almost no configuration 
required to produce a fast converging network. So long as the EIGRP process 
can detect the failed link quickly, and the network is designed correctly, 
EIGRP will do its part. The downside is the network must be designed 
correctly, which means a lot of thought needs to go into where and how to 
place links when the network is being changed for any reason. 
OSPF can converge around single link or node failures, given the correct 
design and configuration, in well under a second, as well. There are several 
key points to remember when designing around OSPF convergence, including 
the placement of flooding domain boundaries, the speed at which Link State 
Advertisements (LSA) are generated, the frequency and timing of Shortest 
Path First (SPF) calculations, and the path and timing of flooding through the 
network. 
The upside to OSPF fast convergence is that it’s better understood than 
EIGRP fast convergence, and also that it converges quickly on a wider variety 
of network topologies (at press time, there are techniques that would allow 
EIGRP to converge just as quickly on the same set of topologies, but they 
have not been implemented). The downside is that OSPF fast convergence is 
a delicate dance between configuration and design. The design gains a little 
more latitude at the cost of extra configuration and extra database 
information, both of which can make configuring and troubleshooting fast 
convergence more difficult. 
IS-IS can converge around single link or node failures, given the correct 
design and configuration, in well under a second, just as OSPF and EIGRP 
can. The key points to remember (upsides and downsides) about fast 
convergence in IS-IS are similar enough to OSPF that they don’t need to be 
repeated. The main difference to consider is that IS-IS has a little more 



deployment latitude on various network topologies, which can make fast 
convergence design either easier or more difficult. 

Is the Routing Protocol Proprietary? 
Another key question most businesses are concerned about when choosing a 
routing protocol is whether the protocol is proprietary; however, what does 
the concept of a proprietary protocol really mean? Generally speaking, if the 
design of the protocol is supported and managed by some form of standards 
body, and the protocol is available on more than one vendor’s equipment, it 
is considered an open, rather than proprietary, protocol. 
Defining what a proprietary protocol is, however, is just as slippery in 
practice as defining fast convergence. 
To understand why, we must begin with a better understanding of how 
standards bodies work, and what they propose to standardize. The IETF is 
the standards body most engineers associate with the development and 
maintenance of routing protocols—but for all the prestige and effort of the 
engineers who work hard at building a sustainable and solid set of protocols 
on which to build networks, human realities still slip in. 
Funding can often drive the adoption of a protocol, rather than technical 
merit—particularly where a single player with some stake in the process 
funds the development and implementation of one specific solution, making 
it look like the adoption of that solution is all but inevitable. Personality can, 
likewise, have a major impact on the flow of the standardization process; 
engineers have egos just like the rest of humanity, and often cling to their 
work far past when the work itself has ceased to be useful. Competitive 
pressures can play a role, as well. Difficult-to-read standards with a large 
amount of implementation leeway often result from several competitors 
squaring off and deciding to build a standard that will allow both of them to 
claim standards backing while working on extensions and modifications that 
prevent real interoperability. 
Although none of these problems are unique to the engineering community, 
and standards bodies often do well at rejecting the effects of these human 
realities, they still imply that saying something is “standards based” is often 
not enough. Interoperable protocols may often come out of a standards 
process, but standards processes don’t always result in interoperable 
protocols. There is a long list of protocols and ideas that have originated in 
standards bodies, or that have been standardized in some way, but have not 
survived in the wild. 
The obvious solution to this is to narrow the scope of proprietary so it 
includes not only protocols that have been standardized, but also those that 
have been implemented by more than one vendor. Again, however, this 
definition is fraught with problems. If we’re discussing a routing protocol, is 
its implementation by a router vendor and a firewall vendor enough to 
consider the protocol “open”? 
The best solution when dealing with proprietary protocols is to turn the 
question around. Let’s break the shorthand out into actual business 
requirements. 



 Is this protocol implemented on the platforms I would likely use in 
my network? Instead of asking whether the protocol is a standard 
or not, ask whether the protocol is implemented on each of the 
platforms you’re likely to actually use. 

 How interoperable are the various implementations of this 
protocol? Even a single protocol implemented multiple times by 
the same vendor can have interoperability problems, either 
because the standard is loose enough to allow noninteroperable 
options, or because one or more implementations just aren’t well 
formed. 

 How long are these interoperable versions likely to be 
around? Gravitating toward protocols standardized through open 
processes may mean more support for a protocol, and hence a 
longer protocol life. Or it may not. Don’t assume OSPF, IS-IS, or 
EIGRP will always be around—consider the support each protocol 
has in real life, how widely it’s used, and how likely it is to be used 
in the future. 

 How much are you willing to pay for the ability to use multiple 
platforms from multiple vendors? Standards bodies can only 
promise solid standards, not interoperability. Are you willing to 
spend the time and money required to ensure the basic 
functioning of each protocol, and the design effort required to 
avoid features that won’t work across multiple platforms and 
implementations? Saving at the bargaining table when buying 
equipment is attractive, but remember to count the costs on the 
other end of the bargain when deciding what protocol to use. 

In the end, you should choose the protocol that best fits your needs, taking 
full account of the costs and benefits. Quite often, the decision will sway in 
the direction of using only widely implemented standards-based protocols, 
but architects should not go into the decision process assuming this is the 
right choice. 

How Easy Is the Routing Protocol to Configure and Troubleshoot? 
Which protocol is more difficult to configure? Which is more difficult to 
troubleshoot? Clearly these questions cannot be answered in a more 
objective way than any of the previous questions we’ve asked. But although 
there are no clear-cut answers, there are still guiding questions you can ask 
in this area to help you decide which protocol fits your network the best. 

 Do you tend to have routing policy spread throughout the 
network, or concentrated in a few small places, such as along 
module edges? Because EIGRP is a distance vector protocol, policy 
can be implemented almost any place in the network, whereas link 
state protocols (IS-IS and OSPF) only allow policy, such as route 
filters, to be implemented at well-defined points in the network. 

 Is your network broken into many smaller IGP domains connected 
through BGP? Do you use a single IGP end-to-end with BGP as an 
overlay, or no BGP at all? Larger scale IGP-only or IGP end-to-end 



networks tend to benefit from EIGRP’s ability to aggregate and 
implement routing policy in many places throughout the network. 
If the IGP is isolated into smaller “pockets,” interconnected with 
BGP, or the network scale is small enough to allow for two 
aggregation and/or “policy points,” end-to-end, then a link state 
protocol will work well. 

 Do you need traffic engineering that requires an end-to-end view 
of the topology within the IGP itself? If you’re planning to use the 
IGP’s capability to perform constrained SPF for traffic engineering 
(such as MPLS-TE), then a link state protocol is your only real 
option. If traffic engineering will be performed offline, then EIGRP 
is an option. 

 What is the network operations staff more comfortable 
troubleshooting? Many people find the database of a link state 
protocol difficult to read and understand. EIGRP’s topology table 
tends to be easier to read and grasp quickly, particularly for 
operations staff who don’t need to examine or review routing 
protocols details on a regular basis. 

 Which protocol produces the least complex final 
configuration? There is almost no way to know the answer to this 
question other than to build configurations for the features you’ll 
need to deploy at several places throughout your network, and 
make a subjective call about which one is the least complex. 

Combining these considerations with the others outlined in this chapter 
should provide a fairly good indication of which routing protocol will work 
best in your environment. 

Which Protocol Degrades in a Way That Works with the Business? 
One of the most common mistakes in network architecture is to fail to think 
about failure. There will, inevitably, be a time when the network fails to 
operate as it should, whether due to the weather, or equipment, or a simple 
mismatch between the network design and business operations. When the 
network does degrade, it’s important for it to degrade in a way that leaves as 
much of the crucial parts of the business running as possible for as long as 
possible. 
For instance, when designing a network to support a high-speed financial 
trading operation, a total failure might be preferred to a partial failure. It 
might be better to fail to deliver any traffic than to deliver some (or all) 
traffic slowly. In the case of a retail store, however, it might be better to 
keep the retail centers up and operational, so customers can continue buying 
things, even if retail analytics cannot be collected in real time. 
The protocol the architect chooses must provide for the right failure domain 
separation in the right places in the network to separate critical business 
functions from the rest of the network where possible. The protocol the 
architect decides to use must also degrade the least under network failures 
on the topologies and sections of the network where the most critical 
business functions are performed. 



Which Protocol Works Best on the Topology the Business Usually 
Builds? 
With all the different networking topologies available in the current world of 
design, it can seem that making a protocol decision based on the topology of 
your network is bound to be a very complex problem. Matching the protocol 
to the topology, however, is very simple. 
First, you need to decide what the most important part of your network is 
from a convergence speed perspective. No matter how large a network is, 
you’ll always find there is one place in the network where you cannot work 
around the centrality of convergence speed. For instance, in many financial 
organizations, the trading floor might be crucial, while the network core, or 
financial branches, can operate with slightly slower convergence speed. For a 
retail organization, individual stores might be crucial from a convergence 
speed perspective, while the network core might have enough flexibility to 
work around a less than optimal protocol choice. 
Note there might be more than one area of your network where convergence 
speed is considered crucial. In this case, you have to make a value judgment 
about balancing the needs of each piece of the network in terms of 
convergence speed. 
After this decision is made, you need to examine the topology of that section 
of the network to determine what the controlling topology is going to be—the 
part of the topology that is going to have the largest effect on control plane 
convergence. There are only three types of topologies you need to look for: a 
full mesh, a hub and spoke, or some form of ring. These three topology types 
are virtually always going to have the most impact on control plane 
convergence because of the ways in which routing protocols interact with 
them. 
For instance, if the individual locations in a retail environment are the area of 
the network where convergence is crucial, you would expect a large-scale 
hub-and-spoke deployment to be the main topology that needs to be 
addressed. For a financial or data center centric environment, a full mesh, or 
some form of complex partial mesh, might be the primary factor in choosing 
a protocol. If the network core is the most critical area from a control plane 
convergence perspective, the set of rings that make up what is likely a 
partial mesh might be the primary factor in choosing a protocol. When 
considering this step, remember that it’s not the larger topology you’re 
seeking. Rather, it’s the primary topology components involved—whether 
rings, full mesh, or hub and spoke. 
After you’ve determined the primary topology component you need to work 
around, you can examine the way in which different protocols interact with 
these topology components, and thus choose the best protocol from a 
network convergence standpoint. 

 Link state protocols tend to perform better in full mesh networks 
than distance vector (specifically EIGRP), simply because they 
flood then calculate, rather than calculating hop by hop as 
information about topology changes is being distributed. 



 Distance-vector protocols tend to support large-scale hub-and-
spoke networks better than link state protocols, because distance 
vector protocols only carry reachability information, rather than 
reachability and topology information. This immediate and natural 
level of information hiding helps distance vector protocols perform 
better in environments where reachability information is all that’s 
required to make optimal routing decisions. 

 Link state protocols will create microloops when converging on 
ring topologies, and distance vector protocols will drop some 
amount of traffic when converging in the same environment. 
Choosing a protocol for deployment in large rings, therefore, is a 
matter of whether it’s better to drop traffic or loop traffic for short 
periods of time (while the routing protocol is converging). 

 IS-IS provides more flexibility in the design of flooding domain 
boundaries than OSPF. This is sometimes a consideration when 
dealing with designs where optimal routing along flooding domain 
boundaries is a crucial consideration in managing traffic flow. 

 Link state protocols only allow the hiding of information at flooding 
domain boundaries, rather than anywhere in the network; EIGRP, 
on the other hand, allows information hiding to be configured just 
about any place the network designer desires. EIGRP, then, is 
going to be easier to deploy and provision for fast convergence in 
networks with a lot of depth, or a lot of edge-to-edge hops. 

Of course, none of these general rules can be considered permanent 
attributes of any given protocol. For instance, it’s possible for OSPF to 
provide at least some of the same flexibility that IS-IS currently provides in 
dealing with flooding domain boundaries, and it’s possible to modify OSPF to 
perform better in hub-and-spoke network environments. 
No matter how each protocol develops, however, the process of choosing the 
best protocol for a specific network, in terms of topology support, remains 
constant. Choose the most crucial part of the network in terms of 
convergence, determine the prevalent (or controlling) topology element 
within that area of the network, and then evaluate how each protocol would 
perform in that controlling topology. 

Which Protocol is Right? 
Given all these techniques, can you determine which protocol is “right” for 
any particular network? Although each of these methods provides guidance, 
no method can provide the right answer in every situation; no method can 
definitively answer the question, “Which protocol is right for this network?” 
There are a few things you can safely ignore for all modern protocols, such 
as the following: 

 Protocol Degradation Modes: For many years, some protocols 
(such as OSPF) degraded in a graceful way, while others (EIGRP, 
for instance), were known to “fall off the cliff.” The choice was 
between a protocol that would continue running, even if it wasn’t 
running optimally, under a wide variety of network conditions, and 



a protocol that would run nearly optimally until network conditions 
were so poor that it simply failed to converge at all. Modern 
implementations of all the interior gateway protocols now degrade 
in a generally graceful way (especially given all the work that has 
been done on the EIGRP active process), so protocol degradation 
modes are no longer a real issue. 

 On-the-Wire Performance: The number of packets a protocol 
takes to converge in specific network conditions was once a huge 
issue; network engineers would spend hours with network 
analyzers trying to figure out the protocol that most efficiently 
used bandwidth. The increases in data traffic rates and available 
bandwidth across the network, from edge to core, have put this 
concern into a different perspective, however. While the routing 
protocol might have actually consumed 20% or more of the 
available bandwidth connecting different devices in a lower 
bandwidth world, they would be hard pressed to consume 1% of 
the bandwidth on higher speed links. Bandwidth utilization is no 
longer the issue it once was. 

 Memory Utilization: Again, in the “bad old days,” memory was 
very expensive, and routers with a lot of memory simply weren’t 
available. To counter this, many routing protocols used clever 
tricks to reduce the amount of memory they used or held by 
compacting their tables, or interesting (and complex) encoding 
schemes, or even not holding on to data as long as they really 
should have. Memory is now (relatively speaking) cheap, and most 
routers are designed with more than enough memory to handle 
routing tables in the millions of routes. Memory consumption—
outside of memory leaks or memory usage far out of the 
ordinary—is simply no longer an issue that needs to be addressed 
when considering which routing protocol to use. 

Ignore concerns about protocol failure modes, bandwidth utilization, and 
memory utilization when choosing a routing protocol. Instead, focus on the 
various points discussed in this chapter, including the following: 

 How fast does the protocol converge? But remember that fast 
enough is fast enough; adding complexity to get to convergence 
speeds you don’t need is a recipe for failure at some point in the 
future. 

 Is it proprietary? But remember that proprietary is in the eye of 
the beholder; there is no clear and fixed way to value the 
availability of a single protocol from multiple vendors versus a 
protocol that is available from only one vendor. 

 Which protocol is going to be the easiest to configure and 
troubleshoot in my environment? 

 Which protocol will fit best with the most crucial topologies in my 
network? 

If you can answer these questions, you will be well on your way to 
determining which protocol fits best in your network. 



There is one more element to consider when choosing a routing 
protocol: Which protocol best fits the IPv6 deployment most likely to be used 
in this network? The next section discusses the relationship of IPv6 and 
routing protocols in more detail. 

IPv6 Considerations 
If IPv6 isn’t a factor in your network designs, it should be—there is clearly 
going to come a point where IPv6 is going to replace IPv4 as the dominant 
network transport protocol. There are a number of differences between IPv4 
and IPv6 you need to be concerned with as a network engineer, including 
security and addressing, but this section will only consider the issues 
involved in deploying an IPv6 control plane. As with the other issues covered 
thus far, IPv6 control plane deployment needs to be thought through in two 
distinct stages. 
The first stage in IPv6 deployment is to consider how your business 
requirements interact with IPv6. 

What Is the Shape of the Deployment? 
How large will the initial IPv6 deployment be? How many endpoints will be 
connected via IPv6, and where are they located in the network? A small 
number of devices within an easily contained portion of the network (within a 
single module, for instance), can be easily connected using dual-stack IPv4 
and IPv6 across a minimal number of devices. Larger numbers of devices, or 
devices that are spread across a wide topological area, will require some 
form of tunneling for connectivity. The choice of whether to run dual-stack in 
a small area of the network or create some form of virtual topology or 
tunneled overlay will drive key decisions in the control plane. 
If your initial deployment is going to be a number of hosts connected within a 
single network module, or topological area, then configuring a routing 
protocol across the minimal set of devices to exchange IPv6 routing 
information and build IPv6 forwarding tables is probably going to be the 
easiest deployment path. On the other hand, if the initial IPv6 deployment is 
going to involve devices spread throughout the network, a virtual topology of 
some type (whether using MPLS or some form of 6 over 4 tunneling) must be 
configured and managed. If tunnels are deployed, then multiple control 
planes must be deployed, as well, and traffic correctly steered into and out of 
those tunnels. 

How Does Your Deployment Grow? 
Before deploying IPv6, you need to think through how this initial deployment 
will transfer to the network at large in terms of skills and technology. 

Topological Deployment 

If you are working in a network environment that has little virtualization “at 
large,” it is probably best to begin in a small geographical area using a dual 
stack deployment (unless you’re using the IPv6 deployment to bring 



virtualization into the network; however, it’s never a good idea to deploy two 
new major classes of technology at the same time). Deploying dual stack 
IPv4 and IPv6 will build the skills and test the protocols needed to deploy 
IPv6 throughout the rest of the network—tunneling is going to hide some of 
the complexity involved in a real deployment, and introduce complexity 
you’re not going to face in the real network. 
Topological deployments need a growth path that is edge and topology 
oriented, as well. After you’ve deployed IPv6 in one corner of the network, 
how do you expand the range of the new transport into the rest of the 
network? Where do you place flooding domain boundaries, aggregation 
points, and redistribution points? Where is policy implemented, and how do 
you manage traffic flow, particularly with the interaction of IPv4 and IPv6 
traffic running in parallel across the same wire? What about quality of 
service? 

Virtual Topology Deployment 

If you are working in a heavily virtualized environment, it is probably best to 
deploy IPv6 on a parallel set of virtual topologies. The virtualization skill sets 
are already in place, and the long-term plan will probably be to run IPv6 
within its own virtual topologies anyway (or in parallel with IPv4 using dual 
stack deployments on each virtual topology). Understanding the interaction 
between the tunneling technology in use to build virtual topologies and IPv6 
will provide valuable lessons and skills as the IPv6 deployment grows. 
A plan developed to grow this type of deployment needs to consider whether 
IPv4 and IPv6 will run forever on multiple parallel topologies, or if all the 
virtual topologies built across the network will eventually need to run IPv4 
and IPv6 in dual stack mode. 

Where Are the Policy Edges? 
The third set of questions network engineers need to ask before turning IPv6 
on is how this new transport and its associated control plane are going to 
interact with the policy edges in the network—specifically security choke 
points, aggregation and flooding domain boundaries, and traffic engineering 
mechanisms. 
It’s tempting to look at your current network and think, “We really could 
have done a much better job of aggregating the routing information here—
let’s aggregate in different places in IPv6, to make the addressing more 
efficient.” But before moving in this direction, consider the added complexity, 
especially when you’re awakened in the middle of the night to troubleshoot 
some routing problem that involves both IPv4 and IPv6. Which routers 
should have aggregation configured, and which ones shouldn’t? What should 
the aggregation look like? It might be possible to answer these sorts of 
questions differently in IPv4 and IPv6, but answering them differently for 
each transport protocol could inject unintended complexity that actually 
harms MTTR. 
Another temptation when deploying a small IPv6 pilot is to simply not plan 
for aggregation at all. After all, it’s just a pilot, right? It won’t ever grow into 



anything larger, or become so much a fabric of the application space that it 
IPv6 can’t be taken down to be replaced with a “real” deployment... There 
are probably real estate agents out there who will sell you future prime 
ocean front property in Nevada, too—it’ll be worth it all when that next big 
earthquake hits and California floats off into the ocean. 
Just say no to all these temptations; plan any and all IPv6 deployments from 
day one as if they were real, permanent, and the future of your network. 
Consider the existing policy edges, where new ones might need to be 
created, where old ones can be removed, and build the IPv6 deployment 
accordingly. 

Routing Protocol Interaction with IPv6 
There are three ways in which a routing protocol can interact with IPv6 as a 
new transport protocol: 

 IPv6 can be included in the protocol packet format and processing 
in a way that allows a single protocol process (using a single 
database) to provide forwarding information for both IPv4 and 
IPv6. 

 IPv6 can be included in the protocol format so it rides alongside 
IPv4, but because of changes in the way the protocol interacts 
with the forwarding plane, IPv6 must still be carried in a separate 
process or instance of the same protocol. 

 The protocol can be redesigned to support IPv6 using different 
packet formats and processing, requiring two entirely different 
forms of the protocol to be run across the entire network to 
support both IPv4 and IPv6. 

All three of these options have been used, one in each of the most commonly 
used IGPs. 

IS-IS Interaction with IPv6 

IS-IS simply added IPv6 as a new set of Type-Length-Value (TLV) types, so a 
single IS-IS process will support both IPv4 and IPv6 forwarding. If an IPv6 
next hop is available toward a particular neighbor, then IS-IS will use that 
neighbor for installing IPv6 routes into the local routing table; if not, IPv6 
routes that would normally use that neighbor will not be installed. 
How does this work? Remember IS-IS builds neighbor adjacencies using a 
native IS-IS encapsulation carried directly over the Layer 2 data network; in 
other words, IS-IS doesn’t use IP as its transport. When an IS-IS router 
advertises the networks to which it is locally connected, it includes any IPv4 
or IPv6 addresses associated with that interface. An IS-IS router receiving 
this information can determine if it is on the same IP subnet by comparing 
the included IPv4 and IPv6 information with information about its local 
interfaces. If two IS-IS routers are connected over an interface that shares a 
common subnet (or set of subnets), then it’s safe for both routers to install 
routes in the local routing table using an address on the shared subnet as a 
next hop toward destinations of the same transport type (whether IPv4 or 
IPv6). 



This mode of operation provides simplicity in the realm of routing process 
management, but it does create the possibility of failing to build complete 
paths across incongruent topologies, as Figure 13-1 illustrates. 

 

Figure 13-1 IPv4 and IPv6 in the Same Protocol Format and Process 

In this network, Router A has two paths to the IPv6 destination 
(64:ff9b::c00:225); one through Router B, and one through Router C. 
Whether Router A can actually reach the destination depends on which of the 
two paths is the better path. If the path through Router B has the lower 
metric, Router A will install a route to 64:ff9b::c00:225 with Router B as the 
next hop, and IPv6 traffic will flow toward the destination correctly. 
If, however, Router A calculates the best path through Router C, it will not be 
able to forward traffic to 64:ff9b::c00:225 at all. When IS-IS attempts to 
install a route toward 64:ff9b::c00:225 into the local routing table, it will find 
there is no IPv6 next hop through Router C (because IPv6 is not running on 
that link), and the route to 64:ff9b::c00:225 will not be installed in Router 
A’s local routing table. 
The only solution to this problem is to be careful and intentional in planning 
IPv6 deployments when using IS-IS—including making certain you 
understand the best path to each destination and the path traffic might take 
if the best path has failed. One alternative here is to deploy IPv6 in IS-IS 
network one flooding domain at a time. 

OSPF Interaction with IPv6 

The OSPF working group in the Internet Engineering Task Force (IETF) chose 
a completely different path—they essentially re-created the protocol from the 
ground up. IPv6 is not carried in the same version of OSPF as IPv4; IPv4 is 
carried in OSPFv2, and IPv6 is carried in OSPFv3. Although the two versions 
share the same algorithms for computing routes, breaking apart flooding 
domains, forming neighbor adjacencies, and various other operations, each 
of these things are performed with completely new packet types for IPv6. To 
deploy IPv6 in an all-OSPF environment, it essentially means running a 
completely new protocol, with a different database, different output, and 
different configuration styles and methods, on every router where IPv6 is to 
be forwarded. 



This prevents the incongruent topology problem found in IS-IS, but at the 
cost of a potentially steep learning curve. Many network administrators, 
when deploying IPv6, evaluate OSPFv3 against IS-IS and EIGRP as a second 
routing protocol—if you’re going to deploy a new protocol, why not consider 
all the available options, rather than just one? 
The OSPF working group has been adding IPv4 capabilities to OSPFv3, so a 
move to OSPFv3 can be used to support both IPv4 and IPv6, much like IS-IS 
supports both in the same process and packets. 

EIGRP Interaction with IPv6 

EIGRP’s designers chose the second option: add IPv6 to the existing packet 
formats, but require a separate protocol instance (and therefore database) to 
provide routing information for IPv6. The primary motivation for choosing 
this option revolves around the way the EIGRP transport system works and 
the way EIGRP interacts with the routing table. 
EIGRP has a separate transport process for each type of transport protocol 
supported—the protocol was designed from the beginning to support multiple 
transport protocols through this mechanism (remember when EIGRP 
supported Netware’s IPX transport?). The protocol will form a set of 
neighbors for each transport mechanism enabled, using separate hello and 
reliable transport processes, calculate routes separately for each transport 
enabled, and install routes on a per transport basis. Although the 
configuration, output, and algorithms used are all similar, multiple EIGRP 
processes must be configured to support multiple transports—one for IPv4 
and one for IPv6. 
This avoids the IPv6 routing black hole problem described for IS-IS while also 
avoiding the complete dislocation of a new protocol, such as OSPv3. It’s a 
“best of both worlds” bid, a solution that sits between the other 
alternatives—and for those who already run EIGRP, or are thinking about 
switching to EIGRP, it’s a solid solution to the problem of deploying IPv6 
using familiar tools while keeping the new transport separate from the 
existing IPv4 deployment. 
There has been work proposed to allow an EIGRP mode of operation similar 
to the IS-IS mode of operation, for network operators who would like the 
simplicity of a single routing process. EIGRP, being a distance-vector 
protocol, would not suffer from the same routing black hole problem IS-IS 
encounters with this mode of operation. IPv6 routes can be advertised or not 
on a per hop basis, depending on the transports available on the interface 
over which routes are being advertised. 

Deploying BGP 
When your network grows too large for an IGP to support the routing 
requirements, it’s time to deploy BGP. Right? In the minds of most network 
engineers, the concepts of “scale” and “BGP” are indelibly intertwined. To 
scale means to deploy BGP, and to deploy BGP means to scale. But if this 
were a test question, it would probably be one of those most often missed 
questions. 



There are times, of course, when large scale is its own type of complexity, 
where the standard IGPs become too difficult to deploy and maintain without 
breaking them up along some set of boundaries, but to move down this path 
is to reinforce the notion that BGP is an answer to complexity, rather than 
size. A properly designed IGP network can scale into the tens of thousands of 
routers (if not even larger); the key is using good design principles, breaking 
failure domains into small pieces, and making the right trade-offs between 
complexity, speed, and operations. 
If all this is true, we need to rethink our reasons for deploying BGP. 

Why Deploy BGP? 
BGP isn’t mainly an answer to scaling; it’s mainly an answer to complexity—
but what sorts of complexity should drive the deployment of BGP in a 
network? The next three sections provide a list that is more representative 
than exhaustive. 

Complexity of Purpose 

As businesses grow, so do their information needs—and what starts out as a 
single network with an easy to define and understand set of requirements 
morphs into a multiheaded hydra, each with its own appetites, problems, and 
requirements. There is ultimately a point in this process where it becomes 
easier to split requirements into smaller pieces, to “aggregate requirements,” 
much as routing information is aggregated. 
But how can these “aggregated requirements” be represented within the 
framework of a network? Generally they are represented as different virtual 
topologies. But just creating virtual topologies doesn’t really solve the 
problem—as each business unit, set of applications, or operational need is 
given its own “network within the network,” operational complexity rises—so 
while virtualization can simplify the process of understanding and meeting 
widely divergent sets of requirements, it takes a toll in operational 
complexity. BGP, as a policy-oriented control plane, can be used to control 
the added complexity of interacting virtual topologies and their policies. 
When a business reaches the point where multiple business units present 
requirements that are hard to reconcile using a single set of policies 
throughout the entire network, then BGP can be used to tame the policy 
complexity into a manageable aggregation of policies. As an example, 
consider the network in Figure 13-2. 



 

Figure 13-2 Example of BGP Policy 

Assume two business units have locations (or networks) attached to this 
network at Routers A and D. For some reason (a business decision to split 
the two sets of traffic along multiple links, delay verses network cost, and so 
on), the first business unit would like its traffic to travel along [A,B,D], while 
the second would like its traffic to travel along [A,C,D]. 
To accomplish this using just an IGP, the metrics along the links must be 
managed on a per destination basis, or some form of tunneling and traffic 
engineering used to draw the traffic along the correct links from Router D. If 
BGP is in use, however, this logic can be encoded using local preference (if 
this is all one BGP AS), Multiple Exit Discriminator (if this is multiple BGP 
AS’), cost community, or in various other ways. What is a process of building 
individual metrics per destination—an almost impossible task in a link state 
protocol—becomes a routine application of policy. 

Complexity of Place 

Much as widely divergent requirements present a form of complexity, 
different places in the network can have their own associated complexity. In 
a network with a large hub-and-spoke retail environment, or a large network 
core to which somewhat simpler campus networks are attached, the different 
types of topologies might be easy to reconcile. But as networks grow, 
frequently the number of different types of topologies, along with their 
associated optimal design patterns, increase in scale and scope. Then 
designing within the context of a single IGP may become complex enough 
that it’s worth adding a layer of aggregation in the overall complexity of the 
network. 
For instance, a data center (or private cloud) may have moderately strict 
traffic flow requirements, so some form of tight control over the path flows 
take into and out of this one particular part of the network might be needed. 
Opposing requirements might surface in the need to reach the data and 
services represented by the data center/private cloud from many different 
locations within the network. Overlaying these types of complex 
requirements on top of other traffic engineering requirements (such as speed 
of convergence for real-time services, for instance), may present an almost 
insoluble set of problems to the network architect. 



In this case, adding a layer of policy abstraction by deploying BGP to control 
specific traffic patterns can provide the policy mechanisms needed to balance 
the various needs in a way that’s operationally obtainable. 
Note that complexity of place can also include multiple business units that 
each run their own campus operations, and so need their campuses to form a 
single unified network for internal reasons. At the same time, these business 
units need to share the same core network and access many of the same 
services that make the business a “complete operation.” Here complexity of 
place presents a different set of problems that BGP can be used to resolve. 

Complexity of Policy 

Beyond the two more specific realms of place and purpose are other sets of 
policy that might indicate the introduction of BGP into a network. For 
instance: 

 Security, such as the requirement to be able to react to some form 
of denial of service attack across a global network quickly and 
efficiently 

 The ability to separate traffic in some way, such as splitting 
internal and customer traffic 

 Splitting a network into multiple administrative domains based on 
lines of business, geographic locations, security requirements, and 
so on 

 Providing “lightweight,” or very simple traffic engineering (see the 
preceding section for an example of this use case) 

Each of these situations can create a complex maze of policy requirements 
that fall outside the realm of place and purpose, and BGP can provide the 
necessary solutions to resolve each one with the minimum of administrative 
overhead and operational complexity. 

BGP Deployment Models 
The decision to deploy BGP in a large-scale network is only the beginning of 
the work—throwing BGP into the mix, without fully considering the best way 
to deploy BGP, can have unintended consequences that far outweigh any net 
gains in network management and operational simplicity. Two of the primary 
questions network engineers need to answer are how BGP will interact with 
the current routing system, and how BGP will grow and change with the 
network over time. 
These questions can be reduced to three options: 

 Should BGP be overlaid on top of the existing routing system—
should it augment, rather than replace? 

 Should BGP be deployed as one large administrative domain, so 
the network appears to be a single entity to other networks to 
which it’s connected? 

 Should BGP be deployed using multiple administrative domains? 



The three final sections in this chapter will consider the positive and negative 
aspects of each model, so you can better choose which model fits any 
specific BGP deployment. 

iBGP Edge-to-Edge (Overlay Model) 

If BGP is being used to provide a common core of policies (such as security) 
along all edges, or to separate external routing information (such as 
customer routes in the case of a service provider) from internal routing 
information, then an overlay may be the best deployment model. In this 
model, a single IGP still provides end-to-end connectivity throughout the 
network, while BGP provides “policy tweaks” and separation where needed to 
implement the necessary policies as illustrated in Figure 13-3. 

 

Figure 13-3 BGP Overlaid on IGP End-to-End 

The advantages of overlaying BGP on top of an IGP are the following: 
 Provides good edge-to-edge policy within a single administrative 

domain 
 Provides good separation between external and internal routing 

information 
 Preserves end-to-end IGP routing information, allowing for well-

defined traffic engineering within the context of the IGP 
The disadvantage of this type of deployment is that it doesn’t—without 
additional mechanisms such as an L3VPN—support the type of complexity 
described in the previous section, “Complexity of Place.” 

iBGP Core 

To support complexity in the core while preserving the simplicity of IGP at 
the edges, BGP can be deployed using an iBGP core with redistribution into 
and out of the iBGP core at specific boundaries in the network. Figure 13-
4 illustrates this type of deployment. 



 

Figure 13-4 iBGP Core Deployment 

The advantages of this model are the following: 
 Retains the simplicity of IGPs at the network edges 
 Allows the core of the network to take on the complexity of 

connecting different places or policies, leaving the edges, which 
may be administered by smaller or less-centralized engineering 
teams, as simple as possible 

 Provides the ability to use different IGPs in different parts of the 
network, allowing you to match the IGP with the topology or 
business requirements more closely 

The disadvantages of this model are the following: 
 The loss of end-to-end IGP routing information. This could make 

traffic engineering more difficult. 
 The added complexity of redistribution at the iBGP core edge, 

which must be carefully managed and monitored to provide the 
performance and stability network users expect. 

This deployment model is often used with self-managed L3VPN cores. 

eBGP Edge-to-Edge (Core and Aggregation Model) 

Finally, a network can be modeled as a set of different administrative 
domains, treating the network as an internetwork, as Figure 13-5 shows. 



 

Figure 13-5 eBGP Edge-to-Edge 

The advantages of this model are as follows: 
 eBGP metrics are preserved edge-to-edge, providing a single 

unified way to engineer traffic through metrics and other BGP 
policies (such as community strings and multi-exit discriminator). 

 Each section of the network is truly a separate administrative 
domain, allowing each set of administrators to make local 
decisions that will not (theoretically) have a major impact on the 
other parts of the network. 

 The ability to use a different IGP in each part of the network, 
allowing the network designer to more closely align topology and 
business requirements with routing protocol choice. 

The disadvantages of this model are as follows: 
 The added complexity when interacting with external networks—

should the local network appear to be a single network to the 
outside world, or multiple networks? 

 The added complexity involved in engineering traffic through 
mechanisms such as L3VPNs across autonomous system 
boundaries. 

 The added complexity of BGP on (essentially) every device in the 
network, along with the (possibly complex) iBGP design and 
deployment. 

Note that some eBGP edge-to-edge networks are deployed using a single IGP 
end-to-end, which is primarily used to provide BGP next hop reachability 
information. 



Summary 
In this chapter, we’ve considered several important questions surrounding 
choosing and deploying routing protocols in a large scale network. Although 
we’ve not spent a lot of time in packet-level details, we have thought 
through the questions a network designer should ask when choosing an 
IGP—specifically: 

 How fast does it converge? 
 Does it run on the equipment you intend to run, and are there 

interoperability issues? 
 Which protocol is easier to configure? 
 Which protocol is easier to troubleshoot? 
 Which protocol degrades in line with the way the business works? 
 Which protocol works best on the topology the business usually 

builds? 
We’ve looked at a framework for answering each of these questions, 
including the points the network designer needs to remember, and—just as 
important—what really doesn’t matter when considering the answer to each 
one. 
Finally, we’ve looked at some routing considerations surrounding the 
deployment of IPv6, and when and how to deploy BGP. 

  



Chapter 14. Considering Complexity 

It won’t scale. It’s not elegant. It’s too complex. 
The network engineering world isn’t quite science, nor is it quite art; network 
engineering, like most other engineering disciplines, lives on the line between 
art and science. Part of living in this world between science and art is living 
with fuzzy definitions and fuzzy ideas, dealing with instinct, making and 
breaking general rules, and being okay with imprecision. On the other hand, 
if there is any time we can think through something that’s imprecise so we 
can get a “less fuzzy” image in our heads of what we mean, it’s worth putting 
the time and energy into the effort. 
In this chapter, we’re going to try to make complexity a little less fuzzy. 
Because complexity interacts with scaling and elegance (engineers have an 
innate love of elegance that’s hard for those outside the engineering world to 
understand), roughly outlining at least one view of network complexity can 
help bring those concepts into a little better focus, as well. We’ll attack the 
problem directly; each section in the chapter considers one specific element 
of complexity in network design and engineering. Each section compares two 
competing design ideals, examining how each pair contains trade-offs against 
another. 
By the end of this chapter, you should be able to see how they all share the 
same common elements of state and optimization. 

Control Plane State 
How much information does the routing protocol manage? Even though the 
concept of information load in the control plane is important, there are no 
good ways to put an objective number on it. There are two areas we need to 
look at, however, and two types of complexity you can trade off against to 
reduce control plane load. 

Concepts of Control Plane State 
The two dimensions we need to consider are these: 

 The number of reachable destinations, which could be measured 
as the number of routes in the routing table, the switching table, 
or the forwarding table. 

 The rate at which the information carried in the control plane 
changes. 

The first measure can easily be expressed as the number of routes carried in 
the average router anyplace in the network. It’s hard to be precise, of 
course, because devices in some parts of the network will naturally have 
more control plane entries than others. For instance, you would expect 
switches in a data center to have more switching table entries than those 
handling traffic across a campus or a small office. 
But even though it’s hard to be precise about the amount of information 
being carried in the control plane, it’s a useful measure of complexity. More 



control plane information generally means more processor and memory 
utilization; more reachable destinations generally means more policy at the 
per destination level that must be configured and maintained. 
A second aspect of control plane complexity—one that network engineers 
rarely think about—is rate of change. In very large networks, like the global 
Internet, the network itself is never really converged. To understand how this 
happens, consider a network with 10,000 links and devices, each of which 
changes once a day on average. If the control plane in this network takes 
more than 1/10,000th of a day to converge (8.64 seconds), the network will 
never be completely converged. In a large network that’s also one large flat 
failure domain, it doesn’t take high change rates to create changes that 
happen faster than the control plane can converge. 
The more often the topology or set of reachable destinations changes, the 
more processing and memory individual devices participating in the control 
plane will consume. Higher rates of change also indicate a higher rate of 
traffic path modification within the network, which then represents more 
difficult problems in engineering traffic and end-to-end quality of service. 

Note: One interesting study of these two aspects of network complexity is 
discussed in the paper “A Network Complexity Index for Networks of 
Networks,” by Stuart Bailey and Robert L. Grossman. In this paper, the 
authors present a formula for computing a network complexity index by 
considering the number of nodes and their degree of connectivity, the 
number of edges, and the rate of change in connectivity and node count over 
time. This network complexity index can be used for a wide variety of uses, 
from social media networks to computer networks. Absolute measures of this 
sort can be used for one pole of a pair of complexity trade-offs, but it’s 
important not to build networks around reducing one specific absolute 
measure of this type, because complexity must rise in some places in order 
to minimize complexity absolutely in one place.

 

Ironically, it’s easier to measure this rate of change in a large flat network, 
like the Internet, than it is in a well-crafted network, such as a large scale 
enterprise, service provider, or data center. In fact, good network 
architecture is designed to hide the rate of change in a network by limiting 
the number of devices any particular change will impact (the scope of the 
change). 
It is possible to reduce the information load in the control plane, and 
therefore the complexity of the network, through aggregation, or information 
hiding. We’ve discussed the techniques and ideas behind aggregation as a 
means of splitting up failure domains in Chapter 6, “Principles of Modularity,” 
so we won’t spend a lot of time on the same material here. In that chapter, 
we discussed two side effects of using aggregation to reduce control plane 
state: 

 Reducing the optimal flow of traffic through the network 
 Additional configuration complexity 



We’ll discuss these two side effects in more detail in the sections that follow. 

Network Stretch 
Now that we can at least articulate the things we’d like to measure on the 
control plane side of the equation, let’s consider the optimal traffic flow side. 
How, precisely, can we express the optimality of traffic flow through a 
network? 
By considering something called stretch. 

Note: We’ve touched on the concept of stretch in the context of modularity 
in Chapter 6 as well as in Chapter 7, “Applying Modularity.” In this chapter, 
we’ll consider stretch in the context of network complexity.

 

Stretch is the difference between the best possible path (for some measure 
of best!) through the network and the actual path the traffic takes through 
the network. Figure 14-1 illustrates the idea of stretch. 

 

Figure 14-1 Illustration of State Versus Stretch 

If there is no aggregation of routing information in this network, Router A will 
have (at least) 13 routes (counting the connecting links as reachable 
destinations). This number of routes—13—represents a finite amount of 
complexity at Router A. Each route must be stored, including metrics, tags, 
and other information, and the best path to each reachable destination must 
be calculated each time there is a change in the network topology. Of course, 
13 routes might not seem very complex—but it’s clearly more complex than 
1 route. 
To minimize the routes at Router A, the network administrator can configure 
Routers B and C so they both advertise the same route, 192.0.2.0/24. This 



reduces the number of routes in Router A’s table to 3, a definite reduction in 
the amount of information Router A is storing and processing, but at what 
cost? If Routers B and C are both advertising 192.0.2.0/24, Router A will 
choose the path through Router B to reach every destination shown in this 
network, because the cost of the link (A,B) is only 10. 
There is no change in the path Router A will take to reach 192.0.2.16/29, so 
traffic along this path will not be affected. What happens to traffic entering 
the network at Router A and traveling to 192.0.2.64/29? Without 
aggregation, this traffic would follow the path (A,C,G). With aggregation 
configured, however, this traffic will take the path (A,B,C,G)—an increase of 
one hop. 
In this network, then, we can say that aggregating to 192.0.2.0/24 at 
Routers B and C will cause traffic flowing to 192.0.2.16/29 to travel across 
one extra hop to reach its destination. To put this another way, the path 
from Router A to the destination 192.0.2.16/29 has stretched by one hop—or 
the stretch has increased by 1. The stretch of the entire network hasn’t 
increased by 1, of course, just a subset of the paths. We can calculate the 
average increase in stretch from Router A by dividing the sum of the lengths 
of the shortest paths to every destination in the network before and after the 
aggregation. 
Before aggregation is configured, there are 5 destinations with a hop count of 
2, and 6 destinations (links between routers) with a hop count of 1, for a 
sum of 16. After aggregation is configured, there are two destinations with a 
hop count of 3, 5 destinations with a hop count of 2, and 4 destinations with 
a hop count of 1, for a total of 20. The average stretch caused by configuring 
the aggregation, in this case, is 1.25. 
It’s often possible to prevent stretch in some networks by configuring pairs of 
overlapping aggregates. For instance, in this network: 

 Router B is configured to advertise 192.0.2.0/24 and 192.0.2.0/25 
 Router C is configured to advertise 192.0.2.0/24 and 

192.0.2.64/25 
Now every path will remain optimal, and Router A will only have five routes 
in its local table. 

Configuration State 
Using overlapping aggregates to optimize routing while reducing the amount 
of information carried in the routing table brings us to the second trade-off in 
complexity—control plane state versus configuration state. In this specific 
case, adding overlapping aggregates to provide for optimal traffic flow 
through the network results in a few extra lines in configuration that must be 
remembered and managed when conditions in the network change. If 
198.51.100.0/29 is connected to Router D, and 198.51.100.8/29 is 
connected to Router H, the aggregation scheme must be reconsidered, and 
the configurations at Routers B and C modified accordingly. 
As with the other areas of control plane complexity we’ve discussed so far, 
there is no clear way to measure the complexity (or the depth—a term we’ll 
use here to separate the general idea of complexity and the idea of 



complexity within a particular configuration), of a configuration. These two 
configuration snippets perform exactly the same task if applied in a similar 
way to routing information: 

ip prefix-list permit 192.0.2.0/24 le 32 
access-list 100 permit 192.0.2.0 0.0.0.255 

Which is simpler to read and manage? It depends on a number of factors: 
 Which format are you are you more familiar with? If you’re 

more familiar with the reverse subnet mask notation, the access 
list is likely to be easier to work with. If you’re more familiar with 
the prefix length notation, the prefix list is likely to be easier to 
work with. 

 Which format best fits with your configuration model? It 
might make sense to configure all packet filters with access lists, 
and all route filters with prefix lists, just to provide a notational 
difference that’s easy to recognize when you look at a device 
you’ve not examined in a long while. 

 Which format processes more quickly on the 
device? Although both forms might be roughly equivalent in 
terms of configuration complexity from a human standpoint, one 
form might execute more quickly on specific devices. This might 
be close to impossible to find out if you don’t have access to the 
code involved—but it’s a consideration few engineers take into 
account when determining how best to configure a particular 
policy. 

Using the number of lines of configuration needed to express a specific policy 
is the one measure you don’t want to get into the habit of using. Not only 
can the same set of policies be expressed in multiple ways, but configuration 
through alternative interfaces (such as an XML or GUI interface) and direct 
modification of local tables through off box processes (as in the case of a 
software defined network) will put a major crimp in the number of lines 
versus depth form of configuration measurement. 

Control Plane Policy Dispersion 
You might have noticed aggregation must be configured on both Routers B 
and C in the preceding examples to be effective. This is not only an issue for 
the management and maintenance of device configurations, it’s also an issue 
in troubleshooting. 
We can call this phenomenon policy dispersion. 
Engineers working on the network for any reason must remember the 
interlocking pieces of a single policy scattered through configurations on 
various devices in the network. Configuration management, troubleshooting, 
network measurement, and modifications designed to grow the network must 
all take into account these interlocking policies dispersed through hundreds 
(or thousands) of devices, many of which might be widely separated in the 
network. 



In general, moving policy closer to the edge, where it will necessarily be 
configured on more devices, will allow more optimal routing and handling of 
traffic. Moving policy implementation closer to the core will reduce the 
number of devices with which any particular policy interacts, but it will also 
reduce the effectiveness of the policy at steering traffic flow through the 
network. Figure 14-2illustrates. 

 

Figure 14-2 Illustration of Policy Dispersion 

Although there are a number of places aggregation could be configured in 
this network, two specific configurations will illustrate the trade-off between 
optimal traffic flows and the dispersion of policy. The first set of aggregates 
follows: 

 Router D is configured to advertise 192.0.2.0/28 toward Router B. 
 Router E is configured to advertise 192.0.2.16/28 toward Router 

B. 
 Router F is configured to advertise 192.0.2.32/28 toward Router 

C. 
 Router G is configured to advertise 192.0.2.48/28 toward Router 

C. 



In this configuration, traffic flowing from Router A toward 192.0.2.0/29 could 
pass along the path (A,B,E,D), rather than the shortest path, which is 
(A,B,D), because Router A will consider everything behind Router D to have 
the same cost. The worst case for any destination, from Router A, is 
increasing the path length by one hop. 
The number of routes for which a suboptimal route could be taken using this 
aggregation is 4 (two behind Routers D and E, two behind Routers F and G). 
The second set of aggregates follows: 

 Router B is configured to advertise 192.0.2.0/27 toward Router A. 
 Router C is configured to advertise 192.0.2.32/27 toward Router 

A. 
The maximum increase in stretch is still one hop (because of the links 
between Routers B and C, Routers F and G, and Routers D and E, through 
which more specific routing information is still advertised). However, the 
number of paths that could be reached through a suboptimal path has now 
doubled to 8, rather than 4, because it’s now possible for Router A to choose 
a suboptimal path to 192.0.2.40/29, for instance. 
By moving the policy (aggregation in this case) closer to the edge: 

 The core failure domain has been made larger. 
 The traffic flow is more optimal than with optimal aggregation, but 

less optimal than with no aggregation. 
 The amount of information being carried in the control plane at 

Router A has been decreased, but not to the minimal possible 
level. 

 The complexity of managing the configurations has increased. 
This last point is the one we’re concerned with here; by increasing then 
number of devices in the network with aggregation configured, the total 
complexity level of the configuration set in the entire network has increased. 
By moving the policy (aggregation in this case) closer to the core (Router A): 

 The core failure domain has been made smaller. 
 The traffic is less optimal. 
 The amount of information carried in the control plane at Router A 

has been minimized. 
 The complexity of managing the configuration has been 

minimized. 
The trade-off between aggregation closer to the core and closer to the edge 
is the cost of added complexity in two additional router configurations versus 
the optimal flow of traffic through the network. 
As policy is dispersed toward the edge of the network, traffic flow generally 
becomes more optimal. As policy is moved toward the core of the network, 
the number of devices on which complex configuration must be managed 
generally becomes smaller, reducing the overall complexity of configuring 
and managing the network. 



Data Plane State 
The control plane is not the only place where policy is implemented and 
managed in a network, of course—there is plenty of policy to be managed at 
the data plane, as well. Various forms of packet level security, such as deep 
packet inspection, filtering, and black holing, are widely deployed in networks 
today. Quality of service is another class of policy that is often widely 
deployed in networks. Traffic must be marked so it is handled properly, and 
per hop behaviors must be configured on most (or all) of the devices through 
which traffic flows to meet quality of service requirements. 
Let’s use quality of service as an example. The first element to consider is 
the number of queues configured and managed to support end-to-end 
requirements for traffic handling; Figure 14-3shows several queue designs 
placed side by side for comparison. 

 

Figure 14-3 Queue Designs Compared 

Moving from the left to the right in this illustration, the queues become more 
specific, and therefore more able to provide specific quality of service 
guarantees for each class of traffic. Moving from the left to the right in this 
illustration also means 

 Moving from simpler configurations for marking traffic at the 
quality of service edge to more complex 

 Moving from simpler per hop behavior configurations (scheduling, 
queuing, and dropping traffic) at every forwarding device in the 
network to more complex 

 Moving up the scale in terms of processor and memory utilization 
both at marking and forwarding devices throughout the network 

As with control plane state, finer grained control over traffic flow and handing 
requires additional state—state that must be configured, managed, and must 
be considered in troubleshooting. Also like state in the control plane, there is 



more involved in data plane state than how complex the configurations are. 
Dispersing data plane policy to a larger number of devices increases overall 
systemic complexity by increasing the number of interlocking pieces that 
must be considered and increasing the number of devices that must be 
configured and managed. We’ll use the small network in Figure 14-4 to 
illustrate the principles involved. 

 

Figure 14-4 Data Plane State 

If the network designer decides to implement packet marking on Routers A, 
B, G, and H, then 

 There are four routers in the network with complex packet 
marking configurations that must be managed and maintained. 

 The configurations on these four devices must be managed so 
they interlock properly; configuring Router G to mark Voice over 
IP (VoIP) traffic so it is placed in the Express Forwarding (EF) 
service class, while Router A is configured to mark VoIP traffic so 
it is placed in the best effort service class would result, at best, in 
uneven VoIP service. 

 Routers C, D, E, and F must all be configured with the correct Per 
Hop Behaviors (PHB) to take advantage of the packet marking 
imposed at the edge of the network. 

The network designer could move the marking state to Routers C and F. This 
would do the following: 

 Decrease the number of routers on which packet marking 
configurations must be maintained to two 

 Decrease the number of routers on which PHBs must be 
maintained to two 

 (Most likely) reduce the consistency and quality of end-to-end 
traffic handling in the network 

The trade-off here is between managing configurations on a wider scale 
versus optimizing the handling of different types of traffic flowing through the 
network. 

Note: A number of papers have been written in the area of measuring state 
complexity in terms of state and derived state dispersed throughout a 
network—a solid example is “NetComplex: A Complexity Metric for 
Networked System Designs,” by Chun, Ratnasamy, and Kohler. By assigning 
a value to individual pieces of state, and then a value to the complexity of 



distributing and maintaining that state, an overall number describing the 
complexity of the entire network can be derived. As with all other “single 
instance” measures of network complexity, calculating a single measure of 
state complexity can be useful, but it won’t provide you with the “whole 
picture,” in terms of network complexity—rather it will only provide a 
measure for one-half of a trade-off.

 

Reaction Time 
The final set of trade-offs to explore focuses on making the network react 
quickly to changes in the control plane. The example we’ll use here is Fast 
Reroute (FRR), a set of mechanisms designed to quickly move traffic from a 
failed link to a backup path. Chapter 8, “Weathering Storms,” explains the 
concepts behind FRR in detail; we won’t repeat that information here. 
Instead, let’s consider the amount of state and additional configuration 
planning required to implement some form of FRR system using Figure 14-5. 

 

Figure 14-5 Fast Convergence Trade-offs 

Assume the following: 
 The best path from Router A to Router G is through (A,B,E,F,G). 
 The path (A,B,C,D,F,G) is a loop-free path, but the cost is high 

enough that it is not considered a loop-free alternative or an 
EIGRP feasible successor. 

To use the loop-free path through (A,B,C,D,F,G), the network administrator 
could do one of the following: 

 Configure some form of FRR that will create a tunnel between 
Routers F and B to use the second path. 

 Modify the metrics on the segment (B,C,D,F) so the second path is 
considered a loop-free alternate or EIGRP feasible successor. 

What additional state would be required to configure some form of FRR? 
First, and most obvious, is the additional configuration required on at least 
Routers B and F. The actual configuration might be simple, just a couple of 
lines, but it’s still an added bit of complexity in creating and managing this 
complexity. Beyond this is the additional state in the control plane—some 
amount of additional routing information is needed to find the alternate route 
and build the correct routing table entries to forward traffic around network 
failures. This state would normally take the form of additional entries in the 
local database. 



What additional state would be required to configure the metrics? There’s no 
immediately apparent state, but the metrics of every interface along the 
alternate path must be managed with a view toward keeping the alternate 
path available for fast recovery if the (B,E,F) path fails. These configurations 
are not directly connected to the primary path, or to the origin or destination 
of the traffic, so they must be documented, and considered, when changes to 
the network are being put in place to meet other requirements. In this case, 
the complexity comes out on the human side of the equation, rather than in 
the control plane. 
Security is another area that needs to be explored in the case of fast reroute 
mechanisms; most of these mechanisms require traffic to be forwarded 
through dynamically created tunnels in the network. What type of security 
hole will you be opening by allowing any device in the network to terminate a 
tunnel without any prior tunnel configuration? For networks that often work 
with MPLS tunnels, where dynamic tunnels are the rule rather than the 
exception, this might just be another part of the risk factor to be as “normal 
operation.” But in a world where networks are “crunchy through and 
through,” and internal traffic can pose as much of a threat as external, this is 
a point that needs to be taken into consideration. 
There is another area of complexity here, as well—in the data plane. For FRR 
solutions, additional forwarding table entries must be created and managed. 
For both solutions, care must be taken to ensure there is enough bandwidth 
along the backup link, and any necessary per hop behaviors must be created 
and managed to make certain end-to-end quality of service guarantees are 
met. If the reroute takes place across a router with local destinations 
attached, service to the locally attached destinations can be disrupted by the 
increase in transit traffic across the device. 
Detecting failures quickly adds its own set of challenges. Fast hellos must be 
managed properly; additional care must be taken to ensure processor and 
link utilization aren’t adversely affected by fast hello mechanisms. False 
positives must be handled, as well. 

 

A Single Complexity Number? 
The ultimate goal of all complexity research is a “single number” 
describing the overall complexity of the network—a unified theorem of 
network complexity, like the Shanon theorem of information. This 
goal, most likely, will never be reached. Why? Because network 
complexity interacts with design in very strong ways—and math does 
a very poor job of describing intent. In Science and 
Complexity (1948), Warren Weaver argues there is a huge difference 
between disorganized complexity and organized complexity. 
Disorganized complexity is aptly described through statistical 
methods, such as predicting the path of a billiard ball out of a group of 
billiard balls moving randomly on a pool table. 
To consider organized complexity, imagine a pool table where all the 
balls have been lined up in a neat row along the edges of the 



bumpers. The balls are somehow moved along the bumpers, each ball 
moving such that it never contacts another ball, but the entire set of 
balls rotates around the table. How can you measure the complexity 
of such an organized system? In observable rules, the system is quite 
simple—but clearly there is some intent to the movement of the balls, 
and this intent, or teleology, is outside the realm of clear and simple 
measurement. 
By definition, organized complexity, particularly in the field of network 
architecture, interacts with the intent of the designer, which in turn 
relates to the difficulty of the problem being solved. Because these 
intentions are, effectively, outside the realm of measurement, there 
isn’t likely ever going to be a way to say, “A network of complexity 
X is sufficient to meet the demands of problem set Y.” It’s very 
difficult to set down “Y” in this example. 
What is likely is that there is a solid set of heuristics, or ways of 
thinking about a problem, that will provide a pretty good guess about 
what is too complex and what is not. We can use such heuristics as a 
framework through which we can understand complexity in networked 
systems to better understand when we need to add complexity and 
when we don’t. 
A single number? No. A way of thinking about complexity as a 
problem set that can prove useful in real-world network architecture? 
Yes. 

 

Managing Complexity Trade-offs 
Defining complexity is difficult, but we can generally break the problem into 
several simpler pieces: 

 The amount of information carried in the control plane, and how 
often it changes 

 The depth and dispersion of control plane configuration 
 The depth and dispersion of data plane configuration 

Each of these elements will trade off against the optimal flow of traffic 
through the network, either in terms of the actual path chosen to reach any 
given destination, or in the treatment of packets and flows on a per hop 
basis. There aren’t any definitive measures for many of the elements we 
encounter in the area of complexity; because some of these elements are 
subjective, there probably won’t ever be any way to measure them with any 
degree of accuracy. 
But even with all of this, network architects, designers, and engineers can’t 
afford to ignore the problem of complexity. A network that’s too complex will 

 Converge more slowly because of data plane overload, positive 
feedback loops, and other phenomena—see Chapter 8 for more 
information about these. 



 Be more difficult to manage and plan around because each piece 
of policy distributed throughout the network must be considered 
when a new policy is deployed, when the network is modified to 
increase or decrease capacity, or, generally, whenever the 
network is “touched.” Networks tend to “ossify” over time, building 
up layers of policy and configuration, becoming brittle without 
thought. In their brittle state, a network can fail (unexpectedly!) 
for apparently no reason at all—though the real reason is hidden 
in layers of overlapping systemic complexity. 

 Be more difficult to troubleshoot, impacting MTTR and, therefore, 
the services the network provides to the company. 

Is complexity a bad thing? Clearly the answer must be no. On the other 
hand, network architects need to be realistic in assessing the amount of 
complexity being added to the operation and maintenance of a network to 
attain specific goals. Some important questions to ask: 

 Have I looked for, and found, the trade-off? If you’ve not found it, 
you’ve not looked hard enough. 

 Is this change really necessary to meet specific requirements? 
 Is fulfilling this requirement worth the trade-off? 
 Have I thought of other ways to solve this problem, and whether 

or not they might add less complexity? 
 Have I thought about the future of this change, the systemic 

dependencies? 
Remember: There is no such thing as a free lunch. 
   



Part V: Current and Future Trends 
   



Chapter 15. Network in Motion 

People just can’t sit still any longer. Looking for users at their desks? Forget 
about it. They’re probably out in the yard, sitting at a table at the local café, 
or maybe even sitting on the beach using a tablet to access services on your 
network. Or they’re driving their car (don’t text and drive!), or... What’s a 
network architect to do with all these people moving around? 
Design mobility into the network, of course. If you can’t beat ’em, join ’em. 
Fair warning, however: mobility isn’t an easy problem to solve. In fact, 
among all the problems to solve on a modern network, mobility is probably 
one of the hardest you’ll encounter. It might be neat to be able to check your 
email from the porch of a mountain getaway while watching a sports game in 
the background, but it’s not easy. 
We turn to the business case first—why is mobility such an important part of 
network design today? After considering some of the good things mobility 
can bring to a network, we then dive into a bit of the complexity that pushes 
back, making the delivery of mobility difficult. What are the realistic bounds 
of mobility within a network? 
To understand the complexity introduced by mobility, we’ll consider some 
hard and fast realities about device mobility, primarily focused on how and 
where to hold the state needed to make mobility work. Following this, we’ll 
consider some specific IP-centric mobility technologies—Identifier-Locator 
Network Protocol (ILNP), Location Identifier Separation Protocol (LISP), 
Mobile IP, host routing, Mobile Ad Hoc Networks (MANET), and dynamic DNS 
(DDNS). 
Finally, we’ll look at some of the problems involved in providing remote 
access through the Internet or some other large public network for remote 
users. 
So—stand up and get mobile. Don’t even try to read this chapter sitting 
down. 

The Business Case for Mobility 
The case for mobility isn’t difficult to make, but let’s work through a few 
examples to get a feel for the space. 

A Campus Bus Service 
In large campus environments, particularly where hundreds of thousands, or 
millions, of people pass through the campus in a given day, an internal 
transportation system can be vital to effective operations. Let’s use a large 
theme park spread out over a wide area as an example. The most cost-
effective solution to managing traffic flow between the various venues (or 
even independent parks), local hotels, eating establishments, and other 
entertainment options might be a widespread bus service. A city bus service 
might do just as well, but the demands of a large theme park operator might 
require a more interesting array of services. 



The first problem the business will encounter is handling safety and 
maintenance issues. Should every bus be brought in for service on a periodic 
basis? This is easy to plan for, but it might mean buying and running more 
buses than are necessary. Some system that marks a particular bus for 
maintenance on a per mileage basis, rather than periodically, might be 
better—but this produces the overhead of actually recording the mileage on a 
daily basis. 
A mobility solution can bring a higher degree of efficiency to the problem. 
Rather than manually reading the odometer on a regular basis, a small host 
can be installed in each bus to read vital information and feed it back 
through the network to a central maintenance system. Not only can the 
odometer be read in this way, but any maintenance information provided by 
the electronics installed in the bus already can be remotely cataloged—brake 
pressure, tire inflation, engine temperature, fuel mileage, and so on. All this 
data can be fed through data analytics to optimize the maintenance of each 
vehicle to reduce cost while maximizing safety and operational tempo. 
A second problem the park operator encounters is the optimal routing and 
operation of these buses. Should each driver always take the same route at 
the same time intervals? How is a crowd at one particular stop handled 
efficiently? Again, a mobile network can contribute significantly to solutions. 
Bus stops could be equipped with some form of monitor that allows operators 
to see how large a group is waiting at any particular location. Routing 
algorithms can be deployed to dynamically modify the flow of buses in 
particular places to alleviate crowding, and optimize service by reducing the 
average wait time per customer to a minimum. 
Finally, there is the bus experience itself. A patron who is leaving the sensory 
rich environment of a theme park might feel a little let down on entering the 
plain gray interior of a bus in the middle of the day. Best to keep the patrons 
excited, drawing them back to the experience when they’re done with lunch. 
At night, on the other hand, a quiet, more subdued atmosphere might fit 
better with a group of tired patrons who just want to get back to their rooms 
and rest up for the next day’s activities. The morning presents a different 
challenge entirely—pump the riders up, encourage them to visit less-often 
used venues (to spread load through the park more evenly), and encourage 
impulse buys throughout the day ahead. People with tight schedules (like 
most engineers!) might like being able to check their work email while 
they’re riding to the park, as well—and their kids might like to play an 
interactive game with people already in the park, or on the same bus. 
How can the bus operator achieve different effects at different times of the 
day? Again, network mobility can provide some critical pieces of a solution. 
Large video screens installed along the sides of the bus (perhaps even 
projected onto or between the windows) could play different content at 
different times of the day. The network could be used to push media in real 
time, providing up-to-the-minute information; if one venue is already 
overwhelmed (or even down for unplanned maintenance), take it out of the 
advertising round in the vehicles in real time. 
The business case for a mobile network is clear, but the challenges are clear, 
as well—what appears to be a simple problem can be solved only with a 



complex set of network capabilities. Any host installed in the bus needs to be 
able to connect to a wide array of systems on board, including video, audio, 
on board navigation, and the various electromechanical systems. The host on 
board must be able to receive multicast and send and receive unicast, 
interacting with a variety of services connected to the fixed network. If the 
geographical ground is large enough, streaming video and other content 
must be pulled from the nearest server, rather than the “only” server. 

A Mobile Retail Analysis Team 
Large retail environments cope with their own sets of problems for which 
mobility can provide a key resource. Take, for instance, the case of a large 
retailer with hundreds of large footprint stores scattered across a wide 
geographical area, possibly even on several continents. Although the store 
normally arranges each retail location in roughly the same way—for instance, 
higher-priced items that lend themselves to impulse buys greet the customer 
coming through the door, women’s clothing is always to the right, men’s to 
the left, and electronics straight back—they’ve decided to provide more 
flexibility to the use of floor space in each region, and possibly even in 
particular stores, to improve sales numbers. But how should the stores 
decide on the right layout? And how should the company decide how much 
flexibility is good for business, and over which line they are harming business 
by reducing the consistency customers might expect across several regions 
within the same brand? 
There is, in fact, an entire branch of analysis that works around these types 
of questions. How do you position merchandise, how long should a customer 
be in the store before being approached by a salesperson, what colors should 
be prominent at eye level, and where should the cash registers be located? 
These are all questions that can be investigated and answered by analyzing 
video recordings, buying patterns, and other information that comes out of 
the store itself. Suppose that, to provide the necessary information to make 
intelligent decisions, the retailer decides to build a small team of business 
analysts who travel to stores and carry out the necessary investigation. 
But how can the network support this team? The team will clearly need to be 
mobile, so some form of mobile solution is called for. How much bandwidth 
will the team need? Will they carry the necessary processing power with 
them, or rely on services within the corporate data center—or even a cloud-
based service? This team will clearly need corporate services and support 
while they are on location, including human resources, payroll, benefits, 
email, video conferencing, audio conferencing (and its old fashioned 
counterpart, the telephone!), and everything else an employee might expect. 
The business case is clear: A dramatic increase in per store sales can easily 
pay for the team and necessary modifications to the network required to 
support the team. But the challenges are clear, as well. Team members must 
be able to communicate as if they were sitting at their normal desk, and yet 
have access to some powerful processing, along with the requisite data 
transfers. 



Shifting Load 
This final use case is based around services that move, rather than hosts 
that move—an important, and ever growing, part of the network mobility 
problem space. A typical situation here is a single service—for instance, one 
that allows a user in an auto parts store to look up the part number for the 
alternator in a 1969 Willis Jeep with a four cylinder flat head engine, and 
then determine where such a part might be found (or ordered). Let’s look at 
two specific problems with such a service that require a mobility solution. 
The first is that the information being accessed might need to be housed in 
multiple places to allow for the best possible search response times. For 
instance, a user in Atlanta doesn’t want to wait the network round-trip times 
required to access a database located in London, even over a fast network. 
The business probably doesn’t want to pay for hauling the lookup and 
response across the Atlantic Ocean, as well. Thus, the user needs to access 
one of many instances of the service in question. 
The second is that the service itself might need to move throughout the day 
for various reasons. Common reasons here are for service resilience (being 
able to move the service onto a different physical device in the case of server 
failure), power management (moving the service to a physical device that is 
drawing off peak hours power), load balancing (moving the service to a more 
lightly loaded physical device), or one of many other reasons. 
Service mobility, like the other two use cases discussed to this point, has 
clear business value. Again, however, there are challenges in providing this 
type of mobility that rise above the ordinary complexity a network engineer 
faces. How much complexity is it worth injecting to achieve specific types or 
instances of service mobility? Assuming the return on investment has been 
computed and found sufficient to provide service mobility, where is the best 
place to inject the required complexity into the system? 

Pinning the Hard Problems into Place 
Each of these use cases appears to present a completely different set of 
problems and requires a completely different set of solutions. But backing up 
a little (and squinting hard!) makes it possible to see a common set of 
problems, in turn suggesting a common set of trade-offs. Let’s see if we can 
pin down these hard problems and their associated trade-offs. 

Mobility Requires State 
If a host or service is going to move, some system, some table, or some 
protocol must know where the host or service is and how to get to that 
location in order for the host or service to be reachable (and therefore 
useful). This might seem like such a simple idea that it doesn’t even need to 
be said, but it’s surprising how many times mobility systems are designed 
without a fully thought-out idea of the amount of state required, or how to 
handle the state involved. All too often, people will say, “Well, I can use a 
default route to get to the service no matter where I connect my host,” and 



never think through the problem of the service getting back to the host that 
has moved its physical location in the network. 
Or mobility systems will be designed where the state is simply pushed into 
the routing protocol, or into another mapping table, or some other new 
construct—and the engineer smiles and says, “See, I fixed it.” Pushing state 
into another layer, another system, or another location doesn’t make the 
state go away. 
You can reduce the amount of state through caching or gathering it “on 
demand” through a reactive control plane, but each of these is going to have 
an impact on the speed of mobility in the system and the complexity of the 
control plane. 

Mobility Requires Speed 
It’s increasingly common for the network to be required to react in near real 
time. How close to real time? Consider these two points of reference: 

 Routing Information Protocol (RIP) converges on network topology 
changes, with default timers and in its original deployed form, in 
around 3 minutes. Today, Fast Reroute systems count the number 
of packets lost in the convergence process, rather than the 
number of millisecond lost. 

 Millions of dollars can be gained or lost in milliseconds on a 
financial trading floor, and a few milliseconds can be the difference 
between life and death on the operating table. 

Not all applications will need “near real time,” of course; an application that 
measures the health of a bus in a fleet pool, for instance, may only need to 
converge in minutes, rather than milliseconds. On the other hand, the trend 
is always faster, so we should prepare ourselves for that trend now. We build 
networks, essentially, because humans are impatient; there is no (apparent) 
lower bound on the speed of human impatience. 
The “reality checks” on speed will always be complexity and cost. Mobility 
that spreads state between the host and the control plane is going to provide 
the fastest reaction times—but it’s also going to add the most state to the 
network, and therefore cost the most to deploy. 

State Must Be Topologically Located 
The state required to provide mobility must be present in a database on 
some set of physical devices in the network; the more dispersed the state is, 
the more optimal traffic flows will be through the network. You can think of 
this as another instance of “state verses stretch,” discussed in Chapter 6, 
“Principles of Modularity.” 
There are two extremes: 

 If all the state is held in individual hosts, traffic flows will be 
optimal, and the network control plane will be minimally simple. At 
the same time, the hosts will need to deploy complex discovery 
and routing systems to find and route to other hosts to which they 
are trying to communicate. 



 If all the state is held in a centralized (or even somewhat 
centralized) set of devices within the network, then all the traffic 
passing between, to, or from mobile devices must be taken to 
where the state is located. Hence, traffic must be backhauled to 
the point where the state resides, resulting in “trombone routing,” 
or other highly inefficient traffic flow patterns. 

Between these two extremes are a number of options. State can be 
distributed to some specific modular edge within the network, or some state 
can be distributed to the hosts while other state is retained at a more central 
location, and so on. 
There is one caveat: if caching or some form of reactive control plane is used 
to manage the amount of state, the topological location of the state becomes 
a matter of application performance in a larger sense, and not just 
suboptimal traffic patterns. Let’s use Figure 15-1 to examine this class of 
problems. 

 

Figure 15-1 Example of State in Network Mobility 

Assume that Host A currently connects to Router B, but could move its 
connection to Router C at any moment. Server J (where the service resides 
that Host A is accessing) could also move its connection point from Router H 
to Router G at any moment. Server E is a “fixed location server,” useful for 
mapping services. Without diving into specific protocols, assume we want to 
reduce the state to the minimal possible across all nodes on the network, 
while still maintaining the ability to modify the connection point at Host A 
and Server J. When A wants to open a session to J 

 It sends a packet toward J’s address. Router B uses a proactive 
control plane to discover a route to Server J, installing state 
throughout the network. In this case, if J moves its connection 
point, there is no way for Router B to know that Server J has 
moved, so the next few packets in the flow from A to J will be lost, 
or otherwise misrouted, until the state at B times out, and the 
discovery process takes place again. 

 It sends a packet toward J’s address. Router B queries a database 
at Server E (which is in a fixed location) and uses the information 
obtained to either build a tunnel to Server J (ending at Router H) 



or to build some other state that allows it to reach Server J. If 
Server J moves, Router B must be notified, and this state must be 
rebuilt. 

In either of these two cases, the host itself—Host A—doesn’t know about the 
disruption in the network or the flow of traffic. Moving all state off the host 
simplifies host development and deployment. 
Or does it? From the perspective of Host A (and Server J), the network is 
simply unstable. There is no telling when a packet might be delivered in a 
few milliseconds, or a few seconds. Because mobility events are outside the 
control of the host, and hence unpredictable, mobility appears to be a very 
unstable network. To make matters worse, in both of these cases the 
information about how to build a path is cached. If the cache times out 
anywhere along the path while a flow is being transmitted, the entire flow 
path must be rebuilt—again, this would appear to the host to be an unstable 
network. 
Anyone who has ever developed host-side software knows that unstable 
connectivity is probably one of the most difficult problems to deal with. What 
do you do if you’re transferring a real transaction, and the network 
apparently “goes dead?” You don’t know if you’ve lost connectivity entirely, 
or just for a few moments. What should you do about jitter in real-time 
communications, or how much buffer do you need for each streaming media 
application to prevent jumps and skips? As long as the host has no 
knowledge of the actual network state, there’s no clear answer to any of 
these questions. 
The decision of where and how to cache, or where and how to distribute the 
state necessary to build a successful mobility environment, isn’t as cut and 
dry as it first appears. Distributing state all the way to the hosts creates one 
set of problems, while keeping all the state in the network creates another 
set of problems. Centralizing the state needed to support mobility creates 
one set of problems, while distributing the state all the way to individual 
hosts creates another set of problems. 
There aren’t a lot of “good answers” to a lot of these problems—just trade-
offs. 

State and the Network Layers 
Finally, the state required to support mobility in a network must be carried, 
or held, in a specific layer—or it must cross layer boundaries in some way. 
Like the other areas we’ve examined, this choice isn’t so clear cut as it seems 
at first; there are trade-offs that need to be considered for each option. 
It might seem simple to have the application interact with the routing 
protocol directly to resolve state issues in the network. But there are dragons 
down this path. Network protocols are designed in layers for a specific set of 
reasons; opaque APIs hinder in some ways, but provide great freedom in 
others. Some specific (and probably controversial) examples of layering 
violations causing a lot of heartache include the use of IP addresses as 
identifiers rather than locators. How did the networking world reach the place 



where the location of a device became an identifier for the device itself? 
There are several lines of reasoning involved: 

 Routing is fast, DNS is slow. We want fast mobility, so mobility 
must be handled in the routing system. The routing system deals 
with IP addresses, so we must base mobility on IP addresses. 

 IP addresses are guaranteed to be configured correctly; a working 
network is proof that the addressing, at least, is correct. DNS 
naming, however, is often sloppy, a secondary concern in the 
building and managing of networks. The IP address, therefore, is 
more stable and more certain to uniquely identify a device on the 
network, so we should embed IP addresses into applications. 

How have these types of assumptions caused heartache? Three 
words: Network Address Translation (NAT). Close to 100% of the problems 
accounted to NAT are actually the result of layering violations on the part of 
applications; specifically, misusing the IP address as an identifier rather than 
a locator. 

Note: This is also an example of how pushing the problem to another system 
doesn’t really solve it—and can quite often make the problem worse than it 
was in the first place. Had application developers pushed network operators 
to correctly configure and use DNS, much of the complexity involved in 
network mobility could have been resolved years ago.

 

Layering violations are attractive solutions when you’re in a corner, but they 
almost always come back to cause more problems than they solve in the long 
run. 

IP-Centric Mobility Solutions 
Let’s look at some of the various solutions that are currently deployed. Our 
interest in examining each of these is, of course, to gain a general idea of 
how each works, but also to consider each solution in terms of how it 
manages the state required to provide mobility, and where complexity is 
added. Understanding these things will not only help you determine the best 
solution for any given problem, it will also help you understand the 
cost/benefit trade-off from a business perspective. Ultimately, the question 
must come down to this: Does the added productivity and flexibility of 
deploying any particular mobility solution, or mobility in a specific situation, 
outweigh the cost in terms of complexity and added state? 

Identifier-Locator Network Protocol (ILNP) 
ILNP is based on a simple idea: rather than treat the entire IP address space 
as a single location, split the space into two pieces, a locator and an 
identifier. A simple way to look at this solution is to consider the host part of 
the IP address an identifier, while the network part (including any 
aggregation) becomes the locator. As the host moves through the network, 
the lower bits of the IP address do not change, so the host remains uniquely 



identifiable no matter where it is actually connected. The network portion of 
the IP address, however, changes, so other devices can direct traffic to the 
right location within the network to reach any specific host. 
In more specific terms, ILNP divides the IPv6 address space into two 8 octet 
fields. The upper 8 octets (a /64) are called the locator and are determined 
through the normal process of numbering networks at the interface and link 
level. The lower 8 octets (the lower /64) are called the identifier and are 
assigned using local methods that (attempt to) ensure global uniqueness, 
generally using the Extended Unique Identifier 64 bit (EUI-64) address taken 
from a local Media Access Control (MAC) address. 

Note: ILNP works with IPv4 as well as IPv6, but it is primarily designed 
around, and standardized, for IPv6.

 

Figure 15-2 illustrates ILNP operation. 
1. A process on Host A generates a packet destined to a process on 

Server J. 
2. The DNS client on Host A sends a DNS resolution request for the 

hostname (or process name). 
3. The DNS server returns a DNS record; this reply has an ILNP 

extension field that returns the current location of J (the upper 8 bits) 
as well as the identifier (the lower 8 bits). 

4. Host A builds a destination address by combining the locator and 
identifier portions of the address, and transmits the packet normally. 

 

Figure 15-2 ILNP Operation 

If the location of Host A changes, it will notify a DNS server, which will then 
propagate a new locator through the DNS system. There is also a mechanism 
within ILNP by which Host A can notify the process on Server J that it is 
about to change locations, or that it has changed locations, so the 
communicating process needn’t do a DNS query or wait on a transmission 
timeout to discover location changes. Of course, if both the endpoints move 



at the same time, they can both query for a new location through the DNS 
system to rebuild or continue the connection. 
ILNP, then, has the following characteristics: 

 The DNS system acts as a set of fixed services that are used to 
find the information needed to build an initial connection. This is 
no different from DNS usage today, other than the requirement to 
bring the DNS cache timers in line with the expected mobility rate. 
Because each device can set its own cache timer, only those with 
high expected mobility rates need to have shorter cache timeouts. 

 The identifier is essentially bound to the name of the device in 
DNS terms. One identifier can be matched to any number of DNS 
names, and one DNS name can be matched to any number of 
identifiers. 

 The additional control plane state required to provide mobility is 
shared between the DNS system and the end hosts between which 
communications are taking place. Each local host must have a 
cache of mappings on which it can build packet headers, and the 
DNS system must be extended to include an initial “reach me 
here” location. 

 Although there is some delay in setup, and there can be delays 
introduced through the movement of a device from one topological 
location to another, the host itself is aware of these delays and 
can react accordingly. 

 The location stored in the DNS system may not actually be the 
location of the device in the network. It may, instead, be an 
intermediary device that knows how to reach the correct location. 
As a proxy, such intermediary devices can redirect the first few 
packets in a flow while using ILNP mechanisms to provide the 
correct location within the network. 

Locator Identifier Separation Protocol (LISP) 
LISP, originally designed to counter the continued growth in the size of the 
default-free zone in the Internet at large, has been reshaped into a mobility 
solution (as well as a proposed solution for a number of other problems). 
This protocol is also based on the idea of separating the location of a device 
from an identifier, but the LISP control plane, its interaction with existing 
control plane protocols, and its interaction with individual hosts, are all 
completely different from ILNP. 

Note: LISP, over the years, has developed into a set of protocols and ideas. 
In the current world of LISP, some slight changes to ILNP, discussed in the 
last section, would allow ILNP to be called LISP. The data plane piece of LISP 
is often called “LISP,” even when it’s combined with other control planes, and 
there are several different control planes that are all called “LISP.” This 
section describes the original operation of LISP, treating the control and data 



planes as one “thing.”
 

Figure 15-3 illustrates the operation of LISP. 

 

Figure 15-3 LISP Operation 

1. Some process on Host A generates a packet (or a stream of packets) 
destined to a service running on J. The packet, as generated by Host A, 
has an IP address that is designated as an identifier, rather than a 
location; this address is unroutable from the routing protocol’s 
perspective. 

2. The Ingress Tunnel Router (ITR), generally the first hop router, on 
attempting to forward this packet, finds it has no forwarding table 
entry toward this destination. The ITR sends a query to a local 
mapping server to find the correct mapping between the destination 
identifier and the destination location. 

3. The LISP mapping server (which could be a service running on the 
local ITR, rather than an off-board server, as shown here), sends a 
query to each of the other ITRs in the local network, asking for 
information about the location of the service or host indicated by the 
identifier contained in the destination address of the packet received 
from Host A. Note that after the first query for a particular destination, 
this information could be cached at a master server (MS) to reduce 
latency. 

4. Each of the ITRs that receive this query respond with any information 
they have about this specific destination identifier. In this case, G will 
return an indication that it does not have access to the service 
indicated, and H will return a locator through which this service can be 
reached. The LISP mapping server uses this information to build a 
mapping entry, which is then passed to Router B (the ITR). A local 
forwarding table entry is built (cached) at Router B. 



5. Packets generated by Host A toward this identifier are encapsulated 
(tunneled) at Router B (the ITR) to the egress ITR closest to the actual 
service or host being accessed. 

There are a number of variations on the general theme. Specifically, LISP 
extensions for DNS have been proposed that would allow the DNS server to 
return the correct mapping on the initial query (much like ILNP), and there 
are proactive schemes to build a complete view of the mappings at every 
mapping server to eliminate steps 2, 3, and 4. The idea of implementing LISP 
on end hosts, or in hypervisor software, instead of on the first hop (or some 
other edge) router has also been tossed around, again bringing LISP into 
closer alignment with ILNP. The number of variations on this basic scheme 
are almost limitless; it would take an entire book to cover them all in detail. 
LISP, then, has the following characteristics: 

 LISP requires a new set of servers and a “shim control plane,” to 
be built into the network. The trade-off is that neither hosts nor 
the routing protocols need to be modified because of this 
additional control plane. 

 Packets are tunneled through the network from ITR to ETR, which 
creates the attendant packet size, security, and other issues you 
would expect. 

 If LISP is deployed on the network edge, the hosts at the edge see 
only the impact of LISP on traffic flow, and not the operation of 
the protocol itself. 

 LISP controls the amount of control plane state injected into the 
network (particularly at the ITRs) by creating control plane caches 
in the network itself, outside the scope of the routing system or 
the end hosts (given that LISP isn’t implemented on the hosts). 
This may raise scaling and speed of operation issues (depending 
on your view of caching control plane information in this way). 

Mobile IP 
Mobile IP, documented in RFC5944 (for IPv4) and RFC6275 (for IPv6), is one 
of the oldest, and most seasoned, mechanisms developed to provide IP-
centric mobility. Figure 15-4 illustrates the operation of Mobile IP. 

 

Figure 15-4 Mobile IP Operation 

Each mobile host has two addresses: 



 A home address, which is the address it is assigned when it is 
connected to its “default,” or “home,” network. 

 A care of address, which is the address it receives when it is 
attached to a remote, or foreign, network. 

A (somewhat simplified) operational overview is as follows: 
1. Host A attaches a network; it uses protocols defined in the Mobile IP 

specifications to determine if this is its home network or a foreign 
network. For this example, assume this is a foreign network. 

2. Host A registers with its home agent, Router D in this case, providing 
the home agent with its current care of address. The home agent is, 
essentially, the fixed location server E inFigure 15-1. When Router D 
receives this registration, it (essentially) builds forwarding information 
that will tunnel traffic received for Host A toward Host A’s current care 
of address. 

3. Server J attempts to open a stream to Host A. The last address Server 
J has for Host A is its home address, so it sends the traffic toward this 
destination. 

4. When the traffic reaches Router D, which is Host A’s home agent, it is 
tunneled to Host A at its care of address. 

Mobile IP is widely deployed in carrier mobile networks to provide IP 
connectivity to handheld devices. 

Host Routing 
This is the simplest, and probably the oldest, method used in routed control 
planes to handle host mobility. Some older hosts implemented RIP (in part) 
so they could inject a host route into the RIP domain, and hence they could 
be moved without risking loss of reachability. IS-IS was originally designed 
with Level 1 domains being essentially host routed, as well, with 
summarization occurring only on the Level 1/Level 2 flooding domain 
boundary. 
Very few modern implementations of host routing to provide host mobility 
exist, however. One exception is Route Health Injection, which allows a 
router (or a server load-balancing appliance/device) to inject a host route on 
behalf of a host connected to a particular port. This is primarily used to fail 
over between two different hosts, or two different interfaces on the same 
host—a rather limited view of host mobility. 
The primary challenges when using host routing for mobility are the 
following: 

 In IPv4, the host needs to participate in the routed control plane 
to ensure reachability for full mobility. 

 In IPv6, the Neighbor Discovery (ND) process can be used to 
determine where a host is attached to the network, but there are 
few implementations that tie ND to routing advertisements. 

 Scaling can quickly become an issue when using host routes for 
mobility. There are two specific areas of concern: the rate of 



change in the control plane and the breaking down of barriers 
required to provide mobility over a large topological area within 
the network. 

Mobile Ad-Hoc Networks (MANET) 
MANETs are a rather specialized slice of the mobility arena. The genesis of 
the MANET idea was a military operation, where a number of vehicles and 
people might be air dropped into an area and have a need for immediate, 
configuration-free communications among themselves. As such, MANET 
protocols are generally designed around several principles: 

 Low power consumption, because the devices used in a MANET 
network are often battery powered 

 Low overhead, because the links used to interconnect devices are 
often lower-speed wireless links 

 High mobility rates, because the devices tend to move a good bit 
“on the ground” 

 Restricted topological use, because the highly mobile 
environments tend to be short lived, or to separate and then 
rejoin larger groups where more standardized networking 
protocols are used 

 Host routing, to support the speed and flexibility required in these 
environments 

A number of MANET protocols have been proposed over the years, along with 
modifications to existing protocols to support MANET requirements. To 
illustrate the type of work done in this space, we’ll use Figure 15-5 to 
examine modifications made to the OSPF flooding mechanism, documented 
in RFC5820, designed to support MANET. 

 

Figure 15-5 OSPF Overlapping Relay Operation 

Each router in this network is also a host; every host, in other words, 
supports both local traffic generation and the capability to route traffic 
through to other hosts connected to the network. 

1. Each of the routers in this network uses a somewhat modified 
mechanism to discover its OSPF neighbors. 



a. Neighbors on the same link are included in only enough hello 
packets to build the neighbor adjacency; after the adjacency is built, 
a sequence is included rather than a neighbor list to reduce the size 
of the OSPF hello packets. 

b. Router A not only discovers that Router B is a connected neighbor, 
it also discovers that Router B’s neighbors are Router C, D, and E. 
Each OSPF hello carries not only the connected neighbors, but also 
the “two hop neighbors” to facilitate discovering the “two hop 
neighborhood.” 

c. After these first hop neighbor adjacencies are built, Router A 
determines the minimal set of first hop neighbors that can be used 
to reach all the routers in its two hop neighborhood. In this case, 
Routers B and C have the same two hop neighborhood—each other, 
Router D, and Router E. 

d. Router A will determine which of these two neighbors should be 
marked as the “overlapping relay,” or rather the router which will 
reflood any LSAs Router A itself floods into the network. Assume 
Router A chooses Router B as its overlapping relay. 

e. Router A notifies the other routers—the routers which are not the 
overlapping relay—that they should delay reflooding any LSAs 
Router A sends for a few tens or hundreds of milliseconds. 

2. When a change to the topology occurs, Router A floods an LSA 
containing the change to both of its neighbors, Routers B and C. 

3. Router B refloods this LSA immediately, and Router C delays. 
a. Router C sets a “reflood timer”; when this timer wakes up, it will 

reflood the LSA it just received from Router A. 
b. Routers D and E, on receiving the LSA flooded by Router B, send an 

acknowledgement to each of their neighbors. 
c. When Router C receives this acknowledgement, it resets the reflood 

timer so it does not wake up, preventing it from reflooding the LSA. 
The added complexity here is typical of the additional protocol level work 
required to reduce on-the-wire packet usage. As with all things, there is a 
trade-off between control plane state, complexity, and efficiency. 
Although MANET networks aren’t widely deployed, many of the ideas 
developed for MANET environments can be directly applied to large-scale link 
state protocol deployments, such as data centers. 

Dynamic DNS 
Dynamic DNS (DDNS) is similar to ILNP in relying on the DNS system as a 
“fixed resource” (Server E in Figure 15-1) through which mobility events can 
be tracked, but it’s different in that it doesn’t provide the signaling and other 
processes required to make mobility truly “mobile.” DDNS is really designed 
for “slow mobility,” or for situations where a system disconnects and receives 
a new IP address when reconnected (such as a home gateway into a high-
speed Internet access system).Figure 15-6 illustrates the operation of DDNS. 



 

Figure 15-6 DDNS Operation 

In this illustration: 
1. Host A connects to a local network, receiving an IP address from 

Router B. On connection, Host A connects to a DDNS server (C), 
notifying the server of its current address. The IP address for this 
server can either be manually coded at Host A or provided by Router B 
while Host A is acquiring an IP address. Host A’s DNS name must be 
manually coded for this signaling to work properly. The DDNS server 
(C) builds or modifies its DNS entry based on the information received 
from Host A. 

2. Server J attempts to send a packet to Host A. At the operating system 
level, Server J realizes it has only a domain name for Host A (not an IP 
address), so it queries a local DNS server to find the correct IP address 
information for this domain name. 

3. The local DNS server (E) discovers its local cached copy of the DNS 
information for Host A has timed out (more on this in a moment), so it 
queries through the DNS system as needed (in this case to a recursive, 
or perhaps authoritative server), to find the correct IP address. 

4. The DNS query eventually recurses through to Host A’s local DNS 
server (C). 

5. A reply is sent back to the DNS server Server J originally queried (E). 
6. This response is transmitted to J, which builds the correct local DNS to 

IP address mapping. 
7. Server J now builds and transmits the packet originally destined to 

Host A. 
The key point in the operation of DDNS is the amount of time each DNS 
server in the system—here Servers D and E—will keep the DNS to IP address 
mapping cached for future use. Normally, to reduce load, DNS servers will 
cache these mappings for some relatively long period of time, on the order of 
24 hours. In the case of DDNS, the cache needs to (generally) be set low so 
that changes in the IP address of the mobile host are accurately reflected in 
the DNS system as soon as possible. Most of the time, DNS entries for DDNS 
are cached for a very short period of time, on the order of seconds, or they 
are not cached at all. 



Final Thoughts on Mobility Solutions 
To reemphasize a point made in the introduction, notice that each of these 
mobility solutions adds additional state someplace in the network. This might 
be said to be a more specific instance of the state versus stretch rule 
discussed in Chapter 14, “Considering Complexity”—and it’s also a solid 
lesson in the concept of mobility in general. Every new mobility technology 
must perform the same actions in some way, and each of these actions 
require state of some sort to be stored someplace. It’s important to ask 
where this state is stored, and how it’s managed. 
Given the available options, which one should you deploy? The answer 
depends on a fairly simple set of questions: 

 Which one is available on the platforms and devices you’ll be 
deploying? 

 Which one stores state in a way that makes sense for your 
application and network? If a mobility system requires state to be 
carried in the control plane across your network core, it’s probably 
not going to scale in the long term (unless you have a tightly 
controlled set of conditions under which new devices can be added 
to the mobility solution). 

 Which one meets the requirements of your application? If you 
need fast convergence, you’ll probably need to find a way to 
support the required state, regardless of whether it’s optimal for 
your network design. 

 What is the scope of the mobility solution in the network? If the 
entire mobility solution can be contained in a small topological 
region of the network, you can control the spread of state in a way 
that effectively counters otherwise difficult scaling issues. 

Remote Access Solutions 
Mobility within a network is only one part of the problem facing network 
architects today—another entire realm of mobility is providing connectivity 
for hosts attached from the outside, such as through a mobile phone network 
or the Internet. The challenges in this space are far different from those 
designers face in the data center, network edge, or network core. 
Remote access solutions span the scope from virtual desktop (VDI) to web-
based access to some specific resources (through secure sockets, or SSL), to 
virtual private networks (VPN) that allow access to any resource anyplace on 
the network. Which of these is the right solution? It all depends on the needs 
of your users when they are out of the office. 
The following sections cover several areas network architects need to take 
into account when designing for, or around, remote access solutions. 

Separate Network Access from Application Access 
Providing access to remote users doesn’t always mean providing access to 
the network—it can mean providing access to just a handful of applications 



resident on the network. The first point to consider, then, when building a 
remote access solution, is to separate network access from application 
access. 
Many designers start by assuming users need access to the network, 
including every application, remote access to file services—that users need to 
be able to access the network outside work in the same way they would 
inside work. This is a false assumption; most users don’t want access to the 
network, but rather a specific set of applications residing on the network. 
So the first step in determining how to best provide for remote access is to 
divide the concept of network access from the concept of application access. 
By focusing on application access, network designers can focus their efforts 
on providing what 80% of the users need for their day-to-day work, and then 
solve the remaining 20% using more complex solutions. 
Email, most file shares, and many corporate applications could be made 
available through a web-based interface that is accessible through an SSL 
interface that doesn’t force the user to dedicate the entire machine to the 
VPN process. If the application is running remotely, there is no reason to 
restrict access to local printers, ports, storage, or other resources, making 
the user experience much more seamless. These interfaces may not provide 
the full “at work” experience, but they often allow users to blend their 
personal lives with work in a way that reflects in the overall experience of the 
employee, raising productivity and loyalty. 
When should you consider a full-on VPN solution? Two specific situations 
suggest full VPN connectivity. 
The first is applications that simply can’t be remotely accessed through a web 
or remote-friendly interface—or applications where it makes no sense, from a 
data flow perspective, to do so. The sheer size of the data transferred in 
order to replicate a remote environment locally can easily be larger than the 
data being manipulated. 
The second is when the number of individual application access methods 
becomes more complex than the single network access method. If every 
employee must access 10 or 15 applications in the course of the employee’s 
daily work, and each of these applications requires a different remote access 
process at the application level, it may quickly become cheaper and easier to 
manage a single network-level remote access system than a wide array of 
applications, each with its own remote access. 

Consider Cloud-Based Solutions 
A second point to consider in the world of remote access is the growing 
prevalence of cloud-based solutions to specific applications. Offloading an 
application to a cloud-based service allows you to separate the application 
from the network entirely, allowing partners and roaming employees to 
access the application without any VPN access at all, whether application or 
network level. There are, of course, trade-offs to be considered when moving 
an application to a cloud-based provider. (See Chapter 16, “On 
Psychologists, Unicorns, and Clouds,” for a more detailed look.) Two crucial 
questions are 



 How can the identity of a user be unified between the cloud-based 
service and internal network access? Resetting or changing the 
password on the internal network should somehow carry over to 
the cloud-based service; otherwise, you and your users must 
manage a menagerie of usernames and passwords. One possible 
solution to this problem is to build or take advantage of interfaces 
that allow credentials to be dynamically shared between different 
systems. An example of this type of interface is the Learning Tools 
Interoperability (LTI) project, which allows an external tool (such 
as Big Blue Button) to access the username and password 
credentials contained in a learning management tool (such as 
Moodle). 

 How can corporate information be kept private in the cloud? 
Architects should be concerned about protecting corporate 
information in any cloud-based environment, from physical 
security through holes in the cloud-based authentication system, 
access by employees of the cloud provider, and many other 
issues. 

It might seem like removing the VPN interface between the user and an 
application is a step down in security, but this isn’t necessarily so—placing an 
application that needs to be accessed by employees and partners into the 
cloud might simplify security in many ways, and simplify network operation. 

Keep Flexibility as a Goal 
One of the major obstacles facing network architects in the space of remote 
access is the specificity of each possible solution. A remote access system 
designed for one email system might need to be completely scrapped when 
that email system is replaced with another. A VPN solution that’s running 
well might need to be completely replaced when the hardware supporting it 
is moved to end of life status, or the company changes primary vendors. 
A major consideration in remote access, then, must be flexibility in the face 
of change. Even if the entire backend must change, the user experience 
should stay as close to the same as possible. In many situations, this will 
mean not being able to solve every possible problem, or making the user 
experience all it might be, but rather balancing between the ability to 
migrate easily and current functionality. 
If the application environment is changing constantly, a network-level VPN 
service might be best. On the other hand, if the network is always changing, 
individual application-level access might be best. 

 

Virtual Desktop Solutions 
One common solution in the remote access space is Virtual Desktop 
Interface (VDI);Figure 15-7 illustrates. 



 

Figure 15-7 Virtual Desktop Interface Solution 

A VDI system works in this way: 
 The end user logs in to a server that kicks off a virtual 

machine. This virtual machine often loads a set of user-specific 
configurations and opens as a desktop within the user’s 
desktop (a desktop within a desktop). 

 The user opens applications, such as word processing and web 
browsers, that are displayed on this remote virtual desktop. 

 As the user modifies the desktop, opening and editing files, 
opening web pages, and so on, the modifications to the screen 
on the virtual machine are transmitted over the network to the 
end user’s machine, where they are displayed in the desktop 
within a desktop. 

 The user’s keystrokes and mouse movements are also 
transmitted over the network, so they appear to be local 
actions on the virtual machine. 

In this way, the end user can manipulate data stored on the data 
server without having any actual access to the data from the end 
user’s computer. Because data is not stored locally on the user’s 
machine, it cannot (in theory) be downloaded, so there is no local 
information that can be stolen or otherwise compromised. This is an 
attractive solution for highly secure environments—or when the 
network managers want to provide remote access without worrying 
about the security or software installed on the end user’s computer. 
Remote VDI provides a solid solution to the use of personal equipment 
in a corporate environment. But there are trade-offs and problems, as 
always. 
The first point to consider is the amount of data being transmitted to 
the virtual machine versus the amount of data being transmitted to 
the end user’s desktop within a desktop. For instance, consider the 
case of a user editing a word processing document stored on the data 
server. The information transmitted between the data server and the 
virtual machine is mostly just text, along with some embedded 
images. The information transmitted between the virtual machine and 
the end user’s desktop within a desktop, however, is each screen 



modification, each keystroke, and each mouse movement. Essentially, 
we’ve converted text data into a video stream with near real-time 
feedback—so the bandwidth requirements for editing a text file 
suddenly become the same as watching a video. It’s important to 
consider this as a trade-off when considering remote access through a 
VDI solution. 
The second point to consider is how this relaying of information 
impacts quality of service—and application performance in a more 
general sense. For instance, assume the user opens a video 
conferencing package on the virtual machine and starts a video call. 
The video between the virtual machine and the data server serving 
the call is probably highly compressed, and the quality of service 
within the network configured to provide the right service level to the 
video traffic. Once this video stream is displayed on the virtual 
machine, it is suddenly placed inside a virtual desktop data stream, 
which will look just like the data stream of a user doing word 
processing. If you give the VDI data stream the same quality of 
service parameters as a video stream, you could well be eating a lot 
of queue space for word processing. If you give the VDI data stream 
the same quality of service parameters as a word processing 
application, carrying video from the remote virtual desktop to the 
user’s actual desktop might not work so well. And then there’s that 
public network in the middle. How can you control the user’s 
experience across the Internet? Not very well. 
Increased bandwidth consumption, quality of service, compressed 
data that becomes uncompressed, and controlling the user 
experience—are these good trade-offs to make against data and 
network protection? Because every situation is different, it’s hard to 
give a general answer. But network architects should be aware of 
these issues and design their network around them. 

 

Consider Total Cost 
It’s often easy to overlook the cost of creating and supporting remote access 
solutions. How much, for instance, does a single call into your technical 
assistance center cost? How many calls will be generated in a remote access 
system by issues that cannot be controlled by your network operations folks, 
such as dropped traffic across the Internet, local computer problems, and so 
on? How much will it cost in lost employee time when the remote user’s 
access to the solution is unavailable? 
Other hidden costs you should consider include the following: 

 The cost of transporting desktop screenshots across a network 
(see the previous sidebar on VDI solutions). 

 The added complexity of quality of service configuration and 
management (see the previous sidebar on VDI solutions). 

 The trade-off between removing local access and loss of 
productivity. Many companies block employee access to local 



resources, such as printers and network attached storage, when 
the user is “dialed in” to a VPN service at the network level. Some 
companies even block access to all personal email, or all email 
services outside the corporate network, when the user is “dialed 
in.” There are (sometimes) good reasons for doing this, 
specifically around the capability of a user’s session being hijacked 
and used as a back door into the corporate network. There are, 
however, costs in terms of productivity. Each time the user wants 
to print out a document, the user must sign out, print, and then 
sign back in—a process that’s not only disruptive to work flow, but 
also to online presence and availability. 

Total cost not only needs to include the easier-to-measure budgetary 
impacts, but also costs to productivity, network operations, bandwidth 
requirements, and so on. 

Consider Making Remote Access the Norm 
One option in the remote access space is to unify all network and application 
access, no matter how the user is connected, through the remote access 
system. Although this might seem like a daunting task at first, or even 
possibly a nonsensical idea, it’s actually a fairly realistic option in many 
situations. Making users access internal resources and applications through 
the same system, no matter where they are physically located, results in the 
following: 

 It unifies user access across the enterprise. By making remote 
access the norm, you can force all authentication through a 
smaller, and more uniform, set of systems. Physical security 
onsite, when it comes to open Ethernet ports and wireless access, 
becomes less of an issue. This separation of the physical from the 
logical can sometimes pay huge dividends in simplification. 

 It focuses access on a smaller set of systems, hence decreasing 
the attack surface of the enterprise. By focusing access on a few 
gateways into applications or the network at large, you can 
actually decrease the overall attack surface of the enterprise at 
large, allowing you to focus on a smaller set of problems and 
deploy a smaller set of solutions. 

 It unifies user experience across the enterprise. By unifying all 
access through systems that would normally be used for remote 
access, you inject a level of discipline into network operations and 
design that brings the experience of remote users into sharper 
focus, forcing the design to deal with remote access more fully. 
This, in turn, puts systems in place that allow more flexibility in 
siting and managing the workforce, with all the attendant benefits 
from a hiring, staffing, and quality of life perspective that brings. 

In the end, it’s worth considering unifying all application access through what 
would traditionally be considered remote access solutions for at least some 
large part of the enterprise users. Consistency can breed flexibility in these 
areas. 



What Solution Should You Deliver? 
Should you deliver remote access through SSL, IPsec, VDI, by transferring 
some applications to a cloud provider, or what? The bottom line is to 
consider each application separately. Provide 80% of your users’ needs 
through application level access, using federated identity solutions to provide 
seamless credentials. Provide the rest of the requirements through a tightly 
controlled network level VPN service. 
  



 
 

Chapter 16. On Psychologists, Unicorns, and 
Clouds 

There is an old joke that runs something like this: What is the difference 
between a neurotic, a psychotic, and a psychologist? Neurotics build castles 
in the sky, while psychotics live in them. Psychologists collect the rent. In 
networking terms, then, business managers dream of clouds that will resolve 
all their network problems, network engineers actually build these clouds, 
and service providers collect the rent. 
At press time, it certainly does look like “the cloud” is taking over. Personal 
computer sales are collapsing, while the sales of mobile devices are reaching 
new highs. Companies are looking to “the cloud” to simplify their information 
technology infrastructures everywhere from networking to applications. Just 
dream up an application you need, build it, put it on a server someplace in 
the Internet (or private cloud), and you’re done. 
Sounds simple, right? Perhaps it’s a little too simple—from unicorns to 
clouds, a general rule is: if it sounds too good to be true, it is. 
The bottom line is that cloud is good for some things and not so good for 
others. 
So networking professionals, from engineering to architecture, shouldn’t 
panic. What goes around comes around. As an example, consider the case of 
the collapsing computer sales. The underlying reality is that there have 
always been more consumers of data than creators. One person makes a 
movie and thousands (or millions) watch it. 
Precloud, there wasn’t much difference between devices that could create 
content and devices that could consume it. The hardware needed for creating 
a movie wasn’t that much different from the hardware needed for watching 
one—and the personal computer was, in fact, the smallest and most practical 
form factor that could do both. 
The “mobile revolution,” in partnership with “the cloud,” has effectively split 
the creators from the consumers, in terms of hardware. Creators need local 
processing, local storage, and wide open software that allows the creation 
and modification of a wide variety of mixed media. Think of the photographer 
who does in-depth photo retouching to bring out a unique style or the 
absolute best results on an individual basis, or a movie creator who builds 
unique and interesting environments from scratch, combining recorded 
video, computer generated graphics, and other elements. 
Content consumers download video, compressed and optimized for a 
particular device, or a book that has been marked up and managed to 
prevent sharing, or some other digital content. Even the quick snapshot—the 
phone picture type of content creation—falls into the realm of content 
consumption. The user takes a quick picture, and then uses software that will 



run across a predefined space of options to modify the image. The user is 
consuming the software, rather than creating in the larger sense. 
So now the creators—and the creative piece of our lives—have been split 
from the consumers—or the consuming part of our lives. The dream of 
replacing local storage and local processing with “the cloud,” is just that, a 
dream, so long as we value creativity and creation in the larger sense. 
Getting rid of a laptop in favor of a tablet might work for a CEO, who mostly 
creates through relationships rather than through content, but it will never 
be an option for authoring a book that’s different from anything that went 
before, or laying out a coffee table book full of images that doesn’t fall into 
one of the various “standard layouts” offered through a service. 
Pendulums swing, and to prove the point, we’ll start our examination of cloud 
computing with a look back through the history of information technology, so 
we can put it all in context. 

A Cloudy History 
In the beginning, there were mainframes. Network engineers were primarily 
folks who installed TN3270 cards in Z100 (and later Z250s!), strung 4-wire 
telephone cables to each workstation, and set up modems, multiplexers, and 
reverse multiplexers. Computers were big boxes that sat in special rooms; 
terminals were what you had on the desktop, and all computing, from 
processing to storage, happened in these rooms. Often these rooms had 
glass windows so “normal” people could walk by and envy the computer 
geeks working on all that massive—and massively interesting—equipment. 
Most information technology people loved this environment because IT was 
firmly in control of the entire computing environment. Terminals were too 
expensive for ordinary folks to buy—and what would you connect a terminal 
to if you had one anyway? 
In a way, this was the original cloud computing environment. 
Over time, personal computers replaced terminals. It wasn’t an easy 
transition—personal computers were purchased out of departmental budgets 
and hidden in closets so no one would know about them. Lotus 123 was 
installed, and data copied from the mainframe terminal into these 
spreadsheets so financial figures could be run. People bought and ran TRS-
80s at home to play text-based games loaded into memory from cassette 
drives. IT didn’t like the spread of information into devices they couldn’t 
control—so, eventually, the IT department moved in and took over the 
management and control of all those personal computers. 
The computing world entered the first phase of distributed computing, where 
data is stored and processed close to the user, rather than in a central 
location. We built Xerox Star networks on Thicknet, dropping heavy cables 
through vertical plenums in buildings that were never designed for this type 
of cabling, tapping the cable to run Thinnet to individual workstations. Or we 
would install ARCnet over the exiting 4-wire telephone lines using equipment 
that would need to be replaced after every lightning storm. 
When John needed to share a file, or a set of files for a project, with Jane, we 
added file servers—and from file servers came database servers, 



middleware, SQL, and an entire world of centralized databases. The IT world 
moved all the data back into central data stores, and the computing world 
began its second centralization phase. Minicomputers and mainframes were 
back in style, only accessed through middleware. We were going to “right 
size” data processing at last, putting the right processing and the right data 
in the right places all the time. 
But then mobility took off. Laptops replaced desktops, and personal data 
assistants came in alongside mobile phones (at least until the mobile phones 
took over). Wireless networks extended the range of high-speed local 
networks, and the Internet drove content “online,” making things easier to 
find from anywhere. Software and data returned to local storage, and the 
computing industry entered its second decentralization phase. 
Today, mobility has taken the driver’s seat in computing; people want their 
data all the time, anywhere they are. But the devices we want this data on 
don’t have the computing power to store and process all that information. So 
we return to the mainframe again—only this time we call it “the 
cloud.” Figure 16-1 illustrates this swing between centralized and 
decentralized through the history of computing. 

 

Figure 16-1 Cycles of Centralization and Decentralization 

What’s the point of this history? To point out that we’ve been through all this 
before. We’ve centralized because computing power was expensive and data 
was easier to control. We’ve decentralized because computing power was 
cheap, and local data facilitates more creative uses of data, more personal 
ownership, and faster processing. Now we’re centralizing because, once 
again, computing power in the sizes of devices we prefer is expensive, and 
because centralized control of data is better for various commercial interests 
(content creators, in this case). 
Centralization is going to protect our data, decentralization is going to give 
us productivity. Centralization is going to make computing cheaper, 
decentralization is going to make computing ubiquitous. The pendulum 
swings back and forth—and it’s not going to stop swinging on this pass 
through the arc anymore than it has in the past. 



Maybe it’s time for the computing world to look at the problem a little 
differently. It’s fun to chase the fashion world’s changing hem lines and tie 
widths; it’s not so much fun to chase our data into and out of distributed 
systems. 
What is the right answer? 
How many balloons fit in a bag? 
It depends. 
To begin our investigation into cloud computing, let’s start by trying to 
understand how it’s different from all the past attempts to centralize 
computing. 

This Time It’s Different 
For a thousand years, people have been trying to discover a process that will 
convert lead to gold—and it’s never worked. But this time it’s different. 
For two hundred years, people have been trying to invent a perpetual motion 
machine—and it’s never worked. But this time it’s different. 
For hundreds of years, people have been trying to regulate economies 
“scientifically” to produce the “best results”—and it’s never worked. But this 
time it’s different. 
For twenty years, people have been trying to centralize processing and 
storage—and every time we’ve gone back to decentralized processing and 
storage. 
Shouldn’t we ask why it’s different this time? 
The primary difference is that cloud computing is designed to package and 
manage computing services as a commodity. Treating computing power and 
storage as a commodity allows services to be narrowly focused and priced 
based on volume and usage patterns, rather than on the customized needs 
of a particular business. In the customized world of IT we live in today, 
software and data storage is built based on the requirements of a particular 
business (or business unit). In the commoditized world of IT that cloud 
computing represents, it’s up to you to find the set of services from those 
available that will best fulfill your needs. It’s the difference between buying a 
car that’s been completely customized for your tastes and purposes and 
buying a car from among the models available on the lots of local dealerships 
right now. 
Commoditization isn’t, in and of itself, a bad thing. IT projects have a long 
and storied history of running over their budget and schedule—most of the 
time because the requirements are inevitably a moving target—much like 
building a car for someone who keeps discovering more things his car must 
be able to do. IT projects always start with a simple goal—I want to 
commute from home to work while using the smallest amount of gas 
possible. Then the buyer remembers he needs to be able to carry his kids to 
soccer games, adding four more people and a lot of equipment to the load. 
When the car is half built, he suddenly remembers the boat he was just 
about to buy, so the car has to be hastily refitted with a hitch and a new 
engine. 



Commoditization short circuits this process, enforcing discipline on the buyer. 
Various kinds of cars are available today—right now—at various dealers. The 
buyer needs to make a list of requirements, compare and contrast the 
available models against this list of requirements, determine which trade-offs 
make sense, and then make a purchasing decision. 
But commoditization also represents a trade-off. As commoditization sets in, 
choices narrow—and as choices narrow, the ability to differentiate your 
products and services, based on the data you manage and use on a daily 
basis as a part of your business processes, declines. One of the challenges, 
moving into a cloud-centric world, is going to be balancing between taking 
advantage of commoditization while holding on to the differentiation that 
makes your business unique. 
Don’t be fooled, at this point, by the old line, “We don’t sell information, we 
sell widgets.” No, you don’t sell widgets. Anyone can make widgets anyplace 
in the world and sell them anyplace else in the world. “Make a better mouse 
trap and the world will beat a path to your door,” is true only if you can 
actually build the better mouse trap (based on intellectual property), and the 
world can find out about your mouse trap. Information is integral to this 
process—and commoditizing information carries with it the risk of making 
your mouse trap that much less unique (in fact, as we’ll discuss in the 
section “What Are the Risks?”, you might be handing the information that 
makes your mouse trap unique to someone else along the way). 
So what’s the solution to this conundrum? The solution is to choose the right 
solution for each problem. The section “What’s It Good For?” covers some of 
the different types of cloud services, and where they might fit best. 
For the moment, let’s turn to the cost of cloud, to get a better grasp on how 
much commoditization is really going to save you. Or, perhaps, cost you. 

What Does It Cost? 
Do you know how much it would cost to move from an internal service to a 
cloud-based service for all your data processing needs? Do you really know 
the cost, or are you just guessing? Is cloud really cheaper? Let’s think 
through some of the costs to get a better handle on the things you need to 
look for when considering moving to a cloud-based service. 
First, remember that the network still isn’t free. Delivering data from a 
remote hard drive to local memory and computing power requires hardware, 
power, skills, management—everything you think of when you think about 
running a network. Outsourcing data processing to a cloud puts all this work 
into a black box, so it doesn’t look complex—but don’t be fooled into thinking 
all that work still doesn’t need to be done. Someone has to pay for the 
network between you and your data. And that someone is going to be you, 
no matter how you slice it. 
Second, remember that you can’t outsource all the complexity in your 
network. Data is separated through virtualization to support different access 
policies and varying quality of service requirements in your network today. 
Access is controlled through AAA mechanisms, traffic flows are analyzed, 
intrusion detection systems are deployed to detect and shut down attacks 



and virus incursions, and a thousand other things need to be done. 
Outsourcing your data to a cloud provider isn’t going to change any of these 
things. 
Third, remember that outsourcing data and processing is always a trade-off. 
Sometimes that trade-off results in a win/win, sometimes a win/lose, and 
sometimes a lose/lose. There are costs associated with pushing data and 
processing to a cloud that might not be apparent or easy to account for. 
Managing SLAs and relationships are not cost-free or simple activities. 
By outsourcing IT services, you are reducing complexity in one place at the 
cost of increased complexity elsewhere. These things aren’t easy to measure 
and quantify, but they are important to consider. 

What Are the Risks? 
The primary risks you need to think through when moving to a cloud 
environment are security and accessibility. Much has been made of the 
security issue within the cloud environment, but it’s far from a solved 
problem. Should data that’s stored offsite in a cloud provider’s network be 
encrypted? Should you turn off your engine before you start filling your car 
with gas? 
But making certain data stored in a cloud is encrypted isn’t enough—what 
type of encryption is in use, and who has the key? A general rule, in terms of 
encrypted data, is that if you don’t have the key, the data might as well not 
be encrypted. Whoever owns the key, in essence, owns the data. In practical 
terms, this means that you need to make certain applications you use that 
store data on the cloud store that data in an encrypted format. 
Why is this important? Consider what happens when a cloud provider swaps 
the physical media they use to store data in their server. Are the old hard 
drives (or other media) properly handled to ensure your data isn’t exposed or 
compromised? What about if a tornado comes through and knocks the walls 
out of the provider’s building, leaving hard drives scattered all over parking 
lots. Can someone pick a hard drive up and reconstruct the information on 
which you base your business? The only way to be certain of the answers to 
these questions is to encrypt your data before you hand it over to a cloud 
services provider to store it. 
Encryption is important for data being carried to and from the cloud service, 
as well; data that would normally be protected by ensuring it only crosses 
links and devices you control should now be encrypted as it passes to and 
from a cloud service. 
There is a flip side to this equation, of course—while centralized data is 
easier to attack, it’s also easier to defend. Remember that villages built 
castles in the Middle Ages for a reason. By gathering together in a single 
place behind well-fortified walls, they could reduce their defensive perimeter, 
making defense much easier than offense. Information stored in a cloud 
system might be easier to find and attack, but it may also be defended by a 
set of services and controls that you can’t afford to build into your local 
network. Both sides of this coin need to be considered to make an intelligent 
decision. 



Another security issue that’s often overlooked is how the provider will treat, 
or use, your data. One way to reduce the costs of providing an application or 
service is to mine the data stored in your service to create value that can 
then be sold. For instance, if you outsource your email services to a cloud 
provider, one question you should ask is whether the provider plans to mine 
the emails passing through the provider to discover information that can be 
sold to a third party. The capability of data analysis algorithms to find trends 
and facts you, yourself, aren’t aware of could pose a risk of leaking 
information about business plans, supplier issues, and other material. 
If the service is free, you are the product. If the service costs less than it 
should (in relation to the actual infrastructure and management required to 
provide the service), the provider must be offsetting that cost in some way—
probably through selling information gleaned from examining your data as it 
passes across the provider’s network. 
Risks in the cloud space don’t end with security concerns—anytime you 
outsource any service, you’re going to need to deal with the problems 
associated with the friction between two different organizations with two 
different sets of goals. If the service provided through the cloud is simple, 
more akin to providing coffee to break rooms than the complex contracts 
associated with information technology outsourcing, then moving information 
into the cloud can externalize political issues, making them simpler to 
resolve. If the services being placed into the cloud are complex, however, 
contracting out the development of a new internal software system might 
end up looking simple in the end. 
The key is to determine the right level of care and feeding a particular cloud 
service is going to need. Don’t assume that cloud computing, because it 
represents a commodity model of purchasing storage, data processing, or 
even application services, will let you off the hook of doing the work normally 
associated with outsourcing some part of your network or IT infrastructure. 
In short—there ain’t no such thing as a free lunch (TANSTAAFL—with a bow 
to Robert Heinlein)! 

What Problems Can Cloud Solve Well? 
To understand what problems cloud is good at solving, we need to consider 
some specific aspects of the way cloud services interact with existing 
infrastructures and business processes. 
First, because cloud is designed to be a commodity service, cloud is going to 
be good at cutting costs for those pieces of your business that don’t really 
provide competitive differentiation. For instance, if you sell books, there are 
only so many ways that books can be distributed to buyers—the scope of the 
problem is limited by the delivery systems to which your customers are 
connected and by the software and operating systems your customers have 
available to them. Cloud services of various types can simplify the 
distribution of your books (unless distribution is really a competitive 
differentiator in your line of business), cutting distribution costs to a minimal 
level while reaching the broadest possible audience. 



To extend the advantages cloud gains through being a commodity service—
cloud separates your business operations from the risks and complexity of 
managing low-level systems by converting them into a service. This means 
you don’t need to think about how much storage capacity you’ll need in a 
year, for instance; that problem is abstracted behind the commodity 
interface of a cloud service. You can think of a cloud service as an abstracted 
“black box,” separate from the failure domains and complexity of your 
network. 
Second, for services that interact with individual mobile devices, it’s 
important to keep in mind that most of the networks mobile devices connect 
to are designed to download data, rather than upload it. In the mobile world, 
cloud services are going to be better at distributing data than they are at 
collecting it. The type of data is going to matter, of course—small files, 
simple responses on forms, and the like are perfectly suited to a cloud 
environment. An application that uploads large amounts of high-quality video 
probably isn’t as well suited for cloud services. 
Finally, data that’s put into the cloud—at least in the case of public cloud 
services—is available (in theory), anywhere and anytime. Again, this points 
to public cloud services being very useful for data distribution or low 
overhead data collection services. On the other hand, if the data is available 
anytime from anywhere, you suddenly have a huge attack surface to 
manage—this probably isn’t a good thing. We’ll say more about how cloud 
services interact with attack surfaces in the section “Cloud Deployment.” 
Now let’s move from what cloud services are good at to what they are good 
for. 

What Services Is Cloud Good at Providing? 
There’s not, of course, a single answer to this question—so we’re going to 
give you a bunch of different answers. Most of these answers revolve around 
the way the cloud is built, or a generic “class of service,” that the cloud 
provider offers. It’s more interesting to think of cloud services as quasi-
commodity; like buying a car, or a new set of clothes, there are varying 
degrees of customization, service levels, and price ranges available. In the 
following sections, we consider several situations where cloud services might 
be useful. 

Storage 
Storage is already common enough on the cloud that there’s little to be said 
about it—from backup to synchronized drives to cold storage, there’s little 
that isn’t available in the realm of storage in the world of cloud computing. 
The attractive qualities of cloud-based storage solutions are these: 

 The data stored in a cloud service is accessible from anywhere, so 
cloud services are often an easy way to provide for widely 
diversified data replication. 

 The data stored in a cloud service is generally backed up and well 
managed. 



There are downsides, of course, including these: 
 The cost of cloud-based data storage can still be very high 

compared to buying the hardware to support the same storage 
requirements on local drives. 

 The cost of the network must be factored in, particularly in areas 
where network providers charge per unit of data transferred. Even 
when they don’t, transferring large amounts of data into a cloud-
based storage solution can be painful, taking up many hours (or 
days). 

 Delays in transferring data may cause backup solutions to be so 
far behind in their scheduling that the user still loses a large 
amount of data if local storage fails. A lot of solutions aren’t very 
transparent about how much of your local data is backed up, or 
how quickly backups can be made. 

 Your data is essentially unsecure, no matter what the provider 
promises. If you don’t hold the key to the encryption process, your 
data is at risk—no matter how much encryption is provided 
elsewhere. 

For an enterprise (or small business), cloud-based storage solutions can 
provide effective access to files collected for projects; combined with a solid 
versioning and check in/check out system, cloud-based storage can provide 
universal access to documents that need to be shared in near real time. So 
long as the security aspects are handled correctly, cloud-based storage can 
be an effective solution for a wide array of problems. 

Content Distribution 
Cloud tends to be a really good distribution channel because most service 
provider networks are designed to provide a lot more download bandwidth 
than upload. Movies, music, and books are increasingly placed on cloud-
based services for distribution to a wide array of end customers (or 
consumers). A less well-known area of cloud content distribution is software; 
a number of companies are distributing software on a subscription basis, 
keeping applications installed on local devices updated, and managing the 
transfer of small amounts of data (such as highlights in a book) across 
multiple platforms. 
For an enterprise, this type of service might be ideal to manage the 
applications installed on thousands of devices scattered across a wide 
geographical area. The downside of this type of installation is the loss of 
control over environment and content an enterprise might encounter. 

Database Services 
Storage and distribution can morph into database storage with some 
additional intelligence. Like other data stored on a cloud provider connected 
to the public Internet, a database, and the logic embedded in the database, 
can be accessed from applications installed and managed on a wide array of 
devices scattered all over the globe. The security considerations discussed in 
regard to cloud storage solutions will apply to cloud-based database 



solutions, as well—think about who holds the encryption key and what the 
trust model looks like. 
An example would be a database system that’s accessible over the global 
Internet. Application creators might use this service to store high scores in a 
shared gaming environment, or the locations of every coffee shop in the 
United States for a mapping software package, or some other data. The 
developer builds an application (or app) that retrieves information from this 
globally available database, allowing the information to be stored once and 
retrieved many times. 

Application Services 
An example of an application service provided over a public cloud might be 
an email system that offers a web-based interface instead of (or in addition 
to) an interface that local email clients would use to send and receive 
messages. Application services often work best when the flow of data is more 
download than upload, because edge networks are often optimized to provide 
optimal download services. Application services rely on the cloud for 
processing power as well as storage. Public application services can be used 
to support applications and processing that isn’t unique, or can be easily 
commoditized—where one or two sizes fit all. 
An example of a private application service might be a custom application to 
support technicians who travel around the world working on a specific type of 
computer system. This application might include data, such as diagrams, 
specifications, and spare parts information, but also an interactive 
troubleshooting and repair system. 

Network Services 
Network services are an old, but new, entry in the field of cloud. A VPN 
concentrator that allows users from all over the world to connect to a cloud 
service, and then tunnel into a corporate network, is one example. Another 
example of network service provided over a private cloud might be DDoS 
mitigation; traffic is redirected into the service, “scrubbed” to remove attack 
traffic, and then carried over the Internet or through a private peering point 
back to the original destination. 
The key selling point for these types of services is the relatively high 
concentration of specialized equipment and expertise required to deal with 
the problem at hand. Hard problems that require specialized equipment and 
deep expertise are likely candidates for transitioning to this type of service. 
Security is a primary consideration in deploying cloud-based networking 
services. Who gets to look at your traffic, and what do they do with the 
information they find? Management is another issue; what is the impact on 
your ability to accurately measure traffic flow and trends if you’re pushing 
your inbound traffic through a DDoS mitigation service? 



Deploying Cloud 
One of the key points vendors will make in selling a cloud service is the ease 
with which cloud services can be deployed and managed—but it’s important 
to keep telling yourself, “There is no such thing as a free lunch.” Let’s think 
through some of the issues you need to consider when deploying an 
application or service in the cloud. 

How Hard Is Undoing the Deployment? 
Data mobility is a concern for both Software as a Service (SaaS) and 
Infrastructure as a Service (IaaS) cloud services—after you get your data in, 
how easy is it to get your data out? If you build up a lot of information about 
customers, suppliers, products, and leads in a cloud-based sales 
management application, for instance, what happens to all that data when 
you decide it’s time to switch? 

 How long does it take to get the data out? 
 How much does it cost to get the data out? 
 Will referential integrity be maintained between related tables or 

information? 
 What happens to binary and custom data fields when the data is 

pulled out? 
 What happens to customized business logic if the data is pulled 

out? How can this be captured? 
 When considering outsourcing, consider the service’s ability to 

export data. What formats does the service support? How long 
does it take to export the data? How much does it cost? 

How Will the Service Connect to My Network? 
“Well, you’re connected to the Internet, right? Then you’re connected to the 
cloud service!” It might sound that simple, but it rarely is that simple—
particularly for platform as a service (PaaS) and infrastructure as a service 
(IaaS) services. Databases must be built, applications written, and other 
“stuff” uploaded. If the application you’re building is “internal only,” designed 
to be built on a private cloud only for users connected to your network, how 
will your network connect to the private cloud service? 
Not only is security an issue here, but also simple things, such as IP 
addresses. Will the cloud provider address its resources within your private 
numbering plan? Does the provider use public address space, and how will 
that interact with your routing and network policy? 
These are areas where complexity can sneak up on you, so pay particular 
attention to connectivity issues before making a final decision on using (or 
moving to) a cloud service. 

How Does Security Work? 
Network architectures often rely on “defense in depth,” where policy is 
implemented in multiple places through the network. Defense in depth 



provides resilience in network security; the attacker who must move through 
multiple security points, each using a different type of security, is going to 
move more slowly. 
But defense in depth relies on the depth of the network to provide those 
policy implementation points. Moving to a cloud service, particularly in the 
case of public cloud services, means the security edge moves from your 
network to someone else’s—the only security mechanisms you have left are 
those built into the application. 
Don’t forget about traffic monitoring and attack detection, either. Normally, 
the depth of the network allows you to monitor traffic going to and coming 
from a service at some distance from the service itself, allowing you to put 
devices on which you can implement reactive security measures in front of 
the service itself. How will this work with a cloud-based service? Can you 
place virtual routers, switches, firewalls, or other devices in front of your 
virtual server? Will any of them do any good against attacks that eat the 
bandwidth between the rack and the physical server your service is running 
on? 

Systemic Interactions 
Finally, moving a single system or application to the cloud might be simple—
but what happens when another service moves to another cloud provider, 
and a third to a third cloud provider, and...? What will happen when you 
have a lot of different outsourced pieces that need to be managed—and what 
happens when a previously unthought of connection suddenly becomes 
obvious? After you’ve outsourced the service, how quickly can you really 
reconfigure it, or rebuild it on a different service? And how can the various 
services you’re putting into the cloud interconnect? 
Abstracting complexity out of your network is generally a good thing—until 
the abstraction ends up causing more complexity than it removes. It’s often 
hard to see these situations after you get trapped in the routine of dealing 
with it on a day-to-day basis, so you need to think this through as much as 
possible before building or moving services into the cloud. 

Flying Through the Cloud 
Now that we’ve looked at the cloud as an abstraction—a set of services with 
attendant advantages, disadvantages, and risks—let’s lift the hood a little 
and try to understand just what a cloud service looks like. While the way in 
which a cloud service is built is as individual as the service provided by the 
cloud, there is a set of common themes running through storage, database, 
and application cloud services. Each of these services is generally built like a 
large multiprocessor system, with an operating system, a hardware interface, 
a set of interfaces, and a set of applications running on top. Figure 16-
2 illustrates. 



 

Figure 16-2 Cloud Components 

Components 
Each of the components in the application layer does pretty much what you 
would expect: running the actual applications sited on the cloud, providing a 
provisioning and management interface, and providing a public (or external) 
interface to users. The core is more interesting, containing the following: 

 The storage manager controls the location of data on physical 
storage units, which are connected to the processors across a 
network or fabric. The fabric used to connect storage and 
processors could be dedicated, or shared with network 
management and user access. Storage is normally divided from 
processing to allow more flexibility in placing workload on 
available processors, and to break storage and processor scaling 
into two different problems. Even in the cloud, failure domain 
separation is a solid design principle. 

 The network manager manages available bandwidth, connections, 
and quality of service to meet the needs of the cloud service. This 
service might be skinny, in the case where the distributed control 
plane within the network handles most of the control plane 
functions. In an SDN (see Chapter 17, “Software-Defined 
Networks,” for more information on SDNs), the network manager 
could be tightly integrated with the rest of the cloud operating 
system. 

 The virtual machine (VM) manager controls the VMs needed for 
applications and services running on the cloud. This includes the 
placement of these VMs (which physical processor or core the VM 
is placed on), the VM’s connection to storage, the amount of 
memory the VM may use, and other factors. 

 The image manager provides a library of images that can be 
loaded on a VM after it is spun up. An image may contain a base 
operating system, a set of applications, a set of mappings to a 



particular storage location, and other configuration elements 
stored as a part of each image. Images may be classified as 
publicly accessible, private, tied to a particular application or 
service, generic, or in other ways. 

These four elements, combined with the federated cloud interface, make up 
the core of the cloud operating system. In the operating system running on a 
desktop computer, these services might be implemented through a series of 
Dynamically Linked Libraries (DLLs) the operating system calls to perform 
certain functions. 
A scheduler is often included in a cloud operating system (although it may be 
contained within the VM manager). The scheduler may be considered part of 
the core or an application, depending on the specific cloud operating system 
deployed. As workload is placed on the cloud, the scheduler interacts with 
the storage, network, VM, and image managers to determine when and 
where the application or other load can be run. 

Looking Back Over the Clouds 
Centralized computing and distributed computing—the information 
technology world has been shifting back and forth ever since the first screen 
of data was “scraped” off a terminal window to be processed with a 
spreadsheet running on a computer locked in a closet. Will we ever find the 
right answer? 
No, probably not. 
But asking the right questions can go a long way toward knowing which type 
of computing power is right for each specific problem at hand. Be open 
minded, think carefully about the costs, and don’t get crushed under the next 
swing of the pendulum. 
  



 

Chapter 17. Software-Defined Networks 

As networks have become both more crucial to business operations and more 
complex to operate, they have also become expensive to build and manage. 
This combination of realities has led the network world to seek solutions 
beyond the network management and protocol realms, specifically in a 
concept called the Software-Defined Network (SDN). In this chapter, we’ll 
begin with a discussion of what an SDN is, and present one specific 
taxonomy, or method of classifying SDNs. After this, we’ll discuss some 
business cases for SDNs. 

Understanding SDNs 
What, precisely, is an SDN? What sort of framework can we use to 
understand how an SDN works and what it does? This section is one set of 
answers to these two fundamental questions—a number of other answers to 
these questions are available, as well, but the definitions here are attuned to 
the interaction between design, business, and the network. 

A Proposed Definition 
An SDN can be defined as a network where there is an application 
programming interface (API) into the network that allows applications to both 
understand and react to the state of the network in near real time. Isn’t this 
the job of network management? Three specific points separate network 
management from SDNs: 

 SDNs are an interface into the network rather than individual 
network components. 

 SDNs interact directly with some level of the data plane (or the 
forwarding table) rather than primarily the configuration and 
current state. 

 SDNs focus on the forwarding of traffic through the network, or 
the control plane, rather than on “whole box health.” 

Although it’s difficult to precisely define what an SDN is, it’s even more 
difficult to classify SDNs, or to determine what is “in” the SDN world and 
what is “out.” Are implementations that centralize all control, taking the role 
of distributed control planes over completely, the only “real” SDNs? What 
about applications that modify traffic forwarding by installing static routes 
through the command-line interface? 

A Proposed Framework 
The framework presented here isn’t designed to replace all other possible 
taxonomies, but rather to provide one view of the SDN world that might 
prove to be useful, particularly to network designers and architects. Rather 
than focusing on the bits and bytes of how each proposed solution works, 



this model attempts to expose how any particular solution interacts with 
applications and other network elements. 
This framework is based on two points: 

 Where the SDN injects information into routers and switches 
(forwarding devices) 

 How the information injected by the SDN interacts with other 
control planes 

Figure 17-1 provides the background for a discussion about where 
information is injected into forwarding devices. 

 

Figure 17-1 Software-Defined Networking Frameworks 

Four models are presented here: 
 The Distributed model ties the forwarding hardware to a fully 

distributed control plane. 
 The Augmented model uses a fully onboard control plane that is 

augmented, or managed, in some way by off-device processes. 
 The Hybrid model uses on and off box processes in parallel. 
 The Replace model moves the control plane completely off the 

forwarding devices and into off-box processes. 
Each of these models is described in more detail in the following sections. 

The Distributed Model 

The Distributed model within this framework isn’t really considered a form of 
SDN because it doesn’t meet the core tests. There is no API into the control 
plane that is designed to provide a tight loop between applications and the 
forwarding of traffic through the network. The lack of such an interface 
means there is no way to distribute policy at the forwarding level either at 
the routing protocol, routing table, or forwarding table in any or all devices in 
the network. Examining this model in some detail will help us understand the 
remaining models, however. 
Although we tend to think of a router or switch as a hardware/software 
combination that all works as one unit, the reality is far different. Within 
most modern routers and switches there is a clear separation between the 
control and data planes. Figure 17-2 provides an overview of the architecture 
of most modern routers and switches. 



 

Figure 17-2 Model of Router Operation 

To follow a single packet as it is switched through the device illustrated 
in Figure 17-2: 

1. The packet enters at Physical Interface A, which is responsible for 
reading the packet off the media into local memory (normally this 
memory is located on a line card). 

2. Physical Interface A then sends a software signal (an interrupt) to 
Local Processor A noting that a new packet is available for processing. 

3. Local Processor A looks in a local table to determine the correct 
outbound interface and line card. If this information isn’t available in a 
local table (if the local table happens to be a cache), then the packet 
(or information about the packet) must be punted to the Route 
Processor to create the correct entries in the local table; this is called 
a punt. Most modern routers do not punt packets. 

4. Local Processor A replaces the current packet header with a new one 
appropriate for the outbound physical link (this is called the MAC 
header rewrite). 

5. The packet is placed on the backplane so it can be transported to 
Local Processor B, where it is read off the backplane into memory local 
to the line card. 

6. Local Processor B performs any additional processing required, and 
places the packet onto the correct queue for output. 

7. Physical Interface B reads the packet from memory and onto the 
physical media. 

The route processor, the actual set of processes on which the distributed 
control plane protocols (such as EIGRP and OSPF) run, doesn’t normally 
participate in the switching of packets from one interface to another, but it 
does run on hardware that is “just across the bus” from where packet 



switching is done. This tight coupling between the control plane and data 
plane hardware provides some advantages, including very short delays 
between the control and data plane, allowing the control plane to interact 
with the data plane in near real time. The distribution of network state 
throughout the network also makes it possible for the control plane to react 
to changes in the network topology in near real time. 
The negative impacts of tightly coupling the control plane and the data plane 
and distributing control plane data across the entire network are the 
following: 

 A single view of the network—end-to-end, application to 
transport—doesn’t exist on any single device anywhere in a 
distributed control plane, making it difficult to understand and 
adjust network conditions as a whole on a near real-time basis. 

 Policy, or rather exceptions to the normal routing rules, must 
follow the distributed control plane throughout the network in the 
form of configuration on individual routes and switches. There is 
no single place or “control point” where policy can be injected so it 
is applied in the right places, at the right time. 

The first step in moving from a fully distributed model to some form of SDN 
is to move some part of the control plane out of the physical device where 
packets are switched—to break the tight coupling between the data and 
control planes. The amount and type of separation imposed by any given 
SDN model will vary, but an SDN will always have more distance between 
the control and data planes than a fully distributed model. 

The Augmented Model 

The Augmented model provides an outside element of visibility and control to 
a limited part of the network (typically one, or a handful, of routers), using a 
disparate set of tools. Normally, distributed routing is augmented by 
modifying the configuration of policy on individual devices, which then 
impacts the operation of the distributed control plane in some way. 
Consider, for example, devices that react to inbound Denial of Service (DoS) 
attacks by injecting information in the routing protocol to block the attack 
traffic at all inbound edges simultaneously. Such a device would run a 
routing protocol, like BGP, solely for the purpose of injecting policy 
information into the routing system, not to provide reachability information. 
Another example would be a device that monitors several available links for 
performance, cost, and other factors, and then uses various means to 
configure static routing information on a device to modify the path chosen. 
Cisco’s Performance Routing (PfR), for instance, is a second example, 
although PfR moves closer to the SDN realm than modifying route policies 
through filtering, or the injection of black hole routers. PfR uses a dedicated 
API to interact directly with the router. This dedicated API can be used to 
examine a narrow set of states within the router, such as specific routes or 
interface information, and to inject routes into the routing table (RIB) by 
creating static routes. 



Because of its low impact on existing network control planes, and the narrow 
nature of its solution set, Augmented models are widely deployed in many 
networks. But is the Augmented model truly an SDN? While the lines have 
begun to blur, the narrowness of the feedback loop—it’s held to single 
applications in small sections of the network—would lead most engineers in 
the network world to conclude augmented control planes are not, in fact, a 
form of SDN. 
What we do see in the Augmented model is the idea of near real-time 
imposition of policy in near real time by devices that do not (fully) participate 
in the distributed control plane. This is the second step in moving from a 
distributed control plane implementation to some form of an SDN. 

The Hybrid Model 

The goal of the Hybrid model is to allow distributed routing to do the major 
work of building a loop-free topology and providing forwarding information 
for the majority of traffic, while allowing policy (exceptions to the loop-free 
topology for specific applications), to be managed in a more centralized 
manner. 
The Hybrid model combines the two steps we’ve covered thus far—moving at 
least some of the control plane into off-box processes with near real-time 
policy—so that applications can interact with the network directly. This is the 
first “real” SDN model with what can be classified as an API into the network, 
including a feedback loop and the availability of near real-time information on 
end-to-end conditions in the network. 
The Hybrid model opens an API into the RIB (and potentially the forwarding 
engine) directly, providing off-box processes the capability to interact with 
the routing table in the same way as distributed routing processes. The off-
box process essentially acts like another routing process, interacting with the 
RIB and other routing processes running on the device as a routing process. 
In this case, the API between the RIB and the routing processes is opened 
into, in effect, a Remote Procedure Call (RPC), so processes not located on 
the device can interact with the RIB directly. 
Direct RIB interaction not only allows the remote process to install routes in 
the routing table as a local process would, it also allows the remote process 
to redistribute routes to and from other routing processes through the RIB, 
and to discover each device’s view of the network topology from a local 
perspective. 

Interface to the Routing System (I2RS) 

One example of the Hybrid model is the RIB interface of the IETF’s Interface 
to the Routing System (I2RS). 



Note: I2RS is actually a superset of an Augmented model. Other interfaces 
include the ability to modify policy (or configuration, depending on your 
perspective), and route import/export.

 

I2RS’ RIB interface includes: 
 Route preference, so the RIB can decide which route among those 

offered by different routing protocols to install 
 Route metric, so multiple routes within the off-box routing process 

can be properly managed (including backup paths for fast reroute) 
 Route process identifiers, which makes it possible to redistribute 

between various on- and off-box routing processes 
 Interaction with route import and export 
 Interaction with VLANs, VRFs, and the like 
 Call backs for route installation, removal, and other events 

From the RIB’s perspective, the I2RS off-box process behaves precisely like 
an on-box process. The off-box process might be anything from a routing 
policy engine to a specialized implementation of BGP. 
Depending on any particular vendor’s implementation, it’s possible for the 
I2RS off-box process to have a local database of routes, like the BGP table, a 
link state LSDB, or an EIGRP topology table. This sort of local table would 
facilitate faster callbacks, installation of backup routes, redistribution events, 
and other interactions with the RIB, as well as providing a local source for 
the off-box’s RIB independent table for troubleshooting and management 
purposes. 

Cisco OnePK 

Another example of the Hybrid model is the Cisco’s OnePK interface 
(although OnePK could also be considered a superset of an SDN, rather than 
a pure example of one). The OnePK API is essentially a set of libraries a 
developer can pull into either a C compiler or a Java virtual machine 
environment that allows direct access to a number of data structures on a 
Cisco router. The data structures include the following: 

 The Routing Information Base (RIB) 
 Interface statistics and other information 
 Netflow information 
 Routing policy 

OnePK also allows for the interception of flows so the packets themselves can 
be modified. For instance, it’s possible to build a small application that 
intercepts the Telnet traffic passing through a router to make trivial changes, 
such as encrypting their contents. 
The pieces of OnePK that are most interesting from an SDN perspective are 
those that overlap with I2RS’ interaction with the routing table, above—
specifically, the capability to install routes in the routing table, examine the 



contents of the routing table, modify control plane policy, and other similar 
capabilities. 

Hybrid Mode and the Rope Problem 

The main drawback to hybrid mode is that it does, in fact, act just like an off-
box routing protocol—at least from the dynamic control plane’s perspective. 
Just like all other routing processes, then, any off-box hybrid mode controller 
must take into account existing routing conditions before injecting routes, or 
modifications to routes, into the local RIB. 
The simplest way to think of this is two routing protocols running as “ships in 
the night,” where the combined effect of the two protocols is to produce a 
permanent loop in the control plane routing information. Static routes are a 
prominent example; hybrid mode SDNs must avoid the “static effect” by 
being careful to interact with the routing table in near real time, rather than 
simply injecting routing information without regard to the existing state of 
the network. 

The Replace Model 

The Replace model is what most network engineers think of when they think 
of SDNs—moving the entire control plane from the individual routers and 
switches to a centralized control system. The control system might be a 
single controller, or it might be a distributed system of controllers spread 
throughout the network that run protocols among themselves to distribute 
policy and forwarding information as needed. The Replace model opens the 
API between the FIB and the hardware controllers, or the RIB and the FIB, in 
effect allowing the controller to program the individual entries in the 
switching devices themselves. The IETF FORCES working group and 
OpenFlow are examples of replacing the entire in-box control plane with an 
off-box system of controllers distributed throughout the network. 
Replace model SDNs can be deployed in a variety of ways, some of which are 
similar to traditional networking models, and others of which are completely 
foreign to traditional networking. 

Offline Routing/Online Reaction 

Traditional networking models put the control plane in-band, which means 
control plane packets are carried over the same links as data traffic. This 
allows the control plane to react to changes in the network topology by 
recalculating the best path to reach a given destination in near real time—
when a link or node fails, a routing protocol discovers the failure, propagates 
information about the failure, and finally calculates a new set of paths 
through the network that routes around the failure. 
Proponents of the Offline Routing/Online Reaction (OR/OR) operational model 
argue that the Distributed model of network control is fundamentally broken. 
A control plane that reacts to changes in the network topology can never 
react fast enough to prevent major packet loss without building in a lot of 
complexity that makes the network difficult to design, deploy, and manage. 



Very specialized timer tuning, along with complex additions to the routing 
system, are required to react to network topology changes in near real time. 
OR/OR resolves this problem by calculating all control plane information 
offline, including a set of backup paths that can be used in the case of the 
failure of the best path for any given traffic flow. This is much like an MPLS-
TE network with fast reroute, where the primary path to any destination is 
calculated, and then a backup path is calculated. Both paths are installed in 
the forwarding table of every device through the network proactively at the 
time they are calculated. 
If the primary path fails at any point in the network, the device that detects 
the failure can immediately switch traffic to the backup path and then notify 
the control plane that an alternate path needs to be calculated for this 
particular destination. This is, in a broad way, identical to the calculation of 
alternate paths in a traditional routing protocol. EIGRP, for instance, can 
discover alternate loop-free paths (Feasible Successors), and install those 
backup paths into the routing table for immediate use when the primary path 
fails. 
The apparent simplicity of precalculating routes isn’t, however, as simple as 
it appears at first blush.Figure 17-3 illustrates some of the complexity 
involved in precalculating backup paths. 

 

Figure 17-3 Example of Precalculation Complexity 

Assume an offline controller determines the best route between A and G is 
along the path (A,B,D,F,G), so it installs the correct forwarding state in each 
device along the path. The controller software also determines a good 
backup route is along the path (A,C,E,G), so it installs alternate forwarding 
information in each of these routers to provide a backup path for this traffic. 
This apparently simple solution presents three separate problems: 

 First, the state in the network has just doubled. Simply calculating 
routes for every source/destination pair is bad enough—traditional 
networks only calculate the path to every destination, so that 
forwarding state is naturally aggregated as you move closer to the 
actual destination. But not only must every source/destination pair 
be calculated in this solution, and forwarding information installed 
for every source/destination pair, backup path information for 
each source/destination pair must also be installed in every device 
along the backup path. Router C, then, now holds a path for 
(A,G), a path it would not have held in a traditional network. 

 Second, how should Router C treat this forwarding information? 
There were once two states in the routing and forwarding tables in 



every device—a path is in use, or it is a backup for another path 
that is locally in use. Router C, however, doesn’t have a local path 
for (A,G) at all, so it will need a separate state to indicate the 
installed path is a backup path for a path that doesn’t locally exist. 

 Third, how should we deal with nonlocal failures along the primary 
path? In the scenario proposed, if the link between Routers A and 
B fails, A can simply reroute traffic along the alternate path, 
through Router C. But what if the link between Routers B and D 
fails? How can A know to reroute this traffic? There are only two 
available solutions to this problem. 

Router B can examine its local forwarding table and send some sort of signal 
along to each source that is using Router B as a transit device. This would 
mean the addition of a signaling protocol to provide this “crank back” 
function throughout the network. Cranking back a path in this way is clearly 
going to take some time—in fact, the same amount of time it would take for 
a traditional routing protocol to detect and flood information about the same 
topology change. A crank-back signal is not only complex, it will most likely 
result in convergence times roughly equivalent to in-band control planes. 
Another option is for Router B to notify the out-of-band controller of the link 
failure. The controller can then signal Router A that it should switch to the 
alternate path for this traffic. But the primary determinant in switching 
between links in this case is going to be the signal path from Router B to the 
controller and back to Router A—not the amount of time it takes for the 
controller to calculate and install an alternate path. If this is true, why bother 
with calculating and installing the secondary path? Can’t the secondary path 
be just as easily computed and installed in real time, like a traditional in-
band routing protocol? 
It’s also possible for the controller to compute not one, but two, alternate 
paths through the network. The alternate path for Router A could be 
(A,C,F,G), and the alternate path for the same flow at B would be (A,B,F,G). 
Now if the link between Routers B and D fails, any traffic can be rerouted by 
B directly—at the cost of a lot more state in the network, however. 
Finally, there is the question of what happens to the traffic “on the wire” 
when a failure occurs. If the link between Routers F and G fails, and Router F 
must either “crank back” the path by signaling Router A, or must notify the 
controller, which must then tell Router A to switch to its backup path, what 
happens to any packets sitting in the memory of Routers B and D? Are these 
packets simply discarded? 
Dynamic routing protocols resolve all these problems by allowing each node 
in the network to compute an alternate local path for each destination. IP 
fast reroute mechanisms can be designed to add little or no state to the 
network, and to react quickly enough to reduce convergence times so that 
only packets in flight (physically being transmitted on the wire) at the time of 
the link failure, or packets physically residing in the memory of a failed node, 
will be lost in the event of a failure. 
Although this argument of the right network model—traditional routing 
versus OR/OR—is likely to continue forever, there is little doubt it’s a matter 



of trade-offs and current technologies, rather than a case of one model 
winning absolutely over the other on technical grounds. 

OpenFlow 

OpenFlow defines a set of interactions between a switch (really a forwarding 
plane with no control plane) and an off-box controller. These interactions are 
modeled as a set of states in the switch’s forwarding path, a set of protocols 
on the connection between the controller and the switch, and as a set of 
objects on the controller. Manipulating objects in the controller’s data model 
causes OpenFlow messages to be sent from the controller to the switch, 
which then results in a state change in the switch’s forwarding plane. 
These interactions are based around individual flows (or microflows) of data, 
defined by a set of tuples, such as the traditional five-tuple flow description 
(source IP address, destination IP address, protocol number, source port, 
destination port). The number of tuples used to identify a flow is variable, 
with some implementations supporting up to 12 tuples (including the Layer 2 
MAC address, protocol numbers, port numbers, and so on). A group of flows 
can be indicated by placing wildcards into the various tuples; all the traffic 
between 192.0.2.1 and 198.51.100.1 can be described using the five tuple: 
(192.0.2.1, 198.51.100.1,*,*,*). 
Each flow (or group of flows) is assigned an end-to-end path by the off-box 
controller using a global view of the network. The controller must ensure that 
traffic does not loop between various nodes in the network by using some 
form of a path calculation algorithm (SPF, as used in OSPF and IS-IS, is one 
such algorithm). If a link or device fails, traffic must be dropped until the 
controller discovers the link failure and responds by finding and installing a 
new path through the network. 

OpenFlow Operation 

In terms of forwarding information, OpenFlow can operate in either proactive 
or reactive modes. 
In the proactive mode, the forwarding table is populated based on network 
topology information held at the controller before any packets are received in 
the network devices themselves. Because this mode is similar to the 
traditional routing model most architects are familiar with, we won’t spend 
any time on it; instead, we’ll move directly to the reactive model, which is 
less familiar. 
In the reactive mode, the forwarding plane is populated as new flows are 
started by hosts attached to the network, rather than attempting to describe 
the full range of reachability information at any given time. Figure 17-
4 shows the reactive process of building a flow in an OpenFlow network. 



 

Figure 17-4 Reactive OpenFlow Operation 

OpenFlow operation is broken into the same two basic parts any reactive 
control plane is composed of: discovery and programming. To begin the 
process, Host A sends a packet toward Server E. Switch B receives this 
packet and checks the local forwarding table (FIB) for information about this 
particular flow. Assume for this example that no such flow record (or 
forwarding table entry) exists in the local FIB. 

Note: The forwarding table entry doesn’t need to match all five tuples of this 
new flow to be used to forward traffic towards Server E—a forwarding table 
entry can contain wildcards that allow all traffic destined to Server E to take 
a single path through the network, or follow a specific tree towards this 
server.

 

On receiving a packet for a flow with no forwarding information, the 
OpenFlow switch, B, encapsulates the entire packet and sends it through a 
controller backchannel interface to the controller, C, for further processing. 
At this point, the controller has two options: 

 First, the controller could simply process the packet, including 
placing any information needed to forward the packet on toward 
its final destination, and send the packet back to Switch B for 
further processing. Switch B would receive this packet, discover 
the information needed to forward the packet in the OpenFlow 
headers attached by Controller C, and forward the packet 
according to those instructions. 

 Second, the controller could process the packet and send it back 
to Switch B for forwarding, and then program a forwarding table 



entry at every switch along the path through the backchannel 
interface, as shown in the programming phase in Figure 17-4. In 
this way, the second packet Host A sends to Server E will be 
forwarded along the path through Switches B and D using 
hardware-based processing. This flow path, built by the controller 
dynamically in response to the first packet in a flow, can be 
thought of as an end-to-end policy route for this specific flow. 

This flow path is retained until some policy local to the network or the 
individual switches deployed throughout the network removes it. The 
removal process would normally rely on a simple timer (if a flow label hasn’t 
been used to switch a packet in a given number of seconds, remove the 
label), or it might be based on a more sophisticated mechanism, such as 
watching for well-known protocol stream endings. For instance, a switch 
might be configured to forward traffic that falls within a specific stream, but 
also to replicate any TCP packets with specific bits or control messages up to 
the controller as well. This would allow the controller to monitor the state 
and health of each TCP connection and remove the flow entry for TCP 
sessions that have either timed out or been terminated. 
The entire SDN network, from OpenFlow edge to OpenFlow edge, is 
considered a single Layer 2 domain from the routing perspective, much like a 
single spanning tree or TRILL domain. 

Note: Engineers who work in the OpenFlow space argue that it is neither 
Layer 3 nor Layer 2, and that there are no “broadcast domains,” in the 
traditional sense, in an OpenFlow network. Since the flow tables are built 
around all 12 tuples of the header, potentially all the way into the port 
number (for situations where this much specificity is required), packets can 
be switched at “any layer” within the network. Hence OpenFlow really isn’t 
“Layer 2 switching,” any more (or less) than “Layer 3 switching.” This is one 
of the reasons the framework presented here doesn’t rely on layers to 
differentiate SDN systems, but rather on the point in the switching device 
that the SDN solution touches.

 

Objections and Considerations 

Most of the objections to SDNs revolve around scaling, complexity, 
separation of the data and control planes, and the reactive nature of the 
control plane as discussed in the sections that follow. 

Scaling 

The most common objection to SDNs is that it won’t scale. This is a catch-all 
objection to virtually every technology in the network engineering space, so 
we really need to dive into this objection a bit to both understand it and to 
understand the answers to it. What do we mean when we say it won’t scale? 
Generally, this means the protocol or system in question won’t be able to 
handle large numbers of users or hosts because of protocol overhead or 
operation. 



In the case of SDNs, there are three specific charges in terms of scaling. 
The first objection in the space of scaling is we simply can’t build hardware 
that will support hundreds of thousands of flows or microflows. At the time of 
this writing, OpenFlow-capable switches can support only hundreds or 
thousands of forwarding table entries; it seems difficult to see how we’re 
going to find the processing power needed to build and quickly find entries in 
a table with millions of 5- to 12-tuple entries. 
If we look back in the history of networking, we find that this concern over 
scaling has been faced—and overcome—many times. Ten years ago, a 5,000 
entry routing table would have been considered excessive outside the 
Internet core, and the 100,000 route Internet core was considered absolutely 
huge. Today, routers support over a million routes in the routing table, with 
corresponding forwarding tables of the same size. What happened? 
Hardware vendors, protocol designers, and network designers learned how to 
tweak their hardware, protocols, software, and network designs to build and 
manage networks. It has not been an easy road at times, but packet-based 
networks are scaling beyond anything someone 10 or 15 years ago would 
have imagined. 
As the demand rose, engineers learned how to build what was demanded. 
SDNs are likely to answer this scaling problem in the same way—as the 
demand arises, hardware vendors will learn how to build large-scale 
forwarding planes optimized to SDN requirements. Algorithms, hardware, 
and other components will be shaped around the requirements at hand, and 
the scaling problems that appear so daunting today will be but a memory. 
The second scaling objection is that an SDN network effectively represents 
one huge flat domain—that hierarchy, and the lessons of hierarchy, are being 
thrown out the window for SDNs. Unlike the first scaling objection, this is a 
structural issue. Only time will tell if a shift in design philosophy can 
overcome this objection. Network engineers might find SDNs are limited in 
scope to a single data center, or a single campus, and “interSDN routing” 
must be handled like BGP handles interdomain routing today. There’s simply 
no way to know at this point in the development of SDN. 
To put this into context, the issue at hand is the full mesh problem taken to 
the host level. If every host in a network can connect to every other host in 
the network directly through the network, then there will need to be n(n-1)/2 
connections in the network. At the level at which OpenFlow addresses the 
network, this problem isn’t per host pair, but per socket pair—so the formula 
needs to be applied to every process, or rather every flow through the entire 
network. Full-mesh scaling simply doesn’t hold up in the long run. It’s not 
a matter of number of entries in a given table, nor a matter of handling the 
control plane flow, but simply the problems inherent in any-to-any full-mesh 
environments. 
This problem will, in the end, need to be solved in the same way it’s solved in 
more traditional networks—by aggregating control plane information. The 
only real question that needs to be answered is this: How will this 
aggregation take place? There appears to be at least three options. 



 Areas of the network where Replacement model SDNs have been 
deployed can be treated as a single Layer 2 domain within the 
network, just as a spanning-tree domain is in traditional IP 
network design. This would limit the size of the SDN domain, 
breaking up multiple failure domains with IP routed 
interconnection points. For this type of design to work, the SDN 
controllers must run a routing protocol and inject reachability 
information into the routed control plane at the SDN domain edge. 

 Multiple layers of replacement SDNs could be deployed in a 
network, with some form of “edge node” acting as a host on a 
higher level, or overlay, SDN network. Figure 17-5illustrates this 
concept. 

 

Figure 17-5 Hierarchical Replacement Model SDNs 

In Figure 17-5, the outer SDN appears to be a single device to the 
Inner SDN, even though the Outer SDN may represent thousands of 
devices. This type of hierarchy is familiar to engineers who have 
deployed L3VPN, L2VPN, or other “over the top” virtualization services. 

 SDN control planes could be modified to aggregate information 
just as routing protocols do in more traditional networks. The use 
of wildcard bits could be expanded, for instance, to include the 
concept of a subnet mask, so that information about groups of 
reachable destinations could be advertised and installed, rather 
than each individual destination. This type of control plane 
aggregation is already well understood, and would therefore be 
fairly easy to deploy and manage in large scale Replacement 
model SDNs. 

Which of these three will ultimately be deployed? If experience is any guide, 
all three of them—and many more. In the end, it will be up to network 
architects and vendors to decide how to address the scaling issues inherent 
in a full-mesh topology. 

Complexity 

The complexity problem in SDNs can be summed up in two points: 
 Software engineers look at networks and think, “Wow, this is 

really complex; think of how simple this would be if I could just 
write a few lines of code to manage all this stuff.” 



 Network engineers look at software and think, “Wow, this is really 
complex; all those lines of code, all those software interactions, 
and all those bugs and security vulnerabilities, and... Network 
implementations are much cleaner and simpler. SDNs will just be 
replacing my nice clean design with spaghetti code!” 

The problem is—they’re both right. 
In both cases, the engineers are comparing a rather simplified view of the 
problem they face against the apparently complex problem they see in some 
other space. The software engineer sees a large, complicated network with 
hundreds of different types of devices, hundreds of different protocols all 
interacting with one another, hundreds of different versions of code, 
hardware revisions, and the like, and thinks, “This is so much harder to 
manage than a quicksort.” The network engineer looks at a complete 
computer, with all the different pieces of software, all interacting (with often 
ill effects), and thinks, “This is so much harder to manage than OSPF.” 
The reality is that both network systems and software systems are complex 
because the problems they address are complex. The key question to ask 
when considering the complexity of an SDN (or any other) solution is: 
complex compared to what? Is a 5,000 VLAN deployment really more 
complex than an SDN deployment? Is a distributed routing protocol really 
more complex than the code required to calculate loop-free and optimal 
paths in a controller? 
There aren’t any easy answers to these questions. 

Separation of Data and Control Planes 

Two objections fall under this heading. The first of these is the problem of 
fast convergence in the case of network failure. This was covered previously 
in the “Offline Routing/Online Reaction.” We won’t repeat that discussion 
here. 
The second objection is the concern over failures in the connection between 
the data plane in one device and a control plane located in another box. Is it 
possible to build protocols that can control and manage, in real time, millions 
of flows across an off-box connection? It’s well known that network interfaces 
and devices drop packets when heavily loaded; what happens when the 
controller sends a message that is dropped someplace along the path to the 
switch? Worse, what happens when the connection between the forwarding 
device and the controller fails entirely? 
Part of this objection comes from our perception of traditional routers and 
switches as “one box.” In reality, they are not one box, but a collection of 
processors, each running different processes, connected through an internal 
bus system. Very few network engineers have ever had to deal with 
communication failures along those internal bus systems because hardware 
and software designers have learned how to make these internal bus 
systems robust enough to handle the workload and to fail as gracefully as 
possible. 
This objection, like the first, is a matter of learning to correctly design the 
hardware, software, and architecture to make a Replacement model SDN 



work. To return to experience in the realm of traditional control planes, link 
state routing protocols are designed to flush and reflood their link state 
information on a regular basis. EIGRP, likewise, was originally designed with 
the “stuck in active” concept as a short leash on the state of the network. 
These measures were designed into routing protocols to account not only for 
common link and device failures, but also to account for corner cases. Link 
state protocols are now often operated with these flush and refresh timers 
set to the maximum possible, or simply turned off, and EIGRP’s stuck in 
active process has been rewritten to take advantage of newer networks and 
their capabilities. 
This is another area where we can expect SDN hardware, software, and 
protocol designers to learn and grow over time, eventually minimizing or 
eliminating this problem. 

Reactive Control Planes 

A number of structural objections that can be raised against reactive control 
planes can be applied to SDNs operating in a reactive mode. The primary 
objection, and most difficult to overcome, is that caching in the data plane 
always counts on specific patterns of traffic flow. Caching counts on a 
relatively small number of all possible end hosts opening flows to one 
another at any particular point in time. If traffic falls outside these specific 
patterns in large enough amounts, caching fails—and it fails dramatically. 
As an example, consider a cache that can hold 10 entries. In normal 
operation, it is safe to keep four or five slots filled in the cache; if the cache 
reaches 80% full (8 entries), older entries need to be timed out more quickly 
to prevent connections through the network from being refused because of 
lack of cache space. 
In the case where the flow count overflows the cache, the cache will attempt 
to dump older connections, even though they might still be in use, to build 
new connections. Older connections that continue sending traffic after they 
are removed from the cache are treated as new connections, causing another 
older connection to be removed, which then becomes a new connection in 
the next round. The cache will churn constantly, allowing apparently random 
connections for apparently random periods of time. 
This type of cache failure has caused a number of complete network failures, 
particularly when control plane traffic (including link status polling) is 
transmitted in line with transported data. Cisco redesigned its entire 
forwarding plane infrastructure, moving from the fast cache to Cisco Express 
Forwarding, to resolve widespread caching problems of just this type. While a 
number of possible solutions have been proposed to resolve this type of 
problem, there is a deep reluctance in the routing community to move back 
toward a cached forwarding table. 

Conclusion 
SDNs hold out great promise for helping reduce the complexity of distributed 
network models while providing a road for the growth of networking 
technologies into the future. Although there’s no clear answer to the question 



of which model is best, or whether SDNs will eventually “take over the 
world,” understanding the different ideas in play, and how they do or could 
fit together, is crucial to seeing the landscape and making clear decisions. 
Hopefully, the framework of models presented here can provide you with 
another view of the world of SDNs and how they relate to more traditional 
distributed networking systems. 

Software-Defined Network Use Cases 
Whether you should consider deploying SDNs is a matter of business drivers, 
rather than technological ones. The best way to decide is to consider the 
positive and negative aspects of the technology in specific situations, 
determine which problems the technology might be able to resolve, carefully 
consider as many side effects and consequences as possible, and then decide 
if, where, and how to deploy it. 
In the case of SDNs, the strengths and weaknesses of the technology should 
provide a good idea of where different versions of SDNs will be useful and 
where they might not. Here we will consider two specific areas in the network 
where an SDN deployment might prove useful. The first example is from a 
data center; the second is from a core wide-area network. 

SDNs in a Data Center 
Data center environments have been a focused area of research and 
development over the past several years. Data center specific protocols and 
technologies have proliferated to handle the massive scaling and 
management needs of large scale deployments (tens to hundreds of 
thousands of devices in a single building). Deployments this large bring 
several complex control plane problems into the world of network design, 
including managing large scale virtualization, managing policy, and managing 
the configuration of the large numbers of networking devices required. As an 
example, let’s consider how deploying OpenFlow could resolve some of these 
problems, and then consider the flip side—what challenges does OpenFlow 
cause? 

What OpenFlow Brings to the Table 

Large scale data centers are often designed for multiple tenants, such as 
multiple business units within a single company, multiple companies within a 
holding company, or a single company selling data center (cloud) services to 
other companies. This multitenancy problem is presented to the network 
architect as a data separation problem. Each tenant’s data must somehow be 
kept separate from every other tenant’s, even as data is moved around 
within the network to optimize resources and traffic flow. 
Normally, this separation of traffic is handled by provisioning a VLAN per 
tenant or, in more recent deployments, by provisioning each tenant with 
either an L3VPN or L2VPN using MPLS transport through the data center. 
Both of these solutions, however, are difficult to deploy and manage. How 
could an SDN based on OpenFlow resolve these problems? A centralized 
control plane would be very useful in dynamically managing the flow of traffic 



to and from various locations in a data center network designed around 
multitenancy, as shown in Figure 17-6. 

 

Figure 17-6 Moving a Flow in a Data Center 

When a service is moved from some server in Rack A to some server in Rack 
B, the switch ports E.1, C.1, and C.2 must be reconfigured to remove them 
from the VLAN this service resides in, and switch ports E.2, D.1, and D.2 
must be configured to insert them into the VLAN this service resides in. To 
prevent huge amounts of reconfiguration in a traditional network, every 
VLAN is channeled to every rack (or a large subset of racks in which the 
service is allowed to be placed). Keeping all the VLANs, services, and the 
various possible combinations of these two straight is a big job from the 
network management perspective. 
In an OpenFlow deployment, however, the service move would be done 
through a centralized system that not only moved the correct processes from 
one server to another, but would also move the various ports into the 
corresponding VLANs—or, more simply, move the appropriate flows from one 
set of ports to another. This would greatly simplify the management of the 
network and the network design. 
Other difficult problems that could be more easily resolved in an SDN data 
center environment include the following: 

 Forwarding unknown flows, or flows that have been marked as 
being a security threat, through hardware designed to scrub out 
viruses and mitigate DDoS attacks 

 Building forwarding state in conjunction with authorization and 
authentication systems, so that users only have forwarding paths 
to servers they are allowed to access 

Challenges to the OpenFlow Solution 

SDNs in the data center, like all technologies, present the network architect 
with trade-offs; there are negative aspects as well as positive ones. Defects 
in the algorithms that tie various systems together could cause a positive 
feedback loop, allowing a failure in one system to leak over into another, or 
even cause a general network failure. Resiliency isn’t just about having 
multiple controllers; it’s also about isolation of failure domains. Replacement 



model SDNs, with their centralized control planes, present challenges in the 
area of true failure domain separation. 
Another issue is that the SDN’s controllers themselves must now be secured. 
Any attack against the SDN’s controllers represents a far worse threat than 
attacking and overcoming a single router. Distributed control planes are 
highly resilient to single node and link failures because every node in the 
network plays a relatively equal role in the running of the network itself. 
The capital expense savings many network managers seem to expect when 
moving to an SDN solution probably won’t materialize in the long run, either. 
Hardware that supports the number of flows required to deploy a large-scale 
data center with the potential for millions of flows isn’t likely to be any less 
expensive than the standard routing and switching platforms we’re used to 
today. 

SDNs in a Wide-Area Core 
Although Replace model SDNs show the most promise in data centers, 
campuses, and other environments where they fit into a specific set of 
requirements, Parallel model SDNs show the most promise in wide-area and 
network-core applications. 
At edges where traffic exits along two possible paths, it is often desirable to 
choose a path based on more information than BGP provides. For instance, a 
network operator may want to take into account the cost of using a link per 
unit of data, which might include time of day restrictions (peak hour rate 
increases or surcharges), additional costs per unit of data over a base unit, 
or even the cost of sending traffic to one specific destination. The cost of 
using a link might need to be weighed against the financial gain represented 
by using the link, including faster reaction to market conditions during 
specific time periods. 
Inputs to such a system could include the following: 

 Cost per unit of data sent 
 Time of day 
 Urgency of data traffic or flow 
 Exit point performance, including historical jitter, delay, and 

available bandwidth, possibly on a per destination basis 
 Availability of a specific destination through a given link at the per 

destination basis (more specific than the routing protocol 
provides) 

Metrics could be added to BGP, or any other routing protocol, to provide this 
additional information. Fine-tuned algorithms could be developed and 
deployed within routing protocol implementations themselves, but that would 
involve making massive changes to the way routing protocols work in an 
attempt to account for every possible set of parameters a network might 
want to consider for what is likely a small set of use cases. This is both 
impractical and detrimental to protocol scaling. 
A problem of this type, with multiple independent variables, is best resolved 
by collecting the data in an out-of-band device or appliance, and then 



feeding the resulting routing decisions back into the routing system. Out-of-
band devices providing this type of processing normally discover topology 
information by querying every edge device through SNMP or some other 
mechanism, or they hook directly into the routing system by peering with 
each of the edge devices. To inject path information back into the routing 
system, peering into the routing system is sometimes used, or direct 
injection of information into the edge devices’ routing tables through screen 
scraping, SNMP, or some other technique. 
All these solutions, however, have a number of drawbacks: 

 Discovering topology through direct interaction with the routing 
system often results in an incomplete or poorly developed view of 
the network. The out-of-band controller, in this case, cannot re-
create the same view of the network as the edge devices, so the 
controller’s view of the network will necessarily produce routing 
decisions that are not always optimal at all edge devices. For 
instance, SNMP cannot report multiple equal cost paths from the 
routing table, so a controller relying on SNMP would never be able 
to truly get a complete view of the network topology and the 
routing table changes during the process of being read. 

 Mechanisms that inject routing information through screen 
scraping, proprietary means, SNMP, or other systems do not allow 
the injected route to interact with routes installed by the onboard 
routing systems in a natural way. For instance, static routes 
injected through any means must, by their nature, change the 
configuration of the device, which can be problematic when 
network operators are trying to understand the operation of the 
network, or troubleshoot current problems. Routes installed 
through the static subsystem are also difficult to redistribute into 
other protocols to draw traffic to a specific exit point, and it can be 
difficult to fine-tune how these injected routes interact with routes 
learned through other routing processes. 

 Mechanisms that attempt to influence the routing of traffic by 
modifying routes in the routing system itself often cannot provide 
the weight of influence necessary; routing works by drawing traffic 
to the device advertising the destination, it is difficult for a third 
party to move traffic between two links to which it is not 
connected. 

With I2RS, the best path could be calculated using any number of custom 
written mechanisms, and the routes injected into the right places in the 
network to effect the most efficient drawing of traffic to the best exit point. 
Changes in the network environment could quickly cause traffic to be shifted 
to alternate exit points when circumstances dictate. 

Final Thoughts on SDNs 
SDNs are so difficult to define because they’re not really “one thing,” but 
rather a collection of technologies that interact with or possibly replace 



existing control plane systems. SDN control planes can operate in every 
mode distributed control planes operate in, as well. 

SDNs are, in essence, a different way of looking at or solving the control 
plane problem in large scale networks. 

Network architects and businesses should look to SDNs to resolve specific 
problems in a way that reduces the overhead cost of deploying and 
managing a network. Hardware (CAPEX) costs aren’t likely to be the major 
cost savings point in SDN deployments. Human error will always be a factor 
in network operations; SDNs are no different in this area from any other 
control plane. 
Overall, SDNs present unique opportunities and challenges to the networking 
industry and businesses that use networks, no matter what their scale. They 
have the potential to disrupt network engineering as we know it from the 
perspective of protocols and network management, but will probably do little 
to modify the tried-and-true models, theories, and design paradigms (such 
as separation of failure domains) that make solid network engineering tick. 
   



Chapter 18. Data Center Design 

“I’ve completely revolutionized our network by converting it all to a set of 
cloud services.” 
“Wow, that’s really interesting. How did you get it all done so quickly?” 
“Everywhere on our network diagrams there was a data center, I changed 
the symbol to a cloud and replaced the data center label with a private cloud 
label. The CIO is really happy now because we moved our entire network to 
the cloud so quickly!” 
As funny as this little story might be (and it’s a story from real life), and as 
much as cloud-centered folks might object, there is some truth in the switch. 
Cloud services still need to be backed up with physical storage, physical 
processing power, physical switches, and physical wires. The guts of a cloud 
don’t, in essence, look much different from the guts of a data center from a 
physical perspective. 
So although it might seem a little old fashioned, in this chapter we’re going 
to discuss the ins and outs of data center design, focusing on the control 
plane and topology. Although there are a lot of hard problems in cooling and 
power, those pieces won’t be covered here. Nor will specific tunneling 
technologies—this chapter is designed to give you a solid theoretical 
understanding of the problems onto which you can lay specific solutions. 

Data Center Spine and Leaf Fabrics 
The place to begin in data center design is not with the physical cabling, or 
cooling, or power, but with the concept of a fabric. Across the years, in 
talking to a lot of network engineers, one of the most difficult things to get 
across in the area of data center design is the idea of a fabric, in contrast to 
an aggregation layer. The key difference is fabrics don’t aggregate traffic. 

Understanding Spine and Leaf 
What does “fabrics don’t aggregate traffic” mean? Let’s begin with Figure 18-
1 in our exploration of this concept. 



 

Figure 18-1 Traditional Aggregation Topology 

In Figure 18-1, if we want to provide enough bandwidth for every edge 
router to send 10GB to every other edge router connected through the two 
central routers, we must add bandwidth between Routers A and B as we add 
edge routers. If we have one pair of edge routers, we can connect the two 
center routers with a single 10GB link. Doubling the number of edge routers 
means we must double the bandwidth of the link between the two center 
routers. 
Why? If Router E sends a 10GB stream to Router C, and at the same time 
Router F sends a 10GB stream to Router D, but there is only one 10GB link 
between Routers A and B, one of these two streams must be blocked in 
circuit switched terms. In packet terms, packets from both streams must be 
interleaved onto the oversubscribed link so that both senders get an equal 
amount of bandwidth. Both blocking and oversubscription cause delay and 
jitter in the network, which can adversely affect applications running over the 
links. Data center applications tend to be very sensitive to delay and jitter, so 
we need to find some way to provide a full bandwidth path between every 
pair of edge devices (or rather, between each pair of edge ports). 
The simple solution to this problem is to increase the bandwidth between the 
core, or central, routers—Routers A and B in this network. Up to a certain 
point, this is possible (in fact, a fat tree spine and leaf design uses just this 
sort of aggregation to a fixed point, as we will see later). But there is some 
point where higher-bandwidth links aren’t available, or the expense of 
building a higher-bandwidth link increases dramatically. The cost of 
infrastructure changes can make it less expensive to install ten 10GB links 
than one 100GB link. These observations lead us to the design shown 
in Figure 18-2. 



 

Figure 18-2 Increasing Bandwidth Through Additional Links 

It is possible to increase the number of links between Routers A and B so 
that for each pair of edge routers, we have a link equal to the edge 
connection link in the center of the network. This is again a feasible design, 
although it does have two drawbacks: 

 The design adds two ports on both Routers A and B for each pair 
of edge devices. 

 As the port count requirements for Routers A and B increase, the 
size, complexity, and cost of these two devices increase as well. 

As with link costs, the cost of a single large device can be much greater than 
a number of smaller devices that, combined, produce the same amount of 
capacity. This observation leads to the network design shown in Figure 18-3, 
where the core devices are divided, effectively exposing the internal fabric 
within the network design and spreading that fabric across multiple devices. 

 



Figure 18-3 Next Step to a Fabric 

This design effectively trades core ports for edge ports, allowing the central 
devices to be similar (or identical) to the edge devices. Now we observe that 
the links between the central devices are, essentially, worthless—they do 
nothing but forward traffic between two identical routers. If, instead, we 
merge the central devices into one device, we end up with a spine and leaf 
design, as shown in Figure 18-4. 

 

Figure 18-4 Spine and Leaf 

The result is a fabric where each edge device has the full bandwidth of the 
fabric available to every other edge device. You’ve seen this image before, 
back in our discussion of Clos fabrics in Chapter 11, “The Floor Plan,” but it 
bears repeating here to illustrate the traffic flows in such a fabric (seeFigure 
18-5). 

 

Figure 18-5 Traffic Flow in a Spine and Leaf Fabric 

It is still true that a set of edge devices (or leaves) can send more traffic 
toward any other single edge device (or leaf), causing an oversubscription or 



blocking situation, but there is no real way around this problem other than 
some sort of asymmetrical link bandwidth, with smaller links inbound from 
each leaf than what is available back out to the leaves. 
A spine and leaf design pushes traffic along multiple parallel paths to handle 
the required bandwidth, while providing enough cross-connects to allow any 
node to reach any other node—effectively placing multiple traffic streams in 
parallel. Traditional designs aggregate traffic by stacking multiple streams 
onto a single link and cross-connecting all the devices within a single 
device—or carrying the streams serially, rather than in parallel. 

The Border Leaf 
How does the rest of the network connect to this fabric? In the same way 
any other service or resource does—through a leaf. It is tempting to connect 
directly to the spine in a spine and leaf design, but this isn’t a good idea. If 
you connect the outside network to just some of the spine devices, you end 
up creating a “hot spot” in the spine along those devices. Traffic flowing 
through the spine switch that is connected to the rest of the network will be 
forced to pass through one of several oversubscribed switches, reducing 
application performance. 
If, on the other hand, you connect the outside network to every spine, 
you’ve effectively created a leaf node anyway—in which case there is no 
reason not to treat these connections to the rest of the network as if they 
were a leaf. 
Beyond connecting to the rest of the network, the border leaf also normally 
contains compute and storage resources set aside for managing the fabric, 
as well as any network level services that need to be accessed by all the 
VLANs running through the fabric. 

Sizing a Spine and Leaf Fabric 
What does this mean for the capability of a spine and leaf fabric to carry 
traffic? The natural inclination in network design is to stack traffic through 
aggregation; if a network needs to support 10 video streams of 1GB each, 
the network needs to have 10GB links. This isn’t the way spine and leaf 
fabrics work, however. There are three numbers network designers need to 
be concerned about when dealing with spine and leaf fabrics: 

 The speed (or bandwidth) of the fabric 
 The number of edge ports 
 The total fabric bandwidth 

Speed of the Fabric 

The first bullet point, speed of the fabric, is not the total carrying capacity 
between every pair of leaves in the fabric; it is the total bandwidth between 
each leaf and all the spine switches. For example: 

 If there are four spine switches, and each leaf switch has one 
40GB link to each spine, the result is a 160GB fabric. 



 If there are four spine switches, and each leaf switch has one 
100GB link to each spine, the result is a 400GB fabric. 

 If there are six spine switches, and each leaf has one 40GB link to 
each spine, the result is a 240GB fabric. 

The speed of the fabric needs to be matched to the flows being put onto the 
fabric itself, or the number and size of devices connected behind a leaf 
switch, rather than the aggregate of all the flows across the entire fabric. For 
instance, if a single leaf device is going to have 24 10GB ports into which 
blade servers can be connected, the fabric needs to support 24×10GB, or 
240GB of bandwidth. We discuss modularity more in a later section, 
“Modularity and the Data Center,” but essentially the speed of the fabric 
needs to be sized to the largest amount of traffic any single leaf node could 
send. 
Increasing the fabric speed can be accomplished in one of two ways: 

 Increase the speed of each individual link between the leaves and 
the spine. 

 Increase the number of spine switches, which increases the 
number of links between each leaf and the spine. 

Note the first idea, increasing the bandwidth of each link, results in what is 
called a fat tree fabric, where link bandwidths increase as you move closer to 
the center of the fabric and decrease as you move toward the edge of the 
fabric. To create a nonblocking design, it’s important that the total bandwidth 
not change from layer to layer. Only the bandwidth of individual links should 
change. For instance, each set of four 10GB links along the edge of the fabric 
should be matched with a single 40GB link from leaf to spine. If the link 
bandwidth stays the same edge-to-edge, the fabric is called a skinny tree. 

Number of Edge Ports 

The second number network engineers need to be concerned about when 
building a spine and leaf fabric is the number of edge ports. This, essentially, 
is directly related to the number of leaf nodes in the fabric. If each leaf node 
provides ten 10GB ports (10×10GB), then each additional leaf the fabric 
supports will provide another set of ports, increasing the total port count 
along the edge of the fabric. To increase the number of edge ports in a spine 
and leaf fabric, increase the number of ports available on each spine switch. 
Combining the fabric speed with the edge port count creates a chart of 
possible fabric sizes, as shown in Table 18-1 (assuming all links and ports 
are 10GB). 



 

Table 18-1 Spine and Leaf Fabric Sizes 

A typical fat tree fabric might use 40GB links between the leaves and eight 
spine switches, with each spine switch supporting twenty-four 40GB ports, 
for a total of 320GB bandwidth and 768×10GB ports along the fabric edge. 
Because most devices will be connected to two 10GB ports at the edge, this 
type of configuration will support 384 fully redundant devices, including 
servers, service devices, and storage. 

Total Fabric Bandwidth 

Finally, the total bandwidth across the entire fabric can be calculated by 
multiplying the number of edge ports by the speed of those ports, or the 
number of spine ports by the speed of those ports (if the fabric is not 
oversubscribed, these two numbers should be the same). The smallest fabric 



inTable 18-1 has 480GB of aggregate bandwidth, and the largest has 
1280GB of aggregate bandwidth. The typical fat tree fabric discussed here 
would have 7680GB of aggregate bandwidth. 

Why No Oversubscription? 
Oversubscription is a normal part of network design—100GB Ethernet feeds 
into a 10GB metro link, which feeds into a 1GB wide-area link. 
Oversubscription in a data center fabric, however, needs to be kept to as few 
places as possible—preferably, no more than one, generally at the point 
where traffic is taken into the edge of the leaf nodes (often called the Top of 
Rack [ToR], regardless of where it is physically located). It might seem like a 
waste to throw a lot of bandwidth at what appears to be a small amount of 
traffic, but several points need to be taken into consideration. 
First, spine and leaf fabrics are supposed to be nonblocking; 
oversubscription, while not true blocking, is a form of blocking that can 
severely impact application performance. Halving an application’s bandwidth 
to a remote resource doesn’t just cut its performance in half—the impact is 
much more severe. 
Second, most data center designs don’t run Layer 2 or Layer 3 directly on 
the fabric. Instead, the fabric runs as an underlying media over which a set 
of virtual topologies is built. As traffic is encapsulated into tunnels to build 
such an overlay, fine-grained quality of service controls are often lost. Some 
transfer is often possible, but it’s difficult to carry or act on all the quality of 
service information available in the original packets in highly virtualized 
environments. The result of oversubscription, then, on application 
performance is even worse in a virtualized environment than one where 
traffic is placed directly on the underlying network. 
Finally, if there are multiple points at which traffic can be dropped when 
crossing the network from source to destination, there are also multiple 
points where you’re going to need to spend time monitoring and 
troubleshooting in the case of an application performance issue. If 
oversubscription is limited to the edge, you have a single place to start when 
working on performance problems—and that single place is the most likely 
place for performance problems to originate. 
If you find your data center fabric very underutilized, you can take comfort in 
knowing that traffic grows in almost every network over time, so that 
capacity will likely be used eventually. Rather than seeing this as a negative, 
spin it as a positive—you planned for the future. Or you can rethink and fine-
tune your ideas about the load offered by various applications for the next 
design. 

The Control Plane Conundrum 
Building a fabric that can carry the traffic required for a data center is 
actually the simplest part of the data center design; dealing with the various 
control plane issues generally presents a far more complex set of problems. 
In this section we’ll start at Layer 2 and work our way up, looking at various 
problems (and some potential solutions) in the data center control plane. 



Why Not Layer 2 Alone? 
The first, and most obvious, question is: why not just connect everything in 
the data center into one large Layer 2 broadcast domain and go home for the 
night? The most likely reason is that your hours at home will probably be far 
fewer and less restful than you might imagine if you do this. There are a 
number of scaling issues in large Layer 2 networks, including the following: 

 Network discovery traffic, such as the Address Resolution Protocol 
(ARP), broadcast, and others. Although a single host might not 
generate a lot of this type of traffic, connecting several thousand 
hosts to a single broadcast domain can amplify discovery to the 
point of causing a network collapse. 

 The scope and rate of change in the control plane. In our 
discussion on network complexity in Chapter 14, we noted that 
there is a trade-off between the amount of information carried in 
the control plane, the speed at which that information changes, 
and the stability of the network. Connecting several thousand 
hosts to a single broadcast domain will create large tables of 
forwarding information; because hosts are likely to be attached 
and removed from the network on a regular basis, it will also 
create a high rate of change. 

 Traffic separation between different tenants or organizations 
within a data center is a common requirement, as is the capability 
to share a common set of services among a group of tenants, or 
to provide communication between the various tenants for specific 
processes and applications. The most natural way to separate 
traffic among various tenants is to place each tenant in a different 
broadcast domain—but two hosts connected to two different 
broadcast domains cannot communicate without some sort of 
router to interconnect the two Layer 2 domains. 

It is possible, of course, to create an all Layer 2 data center with multiple 
tenants if the tenants never need to communicate with one another. Shared 
services can be handled by virtualizing all services and spinning up a new 
instance of any required service within the tenant’s Layer 2 broadcast 
domain. This solution, however, hits a scaling limit when the network must 
actually be managed; each service instance within each tenant’s Layer 2 
broadcast domain must be configured with the right set of policies, and these 
configurations must be updated and managed as policies change over time. 
Here the network architect runs into the policy dispersion versus 
manageability trade-off in the network complexity space. 

Where Should Layer 3 Go? 
If a simple Layer 2 control plane won’t resolve all the problems we face when 
building large-scale data centers, the designer is pushed to consider Layer 3 
solutions. The first, and most pressing, problem when deploying Layer 3 in a 
data center is where precisely to deploy it. There are three different places 
you can put a routed edge in a spine and leaf design: 



 In a border leaf node where all the Layer 2 flooding domains 
terminate 

 At the spine 
 At the outside edge of the leaves. 

Figure 18-6 illustrates. 

 

Figure 18-6 Layer 3 Edge Options on a Spine and Leaf Topology 

Most designers only consider pushing Layer 3 to the ToR, or keeping all Layer 
3 functionality within the border leaf node. Why would a network designer 
choose one option over the other? The trade-off is primarily between Virtual 
Machine (VM) mobility versus optimal traffic flow through the fabric and 
reduced failure domain sizes. Specifically: 

 VM Mobility: 
o If interVLAN routing is performed at the border leaf node, VMs 

can be moved at Layer 2 to any compute resource available in 
the entire data center. When a VM is moved, the VLAN to which 
the VM is attached must be configured at the correct ToR switch. 

o If interVLAN routing is performed at the ToR, VMs can only be 
moved at Layer 2 within the flooding domain behind a single ToR 
switch port. This restricts VM movement to within a single 
compute domain, or removes the option of moving VMs within 
the data at Layer 2 altogether. 

 Broadcast, Discovery, and Control Plan Scaling: 
o If interVLAN routing is performed at the border leaf node, 

broadcasts (such as ARP and other discovery mechanisms) must 
be carried to the top of rack switch at every leaf on which the 
VLAN into which the broadcast is sent touches. The control plane 
at each ToR must discover and maintain switching state for hosts 
attached to every other ToR on a per-VLAN basis. 

o If interVLAN routing is performed at the ToR, each individual 
port is a VLAN, so broadcast discovery packets are not carried 



outside the leaf node. The control plane must learn IP 
reachability to all the hosts within the data center, but the spine 
switches are spared learning and holding any Layer 2 forwarding 
information. This aggregation of Layer 2 forwarding information 
into the Layer 3 table improves scaling and reduces the scope of 
the failure domains. 

 Optimal Traffic Flow: 
o If interVLAN routing is performed at the border leaf node, all 

interVLAN traffic must be carried across the fabric to the border 
leaf node, where it is routed, and then carried back to the 
destination. This is true even if the source and destination are 
both attached to the same ToR, as shown in Figure 18-7. 

 

Figure 18-7 Suboptimal Traffic Flow Through the Border Leaf Node 

o If interVLAN routing is performed at the ToR, all interVLAN traffic 
is routed at the ToR directly, allowing optimal traffic flow to 
every destination attached to the fabric. 

Which of these is the “best” design? The answer to that question depends on 
the nature of the load for which the data center fabric is being designed. If 
the load is going to require a good deal of interVLAN routing, so services can 
be chained, or information shared between processes running on different 
VLANs, then placing the routing at the ToR is probably going to be the better 
design solution. The problem with configuring routing on the ToR is the lack 
of VM mobility at Layer 2. If your applications or virtualization solutions are 
able to handle Layer 3 mobility, rather than Layer 2, configuring routing at 
the ToR will always produce better scale and more stability. 
On the other hand, if it’s important to be able to move VMs within the data 
center at Layer 2 (without changing their IP address), then the only real 
option is to configure interVLAN routing at the border leaf node. This will 
have a negative impact on link utilization, and therefore possibly application 
performance—application mobility often trumps these concerns. 



Note: There are solutions, such as Cisco Dynamic Fabric Automation (DFA), 
which offer both Layer 2 switching and Layer 3 routing at the ToR. These 
technologies provide Layer 2 mobility throughout the data center while also 
providing optimal traffic flow using Layer 3 routing. These solutions are 
beyond the scope of this book, but the reader is encouraged to consider 
them as options in the long history of resolutions to the problem of deciding 
whether optimal traffic flow or a high degree of Layer 2 mobility is more 
desirable.

 

Software-Defined Networks as a Potential Solution 

One potential solution to the trade-off between control plane scaling, Layer 2 
VM mobility, and optimal traffic flow through the fabric is the Software-
Defined Network (SDN). Although SDNs are covered in more detail 
in Chapter 17, “Software-Defined Networks,” it’s useful to spend a moment 
considering the positive and negative aspects of using an SDN in a data 
center environment. 
An SDN such as OpenFlow allows the network operator to choose the correct 
forwarding information on a per flow basis. This means there need not be 
any separation on a VLAN level within a data center in order to enforce traffic 
separation between tenants. Instead, the controller would have a set of 
policies that only allow the traffic from within one “VLAN” to be forwarded to 
other devices within that same “VLAN” on a per source/destination (or flow) 
basis. 
To forward traffic across an interVLAN boundary, the forwarding information 
programmed by OpenFlow would simply include a MAC header rewrite string 
that carries any specific packet from a source in one “VLAN” to a destination 
in another. For switching traffic within a “VLAN,” OpenFlow simply programs 
the switches in the path of the flow to move the traffic from one port to 
another without any MAC header being rewritten. 
Hence, traffic can either be switched within a flooding domain, or interVLAN 
routed between flooding domains, at any device in the fabric. This has huge 
advantages from a simplicity of management and design perspective. 
At the same time, this also means that information must be kept in the 
forwarding tables of every device in the fabric for each and every flow that is 
currently active in the network. This is a formidable task, because flow states 
change much more rapidly than Layer 3 forwarding table changes, VM state 
change, or anything else in the network that the control plane needs to keep 
track of. The first challenge for SDN-based solutions to the problems 
described here is scaling; vendors will need to build switches that rise to the 
challenge of managing tens or hundreds of thousands of flow. 
SDN solutions must also find a way to carry broadcast discovery protocols 
throughout the network, as these SDN solutions are attempting to make a 
subset of hosts believe they are all connected to a single physical wire, with 
no intervening switches. 



Network Virtualization in the Data Center 
Network virtualization plays a large role in the design of data centers, 
especially data centers specifically designed for use in the cloud space. There 
is not enough space here to survey every virtualization solution proposed or 
deployed (such as VXLAN, nvGRE, MPLS, and many others); a general 
outline of why network virtualization is important will be considered in this 
section. 
The primary point of these technologies is to move control plane state from 
the core of the network toward the edges. For instance, VXLAN allows Layer 
2 broadcast domains to be built across a simple Layer 3 fabric. The spine 
switches, in this case, know only a handful of addresses (or maybe even one 
address) for each ToR, reducing the state carried in the IP routing control 
plane to an absolute minimum. 
The first crucial question relating to these technologies and their use in the 
data center is what impact tunneling will have on visibility to quality of 
service and other traffic segregation mechanisms within the spine, or the 
data center core. Tunneling traffic edge-to-edge does offer a major reduction 
in the state held at the spine switches (and maybe even the ToR switches), 
but this could come at the cost of fine-grained control over the way in which 
packets are handled as they pass through the fabric. 
The second crucial question is: where should these tunnels be terminated? If 
they are terminated in software running on compute resources within the 
data center itself (such as in a user VM space, or in the software control, or 
hypervisor, space), this can make for some rather exciting traffic flow 
patterns across the fabric, as traffic threads its way from VLAN to VLAN 
through various software tunnel end points and virtual routing devices. If, on 
the other hand, these tunnels terminate on either the ToR or some device in 
the border leaf node, traffic patterns can still be a concern, as well as the 
problem of maintaining and managing hardware designed to provide the 
necessary services. 
No matter the answer to these questions, the control plane conundrums 
described here remain. Traffic must still be drawn into these tunnels, across 
interVLAN switch points, through the right services, and back out into the 
customer network. 

Thoughts on Storage 
Network designers don’t like to spend a lot of time thinking about storage 
within the data center environment—“Isn’t this a topic best left to experts in 
that field?” Radical changes are taking place in the storage space, however, 
that are likely to dump the problems of connecting, managing, and 
transporting storage directly in the designer’s lap. Two trends are worth 
noting here. 
Unified fabrics are the first. Fibre Channel over Ethernet (FCoE), Network File 
System (NFS), and iSCSI are examples of mechanisms specifically designed 
to transport storage across a single fabric shared by user data, the control 
plane, and storage. 



As its name implies, FCoE is designed to carry storage over an Ethernet 
network—but not just any Ethernet network will do. Every switch along the 
path of the data carried over FCoE must be able to understand and support 
FCoE switching. Zoning, or the ability to allow specific compute resources to 
access only specific blocks of storage data, is often a requirement in order to 
break up failure domains and provide security; some FCoE switches don’t 
support zoning, throwing another monkey wrench into the idea of a unified 
fabric. 
NFS and iSCSI, on the other hand, carry storage information directly in IP. 
The underlying IP network isn’t necessarily aware—or rather doesn’t need to 
be aware—of the type of traffic these specific IP packets are carrying. 
Storage packets are treated like any other IP traffic on the network. But 
treating storage traffic just like “any other traffic” might not be such a good 
thing. A process’s access to storage can dramatically impact performance; 
jitter, delay, and reliability are major requirements when carrying any sort of 
storage traffic across a unified fabric. 
The second major trend worth noting, from a network architecture 
perspective, is the potential collapse of Ethernet and IP directly into the 
interfaces of disc drives themselves. Old timers in the computer industry can 
probably still remember the “MFM versus RLL wars,” where geeks took to ink 
and paper to argue over the relative merits of these two drive access 
technologies. One performed better, the other used platter space more 
efficiently. These wars lasted until the drive manufacturers moved the file 
access logic into the drives themselves, standardizing on what is essentially a 
networking standard to connect the drive directly to a wide array of 
computer buses. 
The “MFM versus RLL wars” can be directly related to the FCoE, NFS, iSCSI, 
and Fibre Channel wars raging in the storage industry today. Some drive 
makers are already offering an Ethernet port directly on drives (with a 
standardized connector for general industry use). It may only be a matter of 
time before all storage is directly connected to the network, cutting out the 
controller that connects Ethernet, IP, and other standard networking 
protocols to the drive interface protocols. 

Modularity and the Data Center 
There are, in reality, two ways to approach modularity in data center design. 
The first is to build each leaf (or pod, or “rack”) as a complete unit. Each of 
these pods contains the storage, processing, and other services required to 
perform all the tasks related to one specific set of services. For instance, a 
single pod might be designed to provide Hadoop database processing and 
storage, or another to provide an entire human resources system, or perhaps 
a build environment for some application. 
Using this style of modularity allows the network designer to interchange the 
different types of pod in a way that is fairly independent of other pods and 
services offered in the network. The fabric becomes a “black box” to which 
services are connected (or from which services are disconnected) as needed. 



This is a very flexible model for enterprises and other data center users 
whose needs change rapidly. 
The second is to modularize based on the type of resources offered in specific 
pods. For instance, block storage pods, file storage pods, virtualized 
compute, and bare metal compute might be housed in different pods. This 
allows the network operator to upgrade one type of resource en masse, with 
little impact on the operation of any particular service running in the data 
center. This is more suited for organizations that can virtualize most of their 
services onto standard hardware and want to be able to manage the 
hardware life cycle separately from the software life cycle. 
A mixture of these two options is possible, of course. A set of data protection 
pods might provide backup services for all the other pods, which are then 
organized according to the services running on them, rather than the type of 
resources they provide. Or a resource based modularization plan might be 
interrupted by the occasional service running on bare metal servers, rather 
than virtual servers. In these cases, it’s important to understand what’s 
connected to the fabric where, and what can be moved to optimize traffic 
levels versus what can’t. 

Summary 
Data center design is the subject of much discussion, innovation, and 
change, driven by the need for changing functionality. Some of these 
innovations, such as SDN, may change the way we do networking in general. 
Although it would be impossible to define exactly which technologies and 
designs will be widely adopted, it is safe to say that data centers—and 
networks—of the future will look very different from just a few years ago. As 
you evaluate the developing technologies and designs, remember that you 
work at the intersection of business and technology. Keep in mind the 
fundamental concepts of letting your business requirements drive your 
technology choices, while understanding that your technology choices will 
drive your future business capabilities. 
And remember the questions. 
Asking the right questions will get you the information you need so that your 
network provides a foundation for business while transforming business and 
provides boundaries for information and people while still enabling 
collaboration. This is the key to fitting new—or old—technologies with your 
specific business problems, bringing you into the artistic world of network 
architecture. 
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